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Abstract

Artificial agents need to plan their future course of action for the purpose of au-
tonomously and flexibly performing tasks. State-of-the-art planning techniques can
provide artificial agents to a certain degree with autonomy and robustness. How-
ever, previous planning approaches are typically limited by the fact that they are
based on the assumptions that all relevant information is initially available and a
complete plan can be generated in a single, monolithic process prior to executing
any action. Comparatively little attention has been paid to the need for planning
with incomplete, open-ended domain models that enable the reasoning about the
active acquisition of relevant but missing information.

This thesis introduces a novel hierarchical planning approach that extends previ-
ous approaches by additionally considering decompositions that are only applicable
with respect to a consistent extension of the (open-ended) domain model at hand.
The introduced planning approach is integrated into a plan-based control architec-
ture that interleaves planning and execution automatically so that missing infor-
mation can be acquired by means of active knowledge acquisition. The plan-based
control system can automatically determine what information is relevant for a task
at hand as well as what information can be acquired by the corresponding agent.
Whenever it is more reasonable, or even necessary, to acquire additional informa-
tion prior to making the next planning decision, the planner postpones the overall
planning process, and the execution of appropriate knowledge acquisition tasks is
automatically integrated into the overall planning and execution process.

Real-world and simulation-based evaluation results demonstrate that this ap-
proach enables a physical robot agent to perform tasks even if no knowledge about
the dynamic aspects of the environment is available a priori.
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Zusammenfassung

Künstliche Agenten müssen zukünftige Aktionen planen, um gegebene Aufgaben
autonom und flexibel ausführen zu können. Bestehende Planungsansätze können
genutzt werden, um künstliche Agenten zu einem gewissen Grad mit Autonomie
und Robustheit auszustatten.

Typischerweise ist die Flexibilität von bestehenden Ansätzen durch die Annahmen
beschränkt, dass alle relevanten Informationen von vornherein vorhanden sind und
ein vollständiger Plan in einem einzigen, monolithischen Planungsprozess, vor der
Ausführung von Aktionen, generiert werden kann.

Die Nutzung von offenen Domänenmodellen, die in der Lage sind, die aktive Ak-
quirierung von relevanten Informationen zu berücksichtigen, ist bisher vergleichs-
weise wenig berücksichtigt worden.

Diese Arbeit beschreibt einen neuen hierarchischen Planungsansatz, der beste-
hende Ansätze erweitert, indem er zusätzlich hierarchische Zerlegungen berücksich-
tigt, die lediglich bezüglich einer konsistenten Erweiterung des aktuellen (offenen)
Domänenmodells anwendbar sind. Der eingeführte Planungsansatz ist dergestalt
in eine planungsbasierte Kontrollarchitektur integriert, dass sich die Generierung
und Ausführung von (partiellen) Plänen abwechselt, sodass fehlende Informationen
mittels aktiver Wissensakquirierung ermittelt werden können. Das planungsbasierte
Kontrollsystem ist in der Lage automatisch zu erkennen, welche Informationen für
die aktuelle Aufgabe relevant sind und wie diese Informationen ermittelt werden
können. Der Planer verschiebt die weitere Zerlegung eines Plans auf einen späteren
Zeitpunkt, wann immer es sinnvoller oder sogar notwendig ist, zusätzliche Infor-
mationen vor der Fortführung des Planungsprozesses zu ermitteln. Die Planung und
Ausführung von entsprechenden Wissensakquirierungsaufgaben wird automatisch in
den gesamten Ausführungs- und Planungsprozess integriert.

Experimente in einer realen und einer simulationsbasierten Umgebung demons-
trieren, dass dieser Ansatz einen Roboter dazu befähigen kann, Aufgaben autonom
auszuführen, obwohl eine Vielzahl von relevanten Informationen nicht a priori vor-
handen ist.
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Chapter 1
Introduction

In my view, some of the more important directions for growth in
the near future include planning in multiagent environments, reasoning
about time, dynamic external information, acquiring domain knowledge,
and cross-pollination with other fields. (Nau, 2007)

Contents
1.1. Motivating Example . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Natural Cognitive Systems: A Source of Inspiration . . 6

1.4. Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . 8

Intelligent agents (e.g., robots) are supposed to perform tasks autonomously. In-
stead of instructing agents by means of a detailed sequence of low-level actions, we
want to instruct them via high-level tasks like “Bring me a cup of coffee”. In other
words, we want to tell robots what to do, but not how to do it. This objective makes
it necessary for agents to plan flexibly how they perform desired tasks in a given
state of the world. For example, if we instruct a robot to cross a door which is open,
then it can simply approach and cross the door. However, if the door is closed, then
the robot first has to open the door. The situation is even more complicated if the
robot holds an object in its hands. In this case, it must first put the object aside,
open the door, grasp the object again, and then it can pass through the door. This
simple example makes it apparent that how a task can actually be performed heavily
depends on the concrete situation. In order to deal with this dependency, artificial
agents have to flexibly plan their future course of action. Thus, they require strong
reasoning and planning capabilities. Unfortunately, generating and executing plans
that perform tasks in unstructured, real-world environments is for several reasons a
difficult—often unsolvable—problem for artificial agents. One important reason is
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Figure 1.1.: Illustration of a situation where a mobile service robot is instructed to
pick up an object from a table.

the fact that it is impossible to a priori equip agents with all relevant knowledge.
Dealing with this lack of knowledge is not extensively considered by previous work
on AI planning and plan-based control, though seen as an important direction for
further growth (Nau, 2007).

An open-ended domain model is defined as a domain model from which an agent
can in general neither derive all information nor all possible states (e.g., all objects)
of the world it inhabits. The goal of this work is to develop a plan-based control
system that enables autonomous agents to perform tasks reasonably in unstructured,
real-world environments even if they only have an incomplete, open-ended model of
such an environment. In particular, adequate knowledge representation, reasoning
and planning approaches are intended to be developed and composed to a coherent
control architecture.

1.1. Motivating Example

Let us consider the situation illustrated by Figure 1.1, where a mobile service robot
is instructed to pick up an object from a table. Picking up an object from a table
is a typical task for a service robot. Such a task has been successfully executed
by a multitude of service robot systems. It does not seem to be very complicated.
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The situation becomes more difficult if the robot is not only supposed to be able
to pick up an object in a specific situation (e.g., for a certain position of the object
on the table), but supposed to be able to perform the task in as many concrete
situations as possible. In this case, we cannot define a sequence of low-level actions
that always constitutes a valid plan for the task of picking up an object from a table.
The robotic agent has to be able to flexibly plan its future course of action so that
it can pick up the object in a large set of concrete situations. In other words, we
need to somehow integrate a planning system into the control architecture of the
autonomous agent. However, for real-world domains like robotics, an agent usually
only has an incomplete, open-ended model of its environment. Thus, a lot of relevant
information is often not available at planning time. This rules out the application of
most of the previous planning approaches, since they are based on the assumption
that a planner is a priori equipped with all relevant information and a plan can be
generated in a single, monolithic process (Nau, 2007). Comparatively less attention
has been paid to task planning in real-world situations where the model of the
environment is inherently open-ended.

However, if previous work on AI planning turns out to be too inflexible to enable
a service robot to perform a typical task like picking up an object from a table,
then the question is: How can we enable a robotic agent to perform such a task
in a realistic situation where not all relevant information is available a priori? For
example, how can a robot plan to pick up an object from a table if the position of
the object is unknown, or if it has no knowledge about objects on the ground that
can obstruct a passage? How can the robot figure out what relevant information is
missing? And how can the required information be acquired? All these questions
have not been sufficiently addressed by previous work on plan-based control.

1.2. Objectives

The previous section illustrated that previous work on AI planning and plan-based
control often fails to enable artificial agents to perform tasks autonomously in real-
world environments. Existing AI planning systems can enable artificial agents—at
least to some degree—to autonomously plan their future course of action. Planning
algorithms have been developed that in principle are efficient enough to solve large
planning problems in real time. However, classical planning approaches fail to gen-
erate plans when necessary information is not available at planning time, because
they rely on having a complete representation of the current state of the world (Nau,
2007).

Conformant , contingent , or probabilistic planning approaches can be used to gen-
erate plans in situations where insufficient information is available at planning time
(Russell and Norvig, 2010; Ghallab et al., 2004). These approaches typically generate
conditional plans—or policies—for all possible contingencies. Conformant, contin-
gent, or probabilistic planning approaches extend classical approaches by allowing
for generated plans to contain conditional branches for (all) possible contingencies.



4 Introduction

The branches are attempted to be resolved during execution according to the ob-
served situation. Nevertheless, these approaches assume, like classical planning,
that a—possibly conditional—complete plan can be generated in a single, mono-
lithic planning process. This assumption renders conformant, contingent or proba-
bilistic planning approaches intractable for real-world situations, since the number
of contingencies is too large (possibly infinite), while opening doors for planning
approaches that can more flexibly interleave planning and execution.

A more promising approach for agents that act in open-ended domains is continual
planning (Brenner and Nebel, 2009), which enables the interleaving of planning and
execution so that missing information can be acquired by means of active information
gathering. Thus, continual planning approaches do not presume that the planning
process is monolithic. Existing continual planning systems can deal with incomplete
information, but their reasoning capabilities are usually limited by the fact that they
are based on classical planning systems that do not natively support open-ended
domain models. They typically rely on the assumption that all possible states of a
domain are known (i.e., they assume so-called bounded incompleteness). This makes
it, for example, difficult to deal with a priori unknown object instances. Another
important issue that is not directly considered by previous work is the fact that
a knowledge acquisition task task1 can—like any other task—make the execution
of an additional knowledge acquisition task task2 necessary which might require
the execution of the knowledge acquisition task task3 and so on. Consider, for
example, a situation where a robot is instructed to deliver Bob’s mug into Bob’s
office. Moreover, let us assume that the robot does know that Bob’s mug is in
the kitchen, but does not know the exact location of the mug. In this situation,
the robot needs to perform a knowledge acquisition task that determines the exact
location of Bob’s mug. However, in order to do that via perception the robot first
needs to go into the kitchen. If the robot does not have all necessary information in
order to plan to get into the kitchen (e.g., it is unknown whether the kitchen door
is open or closed), then it needs to first perform additional knowledge acquisition
tasks that acquire this information. Existing continual planning approaches usually
fail to cope with such a situation. In contrast, the continual planning and acting
approach proposed in this work is intended to deal with these kinds of situations
and thus can enable artificial agents to perform tasks in a significantly larger set of
situations.

Furthermore, previous continual planning approaches never attempted to exploit
the domain specific knowledge encoded in the domain model of a Hierarchical Task
Network (HTN) planner. The domain specific knowledge of an HTN planner is typ-
ically used to more efficiently solve classical planning problems and generalizations
thereof. However, in addition to the usual usage, this knowledge has the potential
to significantly contribute to the efficient answering of the following questions, that
are essential for continual planning systems: What information is relevant for the
purpose of finding a plan for the task at hand? What information implies which
additional ways to continue the planning process? Moreover, hierarchical planning
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is particularly interesting for continual planning approaches that generate partial
plans, since hierarchical planners can naturally represent partial plans by means of
leaving some parts of the plan hierarchy unexpanded.

The main objective of this thesis is to propose a hierarchical-planning-based con-
trol system that can deal with real-world situations more flexibly where an agent
only has an open-ended model of the world it inhabits. The plan-based control sys-
tem is intended to be a general-purpose framework that can in principle be used to
control various hard- and software agents. Its application is not limited to physical
robots, though it is intended to be particularly able to deal with some of the chal-
lenges real-world systems are usually confronted with (e.g., the open-endedness).
The system is supposed to be capable of automatically detecting missing but rel-
evant information. Whenever reasonable, the hierarchical planning process should
be deferred, and missing information should be acquired automatically.

The primary challenges in implementing such an approach is threefold:

1. AI planning approaches are equipped with a model of a situation and the
activities that can be performed by a corresponding agent. Such a model
is usually called the domain model (McCluskey, 2002). The domain model
of AI planning systems is typically based on the assumption that all relevant
information is available at the beginning of the planing process. Unfortunately,
assuming that all information is a priori available makes planning impossible
for all real-world situations where an agent only has an incomplete, open-ended
model of its environment. Comparatively little attention has been paid to the
need for open-ended domain models that feature the reasoning about active
knowledge acquisition of relevant but missing information. The first objective
of this work is to developed such an open-ended domain model. It is intended
to provide the basic knowledge representation and reasoning capabilities for
the overall plan-based control system.

2. HTN planning has been successfully applied to a variety of applications. Nev-
ertheless, previous HTN planning approaches are—like classical planning—
typically limited by the fact that they are based on the assumption that all
necessary information is initially available and a complete plan can be gener-
ated in a monolithic process prior to executing any action. The second aim
of this thesis is to develop an extended HTN planning approach that is ca-
pable of dealing with an open-ended domain model by means of additionally
considering ways of performing tasks that are only possible with respect to a
consistent extension of the domain model at hand (i.e., require the acquisition
of additional information). This work attempts to investigate if and how the
additional knowledge encoded in the domain model of an HTN planner can
be exploited to deal with an essential part of continual planning approaches:
reasoning about relevant extensions of the domain model at hand and active
knowledge acquisition.
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3. The third objective of this thesis it to develop a plan-based control system
that integrates the proposed HTN planning approach so that planning and
execution is interleaved, and missing information can be acquired by means
of active knowledge acquisition. The plan-based control system is intended
to be capable of automatically determining what information is missing but
relevant for the planning process. If it is more reasonable to acquire additional
information prior to continuing the planning process for the task at hand, then
the planning process should be deferred. The control system is supposed to
automatically create corresponding knowledge acquisition tasks for missing in-
formation. The planning and execution of these knowledge acquisition tasks is
integrated into the overall planning and execution process. Then, the deferred
planning process is continued after additional information has been acquired.
In this way, the plan-based control system is intended to provide the planning,
reasoning, and high-level control methods that enable an autonomous agent
to automatically perform tasks, though it only has an incomplete, open-ended
model of the world it inhabits.

The ultimate aim of this line of work is to enable intelligent agents that exhibit
goal-oriented, high-quality behaviors in unstructured, real-world environments. This
thesis aims at taking a step into this direction by means of providing a new plan-
based control approach that can more flexibly deal with the open-endedness of real-
world environments and the models thereof.

1.3. Natural Cognitive Systems: A Source of
Inspiration

Human beings are probably the most elaborated natural cognitive systems. They
appear to make heavy use of various reasoning and planning techniques to generate
plans for the tasks they carry out on a day-to-day basis. The investigation of how
humans usually solve the every-day task of making a cherry pie serves as a source
of inspiration for the objectives and the general approach of this work.

So let us assume that we are confronted with the task of making a cherry pie,
while not knowing how this actually can be done. How would we solve that prob-
lem? Or in other words: How would we generate and execute a reasonable plan in
order to perform the task of making a cherry pie? First, we would probably look
for an adequate recipe that describes how the desired cake can be made. From a
more technical perspective of an AI researcher, a recipe can be viewed as domain
knowledge that encodes how the task of making a cake can be performed. If we
want to generate a plan based on the recipe, then we usually need information
about dynamic facts (e.g., the availability and location of necessary ingredients or
tools). The availability and location of necessary ingredients and tools can be seen
as a precondition. For the purpose of correctly making the cake, it is essential to
ensure that this precondition is fulfilled. It can be ensured that the precondition
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holds by either finding out that it holds in the current state of the world or by
actively making it true. However, first of all, we have to find out what part of the
precondition is already fulfilled and what part does not hold in the current situa-
tion. Unfortunately, in a real-world environment, it is often impossible to determine
whether a precondition—or any other statement—holds or cannot hold only by rea-
soning, since this would require us to have sufficient information about the current
state of the world. Thus, we are often in the situation where we just do not know
whether a statement is true. Nevertheless, even in this situation our reasoning ca-
pabilities are able to analyze statements in a more fine-grained manner. The more
fine-grained analysis results in partitioning statements into a subpart that is known
to be true and a subpart that is neither known to be true nor known to be false. In
our making a cherry pie example, we might know that we have all necessary tools,
but are unsure about the availability of the necessary ingredients. In this situation,
the following questions might have to be answered: Are all necessary ingredients
available? Is an egg available? Where are the eggs located? Where and how to get
unavailable ingredients? Which of these questions have to be answered depends on
the concrete circumstances; thus, it is hard to a priori define when to acquire what
information. For example, if it can be determined that all necessary ingredients are
available, then the question of where and how to get missing ingredients does not
have to be considered. Hence, the knowledge acquisition process heavily depends
on the concrete situation. We should therefore keep in mind that it is desirable
that artificial agents can generate questions and corresponding knowledge acquisi-
tion tasks in a generic manner, since the explicit representation of when to acquire
what information is practically unfeasible due to the sheer magnitude of possible
situations.

In many cases, there are several ways to answer a question. For example, if we
want to known whether an egg is available, then we can either ask our roommate,
or we can take a look into the fridge. In this situation, our roommate and the visual
sensing modality serve as external knowledge sources that enable us to extend our
knowledge about the environment. The answering of generated questions can also be
viewed as a task for which a plan has to be computed and executed. For example,
we have to generate and execute a plan for the purpose of determining whether
sufficient eggs are available. Finally, the result of the knowledge acquisition process
has to be integrated into the overall planning and executing process.

The overall example demonstrates that we—as human beings—usually are able
to perform tasks even if not all necessary information is a priori available by:

1. partitioning preconditions into a subpart that is known to be true and a sub-
part that is indeterminable;

2. generating questions about the indeterminable part of a precondition;

3. generating, scheduling, and executing plans in order to acquire the necessary
information by submitting the queries to external knowledge sources;
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4. and reasonably integrating acquired information into the interleaved planning
and execution process.

These observed problem solving strategies serve as an important source of inspi-
ration for the overall approach of this work.

1.4. Outline of the Thesis

The dissertation begins by means of outlining the way to a novel hierarchical plan-
ning approach tailor-made for open-ended domains. Chapter 2 is divided into three
sections. Section 2.1 briefly describes the idea of state-of-the-art HTN planning, Sec-
tion 2.2 outlines the general idea of the novel HTN planning approach, and Section
2.3 itemizes the requirements for such a planning approach.

The Chapters 3, 4, 5, 6 all conclude with a brief summary and discussion of related
work.

Chapters 3 and 4 describe a novel open-ended domain model.

Chapter 3 begins by proposing a new, open-ended state model. The state model
represents knowledge about the state of world. It features the reasoning of consistent
extensions of the state model at hand. The novel notion of a possibly-derivable
statement enables the reasoning about extensions with respect to a certain statement
(e.g., the precondition of an HTN method). The corresponding reasoning process
is central for the novel HTN planning approach outlined in Chapter 2 and more
precisely described in Chapter 5. The state model is represented based on definite
clauses such that the overall model constitutes a definite program. Therefore, the
process of deriving information from the state model can be reduced to the well-know
process of deriving information from the corresponding definite program, and high
performance definite clause reasoners (e.g., Prolog systems) can be used to easily
and efficiently implement the reasoning process. The basic state model is extended
by additional concept relations that make it possible to improve the performance by
means of exploiting the knowledge encoded by these relations. The performance of
the main reasoning process is experimentally compared with a typical closed-world
implementation.

Chapter 4 describes the activities model that models the activities which can
be performed by the agent itself. It introduces a special kind of task, namely a
knowledge acquisition task. HTN methods for knowledge acquisition tasks describe
what knowledge acquisitions are possible under what conditions, how expensive it
is to acquire information from a specific knowledge source, and how a knowledge
acquisition task can be performed. The notion of an applicable planning operator
or HTN method is extended to the notion of a possibly-applicable planning operator
or HTN method. Furthermore, it is described how probabilistic information can be
integrated into the underlying cost model so that a planner can follow the principle
of maximum expected utility. Additionally, the novel concept of high-level percepts is
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introduced. High-level percepts represent multimodal integration processes. They
describe how a set of low-level percepts can be mapped to a single high-level percept.

Chapter 5 introduces the principled new HTN planner ACogPlan. It describes
how the proposed domain model can be exploited so that the requirements described
in Section 2.3 can be fulfilled. Moreover, it describes the algorithm of the planner
as well as discusses the completeness and soundness thereof.

Chapter 6 proposes a novel plan-based control system. The ACogPlan planner is
integrated into the control system so that planning and execution is interleaved. The
chapter describes the algorithm of the plan-based controller. An example for the
complete execution process of a task illustrates the functional interaction between
the plan-based controller and the planner.

Chapter 7 describes how one can represent a domain model for a typical service
robotic domain, whereby the goal of this chapter is twofold. First, it is intended to
demonstrate how some of the described features of the ACogControl framework can
be used to represent knowledge for a typical service robotic domain. In particular,
the goal is to point out that the proposed architecture can release a domain engi-
neer from the burden of explicitly dealing with the fact that often not all relevant
information is available at the beginning of the planning and execution process.
Second, the chapter describes a representative subset of the domain model used for
the experimental evaluation with a physical service robot described in Chapter 9.

Chapter 8 describes the hard- and software components of the mobile service
robot TASER that was used as an experimental platform for the evaluation of the
proposed control system.

Chapter 9 describes real-world and simulation-based experiments and discusses
the results thereof.

Finally, Chapter 10 concludes with a brief summary of the main contributions of
this work and discusses possible directions for future work.
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Chapter 2
Towards HTN Planning in Open
Ended-Domains

In most automated-planning research, the information available is
assumed to be static, and the planner starts with all of the information it
needs. In real-world planning, planners may need to acquire information
from an information source such as a web service, during planning and
execution. This raises questions such as What information to look for?
Where to get it? How to deal with lag time and information volatility?
What if the query for information causes changes in the world? If the
planner does not have enough information to infer all of the possible
outcomes of the planned actions, or if the plans must be generated in real
time, then it may not be feasible to generate the entire plan in advance.
Instead, it may be necessary to interleave planning and plan execution.
(Nau, 2007)
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This chapter describes the general idea of and the requirements for hierarchical
planning in open-ended domains. It attempts to provide a first informal motivation
and introduction of the proposed HTN planning approach, that extends previous
approaches in order to be able to deal with incomplete, open-ended domain models.
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A more detailed formalization and description of the domain model, the underlying
reasoner, and the planning algorithm will be provided in Chapter 3, 4 and 5.

Section 2.1 briefly describes state-of-the-art HTN planning using a simple example
with a robotic agent. The general idea of the new HTN planning approach for open-
ended domains is introduced in Section 2.2. A planning system that implements
this idea should fulfill a set of requirements. These requirements are discussed in
Section 2.3.

2.1. State-of-the-Art HTN Planning

This section provides a brief informal introduction to HTN planning. A more com-
prehensive introduction to HTN planning can be found in (Ghallab et al., 2004).

2.1.1. Introduction

The history of HTN planning goes back to first HTN planner NOAH (Sacerdoti,
1975). This approach has been succeeded by a multitude of other HTN planners
including NONLIN (Tate, 1977), SIPE (Wilkins, 1983), O-Plan (Drummond and
Currie, 1989), SIPE-2 (Wilkins, 1990), UMCP (Erol et al., 1994), DPOCL (Young
et al., 1994), AbNLP (Fox and Long, 1995), SHOP (Nau et al., 1999), and SHOP2
(Nau et al., 2003). All these approaches have in common that they use hierarchical
knowledge to more efficiently solve classical planning problems and generalizations
thereof. Like classical planners, the approaches are typically based on the assump-
tion that all relevant information is available at the beginning of the planning pro-
cess, and a given planning problem can be solved in a single, monolithic planning
process.

In contrast to classical planning, the goal of HTN planning is not to achieve a set
of goals, but to perform a set of tasks. Planning proceeds by means of successively
decomposing tasks into a number of subtasks until the level of primitive tasks is
reached. Primitive tasks are tasks that can directly (i.e, without additional task
planning) be executed by an agent. Like classical planners, an HTN planner has
knowledge in the form of planning operators about what action primitives can be
performed and how the action primitives effect the state of the world. In addition
to knowledge about primitive actions, an HTN planner has access to a set of HTN
methods that prescribe how a task can be decomposed into a sequence of subtasks.
HTN methods guide the planning process. They constitute the set of valid ways
to decompose a task into a number of subtasks. The planner only considers plans
that result from the successive application of a valid decomposition. In this way,
the domain specific knowledge encoded in HTN methods can prune the search space
and enable an HTN planner to find plans significantly faster than classical planning
systems.
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operator(approach(Entity),

% precondition

true ,

% delete -set

[approached(_)],

% add -set

[approached(Entity )]).

operator(cross(Door),

% precondition

(approached(Door) ^ in_room(R) ^ connect(R,Door ,R2)),

% delete -set

[approached(Door),in_room(R)],

% add -set

[in_room(R2)]).

operator(pick_up(Obj ,Table),

% precondition

(on(Obj ,Table) ^ approached(Table) ^ free(hand)),

% delete -set

[on(Obj ,Table),free(hand)],

% add -set

[in_hand(Obj )]).

operator(put_down(Obj ,Table),

% precondition

(approached(Table) ^ in_hand(Obj)),

% delete -set

[in_hand(Obj )]).

% add -set

[on(Obj ,Table),free(hand)],

Figure 2.1.: Operators for the illustrative example.

2.1.2. A Running Example

Let us consider a very simple example for the purpose of explaining the general
idea of HTN planning. Imagine a robotic agent that can perform four primitive
actions. It can approach known entities (e.g., a table or a door) via the action
approach(Entity), it can cross doors via the action cross(Door), it can pick up
objects from a table via the action pick up(Obj,Table), and it can put objects down
on a table via the action put down(Obj,Table). The agent has knowledge about
the actions it can perform and about the current state of the world. This knowledge
is called the domain model (McCluskey, 2002). The domain model is represented by
the domain specification. From the perspective of automated planning, the actions of
an agent constitute the basic operators that are considered by a planner. Therefore,
the domain specific model that encapsulates knowledge about the basic actions
that can be performed by an agent is called a planning operator (Ghallab et al.,
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method(deliver(Obj ,Table),

% precondition

(on(Obj ,Table1) ^ in_room(Table ,R))

% subtasks

[approach(Table1),pick_up(Obj ,Table1),

move_to(R),approach(Table),put_down(Obj ,Table )]).

method(move_to(R),

% precondition

(in_room(agent ,R1) ^ connect(R1 ,Door ,R) ^ open(Door))

% subtasks

[approach(Door),cross(Door )]).

Figure 2.2.: Methods for the illustrative pick-up and delivery task.

2004). For each of the four aforementioned actions that the robotic agent can
perform, the domain specification contains a planning operator. The specification
of these planning operators is shown in Figure 2.1. The domain specification is
defined in Prolog-like syntax (Deransart et al., 1996). Departing from the Prolog
syntax, preconditions are defined using the connectives ’^’ for conjunction and ’_’
for disjunction. For the domain specifications presented in this work, keywords are
bold and variables are highlighted blue.

A more precise definition of the planning operator model used for the proposed
planning system is described in Section 4.2.2. For the context of this example, a
planning operator is specified by an atomic formula of the following form:

operator(Name,Precondition,Delete-Set,Add-Set)

For such an operator specification, the term Name denotes the name of the oper-
ator. Like for classical planning, each planning operator has a precondition. For
example, in order to perform the action pick up(Obj,Table), the robot must have
a free hand, it must have approached the table and the object must actually be on
that table. The precondition is represented by a logical statement denoted by the
term Precondition. Furthermore, Delete-Set denotes a set of literals that do not
hold and Add-Set denotes a set of literals that hold after the execution of the action.
In this way, these sets define the effect of the operator. For example, consider the
planning operator pick up(Obj,Table) shown in Figure 2.1. After the robot has
picked up an object from a table, the hand of the robot is not free, and the object
is not on the table anymore. Thus, the literals free(hand) and on(Obj,Table) are
removed from the domain model of the robot. In contrast, in hand(Obj) is added
to the domain model, since the robot will have the object in its hand after it has
performed the corresponding pick-up action.

In addition to the definition of planning operators, the domain specification con-
tains two HTN methods shown in Figure 2.2. A more precise definition of the HTN
method model used for the proposed planning system is described in Section 4.2.3.
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deliver(bobs mug,t2) deliver(bobs mug,t2)

approach(t1)

pick up(bobs mug,t1)

move to(kitchen)

approach(t2)

put down(bobs mug,t2)

deliver(bobs mug,t1)

approach(t1)

pick up(bobs mug,t1)

move to(kitchen)

approach(door1)

cross(door1)

approach(t2)

put down(bobs mug,t2)

decomposition 1 decomposition 2

Figure 2.3.: Illustration of the planning process for the task of delivering Bob’s mug
to table t2.

For the context of this example, HTN methods are represented by atomic formulas
of the following form:

methodpTask, Precondition, Subtasksq

For such a method, the term Task denotes the task for which the method describes
a possible decomposition, Precondition is a logical statement that serves as the
precondition, and Subtasks is a sequence of subtasks in which the task can be
decomposed.

The first method shown in Figure 2.2 defines that the task of delivering an object
to a certain table can be decomposed into the following tasks: approach the table
on which the object currently is located, pick up the object, move to the room in
which the goal table is, approach the goal table, and put the object down. The
second method describes how a robot can move to a different room in a situation
where the room is directly connected via a door to the room the robot is currently
located in. It is assumed that the knowledge of the robot about its environment is
represented by a set of literals that hold in the current situation. For this example,
let us assume that the robot believes that the following literals hold:

in_room(agent,lab), in_room(t1,lab), in_room(t2,kitchen),

on(bobs_mug,t1), free(hand), connect(lab,door1,kitchen),

connect(lab,door2,kitchen), open(door1).

For this example, an HTN planner generates a plan via performing two decomposi-
tions as illustrated by Figure 2.3. It first decomposes the task deliver(bobs mug,t2)

into the five subtasks defined by the corresponding method. Except for the subtask
move to(kitchen), all subtasks are primitive and do not need to be further decom-
posed. Subsequently, the planner decomposes the task of moving into the kitchen
into the task of approaching and crossing door1. What decompositions are possible
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depends on available HTN methods that are relevant and the knowledge the agent
has about the state of the world. More precisely, decomposing a task into a number
of subtasks consists of the following three steps:

1. Choose an HTN method that is relevant (i.e., describes how this task can be
decomposed) for a task.

2. Try to generate an (valid) instance of the chosen HTN method.

3. Decompose the task as specified by an instance of the chosen HTN method.

For example, let us take a closer look at the second decomposition illustrated
by Figure 2.3. The planner tries to generate a plan for the task of moving into
the kitchen. The planner chooses the second method shown in Figure 2.2, since
this is the only method that is relevant for the task move to(kitchen). As a first
step of the instantiation process, the variable R of the method specification needs
to be replaced with the constant kitchen so that the method is actually relevant
for the task move to(kitchen). In order to find a valid instance of the method,
the planner forwards the (partially instantiated) precondition of the method to a
reasoning system. It is not important here whether this reasoner is tightly integrated
with the planner or rather an external component. Based on the knowledge about
the current state of the world that is encapsulated by the domain model, the reasoner
tries to derive an instance of the precondition. In this case, the reasoner needs to
derive an instance of the following precondition:

in room(agent,R1)^ connect(R1,Door,kitchen)^ open(Door)

In other words, the reasoner tries to find a door that connects the room in which
the agent is located in with the kitchen and is open. In this example, the reasoner
can deduce from the domain model that the agent is in the lab, that door1 connects
the lab with the kitchen, and that door1 is open. Thus, it can derive the following
instance of the precondition:

in room(agent,lab)^ connect(lab,door1,kitchen)^ open(door1)

This instance is the results of applying a substitution to the precondition of the
method that replaces R with kitchen, R1 with lab, and Door with door1. The
instantiation process applies the same substitution also to the sequence of subtasks.
For the example at hand, this means that the definition of the subtasks is trans-
formed to the following sequence by means of replacing Door with door1:

[approach(door1),cross(door1)]

Now the planner can decompose the task of moving to the kitchen into the primi-
tive tasks of approaching and crossing door1. How many instances of a method can



2.2 HTN Planning in Open-Ended Domains: General Idea 17

be generated depends on how many instances of its precondition can be derived by
the underlying reasoning systems. Every instance of the precondition that can be
derived results in a corresponding instance of the method.

2.2. HTN Planning in Open-Ended Domains: General
Idea

HTN planning is one of the most application-oriented AI-planning approaches (Nau,
2007). It has been used in a variety of applications including robotics (Weser et al.,
2010; Hartanto, 2009). Furthermore, HTN planning is known to have good per-
formance characteristics. For example, the good performance characteristics of the
HTN planning system SHOP2 (Nau et al., 2003) have been demonstrated at the
International Planning Competition 2002 (Long and Fox, 2003).

Nevertheless, existing HTN planning approaches are—like classical planning–
based on the assumption that a planner starts with all information it needs. Usually
these systems are based on the closed world assumption (CWA). The CWA leads to
the assumption that if an atomic fact p cannot be deduced from a given knowledge
base KB, then  p can be assumed (Brachman and Levesque, 2004). Based on this
implication, a knowledge base KB is extended to a KB` in the following way:

KB` “ KB Y t p | p is atomic and KB*pu

For instance, for the pick-up and deliver scenario described in Section 2.1, existing
HTN planners usually assume that door2 is closed, since the fact that door2 is open
is not part of the domain model (i.e., the knowledge base).

However, for many real-word situations, agents act in an open-ended domain. An
open-ended domain is defined as a domain in which an agent can in general neither be
sure to have all information nor know all possible states (e.g., all objects) of the world
it inhabits. In open-ended domains, often not all necessary information is available
in order to generate a complete plan or make a reasonable planning decision. For
example, a robot cannot generate a complete plan for the task of picking up an
object from a certain table if the exact location of the object is unknown. Hence,
the following question arises: How can HTN planning be extended such that it can
deal with open-ended domains?

As already described, HTN planning proceeds by means of successively choosing
an instance of a relevant HTN method or planning operator for which an instance
of the precondition can be derived with respect to the domain model at hand. In
open-ended domains, however, it will often be possible to instantiate additional HTN
methods or planning operators (i.e., which precondition is not derivable) if additional
information is available. The general idea of the proposed HTN planning system
is to also consider instances of relevant HTN methods and planning operators for
which the precondition cannot be derived with respect to the domain model at hand,
but is derivable with respect to a consistent extension thereof. To put it another
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Meth. inst. 1 (applicable)

move to(kitchen)

approach(door1) cross(door1)

Meth. inst. 2 (possibly-applic.)

move to(kitchen)

approach(door2) cross(door2)

Acquisition:
{det(open(door2),percept)}

Meth. inst. 3 (possibly-applic.)

move to(kitchen)

approach(X) cross(X)

Acquisition:
{det(connect(lab,X,kitchen),
percept), det(open(X),percept)}

Figure 2.4.: Applicable and possibly-applicable method instances for the task
move to(kitchen).

way, the planner additionally considers decompositions that are only applicable if
additional information is available.

Let us consider the example described in Section 2.1.2 again. It has been described
how an instance of the method for the task move to(kitchen) can be generated
that describes to move to the kitchen via door1. Previous HTN planning systems
are unable to consider additional ways to move into the kitchen, since they only
consider plans that are known to be executable with respect to the knowledge they
have about the environment. However, in open-ended domains, it is possible to
consider two additional instances of the relevant HTN method which cannot directly
be applied, but are applicable in a consistent extension of the given domain model.
HTN methods or planning operators that are only applicable with respect to an
extension of an agent’s domain model are called possibly-applicable. For example, it
will also be possible to cross door2 if the robot can find out that this door is open.
Moreover, in open-ended domains, it can also be possible that there is another door
which connects the lab and the kitchen. If the robot finds such a door that is open,
then it can also move into the kitchen via this door. All the three possible ways to
decompose the task move to(kitchen) into a sequence of subtasks are illustrated
by Figure 2.4.

Additionally considering possibly-applicable HTN methods or planning operators
is important in situations where one cannot assume that all information is available
at the beginning of the planning process. It often enables the generation—and
execution—of additional plans. In particular, it can enable a planner to generate
plans where it would otherwise be impossible to generate any plan at all. For
example, if it were unknown whether door1 is open or closed, then there would
only be possibly-applicable method instances. Hence, without considering possibly-
applicable method instances, a planner would fail to generate a plan for the task
move to(kitchen), and the agent would be unable to achieve its goals. Moreover, if
the optimal plan requires knowledge acquisition, then the optimal plan can only be
found if possibly-applicable method and planning operator instances are considered.
In other words, one can also benefit from the proposed approach in situations where
it is possible to generate a complete plan without acquiring additional information.
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2.3. Requirements

A planner that wants to consider possibly-applicable HTN methods or planning
operators needs to be able to reason about extensions of its domain model. However,
it is not reasonable to consider all consistent extensions of a domain model. The
planner should only consider domain model extensions that fulfill the following three
conditions:

1. A domain model extension should be relevant with respect to the overall tasks.
An extension of a domain model is called relevant iff it implies an additional
way to continue the planning process. For instance, a domain model extension
that includes additional information about today’s TV program is not relevant
for the aforementioned task of moving into the kitchen, since it does not help
the planner to find additional plans for this task. In contrast, if an extension
of the domain model additionally includes the information that door2 is open,
then the planner can generate an additional plan for the task of moving into
the kitchen. Hence, such an extension would be called relevant.

2. A domain model extension should be possible with respect to the domain
model at hand. An open-ended domain can have an infinite number of consis-
tent extensions. The challenge here is to enable a reasoner to exploit domain
knowledge in order to rule out as many extensions as possible. For instance,
we intuitively know that an object cannot be in two different rooms at once.
Thus, we know that if Bob’s mug is in the lab, then it is impossible that the
same mug is also in the kitchen. Therefore, in such a situation, it would be
beneficial if a reasoner does not consider extensions that include the fact that
Bob’s mug is in a different room.

3. A domain model extension should be acquirable with respect to a situation and
the knowledge acquisition skills of the agent. It is unreasonable to consider
extensions that are not acquirable by the corresponding agent. For example,
if a robot is not able to determine whether a door is open or closed, then the
second and third method instances shown in Figure 2.4 do not have to be
considered.

The following part of this work is going to introduce a domain model, a reasoner,
and a planning approach that fulfill these constraints.
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Chapter 3
Open-Ended State Model: Reasoning
About An Open World

Nevertheless, there are also many applications requiring open world ax-
iomatizations. The most obvious of these is robotics; in such settings, it
is naive to expect that a robot will have complete information about the
initial state of its world, for example, which doors are open and which
closed. Indeed, in the presence of complete information about its world,
it is not clear why a robot would ever need sensors. (Reiter, 2001)
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An agent that is supposed to perform tasks in a goal-oriented manner needs to plan
its future course of actions. For the purpose of making reasonable planning decisions,
an agent must have a model of its environment. In the AI-planning community, the
model of the environment is often called the domain model (McCluskey, 2002).
The domain model includes knowledge about the environment as well as knowledge
about the activities (e.g., primitive actions) that can performed by the agent. In the
context of this work, the former part of the domain model is called the state model,
and the latter part is called the activities model. The state model and corresponding
reasoning processes are described in this chapter, whereas the activities model is
described in Chapter 4. The overall domain model presented in this work is called
ACogDM (Artificial Cognitive systems Domain Model).

The underlying state models of AI-planning approaches often rely on the assump-
tion that all necessary information is available at the beginning of the planning
process (Nau, 2007). Thus, they are assumed to be complete. Unfortunately, this
presumption is in conflict with the fact that real-world agents act in dynamic, un-
structured environments, where they can in general neither be sure of having all
information nor of knowing all possible states (e.g., all objects) of the world they
inhabit. Therefore, the model they have of the state of the environment is open-
ended.

In contrast to most of the previous work, the state model described in this chap-
ter is inherently open-ended and particularly suitable for real-world agents that
inhabit an open world. The state model provides the basic reasoning capabilities for
the planner briefly outlined in Section 2.2 and more comprehensively presented in
Chapter 5. It enables the planner to reason about extensions of the state model at
hand, and thus is an essential component of the overall plan-based control system
developed in the context of this work.

A preliminary version of the state model has been presented in Off and Zhang
(2011c).
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3.1. Preliminaries

Definite clauses are used as the representational basement for state models. The
definition and notation of definite clauses, definite goals, definite programs and sub-
stitutions is borrowed from Nilsson and Maluszynski (1995) and briefly introduced
in this section.

A substitution is defined as a finite set of pairs tX1{t1, . . . , Xn{tnu where each ti
is a term and each Xi a variable such that Xi ‰ ti and Xi ‰ Xj if i ‰ j (Nilsson
and Maluszynski, 1995, Definition 1.17). The application Xσ of a substitution σ to
a variable X is defined as follows:

Xσ :“

#

t if X{t P σ,

X otherwise

Let σ be a substitution tX1{t1, . . . , Xn{tnu and E a term or a formula. According
to (Nilsson and Maluszynski, 1995, Definition 1.18), the application Eσ of σ to E is
the term/formula obtained by simultaneously replacing ti for every free occurrence
of Xi in E p1 ď i ď nq. Eσ is called an instance of E.

A clause is a formula (Nilsson and Maluszynski, 1995, Definition 2.1)

@pL1 _ . . ._ Lnq

where all Li are an atomic formula (positive literal) or the negation of an atomic
formula (negative literal). A definite clause is defined as a clause that contains
exactly one positive literal. Hence, a definite clause is a formula of the form (Nilsson
and Maluszynski, 1995, Chapter 2.2):

@pA0 _ A1 _ . . ._ Anq

As a notational convention, a definite clause is written as follows:

A0 Ð A1, . . . , An pn ě 0q

For such a definite clause, A0 is called the head and A1, . . . , An is called the body
of the clause.

Furthermore, ’J’ denotes an atomic formula that is true in every interpretation.
A definite clause for which n “ 0 is notated as A0 Ð J. Moreover, ’&’ is used
in definite clauses and definite goals as the negation as (final) failure operator as
introduced by Clark (1987) and implemented in several Prolog systems.

A definite program is defined as a finite set of definite clauses (Nilsson and
Maluszynski, 1995, Definition 2.2). A definite program can be queried in terms
of definite goals . A definite goal is denoted as follows:

Ð A1, . . . , An

A definite goal can be seen as an existential question that is answered by a definite



24 Open-Ended State Model: Reasoning About An Open World

program by means of trying to construct a logical consequence of the program which
is an instance of a conjunction of all subgoals of the goal (i.e., an instance of A1 ^

. . .^ An).
Moreover, the proposed domain model (i.e., the state and the activities model) is

based on the assumption that two distinct constants necessarily refer to two distinct
objects in the world. This assumption is usually called the unique-name assumption.

3.2. Outline of the Domain Model

A domain model represents all information that is used by the plan-based control
architecture. It is, as already described, composed of a state and an activities model.
Therefore, the domain model is defined as follows:

Definition 3.1. A domain model is a 2-tuple DM “ psMpDMq, actpDMqq whereby

• sMpDMq is the state model of DM ,

• and actpDMq is the activities model of DM .

This definition serves as a coarse outline of the domain model until the state and
activities model are described in more detail. The state model is described in this
chapter and the activities model is described in Chapter 4.

3.3. Basic State Model

Several non-classical planning systems use axiomatic inference techniques to reason
about the state of the world (Ghallab et al., 2004). Often the well investigated
definite-clause inference techniques are used. Usually axiomatic inference is sup-
ported by calling a theorem prover as a subroutine of the overall planning process.
The exploited knowledge representation and theorem proving systems (e.g., PDDL
axioms (Thiébaux et al., 2005)) often rely on the closed world assumption (CWA).
However, if we want to enable a planner to reason about unknown information in a
partially known domain, then we need a state model and theorem proving system
that are not based on the CWA. Particularly, we need an appropriate handling of
negation.

