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Introduction

The subjects of this thesis are half-flat SU(3)-structures, (co-)calibrated Go-/G35-structures
and the Hitchin flow on Lie algebras. The major part of the thesis is devoted to the
classification of the Lie algebras in certain classes which admit such structures. In the last
chapter, we consider the Hitchin flow for cocalibrated Ga-structures on almost Abelian Lie
algebras.

First, we explain what the mentioned structures are and why they are important in
both mathematics and physics.

An SU(3)-structure on a six-dimensional manifold M is a reduction P of the frame
bundle F(M) of M to SU(3). P can equivalently be described by a pair (w, p) of a two-
form w € Q2M and a three-form p € 23M whose common stabiliser in GL(7, M) at each
point z € M is conjugate to SU(3) C GL(6,R). Here, w and p are stable forms in the sense
of Hitchin [Hil], i.e. at each point x € M the orbits of w, and p, are open under the natural
action of GL(T,M). Since SU(3) = SL(3,C) N SO(6), (w, p) induces an almost Hermitian
structure (g, J) with fundamental two-form w and a (3,0)-form ¥ of constant length with
Re(¥) = p. Similarly, a Go-structure (resp. Gj-structure) on a seven-dimensional manifold
M is a reduction P of F(M) of M to Ga (resp. to G3). In this case, we have an alternative
description by a stable three-form ¢ € Q3M with pointwise stabiliser being conjugate to
Go (resp. to G3). Since Go C SO(7) (resp. G35 C SOg(3,4)), such a three-form induces
a Riemannian metric (resp. pseudo-Riemannian metric of signature (3,4)), an orientation
and thus a Hodge star operator %, on M.

The classes of half-flat SU(3)-structures and of (co-)calibrated Ga/G3-structures nat-
urally appear when one distinguishes the corresponding G-structures P C F(M) via
their intrinsic torsion. Therefore, recall that when G is a subgroup of O(p,n — p) and
g C so(p,n — p) is non-degenerate with respect to the Killing form of so(p,n — p), the
intrinsic torsion 7(P) of a G-structure P on an n-dimensional manifold M is a section
of the vector bundle associated to the G-module (R")* ® g*, where g* is the orthogonal
complement of g in so(p,n — p). Hence, one gets natural classes of G-structures by de-
composing this G-module into indecomposable G-modules Vi,...,V, and requiring that

7(P) lies pointwise in one or in a sum of the vector bundles associated to the V. If P is



defined by tensor fields 77,...,T; on M as in the above cases, all information about the
intrinsic torsion is contained in VIT1, ..., V9T, where V9 is the Levi-Civita connection of
the induced pseudo-Riemannian metric g of signature (p, n—p). Thus, the most important
class of G-structures with vanishing torsion consists exactly of those G-structures where all
defining tensor fields are parallel and the holonomy principle shows that then the holonomy
of g is a subgroup of G.

So SU(3)-structures (w, p) with vanishing intrinsic torsion are those where VIw = 0
and V9p = 0. Then J is integrable, (M, g, J) is a Kéhler manifold and ¥ is a nowhere
vanishing holomorphic section of the canonical bundle. Thus, compact manifolds admitting
an SU(3)-structure with vanishing intrinsic torsion are nothing but Calabi-Yau three-folds,
a class of six-manifolds which plays a prominent role both in mathematics and in physics
in the context of compactifications of 10-dimensional superstring theories. Coming back to
arbitrary SU(3)-structures, a result of Chiossi and Salamon [ChiSa] shows that the intrinsic
torsion of an SU(3)-structure is fully encoded in the exterior derivatives of w, p and J*p.
The class of half-flat SU(3)-structures arises as the class of SU(3)-structures whose intrinsic
torsion lies pointwise in a certain 21-dimensional G-submodule of the 42-dimensional G-
module (RG)* ®su(3)1. Using the alternative description of Chiossi and Salamon, half-flat
SU(3)-structures can be described as the SU(3)-structures fulfilling the equations dw? = 0
and dp = 0.

Similarly, Ga-/G3-structures ¢ with vanishing intrinsic torsion are those with V9¢ =0
and they have holonomy contained in Gz or G3. By results of Ferndndez and Gray |[FG| and
Martin Cabrera [MC2], the intrinsic torsion is in this case fully determined by dy = 0 and
d*, ¢ = 0. We are mainly interested in two classes of Go-/G3-structures which naturally
appear via the distinction of the intrinsic torsion, namely the class of calibrated Ga-/Gj-
structures, characterised by dp = 0, and the class of cocalibrated Go-/G3-structures, which
is characterised by dx, ¢ = 0.

Besides their appearance as natural classes of G-structures, there are other stronger
mathematical and physical motivations for studying half-flat SU(3)-structures and cocali-
brated Go-structures which we like to mention now.

Hitchin flow. The major mathematical motivation stems from Hitchin’s flow equa-
tions [Hil] for which half-flat SU(3)-structures and cocalibrated Go-structures serve as
initial values. Hitchin’s flow equations are a kind of converse of the following facts. A
seven-dimensional Riemannian manifold with holonomy contained in Go naturally induces
a half-flat SU(3)-structure on each oriented hypersurface. Similarly, oriented hypersur-
faces in eight-dimensional Riemannian manifolds whose holonomy is a subgroup of Spin(7)
naturally carry cocalibrated Go-structures. The Hitchin flow presented in [Hil] embeds a
compact six-dimensional manifold admitting a half-flat SU(3)-structure (resp. a compact

seven-dimensional manifold with a cocalibrated Ga-structure) as an oriented hypersurface
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into a Riemannian manifold having holonomy contained in the group Gy (resp. in the
group Spin(7)). More precisely, Hitchin’s flow equations are a system of partial differential
equations for a one-parameter family I — Q?M x Q3M of SU(3)-structures t — (w(t), p(t))
on a compact six-dimensional manifold M (resp. for a one-parameter family I — Q3M
of Go-structures t — ¢(t) on a compact seven-dimensional manifold M). If (w(to), p(to))
is half-flat for some ¢y € I (resp. ¢(to) is cocalibrated for some ¢y € I), then a solution
(w(t),p(t)) on I can be used to define a parallel Go-structure on M x I (resp. a solu-
tion ¢(t) on I can be used to define a parallel Spin(7)-structure on M x I). Recall that
the groups G2 and Spin(7) appear as exceptional cases in Berger’s list [Berl| of possible
holonomy groups of irreducible non-symmetric simply-connected Riemannian manifolds
and that it took over 30 years till Bryant [Brl| proved the existence of Riemannian mani-
folds with holonomy group Ge and Spin(7). Today, we know explicit examples of complete
Riemannian manifolds with exceptional holonomy [BrSa] and also know that there are
compact manifolds with these holonomies [J1], [J2]. However, still not that many explicit
examples of Riemannian manifolds with exceptional holonomy are known and the Hitchin
flow is a useful tool for constructing such examples, cf. e.g. [AFISUV|, [ApSal, |ChiFi],
[CCGLPW], |CS|, [Hil] and [R3]. Hence, it is also of great interest to find examples of
half-flat SU(3)-structures and cocalibrated Gg-structures on manifolds and to investigate
which six- or seven-dimensional manifolds admit such structures at all.

In [CLSS]|, Hitchin’s results have been reproved and it has been shown that the com-
pactness assumption for the initial manifold can be dropped. Moreover, the same paper
introduces a completely analogous Hitchin flow for one-parameter families of SU(1,2)-
structures and of SL(3,R)-structures on a six-dimensional manifold leading in both cases
to a pseudo-Riemannian manifold of signature (3,4) with holonomy contained in G5 for
half-flat initial value. Analogously to the SU(3)-case, half-flat SU(1,2)- and SL(3,R)-
structures are defined as a pair (w, p) € QM x Q3M of a stable two-form w and a stable
three-form p of certain kind with dw? = 0 and dp = 0. Furthermore, [CLSS| also in-
troduces a Hitchin flow for one-parameter families of G3-structures on seven-dimensional
manifolds leading to pseudo-Riemannian manifolds of signature (4,4) with holonomy con-
tained in Sping(3,4) if one starts with a cocalibrated structure. Note that the groups G
and Sping(3,4) appear as exceptional cases on Berger’s list [Berl] of possible holonomy
groups of irreducible non-symmetric simply-connected pseudo-Riemannian manifolds and
again Bryant [Brl| was the first who showed that pseudo-Riemannian manifolds with such
holonomy groups exist many years after the publication of Berger’s list. So the Hitchin
flow is a useful tool for the construction of explicit examples of such metrics and a natu-
ral first step is to construct examples or to find obstructions to the existence of half-flat
SU(1,2)-/SL(3, R)-structures and cocalibrated Gj-structures on six- or seven-dimensional

manifolds.
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In this thesis, we restrict ourselves to the left-invariant setting and consider left-
invariant half-flat and cocalibrated structures on Lie groups. Since then everything can
be considered as a problem on the associated Lie algebra g, we speak in the following of
half-flat and cocalibrated structures on Lie algebras. Note that the defining differential
equations for the initial G-structure reduce to algebraic equations on g and Hitchin’s flow
equations reduce to a system of ordinary differential equations on g. Hence, the existence
and uniqueness of solutions to the Hitchin flow is ensured. More generally, the existence
and uniqueness is proved in the real-analytic setting in [CLSS]. Such a result is not valid
in the smooth category [Br6].

Motivation from physics. (Compact) manifolds X possessing a G-structure with
G € {SU(3), Go, Spin(7)} appear in physics in the context of (Kaluza-Klein) compactifica-
tions of higher-dimensional supersymmetric theories like 10-dimensional superstring theo-
ries, 11-dimensional M-theory and their low energy limits given by 10- or 11-dimensional
supergravities, respectively.

We give a rough idea why, see e.g. [De] for further details. The mentioned theories
model our universe as a 10- or 11-dimensional Lorentzian manifold N. To meet our daily
experience of three spatial and one time direction, one “compactifies” these theories and
assumes in the simplest case that N = R*! x X with a compact six- or seven-dimensional
Riemannian manifold X whose size is so small that it is undetectable by our present instru-
ments. Nevertheless, properties of X encode properties of the four-dimensional effective
theory on R*!. One important feature one wants to preserve in four dimensions is super-
symmetry. This requires the existence of a nowhere vanishing spinor field on X. Hence,
manifolds admitting a G-structure with G as above come into play since they can alter-
natively be described as oriented Riemannian manifolds with a nowhere vanishing spinor
field.

In the above theories one usually assumes that X admits a parallel spinor field, cf. e.g.
[CHSW] and [PT]. Then the holonomy is contained in G. For phenomenological reasons, a
common further assumption is that the holonomy is even equal to G. Then the number of
parallel spinor fields on X is minimal and one gets minimal supersymmetry in the effective
four-dimensional theory. Physicists also deal with more general types of compactifications.
These types include so-called background fluxes, D-branes, warped products or compacti-
fications of the form N = M x X with a D-dimensional spacetime M, D not necessarily
equal to four, and a (10 — D)- or (11 — D)-dimensional compact Riemannian manifold
X. More generally, compactifications on non-compact asymptotically conical Riemannian
manifolds with exceptional holonomy are considered, cf. e.g. [AW] and [GS].

The investigation of compactifications on six-dimensional manifolds admitting an SU(3)
-structure with non-vanishing intrinsic torsion started in [Str]. Compactifications on six-

dimensional manifolds with a half-flat SU(3)-structures first appeared in [GLMW] as mirror

viil



duals of compactifications on Calabi-Yau manifolds with NS three-form flux and are further
studied in [GLM1] and [GLM2].

So far, compactifications on seven-dimensional manifolds admitting a cocalibrated Go-
structures seem to have received less attention. However, they might be of interest since
there are examples, cf. e.g. [FI|, [FIUV] and [Pu|, which provide a (partial) solution to
Strominger’s equations [Str| in type Il string theory.

Known Results. We summarise some known results on the subjects we are dealing
with in this thesis.

The classification of the six-dimensional Lie algebras admitting a half-flat SU(3)-struc-
ture began with [ChiSw|, [ChiFi| and [CT]. In these papers, the nilpotent Lie algebras
admitting a half-flat SU(3)-structure with additional properties are classified. A few years
later, Conti introduced in [C1] an obstruction to the existence of half-flat SU(3)-structures
and used it to classify the nilpotent Lie algebras admitting half-flat SU(3)-structures with-
out assuming any additional properties. In his PhD thesis [SHPhD], cf. also [SH], Schulte-
Hengesbach refined Conti’s obstruction and applied it to classify the direct sums of two
three-dimensional Lie algebras admitting a half-flat SU(3)-structure. Note that the exis-
tence in both papers [C1|, [SH] is proved by giving concrete examples of such structures.
Schulte-Hengesbach also obtained partial classification results for such direct sums admit-
ting other types of half-flat structures. Also, the problem of determining all such structures
on a fixed Lie algebra up to isomorphism has been considered. In [SHPhD| and |[CLSS]
this problem has been solved for the Lie algebras su(2) @ su(2) and hs @ b3, for the first
case see also [MaSa|. Moreover, the Hitchin flow has explicitly been solved on some Lie
algebras. The most studied Lie algebra is su(2) @ su(2). Hitchin himself considered his
flow on this Lie algebra in the same paper [Hil] in which he introduced the flow. He found
explicit examples of Gg-manifolds obtained before by [BGGG| and also the first example
of a complete Riemannian metric with holonomy equal to Gy obtained by Bryant and
Salamon |BrSa|. Implicitly, as in [BGGG]|, Hitchin’s flow equations on su(2) & su(2) have
also been studied in [CGLP3|, [CGLP4]. For a treatment of these examples which uses
the Hitchin flow, we refer to [CCGLPW| and [MaSa]. Note that [CCGLPW] also studies
the Hitchin flow on Lie algebras of the form su(2) @ b for certain unimodular solvable Lie
algebras b via so-called group contractions. In [CLSS], the Hitchin flow has been studied
on the Lie algebra b3 @ h3. There are solutions which define pseudo-Riemannian mani-
folds with holonomy equal to Ga and G3, respectively. The Hitchin flow on other two-step
nilpotent Lie algebras has been considered in [ChiFi| and in [ApSa| and explicit examples
with holonomy equal to Gg are obtained.

Regarding classifications of Lie algebras admitting cocalibrated Gg-/G3-structures, the
results obtained in this thesis seem, to the best of the author’s knowledge, to be the first

ones. Note that in [R1], Reidegeld completely solved the existence problem of homogeneous
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cocalibrated Geo-structures on compact homogeneous seven-dimensional manifolds. The
Hitchin flow for Ga-structures on the quaternionic Heisenberg algebra and two non-solvable
Lie algebras has been considered in [AFISUV]. The initial cocalibrated Ga-structure there
is constructed using a quaternionic contact structure on the corresponding Lie algebras
and one obtains explicit metrics with holonomy equal to Spin(7). Note that one of these
metrics already appeared in [GLPS].

The results of this thesis. Next, we give a summary of the main results of this
thesis. We divide this summary according to the chapters of this thesis.

Results for almost Abelian Lie algebras admitting (co-)calibrated structures.
An almost Abelian Lie algebra is a finite-dimensional Lie algebra g admitting a codimension
one Abelian ideal u. We classify the almost Abelian Lie algebras admitting calibrated or
cocalibrated Ga-/G3-structures, respectively, in Chapter 4. In the same chapter, we do
the analogous classifications also for so-called (Gz)c-structures. Moreover, we classify the
almost Abelian Lie algebras admitting a parallel Go-/G3-structure. In the case of parallel
G3-structures, we restrict ourselves to those for which u is non-degenerate with respect to
the induced pseudo-Riemannian metric. A parallel Go-structure on a Lie algebra is flat
according to [AK]. We show that for the particular case we are considering, the same
is true also for parallel G3-structures. The results on cocalibrated structures are already
published in the author’s paper [Frel]. All other results have not been published yet.

An almost Abelian Lie algebra is fully determined by one endomorphism of the codi-
mension one Abelian ideal u, namely ad(v)|, for each v € g\u. We express the existence
of the corresponding structure in most of the cases in terms of properties of the complex

Jordan normal form of ad(v)|,. The results for Go-structures are as follows:

Theorem 1. Let g be a seven-dimensional almost Abelian Lie algebra, u be a codimension

one Abelian ideal and v € g\u.

(a) g admits a calibrated Ga-structure if and only if the complex Jordan normal form of
J 0
ad(v)|y s given, up to a permutation of the Jordan blocks, by ( J) for a trace-free
0
matriz J € C3*3 in complex Jordan normal form.

(b) g admits a cocalibrated Go-structure if and only if the complex Jordan normal form
of ad(v)|y has the property that for all m € N and all X # 0 the number of Jordan
blocks of size m with A on the diagonal is the same as the number of Jordan blocks
of size m with —\ on the diagonal and the number of Jordan blocks of size 2m — 1

with 0 on the diagonal is even.

(c) g admits a parallel Ga-structure if and only if ad(v)|y is complex diagonalisable and
the complex eigenvalues are given by ia, —ia, ib, —ib, —i(a + b), i(a + b) for some
a, beR.



The results for G- and (G2)c-structures are more involved and can be found in Chapter
4. We emphasise that in the cocalibrated case, we do not consider the Ga-/G3-structure ¢
itself but focus directly on the Hodge dual four-form x,¢ without referring to ¢. Therefore,
note that a four-form W is the Hodge dual of a Ga-/G3-structure if and only if ¥ is a stable
four-form of a certain kind, see Lemma 2.45.

For the proof we always proceed as follows. In all cases, we have to show the existence
of closed three- or four-forms of a certain kind on g. We show that this is equivalent
to the existence of three- or four-forms of specific type on u such that ad(v)|, € gl(u) is
in the stabiliser Lie algebra of these forms for the natural action of GL(u) on A*u*. The
mentioned forms on u are obtained from the corresponding forms on g simply by restriction
to u. The final step in the proof is to transfer the condition that there exist forms on u
of specific type for which ad(v)|, € gl(u) lies in the stabiliser Lie algebra into properties
of (the complex Jordan normal form of) ad(v)|,. Note that for the determination of the
specific form of the induced four-form on u in the cocalibrated case we do not use the
algebraic invariants for orbits of k-forms of Westwick [W3|, which is in contrast to our
approach in [Frel|. The proof we give in this thesis differs in this aspect from the one we
gave in [Frel].

Results for cocalibrated Gs-structures on direct sums. In Chapter 5, we classify
the direct sums of four- and three-dimensional Lie algebras admitting a cocalibrated Ga-
structure. These results are contained in the author’s paper [Fre2]. For the direct sums
of a four-dimensional non-unimodular Lie algebra g4 and a three-dimensional unimodular
Lie algebra g3, we are able to express the existence of cocalibrated Go-structures solely in
terms of the Lie algebra Betti numbers of g4, g3 and of the three-dimensional unimodular

kernel u of gq4.

Theorem 2. Let g = g4 D g3 be a seven-dimensional Lie algebra which is the Lie algebra
direct sum of a four-dimensional non-unimodular Lie algebra g4 and of a three-dimensional
unimodular Lie algebra gs. Denote by u the unimodular kernel of ga. Then g admils a

cocalibrated Ga-structure if and only if h'(g4) + h*(u) — h2(g4) + h2(g3) < 4.

The results on other types of direct sums of four- and three-dimensional Lie algebras
are more complicated and can be found in Chapter 5. As for cocalibrated Ge-structures
on almost Abelian case, we focus directly on the Hodge dual of a Go-structure and do not
consider the Go-structure itself. The results are proved as follows.

Obstructions are found by methods analogous to the ones used in the almost Abelian
case. In most of the cases, we consider again a splitting g = ug @ span(v) with uy being a
six-dimensional unimodular ideal in g and v € g\up, and the four-form Q := ¥|, € A*u*
induced by the closed Hodge dual ¥ € A%g*. In contrast to the almost Abelian Lie

algebras, the induced three-form p := (v ¥)|, € A%u* gives us additional information and
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is used for finding obstructions. Note that in the process of finding such obstructions it is
advantageous to use the above-mentioned algebraic invariants of Westwick [W3]. However,
we do not use these algebraic invariants as prominently as in our paper [Fre2|. For example,
the specific form of p is determined directly without using the concrete values of the
algebraic invariants for the Hodge dual of a Gg-structure.

The existence is proved by different methods. Again, we do not work case-by-case but
instead prove existence for several classes of direct sums at once. The essential ingredient
in most of the cases is the openness of the orbit of all Hodge duals of a Go-structure.
We use this openness to prove a general proposition which ensures the existence of a
cocalibrated Go-structure on an arbitrary seven-dimensional manifold M if there is a Hodge
dual U € Q*M of a Go-structure on M and a bounded four-form @ lying in a certain
subbundle of A*T*M such that ¥ + ® is closed. The idea of the proof of this general
proposition is to “rescale” ¥ and ® in such a way that ¥ is still the Hodge dual of a
Go-structure, the sum stays closed and ® gets small in comparison to ¥. We then apply
this general proposition to certain classes of direct sums of four- and three-dimensional Lie
algebras. For the construction of ¥ with the necessary properties on the mentioned classes
of direct sums we use the fact that one may build up the Hodge dual via certain two-forms
on a four-dimensional subspace of g and its orthogonal complement.

Results for half-flat structures. In Chapter 6, we present classification results
for the six-dimensional Lie algebras possessing half-flat structures. We finish the clas-
sification of the decomposable six-dimensional Lie algebras admitting a half-flat SU(3)-
structure, which started with the classification of sums of three-dimensional Lie algebras
admitting half-flat SU(3)-structures in [SH]|. Moreover, we classify the indecomposable
solvable six-dimensional Lie algebras with five-dimensional nilradical admitting half-flat
SU(3)-structures and show that all indecomposable non-solvable six-dimensional Lie alge-
bras possess a half-flat SU(3)-structure. Altogether, these results almost completely solve
the existence problem of half-flat SU(3)-structures on six-dimensional Lie algebras. Only
the classification of the indecomposable solvable six-dimensional Lie algebras with four-
dimensional nilradical admitting a half-flat SU(3)-structure remains open. Furthermore,
we obtain some results on the (non-)existence of half-flat SU(1, 2)- and SL(3, R)-structures
on certain Lie algebras. Almost all the results presented in Chapter 6 are joint work with
Schulte-Hengesbach and are published in the papers [FS1], [FS2]. Only one partial result
on the existence of half-flat SU(1, 2)-/SL(3, R)-structures on almost Abelian Lie algebras
is not contained in these papers.

We changed parts of the proofs given in [FS1]| and [FS2] since we are now able to use
our classification results for Lie algebras admitting cocalibrated Gs-structures. The exis-
tence of a half-flat SU(3)-structure on a given Lie algebra g is proved in most cases by

giving concrete examples. However, we give a direct proof that a six-dimensional almost
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Abelian Lie algebra g admits a half-flat SU(3)-structure if and only if g ® R admits a
cocalibrated Ga-structure. Hence, we are able to identify directly all six-dimensional al-
most Abelian Lie algebras admitting half-flat SU(3)-structures. We still give the concrete
examples of half-flat SU(3)-structures on almost Abelian Lie algebras obtained in [FS1]
in the appendix. For disproving the existence, we further refine the obstructions used by
Schulte-Hengesbach in [SH| further and make them more applicable for computer algebra
systems like Maple. In fact, we use Maple, in particular the standard package “difforms”
and the package “difforms2” developed by Schulte-Hengesbach, and apply the obstruction
case-by-case. For the application, we refined all the involved lists [ABDO], [Mu5d], [Mu6d],
[Tul] of classes of Lie algebras by distinguishing the Lie algebras further by Lie algebra
cohomology and by the dimension of the center. The necessary computations are again
done with Maple using the package “LieAlgebraCohomology”. These refinements may inde-
pendently have interesting applications. We present a first application of these refinements
to the classification of six-dimensional (2, 3)-trivial Lie algebras.

Results for the Hitchin flow on almost Abelian Lie algebras. Chapter 7 contains
the first results of an ongoing investigation of the Hitchin flow on seven-dimensional Lie
algebras. We restrict ourselves to almost Abelian Lie algebras and the Gy case. We prove
the following theorem which states that in the mentioned situation, the maximal holonomy

one may obtain via the Hitchin flow is SU(4).

Theorem 3. Let g be an almost Abelian seven-dimensional Lie algebra, g be a cocalibrated
Ga-structure on g and 0 € (a,b) >t — @(t) be a solution of Hitchin’s flow equations with
ingtial value ©(0) = 9. Then

9= g + dt’

defines a Riemannian metric on G x I with holonomy contained in SU(4). Here, G is any

Lie group with Lie algebra g.

For the proof of this theorem, we first show that Hitchin’s flow equations are equivalent
to certain algebraic and differential equations for the forms induced by ¢; and *,, ¢ on
u. In a second step we use the induced forms to write down a parallel SU(4)-structure
on G x I. To verify that the constructed SU(4)-structure is parallel, we apply a result of
Martin Cabrera [MC4| which gives more manageable conditions when an SU(4)-structure
is parallel. Moreover, we determine the moduli space of cocalibrated Go-structures on the
Lie algebras hs @ R* and ny 1, i.e. all such structures up to Lie algebra automorphism and
scaling. We solve Hitchin’s flow equations explicitly for the only element in the moduli
space of h3 @ R* and for a two-parameter family in the moduli space of ny1. In the
former case, we obtain an explicit Riemannian metric with holonomy equal to SU(2). This
Riemannian metric is well-known. It is the Riemannian direct product of the Riemannian

six-dimensional manifold obtained by the Hitchin flow for SU(3)-structures on h3 @ R? in
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[ChiFi| and of R with the standard metric. For the two-parameter family on ny; we get for
“generic” parameter values the maximal possible holonomy group SU(4). Hence, we obtain
an explicit two-parameter family of non-compact, non-complete Calabi-Yau four-folds of
cohomogeneity one.

Structure of this thesis.

We give a short overview of the structure of this thesis. Note first that the notation
and conventions we use throughout this thesis are summarised directly before Chapter 1.
The reader may consult these pages if he is not sure about the meaning of some expression.
The first three chapters are an introduction into all the concepts and notions we use in
this thesis and the last four chapters contain the results of this thesis. In Chapter 1 and
2, we discuss various basic concepts on vector spaces and deal with all the examples of
G-structures appearing in this thesis on a vector space level. The concepts introduced in
these two chapters on vector spaces are transfered to manifolds and Lie groups in Chapter
3. Moreover, we also discuss some global concepts like the intrinsic torsion of a G-structure
and the holonomy group of a pseudo-Riemannian manifold in that chapter. Most of the
results given in the first three chapters are well-known and can be found in the literature.
We would like to put some focus on Section 1.4, in which we give an introduction into the
above-mentioned algebraic invariants of Westwick. Despite their importance for classifying
seven-dimensional Lie algebras admitting cocalibrated Ge-structures in the author’s papers
[Frel] and [Fre2|, these invariants seem not to have gained much attention in the past.
Moreover, the Sections 2.1 and 2.4 contain some results on two-forms and (n — 2)-forms on
n-dimensional vector spaces and on the Hodge dual of a Ge-structure, respectively, which
are, to the best of the author’s knowledge, not been written down explicitly in the literature.
In Chapter 4, we classify the almost Abelian Lie algebras admitting (co-)calibrated Go-
/G3-/(Ga)c-structures and parallel Go-/G3-structures. The problem to decide which of the
direct sums of four- and three-dimensional Lie algebras admit a cocalibrated Go-structure
is solved in Chapter 5. In Chapter 6, we present and prove results on the (non-)existence
of half-flat structures on six-dimensional Lie algebras. The results obtained on the Hitchin
flow for cocalibrated Go-structures on almost Abelian Lie algebras are stated and proved
in Chapter 7. Directly after Chapter 7, we include an outlook which contains a summary
of problems left open in this thesis and a discussion of possible future research directions.
In the appendix, we give all the lists of Lie algebras up to dimension seven which play
a role in this thesis. Note that these lists also contain our results on six-dimensional
Lie algebras admitting a half-flat SU(3)-structures. Moreover, various other information
can be read off these lists. The appendix also contains the concrete examples of half-flat
SU(3)-structures and cocalibrated Ge-structures which are necessary to prove some of the

classification results.
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Notation and conventions

We collect some notation and conventions we use throughout this thesis.
e Ground fields and Lie algebras:

F always denotes the field R of real numbers or the field C of complex numbers.
If we do not specify a ground field for a vector space or a Lie algebra at all, it
should be clear from the context if it is R or C. All appearing Lie algebras will be
finite-dimensional. If G is a Lie group, g or L(G) denotes the associated Lie algebra.

e Structures on vector spaces:

Let V be an n-dimensional F-vector space. If F = R, we denote by V¢ the complexi-
fication of V and for v € (A”V*)®2m7 we write v > 0 if v = a®™ for some a € A"V*.
If additionally V is oriented and 7 € (A"V*)®™HD e write 7 > 0 if v = p2mH!
for some positive oriented € A"V*. If F = C, we denote by Vg the realification of
V. Let F € {R,C} be arbitrary and (f1,..., fn) be a basis of V. The dual basis of
(f1,---, fn) is denoted by (fl, cel f”). The wedge product o A ag € AF1HF2V* of o
ki-form oy € AF1V* and a ko-form ap € A¥2V* is given by

1

(1 Aaz)(v1, ..., Vky4ky) = T Tea] > 58n(0) 1 (Vo(1), s Vo)) @2 (Vo (kg 41)s - -+ Vo (ky 1 h2) )
e 065k1+k2

for vy,..., Vg 4k, € V. Moreover, we use the abbreviations

fivoin = fin Ao A fi € ARV, fi0dr o= fIUA LA fin € ATV

The contraction X_ip € A*! of an I-vector X € A'V with a k-form p € AFV* is
defined inductively by the usual contraction for [ = 1 and by X 1p = v (YJp) for
X =YAvwithY € A1V, v € V, and linear extension. By our convention, TV :=
Ve @ (V*)®° is the space of (r,s)-tensors on V. For an isomorphism f : V — W
of F-vector spaces and (r,s) € N2 we define F-linear maps f. : TV — T"™*W and
f*:T™W — T™*V uniquely on decomposable (7, s)-tensors A =v; ® ... v, @ a1 ®
o ®as €T™Vand B=w1 Q... w, 1 ® ... R0 Bs € T*W by

fA=fu)®...0 flv,)Qajof1®...®as0 f1,
FB=fHw)®..0f (w)@piof®...080f
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If s =0 (resp. r = 0), we define f, (resp. f*) in the same way for an arbitrary
F-linear map f : V. — W. The natural action of GL(V) on T™*V is given by
A= fA= (f_l)* Afor f € GL(V) and A € T"%V. We also write f- A instead of
f-A. The natural action of gl(V') on T™*V is the one induced by the natural action
of GL(V) on T™*V. Concretely, we have

T
g'A:g.A:Zvl®...®g(vi)®...®vr®a1®...®as
i=1

s (1)
+Zv1®...®vr®a1®...® —jog®...® a,
7j=1

forgegl(V)and A= ®...0, 1 ® ... ® ag € T"*V being a decomposable
(r, s)-tensor on V. If an arbitrary group G acts on V, we denote by G, the stabiliser
subgroup of an element v € V. If F = R, then a symmetric non-degenerate (0, 2)-
tensor g on V is called a pseudo-FEuclidean metric and in the case that ¢ is positive
definite, we also say that ¢ is an Fuclidean metric. The signature of g is denoted
by (p,n — p) with p being the maximal dimension of a positive definite subspace of
V. We write also sign(g) = (p,n — p) and set ¢(g) :== (—=1)"P. f F=C and g is a
symmetric non-degenerate bilinear form on V, we set €¢(g) := 1. A symmetric non-
degenerate F-bilinear form g on V induces a symmetric non-degenerate F-bilinear
form on A¥V*, denoted by the same symbol g, by requiring that for an orthonormal
basis e1, ..., e, of (V,g) with g(e;, e;) = €;, the set {eil'“ik‘ 1<ip<... <4 < n} is

an orthonormal basis of (AkV*, g) with ¢ (eil"'ik, eil"'ik) =€1..." €.

Structures on F™:

We denote by (eq, ..., ey) the standard basis of F™. If there is no danger of confusion,
we also use (eq,...,e,) to denote a chosen basis in an arbitrary n-dimensional F-
vector space. Moreover, (-, )pn—p = > b€ @ €' — D iept el ®@el € S%(R")

denotes the standard pseudo-Euclidean metric of signature (p,n — p) on R™ and we
also write (-,-),, instead of (-, -)n0. If n = 2m, we set (-,-)spit := E?gl(—l)iflei ®
el € S2(R*™)". On C", (-, )pc = Y e ®@e € S?(C")* denotes the standard
symmetric non-degenerate bilinear form. Moreover, we denote by wg := Y/~ e 1A
e € A2 (F)*™ the standard non-degenerate two-form on F2™ and, if F = R, we set
Wpm—p = D by el 2 — Z,”]TL:P“FI e2I=1 N e e A2 (RQ’")* forallp=0,...,m.

Annihilators and vector space decompositions:
If V is a F-vector space and A is a subset of V', we denote by
A’ :={a e V*|a(a) =0Vac A}
the annihilator of Ain V. If V.= W @ U as F-vector spaces and wy : V. — W is

the projection onto W along U, then my, : A*W* — A*V* is injective. The image
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of myy, is A*U°. We use this to identify A*UY with A*W*. If g = u® U is a real
finite-dimensional Lie algebra which is the vector space direct sum of an ideal u in
g and a vector subspace U C g, then the above injection also identifies the cochain
complexes (A*U, mp«po 0dg|p=pro) and (A*u*, dy), where my-po : A*g* — A*U is the

projection onto A*U? along u® A A*g*. Using this identification, we write dy, instead

of mp«po 0 dg|p+o. Note that if U is also an ideal in g and g = u® U is a Lie algebra
direct sum, then mp«go 0 dg|p«po = dg|a=y+ = dy in our identification. In this case we

omit the index and simply write d.

Matrices:

We denote by adj(A) € F"*" the adjugate matriz of a matrix A € F**™ which is
defined by adj(A);; := (—1)"*7 det(A(4,4)) for all 4,5 € {1,...,n}, where A(4,14) is the
(n—1)x(n—1)-matrix obtained from A by deleting the j-th row and i-th column. Note
that if A is invertible, then adj(A) = det(A)A~L. If Ay € FvXm | Ay € FeXne,
then diag(A1, ..., Ax) denote the (ny + ...+ ng) X (n1 + ... + ng)-matrix

Aq
Ao

Ay
For complex Jordan normal forms, we follow the standard convention which puts the
1s on the superdiagonal. We denote by Ji(\) € C*** the (k x k)-matrix consisting

of one Jordan block of size & and we set

Myy= [ @ 7] em2
-b a

for a, b € R. In each complex Jordan normal form we number consecutively the
diagonal elements by Aq,..., A, and the Jordan blocks by 1,...,m, both from the
upper left to the lower right. Furthermore, we denote by JB(¢) for all i = 1,...,n,
the number of the Jordan block in which the corresponding generalised eigenvector

lies.

Structures on manifolds:

Unless stated otherwise, all manifolds M are smooth, finite-dimensional and con-
nected. The only disconnected manifolds appearing in this thesis are certain Lie
groups. Moreover, maps between manifolds are assumed to be smooth. We use the
convention that an arbitrary symmetric non-degenerate (0, 2)-tensor field on M is a
pseudo-Riemannian metric. Moreover, we use the usual notation X(M) or QF(M)
to denote the space of all vector fields or k-forms on the manifold M, respectively.
Furthermore, the space I' (T"°M) of all (r, s)-tensor fields is denoted by T"™*M.
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Chapter 1

Basic concepts and notions on vector

spaces

1.1 G-structures on vector spaces

In this section, we introduce the notion of a G-structure on a vector space for a subgroup
G of GL(n,R). We collect some basic facts and give an alternative description of a G-
structure if G is the common stabiliser of an m-tuple of tensors on R™.

We begin with some preparatory definitions.

Definition 1.1. Let V' be a real n-dimensional vector space. A frame on (the vector space)
V' is an orderd basis (v1,...,v,) of V. The set of all frames on 'V is denoted by F (V).
The set Iso(R™, V') of all linear isomorphisms from R™ to V is naturally isomorphic to
F (V) via the isomorphism Iso(R™, V) 3 u — (u(e1),...,u(en)) € F(V). Thus, we also
call an element of Iso(R™, V') a frame on (the vector space) V.
The natural right action of GL(n,R) on F(V) is given by

CL(n,R) x F(V) 3 (4, (v1,...,0,)) — (Z A, ... ,ZAva) e F(V). (1.1)
i=1 i=1
The corresponding right action on Iso(R™, V) is given by
GL(n,R) x Iso(R", V) 3 (A,u) = uo A € Iso(R", V).

Note that the natural right action of GL(n,R) is simply transitive and so induces a free
right action for every subgroup G C GL(n,R) of GL(n,R). This right action is called the
natural right action of G on F (V).

Now we are able to give the main definition of this section.

Definition 1.2. Let G C GL(n,R) be a subgroup of GL(n,R) and V be an n-dimensional
real vector space. A G-structure on (the vector space) V is a G-orbit P C F(V) under
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the natural right action of G on F(V). We also call a G-orbit P in Iso(R", V') under the

natural right action of G a G-structure on (the vector space) V.

Remark 1.3. The definition of a G-structure does not depend solely on the abstract group
G but also on how G is embedded into GL(n,R). For example, consider the two-dimensional
real vector space V. = R? and the isomorphic subgroups G = {diag(a,1)|a € R*} and
H = {diag(1,a) |a € R*} of GL(2,R). Then the set P = {(be1,e2)|b € R*} is a G-structure

but not an H-structure.
Example 1.4. (a) There is only one GL(n,R)-structure on V, namely F (V).

(b) There are exactly two GL™ (n, R)-structures on V, namely the two equivalence classes
of ordered bases having the same orientation. Hence, a GL™ (n,R)-structure is noth-

ing but an orientation on V.

(c) For 0 < p <n, O(p,n — p)-structures are in one-to-one correspondence to pseudo-
Euclidean metrics with signature (p,n — p): Given an O(p,n — p)-structure P on V,
we get a pseudo-Euclidean metric of signature (p,n—p) by declaring each frame in P
to be an orthonormal basis. Conversely, suppose we have a pseudo-Fuclidean metric
(,) of signature (p,n — p). Then the set P C F(V) of orthonormal frames with

respect to (-,-) is an O(p,n — p)-structure.

(d) Let n = 2m be even. Then Sp(n,R)-structures are in one-to-one correspondence
to non-degenerate two-forms w on V: Given an Sp(n,R)-structure P, take a frame
(v1,...,02m) € P and set w := Y " v¥ "L A0? € A2V*. Here, v!,...,0" € V* is
the dual basis of vi,...,v,. The independence of w on the particular choice of the
frame (v1,...,vom) € P is a direct consequence of the fact that P is an Sp(n, R)-orbit.
Conversely, a non-degenerate two-form w € A2V* on V induces an Sp(n, R)-structure
P on V by setting P := {(v1,...,v2m) € F(V) |w =31, 0¥ A0}

(e) Similarly, on an n-dimensional real vector space V, SL(n,R)-structures are in one-

to-one correspondence with volume forms vol € A"V*\{0} on V.

The last three examples gave a one-to-one correspondence between G-structures and

tensors on V' with stabiliser isomorphic to G. More generally, we have the following

Lemma 1.5. Let S; € T"*R" be an (r;, s;)-tensor for i = 1,...,m and G C GL(n,R)
be the common stabiliser subgroup in GL(n,R) of the tensors Si,...,Sy, under the nat-
ural action of GL(n,R) on T (R™). Furthermore, let V be an n-dimensional real vector
space. Then there ezists a one-to-one correspondence between G-structures P C F(V) =
Iso(R™, V) on V' and m-tuples (T1,...,T),) € T™51V ... xXT"™smV for which there exists

u € Iso(R™, V') such that u*T; = S; fori=1,...,m. The correspondence is as follows:
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o If P C F(V) is a G-structure, then the associated m-tuple (T1,...,Ty,) € T 51V X
e X TSV s given by T = (u_1)>k S; fori=1,...,m, where u is any element
mn P.

o If(Th,...,Ty) € TV x ... x T™ 5V s an m-tuple such that there exists u €
Iso(R™, V) with u*T; = S; for i = 1,...,m, then the associated G-structure P C
F (V) is given by the G-orbit P :=u - G.

Definition 1.6. Let V' be an n-dimensional real vector space and (S1,...,Sm) € TV x
X TTmosm Y be tensors on V.. We say that (T, ..., Ty) € T"VIR™ x ... x T"m5mR" are
model tensors for (S1,...,Sm) if there exists u € Iso (R™, V) such that u*S; = T; for i =
1,...,m. In this case, we call (u(ey),...,u(e,)) € F(V) an adapted basis for (S1, ..., Sm).
More generally, if P C F(V) is a G-structure, we call each element (v1,...,v,) in P an
adapted basis for P.

Remark 1.7. e In Exzample 1.4 (c), (d) or (e) we may choose (-,")pn—p = 2?21 ¢l ®
€i—2?:p+1 ed®el € 52 (Rn)*’ wo = Z?il e2i=1 A 21 ¢ A2 (RQm)* or voly = lon ¢

A™ (R™)* as model tensors, respectively.

o We include complex-valued (r,s)-tensors S € T™*V @ C on real n-dimensional vec-
tor spaces V' in our treatment by considering them as pair (Re(S),Im(S)) of (r,s)-
tensors. E.g. S as above has model tensor T € T™*R"®@C = T™*C" if (Re(S), Im(S5))
has the model tensors (Re(T'),Im(T)), which is equivalent to the ezistence of u €
Iso (R, V') such that utS = T. Similarly, we also include para-complez-valued (r, s)-

tensors on real n-dimensional vector spaces.

A G-structure naturally induces an H-structure for all subgroups H of GL(V') with
G CH.

Definition 1.8. Let G C GL(V) be a subgroup, P C F(V) be a G-structure and H C
GL(V) be a subgroup such that G C H. The H-enlargement of P is the H-structure u - H
for some u € P. Note that the definition does not depend on the chosen u € P since
G CH.

1.2 Cross products

This section delivers the model tensors and so also the subgroup G of GL(n,R) for most
of the G-structures we are interested in. Therefore, we introduce the concept of an r-fold
F-cross product X. As one expects, the well-known cross product on R? is a real two-fold
cross product (with respect to the standard metric) and, more generally, the well-known

(n — 1)-fold cross product on R™ is a real (n — 1)-fold cross product in our sense (with
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respect to the standard metric). Moreover, a complex structure on a 2m-dimensional real
vector space which is orthogonal to some pseudo-Euclidean metric is nothing but a real
1-fold cross product. Besides these examples and the generalisations to indefinite metrics
and complex vectors spaces, there are essentially only two more cases, namely two-fold
cross products in seven dimensions and three-fold cross products in eight dimensions. The
definition of these two exceptional cases uses F-composition algebras and we briefly recall
some basics on these algebras. For the proofs and more details on F-composition algebras,
we refer the reader to [SV] and [CoSm| and for more background on cross products and
also the proofs of some statements, we refer the reader to [BG1] and [Gr].

We begin with the definition of an r-fold cross product.

Definition 1.9. Let V' be an n-dimensional F-vector space endowed with o non-degenerate
symmetric bilinear form g : V xV — T and let r € N. An r-fold cross product (on (V, g))

18 a multilinear map X : V" =V such that

g(X(vi,...,vp),0) =0 (1.2)

and
g(X(v1,...,v), X(v1,...,v)) = det((g(vi, v5))i ;) (1.3)
is true for all vi,...,v, € V and alll = 1,...,r. A morphism between an r-fold cross

product X; on (V1,¢1) and an r-fold cross product Xs on (Va, g2) is a linear map f: Vi —
Vo such that f*go = g1 and f(Xi(v1,...,v.)) = Xo(f(v1),..., f(v,)) for allvy,...,v, € V.

Remark 1.10. e Ifr>1, then Equation (1.2) shows that the map
Rt g(X(v+tw,vr,...,0-1,0+ tw,v;,...,0_2),v + tw)

is the zero map for all v,w,v1,...,vp—90 € V and alli =1,...,r—2. The differential

at t = 0 yields, using again Equation (1.2),

g(X(’U,’Ul,...71)1'_1,1),’1)1',...,Ur_g),w) =0
for all vyw,vy,...,0,—0 € V and all i = 1,...,r0. Hence X : V" — V is skew-
symmetric, i.e. a map X : A"V — V. Using again Equation (1.2), we get that
ox V' S F, ox(vi,.. ., v041) = g(X(v1,...,00),0041) is an (r + 1)-form, i.e.
px € ALY,

o Let V be an n-dimensional F-vector space endowed with a non-degenerate symmetric
bilinear form g. There is no n-fold cross product on (V,g) and there is exactly one
cross product X : V' — V on (V,g) for r > n, namely X = 0. A cross product X
with X = 0 is called trivial. Obviously, there are no trivial r-fold cross products on

an n-dimensional F-vector space for r > n.
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Definition 1.11. Let (X,V, g) be an r-fold cross product. The (r+1)-form ¢x € A"T1V*,
ox (v, ..y vp41) = g(X (v1,...,00),Up41) 48 called the (r + 1)-form associated to X.

We provide the examples already mentioned in the introduction to this section.

Example 1.12. (a) The standard cross product

U1 w1 VW3 — V3wW2

3 3 3
X :R?2XR> =R vy | X |wy | := | vsw; —viws
(R} ws V1w — V2W1q

is a 2-fold cross product on R? with respect to the standard Euclidean metric on R>

with associated three-form equal to det.

(b) More generally, if g is a non-degenerate symmetric bilinear form on the n-dimensional
F-vector space V' and there exists vol € A"V* with g(vol,vol) = 1, we may define
an (n — 1)-fold cross product x : A" 'V — V by the requirement that for fived
Vly...,Up—1 €V the element x(vi A ... ANvp_1) € V fulfils g(x(v1 A ... Avp—1),w) =
vol(vy, ..., vp—1,w) for all w € V.. The n-form associated to * is vol. Note that for
F =R, vol € A"V* with g(vol,vol) = 1 exists if and only if the signature of g is
(n — 2q,2q) for some q € {O,..., L%J}

(c) Let J:V —V be a 1-fold cross product on (V,g). Then the identities g(Jv,v) = 0,
g(Jv, Jv) = g(v,v) for all v € V and the non-degeneracy of g imply J?> = —idy.
One gets that the dimension of V' has to be even. A 1-fold cross product on a real
2m-dimensional vector space is nothing but a complex structure on (the vector space)
V' which is orthogonal with respect to the pseudo-Euclidean metric g, i.e. (g,J) is
a pseudo-Hermitian structure on V, ¢f. Section 2.3. The signature of g has to be

(2p,2m — 2p) for some p € {0,...,m}.

As already mentioned in the introduction, there are essentially two more cases of cross

products which may be defined via eight-dimensional F-composition algebras.

Definition 1.13. A composition algebra (over F) (A,g) consists of a (not necessarily
associative) finite-dimensional unital F-algebra A and a non-degenerate symmetric bilinear
form g : A x A — F such that the norm N : A — F, defined by N(a) := g(a,a), fulfils
N(a-b) = N(a) - N(b) for all a,b € A. An eight-dimensional F-composition algebra is
called F-octonion algebra.

For a composition algebra (A, g), we set Re(A) :==F -1 C A and call the elements in
Re(A) real. Moreover, the elements in the subspace Im(A) := (F 1) = Re(A)L9 are
called imaginary. We have A = Re(A) @ Im(A) as F-vector spaces. Thus, for each a € A
there exist unique b € Re(A) and ¢ € Im(A) with a = b+ c. We set Re(a) := b and
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Im(a) := ¢ and call Re(a) the real part of a and Im(a) the imaginary part of a. The
conjugation - : A — A is defined by

a := Re(a) — Im(a)

for a € A. By [SV], ~ is an involution, i.e. @ = a and ab=b-a for a,b € A.
An isomorphism of F-composition algebras (A, g), (B, h) is an F-algebra isomorphism
f:A— B.

Remark 1.14. e By [SV, Corollary 1.2.4], the non-degenerate symmetric bilinear
form g of a F-composition algebra (A,g) is uniquely determined by the algebra A.
Hence, each F-algebra isomorphism f: A — B is automatically an isometry between
(A, g) and (B, h). We sometimes suppress the metric g in the notation and only write

A for the composition algebra (A, g).

e The automorphism group Aut(A) of a F-composition algebra acts trivially on Re(A)
and maps Im(A) again to Im(A). Hence, we may canonically consider Aut(A) as a
subgroup of GL(Im(A)).

The following examples of composition algebras are almost all well-known.

Example 1.15. (a) (F,gr) with gr(a,b) := a - b is, up to isomorphism, the only 1-
dimensional F-composition algebra. Moreover, C together with the real non-degener-
ate symmetric bilinear form g(z1,22) := 2123 s a real two-dimensional composition

algebra.

(b) There is, up to isomorphism, one more real two-dimensional composition algebra.
This composition algebra, called the para-complex numbers plays a prominent role
later in this thesis. It is defined as the real unital associative algebra generated by 1
and the symbol e subject to the relation € = 1 and is denoted by C1. The correspond-
ing pseudo-FEuclidean metric of signature (1,1) is defined by gc, (a1 +bie, ag+bae) :=

aias — bibsy fO’I‘ ai, ag, bl, by € R.

(¢) The quaternions H, i.e. the unital real four-dimensional algebra generated by the sym-

2

bols i, j subject to the relations ij = —ji, i> = j2 = —1, together with gu(q1, q2) :=

q1q2 provides an example of a real four-dimensional composition algebra. Here

a+bi+cj+ dij := a—bi—cj—dij for (a,b,c,d) € R* is the usual conjugation. Sim-
tlarly, the complex quaternions Hg, defined as the unital complex four-dimensional
algebra generated by the symbols i, j subject to the relations ij = —ji, > = j2 = —1,

together with gm.(q1,q2) := 12 is a complex four-dimensional composition algebra.

Here, as in the real case, a + bi + cj + dij := a — bi — ¢j — dij for (a,b,c,d) € C*.
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There is a procedure, called Cayley-Dickson construction, from which one can construct
all F-composition algebras starting with the one-dimensional one. We refer the reader to
[SV] for the general construction and only use it implicitly to define the following F-octonion

algebras via the quaternions and the complex quaternions.

Definition 1.16. Let € € {—1,1} and define a real eight-dimensional unital algebra A,
and a pseudo-FEuclidean metric g. on Ac by setting A. := H & H as real vector spaces and

by defining the multiplication on A¢ by
(a,b)(c,d) := (ac + edb, da + be)

and the pseudo-Fuclidean metric g. by ga.((a,b),(c,d)) = gu(a,c) — egu(b,d) for all
a, b, c,d € H. We denote (A_1,9-1) by (0, g0) and call the elements of O octonions.
Moreover, we denote (A1,91) by (Qs,g0,) and call the elements of Oy split-octonions.

In the complex case, we do a similar construction. We set Q¢ := Hc @ He as complex

vector spaces and define a multiplication on Q¢ by
(a,b)(c,d) := (ac — db, da + bc)

and the non-degenerate symmetric complex bilinear form go. by go.((a,b),(c,d)) :=

gH(a, ¢) + gu. (b, d) for all a, b, ¢, d € He. Elements in Oc are called complex octonions.
The F-algebras just defined are all F-octonion algebras up to isomorphism.

Theorem 1.17. A F-octonion algebra is neither commutative nor associative. The octo-
nions and the split octonions are real octonion algebras and every real octonion algebra is
1somorphic to exactly one of them. The complex octonions constitute the unique complex

octonion algebra up to isomorphism.
Proof. A proof may be found e.g. in [SV]. O

Remark 1.18. Besides the F-composition algebras given in Ezample 1.15 and Theorem
1.17, there are exactly, up to isomorphism, two more F-composition algebras. Namely
a four-dimensional real composition algebra with split signature and o two-dimensional
complex composition algebra. Both play no role in this thesis and so we will not give a

definition here and refer the reader to [SV].

Before we come to the definition of a two-fold and a three-fold cross product via the
multiplication on an F-octonion algebra, we define some of the most important Lie groups

for this thesis.

Definition 1.19. Let (A, (-,-)) be an F-octonion algebra. We set

Go(A) := F o Aut(A) o F!
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where F : Tm(A) — F7 is the isomorphism which maps the ordered basis ((3,0), (4,0), (k,0),
(0,1),(0,9),(0,7),(0,—k)) of Im(A) = Im(Hy) & Hr to the standard ordered basis (e1, ez,
es, e, €5, ¢e6,e7) of FT. Moreover, we set Go := Go(0), Gj := G2(Qs) and (Ga)¢ =
Ga2(Im(Oc)). To unify the treatment of Ga- and G3-structures later in this thesis, we also
set Gi := G} and G5 ' := Ga.

Remark 1.20. Bryant showed in [Bri] that Gy is in SO(7), G5 is in SO¢(3,4) and (G2)c
is in SO(n, C) and that all these groups are connected. Moreover, he showed that (Ga)c is
the simply-connected complex 14-dimensional Lie group whose Lie algebra is the exceptional
simple Lie algebra (g2)c, Go is the simply-connected real 14-dimensional Lie group whose
Lie algebra ga is the compact real form of (g2)c and G is the connected real 14-dimensional

Lie group with m1(G%) = Za whose Lie algebra g5 is the split real form of (g2)c.
Now we define the mentioned two- and three-fold F-cross products.
Proposition 1.21. Let (A, g) be an F-octonion algebra.
(a) The map x4 : Im(A) x Im(A) — Im(A), defined by
axab=ab+ g(a,b)e=ab— g(ab,e)e
for a,b € Tm(A), is a two-fold F-cross product on (Im(A), glim(a))-
(b) For any e € {—1,1} the maps XA : A3 — A and YA : A3 — A, defined by
XA(a,b,c) :=e(—(ab)c + g(a,b)c + g(b,c)a — g(c, a)b),
YA(a,b,c) :==e(—a(be) + g(a,b)c + g(b,c)a — g(c, a)b)
for a,b,c € A, are three-fold cross products on (A, €g).
Proof. For the proof, we refer to [BG1]. O

Remark 1.22. e More generally, the proof given in [BG1] provides the existence of
a functor from the category of n-dimensional F-composition algebras (with the ob-
vious morphisms) to the category of (n — 1)-fold cross products which extends the
assignment for F-octonion algebras given in Proposition 1.21. This functor is fully
faithful and essentially surjective and so yields an equivalence between the category of
n-dimensional F-composition algebras and the category of (n —1)-fold cross products.
There is no such strong relation between three-fold F-cross products and F-composition

algebras.

o As it is stated in Theorem 1.23, there is no isomorphism of cross products between
(XA, eg) and (YA eg). But by [SV], g(a,b) = g(a,b) and so one can compute that
XA@,b,¢) = YA(c,b,a) = —YA(a,b,c). Hence, the stabilisers of (X2, eg) and
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(YEA,eg) in GL(A) are conjugate via the composition algebra conjugation. Thus,
the same is true for the associated four-forms pxa and pxa in GL(A). Note that
Pxp = Pxa and Pys = Pya - To simplify the notation we set px, = Px and
SOYA = SDYA

We have defined, up to isomorphisin, all the possible F-cross products. For the formu-

lation of the classification theorem, recall that by our convention (-, -, )pn—p = > by €' ®
e =3 e @el € PR and (-, -)pc =D ¢ ®@e € S*(CM)".

Theorem 1.23. Let (X,V,g) be a non-trivial n-dimensional r-fold F-cross product. Then

(X, V, g) is isomorphic to exactly one of the following n-dimensional r-fold F-cross products:

(i) r =1, n = 2m and (J_1,F",(-,-)), where J_1 is defined by J_i(e2i_1) := —eai,
J_1(e2i) == egi—1 fori =1,....m, (-,-) = (-, )2p2m—2p for some p € {0,...,m} if
F=Rand (-,-) = (-, )nc f F=C.

(i) 7 =2, n = 7 and (Im(A), glim(a), Xa) for A € {0,04,0c¢} and xa defined as in
Proposition 1.21 (a).

(i) r =3, n = 8 and (XA, A, eg) for (A,€) € {(0,1),(0,-1),(0s,1),(0c,1)} and XA
defined as in Proposition 1.21 (b).

i) 1 =3, n = 8 and (YA, A,eq) for (4,¢) € {(0,1),(0,~1),(04,1), (Oc, 1)} and YA
defined as in Proposition 1.21 (b).

(v) r=n—12>2and (x,F",(-,-)), where (-,-) = (-, ")n—2¢,2q for some q € {0,...,|%]}

ifF =R, (-,-) = (-, )nc f F = C and  is in all cases constructed as in Example

1.12 (b) via the non-degenerate symmetric F-bilinear form (-,-) and det € A™(F™)*.

Proof. For the proof we refer to [BG1]. O

Finally, In this section, we consider the k-forms associated to the exceptional (k—1)-fold

F-cross products. We start with the two-fold cross products in seven dimensions.

Proposition 1.24. For all A € {0, Q4,0c¢} let F : FT — Im(A) be the isomorphism given
in Definition 1.19 and for all e € {—1,1} set

. 8 %
Qe :26123 — € (6145 + e167 + 6246 _ e257 _ 6347 _ 6356) c A3 (R7) 7

. *
Yc 226123 +e + 6246 _ 6257 _ €347 _ 6356 e A3 ((C7) )

(1.4)

145 167

+e

Then o1 = Fpxg, v1 = Froxy, and oo = F*gpx@C, where the two-fold F-cross product
X A 18 the one defined in Proposition 1.21 (a). The stabiliser of @ in GL(7,R) is given by
G$ and the stabiliser of pc in GL(7,C) is given by (G2)¢ x {&I7 ‘{ €C,&=1}.

Proof. The first part follows by direct calculation. The second part is proved in [Brl]. O
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Finally, we come to the four-forms associated to the three-fold cross products in eight

dimensions.

Proposition 1.25. For all A € {0, Q,,Qc¢} let G : F® — A be the isomorphism such that
Glpr = F with F given in Definition 1.19 and G(eg) = 1. Moreover, for all e € {—1,1},
let p. € A3 (R7)* and pc € A3 ((C7)* be the three-forms defined in Equation (1.4) and set

(I)e ::68 A e+ e (61247 4 61256 + e1546 o 61357 o 62345 _ 62567) + 64567 c A4 (RS) 7

‘ (1.5)
D ::(28 Ao — 61247 . 61256 o 61346 + 61357 + 62345 + 62367 + 64567 c A4 (CS)* )

Then ®_1 = G*px,, ®1 = G’kch@S and ®¢c = G*@X@C, where ©x ,1s the four-form asso-
ciated to the three-fold F-cross product X}, c¢f. Remark 1.22. Moreover, the stabiliser of
®_; in GL(8,R) is given by Spin(7) C SO(8), the stabiliser of ®1 in GL(8,R) is given by
Sping(3,4) € SOg(4,4) and the one of ®¢ is given by Spin(7,C) x (ilg) C SO(8,C) x (ilg).

Proof. Again the first part is a direct calculation and the second is given in [Brl]. O

Remark 1.26. The Spin-groups appearing in Proposition 1.25 are usually not defined as
concrete subgroups of GL(8,F). So the statement of Proposition 1.25 is more exactly that
the mentioned subgroups of GL(8,F) are isomorphic to the corresponding Spin-groups. The
isomorphisms are obtained by observing that the real spin representations of Spin(7) and
Sping(3,4) are faithful and eight-dimensional and the same is true for the complex spin
representation of Spin(7,C), ¢f. [LM].

1.3 Stable forms

In the previous section, we have seen that certain types of k-forms arise from (k — 1)-fold
cross products, namely the associated ones. In particular, non-degenerate two-forms arise
from 1-fold cross products in this way. In this sense one may consider the k-forms associated
to (k — 1)-fold cross products as a natural generalisation of non-degenerate two-forms to
higher degrees. Another way of generalizing the concept of non-degenerate two-forms to
higher degrees is discussed in this section. This concept was first introduced by Hitchin in
[Hil] and relies on the fact that the orbit of a non-degenerate two-form under the natural
action of the general linear group is open. Forms with open orbit are called stable. In
this section, we give a full classification of stable forms on real vector spaces and observe
that the three-forms associated to a two-fold F-cross product in seven dimensions are also
stable. One important fact about stability of k-forms is that it is preserved under Hodge
star operators (if k # 0,n). For that reason we start by recalling the definition of Hodge

star operators:

10
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Definition 1.27. Let V be a real oriented n-dimensional vector space and g be a pseudo-
Euclidean metric on V. The Hodge star operator (associated to (V,g)) is the linear map
*x 1 A*V* — A*V* such that for a k-form ¢ € AFV* the image x1) under % is the unique
(n — k)-form for which the identity

gk, )vol = Y A (1.6)

is true for all (n — k)-forms 'LZ € A"kV*. Here, vol is the metric volume form on V, i.e.
vol fulfils vol(vy,...,v,) = 1 for all oriented orthonormal bases vi,...,v, of (V,g). x is
called the Hodge dual of 1.

Let V' be a complex n-dimensional vector space, g a complex symmetric non-degenerate
bilinear form on V and choose a volume form vol € A"V*\{0} such that there exists
an orthonormal basis v1,...,v, of (V,g) with vol(vy,...,v,) = 1. Note that there are
only two such choices, namely vol and —vol. Then we define the Hodge star operator
*: A*V* — A*V* associated to (V, g,vol) as in the real case by requiring that for a k-form
Y € ARV the (n — k)-form %) is the unique (n — k)-form which fulfils Equation (1.6)
for all (n — k)-forms ¥ € ARV Again, < is called the Hodge dual of 1.

Remark 1.28. Let V, g,vol as in Definition 1.27. Recall that by our conventions e(h) =
(=1)""P for a pseudo-Euclidean metric h of signature (p,n—p) and (k) = 1 for a complez

symmetric non-degenerate bilinear form k.

e The Hodge star operator associated to (V,g) is given by x = €(g)(-uvol) o f*, where
f:V — V* is the linear map defined by f(v) := g(v,-).

o The restriction x|xn—1y« is an (n — 1)-fold F-cross product on (V*,g) if F = C or if
F =R and the signature of g is (n — 2q,2q) for some q € {0, ceey L%J }, see Example
1.12 (b).

Now we come to the main definition of this section.

Definition 1.29. Let V' be a finite-dimensional F-vector space. A stable form on V is a
k-form 1 € AFV* such that the orbit of 1 under the natural action of GL(V) on AFV*
is open. A k-form 11 € AFV} on Vi is equivalent to a k-form by € AFVy on Va if there
exists an isomorphism f : Vi — Vo with f*io = 1. In this case we also write Y1 ~ Py and
observe that f*(GL(V2) - 12) = GL(V1) - ¢1. So stability is preserved under equivalence.

The stable k-forms for k € {0,1,2,n — 1,n} are easily identified. Moreover, we already

encountered in the previous section an example of a stable three-form in seven dimensions.
Example 1.30. Let V' be an n-dimenstonal F-vector space

(a) All non-zero one-forms, all non-zero (n — 1)-forms and all volume forms vol €

A"V*\{0} on V are stable. No 0-form is stable.

11
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(b) The two-forms on an n-dimensional vector space V' of maximal rank form an open
and dense subset of A2°V*. Let m € Ny be such that n = 2m or n = 2m + 1. Then
the mazimal rank of a two-form is 2m and if w € A>V* is of rank 2m, a standard
result in linear algebra tells us that there exists a basis f1,..., f" of V* such that
w=y fP=U A f2. Hence, the set of two-forms of mazimal rank is an orbit and
so the stable two-forms are exactly those of maximal rank. Note that if n = 2m is

even, then the stable two-forms are exactly the non-degenerate ones.

(c) For arbitrary e € {—1,1}, the three-forms o. € A3 (]R7)* and pc € A3 (C7)*, both
defined Equation (1.4), are stable. This follows from the fact that by Proposition 1.2/

and Remark 1.20 the stabiliser of these three-forms is in each case 14-dimensional
and 14 = 49 — 35 = dim(GL(7,F)) — dim(A? (F7)*).

In Proposition 1.33 below we show that stability is preserved under Hodge star oper-
ators. Hence, we might first restrict to the case 2k < n. In this case, the dimension of
GL(n,F) scales as n?, whereas the dimension of A* (F")* scales as n*. Hence, we expect
that for £ > 2, stability is a rare phenomenon. In fact, the next lemma tells us that for

k > 2, there only can be stable k-forms for £ = 3 and n € {6, 7, 8}.

Lemma 1.31. Let V be an n-dimensional F-vector space and 1) € A*V* be a stable k-form
with 2 <k < 5. Then k=3 and n € {6,7,8}.

Proof. For k > 4, we have n > 8 and so

<Z> N <Z> n(n — 1)(n2; 2)(n—3) _ 30 (n224— n) Z <n2 - 7?) _ %nz o2

Thus, there cannot exist a stable k-form with k£ > 4 and 2k <n. For k=3 and n > 9, we

Il
v

get
nn—1)Mn-2) _ 7, 7( 5 n? 28 5 o
> — — > _ ) ==
6 zg-n)zg(nt-g ) =5
and so there is also no stable three-form in an n-dimensional vector space if n > 9. OJ

Remark 1.32. Lemma 1.51 shows that the four-forms on eight-dimensional F-vector
spaces associated to three-fold F-cross products are not stable. From the discussion above
we see that these four-forms are the only (r + 1)-forms associated to a non-trivial r-fold

cross product which are not stable.

In Definition 1.34, we present examples of stable three-forms in six and eight dimen-
sions. But before we give these examples, we indicate how one gets a full description of all
stable (n — k)-forms on an n-dimensional F-vector space if one knows all stable k-forms on
V. Besides, we also get the stabiliser group of the Hodge dual %t of an arbitrary k-form
Y € AFV* if we know the stabiliser of 1.