As an alternative to implicitly representing negative information (e.g., by using
the negation-as-failure semantics (Clark, 1987))—as often done by definite-clause
theorem provers—it is possible to extend the syntax of definite clauses for the pur-
pose of supporting the explicit representation of negative information. It has been
stated in literature that this approach is often practically infeasible, because of the
sheer magnitude of negative facts that would have to be stated (Subrahmanian,
1999). Nevertheless, this only holds under the assumptions that

1. a complete state model should be represented,
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2. and it is not possible to define a complete representation for local parts of the
overall model.

However, with respect to the context and objectives of this work neither of these
two assumptions is fulfilled, since it is intended to develop an adequate domain model
for incompletely known domains, and the proposed domain model—as introduced
later—permits the explicit representation of complete parts at the level of predicates.
Thus, it is reasonable to directly represent negative information in the context of
this work.

The following two special kinds of terms are introduced in order to extend the
syntax of definite clauses so that negative information can be explicitly represented:
literals and statements. Furthermore, the following three special functors are added
to the alphabet of the state model in order to define literals and statements: ’neg’,
’^’ and ’_’.

Let A0 be an alphabet that does not contain the functors ’neg’, ’^’ and ’_’. A
term over the alphabet A0 (see (Nilsson and Maluszynski, 1995, Definition 1.1)) is
called a basic term.

Based on that, a literal is defined as follows:

Definition 3.2 (literal). If t is a basic term, then t and neg t are called a literal.

Moreover, a statement is defined by the following definition:

Definition 3.3 (statement). A term st is called a statement iff it can be constructed
by the following rules:

• st is a literal

• st “ pneg st1q and st1 is a statement

• st “ pst1 ^ st2q and st1 as well as st2 are statements

• st “ pst1 _ st2q and st1 as well as st2 are statements

In order to improve the readability, the functors ’^’ and ’_’ are written in infix
notation, and the functor ’neg’ is written in prefix notation. Thus, a statement
pst1 ^ st2q is defined as ^pst1, st2q; a statement pst1 _ st2q is defined as _pst1, st2q;
and a statement pneg st1q is defined as negpst1q.

Statements—including literals—are defined as special terms so that definite-clause
reasoning technology can be used to derive instances of statements. Conceptually a
literal essentially is what is known as a literal in first order logic. Similarly, a state-
ment essentially is what is known as a first order logic sentence. Statements are
always implicitly quantified. Statements in a definite clause are (implicitly) univer-
sally quantified, whereas statements in a definite goal are (implicitly) existentially
quantified.

Similar to PDDL with PDDL axioms, the proposed state model enables domain
experts to express factual (e.g., Bob’s mug is in the kitchen) and axiomatic (e.g.,
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Bob’s mug is in room X1 if Bob’s mug is on table X2 and X2 is in room X1) knowl-
edge. Due to the objective to deal with open-ended domains, the domain model
additionally supports the explicit representation of negative information. Moreover,
it supports the flexible extension of the representation language of a state model by
additional constructs. These additional constructs are intended to constitute higher
level (conceptual) knowledge and are called concept relations . In principle, the state
model can be extended to support any conceptual knowledge as long as one can com-
pile this information to the underlying knowledge representation formalism, namely
a definite program. This feature is exploited in the following part of this thesis
by successively adding support for additional concept relations that are intended to
deal with the special requirements of open-ended domains. For example, the explicit
representation of subsumption-relations (e.g., A mug is an object) is supported by
the state model in terms of an additional state model concept relation.

We introduce the special predicate symbol d so that we can use definite clause
reasoning to derive instances of statements. The idea is that an instance of a state-
ment st can be derived with respect to a state model sM if dpstq can be derived
from the definite program that is constituted by the proposed state model. A state
model is formally defined as follows:

Definition 3.4 (state model). A state model is a quadruple sM “ pF,C,RD, RGq.
Let Ft be a set of ground literals and Ct be a set of basic terms such that FtXCt “ H.
Then, F is defined as F “ tdpfq|f P Ftu and C is defined as C “ tdpcq|c P Ctu. RD

is a set of definite clauses dplq Ð dpsq such that l is a literal and s is a statement.
RG is a set of definite clauses. sM

dp “ tf Ð J|f P F YCuYRDYRG is the definite
program constituted by the state model.

A state model sM is represented by the four sets F , C, RD, and RG. F represents a
set of facts about the state of a domain. C contains additional conceptual knowledge.
RD represents domain-specific rules (i.e., domain-specific axiomatic knowledge). In
contrast, RG represents generic (i.e., domain-independent) rules (e.g., pA^Bq holds
if A and B hold). F , C, and RD are intended to be specified by a domain expert
in order to model the state of a certain domain. RG, however, represents generic
rules that are defined together with the supported state model language constructs
in order to be able to map these constructs to the level of definite clauses. A
state model is illustrated in Figure 3.1. If it does not lead to ambiguities, then the
special predicate symbol d is omitted (e.g., like in Figure 3.1), and a definite clause
dplq Ð dpstq is written as l Ð st.

The fact that a state model constitutes a definite program has the advantage
that the process of deriving information from the state model can be reduced to the
well-know process of deriving information from a definite program. From a more
practical perspective, one can additionally benefit from the actuality that several
highly optimized Prolog implementations are available that can automatically de-
termine whether an instance of a definite goal is derivable or not. The derivability
of a statement is defined as follows:
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State Model

Facts pF q
in room(bobs mug,kitchen)

neg open(kitchen door)

Concept Relations pCq
imax ρpin room(ground˚,var˚),1q
cwaprconnection{3sq

Generic Rules pRGq
pst^ st1q Ð st, st1

neg lÐ cwapl%q,& l

Domain Rules pRDq
in room(O,R) Ð

on(O,T), in room(T,R)

Definite Clause Program

sM
dp “ tf Ð J|f P F Y Cu YRD YRG

constitutes

Figure 3.1.: Illustration of a state model.

Definition 3.5 (derivable). A statement st is derivable with respect to a state model
sM and a (grounding) substitution σ (denoted as sM $σ st) iff dpstqσ is derivable
with respect to sM

dp.

The set of all instances of a statement st that are derivable with respect to a state
model sM is denoted as r$psM , stq respectively as r$pstq if the respective state model
is apparent. More precisely, r$psM , stq is defined as follows:

r$psM , stq :“ tstσ | sm $σ stu (3.1)

In order to specify the derivability of statements, the following generic rules are
added to the set RG of a state model sM “ pF,C,RD, RGq:

dpst^ st1q Ð dpstq, dpst1q (GR1)

dpst_ st1q Ð dpstq (GR2)

dpst_ st1q Ð dpst1q (GR3)

dpneg neg stq Ð dpstq (GR4)

dpneg pst^ st1qq Ð dpneg st_ neg st1q (GR5)

dpneg pst_ st1qq Ð dpneg st^ neg st1q (GR6)

These rules determine what instances of a statement can derived. In particular,
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the handling of the introduced negation operator ’neg’ is specified. Rule GR1 defines
the handling of conjunction, whereas GR2 as well as GR3 define the handling of
disjunction. The well-known double negation elimination rule (see for example Ben-
Ari (2001)) is represented by GR4, and two of the De Morgan rules (Russell and
Norvig, 2010, page 298) are defined by GR5 and GR6. Please note that it sometimes
can be easier to understand generic rules if you read them as a definite program.

As already pointed out, a domain modeller has the opportunity to define domain-
specific axioms. Axioms are known to be an important feature of domain languages
(Thiébaux et al., 2005). Two example axioms are defined as follows:

in room(O,R)Ð on(O,T), in room(T,R) (DR1)

neg in room(O,R)Ð in room(O,R2), R2 ‰ R (DR2)

DR1 represents the fact that an object is in a room R if it is lying on a table
which is in room R. DR2 is an example for the explicit representation of negative
information. It represents the fact that an object can only be in one room at a given
point in time.

3.4. Reasoning Process

The facts, domain specific rules, and concept relations of a state model are domain
specific. They are usually specified by a domain expert or the result of a learning
process. In contrast, the generic rules are domain independent. They can be seen
as the program of the state model’s reasoner. The reasoner that is constituted by
the generic rules is called ACogReason. It is successively defined in this chapter by
means of adding generic rules to the state model. ACogReason provides the basic
reasoning services for the overall plan-based control architecture developed in the
context of this work.

Figure 3.2 illustrates the idea of the reasoning process. The reasoner and the
domain specific part of the state model together constitute a definite program. If
the state model is queried in form of a definite goal, then this goal and the definite
program constituted by the state model are the input of a definite-clause reasoner
(e.g., a Prolog system). Building the reasoner on top of a definite-clause reasoner
has the following advantages:

1. Definite-clause reasoning is based on mathematical logic, which has a well-
understood, well-developed theory (Sterling and Shapiro, 1994).

2. The reasoning about the complete parts of the state model can be provided
by the underlying definite-clause reasoner.

3. A multitude of highly optimized and mature Prolog systems are available
that can act as a definite-clause reasoner. The performance of the proposed
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Domain Specific

Facts (F )

Domain Rules (RD)

Concepts (C)

Generic Rules (RG)

Reasoner (Generic)

Definite Clause Program

sM
dp “ tf Ð J|f P F Y Cu YRD YRG

constitutes

Definite Clause ReasonerDefinite Goals

Solutions

Figure 3.2.: Illustration of the reasoning process.

reasoning processes extensively benefits from the high performance of state-
of-the-art Prolog systems.

3.5. Consistency

Nguyen (2008) distinguishes between two levels of inconsistency: syntactic and se-
mantic inconsistency. Syntactic inconsistency refers to a set of contradictory for-
mulas of a logic-based knowledge base. On the semantic level, formulas refer to a
concrete slice of reality that is their interpretation. Semantic inconsistency occurs
if a fact and its negation can be derived with respect to this slice of reality.

Due to the fact that the state model features the explicit representation of nega-
tive information, it is in principle possible to construct a syntactically inconsistent
state model. This means that it is possible to construct a state model where a
statement st and its negation neg st are derivable. However, semantic inconsisten-
cies may also occur in CWA-based representations. For example, one can create a
CWA-based state model such that open(door1) and closed(door1) are derivable.
Thus, one also has to deal with inconsistencies in CWA-based models. Further-
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more, note that the explicit representation of negation by means of the definite
clause neg open(door1) Ð closed(door1) has the advantage that one can detect
the semantic inconsistency via syntactic techniques.

It is desirable to support domain modellers with software tools in order to prevent
the creation of inconsistent state models, but automatically ensuring the syntactic
consistency of the proposed state model is out of the scope of this work and not
further addressed. Thus, ensuring consistency or dealing with inconsistencies needs
to be addressed during the state model construction process.

The fact that a state model sM is consistent is denoted as cpsMq. In the context
of this work, it is implicitly always assumed that a state model is consistent.

3.6. Conceptualizing Open-Endedness

CWA-based knowledge representation and reasoning systems (e.g., Prolog) can in
principle also be used in open-ended domains. Nevertheless, in open-ended domains
one has to consider that it is possible that true instances of a statement “exist”
but cannot be derived due to a lack of knowledge. CWA-based approaches are—by
definition—unable to reason about unknown (i.e. non-derivable) but possibly true
information. More precisely, it is unfeasible for CWA-based systems to distinguish
between instances of statements that cannot be derived because the existence is
impossible and instances of a statement that might be derivable if additional infor-
mation about the state of the domain were available.

Example 3.1 For example, let us assume that the following set of literals is derivable
from the state model sM of an agent:

tmugpbobs mugq, in roompbobs mug, kitchenqu

If one would try to derive whether a true instance of

mugpXq ^ colorpX, redq

exists with respect to sM , then the only information a CWA-based reasoner can
provide is that such an instance cannot be derived. Nevertheless, in principle there
are two possible situations in which an instance of this statement exists. It might
be

1. possible that Bob’s mug is red, or

2. it might be possible that there is an additional (i.e., non-derivable) mug that
is red.

For the purpose of also exemplifying the case where the existence of an instance
is impossible, let us take a look at the following statement:
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in roompbobs mug, officeq

Once again, the only thing a CWA-based reasoner can tell us about the literal is
the fact that it is not derivable. However, in this case the existence of a true instance
is impossible if one makes the reasonable assumption that Bob’s mug cannot be in
two different rooms at same point in time as specified by DR2.

Summing up, the CWA leads to a strong limitation that makes it hard to reason
about unknown information. The objective of the proposed open-ended state model
is to enable the distinction between situations in which the existence of a non-
derivable instance of a statement is impossible and situations in which additional
information might make non-derivable instances derivable. If we want to enable
such a reasoning, then we need an open-ended state model. This section introduces
a new open-ended state model that is based on the following three novel concepts:
an F-extension; an open-ended literal ; and a possibly-derivable statement.

For the purpose of reasoning about open-ended domains, one has to reason about
possible extensions of a state model. In this connection, only extensions are consid-
ered that are constituted by adding factual knowledge (i.e., a set of literals) to a state
model. These extensions are called F-extensions and are formally conceptualized as
follows:

Definition 3.6 (F-extension). A state model s1M “ pF 1, C,RD, RGq is called an F-
extension of sM “ pF,C,RD, RGq (denoted as sM ĎF s

1
M) iff F Ď F 1 and cpsMq ñ

cps1Mq.

In other words, one can create an F-extension of a state model by adding literals
such that a consistent state model stays consistent. Furthermore, literals for which
the existence of non-derivable instances is possible are called open-ended :

Definition 3.7 (open-ended literal). A literal l is called open-ended with respect to
a state model sM (denoted as lĹ) iff there is an instance lσ of l and a state model
s1M such that sM ĎF s

1
M and lσ P pr$ps1M , lq z r$psM , lqq.

Please note that for a ground literal the following holds:

Remark 3.1. If l is ground, then l is open-ended iff neither an instance of l nor of
neg l is derivable.

Let us recall the situation of Example 3.1 in order to exemplify the concept of an
open-ended literal. The literals mug(X) and color(X,red) are examples of open-
ended literals, because the existence of non-derivable mugs and red things is possible.
In contrast, mug(bobs mug) is not open-ended, since the only possible instance is
already derivable.

Let groundplq be a meta-predicate that holds iff l is ground and non-groundplq be
a meta-predicate that holds iff l is non-ground. The following two clauses constitute
a first attempt to specify an open-ended literal by means of a set of definite-clauses:
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dplĹq Ð non-groundplq (GR7)

dplĹq Ð groundplq,& dplq,& dpneg lq (GR8)

In other words, a literal l is open-ended if it is non-ground (GR7); or if it is ground
and neither l nor neg l can be derived (GR8). Domain specific information can be
used to determine that not every non-ground literal is open-ended. Nevertheless,
additional domain model constructs are necessary to integrate these kind of domain
specific information. These additional constructs will be introduced later in Section
3.9. For the current understanding, Rule GR7 is sufficient and will be revised in
Section 3.9.

Based on the definition of an open-ended literal, a possibly-derivable statement is
defined as follows:

Definition 3.8 (possibly-derivable statement). A statement st is possibly-derivable
with respect to a state model sM , a substitution σ, and a set of open-ended literals
Lx (denoted as ♦pst, Lxq) iff

• Lx is empty, and st is derivable with respect to sM and σ;

• or Lx is nonempty, and if a new instance plσqσ1 is derivable for all l P Lx
with respect to an F-extension s1M of sM and the empty substitution H, then
a new instance pstσqσ1 of st is derivable with respect to s1M and the empty
substitution H.

The symbol ’♦’ is—like d—a special predicate symbol. The idea is that a possibly-
derivable instance of a statement st can be derived with respect to sM and Lx if
♦pst, Lxq can be derived with respect to the definite program constituted by sM .
From the first part of this definition one can directly infer the following:

Remark 3.2. If a statement st is derivable with respect to a state model sM and
a substitution σ, then it is possibly-derivable with respect to sM , σ, and the empty
set (of open-ended literals).

A possibly-derivable statement constitutes the partition of a logical statement
into a derivable and an open-ended part (i.e., a set of open-ended literals). This
partition determines what additional information is necessary in order to derive an
additional (i.e., non-derivable with respect to the state model at hand) instance
of a given statement. Note that there may be more than one way to partition a
statement into a derivable and an open-ended part.

Let us assume that we have the same state model sM as introduced in Example
3.1 and would like to know whether the statement st “ mugpXq ^ colorpX, redq is
possibly-derivable. Thus, we are looking for a red mug. In this example, there
are two different situations in which st is possibly-derivable. In the first situation,
X is substituted with bobs mug, and st is possibly-derivable with respect to sM
and the resulting set of open-ended literals tcolorpbobs mug, redqu. In the second
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situation, the fact that there might exist an unknown red mug can be exploited,
and st is possibly-derivable with respect to sM and the set of open-ended literals
tmugpXq, colorpX, redqu.

Let literalplq be a meta-predicate that holds iff l is a literal. The following generic
rules are introduced in order to be able to derive possibly-derivable statements:

♦pst, Lxq Ð ♦pst,H, Lxq (GR9)

♦pst, Lx, Lxq Ð literalpstq, dpstq, @lPLx : dplĹq (GR10)

♦pst, Lx, Lx Y tstuq Ð literalpstq, dpstĹq (GR11)

♦ppst^ st1q, Lx, Lx
1
q Ð ♦pst, Lx, Lx

2
q, ♦pst1, Lx

2, Lx
1
q (GR12)

♦ppst_ st1q, Lx, Lx
1
q Ð ♦pst, Lx, Lx

1
q (GR13)

♦ppst_ st1q, Lx, Lx
1
q Ð ♦pst1, Lx, Lx

1
q (GR14)

♦pneg pst^ st1q, Lx, Lx
1
q Ð ♦ppneg st_ neg st1q, Lx, Lx

1
q (GR15)

♦pneg pst_ st1q, Lx, Lx
1
q Ð ♦ppneg st^ neg st1q, Lx, Lx

1
q (GR16)

GR10 and GR11 specify under what conditions a literal is possibly-derivable.
The general idea is that a literal is possibly-derivable if it is derivable or open-
ended. Thus, every open-ended literal is possibly-derivable, because for every open-
ended literal it is possible that there is a consistent extension of the current domain
model so that it is derivable with respect to this extension. Note that a (non-
ground) literal can be both derivable and open-ended. The second argument of
the ternary ’♦’ predicate1 denotes the set of open-ended literals of the previous
part of a statement and initially is empty (see GR9). Including this argument into
the recursive definition is necessary in order to consider the possible dependencies
between different parts of a statement. To be more precise, it has to be ensured that
all literals that have been “chosen” to be in the open-ended part of a statement stay
open-ended after additional substitutions. This is exactly what is done in GR10
by means of ensuring that substitutions that are necessary in order to derive an
instance of st do not affect the open-endedness of the literals in Lx. Besides the
correct handling of the set of open-ended literals, GR12 - GR16 essentially describe
well-known rules of first order logic.

1In the Prolog community, such an argument is typically called an accumulator (Sterling and
Shapiro, 1994).
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3.7. Additional Meta-Predicates

The proposed state model supports a set of meta-predicates that have a special
semantics. The meta-predicates ’J’, ’K’, ’&’, ’groundpXq’, ’non-ground(X)’ and
their semantics have already been defined in Section 3.1 and 3.6. Meta-predicates
can be used as a prefix (e.g., ’&’) or an infix operator. Additional meta-predicates
featured by ACogDM are introduced in this section.

3.7.1. Only Consider One Solution

In some situations, one might be only interested in finding any instance of a given
statement. The ’once’ meta-predicate can be used to represent such a situation.
For a statement st, the meta-predicate can be used in prefix notation as follows:

once st

If the given statement is derivable, then the ’once’ meta-predicate is handled
like in Prolog (Deransart et al., 1996): The reasoner returns the first derived in-
stance and ignores (possibly existing) additional solutions. However, if no instance
of the statement is derivable, then the meta-predicate has no effect, and the reasoner
returns all existing possibly-derivable instances of a statement.

Only considering one instance of a precondition can significantly improve the
performance of the planning process. However, this comes at the cost of possibly
ruling out relevant planning alternatives. Hence, the usage of the ’once’ predicate
can prevent the planner from finding solutions and should be used carefully.

3.7.2. Calling External Components

In order to perform a task in real-world situations, an agent often needs to solve
subproblems that differ in terms of the required reasoning techniques. For example,
for a typical pick-and-place service robotic task, a robot needs to solve path and
motion planning as subproblems. These problems are known to have a complex
combinatorial structure, and are hard to solve for heuristic-search-based planners
(Helmert and Röger, 2008). The problem of integrating path and motion planning
into an overall task planning process is usually tackled in a top-down manner so
that general purpose task planning, and dedicated path and motion planning run
in isolation. In this way, task planning is simplified by ignoring low-level details.
Unfortunately, this approach has the disadvantage that resulting plans on the task-
planning layer may be inefficient or even infeasible due to unconsidered low-level
constraints. For example, consider a situation in which a robot wants to put a mug
of coffee down and pick an empty plate up from the same table. If the kinematic
constraints of the robot are not considered by a task planner, then the task planner
is unaware of the fact that placing the object in a certain way (e.g., at a certain
position) effects the difficulty—or even the feasibility—of the subsequent pick-up
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task. For example, placing the mug directly in front of the empty plate can make it
more difficult—or even impossible—to subsequently pick the plate up.

The opposite strategy is to precompute all information that is possibly relevant
for a task planner in a bottom-up manner by low-level reasoners. Nevertheless, this
approach is often practically impossible due to the sheer magnitude of information
that would have to be precomputed.

A third alternative is to invoke external reasoners only when necessary, thereby
enabling the planner to integrate relevant information from dedicated reasoners into
the task planning process. However, this leads to the following question: When is it
reasonable to invoke a certain external reasoner? The simplest way to deal with this
question is to encode the call of external components into the domain description.
The ’call’ meta-predicate is featured by ACogDM in order to support this approach.
Every literal of the form

call l

is evaluated by calling l. For example, the following literal is evaluated by means
of calling an external path planner for the purpose of determining how expensive it
is to move from a position Pos1 to a goal position Pos2:

call path planner ::pPos1, Pos2, Costq

Encoding the calling of external reasoners into the domain description is not a
new idea. It is also supported by JShop2 (Ilghami, 2006) as well as by a PDDL
extension (Dornhege et al., 2009).

However, predefining the calling of external components in the domain model
has the disadvantage that it massively increases the size of the model. Explicitly
defining when to acquire what information from external components usually is
practically impossible, since the state spaces are too large for realistic domains.
Thus, autonomous agents need to be able to autonomously decide when to acquire
what information from which external source. How this can achieved is described
in Section 5 and 6.

3.7.3. Evaluating Arithmetic Expressions

The following ISO Prolog meta-predicates for arithmetic comparison are supported
by the state model in infix notation:

• ’=:=’ (equal)

• ’=\=’ (not equal)

• ’<’ (less than)

• ’=<’ (less than or equal to)
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• ’>’ (greater than)

• ’>=’ (greater than or equal to)

Moreover, the meta-predicate ’is’ can be used to evaluate arithmetic expressions
like in Prolog (Deransart et al., 1996). In this work, arithmetic expressions are
evaluated by the underlying Prolog system (SWI-Prolog).

3.7.4. Not Unifiable

The fact that two terms t, t1 have no unifier (Nilsson and Maluszynski, 1995, Defi-
nition 3.1) can be expressed by using the meta-literal ’‰’ in the following way:

t ‰ t1

The statement t ‰ t1 is derivable iff t and t1 are not unifiable.

3.7.5. List Operations

Furthermore, the fact that a term t is not unifiable with a member of the list
rt1, . . . , tns is defined by statements of the following form:

t notin rt1, . . . , tns

3.7.6. Accessing the Domain Model

Access to the underlying domain model M is provides by the following meta-
predicate:

dm M

The variable M is instantiated with the underlying domain model. Providing
access to the whole domain model is, for example, useful in order to forward the
domain model to an external reasoning component. A more concrete example for
the usage of the ’dm’ meta-predicate can be found in Chapter 7.

3.7.7. Derivability Status

The fact that a literal l is open-ended can be stated in the following way with the
’oe’ meta-predicate:

oe l

In some situations, it can be reasonable to only consider derivable instances of a
statement. The fact that the reasoner should only consider derivable instances of
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a statement s (i.e., instances that are only possibly-derivable are ignored) can be
expressed with the ’deriv’ meta-predicate as follows:

deriv s

Furthermore, the fact that a statement s possibly holds can be expressed in the
following way:

possibly s

A statement ’possibly s’ holds iff s is possibly-derivable. Thus, for a statement
of the form ’possibly s’ ACogReason only checks whether s is possibly-derivable
and does not consider knowledge acquisition tasks for the corresponding set of open-
ended literals.

3.8. Interpretation Model

How a literal is handled by the reasoner depends on its interpretation model . The
interpretation model of a literal can be open-world assumption (owa), closed world
assumption (cwa), or reasoning . In the following, the interpretation model of a
literal l with respect to a domain model DM is denoted as iMpl, DMq. If the domain
model is apparent or not important for a certain consideration, then it is omitted,
and the interpretation model of a literal l is denoted as iMplq. By default, all
predicates are interpreted based on the interpretation model owa. This means that
the reasoner by default does not assume that all possible instances of a given literal
can be derived with respect to a state model.

Nevertheless, in order to combine the best of both worlds, it is possible to define on
the predicate level if a literal should be interpreted based on the CWA, or the OWA.
For example, imagine a predicate connection(R1,D,R2), which describes that room
R1 is connected via door D with room R2. The relation that is represented by this
predicate is rather static, thus even in dynamic unstructured environments it is pos-
sible to equip an artificial agent a priori with all true ground instances of this relation.
In this case, it is reasonable to define the interpretation model of the connection

predicate as cwa. This definition implies that neg connectionpR1, D, R2q holds iff
connection(R1,D,R2) cannot be derived—which in fact is the negation-as-failure
semantics as introduced by Clark (1987). Predicate-based (i.e., local) closed world
assumptions reduce the lack of knowledge and can significantly improve the perfor-
mance of the plan generation and knowledge acquisition process.

Exploiting complete local parts of a logical theory is not a completely new idea,
because it has already been proposed by Etzioni et al. (1997) and is also featured
by PowerLoom (Chalupsky et al., 2010).

A predicate is symbolically represented as rname{ns, where name is the name of
the predicate, and n denotes the arity. The predicate of a literal l is denoted as
l%. The fact that a predicate is interpreted with respect to the CWA is represented
by terms of the form cwaprname{nsq. Thus, all predicates that are not defined as
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being interpreted with respect to the CWA are—by default—interpreted based on
the OWA.

Literals are interpreted based on the OWA in order to enable the reasoner to reason
about extensions of a domain model. However, for all meta-predicates—except the
once predicate—it is not reasonable to do that, since

• their interpretation is independent of the domain model at all (e.g., this holds
for ’‰’, ’J’, ’K1, ’groundpXq’, ’non-ground(X)’);

• or they should only be interpreted according to the current domain model
(e.g., this holds for ’dm M ’, ’oe l’, ’deriv s’, ’possibly s’);

• or it is unclear whether and how the result of the reasoning process depends
on the domain model (e.g., this holds for the ’call’ meta-predicate).

In other words, the interpretation of these meta-predicates is only possible by
means of a dedicated reasoning process. In contrast to other literals, it is not possible
to consider extensions of the state model at hand for the purpose of determining
additional instances of the mentioned meta-predicates. The interpretation model
for these literals is called reasoning. For a ground literal with the interpretation
model reasoning, it is assumed that the corresponding reasoning process can always
decide whether the literal holds with respect to a given domain model. However,
it is not assumed that a corresponding reasoner can derive all possible instances
of a non-ground literal with the interpretation model reasoning. Another way to
explain the assumption made about the reasoning process that derives instances of
a literal with the interpretation model reasoning is to assume that the reasoning
process uses the generate-and-test paradigm (Sterling and Shapiro, 1994). In logic
programming, the generate-and-test technique can be easily implemented by means
of a conjunction of two literals in which one acts as the generator, and the other
tests whether the generated instances hold, as in the following clause (Sterling and
Shapiro, 1994, page 250):

findpXq Ð generatepXq, testpXq

In terms of the generate-and-test paradigm, it is assumed that the testpXq pro-
cedure of a reasoner is complete. Nevertheless, the generation process denoted by
generatepXq may be incomplete. Usually the generation process is constituted by
the evaluation of dependent literals in the context of a compound statement. For
example, consider the following statement:

mugpXq ^ statuspX, Yq ^ Y ‰ dirty

In this example, the first two literals are first instantiated, since statements are
evaluated from left to right. Thus, the third literal (’Y ‰ dirty’) is usually only
evaluated after Y is instantiated. Backtracking can be used in order to possibly
generate multiple instances of Y. In this way, the evaluation of the previous part of
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the statement constitutes the generation process in terms of the generate-and-test
paradigm.

Algorithm 3.1 specifies how the interpretation model of a literal l is determined.
The input of the algorithm is a literal and a domain model. The interpretation model
of a literal ’once l1’ is the interpretation model of l1. Hence, the algorithm recursively
calls itself for purpose of determining the interpretation model of l1 (lines 1-2). As al-
ready pointed out, the interpretation model for all other meta-predicates is reasoning
(lines 3-4). For all other literals, the interpretation model is cwa if this is explicitly
defined in the domain model (lines 5-6). Negative literals ’neg l’ need a special han-
dling if the interpretation model iMplq is cwa or reasoning. In this situation, ’neg l’
is defined as reasoning (7-8), since the interpretation is only possible by means of a
corresponding reasoning process. The negation of a literal that has the interpreta-
tion model cwa is not also defined as cwa, since this would imply that the reasoner
must be able to derive all instances of the negation. For example, if we consider
that a robot agent knows all connections between the rooms of a building. Thus,
the interpretation model of the corresponding predicate connection(R1,D,R2) is
cwa and the robot can derive all valid instances of it. Moreover, it is possible to
decide for any ground instance of connection(R1,D,R2) whether the negation (i.e.,
neg connection(R1,D,R2)) holds; since if neg connection(R1,D,R2)σ is ground,
then it is derivable iff connection(R1,D,R2)σ is not derivable. This relation fol-
lows directly from the definition of the closed-world assumption. Nevertheless, for a
non-ground negative literal neg connection(R1,D,R2), it is not always clear how
instances can be generated by the reasoner. Generating all such instances is partic-
ularly difficult in an open-ended domain, because there can be an infinite number of
valid instances. Thus, the interpretation model of such a literal is by default defined
as reasoning so that the reasoner does not have to be able to derive all instances
of it. If none of the aforementioned conditions is fulfilled, then the interpretation
model of a literal is owa (lines 9-10).

As already pointed out, the proposed state model supports the definition of closed-
world assumptions at the level of predicates. Based on the notion of an interpretation
model, the following generic rule is added to the state model specification so that
predicate-based closed-world assumptions are properly handled by the state model:

dpneg lq Ð dpiMplq “ cwaq,& dplq (GR17)

In other words, the generic rule GR17 defines that the negation of a literal l holds
if the interpretation model of the literal is cwa and l is not derivable. The same
statement can be made for ground literals with the interpretation model reasoning.
Therefore, the following rule is also added to the state model:

dpneg lq Ð groundplq, dpiMplq “ reasoningq,& dplq (GR18)

This rule defines that the negation of a literal holds if it is ground, has the inter-
pretation model reasoning, and cannot be derived.
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Algorithm 3.1: interpretation-model(l, DM)

input: domain model DM , literal l
Result: interpretation model iMpl, DMq P towa, cwa, reasoningu

1 if l “ once l1 then
2 return interpretation-model(l1, DM);

3 else if l is a meta-predicate then
4 return reasoning ;

5 else if cwapl%q is derivable with respect to sMpDMq then
6 return cwa;

7 else if l “ neg l1 AND interpretation-model(l1, DM)

P tcwa, reasoningu then
8 return reasoning ;

9 else
10 return owa;

3.9. Additional Conceptual Knowledge

Statements are not just syntactical constructs. They constitute concepts . Sup-
porting the representation on a conceptual meta-level—in contrast to represent-
ing knowledge on the level of definite clauses—has the advantage that it eases the
knowledge engineering process, since domain experts can represent knowledge on a
higher abstraction level that is often closer to the way they think about the domain.
Defining that a certain predicate should be interpreted based on the closed-world
assumption, as described in Section 3.8, is an example for knowledge representation
on a conceptual meta-level.

In this section, the proposed state model is extended by additional concept rela-
tions that, so to speak, make it possible to reduce the open-endedness of the state
model. The general idea is that one can reduce the open-endedness by means of
exploiting additional domain knowledge so that the number of open-ended liter-
als can be reduced. In this way, an agent improves its performance via ruling out
(additional) impossible planning alternatives. For example, if an agent knows that
bobs mug is a mug and a mug cannot be a plate, then it does not have to consider
state model extensions in which bobs mug is a plate. Generally speaking, in this
example, the reasoner exploits the fact that mugs and plates constitute two disjoint
concepts.

Please keep in mind that the whole domain model is based on the unique-name
assumption. Thus, two distinct constants necessarily designate two distinct objects
in the world.
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3.9.1. Maximum Number of Instances

With the current state model constituted by GR1 - GR18, every non-ground lit-
eral is open-ended (see GR7). To put it another way, it is assumed that an agent
never knows all instances of a non-ground literal. However, this might not always
be the case. On the conceptual level, domain constraints can limit the number
of possible instances of a statement. For example, let us assume that the lit-
eral in room(bobs mug,office) is derivable. In this case, the non-ground literal
in room(bobs mug,X) is not open-ended (i.e., no additional instance is possible) if
we assume that an object can only be in one room at a given point in time. In order
to be able to express these kinds of constraints, the language of the state model is
extended by constructs of the form imaxDpl, n, cq such that l is a literal, n P NYt8u,
and c is a statement. The term imaxDpl, n, cq explicitly represents that the literal l
can maximally have n ground instances if c holds. The following rules are added in
order to “ground” this additional construct to the level of definite clauses:

dpimaxDpl, nqq Ð dpimaxDpl, n, cqq, dpcq (GR19)

dpimaxDpl,8qq Ð non-groundplq,& dpimaxDpl, n,X1qq (GR20)

dpimaxDpl, 1qq Ð groundplq (GR21)

The generic rule GR19 defines that the upper bound of the number of instances
for a literal l is n if imaxDpl, n, cq as well as c are derivable with respect to the
same substitution. If the maximum number of instances cannot be derived, then
it is unbounded for non-ground literals (see GR20) and one for ground literals (see
GR21).

The explicit definition of the maximum number of instances is optional and not
reasonable for all literals. For example, the maximum number of instances does
not have to be explicitly defined for a literal that has the interpretation model
cwa, since for a literal with the interpretation model cwa, the maximum number of
instances always equals the number of derivable instances. The actual number of
the maximum instances of a literal is derived from the state model. It is denoted
by imaxpl, nq for a literal l where n P NY t8u.

If the maximum number can be derived based on the explicit definition of terms
of the from imaxDpl, n, cq, then the (actual) maximum number of instances equals n.
This relationship is represented by the following generic rule:

dpimaxpl, nqq Ð dpimaxDpl, nqq (GR22)

For a literal l that is interpreted based on the CWA, the maximum number of
instances equals the number of derivable instances. Hence, the following rule is
added to the domain model:

dpimaxpl, |r$plq|qq Ð dpiMplq “ cwaq (GR23)
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The same assumption is also made for ground literals with the interpretation
model reasoning. Due to the fact that a ground literal cannot have more than one
instance, determining all instances of a ground literal is reduced to determining
whether the literal holds with respect to the domain model at hand. In contrast
to non-ground literals, it is not necessary to possibly generate additional instances.
Therefore, it is assumed that the reasoner can derive all valid instances of a ground
literal that has the interpretation model reasoning. This is represented by the fol-
lowing rule:

dpimaxpl, |r$plq|qq Ð groundplq, dpiMplq “ reasoningq (GR24)

Based on the reasoning about the maximum number of possible instances of lit-
erals, the generic rule (GR7) can be replaced by the following, improved rule:

dplĹq Ð non-groundplq, dpimaxpl, nqq, dp|r$plq| ă nq (GR25)

In other words, a non-ground literal is open-ended if the number of derivable
instances is less than the number of maximum instances.

How many instances of a literal can be derived often depends on the occurrence—
or absence–of variables. For instance, consider the literal in room(O,R) that defines
that an object O is in a room R. If the first argument of the literal is a ground term
(e.g., bobs mug), then we know—based on our domain knowledge—that a resulting
literal (e.g., in room(bobs mug,R)) can only have one instance, since an object
cannot be in two different rooms at once. In this respect, the concrete value of the
ground term is of no consequence. The number of possible instances of a literal
in room(O,R) is bounded by one whenever O is a ground term. In other words,
the in room(O,R) relation constitutes a function that maps an object to the room
in which it is located. However, it is not necessarily an injective function. Thus,
we cannot make statements about the maximum number of instances if the second
argument is ground.

For the purpose of enabling it to restrict the possible number of instances of a
literal based on the pattern of how variables and ground terms occur, the notion of
an instantiation scheme is introduced. An instantiation scheme is defined as follows:

Definition 3.9 (instantiation scheme). An instantiation scheme is a ground literal
that can contain the special constants var˚ and ground˚ whereby var˚ is a place
holder for any variable and ground˚ is a place holder for any ground term.

The special constants var˚ and ground˚ enable it to define instantiation schemes
that abstract from concrete variables and ground terms. If an instantiation scheme
ϕ can be viewed as an abstraction of a literal l, then l is said to be instantiable with
respect to ϕ. More precisely, an instantiable literal is defined as follows:

Definition 3.10 (instantiable). A literal or term g is called instantiable with respect
to an instantiation scheme ϕ (denoted as g ĺI ϕ) iff one can construct a literal or
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term g1 from ϕ via replacing each var˚ by a new variable and each ground˚ by a
ground term so that g is an instance of g1.

For example, the literals in room(bobs mug,R) and in room(bobs mug,kitchen)

are instantiable with respect to the instantiation schemes in room(ground˚,var˚)
and in room(bobs mug,var˚). The literal in room(O,lab), however, is neither
instantiable with respect to the scheme in room(ground˚,var˚) nor with respect
to in room(bobs mug,var˚).

Instantiation schemes can be used to define an upper bound of the number of
instances for a set of literals. The idea is that this upper bound is an upper bound
for all literals that are instantiable with respect to the instantiation scheme. This
idea leads to the following definition:

Definition 3.11 (maximum instances (scheme)). Let ϕ be an instantiation scheme
and n P NYt8u. A literal of the form imax ρpϕ, nq defines that n is the upper bound
of the number of instances for all literals that are instantiable with respect to ϕ.

The following generic rule is added to the state model specification for the purpose
of supporting constructs of the form imax ρpϕ, nq:

dpimaxDpl, nqq Ð dpimax ρpϕ, nqq, l ĺI ϕ (GR26)

For example, the fact that an object can only be in one room at a given point in
time can be represented by the term imax ρpin roompground˚, var˚),1). However,
now we have a semantically redundant representation, because the conceptually
same actuality is already specified by the domain specific rule DR2. Note that both
representations have been introduced for different technical reasons. DR2 solely
makes it possible to derive that all statements of the form ’neg in room(obj,r)’
are true if it is known that in room(obj,r’) and r’ ‰ r hold. In contrast, the
definition of imax ρpin roompground˚,var˚),1) solely makes it possible to deduce
that all statements with the instantiation scheme in room(ground˚, var˚) can only
have one instance. One can omit redundancies introduced by imax ρ via adding
generic rules. For the purpose of achieving this, a few conceptualizations need to
be introduced. First, the lift of a literal or term with respect to an instantiation
scheme is defined as follows:

Definition 3.12 (lift). Let ϕ be an instantiation scheme, g be a literal or term that
is instantiable with respect to ϕ, and X‹ denote a new (i.e., unused) variable. The
lift φÒpg, ϕq of g with respect to ϕ is defined as follows:

• φÒpg, ϕq :“ g; if ϕ “ g, or g is ground and ϕ “ ground˚.

• φÒpg, ϕq :“ X‹; if ϕ “ var˚

• φÒpg, ϕq :“ fpφÒpu1, u
1
1q, . . . , φÒpum, u

1
mqq; if g “ fpu1, . . . , umq and

ϕ “ fpu11, . . . , u
1
mq
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Lifting a literal or a term g with respect to an instantiation scheme ϕ essentially
means to construct a literal or term g1 such that g1 is instantiable with respect to
ϕ and g is an instance of g1. Moreover, there is no literal or term g2 ‰ g1 that is
instantiable with respect to ϕ such that g1 is an instance of g2. In other words, g1 is
the most general literal or term that is instantiable with respect to ϕ such that g is
an instance of it.

For example, lifting in room(bobs mug,office) with respect to the instantiation
scheme in room(ground˚,var˚) results in in room(bobs mug,X).

According to Definition 3.12, lifting a term is achieved via recursively replacing
terms by a new variable if the corresponding term of the instantiation scheme is
var˚. The occurrence of duplicate variables imposes additional constraints on the
possible instances of a literal. Thus, variables are replaced by new variables in order
to ensure that the resulting literal contains no duplicate variables.

A literal is defined to be open-ended (see Definition 3.7) iff it is possible that an
additional instance can be derived. In other words, a literal is known to be not open-
ended if one can determine that the existence of such an instance is impossible. If
n instances of a literal that is instantiable with respect to ϕ can already be derived,
then the information encoded in constructs of the form imaxρpϕ, nq can be used in
order to prove that for all related literals, the existence of an additional instance is
impossible.

More precisely, we can make the following proposition:

Proposition 3.1. Let l be a literal that is instantiable with respect to an instanti-
ation scheme ϕ and imax ρpϕ, nq be part of the state model sM . l is not open-ended
with respect to sM if |r$psM , φÒpl, ϕqq| “ n.

Proof. l is by definition an instance of φÒpl, ϕq. Thus, there is a substitution σ such
that l “ φÒpl, ϕqσ. If an additional instance lσ1 of l is derivable, then an additional
instance φÒpl, ϕqpσσ

1q “ lσ1 of φÒpl, ϕq is derivable and |r$psM , φÒpl, ϕqq| “ n ` 1.
This contradicts the meaning of imax ρpϕ, nq. Hence, the existence of an additional
instance of a literal l with respect to sM is impossible and l is not open-ended.

Proposition 3.1 can be used by the reasoner to determine that a given literal is
not open-ended. In this way, the open-endedness can be reduced.

Moreover, the following proposition holds:

Proposition 3.2. A literal neg l is derivable with respect to sM if l is neither
derivable nor open-ended with respect to a state model sM .

Proof. If l is not open-ended, then all instances of l are derivable. If l is not derivable
(i.e., not a member of the set of derivable instances of l), then all instances of l cannot
hold with respect to the domain model at hand. Thus, neg l holds.

Proposition 3.2 constitutes a rule that is added to the state model and represented
by the following definite clause:
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dpneg lq Ð &dplq, &dplĹq (GR27)

For example, we can now derive the statement neg in room(bobs mug,office)

if in room(bobs mug,kitchen) and imax ρ(in room(ground˚,var˚),1) are deriv-
able. Thus, we can now omit the domain specific rule DR2 in order to remove the
redundancy without loosing derivable information.

3.9.2. Viewing Statements as Concepts

Statements are not just syntactical constructs. They constitute concepts . In this
sense, basic terms (see Section 3.3) can be seen as atomic concepts . The semantics
of the concept that is constituted by a basic term is defined by an interpretation
function I that maps an n-nary basic term to a set of n-tuples. More precisely, the
interpretation function is defined as follows:

Definition 3.13 (interpretation function). The interpretation function I maps an
n-nary basic term fpX1, . . . , Xnq with respect to a state model sM to a set of n-tuples
fpX1, . . . , Xnq

I such that the following holds:

tpX1σ, . . . , Xnσq | fpX1, . . . , Xnq is derivable w.r.t. sM and σu Ď fpX1, . . . , Xnq
I

If it can be derived from a state model sM that pa1, . . . , anq is a member of
fpX1, . . . , Xnq

I , then fpX1, . . . , Xnq is defined to be derivable with respect to sM
and the substitution tX1{a1, . . . , Xn{anu.

For a basic term fpX1, . . . , Xnq, the set of tuples fpX1, . . . , Xnq
I contains a tuple

pX1, . . . , Xmqσ for each instance fpX1, . . . , Xnqσ that holds in the current situation.
Due to the fact that the state model is open-ended, only the subset

tpX1σ, . . . , Xnσq | fpX1, . . . , Xnq is derivable w.r.t. sM and σu

of fpX1, . . . , Xnq
I can be derived from a state model sM .

For example, consider a situation where an agent is only aware of the existence
of two mugs. These mugs are called Bob’s mug and Peter’s mug. Thus, the set of
derivable instances of the basic term mug(X) with respect to the state model of the
agent sM is:

r$psM , mug(X)q “ tmug(bobs mug),mug(peters mug)u.

For this example, the following holds:

tpbobs mugq, ppeters mugqu Ď mug(X)I

Atomic concepts can be extended to concepts constituted by literals. Let Lconst
be the set of all constant symbols. The semantics of the concept constituted by a
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negative literal neg ppX1, . . . , Xnq is defined as follows:

pneg ppX1, . . . , Xnqq
I
“ pLconstqnzpppX1, . . . , Xnqq

I (3.2)

Viewing literals as concepts enables it to support the definition of relations on the
level of concepts. The proposed state model supports the definition of the fact that
a concept is the subconcept of another concept and that two concepts are disjoint.
The subconcept relation is defined as follows:

Definition 3.14 (subconcept). The concept constituted by a literal l is said to be
a subconcept of the concept constituted by a literal l1 (denoted as l Ď l1) iff lI is a
subset of l1I .

The subconcept relation can be explicitly defined as part of the state model specifi-
cation. It can only be defined for literals that have the same arity. Let Xi p1 ď i ď nq
be variables and ppX1, . . . , Xnq and p1pX1, . . . , Xnq be literals. The fact that a con-
cept that is constituted by a literal ppX1, . . . , Xnq is a subconcept of the concept
constituted by a literal p1pX1, . . . , Xnq is specified by constructs of the following
form:

ppX1, . . . , Xnq Ďdef p
1
pX1, . . . , Xnq (3.3)

For example, the fact that a cup is a container can be defined by the following
construct:

cup(X) Ďdef container(X)

The explicit definition of subconcept relations can be used by the reasoner via
using the following rule:

dpl Ď l1q Ð dpl Ďdef l
1
q (GR28)

Furthermore, the state model can exploit knowledge about subconcept relations
based on the following proposition:

Proposition 3.3. Let ppX1, . . . , Xnq be subconcept of p1pX1, . . . , Xnq and sM be a
state model. If ppX1, . . . , Xnq is derivable with respect to sM and σ, then p1pX1, . . . , Xnq

is also derivable with respect to sM and σ.

Proof. Let ppX1, . . . , Xnq be derivable with respect to sM and σ. According to
Definition 3.13, this implies that pX1σ, . . . , Xnσq is a member of ppX1, . . . , Xnq

I .
Based on Definition 3.14, we can infer that pX1σ, . . . , Xnσq is also a member of
p1pX1, . . . , Xnq

I . Thus, based on Definition 3.13, we can deduce that p1pX1, . . . , Xnq

is derivable with respect to sM and σ.

Proposition 3.3 constitutes the theoretical background that enables the definition
of the following rule:
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c1 c2

Concept Level

p1 p2

Syntax Level

subconcept of

instance of

(a)

in room(O, kitchen) in room(O, R)

Concept Level

in room(O, kitchen) in room(O, R)

Syntax Level

subconcept of

instance of

(b)

Figure 3.3.: If a literal p1 is an instance of a literal p2 on the syntactic level, then
the concepts that is constituted by p1 is a subconcept of the concept
constituted by p2 (a). For example, in room(O,kitchen) is an in-
stance of in room(O,Room) on the syntactical level and a subconcept
of in room(O,Room) on the conceptual level (b).

dplq Ð dpl1 Ď lq, dpl1q (GR29)

In other words, a literal is derivable if there is a subconcept that is derivable.
Moreover, the subconcept relation can be viewed as related to the instance-of rela-
tion. As illustrated in Figure 3.3, the instance-of relation on the syntactical level
implies a subconcept-of relation on the conceptual level.

Furthermore, based on the semantics of concepts that are constituted by negative
literals, the following can be proposed:

Proposition 3.4. Let l, l1 be n-nary basic term. If l constitutes a subconcept of l1

(l Ď l1), then neg l1 constitutes a subconcept of neg l (neg l1 Ď neg l).

Proof. If l is a subconcept of l1, then (according to Definition 3.14) lI is a subset
of l1I . Thus, pLconstqnzl1I must be a subset of pLconstqnzlI . Therefore, neg l1 must
constitute a subconcept of neg l.

Proposition 3.4 can be exploited by the reasoner in the form of the following rule:

dpneg l1 Ď neg lq Ð dpl Ď l1q (GR30)

Some literals cannot be instantiated with the same substitution. For instance,
if we assume that a mug cannot be a table, then mug(a) and table(a) cannot
both hold for the same a. The concepts constituted by these literals are said to be
disjoint . In general, concepts are called disjoint as defined by following definition:

Definition 3.15 (disjoint). The concepts that are constituted by two literals l, l1

are called disjoint iff lI and l1I are disjoint (i.e., lI X l1I “ H).
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Like for the definition of subsumption relations, it is possible to explicitly define
that two literals are disjoint . The fact that the concepts constituted by the literals
ppX1, . . . , Xnq and p1pX1, . . . , Xnq are disjoint can be defined by constructs of the
following form:

ppX1, . . . , Xnq [def p1pX1, . . . , Xnq (3.4)

The following rule is added to the state model in order to support the definition
of disjoint concepts:

dpl [ l1q Ð dpl [def l
1
q (GR31)

Moreover, based on the knowledge about disjoint concepts, we can make the
following proposition:

Proposition 3.5. Let tip1 ď i ď nq be a term. The negation neg ppt1, . . . , tnq of a
literal ppt1, . . . , tnq is derivable with respect to a state model sM and a substitution
σ if there is a disjoint literal p1pt1, . . . , tnq (i.e., ppt1, . . . , tnq [ p1pt1, . . . , tnq) that is
derivable with respect to sM and σ.

Proof. If p1pt1, . . . , tnq is derivable with respect to sM and σ, then pt1σ, . . . , tnσq
is a member of p1pt1, . . . , tnq

I . It follows from Definition 3.15 that pt1σ, . . . , tnσq
is not a member of ppt1, . . . , tnq

I . Therefore, pt1σ, . . . , tnσq must be a member of
pLconstqnzppt1, . . . , tnqI . It follows from 3.2 that pt1σ, . . . , tnσq is also a member of
pneg ppt1, . . . , tnqq

I . Hence, neg ppt1, . . . , tnq is derivable with respect to sM and
σ.

Proposition 3.5 can be exploited by the reasoner in form of the following rule:

dpneg lq Ð dpl [ l1q, dpl1q (GR32)

3.10. Implementation Issues

The proposed state model is implemented in the object-oriented logic program-
ming language Logtalk (Moura, 2003) using SWI-Prolog as the back-end compiler.
Therefore, the definite clause programs constituted by a state model are interpreted
according to the execution model of Prolog. The execution model of Prolog can
be described in the following way by means of viewing the execution process as an
abstract interpreter:

Prolog’s execution mechanism is obtained from the abstract interpreter
by choosing the leftmost goal instead of an arbitrary one and replacing
the non-deterministic choice of a clause by sequential search for a unifi-
able clause and backtracking (Sterling and Shapiro, 1994, page 120).
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According to Sterling and Shapiro (1994), Prolog uses a stack scheduling policy.
Goals are maintained as a stack. Prolog systems pop the top goal for reduction
and push the derived goals onto the stack. Nondeterminism is simulated by means
of choosing the first definite clause whose head unifies with a goal. If no unifiable
clause can be found, then the reasoner backtracks to the last choice point.

Based on the execution mechanism of Prolog, statements are interpreted like def-
inite goals by Prolog from left to right, using sequential search and backtracking. In
other words, the execution mechanism is similar to Prolog’s execution mechanism.
The key difference is that the proposed state model is open-ended, whereas Prolog
is based on the closed-world assumption.

However, the fact that the execution model of the proposed state model is based
on Prolog’s execution model has several advantages:

1. The execution model of Prolog is known to be an excellent trade-off between
the abstract model from mathematical logic and an efficient implementation.

2. Prolog’s execution model is well-understood and has been successfully used in
various applications.

3. A lot of literature that introduces and defines the execution model is available.
This eases the learning and understanding of the proposed state model.

4. The performance of the proposed state model and the corresponding reason-
ing processes heavily benefit from high performance Prolog systems. Basic
operations like unification and backtracking do not have to be reimplemented.

A more detailed description of Prolog’s execution model can be found in (Sterling
and Shapiro, 1994, Section 6.1).

3.11. Experimental Evaluation

The performance of the open-ended reasoning process is evaluated in this section.
An implementation of the reasoner that is based on the closed world assumption
(CWA) (i.e., an implementation that only generates derivable but not possibly-
derivable instances of a statement) serves as the baseline. Two different studies
were conducted for the purpose of getting deeper insights into the performance
characteristics of the proposed state model and corresponding reasoning processes.
The first study (see Section 3.11.1) analyzes the performance for an increasingly
large conjunction of independent literals, whereas the second study (see Section
3.11.2) evaluates the behavior of the reasoner for a set of preconditions from four
different domain models.

These two studies evaluate the state model and the reasoner in isolation. The ex-
perimental evaluation of the whole plan-based control system is described in Chapter
9.
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3.11.1. Independent Solutions

If two or more literals of a conjunction contain one or more identical variables, then
this imposes additional constraints. For example, the statement

bottle(X)^ red(X)^ in room(X,kitchen) (3.5)

describes a red bottle that is in the kitchen. The fact that all three literals
contain the variable X restricts the number of possible solutions. For example, let
us assume that a state model contains information about three bottles, but only
one bottle is known to be red and in the kitchen. In such a situation, there is only
one derivable solution of the aforementioned statement. In contrast, if the literals
of a conjunction are independent (i.e., have no common variables), then the number
of possible solutions usually increases exponentially with respect to the number of
literals. For example, consider the following statement:

bottlepX1q ^ . . .^ bottlepXnq (3.6)

It is assumed that Xi is not equal to Xj iff i is not equal to j. If m instances
of a literal bottle(X) are derivable with respect to the state model at hand, then
mn instances of the statement 3.6 are derivable, since every possible combination
of derivable bottles constitutes a valid instance. Thus, these kinds of statements
scale exponentially to the statement length for a typical CWA-based reasoner. The
question addressed here is: How does the open-ended reasoner described in this
chapter scale to such a statement?

One beneficial property of the proposed open-ended reasoner is that it can rep-
resent a possible infinite number of possible state model extensions by means of
a single, abstract solution. For example, if the statement bottle(X) is possibly-
derivable with respect to the set of open-ended literals {bottle(X)}, then this single
(possibly-derivable) solution represents all solutions that contain an additional bot-
tle. Therefore, the open-ended reasoner at most generates one additional solution
for a literal (i.e., a solution with a non-empty set of open-ended literals) compared
to the CWA-based reasoner. More precisely, the following proposition can be made:

Proposition 3.6. If n instances of a literal l are derivable with respect to a state
model sM , then at most n ` 1 instances of l are possibly-derivable with respect to
sM .

Proof. The correctness of this proposition follows from the fact that the reasoner
only generates instances of a literal for derivable instances. If a literal is only
possibly-derivable, then no substitutions are applied. Therefore, there can at most
be one possibly-derivable instance of a literal l with a non-empty set of open-ended
literals (i.e., the set tlu). Hence, there can at most be one additional instance which
is possibly-derivable, but not derivable.

This proposition implies that if mn solutions for the statement 3.6 can be gener-
ated by a CWA-based reasoner, then at most pm ` 1qn solutions can be generated
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Figure 3.4.: Performance characteristics (number of solutions, CPU time, and CPU
time per solution) of the proposed open-ended reasoner for an increas-
ingly large conjunction of independent literals using a CWA-based im-
plementation as the baseline.

by the open-ended reasoner described in this chapter.

The CWA-based and open-ended version of the reasoner are experimentally eval-
uated for the statement 3.6. There are three derivable and four possibly-derivable
instances of a literal bottle(X). Thus, for a statement with n literals, the CWA-
based reasoner can generate 3n and the open-ended reasoner 4n solutions. The
experimental results are show in Figure 3.4. Figure 3.4a shows that the number of
solutions increases—as expected—exponentially for both reasoners. The CPU time
necessary for the generation of all plans scales similar to the number of solutions
(see Figure 3.4b). The CPU time is mainly affected by the number of solutions. For
larger statements, the CPU time necessary for a single solution only changes slightly
for the CWA-based as well as for the open-ended reasoner (see Figure 3.4c).

In summary, we can conclude that the open-ended reasoner does not scale con-
siderably worse than a CWA-based reasoner to an increasingly large conjunction of
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Figure 3.5.: Performance characteristics (number of solutions, CPU time, and CPU
time per solution) of the proposed open-ended reasoner for an increas-
ingly large conjunction of literals used as preconditions in the robot
domain model. A CWA-based implementation of the reasoner is used
as the baseline.

independent literals.

3.11.2. Domain Model Preconditions

For the purpose of analyzing statements that are actually used in existing domain
models, the performance of the open-ended reasoner is evaluated for a set of increas-
ingly complex preconditions from four different domain models. The first domain
model is called robot. It is an extended version of the domain model that was used
for the experiments with the physical service robot described in Section 9.1. The
domain model is equal to the largest domain model used for the simulation-based
experiments. It is described in more detail in Section 9.2.2. Small instances of the
used domain model specifications can be found in Appendix B.
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Additionally, three well-known AI planning domains are used for this study. The
depots and rovers domains from the third international planning competition as well
as the well-known blocks world domain were used. The depots and rovers domain
are described in Long and Fox (2003). The blocks world domain was initially used
by Winograd (1972) as a test environment for his program. Since then, it has widely
been used as a testbed in the AI planning community.

The domain model instance used for the experiments contains 1758 facts for the
rovers, 880 facts for depots, and 2020 facts for the blocks world domain.

Real-World Service Robotic Domain

The experimental results for the service robotic domain are shown in Figure 3.5.
Figure 3.5 shows that the open-ended reasoner and the CWA-based baseline show a
very similar behavior. The open-ended reasoner generates a bit more solutions (see
Figure 3.5a) and needs a bit more CPU time (see Figure 3.5b) for the robot domain.
For statements of the length one to five, the open-ended reasoner also needs a bit
more CPU time for a single solution than the baseline. For statements of the length
six to ten, however, the CPU time per solution is even a bit less than the baseline.

Blocks World Domain

Figure 3.6 shows the experimental results for the blocks world domain. The open-
ended implementation approximately generates up to two times more solutions than
the baseline and needs up to two orders of magnitude more CPU time. However, the
qualitative characteristics of the number of solutions (see Figure 3.6a), the overall
CPU time (see Figure 3.6b), and the CPU time per solution (see Figure 3.6c) are
very similar for the open-ended reasoner and the CWA-based baseline.

Depots Domain

The experimental results for the depots domain are shown in Figure 3.7. Compared
to the baseline, the open-ended reasoner shows a similar trend for the number of
solutions (see Figure 3.7a), the overall CPU time (see Figure 3.7b), and the CPU
time per solution (see Figure 3.7c) for statements of the size one to three. In contrast,
it scales worse for statements of length three to statements of length five.

Rovers Domain

Figure 3.8 shows the experimental results for the rovers domain. The number of
solutions shows a similar trend like the baseline (see Figure 3.8a). The qualitative
characteristics of the overall CPU time is similar to the baseline for statements of
length one to three, but diverges from statement of length three to five; the CPU time
for the open-ended reasoner increases, whereas the CPU time for the CWA-based
baseline decreases from statements of length three to five (see Figure 3.8b). The
CPU time for a single solution increases for the open-ended reasoner and decreases
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Figure 3.6.: Performance characteristics (number of solutions, CPU time, and CPU
time per solution) of the proposed open-ended reasoner for an increas-
ingly large conjunction of literals used as preconditions in the blocks
world domain model. A CWA-based implementation of the reasoner is
used as the baseline.

for the baseline for statements of length one to two. For statements of length two to
five, however, both reasoners show a similar qualitative behavior (see Figure 3.8c).

3.11.3. Summary

The CWA-based reasoner usually constitutes a lower bound for the number of solu-
tions, the overall CPU time, and the CPU time per solution. Table 3.1 shows the
average characteristics of the open-ended reasoner relative to the CWA-based rea-
soner. On average, the open-ended reasoner generates 3.89 times as many solutions,
needs 29.95 times as many CPU time for the whole reasoning process, and needs
9.36 times as many CPU time for a single solution as the CWA-based reasoner. In
other words, the CWA-based reasoner generates less solutions and is faster.

However, the qualitative characteristics of the open-ended reasoner is often very
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Figure 3.7.: Performance characteristics (number of solutions, CPU time, and CPU
time per solution) of the proposed open-ended reasoner for an increas-
ingly large conjunction of literals used as preconditions in the depots
domain model. A CWA-based implementation of the reasoner is used
as the baseline.

similar to the CWA-based baseline. Thus, the CWA-based reasoner is faster, but
often does not scale significantly better to more complex statements.
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Figure 3.8.: Performance characteristics (number of solutions, CPU time, and CPU
time per solution) of the proposed open-ended reasoner for an increas-
ingly large conjunction of literals used as preconditions in the rovers
domain model. A CWA-based implementation of the reasoner is used
as the baseline.

Domain solutions CPU time CPU time per solution

robot 1.85 2.62 2.04
blocks world 7.69 35.75 9.19
depots 1.74 60.82 20.17
rovers 3.89 20.59 6.03

all (average) 3.79 29.95 9.36

Table 3.1.: Average number of solutions, CPU time and CPU time per solution
for the open-ended reasoner divided by the values for the CWA-based
implementation.
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3.12. Discussion and Related Work

This chapter has introduced a new state model and reasoning system. The state
model is open-ended in the sense that it is not assumed that a complete model
of the represented domain is available. It provides the basic concepts that enable
the reasoning about possible extensions of the state model at hand. In particular,
the notion of a possibly-derivable statement enables it to determine extensions that
are relevant with respect to a statement such that each extension implies that an
additional instance of the statement can be derived.

The proposed state model constitutes a definite program (i.e., a logic program).
The definite program constituted by the generic rules can be seen as the program
of a reasoner. Due to the fact that the (underlying) definite-clause-reasoning is
undecidable (Brachman and Levesque, 2004), the reasoning processes of the state
model are in general also undecidable. The reasoner provides, together with the
activities model described in Chapter 4, the basic reasoning capabilities that are
exploited by the new hierarchical planning system introduced in Chapter 5.

Various knowledge representations schemes for AI planning have been developed in
the last decades. The classical representation scheme (Ghallab et al., 2004) is linked
to the representation scheme used by the very influential STRIPS (Fikes and Nilsson,
1971) planning system. The Action Description Language (ADL) (Pednault, 1988,
1989) is a trade-off between the expressiveness of general logic-based representa-
tions and the computational complexity of corresponding reasoning processes. The
PDDL (Ghallab et al., 1998) planning language and extensions thereof are used for
international planning competitions and are supported by a multitude of planning
systems. The idea of using state variables instead of logical atoms was introduced
in the SAS planner (Bäckström and Klein, 1991; Bäckström, 1992; Bäckström and
Nebel, 1995; Jonsson and Bäckström, 1998). All the aforementioned representation
schemes are based on the closed-world assumption (Ghallab et al., 2004). Thus,
they are inappropriate for the representation of incomplete, open-ended models.

The state model presented in this chapter has similarities with the possible-worlds
model proposed by Fagin et al. (1995). Fagin et al. (1995) provide a general frame-
work for reasoning about knowledge and possible worlds. However, in contrast to the
work of Fagin et al. (1995), the state model proposed in this work is more tailored
to the integration into a plan-based control system. In particular, the introduced
notion of a possibly-derivable statement is a key, unique concept that enables an
agent to efficiently reason about extensions of a state model with respect to certain
statement.

Most existing automatic theorem proving or knowledge representation and rea-
soning systems, including the domain models of AI planning systems, do not sys-
tematically analyze failed inferences or queries. The only known exception is the
“WhyNot” tool of PowerLoom (Chalupsky and Russ, 2002) which tries to generate
a set of plausible partial proofs for failed queries. Nevertheless, “WhyNot” is rather
a debugging tool that tries to generate human readable explanations that describe



58 Open-Ended State Model: Reasoning About An Open World

why the overall reasoning process failed. Therefore, this approach is not adequate
for the objectives of this work.

Exploiting local closed-world assumptions is also featured by PowerLoom (Chalup-
sky et al., 2010) and has also been proposed by Etzioni et al. (1997).

The approach of Dornhege et al. (2009) also makes it possible to integrate ex-
ternal components into the planning process. However, integration is not done
autonomously (i.e., by reasoning on the need to acquire information from external
sources), but predefined in the domain description.



Chapter 4
Activities Model

Although the representation we select will have inevitable consequences
for how we see and reason about the world, we can at least select it
consciously and carefully, trying to find a pair of glasses appropriate for
the task at hand. (Davis et al., 1993)
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In addition to knowledge about its environment, an agent needs information about
its own activities for the purpose of planning its future course of action. Information
about the activities of the agent is represented by the activities model . Together with
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the state model, the activities model constitutes the domain model that is used by
the proposed plan-based control system. The purpose of this chapter is to describe
and define this activities model. It can be seen as an adaption and extension of
existing activities models of HTN planning systems. The proposed activities model
is particularly inspired by the model described in (Ghallab et al., 2004, Chapter 11)
and the underlying activities models of SHOP (Nau et al., 1999) and SHOP2 (Nau
et al., 2003).

Compared to existing activities models, the proposed model provides several new
features that enable the reasoning about active knowledge acquisition. It provides
the basic knowledge representation and reasoning techniques that permit the auto-
matic integration of relevant knowledge acquisition tasks into the overall planning
and execution process.

4.1. Preliminaries

Some aspects of the agent’s activities need to be evaluated during the planning and
execution process. For example, the cost of approaching a goal pose depends—
besides other aspects—on the current position of the agent. Thus, one needs to
define the cost as a function which is evaluated during the planning and execution
process. The ACogDM domain model features ACog expressions for the purpose of
defining functions that can be evaluated at runtime. These expressions are defined
as follows:

Definition 4.1 (ACog Expression). An ACog expression is a term of the form
evalpt, stq where t is a term and st is a statement.

The value evalpt, stqvpsM q of an expression evalpt, stq with respect to a state model
sM is defined as follows:

evalpt, stqvpsM q :“

#

tσ if sM $σ once st

failure otherwise
(4.1)

Thus, ACog expressions are evaluated using the reasoning services of the state
model. Due to the fact that the value of an expression is evaluated using the once
meta-predicate, the reasoner only returns one value. Therefore, one can actually
view an expression as a function that maps a state model and an expression to a
corresponding value.

4.2. Basic Components

The basic components and underlying concepts of the activities model are introduced
and explained in this section.
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4.2.1. Task

In contrast to classical AI planning, HTN planning proceeds via recursively decom-
posing a task into a number of subtasks until the level of primitive tasks is reached.
Therefore, each HTN planning system needs a definition of a task. For this work,
the definition of a task is borrowed from (Ghallab et al., 2004, page 231). A task is
defined as an expression of the form tpr1, . . . , rkq such that t is a task symbol and
rip1 ď i ď kq are terms. An task is called primitive iff it can directly (i.e., without
task planning) be executed by the corresponding agent. Otherwise, a task is called
nonprimitive.

4.2.2. Planning Operator

Like in classical planning, planning operators represent primitive actions that can be
directly (i.e., without planning) executed by an agent. Primitive actions are viewed
as atomic. In practice, primitive actions are usually not atomic and can make use
of dedicated planning systems. However, from the AI planning perspective, this
internal behavior is abstracted away. In the context of plan-based agent control, the
role of primitive actions is twofold:

1. They are the basic building blocks of plans. A planner uses—besides other
information—the knowledge encapsulated in planning operators for the pur-
pose of generating plans.

2. For each primitive action, there is a corresponding agent control program
that can be executed by the agent. Primitive actions represent these control
programs.

The proposed planning system considers the effect of an action in terms of a set
of literals that are removed and a set of literals that are added to the state model
after the execution. Additionally, every planning operator has a corresponding cost
function, that defines how expensive it is to execute an instance of the action.
Formally, a planning operator is defined as follows:

Definition 4.2 (planning operator). A planning operator is a 5-tuple

o :“ poname, ocond, odel, oadd, ocostq

in which the elements are described as follows:

• oname is a term that denotes the name of the operator.

• ocond is a statement that denotes the precondition of the operator.

• odel is a set of literals L such that all members of tdplq|l P Lu need to be
removed from the state model after the execution of the operator. All facts of
a state model that are unifiable with one of the members of odel are removed.
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• oadd is a set of literals L such that all members of tdplq|l P Lu need to be added
to the state model after the execution of the operator.

• ocost is an ACog expression that represents the expected cost of the operator.

Like in classical planning, any ground instance of a planning operator is called an
action (Ghallab et al., 2004, Definition 2.6):

Definition 4.3 (action). A ground planning operator is called an action.

Moreover, we say that an action

a :“ paname, acond, adel, aadd, acostq

accomplishes a ground primitive task t iff aname “ t.

4.2.3. HTN Method

In contrast to classical planning, hierarchical planning proceeds via successively
decomposing nonprimitive tasks into subtasks until the level of primitive tasks is
reached.

Like other hierarchical planning systems, the activities model contains additional
domain specific information in form of Hierarchical Task Network (HTN) methods
(Ghallab et al., 2004). HTN methods prescribe how a task can be decomposed into
a number of subtasks. A method is defined as follows:

Definition 4.4. A method is a 6-tuple

m :“ pmtask,mcond,mdel,madd,mtasks,mcostq

where the elements are defined as follows:

• mtask is a task so that the method is relevant for a task t iff t is an instance
of mtask.

• mcond is a statement that represents the precondition of the method.

• mdel is a set of literals L such that all members of tdplq|l P Lu need to be
removed from the state model after the task is performed according to the
definition of the method. All facts of a state model that are unifiable with one
of the members of mdel are removed.

• madd is a set of literals L such that all members of tdplq|l P Lu need to be added
to the state model after the task is performed according to the definition of
the method.

• mtasks is a (totally-ordered) sequence of (sub-)tasks. If the precondition mcond

holds, then the task mtask can be decomposed into mtasks.
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method(

% task

move_to(R),

% precondition

(in_room(agent ,R1) ^ connect(R1 ,Door ,R) ^ open(Door) ^
at_pose(robot ,StartPose) ^ approach_pose(Door ,GoalPose) ^
reachable(GoalPose ,Cost)),

% delete -set

[in_room(R1)],

% add -set

[in_room(R)],

% subtasks

[move_to_pose(GoalPose),move_forward (500)] ,

% expected cost

eval(Cost1 ,Cost1 is Cost + 500)).

Figure 4.1.: Example specification for the task move to(R).

• mcost represents the expected cost of performing the task according to defini-
tion of the method.

The effect of a method is called a high-level effect , since the effects of a method
are usually on a higher abstraction layer than the effects of planning operators. The
effect of a method becomes active after the sequence of subtasks mtasks has been
performed.

Similar to the simplified specification described in Section 2.1.2, methods are
technically specified as atomic formulas in Prolog (Deransart et al., 1996) syntax of
the following form:

methodpTask, Precondition, DeleteSet, AddSet, Subtasks, Costq

The i-th argument of this formula represents the i-th argument of a method m
defined as described by Definition 4.4. For example, Precondition represents the
precondition mcond for a method m. If a method has no high-level effects (i.e., the
delete-set and add-set are empty), then the terms Delete-Set and Add-Set can be
omitted.

A method for the task of moving to a room is shown in Figure 4.1. The task
of moving into a room is decomposed into the task of approaching a pose which
is directly in front of a corresponding door, and moving 500 millimeters forward.
Approaching a pose with the mobile platform and moving 500 millimeters ahead in
general does not imply that the robot is moving to a different room. It only implies
moving into a different room if the pose is directly in front of a door. Generally
speaking, it depends on the context. This context can be provided by an HTN
method. For example, it can be provided by the method specified in Figure 4.1.
The fact that a method specification can also include an effect in form of a delete
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and an add-set makes it possible to derive (high-level) effects that cannot be derived
from the effects of the primitive actions. For example, the fact that an agent moves
to a different room by means of moving in front of a door and moving 500 millimeters
ahead can be derived from the high-level effects of the method specified in Figure
4.1, but cannot be derived from the effects of its subtasks.

4.2.4. Plan

Any plan-based system needs a representation of plans. In the context of this work,
a plan is defined as follows:

Definition 4.5 (plan). A plan is 2-tuple

p :“ pptasks, pactionsq

in which the elements are described as follows:

• ptasks is a sequence of tasks.

• pactions is a sequence of actions.

A plan is called final iff ptasks is empty and called intermediate iff ptasks is non-
empty.

In contrast to many other planning approaches, the notion of a plan introduced
by Definition 4.5 allows it to leave some parts of the plan on an abstract level. For
a plan p, the sequence of tasks ptasks can contain tasks on various abstraction levels.
In contrast to the sequence of actions pactions, the tasks in ptasks usually cannot be
executed directly.

For example, Figure 4.2 illustrates the plans and plan transformations for the
decompositions illustrated by Figure 2.3.

4.3. Knowledge Acquisition Task

Agents (e.g., robots) can often acquire information from a multitude of sources.
These sources are called external knowledge sources . While submitting questions to
external databases or reasoning components might be “simply” achieved by calling
external procedures, submitting questions to other sources (e.g., sensors), however,
involves additional planning and execution. In other words, a planner needs to be
able to generate plans that acquire possibly relevant information. For the purpose
of enabling the planner to generate such knowledge acquisition plans, a particular
kind of task is introduced, namely a knowledge acquisition task .

The general idea is that knowledge acquisition tasks can be automatically gener-
ated by the plan-based control architecture if the acquisition of additional informa-
tion is necessary. For instance, consider the situation illustrated by Figure 2.4 where
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Plan

Tasks

<deliver(bobs mug,t2)>

Actions

<>

Plan

Tasks

<move to(kitchen), approach(t2), put down(bobs mug,t2)>

Actions

<approach(t1),pick up(bobs mug,t1)>

Plan

Tasks

<>

Actions

<approach(t1),pick up(bobs mug,t1),approach(door1),

cross(door1),approach(t2),put down(bobs mug,t2)>
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Figure 4.2.: Illustration of the plan transformations for the example illustrated by
Figure 2.3.

a robot wants to perform the task move to(kitchen). As illustrated by Figure 2.4,
in open-ended domains there are in principle three ways to decompose this task into
a sequence of subtasks. The first decomposition results in an executable plan. The
planner has sufficient information for the purpose generating this plan. Therefore,
no additional knowledge acquisition tasks need to performed. In contrast, the sec-
ond and third way of moving into the kitchen require the acquisition of additional
information. For example, let us consider the third method instance which plans
to move into the kitchen via a possibly existing additional door D. In this case, the
robot must first find an additional (i.e., currently unknown) door that connects the
kitchen with the lab and is open. However, in order to find such a door (e.g., via
perception) a plan for a corresponding knowledge acquisition task has to be gener-
ated. The idea is that the plan-based control architecture automatically generates
such a task and a corresponding plan if necessary. For the example at hand, the
precondition of the relevant method (see Figure 2.2)
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in room(agent,R1)^ connect(R1,Door,R)^ open(Door)

is possibly-derivable with respect to a substitution that replaces R with kitchen

and R1 with lab, and the set of open-ended literals

tconnectplab, D, kitchenq, openpDqu.

The robot must find a new instance for both open-ended literals. However, in this
situation, it must be considered that one cannot independently find an open door
and a door that connects the kitchen with the lab. The fact that both literals refer
to the same door D imposes the additional constraint that a single door needs to
found that connects the kitchen with the lab and is open. In this case, the literals
are called dependent . Dependency between literals is a transitive relation. More
precisely, it is defined as follows:

Definition 4.6 (dependent literals). Let l1, l2 be literals that are a member of the
same set of open-ended literals and varplq denote the set of variables of a literal
l. Two literals l1 and l2 are called dependent (denoted as l1 Ø l2) iff one of the
following holds:

• l1 and l2 are identical,

• l1 and l2 contain an identical variable pvarpl1q X varpl2q ‰ Hq,

• or it exists a literal l3 such that l1 and l3, as well as l3 and l2 are dependent
pDl3 l1 Ø l3 ^ l3 Ø l2q.

The dependencies between open-ended literals need to be encoded in the specifi-
cation of a knowledge acquisition task so that they can be considered by the planner.

Another thing that needs to be considered for the aforementioned example is the
fact that a few instances of the open-literals are already derivable. For the literal
open(D), the instance open(door1); and for the literal connect(lab,D,kitchen),
the instance connect(lab,door1,kitchen) as well as connect(lab,door2,kitchen)
are already derivable. This information needs to be encoded into the definition of
a corresponding knowledge acquisition task so that the agent does not try to ac-
quire information that is already known. Taking into account these observations, a
knowledge acquisition tasks is defined as follows:

Definition 4.7. A knowledge acquisition task of a state model sM has the form

detpks, l, I, C, lrq

where the components are defined as follows:

• ks is the symbolic representation of an external knowledge source.

• l is a literal for which a new instance should be acquired.
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• I is the set of all instances of l that are derivable with respect to sM (I “
r$psM , lq).

• C is a set of literals that are dependent on l. Let Lx be a set of open-ended
literals so that l is a member of Lx. C is defined as follows:
C :“ tl1 | l1 P pLxztluq and l1 is dependent on lu

• lr is the result of the knowledge acquisition.

The result of a knowledge acquisition task is:

• an additional instance lσ of l if such an instance can be determined,

• impossible if it can be determined that the existence of an additional instance
of l is impossible,

• or indeterminable otherwise. In this case the knowledge acquisition process
could not provide additional information with respect to the literal l.

In a nutshell,

detpks, l, I, C, lrq

is the task of acquiring an instance lσ of l from the knowledge source ks such
that lσ is not a member of I (i.e., lσ is not already derivable) and for all c P C an
instance of cσ is derivable.

For the aforementioned example, the task of acquiring a new instance of

connectplab, D, kitchenq

via using the laser scanner as a knowledge source is defined as follows:

detplaser, connectplab, D, kitchenq,

tconnectplab, door1, kitchenq, connectplab, door2, kitchenqu, topenpDqu, lrq

Due to the fact that a single knowledge source cannot provide information about
arbitrary aspects of the environment, the consideration of the context of a knowledge
acquisition task is optional. For example, consider the task of finding a mug which
belongs to Joe, is located in the room r1 and is not Bob’s mug via using the vision
system. This task would be defined as follows:

detpvision, mugpXq, tmugpbobs mugqu,tin roompX, r1q, belongs topX, joequ, lrq
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method(

% task

det(vision ,rel_pos(Object ,Pose ,X,Y),I,C,R),

% precondition

(at(robot ,From) ^ can_navigate(From ,Pose ,NavCost ))

% subtasks

[ navigate(Pose), move_manipulator_aside ,

sense(vision ,rel_pos(Object ,Pose ,X,Y),I,C,R)],

% expected cost

eval(Cost ,Cost is NavCost + 1000).

Figure 4.3.: Example HTN method for the knowledge acquisition task
det(vision,rel pos(Object,Pose,X,Y),I,C,R).

The vision system might not be able to tell the robot whether a detected mug
belongs to Joe. Nevertheless, the robot can use other sources (e.g., human-robot
interaction with Joe) for the purpose of determining whether a mug belongs to Joe.

An example of an HTN method for a knowledge acquisition task is shown in Figure
4.3. The specification of the delete-set and add-set is omitted, since the method has
no (high-level) effects. Figure 4.3 shows the definition of an HTN method for the
acquisition task of determining the relative position of an object on a table from a
certain pose. Two values (X,Y) are sufficient to specify the relative position of an
object on a table, because the height of the table is a priori known. The method
shown in Figure 4.3 has been used for the experiments described in Section 9.

Every HTN method instance has an expected cost that describes how expensive
it is to perform a task as described by the method. For the method shown in Figure
4.3, the cost is defined as the sum of the cost to navigate to the goal pose and the
expected cost to sense the position of the object, which is the constant value 1000.

Summing up, methods for knowledge acquisition tasks enable the planner to rea-
son about possible knowledge acquisitions, since they describe

1. what knowledge acquisitions are possible under what conditions,

2. how expensive it is to acquire information from a specific knowledge source,

3. and how to perform a knowledge acquisition task.

It might be possible that the same information can be acquired from different
external knowledge sources, and the expected cost to acquire the same information
can be completely different for each source. Thus, in order to acquire additional
instances for each literal of a set of open-ended literals, a planner needs to decide for
each literal from which knowledge source it should try to acquire an additional in-
stance. The result of this decision process is called a knowledge acquisition scheme.
A knowledge acquisition scheme is a set of tuples pl, ksq where l is a literal and
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ks is an external knowledge source. It represents one possible combination of try-
ing to acquire a non-derivable instance for each open-ended literal by an adequate
knowledge source.

For example, the knowledge acquisition scheme

tpon tablepbobs mugq, visionq, pwhite coffee(bob), hripbobqqu

represents the information that the question on table(bobs mug)? should be
answered with the vision system, and the query white coffee(bob)? should be
submitted to Bob.

As already pointed out, a knowledge acquisition scheme is the result of a decision
process of the planner. If a relevant precondition is possibly-derivable with respect
to a (non-empty) set of open-ended literals, then a planner needs to generate an
appropriate knowledge acquisition scheme for this set of open-ended literals. For
this process, literals with the interpretation model reasoning (see Section 3.8) need
to be handled in a special way. For example, imagine a precondition is possibly-
derivable with respect to the following set of open-ended literals:

tfree aheadpDistanceq, Distance ą 5000u

The literal free ahead(Distance) represents the fact that the agent can move
Distance millimeters straight ahead without hitting an obstacle. ’Distance ą 5000’
is evaluated by a special arithmetic reasoner and thus has the interpretation model
reasoning. It is open-ended, since the corresponding reasoner can only handle
ground literals. Moreover, it is not possible to acquire an instance of the literal
’Distance ą 5000’ from external knowledge sources. The general idea is to first
try to acquire the distance and then call the arithmetic reasoner for the purpose of
checking whether the distance is more than 5000 millimeters. The same strategy
is applied to all literals that have the interpretation model reasoning. In other
words, all literals that have the interpretation model reasoning are excluded from
the knowledge acquisition process and not added to a knowledge acquisition scheme.
In this way, their evaluation is postponed until they can be evaluated by a corre-
sponding reasoner.

How a knowledge acquisition scheme can be generated for a possibly-applicable
statement is defined by Algorithm 4.1. Algorithm 4.1 partitions the set of open-
ended literals into a set of literals that have the interpretation model reasoning
(Lxres) and a set of literal that do not have the interpretation model reasoning
(Lxacq). The algorithm ensures that the set of variables that occur in the literals
with the interpretation model reasoning is a subset of the set of variables that
occur in the remaining literals (line 7). This is necessary in order to ensure that
each literal of Lxres will be ground after the successful acquisition of an additional
instance for each literal of Lxacq. For example, Algorithm 4.1 does not generate a
knowledge acquisition scheme for a statement that is only possibly-derivable with
respect to the following set of open-ended literals:
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Algorithm 4.1: generate-kas(st, sM)

Result: a tuple pkas, σq where kas is a knowledge acquisition scheme and σ
a substitution

1 sol Ð tpLx, σq | st is possibly-derivable with respect to sM , a substitution σ,
and a set of open-ended literals Lx };

2 nondeterministically choose any pLx, σq P sol;
3 Lxres Ð tl | l P Lx and l has the interpretation model reasoning};
4 Lxacq Ð tl | l P Lx and l does not have the interpretation model reasoning};
5 varspLxresq Ð tv | l P Lxres and v is a variable that occurs in l};
6 varspLxacqq Ð tv | l P Lxacq and v is a variable that occurs in l};
7 if varspLxresq Ď varspLxacqq then
8 kasÐH;
9 foreach element l P Lxacq do

10 nondeterministically choose a knowledge source ks such that it exists
a possibly-applicable method instance of the task detpks, l,H,H, Rq;

11 kasÐ kasY pl, ksq;
12 return pkas, σq;

tfree aheadpDistance1q, Distance2 ą 5000u

The rationale behind this behavior is that the literal ’Distance2 > 5000’ would
remain open-ended even if the system determines a value for Distance1.

However, if all variables of Lxres constitute a subset of all variables of Lxacq (line
7), then, for each literal in Lxacq, the algorithm nondeterministically chooses an
external knowledge source such that a possibly-applicable method instance for a
corresponding knowledge acquisition task exists (lines 10 - 11).

Based on Algorithm 4.1, a knowledge acquisition scheme is defined as follows:

Definition 4.8 (knowledge acquisition scheme). A knowledge acquisition scheme
is a set of tuples pl, ksq such that l is an open-ended literal and ks is an external
knowledge source. A knowledge acquisition scheme kas is called a knowledge acqui-
sition scheme for an instance stσ of a statement st with respect to a state model sM
iff pkas, σq can be generated by generate-kaspst, sMq (see Algorithm 4.1).

4.4. Planning Step

The term planning step is used in this work as an abstraction of HTN methods
and planning operators (see Figure 4.4). Applying a planning step (i.e., a planning
operator or a HTN method) is the basic operation of the planning process. The idea
is that planning proceeds via successively applying a planning step until a sequence
of initial tasks can be decomposed into a sequence of primitive tasks or no plan can
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planning step

planning operator HTN method

Ď

Figure 4.4.: Planning steps are an abstraction of planning operators and HTN meth-
ods.

be found. The application of a planning step maps the state of a planning process to
a resulting state. This state is called the planning state. A planning state encodes
all information that is necessary for the planning process. It is defined as follows:

Definition 4.9 (planning state). A planning state is a triple

ps :“ ppsD, psp, pskasq

in which the elements are described as follows:

• psD is the current domain model.

• psp represents the current plan.

• pskas is a knowledge acquisition scheme.

A planning state ps is called a final planning state if psp is final and called an
intermediate planning state if psp is an intermediate plan. The set of planning
states is denoted by PS.

For a planning state ps, psD is the current domain model of the planner. Addition-
ally, a planning state can contain a knowledge acquisition scheme. This indicates
a situation where the planner prefers to perform a knowledge acquisition process
prior to continuing the overall planning process. How this works in detail is not
important at this point and described in Chapter 5.

In the following, P denotes the set of plans, KAS the set of knowledge acquisition
schemes, and DM the set of domain models.