12
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Proposition 1.33. Let V be an n-dimensional F-vector space and g be a symmelric non-
degenerate F-bilinear form on V. If F = R, then assume that V is also oriented and if
F = C, choose vol € A"V* with vol(eq, ..., e,) = 1 for some orthonormal basis eq, ..., e, of
(V,g). Letx : A*V* — A*V™* be the Hodge star operator associated to (V, g) or to (V, g, vol),
respectively, and k € {1,...,n — 1}. Furthermore, for a linear map f € End(V), denote
by ft its transpose with respect to g. Then:

(a) For € AFV* we have x(GL(V) -9 UGL(V)- (=) = GL(V)- () UGL(V) - (— %).

(b) Let {1; € A*V*|i € I} be a system of representatives for all orbits of k-forms under
the natural action of GL(V'). Choose a subset J C I such that 1;, is not in the same
GL(V)-orbit as —pj, for j1 # jo and such that each k-form ¢ € A*V* is in the
GL(V)-orbit of ¥; or of —1; for some j € J. Then the set

g, = jli € J, —x by & GL(V) - xb; } U x| € J, — % 1h; € GL(V) - xaby}

is a system of representatives for all orbits of (n — k)-forms under the natural action

of GL(V).

(¢) If V is a complex vector space or V is an oriented real vector space and k and n — k
are both odd, then x yields a bijection between the orbits in A*V* and A" *V* under
the natural GL(V)-action

(d) IfF =C, then GL(V),y = {Mt |\ = det(h), h € GL(V)y, A € C* }.

(¢) IfF =R, then GLT (V)4 = {det(h n%kh—t‘ he GL*(V)w} and
GL(V)*w:{ (hw gty ¥s h € GL(V )}

(f) If € A*V* is a stable k-form, then also % € A" FV* is stable.

Proof.  (a) By Remark 1.28, we have x = €(g)(.uvol) o f*, where f : V — V* is defined
by f(v) := g(v,.) and vol is the metric volume form if F = R. Hence, the identity

1

) (Rt 1) (1.7)

*(hap) =

holds for all h € GL(V).

Let h € GL(V). Then there exists A € F* and € € {—1, 1} such that A"~* = edet(h).

Hence )
_ —t _ (\p—t
lhab) = et (07 0) = O (exw),
which shows *(GL(V) - ) € GL(V) - % U GL(V) - (— % ¢). Since 2 Aoy =
(—=1)*("=%)¢(g)id|psy+ is true for all s € {0,...,n}, we have GL(V) - %) C «(GL(V) -
) U*(GL(V) - (—)). This implies the statement.

13
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(b)

Suppose that there are ji, jo € J with j1 # j2 and € € {—1,1} such that the
wope = (=15 9e(g) id|psy+ for all
s €{0,...,n}, (a) shows that v, is equivalent to 1), or to —1;,, which contradicts
the choice of the set J. Thus, the elements of

{xj, —x1hild € J, xhj & GL(V) (= x1by) } U {x|5 € J, xh; € GL(V)(—* ;) }

forms %), and € x1);, are equivalent. Since *2

represent pairwise different orbits.

Next, let U € A" *V* be given. By the choice of the set J, the k-form U is

Asv* -
(—=1)*("=9)¢(g) id|psy~ for all s € {0,...,n}, (a) shows that U is equivalent to § 1),

equivalent to e, for some jo € J and some € € {—1,1}. Again, since x>

for some § € {—1,1} and hence to an element in
{xtjs = xjli € J, xbj & GL(V) (= x 5)} U {xil5 € J, % € GL(V) (= % 45) }-

By (b), it suffices to show that in both cases each k-form is equivalent to its negative
and also each (n — k)-form is equivalent to its negative. If V is a complex vector
space and p € {1,...,n} arbitrary, then there is A € C with A™ = —1 and so
(Aidy).p = —p for all p € APV* Hence, p is equivalent to —p for all p-forms p € APV*.
If V is a real vector space and p € {1,...,n} is odd, then (—idy).p = —p and so p is
equivalent to —p for all p € APV*. This proves (c).

Equation (1.7) shows that { A\~ |A\"~* = det(h), h € GL(V)y, A € C*} € GL(V )y
Asyr = (=1)*"=9)e(g)id|psy~ for all s € {0,...,n}, we get
{ uh™| p* = det(h), h € GL(V )y, p € C*} € GL(V)y. We use this inclusion now to
prove GL(V ),y € { AT h € GL(V)y, A% =det(h)}. Let h € GL(V),y. Choose
p € C with ¥ = det(h). Then hg := ph~" € GL(V)y and so

Using again +2

wr
det(ho)’
ie. p"* = det(hg). Thus, h € {uhat} p"* = det(ho), ho € GL(V )y, p € C*},

which shows the statement.

1k = det(h) = det (uhyt) =

The first part follows exactly in the same way as part (d). For the second, note that
(d) implies the identity

GL(V)up = {/3 e GL(V)( ho= Ah7 APF = det(R), h € GL(Ve)ye, A € <c*} ,

where 9¢ is the complex k-linear extension of 1. Let h = Ah™t € GL(V),y be given.
Set ho := % and p:= A*. Note that hg € GL(V) since hy" = h € GL(V). Moreover,
det(hg) = det( ) = Ak = l and so pu € R*. Furthermore, hg.t) = up = w and

SO

det

GL(V ),y € { ho. Y =

1
det(h )1/), ho € GL(V)}

14
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The converse inclusion follows directly from Equation (1.7).

(f) It suffices to show that the stabiliser subgroups of 1) and xt) have the same dimension
since dim(A*V*) = dim(A"~*V*). But this follows follows directly from (d) and (e).
O]

By Lemma 1.31, a stable A-form with 3 < k < § fulfils & = 3 and n € {6,7,8}.
In seven dimensions, we encountered two real stable three-forms on R7 and one complex
stable three-form on C7 in Example 1.30 (c). In Theorem 1.35 we will see that these are,
up to equivalence, all. To classify the stable three-forms in six and eight dimensions up to

equivalence, we first need to find stable three-forms in these dimensions.
Definition 1.34. We define three-forms on R and C° by

pe =el 4 e (6146 + 236 4 6245) e A3 (R6)* , s
po —el35 o146 _ (236 _ 245 ¢ A3 ((C6)*_ (1.8)

Moreover, we define the complex three-form g3 c) € A3 (s1(3,C)) on the eight-dimensional
complex simple Lie algebra s1(3,C) by vgys,c)(u, v, w) 1= kg3 c)(u, [v,w]) for u,v,w € g,
where kg 3,0y 15 the Killing form on sl(3,C). Similarly, we define for each real form g €
{sI(3,R), su(3),5u(1,2)} of s(3,C) a three-form 1y € A3g* by 1hg(u,v,w) := kg(u, [v,w])

for u,v,w € g.

The three-forms just defined turn out to be stable and allow us to classify all stable

three-forms in six and eight dimensions.

Theorem 1.35. (a) All the three-forms p. € A3 (RG)*, pc € A3 ((CG)* and ¢y € A3g*
defined in Definition 1.34 are stable and each stable three-form on a siz- or eight-

dimensional F-vector space is equivalent to exactly one of these three-forms.

(b) Each stable three-form on a seven-dimensional F-vector space is equivalent to exactly
one of the stable three-forms p1,p_1 € A3 (]R7)*, wo € A3 (C7)* defined in Equation

(1.4).
Proof. The classification in the complex case follows from the classification of prehomoge-
neous spaces given in [KiSal. Since a real k-form is stable if and only if its complexification
is stable, we get a full list of stable three-forms up to equivalence in six, seven and eight
real dimensions by determining all real forms of the complex stable three-forms in these
dimensions. This has been done in [Dj], where the real forms of all orbits of complex
three-forms have been determined. Note that the classification of all orbits in six real
dimensions has been well-known for a long time, cf. e.g. [Cap|, and a classification of the
orbits in seven real dimensions has also been given before in [W3]. For a summary of these
results and other known results on real or complex stable three-forms in the mentioned

dimensions, we refer the reader also to [LPV] and references therein. O
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Remark 1.36. Lemma 1.31, Example 1.50 and Theorem 1.35 give us a complete classifi-
cation of the equivalence classes of stable k-forms on an n-dimensional F-vector space with
2k < n. Using some results we prove later in this thesis, we may write down a complete
list for arbitrary k. Namely, Lemma 2.4 and Proposition 2.5 will give us a full classifica-
tion of stable (n — 2)-forms up to equivalence, and Lemma 2.43 and Lemma 2.45 will yield
a classification of stable four-forms in seven-dimensions up to equivalence. Moreover, by
Proposition 1.33 a classification of the equivalence classes of stable five-forms in eight di-
mensions s given by the Hodge duals of the stable three-forms in eight-dimensions defined

in Definition 1.8 for any Hodge star operator.

We end this section by noting that for certain (k,n) € N? and all oriented real n-
dimensional vector spaces V there is a non-zero differentiable GL™ (V)-equivariant map
¢ : AFV*\{0} — A"V* such that ¢(p) # 0 if and only if p € A¥V* is stable. This stems
from the fact that for these particular values of (k, n), the stabiliser GLT(V), in GL* (V) of
each stable k-form p is a subgroup of SL(V') and so the restriction of the mentioned map to
the open orbits can be regarded as the SL(V)-enlargement of the corresponding GLT(V),-
structure (via certain model tensors). Note that the reference for the proof we give does

not use enlargement theory but proves the result via the theory of prehomogeneous spaces
[Ki].

Proposition 1.37. Let V be a real oriented n-dimensional vector space and either k €
{2,n — 2} and n = 2m even or k € {3,n — 3} and n = 6,7,8. Then there exists a
GL™(V)-equivariant map
¢ APV = A"V
differentiable on AFV*\{0}, such that ¢—1(0) is exactly the set of all non-stable k-forms.
If ¢ : A*V* — A"V* is any such map, then for each stable k-form p € AFV* there
exists a unique (n — k)-form p € A"*V* such that

dpp(e) = pAa

for all o € A*V*. Moreover, the identity GLT(V), = GL*(V); is true and so also p is

stable. Furthermore, the following relation between p and p holds:

pp=20(p) (1.9)

Proof. This is proved in [CLSS|. Note that the proof there shows the properties only for
one particular differentiable GL™*(V)-equivariant map ¢g : A¥V* — A"V* with ¢g(p) = 0
exactly when p € A¥V* is non-stable. On each of the open GLT(V)-orbits, any other ¢ as

above is a non-zero multiple of ¢ and so the properties also hold for ¢. O
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1.4. ALGEBRAIC INVARIANTS FOR ORBITS OF K-FORMS 17

In Chapter 2, a concrete description of the map ¢ : A*V* — A" *V* and the cor-
responding dual (n — k)-form p of a stable k-form p € A¥V* are given for all the cases

relevant in this thesis.

Remark 1.38. A priori, the dual (n — k)-form p of a stable k-form p has nothing to
do with the Hodge dual xp of p with respect to some non-degenerate bilinear form g. In
particular, we do not need any pseudo-Euclidean metric to define p. But it turns out that
in all cases where the stabiliser of p is a subgroup of O(p,n — p) there is a tight connection
to the Hodge dual defined by the induced bilinear form g.

1.4 Algebraic invariants for orbits of k-forms

In this section, we deal with certain algebraic invariants of k-vectors on a finite-dimensional
F-vector space. These invariants give us information on the structure of particular k-forms
and are used to obtain obstructions to the existence of cocalibrated structures in Chapter
5. They have partly been introduced by Westwick in [W3], where he used them to classify
the orbits of three-vectors on a seven-dimensional real vector space under the natural
action of GL(V'). We recall this classification but formulate it for three-forms, as we also
define the invariants directly for k-forms and not for k-vectors as Westwick did. If we deal
with k-vectors, we consider them implicitly as k-forms on V* via the natural isomorphism
between V and V**. For more background on some of the invariants and other related
results, we also refer the reader to [Gu|, [BG1]|, [Cap]|, [W1] and [W2].

Definition 1.39. Let V be an n-dimensional F-vector space and let k > 1. The Grass-
man cone Gy (V*) consists of all decomposable k-forms on V', i.e. of all those k-forms
v € AV* such that there are k one-forms aq,...,op with ¥ = a1 A ... A oy. The
length 1(2)) of an arbitrary k-form ¢ € A*V* is defined as the minimal number m of de-
composable k-forms i1, ..., Y which is needed to write ¢ as the sum of ¥1,..., %y, t.e.
I(¥) :=min{m € No |31, ..., ¥m € Gx (V*) 1 =37 i }. The rank rk()) of ¢ is the

dimension of the subspace

[¢] := m {¢ e A*U|U is a subspace of V*}

or, equivalently, the rank of the linear map T : V — A*1V* T(v) = viv. [¢] is also
called the support (of ¥). Note that by definition [(0) = 0 and rk(0) = 0.

Neat, let o € AFV*, ¢ # 0, be given. Choose v & ker(T) and a subspace W of V' such
that W @ span(v) @ ker T' =V is a direct vector space sum. We get a natural (k —1)-form
p(v, W) := (vavp)|lw € A¥YW* and a natural k-form QW) := |y € A¥W*on W. From

this construction, we obtain two more algebraic invariants r(v) and m(y) by looking at the

17



1.4. ALGEBRAIC INVARIANTS FOR ORBITS OF K-FORMS 18

lengths of QW) and p(v, W) and minimizing over all possible v,W. More ezxactly, we set:
r(¥) := min {Z(Q)m = Q(W) € A*W™, dim(W) = (tk(y) — 1), W Nker T = {0}} ,
m(t) := min {l(p)\p =p(v,W) € AFIW*, v ¢ ker T, W @ span(v) @ ker T’ = V} .
For completeness, we set r(0) := 0 and m(0) := 0.

Remark 1.40. o Ifp € A*V* and o € V* such that o & [¢], then 1() = (3 A @),
cf. [BuGl, (2.2)].

o On a 2m-dimensional F-vector space, non-degenerate two-forms are exactly those
with full rank 2m. Hence, another way of generalizing the concept of non-degeneracy
to forms of higher degree on an n-dimensional vector space is to call k-forms with full
rank n non-degenerate. This generalisation has been done in [MaSw3], where also

various other generalisations of non-degeneracy to higher forms are discussed.

e In [Cap], an algebraic invariant for k-forms ¢ € A*V*, called B-longueur, was con-
sidered. Therefore, let B be the set of all bases of V. For a fixed b € B, set

¢:Z¢l s.1. Vje{l,...,m}: wj:)\jajl/\.../\ajk,

=1

lp(¥)) :=min {m € Ny

)\j e, Qjpyeeey O, € b}
The B-longueur of 1 is defined as min{ly(¢)|b € B}. Of course, the B-longueur is
greater or equal to the irreducible length of ¥ and, in general, they do not coincide.
E.g. the B-longueur of the three-form p_q € A3 (R())* defined in Equation (1.8) is
four and the length of it is three, cf. [Cap].
o An equivalent description of the numbers r(v) and m(v) is obtained as follows:
Let oo € [Yp], o # 0 and U be a complement of span(«) in [¢]. Denote by p(a,U) €
AU and Q(o, U) € ARU the unique three- and four-form on V' such that
Y =pla,U)Na+Qa,U).

Then
r(¥) = min{l(Q)|Q = Ao, U) € A"V, a € [¥]\{0}, U @ span(a) = [¥]},
m() = min{l(p)lp = pla, U) € AU, a € [W\{0}, U @ span(a) = [4]}.
We will mostly work with this description.
For a k-form 1, a given v € V\{0} and a given subspace W of V with span(v) ®
W =V, the (k — 1)-form p(v, W) := (vi4)|w depends on both v and W. However, in

the following sense it essentially only depends on v, and, in particular, the values of the

algebraic invariants only depend on v:

18
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Remark 1.41. Let ¢ € AKV* be a k-form and set T : V — A*1V* T(w) := wi. Let
v & ker T and let Wi, Wy be two subspaces of V' such that V = span(v) ® W; @ ker T' for
i =1,2. Set p(v, W;) := (vav)|w, fori= 1,2 and denote by pryy, : V — Wa the projection
of V_onto Wy along span(v) @ker T'. Then f: W1 — Wa, f = pry,|w, is an isomorphism
with f*p(v, Wa) = p(v, W1).

If f: W — V is a linear isomorphism, then the induced map f* : AFV* — AFWY*
is a linear isomorphism which obviously preserves the length of a k-form and also all the
other algebraic invariants rk, r and m. In particular, these algebraic invariants are really
invariants of GL(V)-orbits in A¥V*. Essentially there is only one more map which preserves
the length [W1], namely a dual isomorphism. Note that we use a slightly different definition

of a dual isomorphism as the one given e.g. in [KPRS].

Definition 1.42. Let V be an n-dimensional vector space and vol € A"V*\{0} be a volume
form. Then, for all k € {1,...,n — 1}, the map & : AFV — A""FV* defined by

0(X) == Xavol

for X € A*V is called a dual isomorphism. Note that any other dual isomorphism is a

non-zero multiple of 6.

Lemma 1.43. Let V be an n-dimensional F-vector space, k € {1,...,n —1}, 6 : AFV —
A" FV* be a dual isomorphism. Then 1(X) = 1(6(X)) for all X € A*V. Hence, if
*  A*V* — A*V* is a Hodge star operator on V', then l(v) = l(x¢) for all k-forms
e AFV*,

Proof. Let 6 : A*V — A" FV* §(X) := X.vol be a dual isomorphism with vol €
A"V*\{0}. The image of a non-zero decomposable k-vector Y = vy A ... Avg on V is
a non-zero (n — k)-form € which lies in A" *#[Y]%. Since the dimension of the annihilator
(V1% is n — k, Q has to be decomposable. Hence, I[(X) > 1(§(X)) for all X € A*V. The
inverse map of § is also a dual isomorphism and we get the equality [(X) = [(§(X)) for all
X € A*V. The statement for the Hodge dual follows since by Remark 1.28 the Hodge dual

is the composition of a dual isomorphism with a linear isomorphism of the form f*. O

Remark 1.44. In [Frel], the author of this thesis showed that r(6(X)) = m(X) and
m(d(X)) =r(X) if r(X) > 0 and rk(X) = n and the result is used to determine the values
of the invariants for the orbits of Hodge duals of G5-structures and of (Ga)c-structures.
In this thesis, we use a different approach which also determines the model tensors of the

mnduced three- and four-forms on a codimension one subspace of V', see Section 2.4.

We end this section by recalling the classification of real three-forms in seven dimension

by Westwick [W3| and also the classification of complex three-forms in seven dimensions
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[Gu]. We add the values of the algebraic invariants rk, I, 7, m in the real case determined by
Westwick [W3] and the values of the algebraic invariants rk, [ determined in [W2], [Cap],
[Gu].

Proposition 1.45. Let 1) € A3V* be a three-form on a seven-dimensional real vector space

V and U € ASW* be a three-form on a seven-dimensional complex vector space W.
(a) v is equivalent to exactly one of the following three-forms on R :

Table 1.1: Real three-forms in seven dimensions

Y (tk(¥), 1(¥), m(¥),r(¢)) | (tk(yc), l(¥c))
Q1|0 (0,0,0,0) (0,0)
Qs | €123 (3,1,1,0) (3,1)
Qs | €123 4 o145 (5,2,1,0) (5,2)
p1 | €135 4 o6 | (236 | (245 (6,2,1,1) (6,2)
p_1 o135 _ o146 _ 236 _ ;245 (6,3,2,2) (6,2)
% o126 _ (135 | 234 (6,3,1,1) (6,3)
P, o123 4 o145 | 267 (7,3,1,1) (7,3)
R | el23 4 o145 | (167 4 (246 _ 257 (7,4,1,2) (7,3)
Py | 123 4237 4 o267 _ 357 4 o456 | 567 (7,3,1,2) (7,3)
S o145 + e167 + 246 _ 257 + 347 + £356 (7’ 4,2, 3) (77 3)
Py | 123 4 (145 4 (167 (7,3,1,0) (7,3)
P, | 123 o145 | o167 4 246 (7,4,1,1) (7,4)
o1 —el123 4 o145 _ o167 4 246 4 257 (7,4,2,2) (7,4)
o347 _ 5356
o1 | —el28 _ 15y (167 _ 246 _ 257 _ (7,5,3,3) (7,4)
347 | 356

(b) Let 11, g € A3 (R7)* be two different three-forms in Table 1.1. Then the complex-
linear extensions (1)c € A3 ((C7)* and (2)c € A3 ((C7)* are equivalent if and only
if {1,092} € {{p1,p-1},{P1, R}, { P2, S}, {p1,0-1}}. Moreover, ¥ is equivalent to

the complez-linear extension of one of the three-forms in Table 1.1.
Note that Table 1.1 implies

Corollary 1.46. Let V be a seven-dimensional real vector space. For )y,1o € A3V* we
have 1 € GL(V) - 19 if and only if

(P('¢1), l(¢1)7 T(¢1), m(¢1)) = (P(¢2), l(¢2), T(¢2)’ m(d}?))
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Chapter 2

Interesting examples of G-structures

2.1 G-structures related to two-forms

In this section, we look at two-forms and (n — 2)-forms on an n-dimensional F-vector space
V. We classify them up to equivalence and compute all the stabiliser subgroups. If n = 4,
we characterise subspace of A2V* in which each non-zero element has length two.

We start with two-forms. For those forms, the length is enough to distinguish them up

to equivalence.

Lemma 2.1. Let V be an n-dimensional F-vector space and let w € A>V*. Then w has
length | if and only if W' # 0 and W' = 0 and this is equivalent to the existence of 21
linearly independent one-forms aq,...,ag € V* such that w = Zi:l o1 N\ ;. In the
case | = L%J this is also equivalent to the stability of w and if additionally n is even, also
to the non-degeneracy of w. Moreover, the map A*V* — Ny, w +— l(w) induces a bijection
between the GL(V)-orbits of two-forms on V and {0,...,|%]}.

Proof. The last assertion in Lemma 2.1 follows from the previous ones. Hence, we only
have to prove them. A proof of the first equivalence may be found in [BuGl, Theorem
2.11]. If w' # 0 and w!*! = 0, then, by the first equivalence, w has length I. Hence, there
exist w; € Go (V*), i =1,...,1, with w = 22:1 w;. We may choose one-forms o € V*,

j=1,...,2l such that w; = ag;—1 A ao;. Then

l
w
al/\"'/\a2l:w1/\"'/\wl:ZT7£O'

Thus, a1, ...,y are linearly independent and w has the stated form. Conversely, if w =
22:1 a9i—1 A ag; for linearly independent vy, ..., a9 € V*, then w' =laj A... Aagy #0
and W't = 0. Moreover, such an w has rank [ and so it is stable if and only if [ = L%J by

Example 1.30 and non-degenerate if additionally n is even. O

For the construction of cocalibrated Go-structures in Chapter 5, we need k-dimensional

21



2.1. G-STRUCTURES RELATED TO TWO-FORMS 22

subspaces of the two-forms on a real four-dimensional vector space, k € {0, 1,2, 3}, in which

each non-zero element is of length two. Such subspaces can be characterised as follows.

Lemma 2.2. Let V be a real four-dimensional vector space, k € {0,1,2,3}, wi,...,wi €
A2V* be arbitrary two-forms on V, 7 € A*V*\{0} and 7 be an arbitrary permutation
of {1,2,3}. Set W := span(wy,...,wy), @& = e'?2 +e3* € A? (RA‘)*, Oy = 3 — et ¢
A? (R4)*, Q3 := elt e € A2 (R4)*, Moreover, define the symmetric matriz H = (hij)ij €

REXE Dy w; A wj = hy7 fori,j=1,...,k. Then the following are equivalent:
(i) W is k-dimensional and each element in W\{0} has length two.

(ii) There is an isomorphism u : V — R* such that {u*d}ﬂ(i)ﬁ =1,.. .,k} is a basis of
w.

(ii) H is definite.

(iv) There exists a Fuclidean metric and an orientation on V' such that W is a subspace

of the space of all self-dual two-forms on V.

Proof. Condition (i) implies condition (ii) by [W3, Theorem 3.1] and [W3, Theorem 3.2].
The converse direction follows since @; A@; = 0 for i # j and so w? # 0 for all w € W\{0}
if {u*d),,(i)]i =1,... ,k} is a basis of W. Since @1, W9, @3 form a basis of the self-dual
two-forms on R* with respect to the standard Euclidean metric and orientation, we get the
equivalence of (ii) and (iv). To prove the equivalence of (i) and (iii), let w = Zle ajw; € W

with a := (a1, ...,a;)! # 0. By Lemma 2.1, w has length two if and only if

k
0 +# w? = Z ajhija;T = a'Har,

i,j=1

i.e. if and only if a’Ha # 0. Hence, all elements in W\{0} have length two if and only if
H is definite. O

Next, we compute the stabiliser subgroup of a two-form of length ! under the natural

action of the general linear group.

Proposition 2.3. Let V be an n-dimensional F-vector space and w € A?V* be a two-form
of length 1. Set ker(w) := {v € V|w(v,-) =0} and choose some complement W of ker(w)
in V. Then the stabiliser subgroup GL(V'),, of w under GL(V') is given by

GL(V)W = {f S GL(V) ’f|W = fl + h7 f‘ker(w) = f27 fl € Sp(UJ|W,W),
h € hom(W, ker(w)), fo € GL(ker(w)) }.
=~ (Sp(21,F) x GL(n — 21, F)) x F2x(=20)
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2.1. G-STRUCTURES RELATED TO TWO-FORMS 23

Proof. Assume that f € GL(V) stabilises w. Then it also stabilises ker(w), i.e. flier(w) €
GL(ker(w)). The two-form w|y on W is non-degenerate and so we must have f|y = fi+h
with f1 € Sp(w|w, W), h € hom(W, ker(w)). Hence, f has the stated form. Conversely, it

is obvious that elements in GL(V') of the form as in the assertion stabilise w. O
The results for two-forms imply the following results on the equivalence classes of
(n — 2)-forms:

Lemma 2.4. Let V be an n-dimensional F-vector space, 2 € A" 2V be an (n — 2)-form
onV andl € {0, ey L%J } In a wedge product, denote by & a one-form which is omitted

wn this product. Then the following statements are true.
(a) 2 is stable if and only if | = L%J
(b) Let F = C or (I,n) # (m,2m) for all odd m € N. Then Q has length 1 if and only if

there exists a basis aq,...,a, of V* such that

l
Q:Zal/\...@/\@A...Aan.
=1

(c) Letl=2m for some m € N. Assume that F = C or m is even. Then Q has length m

wmfl

if and only if there exists a non-degenerate two-form w € A2V* such that Q = =11

(d) Let F = R and n = 2m for some odd m € N. Then Q has length m if and only if
there exists a basis B1,...,Bn of V* such that

l
Q=2> BiA...Boi1NBo ... AP
i=1

This is the case if and only if there exists a non-degenerate two-form w € A*°V* such

that Q = :I:(‘;’HL__II)!. Moreover, for each non-degenerate two-form w on V, (%L__ll), 18
wmfl

not equivalent to ~ =T
(e) If F =R and n = 2m for some odd m, the map A"~2V* — Ny, Q + [(Q) induces a
surjection between the orbits of (n — 2)-forms on V' and the set {0,...,m} such that
each element in {0,...,m — 1} has ezxactly one preimage and m has two preimages.

In all other cases, the map A"~2V* — Ng, Q> 1(Q) induces a bijection between the
orbits of (n — 2)-forms on V and the set {0,...,|%]|}.

Proof. Let V be an n-dimensional F-vector space. (a) follows directly from Proposition
1.33, Lemma 1.43 and Lemma 2.1. Moreover, note (e) follows directly from (b),(c) and
(d). So it remains to prove (b), (c) and (d). If n = 2m, Lemma 2.1 gives the identity

m
{Zal/\...@/\@w../\an
=1

Qai, ..., Qo basis of V}

m—1
_ { (wl)" w e ANV* non—degenerate} )
m — .
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Choose a Hodge star operator « : A2V* — A" 2V* where in the case F = R we choose
the defining non-degenerate symmetric bilinear form to be positive definite. Furthermore,
choose an ordered basis (f1,..., fn) of V which is oriented and orthonormal with respect

to the structures which define x. For F = C, oriented means vol(fi,..., fn) = 1. Then
o) :z*(Zsz_l/\fQ’> =D AL EIASEA LN e ATV
i=1 i=1

fori=0,..., L%J By Lemma 1.43, €; has length [. Moreover, if F = C, Lemma 2.2 and
Proposition 1.33 show that {Ql ‘l € {0, cee L%J }} is a system of representatives of the
orbits of (n — 2)-forms on V. Hence, the statements for F = C follow. Assume for the rest
of the proof that F = R. In this case, Lemma 2.2 and Proposition 1.33 show that the set

{Ql ’—Ql € GL(V), L € {o, L L%J } }U{Ql, —Q, (—Ql ¢ GL(V)y, | € {0, o EJ }}

is a system of representatives for the orbits of (n — 2)-forms on V. Hence, the statement
follows if we can show that €2; is not equivalent to —€; if and only if (I,n) = (m,2m) for
some odd m.

Consider first the case 2l < n. Then F.Q; = —; for F' € GL(V) defined by F'(e;) :=¢;

fori=1,...,n—1and F(e,) := —e, and so ; and —€; are equivalent. If n = 2m, m even
and [ = m, then G.Q,,, = —Q,, for G € GL(V) defined by G(eg;—1) := e2; and G(eg;) :=
—eg9;_1 for i = 1,...,m and so €, is equivalent to —{2,,. To finish the proof, we show

that €, is not equivalent to —€,,, if n = 2m and m is odd. Assume the contrary, i.e. that
there is some h € GL(V') with h.Q,, = —,,. Consider the GL(V')-module isomorphism
K2 A22V% 5 A2V @ AV defined for Q € A?™72V* by k(Q) := X @ v with X € A%V,
v € A2mV* such that X v = Q. Then A2mV @ (A2mY*) ™ o (A2my+) 201 o5 GI(V)-
modules and so k(2,,)™ € (A2mV*)®(m71). Thus,

1

since m is odd. A short computation shows that x(£2,,)™ # 0. Hence, det(h)™ ! = —1,

which is impossible since m—1 is even. Thus, €, is not equivalent to —€,,, in this case. [

Next, we compute the stabiliser groups of an (n—2)-form of length [. For the statement,
note that by definition, det(idg) = 1 for the only linear endomorphism idg : {0} — {0} on
the 0-dimensional vector space {0} and so sgn(det(idg)) = 1.

Proposition 2.5. Let V be an n-dimensional F-vector space and Q € A""2V* be of length
l e {1,..., L%J} Consider the map F : V* — A" 1V* F(a) = QA «a and set Vi :=
ker(F)O C V™ 2 V. Choose some complement Vo of Vi in V. Then Q = % Av for

a non-degenerate two-form w € A?V}* and v € A”_QZVQ*, where we use the decomposition

Vi @ Va to identify (Vi @ Va)* with V" & V5. Moreover:
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(a) If F =C, then

GL(V)o = {f € GL(V) |flvi = M1, flvs = fo + hy X272 = det(f2),
f1 € Sp(Vi,w), A € C*, fo € GL(V2), h € hom(Va,V1)}.

(b) If F =R and l is even, then

GL(V)a = {f € GL(V) |flny = | det(£2)| =2 f1, flvy = 2+ Dy f1 € GL(A),
fi.w =sgn(det(f2))w, fo € GL(V2), h € hom(Va, V1)}.

(¢) IfF =R and | # 1 is odd, then

GL(V)o = {f € GL(V) |flv, = det(£2) T 7 i, flvy = fo+ Do frow = ew,
e€{-1,1}, fo € GL(V2), h € hom(V5, 1)} .

and if | =1, then

GL(V)Q = {f € GL(V) |f|V1 = flv f|V2 = f2 + h’ fl € GL(Vl))
f2 € SL(Va), h € hom(Va, Vi)}.

Proof. By Lemma 2.4, we may assume for the computation of the stabiliser of € that there
exists a basis Fi,..., F, of V such that in the dual basis F!,..., F™ we have
l

Q:ZFlA...ﬁF\l/\ﬁ/\...AF”. (2.1)

i=1
Then Vi = span(Fi,..., Fy). After possibly redefining Fy i1, ..., F,, we may assume
that Vo = span(Fy41,...,F,). Then Q = % Av for w = Z§=1 F2-LA P2y =
F2+HL A A F™ and w € A%V} is non-degenerate. Choose a Hodge star operator *
such that (Fy,..., F,) is an oriented orthonormal basis and such that in the real case the
corresponding non-degenerate symimetric bilinear form is positive definite. Note that then

Q =%w. If F = C, then Proposition 1.33 and Proposition 2.3 imply

GL(V)q = {AR7"|A\""2 = det(h), hlv; = h1 + g, hlv, = ha, A € C*, hy € Sp(w, V1),
g € hom(V1, V), he € GL(V2) }.

Set H := Ah~t. Now our choice of an orthonormal basis shows that V; L Vs and Sp(w, V1),
considered as a subgroup of GL(V'), is closed under transposition. Hence, H|y, = AH;
and H|y, = Hs + G with H; € Sp(w, V1), G € hom(V2, V) and Hy € GL(V3) such

that det(Hz) = det (Ahy') = % = % = A272., This proves that the stabiliser is
contained in the corresponding group in the statement. Conversely, a short computation

shows that actually all elements in the group given in the statement stabilise €.
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Now we come to the real case. By Proposition 1.33, we have

CL(V)q = {h 7" |h € GL(V), hw = —o— |
V)= {1 |1 L. o = 2
Let h € GL(V) with hw = Ty Obviously, we have hly, = hi1 + g, hly, = he for
certain h; € GL(V;) for i« = 1,2 and g € hom(Vi,Vs2). For H;y := |£‘1t(h)‘ we have
det(Hy) = %, Hy.w = sgn(det(h))w and so mwl = Hi.w' = sgn(det(h))w!.
Thus
det(h
sgn(det(hy))| det(hy)|' 7! det(ho)| ™" = \deet<(hl))\l = det(H,;) = sgn(det(h))~". (2.2)

For [ even, sgn(det(h))~ = 1 and Equation (2.2) yields sgn(det(hy)) = 1 and |det(h1)| =
|det(h2)|ﬁ. Hence, sgn(det(h)) = sgn(det(hs)), |det(h)| = |det(h2)|ﬁ and so hy =
]det(hg)\ﬁﬂl. Since the transposition is the usual one if we identify GL(V') with
GL(n,R) via the ordered basis (Fi, ..., F,), we obtain

GL(V)o € {f € GL(V) | flv; = |det(£2)|7 fi, flva = fo+ b, fi € GL(VA),
f1.w = sgn(det(f2))w, fo € GL(V2), h € hom(Va, 1)} .

The converse inclusion follows by direct calculation.

For [ odd, | # 1, Equation (2.2) gives us sgn(det(h1)) = sgn(det(h)) and |det(h1)| =
| det(ho)|T7. Thus, sgn(det(hs)) = 1, |det(h)| = | det(h2)|T7 = det(h)T7 and so hy =
det(hg)ﬁHl with Hy.w = ew for some € € {—1,1}. This shows

GL(V)q € {f € GL(V) |flv; = det(f2)77 i, flvy = o+ Dy fro = ew,
e€{-1,1}, fo € GL*(V2), h € hom(V3, 1)} .

Again the converse inclusion follows by direct calculation. The stabiliser in the case [ = 1

is obviously as in the statement. O
Next, we define a GL™(V)-equivariant map ¢ : A2V* — A?™V* as in Proposition 1.37.

Definition 2.6. Let V be a 2m-dimensional real vector space. Let w € A?V* be a two-form
on V. We define ¢ : A2V* — A?>V* by
wm

¢ N2V* = A2V p(w) = —-
m!

¢ is even GL(V)-equivariant. Since the stable two-forms are exactly the non-degenerate

ones, the set ¢~1(0) is, in fact, the set of all non-stable two-forms. Moreover, the dual

w'm—l

stable (2m — 2)-form @ is given by © = =R

We end this section by defining a GLT(V)-equivariant map ¢ : A2m=2V* — A?2"V* as
in Proposition 1.37. We omit the calculations necessary to check the claimed properties

and instead refer to [CLSS] for some more details.
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Remark 2.7. o Let Q € A’ 72V* be a stable (2m —2)-form on a 2m-dimensional real
vector space and m be even. Using the GL(V)-module isomorphism r : A2"=2V* =
A2V @ A?"V* | we may consider k(Q)™ as an element in (A2™V*)@Mm=1) _ We set

1

¢ NP2V 5 APV 6(Q) = (”(Q)m) m—1 .

m)!

¢ is GL(V)-equivariant. Moreover, ¢(2) # 0 holds if and only if Q2 is stable. By
Lemma 2.4 there ewists a stable two-form w € A2V* such that Q = (‘;’nL:ll), One
can compute that ¢(Q2) = ¢(w) and that the dual two-form Q is equal to g In

particular, w € A?°V* with Q = (%L__ll), 1S unique.

o Let Q € A2™=2V* be a stable (2m —2)-form on a 2m-dimensional oriented real vector

space and now let m be odd. In this case, we set

()™ |

¢ APTTEVE 5 APV, 9(Q) = |
m:

The map ¢ is GLT(V)-equivariant, and again ¢(Q) # 0 holds if and only if Q is
stable. For odd m, Lemma 2.4 yields the ewistence a stable two-form w € A2V*

m—1

which induces the given orientation and € € {—1,1} such that Q = em. One can
compute that ¢(Q) = ¢p(w) and that the dual two-form Q is gwen by e—*<. Hence,

w € A2V* with the property that it induces the given orientation and that there erists

m—1

e € {—1,1} with Q = €Ty 1S unique.

(m—

2.2 e-complex structures

In this section, we deal with complex and para-complex structures on 2m-dimensional real
vector spaces. We unify the language as in [SHPhD] and speak of e-complex structures,
where € = —1 refers to complex and € = 1 to para-complex structures. After the basic
definitions, we recall the well-known decompositions of the e-complex k-forms induced by
an e-complex structure J. Next, we discuss e-complex volume forms. We show how one
can reconstruct J from such a volume form and that in the case of odd m we only need the
real part of the volume form for the reconstruction of J. Lastly, we consider the particular
case m = 3 and relate our results to the formalism of stable forms introduced in Section
1.3. Throughout this section, we follow closely [SHPhD|. More background on complex
structures and related subjects may be found in any textbook on complex geometry like
[Huy| or [Wells|. For para-complex structures, we refer the reader to [Kr].

We start with the main definitions of this section.

Definition 2.8. Let e € {—1,1}.
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e Let V be a 2m-dimensional real vector space. An e-complex structure on V is an
endomorphism J € End(V) such that J* = eidy and such that if € = 1 we have
dim(V4) = dim(V_) = m for V4 := Eig(J,1) and V_ := Eig(J,—1). A (—1)-complex
structure 1s ¢ complex structure in the usual sense and a 1-complex structure is also

called a para-complex structure.

e The e-complex numbers are defined as the real unital associative algebra generated by
1 and the symbol i. subject to the relation i2 = ¢ -1 and are denoted by C.. C_; = C
are the usual complex numbers and the real unital associative algebra Cy are the para-
complex numbers already mentioned Example 1.15 (d). From time to time, we write i
instead of i_1 and e instead of i1. We have C. =2 R@ Ri, as real vector spaces. Thus,
we may write an element z € C¢ as z = a+bic with a,b € R. Re(2) := a is called the
real part of z and Im(z) := b is called the imaginary part of z. Moreover, the map
z+— Z:=a — bi. 1s called the e-complex conjugation and Z the e-complex conjugate
of z. For e = —1, ~ is the usual complex conjugation and z the usual complex
conjugate of z and for e = 1 we call = also the para-complex conjugation and Z the
para-complex conjugate of z. Note that the notation is in accordance with the one
of Section 1.2 if we consider C¢ as a composition algebra with the pseudo-FEuclidean

metric ge(z,w) 1= 2.

o If V is a real n-dimensional vector space, then the free C.-module Vi, ==V ®@r C,
is called the e-complexification of V. The (—1)-complexification is simply the usual
complexification and the 1-complezification is also called para-complexification. To

simplify the notation, we say that a free C1-module V is a Ci-vector space.
Remark 2.9. o C; contains zero divisors, namely exactly the z € C1\{0} with 2z = 0.

o [f J is an e-complex structure on an n-dimensional real vector space V, then n =
2m for some m € N and V is a Cc-vector space via (a + bic) - v := av + bJv for
a,b € R and v € V. Note that for e = 1, V is, in fact, a Ci-vector space since
any real basis vy, ..., vy, of Vi and any real basis wy, ..., wy of V_ give the Ci-basis
V1 + Wi, .-y U + W of V. Conversely, if W is an m-dimensional Cc-vector space,
then W is a 2m-dimensional real vector space and the multiplication with i. is an
e-complex structure on W. In this sense e-complex structures on even-dimenstonal
real vector spaces are the same as finite-dimensional Cc-vector spaces. Moreover, all

C1-modules which are finite-dimensional real vector spaces are free.

The following example is the main example of an e-complex structure. We will use it

as a model tensor in the following.
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Example 2.10. An e-comples structure on R*™ is given by

m
Je = Z (ezi Qe + et ® egi) (2.3)
i=1
We use these tensors as model tensors to identify e-complex structures with GL(2m,R) . -

structures.
For the use as a model tensor, we have to determine the stabiliser group of J..

Definition 2.11. The e-complex general linear group GL(m,C.) C GL(2m,R) is de-
fined as the stabiliser of J. € End (]Rzm), For e = —1 it is given by the usual complex
general linear group GL(m,C) embedded as a subgroup of GL(2m,R). With respect to

the ordered basis (e1,e3,...,eam_1,€2,...,¢eam) of R?™ GL(m,C) is given by the sub-

A B
TOU
group B 4

called the para-complex general linear group and is given by GL(m,C;) = GL ((R2m)+> X
GL((R*™)_) = GL(m.R) x GL(W,R) with (R*™), = Eig(1,1) and (R*™)_ =

A+iB e GL(m,(C)} of GL(2m,R). For e = 1, GL(m,Cy) is also

The splitting of the e-complexification V¢, into the eigenspaces of the Cc-linear ex-
tension of an e-complex structure J € End(V) gives us corresponding splittings of the

e-complex k-forms.

Definition 2.12. Let (V,J) be a 2m-dimensional vector space V with an e-complex struc-
ture J. We consider the e-complezification Vi, and the Cc-linear extension Jc, € End(V¢,)
of J, which is defined for vi +icva € Vo, vi,v2 €V, by

Jo, (1 + ieve) = J(v1) + i J (v2).

We set VIO = Eig(Jc,,ic) C Ve, and VO = Eig(Je,, —ic) C Ve, and observe that
Ve, = VIO0@VOL as C-vector spaces, V0 = {w = vteicJv € Ve, v € VY and VO = V10,

We have a natural Ce-isomorphism (Ve,)* = (V*)g.. Using this isomorphism, we
simply write V& and get the decomposition V¢ = VR @ (v with (v =
Eig(Jg,  ie) = (VO’I)O and (V)™ = Eig(Jg,, —ie) = (VLO)U. More explicitly, the two
spaces are given by

(VY = {a+eiJalac V), (V) ={a—eJala eV} =V,
For p,q € Ny we set

APAV* = AP (VRO A AT (V) C APV (2.4)
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and call the elements in APIV* (p,q)-forms or forms of type (p,q). We have APAV* =
APPV* and AkV(g = Z];:() APE=PV*  For p # q, we set

[[APAV*]] := ARV 0 (APIV* @ ATPTV) (2.5)
and call the elements in [[AP7V*]] real forms of type (p,q) and (¢,p). Moreover, we set
[APPV*] := ARFV* 0 APPY* (2.6)

and call the elements in [APPV*] real forms of type (p,p). Note that we have [[APIV*]] ®
Ce = APV @ ATPV* | [APPV*] @ C, = APPV*,

[[APIV*]] = {a+ala € APV}, [APPVT] = {a+ @|a € APPV*} (2.7)
and
-1 l
AQZV* _ @[[Ap,Zl—pV*H ® [AZ’ZV*], A2l+1V* _ @[[AP’2Z+1_I)V*]]. (28)
p=0 p=0
Remark 2.13. o In the para-complex case there is the natural decomposition V =V, &®

V_ and the corresponding decomposition V* := (V*) @ (V*)_. Then [[APV*]] =
AP (VF)  NAT(VF) @ AT (VF) L ANAT(VF) _ and [APPVF] = AP (VF) AAP (V).

o Although Eig(Jc,, ) is a well-defined Cy-submodule of Vo, for all X € Cy, an element
in Vo, may have more than one eigenvalue with respect to Jc,. E.g. if v € V4, then
v+ ev € Vg, has both eigenvalue e = i1 and 1 with respect to Jc,, which stems
from the fact that v + ev s linearly dependent in the Ci-vector space Vg, and that

e —1 € Cy is a null-vector.

As remarked in Section 1.1, volume forms are nothing but SL(n, R)-structures. A nat-
ural question to ask is what kind of tensors are related to SL(m, C)-structures, SL(m,C) C

GL(2m,R), and what are the corresponding objects in the para-complex case.

Definition 2.14. Let V be a 2m-dimensional real vector space and J be an e-complex
structure on V. An e-complex m-form ¥ € A™Vg, is called non-degenerate if U AW # 0.
An e-complex (m,0)-form ¥ is called e-complex volume form if U is non-degenerate. Note

that each non-zero complexr m-form is non-degenerate.

The basic example of an e-complex volume form which we will use as a model tensor

is the following.

Example 2.15. An e-complex volume form on (R®™,.J.) is given by

U= (e +eice®) A A (2T 4 €ice®™) (2.9)
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Remark 2.16. Note that in the para-complex case there are degenerate para-complex
(m,0)-forms. An ezample is given by (1 + €)¥; on R*™, Uy as in Equation (2.9). Note
further that by induction on m one may show that for all m € N the identity

\Ijl — (flm + fm+1...2m) Te (flm _ fm+1...2m)

. . 2i—1 2% . 2i—1_ 21
is true, where f* := % and fmti = %

span(f%,..., f™) and (R™)" = span(f™*1,..., f2m).

fori=1,...m. Moreover, (R™)\ =

Definition 2.17. The e-complex special linear group SL(m, C,) is defined as GL(2m,R)y,
with the e-complex volume form V. on R®*™ defined in Equation (2.9). Here, GL(2m,R)
acts on (R*™)c, = R?™ @ i R®™ in the natural way on each of the summands R?™
and i R*™. So GL(2m,R)y, = GL(2m,R)ge(w,) N GL(2m, R)nw,) by definition. Ob-
viously, SL(m,C_1) = SL(m,C) C GL(2m,R) and from Remark 2.16 we get SL(m,C;y) =
SL ((R2™), ) x SL ((R*™)_) = SL(m,R) x SL(m,R).

If an e-complex m-form ¥ € A™V{ is an e-complex volume form with respect to an
e-complex structure J on V, then ¥ has model tensor W.. Conversely, suppose that we do
not have an e-complex structure J but we have an e-complex m-form ¥ € A"V such that
ug, W = W, for some real isomorphism w : R?m — V. The inclusion SL(m, C.) € GL(m, C,)
implies that ¥ induces an e-complex structure J such that ¥ is an e-complex volume form
with respect to this structure. We also call ¥ € A"V with model tensor W, an e-complex
volume form. Since SL(m,C.) C SL(2m,R), ¥ also induces a real volume form. The

following lemma gives a concrete description of these constructions.

Proposition 2.18. Let V' be a 2m-dimensional real vector space and m > 2. Then

9 %\If AT, if m is even,

¢ AT"VE = ATTVE p(V) = o

i‘lf AW, if m is odd.
maps the e-complex volume forms W € A™V{  to real volume forms on V. Moreover, any
e-complex volume form VU € A™V{ induces a unique e-complex structure J such that U s
an e-complezx volume form in the sense of Definition 2.14 with respect to J. If we denote by
k2 A2V 5 VA2V the natural GL(V)-module isomorphism given by k(1)) = w®@v
for ¢ € A2 W* and w € V and v € A>™V* with wov =, J is defined by
k(vaRe(¥) AIm(W®))  if m is even,

J(0)®(V) = (2.10)
k(vaRe(¥) ARe(¥))  if m is odd,

forveV.

Proof. For the proof one may consult, e.g., [SHPhD, Proposition 1.4]. O]
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If m > 3 is odd, we show below in Proposition 2.21 that on an oriented vector space
we may recover the complex structure J from the real part of an e-complex volume form.
To understand the construction abstractly on the level of enlargements of G-structures, we

have to compute the stabiliser in GL*(2m,R) of Re(¥.). We do this for arbitrary m > 3.

Lemma 2.19. Let m > 3, U, € A™C?*™ be the e-complex m-form defined in Equation
(2.9) and A := diag(1,—-1,1,—1,...,1,—1), B := diag(—I2, Isy,—2)A € GL(2m,R). Then:

GL(2m, R)ge(y,) = SL(m, Co) x {A, Iy}, GL(2m, R) g,y = SL(m, Ce) x {B, o} .

Proof. For the proof note that SL(m, Cc) = GL(2m, R)ge(w.) N GL(2m, R) 1y (w,)-

We only show GL(2m,R)ge(w,) = SL(m,Ce) x {A, I2,}. The computation of the
stabiliser of Im(W,) is completely analogous. First, let € = —1. Let g € GL(2m, R)ge(w_,)-
The identity Re(¥_;) = %5 + %5t = £4= 4 £9=1 is true. Now Y5, 4=, Y24 and
g*\g* are all decomposable as complex m-forms, % A % = 0 and NT” A g*\I]T*l # 0.
Since m > 3, [BuGl, Theorem 4.4] states that ¢g*V_1 =¥ _1, g*U_; = g*U_; or g*¥_; =
U_1, ¢*U_; = U_;. Since A*U_; = U_;, A*U_; = U_;, the assertion follows. Next,
let ¢ = 1 and g € GL(2m,R)Re(w,). By Remark 2.16, there is a basis fLo o P oof Vi
such that Re(¥y) = fh-m 4 fmtl-2m - Again [BuGl, Theorem 4.4] shows that due to

m > 3, g* either stabilises both fX A ... A f™and f™ A ... A f?™ or it interchanges the

two decomposable forms. Moreover, if it stabilises both, it also stabilises ;. Hence, the

statement follows from the fact that A* interchanges f'A... A f™and fPtIA. . Af2™. O

Let m = 2l—1 > 3 be odd. Then A, B € GL(2m,R) as in Lemma 2.19 has determinant
—1 and so GL*(2m, R)ge(w,) = GLT (2m, R)py(w,) = SL(m, C,). This motivates us to call
an m-form p € A™V* on a 2m-dimensional oriented real vector space V with model
tensor Re(W¢) or Im(V¥.) an e-complex volume form if m = 2l —1 > 3. By enlarging
the corresponding SL(m, C,)-structure, such a p induces an e-complex structure J,, a real
volume form ¢(p) on V and an e-complex volume form ¥ with respect to J, such that

Re(¥) = p or Im(¥) = p, respectively. The construction of J, is as follows.

Definition 2.20. Let m = 2l—1 be odd and p € A™V* be an m-form on a 2m-dimensional
oriented real vector space V. We define K, : V — V @ A*™V* by

Kp(v) == k((vap) Ap),

where K : A2V 5 V @ A’V* s the natural isomorphism whose inverse is given by
k1w ®@v) = vov forv € V and v € A*™V*. Note that (K, ® idpemy~) 0 K, : V. —
V ® (A?™V*)92. Thus, we have

1 , S
Ap) == %tr((Kp(}@ldAsz*) o K,) € (A*™V*)®2, (2.11)
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We define the map ¢ : A™V* — A2™V* by

$(p) = VIMp)| € A*"V*. (2.12)
If o(p) # 0, we define J, : V =V via

Jp0(p) = K, (2.13)

For m = 2] — 1 odd, one sees that J}¥, = i€ W, implies JIRe(V,) = ¢ Im(¥,) and
JATm (W) = ¢ "Re(¥,). Thus, (¢=1J.) Tm(P,) = e 2-D°Re(¥,) = Re(P,). Hence, if
an m-form p € A™V* on a 2m-dimensional real vector space V' has model tensor Im(W,)
it also has model tensor Re(¥.). This is why we restrict ourselves to the model tensor

Re(¥,) in the following proposition.

Proposition 2.21. Let V be a 2m-dimensional ortented real vector space and m = 2[—1 >
3 be odd. The map ¢ : A™V* — A2™V* defined in Equation (2.12) is GL™(V)-equivariant.
Assume that p € A™V* has model tensor Re(V.). Then ¢(p) # 0, J, as defined in Equation

(2.13) is an e-complex structure on V and
U= p+iceJipe ANVE (2.14)

is an e-complex volume form with respect to J, with Re(V) = p and ¢(¥V) = ¢(p). Fur-
thermore, eX(p) > 0 for X\ : A"V* — (AQmV*)®2 defined in Equation (2.11). Moreover,
U is the unique e-compler structure U € A™VE  such that Re (\il) = p and such that the

ortentation induced by T is the given one. Furthermore, we have

l
o(p) = %J;P/\P (2.15)

and
J:a(0)6(p) = a A (vsp) A p (2.16)
for all o € V*.

Proof. The GL™*(V)-equivariance of ¢ is obvious. Let p € A™V* have model tensor Re(¥,).
If w : R" — V is such that u*p = Re(¥), then ¥ := (ua)*\ll6 € A"V, is an e
complex volume form with Re(¥) = p. By choosing Re(V¥.) — i Im(¥,) instead of ¥, =
Re(¥¢)+iIm(V,), we may assume that ¥ induces the same orientation as p. Note therefore
that ¢(¥) = 3Im(¥) A Re(¥). By Proposition 2.18 we have Jy¢(¥) = K, where Jy is
the e-complex structure induced by W. Since J2 = eidy, we get A(p) = ep(¥)?. Thus,
eAp) = #(¥)? > 0 and ¢(p) = ¢(¥) # 0. Hence, J, = Jy and J, is an e-complex
structure. Since V¥ is an (m,0)-form with respect to Jy = J,, the calculations directly
above Proposition 2.21 show Im(¥) = elJ;p and so ¢(p) = ¢(V) = %J;p/\p_ Since Im(W)

is determined by p, ¥ is unique. Moreover, using Equation (2.13), we may calculate

(Jya) (0)(p) = Jp(v)aa N dlp) = a A Jp(v)1d(p) = a AETHE,(v)) = an(vap) Ap

for all o« € V*. O
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We take a closer look at the case m = 3.

Proposition 2.22. (a) Let V be a siz-dimensional oriented real vector space. Then
#(p) # 0 if and only if p € A3V* is stable. This is the case if and only if p is an
e-complex volume form for some € € {—1,1}. Moreover, if p is stable, then the dual

three-form p 1s given by J7p.

(b) The concrete values of K,, X(p) and, if it is well-defined, of J, for the three-forms p

on RS in Table 1.1 for the standard orientation of R® are given in the following table:

Table 2.1: Invariants for three-forms in siz dimensions

P Ky Ap) 7,
1 0 0 _
Q2 0 0 _
Qs 2l ® g ® 123456 0 -
po | 2(e!®@es+ e @es+ e @eg) @ 23496 0 -
P1 2.J; ® 123456 4 (6123456)®2 7
pP-1 2J 1 ® 123456 4 (6123456)®2 J_ 1

Proof. Let V be a 6-dimensional oriented real vector space and p € A2V*. Due to Propo-
sition 1.45, p is equivalent to exactly one of the forms in Table 2.1 and p is an e-complex
structure if and only if it is equivalent to p. in Table 2.1 and so by Theorem 1.35 if and
only if it is stable. Hence, “¢(p) # 0 if and only if p is stable” follows directly from (b) and
(b) is a straightforward computation. For a proof that the dual three-form p of a stable
three-form p € A3V* is equal to J;, p we refer to [CLSS]. O

2.3 (Special) e-Hermitian structures

In this section, we consider (special) e-Hermitian structures on 2m-dimensional real vector
spaces. Special e-Hermitian structures are e-Hermitian structures together with an e-
complex volume form of certain length. We recall the exact definitions and some basic
facts of these structures. Using the results of Section 2.2, we show how one can reconstruct
a special e-Hermitian structure via a pair of a non-degenerate two-form w and an e-complex
volume form W fulfilling certain compatibility conditions. For odd m we prove that for the
reconstruction we only need w and Re(¥). Finally, we look at the case m = 3 and show that
then a special e-Hermitian structure can be recovered from a pair (w,p) € A2V* x A3V*
of stable forms on V' with w A p = 0. Again, we closely follow [SHPhD|.

We start with e-Hermitian structures.

Definition 2.23. Let V' be a real 2m-dimensional veclor space. An e-Hermitian structure
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(g,J) consists of a pseudo-Euclidean metric g on V and an e-complex structure J such
that J*g = —eg. The fundamental two-form w € A%2V* (associated to (g,J)) is defined by
w(v,w) := g(v, Jw). A 1-Hermitian structure is also called para-Hermitian structure, a
(—1)-Hermitian structure is called pseudo-Hermitian structure or Hermitian structure in

case g is positive definite.

Remark 2.24. o J*g = —eg implies that the fundamental two-form w(-,-) = g(-,J-)

18, in fact, a two-form, which is non-degenerate since g is non-degenerate.

o [fV is a real 2m-dimensional vector space and g is a pseudo-Euclidean metric, then a
complex structure J such that (g, J) is a pseudo-Hermitian structure is the same as a
one-fold cross product on (V, g). In particular, the signature of g is then (2p,2m—2p)
for some p € {0,...,m} by Example 1.12 (c).

e If (g,J) is a para-Hermitian structure on the real 2m-dimensional vector space V,

then g(Jv, Jv) = —g(v,v) for all v € V. Hence, g has necessarily signature (m,m).
The following examples of e-Hermitian structures on R?™ will be used as model tensors.

Example 2.25. For p € {0,...,m}, ((-,-)2p2m—2p, J—1) s a pseudo-Hermitian struc-
ture on R?™, whereas ((-,-)splits J1) is a para-Hermitian structure on R?™. Here, J, €
End (R*™), € € {—1,1}, is defined by Equation (2.3) and (-, )op om—2p = Z?ﬁl el ® e —
Z?ZLZ;H»I ed@el € S (R2™), ()Y spiit = 2 (~1)iel et € S (R2™)" by our conventions.

4 21N e or

The fundamental two-form is given by wpm—p = > ;1 el A2 N

j=p+1°¢
Wo = Wm0 = D iy e =1 A €2 respectively.

1=

Remark 2.26. e The common stabiliser of (-, -)2p.2m—2p, J—1) is U(p,m—p) C GL(m,
C) C GL(2m,R). To compute the common stabiliser of ({-,-)spiit, J1), note that both
(RQm)+ and (RQm)_ are isotropic with respect to (-,-)sprit- Thus, (-, -)spiit induces a

non-degenerate bilinear pairing of (R2m) and (]R{2m)_. For g € End <(R2m)+> we

+
denote by g' € End ((Rzm)_> the transpose with respect to the mentioned pairing.

Then the common stabiliser of ((-,-)split, J1) s given by

{f € GLEM.R) | fl@eny, = i, flwemy = ST, f1 € GL((R™), ) } = GL(m.R).

We call this group the para-unitary group. To unify the treatment, we set U~ (p,m—
p) := U(p,m — p) and denote, for arbitrary p € {0,...,m}, the para-unitary group
by U'(p,m — p).

o Fvery pseudo-Hermitian structure (g, J) on a 2m-dimensional real vector space has
the pair ((-,)op2m—2p, J—1) for some p € {0,...,m} as model tensors and every

para-Hermitian structure (g, J) has the pair ((-,-)split, J1) as model tensors. Hence,
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U¢(p, m — p)-structures are nothing but e-Hermitian structures such that for e = —1

the pseudo-Euclidean metric g has signature (2p,2m — 2p).

o A pair (w,J) € A2V* x End(V) of a non-degenerate two-form w and an e-complex
structure J with J*w = —ew defines a pseudo-Euclidean metric on V' by g(v,w) :=
—ew(Ju,w) forv,w € V. The pair (g, J) is then an e-Hermitian structure on V. The
construction reflects the fact that U(p, m—p) is the common stabiliser of (wpm—p, J—1)

and Ul (p,m — p) is the common stabiliser of (wo, J1).

o We may also construct an e-Hermitian structure (g,J) via a pair (g,w) € S?V* x
A2V* consisting of a pseudo-Euclidean metric g and a non-degenerate two-form w
such that the endomorphism J € End(V), uniquely defined by g(-,J-) = w(-,-), is an
e-complex structure on V. This reflects the fact that U(p, m — p) is also the common

stabiliser of ((-,)2p.2m—2p, Wpm—p) and Ul(p,m — p) is the one of ({-, Y split> W0) -

The following formula plays a crucial role to get obstructions to the existence of a

half-flat SU(3)-structure, as will be discussed in Chapter 6.

Lemma 2.27. Let V be a 2m-dimensional real vector space and (g,J) be an e-Hermitian

structure on 'V with fundamental two-form w. Then the identity
1
a AT BACE= Zg(a, ™ (2.17)
m
18 true for all o, B € V*.

Proof. We only have to do the calculation for the corresponding model tensors on R*™ and

for a, B € {el, . ,62’”}, which is a straightforward task. O
Now, we come to special e-Hermitian structures.

Definition 2.28. A special e-Hermitian structure (g, J, ¥) on a 2m-dimensional real vector
space V' consists of an e-Hermitian structure (g, J) and an e-complezx volume form ¥ for J
such that gc(V, W) = (=1)""P2™ for e = —1 and g having signature (2p, 2m—2p) and such
that gc, (¥, V) = 2™ for e = 1. Here, gc, denotes the e-complex sesquilinear extension
of g, i.e. go. (Y1 ® 21,19 ® 29) := 21Z2g(W1,12) for 1,109 € A™V*, 21,29 € Cc. For
e = —1, we also call (g,J,¥) a special pseudo-Hermitian structure and for e = 1 we say

that (g,J, V) is a special para-Hermitian structure.

Remark 2.29. Note that in the literature there is often a slightly different definition of a
special e- Hermitian structure in the sense that the condition on the norm of U is dropped.

Then a special e-Hermitian structure in our sense is called normalised.

We use the following standard examples of special e-Hermitian structures on R*™ as

model tensors for the corresponding G-structures.
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Example 2.30. A special pseudo-Hermitian structure on R®*™ of signature (2p,2m — 2p)
is given by ((-, )2p.2m—2p, J—1, Y_1) and a special para-Hermitian structure on R2™ is given
by ((-, Vsplits J1, ¥1). Here, Ue, € € {—1,1}, is the model e-complex volume form on R*™
given in Equation (2.9) and the other two tensors in each triple form the model pseudo-

and para-Hermitian structures given in Example 2.25.

Lemma 2.31. Let V be a real 2m-dimensional vector space. A triple (g, J, V) € S?V* x
End(V) x A™V{ s a special e-Hermitian structure if and only if (g,J, V) has one of the
triples in Exzample 2.30 as model tensors. Moreover, if (g,J) is an e-Hermitian structure
on' V and ¥ € AmOV* an e-complex volume form with respect to J, then (g,J,0) is a
special e-Hermitian structure if and only if

(—1)m=P2m=2¢(w)  if e = —1 and sign(g) = (2p,2m — 2p),

P(¥) = (2.18)
(—1)l2m2¢(w) ife=1and m=2l—1, 2l.

Here, w is the fundamental two-form associated to (g, J).

Proof. Remark 2.26 gave us model tensors for e-Hermitian structures. Since A(™0)y*
is one-dimensional, one may check that the condition on the e-complex norm of ¥ in
the definition of a special e-Hermitian structure exactly means that special e-Hermitian
structures are those which have model tensors as in Example 2.30. Hence, we only have

to check Equation (2.18) for the model tensors, which is a straightforward task. O

Definition 2.32. The special e-unitary group SU®(p, m — p) is for e = —1 the stabiliser
of ((-,)2p2m—2p,J—1,¥_1) and for e = 1 and all p € {0,...,m} it is the stabiliser of
((-, ) splits J1, ¥1). SU™(p,m — p) is equal to the usual special unitary group SU(p, m — p)

and

SU'(p,m —p) = { f € GLEm,R) |flgeny, = fu, flgam) = fi', fr e SL(®™),)}
~ SL(m, R),

where the transpose is with respect to the non-degenerate bilinear pairing between (RQm)+
and (Rzm)_ induced by (-, ) sprit- By Lemma 2.31, special e-Hermitian structures are noth-
ing but SU¢(p,m — p)-structures if we use the just mentioned tensors on R?™ as model
tensors. Hence, we will use the terms SU(p,m — p)-structure and e-Hermitian structure
interchangeably in the following. Moreover, we will also speak of an SL(m,R)-structure

instead of a SU(p,m — p)-structure.

If (g,J,%¥) is a special e-Hermitian structure, then Proposition 2.18 tells us that we
may reconstruct J from W. Hence, Remark 2.26 implies that (g, J, ¥) can be reconstructed
from (w, V), w being the fundamental two-form. If m is odd, Proposition 2.21 shows that

we can do better and only need to know (w,Re(¥)). If we start abstractly with a pair
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(w,¥) € A2V* x A™V{ , w non-degenerate and ¥ an e-complex volume form, then the

induced J has to fulfil J*w = —ew. In Proposition 2.33, we show that this condition is

equivalent to w A ¥ = 0 and the analogue statement is true for the reconstruction in the

case of odd m. For odd m, we restrict ourselves to pseudo-Hermitian structures (g, J, ¥) of

signature (2m — 4k, 4k), k € N. Note that then (—g, J, @) is a pseudo-Hermitian structure

of signature (4k,2m — 4k) and we get all missing cases via this assignment.

Proposition 2.33. Let V be a 2m-dimensional real vector space.