A planning step is defined as follows:

Definition 4.10 (planning step). A planning step s is represented by a 5-tuple

s :“ pstask, scond, s∆plan, s∆state, scostq

where

• stask is a task,
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• scond is a statement,

• s∆plan is a function s∆plan : P Ñ P ,

• s∆state is a function s∆state : DMÑ DM,

• and scost is an ACog expression.

A planning step is an abstraction of an HTN method or a planning operator.
In other words, any planning operator and HTN method constitutes a planning
step. For a planning step s, the task stask defines—like for an HTN method—for
which task a planning step is relevant. The precondition scond and the cost scost
have the same function like for operators and methods. Hence, scond describes the
precondition that needs to be fulfilled in order to apply the planning step s, and
scost represents the expected cost of performing a task according to s.

In a nutshell, applying a planning step to a planning state has the following two
consequences:

1. It transforms (i.e., decomposes) a plan into a resulting plan.

2. It transforms a domain model into a resulting domain model.

The first consequence is defined by the function s∆plan, and the second consequence
is defined by the function s∆state. The functions s∆plan and s∆state together describe
how a planning step maps a planning state to a resulting planning state.

The set delpedel, F q is the set that results from removing all members of F that
are unifiable with a member of edel. For a planning step s that represents a planning
operator or planning method e, the function s∆state is defined as follows:

s∆statepppF,C,RD, RGq, actMqq :“ ppdelpedel, F q Y eadd, C,RD, RGq, actMq (4.2)

The function s∆state updates the factual knowledge of a domain model such that
all literals of the delete-set are removed, and all literals of the add-set are added to
the set of facts.

The function s∆plan describes how a task is decomposed into a sequence of sub-
tasks. If s is a planning operator o that is derivable with respect to a substitution
σ, then the plan transformation function s∆oplan is defined as follows:

s∆oplanppă t1, . . . , tmą,ăa1, . . . , anąqq :“ pă t2, . . . , tmą,ăa1, . . . , an, t1σąq (4.3)

In other words, an instance of the next task is added to the end of the sequence
of actions. The name of this task instance serves a symbolic representation of a
corresponding agent control program that is executed during the execution phase.

If the planning step s is a method m that is relevant for a task t1 and
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mtasks “ă st1, . . . , stm ą,

then the plan transformation function s∆mplan is defined as follows:

s∆mplanpă t1, . . . , tn ą, actionsq :“ pă st1, . . . , stm, t2, . . . , tn ą, actionsq (4.4)

Thus, the first task of the task sequence is replaced by the subtasks of the method.
Based on Equation 4.3 and Equation 4.4, the plan transformation function s∆plan of
a planning step s is defined as follows:

s∆planpt, pq :“

#

s∆oplanpt, pq if s is a planning operator

s∆mplanpt, pq if s is an HTN method
(4.5)

A planning step maps the current planning state to a resulting planning state.
In this sense, operators map the current planning state to a resulting state by
removing the next task from the task sequence, adding a ground instance of this
task to the action sequence and updating the domain model according to the effects
of the operator; whereas HTN methods transform the current planning state by
replacing an active task by a number of subtasks, and updating the domain model
according to its (high-level) effects. Applying a substitution σ to a planning step
s :“ pstask, scond, s∆plan, s∆state, scostq is defined as applying σ to every element of the
tuple. Hence, sσ is defined as follows:

sσ :“ pstaskσ, scondσ, s∆planσ, s∆stateσ, scostσq (4.6)

4.5. Execution Memory

The execution memory stores information that the agent gathers during the execu-
tion phase. For the proposed plan-based control architecture, one important type of
information is the outcome of the execution of a knowledge acquisition task. This
information is relevant in situations where the execution of a knowledge acquisition
task cannot provide additional information. For example, consider a situation where
a robot unsuccessfully tried to find Bob’s mug by means of human robot interaction
with Bob. Thus, Bob does not know where his mug is. Technically speaking, that
means that the robot performed the following task:

detpbob, locationpbobs mug, Locq,H,H, indeterminableq

As specified by Definition 4.7, this constitutes a situation where the execution
of the knowledge acquisition task could not provide additional information about
the location of Bob’s mug. However, the robot knows that Bob does not know the
location of his mug. Thus, it is not reasonable—at least for a while—to submit the
same query to Bob again. Therefore, the domain model stores information of the
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performed knowledge acquisition tasks so that the planner can rule out knowledge
sources that could not provide information about a certain query. For the illustrated
example, the knowledge source Bob is called unaware with respect to the location
of his mug.

More precisely, an unaware knowledge source is defined as follows:

Definition 4.11 (unaware). Let actmem be the execution memory of an activities
model act. A knowledge source ks is called unaware with respect to a knowledge
acquisition task detpks, l, C, I, Xq iff actmem contains a knowledge acquisition task
detpks, l1, C1, I1, indeterminableq such that

• l is an instance of l1,

• I1 is a subset of I,

• and C1 is a subset of C.

Roughly speaking, Definition 4.11 defines that an external knowledge source can-
not provide additional information with respect to a knowledge acquisition task if
it failed to provide information with respect to a more general (i.e., a knowledge
acquisition task that has less constraints) knowledge acquisition task. For example,
if Bob cannot tell us the location of any mug, then it is assumed that he is also not
able to give information about the location of a certain mug (e.g., mug77).

How relevant the information that is stored in the memory is, can dependent
on when this information has been stored in the memory system. Often, older
information is less relevant than more recently gathered information. Thus, it can be
reasonable to “forget” outdated information or continuously decrease the relevance
of stored information over time. However, the implementation of such a—more
advanced—memory system is out of the scope of this work. In this work, it is
assumed that all information in the memory system is relevant. Nevertheless, the
proposed system does not rely on the fact that no information can be removed from
the memory system. Hence, a more sophisticated memory system can be integrated
without changing the proposed plan-based control system.

4.6. Definition of the Activities Model

All components have been introduced that are necessary in order to define the
activities model. Based on the notion of planning operators, primitive actions and
the execution memory, the activities model is defined as follows:

Definition 4.12 (Activities Model). An activities model is a triple

act “ pacto, actm, actmemq

whereby the components are defined as follows:
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• acto is a set of planning operators.

• actm is a set of HTN methods.

• actmem is a set of executed knowledge acquisition tasks.

4.7. Applicability

A knowledge acquisition scheme is only helpful for an agent if it is actually able to
perform the corresponding knowledge acquisition tasks. For example, if a robot in
principle is not able to find out whether a door is open, then the planner does not
have to consider the method instances 2 and 3 for the situation illustrated by Figure
2.4. A knowledge acquisition scheme for which all necessary knowledge acquisition
tasks can be possibly performed by the agent is called possibly-acquirable and more
formally defined as follows:

Definition 4.13 (possibly-acquirable). An acquisition pl, ksq is called possibly-
acquirable with respect to a domain model DM iff there is a possibly-applicable
planning step for a knowledge acquisition task detpks, lσ, I, C, lrq such that ks is
not unaware with respect to detpks, lσ, I, C, lrq. Moreover, a knowledge acquisition
scheme kas is called possibly-acquirable iff kas is empty or all pl, ksq P kas are
possibly-acquirable.

In other words, an agent knows that information about certain aspects of the
world can be acquired if it is in general able to generate a plan for a corresponding
knowledge acquisition task, and the chosen knowledge acquisition task can (possibly)
provide the required information. Knowledge acquisitions from sources that are
believed to be unaware with respect to the corresponding knowledge acquisition
task are ruled out.

Based on the notation of a possibly-acquirable knowledge acquisition scheme, it is
possible to more precisely define the concept of a possibly-applicable planning step,
which was informally introduced in Section 2.2. It is defined as follows:

Definition 4.14 (possibly-applicable). The instance sσ of a planning step s is called
possibly-applicable with respect to a domain model DM and a knowledge acquisition
scheme kas iff kas is possibly-acquirable and a knowledge acquisition scheme for
scondσ.

Please note that if a planning step is possibly-applicable with respect to an empty
knowledge acquisition scheme, then it is also applicable. A possibly-applicable plan-
ning step can only be applied after necessary information has been acquired by the
execution of corresponding knowledge acquisition tasks. For example, consider the
second method of the situation illustrated by Figure 2.4. This method instance
can only be applied if the robot has perceived that door2 is open. The fact that
possibly-applicable planning step instances require the execution of additional tasks
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(i.e., knowledge acquisition tasks) needs to be considered by the determination of
the expected cost. Therefore, the cost of a possibly-applicable planning step is de-
fined as the sum of the cost for the step if it is applicable and the expected cost of
all necessary knowledge acquisition tasks.

4.8. Integrating Probabilistic Information

Probabilistic information about the expected outcome of a knowledge acquisition
process can be integrated into the cost model such that the planner can minimize
the overall expected cost by avoiding the execution of knowledge acquisition tasks
that probably do not imply additional ways to perform the task at hand. In other
words, the planner can trade off between plans that are more likely accomplishable
and plans that have a lower expected cost. Let l be a literal, st be a statement and
p P r0, 1s. How likely it is that there is a new instance of a literal l can be defined
by definite clauses of the following form:

ppl, pq Ð st

For example, the definite clause

ppopenpXq, 0.7q Ð J

defines that if a literal l is unifiable with open(X) and open-ended, then the
probability that there is an additional instance of l is 0.7. Roughly speaking, that
means that doors with an unknown state are assumed to be open in 70 percent of
the cases. However, please note that these probabilities are only defined for open-
ended literals. For example, if door1 is known to be open, then open(door1) is
not open-ended and the probability that door1 is open is 1. In other words, for
literals that are not open-ended, the probabilistic information is not relevant. If no
information about the probability of the existence of an additional instance of an
open-ended literal is available, then a default value (e.g., 0.5) is used.

Let s be a planning step that has the expected cost c and is possibly-applicable
with respect to a knowledge acquisition scheme kas. Moreover, let

Ť

ittiu be a set
of knowledge acquisition tasks that contains a corresponding knowledge acquisition
task for every knowledge acquisition ka P kas, ci be the expected cost of ti, and
Eptiq be the event of finding the desired information of ti. For a set of events

Ť

iEi,
pp

Ź

iEiq denotes the probability that all events Ei occur. The overall cost of s is
defined as follows:

c̃psq :“
c`

ř

i ci
pp

Ź

iEptiqq
(4.7)

For example, let us reconsider the running example described in Section 2.1.2.
Let us assume that the cost of the plan that results from applying the method for
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move to(Room) is always 100. Moreover, let us assume that the cost of performing
the task

det(laser,open(door2),H,H, lrq

is 50, and the expected cost of performing the task

det(percept,connect(lab,X,kitchen), {connect(lab,door1,kitchen),
connect(lab,door2,kitchen)}, {open(X)},lrq

is 300. Furthermore, we assume that the probability that a door with an unknown
state is open is 0.7, the probability of finding an additional connection between
the kitchen and the lab is expected to be 0.1, and both events are statistically
independent.

In this situation, the cost of method instance 1 is 100, the cost of method instance
2 is 100`50

0.7
“ 214, and the cost of method instance 3 is 100`50`300

0.7ˆ0.1
“ 6428. Thus,

in this case, the applicable instance has the less expected cost. However, this does
not always has to be the case. For example, if the robot is directly located in front
of door2, and the expected cost of moving to the kitchen via door2 is only 10, then
the overall cost of method instance 2 is 10`50

0.7
“ 86. Thus, in this case, the planner

chooses method instance 2 and decides to determine whether door2 is open prior to
continuing the overall planning process.

In terms of utility theory (Russell and Norvig, 2010), the expected cost c can also
be viewed as a utility 1

c
. The calculation of the cost c̃, defined by Equation 4.7, can

be transformed into the following utility function:

ũpsq :“
pp

Ź

iEptiqq

c`
ř

i ci
(4.8)

Based on that representation, the proposed domain model enables the planner
to follow the principle of maximum expected utility (Russell and Norvig, 2010, page
611) by means of choosing the planning step that maximizes the agent’s utility.

The proposed domain model does not provide advanced probabilistic reasoning
capabilities. However, external probabilistic reasoners can be integrated in various
ways. For example, they can be called via using the call meta-predicate (see Section
3.7.2).

4.9. High-Level Percepts: Defining Multimodal
Integration Processes

Robots are usually equipped with different sensing and acting modalities. The inte-
grative processing of different sensing and acting modalities is an essential approach
to provide reliable information about complex, dynamic environments (Luo and
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modality 1 modality n

Uni-Modal Actions

action 1 action n

Multi-Modal Actions

Planner

Plan
[...,approach pose direct(12500,14500,90),

apply brakes,...]

dynamic integration

static integration

Figure 4.5.: Illustration of multi- and unimodal integration processes.

Kay, 1995). The plan-based control architecture can integrate sensing and acting
modalities in the following—not exclusive—two ways (Off and Zhang, 2011b):

1. Acting and sensing modalities are composed to multimodal primitive actions.

2. Each sensing and acting modality is an unimodal robot action and dynamically
integrated by symbolic planning to reasonable multimodal behavior.

These two integration approaches are illustrated by Figure 4.5. The former ap-
proach is usually achieved by means of implementing a specific control program that
achieves the desired multimodal integration. The advantage of this approach is that
different modalities can be more tightly integrated than with the second approach.
Nevertheless, the main disadvantage is that the integration is rather static and out
of the control of the plan-based controller.

The second approach, however, supports the dynamic integration of different sens-
ing and acting modalities. Actions that are using a single modality can dynamically
be integrated by the planner to a multimodal sequence of actions. Multimodal inte-
gration processes are defined in form of high-level percepts in order to better support
this approach. For the purpose supporting high-level percepts, HTN methods, as
defined by Definition 4.4, are extended to the following 7-tuple:

m :“ pmtask,mcond,mdel,madd,mtasks,mpercept,mcostq

This 7-tuple contains the additional term mpercept. The term mpercept is an ACog
expression (see Definition 4.1) that defines how a percept is determined based on
the percepts of subtasks.

For example, Figure 4.6 shows a method specification for the task that determines
whether the path between two waypoints is free via using the laser scanner. The
definition is based on the primitive sensing action free ahead(D) that can determine
how many millimeters a path is free straight ahead of the robot. Based on that, the
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method(

% task

det(laser ,free_path(W1 ,W2),I,C,R),

% precondition

(at(robot ,W1), dist(W1,W2,D1)),

% delete -set

[],

% add -set

[],

% subtasks

[rotate_towards(W2), sense(free_ahead(D2),R1)],

% high -level percept

eval(R,call((

(

D1 < D2 ->

R = free_path(W1,W2)

;

R = impossible ))),

% cost

200).

Figure 4.6.: Example HTN method for an acquisition task with a high-level percept.

high-level percept defines that the path between two waypoints W1 and W2 is free if
the robot is at W1, rotates towards W2, and the path that is then free ahead of the
robot is bigger than the distance between the waypoints.

4.10. Discussion and Related Work

This chapter has described the activities model of the proposed plan-based control
system. The activities model encapsulates knowledge about the activities that can
be performed by the corresponding agent. The activities model and the state model,
described in Section 3, constitute the overall domain model.

The proposed activities model is most closely related to the activities models of
SHOP (Nau et al., 1999) and SHOP2 (Nau et al., 2003). Compared to the activities
model of SHOP and SHOP2, several extensions have been proposed in order to deal
with an open-ended state and support the reasoning of active knowledge acquisi-
tion. Similar to the activities models of other HTN planners including NONLIN
(Tate, 1977), SIPE (Wilkins, 1983), O-Plan (Drummond and Currie, 1989), SIPE-2
(Wilkins, 1990), UMCP (Erol et al., 1994), DPOCL (Young et al., 1994), AbNLP
(Fox and Long, 1995), the proposed model encodes hierarchical knowledge that is
used by the planner in order to more efficiently solve planning problems. High-level
effects are also supported by the work of (Marthi et al., 2007, 2008).
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In contrast to existing HTN planning approaches, the proposed domain model is
not based on the closed world assumption. According to the requirements formulated
in Section 2.3, one of the objective of this work is to develop an HTN planner that
is able to reason about relevant, possible, and acquirable domain model extensions.
For the purpose of achieving this goal, the task of the proposed domain model is
to provide the basic knowledge representation and reasoning techniques for such a
planner. The activities model described in this chapter extends existing approaches
in several ways in order to provide these techniques.

One of the main new idea of the proposed activities model is the notion of a
knowledge acquisition task. Knowledge acquisition tasks are defined using a syn-
tactical convention. They represent tasks that try to determine a new instance of
a literal from a certain external knowledge source. Like for any other task, HTN
methods can describe how a knowledge acquisition task can be decomposed into
a sequence of subtasks. Based on the definition of HTN methods for knowledge
acquisition tasks, the domain model can determine (1) what knowledge acquisitions
are possible under what conditions, (2) how expensive it is to acquire information
from a specific knowledge source, and (3) how a knowledge acquisition task can be
performed.

Another important contribution of the proposed domain model is the extension
of the notion of an applicable HTN method. The definition of an applicable HTN
method (Ghallab et al., 2004, Definition 11.3) is extended to the notion of a possibly-
applicable planning step (see Definition 4.14). The notion of a possibly-applicable
planning step considers that a planning step can be applicable, though the precon-
dition of the applicability depends on information that cannot be derived from the
domain model at hand. In this way, the domain model points out additional ways to
continue the planning process that require additional information. Thus, it points
out more ways to perform a given task. This is particularly relevant in situations
where it would otherwise be impossible to find any plan at all, or all other plans are
suboptimal.

Moreover, existing domain models are extended by means of providing a simple
execution memory that stores information about executed knowledge acquisition
tasks for the purpose of avoiding it to submit queries to external knowledge sources
that are known to be unable to provide the desired information.

Another new feature is the concept of high-level percepts. They can be defined as
part of an HTN method. High-level percepts describe how a high-level percept can
be determined based on the outcome of the execution of subtasks. In this way, high-
level percepts can describe multimodal integration processes so that a planner can
automatically combine a set of primitive actions to a desired multimodal behavior.

In principle, there are two ways to create an instance of a domain model:

1. The domain model is created by a human domain expert.

2. The domain model is the result of a (automatic) learning process.
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Both approaches can be combined so that some parts are specified by a human
expert and others are learned automatically. For the plan-based controller, which
exploits the domain model, it is of no consequence how the domain model has been
created. The domain models used in this work are all created by a human domain
expert. However, if a learning approach is available that automatically creates
domain models, then the automatic learning process can be used without changing
the proposed plan-based control system.

The domain model and its reasoning services are integrated into the overall plan-
based control system. The following chapter describes how the planner uses the
proposed domain model.
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Chapter 5
HTN Planning in Open-Ended Domains

Research on planning for robots is in such a state of flux that there is
disagreement about what planning is and whether it is necessary. (Mc-
Dermott, 1992)

Contents
5.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1. Relevant Domain Model Extensions . . . . . . . . . . . . 84

5.1.2. Possible Extensions . . . . . . . . . . . . . . . . . . . . . . 87

5.1.3. Acquirable Extensions . . . . . . . . . . . . . . . . . . . . 87

5.2. Core Planning Algorithm . . . . . . . . . . . . . . . . . . . 88

5.3. Planning in Open-Ended Domains: An Example . . . . 90

5.4. Soundness and Completeness . . . . . . . . . . . . . . . . 94

5.5. Discussion and Related Work . . . . . . . . . . . . . . . . 95

The core component of the plan-based robot control architecture is a new HTN
planning system. This planning system is called ACogPlan (Artificial Cognitive
Systems Planner). The general idea of ACogPlan has already been illustrated in
Section 2.2. The idea is to additionally consider ways to continue the planning
process that require the acquisition of additional information. The objective of this
chapter is to describe how this idea can actually be implemented.

ACogPlan is based on the open-ended domain model described in Chapter 3 and
4. In contrast to existing HTN planning systems, the planning process does not have
to be monolithic. In other words, the planner is not based on the assumption that a
complete plan can be generated prior to executing any action. The plan-based con-
trol system constitutes a continual planning system (Brenner and Nebel, 2009) that
interleaves planning and execution so that missing information can be acquired by
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Figure 5.1.: Illustration of the fact that the planner only considers extensions that
are relevant, possible, and acquirable with respect to a statement.

means of active knowledge acquisition. The overall planning and execution process
usually consists of several planning and execution phases. ACogPlan is responsible
for the planning phases. It generates possibly incomplete plans and automatically
decides when it is more reasonable to acquire what additional information prior to
continuing the overall planning and execution process. In this way, the planner de-
cides that a corresponding knowledge acquisition task is executed before it continues
the planning process. Generally speaking, it automatically decides when the system
should switch between planning and execution.

The proposed planner extends existing HTN planners in several ways for the pur-
pose of implementing the aforementioned strategies. The core algorithm of ACog-
Plan can be seen as an extension of the algorithm of the SHOP (Nau et al., 1999)
planner. A preliminary version of ACogPlan has been presented in Off and Zhang
(2012).

5.1. Requirements

The general idea of the proposed planner is to also consider HTN method or planning
operator instances that are only possibly-applicable. In order to do that, a planner
must be able to reason about extensions of a given domain model. However, a plan-
ner should not consider all extensions of a domain model at hand. As enumerated in
Section 2.3, a considered extension should be relevant, possible, and acquirable. This
section describes how a planner can use the domain model described in Chapter 3
and 4 in order to figure out which extensions fulfill these constraints.

5.1.1. Relevant Domain Model Extensions

For the purpose of enabling a planner to only consider relevant extensions of the
domain model at hand, we first have to answer the following question: What is
a relevant extension? More precisely, we have to find an answer to the following
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at(agent,lab) ^ connect(lab,door1,kitchen) ^ open(door1)

move to(kitchen)

approach(door1) cross(door1)

(a) The shown instance of the precondition enables it to decompose the task of
moving into the kitchen into the task of approach and cross door1

at(agent,lab) ^ connect(lab,door2,kitchen) ^ open(door2)

move to(kitchen)

approach(door2) cross(door2)

(b) The shown instance of the precondition enables it to decompose the task of
moving into the kitchen into the task of approach and cross door2

Figure 5.2.: This Figure shows two examples that illustrate that each additional
instance of a precondition implies an additional way to continue the
planning process.

question: What additional information implies that the planning process can be
continued in an alternative manner? Based on that question, the relevant extension
of a domain model is defined as follows:

Definition 5.1 (relevant extension). A domain model extension is called relevant
with respect to a planning state iff it implies that the planning process can be
continued in an alternative manner.

However, now the question is: What domain model extensions imply that the
planning process can be continued in an alternative manner? For the purpose of
answering this question we have to take a look at the general idea of an HTN plan-
ning algorithm—as described in Section 2.1—again. HTN planning proceeds via
iteratively applying relevant HTN methods and planning operators such that an
abstract plan is refined into a sequence of primitive tasks that can be executed by a
corresponding agent. An HTN method or a planning operator can only be applied
if its precondition holds. If we take a look at this aspect from another perspective,
then we can observe that every additional instance of a precondition implies an ad-
ditional instance of the corresponding planning step. This is exemplified by Figure
5.2. Figure 5.2 shows which ways (e.g., decompositions) to continue the planning
process are implied by an instance of the precondition of the second method shown
in Figure 2.2 (i.e., the method for the task move to(R)). Figure 5.2a shows a pre-
condition that enables the planner to decompose the task move to(kitchen) into
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the task of approaching and crossing door1, whereas Figure 5.2b shows an instance
of the precondition which implies that the task can be decomposed into the task of
approaching and crossing door2. Based on this observation, the following can be
proposed:

Proposition 5.1. A domain model extension is relevant iff it implies that an addi-
tional instance of the precondition of a relevant HTN method or planning operator
can be derived.

Proof. It directly follows from the definition of the HTN planning algorithm (see
Algorithm 5.1) that every additional instance of the precondition of a relevant HTN
method or planning operator implies an additional way to continue the planning
process.

Based on Proposition 5.1, we know that a planner needs to look for information
that implies that an additional instance of a relevant precondition can be derived,
since that implies that the planning process can be continued in an alternative
manner. In order to determine which information implies an additional instance of
a precondition, the planner can use the domain model ACogDM and the reasoning
system ACogReason described in Chapter 3 and 4. More precisely, the planner
can ask the reasoner whether a relevant precondition is possibly-derivable, since
according to the definition of a possibly-derivable statement (see Definition 3.8), a
new instance of all open-ended literals implies an additional instance of the overall
statement.

For example, let us consider the situation described in Section 2.1.2 again. For
the purpose of finding a way to decompose the task move to(kitchen) into a se-
quence of subtasks, the planner can submit the precondition of the relevant method
(see Figure 2.2) to the reasoning system. As illustrated by Figure 5.3a - 5.3c, the
reasoner ACogReason returns three solutions. Each solution tells the planner that
the precondition is possibly-derivable with respect to a set of open-ended literals.
Roughly speaking, the solutions tell the planner that:

1. it is possible to move to the kitchen via door1 without additional knowledge
acquisition (see Figure 5.3a),

2. it is possible to move to the kitchen via door2 if the corresponding agent can
find out that door2 is open (see Figure 5.3b),

3. and it is possible to move to the kitchen via an unknown door X if the corre-
sponding agent can find a new door X which connects the lab with the kitchen
and is open (see Figure 5.3c).
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at(agent,Room1)^ connect(Room1,D,Room2)^ open(D)

Reasoner

at(agent,lab) ^ open(door1) ^
connect(lab,door1,kitchen)

{}

derivable open-ended

(a)

at(agent,Room1)^ connect(Room1,D,Room2)^ open(D)

Reasoner

at(agent,lab) ^
connect(lab,door2,kitchen)

open(door2)?

derivable open-ended

(b)

at(agent,Room1)^ connect(Room1,D,Room2)^ open(D)

Reasoner

at(agent,lab) connect(lab,D,kitchen),
open(D)

derivable
open-ended

(c)

Figure 5.3.: All possible results of the reasoner for the situation illustrated by Figure
2.4.

5.1.2. Possible Extensions

Although an agent will probably never have a perfect domain model of a real-world
environment, the planner is supposed to exploit all information (e.g., subconcept
relations or knowledge about the maximum number of instances) it has in order
to detect and rule out a large set of extensions that are impossible with respect to
the current state of the world. The state model described in Chapter 3 provides
the required knowledge representations and reasoning services for this objective.
Therefore, the planner that calls reasoning services of the state model as a subroutine
does not have to deal with these issues directly.

5.1.3. Acquirable Extensions

An agent is only allowed to perform—possibly partial—plans if they are the result
of the successive application of relevant and applicable planning steps. Possibly-
applicable planning steps constitute additional ways to continue the planning pro-
cess, but cannot directly be applied in order to ensure a relaxed form of soundness,



88 HTN Planning in Open-Ended Domains

namely prefix-soundness. The notion of a prefix-sound plan is described in more
detail in Section 5.4. Roughly speaking, an intermediate prefix of a plan is called
prefix-sound if it is likely that it constitutes the prefix of a sound and complete plan.
In order to ensure the prefix-soundness property, a possibly-applicable planning step
can only be applied after additional information has been acquired that implies that
it is applicable. However, it is only possible to determine that information if the
agent is able to perform the necessary knowledge acquisition tasks. Otherwise, the
planner does not have to consider related ways to continue the planning process.

Based on the specification of knowledge acquisition tasks (see Section 4.3), the
reasoner ACogReason is able to determine which knowledge acquisition processes are
possible. Such a knowledge acquisition is called possibly-acquirable (see Definition
4.13). Based on Definition 4.13, the reasoner can tell the planner which extensions
of a domain model are possibly acquirable. Hence, this information can be provided
by the domain model. The only thing that needs to be done by the planner is to
call the appropriate reasoning process.

5.2. Core Planning Algorithm

The core algorithm of the proposed HTN planning system is shown by Algorithm
5.1. It describes the planning phase of the continual planning and acting approach
that usually consists of several planning phases. The algorithm can be seen as an
extension of the SHOP (Nau et al., 1999) algorithm that additionally considers the
possibly-applicable HTN method and planning operator instances.

A planning state (see Definition 4.9) is the input and the output of the recursive
planning algorithm. If the planning state is final, then the planning process has suc-
cessfully generated a complete plan and the given planning state is returned (lines
1-2). Otherwise, the algorithm chooses the possibly-applicable step with the lowest
expected cost. The cost is calculated using probabilistic information as defined by
Equation 4.7. Hence, the planner takes the additional cost of possibly necessary
knowledge acquisition tasks and the probability of considered domain model exten-
sions into account for the purpose of making a decision with the lowest expected
cost. If we view the expected cost c as a utility 1

c
and transform the Equation 4.7

into the utility function defined by Equation 4.8, then the planner follows the prin-
ciple of maximum expected utility (Russell and Norvig, 2010, page 611). Thus, the
planner chooses the action that maximizes the expected utility.

If the planner chooses an applicable planning step (i.e., no knowledge acquisition
is necessary and the knowledge acquisition scheme is the empty set), then planning
proceeds similar to the SHOP (Nau et al., 1999) planner. The only additional factors
that needs to be considered are high-level effects. The effects of HTN methods are
only applied after all subtasks have been performed. Therefore, the planner creates
a plan that only contains the next task (line 7), transforms this plan according to the
definition of the planning step (line 8), and continues the planning process only for
the next task. If the planner has generated a complete plan for the next task, then
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Algorithm 5.1: plan(ps)

Result: a planning state ps1, or failure
1 if ps is a final planning state then
2 return ps;

3 stepsÐ tpsσ, kasq|s is the instance of a relevant planning step, σ is a
substitution such that sσ is relevant for the next task, and sσ is
possibly-applicable with respect to psD and kas};

4 if backtrackable-choose psσ, kasq P steps with the minimum overall cost
then

5 if kas “ H then
6 Let ppspqtasks “ă t1, . . . , tn ą;
7 p1 Ð pă t1 ą, ppspqactionsq;
8 p2 Ð s∆planpp

1q;
/* generate a plan for the next task */

9 ps1 Ð plan(ppsD, p
2, pskasq);

10 if ps1 is final then
11 D1M Ð s∆statepps

1
Dq;

/* generate a plan for the remaining tasks */

12 plan(pD1M , pă t2, . . . , tn ą, pps
1
pqactionsq, ps

1
kasq);

13 else if ps1 is an intermediate planning state then
14 return ps1;

15 else
16 return ppsD, psp, kasq;

17 else
18 return failure;

the effects are applied to the domain model (line 11), and the planner is recursively
called in order to generate a plan for the remaining tasks. However, if the planner
stops the planning process for the next task and returns an intermediate planning
state, then the (superordinate) planner instance stops the planning process for the
overall task and returns the intermediate planning state.

If the planner chooses an only possibly-applicable planning step at line 4, then
it stops the planning process and returns the current (intermediate) planning state
including the non-empty knowledge acquisition scheme of the chosen planning step
(lines 15-16). This indicates a situation where the planner decides that it is more
reasonable to acquire additional information prior to continuing the planning process
of the overall task. By means of choosing an applicable or only possibly-applicable
planning step, the planner decides whether it is more reasonable to continue the
planning (i.e., choose an applicable planning step) or to first acquire additional
information (i.e., choose an only possibly-applicable step). In this way, it automati-
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operator(sense(laser ,open(Door),I,C,R),

% precondition

(approached(Door)),

% delete -set

[],

% add -set

[],

% expected cost

500).

Figure 5.4.: Planning operator specification for the sensing action that determines
the state of a door using the laser scanners.

cally decides when to switch between planning and acting. If it is neither possible to
continue the planning process nor to acquire relevant information, then the planner
backtracks to the previous choice point or returns failure if no such choice point
exists.

5.3. Planning in Open-Ended Domains: An Example

This section is intended to illustrate the proposed planning system using a simple
example. Let us consider an extended version of the example introduced in Section
2.1.2. In addition to the four primitive actions

approachpEntityq, crosspDoorq, pick uppObj, Tableq, put downpObj, Tableq

the robotic agent can sense the state of doors using its laser scanner by means
of the primitive action sense(laser,open(Door),I,C,R). The parameters of this
sensing action have the same meaning as for a knowledge acquisition task. Hence,
laser is an external knowledge source, open(Door) the literal for which a new
instance should be determined, I the set of derivable instances of open(Door), C
is the context, and R the result of the sensing action. For this sensing action, the
planning operator specification shown in Figure 5.4 is added to the four planning
operator specifications shown in Figure 2.1.

Furthermore, HTN method specifications shown in Figure 2.2 are extended. The
resulting method specifications are shown in Figure 5.5.

Like in the example described in Section 2.1.2, the state model contains the fol-
lowing set of facts:

in_room(agent,lab), in_room(t1,lab), in_room(t2,kitchen),

on(bobs_mug,t1), free(hand), connect(lab,door1,kitchen),

connect(lab,door2,kitchen), open(door1).



5.3 Planning in Open-Ended Domains: An Example 91

method(deliver(Obj ,Table),

% precondition

(on(Obj ,Table1) ^ in_room(Table ,R) ^
can_navigate_to(Table ,NavCost1) ^
can_navigate_to(Table1 ,NavCost2 ))

% subtasks

[approach(Table1),pick_up(Obj),

move_to(R),approach(Table),put_down(Obj ,Table)],

% expected cost

eval(Cost , Cost is NavCost1 + NavCost2 + 5000)).

method(move_to(R),

% precondition

(in_room(agent ,R1) ^ connect(R1 ,Door ,R) ^ open(Door) ^
can_navigate_to(Door ,NavCost ))

% delete -set

[in_room(R1)],

% add -set

[in_room(R)],

% subtasks

[approach(Door),cross(Door)],

% expected cost

eval(Cost ,Cost is NavCost + 2000)).

method(determine(laser ,open(Door),I,C,R),

% precondition

(in_room(agent ,R1) ^ connect(R1 ,Door ,_) ^
can_navigate_to(Door ,NavCost ))

% subtasks

[approach(Door),sense(laser ,open(Door),I,C,R)],

% expected cost

eval(Cost ,Cost is NavCost + 500)).

Figure 5.5.: Methods for the illustrative pick-up and delivery task.

For the example at hand, we additionally assume that the following literals can
be derived by domain specific rules of the state model:

can_navigate_to(door1,10000), can_navigate_to(door2,500),

can_navigate_to(t1,1500), can_navigate_to(t2,12000).

Hence, the robotic agent has a model of the expected cost for the task of navigating
to door1, door2, t1, and t2. For example, the expected cost of navigating to door1

is 10000, whereas the expected cost of navigating to table t1 is 1500.
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Plan

Tasks

<deliver(bobs mug,t2)>

Actions

<>

Figure 5.6.: Initial plan of the illustrated example.

In the following, it will be described how the planning algorithm deals with the
input plan shown in Figure 5.6.

The planner starts the planning process by means of looking for planning steps
that are relevant for the task deliver(bobs mug,t2). For the example at hand,
the only relevant planning step is the first method shown in Figure 5.5. The plan-
ner instantiates the method via substituting Obj with bobs mug and Table with
t2. Subsequently, the planner calls the reasoner for the purpose of determining
all possibly-applicable (see Definition 4.14) instances of the method. In this case,
there is only one possibly-applicable instance with an empty knowledge acquisition
scheme. A 2-tuple consisting of an instance of the method and a corresponding
empty knowledge acquisition scheme is shown by Figure 5.7.

(

method(deliver(bobs_mug ,t2),

(on(bobs_mug ,t1) ^ in_room(t2 ,kitchen) ^
can_navigate_to(t2 ,12000) ^
can_navigate_to(t1 ,1500))

[],

[],

[approach(t1),pick_up(bobs_mug),

move_to(kitchen),approach(t2),put_down(bobs_mug ,t2)],

eval(Cost , Cost is 12000 + 1500 + 5000)) ,

{})

Figure 5.7.: All possibly-applicable instances of the relevant method for the task
deliver(bobs mug,t2).

The expected cost of the method instance is 12000 ` 1500 ` 5000 “ 18500. The
planner chooses the described instance (see Algorithm 5.1, line 4), since this is the
only instance of the set steps generated by Algorithm 5.1 (line 3). Due to the
fact that the corresponding knowledge acquisition scheme is empty, the planning
algorithm continues at line 6. It decomposes the task deliver(bobs mug,t2) into
the following sequence of subtasks (line 8):
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Plan

Tasks

<move to(kitchen),approach(t2),put down(bobs mug,t2)>

Actions

<approach(t1),pick up(bobs mug)>

Figure 5.8.: Plan after the planner has applied an operator to the tasks
approach(t1) and pick up(bobs mug).

<approach(t1),pick_up(bobs_mug),move_to(kitchen),approach(t2),

put_down(bobs_mug,t2)>

Afterwards, the planner recursively calls itself with the updated plan (line 9). Sub-
sequently, the planner applies an operator to the task approach(t1) and to the task
pick up(bobs mug). For both primitive tasks, there is only one possibly-applicable
planning operator available that requires no additional knowledge acquisition. Fig-
ure 5.8 shows how the plan of the planning state looks after these two planning
operators have been applied.

Hence, the plan already contains a sequence of two executable actions. The next
task for which a plan has to be generated is move to(kitchen). There are two
possibly-applicable method instances for this task. These method instances and the
corresponding knowledge acquisition scheme are shown as a 2-tuple in Figure 5.9.
In this case, the planner does not consider the possibility that there is an unknown
door which connects the lab with the kitchen, since the domain model contains
no planning step that enables the planner to find new connections between rooms.
Hence, a corresponding domain model extension is not acquirable. According to
Equation 4.7, the cost of the first instance is 12000` 2000 “ 14000. The cost of the
second instance is 500 ` 2000 “ 2500 plus the cost for the knowledge acquisition
task. The planner instantiates the relevant method for the knowledge acquisition
task that determines the state of a door (see Figure 5.5). The cost for the knowledge
acquisition task is 500`500 “ 1000. The probability that the door is open is assumed
to be 0.7. Thus, the overall cost of the second method is

2500` 1000

0.7
“ 5000.

Hence, for the illustrated example the second method instance has the lowest
expected cost. Therefore, the planner chooses the second instance. However, now
the planner has chosen an only possibly-applicable planning step. Thus, it decided
that it is more reasonable to determine the state of door1 prior to continuing the
overall planning and execution process. Finally, the planner returns a planning
state that consists of the current domain model, the current plan, and the knowledge
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(

method(move_to(kitchen),

(in_room(agent ,lab) ^ connect(lab ,door1 ,kitchen) ^
open(door1) ^ can_navigate_to(door1 ,12000))

[in_room(lab)], [in_room(kitchen)],

[approach(door1),cross(door1)],

eval(Cost ,Cost is 12000 + 2000)) ,

{})

( method(move_to(kitchen),

(in_room(agent ,lab) ^ connect(lab ,door2 ,kitchen) ^
open(door2) ^ can_navigate_to(door2 ,500))

[in_room(lab)], [in_room(kitchen)],

[approach(door1),cross(door1)],

eval(Cost ,Cost is 500 + 2000)) ,

{det(laser ,open(door2),{},{},R)})

Figure 5.9.: All possibly-applicable instances of the method for the task
move to(kitchen).

acquisition scheme of the second method instance shown in Figure 5.9 (see Algorithm
5.1, line 16).

5.4. Soundness and Completeness

Two important properties of a planning system are the soundness and the complete-
ness . A planning algorithm is called sound if all generated plans are correct and
called complete if the algorithm finds a solution for any solvable problem.

Defining the soundness and completeness is more complicated for the proposed
planning algorithm, since it is not assumed that the planner can generate a complete
plan. However, if the planning algorithm generates a complete plan, then it behaves
like—and generates the same plans as—the SHOP planning system. SHOP is known
to be sound for all search spaces and complete for finite search spaces (Nau et al.,
1999). Therefore, Algorithm 5.1 is also sound for all search spaces and complete
for finite search spaces with respect to complete plans. Iterative deepening can be
used to also make the algorithm complete for infinite search spaces. Nevertheless,
according to Nau et al. (1999), in practice it turned out to be more efficient not to use
iterative deepening. If the planner calls external reasoners, then the completeness
and soundness are based on the assumption that the external reasoners are complete
and sound.

The proposed planning system can also be seen as complete with respect to partial
plan prefixes, since it generates all plan prefixes that can be the prefix of a sound
plan. However, only generating a partial plan prefix comes at the cost of loosing the
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guarantee that the generated plan prefix is the prefix of a sound plan. Nevertheless,
if the planner only has an open-ended model of its environment, then the alternative
to start execution prior to having a complete plan would often be not to perform a
task at all. Furthermore, in a dynamic environment even sound plans can quickly
become invalid if relevant aspects of the situation have been changed.

A partial plan prefix cannot be guaranteed to be sound, but a relaxed form of
soundness can be guaranteed. Every generated plan prefix is prefix-sound , whereas
prefix-sound is defined as follows:

Definition 5.2 (prefix-sound). A plan prefix is called prefix-sound if it is the inter-
mediate plan prefix of a sound planning algorithm.

This definition seems to be very weak. How much does it actually tell us about
the correctness of a plan? The answer to this question is: It depends on the concrete
planning algorithm. The notion of prefix-sound is not reasonable for any planning
approach. However, for the forward search HTN planner ACogPlan it is reasonable
due to the following reasons:

1. Like SHOP (Nau et al., 1999), ACogPlan generates plans in the same order
in which they will later be executed. Therefore, the sequence of actions of
an intermediate plan constitutes the prefix of a sound plan if the planner can
generate a complete plan without discarding these actions.

2. The fact that the search process is guided by HTN methods can significantly
reduce necessary backtracking. How significant this effect is depends on the
quality of the HTN methods. In other words, if the planner has a good domain
model, then intermediate plans often constitute the prefix of a sound and
complete plan.

3. If it is necessary to discard some of the actions from the intermediate sequence
of actions, then the planning algorithm starts at the end of the sequence. Thus,
even if some actions of an intermediate plan are discarded, a prefix of this prefix
can still be the prefix of a complete, correct plan.

5.5. Discussion and Related Work

The new HTN planning system ACogPlan has been described in this chapter. The
proposed planning system is particularly made for real-world situations where the
planner only has an incomplete, open-ended model of the environment. It is based
on the open-ended domain model described in Chapter 3 and 4.

Most of the previous approaches on automated planning that are able to generate
plans in partially known environments generate conditional plans—or policies—
for all possible contingencies. This includes conformant, contingent or probabilistic
planning approaches (Russell and Norvig, 2010; Ghallab et al., 2004). Work on
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generating conditional plans includes (Hoffmann and Brafman, 2006; Petrick and
Bacchus, 2002, 2004; Weld et al., 1998; Levesque, 1996; To et al., 2011), to name
but a few. The PKS planner (Petrick and Bacchus, 2002, 2004) has also been
applied in a robotic context (Kraft et al., 2008). How a closed-world, hierarchical
planner can be adapted so that it can generate conditional plans for incomplete
domains is described in Kuter et al. (2007). However, planning approaches that
generate conditional plans are known to be computationally hard (Littman et al.,
1998; Rintanen, 1999; Baral et al., 2000; Rintanen, 2004), scale badly in open-ended
domains, and are only applicable if it is possible to foresee all possible outcomes of
a sensing action.

Several planning approaches that are able to deal with incomplete information use
runtime variables to generate conditional plans or interleave planning and execution
including Ambros-Ingerson and Steel (1988); Etzioni et al. (1992); Golden (1998);
Knoblock (1995). Runtime variables can be used as action parameters and enable the
reasoning about unknown future knowledge. Nevertheless, reasoning about runtime
variables is heavily limited, since the only thing that is known about them is the
fact that they have been sensed.

The most closely related previous work is Brenner and Nebel (2009). The proposed
continual planning system also interleaves planning and execution so that missing
information can be acquired by means of active knowledge acquisition. In contrast to
our work, this approach is based on classical planning systems that do not natively
support the representation of incomplete state models and are unable to exploit
domain specific control knowledge in the form of HTN methods. Moreover, it is
not stated whether the approach can deal with open-ended domains in which it is
not only necessary to deal with incomplete information, but also essential to, for
example, consider the existence of a priori completely unknown objects or relations
between entities of a domain. Furthermore, the approach is based on the assumption
that all information about the precondition of a sensing action is a priori available
and thus will often (i.e., whenever this information is missing) fail to achieve a given
goal in an open-ended domain. The approach has been used in the service robotic
context (Keller et al., 2010), but there is no comprehensive study that gives more
detailed information about the performance in a real-world robotic environment.

Another interesting continual planning approach proposed by Goebelbecker et al.
(2011) combines a classical and a decision theoretic planner. However, the approach
cannot deal with situations where a knowledge acquisition task requires the acqui-
sition of additional information and thus would fail to deal with scenarios described
in Chapter 7 and 9.

Furthermore, Talamadupula et al. (2010b,a) propose Open World Quantified Goals
(OWQG), that can be used in order to enable a closed-world planner to deal with
goals about previously unknown objects. Compared to the proposed framework,
the usage of OWQG provides a less autonomous behavior, since OWQG’s encode
hand-coded knowledge about possibly sensed object instances and related goals.

Hierarchical planning has been successively used in the robotic context (Hartanto,
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2009; Wolfe et al., 2010; Weser et al., 2010). Furthermore, hierarchical planning
has been extended to deal to some degree with incomplete information and more
dynamic situations where the domain model is updated during execution. An HTN
planning framework for agents in dynamic environments that interleaves planning
and acting is presented in (Hayashi et al., 2004). In contrast to this work, the
domain model is assumed to be updated by an external component and not by
means of active information gathering. ENQUIRER (Kuter et al., 2004) is an HTN
planning algorithm that can solve web service composition problems that require the
gathering of information during the composition process. However, this approach is
tailored to web service composition. A general purpose open-ended domain model
and the autonomous generation of knowledge acquisition tasks are not considered.

An online planning algorithm where agents must start executing without previ-
ously generating a complete plan has been proposed by Marthi et al. (2008). Similar
to the approach described in this thesis, search spaces are only partially expanded,
and the prefix of partial plans are executed prior to having a complete plan. A similar
approach has been proposed for probabilistic environments (Helwig and Haddawy,
1996). They extended the DRIPS (Doan and Haddawy, 1995) system to the on-
line setup. Furthermore, Kaelbling and Lozano-Pérez (2011) propose a hierarchical
planning approach that also interleaves planning and execution. In contrast to our
approach, this approach does not exploit HTN methods. Instead, they construct a
plan hierarchy by means of postponing the consideration of some preconditions of a
planning operator.

A lot of work has been done to efficiently replan previously generated plans if
the domain model is updated. For example, mars rovers have been successfully
controlled by the iterative repair planning based system CASPER (Estlin et al.,
2003, 2002; Chien et al., 2000). These systems are usually triggering for replanning
whenever the domain model is updated. Compared to our approach, previous work
on dynamic replanning focuses on efficient replanning in the light of updated domain
models, but does not focus on reasoning about active knowledge acquisition.

Integrating information from external sources into the planning process is con-
sidered by (Dornhege et al., 2009; Au et al., 2004; Au and Nau, 2006; Kuter et al.,
2004; Tate and Dalton, 2003), to name just a few. However, integration is not done
autonomously (e.g., via autonomously integrating knowledge acquisition tasks), but
mainly predefined in the domain description.

The planning system proposed in this chapter extends existing HTN planning
approaches in several ways in order to deal with the fact that a lot of relevant
information is not available at the beginning of the planning process. The general
idea is to additionally consider ways to continue the planning process that are not
known to be valid with respect to the domain model at hand, but are valid with
respect to a consistent extension of the domain model. If information that is relevant
for making a reasonable planning decision is not available but can be acquired, then
the planner can stop the planning process and indirectly trigger the execution of
necessary sensing actions so that it can continue the planning process after the
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relevant information has been acquired. The underlying open-ended domain model
enables the planner to determine relevant but missing information. The planner can
automatically determine if and how this information can be acquired. Based on the
underlying domain model it can automatically decide when it is more reasonable—or
even necessary—to execute adequate knowledge acquisition tasks prior to continuing
the overall planning process.

If the planner generates a complete plan, then the planning process is sound for all
search spaces and complete for finite search spaces. However, for situations where
the planner only generates an incomplete plan prefix, it cannot be guaranteed that
there is a valid plan with this prefix. Generally speaking, we loose the general
soundness of the algorithm if we drop the assumption that the planning process
is monolithic. Nevertheless, the notion of a prefix-sound plan introduces a relaxed
form of soundness. Furthermore, the proposed planner is integrated into a plan-
based control architecture so that the overall planning and execution process is
sound. How the planner is integrated into this control system is described in the
following chapter.



Chapter 6
Plan-Based Control System

The point is that planning is not a matter of generating a program
and then becoming a slave to it. It is a matter of deliberating about the
future to generate a program, which need not be executed in its entirety.
It might seem odd to generate an entire program and then use only an
initial segment of it, but the agent is going to have to discard the plan
eventually, and the generation of the entire plan legitimizes the initial
segment by showing a plausible way for it to continue. A chess-playing
program illustrates the point well: Such a program explores a tree of board
positions, which could be thought of as containing an elaborate plan for
how to respond to the opponent’s possible moves. However, the program
just finds the best first move and never actually attempts to remember the
whole tree of board positions. It is always more cost effective to regenerate
the tree after receiving the opponent’s next move than to keep the old
version around. The same principle applies to planning in general, except
when planning is too expensive, or too little information has come in
since the plan was revised. (McDermott, 1992)
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The objective of this chapter is to describe a novel plan-based control system that
enables an autonomous agent to automatically perform tasks even if it only has an
incomplete, open-ended model of the world it inhabits. The proposed plan-based
control system is called ACogControl. It is based on the ACogPlan planning system
(see Chapter 5) and the ACogDM domain model (see Chapter 3 and 4).

The general idea of the control system is to interleave planning and acting so that
missing information can be acquired by means of active information gathering. If it
is reasonable to acquire additional information, then the execution of appropriate
knowledge acquisition tasks is automatically integrated in the overall planning and
execution process. The presented approach is intended to provide better support
for situations where relevant information is not a priori available than previous
approaches.

6.1. Architecture

This section briefly outlines robot architectures as well as introduces the architecture
of the proposed control system.

6.1.1. Control Architectures for Robotic Agents: A Brief
Overview

One of the first robot architectures is based on the sense-plan-act (SPA) (Murphy,
2000) paradigm. An architecture that is based on the SPA paradigm controls a
robot by means of performing the following sequence of functions: sensing, planning
and execution. First, the world model is updated according to the sensor data.
Subsequently, a plan is generated based on the updated world model. Finally, the
generated plan is executed without directly using the sensors that created the world
model.

It turned out that the SPA paradigm runs into problems, since planning in real-
world situations was quite time-intensive, and—more importantly—executing plans
without sensing was error-prone in dynamic environments.

For the purpose of overcoming the limitations of the SPA paradigm, researchers
came up with behavior-based control approaches. The general idea was to quickly
generate plans that rely more directly on current sensor data. Building elaborated
models of the environment should be avoided. The idea was to “[. . . ] use the world
as its own model” (Brooks, 1991). Typically, behavior-based control approaches
are used to achieve short-term goals in dynamic environments. Behavior-based
approaches are most prominently associated with the work of Brooks (1986) and
Arkin (1998). These approaches are well-suited for the implementation of reactive
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Figure 6.1.: Three tiered plan-based control architecture.

control programs that achieve short term goals, but are limited with respect to the
achievement of long-term goals due to a lack of advanced reasoning and planning
capabilities.

Researchers realized that robots need reactive components as well as abstract
reasoning and task planning for the purpose of autonomously performing high-level
tasks (e.g., “Bring me a cup of coffee”). Layered architectures were developed in
order to combine the advantages of long-term AI planning and behavior-based con-
trol by means of integrating both approaches into a coherent—usually layered—
architecture (Kortenkamp and Simmons, 2008).

A more comprehensive description of robot architectures can be found in Ko-
rtenkamp and Simmons (2008).

6.1.2. Architecture of the Proposed Control System

The proposed control system is integrated into a typical three-tiered architecture
(Kortenkamp and Simmons, 2008) sketched in Figure 6.1. The central component
of this architecture is the (plan-based) controller . If an agent is instructed to perform
a sequence of tasks, then this sequence is sent to the controller. The controller calls
the planner described in Section 5 and decides what to do in situations where the
planner only returns an intermediate planning state. Furthermore, the controller
invokes the executor in order to execute—complete or partial—plans. The executor
is responsible for the execution and execution monitoring of actions. It checks the
precondition of the actions prior to the execution and calls the corresponding robot
control programs. In order to avoid unwanted loops (e.g., perform similar tasks more
than once) it is essential to store relevant information of the execution process in
the execution memory. The executor stores information about the executed actions
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Algorithm 6.1: perform(current tasks,overall tasks,domain model)

1 psÐ pdomain model, pcurrent tasks,ăąq,Hq;
2 ps1 Ð plan(ps);
3 if ps1 is a final planning state then
4 r Ð execute(ps1p);

5 return r;

6 else
7 r Ðexecute(p1 Ď ps1p);

8 if r is a success then
9 choose ac P ps1kas with the minimum cost;

10 tac Ð acquisition-task(ac);
11 r1 Ð perform(ă tac ą, overall tasks,rD);

12 if current tasks only contains a (automatically created) knowledge
acquisition task then

13 return r1;

14 else
15 return perform(overall tasks,overall tasks,r1D);

and the outcome of a sensing action in the memory system such that the domain
model can properly be updated. This information includes acquired information as
well as knowledge about acquisition attempts. Knowledge acquisition attempts are
stored in order to avoid submitting the same query more than once to a certain
knowledge source. A more detailed description of the execution memory can be
found in Section 4.5. More advanced execution monitoring is out of the scope of
this work and is not further addressed.

6.2. Algorithm

This sections describes the algorithm of the plan-based control system. The behavior
of the controller is specified by Algorithm 6.1. The input of the controller is a
sequence of tasks that needs to be performed, a sequence of the overall tasks, and a
domain model. The sequence of the overall tasks is used as an input parameter so
that the algorithm can keep track of the overall tasks by means of submitting them
to recursively called instances of the algorithm. The algorithm returns an execution
result. The execution result r includes the resulting domain model denoted as rD.

The control process begins by means of creating an initial planning state based on
the given task sequence and the domain model (line 1). Subsequently, the controller
submits the planning state to the planner (line 2). If the planner returns a final
planning state (i.e., a planning state that contains a complete plan), then the con-
troller directly forwards the generated plan to the executor (line 4). However, if the
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planner returns an intermediate planning state (i.e., a planning state that only con-
tains a partial plan), then the controller performs a prefix of the already generated
plan (line 7), chooses the knowledge acquisition with the minimum expected cost
(line 9), generates a knowledge acquisition task as defined by Definition 4.7 (line
10), and performs the knowledge acquisition task (line 11). The subsequent behav-
ior depends on whether the task sequence at hand is a single knowledge acquisition
task created by the controller itself or not. Generating a knowledge acquisition task
in a concrete planning situation is a planning decision that is optimal according to
the domain model at hand. In the light of additionally acquired information, how-
ever, previous planning decisions can turn out to be suboptimal. For example, let
us assume that a robot has decided to first determine via perception whether door2
is open in the situation illustrated by Figure 2.4. If the robot later finds out that it
is much more difficult to acquire that information than initially expected (e.g., be-
cause a lot of objects unexpectedly obstruct the way to door2), then it can be more
reasonable to switch to a different plan (e.g., move to the kitchen via door1) instead
of trying to acquire the desired information at any cost. Therefore, the algorithm
continues to plan the overall task after additional information has been acquired.
In order to achieve this behavior, the controller (lines 12 - 13) directly returns the
result of the next execution phase for generated knowledge acquisition tasks, since
after the next execution phase, the controller has acquired additional information.
In this way, the algorithm gives the control back to the superordinate instance
of the performpcurrent tasks, overall tasks, domain modelq procedure (i.e., the in-
stance that recursively called the current instance), and the controller continues to
perform the overall tasks (lines 14-15). Reconsidering planning decisions after the
additional information has been acquired in this way goes in line with the quota-
tion from McDermott (1992) shown at the beginning of this chapter. The controller
triggers replanning after the domain model is updated in order to not—to use the
words of McDermott (1992)—become a slave of a previously generated plan.

Knowledge acquisition tasks can—like any other task—also require the performing
of additional knowledge acquisition tasks which in turn require the execution of
additional knowledge acquisition tasks and so on. One important feature of the
proposed controller system is that it can flexibly handle this nesting of knowledge
acquisition tasks. The experimental evaluation results (see Chapter 9) indicate that
this is an essential feature for real-world scenarios.

Unfortunately, there is one question that cannot be considered in a completely
domain-independent way: Which prefix of the already generated (partial) plan
should be executed prior to the knowledge acquisition tasks (line 7)? For example,
if one instructs a robot agent to deliver a cup into the kitchen, but it is unknown
whether the door of the kitchen is open or closed, then it is reasonable to start
grasping the cup, move to the kitchen door, sense its state and then continue the
planning process. In contrast, it usually should be avoided to execute critical actions
that cannot be undone until a complete plan is generated. The default strategy of
the proposed controller is to execute the whole plan prefix prior to the execution of
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knowledge acquisition tasks. For the service robotic scenarios and the domains from
the planning community used for the experimental evaluation (see Chapter 9) this
strategy worked out well. Thus, there was no need for a domain specific implementa-
tion. However, due to the fact that this is not always the best strategy, it is possible
to specify domain specific control rules, or provide an alternative implementation of
the controller.

6.3. A Complete Example

This section is intended to exemplify the behavior of the proposed control system
using a simple example. Figure 6.2 illustrates the continual planning and execution
process for the task of moving into the kitchen. Consider the domain model described
in Section 5.3. The agent is instructed to move into the kitchen (i.e,. perform the
task move to(kitchen)). The proposed plan-based control system performs the
task in the following eight steps illustrated by Figure 6.2:

1. The task is sent to the controller (see Algorithm 6.1). The controller instructs
the planner to generate a plan for the task.

2. For the example at hand, it is assumed that the agent is close to door2 such
that moving to the kitchen via door1, that is known to be open, would be
a heavy detour. Therefore, the planner decides to stop the planning process
and returns an intermediate plan and a knowledge acquisition scheme. This
knowledge acquisition scheme determines that the state of door2 should be
determined using the laser scanners as an external knowledge source.

3. The plan that is returned by the planner contains no primitive actions that can
be directly executed. Therefore, the plan cannot be executed at all (cf. line
7 of Algorithm 6.1), and the controller forwards the task of determining the
state of door2 to the planner. The knowledge acquisition task is represented
for reasons of simplicity without the set of derivable instances, the context,
and the result (cf. Definition 4.7).

4. For this example, it is assumed that the planner can generate a complete plan
for the knowledge acquisition task. It plans to approach and sense the state
of door2.

5. The controller forwards the plan to the executor and the plan is executed.
This is an example for a situation where the agent starts to execute actions
before it has a complete plan for the overall task of moving into the kitchen.
The agent approaches the door and determines that it is open.

6. The controller instructs the planner to continue to generate a plan for the
overall task of moving into the kitchen.
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Figure 6.2.: Illustration of the continual planning and acting for the task
move to(kitchen).
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7. The planner can generate a complete plan. Due to the fact that the agent
already approached door2, it only needs to cross it for the purpose of moving
into the kitchen.

8. Finally, the controller forwards the plan to the executor, and the agent moves
into the kitchen.

This simple example illustrates how the plan-based control system interleaves
planing and acting—in particular knowledge acquisition—so that missing informa-
tion can be acquired by means of active knowledge acquisition. The example is
rather a simple toy example. Nevertheless, the experimental scenarios described in
Chapter 9 proves that the approach can be applied to (more complex) real-world
robotic domains.

6.4. Soundness and Completeness

Which actions are performed by the plan-based control system is decided by the un-
derlying planning system ACogPlan. Therefore, the proposed controller is complete
in the same sense and situations as the underlying planning system (see Section
5.4). This form of completeness is of course restricted to the core control system.
Nevertheless, many things that are out of the scope of this work and out of the
control of the proposed control system can go wrong so that a given task cannot be
performed.

With respect to the soundness, one can offer an even stronger guarantee than for
the underlying planning system, because if the proposed plan-based control system
successfully performs a sequence of tasks, then the agent performs a sound plan due
to the following reasons:

1. The underlying planning system ACogPlan is sound if a complete plan is
generated (see Section 5.4).

2. If a sequence of tasks can be performed, then the last planning phase generates,
according to the definition of Algorithm 6.1, a complete plan for the overall
task. Thus, the last execution phase executes a valid and complete plan that
performs the overall task.

Therefore, the plan-based control system is sound. Whenever the control system
successfully terminates the execution of a given sequence of tasks, then it has actually
performed this sequence of tasks correctly according to the domain model.

6.5. Multimodal Integration Processes

The integrative processing of different sensing and acting modalities is an essential
approach to provide reliable information about complex, dynamic environments (Luo
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Figure 6.3.: The ACogControl system can integrate unimodal sensing actions to a
multimodal knowledge acquisition plan for the purpose of acquiring nec-
essary information. Unimodal sensing actions are viewed as external
knowledge sources.

and Kay, 1995). For a robotic system, multimodal integration occurs on almost all
abstraction levels.

On the behavior control level, different sensing and acting modalities are combined
to multimodal robot control programs. These multimodal robot control programs
can be represented by planning operators so that they can be integrated into the
planning and execution process of the proposed plan-based control system. The im-
plementation of multimodal robot control programs has the advantage that different
modalities can be closely integrated. Nevertheless, the main disadvantage is that
the integration is rather static and out of the control of the plan-based controller.

In addition, it is also possible to less closely but more flexibly integrate unimodal
actions on the planning layer. The plan-based control system can be used to auto-
matically integrate unimodal sensing and acting modalites such that the resulting
behavior performs a task at hand. In particular, sensing modalities can be seen
as external knowledge sources. If individual sensing modalities are handled as an
external knowledge source, then the plan-based control system can automatically in-
tegrate them to acquire missing information. This approach is illustrated by Figure
6.3. The ACogControl system integrates unimodal sensing actions to a multimodal
knowledge acquisition plan for the purpose of acquiring necessary information. In
this way, the proposed control system can support the integration of sensing modal-
ities in the following ways:
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1. ACogControl can determine what information can be acquired from what sens-
ing modality. Thus, it can link the sensing capabilities to (high-level) informa-
tion that can be determined based on the sensing data. Typically, for each type
of information (e.g., the relative position of an object) there is a corresponding
control program that determines the desired information from the raw sensor
data. The control programs are represented by a planning operator so that
the plan-based control system can reason about them. How tightly different
sensing modalities can be integrated usually depends on the complexity level
of the actions. If the possible operations of a sensing modality are encapsu-
lated in a larger set of less complex planning operators, then the plan-based
control system is in principle able to more tightly integrate multiple sensors.

2. ACogControl can determine how expensive it is to acquire information from
a certain sensing modality. Thus, in situations where the same information
can be provided by several sensing modalities, the ACogControl system can
choose the sensing modality which is expected to provide the best data or can
more easily be used than other alternatives.

3. High-level percepts (see Section 4.9) can be used to model multimodal integra-
tion processes. The ACogcontrol system can automatically plan the execution
of sensing actions and then combine the individual sensing results to a multi-
modal percept.

In summary, multimodal integration processes are essential for real-world robots
on various abstraction levels. For the proposed plan-based control architecture, dif-
ferent modalities can be integrated on the behavior control level to primitive actions,
and unimodal primitive actions can be automatically integrated by the plan-based
controller. The latter approach particularly benefits from the reasoning capabilities
and the flexibility of the ACogControl system. If the capabilities of available sensors
are encapsulated in a set of sensing actions (i.e., planning operators), then the ACog-
Control system can actively reason about their integration. Instead of predefining
a multimodal integration process, the system plans the integrative processing of
sensors according to the situation at hand. This makes the approach significantly
more flexible. For example, if one sensing modality is unavailable (e.g., the vision
system is unavailable due to insufficient lighting conditions), then the functionality
can possibly be implemented by the integrative processing of the remaining sensors.
In the context of this work, unimodal sensing actions with a laser scanner and a
vision system have been used for the experiments with the service robot TASER
described in Chapter 9.1.

6.6. Discussion and Related Work

This section discusses the introduced plan-based control system and describes related
work.
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6.6.1. Related Work

This section describes related work on high-level control approaches that are in-
tended to enable agents to perform high-level tasks (e.g., clean the table) au-
tonomously.

Plan-based Robot Control

Plan-based robot control refers to the usage of task planning methods in the con-
trol software of robotic agents (Hertzberg and Chatila, 2008). The integration of
general purpose planning systems does not attempt to replace dedicated path and
motion planning systems, but to complement them with more general reasoning and
planning capabilities.

Integrating AI planning into the control system of robots has a long history. It
goes back to the usage of the STRIPS (Fikes and Nilsson, 1971; Fikes et al., 1972)
planning system for the plan generation procedure of the robot SHAKEY(Nilsson,
1984).

Several robotic systems including XAVIER (Simmons et al., 1997), Rhino (Beetz,
2001; Burgard et al., 1999) and Minerva (Thrun et al., 1999) successfully performed
long-term demonstrations. These systems have in common that they use plans in
order to improve their behavior. Beetz (2002b) developed a plan representation
language for such robot systems. A more comprehensive description of plan-based
control of robotic agents including the description of experimental demonstrations
with Minerva and Rhino can be found in Beetz (2002a).

The ARMAR-III Asfour et al. (2006) robot was developed at the University of
Karlsruhe in order to act in a household environment. The three-layered software
architecture is composed of a task planning layer, a synchronization and coordination
layer, and a sensor-actor layer. The planning layer decomposes abstract tasks into
sets of subtasks and is responsible for the scheduling of tasks and management of
resources and skills. The execution layer works in terms of the control theory and
executes dedicated sensory-motor control programs. The middle layer integrates the
planning and the sensor-actor layer. It invokes the subtasks from the planning layer
sequentially or in parallel on the execution layer.

How a plan-based control system can benefit from the usage of additional semantic
information is described by Galindo et al. (2005, 2007, 2008). This line of research
integrates hierarchical spatial information and semantic knowledge into a so called
semantic map. The information encoded in this model is exploited for the purpose
of improving the task planning capabilities of a plan-based control architecture.

Müller (2008) proposed the transformational planner TRANER. The planner is
used for the plan-based control of an autonomous household robot. Transformation
rules transform plans of a hand-coded plan library (Müller and Beetz, 2007) to a new
plan. More recent extensions of this work also consider the usage of task descriptions
from the word wide web (Tenorth et al., 2010).

More recently, the the java implementation JSHOP2 (Ilghami, 2006) of the HTN
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planning system SHOP2 (Nau et al., 2003) was integrated into the control architec-
ture of mobile robots. A planning system that integrates description logic reasoning
and JSHOP2 was used to control the robot “Johnny Jackanapes” (Hartanto, 2009;
Hartanto and Hertzberg, 2008, 2009). In Weser et al. (2010), we described the in-
tegration of JSHOP2 into the control architecture of the service robot TASER (see
Chapter 8). We proposed two implementation patterns for HTN methods in order
to overcome the fact that JSHOP2 is limited by being based on the assumption
that all relevant information is available at the beginning of the planning process.
Compared to the plan-based control system proposed in this work, this approach
is rather a workaround than a solution. The main disadvantage of the approach
presented in Weser et al. (2010) is that a suitable behavior needs to be hard coded
for every possible situation where possibly relevant information is not available.
Unfortunately, this approach is practically impossible for realistic domains due to
the sheer magnitude of situations that would have to be explicitly considered by a
domain engineer.

Wolfe et al. (2010) describe the application of a hierarchical planning system to
robotic manipulation. The hierarchical planning system was evaluated on a pick-
and-place domain using a prototype PR2 robot constructed by Willow Garage, Inc
(Wyrobek et al., 2008). Wolfe et al. (2010) demonstrated that hierarchical task
planning can be extended such that it can generate high-quality plans at the level
of low-level manipulation commands.

Cognitive Robotics

The term cognitive robotics has been defined as:

[. . . ] the study of the knowledge representation and reasoning prob-
lems faced by an autonomous robot (or agent) in a dynamic and incom-
pletely known world. Central to this effort is to develop an understand-
ing of the relationship between the knowledge, the perception, and the
action of such an robot. (Levesque and Reiter, 1998)

According to this definition, a major part of this work can be located in the area of
cognitive robotics. Cognitive robotics approaches typically use logic as the medium
of knowledge representation and theorem proving as the universal reasoning process
(Shanahan, 2000; Shanahan and Witkowski, 2001).

The Golog family of action languages have received much attention in the cognitive
robotics community (Levesque et al., 1997; Tam et al., 1997; Lakemeyer, 1998). They
are based on the situation calculus (Reiter, 2001). The basic Golog version has been
extended in various ways. ConGolog (Giacomo et al., 2000) additionally considers
concurrency, interrupts, and exogenous actions. The problem of performing tasks
in open-ended domains is most extensively considered by the IndiGolog language
(Giacomo and Levesque, 1999; Sardiña et al., 2004), since programs are executed in
an online manner, and thus the language to some degree is applicable to situations
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where the agent has only incomplete information about the state of the world.
Regrettably, IndiGolog only supports binary sensing actions.

Another interesting high-level control framework is READYLOG (Ferrein and
Lakemeyer, 2008). READYLOG is a Golog dialect which was developed to support
high-level robotic control in highly dynamic domains (e.g., robotic soccer). In con-
trast to READYLOG, which mainly supports passive sensing, ACogControl focuses
on the active sensing of unknown information.

Another powerful agent programming language is FLUX (Thielscher, 2005a,b)
which is based on the Fluent Calculus (Thielscher, 1998). FLUX (Thielscher, 2000)
is a powerful formalism but uses a restricted form of conditional planning. As
already pointed out, conditional planning is not seen as an adequate approach for
the scenarios we are interested in. A more detailed overview of logic-based control
for robots can be found in Levesque and Lakemeyer (2008).

6.6.2. Discussion

This chapter has presented a new plan-based control system. The control system
is based on the new open-ended domain model ACogDM (see Chapter 3 and 4)
and the new HTN planning system ACogPlan (see Chapter 5). It constitutes a
continual planning and execution system that automatically interleaves planning and
execution. If relevant information is not available, then the controller automatically
integrates the execution of corresponding knowledge acquisition tasks.

The proposed plan-based control system is more flexible and can perform tasks in a
larger set of situations than existing approaches, that are based on classical planning
(e.g., Brenner and Nebel (2009); Goebelbecker et al. (2011); Talamadupula et al.
(2010a)), since it can exploit the advanced reasoning capabilities of the underlying
planning system. For example, it can perform tasks in situations where no factual
knowledge is a priori available (see Chapter 9), or situations where the execution
of a knowledge acquisition task requires the execution of an additional knowledge
acquisition task, and so on.

Like previous HTN planning systems, the proposed plan-based control system is
domain-configurable (Nau, 2007). Thus, the core planning, reasoning and controlling
engines are domain independent, but can exploit domain specific information. The
proposed control architecture can be viewed as a general framework that features
the automatic as well as manual integration of external components.

The control system can release domain engineers from the burden of explicitly
dealing with the fact that often a lot of information is not initially available, because
it automatically integrates the execution of appropriate knowledge acquisition tasks.
The following chapter provides several examples from the service robotic domain
that illustrate how a domain model can be specified.
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Chapter 7
Representing Knowledge in Open-Ended
Robotic Domains

As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality. (Albert
Einstein, 1879-1955)
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This chapter describes how one can represent a domain model for a typical service
robotic domain, whereby the goal of this chapter is twofold:

1. It is intended to demonstrate how some of the described features of the ACog-
Control framework can be used to represent knowledge for a typical service
robotic domain. In particular, the goal is to point out that the proposed
architecture can release a domain engineer from the burden of explicitly deal-
ing with the fact that often not all relevant information is available at the
beginning of the planning and execution process.

2. The proposed control system is evaluated, beside other domains, on a physical
service robotic system (see Chapter 9). The second main objective of this
chapter is to describe a representative subset of the domain model used for
these experiments.
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Figure 7.1.: Illustration of the experimental environment including the navigation
graph.

7.1. Continual Path Planning

This section describes how the proposed plan-based control system can be used for
continual path planning.

7.1.1. General Approach

The domain model of the service robot domain contains a navigation graph (see Fig-
ure 7.1) that determines which waypoints the robot can directly reach from a given
waypoint without contacting a static part of the environment (e.g., a wall or a table).
It is based on the concept of a roadmap (Latombe, 2003; LaValle, 2006) and is used
for (local) path planning inside a room. However, in the open-ended environments
this work is interested in, possibly unknown obstacles between two connected way-
points can obstruct the direct reachability. Path planning in open-ended domains
provides an interesting test case for the proposed plan-based control system. Con-
tinual planning is a suitable approach for path planning in these situations where
no complete model is available, because it creates a path incrementally considering
relevant sensing data. In other words, instead of generating a complete—possibly
incorrect—navigation path in advance, the next traversed waypoint is chosen by
the continual planner only if it has been sensed that nothing obstructs a passage.
One of the key benefit of the proposed continual, plan-based control system is the
fact that a continual interleaving of planning and acting (e.g., sensing) is achieved
automatically. This significantly eases the knowledge engineering process, since a
domain engineer does not have to explicitly describe when to acquire what infor-
mation (e.g., determine whether it exists a free path between to waypoints of the
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method(navigate(_,_,To),

% precondition

at_wp(robot ,To),

% subtasks

[],

% expected cost

0).

method(navigate(_,From ,To),

% precondition

(at_wp(robot ,From), nav_edge(From ,To),

free_path(From ,To)),

% subtasks

[traverse(From ,To)],

% expected cost

eval(Cost ,dist(From ,To ,Cost ))).

method(navigate(Visited ,From ,To),

% precondition

(at_wp(robot ,From), nav_edge(From ,Mid), Mid \= To,

Mid notin Visited , free_path(From ,Mid)),

% subtasks

[traverse(From ,Mid), navigate ([Mid|Visited],Mid ,To)],

% expected cost

eval(Cost ,nav_cost(From ,Mid ,To ,Cost ))).

Figure 7.2.: HTN methods that describe how the robot can navigate to a desired
waypoint.

navigation graph) prior to continuing the overall planning process. Therefore, HTN
methods can be defined as if necessary information is always available, since the
proposed control system deals with the described challenges of the open-endedness
automatically.

Let us consider the path-planning task as an example and see how one can define
HTN methods for this task. There are many different ways to model path planning
with the proposed planning-based control framework. Figure 7.2 shows a simple
representation used the for the experiments presented in Chapter 9. Three HTN
methods for the task navigate(Visited,From,To) describe the three distinguished
situations:

1. The robot is already at the goal position. No further planning is necessary
and the cost is zero.

2. The robot is on a waypoint that is, according to the navigation graph, directly
connected with the goal waypoint (nav edge(From,To)), and the path to the
goal position is free (free path(From,To)). The robot can directly traverse to
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the goal position. The cost is defined as the distance from the current position
to the goal position.

3. There is a waypoint Mid that is, according to the navigation graph, directly
connected with the current waypoint (nav edge(From,Mid)), not the goal way-
point (Mid \= To), and the path from the current waypoint to Mid is free. For
the purpose of avoiding it to end up in an infinite loop, the method keeps track
of visited waypoints and ensures that a single waypoint is at most considered
once. The planner chooses an intermediate waypoint that fulfills the aforemen-
tioned constraints and continues the navigation from this point. The cost is
defined using the derived predicate nav cost(From,Mid,To,Cost) described
below.

In order to find a good path fast, the planner needs a heuristic so that it can
reasonably choose the next waypoint. Technically speaking, it needs an approach
to derive an instance of nav cost(From,Mid,To,Cost). A comparably simple ap-
proach is to use the sum of the euclidean distance from the current waypoint to the
intermediate and the intermediate to the goal waypoint as the heuristic function.
This heuristic is represented by the first domain specific axiom shown in Figure 7.3.
A computational harder but usually better heuristic is represented by the second
axiom. The general idea of the second heuristic is to use a fast (i.e., non-optimal)
planning procedure for the purpose of estimating the cost of navigating to a desired
goal position via a certain intermediate waypoint. Technically, this is achieved by
using the call meta-predicate in order to call ACogPlan in the atomic mode. With
the call meta-predicate it is possible to call arbitrary external programs (see Sec-
tion 3.7.2). In the atomic mode the planner generates a complete plan (i.e., there
is only one planning phase) or returns a failure. Hence, the planning phase consti-
tutes an atomic process. The planner runs faster in the atomic mode than in the
“normal” (i.e., continual) mode, since it does not have to consider the integration of
knowledge acquisition tasks. The dm meta-predicate provides access to the domain
model so that it can be passed to the planner (see Section 3.7.6).

Figure 7.4 shows the methods for the route(Visited,From,To,Route) task used
by the second axiom shown in Figure 7.3. Like for the navigate task, three methods
distinguish between the case where the goal position is already reached, the goal
position is directly connected to the current position, or an intermediate waypoint
is selected and planning continues from this intermediate waypoint.

Compared to the navigate task, it is only necessary that a free path between
two waypoints possibly exists. Possibly true statements are first-class citizens in
the proposed planning framework. The possibly existing free path can be expressed
using the possibly meta-predicate (see Section 3.7.7) as shown in Figure 7.4. In
this way, the planner will only consider adjacent waypoints if there possibly is a free
path segment (i.e., it is not known that such a free path cannot exist).
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axiom(nav_cost(From ,Mid ,To ,Cost),

(dist(From ,Mid ,Dist1),dist(Mid ,To,Dist2),

Cost is Dist1 + Dist2 )).

axiom(nav_cost2(From ,Mid ,To,Cost),

(dist(From ,Mid ,Dist1),dm DomainModel ,

call((

ground(Mid),

ground(To),

planner :: plan_atom(DomainModel ,

[route ([Mid],Mid ,To,_)],P),

P:: resulting_cost(Dist2),

Cost is Dist1+Dist2 )))).

Figure 7.3.: Axioms that define two possible heuristics for the path planning.

7.1.2. Compared to Existing Path Planning Approaches

The presented representation of path planning was successfully used for the exper-
iments presented in Chapter 9. However, compared to many existing approaches,
the presented representation of path planning is rather simple. It exists a huge
amount of literature for specific path planning and search algorithms that have
been successfully applied to solve real-world path planning problems. Most notably
this includes incremental heuristic search like focused D* (Stentz, 1995) or D* lite
(Koenig and Likhachev, 2002), which are often used for robotic path planning in
unknown terrain. They are able to replan—which is necessary if unforeseen objects
make a previously generated plan impossible—quickly, because they modify previous
search results only locally. Furthermore, previous work includes approaches that can
deal with non-deterministic (e.g., feedback motion planning (LaValle, 2006)) action
primitives.

One of the main disadvantage of the aforementioned, dedicated path planning ap-
proaches is the fact that they only have limited reasoning capabilities if their are not
more tightly integrated into a task planning environment. A task planner usually
calls a path planner as a subroutine in a top down manner (Koenig, 2010). How-
ever, it can also be beneficial—or even necessary—to exploit the advanced reasoning
capabilities of a task planner in a bottom-up way.

For example, in addition to generate an alternative path in a situation where a
previously generated plan turns out to be incorrect (e.g., because an unexpected
object obstructs a passage), an agent can also use one of the following strategies:

1. It can actively free the path (e.g., move objects aside that obstruct a passage).

2. It can switch to a different plan on a superordinated abstraction level (e.g.,
switch to a different goal position).
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method(route(_,To,To ,[]),

% precondition

true ,

% subtasks

[],

% expected cost

0).

method(route(Visited ,From ,To ,[To]),

% precondition

(nav_edge(From ,To), To notin Visited ,

possibly free_path(From ,To)),

% subtasks

[do_route(From ,To)],

% expected cost

eval(Cost ,dist(From ,To ,Cost ))).

method(route(Visited ,From ,To ,[Mid|RemRoute]),

% precondition

(nav_edge(From ,Mid), Mid notin Visited ,

possibly free_path(From ,Mid)),

% subtasks

[do_route(From ,Mid),route([Mid|Visited],Mid ,To,RemRoute)],

% expected cost

eval(Cost ,(dist(Mid ,To ,Dist1),

Cost is Dist1 + 10000))).

Figure 7.4.: Methods used to quickly find a path to a goal waypoint and thereby
providing a heuristic for the expected cost.

7.1.3. Advantages of the Proposed Approach

This sections exemplifies the two aforementioned strategies for a situation where a
previously generated plan turns out be incorrect in the light of new information.

Automatically Considering Additional Planning Alternatives

Using the proposed framework for path planning has the advantage that the path
planning process automatically benefits from the available reasoning and planning
capabilities. For example, in order to consider the fact that the robot is able to free
an impassable path (e.g., via moving an object that obstructs a passage aside), we
can add two methods for the navigate(Visited,From,To) task (as shown in Figure
7.5) to the domain specification. In this example, 5000 is defined as the cost for the
free path(W1,W2) task. If these two methods are part of the domain model, then
the plan-based controller automatically considers the possibility to free the path.
Whenever reasonable (e.g., because no additional path exists or all alternative paths
would be a heavy detour), the robot frees the path instead of trying to generate an



7.1 Continual Path Planning 119

method(navigate(_,From ,To),

% precondition

(at_wp(robot ,From), nav_edge(From ,To),

neg free_path(From ,To), can_free_path(From ,To)),

% subtasks

[free_path(From ,To),traverse(From ,To)],

% expected cost

eval(C,(dist(From ,To ,C1),C is C1 + 5000))).

method(navigate(Visited ,From ,To),

% precondition

(at_wp(robot ,From), nav_edge(From ,Mid), Mid \= To,

Mid notin Visited , neg free_path(From ,Mid),

can_free_path(From ,Mid)),

% subtasks

[free_path(From ,Mid),traverse(From ,Mid),

navigate ([Mid|Visited],Mid ,To)],

% expected cost

eval(C,( nav_cost(From ,Mid ,To ,C1),C is C1 + 5000))).

Figure 7.5.: Two additional methods for the navigate(Visited,From,To) task that
consider the fact that the robot can sometimes actively free the path.

alternative path. If the robot does not known whether it can free the path in a given
situation, then it also takes the cost to figure it out into account. In situations where
it is more reasonable to try to move the object aside, ACogControl automatically
stops the initial planning process, creates an appropriate knowledge acquisition task,
and determines whether it can actually free the path (e.g., via figuring out whether
it can pick up the object). If it is possible to free the path, then the robot frees the
path and continues to perform the overall task. This example demonstrates how
path planning benefits from being integrated into the overall control framework.
Dedicated path planning approaches usually are less flexible.

Switch to a Different Plan on a Higher Abstraction Layer

Another important issue that is considered by the proposed path planning approach
is the fact that if a new path must be generated (e.g., because unforeseen objects
make the initially generated plan impossible), then this usually does not only have
an impact on the path planning layer but also on the task planning layer. If a
previously generated path to a desired goal position turns out to be impossible
in the light of new information, then the cost—or even the general feasibility—of
superordinated tasks changes. For example, consider a situation where we instruct
a robot to pick up an object from a table. There many possible poses—usually an
uncountably infinite number—from which the robot can pick up the object. Figure
7.6 shows the definition of the HTN methods for the pick up(Object) task used for



120 Representing Knowledge in Open-Ended Robotic Domains

method(pick_up(Object),

% precondition

in_hand(Object),

% subtasks

[],

% expected cost

0).

method(pick_up(Object),

% precondition

(free(hand), small_object(Object), table(Table1),

on(Object ,Table1), at_wp(robot ,From), From \= unknown ,

approach_pose(Table1 ,pose(Waypoint ,Angle)),

pos(Object ,pose(Waypoint ,Angle),X,Y),

reachable_with_arm(X,Y),

nav_cost(From ,From ,To,RouteCost )),

% subtasks

[ navigate(pose(Waypoint ,Angle)),

grab(Object ,pose(Waypoint ,Angle))],

% expected cost

RouteCost ).

Figure 7.6.: HTN method definitions for the task pick up(Object).

the experimental evaluation described in Chapter 9. The cost of approaching a pose
from which the robot can reach the object according to its kinematic constraints
is defined as the expected length of the navigation path to that pose. However,
in situations where the robot senses an a priori unknown obstacle, a previously
chosen pose may not be the one with the shortest navigation path anymore. In such
a situation, it can be reasonable to approach a table from a completely different
direction. In other words, it can be more reasonable to switch to different plan
above the path planning layer. Hence, instead of finding a different path to the
previously selected pose, the proposed planner automatically chooses a different pose
if this results in a better plan. This is particularly relevant for a situation where the
previously chosen pose cannot be reached at all. Depending on the domain model
and the overall tasks of the robot, it can be reasonable to switch to a different plan
that even more significantly differs from the previously chosen one. In principle, the
planner can go up the abstraction hierarchy constituted by the HTN methods up to
the level of the overall tasks in order to change previously made planning decisions.

7.2. Pick Up an Object From a Table

Let us now look more closely at the HTN methods for the pick up(Object) task
defined in Figure 7.6. According to the definition of the HTN methods, the robot



7.3 Concluding Remarks 121

needs to know a reachable pose and the exact relative position of the object re-
garding to this pose. The relative position of the object must enable the robot to
reach the object according to the kinematic constraints of the manipulator. All
these conditions are represented by the precondition of the second method shown in
Figure 7.6. The specifications of the HTN methods for the pick up(Object) task
constitutes another example for the fact that HTN methods can be defined as if
all necessary information is available at the beginning of the planning process. A
domain engineer does not have to consider which of this information is available, or
needs to be acquired for the purpose of performing the task according to relevant
HTN methods, since the proposed control framework integrates necessary knowledge
acquisition tasks automatically. For example, the control architecture automatically
integrates knowledge acquisition tasks that determine the exact position of the ob-
ject and a reachable pose from which the object can be picked up according to the
kinematic constraints of the manipulator if this information is not initially available,
but constitutes a possible extension of the domain model at hand.

For example, the plan-based control architecture enables the service robotic sys-
tem TASER to pick up an object from a table without knowing the location in a
variety of situations as illustrated by Figure 7.7. TASER flexibly sensed the position
of the object on the table and found a pose from which it could pick up the object.
The mobile service robot platform TASER is described in more detail in Chapter 8.

7.3. Concluding Remarks

This chapter has exemplified how a domain model can be specified for the two
typical service robotics tasks of moving to a goal pose and picking up an object
from a table. For example, it has been described how continual path planning can be
achieved. The resulting path planning approach generates a plan as far ahead as the
robot can perceive the environment. The main advantage of the proposed approach
is the fact that the continual planning approach automatically benefits from the
proposed features of the plan-based control system. Section 7.1.3 illustrated that
the continual path planning approach profits from being integrated into the overall
control system by means of being able to consider additional ways to deal with
a situation where a previously generated plan turns out to suboptimal after the
domain model is updated. In contrast to dedicated path planning approaches, the
proposed approach additionally considers it to actively free the path or switch to a
different plan on a higher abstraction level.