(a)

(b)

Let (w,¥) € A2V* x A™VE be a pair of a non-degenerate two-form w and an e-
complez volume form U such that w AV = 0 and such that Equation (2.18) is true.
Then there is a unique special e-Hermitian structure (g, J, V) such that w is the
associated fundamental two-form, where J is defined by Equation (2.10) and g :=
—ew(J-, ). Moreover, all special e-Hermitian structures arise that way. Furthermore,

if z € Ce with 2z = 1, then (w, 2¥) induces the same e-Hermitian structure as (w, V).

Let m > 3 be odd and (w, p) € A2V* x A™V* be a pair of a non-degenerate two-form

w and an e-complexr volume form p € A"™V* such that

wAp=0, ¢(p)=2""p(w), (2.19)

where we orient V via ¢(w) if e = —1 and via (—1)'p(w) ife = 1 and m = 21—1. Then
there exists a unique special e-Hermitian structure (g, J,, ¥) such that Re(¥) = p,
such that W induces the given orientation and such that w is the associated fundamen-
tal two-form. Moreover, if e = —1, then the signature of g is equal to (2m—4k, 4k) for
some k € N. The e-complex structure J, is defined by Equation (2.16), g := —ew(J-,")
and ¥ is defined by Equation (2.14). Moreover, all special e- Hermitian structures with

the additional signature assumption for e = —1 arise this way.

Let m > 3 be odd, (w,p) € A>°V* x A™V* as in (b) and o € R. If e = —1, then
(w, cos(a)p + sin(a)J;p) induces the same pseudo-Hermitian structure as (w, p). If

€ =1, then (w,cosh(a)p +sinh(a)J;p) induces the same para-Hermitian structure as

(w, p)-

Proof. (a) For the first part of the statement, the argument directly above Proposition

2.33 shows that we only have to check that J*w = —ew for the e-complex structure
J induced by ¥ is equivalent to w A ¥ = 0. However, the decomposition A2V* =
[[AZ0V*]] @ [AM1V*] given in (2.8) shows that J*w = —ew exactly when w € [AL1V*].
Moreover, ¥ is a (m,0)-form with respect to J and so w A ¥ = 0 if and only if the
(0,2)-part of w vanishes which, by Equation (2.8), implies that the (0,2)-part of
w also vanishes. Hence, w A ¥ = 0 if and only if w € [AYV*] and the first part
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follows. For the second part note that for z € C, with 2z = 1 we get ¢p(2¥) = (V)
and so Equation (2.18) is fulfilled for (w,zV). The identity vo¥ A ¥ = 0 implies
vaIm(¥)ARe(¥) = —vuRe(¥)AIm(¥) and voIm(¥)AIm(¥) = —eviRe(V)ARe(V)
for all v € V. Using these formulas, Equation (2.10) yields that z¥ induces the same

e-complex structure as W. Thus, (w, z¥) induces the same e-Hermitian structure as

(w, ¥).

(b) Let (w, p) € A2V* x A™V* as in the statement. By Equation (2.14), the e-complex
structure ¥ induced by p is given by ¥ = p + ieelJ;p and it fulfils (V) = &(p) by
Proposition 2.21. Using the validity of the assertion in (a), we only have to check
wAJ;p = 0. Therefore, note that we have the identity (a—l—iEeJ;a)/\(p—l—ieelJ;p) =0
for all o € V* since (a + iceJja) is a (1,0)-form. Taking the imaginary part of this

identity, we have Jja A p = —tla A J,p and so
7% _ I+1 *
O0=JjaAphw=—-€"aNJ,pAw
for all a € V*. Thus, w A J7p =0.

(c) Follows directly from (a) and (b).
O

We also call a pair (w,¥) € A?V* x A™V{ as in Proposition 2.33 (a) a special e-
Hermitian structure or an SU¢(p, m—p)-structure and if e = 1 we also speak of an SL(m, R)-
structure. Similarly, a pair (w, p) € A2V* x A™V* as in Proposition 2.33 (b) is called a
special e-Hermitian structure or an SU®(p, m — p)-structure and if e = 1 we also call (w, p)
an SL(m, R)-structure.

We end the section by looking at the case m = 3. Then e-complex volume forms
p € A3V* are exactly the stable forms by Proposition 2.22 and are characterised by the
condition eA(p) > 0.

Corollary 2.34. Let V be a siz-dimensional real vector space and let e € {—1,1} be given.
Then a pair (w,p) is an SU(p,3 — p)-structure for some p € {1,3} if and only if both w
and p are stable, eX(p) > 0, w A p = 0 and ¢(p) = 2¢(w), where we use the orientation
induced by w to compute ¢(p).

2.4 GS-structures

In this section, we consider G§-structures and (Ga)c-structures on vector spaces. Recall
that G = G3 and G5! = Gy, cf. Definition 1.19. We discuss well-known basic properties
of these structures and refer to, e.g., [Brl], [J3] and [CLSS] for more background. Moreover,

we also prove some results which are, to the best of the author’s knowledge, not written
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down explicitly in the literature. All of these results are easy to obtain but turn out to
be very useful for both getting obstructions to and proving the existence of cocalibrated
G$§-structures and cocalibrated (Gga)c-structures on Lie algebras in the Chapters 4 and 5.

By Lemma 1.5, G§-structures on a real seven-dimensional vector space V may equiva-
lently be described as tensors T' € T™*V having model tensor S € T"*R7, with a tensor S
whose stabiliser in GL(7,R) is equal to G§. In Proposition 1.24 we identified such a tensor
S, namely the three-form ¢, € A3 (R7)* defined in Equation (1.4). Moreover, Proposition
1.24 tells us that the stabiliser in SL(7,C) of the complex three-form ¢ € A3 (C7)* is
equal to (Gg)c. These remarks lead to the following definitions.

Definition 2.35. o Let V be a seven-dimensional real vector space. A three-form ¢ €
A3V* is called GS-structure for some € € {—1,1} if ¢ has the model tensor ¢, €
A3 (R7)* defined in Equation (1.4), i.e. if there exists an ordered basis (fi,..., f7)
of V such that in the dual ordered basis (fl, e ,f7) we have

o= f123 — € (f145 + f167 + f246 o f257 _ f347 _ f356) ) (220)

o Let W be a seven-dimensional complex vector space. A pair (p,vol) € ASW* x ATW*
is called (Ga)c-structure if (¢, vol) is commonly equivalent to (¢c, voly) € A® (C7)" x
AT (C7)* with ¢ defined by Equation (1.4) and voly := e'7 € A7 ((C7)*, re. if
there exists an ordered basis (f1,...,f7) of W such that in the dual ordered basis
(fl, . 7f7) we have

0= f123 + f145 + f167 + f246 o f257 o f347 . f356, vol = fl...7‘ (221)

Remark 2.36. e Note that the common stabiliser of (¢, volg) € A3 (C7)* x A7 ((C7)*
is, in fact, (Ga)c € GL(7,C) by Proposition 1.24. We may embed (Ga)c into
GL(14,R) wia the canonical identification of C” with (RM,J_l). In this way, if
(p,vol) € A3SW* x ATW* is a (Go)c-structure on the complex seven-dimensional
vector space W, then (¢, vol,m;) € A3WE @ C x ATW @ C x End(Wg) is a (G2)c-
structure in the sense of Section 1.1 on the real 14-dimensional vector space Wr via
the model tensors (oc,volg, J_1) € A3 (RM)* ®Cx A" (RM)* ®C x End(R'). Here,

m; : Wr — Wr is the multiplication with .

o If ¢ € A3SW* is equivalent to oo € A3 (C7)*, then, by choosing an adapted basis
(f1,-.., f7) for @, i.e. an ordered basis of W as in Equation (2.21), we may define a
seven-form vol € ATW* such that (¢, vol) is a (Ga)-structure, e.g. by setting vol :=
fY7. This construction depends on the chosen adapted basis (f1,..., f7). Namely,
if we choose a different adapted basis (g1, ...,g7), then we get gt = &7 17 = ¢vol
for some third root of unity £ € C.
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In Remark 1.20 we noted that Go C SO(7) and G5 C SO(3,4). Hence, a Ga-structure
(resp. Gj-structure) ¢ € A3V* induces a Euclidean metric (resp. pseudo-Euclidean met-
ric of signature (3,4)) g, and a metric volume form ¢(¢) on V. We give the concrete

constructions.

Definition 2.37. Let V be a seven-dimensional real vector space and p € A3V* be an

arbitrary three-form. We define a symmetric bilinear map by, : V @ V — ATV* by

by (v, w) := é(lu ©) AN (wap) A (2.22)

for v,w € V. b, may be considered as a linear map V — V* ® ATV* and so det(b,) €
(A7V*)®9. We set
¢ APV = ATV*, () = det(b,)5. (2.23)

If (@) # 0, we define a symmetric bilinear form g, by

9o (v, w)p(p) = by (v, w) (2.24)
forv,weV.

The map ¢ defined in Equation (2.23) has the same properties as the map with the
same name in Proposition 1.37. Therefore, note that by Theorem 1.35 the set of all stable

three-forms on V' is exactly the set of all Go- and G3-structures on V.
Lemma 2.38. Let V' be a seven-dimensional real vector space.

(a) The map ¢ : A3V* — A'V* defined in Equation (2.23) is GL(V)-equivariant and
»~1(0) is the set of all non-stable elements in A3V*. That means () # 0 for a
three-form o € A3V* if and only if ¢ is a GS-structure for some e € {—1,1}.

(b) If ¢ € A3V* is a Go-structure, then g, is a Euclidean metric on V, () is a
metric volume form for g, and each adapted basis (f1,..., fr) of ¢ is an oriented

orthonormal basis for (g,, ¢(¢)).

(c) If o € A3V* is a Gi-structure, then g, is a pseudo-Euclidean metric of signature (3,4)
on'V, ¢(p) is a metric volume form for g, and each adapted basis (fi,..., fr) of ¢
is an oriented orthonormal basis for (ge, ¢(p)) such that g(f;, fi) =1 for i =1,2,3

and g(f]?f]) =-1 fOTj = 4757677'

Proof. A proof of part (a) may be found in [CLSS|. Alternatively, one may prove (a)
by computing ¢(p) for each three-form ¢ in Table 1.1. Part (b) and part (c) follow by

straightforward calculations in an adapted basis. O
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Similarly, since (Ga)c € SO(7,C), a (Go)c-structure (¢, vol) € A3W* x ATW* induces
a non-degenerate symmetric complex bilinear form g,. Moreover, SO(m,C) C SO(m,m)
and so a (Gg)c-structure also induces a pseudo-Euclidean metric g+ of split signature

on Wg. The concrete constructions are given in the following lemma.

Lemma 2.39. Let V be a seven-dimensional real vector space and W = V¢ its complexi-

fication.

(a) A (Go)c-structure (p,vol) € APW* x ATW* induces a non-degenerate symmetric

complex bilinear form g, on W by

9o (v, w)vol := é(v_n )N (wap) A (2.25)

and a pseudo-Euclidean metric gspir of split signature (7,7) on Wgr by gepiir =
Re(gy). If (f1,..., fr) is an adapted basis for (p,volc), then gu(fj, fr) = Ojx for
gk e {1,...,7} and fi,if1,..., fr,ifr is an orthonormal basis for gspir such that
gsplit(f5, ;) =1 and gsprie(ifj,if;) = =1 for j=1,...,7.

(b) If p is a GS-structure on 'V, then (oc, ¢(p)c) € NBW*x ATW* is a (Gg)c-structure on
W = Vg, where (pc, d(¢)c) are the complez-linear extensions of (¢, ¢(¢)). Moreover,

9yc 5 the complez-linear extension of g,.
Proof. All parts follow by Lemma 2.38 or by simple calculations. O

Remark 2.40. Note that for a (G2)c-structure (p,vol) the non-degenerate symmetric
complez bilinear form g, also depends on vol although we suppressed this dependence in

the notation.

We like to note the following properties of the stabiliser group of a G§-structure and

of a (Ga)g-structure.

Lemma 2.41. (a) The stabiliser of a Go-structure p € A3V* on a seven-dimensional
real vector space V' acts transitively on the set of all lines in V and also on the set

of all siz-dimensional subspaces of V, respectively.

(b) The stabiliser of a Gj-structure ¢ € A3V* on a seven-dimensional real vector space
V' acts transitively on the set of positive lines, null lines and negative lines in 'V,
respectively. It also acts transitively on the set of all siz-dimensional subspaces of V'
of signature (3,3) and (2,4), respectively. Moreover, it acts transitively on the set of

all degenerate siz-dimensional subspaces of V.

(c) The stabiliser of a (Go)c-structure (¢, vol) € ASW* x ATW* on a seven-dimensional

complex vector space W acts transitively on the set of all non-null lines and on
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the set of all null-lines. It also acts transitively on the set of all siz-dimensional
non-degenerate subspaces of V' and of all siz-dimensional degenerate subspaces, re-

spectively.

Proof. The statements about transitive actions on lines with fixed signature can all be
found in [Brl]. Since G$ is contained in the corresponding orthogonal group, we get
the transitivity of the action on all mentioned classes of non-degenerate six-dimensional
subspaces by considering orthogonal complements of the corresponding non-null vectors.
The transitivity on the class of all degenerate six-dimensional subspaces U in (b) and (c)
follows from the fact that U = u' for a degenerate u € U, i.e. an element in U such that
g(z,u) =0forall z € U. O

Remark 2.42. One can do better than Lemma 2.41 and show that G acts transitively on
the unit sphere in R” [Bo]. For each § € {—1,1}, the transitivity of the action of G on
the pseudo-sphere S0 = {veR|(v,v)34 =06} C R follows using Lemma 2.41 since the
linear automorphism 0fR7, defined by g(egi—1) := —egi—1 fori=1,2,3,4 and g(ez;) := ea;
for 3 =1,2,3, is in G5 and maps the vector ey of length —1 to —e1 and the vector es of

length 1 to —es.

By Lemma 2.38, a G§-structure ¢ € A3V* on a seven-dimensional real vector space V
induces a Hodge star operator x,. Similarly, Lemma 2.39 shows that a (Gg)c-structure
(¢, vol) € ABW* x ATW* on a seven-dimensional complex vector space W induces a Hodge
star operator *,, where we again suppressed the dependence of x, on vol in the notation.

The next lemma gives us a concrete description of the Hodge duals x,¢ in all cases.

Lemma 2.43. (a) If ¢ € A3V* is a G§-structure on a seven-dimensional real vector

space V, then the Hodge dual x,p € AYV* is given in an adapted basis fi,. .., fr for
@ by

*pp = € (f1247 + f1256 + f1346 _ f1357 _ f2345 _ f2367) + f4567 (226)

and so has model tensor x,_p. € A (]R7)*. The dual three-form @ of p is ¢ = %*90‘10'
The stabiliser of x, e is G§ x {I7,—I7} = G X Zo.

(b) If (p,vol) € ASW* x ATW* is a (Go)c-structure on a seven-dimensional complex
vector space W, then the Hodge dual x,p € AW* is given in an adapted basis

Ji,--5 f7 for ¢ by
*4,090 _ _f1247 _ f1256 o f1346 + f1357 + f2345 + f2367 + f4567 (2_27)

and so has model tensor x,.pc € A ((C7)*. The stabiliser of x,.oc is (G2)c X
{f[ﬂf €C, ¢t = 1} > (Ga)c X Zy. Moreover, each stable four-form on W is equiva-

lent to the four-form x,.oc on C.

43



2.4. G5-STRUCTURES 44

Proof. (a) The determination of the Hodge dual is a straightforward computation. Prop-
osition 1.33 shows that GL*(7,R).,_,. = G§. Since (—I7)* %y, 0e = *,, e, we have
GL(7,R)s, o = G§ x {I7,—Ir}. The identity @ = %*@ ¢ only has to be shown
for ¢ = .. Proposition 1.37 tells us that GLT(V),, = G§ and by |Brl| the only
G$-invariant four-forms are the multiples of *, .. Hence, ¢, = X x,_ ¢, for some

A € R* and from Equation (1.9) we get A\ = é

(b) The form of the Hodge dual is a straightforward calculation. The rest follows directly
from Proposition 1.33 and Theorem 1.35.
O

The stabilisers given in Lemma 2.43 show that a four-form ¥ € A*V* on a real oriented
seven-dimensional vector space V' with model tensor x,, ¢, induces a Euclidean metric gy
if e = —1, a pseudo-Euclidean metric gy of signature (3,4) if € = 1, a metric volume form
#(¥) and then also a GS-structure ¢ with x, = ¥. We now define the corresponding

objects.

Definition 2.44. Let V be a real oriented seven-dimensional vector space and ¥ € A*V* be
an arbitrary four-form. Let k : A*V* = A3V @ ATV* be the natural isomorphism between
these spaces. Define a symmetric bilinear map by : V* @ V¥ — ATV ® (A7V*)®3 =
(ATV*) 22 by

ba (o B) = é(ou K (T)) A (Ba k() A K(D) (2.98)

for a, B8 € V*. by may be considered as a linear map V* — V® (A7V*)®2. Then det(by) €
(A7V*)®12. We set
¢ AV o ATV*, ¢() = |det(by)|12 . (2.29)

If (V) # 0, we define a symmetric bilinear form gy on V* by
gw (e, B)o(¥)®? = sgn(det(by))by (@, 5) (2.30)
for a,B € V*. Note that gy does not depend on the chosen orientation.
The map ¢ : A*V* — ATV* defined in Equation (2.29) is a map as in Proposition 1.37.
Lemma 2.45. Let V be a seven-dimensional oriented real vector space. Then

(a) The map ¢ : A*V* — ATV* defined by Equation (2.29) is GL*(V)-equivariant and
¢~ 1(0) is the set of all non-stable four-forms on V.

(b) Each stable four-form W € A*V* on V is equivalent to one and only one of the four-
forms o, 01, — *py P1,%p_10—1,— %4, p—1 on RT. More ezactly, if ¥ is stable and
d € {—1,1}, then:
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(i) ¥ € A*V* has model tensor § x,, 1 if and only if gy is of signature (3,4) and
0 - sgn(det(by)) = 1. If this is the case, then each adapted basis (fi,..., f7)
for W is an orthonormal basis for gu with gu(f;, f;) = 1 for j = 1,2,3 and
gu(fj, fj) = —1 for j =4,5,6,7.

(ii) U € A*V* has model tensor 0 xp_, o1 if and only if gu is positive definite and
0 - sgn(det(by)) = 1. If this is the case, then each adapted basis (f1,..., f7) for

U is an orthonormal basis for gy.

(c) Let W € A*V* be stable, denote by xy the induced Hodge star operator and set
¢ = xg¥ € A3V*. Then ¢ is a Go-structure if gy is positive definite and a G-
structure if gy is of signature (3,4). Moreover, g, = gv, ¢(¥) is a metric volume
form, ¢(p) = sgn(det(bw))d(¥) and so ¥ = sgn(det(by)) *x, . Furthermore, the
dual three-form e A3V is given by U= %cp.

Proof. (a) If vol € ATV*\{0} is fixed, then Proposition 1.33 and Remark 1.28 show that
U is stable if and only if X € A3V with X ®vol = x(¥) is stable. Hence, the assertion

is an immediate consequence of Lemma 2.38.

(b) By Proposition 1.33 and Theorem 1.35 each stable four-form ® on V' is equivalent
to one of the four-forms g, 1, — %4, P1,%p_1P-1 OF — *,_, P_1. €1 %4, P1 cannot
be equivalent to ey %,_, ¢_1 for any €;,ea € {—1,1} since the stabilisers are not
isomorphic. Moreover, %, @, is not equivalent to — %, ¢ for € € {—1,1}. Assume
the contrary, i.e. there exists g € GL(7,R) such that g. x,. ¢c = — x4 @e. Then

b by, o and so

g'*%’e Pe =

det(g) "2 det(by,, p.) = det(g.ds,,p.) = det(bya,, o) = — det(be, .)€ (ATVF)H

which is a contradiction since det(g)'? > 0 and det(bs, o) # 0 by (a). Noting that
both gy and sgn(det(by)) do not depend on the chosen orientation on V, the rest of
the assertion follows by calculating gy and sgn(det(by)) for ¥ = 6 x4, @e.

(c) —I7 is an orientation-reversing map on R’ which fixes & x,. ¢, for all 6,e € {—1,1}.
Hence, part (c) implies that we only have to prove part (d) for ¥ = 6 %, ¢, with
5,¢ € {—1,1} and the standard orientation on R”. Apart from the computation of
the dual three-form \il, this is a straightforward task. For the computation of the
dual three-form ¥ we use the fact that ¥ is a Gg-invariant three-form on R7 and so
a multiple Ap. of ¢, by [Brl]. A = ] is obtained from Equation (1.9).

O

Lemma 2.43 tells us that a G§-structure can alternatively be defined as a pair consisting

of a four-form with model tensor x, ¢, and an orientation. Moreover, Lemma 2.45 shows
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that the Hodge dual of the four-form is a G$-structure in the sense of Definition 2.35.
For the construction of G5-structures with certain properties in later chapters, we prefer
the approach via four-forms. However, we will only call the corresponding three-form a
GS-structure in the following. Similarly, a (Ggz)c-structure can be given by a pair of a
four-form of certain kind and a volume form. This is the next lemma which is proved by

direct calculation or using Lemma 2.45 and complex-linear extension.

Lemma 2.46. Let W be a seven-dimensional complex vector space and (¥, vol) € A3SW* x
AYW* be such that there exists an ordered basis (f1,..., f7) of W with

U = _f1247 _ f1256 _ f1346 + f1357 4 f2345 + f2367 + ‘]045677 vol = fl”'7.

Then (xg W, vol) is a (Ga)c-structure with adapted basis (f1, ..., f7), where xy is the Hodge
star operator induced by (V,vol).

Remark 2.47. If a four-form ¥ € A*W* on a seven-dimensional complex vector space W
is stable or, equivalently due to Lemma 2.48 (b), if there exists an ordered basis (f1,..., f7)
with W = — f1247 _ £1256 _ £1346 4 1357 4 §2345 4 ¢2367 |\ £4567 4heon e may set vol 1= 17
and Lemma 2.46 implies that (xgV¥,vol) € A3W* x ATW* is a (Go)c-structure. This
construction depends on the chosen ordered basis (fi,..., fr). By choosing a different one,

we get a multiple with some fourth root of unity.

Next, let V' be a seven-dimensional real vector space, V = W @span(v) with v € V\{0}
and ¢ be a G§-structure on V. From the values of the algebraic invariants for ¢ given in
Table 1.1 we get lower bounds for the lengths of w := (va@) |y € A2W* and p := p|lw €
APW*. In the case of a Go-structure, the invariants tell us that the length of w is at
least three. Using Lemma 2.1, we get that the length of w is three and that w has model
tensor wy = Z?:l e A e e A2 (Rﬁ)*. We also determine the model tensor of w for a
G3-structure depending on sgn(g,(v,v)). Similarly, we determine the model tensor of p
for arbitrary € € {—1,1} depending on properties of W. Moreover, we also consider the
Hodge dual x,¢ and determine the model tensors of the naturally appearing three- and
four-form on W depending on properties of v and W. In contrast to [Frel|, where only

some of the mentioned model tensors have been determined, we do not use the algebraic

invariants for the calculation but instead apply Lemma 2.41.

Proposition 2.48. Let V' be a seven-dimensional real vector space, ¢ be a G§-structure
and V. =W @span(v) be a vector space decomposition with dim(W) =6, v € V*\{0}. Set
w = (vap) |lw € N2W*, p:=olw € A3W*, j:= (v %, @) [w € A3W* and Q := *,0|w €
AW*. Moreover, let, for § € {—1,0,1}, ps € A3 (Rﬁ)* be the three-form given in Table 1.1,
wo = el24e3t 456 c A2 (R6)* as throughout this thesis and set wy := e +e3* € A? (Rﬁ)*
and Q = 1234 4 1256 ¢ A2 (Rﬁ)*.
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(a) The values of the algebraic invariants vk, I, m and r for the above-mentioned forms

W on RS can be found in the following table.

Table 2.2: Algebraic invariants for certain forms on RS

Y| (tk(), L), m(¥),r(¥)) | ¢ | (tk(y), L), m(),r(4))
wo (6,3,1,2) w1 (4,2,1,1)

p-1 (6,3,2,2) o1 (6,2,1,1)

00 (6,3,1,1) Twi (6,3,2,1)

o (6,2,1,0)

(b) w has model tensor wy if e = —1 orif e = 1 and g,(v,v) # 0. Otherwise, i.e. ife =1

and v is a null-vector, p has model tensor w.

(c) p has model tensor p_1 if e = —1 or if e =1 and U has signature (2,4). p has model
tensor p1 if € = 1 and U has signature (3,3). Otherwise, i.e. if € = 1 and U is

degenerate, p has model tensor pg.

(d) p has model tensor p—y if e = —1. If e = 1, then p has model tensor p_qgn(g,(v.0))-

(¢)  has model tensor sw? if e = —1 or if e = 1 and U has signature (2,4). If e = 1

and U has signature (3,3), Q has model tensor —%wg. Finally, Q has model tensor

Q1 ife=1 and U is degenerate.

Proof. The values of the algebraic invariants for the three appearing three-forms in (a)
are given in Table 1.1. The values of the algebraic invariants for the remaining forms are
obvious if we take into account the results we obtained in Section 2.1.

For the rest of the proof, let (fi,..., f7) be an adapted basis for . By Lemma 2.41, to
determine the model tensors of p and €2 for the different classes of six-dimensional subspaces
W of V with fixed signature, we may choose an arbitrary six-dimensional subspace W in
the corresponding class. For the determination of the model tensors of p and w, note that
a three-form is obviously equivalent to all its non-zero multiples and by Lemma 2.1 a two-
form is also equivalent to all of its non-zero multiples. Hence, Remark 1.41 and Lemma 2.41
imply that for the determination of the model tensors of w and p for the different classes of
non-zero vectors v in V' having the same sign g,(v,v), we may choose an arbitrary vector
v in the corresponding class and an arbitrary complement W of span(v) in V.

In the Go-case we choose v := f; and W := span(fa,..., f7). Then we get

W= f23 + f45 + f677 p= f246 . f257 _ f347 o f3567

= f357 . f346 _ f256 _ f247; 0= f2345 + f2367 + f4567-
and see that all forms have the claimed model tensors.
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In the G3-case, vy := f; fulfils g,(vi,v1) = 1 and the six-dimensional subspace W; :=
span(fa, ..., f7) has signature (2,4). Computing all induced k-forms on Wj concretely,
it is obvious, as in the Ga-case, that they have the claimed model tensors. Moreover,
vg := f7 fulfils g,(ve,v2) = —1 and the six-dimensional subspace Wy := span(fi, ..., fe)
has signature (3,3). Again one directly sees that the induced k-forms on Wy have the
claimed model tensors. Finally, we have to look at the degenerate case, where we give
some more details since the model tensors may not be as obvious as before. First, consider
the degenerate subspace W3 := span(f1 + f7, fa,- .., f¢) and let (Fl, F2, ... ,F6) be a dual
basis of (f1 + f7, f2,..., f6). The induced three- and four-form are given by

p= F128 _ pl45 _ p246 | 125 | p13d 4 psse
=—FON(F2=FYAF' — (=F)A (FP + F°) NF° + (F> = F*) A (F? + F°) AN,
Q) = [1256 | pl346 _ p2345 | p1236 1456
=(FP=FY)AN(FP+ F)ANF + (F> = FY) A (FP+ F°) NF™!
and from our rewriting one sees that they have the claimed model tensors. Moreover,

v3 = f1 + f7 is a null-vector and on Wy := span(fi,..., fs) the induced two- and three-

form are given by
w:f23_f45_f16+f25+f34:f61+(fz_f4)/\(f3+f5)7
§= — f124 4 p236 4 g346 4 135 4 0236 456
— (_fl) A (f2_f4) /\f4_ (_fl) A (f3+f5) /\f5+ (f2_f4) A (f3+f5) /\f6-
Again we have rewritten the forms in such a ways that the model tensors are obviously

the claimed ones. O

For (G2) we get similar results.

Proposition 2.49. Let V be a seven-dimensional complex vector space, ¢ be a (Ga)c-
structure and V. = W @ span(v) be a vector space decomposition with dim(W) = 6 and
v € V\{0}. Set w:= (vap)|w € A2W*, p:=plw € ASW*, p:= (vi*, ) |lw € ASW*
and Q = *,0|w € AYW*. Moreover, let wo = e'? 4+ €3 4 €6 € A? ((C6)* and pc be as
in Equation (1.4). Furthermore, denote by poc € A3 (C6)* the complez-linear extension
of po € A3 (Rﬁ)* as in Table 1.1.

(a) w has model tensor we if go(v,v) # 0 and model tensor e'? + e € A? (C®)" if

ge(v,v) = 0.

(b) p has model tensor pc € A3 (CG)* if U is non-degenerate and model tensor poc €
A3 (C6)* if U is degenerate.

(c) p has model tensor pc € A3 ((CG)* if gp(v,v) # 0 and model tensor pyc € A3 ((Cﬁ)*
if go(v,v) =0.
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(d) Q has model tensor %w% € A? ((CG)* if U is non-degenerate and model tensor e'?3% +

el256 ¢ A4 (C6)* if U is degenerate.

Proof. Using Remark 1.41, Lemma 2.41 and the fact that each complex k-form is equivalent
to its A-multiple for all A € C*, the proof follows by the same computations as the proof
of Proposition 2.48. O

The length of the complex k-forms on C® appearing as model tensors in Proposition
2.49 are given in Proposition 1.45 and so we know the values of the algebraic invariants r
and m for the three-form part of a (Ga)c-structure and also its Hodge dual. By Lemma
1.43, lengths are preserved under Hodge duals. Hence, Proposition 2.48 and Proposition
2.49 yield

Corollary 2.50. Let V be a seven-dimensional real vector space, o € A3V* be a Go-
structure on 'V, ¢ € A3V* be a Gi-structure on V and (g,vol) € A3VE x ATVE be a
(Ga)c-structure. Then

k(@)1 (@), m (@), (?)) = (tk(xpP), L (p) , m (k) , 7 (x59)) = (7,4, 2,2).

Proposition 2.48 and Proposition 2.49 are heavily used in Chapter 4 for the construction
of (co)-calibrated G§-structures and (co)-calibrated (Gz)c-structures as well as for getting
obstructions to the existence of such structures on almost Abelian Lie algebras. They are
also used in Chapter 5 to get obstructions to the existence of cocalibrated Ga-structures
on direct sums of four- and three-dimensional Lie algebras. At the end of this section, we
provide some methods which are applied in the construction of examples of cocalibrated
Go-structures on those direct sums. Before, we like to mention a tight connection between
SU‘s(p,S — p)-structures on real six-dimensional vector spaces V and G§-structures on
V ® R. This connection allows us in Chapter 6 to transfer the existence problem of a
half-flat SU(3)-structure on a given real six-dimensional Lie algebra g to the existence
problem of a cocalibrated Ga-structure on g @ R with orthogonal splitting, which for some

Lie algebras turns out to be very useful.

Proposition 2.51. Let W be a seven-dimensional real vector space and V.C W be a

siz-dimensional subspace. Fiz v € W\V and an orientation on V. For

(p,0,€) € {(1,-1,1),(3,1,1),(3,—1,—-1)}

there is a one-to-one correspondence between SU5(p, 3—p)-structures (w, p) € A°V*x A3V*
on V and G$-structures ¢ € A3SW* on W such that V is orthogonal to v with respect to
9o and gyp(v,v) = —6. Moreover, gy, = g(up) ® —da @ a for a € VO with a(v) = 1, where
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Y(w,p) 18 the metric on V induced by (w, p). If we identify V* with V0 via W = V @span(v),

the correspondence is given by
A V* x A3V* 5 (w,p) = pi=wAa+pe NPW (2.31)

Note that then 5
*plp = —§w2 +6J,p A a. (2.32)

The inverse construction is given by
A3W* 3 o= (wi= (va9)|v,p = plv) € A2V* x A3V*, (2.33)

Proof. Tf (w,p) € A?V* x A3V* is an SU%(p,3 — p)-structure, then, by definition, there

exists a basis fi,..., f¢ such that in the dual basis f',..., f% we have
w=f24(p-2) (f34 +f56)7 p=f1% 45 (f146 4 236 +f245)
and so, by setting f7 := «, we get
o= 271 (p—2) (f347 + f567) 4 F15 s (f146 4 p286 4 f245).

We see that for § = —1, ¢ is a G5-structure with adapted dual basis
(f7,—6f2,€f1,6f4,—Efg,—6f5,—6f6) ande=—-lifp=3ande=1ifp=1.1Ifd=1, ¢
is a Gj-structure with adapted dual basis (—f5, fL=r3 15, 7, 4, —f2). Using the dual

basis just obtained, we get

é ((p _ 2) (f1234 + f1256) + f3456) + f1367 + f1457 + f2357 + 5f2467

K = =5
0 2 * 7
= 5w +aJ5p A f
The statement about g, follows from the fact that fi,..., f¢ is an orthonormal basis for
(w,p); fi,--., fr is an orthonormal basis for ¢ and g, (f7, fr) = 0.

For the converse direction, note first that if (w, p) is an SU%(p, 3 — p)-structure on V,
then (—w, p) is also an SU®(p, 3 — p)-structure on V by Corollary 2.34. By Lemma 2.41,
for arbitrary wi, we € W with g, (w1, w1) = gy (w2, w2) # 0, there exists an element in G§
which maps w; to wy or to —ws . Hence, to show that ((vap)|v,ply) € A2V* x A3V* is
an SU%(p, 3 — p)-structure on V, we may choose an arbitrary v € W with go(v,v) = =0
and V := v* for the computation. Thus, the statement follows simply by inverting the

above calculations. O

Next, we elaborate how one may build up a Ga-structure on a real seven-dimensional
vector space V from two-forms on four- and three-dimensional complementary subspaces
of V. This turns out to be useful for the construction of examples of cocalibrated Go-
structures on direct sums of four- and three-dimensional Lie algebras in Chapter 5. There-

fore, we need adapted splittings.
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Definition 2.52. Let ¢ € A3V* be a Ga-structure on a seven-dimensional real vector
space V. A splitting V =V, @ V3 is called adapted (for ¢) if there exists an adapted basis
(f1,---, f7) for ¢ such that fi,..., f4 is a basis of Vy and f5, fs, f7 is a basis of V3.

The following lemma follows directly from Equation (2.26) and the fact that adapted

bases are orthonormal.

Lemma 2.53. Let V be a seven-dimensional real vector space, p € A2V* be a Go-structure
on'V and V. =V, ® Vs be an adapted splitting. Then the decomposition V =V, & V3
is orthogonal with respect to g, and there exist a non-zero 1y € AV} and a non-zero
Qo € A2V} A A2V5 such that

*o0 = 1 + (Qo. (2.34)
Moreover, if ¢ € N3V is a Go-structure with adapted basis (Fu,...,Fy), F; = %fj for
7 =1,2,3,4, F; = f; for | =5,6,7, then the splitting V = V4 ® V3 is also adapted for ¢,

g@‘VAl = A29¢’V4,g¢‘v3 = g<p|V3 and
*33 = A0 + \Qs. (2.35)

Remark 2.54. An adapted splitting is also called coassociative/associative splitting, see
[AS]. This is due to the fact that V3 is a calibrated subspace for ¢ and Vy is a calibrated
subspace for x,. However, since we do not need calibrations at all in this thesis, we prefer

the term “adapted splitting”.

Given a splitting V' = V; @ V3 with dim(V;) = ¢, we may construct a Go-structure with
adapted splitting V = V; @ V3 via two-forms of certain kind on V4 and V3 as follows.

Proposition 2.55. Let V' be a seven-dimensional real vector space and V =V, ® V3 be a
vector space decomposition of V into a real four-dimensional vector space Vy and into a real
three-dimensional vector space V. Fiz 7 € A*V;\{0}. Let k € {0,1,2,3} and w; € A%V}
fori=1,...,k be such that the symmetric matriz H = (h;;);; € RF*¥ defined by

hijT = w; N\ wj

1s definite, where k = 0 means that there is no condition. Then V admits two-forms
Wkt1,---,ws € A2V} such that for all bases v, ...,v3 € A2Vy of A2V5 the four-form

3
1
= iw% +) wi Ay (2.36)
=1

1s the Hodge Dual of a Go-structure on' V and V = V4 @& V3 is an adapted splitting.

Proof. Let @ = e'2 + 3% € A? (R4)*, Oy = el3 — 2t € A2 (R4)* g = et e ¢

A? (R4)*. By Lemma 2.2, there exists an isomorphism u : V3 — R* such that w*@1, ...,
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u*@y, is a basis of span(wi,...,wy). Since there is an automorphism of V4 mapping u*@,
onto wi, we may, without loss of generality, assume that w; = u*@;. Let A € RFXF
A = (aij)ij be such that w; = Zle a;j (u*@;) for j = 1,...,k. Set f; := ul(e;) € Vi
fort=1,...,k and set w; := u*@; for l = k+1,...,3. Since vyq,...,r3 is a basis, also
U1,...,03 with 7; = Zleajiyi forj=1,...,k vj:=vjfor j=k+1,...,3is a basis of
V5. Thus, there exists a basis f5, fs, f7 of V3 such that &y = f%, 7y = — 57 and 73 = f67

and we can compute

3 k 3
v = %w% + Zwi NV, = f1234 + Z ajj (’LL*(I)]) Nv; + Z wr@; Ay
=1 ij—=1 =kt 1
3
— f1234 + Z (’LL*(ZJ]) A ﬁ]
7j=1

— f1234 + f1256 + f3456 _ f1357 + f2457 + f1467 + f2367

and we see that ¥ is the Hodge Dual of a Go-structure with adapted basis
(f7, 1, fas f3s fa, fo, — f5)- O

Remark 2.56. The assertion of Proposition 2.55 has been used implicitly in the literature
several times before, cf. e.q. [Br4] and [Ma].

Moreover, we directly use the openness of the orbit of all Hodge duals of Ga-structures
to construct cocalibrated Geo-structures. Actually, the orbit of all Hodge duals of Go-

"

structures is "uniformly" open in the following sense, cf. also [J3]:

Lemma 2.57. There exists a universal constant ey > 0 such that if o € A3V* is a Go-
structure on a seven-dimensional real vector space V and U € A*V* is a four-form on V
which fulfils

1% = s0ll, < 0

for the norm ||H¢ induced by the Euclidean metric g, on V, then W is the Hodge dual of

a Go-structure on V.

Proof. By Proposition 1.33 and Theorem 1.35, the orbit of all Hodge duals of Go-structures
is open. Fix some Go-structure ¢g € A3g*. Then there exists a ball of radius g > 0
in (A'V*, g,,) around o such that each four-form in this ball is again the Hodge
dual of a Ga-structure. ¢ is the desired universal constant: Let ¢ € A3g* be any Go-
structure on V. Choose an automorphism F' : V' — V with F* x, ¢ = %,,00. Then
F* 1 (A'V*,g,) — (AV* g,,) is an isometric isomorphism by Lemma 2.45. Thus, if
U ¢ Atg* fulfils | ¥ — *oll, < €0, then [[F*W — 5y 00|, < €. Hence, F*¥ and so also
V¥ is in the orbit of all Hodge duals of Ga-structures on V. O
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2.5 Spin‘(7)-structures

In this section, we deal with Spin(7)- and Sping(3,4)-structures on real eight-dimensional
vector spaces. We discuss some basic properties of these structures and their relation to
G§-structures on real seven-dimensional vector spaces.

In Proposition 1.25, we gave an example of a four-form on R® with stabiliser equal to
Spin(7) and one with stabiliser equal to Spiny(3,4), namely ®_; and ®;, both defined in
Equation (1.5). This leads to the following definition.

Definition 2.58. Let V be a real eight-dimensional vector space. A four-form ® € A*V*
is called a Spin(7)-structure if it has model tensor ®_; € A* (Rg), ®_1 as in Fquation
(1.5). ® is called a Spiny(3,4)-structure if it has model tensor ®1 € A* (R®), where ®1 is
also defined in Equation (1.5). We set Spin(7)! := Spingy(3,4) and Spin(7)~! := Spin(7).
Then ® € A*V* is a Spin®(7)-structure for e € {—1,1} if and only if there exists an ordered
basis (f1,...,fs) of V such that in the dual ordered basis (fl, e ,fs) we have

N\ f1238 +e (f1458 + f1678 + f2468 _ f2578 _ f3478 _ f3568)

(2.37)
+e (f1247 + f1256 + f1346 o f1357 o f2345 . f2367) + f4567.

Spin(7) is a subgroup of SO(8) and Sping(3,4) is a subgroup of SO(4, 4) by Proposition
1.25. Hence, a Spin®(7)-structure on an eight-dimensional vector space V induces a pseudo-
Euclidean metric and a metric volume form on V via the corresponding standard model
tensors. The concrete construction only in terms of ® is somehow involved and may be
found for the Spin(7)-case in [Kar|. We only give some part of the information in the next

lemma and refer the reader for the proof of this lemma to [Kar| and [Brl].

Lemma 2.59. Let V be an eight-dimensional real vector space and ® € A*V* be a Spin®(7)-

structure on V. Then ® induces a pseudo-Fuclidean metric gp which is positive definite

if € = —1 and of signature (4,4) if e = 1. An orthonormal basis is in both cases given by
an adapted basis (f1,..., fs) where for e = —1 we have go(fi, fi) =1 fori =1,2,3,8 and
gao(fj, f;) = =1 for j = 4,5,6,7. Moreover, ® induces an orientation via volp := 1—14<I>2.

volg 1s a metric volume form with respect to go. Moreover, ® is self-dual with respect to

the induced Hodge star operator xg.

Equation (1.5) shows that a G§-structure on a seven-dimensional real vector space V
induces a Spin®-structure on V@R. More generally, the analogous statement to Proposition

2.51 is true.

Proposition 2.60. Let V' be a seven-dimensional real vector space and W 2O V be an
eight-dimensional real vector space. Fiz v € W\V. For e € {—1,1}, there is a one-to-one
correspondence between GS-structures p € A3V* on V and Spin®(7)-structures ® € A*W*
on W such that V is orthogonal to v with respect to g and go(v,v) = 1.
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The correspondence is given by
NV*S s @i=aAp+xpp € NSW* (2.38)
where o € VO with a(v) = 1. The inverse construction is given by
AW* 3 ® = = (v2®) |y € A3V (2.39)

Proof. A G§-structure on V' induces a Spin®(7)-structure on W with orthogonal splitting
W =V @ span(v) in the way given in the statement due to Equation (1.5) and the fact
that adapted bases are orthonormal. Conversely, Spin(7) acts transitively on the pseudo-
sphere by [Bo] and [Kathl] and so we may always assume that v = fg and V = v+ =
span(fi, ..., f7) and the statement follows again from Equation (1.5). O]
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Chapter 3

G-structures on manifolds and Lie

groups

3.1 Basic definitions and relations

In this section, we look at G-structures on manifolds and related concepts. We start
in Subsection 3.1.1 by defining these structures properly. If G is the common stabiliser
of several tensors on R", we show how one can describe G-structures equivalently by a
collection of tensor fields. In Subsection 3.1.2, we introduce G-connections and use them
to define the intrinsic torsion of a G-structure. We give an alternative description of
the intrinsic torsion via minimal connections if G is a subgroup of O(p,n — p) such that
g C so(p,n—p) is non-degenerate. In Subsection 3.1.3, we discuss the holonomy of pseudo-
Riemannian manifolds. We remind the reader of certain aspects of the classification of
holonomy groups, in particular Berger’s list. Afterwards, we state the well-known holonomy
principle for pseudo-Riemannian manifolds, which relates the vanishing of the intrinsic
torsion of a G-structure to the existence of parallel tensors fields and to the reduction of
the holonomy group to a subgroup of G. Moreover, we remind the reader of the well-
known theorem of Ambrose-Singer which enables to compute the holonomy algebra via
the curvature.

Throughout the section, we assume that the reader is familiar with G-principal bundles,
G-principal connections, associated vector bundles and related concepts. Nevertheless, we
shortly recall all these concepts and some basic facts and refer for proofs to [Baum|. Other
standard references are [J3],|KN], [Sa2| and [Ste].

3.1.1 G-structures on manifolds

Recall that if G is a Lie group, then a G-principal bundle is a locally trivial fibration
(P, 7, M) with fibre G such that P carries a G-right action which preserves the fibres and
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3.1. BASIC DEFINITIONS AND RELATIONS o6

acts simply transitively on each of them. Note that we may arrange the local trivialisations
7 1(U) — U x G in such a way that they are G-equivariant. We often simplify the notation
and only write P for the triple (P, 7, M). Moreover, recall that if H is a Lie subgroup of
G, then a reduction of P (to H) is an H-principal bundle of the form (Q,w|g, M), where
Q is a submanifold of P invariant under the induced action of H on P. In this situation,
we call (P, m, M) a G-enlargement of Q.

Example 3.4 below shows that reductions do not always exist. However, one can always

enlarge a given H-principal bundle to a bigger group G 2 H.

Lemma 3.1. Let G be a Lie group, H be a Lie subgroup of G and (Q,p, M) be an H-
principal bundle. Then H acts on Q x G from the right by (q,g9) - h := (q - h, h_lg) for
heH, qeQ, g€ G. The triple (P,m, M) with

P:=(QxG)/H

and m: P — M, ([, g]) := p(q) is a G-enlargement of Q with the obvious right-action of
G when we identify Q with Q x {e} = (Q x {e})/H C P.

Proof. For a proof, one may consult, e.g., [Baum)|. O]

The only concrete examples of G-structures appearing in this thesis are the frame

bundle (of a manifold), which is a GL(n,R)-principal bundle, and its reductions.

Definition 3.2. Let M be an n-dimensional manifold. Set F(M) := U cp F(TeM) and
let m: F(M) — M be the natural projection. Then one can endow F (M) with the structure
of a smooth manifold such that w : F(M) — M is a submersion. The triple (F(M),n, M) is
called the frame bundle of M. We have a natural fibre-preserving GL(n,R)-right action on
F (M) which is simply transitive on the fibres, namely the one induced by the natural right
action of GL(n,R) on T, M defined in Equation (1.1). This action makes (F(M), 7, M)
into a GL(n, R)-principal bundle. Each section of m is called a (global) frame (on M) and
a local section is called o local frame.

For a closed subgroup G of GL(n,R), a G-structure on M is a reduction P of the frame
bundle F(M) of M to G.

Remark 3.3. If P is a G-structure, then each fibre P, C F(T, M) is a G-structure on
the wvector space T, M. Hence, a G-structure P C F (M) is nothing but a family {Py},
of G-structures Py on the vector spaces T M which "smoothly"” depends on x in the sense

made precise in Definition 3.2.

Example 3.4. o Analogously to Ezample 1.4, GLT(n,R)-structures are nothing but
orientations on M. If M is oriented, we denote by GL*(M) the corresponding
GL™(n,R)-structure. Since there are non-orientable manifolds, reductions do not

always exist.
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o An {e}-structures is nothing but a global frame on M.

As in Section 1.1, we want to give an alternative description of G-structures via tuples
of tensor fields of certain kind. Therefore, we generalise the concept of model tensors from

tensors to tensor fields on manifolds.

Definition 3.5. Let M be an n-dimensional manifold and T; € T"% be (rq,s;)-tensor
fields on M for i = 1,...,k. The k-tuple (T1,...,T) is said to have the model tensors
(S1,...,85) € TTVSIR™ x ... x T"6R™ if the k-tuple (T\)g, ..., (Th)s) € TV T M x
oo X TSk Ty M has the model tensors (S1,...,Sk) for all x € M, i.e. if for all x € M
there exists u € F(TyM) such that (u*(T)g, ..., u*(Tk)z) = (S1,..., Sk)-

We get the following analogue of Lemma 1.5 on the manifold level.

Proposition 3.6. Let M be an n-dimensional manifold and G C GL(n,R) be a Lie sub-
group of GL(n,R) which is the common stabiliser of the tensors Sy € T™V1R™ ... S €
T"*kR™. Then there is a one-to-one correspondence between G-structures and k-tuples
(Th,...,Ty) € (T M) x ... x T'(T™ % M) which have model tensors (Si,...,Sk) €

Tros1IR™ x ... x TTR%kR™. The correspondence is as follows:

o [fP C F(M) is a G-structure, then the associated k-tuple (T4, ..., Ty) € I' (T"1 M)
X ... x T (T M) is given at the point v € M by (T;)y := (u™')"S; for u € P,

arbitrary and fori=1,... k.

o Let (Th,...,Ty) e D(T™ M) x ... x I'(T" M) be a k-tuple with model tensors
(S1,...,Sk) € TTVIR™ x ... x T"e5kR™, Then the associated G-structure P C F(M)
15 given by
P, :={ue F(I;M)|u (T3)g = S; fori=1,...,k}

for all x € M.

Proof. Regarding Lemma 1.5, only the smoothness of P induced by the tensor fields
(T,...,Ty) on M with model tensors (S1,...,Sk) on R™ is not obvious. Since this is a lo-
cal statement, we may assume M = R™ and consider the smoothness in 0 € R™. It suffices
to show that there is a neighbourhood U of 0 € R™ and a smooth map A : U — GL(n,R)
such that (A(x)*(T1)z, ..., A(@)*(Tk)z) = (S1,...,Sk). Therefore, denote by O the orbit
of (S1,...,8;) in T"VSIR™ x ... x T"*R™ under the natural action of GL(n,R). By
assumption, there exists Ag € GL(n,R) such that (A5(T1)o, ..., A5(Tk)o) = (S1,...,Sk).
Choose a neighbourhood V' of ApG in GL(n,R)/G which admits a smooth local section
s : V. — GL(n,R) of GL(n,R) — GL(n,R)/G with s(490G) = Ag. Consider the smooth
map

F:R"xV — 0, F(z,AG) := (s(AG)"(T1)a, ..., s(AG)*(Tk)a)
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for z € R™ and A € GL(n,R) with AG € V. Note that the image of F lands in O
exactly because (71,...,Ty) has model tensors (Si,...,Sk). Since V and O have the
same dimension, we may apply the implicit function theorem to get a smooth function
f U — V defined on an open neighbourhood U of 0 with F(z, f(x)) = (S1,...,Sk).
Hence, A :=so f:U — GL(n,R) is the desired smooth function. O

In the situation of Proposition 3.6, we also call the k-tuple (T1,...,Ty) € T' (T M) x

X D(T" M) a G-structure on M. Proposition 3.6 applies, e.g., to the cases G =

O(p,n — p), Sp(2m,R), U¢(p,m — p), SU (p,m — p), G, (G2)c and Spin°(7) that we dis-

cussed on the vector space level in Chapter 2. All the concepts and definitions introduced

in Chapter 2 which are related to particular G-structures on vector spaces can be extended
to the entire manifold by defining them pointwise on each tangent space.

As an example, take G = G§. A G§-structure on (a seven-dimensional manifold) M
is a three-form ¢ € Q3M with model tensor ¢, € A3 (]1%7)>k defined in Equation (1.4). ¢
induces a pseudo-Riemannian metric g, € I’ (SQT*M ) on M and a metric volume form
#(¢) € Q"M by defining them pointwise on T,M by Equation (2.24) and Equation (2.23),

respectively. Also we get an induced Hodge star operator %, on the entire manifold.

Definition 3.7. The O(p,n — p)-structure associated to a pseudo-Riemannian metric g of

signature (p,n—p) on an n-dimensional manifold via the model tensor (-,-)p n—p is denoted

by O(M).

3.1.2 G-connections and intrinsic torsion

We briefly recall some well-known concepts in the theory of G-principal bundles. Therefore,
let (P, 7, M) be a fixed G-principal bundle in the following.
If p: G — GL(V) is a representation of G on a real n-dimensional vector space V, then

the vector bundle E associated to P and p is given by
E:=(PxV)/G. (3.1)

Here, G acts from the right freely on PxV by (p,v)-g = (p-g,p(97") (v)). One can check
that F is, in fact, a vector bundle of rank n over M with the obvious fibre-wise addition.

Each G-principal bundle has an associated vector bundle via the adjoint representation.

Definition 3.8. Let P be a G-principal bundle. The adjoint bundle of P is the vector
bundle associated to P and the adjoint representation of G on the associated Lie algebra g

and is denoted by g(P).

The next important concept to recall is that of a G-principal connection. Therefore,
first note that we have a natural subbundle of TP given by V := ker(dw). This subbun-
dle is called the wvertical bundle. A G-principal connection is a right-invariant horizontal

distribution H on P, where horizontal means that T,P =V, ® H, for all p € P.
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If E is an associated vector bundle, then there is a natural map H — V7 from the set
of all G-principal connections on P to the set of all (affine) connections on E. To define this
map, let C°(P, V)% be the C°(M)-module of smooth G-equivariant functions f : P — V/,
where G-equivariant means f(p - g) = ,o(g_l) f(p) for ¢ € G and p € P. The map
s+ fs, T(E) — C®(P, V) with fs(p) € V uniquely defined by s(m(p)) = [(p, fs(p))] €
(P xV)/G = E can be shown to be a C°°(M)-module isomorphism. Using this map
to identify [(E) with C=(P, V)%, V# is given by (V) f = df (X*) € C®(P, V)9
for X € X(M) and f € C°(P,V)%. Here, X* € X(P) is the unique horizontal lift of
X e X(M) to P,ie. X, € Hpyand dmy(X,) = Xy, for all p e P.

In general, the map H +— V¥ is not a bijection between the set of all G-principal
connections on P and the set of all connections on the associated vector bundle E, cf. [J3].

However, for (M) and the standard representation of GL(n,R) on R™ it is a bijection.

Proposition 3.9. Let F(M) be the frame bundle of an n-dimensional manifold and P
be a G-structure. Then the vector bundle of M associated to the standard representation
of G C GL(n,R) on R™ is (isomorphic to) the tangent bundle TM. The adjoint bundle
gl(n,R)(F(M)) is (isomorphic) to End(TM) = T*M ® TM and the adjoint bundle g(P)
is a subbundle of End(TM) = T*M ® TM. Moreover, the above defined map H — V1

between GL(n,R)-principal connections on F(M) and connections on M is a bijection.
Proof. All assertions are proved in [Baum)]. O

Remark 3.10. More generally than the first assertion in Proposition 3.9, it is true that if
P is a G-principal bundle, Q a reduction of P to H and p : G — GL(V) a representation,
then the vector bundle associated to P and p is isomorphic to the vector bundle associated

to Q and ply.

We are interested in connections on M which are compatible with a given G-structure
P in the sense that the corresponding GL(n,R)-principal connection on F(M) is also a

G-principal connection on P.

Definition 3.11. Let P be a G-structure on an n-dimenstonal manifold M. We say that o
connection V on T'M is a G-connection if the corresponding GL(n, R)-principal connection
HY on the frame bundle F(M) reduces to P, i.e. if HY is a subbundle of TP. Note that
then HY is a G-principal connection on P and that V is an H-connection for all Lie
subgroups H of GL(n,R) with G C H C GL(n,R). Note further that to decide if a given
connection V is a G-connection one needs the concrete G-structure P and not only the

abstract group G as the name seems to indicate.

G-connections always exist and may be described as follows.
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Lemma 3.12. Let P be a G-structure on M. Then M admits a G-connection and the set of
all G-connections on P is an affine space modelled on the real vector space T' (T*M ® g(P)).
If P is defined in the sense of Proposition 3.6 by the tensor fields (T1,...,Ty) € T M X
oo X T3 M then a connection V on TM is a G-connection if and only if VI; = 0 for
i=1,... k.

Proof. The first assertion is proved, e.g., in [Baum|. The second also follows easily from
the results in [Baum| but it is not stated directly there. Note however that [Sa2, Lemma
1.3] states the second assertion directly for the case of one tensor field, from which the case

with k tensor fields follows by induction. O

Remark 3.13. Let (M, g) be a pseudo-Riemannian manifold of dimension n and signature
(p,n — p). Then Lemma 3.12 states that the metric connections on M are exactly the
O(p,n—p)-connections on M. More generally, if G is a subgroup of O(p,n—p) and P is a
G-structure on M, then each G-connection is metric with respect to the pseudo-Riemannian

melric on M induced by P.
An important invariant of a G-structure P is its intrinsic torsion.

Definition 3.14. Let P be a G-structure and let o : T*M ® g(P) — A*T*M @ TM be the
anti-symmetrisation in the first two arguments using that T*M ®g(P) C T*MQT*M QT M
by Proposition 8.9. The intrinsic torsion 7(P) of P is defined by

7(P) = [TV(P)] € T (A*T*M ® TM/im(o)),

where V is any G-connection on M and TV is its torsion. We call P torsion-free if
7(P) = 0. Note that by Lemma 3.12, the set of torsion tensors of G-connections is an
affine space modelled on the real vector space I'(im(o)). Hence, 7(P) is well-defined and P

admits a torsion-free G-connection if and only if P is torsion-free.

In the case when G is a subgroup of O(p,n —p) and g C so(p,n — p) is non-degenerate
with respect to the Killing form of so(p, n —p), the description can be simplified as follows.

Remark 3.15. Let M be an n-dimensional manifold, G C O(p,n — p) and g be the Lie
algebra of G. Assume that g is non-degenerate with respect to the Killing form of so(p, n—p)
and denote by gt the orthogonal complement of g in so(p,n — p). Then the adjoint action
of O(p,n—p) on so(p,n—p) induces by restriction an action of G on so(p,n—p) and g+ is
a G-submodule of s0(p,n —p). We denote by g*(P) the vector bundle associated to P and
the mentioned action of G on g*. Since the map oo : (R™)* ®@s0(p,n—p) — A2 (R")*@R",
defined as the anti-symmetrisation in the first two arguments, is an isomorphism, we obtain

the following vector bundle isomorphisms.

A?T*M @ TM /im(c) = T*M & so(p,n — p)(O(M))/ (T*M @ g(P)) = T*M ® g*-(P).
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Definition 3.16. Let M be an n-dimensional manifold and G be a subgroup of O(p,n —
p) for some p € {0,1...,n} such that g C so(p,n — p) is non-degenerate with respect
to the Killing form of so(p,n — p). Moreover, let P be a G-structure on M, g be the
induced pseudo-Riemannian metric of signature (p,n —p) on M and V9 be the Levi-Civita

connection of g. Then
V - V9 € T(T*M @ so(p,n — p)(O(M))) =T (T*M ®a(P)®T*M @ gL(P))

for all G-connections V. Since the set of all G-connections is an affine space modelled on
the vector space T'(T*M ® g(P)), there is a unique G-connection V such that V — V9 is in
[ (T*M @ g*(P)). This connection is called the minimal connection (of P) and using the

vector bundle isomorphism in Remark 3.15, we get
7(P)=V — VY. (3.2)

Recall that the vector bundle T*M ® g*(P) is the vector bundle associated to G and
the representation (R")* ® gt of G. Decomposing this G-module into indecomposable G-
submodules, we get a corresponding decomposition of the vector bundle T*M ® g*(P) =
Vi @ ...® V. This gives us natural classes of G-structures P whose intrinsic torsion 7(P)
at each point is contained in one or a sum of the subbundles V;. An equivalent way of

describing these natural classes of G-structures is obtained by using the following lemma.

Proposition 3.17. Let M be an n-dimensional manifold and G C O(p,n—p) be a subgroup
of O(p,n —p) such that g is non-degenerate with respect to the Killing form of so(p,n — p)
and such that G is the common stabiliser of tensors (Si,...,Sk) € TTVSIR™ x TTk5kR™,

There s an injective vector bundle homomorphism
n:T*M@gH(P) = T*M @ (T M@ ... 0 T M)

such that if P is a G-structure defined by the tensor fields (Th,...,Ty) € T™TM x ... X
TRk M with model tensors (S1,...,Sk), then n(7(P)) = — (VITy,...V9T}). Here, V9 is
the Levi-Civita connection of the induced pseudo-Riemannian metric g of signature (p,n—p)
on M.

Proof. We define a G-module homomorphism
mo: (RM)* @ gt = (R")* @ (TTV 'R @ ... @ TTFR™)

by
n(a® X) :=a® (X.S1,...,X.S) (3.3)

for a € (R") and X € g*. Since G is the common stabiliser of (51, ..., Sk), the kernel of 1o

is trivial, i.e. 7g is injective. Hence, 19 induces an injective vector bundle homomorphism

n:T*M@g-(P) = T*M @ (T "M & ... T %M)
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and
n(V—-vV9) = (VI - VITy,... VT, — VIT},) = — (VITy,...,VIT})

due to Lemma 3.12. O

Hence, instead of decomposing the G-module (R™)* ® g into indecomposable G-
modules, we may equivalently decompose the G-module g ((R")* ® gJ‘) into indecom-
posable G-modules and get the same natural classes of G-structures as before. We have a

closer look at some examples in Section 3.2.

3.1.3 Holonomy theory

Recall for an n-dimensional pseudo-Riemannian manifold (M, g) of signature (p, n —p) the

holonomy group Hol;(g) at the point € M is defined as
Hol,(g) :== {Py|y: [0,1] — M piecewise smooth, v(0) = y(1) =z} C O(T, M, ¢),

where P, : T, M — T, M is the parallel transport map along v with respect to the Levi-
Civita connection V9 of g. By our convention, M is connected and so the holonomy groups
at different points are conjugate to each other. Hence, for different points the representa-
tions of the holonomy groups on the corresponding tangent spaces are isomorphic. We call
this representation the holonomy representation and denote it by Hol(g). By identifying
O(T, M, g,) with O(p,n — p), Hol,(g) becomes a subgroup of O(p,n — p) and the holon-
omy representation is then the standard representation of this group on R™. We denote
the mentioned subgroup also by Hol(g) and call it the holonomy group of g. Note that
Hol(g) € O(p,n — p) is only defined up to conjugation in O(p,n — p). The restricted
holonomy group Holy(g) is constructed analogously to the holonomy group of g but in-
stead of considering all loops at a given point we restrict to all contractible loops at the
point. It is a subgroup of SOg(p,n — p), defined up to conjugacy in O(p,n — p), and one
can show that it is exactly the identity component of Hol(g). Moreover, if (M,g) is the
pseudo-Riemannian universal covering of (M, g), then Hol(g) = Holy(g).

A natural question which arises at this point is which subgroups of SOg(p,n — p)
can occur as holonomy groups of simply-connected pseudo-Riemannian manifolds (M, g).
If (M,g) is simply-connected and additionally complete, then the well-known decompo-
sition theorem of de Rham and Wu, cf. [dR| and [Wu], states that (M, g) is a pseudo-
Riemannian product of indecomposable pseudo-Riemannian manifolds (M;, ¢;),i=1...,k,
and Hol(g) = Hol(g1) x ... x Hol(gx). Here, an indecomposable pseudo-Riemannian
manifold is a pseudo-Riemannian manifold with indecomposable holonomy representation.
Hence, the classification of the holonomy groups of simply-connected complete pseudo-

Riemannian manifolds reduces to the classification of the holonomy groups of simply-
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connected complete indecomposable pseudo-Riemannian manifolds. We refer the reader to
[Besse, §10.107] for a discussion of non-completeness in the Riemannian case.

An important subclass of simply-connected indecomposable complete pseudo-Riemann-
ian manifolds is given by the class of simply-connected indecomposable pseudo-Riemannian
symmetric spaces. These spaces can be treated completely algebraically. If (M,g) is
even irreducible, i.e. the holonomy representation is irreducible, then a complete list of
theses spaces and their holonomy groups has been obtained by E. Cartan [Car| in the
Riemannian case and by Berger [Ber2| in the pseudo-Riemannian case. We refer the reader
also to [Besse| or [He] for a modern treatment of the Riemannian case. Note that in the
Riemannian case indecomposability is the same as irreducibility, which is not true in the
pseudo-Riemannian due to the existence of invariant degenerate subspaces. Hence, the
results of Berger do not cover all cases. For a nicely written summary of known results on
indecomposable pseudo-Riemannian symmetric spaces we refer the reader to [KO|.

For simply-connected indecomposable pseudo-Riemannian manifolds which are not lo-
cally symmetric, a general classification of the holonomy groups seems to be out of reach,
cf. |GL] for a summary of known results. However, in the irreducible case, Berger found
in 1955 [Berl| an astonishingly short list of candidates for holonomy groups by purely

algebraic methods.