Furthermore, this chapter has pointed out that HTN methods can be specified
as if all information is available, since the plan-based controller detects relevant
but missing information automatically and integrates the execution of appropriate
knowledge acquisition tasks. In this way, domain engineers can be released from the
burden of dealing with possibly missing information explicitly.

In addition to exemplifying some of the features of the ACogControl system, the
domain model specifications that have been presented in this chapter are intended
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(a) TASER picks up an object located at
the center of the table.

(b) TASER picks up an object located at
the front right of the table.

(c) TASER picks up an object located at
the bottom right of the table.

(d) TASER picks up an object located at
the bottom left of the table.

Figure 7.7.: The proposed plan-based control system can perform the task of picking
up an object from a table in a variety of situations without a priori
knowing the location of the object. The only knowledge available about
picking up an object from a table is shown in Figure 7.6.

to constitute a representative subset of the domain model used for the experimental
evaluation with the service robot TASER (see Chapter 9). The complete specifi-
cation of the domain model can be found in Appendix B. For clarity reasons, the
domain specifications presented in this chapter differ slightly from the specifications
shown in Appendix B. However, these differences have no significant impact on the
semantics of the domain model.



Chapter 8
Experimental Platform

[. . . ] there is a tendency in the field to praise hardware and condemn
software. Hardware is speedy and reactive; software spends its time swap-
ping and garbage collecting. This preference is a temporary aberration, I
believe, based on a misunderstanding about programming. As in the rest
of computer science, robotics can’t escape the advantages of first express-
ing behaviors as textual objects and later worrying about mapping them
to hardware. (McDermott, 1992)
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This chapter describes the multimodal service robot platform TASER (TAms
SErvice Robot) shown in Figure 8.1a. The ACogControl System is implemented on
TASER. TASER serves as the experimental platform for the real-world experiments
described in Section 9.1. The main part of this work is independent of the presented
robot platform. It can be applied to other robots or software agents as well. However,
the service robotic platform TASER provides an excellent testbed for the proposed
plan-based control architecture. It makes it possible to evaluate the performance
characteristics of the ACogControl system in a real-world service robotic context.

Additional information of the experimental platform can also be found in Baier-
Löwenstein (2008); Weser (2010); Jockel (2009).
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(a) TASER in the aspired two-arm
configuration. Source: (Baier-
Löwenstein, 2008).

(b) Input/Output infrastructure of TASER. Source:
(Jockel, 2009).

Figure 8.1.: The service robot TASER.

8.1. Hardware

This section describes the hardware components of the service robot TASER that
were used in the context of this work.

8.1.1. Basic Platform

The robot platform is based on the mobile platform Neobotix MP-L655. The plat-
form contains eight lead-gel-batteries, the control PC, and several hardware-specific
controllers. The batteries supply a main power of 48 volts and a total power of
3.84 kWh. The robot can work up to eight hours using the batteries. The mobility
is provided by three passive and two active wheels. An upper body is mounted on
top of the mobile platform. The upper body is constructed to host two robot arms.
In the current configuration, however, only one arm is mounted. The measurements
of the basic platform are shown in Figure 8.2. The robot system is controlled by a
single Pentium IV 2.4 GHz industrial computer with 1 GB memory. The hardware
components of the robot are connect as shown in Figure 8.1b.
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Figure 8.2.: Dimensions of the robot platform with one arm mounted. Source:
(Baier-Löwenstein, 2008).

8.1.2. Manipulator

TASER is equipped with a manipulator consisting of a six degrees of freedom (DoF)
Mitsubishi PA10-6C arm manufactured by Mitsubishi Heavy Industries, Ltd.1 and
a three-finger hand by Barrett Technologies Inc2.

The Mitsubishi PA10-6C arm is commercially available. The dimensions of the
arm are shown in Figure 8.3. It has a total length of 1317 mm. Furthermore, the
arm has a weight of 39 kg and a maximum payload of 10 kg. It has six DoF and a
working range that is comparable to a human arm with seven DoF. A picture of the
arm is shown in Figure 8.4a, and the alignment of the axes is shown in Figure 8.4b.
The robot arm is controlled by means of using the Robot Control C Library (RCCL)
that is written by Lloyd and Hayward (1992) and adapted to the PA10 series by
Scherer (2004).

The BarredHand BH8-262 is commercially available by Barret Technologies Inc.
It is connected to the control PC via RS-232 and mounted as an end effector on
the Mitsubishi PA10-6C robot arm. The dimensions are shown in Figure 8.5. The
two joints of the fingers are controlled by one motor by means of a special gear box
called TorqueSwitchTM (Townsend, 2000). It allows a constrained control of two
joints with one motor. If the first link of a finger (joint J12, J22, and J32 in Figure
8.5) realizes resistance, then the motor stops it and drives the second link (joint
J13, J23 and J33 in Figure 8.5) until it meets resistance too.

The payload of the whole manipulation unit (i.e., arm and hand) is approximately
4 kg.

1http://www.mitsubishi-heavy.de/, last accessed February 20, 2012.
2http://www.barrett.com/, last accessed February 20, 2012.

http://www.mitsubishi-heavy.de/
http://www.barrett.com/
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Figure 8.3.: Dimensions of the PA10-6C robot arm by Mitsubishi Heavy Industries,
Ltd. Source: (Jockel, 2009).
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(a) Picture of the PA10-6c.
Source: (Weser, 2010).

(b) Alignment of PA10-6C axes. Source: (Mit-
subishi heavy industries, 2002).

Figure 8.4.: PA10-6C robot arm by Mitsubishi Heavy Industries Ltd.
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Figure 8.5.: Metric dimensions of the BarrettHand BH8-262 in mm and the joint
radii. Source: http://www.barrett.com.

8.1.3. Sensors

For the purpose of perceiving its environment the robot is equipped with several
sensors. Two SICK3 Laser Measurement Sensors (LMS) 200 are mounted at the front
and the back of the mobile platform. Furthermore, the robot has two Sony DFW-
VL 500 cameras mounted on a pan-tilt-unit PTU-46-17.5 (by Directed Perception4)
on top of the robot. The cameras are IEEE DC1394 cameras and have a maximum
resolution of 640x480 px at a frame rate of 30 frames per second in YUV411. The
vision system is shown in Figure 8.6. The omnidirectional camera shown in Figure
8.6 has not been used for this thesis.

8.2. Software

The software architecture of the service robot TASER is based on the Roblet (West-
hoff et al., 2006) client-server architecture. The Roblet framework supports the flex-
ible development of distributed systems. Although its application is not limited to

3http://www.sick.com, last accessed February 20, 2012
4http://www.dperception.com, last accessed February 20, 2012.

http://www.barrett.com
http://www.sick.com
http://www.dperception.com
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Figure 8.6.: Vision system of TASER consisting of Sony DFW-VL 500 mounted on
the pan-tilt-unit PTU-46-17.5 and an omnidirectional camera. Source:
(Jockel, 2009).

robotics, the provided features are well-suited for distributed robotic systems. The
Roblet framework makes it possible to develop, compile, and execute an application
on one workstation. During the execution it sends part of itself to corresponding
servers so that the execution is reasonably distributed.

For the service robot TASER, the Roblet technology is used to provide a coher-
ent software infrastructure. The whole Roblet framework is implemented in Java.
Native hardware drivers are integrated using the Java native interface (JNI).

For this work, the Roblet framework is used to implement the robot control pro-
grams of the primitive robot actions. A description of the set of primitive actions
used for this work can be found in Section 9.1.2. An overview of the control archi-
tecture is shown in Figure 8.7.

8.3. Concluding Remarks

In this chapter, the service robot platform TASER has been briefly described.
TASER consists of a set of complex hardware and software systems. The reader
has been referred to additional literature that provides more detailed information
about the individual components.

The described service robot TASER was used for the real-world experiments de-
scribed in Section 9.1.
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Figure 8.7.: The underlying software architecture of the robot TASER. The Hard-
ware components are shown in yellow boxes, corresponding native
(C/C++) libraries have blue boxes and the Roblet servers are green.
Source: (Baier-Löwenstein, 2008).



Chapter 9
Experimental Evaluation

A theory is something nobody believes, except the person who made it.
An experiment is something everybody believes, except the person who
made it. (Albert Einstein, 1879-1955)
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This chapter describes the experimental evaluation of the overall plan-based con-
trol system ACogControl. The control system is implemented and evaluated on the
mobile service robot TASER (see Chapter 8) as well as using a set of simulated
domains.

For all domain models that were used for the experimental evaluation, HTN meth-
ods and planning operators are defined as described in Chapter 7. Hence, they are
defined as if all information were available at the beginning of the planning pro-
cess. The domain model does not contain domain specific knowledge that directly
describes when or which information should be acquired. The general purpose plan-
ning and control framework is supposed to automatically determine when it is more
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reasonable to acquire additional information prior to continuing the planning pro-
cess, and what kind of information and how this information should be acquired in
order to reasonably perform a task.

9.1. Evaluation on Physical Service Robot

This chapter describes the experiments that were conducted with the service robot
TASER.

The experiments were conducted in a laboratory of the University of Hamburg.
The laboratory is used by various students that work on different hard- and software
projects. There are no special regulations with respect to the tidiness. Therefore,
the environment actually is an example for an unstructured, natural, human envi-
ronment.

A simple test-case using a preliminary version of the proposed control system was
already described in (Off and Zhang, 2011a).

9.1.1. Domain Model

A domain model of the robot TASER and the experimental environment was created
that models the capabilities of the robot as well as the state of the environment.
Some parts of the domain model were described in Chapter 7. The complete domain
model specification can be found in Appendix B.

Table 9.1 summarizes the quantitative characteristics of the domain model in-
stance used for the experiments with TASER. The state model contains 112 facts,
whereby 95 of these facts have the interpretation model owa and 17 have the in-
terpretation model cwa. Moreover, the domain model instance contains 22 domain
specific rules and 25 action primitives. Six of the 25 action primitives are sensing
actions. Furthermore, the domain model contains 68 HTN methods for 39 nonprim-
itive tasks. Thus, it contains on average 68

39
“ 1.74 HTN methods per nonprimitive

task and 68
25
“ 2.72 HTN methods per action.

9.1.2. Library of Primitive Robot Actions

Table 9.2 describes all actions that are used for the real-world experiments with the
service robot TASER. A corresponding robot control program is implemented for
every primitive action. Some actions have been implemented in the context of this
work, whereas other have been implemented by Weser (2010).

The controller of the mobile platform provides a collision avoidance function that
is enabled by default. If the collision avoidance feature is enabled, then the mobile
platform is automatically halted in front of obstacles so that no collision occurs. All
actions of the mobile platform including

• approach position(X,Y),
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Facts 112
OWAFacts 95
Domain Specific Rules 22
Action Primitives 25
Sensing Actions 6
HTN methods 68
Nonprimitve tasks 39
Knowledge Acquisition Tasks 7

Table 9.1.: Summary of the domain specification used for the experiments with ser-
vice robot TASER.

• approach pose planned(X,Y,Degree),

• approach pose direct(X,Y,Degree),

• move forward no ca(Distance),

• release brakes,

• apply brakes,

• move towards(Distance,Degree),

• rotate rel(Degree),

• and rotate towards(X,Y)

are executed asynchronously. Thus, for these actions, the executor does not wait
until the execution of an action is finished. Another action can be started such that
both actions are executed concurrently. The action mobile wait for completed

can be used in order to synchronize the execution of the aforementioned actions. If
the mobile wait for completed action is executed, then the execution is blocked
until the execution of all currently executed actions of the mobile platform is finished.
All other actions are executed synchronously. Thus, the execution of no other action
is started until the execution of the currently executed action has finished.

In addition to the actions shown in Table 9.2, the domain model contains a plan-
ning operator for the action do route(From,To). This action is only used in order to
determine the expected cost of moving to a certain waypoint, but it is not supposed
to be executed by the robot. It is a subtask of the route(Visited,From,To,Route)
task (see Figure 7.4).
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Action Primitive Description

set ptu(Pan,Tilt) This action sets the pan-tilt-unit to
(Pan,Tilt).

approach position(X,Y) The robot approaches the position
(X,Y) directly (i.e., without path
planning).

approach pose planned(X,Y,Degree) The robot approaches the pose
(X,Y,Degree) using the path-
planner of the Roblet framework
(Westhoff et al., 2006).

approach pose direct(X,Y,Degree) The robot approaches the pose
(X,Y,Degree) directly (i.e., without
path planning).

move forward no ca(Distance) The robot moves Distance millime-
ters forward. The collision avoidance
is disabled.

mobile wait for completed If this action is executed, then the
execution is blocked until the execu-
tion of all currently executed actions
of the mobile platform is finished.

release brakes This action releases the brakes of the
mobile platform.

apply brakes This action applies the brakes of the
mobile platform.

move towards(Distance,Degree) The robot moves Distance millime-
ters in the direction that is Degree

degree relative to the current orien-
tation.

rotate rel(Degree) The robot rotates Degree degree rel-
ative to the current orientation.

rotate abs(Degree) The robot rotates to the absolute ori-
entation Degree degree.

rotate towards(X,Y) The robot rotates so that the orien-
tation is in the direction of the point
(X,Y).

start trajectory generator This action starts the trajectory gen-
erator of the arm.

stop trajectory generator This action stops the trajectory gen-
erator of the arm.

open fingers This action opens the fingers of the
robot hand.

Continued on next page
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Action Primitive Description
close fingers This action closes the fingers until

a predefined force is reached or the
hand is completely closed.

set arm tcp(X,Y,Z,Angle1,Angle2,

Angle3,Speed,Mode)

This action sets the tool-center point
to the given position with the speed
Speed and in the mode Mode. The
mode can be 99 (ASCII code for ’c’)
for cartesian interpolated mode and
106 (ASCII code for ’j’) for the joint
interpolated mode. See Lloyd and
Hayward (1992) for more details of
the control of the arm.

set arm joints(J1,J2,J3,J4,J5,J6,

Speed,Mode)

This action sets the joints to the
given value with the speed Speed.
The mode can be 99 (ASCII code for
’c’) for cartesian interpolated mode
and 106 (ASCII code for ’j’) for the
joint interpolated mode. See Lloyd
and Hayward (1992) for more details
of the control of the arm.

sense(percept(laser,

query(open(D),I,C),Response))

This action determines an instance of
open(D) using the laser scanners.

sense(percept(vision,query(pos(Obj,

Pose,X,Y),I,C), Response))

The action determines the relative
position of the object Obj lying on a
table with respect to the pose Pose.
It uses the vision system as an exter-
nal knowledge source.

sense(percept(laser,query(rel pos(

Dist,Degree),I,C),Response))

The action determines the distance
and direction of the nearest object
with the laser scanners.

sense(percept(laser,query(rel pos(

X,Y,Degree),I,C),Response))

The action determines the relative
position and direction of the nearest
object with the laser scanners.

sense(percept(laser,query(

free ahead(Dist),I,C),Response))

The action determines with the lasers
scanners how many millimeters the
robot can move forward without hit-
ting an obstacle.

sense(percept(call,query(

at pose(X,Y,Deg),I,C),Response))

The action determines the pose of the
robot via calling an external compo-
nent.

Continued on next page
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Action Primitive Description

Table 9.2.: Description of the robot actions that were used for the real-world exper-
iments with the service robot TASER.

9.1.3. Experiments

(a) TASER bins a milk package. (b) TASER picks up a garbage can.

Figure 9.1.: Robot actions that were executed during the experiments with the ser-
vice robot TASER.

This section describes the experiments that were conducted with the physical
robot TASER. The conducted experiments are not mainly intended to evaluate a
complete robot system, but to evaluate the proposed plan-based control system
ACogControl described in Chapter 6. For the real-world experiments, some simpli-
fications (that are not relevant for the main part of this work) were used for the
visual perception of objects on a table. Objects on the table are detected with the
help of a human instructor by drawing a box around the object of interest in a
graphical user interface, as described in Weser (2010). How long acquired informa-
tion should be stored in the memory is an interesting and highly relevant research
question. However, it is out of the scope of this work. It is assumed that all acquired
information stays valid during the execution of a single experiment run.

In all experiments, the robot had the task to clean a table. Cleaning a table
includes the execution of several typical service robotic tasks including:

• pick up an object from a table,

• navigate to a desired goal position,

• find a garbage can,

• throw away objects,
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• and pick up a garbage can.

Initially, the robot had no knowledge about dynamic aspects of the environment
including:

• what unknown (i.e., in addition to known objects) dynamic objects exist in
the world,

• the number of objects on the table,

• the position of the objects on the table,

• the position of objects on the ground that can obstruct a passage,

• the location of the garbage can,

• between which adjacent waypoints it can actually traverse,

• and the state of the doors.

The initial domain model used for the experiments with the physical robot is
illustrated by Figure 7.1. The robot is a priori equipped with a navigation graph,
with knowledge about the location and dimensions of tables, and with knowledge
about the location of doors. All waypoints of the navigation graph that are printed
blue and linked with the table constitute waypoints from which the robot can detect
and manipulate objects on the table. As illustrated by Figure 7.1, the robot initially
knows a 4m2 large area in which the garbage can is located. For the purpose of
throwing something into or picking up the garbage can, the robot needs to determine
a more precise location.

Two sets of experiments were performed with the physical robot. The two sets
differ in terms of the number of objects that were located on the table that should
be cleaned. For the experiments of the first set, one object was lying on the table,
whereas for the experiments of the second set, three objects were on the table. The
objective of the conducted experiments is to give answers to the following questions:

• Is the robot always able to perform the given tasks, although a lot of relevant
information is not available a priori?

• How often does the control architecture switch between planning and acting?

• How much planning time is necessary for a planning phase?

• How long is the execution time of an action primitive?

• How does the system behave in a more difficult situation (e.g., with more
objects)?



138 Experimental Evaluation

Each set of experiments consists of five runs with varying situations. Beside other
aspects, the situations varied in terms of

• the type and location of objects that obstruct a passage,

• the type and location of objects on the table,

• the location of the garbage can,

• the start pose of the robot,

• and the state of the doors.

For all conducted experiments, the robot successfully performed the given task.
Some of the actions that were performed during an experiment run are shown in
Figure 9.2. In all experiment runs, the plan-based controller first realized that the
robot needs to determine whether there is an object on the table. In order to do that,
TASER autonomously navigated in a cluttered environment from its random start
pose to a pose from which it can detect objects and their location on the table (see
Figure 9.2a). The autonomous navigation is achieved via continual path planning
described in Section 7.1 without using the methods shown in Figure 7.5. If there was
an object on the table, then TASER navigated to a position from which it was able
to reach the object. Afterwards, it generated a path for the manipulator and picked
up the object (see Figure 9.2b). Subsequently, it navigated to a pose where the
center of the expected location of the garbage can was in front of it. It determined
the exact position of the garbage can with the laser scanner assuming that no other
objects were in the expected area of the garbage can. Afterwards, it approached a
position from which it could throw the object in the garbage can, planned a path
for the manipulator and threw the object away (see Figure 9.2c). This procedure
was repeated until no objects were found on the table. If the table was clean, then
TASER picked up the garbage can (see Figure 9.2d), navigated to the corridor (see
Figure 9.2e and 9.2f), and put the garbage can down. Continual path planning was
only used locally inside rooms. In order to navigate to the corridor, TASER first
navigated to an open door and then crossed it.

The experimental results for the first set of experiments are shown in Table 9.3.
On average, ACogControl divided the overall task of cleaning the table and bring-
ing the garbage out into 38.4 planning and execution phases, executed 173 action
primitives for an experiment run, and planned 4.524 steps (i.e., action primitives)
ahead. Planning only several steps ahead in situations where it is reasonable—or
necessary—to acquire additional information during execution is an important prop-
erty of the proposed system. It divides the overall planning problem, so to speak,
into a set of smaller planning problems. During the experiments, the robot acquired
information via 22.6 primitive percepts (i.e., sensing actions) and 29.2 high-level
percepts (i.e., percepts that result from a multimodal integration process); which
means 1.34 percepts per planning phase on average. The CPU time used by the
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(a) TASER tries to find a pose from which it
can pick up the object.

(b) TASER picks up the object from the table.

(c) TASER bins the object. (d) TASER picks up a garbage can.

(e) TASER determines that the first door is
closed.

(f) TASER determines that the second door
is open and moves to the corridor via that
door.

Figure 9.2.: Illustration of the actions that have been performed by the service robot
TASER during an experiment run.
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Name aver. min max

planning/execution phases 38.4 33 45
action primitives per phase 4.524 1 25
action primitives per run 173 157 194
percepts 51.8 43 65
primitive percepts 22.6 19 27
high-level percepts 29.2 24 38
percepts per phase 1.34 1.3 1.44
planning CPU time per action 0.0066 s – –
planning CPU time per phase 0.0295 s 0.0005 s 0.2060 s
planning CPU time per run 1.1550 s 0.8106 s 1.8530 s
execution time – action 3.417 s 0.009 s 41.983 s
execution time – run 594 s 471 s 701 s

Table 9.3.: Experimental results for the first set of experiments with the physical
service robot TASER.

plan-based controller (including planning and reasoning) is 0.0295 seconds on aver-
age and maximally 0.2060 seconds per planning phase. For the complete execution
of the given tasks, 1.155 seconds CPU time on average is used for planning and
reasoning. This is very low compared to the mean execution time, which is 3.417
seconds for an action primitive and 594 seconds for a complete experiment run.
Thus, the ratio of time used for planning and reasoning to the overall execution
time is very low at 1.155 s

594 s`1.155 s
“ 0.0026.

For the second set of experiments, three objects are located on the table. The
results are shown in Table 9.4. The fact that two additional objects are on the table
makes the task more extensive. Thus, TASER needed to acquire more information
(e.g., the location of the additional objects) and execute more action primitives.
The fact that more information needs to be acquired leads to more planning and
execution phases, since the underlying planning algorithm terminates a planning
phase whenever it decides to acquire additional information (see Chapter 5). As
shown in Table 9.4, the overall tasks were on average decomposed into 62 planning
and execution phases. On average, 313 action primitives were executed during each
run, and additional information was acquired via 33 primitive and 36 high-level
percepts.

Some information (e.g., whether a free path exists between connected waypoints)
is only acquired once, even when the same task (e.g., move from the table to the
garbage can) is executed multiple times. For example, when the robot navigates the
first time from the table to the garbage can, then it does not have any information
about objects that obstruct a passage. This information is acquired while navigating
to the garbage can. However, when the robot has to navigate from the table to the
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Name aver. min max

planning/execution phases 62 56 73
action primitives per phase 5.14 1 27
action primitives per run 313 276 359
percepts 69 58 78
primitive percepts 33 30 36
high-level percepts 36 28 42
percepts per phase 1.13 1.04 1.20
planning CPU time per action 0.0062 s – –
planning CPU time per phase 0.0317 s 0.0005 s 0.1898 s
planning CPU time per run 1.9334 s 1.5396 s 2.2994 s
execution time – action 3.363 s 0.008 s 34.17 s
execution time – run 1056 s 897 s 1259 s

Table 9.4.: Experimental results for the second set of experiments with the physical
service robot TASER.

garbage can again for the purpose of throwing the second object into the garbage
can, then it has already acquired considerable information about its environment.
Therefore, less information needs to be acquired, and the planner can plan more
steps ahead. Technically speaking, for the second set of experiments, the proposed
control system planned 5.14 steps ahead on average and with 1.13 has a significantly
lower percepts per phase ratio. Acquired information remains in the knowledge base
until it is invalidated by the effects of the robot’s actions. The fact that acquired
information can also be invalidated by external events is not considered (cf. Section
4.5). Another interesting observation is the fact that, compared to the first set of
experiments, the average CPU time of a planning phase increases to 0.0317 seconds,
but the maximum CPU time is even lower with 0.1898 seconds. On average, a
complete experiment run needed 1.9334 seconds for planning and 1056 seconds for
execution. Thus, we have an even lower planning to overall execution time ratio of

1.9334 s
1.9334 s`1056 s

“ 0.0018 than for the first set of experiments.

In summary, we can say that the proposed control architecture can enable a robot
to perform typical service robotic tasks even if no information about the dynamic
aspects of the environment is initially available. The fact that the overall planning
problem is automatically divided into a set of smaller planning problems makes the
approach sufficiently fast for the described scenarios.

9.1.4. Example Plans

This sections shows and describes a sequence of three subsequent plans for the
purpose of giving the reader a better impression of the nature of generated plans.
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clean(table1) [...]

clean obj(blue bottle) [...]

pick up(blue bottle) [...]

navigate(pose(left(table1),deg(0))) [5.81 s]

ensure drive pose [0 s]

go on roadmap(w15) [0 s]

navigate([w15],w15,left(table1)) [5.77 s]

approach(left(table1)) [5.77 s]

<approach position(9168,14536)> [0.04 s]

<mobile wait for completed> [5.73 s]

<rotate abs(0)> [0.016 s]

grab from(blue bottle,Pose) [...]

navigate to entity(garbage can) [...]

bin(blue bottle) [...]

Figure 9.3.: Partial plan for the task clean(table1).

The presented plans were generated during an experiment run of the experiments
described Section 9.1.3.

Figure 9.3 shows a partial plan for the task of cleaning table table1. The fact
that only a partial plan exists for a task is illustrated by a subsequent “[...]”. In
contrast, if the plan contains a complete plan for a task, then the execution time
of the task is shown after the term that represents the task. For example, the task
of navigating with the mobile platform to the pose pose(left(table1),deg(0))

was executed by TASER in 5.81 seconds (see Figure 9.3). The plan shown in Fig-
ure 9.3 is incomplete. The planner was not able to further decompose the task
grab from(blue bottle,Pose), because the location of the object blue bottle

was not available. Therefore, the planner stopped the planning process.
Subsequently, the plan-based controller integrated the execution of a knowledge

acquisition task that determines the relative position of the object. In this case, the
planner generated a complete plan for this task. The generated plan is shown in
Figure 9.4. The plan was executed in 18.342 seconds. As specified by the plan, the
robot first moved its arm aside so that it had a free view of the table and then used
the vision system for the purpose of determining the relative position of the object.

Afterwards, the controller instructed the planner to continue to plan the overall
task of cleaning the table table1. Based on the new information about the position
of the object blue bottle, the planner generated a complete plan for the task of
picking up the object. This plan is shown in Figure 9.5. For clarity reasons, 8
primitive and 14 non-primitive tasks are not explicitly show in Figure 9.5. They are
hinted at by syntactical constructs of the following form:

...<< N subtasks | M primitives >>
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det(vision,pos(blue bottle,pose(left(table1),deg(0),X,Y),[],[],

pos(blue bottle,pose(left(table1),deg(0)),734,51))) [18.342 s]

navigate(pose(left(table1),deg(0))) [0 s]

move manipulator(joints(0,-61,60,0,20,0)) [6.996 s]

<start trajectory generator> [0.099 s]

move manipulator([joints(-90.0,-61.0,152.0,0.0,20.0,-90.0)],

joints(0,-61,60,0,20,0)) [6.870 s]

direct move manipulator(modus(0.5,106), joints(0,-61,60,0,20,0)) [6.870 s]

<set arm joints(0,-61,60,0,20,0,0.5,106)> [6.870 s]

<stop trajectory generator> [0.026 s]

<sense(vision,pos(blue bottle),pos(734,51))> [11.346 s]

Figure 9.4.: Plan for the task of determining the relative position of the blue bottle
from the waypoint left(table1).

For such a construct, N indicates the total number of subtasks, and M indicates
how many of these tasks are primitive.

The robot picked up the object in 46.59 seconds. However, not all necessary
information (e.g., the position of the garbage can) was available in order to generate
a complete plan for the task of navigating to the garbage can. Thus, an additional
knowledge acquisition task needed to be integrated and performed in the subsequent
planning phase.

9.2. Simulation-Based Evaluation

In addition to the experiments with the physical robot TASER presented in Section
9.1, a set of simulation-based experiments was performed. The simulation-based
experiments use the same domain model—and extensions thereof—that was used
for the experiments with the physical service robot TASER as well as three well-
known domains from the AI planning community.

Two additional sets of experiments were conducted for the purpose of getting
deeper insights with respect to the following questions:

• How does the system scale to more complex domains?

• How does the amount of initial knowledge affect the performance of the pro-
posed system?

The simulation-based experiments where conducted on a 64-bit Intel Core 2 Quad
Q9400 with 4 GB memory and SWI-Prolog 6.0.0 as the underlying Prolog engine.
The system only used one processor.
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clean(table1) [...]

clean obj(blue bottle) [...]

pick up(blue bottle) [46.59 s]

graspFromTable(734,51) [46.59 s]

close fingers [0.82 s]

move manipulator(tcp(633.86,1.02,930,0,15,90)) [22.863 s]

start trajectory generator [1.66 s]

move manipulator([joints(0,-61,60,0,20,0)],

tcp(633.86,1.02,930,0,15,90)) [22.177 s]

direct move manipulator(modus(0.3,106),

joints(119,-38,84,-166,33,-130)) [19.26 s]

<set arm joints(119,-38,84,-166,33,-130,0.3,106> [19.26 s]

move manipulator([joints(119,-38,84,-166,33,-130),

joints(0,-61,60,0,20,0)],

tcp(633.86,1.02,930,0,15,90)) [2.917 s]

direct move manipulator(modus(0.3,106),

tcp(900,200,930,0,15,90)) [2.917 s]

<set arm tcp(900,200,930,0,15,90,0.3,106)> [2.917 s]

stop trajectory generator [0.026 s]

<open fingers> [0.094 s]

move manipulator(tcp(723.86,1.02,810,0,15,90)) [9.36 s]

<start trajectory generator> [0.920 s]

move manipulator([tcp(633.86,1.02,930,0,15,90)],

tcp(723.86,1.02,810,0,15,90)) [8.19 s]

direct move manipulator(modus(0.1,99),

tcp(723.86,1.023,810,0,15,90)) [8.19 s]

<set arm tcp(723.86,1.02,810,0,15,90,0.1,99)> [8.19 s]

<stop trajectory generator> [0.026 s]

<close fingers> [0.135 s]

move manipulator(tcp(450,-300,1100,0,15,90)) [13.321 s]

...<< 8 subtasks | 4 primitives >> [13.321 s]

navigate to bin [...]

...<< 14 subtasks | 4 primitives >> [...]

bin(blue bottle)) [...]

clean(table1) [...]

Figure 9.5.: Plan for the task of determining the relative position of the blue bottle
from the waypoint left(table1).
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9.2.1. ACogSim

Providing a simulation environment for the evaluation of a continual planning system
is not a trivial task (Brenner and Nebel, 2009). It is usually more difficult than the
evaluation of classical planning systems, since it is additionally necessary to simulate
the execution of actions.

In the context of this work, a simulator, namely ACogSim, for the environment
has been developed. ACogSim enables the systematical evaluation of the whole
plan-based control architecture—including execution—described in Chapter 6. The
ACogSim simulator works similar to MAPSIM, as described by Brenner and Nebel
(2009). In contrast to the agent, ACogSim has a complete model of the domain.
When the executor executes an action, then the action is sent to ACogSim. ACogSim
checks the preconditions of actions at runtime prior to the execution and updates
its simulation model according to the effect of the actions. In this way, ACogSim
simulates the execution of actions and guarantees that the executed plans are correct.

The outcome of sensing actions is also simulated by ACogSim. Let DMsim be
the (complete) domain model of an ACogSim instance. Let sensepl, I, C, ks, lrq
be a sensing action for which the parameters have the same meaning as for a
knowledge acquisition task (see Definition 4.7). The result of a sensing action
sensepl, I, C, ks, lrq is

• an additional instance lσ of l if such an instance can be derived with respect
to DMsim,

• impossible if it can be derived that the existence of an additional instance of
l is impossible,

• or indeterminable otherwise.

As a proof of concept, all experiments with the physical robot TASER (see Section
9.1) have been rerun with the ACogSim simulator. In the simulation-based envi-
ronment, the ACogControl system planned and executed exactly the same plans
as in the real-world environment. This demonstrates that the simulator is detailed
enough to confront the proposed control system with identical situations, although
ACogSim does not simulate the physical action primitives in detail.

The simulator is encapsulated in a corresponding executor that provides the same
interface as the executor for the physical robot TASER. Therefore, the proposed
control system does not have to be modified in order to work with the simulator.
Whether the simulator or the physical robot executes the actions is not visible for
the control system.

9.2.2. Service Robotic Domain

The domain model (and extensions thereof) that was used for the real-world ex-
periments (see Section 9.1) was also used for the experiments with the ACogSim
simulator.
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Figure 9.6.: Number of domain model entities relative to the number of entities of
the same type for the largest domain (Domain 10).

Increasingly Complex Service Robotic Domain

For the purpose of evaluating how the system scales to larger domains, the domain
model used for the experiments with the physical service robot TASER (see Section
9.1) is successively extended. The smallest domain (Domain 1) is identical with the
domain used for the first set of experiments with the physical robot. It contains two
rooms, a navigation graph with 23 vertices and 39 edges, one table, and one object
on a table (see Figure 7.1). The largest domain (Domain 10) contains five rooms, a
navigation graph with 69 vertices and 180 edges, 10 tables, and 50 small objects on
the tables. How the number of entities of the domain model is successively increased
is shown by Figure 9.6. Figure 9.6 shows the number of domain entities for each
type (i.e., rooms, tables, navigation graph elements and objects on the table) relative
to their number in the largest domain (i.e., Domain 10). The amount of domain
entities is presented relative to their amount in the largest domain in order to make
relative changes to their amount better visible. For example, 0.5 tables in Figure
9.6 correspond to 0.5ˆ 10 “ 5 table entities in the domain model.

The domain model is extended in three stages. In the first stage (Domain 1
- Domain 5), each following domain is enlarged by one object that needs to be
thrown away. Second, from Domain 6 to Domain 9, subsequent domains are enlarged
by one table, five objects, and a couple of waypoints. Furthermore, human-robot
interaction is added as an additional knowledge source, and the additional constraint
garbage(Object) is added to the precondition of the HTN methods that define how
to clean a table. Hence, the robot is only allowed to bin an object if it knows that
the object is considered as garbage. If this information is not available, then the
robot can acquire it by means of picking up the object, navigating to the office room,
and asking the person in the office whether the object should be thrown away. In
the last stage, an additional room with 5 tables and 25 objects is added, and the
size of the navigation graph is almost doubled. The largest domain model (Domain
10) is illustrated by Figure 9.7.



9.2 Simulation-Based Evaluation 147

tab.1

tab.2

tab.3

tab.4

tab.5

exp. loc.

garb. can

tab.6

tab.7

tab.8

tab.9

tab.10

Figure 9.7.: Illustration of the most complex domain model 10.

The proposed plan-based control architecture successfully performed the given
task for all conducted experiment runs. The detailed results of the experiments are
show in Figure 9.8a - 9.8e. The number of planning and execution phases and the
number of percepts increases approximately linearly to the overall domain size (see
Figure 9.8a - 9.8b). Figure 9.8c shows that the average and maximum size of the
generated plans increase slightly for more complex domains. The average CPU time
required for a phase (see Figure 9.8d) does not exceed 0.1 seconds, and the maximum
CPU time required for a phase stays under 0.4 seconds. This can be considered as
sufficiently fast for a service robot domain. In particular, the time needed for a
planning phase is—even for the largest domain—quite low compared to the average
execution time of an action primitive, which is approximately 3.4 seconds (see Table
9.3 and 9.4). Figure 9.8e shows that, even for the largest domain, the time that is
necessary for planning a single primitive action stays around 6 milliseconds.

Summing up, the conducted experiments indicate that the proposed control ar-
chitecture scales comparably well to an increasingly complex service robot domain.
The main reason for this characteristics is the fact that the continual planner au-
tomatically partitions the overall planning problem into a set of simpler planning
problems and therefore seems to be less affected by the domain size than classical
planning approaches.

Performing Tasks with an Increasing Amount of Initial Knowledge

10 additional set of experiments were performed for the purpose of dealing with the
following question:

• How does the performance of the system relate to the amount of information
that is initially available?
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(c) Number of action primitives per phase.
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Figure 9.8.: System behavior for an increasingly complex service robotic domain.
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(c) Number of action primitives per phase.
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Figure 9.9.: System behavior for an increasing amount of initial knowledge about
dynamic aspects of the environment for the simulated service robotic
domain.



150 Experimental Evaluation

In order to deal with this question, information about the dynamic aspects of the
environment (e.g., the exact location of objects, the state of doors or the actual
connectivity between waypoints) was randomly added in 10 steps of equal size (i.e.,
with an equal amount of added facts) to the largest domain model (Domain Model
10) described in Section 9.2.2.

The results of the experiments are shown in Figure 9.9a – 9.9e. The number of
planning and acting phases as well as the number of percepts decreases with an
increasing amount of initially available knowledge (see Figure 9.9a and 9.9b). In
contrast, the average and maximum number of action primitives that are executed
during a phase increases, since the planner has more information and thus can
plan more steps ahead (see Figure 9.9c). Figure 9.9d shows that the average CPU
time per phase increases with an increasing amount of initial knowledge. This is
mainly due to the increase of the average number of action primitives per phase,
since the average CPU time needed for planning a single primitive action is not
significantly affected by the amount of initial knowledge (see Figure 9.9e). Looking
at this result from the opposite direction results in a quite interesting perspective,
since it indicates that a lot of missing information does not make the problem
computationally harder. In contrast, the results indicate that if the proposed control
architecture has less initially available information, then it partitions the overall
process into a larger sequence of smaller planning and execution phases. In this way,
the CPU time required for a planning phase decreases with a decreasing amount of
initial knowledge.

9.2.3. Additional Planning Domains

The studies described in Section 9.2.2 were additionally conducted with three well-
known AI planning domains. For these studies the depots and rovers domains from
the third international planning competition (see Long and Fox (2003)) as well as the
well known blocks world (Winograd, 1972) domain were used. The domain model
specifications were adapted to the domain model described in Chapter 3 and 4. The
basic specifications of the domain models can be found in Appendix B.

Increasingly Complex Domains

Five increasingly large domain model instances of the rovers, the depots and the
blocks world domain were used to determine how the proposed system deals with
an increasingly complex domain. How many facts in the form of ground literals the
domain model instances contained is shown in Table 9.5. For example, the smallest
domain model instance of the rovers domain contained 47 facts, whereas the largest
domain instance contained 1758 facts.

All domain instances initially contained all information that is necessary in order
to generate a complete plan. 100 experiment runs were performed for each domain
model instance. For each experiment run, 50 percent of the facts were randomly
removed from the corresponding domain model instance so that often no complete
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Domain Instance No. of facts

Rovers

1 47

2 515

3 949

4 1340

5 1758

Depots

1 272

2 512

3 580

4 730

5 880

Blocks World

1 270

2 520

3 1020

4 1520

5 2020

Table 9.5.: Number of facts for the five increasingly large domain model instances
of the rovers, depots, and blocks world domain.

plans were found in the fist planning phase and the simulated agent needed to
acquire additional information in order to perform a given task. For all runs, the
same task that should be performed was used for each domain. The task for the
rovers domain was to get soil data from a certain waypoint. Delivering a crate to a
given depot was the task for the depots domain, and moving a block onto another
block was used for the blocks world domain.

The experimental results are shown in Figure 9.10. Figure 9.10a shows that
the number of planning and execution phases scales—like for the service robotic
domain—linearly to the domain size for the rovers and the blocks world domain. The
depots domain, however, shows a different trend. The number of phases increases
from the first to the second domain instance, slightly decreases from the second to
the fourth domain, and finally goes a bit up again. One reason for this behavior is
that the task used for the depots domain does, in contrast to the tasks used for the
rovers and blocks world domain, not necessarily become more difficult in terms of the
actions that have to be performed and the amount of necessary knowledge. To put
it another way, the amount of knowledge that is necessary in order to move a crate
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Figure 9.10.: System behavior for an increasingly complex domain for the rovers,
depots and blocks world domains.
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to a certain depot is not necessarily larger for the larger domain instances. Thus,
the control system does not necessarily need to add more planning and execution
phases in order to acquire more information. Like for the service robotic domain,
Figure 9.10b approves that the number of percepts behaves almost identical as the
number of phases. The average number of primitive actions that are planned and
executed during one planning respectively execution phase is shown in Figure 9.10c.
The number of primitives per phase approximately increases 25 percent from the
first to the second domain instance of the blocks worlds domain and then stays
almost constant. For the rovers and the depots domain, the increasingly complex
domain instances do not significantly affect the number of action primitives per
phase. The plots shown in Figure 9.10d and 9.10e look very similar, since the
number of primitives per phase stays almost constant for all domains. Moreover,
these figures approve that the plan-based control architecture scales well to more
complex domains compared to classical planning approaches that usually show an
exponential behavior.

Increasing Amount of Initial Knowledge

The rovers, depots and blocks world domain were also used as a testbed for the
second simulation-based study already conducted with the service robotic domain
(see Section 9.2.2). The objective of this study is to determine how the ACogControl
system behaves if the agent is equipped with more prior knowledge. For this study,
the largest instances of the rovers, depots and the blocks world domain models are
used. Thus, the complete domain model instance that includes all necessary facts
contains 1758 facts for the rovers, 880 facts for depots, and 2020 facts for the blocks
world domain.

The results presented in this section differ from the previously published results in
Off and Zhang (2012), since the algorithm of the controller is modified. In contrast
to the algorithm used for the results described in Off and Zhang (2012), the current
version of the controller causes replanning whenever additional information has been
acquired so that it does not get lost in a local minima (see Section 6.2). Therefore,
the current version of the controller usually needs less planning and execution phases.

10 experiments were conducted for all domains with 100 runs per experiment,
except for the first experiment where 1 run was sufficient. Let fall be the number
of facts of a domain model, then 11´i

10
fall facts were removed in all runs of the i-th

experiment from the domain model of the agent. Hence, in the first experiment all
facts were removed (for each domain) from the agent’s domain model. For the first
experiment only one run was performed, since there is only one way of removing all
facts from the domain model.

ACogControl was able to correctly perform the given task for all domains and all
runs—even in situations where all facts were removed from the domain model of the
agent. The more detailed results of the experiments are shown in Figure 9.11.

The average number of necessary planning and execution phases is show in Figure
9.11a. The average number of planning and execution phases decreases with an
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Figure 9.11.: System behavior for an increasing amount of initial knowledge about
dynamic aspects of the environment for the three additional planning
domains.
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increasing number of initial information, since the agent needs to stop the planning
process and execute knowledge acquisition activities less often for situations where
it has more prior knowledge. The plot of the number of percepts is again very
similar to the plot of the number of phases (see Figure 9.11b). Figure 9.11c shows
that the number of planned and executed action primitives per phase expeditiously
increases with more initially available information for the depots and blocks world
domain. This behavior seems to be intuitively reasonable, since the planner can
plan more steps ahead if more information is available. However, the rovers domain
shows a different behavior. For the rovers domain, the plan-based controller often
only plans one step ahead even if 90 percent of the dynamic domain knowledge is
initially available. The reason for this behavior is that the planner often decides to
acquire additional information even if a complete plan can be generated. For the
rovers domain the planner spends most of the time for path planning. The domain
model contains—like for the service robotic domain—a navigation graph that defines
from which waypoint the rover can directly traverse to another waypoint. Instead of
trying to generate a complete path, the planner usually chooses the next waypoint
and then stops the planning process, because there could be a connection between
the next waypoint and another waypoint (e.g., the goal waypoint) of which the
planner currently has no information. Thus, it is often more reasonable—according
to the underlying cost model—to choose (i.e, plan) the next waypoint, execute the
plan, and then determine to which waypoints the next waypoint is connected by
means of active knowledge acquisition. Based on the acquired information about
adjacent waypoints, the planner now can make a possibly better planning decision.
The CPU time for a planning phase quickly increases for the depots and blocks world
domain and stays constant for the rovers domain (see Figure 9.11d). However, the
fact that the average planning time necessary for a single primitive action stays
almost constant for the rovers and blocks world domain, and is not increasing very
fast for the depots domain (see Figure 9.11e) indicates that the increase of the CPU
time for a phase is mainly due to the increase of the number of primitives that are
planned for a phase.