Theorem 3.18 (Berger). (a) Let (M,g) be a simply-connected irreducible n-dimension-
al Riemannian manifold which is not locally symmetric. Then Hol(g) is either equal

to SO(n) or contained in the following list:

Table 3.1: Berger’s list in the Riemannian case

n | Hol(g) | n Hol(g)
2m | U(m) | 2m SU(m)
4m | Sp(m) | 4m | Sp(m)Sp(1)
7 Go 8 Spin(7)

(b) Let (M, g) be a simply-connected irreducible n-dimensional pseudo-Riemannian man-
ifold of signature (p,n — p), p & {0,n} which is not locally symmetric. Then Hol(g)
is either equal to SOg(p,n — p) or contained in the following list:

Table 3.2: Berger’s list in the pseudo-Riemannian case

n, (p,n — p) Hol(g) n, (p,n — p) Hol(g)

2m, (2r,2m — 2r) U(r,m —r) 2m, (2r,2m — 2r) SU(r,m —r)
2m, (m,m) SO(m, C) - -

dm, (4r,4m — 4r) Sp(r,m —r) 4dm, (4r,4m — 4r) | Sp(r,m — r)Sp(1)
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Table 3.2: Berger’s list in the pseudo-Riemannian case

n, (p;n —p) Hol(g) n, (p,n —p) Hol(g)
4m, (2m, 2m) Sp(2m,R)SL(2, R) 8m, (4m, 4m) Sp(2m, C)SL(2,C)
7,(3,4) a3 8, (4,4) Sping(3,4)
14,(7,7) (G2)c 16, (8, 8) Spin(7,C)
Remark 3.19. e To be more precise, the subgroup Hol(g) of SO¢(p,n — p) given in

Theorem 8.18 is determined only up to conjugation with elements in O(p,n — p).
Stated differently, Theorem 3.18 gives us the possible holonomy representations, where
in each case the representation of Hol(g) is the standard one on R™. For eract

definitions of some of the above groups, we refer the reader to [Br3/.

e A reduction of the holonomy group of a Riemannian manifold (M,g) to a proper
subgroup of SO(n) has influence on the geometry. Namely, if Hol(g) is a subgroup
of Sp(m)Sp(1), then g is Einstein and if Hol(g) is a subgroup of SU(m), Sp(m), Ga
or Spin(7), then g is even Ricci-flatl, cf. [Sa2].

o A question which arises at this point is if we can say anything about the possible
holonomy groups of arbitrary affine connections on manifolds. Astonishingly, Hano
and Ozeki showed in [HOJ that any connected Lie subgroup of GL(n,R), n > 2, is

the holonomy group of some affine connection on an open ball in R™.

o A natural restriction of the last problem is to ask for the possible irreducible restricted
holonomies of torsion-free affine connections which are not locally symmetric. Berger
also considered this problem in [Berl]. He wrote down a list of connected Lie sub-
groups of GL(n,R) and claimed that this list contains, up to a finite number, all pos-
sible irreducible restricted holonomies of torsion-free affine connections. This claim
turned out to be wrong, cf. [CMS], where an infinite family of such holonomies not
contained in the list in [Beri] has been found. The problem has finally been solved
by Merkulov and Schwachhdfer [MS1], [MS2]. For a more detailed summary of the
history of the problem, we refer the reader to [MS1] and [Schw/. Note that [Schw]
gies a different proof of the mentioned classification problem using Berger’s original

approach to the problem.

We should emphasise that the two lists are not Berger’s original lists. In the Riemannian
case, Berger’s list also contained the case of holonomy equal to Spin(9) in 16 dimensions.
But Alekseevsky [Al] and, independently, Brown and Gray [BG2| showed that Riemannian
manifolds with holonomy equal to Spin(9) are automatically locally symmetric. A similar

argument may be applied to other real forms of Spin(9,C), which excludes two more
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possible candidates in the pseudo-Riemannian case, cf. [Brl]. Moreover, Bryant excluded
one more case and added two cases of holonomies of simply-connected pseudo-Riemannian
manifolds in [Br3|.

Berger’s Theorem gives only possible candidates of holonomy groups. In fact, they all
occur as holonomy groups but it had taken some time to give an example for each of the
cases in Table 3.1 and in Table 3.2, cf. [Br2| for a summary in the Riemannian case. For
the last missing cases, namely Ga, G5, (G2)¢, Spin(7), Sping(3,4) and Spin(7, C), examples
have been constructed by Bryant in [Brl] over 30 years after Berger published his list. We
say that a pseudo-Riemannian manifold (M, g) has exceptional holonomy if its holonomy is
equal to one of these groups. Note that the exceptional holonomy groups are exactly those
which do not occur in series. For the Riemannian exceptional holonomies Go and Spin(7),
complete examples have been constructed by Bryant and Salamon in [BrSa]. Finally, the
existence of compact examples with these holonomies has been shown by Joyce in [J1]
and [J2]. However, still not many explicit examples with exceptional holonomy are known
and it is still of interest to find new ones. One method, which is one major motivation
for classifying Lie algebras admitting half-flat structure or cocalibrated structures in this
thesis, is the Hitchin flow [Hil|. This flow yields, starting with a half-flat or cocalibrated
structure, a (non-compact, non-complete) pseudo-Riemannian manifold with exceptional
holonomy equal to G§ or Spin®(7), respectively. We discuss the Hitchin flow in more detail
in Section 7.1.

Bryant’s construction of examples of pseudo-Riemannian manifolds with exceptional
holonomy heavily relies on the following theorem, which connects torsion-free G-structures

to reductions of the holonomy group.

Theorem 3.20 (Holonomy principle). Let M be an n-dimensional manifold, P a G-
structure on M with G being a subgroup of O(p,n — p) such that g C so(p,n — p) is non-
degenerate with respect to the Killing form of so(p,n —p). Assume that P is defined by the
tensor fields (Ty,...Tyx) € T M x ... x Tk M and denote by g the induced pseudo-
Riemannian metric of signature (p,n —p) on M and by VY the Levi-Civita connection of

g. Then the following are equivalent:
(i) V9T, =0 foralli=1,... k.
(i) 7(P)=0.
Moreover, both (i) and (ii) imply Hol(g) C G.

Proof. Proposition 3.17 gives the equivalence of (i) and (ii). Condition (i) implies Hol(g) C
G by [J3, Proposition 2.5.2]. O

Remark 3.21. Usually, cf. e.g. [Baum/, a slightly different and more general assertion is

called holonomy principle. This assertion states that for all x € M there is a one-to-one
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correspondence between Hol,(g) invariant tensors S € T™T,M and V9-parallel tensor
fields T € T™5M with T,, = S.

Suppose that G C O(p,n — p) has the properties as in Theorem 3.20. Then the
construction of a pseudo-Riemannian metric of signature (p, n—p) with holonomy contained
in O(p,n — p) can be done by constructing a torsion-free G-connection P. Equivalently,
one may construct tensor fields 71, ...,Tj defining a G-structure P with V9T; = 0 for ¢ =
1,...,k. We will see in Section 3.2 that in many cases the equations VIT} =0, ..., VIT} =
0 can be simplified a lot by regarding the decomposition of the G-module (R")* @ g+
or, equivalently, of the G-module 79 ((R”)* ® gL) into indecomposable G-modules. But
before we discuss concrete examples in more detail, we remind the reader of the Theorem
of Ambrose-Singer which allows to compute the holonomy algebra Hol,(g) at the point
x € M, i.e. the Lie algebra of the holonomy group Hol,(g) at the point x € M, via the

curvature.

Theorem 3.22 (Ambrose-Singer). Let (M, g) be a pseudo-Riemannian manifold and de-
note by RY its curvature tensor. For a curve vy : [0,1] = M with v(0) = 2 and v(1) =y
set (V*RI) (v,w) := (PV)_1 o (R9), (Py(v), Py(w)) o Py for v,w € Ty M, where Py is the
parallel transport map along . Then the holonomy algebra hol,(g) of g at the point x € M

s given by
hol,(g) = span( (" RY) (v, w)|v,w € T, M, ~v:[0,1] = M, v(0) =z, v(1) =y, y € M).

Remark 3.23. Theorem 3.22 shows that span((RY), (v,w)|v,w € T,M) is a subspace
of bol,(g). Often it suffices to compute the dimension of this space at certain points to
compute the holonomy algebra. For example if we know that Hol(g) is a subgroup of a
connected Lie group G and there is one point x € M with dim(span((RY), (v, w)|v,w €
T.M)) = dim(G), we can deduce that Hol(g) = G.

3.2 Intrinsic torsion of particular G-structures

In this section, we look at the intrinsic torsion of U¢(p, m — p)-, SU(p, m — p)-, G5- and
Spin®(7)-structures. Recall that all these structures were treated on the vector space level
in some detail in the Sections 2.3 - 2.5. Recall further that the intrinsic torsion of a
G-structure P with G being a subgroup of O(g,n — ¢) such that g is a non-degenerate
subspace of s0(q,n — q) is a section of the vector bundle associated to P and the G-module
(R")*®g" and that this G-module is equivalent to the G-module g ((R")* ® g*) with 79 as
in Equation (3.3). We use the results obtained in [ChiSa|, [Fe|, [FG], [GH], [GM], [Kathl],
[MC4] and [SHPhD] and decompose the G-module (R")" ® g+ = no (R")" @ g') into

a sum of irreducible G-modules for (most of) the groups G mentioned at the beginning
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of this section. We do not give an explicit description of the summands here. Instead,
we present in the relevant cases a description of the intrinsic torsion solely in terms of the
exterior derivatives of the defining differential forms and other related differential forms and
indicate how the different components of the intrinsic torsion appear as certain components
of these derivatives. Some of the results have, to the best of the author’s knowledge, only
been written down explicitly in the literature for the Riemannian case. We transfer them
to the pseudo-Riemannian case without going into much detail concerning this transfer

since in all cases one may literally write down the same proof as in the Riemannian case.

Notation 3.24. For a G-structure P on an n-dimensional manifold M with G C O(p,n—
p) such that g C so(p,n — p) is non-degenerate with respect to the Killing form of so(p,n —
p), we denote by capital Latin letters (e.g. W) components of the decomposition of the
G-module (R™)* ® g+. The corresponding subbundles of T*M ® g~(P) are denoted by
calligraphic letters (e.g. W) as well as the class of G-structures with intrinsic torsion
everywhere in the subbundle W. Finally, we denote by small Latin letters (e.g. w) the part

of the intrinsic torsion lying in W.

Remark 3.25. o All real finite-dimensional representations of real semisimple Lie
groups are completely reducible, cf. [K]|. This applies to SU(p,m — p), G§ and
Spin®(7).

e The condition that g is a non-degenerate subspace of s0(p,n — p) with respect to the
Killing form of so(p,n—p) is fulfilled in the cases g = u(p,m—p), g = su(p, m—p),
g = g5 and g = spin(7). Therefore, note that the assertion is obviously true for the
Euclidean cases g = u(m), su(m), ga, spin(7). Moreover, for an arbitrary real Lie
subalgebra g of so(p,n — p), g is non-degenerate in so(p,n — p) if and only if the

complezification gc is non-degenerate in so(p,n — p)c = so(n,C)

3.2.1 Intrinsic torsion of SU(p, m — p)-structures

Before we discuss the intrinsic torsion of SU¢(p, m — p)-structures, we summarise what is
known about the intrinsic torsion of U¢(p, m — p)-structures. Recall that an U¢(p, m — p)-
structure may be described by a pair of a two-form w and a pseudo-Riemannian metric g
satisfying a certain compatibility relation. Hence, its intrinsic torsion can be described by
V9w according to Proposition 3.17 since VIg = 0. By Equation (3.3), the U¢(p,m — p)-

module we want to decompose is given by
W= {a € (R2m)* ® A2 (RQm)*’ a(u, Jev, Jow) = ea(u,v,w)}
-y o e )
with J. being the standard e-complex structure on R?*™. The decomposition of W into

irreducible summands in the case U(m) is due to Gray and Hervella [GH|. If m > 3,
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then W = Wy @ Wy @ W3 @ Wy with irreducible non-zero U(m)-submodules W;. The
classes W1, ..., Wy can literally be defined, with the obvious sign changes, also in the cases
U(p, m—p) for arbitrary p and Ul(p,m —p) = GL(m,R), and again W = W1 &...® W, as
U¢(p,m — p)-submodules. For ¢ = —1, the decomposition stays irreducible, cf. [SHPhD],
and for ¢ = 1, the spaces W; decompose further into two irreducible Ul(p,m — p) =
GL(m,R)-summands, cf. [GM].

We like to mention some of the classes. First of all, the holonomy principle shows that
the class {0} consists exactly of the pseudo-Kéhler or para-Kéhler manifolds, respectively.
Moreover, the clagss Wi is the class of nearly pseudo-Kéahler or nearly para-Ké&hler man-
ifolds, respectively, the class W are exactly those with dw = 0 and these run under the
name almost pseudo-Kéhler manifolds or almost para-K#hler manifolds, respectively, and
the class W5 @ Wy cousists of those with integrable J, i.e. they are the pseudo-Hermitian
or para-Hermitian manifolds, respectively.

Next, we consider the intrinsic torsion of SU(p, m — p)-structures. Since
(su(p,n — p))= = (U (p,n — p))*" & RJ, as SU(p, m — p)-modules, we get

5
Vi= (R @ (su(pn—p) =W eWoWsaWie (R*) =Y W;  (34)
i=1
as SU¢(p, m — p)-modules with W5 := (]RQ’")*.

Consider first the case m = 3. This case has been treated in [ChiSa| and it has been
shown that W1 = W;" @ W, and Wy = W, @ W, as irreducible SU(3)-modules and that
W3, W4 and Wy are irreducible. The classes Wf and W, i = 1,2, can again literally
be defined as in the SU(3)-case also for the SU(p,3 — p)-case and for SUY(p,3 — p) =
SL(3,R). Moreover, the decomposition V.= W;" & W, @ Wt @ W, @& W3 & Wy & W; is
irreducible for SU(p, 3 — p) with arbitrary p, cf. [SHPhD]. W is the real two-dimensional
SU¢(p, 3 — p)-module [[AB’O (RG)*H and it decomposes into the two real one-dimensional
trivial SU¢(p, 3 — p)-modules R - p. and R - (J.)* p.. Hence, we may identify w) and w]
with functions on M, which we do in the following. The space W5 is a 16-dimensional
SU¢(p, 3 — p)-module isomorphic to HA?”O (Rﬁ)*]] ® [A(l)’l (Rﬁ)*}, and so isomorphic to
2 [Aé’l (]RG)*]. Here, [Aé’l (R6)1 are the real forms of type (1,1) whose wedge product
with wg is 0. Thus, w; and w, are real two forms on M whose wedge product with w? is
0. The 12-dimensional SU¢(p, 3 — p)-module W3 is equivalent to the SU(p, 3 — p)-module
HAg’l (]RG)*H , which are the real forms of type (2, 1) and (1, 2) whose wedge product with
wp vanishes. Hence, w3 is a three-form on M such that the wedge product with w vanishes.
W, and Wp are both equivalent to the SU¢(p, 3 — p)-module (]RG)*. Thus, wy and ws are
one-forms on M. By [ChiSa| and [SHPhD|, we have the following decomposition of the
SU¢(p, 3—p)-modules of all three-forms and four-forms on R% into SU¢(p, 3—p)-submodules,
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which is irreducible for e = —1:

AP (R®)" =R p @R T p @ |05 (RY)]] @ (R)" Ao

AR =R-wf @ [AF" (R®)] Awo® (RS A pe.
Using the above mentioned identifications of the different components of the intrinsic tor-
sion with certain differential forms on M and the just mentioned decompositions of the
three- and four-forms, one can show, cf. [ChiSa| for SU(3) and [SHPhD] for arbitrary

SU¢(p,3 — p), that the components of the intrinsic torsion can be recovered from the the

exterior derivatives of the defining forms (w, p) € QM x Q3M and of the pullback J;p as

follows:
d _Surp=? rr
W—§w1p_§w1 pP T W3+ ws Aw,
dp =wiw? + wi Aw+ws A p, (3:5)

d(J,p) =wiw? +wy Aw— e(Jyws) A p.

Equation (3.5) gives us the following characterisation of the torsion-free SU*(p,3 — p)-

structures:

Corollary 3.26. Let (w,p) € Q2M xQ3M be an SU*(p, 3—p)-structure on a siz-dimension-
al manifold M. Then (w, p) is torsion-free if and only if dw =0, dp =0 and d(J;p) = 0

Many interesting classes of SU¢(p, 3 — p)-structures naturally appear by distinguishing

them via their intrinsic torsion. In this thesis, we are only interested in the following class.

Definition 3.27. Let (w,p) € Q2M x Q3M be an SU(p,3 — p)-structure on a siz-
dimensional manifold M. (w,p) is called half-flat if the intrinsic torsion lies entirely in
W[ @ Wy @ Ws, ice. if w| = wi = ws = ws = 0. By Equation (3.5), this is equivalent
to dw? = 2dw Aw = 0 and dp = 0. Therefore, note that a direct computation in a basis as
in Lemma 2.1 shows that the wedge-product of a one-form with w? vanishes if and only if

the one-form itself is 0.

Remark 3.28. W, @ W5 @ W3 is a 21-dimensional SU(p, 3 — p)-submodule of the 42-
dimensional SU*(p, 3 — p)-module (RG)* @su(p,3—p). In this sense half-flat SU(p,3 —p)-

structures are “half torsion-free”.

For m > 4, we restrict to the SU(m)-case. This case has been considered by Martin
Cabrera in [MC4] and he showed that the decomposition V = 3>_ W; is a decomposition
into irreducible SU(m)-modules. Moreover, he proves a nice characterisation of torsion-free
SU(m)-structures, which will play an important role in Section 7.2 to prove a reduction
result for the holonomy of the Riemannian manifold obtained via the Hitchin flow on

almost Abelian Lie algebras.
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Proposition 3.29. Let M be a 2m-dimensional manifold, m > 4 and (w,¥) € Q>M x
Q"M ® C be an SU(m)-structure on M. Then (w, V) is torsion-free if and only if dw =0
and dRe(¥) = 0.

3.2.2 Intrinsic torsion of Gj-structures

By Proposition 3.17, the intrinsic torsion of a G§-structure ¢ € Q3M on a seven-dimension-
al manifold M is given by V9, g, being the induced pseudo-Riemannian metric. Denote
for A € {0,04} by F : Im(A) — R7 the linear isomorphism defined in Definition 1.19
and set xX_; := F*Xxg and x; := F*Xq,, where x4 is the real two-fold cross product
on (Im(A),gAhm(A)). Then x_; is a two-fold cross product on(R7, <-,~>7) and X1 is a
two-fold cross product on(R7, (,-)34). The GS-module X := 1o ((R7)* ® (gg)l) defined
in Equation (3.3) is given by

X = {04 € (R7)* QA3 (R7)*‘ a(u, v, w, v X w) = 0Vu,v,w € R7}.

The decomposition of the Go-module X into irreducible submodules has been done by
Fernandez and Gray in [FG]. We have X = X1 @ Xo @ X3 @ X4 with irreducible Go-
modules X;, i = 1,...,4. We can define G3-submodules X; of X literally as the ones in
the Ga-case and get X = X; S Xo® X3P Xy as G5-modules. The dimensions of the modules
are given by dim(X;) = 1, dim(Xs) = 14, dim(X3) = 27 and dim(X4) = 7 and they are
also irreducible in the Gi-case by [Kathl]. Note that there is, up to equivalence, exactly
one irreducible G$-module in each of the dimensions 1, 7, 14 and 27. Hence, X; is the
trivial representation, X is the adjoint representation, X3 is the representation S3 (R7) of
trace-free symmetric two-tensors and X, the standard representation on R7. Thus, z is
a function on M and x4 is a one-form on M. To interpret xo and z3 as differential forms,
we recall that by [FG| and [Kathl| we have

NR)Y =A2aA, ANR) =R oAl
with
A%::{weAQ(R7)*‘w/\4pE:2*¢Ew}, Aﬁ::{weAQ(R7)*‘w/\g@€:—*¢ew},
M ={xa(ang)fae ®) ), A= {we A ®) ¢ Ap =0, 6 Axpp =0}

as decompositions of the two- and the three-forms on R” into irreducible G§-modules.

Hence, 2 may be considered as a two-form on M with 29 A ¢ = — %, 22 and x3 as a
three-form on M with 23 A ¢ = 0 and 23 A x,¢ = 0. Moreover, by applying the Hodge
star operator, we get corresponding decompositions of the five- and four-forms. Using
these decompositions, one can show, cf. [Brb| and [MC2|, that the intrinsic torsion of a

Go-structure is encoded in the exterior derivatives of ¢ and x,¢ as follows:

dp = 21 % P+ 34 N Q@+ *px3, dxy, 0= 4x4 AK*pp+ 22 A . (3.6)
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The proof can be transferred one-to-one to the Gj-case. Thus, Equation (3.6) holds also

for G3-structures and we obtain the following result:

Proposition 3.30. A G§-structure ¢ on a seven-dimensional manifold M is torsion-free

if and only if dp =0 and dx, ¢ = 0.
We have several interesting classes of Ga-structures.

Definition 3.31. Let ¢ € Q3M be a GS-structure on a seven-dimensional manifold. ¢
1s called calibrated if the intrinsic torsion is contained in Xo, i.e. if xt1 = x3 = x4 = 0.
By Equation (3.6) this is equivalent to dp = 0. ¢ is called nearly parallel if the intrinsic
torsion is contained in Xy, i.e. if x9 = x3 = x4 = 0. Equation (3.6) yields that this is
equivalent to dp = X%, @ and dx, o = 0 for some constant X\ € R. Finally, ¢ is called
cocalibrated if the intrinsic torsion is contained in X1 @ X3, i.e. if xo = x4 = 0. Equation

(3.6) shows that this is equivalent to dx, ¢ = 0.

3.2.3 Intrinsic torsion of Spin®(7)-structures

Here, we shortly review the different classes of Spin®(7)-structures on eight-dimensional
manifolds which appear when one decomposes the Spin®(7)-module (R%)" ® (spin€(7)) "
into irreducible components. All the results for Spin(7) can be found in [Fe| and [MC1] and
we can transfer these results to the Sping(3,4)-case similarly to the previous subsections.

The Spin(7)-module Z := (R8)* ® (spin(7))" decomposes into a sum Z = Z; & Zs
of two irreducible Spin®(7)-modules with dim(Z;) = 48 and dim(Z2) = 8. The class Z;
of Spin®(7)-structures ® € Q*M is characterised by xd® A ® = 0 and the class Z is
characterised by d® = 6 A ® for the one-form 6 € QM defined by 6 := —1 x (xd® A ®).

Hence, we obtain

Proposition 3.32. Let ® € Q*M be a Spin®(7)-structure on an eight-dimensional manifold
M. Then ® is torsion-free if and only if d® = 0.

Remark 3.33. Note that the fact that, in contrast to the G5-case, there only appears one
equation for torsion-freeness in the Spin®(7)-case relies on the self-duality of a Spin®(7)-

structure, c¢f. Lemma 2.59.

3.3 Geometric structures on Lie algebras

Let G be a Lie group. Then (r,s)-tensors on the Lie algebra g = T.G are in one-to-one
correspondence with left-invariant (r, s)-tensor fields on G simply by extending them left-
invariantly to G. The same is of course true for k-forms and symmetric k-tensors. Since
the exterior derivative commutes with pullbacks, this correspondence induces a differential

on the k-forms on g, called the Chevalley-FEilenberg differential. More exactly, we have
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Definition 3.34. Let g be a real n-dimensional Lie algebra. Then the Chevalley-Filenberg
differential d : AFg* — AFt1g* is the anti-derivation of A*g*, i.e. d is linear and fulfils
d(oar A ag) = d(ag) Aag + (=1)Fay Ad(ag) for all a1 € A1 g*, as € A*2g*, which is
uniquely defined by d(A°g*) = {0} and by da(v,w) = —a([v,w]) for a € g* and v,w € g.
The complex (A*g*,d) is called the Chevalley-Eilenberg cochain complex. Note that it is,
in fact, a complex since d> = 0 is equivalent to the Jacobi identity on g. The corresponding
cohomology classes are denoted by H*(g) and the dimension of H*(g) is denoted by h*(g)
and is called the k-th (Lie algebra) Betti number. Note that always h°(g) = 1. Hence, we
normally omit this number and set h*(g) := (h'(g),...,h"(g)).

A left-invariant H-structure P on G is canonically isomorphic as an H-structure to
the trivial H-structure G x P,. Hence, we may identify P with the H-structure P. on
g = T.G. Restricting to left-invariant H-structures, the different classes of H-structures
on G obtained in Section 3.2 via the distinction of the intrinsic torsion give us different
classes of H-structures on g. Note that left-invariant connections V on G are one-to-one
to bilinear maps g x g — g by the identifications made at the beginning of this section.
In this context, we also call a bilinear map g X g — g a connection on g and denote it
usually also by V. Note that Vx is an endomorphism of g and so we get an induced
bilinear map V : g x T"%g — T"%g for all (r,s) € N2, which is exactly the one induced
by the left-invariant connection on 7"°G one gets from the left-invariant connection V
on G. Note further that the Levi-Civita connection of a left-invariant pseudo-Riemannian
metric on G provides an example of a left-invariant connection on G and we may speak
of the curvature tensor RY of a pseudo-FEuclidean metric g on g. Replacing the Levi-
Civita connection VY on G by the corresponding connection V9 : g x g — g on g and
the exterior differential by the Chevalley-Eilenberg differential, we can transfer all the
alternative descriptions of the different classes of left-invariant H-structures on G to the
Lie algebra g. For example, a half-flat SU*(p, 3 — p)-structure on (a real siz-dimensional
Lie algebra) g is an SU(p, 3 — p)-structure (w, p) € A%g* x A3g* on g with dw? = 0 and
dp = 0. Similarly, a cocalibrated G§-structure on (a real seven-dimensional Lie algebra) g
is a Gg-structure ¢ € A3g* on g with d*, ¢ = 0. Another example is provided by parallel
Go-structures on g, i.e. Go-structures ¢ € A3g* on g with V9¢ = 0. By Proposition 3.30,
these structures can alternatively be described by the equations dy = 0 and d x, ¢ = 0.

Parallel Ga-structures on Lie algebras are not particularly interesting.

Proposition 3.35. A parallel Go-structure p € A3g* on a seven-dimensional Lie algebra

g induces a flat Euclidean metric g, on g.

Proof. Let G be a Lie group with Lie algebra g and let g, be the induced left-invariant

Riemannian metric on G. The holonomy principle states that Hol(g) is a subgroup of
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G2. We noted in Remark 3.19 that (G, g) is Ricci-flat. By [AK], Ricci-flat Riemannian

homogeneous spaces are flat and the result follows. O

Remark 3.36. By Remark 3.19, there is an analogous statement as Proposition 3.35 for
Riemannian manifolds with parallel SU(m)- or Spin(7)-structure. For pseudo-Riemannian
manifolds, the result obtained in [AK[ is no longer true. FE.g. in [Kath2], Kath gives
examples of pseudo-Riemannian symmetric spaces with parallel G5-structure, and so having

holonomy in G35, which are Ricci-flat but not flat.

Proposition 2.51 and the fact that we may replace p by J; in the construction given
in Proposition 2.51 due to Proposition 2.33 (b) imply the following relation between half-
flat SU‘S(p7 3 — p)-structures on a real six-dimensional Lie algebra g and cocalibrated G-

structures on the real seven-dimensional Lie algebra g & R.
Proposition 3.37. Let g be a siz-dimensional Lie algebra. Then:

(a) g admits a half-flat SU(3)-structure if and only if g ® R admits a cocalibrated Go-

structure such that g is orthogonal to R.

(b) g admits a half-flat SU(1,2)-structure (resp. a half-flat SL(3,R)-structure) if and
only if g @ R admits a cocalibrated G3-structure such that g is non-degenerate of

signature (2,4) (resp. of signature (3,3)) and g is orthogonal to R.

If (w, p) is a half-flat SU° (p, 3 — p)-structure on g, then a cocalibrated GS-structure ¢ and
its Hodge dual x,0 on g ® R with the corresponding value of € and properties as in (a) or
(b) are given by

p=wAa+Jp, *w@:—ng—kp/\a (3.7)
for a € gO\{0} arbitrary. Conversely, if ¢ is a cocalibrated GS-structure on g ® R with
properties as in (a) or (b), then a half-flat SU°(p,3 — p)-structure (w,p) on g with the

corresponding values of & and p is given by

w:i=(vaQ), pi=—V1 Kk, P (3.8)
for arbitrary v € R\{0}.

We end this section by observing that Corollary 2.34 implies the following obstruction

to the existence of half-flat SU(p, 3 — p)-structures on a six-dimensional Lie algebra.

Proposition 3.38. Let g be a siz-dimensional Lie algebra and € € {—1,1} be fized. If
eX(p) <0 for all p € Z3(g), then g does not admit any half-flat SU¢(p, 3 — p)-structure. If
Mp) =0 for all p € Z3(g), then g does not admit any half-flat structure at all.

73



Chapter 4

(Co-)calibrated structures on almost

Abelian Lie algebras

In this chapter, we concentrate on almost Abelian Lie algebras, i.e. Lie algebras g which
possess a codimension one Abelian ideal u. We determine the seven-dimensional almost
Abelian Lie algebras g which admit (co-)calibrated G§-/(Gg)c-structures. Moreover, we
classify the seven-dimensional almost Abelian Lie algebras possessing a parallel Go- or
G3-structure, respectively, where we restrict ourselves in the latter case to those for which
u is non-degenerate. We show that then the induced pseudo-Euclidean metric on g is
flat, a result which is a priori clear in the Go-case due to Proposition 3.35. Since almost
Abelian Lie algebra are fully determined by the endomorphism f := ad(e7)|, € End(u)
for any ey € g\u, we express the condition of admitting the corresponding type of G$- or
(G2)c-structure in terms of properties of (the complex Jordan normal form of) f.

We start in Section 4.1 by giving a brief review of almost Abelian Lie algebras. In
Section, 4.2 we present and prove the classification results for almost Abelian Lie algebras
admitting calibrated structure. In Section 4.3, we classify the almost Abelian Lie algebras
which possess cocalibrated structures. The classification results on almost Abelian Lie
algebras admitting parallel structures are given in Section 4.4. The results on the exis-
tence of cocalibrated structures are contained in the author’s paper [Frel|, the results for

calibrated and parallel structures have not been published yet.

4.1 Almost Abelian Lie algebras

In this section, we consider almost Abelian Lie algebras, i.e. finite-dimensional Lie algebras
with codimension one Abelian ideals. We show how the exterior differential on k-forms
can be described in an easy way and give a description of all closed k-forms on these Lie

algebras. Finally we show how one can classify all such Lie algebras.
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Definition 4.1. An n-dimensional F-Lie algebra g is called almost Abelian if there exists

an Abelian ideal u of g of dimension n — 1.

Remark 4.2. An n-dimensional F-Lie algebra g is almost Abelian if and only if g =
Fr—1 Xy F for some linear map ¢ : F — End (Fn_l). Since F is one-dimensional, an

almost Abelian Lie algebra is fully determined by one linear endomorphism of F"~1, e.g.
p(1).

For the next lemma, recall that for an arbitrary F-vector space V' we have a natural
action of the Lie group GL(V) and of Lie algebra gl(V) on A*V* cf. the paragraph
before Equation (1) and the equation itself on page xvii. We denote by GL(V), the
stabiliser subgroup of a k-form p € A¥V* under this action of GL(V) and by L(GL(u),)

the associated Lie algebra.

Lemma 4.3. Let g be an n-dimensional almost Abelian F-Lie algebra. Choose e,, € g\u, set
f = ad(en)|u € gl(u) and let ™ € u® be such that e™(e,) = 1. Identifying the annihilator
en? of e, in g with u* using the decomposition g = u ® span(e,,), the following assertions

are true:
(a) dp=e" A (f.p) and d(e™ A p) =0 for all p € AFu*.
(b) A k-form p € A*u* is closed if and only if f € L(GL(u),).

Proof. Let X,Y € g. Then de™(X,Y) = —e"([X,Y]) = 0 since [X,Y] € u and e" € u°.
This shows de™ = 0. Next, let a € u* 2 ¢,°. Let X, Y € u. Then [X,Y] = 0 and so
(da)(X,Y)=0=(e" A f.a)(X,Y). Since

(da)(en,Y) = —a([en, Y]) = —(ao f)(Y) = (" A (—ao f))(en,Y) = (" A f.a)(en, Y),

we get da = €™ A f.o for all @ € u*. But then dp = e™ A f.p for all p € AFu* follows

immediately. Moreover, we get
de"ANp)=—e"Ndp=—e"Ne"Nfp=0

for all p € AFu* and (a) follows.
Now (a) shows that p € AFu* = AFe,0 is closed (with respect to the differential on g)
if and only if f.p = 0 and by standard Lie theory this is equivalent to f € L(GL(u),). O

We already remarked that an n-dimensional almost Abelian Lie algebra is fully de-
termined by an element of End (F"‘l). However, different endomorphisms of F"~! can
lead to isomorphic n-dimensional almost Abelian Lie algebras. The following proposition
investigates this phenomenon in more detail and gives a classification of almost Abelian

Lie algebras:
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Proposition 4.4. Let g = F"! x, Fe,, and ¢/ = F"! x, Fel, be two n-dimensional
almost Abelian F-Lie algebras. Then g = ¢’ if and only if there exists v € F\{0} such that
o(en) and v¢'(el,) are conjugate in GL,_1(F). Hence, g is isomorphic to g’ if and only if
there exists v € F\{0} such that for all m € N and all X\ € C the number of Jordan blocks
of size m with X\ on the diagonal in the complex Jordan normal form of p(e,) equals the

number of Jordan blocks of size m with YA on the diagonal in the complex Jordan normal

form of v¢'(e;,).

Proof. "=":
Let g be isomorphic to g’. If both g and g’ are Abelian, there is nothing to show. Hence,
we may assume for the rest of the proof that g and g’ are both not Abelian.

We consider first the case that g admits a codimension one Abelian ideal u different
from F*"~!. Then V := unF" ! is an (n — 2)-dimensional subspace of F"~!. Since
[g,9] € unF* ! =V, we have p(e,)(F*!) C V. Moreover, u # F*~! implies the
existence of A # 0 and w € F*~! such that v := w + \e,, € u. Then, for all v € V, the
identities

1

@(en)(v) = [en,v]g = X[/\emv}g = X[u - U),'U]g = X[Uav]g =0,

are true, where the last two identities follow from the fact that F"~! and u are Abelian.
Hence ¢(ey)|ly = 0 and a Jordan normal form of ¢(e,) is given by diag(J2(0),0,...,0),
where J5(0) is the Jordan block of size two with 0 on the diagonal. The same is of course
true for g’ and the statement follows for this case (note that then g = h3 ® F"~3 with the
three-dimensional Heisenberg algebra bs).

So we may assume that the unique Abelian ideal of codimension one in g and g’ is
F"~1. Then each Lie algebra isomorphism ¥ : g — g’ maps F"~! isomorphically onto
F*~! and there has to be F 2 v # 0 and w € F*~! such that ¥(e,) = ve!, +w. So, for
Y = U|pn1 € GL,_1(F) and all v € F*~! we get

(¥ 0 p(en))(v) = W([en, vlg) = [(en), ¥(v)ly = [ve,, + w, Y(v)ly

which implies the statement.

||<:H:
Assume that there exists 1 € GL,,_1(F) and v € F\{0} such that ¢(e,) = 1o (y¢(e},)) 0
¥. Inverting the above computation, we get that the map ¥ : g — ¢, defined by ¥(v +
aep) =Y (v) + ayel, for v € F*~1 o € F, is a Lie algebra isomorphism. O

Remark 4.5. o For F = R not all complex Jordan normal forms are possible for
w(en). It is well-known that ezactly those complex Jordan normal forms are possible
in which for all m € N and all A € C the number of complex Jordan blocks of size

m with A on the diagonal is the same as the number of complex Jordan blocks of size
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m with X on the diagonal. Hence, not all complex almost Abelian Lie algebras are

complezifications of real almost Abelian Lie algebras.

e Proposition 4.4 gives us a classification of the real and the complex almost Abelian
Lie algebras. One may, in principal, write down a complete list in each dimension
as follows. One considers, step-by-step, all possible sizes of the Jordan blocks in
the complex Jordan form for ¢(e,), chooses the diagonal elements in each Jordan
blocks as parameters and restricts these parameters in such a way that they are non-
isomorphic for different parameter values but still give all isomorphism classes using

the conditions given in Proposition 4.4.

o Proposition 4.4 may be reformulated in the way that the isomorphism classes of n-
dimensional almost Abelian F-Lie algebras which are not Abelian are in one-to-one
correspondence to the orbits of PGL(n — 1,F) on the projective space P(End(F"~1)).

This is a stratified space with the largest strata having codimension (n — 2).

4.2 Classification results for calibrated structures

In this section, we give a classification of the seven-dimensional almost Abelian Lie alge-
bras g which admit calibrated G§- or (G2)c-structures, respectively. Proposition 4.4 gives
a classification of almost Abelian Lie algebras g via the complex Jordan normal form of
ad(e7)|y, where u is an Abelian ideal in g of codimension one and e7 € g\u. Except for
the case of degenerate u, we express the condition that g possesses a calibrated structure
in terms of properties of the complex Jordan normal form of ad(e7)|,. For the admittance
of a calibrated G3- or (Ga)c-structure with degenerate u we only give an alternative de-
scription in terms of certain properties of ad(e7)|y. One can, in principle, obtain from that
description also a description in terms of properties of the complex Jordan normal form
of ad(e7)|y, but it is rather involved and not of that much help. Hence, we leave it out
and end this section by giving an explicit list of all nilpotent almost Abelian Lie algebras
admitting calibrated Ga-, G3- or (Gg)c-structures, respectively.

To treat the case of degenerate u, we need the following lemma.

Lemma 4.6. Let pg = e'26 — 135 4 234 ¢ A3 (FG)*. Then

B 0
CLOEm = CB 3 I?B)
et

L(GL(67F)p0) = { <§ B — tS(B)Ig)

B e GL(3,F), C € s[(3,]F)}

and

B e gl(3,F), C 65[(3,F)}.
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Proof. The group GL(6,R),, for F = R has been determined in [V]. We repeat the
arguments to determine also the complex stabiliser of pg. We do the computation for the

real and complex case in parallel. A short computation shows that Vj := span(eq, e5,€6) =
{v € IFS ‘(w po)? = 0}. Moreover, if A € GL(6,F),, and v € V{, we get

A(v)apo = po(A(v),-,-) = (A.po)(A(v),-,-) = A. (vapo)

and so A(v) € Vp. Hence, we may write the dual map A* : (}F6)* — (FG)* as Al =

0
(e1,...,e6). Applying A* to p we get

B BC
A* = < b ) for B,D € GL(3,F) and C € gl(3,F) with respect to the ordered basis

€126 _ o135 | 234 _ gx (o126 _ (135 | (234)
= Be'2 A Deb — Be'® A De® + Be? A De® + tr(C)Be!?
= Be'2 A Deb — Be'3 A De® 4 Be® A Deb + tr(C) det(B)e!?
and so tr(C) = 0. We set V; := span(ey, 2, €3). We have an isomorphism F : A2V AVE —
End (Vp, V1) given by F(w A a)(v) = a(v) - wa (e123) for w € A2V, @ € V§ and v € V4,
We identify End (Vp, V1) with gl(3,R) via the basis (eq4, €5, e6) of Vo and (eq, ez, e3) of V.
Then the identities F(pg) = I3 and

F(Be12 A Deb — Be'® A De® + Be? A Deﬁ) = det(B)B~' D!

are true. Thus, D = ﬁzm and so

GL(6, ) c{<A 0 )
’ po = A
BA det(A)

The converse inclusion follows by inverting the above calculations. The computation of

the associated Lie algebra L(GL(6,F),,) is straightforward.

A e GL(3,F), B € 5[(3,IF)}

O
We are now able to prove

Theorem 4.7. Let g be a seven-dimensional real almost Abelian Lie algebra and u be a

siz-dimensional Abelian ideal in g.
(a) The following are equivalent:

(i) g admits a calibrated Go-structure.

(11) g admits a calibrated G3-structure such that w has signature (2,4) with respect

to the induced pseudo-Fuclidean metric on g.
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(i1i) For any er € g\u, there exist A, B € sl(3,R) and an ordered basis (e1,...,eq)

of u such that the transformation matriz of ad(er)|y with respect to (e1,...,eq)

(%)

(iv) For any e7 € g\u, the complex Jordan normal form of ad(e7)|y is given, up to

15 given by

a permutation of the complex Jordan blocks, by diag (J, j) for some trace-free

matriz J € C3*3 in complex Jordan normal form.
(b) The following are equivalent:
(i) g admits a calibrated G5-structure such that u has signature (3,3) with respect

to the induced pseudo-Fuclidean metric on g.

(i) For any ey € g\u, there exists a vector space decomposition g =V & W of g

imto three-dimensional subspaces V', W such that
ad(er)lu € {f € 9l(9) |flv = fv, flw = fw, fv €sl(V), fw € sl(W)}

(iii) For any er € g\u, the complex Jordan normal form of ad(er), is given, up
to a permutation of the complex Jordan blocks, by diag(J1,J2) for trace-free
matrices Jy, Jo € C3*3 which are complex Jordan normals form of real three-
by-three matrices. That means, for i = 1,2, J; contains no Jordan block with a
non-real number on the diagonal or exactly two Jordan blocks of size 1 with a

non-real number and its complex conjugate on the diagonal, respectively.
(c) The following are equivalent:

(1) g admits a calibrated G5-structure such that u is degenerate with respect to the

induced pseudo-Euclidean metric on g.

(ii) For any e; € g\u, there exists an ordered basis (e1,...,e¢) of u, A € gl(3,R)
and B € sl(3,R) such that the transformation matriz of ad(e7)|y with respect to

A 0
B A- tI‘(A)Id

Proof. Choose e7 € g\u. Let e” € u® with e7(e7) = 1 and identify A¥e;% with AFu* using

(e1,...,e6) s given by

the decomposition g = u @ span(ey). If we say in the following that an element of A*u* is
closed, we always mean that the corresponding form in A*e;? is closed with respect to the

differential of g.
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Let » € A3g* be a calibrated G§-structure. There are unique w € A%u*, p € Au* with
¢ =wAe + p. Lemma 4.3 implies

0=dp=dwAhe” +p)=dp.

Proposition 2.48 tells us that the model tensor of p is p_; if € = 1 and u has signature
(2,4) or if e = —1, that p has model tensor p; if e = 1 and u has signature (3, 3) and that
p has model tensor pg if u is degenerate.

Conversely, let p € A%e7? = A3u* be closed with model tensor p_;. Choose an arbitrary
Go-structure ¢ € A3g* and an arbitrary Gi-structure ¢ € A3g* such that u has signature
(2,4) with respect to the induced pseudo-Euclidean metric. We decompose ¢ = @ Ae” + p,
¢ =wANe +pwith @, @ € A2u* and p, p € A3u*. By Proposition 2.48, both p and p
have model tensor p_;. Hence, there are isomorphisms F, F : u — u with F*j = p = F*p.
We define isomorphisms G, G : g — g by G|y := F, Gy := F and G(e7) := ey =: G(e7).
Then G*@ is a Go-structure with G’*@]u = p and the closure of p and Lemma 4.3 show that
G*¢ is closed. Moreover, by the same arguments G*@ is a calibrated G3-structure with
G*@|y = p. Since G is an isometry between (8,9¢+5) and (g, g), the signature of u is (2, 4)
with respect to ge. & Similarly, we see that for each closed p € A3u* with model tensor
p1 there exists a calibrated Gi-structure ¢ € A%g* with ¢|, = p and u having signature
(3,3) with respect to g5 and the analogous statement for closed p with model tensor pg
and calibrated G3-structures with degenerate u is true.

Summarizing, the existence of a calibrated G§-structure such that u has the desired
property is equivalent to the existence of a closed three-form p € A3e;? = A3u* with the
corresponding model tensor mentioned above. By Lemma 4.3, the closure of p is equivalent
to ad(er)|y € L(GL(V),). The identity component of the stabiliser of p., € € {—1,1}, is,
according to Lemma 2.19, equal to SL(3,C.) C GL(6,RR). This gives us the equivalence of
(i)-(iii) in (a) and of (i) and (ii) in (b). The stabiliser of pg is given in Lemma 4.6 and we get
the equivalence of (i) and (ii) in (c). The equivalence of (iii) and (iv) in (a) follows from
the fact that L(GL(6,R),_,) = i(sl(3,C)) for some injective R-algebra homomorphism
i:gl(3,C) — gl(6,C) and that if J is a complex Jordan normal form for A € gl(3,C), then
diag (J,J) is a complex Jordan normal form for i(A). The equivalence of (ii) and (iii) in
(b) is obvious. O

Remark 4.8. In Section 4.3 we show that a seven-dimensional almost Abelian Lie algebra
g with codimension one Abelian ideal u admits a cocalibrated G5-structures such that u has
signature (2,4) if and only if g admits a cocalibrated G3-structure such that u has signature
(3,3). Moreover, the existence of a cocalibrated G5-structure with non-degenerate u implies
the existence of a cocalibrated G3-structure with degenerate u. The corresponding relations

do not hold for calibrated G3-structures:
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o [f the complex Jordan normal form of ad(e7)ly is given by diag(1 44,1 —14,2+2i,2 —
2i,—3 —3i, —3+ 3i), then Theorem 4.7 shows that g admits a calibrated G3-structure
such that u has signature (2,4) but neither one such that u has signature (3,3) nor

one such that u is degenerate.

e [fthe complex Jordan normal form of ad(er)|y is given by diag(1,2, —3,4,5,—9), then
Theorem 4.7 shows that g admils a calibrated G3-structure such that u has signature

(3,3) but neither one such that u has signature (2,4) nor one such that u is degenerate.

o [f the complex Jordan normal form of ad(e7)|y is given by diag(1,2,3,—5,—4,—3),
then Theorem 4.7 shows that g admits a calibrated G5-structure with degenerate u but

neither one where u has signature (2,4) nor one where u has signature (3, 3).

Remark 4.9. Recently, results on the existence of calibrated Go-structures on Lie algebras
have been obtained. Namely, [CF] gives a full classification of the seven-dimensional nilpo-
tent Lie algebras admitting a calibrated Ga-structure. Moreover, [FMOU] determines all
the siz-dimensional solvable Lie algebras by admitting a so-called symplectic half-flat SU(3)-
structure. There is an analogous relation between symplectic half-flat SU(3)-structures on
b and calibrated Ga-structures on h @ R as between half-flat SU(3)-structures on b and
cocalibrated Go-structures on h @ R, ¢f. [FMOU]. Thus, the results obtained in [FMOU]
give us a full list of the seven-dimensional solvable Lie algebras of the form th & R ad-
mitting o calibrated Go-structure such that the splitting b ® R is orthogonal. The results
in [FMOU] show that a siz-dimensional almost Abelian Lie algebra by admits a symplectic
half-flat SU(3)-structure if and only if h @R admits a calibrated Ga-structure. Analogously

to the proof of Theorem 6.7, one may give a direct proof of this assertion.
For (G2)c-structures we obtain the following result:

Theorem 4.10. Let g be a complex seven-dimensional almost Abelian Lie algebra and u

be a siz-dimensional Abelian ideal in g.

(a) The following are equivalent:

(i) g admits a calibrated (Ga)o-structure such that u is non-degenerate with respect

to the induced non-degenerate symmetric complex bilinear form on g.

(i) For any ey € g\u, there exists a vector space decomposition g =V @ W into

three-dimensional subspaces V and W such that
ad(er)lu € {f € ol(W) [flv = fv, flw = fw, fv €sl(V), fw € sl(W)}.

(iii) For any e7 € g\u, the complex Jordan normal form of ad(e7)y is given, up to a
permutation of the complex Jordan blocks, by diag (J1, J2) for trace-free matrices

Ji, Jo € C3>3 in complex Jordan normal form.

81



4.2. CLASSIFICATION RESULTS FOR CALIBRATED STRUCTURES 82

(b) The following are equivalent:

(i) g admits a calibrated (Ga)c-structure such that u is degenerate with respect to

the induced non-degenerate symmetric complex bilinear form on g.

(i) For any e7 € g\u, there exists an ordered basis (e1,...,es) of u, A € gl(3,C)
and B € sl(3,C) such that the transformation matriz of ad(er)|y with respect to

A 0
B A- tI‘(A)Ig

Proof. The proof is completely analogous to the proof of Theorem 4.7. Using Proposition

(e1,...,eq) is given by

2.49 and Lemma 4.3 we see as in the proof of Theorem 4.7 that the existence of a calibrated
(G2)c-structure with non-degenerate u (resp. degenerate u) is equivalent to the existence
of a closed three-form p € A3e;? = A3u* with model tensor p; (resp. po), er € g\u, and
that this is equivalent to ad(e7)|, € L(GL(u),). The stabiliser of p; is given in Proposition
2.19 and the one of pg in Lemma 4.6. This establishes the equivalence of (i) and (ii) both

in (a) and (b). The equivalence of (ii) and (iii) in (a) is obvious. O

We finish this section and use our results to determine the seven-dimensional nilpotent
almost Abelian Lie algebra admitting calibrated G$-/(Gg)c-structures. Note that the
classification for the Ga-case already has been done in [CF]. Note further that a seven-
dimensional almost Abelian F-Lie algebra with six-dimensional Abelian ideal u is nilpotent
if and only if ad(e7)|, is nilpotent for e7; € g\u and this is the case if and only if the
diagonal elements in the complex Jordan normal form are all 0. Thus, for each partition
ny+...+n =6 of 6 with ny,...,nx € {1,...,6}, ng > ... > ng, there is exactly one
nilpotent almost Abelian Lie algebra, namely that one whose complex Jordan normal form
has Jordan blocks of sizes ny,...,ng, and these are all nilpotent seven-dimensional almost
Abelian F-Lie algebras. Therefore, in total we have 11 such nilpotent Lie algebras for both
F =R and F = C. All of them have rational structure constants so each of them admits
a co-compact lattice. Hence, if g admits a calibrated G§-structure, we get a compact
nilmanifold with calibrated G§-structure.

We obtain the following result, where we refer to the appendix for the names of the

appearing Lie algebras.

Corollary 4.11. Let g be a seven-dimensional nilpotent almost Abelian F-Lie algebra.
Then:

(a) If F = R, then g admits a calibrated Ga-structure if and only if g € {R", A51 @
R27 n7,2}-

(b) If F =R, then g admits a calibrated G5-structure.
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(c) If F = C, then g admits a calibrated (Ga)c-structure.

Proof. Theorem 4.7 shows that g admits a calibrated Ge-structure if and only if the Jordan
blocks of ad(e7)|, have the sizes (1,1,1,1,1,1), (2,2,1,1) or (3,3). Hence, (a) follows. The
proof of (c) is analogous to the one of (b) and we only show (b). Theorem 4.7 (a) and (b)
show that g admits a calibrated G3-structure with non-degenerate u if and only if the sizes
of the Jordan blocks in the complex Jordan normal form are (1,1,1,1,1,1), (2,1,1,1,1),
(2,2,1,1), (3,1,1,1), (3,2,1) or (3,3). To prove the assertion, it suffices, according to

A 0
Theorem 4.7 (c), to give examples of A € gl(3,R) and B € sl(3,R) such that (B A) has

complex Jordan normal form with only zeros on the diagonal and with Jordan blocks of
sizes (2,2,2), (4,1,1), (4,2), (5,1) and (6). Recall that by our convention, J,,(\) denotes
a complex Jordan block of size m with A € C on the diagonal and further that the 1s in
Jm(A) are on the superdiagonal. A complex Jordan normal form with Jordan blocks of
sizes (2,2,2) and only zeros on the diagonal may be achieved with A = 0 and B € sl[(3,R)
of rank three. Those where the blocks have the sizes (4,1,1) or (4,2) may be achieved with

10
A = diag(J2(0),0) and B = diag ((1 b) ,—1— b) with b = —1 or b = 1, respectively.

The sizes (5,1) or (6) may be achieved with A = J3(0) and B € sl(3,R) with b;; = 0

except bo; = 1 or bg; = 1, respectively. O

4.3 Classification results for cocalibrated structures

In this section, we identify those seven-dimensional almost Abelian Lie algebras g which
admit cocalibrated structures. Analogous to Section 4.2, we express the condition of ad-
mitting such a structure entirely in terms of properties of the complex Jordan normal form
of ad(er)|y, where u is an Abelian ideal of dimension six in g and e7 € g\u. Moreover, also
the proof follows the same lines as the determination of the Lie algebras admitting cali-
brated structures. In particular, we first express the condition of admitting a cocalibrated
structure in terms of properties of ad(e7)|, and later transfer this into properties of the
complex Jordan normal form. Since we do the transfer also for the degenerate case, this
transfer requires more work than in the calibrated case. Hence, we postpone it and first

prove the following proposition.

Proposition 4.12. Let g be a seven-dimensional almost Abelian F-Lie algebra and u be a

siz-dimensional Abelian ideal. Then:

(a) If F =R, then g admits a cocalibrated Gi-structure such that u has signature (2,4)

if and only if g admits a cocalibrated G5-structure such that u has signature (3, 3).
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(b) If F =R, then g admits a cocalibrated Go-structure if and only if g admits a cocali-
brated G35-structure such that u is non-degenerate and this is the case if and only if

there exists a non-degenerate w € A*u* such that ad(e7)|y € sp(u, w).

(¢) If F = C, then g admits a cocalibrated (Go)-structure such that u is non-degenerate

if and only if there exists a non-degenerate w € A*u* such that ad(e7)|, € sp(u,w).

(d) If F =R (resp. F = C), then g admits a cocalibrated G3-structure (resp. (Gz)c-
structure) such that w is degenerate if and only if there exists a two-dimensional
subspace Vo, a complementary four-dimensional subspace Vi and a non-degenerate
two-form w € A2V} on Vy such that

tr(f2)
2

fa € gl(Va), h € hom(Va, Vy), f1 € sp(Vy,w)}.

flve = fo+h, flv,=—

ad(er)|y € {f € gl(u) idy, + fa,

Proof. Fix e7 € g\u, let €7 € u® be that element with €7(e7) = 1 and identify as usual
AFer9 with AFu* using the decomposition g = u@span(er). Let ¢ € A3g* be a cocalibrated

S-structure (resp. cocalibrated (Gg)c-structure). There exists p € ASu* and Q € Atu*
with %, = p A e’ + Q. Using Lemma 4.3 we get, as in the proof of Theorem 4.7, that
Q € Ae;% = A%u* is closed. Proposition 2.48 and Proposition 2.49 tell us that the
model tensor of € is %wg € At (IE‘G)* or —%w% € A (IF6)* if u is not degenerate and
el234 4 1256 ¢ A1 (FG)* if u is degenerate. So the existence of a cocalibrated G5-structure
(resp. cocalibrated (Gg)c-structure) with non-degenerate u implies the existence of a
closed four-form © € Ae;¥ = A*u* with model tensor w2 € A* (F®)". With the use of
Proposition 2.48, we can argue, similarly as in the proof of Theorem 4.7, that the existence
of a cocalibrated G$-structure (resp. cocalibrated (Go)c-structure) with non-degenerate
u is even equivalent to the existence of a closed four-form Q € A%e;? = A*u* with model
tensor %w% e A? (IF6)*. In particular, (a) follows. Analogously, we get that the existence
of a cocalibrated Gj-structure (resp. cocalibrated (Gg)c-structure) with degenerate u is
equivalent to the existence of a closed four-form © € A%e;® = A%u* with model tensor
e1234 4 1256 ¢ A4 (IE‘G)*. Using Lemma 4.3 we see that, both in the non-degenerate as in
the degenerate case, the four-form 2 is closed if and only if ad(e7)|, € L(GL(u)q). By
Lemma 2.4, Q € A*u* has model tensor %w% € A! (IFG)* if and only if there exits a non-
degenerate w € A%u* with Q = %wQ. By Proposition 2.5, the stabiliser group GL(u)q of
is then equal to Sp(u,w) and (b) and (c) follow. (d) follows form the concrete form of the

stabiliser of e!?34 4 1256 ¢ A4 (IFG)*, which is given in Proposition 2.5. O

Remark 4.13. Regarding Proposition 4.12, it might be of interest to know whether or not
the existence of a cocalibrated Ga-structure always implies the existence of a cocalibrated

G3-structure. We suppose not, bul cannol provide a concrete counterezample.
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To transfer the conditions on ad(e7)|, in Proposition 4.12, which are equivalent to
the existence of a cocalibrated structure, in terms of the complex Jordan normal form of
ad(e7)]y, we need to recall some well-known results, see e.g. [DPWZ], on the complex

Jordan normal forms of elements in sp(2n,F) C gl(2n,F):

Proposition 4.14. Let (V,w) be a F-symplectic vector space. Then a linear transformation
f € GL(V) is conjugate under the action of GL(V') to an element in sp(V,w) if and only
if the complex Jordan normal form of f has the property that for all m € N and all 0 £ X
the number of Jordan blocks of size m with A on the diagonal equals the number of Jordan
blocks of size m with —X\ on the diagonal and the number of Jordan blocks of size 2m — 1

with 0 on the diagonal is even.
Proposition 4.12 and Proposition 4.14 allow us to prove

Theorem 4.15. Let g be a seven-dimensional almost Abelian F-Lie algebra and u be a

codimension one Abelian ideal.

(a) If F =R, then the following are equivalent:

(i) g admits a cocalibrated Go-structure.

(11) g admits a cocalibrated Gj-structure such that the subspace u is non-degenerate
with respect to the induced pseudo-Euclidean metric on g.

(i) For any er € g\u, ad(e7)ly € gl(u) is in sp(u,w), w € A%u* being a non-
degenerate two-form on u.

(iv) For any e; € g\u, the complex Jordan normal form of ad(e7)|y has the property
that for all m € N and all A # 0 the number of Jordan blocks of size m with A
on the diagonal is the same as the number of Jordan blocks of size m with —\
on the diagonal and the number of Jordan blocks of size 2m — 1 with 0 on the

diagonal is even.
(b) If F = C, then the following are equivalent

(i) g admits a cocalibrated (Ga)c-structure such that the subspace u is non-degener-
ate with respect to the induced non-degenerate complex symmetric bilinear form
on g.
(1) For any er € g\u, ad(er)|y € gl(u) is in sp(u,w), w € A%u* being a non-
degenerate two-form on u.
(iii) For any e7 € g\u, the complex Jordan normal form of ad(ey)|y has the property
that for all m € N and all X # 0 the number of Jordan blocks of size m with A
on the diagonal is the same as the number of Jordan blocks of size m with —A
on the diagonal and the number of Jordan blocks of size 2m — 1 with 0 on the

diagonal is even.
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(¢) IfF =R (resp. F = C), then the following are equivalent:

(i) g admits a cocalibrated G5-structure (resp. cocalibrated (Ga)c-structure).

(i) For any e7 € g\u, there exists a two-dimensional subspace Va, a complementary
four-dimensional subspace Vi and a non-degenerate two-form w € A2V} on Vy

such that ad(e7)|y € gl(u) is in

{f S g[(u) ‘f|v2 = f2 + h, f2 S g[(Vg), h e hom(Vg,V4),

flva = —tr(gz)idw + f1, Ja € 513(‘/4,00)} :

(111) For any er € g\u the complex Jordan normal form of ad(e7)|u € gl(u) has the
property that there exists a partition of {1,...,6} into three subsets Iy, I, I3,

each of cardinality two, such that the following is true:

(1) Dlien, i = 2ien, i = — Zielg Ai-

(2) If there are iy € Iy, ia € Iy such that JB(i1) = JB(i2) then \iy = \i, =
—# or JB(j1) = JB(j2) for the uniquely determined ji € Iy such that
{ig,Jx} = I, k= 1,2.

(3) If there exists ia € Iy such that JB(j) = JB(i2) for all j € Iy or if there
exists 11 € Iy such that JB(j) = JB(i1) for all j € I, then \; = _215213 a

for all j € I U Iy and JB(j) = JB(k) for all j,k € Iy U I5.

Proof. (a) and (b) follow directly from Proposition 4.12 and Proposition 4.14. For the proof
of (c), note that Proposition 4.12 shows that (ii) implies (i) Moreover, by Proposition
4.12, the implication "(i)= (ii)" follows if we are able to show that the existence of a
cocalibrated G3-structure (resp. cocalibrated (Gg)c-structure) with non-degenerate u on
g ,implies condition (ii). Since (a) (resp. (b)) is already proved, we may also proceed as

follows to finish the entire proof:

e First step: Show that condition (iv) in (a) (resp. (iii) in (b)) implies condition (iii)

in (c).
e Second step: Show that the conditions (ii) and (iii) in (c) are equivalent.

First step:

Let A € C%%6 be a matrix in complex Jordan normal form such that for all m € N and
all 0 #£ X\ € C the number of Jordan blocks of size m with A on the diagonal is the same as
the number of Jordan blocks of size m with —A\ on the diagonal and the number of Jordan
blocks of size 2m — 1 with 0 on the diagonal is even. Number consecutively the diagonal
elements of the complex Jordan normal form by Aq1,..., As. The assumptions on A imply

that we can portion {1,...,6} as follows into three subsets Iy, I, I3 of cardinality two:
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e We can group the Jordan blocks with non-zero diagonal elements into pairs of Jordan
blocks of the same size with A and —A, A # 0 on the diagonal. Construct now subsets
Iy, ..., I, of cardinality two by going successively through all these pairs of Jordan
blocks and putting successively the two indices corresponding to the first,. . ., I-th, ...
diagonal element in the two Jordan blocks in one I;. By the index ¢ corresponding
to the I-th diagonal element in a certain Jordan block we mean that i € {1,...,6}
such the i-th diagonal element of the big matrix A is the I-th diagonal element in
the Jordan block.

e Similarly, we can group the Jordan blocks with zero on the diagonal and of odd size
into pairs of the same size and construct subsets I,;1,..., I taking successively all
these pairs of Jordan blocks and putting again the two indices corresponding to the

first,..., [-th, ... diagonal element in the two Jordan block in one Ij.

e Finally, we construct subsets Isy1,..., I3 by taking successively the Jordan blocks
with 0 in the diagonal of even size and putting together the two indices corresponding

to the (20 — 1)-th and 2/-th diagonal element.

By construction, > ,c; A = 0 for all £ = 1,2,3 and so condition (1) in Theorem 4.15
(c) (iii) is fulfilled. Moreover, if iy € I, io € Iy are such that JB(i1) = JB(i2), then
by construction also JB(j1) = JB(j2) for the unique ji € I such that I = {ix,jx} for
k = 1,2. This show that condition (2) in Theorem 4.15 (c) (iii) is fulfilled. Finally, we argue
that also condition (3) in Theorem 4.15 (c) (iii) is satisfied. Therefore, assume, without
loss of generality, that there is i € I3 such that JB(i1) = JB(j1) = JB(i2), {i1,71} = 1.
Then A\;; +A;; =0 and A\, = Aj; = A, imply 0 = A\;; = A\j; = A;,. By construction, the
identity JB(i1) = JB(j1) = JB(i2) implies that JB(j2) = JB(iz) for jo € I, jo # ia. But
then also Aj, = 0 and the first part is proved.

Second step:

For this part of the proof, we remind the reader that we follow that standard convention
on the form of Jordan blocks which puts the 1s on the superdiagonal. We first show that
condition (ii) implies condition (iii) in Theorem 4.15 (¢). Let f := ad(e7)|u, e7 € g\u. By
assumption, we have a four-dimensional invariant subspace V4 C u and a two-dimensional
complementary subspace Vo C u such that f|y, = fa+h, fo € gl(Va), h € hom(V3, V}) and
flva = fa— %idw with fy € sp(Vy,w) for some non-degenerate two-form w on V4. To
simplify the way of speaking, we say in the following that certain vectors uq,...,us are a

Jordan basis of a linear map if there is a permutation making them into a Jordan basis.

Choose a Jordan basis vy, ..., v4 of fy and denote by p1, ..., g the corresponding diagonal
elements. Then Proposition 4.14 tells us that, without loss of generality, u; = —us and
Hs = —pg. Set A = py — % The vectors vy,...,v4 are also a Jordan basis of fly,.

Moreover, v; and v; are in one Jordan block for f4 with p; on the diagonal if and only if
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v; and v; are in one Jordan block for f; — %idy4 with A; on the diagonal. By [GLR,
Theorem 4.1.4], there is a Jordan basis wy, ..., wg of f such that for all 4,5 € {1,...,4} the
vectors v; and v; are in the same Jordan block for f4 — %idv4 with \; on the diagonal
if and only if w; and w; are in the same Jordan block for f with )\; on the diagonal.
Since the characteristic polynomial of f is the product of the characteristic polynomials of
fa— %idv4 and fo, the Jordan basis vectors ws or wg are in Jordan blocks with A5 or Ag
on the diagonal, respectively, where A5, Ag are the roots of the characteristic polynomial
of fo. In particular, tr(f2) = A5 + A\¢. This allows us now to prove that the conditions (1)

- (3) in Theorem 4.15 (c) are fulfilled for the sets I}, := {2k — 1,2k}, k =1,2,3:
o We get
At A2 =1+ p2 —tr(fe) = —As — X6, A3+ Aa = pg + pa — tr(f2) = —As — Ag,
which is exactly condition (1).

o If w;, and w;, are in one Jordan block for f with A\;; = \;, on the diagonal for

i1 € {1,2}, i2 € {3,4}, then v;, and v;, are in one Jordan block for f4 with p;, =

iy + )‘5J2rA6 on the diagonal. We may have p;;, = i, =0 and so A\, = A\, = —%.

If this is not the case, Proposition 4.14 implies that f4 has to contain two Jordan
blocks of size two, one with u;, and the other with —pu;, on the diagonal and so
vj,, vj, are in one Jordan block, ji,j2 such that {i1,j1} = {1,2}, {i2,j2} = {3,4}.

Hence, w;,, wj, are in one Jordan block. Thus, condition (2) is satisfied.

o If wy, wy and wj, for some iy € {3,4} or w;,, ws and wy for some i; € {1,2} are in
one Jordan block for f with A on the diagonal, then vy, v2 and v;, or v;,, v3 and vy
are in one Jordan block for fq with A+ )‘542)‘6 on the diagonal. But then Proposition
4.14 tells us that vy, v, vs and vy are in one Jordan block for f4 with 0 on the
diagonal. Hence, wi, wo, ws, wy are in one Jordan block for f with —% on the

diagonal. This is condition (3).

Finally, we show that condition (iii) implies condition (ii) in Theorem 4.15 (c). Let
A € C%%6 be in complex Jordan normal form and assume that it fulfils all the conditions
in Theorem 4.15 (c) (iii). Let I, Iz and I3 be a partition of {1,...,6} as in condition
(iii). We may assume that JB(ix) = JB(i3) for iy, € Iy, k = 1,2, i3 € I3 implies i, < i3
simply by redefining I, and I3 if this is not the case (note therefore that A;, = A;;). Set
Vo := span(e;|i € I3) and Vy := span(e;j|j € I U lz). Due to our assumption, Vj is
an invariant subspace for A. That means there are Ay € gl(V3), H € hom(Vs,V}) and
Ay € gl(Vy) such that Aly, = A2 + H and Aly, = A4. Moreover, Ay is in complex Jordan
normal form and so B := Ay + w& is also in complex Jordan normal form. We claim

that B is conjugate to an element in sp(4,F). Therefore, we have to check that B fulfils
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all the conditions in Proposition 4.14. We use the conditions (1) - (3) in Theorem 4.15 (c)

(iii) to get information on the structure of B. First, the identity tr(Az) = >

Y
that the diagonal elements of B are given by p; = A\; + Z’%‘”’, j € I1UIy. Hence, we get

icls A; shows

the following properties of B:

(A) Condition (1) states that > . pj = > icr Aj+ e, Ao =0 for k=1,2.

Zielg Ai
2

,i.e. u =0, or u# 0 and there is a different

(B) Condition (2) implies that if B contains a Jordan block of size 2 with = A+
Zielg, Ai
2
Jordan block of size 2. Property (A) implies that the value on the diagonal in this

on the diagonal, then A = —

other Jordan block of size 2 has then to be equal to —p.

(C) Condition (3) states that there cannot be any Jordan block of size 3 in B and there

can only be a Jordan block of size 4 in B if the diagonal elements are equal to 0.

Regarding (A) - (C), the Jordan blocks of size greater than one in B obviously fulfil all
conditions in Proposition 4.14. To discuss those of size one, note that if there is at least
one Jordan block of size one with p # 0 on the diagonal, then (B) and (C) directly imply
that all the Jordan blocks in B with non-zero value on the diagonal must be of size one.
Hence, (A) implies that the number of Jordan blocks of size one with 1 # 0 on the diagonal
equals the number of Jordan blocks of size one with —u on the diagonal.

Thus, we are left with the Jordan blocks of size one with 0 on the diagonal and have to
show that their number is even. Suppose that their number is odd, i.e. it is one or three.
If it was one, then (A) and (C) show that there is a Jordan block of size two with 0 on the
diagonal. But then there has to be exactly one Jordan block of size one with a non-zero
value on the diagonal, which we just excluded. If the number of Jordan blocks of size one
with 0 on the diagonal was three, we again get that there is exactly one Jordan block of
size one with a non-zero value on the diagonal. Thus, the number of Jordan blocks of size

one with 0 on the diagonal has to be even and the statement is proved. O

Remark 4.16. o Theorem 4.15 (a) implies that seven-dimensional almost Abelian Lie
algebras admitting a cocalibrated Ga-structure are necessarily unimodular. This is

not true for arbitrary seven-dimensional Lie algebras, c¢f. Theorem 5.18.

o The admittance of a cocalibrated Go-structure on an almost Abelian Lie algebra puts
restrictions on the Lie algebra Betti numbers h'(g). Since g is unimodular, we have
h'(g) = 1. Moreover, Theorem 4.15 (a) implies the existence of a closed two-form
w € A%e;Y of length three. Hence, h*(g) > 0 for i = 1,2,3. A more thorough
discussion of condition (iv) in Theorem 4.15 (a) implies the existence of three linearly
independent closed two-forms in A%e;°. Hence, h*(g) > 3 and also h3(g) > 3 since

there have to be three linearly independent non-ezact closed two-forms in A?e7°.
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o However, whether a seven-dimensional almost Abelian Lie algebra admits a cocali-
brated Gao-structure or not cannot be decided solely by the Lie algebra cohomology.
Therefore, note that the seven-dimensional almost Abelian Lie algebra g = RS x Rey
with ad(ey)|y = diag(1, —1,2,—2,4, —4) has the same Lie algebra cohomology as the
one with ad(ey)|y, = diag(1,—1,—1,—1,4,—2), namely

(h'(9), h*(9), h*(g), h* (), h°(g), h°(g), k" (g)) = (1,3,3,3,3,1,1).

Theorem 4.15 (a) implies that the first Lie algebra admits a cocalibrated Go-structure

while the second does not.
We like to note the following consequences of Theorem 4.15 and Proposition 4.12.

Corollary 4.17. Let g be a real seven-dimensional almost Abelian Lie algebra and u be a

codimension one Abelian ideal.

(a) If g admits a cocalibrated G35-structure with non-degenerate u, then it also admits a

cocalibrated G3-structure with degenerate u.

(b) g admits a cocalibrated G5-structure if and only if gc admits a cocalibrated (Ga)c-

structure.

Remark 4.18. An interesting open question one may ask is if the analogue of Corollary
4.17 (b) holds for all real seven-dimensional Lie algebras. We do not think so but cannot

give a concrete counterexample.

We end this section by noting what Theorem 4.15 implies for the nilpotent almost
Abelian Lie algebras. As in the case of a calibrated G§-structure, the interest stems from

the fact that we get compact nilmanifolds with cocalibrated G§-structures.

Corollary 4.19. Let g be a nilpotent F-Lie algebra of dimension seven with siz-dimensional

Abelian ideal u. Then:

(a) If F =R, then g admits a cocalibrated Go-structure if and only if
¢ {A11®R3 151 ®R,ng2 DR}

(b) If F =R, then g admits a cocalibrated G5-structure.

(c) If F = C, then g admits a cocalibrated (Ga)c-structure.

4.4 Classification results for parallel structures

In the final section of this chapter, we restrict ourselves to the real case. We determine

the seven-dimensional almost Abelian Lie algebras g admitting parallel G§-structures. For
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simplicity, we consider only Gj-structures with non-degenerate six-dimensional Abelian
ideal. We use the fact that the holonomy principle and Proposition 3.30 imply that a
S-structure ¢ € A3g* is parallel with respect to the induced pseudo-Euclidean metric if

and only if ¢ is calibrated and cocalibrated. For the formulation of the statement, recall

a b
that we use the notation M, for the real two-by-two matrix ( ) ) .
—b a

Theorem 4.20. Let g be a seven-dimensional real almost Abelian Lie algebra with siz-

dimensional Abelian ideal u.

(a) g admits a parallel Go-structure if and only if g admits a basis (e1,...,e7) such that
(é1,...,eq) is a basis of u and there exist a,b € R such that the transformation matriz

of ad(er)|y with respect to (e1,...,eq) is gien by diag(Mo o, Moy, Mo, —a—b).

(b) g admits a parallel Gi-structure such that u has signature (2,4) if and only if g
admits a basis (e1,...,er) such that (e1,...,es) is a basis of u and such that the
transformation matriz of ad(e7)|y with respect to (e1,...,eqg) is given by one of the

following matrices for certain a € R*, b,c,d,e € R:

Moy Iy
diag(Me,p, M_q, Mo —2p), diag (Mo, Mo.g, Mo —(c+a)) 5 Moy, ;
Mo, —2¢
0 I
0 I

0

(c) @ admits a parallel G5-structure such that u has signature (3, 3) if and only if for any
er € g\u, the complex Jordan normal form of ad(e7)|y has the property that there is
a partition {1,...,6} = I UJ with subsets I, J of cardinality three and a bijection
G:1I— J with

(i) ZierXi =0,

() Aa@) = —Ni for alli € 1,
(#5i) JB(i1) = JB(i2) if and only if JB(G(i1)) = JB(G(i2)) for all i1, iz € 1,
(iv) JB(i) # JB(j) for allie I, j € J.

(d) Parallel Ga-structures and parallel Gi-structure with non-degenerate u are flat.

Proof. The proof follows the same lines as the determination of the Lie algebras admitting
calibrated or cocalibrated structures in the last two sections.
Let ¢ € A3g* be a parallel G§-structure with u being non-degenerate. We may choose

er € g\u with ez Ly, uand gy(er,er) = =0 € {~1,1}. Here, § = 1 if ¢ = 1 and u has
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signature (3,3). In all other case, § = —1. Let ¢’ € u’ with e7(ey) = 1 and identify as
usual AFe;0 with AFu*. Proposition 2.51 tells us that we have a SU?(p,3 — p)-structure
(w, p) € A%u* x A3u* such that

)
po=wAe +p, *¢¢:—§w2+5J;p/\e7.

Here, (0,¢) = (—1,—1) implies p = 3 and (d,¢) = (—1,1) implies p = 1. Moreover,
Lemma 4.3 shows that $w? and p are closed and so ad(er)|y € L (GL(u)%wz N GL(u)p).
By Proposition 2.5, L(GL(w)1,2) = L(GL(w)..) and 50 ad(er)|y € L (GL(u)%wg N GL(u)p>
=~ su’(p,3 — p).

In particular, we have an orthogonal decomposition g = u @ span(e7) into an Abelian
ideal u of g and an Abelian subalgebra span(e7) which acts skew-symmetric on the Abelian
ideal u. Hence, in the Ga-case, the Euclidean metrics on g are in Milnor’s [Mi] class of flat
Euclidean metrics on Lie algebras. However, one can show, doing the same calculations
as in the Fuclidean case, that the analogous class in the pseudo-Euclidean setting also
consists solely of flat metrics. This shows (d). Note that the result in the Euclidean case
also follows from Proposition 3.35, which has been proved using the result that Ricci-flat
homogeneous spaces are flat [AK].

Conversely, assume that f := ad(e7)|, is contained for some, and hence for all, e; € g\u
in a Lie subalgebra b of gl(u) which is conjugate via an isomorphism u 22 RS to su®(p, 3 —p)
for some (d,p) € {(-1,3),(—1,1),(1,3)}. Using the mentioned isomorphism, we may
construct an SU®(p, 3 — p)-structure (w, p) € A2u* x APu* on u with f.w =0 and f.p = 0.
By Proposition 2.51, ¢ := wAe” +pis a GS-structure with Hodge dual *pp = —ng—i—(SJ;p.
Here, e = —1if (§,p) = (—1,3). Otherwise, € = 1. Lemma 4.3 tells us that ¢ and *, ¢ are
both closed and hence ¢ is parallel.

Thus, g admits a parallel G§-structure with u being non-degenerate if and only if for
any ey € g\u the linear endomorphism ad(e7)|, is contained in a Lie subalgebra b of gl(u)
which is conjugate via an isomorphism u = RS to 5u5(p,3 — p), where ¢ = —1 if and
only if (6,p) = (—1,3), € = 1 and u has signature (2,4) if and only if (J,p) = (—1,1)
and € = 1 and u has signature (3,3) if and only if § = 1. Hence, (a) follows since the
given matrices in the assertion are exactly the real Jordan normal forms of elements in
su(3) C gl(6,R). For (b), note that in [DPWZ], all the complex Jordan normal forms of
elements in u(1,2) C gl(3,C) are determined. To get all the complex Jordan normal forms
of elements in su(1,2) C gl(3,C), we only have to require additionally that they are trace-
free. Hence, the possible complex Jordan normal forms of elements in su(1,2) C gl(3,C)

are
diag(a + ib, —a + ib, —2ib), diag(ic,id, —i(c + d)), diag(J2(ie), —2ie), J3(0)

for a € R* and b, ¢, d, e € R and we get the claimed real Jordan normal forms for elements
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in su(1,2) considered as a subset of gl(6,R). (c) follows from the fact that su'(p,3 — p) =
{diag (A, —A") € gl(6,R)| A € sI(3,R) }, cf. Definition 2.32. O

Remark 4.21. There are seven-dimensional almost Abelian Lie algebras which admit both
a calibrated and a cocalibrated Go-structures but no parallel Go-structure. An example is

provided by the nilpotent Lie algebra nyo.

We look again at the nilpotent case. By [Mi, Theorem 2.4], a nilpotent Lie algebra g
admits a flat Riemannian metric if and only if g is Abelian and so Proposition 3.35 shows
that a nilpotent Lie algebra g admits a parallel Go-structure if and only if g is Abelian.
This is in accordance with Theorem 4.20. For the G3-case with non-degenerate u we get
from Theorem 4.20:

Corollary 4.22. Let g be a seven-dimensional real nilpotent almost Abelian Lie algebra
and let u be a siz-dimensional Abelian ideal in g. Then g admits a parallel G5-structure

with non-degenerate u if and only if g € {R7,A5,1 D RQ,nm}.
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Chapter 5

Cocalibrated structures on direct

SUINS

In this chapter, we give the classification of the direct sums of four- and three-dimensional
Lie algebras which admit cocalibrated Ga-structures. The results are all contained in the
author’s paper [Fre2]. We start by recalling basic facts about three- and four-dimensional
Lie algebras in Sections 5.1 and 5.2, respectively. In Section 5.3 we use the results obtained
at the end of Section 2.4 to prove a general existence result for cocalibrated Ga-structure
on manifolds. We apply this general result to our particular case of cocalibrated Ga-
structures on direct sums g4 @ g3 of four- and three-dimensional Lie algebras using the
structure theory of these Lie algebras obtained in the previous sections. In Section 5.4, we
use Proposition 2.48 and again the structure theory to obtain obstructions to the existence
of cocalibrated Ga-structures on the mentioned class of Lie algebras. Section 5.5 starts by
presenting the main theorem of this chapter, which tells us exactly which sums of four-
and three-dimensional Lie algebras admit cocalibrated Ga-structures. In the preceding, we
give the proof of the main theorem using all previous results. We deal separately with the

four cases which naturally appear by distinguishing whether g4 or gs is unimodular or not.

5.1 Three-dimensional Lie algebras

The classification of three-dimensional Lie algebras is well-known for a long time |Bi] and

given in the appendix in Table 7.1. We highlight some aspects of the classification.
Lemma 5.1. Let g be a three-dimensional unimodular Lie algebra.

(a) There exists a basis e1,e2,e3 of g and 11,72, T3 € {—%,O, %} such that

de' =7; Zj,k:l eijre’™ fori=1,2,3.

(b) d(g*) A kerd| . = {0}.
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(c) There exists a linear map g : A®g* — ker d|g+ such that for the map G : A%g* — A3g*,
G(w) = w A g(w) for w € A%g*, the identity G=1(0) = d(g*) is true.

(d) If ;m; >0 for all i,j € {1,2,3}, i.e. g ¢ {e(1,1),50(2,1)}, then F~1(0) = kerd

g%

where F : g* — A3g* is defined by F(a) := d(a) A a for o € g*.

Proof. We use the well-known part (a) [Bi] to show (b)-(d).
(b) Let w =da, a = Zf’zl a;e’ € g* and B = Zf’zl bie! € g*. Then
3 .
w = Z Tiaieijke]k (51)
ij k=1
and so
3 ' 3
wAB= Z riaibe;jrel™ = Z Tiaibe;jrejret

Z'7j7k7l:1 i’j’k’lzl (5‘2)

3
= (Z QTZ'aZ‘bi) 6123.
=1

If dB = Zij,kzl mibieire’® = 0, then 7;b; = 0 for all i = 1,2,3 and so w A 8 = 0.
This shows (b).

(c) Let w € A%g*. Then w = Z?’M:l ai€ijre’® for unique aj,az,a3 € R. Set g(w) =
Z?:Ln:o a;e’. Then Equation (5.1) shows that g(w) € kerd

g+~ Moreover,

3 3

wAgw)= Z aialeijkejkl = Z Qi Q€ ki €kl el?3
,7,k,l=1,1;=0 ,3,k,l=1,1;=0
3 3
= Z 20416y | '3 = Z 2a} | ! =0
i,l=1,77=0 I=1,71=0

if and only if 7, = 0 implies a; = 0 for | = 1,2,3. But Equation (5.1) shows that this
is equivalent to w € d(g*).

(d) The signs of the non-zero 7; are all the same due to the assertion. Let oo = Z?:l aie’ €
g%, a1,a2,a3 € R. Then Equation (5.2) implies that dao A @ = 0 if and only if
Z?:l m,a2 = 0 and this is the case if and only if 7;a; = 0 for all i = 1,2,3. But
Equation (5.1) states that this is equivalent to a € ker d|g-.

O

The only two non-solvable three-dimensional Lie algebras are the simple ones, namely
50(3) and s0(2,1). All other three-dimensional Lie algebras are almost Abelian: If g is
solvable and unimodular, then, by elementary Lie theory, there exists a codimension one
ideal, which then has to be unimodular and so Abelian. If g is not unimodular, then the

unimodular kernel gives a codimension one Abelian ideal. Hence, Lemma 4.3 shows
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Lemma 5.2. Let g be a three-dimensional solvable Lie algebra. Then g* admits a vector
space decomposition g* = W @ span(e3) with Wo two-dimensional and de® = 0 such that

there exists a linear map f : Wo — Wo with da = f(a) A e for all « € Wy. If tr(f) # 0,

ff(t}{Q) only depends on the Lie algebra g. Moreover, tr(f) = 0 ezactly when g is unimodular.

As we will see in Section 5.3, the existence of a contact form on the three-dimensional
part gg, i.e. of a one-form « € g§ with d(a) A # 0, in a direct sum g = g4 & g3 ensures
the existence of a cocalibrated Go-structure on g for certain four-dimensional Lie algebras
g4. Therefore, we recall the well-known classification of three-dimensional Lie algebras

admitting contact forms, see e.g. |Di|

Lemma 5.3. A three-dimensional Lie algebra does not admit a contact form if and only if

g is solvable and f as in Lemma 5.2 is a multiple of the identity. So g admits a contact-form

if and only if g ¢ {R3,t31}.

5.2 Four-dimensional Lie algebras

A classification of all four-dimensional Lie algebra has first been obtained in [Mu4d| by
Mubarakzyanov. We give a complete list in the Tables 7.2 and 7.3.

In [ABDO] it is proved that each four-dimensional solvable Lie algebra admits a codi-
mension one unimodular ideal. Since the only simple Lie algebras up to dimension four are
s0(3) and s0(2,1), it is an immediate consequence of Levi’s decomposition theorem that
the non-solvable four-dimensional Lie algebras are exactly so(3) @R and so0(2,1) ®R. This
shows the first part of

Lemma 5.4. Let g be a four-dimensional Lie algebra. Then g admits a codimension one
unimodular ideal u. u is unique if and only if dim([g,g]) = 3 or g is not unimodular. In

these cases, u the commutator ideal [g, g] or the unimodular kernel of g, respectively.

Proof. If g is not unimodular, then the unimodular kernel has codimension one and each
unimodular ideal of g is an ideal of the unimodular kernel. Thus, a codimension one
unimodular ideal has to coincide with the unimodular kernel. The commutator ideal [g, g]
is a unimodular ideal and contained in each codimension one ideal. Thus, the uniqueness
statement follows also if dim([g, g]) = 3.

If g is unimodular and dim([g,g]) < 3, then each three-dimensional subspace of g
containing [g, g] is a unimodular ideal of g. In particular, there is more than one such
ideal. O

In Lemma 4.3 we saw that the exterior derivative has a particular nice form for Lie
algebras admitting a codimension one Abelian ideal. More generally, if a Lie algebra admits

a codimension one unimodular ideal we have
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Lemma 5.5. Let g be an n-dimensional Lie algebra which admits a codimension one

unimodular ideal u C g. Let e, € g\u and e® € u°, ¢"(e,) = 1. Identifying as usual

A*e,,°
(a)
(b)
(c)
(d)

Proof.

In

94Dy

= A*u* via the decomposition g = u @ span(e, ), the following statements are true:
dge™ = 0 and there exists f € gl(u*) such that dgoo = dya + f(o) Ne™ for all o € u*.
dg(w N e™) =dy(w) ANe™ for all w € A*u*.

dg(A"2u*) C A" 2u* A e

dg(A"2u* A e™) = {0}. Moreover, dg(A"'u*) = {0} ezactly when g is unimodular.

(a) For arbitrary X,Y € g, the commutator [X,Y] is in u. Hence dge™(X,Y) =
—e™([X,Y]) =0 and so dge™ = 0. It is clear that there are linear maps f : u* — u*
and ¢ : u* — A%u* such that dy(a) = g(a) + f(a) Ae" for all a € u*. For Z,W € u
we have [Z, W] € u and

9()(Z, W) = (dga)(Z, W) = —a([Z, W]) = (dua)(Z, ).
From our identifications, we get g(a) = dy(a) and so (a).

Part (a) implies that dygw = dyw + f.w A e” for all w € AFu* | where (f,w) — f.w
is the natural action of f € gl(u*) on w € AFu*. Then (a) implies dg(w A €) =

dg(w) N e" = dy(w) A e™ as claimed.

We have dgw = dyw + f.w Ae" for all w € A" 2u*. But u is unimodular, which
is equivalent to the fact that all (n — 2)-forms on u are dy-closed. Hence, dgw =

fwAe® e A" 2u* Ae™ as claimed.

Part (a) and (c) directly imply dg(A"2u* Ae™) = {0}. Since g is unimodular exactly
when all (n — 1)-forms are dg-closed, the first part implies that dg(A"~'u*) = {0}
exactly when g is unimodular.

O

Section 5.3, we relate the existence of cocalibrated Go-structures on direct sums

3 to the existence of subspaces of A?g} in which each non-zero element is symplectic.

The next lemma shows that almost all four-dimensional Lie algebras g4 admit a, possibly

trivial, subspace of A%g} of the mentioned kind whose dimension solely depends on the

Lie algebra Betti numbers of g4 and of a codimension one unimodular ideal u in g4. Note

that Ovando classified in [Ov] the symplectic four-dimensional Lie algebras and also all

symplectic two-forms on them. The assertion of the next lemma is not stated in [Ov| but

may be obtained from the explicit lists there. We do not use at all the results of [Ov] and

instead give a direct proof.
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Lemma 5.6. Let g be a four-dimensional Lie algebra and assume that
(i) g is almost Abelian with codimension one Abelian ideal u or
(ii) g is not unimodular and the unimodular kernel u is not isomorphic to e(1,1).
Then g admits a subspace of A>g* of dimension
D :=h*(g) — h'(g) — h'(u) +4
i which each non-zero element is symplectic.

Proof. Fix a norm ||-|| on g* ©A2g* and identify A*g* = R for the rest of the proof. Choose
an element e; € g\u and let e* € u® be such that e*(e4) = 1. As usual, we identify e, = u*
via the decomposition g = u @ span(e7). By Lemma 5.5, there exists f € gl (u*) such that
dg8 = duB + f(B) Ae? for all B € u*. We fix a complement V' of ker dy/,+ in u* and set

4
u*/\e

Wy = {w+ Ag(w) A 64’ w € ker dg|p2,+ } C ker dg|p2,+ @ ker d,,

for A # 0 with ¢ : A2u* — kerd,
dy(u*). We claim that there is A # 0 such that each non-zero element in U := dg(V') + W)
is symplectic and that the dimension of U is equal to D = h?(g) — h'(g) — h'(u) +4. Note

u+ as in Lemma 5.1 (¢), i.e. g(w)Aw =0if and only if w €

that the closure of all elements in U is clear. We divide the proof into six steps.

Step I: All non-zero elements in dg(V') are symplectic and dgly : V. — dg(V) is an
1somorphism:

If V' = {0}, then there is nothing to show. Otherwise our assumptions imply that g is
not unimodular and so dg(A3u*) # {0} by Lemma 5.5. Let a € V\{0}. By definition of
V, dya # 0 and so Lemma 5.1 (d) tells us that A%u* 3 dya A a # 0. Hence dg(dya Aa) # 0

and so
dga A dgae = dyg(a A dgt) = dg(a A dya + a A fa) Aet) = dg(a A dya) # 0.

So dgov is non-degenerate and, in particular, dgo # 0. This proves Step L.

Step II: f(V) is a complement of ker dy|y+ in u* and dg(V)NWy =
dg(V) N (ker dg|pzy+ @ ker dylys A e*) = {0} for all X # 0:

The inequality 0 # dga A dga = 2dya A f(a) A et for a € V\{0} implies that f|y is
injective and so dim(V') = dim(f(V)). By Lemma 5.1 (b), ker dy|y A dy(u*) = {0}. Thus,
f(V) is a complement of kerdy|y= in u*. Let w € dg(V) N (ker dg|p2, ® ker dyly A ).
Then there are a € V, wy € kerdg|p2,+ and § € ker dy,~ such that

w=dya+ fla)Net =w + B A

This implies f(a) = B € kerd,
B =0. Now fl|y is injective and so we must have o = 0, which ultimately implies w = 0.
This finishes the proof of Step II.

w and so, since f(V) is a complement of ker dy|,~ in u*,
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Step II: dim(dg(V) & Wy) = h%(g) — h'(g) — h'(u) + 4
Note that the dimension of W) is equal to the dimension of ker dg|,2,+ and that the
dimension of ker dg|p24+ is h*(g) + 4 — h'(g). Therefore it suffices to show

ker dg|p24+ = ker dg|p2,+ @ ker dylys A e? @ dy(V)

to get the statement about the dimension of dyq(V') @ W). The inclusion "D" is obvious.
For the other inclusion, let w € ker dg|y24«. Then there exists w1 € A*u* and 8 € u* such
that w = wy + B Ae*. Since f(V) is a complement of kerd,
with 8 — f(«) € ker dy|y=. Then

w+ in u*, there exists a € V

w—(B—fla))Ae* —dga = w1+ BAe* — (B— f(a)) Aet —dya— f(a) Aet = w1 —dya € A*u*

and w — (8 — f(a)) A et — dga is dg-closed. Hence, w € ker dg|p2,« @ ker dy |y« A et @ dg (V).
Step IV: ker dg|p2,« N dy(u*) = {0}:
Let w € kerdg|p2y« N dy(u*). Then w = d,f for some € u* and dgw = 0. We may
assume that g € V. But then

0 = dyw = dy(dyf — F(B) A %) = —dul(F(8)) A .

Since f(V) is a complement of kerd,|,+ in u* and f|y is injective we get 8 = 0 and so
w = 0 as claimed.

Step V: Norm estimates:

Note first that the identity

(dga)? = 2dya A fa) Aet

and the fact that f|y and dy|y are injective imply the existence of a constant A > 0 such
that
2
(dger)?] > Aol (53)

Note further the sign of (dga)? € Atg* = R for a # 0 does not depend on «. Namely,
let F:V — R, F(a) := (dga)®. For dim(V) > 1 the set V\{0} is connected, while
F(V\{0}) is disconnected if the sign depends on « # 0, contradicting the continuity of F'.
If dim(V) = 1 then the statement follows from the fact that F' is homogeneous of degree
two in a.

Next we consider the space W), for arbitrary A # 0. Lemma 5.1 (c¢) tells us that
(WH+Agw)Aeh) =2 wAgw)Aet =0

for w € ker dg|p2,+ implies w € dy(u*). But Step IV tells us that then w = 0. Thus, there
exists C' > 0, independent of A, such that

(@ +Agw) Aeh)?| = O] [lwl? (5:4)
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for all w € ker dg|pz2,+. Note that for fixed A # 0, arguing as above, we see that the sign of
(w+ Ag(w) A et)? € R does not depend on w. But it gets reversed if we reverse the sign of
A. Hence, we may assume that it is chosen such that w? - w3 > 0 for all wy € dg(V)\{0},
wy € Wy\{0}. By Lemma 5.1 (b), the identity dya A g(w) = 0 is true for all & € V and
w € kerdg|pz,. Thus,

2dga A (w + Ag(w) Aet) = 2(dya + fla) Aet) A (w+ Ag(w) Aet) =2f(a) Aet Aw
and there exists a constant B > 0 such that
2dga A (w + Ag(w) Aet)| < Blal flwl- (5.5)

Step VI: All non-zero elements in dg(V') @ Wy are symplectic for appropriate X # 0:

Let 0 # wp = w1 + w2 € dg(V) @ W) with wy = dgae € dg(V) for some a € V and
wy = w+ Ag(w) A et € Wy for some w € ker dg|azy+. By the previous steps, we only
have to consider the case when w; # 0 and wg # 0. Then both a and w are not zero by
the Equations (5.3) and (5.4). The discriminant of the polynomial w? = (w1 + Xws)? =
w3 +2X wy Aws + X?wi is given by

(2w1 Awn)® —def - wf < B? [laf® [lwl® — 4IAAC [|al* [w]* = (B* — 4AAC) |a|* [«

where we used Equations (5.3), (5.4) and (5.5) and the fact that the sign of w? - w3 may
be assumed to be positive. But for sufficiently large |A|, independent of « and w, this is
negative and the quadratic polynomial in X does not have a real root. In particular, X =1

is not a real root and so wg = wy + ws is non-degenerate. This finishes the proof. O

Remark 5.7. o Letg, uand D be as in Lemma 5.6. Then D is, in fact, the mazimal
dimension of a subspace of A’g* in which each non-zero element is symplectic. In
the almost Abelian case, the mazimality can easily be deduced using that d has a
particular nice form by Lemma 4.8. If g is not unimodular, the mazimality can be
deduced from Proposition 5.12 (a) and Theorem 5.18 (a) below.

o Lemma 5.6 applies to all but five Lie algebras:

— The only non-unimodular four-dimensional Lie algebra with unimodular kernel
u isomorphic to e(1,1) is vo @ vo. In the basis given in Table 7.3, the two-
form e'* + €23 is symplectic. One is the mazimal dimension of a subspace of

A? (v @ to)" in which each non-zero element is symplectic, cf. [Ov].

— The unimodular four-dimensional Lie algebras which do not admit a codimension
one Abelian ideal are the two non-solvable ones s0(3)BR and s0(2,1)BR and two
other Lie algebras, namely Ay g and Ay 10. All four do not admit any symplectic

two-form.
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In Lemma 5.5, we gave a description of the exterior derivative of n-dimensional Lie
algebras having a codimension one unimodular ideal u. If n = 4 and u = b3, the next
lemma shows that we can do better. For a proof, we refer the reader to [ABDO].

Lemma 5.8. If g is a four-dimensional Lie algebra g which possesses an ideal u 1somorphic

0 a two-dimensional

to b3, then there exist an element eq € g\u, an element e! € u* = ¢4
subspace Vo C u* with span(e!) @ Vo = u*, a linear map F : Vo — Vo and a non-zero
two-form v € A2Vo\{0} such that de' = tr(F)e'* + v, da = F(a) A et for all a € Va and
de* = 0. Here, e¢* is the element in u® with e*(es) = 1. In this case, tr(F) = 0 if and only

if g is unimodular.

5.3 Existence

In this section, we state different existence results which are used in Section 5.5 to prove our
main theorem. We first prove a general proposition which is true on any seven-manifold.
This proposition is used afterwards to derive different more specific existence results for
cocalibrated Go-structures on Lie algebras.

For this purpose, we generalise the concept of adapted splittings to manifolds.

Definition 5.9. Let M be a seven-dimensional manifold and ¢ € Q3M be a Go-structure
on M. We say that a vector bundle decomposition TM = E4 @ Es is an adapted splitting
(for @) if for all p € M the vector space decomposition T,M = (Ey4), ® (E3), is an adapted
splitting for ¢, € A3T,M* in the sense of Definition 2.52.

Proposition 5.10. Let M be a seven-dimensional manifold. Assume that there exists a

Go-structure @ on M which admits an adapted splitting TM = FE, ® E3 such that the

following is true:
(i) Q1 = (xp)|E, €T (AYE}) 2T (AYE5") C T(AYT*M) is closed.

(ii) There exists a bounded four-form ® € T (ASE3® A E.%) (ie. [®]lc, < o0) with
d® = dds for the four-form Qo := x,p — 0y €T (A2E30 A A2E40),

Then M admits a cocalibrated Go-structure, e.g. each Ga-structure oy € Q3(M) whose
Hodge dual is given by
Uy o= A0+ A%y — A0
(]
for X € R with |\| > % Here, € is the constant in Lemma 2.57

Proof. Let p € M. By Lemma 2.53, (2), € A2(E3)," AA2(Ey),’, ox := A1), +A%(Q2),
is the Hodge-Dual of a Go-structure on T, M for all A # 0 and H)‘B(I)PH,\ = [|®l, = H@pH%
for all A # 0, where |||, is the norm on 7,,M induced by oy. Thus,

12l _ 12]lco

1(22)p — aally = [IX°p [, = AL T A

101



5.3. EXISTENCE 102

for all || > %. Hence, Lemma 2.57 shows that W) is then the Hodge dual of a

Go-structure on M. The assertion follows since W) is closed by construction. O

Remark 5.11. o The condition on the boundedness of ® is trivially fulfilled if ® is
left-invariant or M is compact. Moreover, if the initial Go-structure @, the splitting

E, ® E3 and © are left-invariant, so is the induced cocalibrated Go-structure.

o To prove an analogue of Proposition 5.10 in the left-invariant case for Ga- and also for
G3-structures we do not need at all a metric. We only need that the orbit of all Hodge
duals 1s open in both cases. For the proof, let g be a seven-dimensional Lie algebra
g. The openness of the orbit implies that for any sequence (An)n, An € GL(g),
any Hodge dual ¥ € A*g* and any sequence (®,,),, ®, € A*g* with T}l_)rgo o, =0
there is N € N such that for all n > N the four-form V¥ + &, and so also the
four-form A% (¥ + ®,,) is a Hodge dual of the same type. Let now ¢ € A3g* be a
G§-structure and g = E4 @ E3 be a splitting into a four-dimensional subspace E4 and
a three-dimensional subspace E3 such that ¥ := x,p = Q1 + Qo with Q1 € A4EZ,
Oy € AQEZ A A2E§, dQ)y = 0 and such that there exists ® € A3EZI A E3 with d€y =
d®. Here, we identify, as usual, E} = E3Y and E; = E4Y via the decomposition
g = E, ® E3. Define A, € GL(g) such that it acts by multiplication with n on Ey4
and by the identity map on E3 and set @, := —% € N3E; A E3. Then our previous

considerations show that
* * ¢ 4 2 2
\I’n 2:An(*¢<p+q)n):z4n Ql—i_Qz_E =n Ql+n Qg—n 0]
is, for n large enough, a Hodge dual of the same type as V. Moreover, our assumptions
imply that it is closed and so defines a cocalibrated GS-structure on g.
We apply Proposition 5.10 to the left-invariant case:

Proposition 5.12. Let g = g4 @ g3 be a seven-dimensional Lie algebra which is the Lie
algebra direct sum of a four-dimensional Lie algebra g4 and of a three-dimensional Lie

algebra gs.

(a) If g3 is unimodular and there exists a D := h*(g3)-dimensional subspace W of A%g;;
such that each non-zero element in W is a symplectic two-form, then g admits a

cocalibrated Go-structure.

(b) Let g4 € {As12,v2 ®va}. If g3 admits a contact-form o, then g admits a cocalibrated

Ga-structure.

(¢) If g4 is unimodular, admits a codimension one ideal w isomorphic to b3, gs is not
unimodular and h'(gs) + h'(gs) — h%(g4) > 2, then g admits a cocalibrated Go-

structure.
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Proof. (a) Choose a basis v1,vs,v3 of A%g} such that vpy1 = dapyi,...,vs = das is

a basis of d(g3), @p+1,...,a3 € g;. Note that there are 3 — D exact two-forms on
g3 since the unimodularity of gs is equivalent to the closure of all two-forms on gs.
Furthermore, choose a basis wy,...,wp of W. Then Lemma 2.2 and Proposition 2.55

imply that there exist two-forms wp,1,...,ws € A2g} such that

] 1
V= ;wiAVi+2w%
is the Hodge dual of a Ga-structure with adapted splitting g = g4 ® gs. Since
d(A%g5) = 0, the identity d(32_ w; A vy) = d(— E?:DH dw; N «;) is true and
Zf:DH dw; N o € N3gi A g3. Hence, Proposition 5.10 implies the result.

Let e!, €2, €3, e be a basis of g € {A} 12, (rta®r2)*} asin Table 7.3, i.e. de' = e +4e?23,
de? = e®* —ee!3, de® = 0 = de?*, where e = 1if g4 = Agipand e = —1if gy = ta Do,
Set V; := span(e?) @ g5, V5 := span(e!, e?,e3). Let ag € g3 be a contact form and
set wy := 2e* Aoy —dag € A?V}'. Then wi # 0 and d (3w?) = 0. Hence, if we set
vy = e, vy = e!3, vy := 23, Proposition 2.55 implies the existence of two-forms
wa,ws € A2V} such that
’ 1

V.= ;wi/\w + §w%
is the Hodge dual of a Ge-structure with adapted splitting g = V4 & V3. Decompose
wi = e* Aa; +0; with a; € g3, 0; € A%g} for i = 2,3. Then d(wy Avy) = d(2e* Aag A

e'? — dag A e'?) = 0 and so the differential of the four-form Z§:1 w; A v is given by

3
d <Z w; N\ Vi> =0+ d(€134 A g + e ag) + d(el?’ A By + e A 03)
=1

= d(ee* Nday — ' A das)
+ d(e(e®* A By — €2 A dfy) — e A O3+ e! A dbs)
=d(e' A p1 —ee® A pa).

with p; == —e* A (dOzg + 93) + dfs € ASVZ'(, p2 = —e* A (dOzg + 92) + dbs € Ag‘/;l*.
Since e A p; — €e? A pa is in V3t A A3V}, Proposition 5.10 implies the result.

By Lemma 5.8 we may decompose g} into span(el) @ Vo @ span(e?) for el et € g
and a two-dimensional subspace Va such that 0 # de! € A%V;, da = F(a) Ae? for all
a € Vy, F : Vo — Vy a trace-free linear map, and de* = 0. Moreover, by Lemma 5.2
we may decompose g5 = Wa @span(e’) with e’ € g} and a two-dimensional subspace
Wo such that df = G(B) A€” for all B € Wa, G : Wa — Wy a linear map which is

not trace-free, and de” = 0. By rescaling e’ we may assume that tr(G) = 1.
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We have ker d|pz2q: = A?Vo @ Vo A et @ ker(F) Ael. Thus, the identity
2 —1k(F) + 3 = dim(ker(F)) 4+ 3 = dim(ker d|2,:) = h%(g4) +4 — h'(g4)

is true. Moreover, dim(ker G) = h'(g3) — 1 and so the condition in the statement
is equivalent to dim(ker G) > 2 — rk(F'). Hence, we may choose a basis ay, s of
Va, elements v; € Vo, 1 < i < rk(F), and a basis 1, 32 of Ws such that de! =
a1 A ag, such that oy = F(v;), 1 < i < rk(F), is a basis of F(V2) and such that
span(B;|rk(F)+1 < j < 2) is a subspace of ker G. Set V := span(e!)®Va@®span(e’),
Vi := Wa @ span(e?) and

Vi :=B1 A B2, vai=PiAet, 3= —PaAet

71—d61:e71—a1/\ag, wo ::e7/\0z2—el/\a1,

w1 =€
7 1
wg:=e' Nai+e A as.

Since vy, v, v3 is a basis of A2V5', Proposition 2.55 implies that

3
1
V.= ZWiAVi+ iw%
1=1

is the Hodge dual of a Ge-structure with adapted splitting V4 @ V3. Moreover,
d(wi Avr) = d(e™ AB1LA By —det A By A Ba)
= —€e"ANde' APy A By +tr(G)de ABLABaAeT =0

and so
3 2 rk(F)

d(Zwi/\uZ): ( Ze /\aﬂ\,@ﬂ\e)zZF(’yi)Ae4A61AG(5¢)Ae7
i=1 i=1 i=1

rk(F
Z v A el ANG(B;i) A

But — >, (1 )%/\e AG(Bi)Ne™ is in Vi AA3VY. Since F is trace-free, d(A*V}) = {0}
and again Proposition 5.10 implies the result.
O

Remark 5.13. The following generalisation of Proposition 5.12 (a) follows from Proposi-
tion 5.10 using Lemma 2.2:

Let M = N x G be a seven-dimenstonal manifold such that N is a four-dimensional com-
pact Riemannian manifold with trivial bundle of self-dual two-forms and such that G is a
unimodular three-dimensional Lie group. If N admits D := h%(g) (g being the Lie algebra
of G) self-dual, closed two-forms w; € Q2N such that w; Aw; = 0 and w? = w? fori # 7,
then M admits a cocalibrated Go-structure which is invariant under the left-action of G on

M = N x G given by left-translation on the second factor.
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D =0 is allowed in Proposition 5.12 (a). Since each non-solvable four-dimensional Lie
algebra g is a Lie algebra direct sum g = h @ R with b € {s0(3),50(2,1)}, h?(s50(3)) =
h?(s0(2,1)) = 0 and 50(3),50(2, 1) are the only three-dimensional non-solvable Lie algebras,

we get

Corollary 5.14. Let g = g4 @ g3 be a seven-dimensional Lie algebra which is the Lie
algebra direct sum of a four-dimensional Lie algebra g4 and of a three-dimensional Lie

algebra gs. If g is not solvable, then g admits a cocalibrated Go-structure.

5.4 Obstructions

In this section, we derive obstructions to the existence of cocalibrated Go-structures on Lie
algebras, which we use in subsections 5.5.1 - 5.5.4 to prove Theorem 5.18.

We first need the following technical lemma.
Lemma 5.15. Let V be a siz-dimensional vector space.

(a) Let V = V3@ W3 be a decomposition into two vector spaces of dimension three and let
Q=0 + Q9 € A*V* with Q; € A2V3* A A2W§‘ and Q2 € V' N\ A?’ng be a four-form
of length three. Then the length of 1 is also three.

(b) Let V.= V3 @ Vs be a decomposition into a vector space Vi of dimension four and
a vector space Vo of dimension two. Let p be a three-form with model tensor p_1 €
A3 (R6)* such that p € A2V A Vs @ Vi A A2V, Then, for any basis a1, as of Vs,
the unique two-forms wy, wa € A2V} such that p — 2?21 wi Ao € VANV span a

two-dimensional subspace in A2V} in which each non-zero element is of length two.

Proof. (a) Choose an arbitrary dual isomorphism § : A*V* — A2V. Then §() €
V3 A W3 and 6(Q2) € A2V3. By Lemma 1.43, the length of §(92) is three and Lemma
2.1 implies 0 # ()% = (5(2) + 6(22))% = 5(21)3. Thus, §() and so ; has
length three.

(b) There is 8 € V;* such that p = w; Aag +wa Aaa+ B Aar Aas. We have to show that
l(awy + bwe) = 2 for all (a,b) # (0,0). Without loss of generality, we may assume

a # 0 and then even a = 1. We rewrite p as
p=(wa+ B Aar)A (g —bay) + (w1 + bwa) A ag.

Note that (w;+bwa)Aay € A3(V@span(ay)) and (we+HAar) € A2(V; @span(aq)).
By Proposition 1.45, r(p) = 2. Hence, I((w1 + bwa) A 1) > 2 (consider V* =
(V) @span(aq)) @ span(ag —bay)) and so [(wy + bwe) > 2. Since the maximal length
of a two-form in four dimensions is two, we actually have I(w; + bws) = 2.

O
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We are now ready to prove

Proposition 5.16. Let g = g4 B g3 be a seven-dimensional Lie algebra which is the Lie
algebra direct sum of a four-dimensional Lie algebra g4 and of a three-dimensional unimod-
ular Lie algebra gs such that g4 admits a unique unimodular ideal w of codimension one.

If g admits a cocalibrated Go-structure, then
h'(ga) + ' (u) — h*(ga) + h°(g3) < 4.

Proof. Let ¥ be the Hodge dual of a cocalibrated Go-structure. Fix an element e4 € g\u
and let e* € u® be such that e(eq) = 1. We set
ABTR = Ayt A AT gl A AFspan(e?)

and denote by 87 the projection of § into A»5¥ for all 4, j, k € Ny and all (i + j + k)-forms
6 € A"titEg* . For the proof, we denote by d the exterior differential on g and by d, the

one on u. Lemma 5.5 implies the inclusions
d(Ai’j’O) C ATTLI0 o ABIL g Ai7j+1,07 d(AiJJ) C AL @ ABIHLL
for all ¢, 7 € Ny and the unimodularity of u and g3 imply that for all ¢ € Ny:
d(AQ,i,O) C A2,i,1 @AZH-LO d(A2,i71) C A27i+171
d(Ai,Q,O) C Ai+1’2’0 D Ai,2,1 d(Ai,2,1> C Ai+1’2’1.

We show that there are D := h?(g3) linearly independent closed two-forms wy, ..., wp €
A?g} such that span(wy,...,wp) N AL%L = {0}. Note that dim(ker d|y1,01) = h'(u) since
ker d|p1.01 = ker dyy« A e* by Lemma 5.5. Hence, the existence of such wy,...,wp € A%g}
implies

h?(ga) +4 — h'(gs) = dim(ker d|2q-) > D + h'(w) = h*(g3) + h' (u)
& h'(ga) + At (u) + h*(g3) — h*(ga) < 4

The two-forms wy,...,wp € A?g; will be certain parts of 220 + w121 Therefore, we
decompose ¥ as

U=0+pnre

with Q € A*(u* @ g3), p € A3(u* @ g3).
The first step of the proof is to show that the length of Q%29 is three. For that purpose,
note that the identities

0= (d\Il)371’1 + (d\I/)g’Q’O — d(QS,l,O)’ 0= (d\Il)l’S’l + (dqj)Q,S,O — d(Ql,S,O)

are true. If g4 is not unimodular, then d(A%%?) = A301. Hence, Q%19 = 0 in this case.

If dim([gs, g4]) = 3, then d|p1,00 and so d|p1.30 is injective and Q139 = 0 follows. We
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know from Lemma 5.4 that the uniqueness of the unimodular ideal u implies that g4 is not
unimodular or dim([g4, g4]) = 3. In both cases, Lemma 5.15 and the just obtained results
show that then [(Q%%0) = 3.

Next, we look at the (2,2, 1)-component of d¥. This component is given by

0= (d\I/)Q,Q,l —_ d(QQ’Q’O) + d(pQ,l,O A 64) + d(pl,Q,O A 64)

Hence, d(Q2%20 + pl 20 Aet) = —d(p?10 net) € A3gh Ad(g3) and so d(Q%20 + p120Aet) €
d(A*g;) A d(g;). Let

m. s APgi A A%gy — (APal A A%g3)/ (APl A d(g3)) = Mgl © H?(gs)

be the natural projection for k € N, where the last canonical isomorphism holds since g3 is
unimodular and so all two-forms on gs are closed. Moreover, the identity m3od = (d®id)oms

is true. If we set @ := m (0220 4+ ph20 A et)| we get the identity

(d®1d)(®) = m3(d(Q>*7 + p"*0 A et)) = 0.

Write
D
o = Z w; X v
i=1
for wi,...,wp € A%g} and some basis v, ...,vp of H%(g3). Then wy,...,wp are all closed.
By choosing a complement V of d(g) in A%g}, we may identify v1,...,vp with elements
in V and get

D
0220 — 4 ¢ Zw?,o,o A v
i=1
with ¢ € A%u* A d(g3). Since the length of Q%20 is three and the length of 1 is at
most dim(d(g3)), the length of EZDZI w?’o’o A v; has to be 3 — dim(d(g3)) = D and so
w%’o’o, e 7%23,070 have to be linearly independent. Thus, wi,...,wp are linearly independent

and span(wy, . ..,wp) N A% = {0}. This finishes the proof. O

Proposition 5.16 gives us an obstruction if the three-dimensional part is unimodular,
whereas the next proposition gives us an obstruction if the three-dimensional part is not

unimodular.

Proposition 5.17. (a) Let g = g4 ® g3 be a seven-dimensional Lie algebra which is
the Lie algebra direct sum of an almost Abelian four-dimensional Lie algebra g4 and
of a three-dimensional non-unimodular Lie algebra gs. If g admits o cocalibrated

Go-structure, then g4 is unimodular and gz = to @ R.

(b) Let g = g5®ro be a Lie algebra direct sum of a five-dimensional real almost Abelian Lie
algebra gs which admits a codimension one Abelian ideal u and of the two-dimensional

real Lie algebra vo. If g admits o cocalibrated Go-structure, then gs is unimodular.
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Proof.  (a) Let ug be an Abelian ideal in g4. Choose an element e4 € g4\us and an element

er € g3\Ua, where uy is a codimension one Abelian ideal in g3. Let e* € u3® C a1,
et(es) = 1 and e” € u® C g3, €’(e7) = 1. Let ¥ € A%g* be the Hodge dual of a
cocalibrated Ga-structure, set A .= Afuz A AJuz A AFspan(e*) A Alspan(e”) and
denote by %3 for each s := (i + j 4+ k + [)-form @ € A®g* the projection of 6 onto
ARl By Lemma, 5.5,

d(AZ7J7k7l) C A17]7k+17l _I_ A17J7k7l+1
for all 7,7, k,1 € Ng. Let Q be the part of ¥ in A* (u§ Ddus P span(e4)), ie.
O = P2200 4 3100 | 3010 4 2110 | 1210

By Proposition 2.48, r(Q) = 1. Hence, {(U%200 4 g3.1.0.0) > 1 and so w2200 4
U3:10.0 £ 0. Moreover, the closure of ¥ implies

0 = (dW)2201 = gu2200)220.1 () — (qg)3L10 — g(g31.00)3,1,10

0 = (d0)3101 = g(uHL00)3.L0.1
Since g3 is not unimodular, d(A%u}) = Ag} and so d(¥>290)2201 = ( implies
¥2200 = 0. Thus, U300 £ 0. If g4 is non-unimodular, then d(A3u}) = A%g} and
so d(@3100)3LL0 54 () a contradiction. Hence, gy is unimodular. Similarly, if dly; is
injective, then d(¥190)3.L0.1 £ (0 3 contradiction. Thus, dly; is not injective and

50 g3 = to D R.

The proof of part (b) is completely analogous to (a). Therefore, let ¥ € A*g* be the
Hodge dual of a cocalibrated Ga-structure, let u be an Abelian ideal of dimension
four in gs, e5 € gs\u, € € u® C g& with e’(e5) = 1 and €%, €7 a basis of ¢} such that

de® = €97 and de” = 0. Similarly to (a), we set
ABIRL = Aiy* A Adspan(e®) A Afspan(e®) A Alspan(e”)

and denote for all s := (i + j + k + [)-forms 6 € A®g* the projection of  onto A%
by 653% Then d(A**l) C ABIR+LE L ABIRIFL a5 in (a). Moreover, arguing as in
(a), we get U000 1 g3:.1.0.0 £ Since deb # 0, the identity

0= (d\I/)g’l’O’l — d(m3,1,070)37170’1
is true only if 3100 = 0. Thus, ¥4%00 o£ 0. But then
0= (dq;)470,170 — d(\IJ47070’0)

implies that g5 is unimodular by Lemma 5.5.
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5.5 Main Results

We start this section by presenting the main result of this chapter, namely the classification
of those direct sums g = g4 @ g3 of a four-dimensional real Lie algebra g4 and of a three-
dimensional real Lie algebra gz which admit cocalibrated Ga-structures. The following
four subsections are devoted to the proof of the main theorem using the results obtained
in Section 5.3 and Section 5.4. Each of the four Subsections 5.5.1 - 5.5.4 treats exactly one
of the four cases obtained by distinguishing whether g4 or g3 is unimodular or not.

The mentioned classification reads as follows.

Theorem 5.18. Let g = g4Dgs3 be a seven-dimensional Lie algebra which is the Lie algebra
direct sum of a four-dimensional Lie algebra g4 and of o three-dimensional Lie algebra gs.

Then g admits a cocalibrated Go-structure if and only if one of the following four conditions

18 fulfilled:

(a) g4 is not unimodular, g3 is unimodular and h'(gs) + h'(u) — h%(gs) + h%(g3) < 4,

where u is the unimodular kernel of gy4.

(b) 94 is unimodular, gs is unimodular and at least one of the following conditions is

true:

(Z) g3 € {50(3)750(27 1)}
(i) g4 =H®R for a three-dimensional unimodular Lie algebra b.

(ZZZ) ge {A471 S5 6(2),144,1 D 8(1, 1),A4,8 D 6(1, 1)}

(c) 94 is unimodular, g3 is not unimodular and at least one of the following conditions

15 true:
(i) g4 € {s0(3) ®R,s0(2,1) & R}.
(i3) g4 is almost Abelian, g4 ¢ {R* b3 ® R} and g3 = r2 ® R.

(i) The commutator ideal (g4, 94] of g4 is isomorphic to hs.

(d) g4 is not unimodular, g3 is not unimodular and at least one of the following conditions
18 true:
(i) 94 € {Ag12,v2 Dra}
_1
(i) 9= Ayg o B R

(i1i) The unimodular kernel u of g4 is isomorphic to bs, gz # t2 @ R and
g¢ {A}w B3, A g D31 ‘,u € {—%,0), a € <—1’ _%} }
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5.5.1 g4 not unimodular, g3 unimodular

In this subsection we prove Theorem 5.18 (a). In the following, g = g4 @ g3 always denotes
a seven-dimensional Lie algebra which is the Lie algebra direct sum of a four-dimensional
non-unimodular Lie algebra g4 and of a three-dimensional unimodular Lie algebra gs.
Furthermore, u denotes the unimodular ideal of g4.

Proposition 5.16 shows that if h'(g4) + h'(u) + h?(g3) — h%(g4) > 4, then g does not
admit a cocalibrated Ga-structure, giving us one direction of Theorem 5.18 (a).

For the other direction, Lemma 5.6 and Proposition 5.12 (a) tell us that if h'(gs) +
h(u) +h?(g3) —h?(gs) < 4 and u # e(1, 1), then g does admit a cocalibrated Go-structure.
By the Tables 7.2 and 7.3 or by Remark 5.7, the only four-dimensional non-unimodular
Lie algebra g4 with unimodular ideal u = e(1,1) is g4 = va @ va. For g4 = vy @ v, Lemma
5.3 and Proposition 5.12 (b) imply that g4 @ g3 = t2 @ to @ g3 does admit a cocalibrated
Go-structure if g3 # R3, i.e. if h2%(g3) < 2. But hl(ta @ o) + hl(e(1,1)) — h2(v2 D t2) =
2. Hence, also in this case, g4 @ g3 admits a cocalibrated Ga-structure if and only if
hY(g4) + A (u) + h%(g3) — h?(g4) < 4. This proves Theorem 5.18 (a).

5.5.2 g, unimodular, g3 unimodular

Here, we prove Theorem 5.18 (b) and denote by g = g4® g3 always a seven-dimensional Lie
algebra which is the Lie algebra direct sum of a four-dimensional unimodular Lie algebra
g4 and of a three-dimensional unimodular Lie algebra gs.

We begin with the case that g4 is indecomposable. If [g4, g4] = R3, then Lemma 5.6,
Proposition 5.12 (a) and Proposition 5.16 tell us that g admits a cocalibrated Ge-structure
if and only if

h'(ga) +3 — h*(ga) + h*(g3) = h'(ga) + ' (R®) — h*(ga) + h*(g3) < 4.

Table 7.3 tells us that always h'(gs) — h?(g4) = 1 in the considered cases. Hence, g
admits for these cases a cocalibrated Gao-structure exactly when h?(g3) = 0, i.e. when
g3 € {s50(3),50(2,1)}.

Next, we assume that g4 is indecomposable but [gy, g4] # R3. By inspection of Table
7.3, 94 € {Ag1,Ag8, As 10}

Let us begin with g4 € {A4g, A410}. Then, in both cases, h'(gs) + h'(u) — h?(g4) = 3,
where u is the unique unimodular ideal in g4 which is isomorphic to h3. Thus, Proposition
5.16 yields that g does not admit a cocalibrated Ga-structure if h?(g3) > 2. Conversely,
Corollary 5.14 tells us that if h%(g3) = 0, i.e. g3 is not solvable, then g does admit
a cocalibrated Go-structure. So we are left with the case that h?(g3) = 1, i.e. g3 €
{e(2),e(1,1)}. For g = Ayg @ e(1,1), a cocalibrated Go-structure is given in Table 7.13.

All other cases do not admit a cocalibrated Go-structure:
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Lemma 5.19. Let g € {A48 ® e(2), As10 D e(2), A0 D e(1,1)}. Then g does not admit

a cocalibrated Go-structure.

Proof. Let e!,e? e3,e? be the basis of g}, g4 € {A4s, As10} as in Table 7.3. Then there
exists a linear, trace-free, invertible map F' : span(e?,e3) — span(e?,e?) such that de! =
e®, da = F(a) Aet, de* = 0 for all a € span(e?,e3). For g4 = Ayg we have F(e?) = €2,
F(e?) = —e3 whereas for g4 = Ay10 we have F(e?) = € and F(e3) = —e?. In particular,
det(F) = —1if g4 = Ay g and det(F) = 1 if g4 = A4 10.

Let €®,e5 e” be a basis of g3, g3 € {e(2),e(1,1)} as in Table 7.1. Then there exists a
linear, trace-free, invertible map G : span(e®, e%) — span(e®, %) such that d3 = G(3) Ae”
de” = 0 for all 3 € span(e®, e%). In both cases we have G(e?) = €, whereas G(ef) = €° if
g3 = e(1,1) and G(e%) = —€® if g3 = e(2). In particular, det(G) = —1 if g3 = e(1,1) and
det(G) = 1if g3 = e(2).

Let us now assume that ¥ € A%g* is a (closed) Hodge dual of a cocalibrated Go-

structure ¢ € A3g*. We decompose ¥ uniquely into
V=pAre+Q
with p € A3(span(e?, e, et) @ g3), Q € A*(span(e?, e, e*) @ g3). Then
0=d¥U =dpAel —pne®+dQ,

dQ € A3span(e?,e3, e, e%) A e (note that de?*>® = 0) and dp € A*(span(e?, e3,e?) @ g3)
imply dp = 0 and pr,,,(ess6 ¢s67) (p) = 0. Moreover, ker ' = {0} = ker G and dp = 0 imply

prA3span(e2,e3,e5,eﬁ)(p) =0.
Thus, p = (w1 +ae?) Aet + (wa +be?) Ae” + B A el for certain wy,ws € span(e?, e®) A

span(e’, e®), a,b € R and 3 € span(e?, €3, e®, €%). Now Proposition 2.48 tells us that p has

model tensor p_; € A3 (]RG) and so Lemma 5.15 (b) yields that w; + ae?® and wo + be?3

span a two-dimensional subspace in A%span(e?,e?, €%, e%) in which each non-zero element

has length two. This is equivalent to the requirement that w; and ws span such a two-

dimensional subspace of A%span(e?, e3, e, e®) and Lemma 2.2 shows that this is equivalent

to w? # 0 and C — B% > 0 for the numbers B, C' € R defined by wy Aws = Bw3, w3 = Cw?.

2 e3) and as, oy of span(e’, %) such

By Lemma 2.1, there exists a basis aq, ay of span(e
that w; = a1 A ayg + ag A ag. Since d(wy A e +wy Ae”) = dp = 0, we must have wy =
F_l(al)/\G(oz4)+F_1(a2)/\G(a3). Thus, C= ji:gGg Ifg € {A48@6( )7A4,10@6(15 1)}7

then C' < 0 leading to C — B% < 0. Thus, for these cases, there cannot exist a cocalibrated

Go-structure.
For the missing case g = A4 10 ® e(2), let wy := 1625 + 960 + ¢3e35 + 430 be a
5

general two-form in span(e?,e3) A span(e’, e%) of length two, i.e. with cieq — cacs # 0.
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2 2 2 2
— .25 26 35 _ . .36 _ _citeteytey _
Then wy = —cge” + c3e”® + coe c1e’®, B = S(cror—cacs) C =1 and so

4(creq — cacg)? — (3 + 3+ 3+ c3)?

C-B*=
4(6164 — 0203)2
_ ((c1 — 64)2 + (c2 + 63)2)((61 + 64)2 + (co — 63)2) <0
4(c1eq — coc3)? '
Thus, A410 @ e(2) does not admit a cocalibrated Go-structure. O

Next we consider direct sums with Ay ;. The Lie algebra A4 is almost Abelian and
admits a symplectic two-form, e.g. w = e + €23 in the basis e, e?, €3, e* given in Table
7.3. Hence, Proposition 5.12 (a) shows that A4 @ g3 admits a cocalibrated Gg-structure
if h?(g3) < 1, i.e. if g3 & {R3,b3}. The Lie algebra g = Ay; & R3 is almost Abelian and
by Theorem 4.15 there does not exist a cocalibrated Go-structure on g. Also g = A41 ® b3

does not admit a cocalibrated Go-structure.
Lemma 5.20. Let g = Ay 1 @ b3. Then g does not admit a cocalibrated Go-structure.

Proof. Choose a basis e!,e?,e3, e, e, €%, e of Ay1 © b3 as in Table 7.3 and Table 7.1, i.e.
det = e**, de? = e, de? =0, de* =0, de® = €% deb =0, de” = 0,

Assume that there exists a cocalibrated Go-structure and let

U= Z a;jrie?"
1<i<j<k<I<T7
be its (closed) Hodge dual. Then a short computation shows that ais67 = a2s67 = a1256 =

a1356 — A1257 — Q1357 — A1235 — 0. If we decompose v uniquely into
U=0Q+e Av+etrw,

with Q € Aspan(e?, €3, e, €% €%, e7), v € A3span(e?, e?,e5,¢e5,e7) and
w € A%span(e?, e?, e, eb, e7), then v actually is in A3span(e?,e?,e5, e7) and so of length at
most one. If we consider the decomposition (span(e?, e, e, e, e”) @span(e*)) @span(e!) =

g%, Proposition 2.48 implies that the length of v has to be at least two, a contradiction. [

So we are left with the case that g4 is decomposable. Then g4 is the Lie algebra
direct sum of a three-dimensional unimodular Lie algebra h and R and g always admits a

cocalibrated Go-structure.

Proposition 5.21. Let g = g4 & g3 be a Lie algebra direct sum of a four-dimensional
unimodular Lie algebra g4 and of a three-dimensional unimodular Lie algebra g3. Moreover,
let g4 = H DR be a Lie algebra direct sum of a three-dimensional unimodular Lie algebra b

and R. Then g admits a cocalibrated Go-structure.

112



5.5. MAIN RESULTS 113

Proof. We may assume that h%(h) > h%(gs). Moreover, we may assume that g4 = h ® R
does admit an Abelian ideal u of codimension 1 since otherwise h € {s0(3),50(2,1)} and
Corollary 5.14 gives us the affirmative answer. By Kiinneth’s formula, h'(h@R) = hl(h)+1
and h2(h @ R) = h%(h) + h'(h). Thus

hH(h & R) + h' () + h*(g3) — h*(h & R) = h'(h) + 1+ 3 + h*(g3) — h*(h) — h'(b)
= h2(gs) — h3(h) +4 < 4,

and Proposition 5.12 (a) implies the statement. O

5.5.3 g4 unimodular, g3 not unimodular

In this subsection, we prove Theorem 5.18 (c). In the following, g = g4 ® g3 always denotes
a seven-dimensional Lie algebra which is the Lie algebra direct sum of a four-dimensional
unimodular Lie algebra g4 and of a three-dimensional non-unimodular Lie algebra gs.

We start with the case that g4 is almost Abelian. Then Proposition 5.17 (a) implies
that if g3 # vo & R, then g does not admit a cocalibrated Ga-structure. So, in this case, it
remains to consider sums of the form g4 @ to @ R. This is done in Theorem 5.23 which tells
us more generally when a direct sum of the form g = h & vty where b is a five-dimensional
almost Abelian Lie algebra possesses a cocalibrated Go-structure. For the proof of this

theorem, we need the following

Lemma 5.22. Let g = g5@ o be a Lie algebra direct sum of a five-dimensional unimodular
almost Abelian Lie algebra g5 and tvo. Let a be an Abelian ideal of dimension four in
g5. Choose e5 € gs\a and let e®> € a° C g be such that €>(e5) = 1. Then g admits
a cocalibrated Go-structure if and only if there exist two linearly independent two-forms
wi, wy € A%a* = A2es50 such that each non-zero linear combination is of length two and

such that dwi = way A €.

Proof. Let €5, €7 be a basis of v} such that de® = €57, de” = 0. Assume first that g admits
a cocalibrated Gao-structure ¢ € A3g* with (closed) Hodge dual ¥ € A*g*. Decompose ¥
uniquely into

V=0Q+pnel

with Q € A*(g @ span(e”)), p € A3(gi @ span(e”)). Since d2 € A3(gi @ span(e”)) and
d(p A e®) € A (gt @ span(e”)) A €®, the identities dQ2 = 0 = d(p A €5) are true.

Set Abk := Ala* A AJspan(e®) A Afspan(e”). For an s := (i + j + k)-form 6 € A*(g @
span(e”)) let #7F be the projection of # onto A»"*. Lemma 5.5 implies d(AV%F) C ABLF
and d(A»*) = 0 for all 4,k € Ny.

The closure of p A €% implies 0 = d(p A eb) =dpAne® —pAeSTandso 0 =dp+pAel.
Then the identities

0= (dp+pne)P0l = 300 AT = (dp+p A 67)2,1,1 _ d(pQ’O’l) 420 T
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are true. Thus, p>0% = 0 and d(p>%') = —p?10 A €7, This shows that
p:wl/\e7—w2/\e5+a/\657
for wy, wo € A290 o € AM00 and that
wy A e = —p>1OA e’ = d(pz’o’l) = d(w1 A 67) =dwi ANeT & dwi =wy A€,

By Proposition 2.48, p has model tensor p_1 € A3 (RG)* and Lemma 5.15 (b) yields that
V := span(wi, w2) is two-dimensional and each non-zero element in V' has length two.
Conversely, let wi, wo € A%a* be such that dw; = wy A €® and such that wy, wy are
linearly independent and each non-zero linear combination of them is of length two. Set
Vi = a*, V3 :=span(ed) @ v}, v1 := €% € A%V, vy 1= €50 € A%V3, 13 := €77 € A%V3. By

Lemima 2.2 and Proposition 2.55, there exists a two-form ws € A%a* such that

3
1
U= Zwi ANv; + iw%
i=1
is the Hodge dual of a Gy-structure. By Lemma 5.5, d(A*a*) = 0 and d(A*a* Ae®) = 0 for
all k € Ny. Using these properties of d, a short computation shows that ¥ is closed. O

Lemma 5.22 allows us to prove

Theorem 5.23. Let g = h @ vo be a Lie algebra direct sum of a five-dimensional almost

Abelian Lie algebra by and of vo. Then g admits a cocalibrated Go-structure if and only if b
_1_1_1

is unimodular and b ¢ {R5,f)3 & R?, 57 00 }

Proof. By Proposition 5.17 (b), b has to be unimodular if g admits a cocalibrated Go-
structure. So, for the rest we assume that b is unimodular and let e5 € bh\a, ® € a° C b*,
e’(es) = 1. By Lemma 5.5, there exists a linear trace-free map H : a* — a* such that
da = H(a)Ae’, de® = 0 for all a € a*. Let €5, €7 be a basis of t5 with de® = 57, de” = 0.
Then Lemma 5.22 tells us that g admits a cocalibrated Ga-structure if and only if there
are two linearly independent two-forms wy, we € A2a* such that dw; = wy A € and such
that each non-zero linear combination is of length two.