9.3. Summary and Conclusion

In this chapter, a couple of real-world and simulation-based experiments have been
described that were performed in order to evaluate the proposed plan-based control
system ACogControl.

The results of the experiments with the service robot TASER demonstrate that
ACogControl can enable a physical service robot to autonomously perform high-
level tasks in an unstructured environment even if a lot of relevant information is
not initially available, and thus the robot only has an incomplete, open-ended model
of its environment. The CPU time necessary for planning is very low compared to
the overall execution time. For example, an average experiment run for the first set
of experiments with TASER took approximately ten minutes, whereas the required



156 Experimental Evaluation

CPU time for planning was always below two seconds (see Table 9.3).

Planning in open-ended domains is known to be more difficult than planning based
on the assumption that all information is available at planning time (Baral et al.,
2000). Nevertheless, the experimental results indicate that the proposed approach
scales, compared to previous planning approaches, surprisingly well to more complex
domain models (see Section 9.2.2 and 9.2.3). The main reason for this result is the
fact that the plan-based control system automatically partitions the overall planning
process into a set of simpler planning problems. Due to a lack of knowledge, it is
not necessarily possible to plan more steps ahead for a larger domain model. Thus,
the planning problems do not necessarily become more difficult. If the planning
problems do not become more difficult for more complex domains, then usually the
set of planning phases increases. In other words, a more complex domain often
results in a larger set of (at most) slightly more difficult planning problems. In
contrast, for most of the previous planning approaches that assume that planning
is monolithic, an increasingly large domain results in a single, increasingly complex
planning problem that usually scales exponentially to the size of the domain model.
The fact that the proposed plan-based control system generates and executes plans
incrementally comes at the cost that the corresponding agent starts the execution of
a partial plan, for which it cannot be guaranteed that it is the prefix of a valid plan.
However, in the real-world, open-ended environments this work is interested in, it is
often impossible to generate a complete plan in advance. Thus, often the alternative
to executing a possibly incorrect, partial plan is to not be able to perform a task
at all. The main motivation of the proposed control system was to be able to deal
with these situations, where it is impossible, or at least unreasonable, to generate a
complete plan for a given task prior to executing any action.

The experiments with an increasing amount of initial knowledge (see Section 9.2.2
and 9.2.3) evaluate how the extent of initially available knowledge relates to the per-
formance of the described control system. The experimental results indicate that if
the control system initially has access to more knowledge about the state of the envi-
ronment, then the overall planning problem is partitioned into less, but increasingly
difficult planning problems. For the service robot domain, the number of planning
phases decreases in the same way as the CPU time for a planning phase increases
so that the overall planning time approximately stays constant. In contrast, for
the additional planning domains from the AI planning community, the CPU time
for a single planning phase increases faster than the number of planning phases
decreases so that the overall planning time slightly increases for situations where
more knowledge is initially available. Another conclusion that can be drawn from
the experimental results is that it is not a problem with respect to the computa-
tional complexity if a lot of relevant information is not initially available. More
missing information makes the overall execution of a task more difficult, but the
computational complexity of the overall planning process is often even reduced.

All the tested domains provide additional insights into the performance charac-
teristics of the described plan-based control system. However, the domain model for
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the service robot is the most realistic domain model. It provides more insights with
respect to the performance of the system in the context of a complex, real-world
situation.
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Chapter 10
Summary and Conclusion

It is not knowledge, but the act of learning, not possession but the
act of getting there, which grants the greatest enjoyment. When I have
clarified and exhausted a subject, then I turn away from it, in order to
go into darkness again. The never-satisfied man is so strange; if he has
completed a structure, then it is not in order to dwell in it peacefully, but
in order to begin another. I imagine the world conqueror must feel thus,
who, after one kingdom is scarcely conquered, stretches out his arms for
others. (Carl Friedrich Gauss, 1777 -1855)
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This chapter summarizes the main results and contributions of this work and
outlines possible directions for future work.

10.1. Summary

In this work, a novel plan-based control system has been developed. The develop-
ment is motivated by the fact that artificial agents are supposed to autonomously
perform tasks in real-world environments, in spite of being equipped with models
of the world they inhabit that are inherently incomplete and open-ended. Most
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related approaches have been identified to be inadequate, since they rely on a com-
plete model of the relevant slice of reality and assume that a plan can be generated
in a single, monolithic process; while typically neither of these assumptions holds
in the light of the complexity and unstructuredness of real-world environments.
Comparatively less attention has been paid to task planning and plan-based con-
trol approaches that make use of open-ended domain models and can more flexibly
interleave planning and execution to deal with the open-endedness of real-world
situations.

This work has presented a novel plan-based control system that extends previous
approaches so that tasks can be automatically performed in more realistic situations
where a lot of relevant information initially is not available. The proposed approach
provides the planning and reasoning capabilities to perform tasks in a significantly
larger set of situations. The proposed control system is domain-configurable (Nau,
2007); thus, the core planning, reasoning and controlling engines are domain inde-
pendent, but can exploit domain specific information. The proposed control archi-
tecture can be viewed as a general, plan-based, high-level control framework. It
features the automatic as well as manual integration of external components.

In a nutshell, the main contributions of this work are:

1. Developing a domain model and reasoning system for open-ended
states. Chapter 3 and Chapter 4 introduced a novel, open-ended domain
model for HTN planning systems. This domain model provides the basic
knowledge representation and reasoning capabilities. In contrast to the un-
derlying domain model of most of the previous task planning approaches,
the proposed domain model can represent open-ended state models. In other
words, the domain model can natively deal with incomplete information. It
is capable of reasoning about possible, relevant, and acquirable extensions of a
state model.

2. Developing a principled new HTN planning approach for open-ended
domains. Chapter 5 introduced a principled new HTN planning approach.
The proposed HTN planning system ACogPlan extends existing approaches in
various ways for the purpose of dealing with open-ended state models. ACog-
Plan additionally considers decompositions that are only applicable with re-
spect to a consistent extension of the (open-ended) domain model at hand.
Planning is not assumed to be a monolithic process. The planner automat-
ically decides when it is more reasonable to leave parts of the hierarchical
plan unexpanded and acquire additional information prior to making the next
planning decision for the task at hand. It was demonstrated that the domain
specific information encoded in the domain model of an HTN planner not only
helps to more efficiently solve classical planning problems, but can efficiently
be exploited in open-ended situations, where a planner additionally has to
consider unassured ways to perform a task.
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3. Developing a plan-based control architecture that continually inter-
leaves planning and execution. Chapter 6 described how the proposed
planning system ACogPlan is integrated into the plan-based control system
ACogControl. ACogControl is capable of autonomously performing tasks in
open-ended domains where a lot of relevant information is not a priori avail-
able. Whenever it is more reasonable, or even necessary, to acquire additional
information prior to making the next planning decision, the planner defers the
overall planning process, the control system automatically creates appropriate
knowledge acquisition tasks, and integrates their execution into the overall
planning and execution process.

The proposed plan-based control architecture ACogControl was applied to the
real-world service robot TASER (see Chapter 8). Real-world and simulation-based
experiments indicated that ACogControl can enable a physical service robot to suc-
cessfully perform tasks in a real-world environment, though a lot of relevant infor-
mation was not initially available.

Although planning in open-ended domains is known to be more difficult than
planning based on a complete domain model, the experimental results indicate that
the proposed approach scales, compared to previous planning approaches, surpris-
ingly well to more complex domain models (see Section 9.2.2 and 9.2.3). This is
mainly due to the fact that the plan-based control system automatically partitions
the overall planning process into a set of simpler planning problems. It is not neces-
sarily possible to plan more steps ahead for larger domain models, since the planning
horizon is limited by the available knowledge and the lack thereof.

10.2. Directions of Future Research

This sections describes interesting directions for future research.

10.2.1. Autonomous Creation and Updating of the Domain
Model

The domain models used in the context of this work are manually created by a
human. However, it is desirable to enable autonomous agents to automatically
create and update domain models, since this releases domain engineers from the
burden of creating domain models manually and increases the autonomy of artificial
agents. In fact, manually creating reasonable domain model specifications is a non-
trivial task. For example, it can be difficult to answer questions like: How long does
this action take in this situation? When is it better to prefer strategy A to strategy
B? Instead of a priori trying to find an answer to these questions, it is desirable
to enable artificial agents to deal with these questions autonomously by exploiting
gathered experiences.
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Some work towards the complete autonomous creation and updating of domain
models has already been done. Approaches that learn parts of the domain descrip-
tions of HTN planners (Ilghami et al., 2002, 2005, 2006; Nejati et al., 2006; Hogg
et al., 2008) and various forward search planners (Yoon et al., 2008) have been
proposed. Moreover, a number of approaches for learning hierarchical structures
have been described in the reinforcement learning literature including McGovern
and Barto (2001); Hengst (2002); Simsek and Barto (2004); Grounds and Kudenko
(2007); Marthi (2006). Unfortunately, none of the aforementioned approaches have
yet reached the capabilities of a human domain engineer.

10.2.2. Advanced Memory System

The plan-based control system presented in this work does not consider that stored
information can be invalided by external events. It would be beneficial to integrate
a more advanced memory system that automatically “forgets” outdated information
or continually decreases the probability of acquired information.

The proposed control system does not rely on the fact that no information can be
removed from the memory system. Hence, a more sophisticated memory system can
be integrated without necessarily changing the proposed plan-based control system.

10.2.3. Ensuring Consistency

As already pointed out in Section 3.5, it is in principle possible to create a syntac-
tically inconsistent (Nguyen, 2008) domain model, since the state model supports
the explicit representation of negative information. On the one hand, the possible
occurrence of syntactic inconsistencies is a disadvantage, since it can cause trou-
ble for the reasoning processes of the proposed plan-based control system. On the
other hand, the source of this disadvantage, namely the explicit representation of
negative information, makes additional reasoning capabilities possible that can be
used to detect syntactic as well as semantic inconsistencies—which can also occur
in CWA-based representations—via syntactic methods.

A possible direction for future research is to develop techniques that can automat-
ically detect inconsistencies in domain model specifications. These techniques can
be used to develop tools that help domain engineers or automatic domain creation
tools to detect and prevent inconsistent domain models.

10.2.4. Knowledge Compilation

Knowledge compilation (Cadoli and Donini, 1997; Darwiche and Marquis, 2002) is
a general-purpose approach to reduce the computational complexity of demanding
reasoning processes. The general idea of knowledge compilation is to compile a
propositional theory offline into a target language so that much of the computational
overhead can be pushed to this offline-phase. Online queries are answered based on
the target language representation. If the queries can be answered faster based on
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the target language representation than using the initial representation, then the
additional computational cost of the offline-phase is amortized over an accordingly
large set of online queries.

Knowledge compilation techniques have not been exploited in the context of this
work. Exploring the application of knowledge compilation techniques to the domain
model presented in this work constitutes a promising way to improve the perfor-
mance of the proposed control system.
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Appendix A
Domain Specification

This appendix describes how domain models of the ACogControl system are speci-
fied.

The ACogControl system stores domain specifications in special Logtalk (Moura,
2003) objects. Logtalk is an object-oriented logic programming language that can
use several Prolog implementations as a back-end compiler. Logtalk objects are
transformed by the Logtalk compiler to Prolog programs. One of the supported
Prolog systems can then be used to further compile or interpret these Prolog pro-
grams.

Each domain specification is an instance of a model datastore object. The in-
terface of this object is specified by the model datastorep protocol . In Logtalk, a
protocol can encapsulate predicate declarations. A protocol enables it to decouple
the specification of an interface from a concrete implementation.

The model datastorep protocol is shown in Listing A.1. The domain name (e.g.,
blocks world, or rovers) can be specified by a predicate of the form domain(Name).
For each literal l of the set of facts of a state model, there is a predicate fact(l) in
the domain model specification. Domain specific rules are represented by predicates
of the from axiom(Head,Body) such that Head is the head and Body is the body of
the corresponding definite clause. Concept relations can be specified by a predicate

concept(Concept,Relation,Value,Condition)

whereby Concept is a literal, Relation is the relation (e.g., an interpretation-
model-of or a subconcept-of relation), and Condition is a statement that is a pre-
condition of the represented relation such that the relation only holds if an instance
of this precondition is derivable. In the context of this work, the following relations
are used:

• concept(default,Relation,Value,true): A predicate of this form is used
to define a default value (Value) for a concept relation (Relation).

• concept(l,interpretation model,IM,true): This predicate is used to ex-
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plicitly define that the interpretation model of a literal l is IM.

• concept(l,max instances,n,c): This predicate equates to the predicate
imaxDpl, n, cq (see Section 3.9.1).

• concept(scheme,i max inst pattern,n,true): This predicate equates to
the predicate imax ρpscheme, nq (see Section 3.9.1).

• concept(l,is subconcept of,l’,true): This predicate equates to the pred-
icate l Ďdef l’ (see Section 3.9.2).

• concept(l,disjoint with,l’,true): This predicate equates to the predi-
cate l[def l’ (see Section 3.9.2).

For example, the fact that the literal connection(Room1,Door,Room2) has the
interpretation model cwa can be specified by the following predicate:

concept(connection( , , ),interpretation model,cwa,true)

Moreover, the following predicate can be used to define that a relation (Relation)
holds pairwise between the concepts constituted by each literal of a set of literals
(Concepts):

concept relation(Relation,Concepts)

For example, the following predicate specifies that a cup, a table, a mug and a
bottle are disjoint concepts:

concept relation(disjoint,[cup(X),table(X),mug(X),bottle(X)])

The 5-tuple of a planning operator (see Definition 4.2) is specified by predicates
of the following form:

predicate(Task,Precondition,DeleteSet,AddSet,Cost)

The arguments of this predicate have the same meaning as the 5-tuple defined by
Definition 4.2.

HTN methods without high-level effects are specified by predicates of the form

methodpTask, Precondition, Subtasks, Name, Costq,

whereas methods with high-level effects and high-level percepts are specified by
predicates of the form

methodpTask, Precondition, DeleteSet, AddSet, Subtasks, Name, Percept, Costq.
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In addition to the representation of methods described in Section 4.2.3 and 4.9,
the two aforementioned specification schemes additionally support the specification
of a symbolic name. This symbolic name is irrelevant for the described planning
algorithm (see Chapter 5). However, it can be used to more easily identify HTN
methods (e.g., while monitoring or debugging the planning process).

Listing A.1: model datastorep protocol that encapsulates domain model specifica-
tions.

:- protocol(model_datastorep ,

extends(clonablep )).

:- info([

5 version is 1,

author is ’Dominik Off’,

comment is ’A model datastore encapsulates the

domain model specification.’]).

10 :- public(domain /1).

:- mode(domain(-atom),one).

:- info(domain /1,[

comment is ’Provides access to the name of the

domain ’,

15 argnames is [’DomainName ’]]).

:- public(fact /1).

:- mode(fact(? literal),zero_or_more ).

:- info(fact/1,[

20 comment is ’Provides access to the facts’,

argnames is [’Fact’]]).

:- public(axiom /2).

:- mode(axiom (?literal ,? statement),zero_or_more ).

25 :- info(axiom /2,[

comment is ’Provides access to the axioms of

the domain datastore. Axioms are definite

clauses where the head is literal and the

body is statement.’,

30 argnames is [’Head’,’Body’]]).

:- public(concept /4).

:- mode(concept (+term ,+atom ,-term ,-statement),

zero_or_more ).

35 :- info(concept /4,[

comment is ’Provides access to the conceptual

knowledge of the datastore.

concept(Concept ,Property ,Value ,Condition) means that
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the property Property of the concept Concept has the

40 value Value if the Condition is derivable with

respect to the state model at hand.’,

argnames is [’Concept ’,’Property ’,’Value ’,

’Condition ’]]).

45 :- public(concept_relation /2).

:- mode(concept_relation (+atom ,+list(term)),

zero_or_more ).

:- info(concept /2,[

comment is ’Provides access to the relations between

50 concepts. For example ,

concept_relation(disjoint ,[ table(X),mug(X),

bottle(X)]) represents the fact that a table ,

a mug , and a bottle a three pairwise disjunct

concepts.’,

55 argnames is [’Relation ’,’Concepts ’]]).

:- public(operator /5).

:- mode(operator (+term ,-statement ,-list(literal),

-list(literal),-acog_expression),zero_or_more ).

60 :- info(operator /5,[

comment is ’Provides access to the operators of the

domain model.’,

argnames is [’Task’,’Precondition ’,’Del’,’Add’,

’Cost’]]).

65

:- public(method /5).

:- mode(method (+term ,-statement ,-list(term),-atom ,

-acog_expression),zero_or_more ).

:- info(method /5,[

70 comment is ’Provides access to HTN methods of

the domain model.’,

argnames is [’Task’,’Precondition ’,’SubTasks ’,

’Name’,’Cost’]]).

75 :- public(method /8).

:- mode(method (+term ,-statement ,-list(literal),

-list(literal),-list(term),-atom ,-term ,

-acog_expression),zero_or_more ).

:- info(method /8,[

80 comment is ’Provides access to the HTN

methods of the domain model.’,

argnames is [’Task’,’Precondition ’,’Del’,’Add’,

’SubTasks ’,’Name’,’Percepts ’,’Cost’]]).
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85

% add and remove method for each predicate

:- public(add_fact /1).

:- public(remove_fact /1).

90 :- public(add_axiom /1).

:- public(remove_axiom /1).

:- public(add_concept /1).

:- public(remove_concept /1).

:- public(add_concept_relation /1).

95 :- public(remove_concept_relation /1).

:- public(add_operator /1).

:- public(remove_operator /1).

:- public(add_method /1).

:- public(remove_method /1).

100

% declare predicates to be dynamic so that

% they can be added and removed dynamically

105 :- dynamic(domain /1).

:- dynamic(fact /1).

:- dynamic(axiom /2).

:- dynamic(concept /4).

:- dynamic(concept_relation /2).

110 :- dynamic(operator /5).

:- dynamic(method /5).

:- dynamic(method /8).

:- end_protocol.
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Appendix B
Symbolic Domain Descriptions

This appendix lists the domain specifications used for the experimental evaluation.
Listing B.1 shows the domain model specification used for the real-world exper-

iments with the service robot TASER (see Section 9.1). For clarity reasons, some
variable and predicate names of the specifications shown in Chapter 7 differ slightly
from the specifications shown in Listing B.1. However, these differences have no
significant impact on the semantics of the domain model.

Listing B.1: Domain model specification used for the experiments with the physical
robot TASER.

1 :- object(taser_datastore ,

instantiates(model_datastore )).

:- dynamic(fact/1).

:- dynamic(axiom/2).

6

domain(taser_restaurant ).

11 fact(manipulator_config(joints ( -90.000 , -61.000 ,152.000 ,0.000 ,

20.000 , -90.000))).

fact(at_wp(robot ,unknown )).

16 fact(waypoint(w1 ,14500 ,10923)).

fact(waypoint(w2 ,14500 ,12000)).

fact(waypoint(w3 ,14500 ,13500)).

fact(waypoint(w4 ,13500 ,12000)).

fact(waypoint(w5 ,12500 ,13500)).

21 fact(waypoint(w6 ,12500 ,12000)).

fact(waypoint(w7 ,11500 ,12000)).

fact(waypoint(w8 ,10500 ,12000)).
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fact(waypoint(w9 ,9580 ,12000)).

fact(waypoint(w10 ,9580 ,10923)).

26 fact(waypoint(w11 ,13500 ,13000)).

fact(waypoint(w12 ,12500 ,13000)).

fact(waypoint(w13 ,13500 ,11000)).

fact(waypoint(w14 ,8782 ,13409)).

fact(waypoint(w15 ,8782 ,14536)).

31 fact(waypoint(w16 ,11900 ,13270)).

fact(waypoint(approach(lab_table1 ) ,10500 ,12970)).

fact(waypoint(center(lab_table1 ) ,10500 ,13270)).

fact(waypoint(center_r(lab_table1 ) ,11100 ,13270)).

fact(waypoint(right(lab_table1 ) ,11900 ,14227)).

36 fact(waypoint(left(lab_table1 ) ,9168 ,14536)).

fact(waypoint(cor1 ,14500 ,9050)).

fact(waypoint(cor2 ,9580 ,9050)).

fact(can_traverse(w1,w2)).

41 fact(can_traverse(w1,cor1 )).

fact(can_traverse(w1,w13)).

fact(can_traverse(w2,w3)).

fact(can_traverse(w2,w4)).

fact(can_traverse(w2,w13)).

46 fact(can_traverse(w3,w4)).

fact(can_traverse(w3,w5)).

fact(can_traverse(w4,w6)).

fact(can_traverse(w4,w7)).

fact(can_traverse(w4,w11)).

51 fact(can_traverse(w4,w13)).

fact(can_traverse(w5,w6)).

fact(can_traverse(w5,w7)).

fact(can_traverse(w5,w11)).

fact(can_traverse(w5,w12)).

56 fact(can_traverse(w5,right(lab_table1 ))).

fact(can_traverse(w6,w7)).

fact(can_traverse(w6,w12)).

fact(can_traverse(w7,w8)).

fact(can_traverse(w7,w12)).

61 fact(can_traverse(w7,w13)).

fact(can_traverse(w8,w9)).

fact(can_traverse(w9,w10)).

fact(can_traverse(w9,w7)).

fact(can_traverse(w9,w6)).

66 fact(can_traverse(w9,w4)).

fact(can_traverse(w9,w2)).

fact(can_traverse(w9,w14)).

fact(can_traverse(w10 ,cor2 )).
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fact(can_traverse(w12 ,w11)).

71 fact(can_traverse(w14 ,w15)).

fact(can_traverse(w15 ,left(lab_table1 ))).

fact(can_traverse(approach(lab_table1),w12)).

fact(can_traverse(approach(lab_table1),w8)).

fact(can_traverse(approach(lab_table1),center(lab_table1 ))).

76 fact(can_traverse(center_r(lab_table1),center(lab_table1 ))).

fact(can_traverse(center_r(lab_table1),w16)).

fact(can_traverse(right(lab_table1),w16)).

fact(can_traverse_manipulator(joints(0, 0, 0, 0, 0, 0),

81 modus (0.3 ,106) ,

joints ( -90.000 , -61.000 ,152.000 ,

0.000 ,20.000 , -90.000) ,10)).

fact(can_traverse_manipulator(joints(0, -61, 60, 0, 20, 0),

modus (0.5 ,106) ,

86 joints ( -90.000 , -61.000 ,152.000 ,0.000 ,

20.000 , -90.000) ,10)).

fact(can_traverse_manipulator(joints(0, -61, 60, 0, 20, 0),

modus (0.3 ,106) ,

joints (119.593086 , -38.642731 , 84.040062 , -166.434097 ,

91 33.018036 , -130.185791) ,10)).

fact(can_traverse_manipulator(tcp(900, 200, 930, 0, 15, 90),

modus (0.3 ,106) ,

joints (119.593086 , -38.642731 , 84.040062 , -166.434097 ,

33.018036 , -130.185791) ,10)).

96 fact(can_traverse_manipulator(tcp(900, 200, 930, 0, 15, 90),

modus (0.3 ,99) ,

tcp(_X , _Y , 930, 0, 15, 90) ,10)).

fact(can_traverse_manipulator(tcp(X, Y, 810, 0, 15, 90),

modus (0.1 ,99) ,

101 tcp(X, Y, 930, 0, 15, 90) ,7)).

fact(can_traverse_manipulator(tcp(_X,_Y, 930, 0, 15, 90),

modus (0.5 ,99) ,

tcp(450, -300, 1100, 0, 15, 90) ,100)).

fact(can_traverse_manipulator(tcp(800, 0, 450, 0, 15, 90),

106 modus (0.3 ,99) ,

tcp(450, -300, 1100, 0, 15, 90) ,100)).

fact(can_traverse_manipulator(tcp(800, 0, 450, 0, 15, 90),

modus (0.4 ,99) ,

tcp(450, -300, 1100, 0, 15, 90) ,10)).

111 fact(can_traverse_manipulator(tcp(800, 0, 450, 0, 15, 90),

modus (0.3 ,99) ,

tcp(800, 0, 750, 0, 15, 0) ,10)).

fact(can_traverse_manipulator(joints (60.69095230102539 ,

-13.901904106140137 ,85.47753143310547 ,
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116 0 ,58.70777893066406 , -147.0784454345703) ,

modus (0.7 ,106) ,

tcp(800, 0, 750, 0, 15, 0) ,10)).

fact(can_traverse_manipulator(joints (60.69095230102539 ,

-13.901904106140137 ,85.47753143310547 ,

121 0 ,58.70777893066406 , -147.0784454345703) , modus (0.5,99),

tcp(800, 0, 750, 0, 90, 0) ,10)).

fact(can_traverse_manipulator(tcp(800, 0, 750, 0, 90, 0),

modus (0.5 ,106) ,

tcp(800, 0, 600, 0, 90, 0) ,10)).

126

fact(room(lab)).

fact(room(corridor )).

fact(door(lab_door1 )).

131 fact(door(lab_door2 )).

fact(table(lab_table1 )).

fact(table(lab_table2 )).

136 fact(approach_pose(lab_table1 ,pose(center(lab_table1),

deg (90)))).

fact(approach_pose(lab_table1 ,pose(center_r(lab_table1),

deg (90)))).

fact(approach_pose(lab_table1 ,pose(right(lab_table1),

141 deg (180)))).

fact(approach_pose(lab_table1 ,pose(left(lab_table1),

deg (0)))).

fact(approach_pose(bin ,pose(w4,deg (0)))).

fact(approach_pose(bin ,pose(w11 ,deg (315)))).

146 fact(approach_pose(bin ,pose(w13 ,deg (45)))).

fact(approach_pose(cross(lab ,lab_door2 ,corridor),

pose(cor2 ,deg (270)))).

fact(approach_pose(cross(lab ,lab_door1 ,corridor),

pose(cor1 ,deg (270)))).

151 fact(approach_pose(right(lab_table1),

planned_final(

pose (10800 ,12970 , deg (90)),

pose (10800 ,13270 , deg (90))

)

156 )

).

fact(approach_pose(center(lab_table1),

planned_final(

pose (10500 ,12970 , deg (90)),

161 pose (10500 ,13270 , deg (90))
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)

)

).

166

fact(connection(lab ,lab_door1 ,corridor )).

fact(connection(lab ,lab_door2 ,corridor )).

fact(bottle(blue_bottle )).

171 fact(bottle(yellow_bottle )).

fact(bottle(big_bottle )).

fact(on(blue_bottle ,lab_table1 )).

fact(on(yellow_bottle ,lab_table1 )).

176 fact(on(big_bottle ,lab_table1 )).

fact(in_room(lab_table1 ,lab)).

fact(in_room(lab_table2 ,lab)).

fact(in_room(robot ,lab)).

181

fact(available(ptu)).

fact(available(arm)).

fact(available(hand )).

fact(available(mobile )).

186 fact(available(camera )).

fact(free(hand )).

191 axiom(approached(W),(

waypoint(W,_,_),approached(pose(W,_))

)).

axiom(can_traverse_manipulator(tcp(X1, Y, 810, 0, 15, 90),

196 modus (0.1,99) ,tcp(X2, Y, 930, 0, 15, 90),5),

call((

ground(X1),

ground(X2 )))).

201 axiom(manipulator_dist(tcp(X1,Y1,Z1,_,_,_),

tcp(X2 ,Y2 ,Z2 ,_,_,_),Dist),(

call((

ground(f(X1 ,Y1 ,Z1 ,X2 ,Y2 ,Z2)),

XDiff is X1 - X2 ,

206 YDiff is Y1 - Y2 ,

ZDiff is Z1 - Z2 ,
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Dist is sqrt(XDiff * XDiff + YDiff * YDiff +

ZDiff * ZDiff ))))).

211 axiom(manipulator_dist(tcp(X1,Y1,Z1,_,_,_),

tcp(X2 ,Y2 ,Z2 ,_,_,_),10000),

call((

\+ ground(f(X1 ,Y1 ,Z1 ,X2 ,Y2 ,Z2 ))))).

216 axiom(manipulator_dist(_,_,100000) ,

true).

axiom(reachable_with_arm(_X,Y),

call((

221 ground(Y)

->

Y > -300

;

fail))).

226

axiom(can_route(W1 ,W2,Cost),(

call((

ground(W1),

ground(W2))),

231 wm(WorldModel),

call((

once(planner :: plan_atom(WorldModel ,

[route([W1],W1,W2,_R)],P)),

P::cost(Cost ))))).

236

axiom(nav_cost(From ,Mid ,To ,Cost),(

dist(From ,Mid ,Dist1),

dist(Mid ,To,Dist2),

call(Cost is Dist1 + Dist2 ))).

241

axiom(nav_cost2(From ,Mid ,To,Cost),(

dist(From ,Mid ,Dist1),

wm(WorldModel),

call((

246 ground(Mid),

ground(To),

planner :: plan_atom(WorldModel ,

[route([Mid],Mid ,To,_)],P),

P::cost(Dist2),

251 Cost is Dist1+Dist2 )))).

axiom(dist(W1 ,W2 ,Dist),(
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waypoint(W1,X1,Y1),

waypoint(W2,X2,Y2),

256 XDiff is X1 - X2 ,

YDiff is Y1 - Y2 ,

Dist is sqrt(XDiff * XDiff + YDiff * YDiff ))).

axiom(can_traverse_manipulator(C1,M,C2,Cost),

261 can_traverse_manipulator(C2 ,M,C1 ,Cost )).

axiom(direct_path(W1 ,W2),

direct_path(W2,W1)).

266 axiom(neg direct_path(W1 ,W2),

neg direct_path(W2 ,W1)).

axiom(can_traverse(W1 ,W2),

can_traverse(W2 ,W1)).

271

axiom(can_traverse(W1 ,W2),(

can_traverse(L),

call((

list:: select(W1,L,R),

276 list:: select(W2,R,_))))).

axiom(approach_pose(lab_door1 ,pose(w1,deg (270))) ,(

in_room(robot ,lab ))).

281 axiom(approach_pose(lab_door2 ,pose(w10 ,deg (270))) ,(

in_room(robot ,lab ))).

axiom(approach_position(W,X,Y),(

waypoint(W,X,Y))).

286

axiom(in_room(Object ,Room),(

on(Object ,Table),in_room(Table ,Room ))).

axiom(connection(Room1 ,Door ,Room2),

291 connection(Room2 ,Door ,Room1 )).

concept_relation(disjoint ,[ in_hand(_),free(hand )]).

concept_relation(disjoint ,[open(X),closed(X)]).

296 concept_relation(disjoint ,[cup(X),table(X),mug(X),

bottle(X)]).

concept_relation(disjoint ,[mug(X),table(X),mug(X),

bottle(X)]).
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301 concept(default ,defined ,_,true).

concept(default ,max_instances ,unbounded ,true).

concept(default ,interpretation_model ,owa ,true).

concept(table(_),defined ,_,true).

306 concept(cup(_),defined ,_,true).

concept(closed(_),defined ,_,true).

concept(in_hand(_),defined ,_,true).

concept(free(hand),defined ,_,true).

311 concept(in_room(_,_),defined ,_,true).

concept(in_room(ground ,var),i_max_inst_pattern ,1,true).

concept(in_room(_,Room),domain ,room(Room),true).

concept(on(_,_),defined ,_,true).

316 concept(on(ground ,var),i_max_inst_pattern ,1,true).

concept(pos(_,_,_,_),defined ,_,true).

concept(pos(ground ,ground ,var,var),i_max_inst_pattern ,1,

true).

321

concept(at_pose(_,_,_),defined ,_,true).

concept(at_pose(_,_,_),max_instances ,1,true).

concept(connection(_,_,_),defined ,_,true).

326 concept(connection(_,_,_),interpretation_model ,cwa ,true).

concept(reachable_with_arm(_,_),defined ,_,true).

concept(reachable_with_arm(_,_),interpretation_model ,

reasoning ,true).

331

concept(manipulator_config(_),defined ,_,true).

concept(manipulator_config(var),i_max_inst_pattern ,1,true).

concept(approached(_),defined ,_,true).

336 concept(approached(_),interpretation_model ,cwa ,true).

concept(clean(_),defined ,_,true).

concept(clean(_),interpretation_model ,cwa ,true).

341 concept(seen(_),defined ,_,true).

concept(seen(_),interpretation_model ,cwa ,true).

concept(at_wp(_,_),defined ,_,true).

concept(at_wp(ground ,var),i_max_inst_pattern ,1,true).
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346

concept(small_object(_),defined ,_,true).

concept(small_object(X),is_subconcept_of ,object(X),true).

concept(object(_),defined ,_,true).

351 concept(object(_),is_subconcept_of ,thing ,true).

concept(table(_),defined ,_,true).

concept(table(X),is_subconcept_of ,object(X),true).

356 concept(mug(_),defined ,_,true).

concept(mug(X),is_subconcept_of ,small_object(X),true).

concept(mug(X),disjoint_with ,table(X),true).

concept(bottle(_),defined ,_,true).

361 concept(bottle(X),is_subconcept_of ,small_object(X),true).

concept(room(_),defined ,_,true).

concept(room(X),is_subconcept_of ,location(X),true).

366

%% Activities Model

operator(set_ptu(Pan ,Tilt),

true ,

371 [ptu_config(_,_)],

[ptu_config(Pan ,Tilt)],

eval(X, call (X is 5 *6))).

operator(

376 approach_position(_X,_Y),

true ,

[at_pose(_,_,_)],

[],

2).

381

operator(approach_pose_planned(pose(X,Y,Angle)),

true ,

[at_pose(_,_,_)],

[at_pose(X,Y,Angle)],

386 2).

operator(approach_pose_direct(pose(X,Y,Angle)),

true ,

[at_pose(_,_,_)],

391 [at_pose(X,Y,Angle)],
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1).

operator(sense(percept(laser ,

query(open(_D),_I,_C),_Response )),

396 true ,

[],

[],

1).

401 operator(sense(percept(vision ,

query(pos(_Object ,Table ,_X,_Y),_I,_C),_Response )),

approached(Table),

[],

[],

406 10

).

operator(sense(percept(laser ,

query(rel_pos(_Dist ,_Degree),_I,_C),_Response )),

true ,

411 [],

[],

10).

operator(sense(percept(laser ,

416 query(rel_pos(_X,_Y,_Degree),_I,_C),_Response )),

true ,

[],

[],

10).

421

operator(sense(percept(laser ,query(

free_ahead(_Dist ,direct_path(_WP1 ,_WP2)),_I,_C),_Response )),

true ,

[],

426 [],

10

).

operator(sense(percept(call ,

431 query(at_pose(_X,_Y,_Degree),_I,_C),_Response )),

true ,

[],

[],

1).

436

operator(move_forward_no_ca(_Distance),
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true ,

[at_pose(_,_,_),rel_pos(_,_),rel_pos(_,_,_)],

[],

441 5).

operator(mobile_wait_for_completed ,

true ,

[],

446 [],

5).

operator(release_brakes ,

true ,

451 [],

[],

1).

operator(apply_brakes ,

456 true ,

[],

[],

1).

461 operator(move_towards(_Dist ,_Angle),

true ,

[at_pose(_,_,_),rel_pos(_,_),rel_pos(_,_,_)],

[],

1

466 ).

operator(rotate_rel(_Deg),

true ,

[at_pose(_,_,_),rel_pos(_,_),rel_pos(_,_,_)],

471 [],

1).

operator(rotate_abs(_Deg),

true ,

476 [at_pose(_,_,_),rel_pos(_,_),rel_pos(_,_,_)],

[],

1).

481 operator(rotate_towards(_,_),

true ,

[at_pose(_,_,_),rel_pos(_,_),rel_pos(_,_,_)],
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[],

5).

486

operator(start_trajectory_generator ,

available(arm),

[],

[],

491 1).

operator(stop_trajectory_generator ,

available(arm),

[],

496 [],

1).

operator(open_fingers ,

true ,

501 [],

[],

3).

operator(close_fingers ,

506 true ,

[],

[],

3).

511 operator(set_arm_tcp(X,Y,Z,Angle1 ,Angle2 ,Angle3 ,

_Speed ,_Mode),

true ,

[manipulator_config(_)],

[manipulator_config(tcp(X,Y,Z,Angle1 ,Angle2 ,Angle3 ))],

516 10).

operator(set_arm_joints(J1,J2,J3,J4,J5,J6,_Speed ,_Mode),

true ,

[manipulator_config(_)],

521 [manipulator_config(joints(J1,J2,J3,J4,J5,J6))],

5

).

operator(do_route(From ,To),

526 true ,

[],

[],

eval(Dist ,(dist(From ,To ,Dist1), call(Dist is Dist1 )))).
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531

% HTN methods

method(move_manipulator(GoalConfig),

536 manipulator_config(CurrentConfig),

[

start_trajectory_generator ,

move_manipulator ([ CurrentConfig],GoalConfig),

stop_trajectory_generator],

541 no,

0).

method(move_manipulator(_Visited ,GoalConfig),

(

546 manipulator_config(GoalConfig )),

[],

default_name ,

0).

551 method(move_manipulator(_Visited ,GoalConfig),

(

manipulator_config(CurrentConfig),

GoalConfig \= CurrentConfig ,

can_traverse_manipulator(CurrentConfig ,

556 Modus ,GoalConfig ,C)),

[direct_move_manipulator(Modus ,GoalConfig )],

default_name ,

C).

561 method(

move_manipulator ([ LastConf|Visited],GoalConfig),

(

manipulator_config(CurrentConfig),

GoalConfig \= CurrentConfig ,

566 can_traverse_manipulator(CurrentConfig ,Modus ,

SomeConfig ,Cost),

call((

% ensure that no identical config is a member

% of [LastConf|Visited]

571 \+ extlist :: id_member(SomeConfig ,

[LastConf|Visited]),

\+ list:: member(CurrentConfig ,Visited )))

),

[
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576 direct_move_manipulator(Modus ,SomeConfig),

move_manipulator ([ SomeConfig |[ LastConf|Visited]],

GoalConfig )],

default_name ,

Cost).

581

method(direct_move_manipulator(modus(Speed ,Mode),

joints(J1 ,J2 ,J3 ,J4 ,J5 ,J6)),

true ,

[set_arm_joints(J1,J2,J3,J4,J5,J6,Speed ,Mode)],

586 default_name ,

10).

method(direct_move_manipulator(modus(Speed ,Mode),

tcp(P1 ,P2 ,P3 ,Angle1 ,Angle2 ,Angle3)),

591 true ,

[

set_arm_tcp(P1,P2,P3,Angle1 ,

Angle2 ,Angle3 ,Speed ,Mode)],

default_name ,

596 10).

method(move_to(Room),

in_room(robot ,Room),

[],

601 in_goalroom ,

0).

method(move_to(Room),

(

606 in_room(robot ,Other),

connection(Other ,Door ,Room),

open(Door),

at_wp(robot ,From),

approach_pose(Door ,pose(WP,_)),

611 can_route(WP,From ,RouteCost)

),

[cross(Other ,Door ,Room)],

direct_connection ,

RouteCost ).

616

method(move_to(Room),

(in_room(robot ,Room1), corridor \= Room ,

corridor \=Room1),

[move_to(corridor),move_to(Room)],

621 else_to_corridor ,



185

1000000000).

method(pick_up(Object),

(

626 in_hand(Object)

),

[],

nothing_to_do ,

0).

631

method(pick_up(Object),

(

free(hand),

small_object(Object),

636 table(Table),

on(Object ,Table),

at_wp(robot ,From),

From \= unknown ,

approach_pose(Table ,pose(Waypoint ,Angle)),

641 pos(Object ,pose(Waypoint ,Angle),X,Y),

reachable_with_arm(X,Y),

can_route(Waypoint ,From ,RouteCost )),

[

navigate(pose(Waypoint ,Angle)),

646 grab(Object ,pose(Waypoint ,Angle))],

all_known ,

RouteCost ).

method(graspFromTable(X,Y,_Table),

651 (

Y < 200,

XApproach is X -100,

XGrasp is X - 10,

Y2 is Y - 50),

656 [

close_fingers ,

move_manipulator(tcp(XApproach , Y2 , 930, 0, 15, 90)),

open_fingers ,

move_manipulator(tcp(XGrasp , Y2 , 810, 0, 15, 90)),

661 close_fingers ,

move_manipulator(tcp(450, -300, 1100, 0, 15, 90))] ,

default_name ,

100).

666 method(approach_bucket(Dist ,_Angle),

(
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Dist < 600,

DriveDist is (Dist - 640)) ,

[

671 move_forward_no_ca(DriveDist),

mobile_wait_for_completed ,

bin],

to_close ,

100).

676

method(approach_bucket(Dist ,Angle),

(

Dist > 680,

Dist < 1680,

681 DriveDist is Dist - 640),

[

move_towards(DriveDist ,Angle),

mobile_wait_for_completed ,

bin],

686 to_far ,

100).

method(approach_bucket(Dist ,Angle),

(

691 Dist > 600,

Dist < 680),

[

rotate_rel(Angle),

mobile_wait_for_completed ,

696 apply_brakes ,

move_manipulator(tcp(800, 0, 450, 0, 15, 90)),

open_fingers],

dist_ok ,

100).

701

method(approach_grasp_bucket ,

(

rel_pos(Dist ,Angle)),

[approach_grasp_bucket(Dist ,Angle)],

706 default_name ,

100).

method(approach_grasp_bucket(Dist ,_Angle),

(

711 Dist < 600,

DriveDist is (Dist - 640)) ,

[
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move_forward_no_ca(DriveDist),

mobile_wait_for_completed ,

716 approach_grasp_bucket],

to_near ,

100).

method(approach_grasp_bucket(Dist ,Angle),

721 (

Dist > 680,

Dist < 1680,

DriveDist is Dist - 680),

[

726 move_towards(DriveDist ,Angle),

mobile_wait_for_completed ,

approach_grasp_bucket],

to_far ,

100).

731

method(grasp_bucket ,

(

rel_pos(X,Y,Angle)),

[grasp_bucket(X,Y,Angle)],

736 default_name ,

100).

method(route(To,Route),

at_wp(robot ,From),

741 [route ([From],From ,To,Route)],

nothing ,

0).

method(route(Visited ,From ,To,Route),

746 true ,

[route1(Visited ,From ,To,Route)],

r1,

1).

751 method(route(Visited ,From ,To,Route),

true ,

[route2(Visited ,From ,To,Route)],

r2,

2).

756

method(route(Visited ,From ,To,Route),

true ,

[route3(Visited ,From ,To,Route)],
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r3,

761 3).

method(route1(_,To,To ,[]),

true ,

[],

766 nothing ,

0).

method(route2(Visited ,From ,To ,[To]),

(

771 can_traverse(From ,To),

To notin Visited ,

possibly direct_path(From ,To)),

[do_route(From ,To)],

do2 ,

776 eval(Cost ,dist(From ,To ,Cost ))).

method(route3(Visited ,From ,To ,[Mid|Route]),

(

can_traverse(From ,Mid),

781 Mid notin Visited ,

possibly direct_path(From ,Mid)),

[

do_route(From ,To),

route([Mid|Visited],Mid ,To,Route)],

786 do3 ,

eval(Cost ,

(

dist(Mid ,To ,Dist),

Cost is Dist + 10000))).

791

method(navigate(_,_,To),

at_wp(robot ,To),

[],

nothing ,

796 0).

method(navigate(_,From ,To),

(

at_wp(robot ,From), can_traverse(From ,To),

801 direct_path(From ,To)),

[

do_navigate(From ,To)],

do2 ,

1).
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806

method(navigate(Visited ,From ,To),

(

at_wp(robot ,From),

can_traverse(From ,Mid),

811 Mid \= To ,

Mid notin Visited ,

direct_path(From ,Mid)),

[

do_navigate(From ,Mid),

816 navigate ([Mid|Visited],Mid ,To)],

do3 ,

eval(Cost ,nav_cost(From ,Mid ,To ,Cost ))).

method(navigate_via(Visited ,From ,Mid ,To),

821 (

can_route(To,Mid ,_CostMid)

),

[do_navigate(From ,Mid), navigate ([Mid|Visited],Mid ,To)],

default_name ,

826 5).

method(determine(percept(vision ,

query(pos(Object ,Table ,X,Y),I,C),Response)),

true ,

831 [

mobile_wait_for_completed ,

navigate(Table),

mobile_wait_for_completed ,

move_manipulator(joints(0, -61, 60, 0, 20, 0)),

836 sense(percept(vision ,

query(pos(Object ,Table ,X,Y),I,C),

Response ))],

default_name ,

500).

841

method(determine(percept(laser ,

query(rel_pos(Dist ,Angle),I,C),Response)),

true ,

[

846 mobile_wait_for_completed ,

sense(percept(laser ,

query(rel_pos(Dist ,Angle),I,C),Response ))],

default_name ,

50).

851
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method(determine(percept(laser ,

query(rel_pos(X,Y,Angle),_I,_C),Response)),

true ,

[

856 mobile_wait_for_completed ,

sense(percept(laser ,

query(rel_pos(X,Y,Angle),_I,_C),Response ))],

default_name ,

50).

861

method(determine(percept(laser ,

query(open(D),I,C),Response)),

(

approach_pose(D,Goal)),

866 [

navigate(Goal),

mobile_wait_for_completed ,

sense(percept(laser ,query(open(D),I,C),Response ))],

default_name ,

871 50).

method(determine(percept(call ,

query(at_pose(X,Y,Degree),I,C),Response)),

true ,

876 [

sense(percept(call ,

query(at_pose(X,Y,Degree),I,C),Response ))],

default_name ,

50).

881

method(determine(percept(laser ,

query(direct_path(WP1 ,WP2),I,C),response(L,[]))) ,

(

waypoint(WP1 ,X1,Y1),

886 waypoint(WP2 ,X2,Y2)),

[],

[],

[

approach(WP1),

891 determine(percept(laser ,query(reachable(X1,Y1,X2,Y2,

direct_path(WP1 ,WP2)),I,C),Response ))],

default_name ,

eval(percept(laser ,query(direct_path(WP1 ,WP2),I,C),

response(L,[])) ,call((

896 Response :: literal(reachable(X1,Y1,X2,Y2,

direct_path(WP1 ,WP2 )))
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->

L = direct_path(WP1 ,WP2)

;

901 L = neg direct_path(WP1 ,WP2)))),

100).

method(determine(percept(laser ,query(reachable(X1,Y1,X2,Y2,

direct_path(WP1 ,WP2)),I,C),response(L,[]))) ,

906 (

XDiff is X1 - X2 ,

YDiff is Y1 - Y2 ,

Distance is sqrt(XDiff * XDiff + YDiff * YDiff)),

[],

911 [],

[

mobile_wait_for_completed ,

rotate_towards(X2 ,Y2),

mobile_wait_for_completed ,

916 sense(percept(laser ,query(free_ahead(Distance1 ,

direct_path(WP1 ,WP2)),[],C),Response ))],

default_name ,

eval(percept(laser ,query(reachable(X1 ,Y1 ,X2 ,Y2 ,

direct_path(WP1 ,WP2)),I,C),response(L,[])),call((

921 (Response :: literal(free_ahead(Distance1 ,

direct_path(WP1 ,WP2))), Distance < Distance1)

->

L = reachable(X1,Y1,X2,Y2,direct_path(WP1 ,WP2))

;

926 L = neg reachable(X1,Y1,X2,Y2,direct_path(WP1 ,WP2))

))),

100).

method(approach_grasp_bucket(Dist ,_Angle),

931 (

Dist > 600,

Dist < 680),

[approached(_)],

[approached(grasp_bin )],

936 [],

default_name ,

no_percepts ,

100).

941 method(cross(From ,Door ,To),

(

in_room(robot ,From),
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approach_pose(cross(From ,Door ,To),Pose)),

[in_room(robot ,From)],

946 [in_room(robot ,To)],

[navigate(Pose)],

default_name ,

no_percepts ,

5).

951

method(grab(Object ,Table),

(

free(hand),

pos(Object ,Table ,X,Y)),

956 [free(hand)],

[in_hand(Object)],

[graspFromTable(X,Y,Table)],

default_name ,

no_percepts ,

961 5).

method(grab(Object ,_Table),

in_hand(Object),

[],

966 [],

[],

nothing_to_do ,

no_percepts ,

0).

971

method(approach(Entity),

approached(Entity),

[],

[],

976 [],

default_name ,

no_percepts ,

0).

981 method(approach(Entity),

(

\+ approached(Entity),

approach_position(Entity ,X,Y)),

[approached(_)],

986 [approached(Entity)],

[

mobile_wait_for_completed ,

approach_position(X,Y)],
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default_name ,

991 no_percepts ,

50).

method(approach(Entity),

(

996 neg approached(Entity),

approach_pose(Entity ,

planned_final(

pose(X,Y,Angle),

pose(X2 ,Y2 ,Angle2 )))),

1001 [approached(_)],

[approached(Entity)],

[

approach_pose_planned(pose(X,Y,Angle)),

approach_pose_direct(pose(X2 ,Y2 ,Angle2 ))],

1006 default_name ,

no_percepts ,

50).

method(approach(Entity),

1011 (

neg approached(Entity),

approach_pose(Entity ,pose(X,Y,Angle ))),

[approached(_)],

[approached(Entity)],

1016 [approach_pose_planned(pose(X,Y,Angle ))],

default_name ,

no_percepts ,

35).

1021 method(

bin ,

rel_pos(Dist ,Angle),

[in_hand(X)],

[free(hand),

1026 in_bin(X)],

[

release_brakes ,

approach_bucket(Dist ,Angle)],

default_name ,

1031 no_percepts ,

50).

method(pick_up_bucket ,

in_hand(garbage_can),
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1036 [],

[],

[],

default_name ,

no_percepts ,

1041 0).

method(pick_up_bucket ,

(

free(hand),

1046 rel_pos(Dist ,Angle),

neg approached(grasp_bin)),

[],

[],

[

1051 approach_grasp_bucket(Dist ,Angle),

grasp_bucket],

default_name ,

no_percepts ,

50).

1056

method(

pick_up_bucket ,

(

free(hand),

1061 approached(grasp_bin )),

[],

[],

[grasp_bucket],

default_name ,

1066 no_percepts ,

50).

method(put_down_garbage_can ,

in_hand(_),

1071 [in_hand(_)],

[free(hand)],

[

mobile_wait_for_completed ,

start_trajectory_generator ,

1076 set_arm_tcp (600, -250, 950, 0,90,-90, 0.5, 99),

set_arm_tcp (600, 150, 420, 0,90,-90, 0.3, 99),

set_arm_tcp (600, -150, 370, 0,90,-90, 0.2, 99),

open_fingers ,

set_arm_joints ( -90.000 , -61.000 ,152.000 ,0.000 ,

1081 20.000 , -90.000 ,0.3 ,106) ,
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stop_trajectory_generator],

default_name ,

no_percepts ,

100).

1086

method(put_down_garbage_can ,

free(hand),

[],

[],

1091 [],

default_name ,

no_percepts ,

100).

1096 method(clean_obj(Obj),

(

on(Obj ,_Table)),

[],

[],

1101 [

pick_up(Obj),

navigate_to_entity(bin),

bin],

on_table ,

1106 no_percepts ,

5).

method(clean_obj(Obj),

(

1111 in_hand(Obj)),

[],

[],

[

navigate_to_entity(bin),

1116 bin],

in_hand ,

no_percepts ,

2).

1121 method(clean_obj(Obj),

in_bin(Obj),

[],

[],

[],

1126 nothing_to_do ,

no_percepts ,
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0).

method(clean(Table),

1131 (

neg clean(Table),

free(hand),

on(Obj ,Table)),

[],

1136 [clean(Table)],

[

pick_up(Obj),

navigate_to_entity(bin),

bin],

1141 hand_free ,

no_percepts ,

5).

method(clean(Table),

1146 (

neg clean(Table),

neg free(hand)),

[],

[clean(Table)],

1151 [

navigate_to_entity(bin),

bin],

in_hand ,

no_percepts ,

1156 2).

method(clean(Table),

clean(Table),

[],

1161 [],

[],

nothing_to_do ,

no_percepts ,

0).

1166

method(navigate_to_entity(E),

(Except the adaption of

the set of facts all

at_wp(robot ,From),

1171 From \= unknown ,

approach_pose(E,pose(Waypoint ,Angle)),

can_route(Waypoint ,From ,RouteCost )),
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[],

[],

1176 [navigate(pose(Waypoint ,Angle ))],

default_name ,

no_percepts ,

RouteCost ).

1181 method(grasp_bucket(X,Y,_Angle),

true ,

[free(hand)],

[in_hand(garbage_can )],

[

1186

open_fingers ,

move_manipulator(tcp(800, 0, 600, 0, 90, 0)),

start_trajectory_generator ,

set_arm_tcp(X,Y,320, 0, 90, 0, 0.1, 106),

1191 close_fingers ,

set_arm_tcp (600, -250, 950,0, 90, -90, 0.2, 99),

set_arm_tcp (250, -210, 1100,0, 90, -90, 0.5, 99),

stop_trajectory_generator],

default_name ,

1196 no_percepts ,

100).

method(clearance(_),

true ,

1201 [],

[],

[

clean_obj(blue_bottle),

clean_obj(yellow_bottle),

1206 clean_obj(big_bottle),

clean_obj(big_bottle2),

clean_obj(big_bottle3),

pick_up_bucket ,

move_to(corridor),

1211 put_down_garbage_can],

default_name ,

no_percepts ,

20).

1216

method(

do_navigate(From ,To),

true ,
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[at_wp(robot ,From)],

1221 [at_wp(robot ,To)],

[approach(To)],

default_name ,

no_percepts ,

1).

1226

method(

go_on_roadmap(From),

(

at_wp(robot ,From),

1231 From \= unknown),

[],

[],

[],

default_name ,

1236 no_percepts ,

0).

method(

go_on_roadmap(W),

1241 (

at_wp(robot ,unknown),

at_pose(X,Y,_Angle),

waypoint(W,WX,WY)),

[at_wp(robot ,unknown)],

1246 [at_wp(robot ,W)],

[approach_pose_planned(pose(WX,WY,deg (0)))] ,

default_name ,

no_percepts ,

eval(Cost ,(

1251 call((

(ground(X),ground(Y)) ->

(

XDiff is X - WX,

YDiff is Y - WY,

1256 Cost is sqrt(XDiff * XDiff

+ YDiff * YDiff)

)

;

Cost = 100000000))))).

1261

method(ensure_drive_pose ,

(

free(hand),

neg manipulator_config(joints ( -90.000 , -61.000 ,
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1266 152.000 ,0.000 ,20.000 , -90.000))) ,

[],

[drive_pose],

[move_manipulator(joints ( -90.000 , -61.000 ,

152.000 ,0.000 ,20.000 , -90.000))] ,

1271 default_name ,

no_percepts ,

10000).

method(ensure_drive_pose ,

1276 (

in_hand(_)

;

manipulator_config(joints ( -90.000 , -61.000 ,

152.000 ,0.000 ,20.000 , -90.000))

1281 ),

[],

[],

[],

nothing_to_do ,

1286 no_percepts ,

0).

method(navigate(pose(To,deg(_Angle ))),

at_wp(robot ,To),

1291 [],

[],

[],

nothing ,

no_percepts ,

1296 0).

method(navigate(To),

(waypoint(To,_,_)),

[approached(_)],

1301 [approached(To)],

[

ensure_drive_pose ,

go_on_roadmap(From),

navigate ([From],From ,To)],

1306 do_nav ,

no_percepts ,

10000).

method(navigate(pose(To,deg(Angle ))),

1311 (
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neg at_wp(robot ,To),

waypoint(To,_,_)),

[approached(_)],

[approached(pose(To,deg(Angle )))],

1316 [

ensure_drive_pose ,

go_on_roadmap(From),

navigate ([From],From ,To),

rotate_abs(Angle),

1321 mobile_wait_for_completed],

do_nav2 ,

no_percepts ,

10000).

1326 :- end_object.

For the simulated-based experiments described in Section 9.2.2, the domain spec-
ification shown in Listing B.1 is successively extended by additional facts. Except
for adaptions of the set of facts, all other parts of the domain model specification
are identical for all experiments with the service robotic domain.

Listing B.2 shows a domain model specification for a small instance (i.e., with a
small number of facts) of the blocks world domain. For clarity reasons, this instance
is significantly smaller than the instances that were used for the experiments. Except
for adaptions of the set of facts, all other parts of the domain model specification
are identical for all experiments with this blocks world domain.

Listing B.2: Domain model specification of a small instance of the blocks world
domain.

:- object(blocks_datastore ,

instantiates(model_datastore )).

4 :- dynamic(fact/1).

:- dynamic(axiom/2).

domain(blocks ).

9 fact(on(b15 ,b20)).

fact(on(b24 ,b9)).

fact(on(b20 ,b21)).

fact(on(b21 ,b1)).

fact(on(b9,b23)).

14 fact(on(b6,b22)).

fact(on(b22 ,b8)).

fact(on(b12 ,b25)).

fact(on(b23 ,b2)).

fact(on(b2,b16)).



201

19 fact(on(b8,b11)).

fact(on(b25 ,b10)).

fact(on(b1,b4)).

fact(on(b10 ,b17)).

fact(on(b17 ,b7)).

24 fact(on(b11 ,b14)).

fact(on(b7,b18)).

fact(on(b4,b5)).

fact(on_table(b5)).

fact(on_table(b14)).

29 fact(on(b18 ,b13)).

fact(on(b16 ,b19)).

fact(on(b13 ,b3)).

fact(on_table(b19)).

fact(on_table(b3)).

34 fact(clear(b6)).

fact(clear(b12)).

fact(clear(b15)).

fact(clear(b24)).

39 axiom(

neg clear(Y),

on(_,Y)).

axiom(

44 neg on(_,Y),

clear(Y)).

axiom(

neg on(X,Y),

49 (

on(X,Z),

Z \= Y

)

).

54

axiom(neg on(X,Y),

(

on(Z,Y),

Z \= X)).

59

concept(default/0,defined ,_,true).

concept(default ,max_instances ,unbounded ,true).

concept(default ,interpretation_model ,owa ,true).

64



202 Symbolic Domain Descriptions

concept(on/2,defined ,_,true).

concept(on(Object ,_),max_instances ,1,ground(Object )).

concept(on(_,Object),max_instances ,1,ground(Object )).

69

operator(pickup(A),

(

clear(A),

on_table(A)),

74 [

clear(A),

on_table(A)],

[holding(A)],

1).

79

operator(putdown(B),

(holding(B)),

[holding(B)],

[on_table(B),clear(B)],

84 1).

operator(

stack(C,D),

(holding(C),clear(D)),

89 [holding(C),clear(D)],

[on(C,D),clear(C)],

1).

operator(

94 unstack(E,F),

(clear(E),on(E,F)),

[clear(E),on(E,F)],

[holding(E),clear(F)],

1).

99

operator(

sense(percept(percept ,_,_)),

true ,

[],

104 [],

1).

method(

109 put_on(X,Y),

(on(X,Y)),
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[],

nothing_to_do ,

0).

114

method(

put_on(X,Y),

true ,

[make_clear(X),make_clear(Y),move(X,Y)],

119 make_clear ,

0.1).

method(

make_clear(Block),

124 clear(Block),

[],

nothing_left ,

0).

129 method(

make_clear(Block),

on(Block2 ,Block),

[make_clear(Block2),unstack(Block2 ,Block),

putdown(Block2)],

134 putdown_indirect_on ,

0.1).

method(

move(X,Y),

139 (clear(Y),clear(X),on(X,Z)),

[unstack(X,Z),stack(X,Y)],

on_table ,

1).

144 method(

move(X,Y),

(clear(Y),clear(X),on_table(X)),

[pickup(X),stack(X,Y)],

on_table2 ,

149 1).

method(determine(percept(percept ,query(Q,I,C),Response)),

true ,

[sense(percept(percept ,query(Q,I,C),Response ))],

154 dc1 ,

5000).
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:- end_object.

Listing B.3 shows a domain model specification for a small instance (i.e., with a
small number of facts) of the depots domain. For clarity reasons, this instance is
significantly smaller than the instances that were used for the experiments. Except
for adaptions of the set of facts, all other parts of the domain model specification
are identical for all experiments with this depots domain.

Listing B.3: Domain model specification of a small instance of the depots domain.

:- object(depots_datastore ,

instantiates(model_datastore )).

3

:- dynamic(fact/1).

:- dynamic(axiom/2).

domain(depots ).

8

fact(depot(depot0 )).

fact(distributor(distributor0 )).

fact(distributor(distributor1 )).

fact(truck(truck0 )).

13 fact(truck(truck1 )).

fact(pallet(pallet0 )).

fact(pallet(pallet1 )).

fact(pallet(pallet2 )).

fact(crate(crate0 )).

18 fact(crate(crate1 )).

fact(crate(crate2 )).

fact(crate(crate3 )).

fact(crate(crate4 )).

fact(crate(crate5 )).

23 fact(hoist(hoist0 )).

fact(hoist(hoist1 )).

fact(hoist(hoist2 )).

fact(at(pallet0 ,depot0 )).

fact(clear(crate1 )).

28 fact(at(pallet1 ,distributor0 )).

fact(clear(crate4 )).

fact(at(pallet2 ,distributor1 )).

fact(clear(crate5 )).

fact(at(truck0 ,depot0 )).

33 fact(at(truck1 ,distributor0 )).

fact(at(hoist0 ,depot0 )).

fact(available(hoist0 )).

fact(at(hoist1 ,distributor0 )).

fact(available(hoist1 )).
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38 fact(at(hoist2 ,distributor1 )).

fact(available(hoist2 )).

fact(at(crate0 ,distributor0 )).

fact(on(crate0 ,pallet1 )).

fact(at(crate1 ,depot0 )).

43 fact(on(crate1 ,pallet0 )).

fact(at(crate2 ,distributor1 )).

fact(on(crate2 ,pallet2 )).

fact(at(crate3 ,distributor0 )).

fact(on(crate3 ,crate0 )).

48 fact(at(crate4 ,distributor0 )).

fact(on(crate4 ,crate3 )).

fact(at(crate5 ,distributor1 )).

fact(on(crate5 ,crate2 )).

53

axiom(neg at(Crate ,Location),

(

at(Crate ,Location1),

Location1 \= Location )).

58

axiom(neg on(X,Y),

(

on(X,Z),

Z \= Y)).

63

axiom(neg on(X,Y),

(

on(Z,Y),

Z \= X)).

68

axiom(neg lifting(_,Y),

(

at(Y,_))).

73 axiom(neg clear(Y),

(

on(Y,_))).

concept_relation(disjoint ,

78 [hoist(X),truck(X),crate(X),pallet(X)]).

concept_relation(disjoint ,[ available(X),lifting(X,_)]).

concept_relation(disjoint ,[on(_,X),clear(X)]).

83 concept(default ,defined ,_,true).
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concept(default ,max_instances ,unbounded ,true).

concept(default ,interpretation_model ,owa ,true).

concept(at(_,_),defined ,_,true).

88 concept(at(ground ,var),i_max_inst_pattern ,1,true).

concept(clear(_),defined ,_,true).

concept(clear(X),is_subconcept_of ,crate(X),true).

93 concept(lifting(_,_),defined ,_,true).

concept(lifting(X,_),max_instances ,0,

(call(ground(X)), available(X))).

concept(on(_,_),defined ,_,true).

98 concept(on(_,X),max_instances ,0,(call(ground(X)),clear(X))).

concept(object(_),defined ,_,true).

concept(object(_),is_subconcept_of ,thing ,true).

103 concept(locatable(_),defined ,_,true).

concept(locatable(X),is_subconcept_of ,object(X),true).

concept(place(_),defined ,_,true).

concept(place(X),is_subconcept_of ,object(X),true).

108

concept(depot(_),defined ,_,true).

concept(depot(X),is_subconcept_of ,place(X),true).

concept(distributor(_),defined ,_,true).

113 concept(distributor(X),is_subconcept_of ,place(X),true).

concept(truck(_),defined ,_,true).

concept(truck(X),is_subconcept_of ,locatable(X),true).

118 concept(hoist(_),defined ,_,true).

concept(hoist(X),is_subconcept_of ,locatable(X),true).

concept(available(_),defined ,_,true).

concept(available(X),is_subconcept_of ,hoist(X),true).

123

concept(surface(_),defined ,_,true).

concept(surface(X),is_subconcept_of ,locatable(X),true).

concept(pallet(_),defined ,_,true).

128 concept(pallet(X),is_subconcept_of ,surface(X),true).
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concept(crate(_),defined ,_,true).

concept(crate(X),is_subconcept_of ,surface(X),true).

concept(crate(X),disjoint_with ,hoist(X),true).

133

operator(drive(Truck ,Start ,Dest),

once at(Truck ,Start),

138 [at(Truck ,Start)],

[at(Truck ,Dest)],

1).

operator(lift(Hoist ,Crate ,Surface ,Place),

143 once (at(Hoist ,Place),available(Hoist),at(Crate ,Place),

on(Crate ,Surface),clear(Crate)),

[at(Crate ,Place),clear(Crate),available(Hoist),

on(Crate ,Surface)],

[lifting(Hoist ,Crate),clear(Surface)],

148 1).

operator(drop(Hoist ,Crate ,Surface ,Place),

once (

at(Hoist ,Place),

153 at(Surface ,Place),

clear(Surface),

lifting(Hoist ,Crate)),

[lifting(Hoist ,Crate),clear(Surface)],

[

158 available(Hoist),

at(Crate ,Place),

clear(Crate),

on(Crate ,Surface)],

1).

163

operator(load(Hoist ,Crate ,Truck ,Place),

once (

lifting(Hoist ,Crate),

truck(Truck),

168 at(Hoist ,Place),

at(Truck ,Place)),

[lifting(Hoist ,Crate)],

[in(Crate ,Truck),available(Hoist)],

1).

173

operator(unload(Hoist ,Crate ,Truck ,Place),

once (
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at(Hoist ,Place),

at(Truck ,Place),

178 available(Hoist),

in(Crate ,Truck)),

[in(Crate ,Truck),available(Hoist)],

[lifting(Hoist ,Crate)],

1).

183

operator(sense(percept(percept ,query(_X,_I,_C),_Response )),

true ,

[],

[],

188 1).

operator(sense(query(at(_A,_B),_,_),perception),

true ,

[],

193 [],

10).

method(deliver(Crate ,Place),

198 at(Crate ,Place),

[],

nothing_to_do ,

0).

203 method(deliver(Crate ,_Place),

(lifting(Hoist ,Crate)),

[drop(Hoist ,Crate ,_Surface2 ,_)],

default_name ,

10).

208

method(deliver(Crate ,Place),

in(Crate ,Truck),

[

drive(Truck ,_,Place),

213 make_hoist_available(Place),

unload(_H,Crate ,Truck ,Place),

drop(_Hoist2 ,Crate ,_Surface2 ,Place)],

default_name ,

10).

218

method(

deliver(Crate ,Place),

(
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at(Crate ,Place2),

223 Place2 \= Place),

[

make_clear(Crate ,Place2),

move(Crate ,Place)],

default_name ,

228 100).

method(move(Crate ,Place),

at(Crate ,Place),

[],

233 default_name ,

0).

method(move(Crate ,Place),

(

238 neg at(Crate ,Place),

at(Crate ,Place2)),

[

make_truck_available(Place2),

lift(Hoist ,Crate ,_Surface ,Place2),

243 load(Hoist ,Crate ,Truck ,Place2),

drive(Truck ,Place2 ,Place),

make_hoist_available(Place),

unload(_Hoist2 ,Crate ,Truck ,Place),

drop(_Hoist2 ,Crate ,_Surface2 ,Place)],

248 default_name ,

10).

method(make_truck_available(Place),

once (

253 truck(Truck),

at(Truck ,Place)),

[],

nothing_to_do ,

0).

258

method(make_truck_available(Place),

once (

truck(Truck),

neg at(Truck ,Place)),

263 [drive(Truck ,_Start ,Place)],

drive ,

0.1).

method(make_hoist_available(Place),
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268 once (

available(H),

at(H,Place)),

[],

nothing_to_do ,

273 0).

method(make_hoist_available(Place),

once (

hoist(H),

278 at(H,Place),

lifting(H,C)),

[drop(H,C,_Surface ,Place)],

drop ,

10).

283

method(make_clear(Surface ,_),

clear(Surface),

[],

nothing_left ,

288 0).

method(make_clear(Surface ,Place),

once (on(Surface2 ,Surface),place(Place2),Place2 \= Place),

[make_clear(Surface2 ,Place),move(Surface2 ,Place2)],

293 make_clear_top ,

0.1).

method(determine(percept(percept ,query(X,I,C),Response)),

true ,

298 [sense(percept(percept ,query(X,I,C),Response ))],

default_name ,

5000).

:- end_object.

Listing B.4 shows a domain model specification for a small instance (i.e., with a
small number of facts) of the rovers domain. For clarity reasons, this instance is
significantly smaller than the instances that were used for the experiments. Except
for adaptions of the set of facts, all other parts of the domain model specification
are identical for all experiments with this rovers domain.

The external method

acog reasoner::not tried without gain as(AS)

(used in the domain specification) determines whether there is no unaware (see
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Definition 4.11) knowledge source that renders the knowledge acquisition scheme
(AS) useless. Explicitly calling this reasoning procedure can be necessary if the sub-
stitutions that are applied to a precondition during the instantiation process also
instantiate the knowledge acquisition task and in this way possibly make correspond-
ing knowledge sources unaware.

Listing B.4: Domain model specification of a small instance for the rovers domain.

:- object(rovers_datastore ,

3 instantiates(model_datastore )).

:- dynamic(fact/1).

:- dynamic(axiom/2).

8 domain(rovers ).

fact(approach_percept_query(at_soil_sample(W),W)).

fact(approach_percept_query(at_rock_sample(W),W)).

13 fact(visible(waypoint1 ,waypoint0 )).

fact(visible(waypoint0 ,waypoint1 )).

fact(visible(waypoint2 ,waypoint0 )).

fact(visible(waypoint0 ,waypoint2 )).

fact(visible(waypoint2 ,waypoint1 )).

18 fact(visible(waypoint1 ,waypoint2 )).

fact(visible(waypoint3 ,waypoint0 )).

fact(visible(waypoint0 ,waypoint3 )).

fact(visible(waypoint3 ,waypoint1 )).

fact(visible(waypoint1 ,waypoint3 )).

23 fact(visible(waypoint3 ,waypoint2 )).

fact(visible(waypoint2 ,waypoint3 )).

fact(at_soil_sample(waypoint0 )).

fact(at_rock_sample(waypoint1 )).

fact(at_soil_sample(waypoint2 )).

28 fact(at_rock_sample(waypoint2 )).

fact(at_soil_sample(waypoint3 )).

fact(at_rock_sample(waypoint3 )).

fact(at_lander(general ,waypoint0 )).

fact(channel_free(general )).

33 fact(at(rover0 ,waypoint3 )).

fact(available(rover0 )).

fact(store_of(rover0store ,rover0 )).

fact(empty(rover0store )).

fact(equipped_for_soil_analysis(rover0 )).

38 fact(equipped_for_rock_analysis(rover0 )).

fact(equipped_for_imaging(rover0 )).
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fact(can_traverse(rover0 ,waypoint3 ,waypoint0 )).

fact(can_traverse(rover0 ,waypoint0 ,waypoint3 )).

fact(can_traverse(rover0 ,waypoint3 ,waypoint1 )).

43 fact(can_traverse(rover0 ,waypoint1 ,waypoint3 )).

fact(can_traverse(rover0 ,waypoint1 ,waypoint2 )).

fact(can_traverse(rover0 ,waypoint2 ,waypoint1 )).

fact(on_board(camera0 ,rover0 )).

fact(calibration_target(camera0 ,objective1 )).

48 fact(supports(camera0 ,colour )).

fact(supports(camera0 ,high_res )).

fact(visible_from(objective0 ,waypoint0 )).

fact(visible_from(objective0 ,waypoint1 )).

fact(visible_from(objective0 ,waypoint2 )).

53 fact(visible_from(objective0 ,waypoint3 )).

fact(visible_from(objective1 ,waypoint0 )).

fact(visible_from(objective1 ,waypoint1 )).

fact(visible_from(objective1 ,waypoint2 )).

fact(visible_from(objective1 ,waypoint3 )).

58

% can_traverse is symmetric

axiom(can_traverse(R,W1 ,W2),

can_traverse(R,W2 ,W1)).

63

% visible is symmetric

axiom(visible(W1 ,W2),

visible(W2 ,W1)).

68

concept(default/0,defined ,_,true).

concept(default ,max_instances ,unbounded ,true).

concept(default ,interpretation_model ,owa ,true).

73 concept(approach_percept_query /2,defined ,_,true).

concept(approach_percept_query(_,_),interpretation_model ,

cwa ,true).

concept(at_lander /2,defined ,_,true).

78 concept(at_lander(_,_),max_instances ,1,true).

concept(at/2,defined ,_,true).

concept(at(ground ,var),i_max_inst_pattern ,1,true).

83 concept(visited/1,defined ,_,true).

concept(visited(X),interpretation_model ,cwa ,call(ground(X))).
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concept(seen/1,defined ,_,true).

concept(seen(_),interpretation_model ,cwa ,true).

88

operator(do_navigate(X,Y,Z),

(

can_traverse(X,Y,Z), available(X), at(X,Y),

93 visible(Y,Z)),

[at(X,Y)],

[at(X,Z),seen(Y),seen(Z)],

1).

98 operator(

sample_soil(X,S,P),

(

at(X,P),

at_soil_sample(P), equipped_for_soil_analysis(X),

103 store_of(S,X), empty(S)),

[empty(S), at_soil_sample(P)],

[full(S), have_soil_analysis(X,P)],

1).

108 operator(sample_rock(X,S,P),

(

at(X,P),

at_rock_sample(P), equipped_for_rock_analysis(X),

store_of(S,X), empty(S)),

113 [empty(S), at_rock_sample(P)],

[full(S), have_rock_analysis(X,P)],

1).

operator(drop(X,Y),

118 (

store_of(Y,X), full(Y)),

[full(Y)],

[empty(Y)],

1).

123

operator(calibrate(R,I,T,W),

(

equipped_for_imaging(R), calibration_target(I,T),

at(R,W), visible_from(T,W), on_board(I,R) ),

128 [],

[calibrated(I,R)],

1).
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operator(take_image(R,P,O,I,M),

133 (

calibrated(I,R), on_board(I,R),

equipped_for_imaging(R), supports(I,M),

visible_from(O,P), at(R,P)),

[calibrated(I,R)],

138 [have_image(R,O,M)],

1).

operator(communicate_soil_data(R,L,P,X,Y),

(

143 at(R,X), at_lander(L,Y),

have_soil_analysis(R,P), visible(X,Y),

available(R), channel_free(L)),

[available(R), channel_free(L)],

[

148 channel_free(L),communicated_soil_data(P),

available(R)],

1).

operator(communicate_rock_data(R,L,P,X,Y),

153 (

at(R,X), at_lander(L,Y),

have_rock_analysis(R,P), visible(X,Y),

available(R), channel_free(L)),

[available(R), channel_free(L)],

158 [

channel_free(L),communicated_rock_data(P),

available(R)],

1).

163 operator(communicate_image_data(R,L,O,M,X,Y),

(

at(R,X),at_lander(L,Y),have_image(R,O,M),

visible(X,Y), available(R), channel_free(L)),

[available(R), channel_free(L)],

168 [

channel_free(L),

communicated_image_data(O), available(R)],

1).

173 operator(Visit(Waypoint),

true ,

[],

[visited(Waypoint)],

1).
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178

operator(unvisit(Waypoint),

true ,

[visited(Waypoint)],

[],

183 1).

operator(sense(percept(oracle ,_,_)),

true ,

[],

188 [],

10).

operator(sense(percept(perception ,

query(can_traverse(R,X,_Y),_,_),_Response )),

193 at(R,X),

[],

[],

10).

198 operator(sense(percept(perception ,

query(visible(X,_Y),_,_),_Response )),

at(_R ,X),

[],

[],

203 10).

operator(sense(percept(perception ,

query(at_soil_sample(Waypoint),_,_),_Response )),

at(_R ,Waypoint),

208 [],

[],

10).

operator(sense(percept(perception ,

213 query(at(_,_),_,_),_Response )),

true ,

[],

[],

10).

218

operator(sense(percept(perception ,

query(at_lander(_,_),_,_),_Response )),

true ,

[],

223 [],
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10).

operator(sense(percept(perception ,

query(channel_free(_),_,_),_Response )),

228 true ,

[],

[],

10).

233 operator(sense(percept(perception ,

query(available(_),_,_),_Response )),

true ,

[],

[],

238 10).

operator(sense(percept(perception ,

query(store_of(_,_),_,_),_Response )),

true ,

243 [],

[],

10).

operator(sense(percept(perception ,

248 query(empty(_),_,_),_Response )),

true ,

[],

[],

10).

253

operator(sense(percept(perception ,

query(equipped_for_soil_analysis(_),_,_),_Response )),

true ,

[],

258 [],

10

).

operator(sense(percept(perception ,

263 query(equipped_for_rock_analysis(_),_,_),_Response )),

true ,

[],

[],

10

268 ).
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operator(sense(percept(perception ,

query(equipped_for_imaging(_),_,_),_Response )),

true ,

273 [],

[],

10

).

278 operator(sense(percept(perception ,

query(on_board(_,_),_,_),_Response )),

true ,

[],

[],

283 10

).

operator(sense(percept(perception ,

query(calibration_target(_,_),_,_),_Response )),

288 true ,

[],

[],

10

).

293

operator(sense(percept(perception ,

query(supports(_,_),_,_),_Response )),

true ,

[],

298 [],

10

).

operator(sense(percept(perception ,

303 query(waypoint(_),_,_),_Response )),

true ,

[],

[],

10).

308

method(empty_store(S,_),

empty(S),

[],

313 nothing ,

0).
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method(empty_store(S,Rover),

full(S),

318 [drop(Rover ,S)],

do,

0.1).

method(navigate(Rover ,To),

323 at(Rover ,From),

[navigate(Rover ,[From],From ,To)],

do1 ,

1).

328 method(navigate(Rover ,_,_,To),

at(Rover ,To),

[],

nothing ,

0).

333

method(navigate(Rover ,_,From ,To),

can_traverse(Rover ,From ,To),

[do_navigate(Rover ,From ,To)],

do2 ,

338 100).

method(navigate(Rover ,Visited ,From ,To),

(

can_traverse(Rover ,From ,Mid), Mid notin Visited ,

343 neg seen(Mid)),

[

do_navigate(Rover ,From ,Mid),

navigate(Rover ,[Mid|Visited],Mid ,To)],

do3 ,

348 200000).

method(navigate(Rover ,Visited ,From ,To),

(

can_traverse(Rover ,From ,Mid),

353 seen(Mid), Mid notin Visited),

[

do_navigate(Rover ,From ,Mid),

navigate(Rover ,[Mid|Visited],Mid ,To)],

do3 ,

358 10000000).

method(send_soil_data(Rover ,Waypoint),

(
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at_lander(L,Y),

363 visible(X,Y)),

[

navigate(Rover ,X),

communicate_soil_data(Rover ,L,Waypoint ,X,Y)],

do1 ,

368 10).

method(get_soil_data(Waypoint),

(

have_soil_analysis(Rover ,Waypoint)),

373 [send_soil_data(Rover ,Waypoint)],

default_name ,

1).

method(get_soil_data(Waypoint),

378 (

store_of(S,Rover),

equipped_for_soil_analysis(Rover)),

[

navigate(Rover ,Waypoint),

383 empty_store(S,Rover),

sample_soil(Rover ,S,Waypoint),

send_soil_data(Rover ,Waypoint)],

default_name ,

1000).

388

method(send_rock_data(Rover ,Waypoint),

(

at_lander(L,Y),

visible(X,Y)),

393 [

navigate(Rover ,X),

communicate_rock_data(Rover ,L,Waypoint ,X,Y)],

do1 ,

10).

398

method(get_rock_data(Waypoint),

(

equipped_for_rock_analysis(Rover),

store_of(S,Rover)),

403 [

navigate(Rover ,Waypoint),

empty_store(S,Rover),

sample_rock(Rover ,S,Waypoint),

send_rock_data(Rover ,Waypoint)
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408 ],

do1 ,

100).

method(

413 send_image_data(Rover ,Objective ,Mode),

(

at_lander(L,Y),

visible(X,Y)),

[navigate(Rover ,X),

418 communicate_image_data(Rover ,L,Objective ,Mode ,X,Y)],

do1 ,

10).

method(

423 get_image_data(Objective ,Mode),

(

equipped_for_imaging(Rover),

on_board(Camera ,Rover),

supports(Camera ,Mode),

428 visible_from(Objective ,Waypoint)),

[

calibrate(Rover ,Camera),

navigate(Rover ,Waypoint),

take_image(Rover ,Waypoint ,Objective ,Camera ,Mode),

433 send_image_data(Rover ,Objective ,Mode)],

do1 ,

100).

method(

438 calibrate(Rover ,Camera),

(

calibration_target(Camera ,Objective),

visible_from(Objective ,Waypoint)),

[

443 navigate(Rover ,Waypoint),

calibrate(Rover ,Camera ,Objective ,Waypoint)],

do1 ,

5).

448 method(determine(percept(perception ,

query(can_traverse(R,X,Y),I,C),Response)),

at(R,X),

[

sense(percept(perception ,

453 query(can_traverse(R,X,Y),I,C),Response ))],
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dc1 ,

50).

method(determine(percept(perception ,

458 query(can_traverse(R,X,Y),I,C),Response)),

true ,

[

navigate(R,X),

sense(percept(perception ,

463 query(can_traverse(R,X,Y),I,C),Response ))],

dc1 ,

500).

method(determine(percept(perception ,

468 query(visible(W1,W2),I,C),Response)),

(

at(_,W1), oe visible(W1 ,W2), visible(W1 ,W2) notin I,

call(acog_reasoner ::

not_tried_without_gain_as(

473 [ac(perception ,visible(W1,W2))])) ),

[

sense(percept(perception ,

query(visible(W1 ,W2),I,C),Response ))],

dc1 ,

478 50).

method(determine(percept(perception ,

query(visible(W1,W2),I,C),Response)),

(

483 at(_,W2), oe visible(W1 ,W2), visible(W1 ,W2) notin I,

call(acog_reasoner :: not_tried_without_gain_as(

[ac(perception ,visible(W1,W2))]))) ,

[sense(percept(perception ,

query(visible(W1,W2),I,C),Response ))],

488 dc1 ,

50).

method(determine(percept(perception ,

query(visible(W1,W2),I,C),Response)),

493 (

can_traverse(R,_,W1), oe visible(W1 ,W2),

visible(W1 ,W2) notin I,

call(acog_reasoner :: not_tried_without_gain_as(

[ac(perception ,visible(W1,W2))]))) ,

498 [

navigate(R,W1),
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sense(percept(perception ,

query(visible(W1 ,W2),I,C),Response ))],

dc1 ,

503 500).

method(determine(percept(perception ,query(Q,I,C),Response)),

(

approach_percept_query(Q,W),

508 at(_,W)),

[sense(percept(perception ,query(Q,I,C),Response ))],

dc1 ,

50).

513 method(determine(percept(perception ,query(Q,I,C),Response)),

(approach_percept_query(Q,W),

neg at(_,W)),

[

navigate(_R,W),

518 sense(percept(perception ,query(Q,I,C),Response ))],

dc1 ,

50000).

method(determine(percept(perception ,

523 query(at(A,B),I,C),Response)),

true ,

[sense(percept(perception ,query(at(A,B),I,C),Response ))],

dc1 ,

5).

528

method(determine(percept(perception ,

query(channel_free(A),I,C),Response)),

true ,

[

533 sense(percept(perception ,

query(channel_free(A),I,C),Response ))],

dc1 ,

10).

538 method(determine(percept(perception ,

query(available(X),I,C),Response)),

true ,

[

sense(percept(perception ,

543 query(available(X),I,C),Response ))],

dc1 ,

10).
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method(determine(percept(perception ,

548 query(store_of(X,Y),I,C),Response)),

true ,

[

sense(percept(perception ,

query(store_of(X,Y),I,C),Response ))],

553 dc1 ,

10).

method(determine(percept(perception ,

query(empty(X),I,C),Response)),

558 true ,

[

sense(percept(perception ,

query(empty(X),I,C),Response ))],

dc1 ,

563 10).

method(determine(percept(perception ,

query(equipped_for_soil_analysis(X),I,C),Response)),

true ,

568 [

sense(percept(perception ,

query(equipped_for_soil_analysis(X),I,C),Response ))],

dc1 ,

10).

573

method(determine(percept(perception ,

query(equipped_for_rock_analysis(X),I,C),Response)),

true ,

[

578 sense(percept(perception ,query(

equipped_for_rock_analysis(X),I,C),Response ))],

dc1 ,

10).

583 method(determine(percept(perception ,

query(equipped_for_imaging(X),I,C),Response)),

true ,

[

sense(percept(perception ,

588 query(equipped_for_imaging(X),I,C),Response ))

],

dc1 ,

10).
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593 method(determine(percept(perception ,

query(on_board(X,Y),I,C),Response)),

true ,

[

sense(percept(perception ,

598 query(on_board(X,Y),I,C),Response ))

],

dc1 ,

10).

603 method(determine(percept(perception ,

query(calibration_target(X,Y),I,C),Response)),

true ,

[

sense(percept(perception ,

608 query(calibration_target(X,Y),I,C),Response ))

],

dc1 ,

10).

613 method(determine(percept(perception ,

query(supports(X,Y),I,C),Response)),

true ,

[

sense(percept(perception ,

618 query(supports(X,Y),I,C),Response ))],

dc1 ,

10).

method(determine(percept(perception ,

623 query(at_lander(X,Y),I,C),Response)),

true ,

[

sense(percept(perception ,

query(at_lander(X,Y),I,C),Response ))],

628 dc1 ,

10).

method(determine(percept(perception ,

query(waypoint(X),I,C),Response)),

633 true ,

[

sense(percept(perception ,

query(waypoint(X),I,C),Response ))],

dc1 ,
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638 10).

:- end_object.
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Ilghami, O., Muñoz-Avila, H., Nau, D. S., and Aha, D. W. (2005). Learning approx-
imate preconditions for methods in hierarchical plans. In ICML, pages 337–344.
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