We first prove that such a pair of two-forms always exists if there is a vector decom-
position a* = V5 @ W5 into two two-dimensional H-invariant subspaces such that the
restrictions of H to V5 and to Wy are both not a multiple of the identity. In this case,
we may choose for each \ # 0 a basis e!, e? of V5 and a basis €3, e* of Wy such that the

restrictions of H to V5 and Wy with respect to the corresponding bases are given by
0 —2otUhs) tr(Hlw,) —A
and | qet(H|w,) )
A tr(Hly) — = 0
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respectively. Set wy := e'*4€23. Then w; is of length two and dw, :()\(613 —et) +w3)/\e5
with w3 1= de?® € A%a*. Set wy := A(e'® — €2*) + w3 and observe that dw; = wy A €5 and

1
w1 Awg = e51 (w1 Adwy) = e5. <d <2W%>> =0

since g5 is unimodular. Furthermore, observe that C'()\), defined by
ws = M2 Loon(e!d — ) Aws +wi = C(\)wi,

fulfils C(\) = A2 + O(\) as A — oo. Thus, for || sufficiently large, C(A\) > 0 and Lemma
2.2 tells us that wi,ws span a two-dimensional subspace in which each non-zero element
is of length two. So all considered Lie algebras which admit such a splitting do admit a
cocalibrated Go-structure.

Next, we assume that a* does not admit a splitting as above and look at the possible
real Jordan normal forms of H. Therefore, we remind the reader that by our convention,

Jm(a) denotes a Jordan block of size m with a € R on the diagonal, where the 1s are on

c
the superdiagonal, and M . denotes the real two-by-two matrix ( b). We get, after

—c
rescaling e®, that there is a basis e!, e?, €3, e* of a* such that H acts with respect to this

basis as one of the following matrices:

J3(a) A Moy Io . .
, ' , diag(Mp1,—b,—b), diag(Jz2(c), —c,—c),
( i 3a> ( I~ (My1,—b, ~b), ding(a(c), ~c, )

dlag fa_iv_ia_i y @, G f7A6{071}7b€R+~
37 3 3
In the first case, wy := e!24-e34 —5e23 and wy := —e?* +2a(—e'? +e3) 4+ 10ae?® + 5e'3 fulfil

12 14 23

all desired conditions. In the second case, we may choose wy := e'? —e3* and wy := e —e

and in the third case, wy = e'3 — €2* and wy := e'? 4 €23 do the job. In the fourth case,
we start with ¢ = 1. Then w; := e!? — 24 — % (612 — 634), wy = el? 4+ 3% 4+ el fulfil
all desired conditions. If ¢ = 0, then h = h3 ® R? and we already know by Proposition
5.16 that g = t9 ® R? @ b3 does not admit a cocalibrated Go-structure. However, this also

follows easily from the fact that in this case d(A%a*) = span(e!3?, ¢149)

. In the last case, let
w1 € A%a* be of length two. Then there exist o € span(e?, e, e*) and w € A%span(e?, €3, e*)
such that w; = w+ aAel. But then dw; = %f (w —a A el) Ned e wy = %f (w -« /\el)

and so %fwl 4+ wy = %fw is of length one. Thus, g does not admit a cocalibrated Ga-
1

111
structure in this case, i.e. if h € {RE‘,A&?’ 373 } O
The only unimodular four-dimensional Lie algebras which are not almost Abelian
are the two non-solvable ones s0(3) @ R, s0(2,1) & R and the two whose commutator
ideal u is isomorphic to b3, namely Asg, A410. Direct sums with the non-solvable four-

dimensional Lie algebras admit cocalibrated Go-structures by Corollary 5.14. Direct sums
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with Ayg, Ag10 admit cocalibrated Go-structures by Proposition 5.12 (c) if hl(gs) > 1
(note that h'(gs) — h?(g4) = 1 for g4 € {Ass, As10} by Table 7.3) and by Corollary 5.14
if hl(gs) =0, i.e. g3 € {s0(3),50(2,1)}. This finishes the proof of Theorem 5.18 (c).

5.5.4 g, not unimodular, g; not unimodular

In this subsection, we prove Theorem 5.18 (d). In the following, g = g4® g3 always denotes
a seven-dimensional Lie algebra which is the Lie algebra direct sum of a four-dimensional
non-unimodular Lie algebra g4 and of a three-dimensional non-unimodular Lie algebra gs.
Furthermore, u should always denote the unimodular kernel of g4

By Proposition 5.17 (a), g does not admit a cocalibrated Ga-structure if g4 is almost
Abelian, i.e. if uis Abelian. If u € {e(2),e(1,1)}, then g4 € {A4 12, 2@ 12} and Proposition
5.12 (b) and Lemma 5.3 imply that g admits a cocalibrated Ga-structure unless gz = v3 .
But for g = A412 ®t31 and g = v @ va @ 31 cocalibrated Go-structures can be found in
Table 7.13.

Therefore, it remains to consider the case when the unimodular ideal u is isomorphic to
h3. Then Lemma 5.8 tells us that we may decompose g; = span(e!) @ V; @ span(e?) with
el et # 0 and dim(V3) = 2 such that de! = tr(F)e!* +v for 0 # v € A2V4, such that for all
a € Vj the identity da = F(a) Ae? for some linear map F : Vo — Vo with tr(F) # 0 is true
and such that de? = 0. Moreover, by Lemma 5.2, we may decompose g5 =Wa @ span(e”)
with 0 # e” and W5 two-dimensional such that for all 3 € W5 the identity d3 = G(3) A€’
for some linear map G : Wo — Wy with tr(G) # 0 is true and such that de” = 0.

Proposition 5.24. Let g, g4, g3, u, €', e* € gi\{0}, €7 € g5\ {0}, Vo C g, Wa C g} and
v € A%V; as above. Then g admits a cocalibrated Go-structure if and only if there are two
linearly independent two-forms wy,ws € Vo AWa, a non-zero two-form v € A2W,y and some
A € R such that the following conditions are fulfilled:

(’i} d(w1 Ael + way N\ 641) =0.

(i) The two-forms w1 := U + wy, Wy := ggg;ﬁ + AV 4+ wa are linearly independent and

each non-zero linear combination is of length two.

Proof. "=":
We set
ABTRL = ATVy A AV A AFspan(e?) A Alspan(e”)

and denote, for an s := (i + j + k + )-form ® € A%(Va @ span(e?) @ g}), by 4K ! the

projection of ® into A»*!. Then we have

d(Ai,j,0,0) C Ai,j,l,O_‘_Ai,j,O,l’ d(Ai,j,l,O) C Ai,j,l,l’ d(Ai’j’O’l) C Ai,j,l,l’ d(Ai’j’l’l) — {0}
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for all i, j € Ng. Moreover, d(j1) = —tr(F)aAet for all i € A2000 and d(ji) = —tr(G)jane”

for all i € A%200,

Let ¥ € A*(gs @ g3)* be the Hodge dual of a cocalibrated Ga-structure. Decompose ¥
into

UV=0+e Ap

with Q € A*(V, @ span(e?) @ g3), p € A3(Va @ span(e?) @ g3). Then

0=d¥ =dQ+ (tr(F)e +v)Ap—e Adp=e' A (tr(F)e* Ap—dp) +dQ+v A p (5.6)
implies ® := tr(F)e* A p —dp = 0. We look at different components of ®. We have the
identities

0= @210 — (r(F)et g p2 100 _ g(p2 L0020 _ ()t g p2L00 _ gr() p2100 5 o,

= 2tr(F)e* A p»100
0= L2001 — _g(pl 2001200 _ () L300 p o7,
0= 2011 — tr(F)ed & p2001 _ g(p2001) = opr(F)et A p200L,

which imply p?100 = p1.20.0 — 4200, — o Moreover,

0= (1)0,2,1,1 — tr(F)e4 A p0,2,0,1 _ d(pO,Q,l,O) — tI‘(F)64 A p0,2,0,1 4 tI‘(G)€7 A p0,2,1,07

ie. :réFge A P20l = T A pO210  Thus, p decomposes as
tr(F)
7 ~ 4 ~ 47
=e A A A A
p=e" Nw +7)+e (2 tr(G)V+ 1/>+e a

with wy, wo € ALLOO § e A0200 N\ ¢ R o € ALO00 g AOLO0 - Proposition 2.49 and
tr(F)

Lemma 5.15 (b) imply that @; := w1 +7 and @y := wa+ we(G) Y +Av span a two-dimensional

subspace in which each non-zero element is of length two. Moreover,
0= SLLLL = gr(F)et A phlOL — g(pbhl0y — g(pllol)

which shows that
d(el A (pl,l,l,(] +p1,1,0,1)) :(V+tr(F)614) A (pl,l,l,O _|_p1,1,0,1) _ 61 A d(pl,l,l,O +p1,1,0,1)

—tr(F)eld A pbl0l — el A d(pbllo) — el p g(plh0l)
—el A pLLLL —

Since pbb10 = e A wy and phl Ol = €T A wy, we get d(wy A e + wa Aet) = 0.

What is left to show is that  # 0. Therefore, let Q be the projection of ¥ onto the
subspace A*(span(e!) @ Vo @ W3) (along 23:1 Ai(span(el) @ Vo @ Wa) A A2 ~ispan(e?, e7)).
By Proposition 2.48, 1(Q) > 1, i.e. Q # 0. We may write Q in terms of the components of

p and € as
Q= el A p2L00 4 gl p pli200 | 92,200 _ 2,200
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and get Q%200 =£ 0. Equation (5.6) gives us
0= (dQ+ v A p)>20L = g (2200)>20L L) A 0201 — _ir(G)02200 p €T 4y p p0201

and so e” A = pP201 £ ie. U #0.

H<:H:
Assume that there exist two-forms wy, wo € Vo A Wy, 0 # 0 € A>W, and A € R fulfilling
all the conditions. Then @y as in the statement fulfils 0 # (Z)% € A?Va A A>W,. Hence,

there exists 0 # A € R such that %EJ% = —ﬁy A D. Set now 0 := %671, 0y = %641,
05 = ™ ¢ AQSpan(el,e4,e7). By assumption, @w;, @y as in the statement span a two-

dimensional space in which each non-zero element has length two. Thus, we may apply
Lemma 2.2 and Proposition 2.55 to V= Vo & Wa, V5 = span(el,e?, e”) and get the

existence of a two-form @3 € A2V} such that

3
1
i=1

is the Hodge dual of a Gao-structure. Using dv = —tr(F)v A e?, di = —tr(G)0 A €7, we

compute
1 1
dV = =d (@ ANet + @ ne') +d(sne™) — ————d(v AD
5@ 2Ae) +d (@ ne) /\~tr(G)( )
1 1 1 (tr(F)
= ~d(wy Ae™t Ae' )+ Zd (D ne™) + =d oA et A A et
5 (wiAe™ +wane )—i—)\ (v ne )—i—)\ tr(G)V e +AvAe
tr( F 1
—|—~14#1//\19/\64—1—71//\19/\67
A-tr(G) A
:O—trgF)ﬁ/\enA‘—iA/\e7/\y—@ﬁ/\e74l—ﬂﬁ/\e4/\u
A A A A-tr(G)
) onet s Loanae
tr(G) A
=0.

O

Remark 5.25. The two-form wy € Vo AWy in Proposition 5.24 has to be of length two since

2 e3 of Vo and a basis €®, €8

w1 = w14V is of length two. By Lemma 2.2, there exists a basis e
of Wy such that w1 = e?6 + ¢35, If det(G) # 0, then the condition d(wy Ae™ 4wy Aet!) =0

implies that wy = (F + tr(F)id)(e?) A G71(e8) + (F + tr(F)id)(e3) A G7L(eP).
Let us, nevertheless, start with det(G) = 0.

Lemma 5.26. Let g, g4, 93, ¢',e* € g5, e € g5, Vo, F: Vo = Vo, Wo and G : Wy — W

as in Proposition 5.24. Assume further that det(G) = 0, i.e. g3 =2 ®R. Then g admits
_1

a cocalibrated Go-structure if and only if det(F + tr(F)id) =0, i.e. g4 = A, 4.
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Proof. "=:"

Assume that g admits a cocalibrated Ge-structure. By Proposition 5.24 and Remark 5.25,
there exists a basis e?, e of V4 and a basis €°,e® of Wy such that w; = €26 4+ €35 fulfils
d(wi Ae™) € d(Vo AWa Aetl) = Vo AG(Wa) Ae™L. Each element in Vo A G(W2) Ae™! is
of length at most one due to det(G) = 0. But

d(wy A e™) = ((F + tr(F)id)(e?) A e + (F + tr(F)id)(e3) A e®) A e™

is of length less than two if and only if det(F + tr(F')id) = 0. Thus, det(F + tr(F')id) = 0.
"

We have det(F+tr(F)id) = 0 = det(G) and tr(F+tr(F)id) = 3tr(F) # 0,tr(G) # 0. Since
both F'+tr(F)id and G are linear endomorphisms in two dimensions, this implies that they
diagonalisable over the reals with one zero eigenvalue and one non-zero eigenvalue. We
may, after rescaling e* and e, assume that the non-zero eigenvalue is equal to one in both
cases and so tr(F) = 3 and tr(G) = 1. Since d(e! Aa) = —e' A (F +tr(F)id) () Ae? for all
a € Vs, there exists a basis €2, €3 of V5 such that de'? = 0 and de'® = —e!3%. Moreover, we
may choose a basis €%, €% of Wy with de® = 0 and de® = €®7. Then the following two-forms
fulfil all the conditions in Proposition 5.24:

1
2056

wy = e — 36 ¢ 626, Wy 1= e — 30 — 2635, = 6 + w1, Wy := 3

+ ws.

If det(G) # 0 and F and G are both not multiples of the identity, we get:

Lemma 5.27. Let g, g4, g3, e et € g5, e" € g5, Vo, F: Vo — Vo, Wa and G : Wa — Wh
as in Proposition 5.24. Assume further that F' and G are both not multiples of the identity,

.. g4 F A411,9 and g3 # v31. Then g admits a cocalibrated Go-structure.

Proof. Set H := —(F + tr(F)id). Then also H : Vo — V5 is not a multiple of the identity,
not trace-free and d(e! Aa) = e! A H(a) A e for all a € V. By rescaling e* appropriately,
2

we may assume that tr(H) = —3, i.e. tr(F) = 1. Hence, we may choose a basis €2, 3 of

V5 such that the transformation matrix of H with respect to this basis is given by

0 det(H)
det(G) )
_det(G) -3

Moreover, by rescaling e’ appropriately, we may assume that tr(G) = 1. Hence, for all
5

, e of Wy such that the transformation matrix of G

0 — det(G)
(a 1 > '
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a € R\{0}, we may choose a basis e

with respect to this basis is given by
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Set

56

det(H 3+a - -
w1 = 625+636, wo 1= —Le%—l— 635—a 636, w1 = 656+w1, wo =€

23
det(G)a a aerrwn

A short computation shows d(wy A e™ + wy A et) = 0. Moreover, &? = 2e2°36 #£ 0 and

01 N @y = Ba?, @} = Co} with B = — 52980 and € = a + e} Hence,
H H)?
Coptogq ) detltH)”

det(G)  4a?det(G)?
for a > 0 large enough and so @1, w9 span a two-dimensional space in which each non-zero

element has length two by Lemma 2.2. Thus, g admits a cocalibrated Ga-structure by
Proposition 5.24 O

Therefore, it remains to consider the cases when at least one of the maps F' and G is

(a multiple of) the identity:

Lemma 5.28. Let g, g4, g3, el et € g, e" € g3, Vo, F: Vo — Vo, Wa and G : Wa — Wa

as in Proposition 5.24.

(a) If F is a multiple of the identity, i.e. g4 = A}179’ then g admits a cocalibrated Go-
structure if and only if —3tr(G)? > det(G) or det(G) > 0.

(b) If G is a multiple of the identity, i.e. g3 = t31, then g admits a cocalibrated G-
structure if and only if det(F') > —%tr(F)Q.

Remark 5.29. Note that a real two-by-two matriz with negative determinant is always
diagonalisable over the reals. The determinant of G is negative if the condition in Lemma
5.28 (a) is not fulfilled and the determinant of F is negative if the condition in Lemma
5.28 (b) is not fulfilled. Hence, it is easily checked that the condition on g3 in Lemma 5.28
(a) is not fulfilled exactly when g3 € {tg}u ‘,u € [—%,0)} and that the condition on g4 in
Lemma 5.28 (b) is not fulfilled exactly when g4 € {A4a79 ‘a € (—1, —%] } Hence, proving
Lemma 5.28 finishes the proof of Theorem 5.18.

Proof. (a) By rescaling e* we may assume that tr(F) = 2, i.e. F' = id. Hence, Proposi-
tion 5.24 and Remark 5.25 tell us that g admits a cocalibrated Ga-structure if and
only if there exists a basis €2, €3 of V5, a basis €°, €5 of Wa, A\, a € R, a # 0 such that

each non-zero linear combination of

D1 ) i= ae? 420 4 e, D2 i= e’ e 432 NG (e5) +3e2 NG (eY)

tr(QG)

is of length two. A short computation shows

~ 2356  ~ ~
Wi g\ = 2€ y Whaa AWaax = (a)\ +

A 1
-2 (4@ 18 2356
“2.00 (u((;)Jr der(@) ) €

120
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since for an invertible two-by-two matrix tr (G_l) = %(GG)). Set X := a\. Then

Lemma 2.2 tells us that each non-zero linear combination of @y o x and @y 4 ) is of

length two if and only if the quadratic polynomial

X 1 _<X+3tr(G)>2

5wt 0 ae@ det(Q)

_ 8 tr(G) 1 tr(G)?
=-X"+ <tr(G) - 6det(G)) X360~ Yaenic)?

in X with leading negative coefficient is positive for some X € R. Note that this
expression does not depend on the basis we have chosen. Hence, g admits a cocal-
ibrated Go-structure if and only if this quadratic polynomial is positive for some

X € R and this is true if and only if its discriminant is positive. The discriminant is

given by
tr(G) 1 \? tr(G)? 1 16(3tr(G)? + 4 det(@))
<6det(G) B 8tr(G)> -4 (gdet(G)2 B 36det(G)> T det(@m(G)E

and it is positive if and only if

—Ztr(G)Q > det(G) or  det(G) > 0.

By rescaling e” we may assume tr(G) = 2, i.e. G =id. Then we see similarly as in
the proof of part (a) that g admits a cocalibrated Ge-structure if and only if there
exists a basis €2, €3 of V4, a basis €7, €6 of Wy, A\, a € R, a # 0 such that each non-zero

linear combination of

Wi\ = e 4 20 4 3%
- tr(F)

Do\ = Toze56 + Xe® 4 (F + tr(F)id)(e?) A €¥ + (F + tr(F)id)(e) A €

is of length two. If we set X := a\ as before, we find, analogously to the proof
of (a), that the existence of a cocalibrated Go-structure on g is equivalent to the
existence of X € R such that —X? — 4tr(F)X — tr(F)? + 4det(F) is positive. Note
therefore that for a two-by-two matrix A € R?*? we generally have det(A+tr(A)l) =
det(A)+2tr(A)2. Now — X2 —4tr(F)X —tr(F)%?+4det(F) is positive for some X € R
exactly when the discriminant of this quadratic polynomial in X, which is given by
12tr(F)? + 16 det(F), is positive. And this is the case if and only if

det(F) > —%tr(F)Q.
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Chapter 6
Half-flat structures on Lie algebras

In this chapter, we present the classification results for half-flat SU(3)-structures on certain
classes of Lie algebras the author obtained together with Fabian Schulte-Hengesbach in
the two papers [FS1| and [FS2]|. Moreover, we present also some partial results on the
classification of six-dimensional Lie algebras admitting other types of half-flat structures.
Apart from one result on certain six-dimensional almost Abelian Lie algebras admitting
half-flat structures of other types, also these results are joint work with Schulte-Hengesbach
and already published in [FS1].

More exactly, we finish the classification of the decomposable six-dimensional Lie alge-
bras which admit a half-flat SU(3)-structure. Therefore, we determine the direct sums of a
four-dimensional Lie algebra and of a two-dimensional Lie algebra and the direct sums of a
five-dimensional Lie algebra and R possessing a half-flat SU(3)-structure. These results are
all contained in [FS1] and we also present the non-existence results on stable three-forms
of certain type and on half-flat SU(1, 2)- and half-flat SL(3, R)-structures on some of the
considered decomposable Lie algebras given in [FS1]. Note that the direct sums of two
three-dimensional Lie algebras which admit a half-flat SU(3)-structure have been deter-
mined before by Schulte-Hengesbach in [SH|. The analogous classification has been done
by Conti [C1] for the class of six-dimensional nilpotent Lie algebras. We basically use a
refinement of Conti’s and Schulte-Hengesbach’s obstructions to prove the non-existence of
half-flat SU(3)-structures on the mentioned decomposable Lie algebras. Our obstruction
has the advantage that it is easy to check using a computer algebra system. In fact, we use
Maple, in particular the packages “difforms” and “difforms2”, to check the obstruction. Ex-
istence is proved in most cases by giving an explicit example of a half-flat SU(3)-structure.
We changed parts of the proofs given in [F'S1] and use also the relation between half-
flat SU(3)-structures on six-dimensional Lie algebras g and cocalibrated Ge-structures on
g ® R. We give a direct proof that a six-dimensional almost Abelian Lie algebra g admits

a half-flat SU(3)-structure if and only if g & R admits a cocalibrated Go-structure and
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so get a full classification of the six-dimensional almost Abelian Lie algebras admitting
a half-flat SU(3)-structure by Theorem 5.18. Moreover, we prove that in this case the
six-dimensional almost Abelian Lie algebra g admits half-flat structures of any type, a
result not contained in [FS1] or [FS2|. We also apply the classification of the direct sums
of four- and three-dimensional Lie algebras admitting a cocalibrated Ga-structure given
in Theorem 5.18 to show that on certain decomposable six-dimensional Lie algebras there
cannot exist a half-flat SU(3)-structure.

Moreover, we classify the indecomposable solvable six-dimensional Lie algebras with
five-dimensional nilradical which admit a half-flat SU(3)-structure and show that all non-
solvable six-dimensional Lie algebras possess such a structure. These results are all con-
tained in [FS2]. The proofs are completely analogous to the paper [FS2]. We use again our
refinement of Conti’s obstruction but also apply some obstruction obtained by the relation
between half-flat SU(3)-structures on a six-dimensional Lie algebra g and cocalibrated Go-
structures on g ® R. Existence is again proved by giving concrete examples. Note that by
a result of Mubarakzyanov [Mu6d], a six-dimensional solvable indecomposable Lie algebra
is nilpotent or the nilradical has dimension five or four. Hence, only the question which in-
decomposable solvable six-dimensional Lie algebras with four-dimensional nilradical admit
a half-flat SU(3)-structure remains open. We emphasise that we refined the classification
of indecomposable five-dimensional Lie algebras given in [Mu5d| and also the classification
of six-dimensional Lie algebras with five-dimensional non-Abelian nilradical in [Mu6d| in
order to obtain the mentioned classification results. This refinement is interesting in its
own. We give an application of this refinement to the classification of six-dimensional
(2, 3)-trivial Lie algebras which is also contained in [F'S2].

We start in Section 6.1 by giving a brief history of the results known before and also
of the obstructions used by Conti in [C1] and by Schulte-Hengesbach in [SH] to obtain
their results. Section 6.2 presents our refinement of these obstructions and also the above-
mentioned obstruction obtained by the relation between half-flat SU(3)-structures on a
six-dimensional Lie algebra g and cocalibrated Go-structures on g ® R. In Section 6.3, we
prove the classification results on six-dimensional Lie algebras admitting half-flat SU(3)-
structures. Finally, Section 6.4 gives the result on the classification of six-dimensional
(2,3)-trivial Lie algebras. Moreover, also the non-existence results on stable forms of
certain kind and on half-flat SU(1, 2)- or SL(3, R)-structures in the decomposable case are

presented in this section.

6.1 Known results and obstructions

The first steps towards a classification of the Lie algebras which admit half-flat SU(3)-
structures have been done in [ChiSw|, [ChiFi], [CT]. In these papers, a classification of the
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6.1. KNOWN RESULTS AND OBSTRUCTIONS 124

nilpotent six-dimensional Lie algebras admitting special kinds of half-flat SU(3)-structures
has been given. The next step has been the following classification of the nilpotent Lie
algebras admitting an arbitrary half-flat SU(3)-structures [C1] by Conti. For the names of

the appearing Lie algebras, we refer the reader to the appendix.

Theorem 6.1 (Conti). Let g be a siz-dimensional nilpotent Lie algebra. Then g admits a
half-flat SU(3)-structure if and only if

(i) g is decomposable and g € {IR{G, hs ©R3, b3 @ b3, A5 ; EB]R| i=1,2,4,5,6} or
(11) g is indecomposable and g =ng; for j ¢ {1,2,8,9,10,19, 21, 22}.

To prove Theorem 6.1, he introduces the concept of a coherent splitting on an arbitrary
six-dimensional Lie algebra g, which is a splitting g* = V5 @& V} into a two-dimensional
subspace V5 and a four-dimensional subspace Vj with d (V2) = A?Vs and d (V3) = A?Va @
Vo AVy. This splitting can be used to define a double complex (AP4g* d1,d2). Conti shows
that the triviality of the cohomology classes H%? and H%* implies that on g there cannot
exist a half-flat SU(3)-structure. He applies this obstruction then to eight nilpotent Lie
algebras to exclude half-flat SU(3)-structures on them. The existence is proved by giving
a concrete example of a half-flat SU(3)-structure in each case. There are two nilpotent Lie
algebras, namely ng 21 and ng 22, which do not admit a coherent splitting and existence of
half-flat SU(3)-structures on them is excluded by refining the methods. Basically, Conti
uses Equation (2.16) and Equation (2.17). More exactly, he shows that the existence of a
half-flat SU(3)-structure (w, p) € A%g* x A3g* implies in both cases that the basis vector
el in the basis given in Table 7.6 fulfils J;el € span(el,e?,e3). For that purpose he uses
Equation (2.16), which states that

e N (vap) Ap= el (v)d(p)

for all v € g, and shows that e! A (wiv) A+ = 0 for all closed three-forms v and all
w € span(eq, e5, €g). Afterwards, he computes that then the identity e A J;el Ao =0 for
all closed four-forms o € A*g*, and so also for w?, is true. But this is a contradiction to

Equation (2.17), which states that
* 2 1 3
BATLB AR = 29(8, B’ 0

for all g € g*\{0}.

Our obstruction given in Proposition 6.5 resembles this argumentation. It gives a direct
obstruction for which one has to compute all closed three-forms and all closed four-forms
on g and can then easily check the obstruction. The obtained obstruction is built up in

such a way that all computations can be done using a computer algebra system like Maple.
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The next class of Lie algebras considered was the direct sums of two three-dimensional
Lie algebras by Schulte-Hengesbach in [SH|. He gets an obstruction without introducing
the double complex above by looking at the decisive steps in Conti’s proof. He applies this
obstruction to all but two cases of direct sums g = g; @ g2 of two three-dimensional Lie
algebras g1, go which do not admit a half-flat SU(3)-structure. Existence is again proved
by giving concrete examples of half-flat SU(3)-structures. The missing two cases to ® R?
and b3 @ to @ R are treated separately. The first case is excluded by showing that all
closed three-forms p € A3 (t2 <) R4)* fulfil A(p) > 0 and so to @R* cannot admit a half-flat
SU(3)-structure by Proposition 3.38. The second case uses directly our main obstruction
given below in Proposition 6.5 without stating it concretely.

The result obtained by Schulte-Hengesbach is given in Theorem 6.2. We rephrase it to
make connection to the existence of cocalibrated Go-structures on direct sums g1 © go B R
with dim(g;) = 3 for i =1, 2.

Theorem 6.2 (Schulte-Hengesbach). A direct sum g1 @ g2 of two three-dimensional Lie
algebras g1, g2 admits a half-flat SU(3)-structure if and only if both g1 and go are unimod-
ular or ezactly one of the Lie algebras is unimodular, say g;, for some iy € {1,2}, and
h%(gi,) < h%(gs,), where iy € {1,2} is such that {i1,i2} = {1,2}.

Remark 6.3. Theorem 6.2 and Theorem 5.18 imply that a direct sum g1 B go of two three-
dimensional Lie algebras g1, g2 admits a half-flat SU(3)-structure if and only if g1 g2 ®R
admits a cocalibrated Go-structure. By Proposition 3.37, the existence of a half-flat SU(3)-
structure on a siz-dimensional Lie algebra g is equivalent to the existence of a cocalibrated
Go-structure on g ® R such that g is orthogonal to R. Hence, the non-existence of half-flat
SU(3)-structure in all cases in Theorem 6.2 follows independently also by our Theorem
5.18. However, the existence of half-flat SU(3)-structures on the Lie algebras in Theorem
6.2 does not follow by Theorem 5.18 since we cannot ensure the existence of a cocalibrated
Go-structure such that g1 ® go is orthogonal to R. In fact, in Remark 6.10 we present
an example of a direct sum g = g4 B g2 of a four-dimensional Lie algebra g4 and a two-
dimensional Lie algebra go which does not admit a half-flat SU(3)-structure but for which
g4 D g2 ® R admits a cocalibrated Go-structure.

Schulte-Hengesbach also classified the direct sums g; & go of two three-dimensional Lie
algebras admitting a half-flat SU(3)-structure such that the decomposition is orthogonal.
Moreover, he also classified the direct sums g1 @ go admitting a half-flat SL(3, R)-structure
for which the decomposition is orthogonal and each summand is definite and did the
same under the condition that the summands are the +1-eigenspaces of the para-complex
structure. We do not give these classifications here. Instead, we mention his results
that certain direct sums do not admit any half-flat SU(1, 2)-structure. He achieved this
result by showing A(p) > 0 for all closed three-forms using Maple for the calculations.
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The non-existence then follows by Proposition 3.38. Note that there is always a closed
three-form with A(p) > 0, i.e. with model tensor Re(¥;), on direct sum g; & g2 of two
three-dimensional Lie algebras, e.g. p = vy + vy for arbitrary v; € A%g#\{0}. Hence, one
cannot get non-existence results for half-flat SL(3, R)-structure via Proposition 3.38 on the

considered direct sums.

Proposition 6.4. Let g = g1 @ g2 with g1 € {R3,h3,to ® R} and g2 be three-dimensional
non-unimodular and go # to ®R. Then all closed three-forms p € A3g* on g fulfil X\(p) > 0
and g does not admit a half-flat SU(1, 2)-structure.

6.2 New obstructions

We begin the new section by stating our main obstruction.

Proposition 6.5. Let g be a siz-dimensional Lie algebra with a volume form v € ASg*\{0}.

If there is a non-zero one-form « € g* satisfying
oz/\j;oz/\azo (6.1)

for all closed three-forms p € A3g* and all closed four-forms o € A*g*, where j;a is defined
for X € g by

j;a(X)V:a/\(X_np)/\p, (6.2)

then g does not admit a half-flat SU(3)-structure.

Proof. Suppose that o € g* is a non-zero one-form as in the statement and that, nev-
ertheless, (w,p) € A?g* x A3g* is a half-flat SU(3)-structure on g. Then p € A%g* and
sw? € Alg* are closed. Moreover, by Equation (2.16) there exists u € R\{0} such that

Jya = pJja. Hence, Equation (2.17) implies

= 1
aNJjaA in = %g(ma)w?’ #0,

a contradiction. This shows the statement. O

By Proposition 3.37 the non-existence of a cocalibrated Ga-structure on a direct sum
g6 D R of a six-dimensional Lie algebra gg and of R implies the non-existence of a half-flat
SU(3)-structure on gg. Hence, we get obstructions to the existence of half-flat SU(3)-
structures on certain classes of six-dimensional Lie algebras by the classification results for
cocalibrated Go-structures obtained in Theorem 4.15 and in Theorem 5.18. Moreover, the

mentioned relation gives us also the following obstruction.

Proposition 6.6. Let gg be a siz-dimensional Lie algebra and set g7 := gg & R. Choose

a non-zero one-form o € g¢* in the annihilator g¢° of ge in g7. For each pair (p,o) €
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Z3(g6) x Z4(g6) of a closed three-form and a closed four-form on gg, we define a four-form

Q(p, o) € Ag: on g7 as follows:
Qp,0) :=pha+o.

If there exists a non-zero element X € g7 and a complement W of span(X) in g7 such that
for all pairs (p, o) € Z3(ge) x Z*(g6) the three-form p(p,0) := (X12Q(p,0)) lw € A3W* on
W fulfils X\(p) > 0, then ge does not admit any half-flat SU(3)-structure.

Proof. Let gg, g7, a € g¢° be as in the statement. Assume that X € gy and W C gy
as in the statement exist and that, nevertheless, gs admits a half-flat SU(3)-structure
(w,p) € A%g§ x A3g. Set o := Lw?. Then (p,0) € Z3(gs) x Z*(gs). By Proposition 3.37,
the half-flat SU(3)-structure (w,p) induces a cocalibrated Ga-structure ¢ on g7 whose
Hodge dual is given by

*xop=pAa+o=Q(p,0).

By Proposition 2.48, the three-form p(p,0) = (X1 xp ©)lw = (X2Q(p,0))|lw € A3W*
on W has model tensor p_; € A3 (RG)* and so fulfils A\(p) < 0 by Proposition 2.21, a
contradiction. Hence, gg does not admit a half-flat SU(3)-structure. O

6.3 Results for half-flat structures

We first discuss the existence problem of half-flat SU(3)-structures on six-dimensional
almost Abelian Lie algebras. This problem has completely been solved case-by-case for
decomposable Lie algebras in [C1], [SH]| and [FS1]. In [FS2], we excluded the existence of
half-flat SU(3)-structures on indecomposable six-dimensional almost Abelian Lie algebras
g as follows. Theorem 4.15 shows that g ® R does not admit a cocalibrated Go-structure
if g is an indecomposable six-dimensional almost Abelian Lie algebra. Thus, Proposition
3.37 implies the non-existence result. One observes that a six-dimensional almost Abelian
Lie algebra g admits a half-flat SU(3)-structure if and only if g ® R admits a cocalibrated
Go-structure. We give a direct proof of this statement below and also show that if one of
these two equivalent conditions is fulfilled, then g admits any kind of half-flat structure.
Note that both the direct proof and the existence of other kinds of half-flat structures are
not contained in [FS1], [FS2].

Theorem 6.7. Let g be a siz-dimensional almost Abelian Lie algebra. Then the following

are equivalent:
(i) 9 ® R admits a cocalibrated Ga-structure.

(ii) g admits a half-flat SU(3)-structure.
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If the equivalent conditions (i) and (ii) are fulfilled, then g also admits a half-flat SU(1,2)-

structure and a half-flat SL(3,R)-structure. The siz-dimensional almost Abelian Lie algebra
g fulfilling (1) and (i) are:

e g = g3 @ R3 with an arbitrary three-dimensional almost Abelian unimodular Lie

algebra g3 and

o g=05®R with g5 = As1, A5z, A; 7™ with a € {~1}U(0,1), A5}, A7) with
B>0, A, Asts, AV with v > 0, Ag;gf with 0 < § <1 or AY 4.

Proof. (ii) implies (i) by Proposition 3.37. Next, we assume that (i) holds, i.e. that g ® R
admits a cocalibrated Go-structure ¢ € A% (g ® R)*. Let u be an Abelian ideal of dimension
five in g. Choose fg € g\u and let f6 € g* C g* ® R* = (g ®R)* be the element in the
annihilator of u in g @ R with f%(fs) = 1. By Proposition 4.12 and Lemma 4.3 (b), there
exists a closed two-form w € A2 (u* @ R*) of length three, where closed means here and for

the rest of the proof that it is dg-closed. Let av € R*\{0}. We may decompose w as
w=aA fS+uw

with f5 € u*\{0} and wy € A%u*. The length of wy has to be two. Hence, Lemma 2.1 implies
the existence of linearly independent elements f!,..., f* € u* such that wy = f2 + f3%
Since 0 # w3, the one-forms f',..., f° form a basis of u*. Since w and « are closed, also
f° and wy are closed. By Lemma 4.3, d (1/ A f6) for all k-forms v € A*g*. Thus, the pair
(w1, p1) € A%g* x A3g*, defined by

Wi = fO0 4 fl 2 pPI2 L g5A3 613 p642 g5 0 136 4 4246
is a half-flat SU(3)-structure on g, the pair (ws, p2) € A2g* x A3g*, defined by
wy = [0 — fM— 2 py = py,
is a half-flat SU(1, 2)-structure on g and the pair (w3, p3) € A%g* x A3g*, defined by
wy = fO0 4 134 24 . pBI2 L gB3A L 614 | g632 g5 146 4236

is a half-flat SL(3, R)-structure on g. The list of the six-dimensional Lie algebras g fulfilling

the equivalent conditions (i) and (ii) is obtained from Theorem 4.15. O

Remark 6.8. Schulte-Hengesbach showed in [SH] that direct sums of the form gz ® R3
with unimodular gs admit half-flat SL(3, R)-structures.

Theorem 6.9. Let g4 be a four-dimensional Lie algebra.

(a) The direct sum g4 © R? admits a half-flat SU(3)-structure if and only if g4 = g3 R

for a unimodular three-dimensional Lie algebra gs.
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(b) The direct sum gy ® to admits a half-flat SU(3)-structure if and only if

11
(i) g4 is unimodular and not in {A4752’ 2 b3 @ R,R4} or

_1
(ii) g4 25 1M {A47§,A4712,t2 @tz}.

Proof. The following proof does not coincide with the one given in [FS1| where in most

cases the obstruction given in Proposition 6.5 has been applied to show the non-existence

of half-flat SU(3)-structures. We do not apply Proposition 6.5 directly at all in our proof.

(a)

By Theorem 5.18, a direct sum of the form g4 ® R3 with a four-dimensional Lie
algebra g4 admits a cocalibrated Go-structure exactly when g4 = g3 & R with g3
being unimodular and three-dimensional. Hence, Proposition 3.37 shows that only
the direct sums g4 DR? = g3 BR3, g4 = g3 DR, with g3 being three-dimensional and
unimodular may admit half-flat SU(3)-structures. The existence of half-flat SU(3)-

structures on these Lie algebras is proved in [SH], c.f. also the cited Theorem 6.2.

By Theorem 5.18 and Proposition 3.37, only the sums g4 @ to with g4 = A;é,A4,12,
ty @ty or g4 being unimodular and g4 ¢ {h3 ® R,R*} may admit a half-flat SU(3)-
structure. For all these Lie algebras, except g4 = A;é’_%, the existence of a half-flat
SU(3)-structure either follows from [SH], c¢f. Theorem 6.2, or alconcrete example of a

half-flat SU(3)-structure is given in Table 7.9. For g := A;g’ig @ vg, the obstruction

given in Proposition 6.5 cannot be applied directly. However, a different obstruction

11 *
can be established as follows. Let (el,...,eG) be a basis of <A4’§’ 2 @tz) o

given

N|—=

~1 _1\* _1_
(A4’§’ 2) @ 5 such that (el, o ,64) is the standard basis of <A4’52’
in Table 7.3 and (e®,¢°) is a basis of v which fulfils de® = 0, de® = €°°. We set

v = e!2346 ¢ ABg* and define J, € End(g) for a three-form p € A%g* by Equation
(6.2). Then a straightforward calculation yields the identity

65/\j;64/\02 —64/\j;€5/\0': (64+\/§65)/\j;(64+\/§65)/\0'

for all closed three-forms p on g and all closed four-forms o on g. Suppose that g
admits a half-flat SU(3)-structure (pp,wp). In particular, the forms py and o¢ := %wg
are closed and fulfil the previous identity. Hence, if gy denotes the induced Euclidean

metric, Equation (2.17) and the fact that jpo is a non-zero multiple of .J,, show
90 (657 64) =90 (647 65) =90 (64 + \/5657 e! + \/565) .

Since go is symmetric, this implies that e* 4+ v/2¢® is a null-vector, a contradiction.
1 1

Hence, there cannot exist a half-flat SU(3)-structure on g = 4, 3" * @ o

O
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Remark 6.10. We like to note an interesting consequence of Theorem 6.9. It provides, to

the best of the author’s knowledge, the first example in the literature of a siz-dimensional

Lie algebra g which does not admit a half-flat SU(3)-structure but for which g & R admits
1 1

a cocalibrated Go-structure. Namely, A;g’7§ @Oty @R admits a cocalibrated Go-structure

_1_1
due to Theorem 5.18 but Theorem 6.9 shows that A, 3" * & vo does not admit a half-flat

1 1

SU(3)-structure. Note that this shows that A;g’fi Bra®R cannot admit a cocalibrated Ga-

1

1
structure such that Ay 2" * ®va and R are orthogonal by Proposition 3.57. Note further that

11
Theorem 6.9 and Theorem 5.18 show that Ay 3" * ®va is the only such ezample in the class
of direct sums g = g4 ® go of a four-dimensional Lie algebra g4 and of a two-dimensional

Lie algebra go.

The missing decomposable cases are those which are direct sums g = g5 ® R of an inde-
composable five-dimensional Lie algebra gs, which is neither almost Abelian nor nilpotent,

and of R. For this class of Lie algebras, we obtain

Theorem 6.11. Let g = g5 R be a direct sum of a five-dimensional indecomposable Lie
algebra, which is neither almost Abelian nor nilpotent, and of R. Then g admits a half-flat
SU(3)-structure if and only if

“12 =13 423 .0 “1—1  40,-2
95 € {A5,19v As1o As1gs Asz0, Assy 5 Asss s Asze, Asar, A5,40}

Proof. For all direct sums admitting a half-flat SU(3)-structure, an explicit example can be
found in Table 7.10. For the remaining direct sums g5 &R, we apply Proposition 6.5 for all
cases separately according to Table 7.4. Therefore, let (el, ..., e®) be a basis of (g5 ® R)* =
g ®R* such that (el, ..., ed) is the standard basis of g* given in Table 7.4 and €% spans R*.
We claim that o = € is for all cases a one-form satisfying the obstruction condition (6.1).
In fact, the equation can be efficiently verified by the computer algebra system Maple as
follows. Let p be a three-form and o a four-form involving altogether 35 coefficients when
expressed with respect to the induced basis on forms. Due to our distinction of the Lie
algebra classes in Table 7.4, the coefficient equations of dp = do = 0 can be solved in a
closed form, independently of the parameters in the Lie bracket. Thus, the computer can
almost instantaneously provide us with explicit expressions for the general closed three-
form p € Z3(g) and also for the general closed four-form o € Z*(g) by eliminating a
number of parameters. Now, it is straightforward to compute jp via (6.2) with respect to
the basis. The result allows us to verify Equation (6.1) for a = e® and all p € Z3(g) and
all o € Z*(g) for each of the remaining Lie algebras. O

Remark 6.12. In [CS] and [CFS] the five-dimensional solvable Lie algebras g admitting
a hypo SU(2)-structure are classified. There is a similar relation between hypo SU(2)-
structures on g and half-flat SU(3)-structures on g & R as the one in Proposition 8.37
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between half-flat SU(3)-structures and cocalibrated Go-structures. Namely, g admits a hypo
SU(2)-structure if and only if g ® R admits a half-flat SU(3)-structure with orthogonal
splitting g ® R. For all five-dimensional solvable non-nilpotent Lie algebras g admitting a
hypo SU(2)-structure we (or Schulte-Hengesbach in [SH]) independently found a half-flat
SU(3)-structure on g ® R. However, for two indecomposable five-dimensional Lie algebras
which do not admit a hypo SU(2)-structure, namely A;%;)S and As 37, we were able to find a
half-flat SU(3)-structure on the corresponding siz-dimensional Lie algebras AS_&Q?’ @R and
As37 DR such that the summands are not orthogonal, cf. Table 7.10.

Next we consider the non-solvable case. We show that all non-solvable indecomposable
six-dimensional Lie algebras admit a half-flat SU(3)-structure. By our previous results, we

even get, the following result.

Theorem 6.13. Let g be a siz-dimensional non-solvable Lie algebra. Then g admits a
half-flat SU(3)-structure.

Proof. By |Tul|, the indecomposable non-solvable Lie algebras of dimension less than six
are s0(3), s0(2,1) and As 49. Direct sums with s0(3) and so(2, 1) admit a half-flat SU(3)-
structure by Theorem 6.2, whereas the direct sum g540 & R admits a half-flat SU(3)-
structure by Theorem 6.11. The indecomposable six-dimensional non-solvable Lie algebras
have also been determined in [Tul] and are given in Table 7.5. They all admit a half-flat

SU(3)-structure, where a concrete example in each case is given in Table 7.11. O

Finally, we attack the class of indecomposable solvable non-nilpotent six-dimensional
Lie algebras. By a result of Mubarakzyanov [Mu6d|, the nilradical of such a Lie algebra has
either dimension five or four. Due to the complexity of the problem, see the classification
of the mentioned Lie algebras with five-dimensional nilradical given in [Mu6d] (resp. with
four-dimensional nilradical given in [Tu2|), we restrict ourselves to the case with five-
dimensional nilradical and leave the other case open. Since the indecomposable solvable
Lie algebras with five-dimensional nilradical admitting a half-flat SU(3)-structure have
hardly anything in common, a simple characterisation seems not possible and we have to

state our classification result in the following form.

Theorem 6.14. An indecomposable solvable siz-dimensional Lie algebra with five-dimen-
sional nilradical admits a half-flat SU(3)-structure if and only if it is contained in Table
7.12.

Proof. First of all, Theorem 6.7 yields that all almost Abelian Lie algebras in our class,
i.e. those with Abelian nilradical, do not admit a half-flat SU(3)-structure. As Table
7.7 contains all indecomposable Lie algebras with non-Abelian five-dimensional nilradical

according to the classification of Mubarakzyanov [Mu6d| and Shabanskaya [Sha], it suffices
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to prove existence or non-existence in each case contained in the list. The existence problem
is completely solved by the explicit examples given in Table 7.12. In the following, we prove
the non-existence for the remaining Lie algebras.

For all these remaining Lie algebras, except Ag :135_1, Ag, il Ag, %6, Ag,78, ng, BéA and

B&i, we apply Proposition 6.5. In each case, we work in the basis (e!,...,e%) of g* given

6 is a one-form

in Table 7.7. Analogously to the proof of Theorem 6.11, we show that a = e
fulfilling Equation (6.1) for all p € Z3(g) and all 0 € Z*(g). That means, we start with a
pair (p, o) € A3g* x A*g* of a three-form p and a four-form o expressed with respect to the
induced basis on forms using 35 coefficients in total. The classes in Table 7.7 are separated
such that the space of closed forms has a fixed form. Thus, the general solution of the
equations dp = 0 and do = 0 can be obtained by eliminating a certain amount of coefficients
for each class. The computation of jp with respect to the given basis by Equation (6.2)
allows us to verify equation Equation (6.1) for o = €% and all (p,0) € Z3(g) x Z4(g). All
calculations can be executed conveniently in the computer algebra system Maple.
Unfortunately, Proposition 6.5 cannot be applied to the Lie algebras Ag 51,)’971, A, }11
A&%ﬁ, Ag,78, 3873, BéA and Bgi. The following proof uses Proposition 6.6. Again, we
compute the general closed three-form p € Z3(g) and the general closed four-form o €
Z*(g) with respect to the basis (e!,...,e®) given in Table 7.7. We choose e’ € (g ® R)*
with de” = 0 such that (e!,...,e") is a basis of (g @ R)* = g* @ R* and compute Q(p, o) :=
pAe’ +o € A(g®R)*. Afterwards, we compute for each of the seven Lie algebras the
three-form j(p, o) = e31Q(p, o) € A3e3". When we compute A(5(p, o)), it turns out that it
is in each case the square of a polynomial in the coefficients of the general closed three-form
p € Z3(g) and of the general closed four-form o € Z4(g) and so always non-negative. Thus,
none of the seven Lie algebras admits a half-flat SU(3)-structure according to Proposition
6.6. O

Remark 6.15. We like to remark that almost all the examples of half-flat SU(3)-structures
on siz-dimensional Lie algebras g have been constructed case-by-case using Proposition
3.87. That means we first constructed a cocalibrated Go-structure with orthogonal splitting
on g B R and then got an induced half-flat SU(3)-structure on g. The construction used the
fact that the Chevalley-Filenberg differential is, in most of the cases, particularly simple

since g @ R is almost nilpotent, i.e. g ® R admits a nilpotent codimension one ideal.

6.4 Other Results

The first aim of this section is to give some results on the non-existence of closed stable
three-forms of certain kind on decomposable Lie algebras. In Proposition 6.4, we cited

Schulte-Hengesbach’s result [SH| on the non-existence of closed stable forms p with A(p) < 0
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on some direct sums of two three-dimensional Lie algebras. Moreover, we argued directly
above Proposition 6.4 that there always is a closed stable form with A(p) > 0 on the direct
sum of two three-dimensional Lie algebras. We consider the same problem for the missing
decomposable Lie algebras. In contrast to Schulte-Hengesbach’s results, Proposition 6.16
shows that there are decomposable Lie algebras with A(p) = 0 for all closed three-forms, i.e.

there are decomposable Lie algebras which do not admit at all a closed stable three-form.

Proposition 6.16. Let g = g4 D go be a siz-dimensional Lie algebra which is the direct
sum of an indecomposable four-dimensional Lie algebra g4 and of a two-dimensional Lie

algebra go.

_1
(i) If g2 = R? and g4 not in {A4,1,A4_é’1,A47§,A4712}, then A(p) > 0 for all p € Z3(g)
and g does not admit a half-flat SU(1, 2)-structure.

(i) If go = to, the nilradical of g4 is isomorphic to R® and h*(g4) = (1,0,0,0), then
Xp) >0 for all p € Z3(g) and g does not admit a half-flat SU(1, 2)-structure.

(ii3) If g2 = R? and h*(g4) = (1,0,0,0), then A(p) =0 for all p € Z3(g). Then g does not
admit at all a closed stable three-form and a half-flat structure of any kind.

Proof. The Lie algebras g4 appearing in the statement may be identified when looking at
Table 7.3. In the proof of Theorem 6.11, we explained that the general closed three-form
p on each of the direct sums g = g4 ® go appearing in Proposition 6.16 is determined
straightforwardly with computer support. Using Maple to calculate the quartic invariant
A(p) of the general closed three-form p on each of the considered Lie algebras with the help
of Maple, those with A = 0 are easily identified. The cases with A > 0 have been determined
by applying the useful Maple function factor to A(p). The non-existence statements about
closed stable forms of any kind and about half-flat structures of certain kind follow from

Proposition 2.22 and Proposition 3.38, respectively. O
Analogously, we can prove the following proposition.

Proposition 6.17. Let g = g5 ® R be a siz-dimensional Lie algebra which is a direct sum

of an indecomposable five-dimensional Lie algebra g5 and R.

(i) If the column X\ > 0 in Table 7.4 is checked for gs, then X(p) > 0 for all p € Z3(g)
and g does not admit a half-flat SU(1, 2)-structure.

(ii) If the nilradical of gs is isomorphic to R* and h3(gs) = 0, then A(p) = 0 for all
p € Z3(g). Then g does not admit at all a closed stable three-form and a half-flat

structure of any kind.
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Remark 6.18. Unfortunately, there seems to be no consistent pattern for the direct sums
g = g5 DR of an indecomposable five-dimensional Lie algebra gs and R such that A\(p) > 0
for all p € A3g* except that the nilradical has to be either R* or hs ® R. Note that also the

patterns we observed in the other cases may be just a simple coincidence.

We finish this chapter by pointing out an interesting application of Table 7.7 to the
classification of six-dimensional Lie algebras which are (k—1, k)-trivial, i.e. whose (k—1)-th
and k-th Lie algebra cohomology vanishes. These Lie algebras play an analogous role for the
study of multi-moment maps associated to closed geometries of degree k as semisimple Lie
algebras do for the study of moment maps in symplectic geometry, see [MaSw1]|, [MaSw2]
and [MaSw3|. For general k, one can read off the Tables 7.1 - 7.7 given in the appendix
all (k — 1,k)-trivial Lie algebras in the corresponding class. The most interesting case
is the one of (2,3)-trivial Lie algebras. A classification of (2,3)-trivial Lie algebras up
to dimension five has been established by Madsen and Swann in [MaSw1]|. Using Table
7.7, one can get a full classification of (2, 3)-trivial Lie algebras in dimension six using the

following theorem proved in [MaSw2].

Theorem 6.19 (Madsen, Swann). A Lie algebra g is (2,3)-trivial if and only if g is
solvable, the derived Lie algebran = [g, g] is nilpotent of codimension one in g and H'(n)$ =
{0} fori=1,2,3.

In particular, (2, 3)-trivial Lie algebras are indecomposable and they are either almost

Abelian or can be found in Table 7.7. Thus, we obtain

Corollary 6.20. A siz-dimensional Lie algebra g is (2,3)-trivial if and only if it is one of
the Lie algebras in Table 7.7 with h%(g) = h3(g) = 0 or if the nilradical n of g is isomorphic
to R® and the induced endomorphism ad(v) |pyin= for an arbitrary v € g\n has trivial kernel
fori=1,2,3.
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Chapter 7

Hitchin flow on almost Abelian Lie

algebras

In this chapter, we look at Hitchin’s flow equations whose solutions define pseudo-Riemann-
ian metrics with holonomy contained in the exceptional holonomy groups G§ and Spin®(7).
The starting value of this flow is a half-flat structure SU°(p,3 — p)-structure or a co-
calibrated G§-structure, respectively. We present some results on the Hitchin flow for
Go-structures on almost Abelian Lie algebras. Most importantly, we show that in this case
the holonomy of the Riemannian manifold obtained by the Hitchin flow always reduces
further to a subgroup of SU(4). Moreover, we compute the Hitchin flow explicitly for cer-
tain initial cocalibrated Go-structures on hs @ R* and n71. In the latter case, we obtain
an explicit two-parameter family of non-compact, non-complete Calabi-Yau four-folds of
cohomogeneity one. Note that these results are the first results of an ongoing investigation
of the Hitchin flow on seven-dimensional Lie algebras and so many interesting questions
remain unanswered in this chapter.

We start in Section 7.1 by giving a short review of the Hitchin flow on arbitrary six- or
seven-dimensional manifolds. In Section 7.2 we look at the Hitchin flow for Go-structures
on real seven-dimensional almost Abelian Lie algebras and prove the mentioned reduction
result of the holonomy of the induced eight-dimensional Riemannian manifold to a sub-
group of SU(4). The moduli space of cocalibrated Ga-structures on the nilpotent almost
Abelian Lie algebras hs & R* and n71, i.e. all cocalibrated Go-structures on these Lie
algebras up to Lie algebra automorphisms and scalings, are determined in Section 7.3. Fi-
nally, the Hitchin flow and the holonomy of the induced Riemannian metrics for the entire
moduli space on hz @ R* and for a two-parameter family in the moduli space on n7 1 is

computed in Section 7.4.
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7.1 Hitchin’s flow equations

Manifolds admitting a parallel G§-structure (resp. a parallel Spin(7)-structure) and so
having holonomy contained in the exceptional holonomy group G§ (resp. in the excep-
tional holonomy group Spin®(7)) naturally induce on hypersurfaces with the right signature
half-flat SU%(p, 3—p)-structures (resp. cocalibrated Gg-structures) using pointwise the con-
structions given in Proposition 2.51 (resp. Proposition 2.60). The proof is easy and given
below. Note that in [MC5| the intrinsic torsion of the induced SU(3)-structure is computed
in terms of the intrinsic torsion of an arbitrary Ge-structure. Similar computations are

done for Spin(7)-structures in [MC3].

Proposition 7.1.  (a) If (p,d,¢) € {(1,-1,1),(3,1,1),(3,—1,-1)}, ¢ € Q3M s a par-
allel G5-structure on a seven-dimensional manifold M and N is an oriented hy-
persurface in M such that there exists a unit normal vector field n € X(M) with
go(n,n) = =6, then the pair (w,p) € Q2N x Q3N defined by w = i*(nup) and
p = i*p, is a half-flat SU%(p,3 — p)-structure on N. Here, i : N — M is the

mcluston map.

(b) If ® € Q*M s a parallel Spin®(7)-structure on an eight-dimensional manifold M
and N is an oriented hypersurface in M with o space-like unit normal vector field
n € X(M), then ¢ := i*(na®) € Q3N is a cocalibrated G§-structure on N. Here,

again i : N — M 1s the inclusion map.

Proof. (a) By Proposition 2.51, (w,p) € Q2N x Q3N defined as in the statement is, in
fact, an SU%(p,3 — p)-structure. Moreover, Proposition 2.51 shows that i* (x,¢) =
—goﬂ. Hence, the closure of ¢ and %, imply the closure of p = i*¢ and %wQ. Thus,

(w, p) is half-flat.

(b) Proposition 2.60 shows that ¢ € Q3N defined as in the assertion is, in fact, a G-
structure and we get i*® = x,p. Hence, the closure of ® implies the closure of

*xo@ = 0 and so ¢ is cocalibrated.
O

Conversely to Proposition 7.1, the Hitchin flow embeds a six-dimensional manifold with
a half-flat SU®(p, 3 — p)-structure (resp. a seven-dimensional manifold with a cocalibrated
G$§-structure) into a seven-dimensional manifold with a parallel G§-structure (resp. into
an eight-dimensional manifold with a parallel Spin®(7)-structure).

The Hitchin flow has been introduced by Hitchin [Hil] on compact six-dimensional
manifolds M and compact seven-dimensional manifolds N. In the six-dimensional case, it
is a Hamilton flow on the product of the cohomology classes [%wg] X [po], where (wg, po) €

O2M x Q3M is a half-flat SU(3)-structure on M. Here, one uses a natural symplectic

136



7.1. HITCHIN’S FLOW EQUATIONS 137

two-form on the affine space ng] X [po]. The Hamilton function is constructed via a

Z-combination of the functionals on stable four-forms o € Q*M and stable three-forms
p € 3M one gets by integrating the associated volume forms ¢(c), ¢(p), cf. Proposition
1.37, over the entire manifold M. The solution with initial value (wo, po) on an interval I
defines then a parallel Go-structure on M X I and so a Riemannian metric with holonomy
contained in Go on M x I. In the seven-dimensional case, it is a gradient flow on the
cohomology class [x,, 0] of the Hodge dual of a cocalibrated Go-structure g € Q3N on
N. Here, one uses a natural non-degenerate symmetric bilinear form on [x,,¢0] and the
functional on the stable four-forms ¥ € Q4N obtained by integrating the associated volume
form ¢ (¥) € Q"M over the entire manifold N. Analogously to the six-dimensional case,
the solution with initial value g on an interval I defines then a parallel Spin(7)-structure
on N x I and so a Riemannian metric with holonomy contained in Spin(7) on N x I.

In [CLSS], the results of Hitchin are reproved by direct calculations without using any
Hamilton or gradient flows. In particular, the compactness assumption can be dropped and
the results generalise also to non-compact manifolds in a suitable way. Moreover, [CLSS]
also generalises the Hitchin flow to half-flat SU(1, 2)- and SL(3, R)-structures and to cocali-
brated G3-structures leading to pseudo-Riemannian manifolds with holonomy contained in
the exceptional holonomy groups G} or Sping(3,4)-structures, respectively. Furthermore,
[CLSS] gives an existence and uniqueness result in the real analytic category. Note that
[Br6| shows that such a result is not valid in the smooth category. In the remainder of this
section, we review all these results briefly and refer for proofs to the two mentioned papers
[Hil| and [CLSS|. We begin with the six-dimensional case.

Theorem 7.2. Let (p,6,¢) € {(1,-1,1),(3,1,1),(3,—1,—1)} and (wo, po) € DM x Q3M
be a half-flat SU‘S(p, 3 — p)-structure on a siz-dimensional manifold M. Assume that there
exists a smooth 1-parameter family I — Q>M x Q3M , t — (w(t), p(t)) of stable forms, I
being an open interval around 0, such that the identity (w(0), p(0)) = (wo, po) is true and
such that (w, p) fulfils the following partial differential equations on I, called Hitchin’s flow

equations:
5 — d A (L2 g (7.1)
p = dw, o\ a@ ) = dp :
Then (w(t), p(t)) is for all t € T a half-flat SU°(p, 3 — p)-structure and the three-form
pi=wAdt+p (7.2)

is a parallel G5-structure on M x I. The induced pseudo-Riemannian metric g, on M x I

with holonomy contained in G is given by

o = G(w(t)p(ty) — 0 dt*, (7.3)
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Remark 7.3. o If (w(t),p(t)) is a solution of Hitchin’s flow equations, then the ori-
entation induced by w(t) is the same for all t € I. Hence, if we fir an orienta-
tion on M, we may recover w(t) uniquely from Sw(t)®> by Remark 2.7. Thus, we
may consider Hitchin’s flow equations also as equations for a one-parameter family
(o(t), p(t)) € X*M x Q3M of stable four-forms o(t) and stable three-forms p(t) on an
oriented siz-dimensional manifold M such that (c(0), p(0)) = (%w%, po) for a half-flat
SU%(p, 3 — p)-structure (wo, pg) on M inducing the given orientation.

e Since for all p € M the curve I >t — (p,t) is a geodesic, (M x I,g) can only be
complete if I = R. In the Riemannian case, the Cheeger-Gromoll splitting theorem,
¢f. [ChGr], shows then that (M x I,g) = (M, g, ) X (R,dt?) as Riemannian

manifolds and we cannot have full holonomy Go.

e The proof of Theorem 7.2 given in [CLSS] shows even more. Namely, if M is a seven-
dimensional manifold with parallel GS-structure ¢ and (M, g,) = (N x I, h(t) — 0 dt?)
for a smooth one-parameter-family I > t — h(t) of pseudo-Riemannian metrics on
N, then the one-parameter family of SU‘S(p,S — p)-structures induced on N fulfils

Hitchin’s flow equation.

As already mentioned at the beginning of this section, on real analytic manifolds a

solution of Hitchin’s flow equations exists and is unique.

Theorem 7.4. Let M be a real-analytic siz-dimensional manifold, (p,0,¢) € {(1,—1,1),
(3,1,1),(3,—1,-1)} and (wo, po) be a real-analytic half-flat SU®(p, 3 — p)-structure on M.

(a) There exists a unique maximal solution of Hitchin’s flow equations with initial value
(wo, po) which is defined on an open neighbourhood U of M x {0} in M x R. Hence,
there 1s a parallel GS-structure ¢ on U and so induced the pseudo- Riemannian metric

9y on U has holonomy contained in GS.

(b) Let f be a diffeomorphism of M and p € R*. If (w,p) is a solution of Hitchin’s
flow equations with initial value (wg, po), then (f*w, f*p) is a solution of Hitchin’s

ow equa 1ons wi maitial vatue wo, p() an —Sw /J ,ﬁpu 18 a sotution o
ti ith initial val * * d/j tul t)) i luti

Hitchin’s flow equations with initial value (%wo, ﬁp()).

(¢) If M is compact or a homogeneous space, then U as in (a) is of the form U = M x I

for some open interval I around 0.
In seven dimensions the result is as follows.

Theorem 7.5. Let € € {—1,1} and p € Q3M be a cocalibrated GS-structure on a seven-

dimensional manifold M. Assume that there exists an open interval I around 0 and a
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smooth 1-parameter family I — Q3M, t — o(t), of stable three-forms with ©(0) = ¢o and
such that ¢ fulfils the following partial differential equations on I, called Hitchin’s flow

equations: J
e dep. (7.4)

Then @(t) is a cocalibrated G§-structure for all t € I and the four-form
Q=% 0+ dt Ny (7.5)

is a parallel Spin(7)-structure on M x I. The induced pseudo-Riemannian metric go on

M x I with holonomy contained in Spin®(7) is given by
9 = Gop(t) + di?. (76)

Remark 7.6. The analogous statements of Remark 7.3 are also true for the Hitchin flow
for G§-structures. That means, the Hitchin flow preserves again the orientation on M and
we may alternatively see Hitchin’s flow equations on an oriented manifold M as equations
for a one-parameter family of stable four-forms ¥(t) with W(0) = .0, where pg € Q3M
is a cocalibrated G§-structure on M which induces the given orientation. Furthermore, if
(M x I,gq) is complete, then we must have I = R and in the Riemannian case the Cheeger-
Gromoll Splitting Theorem [ChGr| again implies then (M x R,g) = (M, gy,) % (R, dt?)
as Riemannian manifolds and so we cannot get full holonomy Spin(7). Note that in [Sto,
Theorem 3.3], Stock gives an argument that I = R and M compact implies the triviality of
the Hitchin flow and so that @q is parallel. Finally, if M is an eight-dimensional manifold
M with parallel Spin®(7)-structure ® such that (M, gg) is isometric to (N x I, h(t) + dt?)
for a seven-dimensional manifold N and a one-parameter-family I > t — h(t) of pseudo-
Riemannian metrics on N, then the induced one-parameter family of G§-structures on N

fulfils Hitchin’s flow equations.
Again we have the following results in the real analytic category.

Theorem 7.7. Let M be a real-analytic seven-dimensional manifold, e € {—1,1} and g

be a real-analytic cocalibrated GS-structure on M.

(a) There exists a unique maximal solution of Hitchin’s flow equations with initial value
o which is defined on an open neighbourhood U of M x {0} in M x R. Hence, there
is a parallel Spin®(7)-structure ® on U and so the pseudo-Riemannian metric go on

U has holonomy contained in Spin®(7).

(b) Let f be a diffeomorphism of M and p € R*. If ¢ is a solution of Hitchin’s flow

equations with initial value ¢, then f*¢ is a solution of Hitchin’s flow equations

1

with initial value f*po and Fcp(,ut) is a solution of Hitchin’s flow equations with

initial value ﬁgpo.
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(¢) If M is compact or a homogeneous space, then U as in (a) is of the form U = M x I

for some open interval I around 0.

Remark 7.8. Both in dimension siz and seven, the Hitchin flow on a Lie group G preserves
left-invariance if we start with a left-invariant initial value. Hence, Hitchin’s flow equations
are a system of ordinary differential equations on the associated Lie algebra g. Analogously
to Theorem 7.4 (b) (resp. to Theorem 7.7 (b)), one gets the following property. If f is
any Lie algebra automorphism of g, 1 € R* and (w(t), p(t)) € A%g* x A3g* a solution of
Hitchin’s flow equations in siz dimensions with initial value (wo, po) € A%g* x A3g* (resp.
o(t) € A3g* a solution of Hitchin’s flow equations in seven dimensions with initial value
0o € A3g*), then (ﬁf*w(ut), %f*p(ut)) is a solution of Hitchin’s flow equations in siz
dimensions with initial value (ﬁf*wo, %f*po> (resp. %f*(p(ut) is a solution of Hitchin’s
flow equations in seven dimensions with initial value M%f*goo). Assume that G is connected
and simply-connected. Then each Lie algebra automorphism of g lifts to a unique Lie group
automorphism of G and the pseudo-Riemannian manifolds obtained from the Hitchin flow
with initial values (wo, po) and (%f*wo, %f*p()> (resp. @o and %f*cpo) are homothetic.

In particular, their holonomy groups are the same.

7.2 Reduction of the holonomy

In this section, we look at the Hitchin flow on real seven-dimensional almost Abelian Lie
algebras g restricting to the Ga-case. From Theorem 7.5 we know that the solution of the
Hitchin flow yields a Riemannian metric with holonomy contained in Spin(7). We prove
that in the particular case of an almost Abelian Lie algebra the holonomy reduces further
to a subgroup of SU(4). We do this by first showing that the Hitchin flow can alternatively
be described by a certain system of algebraic and ordinary differential equations on a
codimension one Abelian ideal u in g. To prove this alternative description, we need to
show the invariance of a particular subspace of the three-forms on u under the action of

ad(e7)l|y, er € g\u. Therefore, we introduce the following notation.

Notation 7.9. Let V be a siz-dimensional vector space. For a two-form w € A?V* we
define the subspace V,, of A3V* by

Vo i={pe N3V*wAp=0}
We are interested in the following situation.

Lemma 7.10. Let g be a seven-dimensional Lie algebra with siz-dimensional Abelian ideal
u. Let er € g\u and denote by F € End (A3u*) the endomorphism of A3u* induced by
ad(er)|y. If w € A%u* = A2span(er)? is a dg-closed two-form, then V,, is an F-invariant

subspace of A3u*.
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Proof. Let p € V,,. By definition, w A p = 0 and so Lemma 4.3 implies
O0=dwAp)=wAdp=—wAF(p)re".
Thus, w A F(p) =0 and so F(p) € V,. O

This allows us now to prove the mentioned alternative description of Hitchin’s flow

equations on g by algebraic and ordinary differential equations on u.

Proposition 7.11. Let g be an almost Abelian seven-dimensional Lie algebra and (a,b) —
A3g*, t — ©(t) € A3g* be a smooth family of Go-structures on g with 0 € (a,b) such that
©(0) is cocalibrated. Let u be a codimension one Abelian ideal in g and e; € g\u be such
that e7 Lg_, u and g,o)(er,e7) = 1. Moreover, let e’ € u® with €"(e7) = 1 and identify
u* with e7° via the decomposition g = u@span(er). Let Q(t) € A*u*, p(t), p(t) € A3u* and

w(t) € A%u* be the unique elements with

*ot () = Q0) + p(t) AeT, (1) = w(t) AeT + j(0).

Finally, denote by F € End (A3u*) the linear map induced by ad(e7)|y € End(u) on Au*.
Then ¢(t) solves Hitchin’s flow equation

d
pr *o(t) o(t) = dp(t)

if and only if for all t € I the three-form p(t) is in D := {p € Vo) l#(p) # 0} and the

following 1is true:
(i) §p(t) = =F (u(p(0) T3, p(0)).

(ii) (1) = p(p(1)) T p(0).

Here, p(p) = 2%}“2%)) € R for p € A3u* with ¢(p) # 0 and the orientation on u we use

to compute ¢(p) is the one induced by P(w(0)).

Proof. We first assume that ¢(t) is a solution of Hitchin’s flow equation. Note that D is
open in V) and each element in D is stable. By Lemma 7.10, F' maps V) into V()

and so

#(t) = —F (uw() v (®)) , v(0) = p(0)
is an initial value problem on D. Let v(t) be a solution on a maximal interval (a’, ") in (a, b).
The pair (w(0),r(0)) = (w(0),p(0)) is an SU(3)-structure on u by Proposition 2.51 and
Proposition 2.33. Hence, the pair (w(0), u(v(t))v(t)) is an SU(3)-structure on u for all t €
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(a’,b") by Corollary 2.34. Proposition 2.33 implies that also ( (0), Sy (t)( p(v (t))u(t))>
= (w(O),u(y(t))J;‘(t)l/(t)) is an SU(3)-structure on u and that JJ*(t)V(t) = Jyq for all
t € (a/,V'). Hence, Proposition 2.51 shows that

w(0) A €T + () T2y (1)
O~ () + Tromn BEOW0)

is a Go-structure for all ¢ € (a/,0’) with Hodge dual given by

s P(0) = G0OP 4 O A () = Jo(OF 4 vlt) AT

(w(0),p(0)) is an SU(3)-structure by Proposition 2.51 with p(0) = —Jg(o)ﬁ(O). Thus,
p(0) = J3)p(0) = J}4,p(0) by Proposition 2.33. Hence, $(0) = w(0) A e’ + J;(O)p(O) =
w(0) Ae” + p(0) = ¢(0). Moreover,
© xat 80) = 1) N T = —F () T (1)) e = d (wlw() T3 ()
= (O AT )T rlt)) = d()

and so also ¢(t) solves Hitchin’s flow equations with initial value ¢(0). Hence, the unique-

|
(S

ness result in Theorem 7.7 gives us @(t) = ¢(t) and so also v(t) = p(t) for all ¢t € (a/,V).
Hence, the conditions (i)-(iv) as in the statement hold on (a’,b"). What is left to show is
that (a,b) is equal to the maximal interval of existence (a’,b’) of v(t). Therefore, it suffices
to show that tli_)rg/ v(t) = tli_{)g/ p(t) = p(a’) is in D and that also tli_)nbl, v(t) = th—>nbl/ p(t) = p(b)
is in D. But this is clear since obviously p(a’) and p(b) are in Vo) and p(a’) and p(d')
are stable by Proposition 2.48.

Conversely, if p(t) is in D for all t € (a,b) and p(t), p(t), w(t) and Q(t) fulfil (i)-(iv),
then the above calculations show that % *p(t) P(t) = dp(t). O

Proposition 7.11 allows us to prove the main theorem of this section.

Theorem 7.12. Let g be an almost Abelian seven-dimensional Lie algebra, p(0) be a
cocalibrated Go-structure on g and 0 € (a,b) > t — @(t) be the solution of Hitchin’s flow

equations with initial value ¢(0). Then

9= g + dt’*

defines a Riemannian metric on G x I with holonomy contained in SU(4). Here, G is any

Lie group with Lie algebra g.

Proof. Let ube an Abelian ideal of codimension one in g and e7 € g\u be the unique element

with g,(0)(e7,e7) = 1 and e7 L u. We decompose ¢(t), *,)¢(t) as in Proposition 7.11

9e(0)
mto

p(t) = w(t) AT+ pt), D(t) = Qt) + ep(t) AT
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with w(t) € A%u*, j(t),p(t) € A3u* and Q) € A*u*. We define a two-form w and a
complex-valued four-form ¥ on G x I by

7

e e’
w:=w0)+dtN ———, Y :=(p(t) —iu(p(t))p(t /\(dt—i >, 7.7
(0) D) (A(t) — in(p(t))p(t)) D) (7.7)
where, as in Proposition 7.11, u(p) := 99w(©) (( ))) for p € A3u* with ¢(p) # 0 and we choose

the orientation on u induced by ¢(w(0)). By Proposition 7.11, p(t) = (p(t))J;(t)p(t) and
p(t) € Vi) for all t € (a,b). Moreover,

o(w(0))
o(p)

Hence, the pair (w(0), p(t)) is an SU(3)-structure on u for all ¢ € (a,b). By Proposition
2.21,

() = p(t) +id5p(t) = pn(p(t) I p(t) + i p(0) 7% (1) (M(P(t))J;(t)P(t)>
=u(p(t)) I 5y p(t) — inp(t) p(t) = p(t) — in(p(t))p(t)

is a complex volume form with respect to J5;) = J,;) and (w(0),%(t)) is an SU(3)-structure

6(5(1)) = 6 (o)) Ty (1)) = 1(p(£)26 (T p(1)) =2 6lp) = 26(w(0)).

(7.8)

on ufor all t € (a,b). Thus, (w, V) is an SU(4)-structure on G x (a, b), invariant under the
natural left-action of G on G x (a,b). The induced metric g, v) is given by

7 7

e e
ulo() © (o()
where g(w(o),ﬁ(t)) is the metric on u induced by the SU(3)- structure (w(0),p(t)). Since

9(w,w) = 9(w(0),5(t)) + + dt?,

o(t) = w(0) A m +p(t), we get 9oy = 9w(0),5(t)) T+ (;Et)) ® (p(t)) by Proposition 2.51.
Hence, g, w) = gp1) + dt? = g.

To show that the holonomy of g is contained in SU(4), it suffices by Theorem 3.20 to
show that (w, ¥) is torsion-free. By Proposition 3.29, the torsion vanishes if and only if
dw = 0 and dRe(¥) = 0. For the computations, we denote by d7 the exterior derivative
on G. By Theorem 4.15, we know that f := ad(e7)|, has to be in sp(u,w(0)) if p(0) is
cocalibrated. Thus, d7(w(0)) = 0 by Lemma 4.3 and so d(w(0)) = 0. Moreover, d7e” = 0
by Lemma 4.3 and so de” = 0. Hence

67
dw = d(w(0)) —dt Ad (‘m(t))) -

By Equation (7.7) and Equation (7.8),
Re(W) = (p(t)) T plt) A dt — plt) A €.
Denote by F' € End (Agu*) the endomorphism of A3u* induced by f € End(u). Proposition

7.11 states that %p(t) =—F ( (p(t ))J;(t) p(t )) But then Lemma 4.3 implies

dr (o) T3y p(8)) = —F (1(p(®) Ty p(t)) A €™ = —p(t) AT

143



7.3. MODULI SPACES 144

and so
dRe(¥) = d (u(p() Jp(t) ) Adt = d(p(t)) A’
" d 7
=dy (,u(p(t))Jp(t)p(t)) Adt—dt A p(t) A eT =0.
Thus, the holonomy of g is contained in SU(4). O

Remark 7.13. We conjecture that an analogous holonomy reduction result is true in the
G3-case if the subspace u 1s non-degenerate with respect to gy (o), ©(0) being the initial
cocalibrated G3-structure. One easily sees that, analogously to Proposition 7.11, the Hitchin
flow reduces to a set of algebraic and ordinary differential equations for the induced forms
on u. One can use these equations as in the proof of Theorem 7.12 to define an SU(2,2)-
structure (w, W) on G x I with dw = 0 and dRe(¥) = 0 if the signature of gy|u is (2,4)
or an SL(4,R)-structure (w,¥) on G X I with dw = 0 and dRe(¥) = 0 if the signature
of golu is (3,3), respectively. We suppose that this implies a holonomy reduction to a
subgroup of SU(2,2) or to a subgroup of SL(4,R), respectively. To complete the proof,
only an appropriate analogue of Proposition 3.29 is missing. Note that Cabrera’s proof of
Proposition 3.29 in [MC4] uses mainly representation theoretic arguments. So it should be

possible to transfer the proof to the pseudo-Riemannian cases.

7.3 Moduli spaces

In this section, we consider the moduli spaces of cocalibrated Go-structure on seven-dimen-
sional almost Abelian Lie algebras g. This space is by definition the set of all cocalibrated
Go-structures up to automorphisms of the Lie algebra and up to a scaling factor. Remark
7.8 shows that we may easily compute the Hitchin flow for an arbitrary initial value if we
solve it for all initial values in the moduli space. We prove a result which simplifies the
determination of the moduli space if the codimension one Abelian ideal u in g is unique and
apply it to compute the moduli space on n7 ;. If u is not unique, the proof of Proposition
4.4 shows that g € {R7, hs & R4}. Obviously, the moduli space on R consists of only one
point. We prove that the same is true on hz @ R%.

We start with a proper definition of the mentioned moduli space.

Definition 7.14. Let g be a seven-dimensional Lie algebra. We set
Mg’;Q (g) := {ap € A3g*‘ © 18 a cocalibrated Gg—structure}

and
Méz (g) := {\IJ € A4g*’ dV =0, ¥ is the Hodge dual of a Gg—structure}

144



7.3. MODULI SPACES 145

Let R* C GL(g) be the subgroup given by {aidg|a € R*}. Using the natural left action of
elements in GL(g) on A3g*, we set

Ma,(g) = MZ,(g)/ (Aut(g) x R")

with the induced left-action of Aut(g) x R* on Méz (g) and call Mg, the moduli space
of cocalibrated Go-structures. Let (Aut(g) x R*), be those elements in Aut(g) x R* with

positive determinant and note that Mg, (g) is naturally bijective to

M, (9)/ (Aut(g) x R*),

via the map induced by the GL(g)-equivariant map ME’;Z (9) 2 ¢ > *pp € MY (Gs)(g) since
GL(9)x,p = GL(9)p x {—I7,I7} for all Go-structures ¢ € A3g*, cf. Lemma 2.45. We do

not distinguish in the following between these descriptions.

Remark 7.15. In general, we do not endow Mg, (g) with the quotient topology in this
thesis since we only need the moduli space as a minimal set of initial values for the Hitchin
flow on g and do not consider topological issues like compactifications of the moduli space.
Note however that if Mé2 (g) is non-empty, then it is a non-empty open subset of the
subspace ker d|pag- of Ag*. Hence, Mé2 (g) is an embedded smooth submanifold of A*g*
and so also MgQ (g) is an embedded smooth submanifold of A3g*. Both have dimension
dim(ker d|y4q+). Moreover, Aut(g) x R* is an embedded Lie subgroup of GL(g) which acts
smoothly on ME’;Q (9).

The next proposition simplifies the computation of the moduli space.

Proposition 7.16. Let g be an oriented seven-dimensional almost Abelian Lie algebra and

u be a siz-dimensional Abelian ideal of g. Choose er € g\u and set f := ad(e7)l|,. Set
MEN(g) == { ¥ € ME,(9)| guw(u,er) =0, gu(er,er) = 1}.

Then each (Aut(g) x R*), -orbit of an element in MéQ (g) intersects MgZN(g) If u is the
unique codimension one Abelian ideal in g, i.e. if g # hs®RY R, then Mg, (g) is bijective
to

MEY (9)/H(g),
where H(g) is the subgroup of (Aut(g) x R*), given, with respect to the decomposition
g = u@ span(er), by

(e 0|, s :
H(g) := { (0 sgn(det(g))) ‘ gof= 3 fog, g€ GL(u), AeR } (7.9)
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Proof. Let ¥ € MéQ (g). By Lemma 2.45 and Lemma 2.41, the stabiliser of ¥ in GL(g)
acts transitively on the set of six-dimensional subspaces of g. Hence, we may assume that
there is a basis e1,...,es € u of u, A € R\{0} and v € u such that ej,...,eg, Aer + v is
an adapted basis for U. Define a linear isomorphism F' € GL(g) of g by F(e;) := e; for
i=1,...,6 and F(e) := e;—+v. Then F is an automorphism of g, ‘71|F € (Aut(g) x R*),

and <ﬁF) .U has the adapted basis \71|61’ ce ‘71|66,sgn()\)e7. Since adapted bases are
orthonormal, (%\'F) U is in M&N(g)

Assume for the rest of the proof that u is the unique codimension one Abelian ideal
in g. By the proof of Proposition 4.4, we have g # R, h3 ® R*. Let G = \H with
H € Aut(g) and A € R* be an element in (Aut(g) x R*)__ which fixes M&N(g) Since
G € (Aut(g) x R*)_,
Using that G fixes Mg;v(g) and that it is a linear isometry between (g, gv) and (g, gg.v),

we get G(u) = u and G(ey) = per + v for certain p € R* and v € u.

we get

96.w(v,v) = ga.w(v,v) — ga.w(v,G(er)) + ga.w(v, G(er))
= ge.w(v,v) — gew(v,v) — nge.w(v,er) + gu (G (v),e7) = 0.

Thus, v = 0. Moreover,
1 1 1 1
1 =gcw(er,er) = —gcuw(per, per) = —gcw(Gler), Gler)) = —gu(er,er) = —
7 [ I 7
and so yp = +1. Set g := G|,. Then p has to be equal to sgn(det(g)) and so H(ey
G(§7) _ sgn(dft(g))er Thus

) =

(g0 f)(w) = AH([e7,w]) = A[H (e7), H(w)] = sgn(det(g)) e7, H(w)]

_ sgn(d;t(g)) (F 0 )(w).

Hence, each element in (Aut(g) x R*), which stabilises MgQN(g) is contained in H(g) and
conversely a short computation shows that H(g) is a subgroup of (Aut(g) x R*), and each

element in it stabilises M& 2N (g). This proves the statement. O
Obviously, Mg, (]R7) consists of only one point. The same is true for g = hz @ R*:

Proposition 7.17. Let eq,...,er be a basis of hs @ R* such that ey, ez, e3 is a basis of
b3 with [e1,ea] = e3, [e1,e3] = [ea,e3] = 0 and ey, ..., e7 be a basis of R*. Then {pg} is
bijective to Mg, (hg &) R4) Vg T : MéQ (hg &) R4) — Mg, (h3 &) R4) for

0o 1= €128 145 | 16T | 246 _ 257 | 34T 356 ¢ MgQ (f]?) @sz)

Proof. Set g := h3@R* and let ¢ € A3g* be a cocalibrated Go-structure. By [Brl], the sta-
biliser of ¢ acts transitively on the two-planes of g and so also on the five-dimensional sub-

spaces of g. Hence, we obtain an adapted basis (fi,..., f7) for ¢ such that fs, fa, f5, f6, f7
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is a basis of V := span(e3) @ R*. Then f; = aj1e1 +ajoes +v1, fo = asieq + aszes + vo for
A = (aij)ij € GL(2,R) and v1,v5 € V. Moreover, fj = \jes+w; with A\; € R and w; € R*
for j = 3,...,7. There exist 3 < j1 < jo < j3 < ju < 7 such that wj,, wj,, wj,;, w;, are
linearly independent. The linear automorphism F; € GL(g), defined by Fi(e;) := f; for
i =1,2, Fi(e3) := det(A)es and Fi(e;) := fj,_, for K =4,...,7 is an automorphism of
g. Let j5 € {3,4,5,6,7} be the element different from ji,...,js. Then ¢ := (Fl_l) .p has
an adapted basis (E1,...,E7) with E; = e; for i = 1,2, Ej, = ejy3 for k =1,2,3,4 and
Ej, € V. Hence, the dual basis (E',..., E7) fulfils B! = ¢’ for i = 1,2, B/ = "3 4 qie?
for certain ar € R, k = 1,2,3,4, and E’5 = \e? for some A € R*. We show that j5 = 3. If
this is not the case, then the concrete form of the Hodge dual in terms of the dual adapted

basis (E',..., E") given in Equation (2.26) shows that
Ko = Qo — e A p.

for certain Qg € span(e', e?)AA3g* and p € A3 (RA‘)* with p # 0. But %, cannot be closed
since )y is closed and d (63 A p) = —e'2 A p # 0. Hence, j5 = 3. Using again Equation
(2.26) to write down %,¢ concretely, we see that d (x,¢) = 0 forces a1 = az = a3 = a4 = 0.
By applying an appropriate automorphism of g = hz®R? which respects the decomposition
and acts trivially on b3, we see that

1
<€11 €2, Xe?)v €4, €5, €6, €7

is an adapted basis for ¢. The linear isomorphism F, € GL(g) of g defined by Fs(e;) := Ae;
for i # 3 and Fy(e3) := A2e3 is an automorphism of g and (Fg, %) .¢ has the adapted basis

(e1,e2, €3, €4, €5, €6, €7)
Hence, (Fg, %) .0 = o and the statement follows. O

Finally, we determine Mg, (n7,1) with the use of Proposition 7.16. This case is par-
ticularly interesting since n7 1 is nilpotent and admits a co-compact lattice. Moreover, as
we will see in Proposition 7.22, the Hitchin flow yields full holonomy SU(4) for certain

elements in Mg, (n71).

Lemma 7.18. Let eq,...,e7 be the basis of ny1 given in Table 7.8. Denote by u =
span(ey, ..., ep) the unique codimension one Abelian ideal in ny 1. Let H(ny 1) be the sub-
group of (Aut(nz 1) x R*)  defined by Equation (7.9) and H(nz 1,u) := H(n71) N GL(u) C
GL(u). The action of H(nz1,u) on

{Q e AN

1
dQY=0,Q= §w2, w e A% non—degenerate}
has ezactly two orbits represented by Q4 := —e?3%6 T (61346 + 61245).
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Proof. Set Vi := span(ey, ez, e3) and Va := span(ey, e5,€6). A short computation shows

A ABA
Hinz1,u) = { (o A >

A 0
where GL(3,R) x R* is the subgroup
0 M

A€ CGL(3,R), BER>3 )¢ R*} = (GL(3,R) x R*) x R3*3,

A€GL(3,R), A€ R*} of H(nr1,u)

Is B
and R3*3 is the normal subgroup { (5 T >
3

closed four-form can be computed to be Q = Qq + Qs with

B e R3X3} of H(n7,1,u). The most general

0 201162356 + 62263164 + 63361245 + c19 (62364 + €3156) + Co3 (63145 + €1264)
+ 3 (62345 + 61256) c A2V1* A A2V2* — A2Vv1* ®A2Vv2*
Q2 :d2361456 o d13€2456 + d1263456 c V'l* A A3V'2* — Vvl* ® A3Vv2*

where all coefficients are arbitrary real numbers. We arrange them in a symmetric matrix
C = (cij)i; € R*3 and an anti-symmetric matrix D = (d;;);; € R3*3 by setting co; 1=
C12, €31 = C13, €32 = co3 and doy := —djo, d31 := —di3dsa := —ds3. Hence, we may
describe the most general closed four-form by a pair (C, D) € Sym(3) xs0(3) of a symmetric
matrix C' and an anti-symmetric matrix D in three dimensions. The subgroup GL(3,R) x
R* acts on (C, D) by

(GL(3,R) x R*) x (Sym(3) x s0(3)) > ((4, ), (C, D)) —

1 1 adj(A™1) _, [adj(A~1)\" 1
——_ACA',———_ADA') = ADA!
()\Qdet(A)Q ¢ " A3 det(A)2 ) ( N A " A3 det(A)?

This can be seen by looking at the isomorphisms A2V ®@A2Vy — Vi®@V; and Vi @A3Vy —
A%V given by

AQVI* ® AV 3 (w1 ®wa) —wiaerns @ Fu(walesss),

Vl* & AngQ* ) (Oé & V) — (V_I 6456) . (Oé_l 6123)

where F': Vo — V] is the isomorphism given by F(e;) := e;_3 for i = 4,5,6. By Sylvester’s

law of inertia, there exists A € GL(3,R) such that ACA! = diag(d1, 82, 83) with 81, da, 03 €

{1,0,—1} and & > &, > 3. By multiplying A with —I3, we may assume that A €
: _ __A — di(A™h) _ A _

GL™(3,R). Setting A := s and A =1, we get 2L = iy = A. Thus, each

H (n71)-orbit of an element (C,D) € Sym(3) x s0(3) contains an element of the form

(diag(d1, 02, 63), D) with 61, 02,03 € {1,0,—1} and 6; < Jy < d3.

Let Q € A*u*, Q = Q1 + Qp with Q1 € A2V A A%V and Qo € Vi A A3V, be a four-
form as in the statement and assume that the corresponding element in Sym(3) x so(3)
is given by (diag(d1,d2,03), D) with d1,d2,85 € {1,0,—1} and §; < dy < d3. Moreover,

let w € A?u* be non-degenerate with Q = %wQ. By Lemma 2.4 and Lemma 5.15, the
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length of QO = §;e?3%6 + §ye!346 53124 ig three and so §; #£ 0 for i = 1,2,3. Moreover,
Lemma 2.4 asserts that 610203 = —1 and so (d1,02,93) = (—1,—1,—1) or (d1,092,d3) =
(—1,1,1). Generally, an element B € R3*3 acts on (C,D) € Sym(3) x so(3) such that
B.(C,D) = (C, D + G(B, C)) for some bilinear map G : R**3 x Sym(3) — s0(3). In our
case, i.e. for C' = diag(dy, 92, d3), we obtain G(B,C) = (gi;j)ij € $0(3), gi2 = d1ba1 — d2b12,
g13 = 01b31 — d3b13 and go3 = Jabsa — d3bag. Thus, we are able to find B € R3*3 such that
B.(diag(61, 02, 83), D) = (diag(61, 62, d3),0). Hence, each H(n7,1,u)-orbit in

{Q e A

1
dY=0,Q = §w2, w e Au* non—degenerate}

contains QO = —e?396 — 1346 _ 1245 op ()  — 2356 | 1346 4 01245 That one H(n71,u)-
orbit cannot contain both follows by the uniqueness of (d1,d2,03) in Sylvester’s law of

inertia. O

Lemma 7.18 allows us to compute the moduli space of n7 .

Proposition 7.19. Let eq,...,e7 € n7 1 be the basis of ny 1 given in Table 7.8. Then the
subset

arp AR ; 2p2 4 4 .. ; N N
{762350 + sgn(b) (61245 + 61346) T qet237 _ a 4b+ 2347 1357 4 1267 4 04567 e (0,1], a > 0, b € RY,
m

2 a?b? + 4
of A4n§,1 is bijective to Mg, (n7,1) via  : Mé2 (n71) = Mcg,(n71). The cocalibrated Go-
structure ©qp,,, having the above four-form with the same parameters as Hodge dual and

inducing the orientation in which (e, eq, es, €5, €3, €, €7) is oriented is given by

212 2192
a“b® —4 a(a“b* +4 ab
P =7 — sgn(b) (A7 4 M) 4 TR (sﬂ)3 -5

n @6126 + bue™ 4 a®b* + 46246 B a®b* + 46345 B Lb26456_
2 47 4 2

So Mg, (n71) is also bijective to {‘Pa,b,u ‘,u, €(0,1], beR*, 0<a< %, u? > —%}

vig T : Mé2 (n71) = Mg, (n71).

Proof. Let u = span(ey, ..., es) be the unique codimension one Abelian ideal in ny; and fix
the orientation on u in which the ordered basis (eq, e4, €2, €5, €3, €g) is oriented. We remind
the reader that %w% = %w% for non-degenerate two-forms wi,ws € A?V* on a real six-
dimensional vector space V exactly when w; = fws, cf. Remark 2.7. Hence, Proposition
2.51 and Proposition 2.33 (c¢) show that

1
(w,p) = U= §w2—|—p/\e7.

defines a one-to-one correspondence between SU(3)-structures (w, p) € A%u* x A%u* on

u such that the orientation induced by w on u coincides with the fixed one and Hodge
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duals U € A*g* of Ga-structures on g such that gg(u,e7) = 0 and gy(er,e7) = 1. The
induced action of an element diag(g,sgn(det(g))) € H(nz1) on the pair (w, p) is given by
sgn(det(g))(g.w,g.p). Since g € H(nz1,u), Lemma 7.18 shows that each H(nz)-orbit of
an element in Mg;v (n7,1) contains an element W € A’nf, such that the corresponding
w € A%u* is equal to wy 1= e +e?® + €30 or to w_ := e!* — €25 — €36 and that there is no
H(n71)-orbit containing elements ¥y € A4n$71 and ¥q € A4n$71 such that the corresponding
w; € A%u* and wy € A%u* are equal to wy and w_, respectively. Thus, to determine
Mgév(nm), we have to determine, for i = 4, —, the set of all p € A%u* such that (w;, p) €
A%u* x A3u* is an SU(3)-structure modulo the subgroup H; of H(n71,u) which consists of

the elements with positive determinant in H(nz 1, u) which stabilise w; and those of negative

determinant which map w; onto —w;. One obtains

Lo ubc
Hy =4 [+ * Ce0(3),DeSym(3), peRy,de{—1,1}
0 uC

=(0(3) x Ry X Zgy) x Sym(3),

H_

Lo ubcC
wo Ce0(1,2), DeSym(1,2), pe Ry, 5 € {~1,1}
0 ouC

=(0(1,2) x Ry X Zy) x Sym(1,2),

where Sym(1,2) := { A € R3*3| ([12A) = L 2A}.
Set fi :=ejy3 for i =1,2,3, Vi := span(ey, e2, e3) and Vs := span(fi, fa2, f3). The most

general three-form p € A3n§71 is given by

3 3
p=ae® Z aije VT2 A I 4 Z bijel A fIT1IH2 4 p £123
ij=1 ij=1
with (a, A = (aij)ij, B = (bij)ij, b) € R x R33 x R3*3 x R, where we compute the super-

and subscripts modulo three. It is easy to check that p € V,,, i.e. p Awy = 0, exactly
when A, B € Sym(3) and that p € V,,_ if and only if A, B € Sym(1,2). Note that this is
a necessary condition for the pair (w, p) € A%u* x A3u* being an SU(3)-structure.

Let now (w, p) € A%u* x A3u* be an SU(3)-structure on u with w = w; or w = w_ and
describe it equivalently by (a, A, B,b) € RxSym(3)?xR or (a, 4, B,b) € RxSym(1,2)?xR,
respectively. First, we show that then a # 0 or det(A) # 0. Assume the contrary, i.e. that
a = 0 and det(A) = 0. Then there exists v € V5 such that v_ Zij:l aije Y2 A fI = 0.
Denote by v° C V' the annihilator of v in V5 and consider it then as a subset of V*. Let
a € v"\{0} and w € V4. Then aAp € A2V AA2P @V AA3VS and wap € Vi A @ A2V
Thus, a A (wip) A p = 0 and Equation (2.16) shows that Jja € VP 22 V. Since w? €
A2V A A2V, we obtain

a/\J;a/\wi:O,
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and Equation (2.17) gives us g, ) (o, @) = 0, a contradiction. Hence, a # 0 or det(A) # 0.
The action of an element (C, i, d) € O(p,3 —p) x R4 X Zy on a quadruple (a, A, B,b) €
R x Sym(p, 3 — p)? x R is easily computed to be

3
pua e nt 1oy - —1Nt ob
8).(a, A, B,b) = [ -2 spad A ¢ tBad L
(C’IU’7 ) (a’? I Y ) <det C)? lu’a‘ J(C ) (C ) ’MC a J(C ) 7M3det(c))
B wla SuCAC—! C—tBC! ob
~ \det(C)’" det(C) ' pudet(C)’ p3det(C) )"

The action of the subgroup Sym(p, 3—p) is more involved and not nicely described in terms
of (a, A, B,b). However, for (a, A, B,b) € R x Sym(p,3 — p)? x R and D € Sym(p,3 — p)
we get

D.(a,0,0,0) = (a,—aD,aadj(D), —a det(D))

and D.(0, A, B,b) = (0, A, B, V') for certain B’ € Sym(p,3 — p) and ¥’ € R. In particular,
we see that Hy acts in such a way that it maps quadruples (a, A, B, b) where the first entry
does not vanish (resp. vanishes) again to quadruples where the first entry does not vanish
(resp. vanishes). We distinguish the cases a = 0 and a # 0.

First case a # 0:
Let (a, A, B,b) € RxSym(p,3—p)? xR be given with a # 0. By the properties of the action

of the group Sym(p,3 — p) on R x Sym(p, 3 — p)? x R given above, we see that there exists
D € Sym(p,3 — p) such that D.(a, A, B,b) = (a,0,B’',t) for certain B’ € Sym(p,3 — p)
and V' € R.

Assume first that B’ is diagonalisable over the reals by conjugating with an element
in O(p,3 — p). Note that this is always possible for p = 3. Then the H;-/H_-orbit of
(a, A, B,b) contains an element of the form (a, 0, diag(A1, A2, A3), ") for certain Ay, Ao, A3 €
R. A short computation shows that

Ap) = (a2d2 +4a)\1>\2)\3) (6142536>®2

and so we must have aljA2\3 = adet(diag(A1, A2, A3)) < 0. Hence, for appropriate
pas pa, p3 € R, we get

dlag (_%7 _%7 _%> .(G,, 07 diag()‘h )‘27 )‘3)7 b/) = (a7 diag(ulv M2, /J/3)7 Oa b”)

for a certain b” € R*. Obviously, pu; # 0 for some ¢ € {1,2,3}. Thus, the explicit
description of the action of O(p,3 — p) x Ry x Zy on (a,diag(u, u2, 13),0,0") given
above shows that there is exactly one element in the (O(p,3 —p) x Ry x Zg)-orbit of
(a,diag(p1, po, 13),0,0”) which is of the form (g,diag(r,p,1),0,h) with g > 0, u < 1
and additionally p > 0 and 7 < p if p = 3. In fact, to get uniqueness, we need in the
case p = 3 that ur # 0 and for p = 1 we need p > 0. But these conditions will follow

from the computations given below. So suppose now that we have p € A3g* given by
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(g,diag(7, u,1),0, h) with the above properties. Since (w, p) is an SU(p, 3 — p)-structure,
we must have ¢(p) = 2¢(w) by Corollary 2.34 and this is equivalent to
g*h? + 4

dpuh
Imposing this condition, the principal minors of the induced metric are given by

(g’h* +4) (?h*+4)* (?h* +4)° e(g*h® +4)
B T e 0 16ph? 0 4k

with e = —1if p=3 and e = 1 if p = 1. All these minors are positive if and only if u > 0
and eh > 0. Hence, (g,diag(r,pu,1),0,h) = (g,diag (—QQf:;r4,u, 1) ,0, h) with ¢ > 0,
p >0 and eh > 0. Note that

272 272
. g°h® +4 . g°h® +4 4
—1).{ D1. d - u,1 h = d - u,l —

2p2
with —1 € Zo C Hy/H_ and D; := diag (—W, 2?“, 5) € Sym(p,3 — p). Hence, we

—4=g?h? +4phr & 7= —

1

may additionally assume that g < ‘%‘ Moreover, if p = 3, we must have —9241:;“ 1< 1 and

_g*h’+4
4h

this is equivalent to u? > . This inequality is also true if p = 1 since then h > 0.
Hence, there is an element (g,diag (—9255;4,/;, 1) 70JL> with 0 < u < 1, eh > 0,
0<g< % and p? > —92273;“4 in each Hy-/H_-orbit of an element (a, A, B,b) with a # 0.

We claim that there is exactly one. Therefore, let E € Hy/H_ be such that it maps

(g,diag (—925:4,;1, 1) ,O,h) again to an element of the same form and with the same
relations for the parameters. Write E = C'D with unique C' € O(p,3 — p) x Ry X Zs and
D € Sym(p, 3 — p). The exact form of the action of C' on elements in R x Sym(p, 3 —p)? x
R requires that D acts in such a way that the third entry of D.(g,diag(7, u,1),0,h),
which lies in Sym(p,3 — p), is 0. This is a quadratic equation in the components of
D and can be solved by the Maple function solve. The two solutions are D = 0 and

D = Di, D; as above. The uniqueness now follows by looking at the explicit form of

Dq. <g,diag (—925,?4,/1, 1) ,0, h) computed above and taking into account our remark
above that in each (O(p,3 — p) X R4 X Zg)-orbit of an element of the form (¢, diag(7’/, i/,
1),0,h") with ¢’ > 0,0 < ¢/ <1, 7/ # 0 and additionally 7" < u’ if p = 3, there is only the
element itself which is of the same form and which fulfils the same relations.

Next, we have to consider (a,0, B’,V’) such that B’ is not diagonalisable over the reals
by conjugating with an element in O(p,3 —p). Then p = 1. Moreover, by [DPWZ], cf. also
[MX], B’ is then not diagonalisable over the reals at all and either B’ can be brought by an
element of O(1,2) into a block diagonal matrix with a two-by-two block and a one-by-one
block or the Jordan normal form of B’ consists of one block of size three. Hence, B’ is

conjugate to

—c3 C2 or 0 o %
1 1
C —_—— —_
4 2 2 o

152



7.3. MODULI SPACES 153

for certain ¢, ¢, c3, ¢4, 0 € R under the action of O(1,2). In the first case, the sub-block

1 ¢ . . . . . .

( 3) is not diagonalisable over the reals and so the determinant of it, given by
—C3 C2

. a2b/2+4
da(cy cg—&-cg) !

Imposing this relation, the second principal minor is given —a?(cico + C%) and so not

cica + c3, has to be non-negative. Corollary 2.34 yields the identity ¢y =

positive. Hence, this case cannot occur. The second case can be excluded analogously.
Corollary 2.34 yields —4 = a?b? + 4ac® and imposing this relation, the second principal
minor is given by —a?0? and is negative, a contradiction.
Second case a = 0:

Then A € GL(3,R). We first show that there is exactly one element in the Sym(p, 3 — p)-
orbit of (0, A, B,b) which is of the form (0, A,0, ¢). Tt suffices to show that the linear map
Sym(p,3 —p) 2 D — G(D) € Sym(p,3 — p), defined by D.(0,A4,0,0) = (0,4,G(D),g)
with g € R, is a linear isomorphism for which we only have to show that its kernel is {0}.

The three-form p € A2V;* A Vi corresponding to (0, A, 0,0) is given by

3
p= Z aije TV fI e N2V AV
ij=1
Denote by p the part of D.p which is in V;* A A2Vy, i.e. the one corresponding to G(D).
Then we have
3 3

p= Z Qij diJrlk ez+2 /\fk] - Z aij di+2k ez+1 /\fk]
=1 irjik=1
3 3
- Z €imr Qij Ak, € A fk] - - Z Cimr €jks Aij die € N fS—H s+

i,m,r,j,k:l i7m7T7j7k73:1

- - Z Eimr (ai X dm)s er A fs+1 S+27
i,m,r,s=1
where a; == (a1, a:2,a;3)" € R3 for i = 1,2,3, dy, := (din1, dm2, dms)t € R3 for m = 1,2, 3,
x is the standard cross product on R? given in Example 1.12 (a) and the subscript s

denotes the s-th entry. This is 0 exactly when
a1xdgzagxdl,al><d3:a3><d1,a2><d3:a3><d2.

Hence, (a1 x a2) x (a1 x d2) = (a1 X az) X (ag x d1). Using the Grassmann identity
v1 X (v2 X v3) = (v1,v3)vy — (v1,v2)vs and the fact that a1 and ag are linearly independent
since A € GL(3,R), we get that d; and dy are orthogonal to span(a; x ag). Doing the
same for the other two equations, we get that for all 7,5 € {1,2,3}, d; is orthogonal to
span(a; X a;) and so to al-l. Hence, d; = a;a; for certain oy € R, ¢ = 1,2,3. Using again the

above equations, we see that as = —aq, a3 = —aq and ag = —as. Thus, oy = as = a3 =0
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and the map G is a linear isomorphism. Thus, we may find D € Sym(p,3 — p) such that
D.(0,A,B,b) =(0,A,0,V) for some b’ € R.

Analogously to the first case, we can exclude the case that A is not diagonalisable over
the reals by conjugating with an element in O(p,3 — p). Then we may apply the same
computations as in the first case and see that (0, A,0,b’) contains a unique element of the
form (O,diag (—ﬁ,,u, 1) ,0, h) with 1> ¢ > 0, eh > 0 and p? > —%, where again € = —1
if p=3and e =1 if p=1. This finishes the proof since the corresponding Ga-structures

are easily computed. O

7.4 Hitchin flow on some examples

In this section, we consider the Hitchin flow on the Lie algebras b3 & R* and n71. We
show that the Hitchin flow on h3 @ R* yields for all initial values a Riemannian metric
with holonomy equal to SU(2). Moreover, we show that the Hitchin flow on n7; with
initial value ¢gp,, € A3n§71 as in Proposition 7.19 yields for “generic” parameters b, 4 a
Riemannian metric with holonomy equal to the maximal possible one, namely SU(4).

We begin with the Hitchin flow on hs @ R*.

2
Proposition 7.20. Set f : (—oo,%) = R, f(t) := (—%t—i— 1)g and let Hs be the simply-
connected Lie group with Lie algebra 3. The mazimal solution p(t) : (—oo, %) — A3g* of
the Hitchin flow on g := hs ® R* with starting value p(0) = @o, wo as in Proposition 7.17,

s given by

90(” — f(t) (6123 + 6145 + 6167 + e246 o 6257) o (6347 + 6356)

f(t)
and the induced Riemannian metric on Hz x R* x (—oo, %) 1s given by
1 [
g=[f(t) (' ®e' + 2 ®e?) +m63®€3+261®61+dt2,
1=4
where €', . .., €7 is a basis of the left-invariant one-forms on Hz with de® = —e'? and de’ = 0

for i # 3. Moreover, if ¢g € A3 (hg @R4)* 1s an arbitrary cocalibrated Go-structure on
bs®R* and @(t) : I — A® (hs @ ]R4)* is the solution of Hitchin’s flow equations with initial
value (0) = Py, then the induced Riemannian metric g := gz(t) + dt> on Hz x R? x I has
holonomy equal to SU(2).

Proof. Obviously, ¢(0) = ¢o. Moreover, one can compute that
*o(t) = —f (1) (61247 + 61256) _ 1346 | (1357 4 2345 | (2367 , 4567

Note that the explicit form of %, p(t) also follows from the fact that

(\/%61,\/%627\/%63,64,65,66,67)
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is an adapted basis for ¢(t). Since de® = —e'?, de? = 0 for i # 3 and f(t) = — \/%, ©(t)
fulfils Hitchin’s flow equation, i.e. % *p(t) (1) = dp(t).

The adapted basis given above shows that the Riemannian manifold (Hs x (—oo, %) ,
g := (1) +dt?) is the direct product of the Riemannian manifold (Hsx (—oc, 2)  h(t)+dt?)
and of the Riemannian manifold R* endowed with the standard metric. Here, the metric
h(t) is given in the above left-invariant frame ej,eq, e3 of Hs by diag (f(t),f(t), ﬁ) €
GL(3,R). By Theorem 7.12, the holonomy is a subgroup of SU(4) which acts trivially on a
four-dimensional subspace. Thus, Hol(g) = {e} or Hol(g) = SU(2), cf. also [J3, Theorem
10.5.7]. A short computation shows that the Riemann curvature tensor does not vanish.
Therefore, Hol(g) = SU(2) for the initial value pg € A® (h3 & R4)*. By Proposition 7.17, all
cocalibrated Ga-structure @ on hs @ R? lie in the (Aut (hg @ ]R4) X ]R)—orbit of . Since
Hj is simply-connected, all Lie algebra automorphisms lift to Lie group automorphisms
and, by Remark 7.8, the Riemannian manifold obtained by the Hitchin flow with initial

value ¢p has also holonomy equal to SU(2). This finishes the proof. O

Remark 7.21. The explicit Riemannian metric of holonomy SU(2) obtained in Proposition
7.20 is the Riemannian product of the Riemannian metric obtained in [ChiF'i] by the Hitchin
flow for some SU(3)-structure on hs ® R and of R with the standard metric. This is no
surprise since, more generally, if g is any siz-dimensional Lie algebra and (w(t), p(t)) is a
solution of the Hitchin flow on g with initial half-flat SU(3)-structure (wo, po), then, for any
non-zero o € (g ® R)™ lying in the annihilator of g in g® R, p(t) == w(t) Aa + J;(t)p(t)
1s a solution of the Hitchin flow on g & R with initial cocalibrated Go-structure pg =
wo A+ Jy po, cf. Proposition 3.37 and [Sto].

Next we consider the Hitchin flow on n7 ;. In Proposition 7.19, we described the moduli
space of all cocalibrated Ge-structures by a set of three-forms ¢qp,, € A3n$71 depending
on three parameters a, b and u. The solution of the Hitchin flow with arbitrary initial
value ¢, seems to be very hard to obtain. One reason for the difficulties is that the
Euclidean metric gy, , , is, in general, not diagonal in the basis e1,...,e7 of n71 given in
Table 7.8. However, if a = 0, it is diagonal and it possible to explicitly solve the Hitchin
flow. One gets that the Euclidean metric g, ;) stays diagonal and the Hitchin flow yields,
for “generic” b and p, a Riemannian metric with holonomy equal to SU(4), which is the

maximal possible one by Theorem 7.12.

Proposition 7.22. Let

2 2p? +4
b#070§a§b’70<uglvﬂ22_a4b—i_

be the space of parameter values for the moduli space of cocalibrated Go-structures on ny 1

P = {(a,b,,u) eR3

} CR3  (7.10)

and denote for (a,b,p) € P by @ap, € A3n§71 the cocalibrated Go-structure on ny 1 given

in Proposition 7.19. Moreover, let N7 1 be a Lie group with Lie algebra ny 1.
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(a) Let (0,b,1) € P be given. Define functions f; : R — R for i =1,2,3 by fi(z) :=
—:E—l-i, fo(z) :=x+p and f3(z) :==ax+1. Set I := (—,u, i) and 1 := <i,oo>
Let x : Iinge — R be the maximal solution of the initial value problem

dx 1
il b\/bfl 5 ) , x(0) =0. (7.11)

Then the mazimal solution ¢(t) of the Hitchin flow on ny 1 with initial value ¢(0) =

®o,b,u 05 defined on the interval Loz, T(Imaz) = Lsgnp) and ¢(w) @ Ignpy — A3n§71,
defined by p(x(t)) := p(t) for all t € Lnax, 1s given by
=\V/bf1(2) fa() fa(z) ("7 = sgn(b) (e*7 + &7 e
( ( )) b\/bf1(x) f2(2) f3(z)

bf2(1‘)f3(30)6156+ Meﬂtﬁi bfi(z) fa(x) o345
fi(z) fa() fs(z

—_

+ sgn(b)

~—

(7.12)

The induced Riemannian metric g on N71 X Iy 18 given in the variable x by

3 1 S o
g :; @) e'®e + ; bfi—s(z)| e @€ + bfi(x)fa(z)fz(x) " @€ (713)

+ b2 f1(z) fo(x) f3(2) dz ® da.

For an open and dense subset of Py := PN {0} x R?, the holonomy of g is equal to
SU4).

(b) There ezists an open neighbourhood U C P of (0,1,%) in P such that for all (a,b, j1) €
U any solution ¢ : Iop, — A3n$71 of Hitchin’s flow equations with initial value
©(0) = papu induces a Riemannian metric gop, on Nz1 X I(qp,y with holonomy
equal to SU(4).

Proof. Let (0 b,u) € P. Note that Iy, is the maximal interval around x = 0 for which

b\/bf1(z) f2(x) f3(z) # 0. Hence, by separation of variables, the unique maximal solution

T Imam — R of the initial value problem
dx 1

[ b\/bf1(z) f2(2) f3(z) #0) =0

fulfils #(Lnaz) = Lsgn(y) and  is a strictly monotone diffeomorphism from Lyaz t0 Isgn(s)-

We define ¢ : Ige — A3n71 by ¢(t) := @(x(t)), where ¢ : b — A3n$71 is defined by

Isgn(
Equation (7.12), and check that it is a solution of the Hitchin flow with initial value g .
Note that obviously the three-form ¢ : I — A3n§71 cannot be extended to the boundary
of I nae since ¢ cannot be extended to the boundary and 8o I, is the maximal existence

interval if ¢ is a solution of the mentioned initial value problem.
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Obviously, we have ¢(0) = @(x(0)) = @(0) = ¢op,, since x(0) = 0. A dual adapted
basis of @(z) is given by

—/bf1(x T T 67,8 n(b bf1(x 64, sgn(b) e, Vb 5 sgn(b) 2, —sgn(b) 63,7 bfs(x 66>
( f1(2) f2(x) f3(z)e’, sgn(b)/|bf1(x) o @] VIbfa(z)le " hhG VDR bf3(z)

and so we obtain the identity

ko) B(x) = — €25 4 sgn(b) (245 + e134) _ ) (2)e2H7 — fy(w)e T
+ f3(@)e' T 17 fi(@) fo@) f ()T

for the Hodge dual. Using %% = —b\/bfl(z);Q(m)f3(w), fi(z) = =1, fo(z) = fi(x) = 1 and
fa(z), f3(x) >0, bfi(x) > 0 for all z € Iy ), one obtains the identity

d d N

pr (xomy(t)) = 7 (*p(a() P((1)))

1 . 1
- _ ( )) 2347 (:C(t)) 61357

NG WhfLf2fs

1 1267 f2f3—f1f3—f1f2> 4567
bm(:p(t)) + b< O (z(t))

=d(@(z(1)) = d(p(t)).

Hence, ¢(t) is a solution of Hitchin’s flow equations with initial value ¢g, .. Since adapted

bases are orthonormal and Ccll—f = the induced Riemannian metric g =
VORE f2 (@)f3(2)’

9p(z)t+ (ii)g dz? has the claimed form on M := N7 x Lsgn(v)- To determine the holonomy of
dz

g, we use Maple to compute the components of the Riemann curvature tensor RY € Q?°M ®
End(TM) with respect to the global frame (el,...,e7, %). Note that the components
depend only on = € Iy, 4). By the theorem of Ambrose-Singer, cf. Theorem 3.22, V), :=
span(Rp(v,w)|v,w € T,M) is a subspace of the holonomy algebra hol,(g) for all p €
M. For arbitrary (0,b,u) € P, we compute dim(V{.)) = 15 with the use of Maple by
determining the rank of R( 0 € End (A2T(670)M). However, Maple assumes “generic”
parameter values b, u, i.e. it ignores that certain polynomial combinations of b and u can
get zero. So we can only ensure dim(V|, )) = 15 for an open and dense subset of . For
this subset of Py, we get that dim(Hol(g)) > 15 and so Hol(g) = SU(4) since by Theorem
7.12 Hol(g) is a Lie subgroup of the connected 15-dimensional Lie group SU(4). For the
concrete values (0,b, 1) = (0,1, 3), we calculate dim(Vie,0)) = 15 and so dim(V{)) = 15 is
also true for any solution of the Hitchin flow with initial value ¢, , € A3n§71 and (a, b, 1)

in a small open neighbourhood U of (0,1,1) in P. Hence, (b) follows. O

Remark 7.23. By Theorem 7.12, the Hitchin flow on an almost Abelian Lie algebra yields
Riemannian metrics with holonomy contained in SU(4). We saw that SU(4) can be achieved
and that the holonomy can also be a proper non-trival subgroup of SU(4), c¢f. Proposition
7.22 and Proposition 7.20, respectively. The holonomy group can also be trivial, which is

the case when the initial value is one of the flat Go-structures given in Theorem 4.20.
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Outlook

We encountered in this thesis several problems which remain unanswered and may be
considered in future research. We remarked at the beginning of Chapter 7 that the inves-
tigation of the Hitchin flow for cocalibrated G§-structures on Lie algebras is an ongoing
project. Hence, many of the open problems are related to the Hitchin flow. Neverthe-
less, there are still some interesting open questions related to the classification of certain
structures on six- and seven-dimensional Lie algebras which remained unsolved in this

thesis.

e In Remark 6.15 we already noted that for the construction of half-flat SU(3)-struc-
tures on certain six-dimensional almost nilpotent Lie algebras h, we constructed
case-by-case cocalibrated Ga-structures on b & R using that the Chevalley-Eilenberg
differential on these Lie algebras is not too complicated. Hence, there is some hope
to generalise our methods from the almost Abelian case to other types of almost

nilpotent Lie algebras and get analogous classification results for these types.

e Another missing classification is the one of almost Abelian Lie algebras g with codi-
mension one Abelian ideal u admitting a parallel G3-structure with degenerate u.
In Section 4.4, we saw that a parallel G3-structure on such a Lie algebra with non-
degenerate u is flat. After the submission of this thesis, the author found examples
of parallel Gj-structures on almost Abelian Lie algebras with degenerate u which
are not flat, similarly to the pseudo-Riemannian symmetric spaces found by Kath
in [Kath2|. A further investigation of this phenomenon seems to be worthwhile in

future work.

e In Chapter 5, we obtained a classification of the direct sums g = g4 & g3 of four-
dimensional Lie algebras g4 and three-dimensional Lie algebras gs admitting a co-
calibrated Go-structure. One possible direction for future work is to classify also
the direct sums of four- and three-dimensional Lie algebras admitting cocalibrated
G3-structures. In Remark 5.11, we already showed that an analogue of Proposition
5.10 is true for left-invariant G3-structures on Lie groups. Using this analogue, one

obtains, analogously to the proof of Proposition 5.12, that direct sums g4 @ gs with
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g3 € {s0(3),50(2,1),e(2),e(1,1)} always admit cocalibrated G3-structures and that
direct sums g4 @ b3 admit cocalibrated G3-structures if g4 admits a symplectic two-
form. Similarly, one can generalise the proof of Proposition 5.16 to get an analogue
obstruction to the existence of cocalibrated Gj3-structures as the one in Proposition
5.16 for the Go-case. Besides, one may also try to adapt our methods to calibrated
G§-structures to get a classification of the direct sums g = g4 @ g3 which admit such

structures.

e Cocalibrated Ga-structures on arbitrary seven-dimensional manifolds admit a unique
Go-connection V¢ such that the corresponding torsion tensor 7€ is skew-symmetric,
cf. [FI]. An investigation of this characteristic connection for cocalibrated Go-
structures on Lie algebras may turn out fruitful. For example, one may find non-flat
cocalibrated Ga-structure with harmonic torsion tensor 7T on Lie algebras. Cocal-
ibrated Go-structures of this kind on arbitrary manifolds are partial solutions of
Strominger’s equations |[Str| in type II superstring theory with constant dilaton, cf.
|[FI]. Examples of such structures have been found in [Fril| and, very recently, have

been further investigated in [Fri2].

e Asalready stated in Chapter 6, the existence problem of half-flat SU(3)-structures on
Lie algebras remains unsolved only for the class of six-dimensional indecomposable
solvable Lie algebras with four-dimensional nilradical. A classification of all such
Lie algebras has been obtained by Turkowski in [Tu2| and so one may try to finish
the classification using this list. One major obstacle in this case is that these Lie
algebras are not almost nilpotent and so the Chevalley-Eilenberg differential is more
involved. In particular, the construction of examples is much harder, ¢f. Remark
6.15. Note that also the1 aplplication of our obstruction may be more difficult since

the exceptional case A;g’_g @ to in Theorem 6.9 has four-dimensional nilradical.
For the Hitchin flow there are several interesting future research directions:

e First, one may try to prove the conjecture given in Remark 7.13. Namely, that the
Hitchin flow on an almost Abelian Lie algebra g with initial value a cocalibrated
G3-structure such that a codimension one Abelian ideal u has signature (2,4) or
(3,3) yields a pseudo-Riemannian manifold with holonomy contained in SU(2,2) or
SL(4,R), respectively. Also the the Hitchin flow on g with degenerate u may be of

interest.

e One may consider the moduli space of and then the Hitchin flow for cocalibrated G3-
structures on ny ;. A subspace of this moduli space is given by three-forms of the form
©0,p,, With different values of b and p as in the Gg-case. For these initial values, we

conjecture that the outcome for “generic” parameter values is a pseudo-Riemannian
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manifold with holonomy equal to SU(2,2) or SL(4,R), respectively, depending on

the signature of a codimension one Abelian ideal u.

e Similarly, one may look at the moduli spaces of and the Hitchin flow for cocalibrated
Ga-structures on other almost Abelian Lie algebras. An interesting question is if one
can characterise the cocalibrated Ga-structures on almost Abelian Lie algebras for

which the Hitchin flow yields the maximal possible holonomy SU(4).

e There are examples of Lie algebras where the IHitchin flow for cocalibrated Go-
structures yields full holonomy Spin(7), cf. [AFISUV]. One may try to find more such
examples and therefore consider also the moduli space of cocalibrated Go-structures
on Lie algebras which are not almost Abelian. Similarly, it is of interest to find also
examples of cocalibrated G3-structures where the Hitchin flow yields full holonomy
Sping(3,4). In contrast, one may try to prove analogous holonomy reduction results
for particular classes of Lie algebras as the one for seven-dimensional almost Abelian

Lie algebras.

The most interesting future project is the investigation which of the incomplete pseudo-
Riemannian manifolds (G x I, g) with parallel G§-/Spin®(7)-structure ® obtained by the
Hitchin flow with left-invariant initial value on a Lie group G can be extended to a complete
pseudo-Riemannian manifold. One natural assumption is that the extension is given by
a complete manifold N with parallel G§-/Spin®(7)-structure ®x which admits a cohomo-
geneity one action of G preserving the G§-/Spin®(7)-structure on N and containing G x
as an open dense subset such that ®, is a smooth extension of ® to IN. Note that the first
complete Riemannian examples with exceptional holonomies given by Bryant and Salamon
[BrSa| are of this form as well as many other explicit complete examples with parallel Go-
or Spin(7)-structure, cf. e.g. [BGGG], [Cal], [CCGLPW], [CISw], [CGLP1]|-[CGLP4], [GS],
[R2] and [R3]|. Some of these explicit complete examples of Go-holonomy manifolds arise
as above from the Lie group S% x S3, cf. [MaSa] for a unified treatment of these examples.

The related problem for the flow of so-called hypo SU(2)-structures on nilpotent five-
dimensional Lie groups N leading to six-dimensional Riemanian manifolds (N x I, g) with
Hol(g) C SU(3) is considered in [C2]. It has been shown that Riemannian metrics obtained
by the hypo flow cannot be extended to a complete Riemannian manifold in the above way
unless they are a Riemannian product of N and R. There is an ongoing project together
with Florin Belgun and Oliver Goertsches which investigates the analogue question for the
Hitchin flow for half-flat SU(3)-structures and cocalibrated Ga-structures on nilpotent and
split-solvable Lie algebras. Note that the explicit solutions of the Hitchin flow given in
Section 7.4 cannot be extended in the above way to a complete Riemannian manifold since
in all cases there is a fundamental vector field on G x I whose length tends to infinity at

the boundary of I.
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Appendix

In the appendix, we solely consider real Lie algebras without mentioning this in the follow-
ing explicitly. Some lists of Lie algebras appearing in the appendix are further subdivided
into unimodular and non-unimodular Lie algebras. If there is no such subdivision, one
may, nevertheless, easily identify the unimodular ones since an obvious characterisation is
that the top-dimensional cohomology group does not vanish. To emphasise the unimodular
Lie algebras in this case, the non-zero h4™(®)(g) are written bold and underlined.

Table 7.1 contains all Lie algebras up to dimension three. The three-dimensional Lie
algebras are further subdivided into the unimodular and the non-unimodular ones. The
names for the non-unimodular Lie algebras in the first column have been adopted from
[GOV]. In the second column, the Lie bracket is encoded dually. Here, (el, - ,edim(g))
is a basis of g* and we write down the vector (del, e ,dedim(g)). The column labelled
3 contains the dimension of the centre of g. In the last column, the vector h*(g) of the
dimensions of the corresponding Lie algebra cohomology groups is given. Note that h*(g) =
(h'(g),...,hd™(@(g)) by Definition 3.34.

Table 7.2 contains all four-dimensional Lie algebras which are the direct sum of a
three-dimensional Lie algebra and R. Again, we have further subdived the list into the
unimodular Lie algebras and the non-unimodular Lie algebras. In the second column, the
Lie bracket is encoded dually for a basis e!, €2, €3, e of g* in the same way as in Table
7.1. The next column contains the vector h*(g) of the dimensions of the corresponding
Lie algebra cohomology groups. The column labeled u contains all isomorphism classes of
unimodular codimension one ideals in g. If there are different isomorphic codimension one
unimodular ideals, we remark it in a footnote. The next column, labeled [g, g], contains
the commutator ideal of g. Finally, in the last column, the integer h'(g) + h'(u) — h(g)
is computed. If there is more than one isomorphism class of codimension one unimodular
ideals u, then the different numbers are written next to each other, ordered according to
the order in the column “u”.

Table 7.3 contains all indecomposable four-dimensional Lie algebras and the Lie algebra
to @ to ordered by nilradical. The first six columns are build up completely analogous to

the ones in Table 7.2 and the names for the appearing Lie algebras are taken from [PSWZ].
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However, in contrast to Table 7.2, there are four more columns which contain our results
on the (non-)existence of half-flat SU(3)-structures and closed stable three-forms. Namely,
the seventh column labeled hf @ o is checked if and only if g ® o admits a half-flat SU(3)-
structure. Recall that g ®R? never admits a half-flat SU(3)-structure. The column labeled
A>0@ta/\ > 0@ R? is checked if A(p) > 0 for all closed three-forms p on g @ ta/g @ R2.
Similarly, the column “\ = 0 @ R?” is checked if A(p) = 0 for all closed three-forms p on
g ® R2. None of the Lie algebras g @ v satisfies A(p) = 0 for all closed three-forms p.

In Table 7.4, we listed all indecomposable five-dimensional Lie algebras ordered accord-
ing to their nilradical. The names for the Lie algebras in the first column are taken from
[PSWZ] and the second column again encodes the Lie bracket dually for a basis e!,.. ., e°
of g*. The column labeled 3 contains the dimension of the center of g and the next one
the vector h*(g). The column “hf” is checked if and only if g ® R admits a half-flat SU(3)-
structure. Analogously, the columns “A > 0”7 and “A = 0” are checked if A(p) > 0 or
A(p) = 0, respectively, for all closed three-forms p on g ® R.

Table 7.5 contains all non-solvable indecomposable six-dimensional Lie algebras, Table
7.6 contains all nilpotent indecomposable six-dimensional Lie algebras and Table 7.7 con-
tains all indecomposable six-dimensional Lie algebras with five-dimensional, non-Abelian
nilradical. Table 7.6 is further subdivided into almost Abelian Lie algebras and those which
are not almost Abelian and Table 7.7 is further subdivided by the different non-Abelian
nilradicals which appear.

The notation and the Lie brackets in Table 7.5 are taken literally from [Tul|. The Lie
brackets in Table 7.6 are taken from [Mag|. In |[Mag|, the Lie algebras are only labeled
by numbers from 1 to 22. We use the class symbol n and the numbers given in [Mag| as
index. Table 7.7 is based on the original list by Mubarakzyanov [Mu6d| and, apart from
the obvious subdivision according to the number of free parameters and the Lie algebra
cohomology, the list is modified as follows. On the one hand, some of Mubarakzyanov’s
classes gg , are redundant since there is an isomorphism to one of the other classes for cer-
tain parameter values. On the other hand, Shabanskaya [Sha] found 6 new classes which
are fitted in Table 7.7 according to their nilradical and denoted by Bg;, ¢ =1,...,6. More-
over, a large number of isomorphisms for certain parameter values have been discovered by
Shabanskaya [Sha| and by Schulte-Hengesbach and the author [FS2] resulting in a range
restriction or vanishing of certain parameters. It turns out to be hard to assure that no fur-
ther isomorphisms are possible due to the complexity and large amount of data. Lastly, a
few parameter values are excluded because the corresponding Lie algebra is decomposable
or nilpotent. Note that the reason for excluding parameter values is usually obvious when
considering the matrix representing ad., whereas non-obvious modifications are explained
in footnotes. The names of the classes are modified such that the remaining parameters

are written as exponents of the class symbol A and are denoted by a, b, ¢ if continuous

162



and by e if discrete.

The Lie brackets in the Tables 7.5 - 7.7 are written as before in the well-known dual
notation. In the column labeled 3 the dimension of the center of the corresponding Lie
algebra is given. The column labeled h*(g) contains the dimensions of the Lie algebra
cohomology groups. The last column, labeled half-flat, is checked if and only if the Lie
algebra under consideration admits a half-flat SU(3)-structure. Note that, in contrast to
Table 7.5 and Table 7.7, the results on the existence of half-flat SU(3)-structures given in
Table 7.6 have been obtained by Conti in [C1] and so are not results the author obtained
together with Schulte-Hengesbach. Note further that all Lie algebras in Table 7.5 admit
half-flat SU(3)-structures.

In Table 7.8, we give a list of all indecomposable nilpotent almost Abelian seven-
dimensional Lie algebras. We introduce our own notation and give in the second column
the names used in [Gong| for the corresponding Lie algebras. The Lie brackets, which
are as usual encoded dually, are given, with the exception of n7 1, in such a way that
ad(e7)|span(es,...,eq) 18 in Jordan normal form. Again the column “3” contains the dimension
of the center and the column “h*(g)” the vector h*(g). The column “cocalibrated” is checked
exactly when the Lie algebra admits a cocalibrated Ga-structure. Similarly, the column
“calibrated” is checked if and only if g admits a calibrated Ge-structure.

Table 7.9, Table 7.10, Table 7.11 and Table 7.12 contains one example (w, p) € A%g* x
A3g* of a half-flat SU(3)-structure for each Lie algebra which admits such a structure in the
class of direct sums of a four-dimensional and a two-dimensional Lie algebra not contained
in [SH], in the class of direct sums of indecomposable five-dimensional Lie algebras with R,
in the class of non-solvable indecomposable six-dimensional Lie algebra and in the class of
indecomposable six-dimensional Lie algebra with five-dimensional nilradical, respectively.

The examples of half-flat SU(3)-structures in the Tables 7.9 - 7.12 are given with respect
to a basis (e!,...,e%) of g*, where the choice of the basis for the Tables 7.9 and 7.10 is
explained in a footnote and for Table 7.11 and Table 7.12, the basis is the one given in
Table 7.5 and Table 7.7, respectively.

Moreover, in all the Tables 7.9 - 7.12 the Euclidean metric induced by the half-flat
SU(3)-structure (w, p) on g is added. The label ONB indicates that the considered basis is
orthonormal. Similarly, OB indicates that the considered basis is orthogonal. In this case,
the norms of the non-unit basis vectors are given explicitly.

Finally, Table 7.13 contains (the dual bases of) adapted bases for cocalibrated Go-
structures on three different seven-dimensional Lie algebras g which are Lie algebra direct
sums of a four and a three-dimensional Lie algebra. These three cases are exceptional in
the sense that they do not fulfil any of the different conditions we obtained in Chapter 5

which ensure the existence of a cocalibrated Go-structure.
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Table 7.1: Lie algebras up to dimension three

g Lie bracket 3 h'(g)
one-dimensional

R (0) 1)
two-dimensional

t2 (0,e"?) 0 (1,0

R? (0,0) 2 2,1
three-dimensional unimodular

50(3) (e%” 7, e%%) 0 (0,0,1)

s0(2,1) (e67 6) 0 (0,0,1)

e(2) (€87, —€%7,0) 0 (1,1,1)

e(1,1) (667,e57 0) 0 (1,1,1)

b3 (€57,0,0) 1 (2,2,1)

R3 (0,0,0) 3 (3,3,1)
three-dimensional non-unimodular

w®R (7,0 0) 1 (2,1,0)

t3 (€7 e57,0) 0 (1,0,0)

3, (57 57 0) —1<pu<l,p#0 0 (1,0,0)

th (ue® + €57, ueb" —e57,0), >0 0 (1,0,0)

Table 7.2: Four-dimensional Lie algebras which are a sum of a three-

dimensional Lie algebra with R

g Lie bracket h*(g) u [o,0]  h'(a) +h'(w) —h*(a)
unimodular
s0(3) B R (e®3, —e'3,e'2,0) (1,0,1,1) 50(3) 50(3) 1
50(2,1) R (23 e!3,e'2,0) (1,0,1,1) s0(2,1)  s0(2,1) 1
e(2) @R (€23, —e'3,0,0) (2,2,2,1) R3 e(2) R? 3,1
(L)®R  (e23,€%,0,0) (2,2,2,1) R3 ¢(1,1) R2 3,1

bhs ® R (€2%,0,0,0) (3,4,3,1)  R3f, 3 R 2,1
R (0,0,0,0) (4,6,4,1) R? # {0} 1

non-unimodular
r2 ®R? (e'*,0,0,0) (3,3,1,0) R R
3 ®R (e 4+ e*,e%,0,0) (2,1,0,0) R? R?

14 24

0,0

v, ®R (e, 1e™,0,0), (2,1,0,0) R3 R? 4
14 24 14

, OR (e™ e, —e" + (2,1,0,0) R R? 4

pe®t,0,0), p >0

TThere are several Abelian codimension one ideals, namely for all (a,b) # 0, span(ei, aes + bes, eq) is
one.
Although all codimension one unimodular ideals are isomorphic, there are of course different ones.

Namely, all three-dimensional subspaces.
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Table 7.3: Indecomposable four-dimensional Lie algebras and the Lie

algebra to @ o

g Lie bracket h*(g) u [g,9) Ah'(g) hf A>0 A=0
+hl'(n) @z @z @R*  @R?
—h*(g)
nilpotent, almost Abelian
Adn (e**,¢%,0,0) (2,2,21) R’ bh3 R? 3,2 v - - -
not nilpotent, almost Abelian, i.e. Nilradical R?
AZQ (0[6147 e24 4 e347 e347 0)
a¢{-2,-1,0} (1,000) R R? 4 - vV v
a= -2 (1,0,1,1) R? R? 4 v - v -
a=-1 (1,1,1,0) R? R? 3 - - v -
Asg (e'*,e**,0,0) (2,2,1,0) R? R2 3 - - v -
A4’4 (el4 + 624, 624 + 6347 e347 0) (1707070) R& Rd 4 _ v v v
AZL,,;} (6147 056247 ﬂeg47 0)
-l<a<pB<l, 0, .
1 a s B >~ aﬂ # (1707070) ]R3 R3 4 _ v v v
=— 1
= lor 3 (1011 R* R 4 oo v -
-1 <a< —3
(avﬁ) = (_%a_%) (1,0,1,;) RS RS 4 - - v -
a=-1,>0,8+#1 (1,1,1,0) R® R? - - v -
(a,B) = (—1,1) (1,2,2,0) R? R? 2 - - -
Y (ael4,5624 n e34,e42 +
4,6 6634 0)
a>0,3¢{0,—1a} (1,0,0,0) R? R? - v v v
B=-30,a>0 (10,1,1)  R®  R® 4 v - v -
B=0,a>0 (1,1,1,0) R? R3 - - v -
Nilradical hs
Ay (2! e e 13 3 0)  (1,0,0,0) b3 b3 - - v v
A4,8 (6237624764350) (130’1Jl) h3 h3 \/ - \/ -
4o ((a+1)e" +
4,9 2 62 qet)0)
—-1<a< 17 « ¢ {_%70} (1707070) h3 h3 3 - - v v
a = _% (1717170) h3 h3 2 v - - -
a=0 (2,1,0,0) hs R? 3 - - v -
As 10 (e?3,e%*,e*2,0) (1,0,1,1) b3 b3 3 v - v -
. (2ae14 + 2 et +
A4711 6347642 + 04634,0), a>0 (1707070) b3 b3 3 - - v v
Nilradical R?
Asi2 (614 + e e — el 0, 0) (2,1,0,0) e(2) R2 2 v - - -
VAT = Ap et for a # 0 and A7LP 2 AT
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Table 7.3: Indecomposable four-dimensional Lie algebras and the Lie

algebra to @ o

g Lie bracket h*(g) u [g,9) Ah'(g) hf A>0 A=0
+h'(w) @z @z @R GR?
—h2(9)
T2 Dt (614 +e%3, et 16130, 0)2 (2,1,0,0) e(1,1) R? 2 v - - -
Table 7.4: Indecomposable five-dimensional Lie algebras
g Lie bracket 3 h*(g) hf A>0 X=0
nilpotent, almost Abelian
Asy (e%,e%,0,0,0) 2 (3,6,6,3,1) v o o- -
A552 (625 > € 57070) 1 (2a3a3727l) v - -
nilpotent, not almost Abelian
A5’3 ( 35 > 0 O) 2 (273a3727l) - - -
Asy  (e* +e35 0,0,0,0) 1 (4,5,5,4,1) v o - -
Ass (¥ 4 e, 35,0,0,0) 1 (3,4,4,3,1) v o - -
Ase (¥ 4+ e*,e,e%,0,0) 1 (2,3,3,2,1) v o - -
not nilpotent, almost Abelian, i.e. nilradical R*
A?:’E,’y (6157 ae257 5635’ 76457 0)
“1<a<pB<~y<1, aBy#0,
: /B gé {_a, _(a + 1)}7 y ¢ {_av _(a + l)a 0 (170707070) - v v
—B,=(B+1), —(a+p8), —(a+B+1)}
- 717 -1< < 3 07
Pemby# 0 (11,1,000 - v -
v éé {_/37 _ﬂ + 1, _(B + 1)}
(a, 8) = (—-1,-1), v ¢ {-1,0,1,2} 0 (1,2,2,0,0) - v -
(a, B,7) = (—1,-1,-1) 0 (1,3,3,0,0) - v -
(04,,377) = (717 -1, 1) 0 (13474:17l) v - -
(O‘aﬁfy) = (717 7172) 0 (1727371,0) - - -
(0577) = (_17 _5)7 0< ﬂ <1 0 (172:2:171) v - -
(0577) = (_17 -F 1); B ¢ {07 1} 0 (171727170) - - -
(Oé B ’7) (1717_2) 0 (1707373a0) - v -
1), - l<a<pB<~y<1,
—(a+B+1), asfsys 0 (1,0011) - v v
0157 #0,8# —a
— 1 —1,0,1,+5, £},
(B+1),a¢{ B, 47} 0 ot - v
-1<B<—3
(aﬁ) = (13 75 - 1)) ﬂ S 7%7 /B ¢ {727 71} 0 (1707272,0) - v -
s (€2,0,¢%, ae’®, 0)
—l<a<l,a#0 1 (2,2,1,0,0) - v -

A relation of the standard basis f', f2, f*, f* of v3 ® 3 with (df',df?, df?, df*) =

our basis e, €2, €3, et is given by e! = f2 + f4 2 = f2 — f4 &3 = —% (f1 - f3) Jet =

(0, £12,0, f**) to

-3 (714 1),

3 qa,—a,y v g—L1/oy/a a,B,—(at+B) v pl/a,B/a,—(B/a+1) a,B,—(B+1) nv po/B,1/B,—(1/B+1)
Ag,? B A5,7 ) A5,7 = A5,7 ) A5,7 = A5,7
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Table 7.4: Indecomposable five-dimensional Lie algebras — continued

g Lie bracket 3 h'(g) hf A>0 A=0

a=—1 1 (2,3,3,2,1) v - -
Ag’,é? (el5 + e257 6257 ae35, ,6e45,0)

4 OCSB,O{¢{—2,—1,0}7

0 (1,0,0,0,0) - v v
B¢{-2,-1,0,—a,—(a+1),—(a+2)}
a=-2,8¢{-2,-1,0,1,2} 0 (1,0,1,1,0) - v -
(e, B) € {(—2,-2),(—2,1)} 0 (1,0,2,2,0) - v -
(a, B) € {(—2,-1),(-2,2)} 0 (1,1,2,1,0) - -
a=-1,8¢{-2,-1,0,1} 0 (1,1,1,0,0) - v -
(a, 8) = (—1,-1) 0 (1,2,2,1,1) - v -
(o, B) = (—1,1) 0 (1,2,2,0,0) - v -
B=—-a,a<0,a¢{-2-1} 0 (1,1,1,0,0) - v -
B=—(a+1),a< -1 a¢{-2-1} 0 (1,0,1,1,0) - -
B=—(a+2),a< -1, a# -2 0 (1,0,0,1,1) - v v
As10  (e%%,e%,0,e%,0) 1 (2,2,2,1,0) - v -
e (els 1 e, e? Jre3576135>7O[e45»7())
a¢{-3,-2,-1,0} 0 (1,0,0,0,0) - v v
a=-3 0 (1,0,0,1,1) - v v
a= -2 0 (1,0,1,1,0) - v -
a=-—1 0 (1,1,1,0,0) - v -
Asi2 (e' 4+ e, e 4 ¥, e¥ 4 e e 0) 0 (1,0,0,0,0) - v v
A?”ff (61570[62575635 +’Ye457 —fye35 + 5845,0)
s Tl<aslazl, 0 (1,00,00) - v v

B ¢ {7%707 7%a7 7%(04 + 1)}7 Y >0

O[:*LB>O, ﬁ¢{0,%},’y>0 1717130,0) - v -

0 (
(o, B) = (—=1,0), 7 >0 0 (1,2,2,1,1) v - -
(,8) =(=1,%),7>0 0 (1,1,2,1,0) - - -
B=0,-1<a<1l,a#0,v>0 0 (1,1,1,0,0) N -
B=-1a¢{-1,01},7>0 0 (1,0,1,1,0) - v -
(,8)=(1,—-3%),v>0 0 (1,0,2,2,0) - v -
B=—-2(a+1),-1<a<l,a#0,v>0 0 (1,0,0,1,1) - v
A1y (€%°,0,ae® + %, —e® + ae’®0)
a#0 1 (2,2,1,0,0) - v -
a=0 1(23321) v - -
AZ s (e15 + 625,625,CM635 + e45,ae45,0)
0<la|<1,a¢{-1,-1} 0 (1,0,0,0,0) - v v
a=-1 0 (1,2,2,1,1) v - -
a=-1 0 (1,0,1,1,0) - v -
a=0 1 (2,2,1,0,0) - v -
A?ﬁﬂs (e15 +e25,e25,ae35 +,Be45,—,6635 +ae45,0)
= Ag,’g‘, A;’g is decomposable.
1[33’0 = A?f’ﬁ, Ag‘y‘fé"’ = A?ﬁ’fg’fv, A;}f” = A;}’;B’”’, Ag:‘f?’,ﬁ is decomposable.
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Table 7.4: Indecomposable five-dimensional Lie algebras — continued

g Lie bracket 3 h¥(g) hf A>0 A=0
¢ ag¢{-1,-3,0;,8>0 0 (1,0,0,0,0) - v v
a=-1,>0 0 (1,0,0,1,1) - v v
a=-%,8>0 0 (1,0,1,1,0) - v -
a=0,8>0 0 (1,1,1,0,0) - Vv -
A?’&B?”Y (aeljs+ 625,45—615 + 056257ﬁ635 + ’ye45,
—ve>° + Be*,0)
T a>0,8¢{0,—a},0<y<1 0 (1,0,0,0,0) - v v
B=-a,a>0,0<y<1 0 (1,0,0,1,1) - v v
B,7) =(—a,1), a>0 0 (1,2,2,1,1) v - -
a=0,8>07>0 0 (1,1,1,0,0) - v -
(o, B) = (0,0), 0 <y < 1 0 (1,22,1,1) v - -
(o, B,7) = (0,0,1) 0 (1,44,11) v - -
Agils 255615 -25625 + 2257 —615 + Oée25 + e457 aeBS +
e?’, —e”” + ae™,0)
a>0 0 (1,0,0,0,0) - v v
a=0 0 (1,2,2,1,1) v - -
Nilradical hs ® R
Agfg (ae™® + 23 e?® (a —1)e*®, Be'?,0)
o O<as2adé{;l) 0 (1,0,0,0,0) V.
B¢{-1,0,—2a,-2a+1,—(a+1),—a+1}
a=-1,53¢{0,-1,2,3} 0 (1,1,1,0,0) - - -
(o, B) = (—1,—1) 0 (1,2,2,0,0) - - -
(o, B) = (—1,2) 0 (1,22,1,1) v - -
(o, B) = (—1,3) 0 (1,1,2,1,0) v o - -
a=0,8>0 1 (1,0,1,1,0) - v -
(o, B) = (0,1) 1 (1,1,3,2,0) - - -
a=1,8¢{-2-1,0} 0 (2,1,0,0,0) - v -
(o, 8) = (1,-2) 0 (2,1,1,2,1) - - -
(o, B) = (1,—1) 0 (2,2,2,1,0) - - -
B=-1,a¢{-1,01,3 2} 0 (1,1,1,0,0) - v -
(o, B) = (2,—1) 0 (1,2,2,0,0) - v -
B=—(a+1),a¢{-1,0,1,1 2} 0 (1,0,1,1,0) - - -
(o, B) = (2,—3) 0 (1,0,2,2,0) v o - -
B=-20,0<a<2 a¢{i1} 0 (1,0,0,1,1) - v -
A2 50 (ael5 12 4 15 o2 (o — 1)e35,ae45,0)
ad¢{-1,-3,0,5, 1,1} 0 (1,0,0,0,0) - -
a€c{-1,3 0 (1,1,1,0,0) - v -

6 fa,8 ~ pAo,—B a0 _ jo,a
A5,716 = As,’le ) As,’w = A5,’9

7A04,B;0 ~

517 —
decomposable.

R

1, ,1 .8, By ~ A——=BY ~ 2B/, ;1
As,(lla{ﬁ 8 for B # 0, A?fﬂ = A?,167 T As,% = As,/f;am " for v # 0, A

8 q1a,B A~ —1),8/(a—1 0,8 A~ A0,— ,0
A?,lﬁQ = Ag,/lsga »p/ e for a 7"é 1, As,fg - A5,1967 A?,m
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«,0,0 .
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Table 7.4: Indecomposable five-dimensional Lie algebras — continued

g Lie bracket 3 h¥(g) hf A>0 A=0
ae{-11 0 (1,0,1,1,0) - - -
a=0 1 (2,1,1,2,1) - - -
a=1 0 (2,1,0,0,0) - v -

As21 (2 +e22,e?,e? 4 63°, 6% +e%°,0) 0 (1,0,0,0,0) - v -
As22  (€%3,0,e%,e%0) 1 (2,2,2,1,0) - - -
A o5 (2e15 1% 625 625 | ¢35 etS 0)
a¢{-4,-3,-1,0} 0 (1,0,0,0,0) - v -
a=—4 0 (1,0,0,1,1) - v -
a=-3 0 (1,0,1,1,0) - - -
a=-1 0 (1,1,1,0,0) - v -
As21 ? (2e'° 4 €23 4 1%, 6% e?° 4 3%, 2¢%50) 0 (1,0,0,0,0) - v -
A?,’fs (2ﬁel5 + 623,Be25 _ e35,e25 + 5e35,o¢e45,0)
a#0,8¢{0,—1a} 0 (1,0,0,0,0) - Y -
B=0,a#0 1 (1,0,1,1,0) - v -
B=—ta,a#0 0 (1,0,0,1,1) - v -
A?;G (2?:515 +f:3 —1—5645,05625 _ 6357625 +

’ ae™”; 2ae™,0)
a#0,e=+1 0 (1,0,0,0,0) - v -
a=0,e=+1 1 (2,1,1,2,1) - v -

Asor (e 4+ e* 4 e,0,e%,e® 4 ¢%)0) 0 (2,1,0,0,0) - v -

AL g (ae15 + e23, (a — 1)6257 e35,e35 + e457 0)
ag¢{-2,-1,-1,01 1} 0 (1,0,0,0,0) - v -
a=-2 0 (1,0,1,1,0) - - -
ae{-1,1 0 (1,1,1,0,0) - - -
a=-1 0 (1,0,0,1,1) - v -
a=0 1 (1,1,2,1,0) - - -
a=1 0 (2,1,0,0,0) - v -

As20 (&' 4 e*,e%,e%,0,0) 1 (2,2,1,0,0) - v -

Nilradical A4,1
%30 ((oz+1)el5+624,ae25+634,(a—1)635,e4570)

a¢{-2,-1,-%0 3,1} 0 (1,000,000 - - -
ae{-21} 0 (1,1,1,0,0) - - -
a=-1 1 (1,0,1,1,0) - - -
a=—1 0 (1,0,0,1,1) - - -
a=0 0 (1,0,1,1,0) v o - -
a=1 0 (2,1,0,0,0) - - -

Assr (3¢’ e, 2e% 4+ 3% + 1%, e%°0) 0 (1,0,0,0,0) - - -

Af 3o (e'P 4 e e e?® +e3¢%°,0,0), e = £1 0 (2,1,0,0,0) - - -

Nilradical R?

®The parameter in [PSWZ] is redundant.
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Table 7.4: Indecomposable five-dimensional Lie algebras — continued

g Lie bracket 3 h¥(g) hf A>0 A=
Ay (€M, Be™ + ae™®,0,0)
Y a,BER, (a,B) # (—1,-1) 0 (21,000 - - -
(a, B) = (—1,-1) 0 (2,1,1,2,1) v - -
?v34 (ael4 + 6155 624 + 6357 6345 07 0)7 ac R 0 (2717030,0) - - -
Agy,‘% (5614 Jr066157624 Jre3577€25 Jr63470’0)
(Oé, B) ¢ {(07 _2)7 (07 0)} 0 (271707070) - - -
(a, B) = (0,-2) 0 (2,1,1,2,1) v - -
A5a38 (614762576457070) 1 (272717()’0) - - -
Asze (e' 42 —e'® +e,e%0,0) 1 (2,2,1,0,0) - - -
Nilradical b3
Asze (et 4 e, e —e?,e%,0,0) 0 (2,1,0,0,0) v o - -
Assr (2™ +e23,e®* + % —e® 4 ¢%,0,0) 0 (2,1,0,0,0) v o - -
non-solvable, Nilradical R?
Asa0 (2012, —e'3,2e? e 4 ¥ et — ) 0 (0,1,1,0,1) v o - -
Table 7.5: Non-solvable indecomposable 6-dim. Lie algebras
g Lie bracket 3 h*(g) hf
Lea (623, —e'3 @12, 620 _ o35, _¢16 4 34 015 _ o24) 0 (0,0,2,0,01) Vv
Le2 (e23,2e"?, —2¢'3 e 4- %5 —e!® + 3 ) 1 (0,02,0,01) Vv
Ls,3 (623, 2012, —2¢e13 e 4 25 4 16 1% 4 31 4 656, 0) 0 (1,0,1,1,0,0) v
Le,a (623’ 26127 _2e137 2el4 + 2e25, 26 + 6347 — 9016 + 2635) 0 (0707270707l) v
s0(3,1) (6% — 50, _ol3 4 46 12 _ 45 20 _ o35 16 | 0 (002001 ¢
e34’615 _ e24) =

Table 7.6: Indecomposable nilpotent 6-dim. Lie algebras

g Lie bracket 3

h*(g) hf

almost Abelian

10 g0 0,8
Ag’33 and Ag'z; are decomposable.
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Table 7.6: Indecomposable nilpotent 6-dim. Lie algebras

g Lie bracket 3 h*(g)
Ber(0,0,e12,¢1%,0,¢'%) 2 (3,6,8,6,3,1)
Moo (0,0,e12,¢1%, ¢ %) 1 (23,4,3,2,1)

not almost Abelian

16,3 (07 0,0, 3, 623’612) 3 (3,8,12,8,3,1)
16,4 (0707070’ e!2 e!3 4 624) 2 (4,8,10,8,4,1)
ng,5 (07 0,0,0,e'3 4 24 14 — e23) 2 (4,8,10,8,4,1)
16,6 (07 0,0,e'3, e + 23, 612) 2 (3,6,8,6,3,1)
ng,7 (07 0,0, e, e, 623) 2 (3,6,8,6,3,1)
6,8 (07 0,e2, e el2) 625) 2 (3,5,6,5,3,1)
16,9 (07076127613707615 +623) 2 (3,5,6,5,3,1)
16,10 (07 0,e12,0,e!3 + 24 M — 623) 2 (3,5,6,5,3,1)
6,11 (07 0,el2,el3, 14, 623) 2 (2,4,6,4,2,1)
16,12 (07 0,0,e3,0, e + 625) 1 (4,6,6,6,4,1)
613 (0,0,0,¢!, €2, M 4 ) 1 (3,5,6,5,3,1)

15,14 (0,0,0,e™,e*,e™ +ee”®), e = —1,1 1 (3,5,6,5,3,1)

615 (0,0,e'2, €3, 2 e 4 %) 1 (3,5,6,5,3,1)

n6.16(0,0,0, ¢!, el + €23 19 4 ¢24) 1 (3,4,4,4,3,1)

ng,17 (07 0,e'2 ¢! 0,1 + e25) 1 (3,5,6,5,3,1)

e (0,0,612, 1%, 62 14 + ee®), | (2.464.2,1)
e=-1,1
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Table 7.6: Indecomposable nilpotent 6-dim. Lie algebras

9 Lie bracket 3 h*(g) hf
6,19 (0,0,6127613,614,615 + 623) 1 (2,3,4,3,2,1) -
16,20 (070’61276137614 + 6237615 + 624) 1 (2,3,4,3,2,1) v
6,21 (0,0,6127623,624,615 + 634) 1 (2,2,2,2,2,1) -
6,22 (070’61276237613 et et 4 634) 1 (2,2,2,2,2,1) -

Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

Lie bracket

h*(g)

hf

Nilradical h3 @ R?

a,b,c
b, 1 2 2 4 5
Ag1s ((a+b)e'® + 23 ae®®, be®s, &6 ce®8,0)

0O<la|<b], -1<c<1, a# -1,

11

c¢{0,—(a+1),—(b+1),—(2a+b+1),—(2a+2b+ 1)}

a=0,b¢{-1,-1,0}, -1<c<1,
c¢{0,—b,—2b,—b—1,—2b -1}

a=-1,b¢{-1,0,1,1,2}, c¢ {-1,0,1,—b, —2b,
—-b—-1,-b+1,-b+2,-2b+1,—2b+ 2}

orc=—1,0<]a] <b, a#+l1,
b¢{l,—-a —2a,—2a+1l —lat+l —atl}

orb=—2a,a¢{-1,0,1, 1} —1<c<1,

13702

c ¢ {0,—a,2a,3a,—1 —a,—1+ 2a,—1 + 3a}

b= 7(23'4» 1)7 a ¢ {717 7%a 7%77§

,0},

c¢ {-1,0,1,—a—1,2a,2a+2,3a+1,3a + 2}
orc=—(a+1),a¢ {-1,0},b¢ {-1,0, %,:ﬁ:a,

29

—2a,—(2a+1),-2+ 1, +a+1,—(a+3)}

b¢ {~1,—a,—2a,—(2a+1),~L(a+1),—(a+ 1)}, 0 (1,0,0,0,0,0) -

0 (27170707070) -

0 (1,1,1,0,0,0) -

0 (1,0,1,1,0,0) —

b=-aa>0a#1 -1<c<1,c¢{0,+a,—1+a} 1 (1,0,1,1,0,0) -

b=—(a+1)a>-1a¢{0l},

c¢{0,£1,+a,+(a+ 3),x(a— 3

), (1 +a)}

[e=)

orc=—(2a+b+1),a¢ {-1,—1,0}, b¢ {-1,0,1,—1a,
+a, —2a,—(2a+ 1), —5(a+ 1), —(a+ 3), +(a+ 1)}

11 ga,b,c A, gb,a,c A, ga/c,b/c,1/c 0,0,c a,b,0
Agty = Agny = Agla , Ag13 and Agyy are decomposable.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
=—(2a+2b+ 1) a¢{-1,0}, 0 (1,0,0,0,1,1) —
b¢{-1,0,—3a,—a,—2a,—(2a+1),—2(a+1),—(a+ 3)}
(a,b) = (0,—1), ¢ ¢ {~1,1,2} 0 (222100)
or (aa C) = (07_1)) b > 07 b ¢ {%v 1}
1 1 1
(a,b) = (0,—3), ¢ ¢ {~1,-3,0,5,1} 0 (2,1,1,2,1,0) —
or (a,c) = (0,—b—1), -2 g b<0,bé¢{-1,-3}
(a,c) = (07 —2b — 1), —1<b<0,b# —% 0 (271a0:1727l) -
— (1 1 _3 _ 1 1 3

(avb) _( 1 2) C¢{ 29 7 07 2513 2 0 (1727271,1,0) _
or (b,c) = (—2a,-1), a > 0, agé {5,5, }
(a‘7b) - (_1) _1)7 c ¢ {_170’ 1727334}
or (a,b) =(-1,2), c ¢ {—4,-3,-2,-1,0,1}
or (a,c) = (—1,-1), b ¢ {1 0,2, ,3,2,3) 0 (1,2,2,0,0,0) -
or (aa C) = (_171)) b ¢ {_27 7 07 27172}
or (a,c) =(—1,-b), -1 <b < 1, b ¢ {0,1}
(a,b) = (=1,1), ¢ ¢ {—2,—1,0,1} 1(1,1,3,2,0,0) -
(a,0) = (-1,-2b+1), b ¢ {-1,0,5,1,2} 0 (1,1,2,1,1,1) —
or (b,c) =(—-2a,2a—1),a¢ {-1,0,%, 1
(b, C) = (—a, —1), a>0,a#1l 1 (17]-)2:17171) -
(a,C):(71,7b71)7b¢{*2 107%51723}
or(a,c):( 17_b+2) b%{—Q— 72,173}
or (a, b) = ( %7 %), C ¢ {—%7—17 1 07 g,l} 0 (171727130,0) -
or (9.9 = (-2a=1,-1),a ¢ {3, ~L~3, -}, —$.0)
or (b,c) = (= 2a7—1 a),a¢{-1,-3,-1,0,5,3
(a,c) = (713 72b)7 b ¢ {72, -1 7% 0 % 2}
or (a,c)=(-1,-b+1),b¢ {-1,0,1,1,2}
or (a,c) = (=1,-2b+2),b ¢ {-1,0,1,1,2,2,3} 0 (1,1,1,1,1,0) -
or (bvc):(72a53a7 ) ¢{ 1074735% }
or (b,c)=(—a—1%,-1),a>—-1a¢{0,1,1,3}
(b,c) = (—a,~1—a),a¢ {-1,-1,0,1} 1(1,0,2,3,1,0) -
(b7c):—(2a+1,a+ a’%{_2 - _§ _ga_%v_%70}
or (b,C):(72a71 1) ¢{ 2 % %77%707%}
or (b,C) ( 23—1 28.) a%{ 2 3 %,—%,0,%} 0 (17072727070) -
or (0,6) = (&, —a— 1), a ¢ {~1,—%, 4,03, 1)
AR

— (2 — _ _1
(b,c) = (—2a 11»3a+2), I<a< -3, 0 (1,0,2,2,0,0) v
a¢ {_7 3072
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf

(byc)=(-2a—1,3a+1), a¢ {-1,—-2,-1,-1, —1 0,1} 0 (1,0,1,2,1,0) v
— (94 — _3 1. -2 _1 _1

(b,c) =(-2a—-1,2a+2),a¢ {—5,-1,—-3,—5,—3,0,1} 0 (1,01,21,0) —
or (b,C) = _(a‘+ %73"' 1)) a ¢ {_27 -1, _%7 _%7 _%707 %}
(b,c):(—a—%,l),a>—%,a§é{0,%, a%}
or (b,c)=(—a—1,a),a¢ {-1,—%,-%,0,1,3,1} 0 (1,0,0,2,2,0) -
or (b,C) = (aa —3a — 1)7 a ¢ {713 7%5 7%a 7%707 1}
(a7 b7 C) = (0, —17 1) 0 (273,473:27l) v
(a, b7 C) = (0, —1, —1) 0 (27374727070) -
(a,b, C) = (0, 7%, 71) 0 (27273737170) -
(a,b,c) = (—%,07 %) 0 (272737371,0) ‘/
(a,b,c) = (0,—3,1) 0 (2,1,2,4,2,0) -
(a,b,c) = (*%,0, 7%) 0 (27172747270) v
(3.7137 C) = (—1, —1, 1) 0 (174747070,0) -
(a,b, C) = (—17 17 —1) 1 (17376a37171) v
(a,b,c) € {(717%771)7 (713571)} 0 (1’3’3’2’2’0) B
(a7b7c) S {(—1,%,—%), (—1,2,—1)} 0 (173737131,0) -
(a,b,c) € {(=1,—1,-1), (-1,2,1)} 0 (1,3,3,0,0,0) —
(a,b, C) = (71, 1, 1) 1 (17275737070) -
(a,b,c) € {(-1,-1,3), (-1,2,-3)} 0(1,24,211) -
(a,b,c) € {(—1,%,—%), (—1,%,%)} 0 (17273727170) -
(a,b, C) = (7%7 %, 71) 0 (17273727170) v
(a,b,c) € {(~1,3,-1), (-1,-2,1)} 0 (1,2,3,1,0,0) -
(a,b,c) (S {(—1,%,%), (—1,—1,2)} 0 (17272727270) -
(a,b,c) € {(=1,-1,4),(~1,2,—4),(=1, 3, -1),(-1,-5,1)} 0 (1,2,2,1,1,0) —
(a7b, C) = (—1, 1, —2) 1 (171747431,0) v
(a,b,c) € {(=2,4,1), (=2, -4 (-1, -1 1)} 0 (1,1,3,2,0,0) -
(a,b,c) € {(~1,3,-4), (3,2, -1)} 0 (1,1,2,2,1,0) -
(a7b,c) = (—i,—%,i) 0 (17172723130) v
(a,b,c) = (—%,—%,—%) 0 (17074747070) -
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket h*(g) hf
(a,b,c) = (-3, —%,1) (1,0,4,4,0,0) v/
(a,b,c) € {(~2,3,1), (3,-2,1)} (1,0,3,3,0,0) -
(a,b,c) = (2,1, -1 (1,0,3,3,0,0) v/
(@b, € (5,5, (-1 -) (1023,10) -
(a,b,c) = (£,-2,1) (1,0,1,3,2,0) -
(a,b,c) = (1,—3,4) (1,0,1,3,2,0) v
(a,b,c) € {(1,—2,1), (1,1, -4)} (1,0,0,3,3,0) -

AZ:h ((a+b)e'® + e + % ae?® be®S e®0 (a4 b)e®s,0)
la] <|bl, a¢ {—1,0}, b¢ {-1,0,—a, f%a, —2a,

" —(a+1), —(a+3), ~(@a+3), —(2a+1), —3(a+1), (1,0,0,0,0,0) —
—1(Ba+1), —i(2a+1)}
b=-a,a>0,a#1 (2,1,1,2,1,0) -
b=0,a¢{0,-1,-3, -1} (2,1,0,0,0,0) -
b=-1,a¢{-1,0,3%,3, 2,1,3,2}
orb=—-2a,a¢{-1 0,4,3,2,1} (1,1,1,0,0,0) -
orb=—(a+1),a>-1 a¢{0,1,2}
b=-2a a¢{-2-1, ,2,3,5,1,2} (1,0.1,1,0,0) —
orb=—(2a+1),a¢ {-2,-1,-3,-%,—5,—3,0}
b=—-3Ba+1),a¢{-1,-%,-3,-5,-£,0,3,1} (1,0,0,1,1,0) —
orb=—(a+3),a>—1 a¢{0,1,1}
b=—(a+1),a>-1 a¢ {031, 2}, (1,0,0,0,1,1) —
(a,b) = (0,0) (4,5,5,4,1,0) —
(a,b) = (0,—1) (2,3,3,1,0,0) —
(a,b) =(-1,1) (2,2,3,4,2,0) —
(a,b) = (0, —1) (2,1,1,3,2,0) —
(a,b) = (0,—1) (21,01,21) -
(a,b) € {(-1, %), (1,-2)} (1,2.2,1,1,0) -
a,b) € {(-1,-1), (-1,2)} (1,2,2,0,0,0) —
(a,b) € {(=1,3), (5.—3)} (1,1,2,1,1.1) -

12142:5)4 = AE,&
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf

(a,b) € {(=1,3), (2,-3)} 0 (1,1,2,1,0,0) —
(1) € {(3.~1). (1. 1)} 0 (11,11,10) -
(a,b) € {(=2,3), (5, —9)} 0 (1,0,2,2,0,0) -
(a,b) € {(%,—g)} 0 (1,0,1,2,1,0) v
(a,b) = (1,-2) 0 (1,0,1,2,1,0) —
(a,b) € {(=3,—3), (=5, —5)} 0 (1,0,0,2,20) -

A% 15 ((a+ 1)616 16?8, 626 2030 26 4 o6 36 4 5056 0)

' “l<a<lag{0,—% -1 -2} 0 (1,0,0,0,0,0) —
a=0 1 (2,2,1,0,0,0) —
a——1 1(1,24,211) v
a— —9 0 (1,1,2,1,0,0) —
a—_3 0 (1,0,1,1,0,0) —
a=—32 0 (1,0,0,1,1,0) —

Ag.16 (616 +e2 4 e467626707626 + e467e36’0) 1 (2,2,1,0,0,0) —

Agin (ae'® 4 e 4 5 ae?®,0, %, €%, 0)
e=0,a¢{-1,-10} 1(2,2,1,0,0,0) -
e=0,a=0 2 (3,6,6,3,1,0) —
e=1,a=0 1 (3,4,4,3,1,0) -
e=0,a=—-1 1(2,3,4,3,1,0) -
e=0,a=—1 1(2,2222,1) -

AZZIID8 ((a + 1)616 + 623, 36267936, e36 4 646,b€5670)

14 ag{-3,-2,-3 -1,-1,0},b¢ {-2,-1,0,—(a+ 1), 0 (1,0,0,0,0,0) —
—a,—(a+2),—(a+3),—(2a+1),—(2a+2),—(2a+ 3)}
a=0,b¢{-3 -2 —1,0} 0 (2,1,0,0,0,0) -
a=—-1,b¢{-2,-1,0,1} 1 (1,1,2,1,0,0) —

13 qa 1/a
Afas = Aglrs
0 -
" Ag g is decomposable.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf

32_23b¢{_2a_1707172a3}

__1 _5 _9 _3 _1 _1
ora=—3b¢{-3-2-3-1-303) 0 (11,1,0,00) -
OTb:—l,a.¢{—3,—2,—%,— 7_57071}
orb=-a,a¢ {-3,-2,-3 -1,-1,0,1,2}

a= _37 b ¢ {_27 _1707172737475}

or b= -2 a%{—?)—,—%—l,—% ,1,1,2}

orb=—(a+1),a¢{-3 -2 ’, ’75’0’1} 0 (1,0,1,1,0,0) —
orb=—(a+2),a¢{-3 -2 ,—5,—1,—l 0,1}
orb:—(Qa—l—l),a%{—37—2,—g,—17 £.0,5,1,2}

a———b¢{2 - ,2,,2,2}

or b= —( , a ¢ {—3 —Z,—5,— ,—%,0, 1,2} 0 (170707171,0) -
orb:f(2a+2) ¢ {-3,-2, ,71,75,0,1}

b= —(2a+3), a ¢ {—3, —2, —%,—1,—%70} 0 (170,070:17l) -
(a,b) = (0, —1) 0 (2,2,3,2,0,0) —
(a,b) = (0, —2) 0 (2,1,2,3,1,0) —
(a7 b) = (0, —3) 0 (231,071:27l) -
(a,b) = (—=1,—1) 1(1,24,2,1,1) -
(a,b) = (—1,1) 1(1,2,4,2,0,0) —
(a7b) € {(—%,—1), (—27—1)7 (—2,—1)} 0 (172727131,0) -
(aa b) € {(_%7 %)7 (17 _1)} 0 (1’2’2’0’0’0) B
(a,b) = (=1, —-2) 1(1,1,3,3,1,0) -
(a,b) € {(=3,3), (~3,-2), (-2, 1)} 0 (1L121,1,1) -
(a,b) € ) 0 (1,1,2,1,0,0) —
{(=3,-2), (=3, =5),(2,-2),(=3,-1),(~2,-2),(-2,3)}

(a,b) € {(=3,-3), (=3, -1, (-4, 3)} 0 (L111,L0) -
( ) {( )( 2)>(1’_3)v(_37_2)7(_371)7(_3’2)} 0 (1’0’2’2’0’0) N
(a,b) = (-3,5) 0 (1,0,2,2,0,0) v’

(avb) S {(_%7_2)7(_%72)7(_%,%)7(_%7_%)7(_374)} 0 (17071’2’1’0) N

(a b) (2 —5) 0 (17071727170) ‘/

(a7 b) (S {(—%, —%), (—%,1)7 (1,—4)} 0 (170707272,0) -
AG 10 ((a+1)e'® 4 e 4+ ¢ ae?6,e% e 4 e, (a+1)e%5,0)

a¢ {733 7237%77%a7177§77%70} 0 (1’0’0’0’0’0) B
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
a=—1 1 (2,2,3,3,1,0) —
a=0 0 (2,1,0,0,0,0) —
a— _9 0 (1,2,2,1,1,0) —
a=—1 0 (1,1,1,0,0,0) —
a=—3 0 (1,0,1,2,1,0) —
ac{-3 -2} 0 (1,0,1,1,0,0) —
a—= _% 0 (1,0,0,0,1,1) —

A2 50 (€16 4+ e 4 16,0, %, 63 + 016, ae%, 0)
a¢{0,—-1,-2,-3} 0 (2,1,0,0,0,0) —
a=—1 0 (2,2,2,1,0,0) —
a=—2 0 (2,1,1,2,1,0) -
a=—-3 0 (2,1,0,1,2,1) —

Ag:gl (220 + 62, 2028, 02° 4 ac?®, 16, 1heS, 0)

15 -1<b<1L,b#0,a¢ {-1,-%,—%,0,—h, 0 (1,0,0,0,0,0) —

_%bv _ibv _(b + 1)7 _%(b + 1)7 _%(b + 1)}
a = 0, —1<b < 1, b 75 0 1 (27272717(])0) -
a=-1,b¢{-1,0,1,2} orb=-1,a>0,a¢ {311} 0 (1,1,1,0,0,0) -

b=—-(a+1), -2<a<0,a¢{-1,—-3,—1}

0 (1,0,1,1,0,0) —
ora=—3.b¢{-1,-201}
a=-pbd{-1-3,-5551) 0 (1,0,0,1,1,0) —
orb=-@Ba+1),-2<a<0,a¢{—3 -3 -3}
b=—(da+1), -3 <a<0,a¢{—3,—1} 0 (1,0,0,0,1,1) -
(a,b) = (0,—1) 1(2,3,4,3,2,1) —
(a,b) € {(~1,-1), (-1,1)} 0 (1,2,2,0,0,0) -
(a,b) € {(=1,3), (=3, 3)} 0 (1,1,2,1,1,1) —
(a,b) = (—3,-1) 0 (1,1,2,1,0,0) —
(a,b) € {(-1,2), (-1,4), (-3, —-1)} 0 (1,1,1,1,1,0) -
(a,b) € {(=%,-2), (—3,1)} 0 (1,0,2,2,0,0) —

15 ga,b ~ g2/b,1/b  4a,0 .
Agiar = Aglar 7y Aglay is decomposable.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
(a,b) € {(~3,-2), (-1, 4) 0 (10,1,2,1,0) -
(a.5) € {(~ 1. =1, (=3, 1)} 0 (100.220) -

AG 22 (2ae'® + 23 4 €%, ae?%, e?5 + ae®®, %, 2a¢%%, 0)
ag{-1,-1,-1,-1,-1 10} 0 (1,0,0,0,0,0) —
a=0 1(3,4,4,3,1,0) -
a=—1 -1 0 (1,1,1,0,0,0) -
a=-1 0 (1,0,2,2,0,0) —
a=-1-1 0 (1,0,0,1,1,0) —
a=_1 0 (1,0,0,0,1,1) —

A5, (2010 4 2 4 207 626,62 4 636 6% 4 %6 (2 4 a)e, 0)

1 e=0,a¢{—7,—6,—5,—4,-3, -2} 0 (1,0,0,0,0,0) —
e=0,a=—3 0 (1,1,1,0,0,0) —
c—0,a€{—4,—5) 0 (1,0,1,1,0,0) -
e=0,a=—6 0 (1,0,0,1,1,0) —
e=0,a=-7 0 (1,0,0,0,1,1) —
e=1,a=0 0 (1,0,0,0,0,0) —

6,24 (e?® 4 £e5,0,e?5,€%0,65¢ 0)
c—0 2 (2,3,3,2,1,0) -
e=1 1(2,3,3,2,1,0) —

AZZSs ((b+ 1)e' + 02,62, be®S, act®, ¢4 + ac™, 0)

17 —11<b§1,b¢{f%,0},a¢{71,f%,0,7b,72(b+1), 0 (1,0,0,0,0,0) —
—ib,—(b+1),—(2b+1),—3(2b+1),—(b+2),—3(b+2)}
a=0,-1<b<1,b¢{0,-1} 1(2,2,1,0,0,0) -
b=0,a¢{-2-1,-10} 0 (2,1,0,0,0,0) -

a= _17 b ¢ {_27 -1, _%70, %7 172}
orb=-2a¢{-1,-3,0,1,2,2,3}

12

0 (1,1,1,0,0,0) —

H h . . 0..0 - .
Y5The parameter o in Mubarakzyanov’s class g§53" can be normalised to 1 since gg’53 is nilpotent and
, ;

0,0,h 0,-2 .
Jo'oy’ =2 AQ 4. Agss is decomposable.

b b,1/b
17142:25 = Ag,/25 /

179



Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
a=—b —12, b¢{-4,-2,-%-1,-1,0,1} 0 (1,0.1,1,0,0) -
ora=—3.b¢{-2-3-1,-2 -1 10,11}
b=-1,a>0,a¢{}1} 1(1,0,1,1,0,0) -
a=—ib—1,b¢ {—2,—1,—%,—%,@ 1,2} 0 (1,0011,0) —
ora=-2b—2,-1<b<1,b¢{-3 -2 -1 0}
a=-b-1,-1<b<1,b¢{-10} 0 (1,0,0,0,1,1) —
(a,b) = (0,0) 1 (3,4,3,1,0,0) —
(a,b) = (0,—%) 1(2,3,3,2,1,0) —
(a,b) = (0, —1) 2 (2,2,2,2,2,1) -
(a,b) = (=1,0) 0(2,2,2,2,21) v
(a,b) € {(~3$,0), (~2,0)} 0 (21,1,2,1,0) -
(a,b) = (_17_%) 0 (1,2,2,1,1,0) —
(a,b) = (—%,-3) 0(1,1,2,1,1,1) —
(a,b) € {(-1,2), (-5,-2), (3,-2)} 0 (1,1,2,1,00) -
(a,b) € {(~1,-2), (—1,1)} 0 (1,2,2,0,0,0) -
(a,b) = (=1, —1) 1(1,1,3,2,0,0) —
(a,b) € {(-1,3), (5. -2)} 0 (1,1,1,1,1,0) —
(a,b) = (_%7_1) 1 (1,0,2,3,1,0) —
(a,b) € {(—=5,—3): (=5, —1): (—35,1), (=3, 1)} 0 (1,0,2,2,0,0) -
(a,b) = (-1,-3) 0 (1,0,1,2,1,0) —
(a,b) € {(=3,1), (=3, -3} 0 (1,0,02,2,0) -

A§ 26 ((a+1)e' +e?3 +e%6 26 ae®, (a+1)e’®, e’ + (a+1)e®5,0)

' “l<a<lag{0,—% -2-3) 0 (1,0,0,0,0,0) -
a=—1 1(2,2,2,2,2,1) —
a=0 0 (2,1,0,0,0,0) -
a=—1 0 (1,1,1,0,0,0) —
a=—2 0 (1,0,1,1,0,0) —
a=-3 0 (1,0,0,1,1,0) -

18 pa ~ 7pl/a
A6726— 6,26
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf

c1,62,a 16, .23 56 26 _ 36 .36 16 46 56
Aglsr ((e2+a)e®+e* +e1e°°,e2e° 2, e°° +ae™®, 6™ +ae”, 0)

e e1=0, ea=1,a>0 0 (1,0,0,0,0,0) —
e1=0, e2a=1,a=0 1(222,1,00) -
e1 €{0,1},e2=0,a=1 0 (2,1,0,0,0,0) —

6,28 (2616 + 623, e26, e + 636, ae46, e'® ae56, 0)
ag {—4,-3,-2,-2,-1,-1,0} 0 (1,0,0,0,0,0) —
a=0 1 (2,2,1,0,0,0) -
a=—1 0 (1,2,2,0,0,0) —
a=—3 0 (1,0,2,2,0,0) v
a=—1 0 (1,0,1,1,0,0) -
ac{—4, _g 0 (1,0,0,1,1,0) —
a=—2 0 (1,0,0,0,1,1) —

Ag 20 (2610 4 €23 4 &30 020 26 4 30 9046 (46 | 9036 () 0 (1,0,0,0,0,0) —

Ag.30 (€23,0, 62,010, 616 1 o6 () 1 (2,2,2,1,0,0) —

Ag 31 (2616 + 623,20 020 1 036 30 | 46 46 4 56 () 0 (1,0,0,0,0,0) —

a,b,c
A6,3é (2&616 + 623, 3.626 _ 636, e26 + 3636, be46, C656, 0)

20 a>0, |b| < |c|, b & {0,—4a}, ¢ ¢ {0, —4a, —b, —(da+b)} 0 (1,0,0,0,0,0) —
c=-b,a>0,b>0,b#4a 0 (1,1,1,0,0,0) —
a=0,0<b<]|c|,c#—b 1 (1,0,1,1,0,0) —
b= —4a, a >0, c ¢ {0, +4a} 0 (1,0,0,1,1,0) -
c=—(4da+b),a>0,b>—-2a b#0 0 (1,0,00,1,1) -
(a,c) = (0,—=b), b >0 1(1,1,2111) -
(b,c) = (—4a,4a),a >0 0 (1,1,1,1,1,0) -
(b,c) = (—4a, —4a), a >0 0 (1,0,0,2,2,0) -

AZE, (220 + 62 4 0%, ae?0 — 67,62 4 ae®, het, 2ae%, 0)

1 €2, —€1,—€2,— ;0.0 45 ni
9142}2? fe AgSh T T AGYT s nilpotent.
b, b —a,—b,~ 0, b0 i
20AZ,32C AT = Agsy 0, Afsy =2 ARsy is decomposable, the parameter € in Mubarakzyanov’s
class ge,32 is redundant since ge32 = Ag,33 for € # 0.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
2 a>0,b¢{0,—2a,—4a, —6a} 0 (1,0,0,0,0,0)
a=0,b>0 1(2,1,1,2,1,0) -
b= —2a,a>0 0 (1,1,1,0,0,0) -
b= —4a,a>0 0 (1,0,0,1,1,0) -
b= —6a,a>0 0 (1,0,0,0,1,1) -
Agigf (22616 + 62 + 2656, ae?® — &30, 026 | e, (2a + b)e®,

e'® + (2a + b)e®®,0)

> e=0,a>0,b¢{—2a,—4a,—6a} 0 (1,0,0,0,0,0) -
e=0,b=—-2a,a>0 1(2,2,1,0,0,0) -
e=0,a=0,b>0 1 (1,0,1,1,0,0) -
e=0,b=—6a,a>0 0 (1,0,0,1,1,0) —
e=0,b=—-4a,a>0 0 (1,0,0,0,1,1) —
e=1,b=0,a>0 0 (1,0,0,0,0,0) -
e €{0,1}, (a,b) = (0,0) 2 (2,2,2,221) -

a,b,c
Aglss ((a+b)e'® + 23 ae?®, be®5, ce? — e, e 4 ce®,0)

23 0<a<|bl,b¢{0,—a,—2a,} 0 (1,0,0,0,0,0) —
¢ ¢{0,—3a,—3b,—(3a+b), —(5b+a), —(a+b)}
a=0,b>0,c¢{0,—b,—1b} 0 (2,1,0,0,0,0) —
b= —-2a,a>0,c¢ {0, —%a, a, %a} 0 (1,1,1,0,0,0) —
orc=0,0<a<|bl,b¢ {—a,—2a}
b=-a a>0¢>0,c¢{ia} 1(1,0,1,1,0,0) -
c= —%a, a>0,b¢{0,—2a,—a, —%a, a} 0 (1,0,1,1,0,0) -
c=—(3a+b),a>0,b¢ {0,—2a,—a,—1a,a} 0 (1,0,0,1,1,0) -
c=—(a+b),0<a<|bl,b¢{0,—2a, —a} 0 (1,0,0,0,1,1)
(a,c¢) = (0,0), b>0 0 (2,2,2,1,0,0) -
(a,c) = (0,—1b), b>0 0 (2,1,1,2,1,0) -
(a,c) = (0,—=b), b >0 0(21,0121) -

b “a b 420 -
AR, =2 Agsy ©, Agss is decomposable.
22 pe,a,b Ay ’—r:,—a,—b ’

Agzy = Ag )

23 pa,b,c ~, gb,a,c Ay g—a,—b,—c 0,0,c -
Agay = Aggy’ = Ag 3y , Ag 35 is decomposable.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
(b,c) = (—2a,0), a > 0 0(1,22,1,1,0) -
(b,c) = (—2a,a),a >0 0(1,1,2,1,1,1) -
(b,c) = (—a,0), a> 0 1(1,12111) -
(b,c) = (—2a,—1a),a>0 0 (1,1,2,1,0,0) -
(b,c) = (—2a,3a),a>0 0 (1,1,1,1,1,0) -
(b,c) = (—a, 2a), a >0 1(1,0,2,3,1,0) -
(b,c) = (a,—31a),a>0 0 (1,0,2,2,0,0) -
(b,c) = (a,—2a),a>0 0 (1,0,0,2,2,0) -

AZ;EG (2ae'® + €23 ae?®, e?® + ae®®, be'® — %5 16 + be®®, 0)
a>0,b¢{0,—2a, —%a, —%a} 0 (1,0,0,0,0,0) —
a=0,b>0 1 (2,2,2,1,0,0) —
b=0,a>0 0 (1,1,1,0,0,0) —
b=-1la,a>0 0 (1,0,1,1,0,0) —
b=—32aa>0 0 (1,0,0,1,1,0) —
b=-2a,a>0 0 (1,0,0,0,1,1) —
(a,b) = (0,0) 1(2,34321) -

AZ:S%C (2ae16 —‘,—623, 2026 _6367 026 +a636, b6 _C6567 cet6 +be567 0)

2 a>0,b¢{0,-2a},c>0, (bc)¢{(—a,1),(—3a,1)} 0 (1,0,0,0,0,0) -
b=0,a>0,¢>0 0 (1,1,1,0,0,0) —
a=0,b>0,¢>0 1 (1,0,1,1,0,0) -
b=-2a,a>0,c>0 0 (1,0,0,0,1,1) —
(b,c) = (—a,1),a>0 0 (1,2,2,0,0,0) -
(a,b) = (0,0), ¢ >0, c # 1 1(1,1,2,1,1,1) ~
(b,¢c) = (—3a,1), a >0 0 (1,0,2,2,0,0) v
(a,b,c) = (0,0,1) 1(1,3,6,3,1,1) v

Ag e (2&616 + 623, ae% _ 636,626 + 36367626 + a646 _ 656,

)

=
e36 + e46 + aeoG’ O)

24 4a,b,0 ~, 4a,b,b a,b,c nu ga,b,—c A, g—a,—b,c a,0,0 -
Agzyr = Agss’s Agar = Aglsr -~ = Aggy 7, Aglgy is decomposable.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
a>0 0 (1,0,0,0,0,0) —

a=0 1(1,2/421,1) v

Bea 25 (616 e 4 6567 626, 0, 636,656,0) 1 (2,2,1,0,0,0) —

Nilradical 441 ® R

AGH ((b+1)e™® + 6%, e% 4 (b +2)e*, ae®®, be®, ¢, 0)
— —3. -9 -4 110 45—

26 a‘% { 170}7 ki% { 37 217 30 17 1270a a, (a+3)7 0 (170707070,0) _
7§(a+3)77§(a+4)77§(a+1)77§(a+4)}
b= 07 a ¢ {—4, -3, —1,0} 0 (27170703030) -
a__l b%{ 3 2 7 %7_1,_%7_%7071}
orb=-3,a¢{-1,0,2,3,5,6} 0 (1,1,1,0,0,0) -
orb=-1a¢{-3-3,-2,-1,0,1}
orb=—a,a¢{-1,0,1,1,%, 223 4}
b= 72, a ¢ {71,0,2,3} 1 (17071717070) -

— -5 — _é — _é —
b=—-(a+3),a¢ {-5-3, 2, 1,0} 0 (1,0,1,1,0,0) —
orb=—1(a+1),a¢ {-5, 10,1,3,3 5}
b= —1, a ¢ {—2, —1,0,1} 0 (170717170,0) v
—_1 —6,—4,-3,-2,—% —

b=-1(a+4),a ¢r{ 6, —4, -3, 4,-1,0,2,4} 0 (1.00,1,10) -
0rb:_§7a¢{_§7 10717373
b=-%(a+1),a¢{-6,-3,-3,-1,0,1,2,3,6} 0 (1,0,0,1,1,0) v
b= %(3.4-4) ¢ {—4,—%,—1,0,2,5} 0 (130a0a05171) -
(a,b) = (—1,0) 0 (27272717(])0) -
(a,b) = (*3,0) 0 (271717271’0) v
(a,b) = (—4,0) 0 (271)0)1527l) -

(a7b) € {(_17_3)7 (_17_%)7 (_171)7 (%7_%)7 (37_3)} 0 (172’2’0’0’0) N

(a,b) = (—1,-2) 1(1,1,3,2,0,0) —
(a,b) = (1,—1) 0 (1,1,3,2,0,0) v
(a,b) € {(=1,-1), (=3, —3), (5, —=3)} 0 (1,1,2,1,1,1) ~
(a,b) = (2, -2) 1(1,1,2,1,11) -

(avb) € {_(L %)’_(1’ %),—(3’ %)7(23_3)7(%7_%)7(47 _4)} 0 (1’1’1’1’1’0) B

25 Bg,1 is denoted by ne s in [Shal.
%Agjgg is decomposable.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
(a,b) € {(=3,—3), (=1,-3).(3,—3), (6, -3)} 0 (1,1,1,1,1,0) v
(a,b) = (3,-2) 1 (1,0,2,3,1,0) v
(a,b) = (=2, 1) 0 (1,0,2,3,1,0) v/
(a,b) = (=5,2) 0 (1,0,2,2,0,0) —
(a,b) ={(2,-3). (-3, -3)} 0 (1,0,1,2,1,0) -
(a,b) = (—%,-%) 0 (1,0,0,2,2,0) —
(a,b) = (=6,1),(1,—%) 0 (1,0,0,2,2,0) v

A 10 ((a+1)e'S +e* e'® +(a+2)e?® 4%, (a+2)e® ae®®, e, 0)

a
A6 41

a¢ {_37_27_27_%7_%7_%7_17_%30} 0 (1’0’0’0’0’0) B
A 9 1(21,1,2,1,0) -
a0 0 (2,1,0,0,0,0) —
Az 1 0 (1,1,2,1,0,0) —
a€ {3, _%} 0 (1,1,1,0,0,0) —
a=—3 0 (1,0,1,1,0,0) —
a=—1 0 (1,0,0,1,1,0) —
- 0 (1,0,0,1,1,0) v
a=—3 0 (1,0,0,0,1,1) —
) ((a + 1)@16 4 645,615 + (a + 2)6267 ae36 + e467 ae46,656, 0)
a¢ {733 7237%77%a7177%77%77%50} 0 (1’0’0’0’0’0) B
a=10 1 (272717070,0) -
a=—1 0 (17172a17171) -
ac {,3’,%} 0 (1,1,1,0,0,0) —
a=—2 1 (170717130,0) -
ac{-3 -1y 0 (1,0,1,1,0,0) —
a= 4 0 (1,0,0,1,1,0) —
a3 0 (1,0,0,1,1,0) v
AG 42 ((a+1)e'® + e, e’ + (a+ 2)e?0,e% 4 e, ae?6 %5, 0)
a¢ {745 73772772a7277%77177%50} 0 (1’0’0’0’0’0) B

185



Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
a=0 0 (2,1,0,0,0,0) -
a=—1 0 (1,1,3,2,0,0) v
ac{-3,-1} 0 (1,1,1,0,0,0) —
a=—4 0 (1,0,1,1,0,0) —
a=—2 1 (1,0,1,1,0,0) -
ac{-2,-4) 0 (1,0,0,1,1,0) -
a= -3 0 (1,0,0,0,1,1) —
As 43 (€5, 615 1 626 4 636,636 4 56, _ 16 36, () 0 (1,1,2,1,0,0) —
Af 44 (2016 + ¢° e 4 320, 2% %0 4- €75, 56 )
a ¢ {0,—1,—3,—4,—6,—7} 0 (1,0,0,0,0,0) —
a=—1 0 (1,1,1,0,0,0) —
ac {—4,—3} 0 (1,0,1,1,0,0) —
a=—6 0 (1,0,0,1,1,0) —
a=—7 0 (1,0,0,0,1,1) —
Ag.as (2616 4+ o5, 015 4 3026 4 36 3636 26 | o3 036 () 0 (1,0,0,0,0,0) —
As.46 (2616 4 645, 015 4 3026 636 4 46 616 4 36 (36 () 0 (1,0,0,0,0,0) —
AP, (€16 4+ &% o35 1 626 4 ce6, ae™ 0% 0,0)
ee{0,+1},a¢ {0,—1,—2,-3} 0 (2,1,0,0,0,0) -
ee{0,+1},a=—1 0 (2,2,2,1,0,0) -
0,41}, a= 2 0 (21,12,1,0) v
ee{0,+1},a= -3 0 (21,0,121) v
Ap s (€16 4 o5, 015 4 626 4 o6 036 %6 0 0)
AG a9 (e'® +e*® e'® + 20 + e, e, ¢, 0,0), e € {0, £1} 1(2,2,1,0,0,0) -
Ag 50 (e 4 e*® e!® + 0 4 £e%0 €% 1+ %6 e%0,0,0), e € {0,+1} O (2,1,0,0,0,0) -
6,51 (e, e'® +ce*0 e%6,0,0,0) , e =41 77 1 (3443,10) v
6,52 (e*®,e™® + e e30 ¢75.0,0), € € {0, +1} 1(23321,0) -

Nilradical As,1

27A8751 is decomposable.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
As,53 (e3%,6% 36 16 55 0) 2 (1,0,3,5,2,0) —
AZ:};AL (e*® 4 €% be? +e*® (1 —a)e®®, (b — a)e’® ae®s, 0)

% “l<bs<1bg{-30}af 0 (1,0,0,0,0,0) —

{-1,0,1,2,4b,2b, 1 (b+1),£(b+1),b+3, 1b+1,2(b+1)}
a=0,-1<b<1b¢{-1 -1,0}
ora=1,b¢{-2,-1,-1,0,1,1}

’ 92

0 (2,1,0,0,0,0) —

a=b+1,-1<b<1,b ¢ {—%70} 0 (171717171,0) v

a = 717 b ¢ {747 737 727 7%77177%705 1}
ora=2b¢{-3,-2-1,-101,2,23} 0 (1,1,1,0,0,0) -

ora=3(b+1),-1<b<1,b¢{-3,-1,0,%}

b=0,a¢{-1,011,2} 1 (1,0,1,1,0,0) —
a=—(b+1), -1<b<1,b¢ {5 -5 -35,0}
orb=-1,a>0,a¢{1,1,2} 0 (1,0,1,1,0,0) -
ora=b+31 b¢{-2-3-1,-3 -1 -101 1,32}
b=-2a¢{-4,-2,-2 -1,-10,1,2} 0 (1,0,0,1,1,0) —
a=2b+1), -1<b<1,b¢{-2,-10} 0 (1,0,0,0,1,1) -
(a,b) = (0,0) 1 (3,4,3,1,0,0) —
(a,b) = (1,1) 0 (3,3,1,0,0,0) —
(a,b) = (0,-1) 0 (2,3,4,3,21) v
(a,b) = (1,0) 1(2,2,3,3,1,0) v
(a,b) € {(1,-1), (2,2)} 0(2221,0,0) -
(a,b) € {(1,-2), (0,-2)} 0(21,1,2,1,0) -
(a,b) = (1,—-3) 0 (2,1,0,1,2,1) —
(a,b) = (2,1) 0 (1,3,3,1,1,0) v/
(a,b) = (2, -2) 0 (1,2,2,1,1,0) —
(a,b) = (—1,—-2) 0 (1,2,2,2,2,0) v
(a,b) € {(2,3), (=1,-3), (—1,1)} 0 (1,2,2,0,0,0) -
(a,b) € {(~1,0), (5,0)} 1 (1,1,3,2,0,0) -
(a,b) € {(-1,-3), (2,0)} 1(1,1,2,1,1,1) —

28 qa,b ~, 42a/b,1/b
A6,54 = A6,54
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket h*(g) hf

(a,b) € {(~1,~4), (2,—3), (2, —1), (2, 1)} (11.2,1,0,0) -
(a,b) € {2 =3), (1= 1)) (1L111L0) -
(a,b) € {(2,1), (3, -1} (102.20,0) -
(a,b) = (3,-3) (1,0,2,2,0,0) v
(a,b) = (_%7 -2) (1,0,1,2,1,0) v

A 55 (e* 4 e® + e (a+1)e®® + e, (1 — a)e®, e*% ae®s, 0)
ad{—4,-3,-2,-2 -1,-10,1,2,3} (1,0,0,0,0,0) -
a € {0,1} (2,1,0,0,0,0) —
a=—2 (1,1,2,1,0,0) —
a=—1 (1,1,2,1,0,0) —
ac{-312} (1,1,1,0,0,0) —
a=3 (1,0,1,1,0,0) —
a€{-3,-31 (1,0,0,1,1,0) —
a=—4 (1,0,0,0,1,1) —

Afss (9463, (1-b)e4e30+e*, (1—a)e®®, (1—2a)e*0, ae®, 0)
ag {-1,0,5,2,8,1,3,3,2,3) (100000) -
a=1 (2,2,3,3,1,0) v
a€{0,3} (2,1,0,0,0,0) —
a=2 (1,1,2,1,0,0) —
ac{-12 (1,1,1,0,0,0) —
a=? (1,0,1,1,0,0) —
a€ {33} (1,0,0,1,1,0) —
a=? (1,0,0,0,1,1) —

AG 57 (e'® + €%, 226 + €1, (1 — a)e3%, ae™® + ¢, ae%, 0)
ag {-L-2,-1-1-1012) (10.0.0.0.0) -
a=0 (2,2,2,1,0,0) —
a=1 (2,1,0,0,0,0) —
a—_1 (1,1,1,1,1,0) —
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
a=2 0 (1,1,1,0,0,0) —
a€{-1,-1} 0 (1,0,1,1,0,0) —
a=-1 0 (1,0,0,1,1,0) —
a=—2 0 (1,0,0,0,1,1) —

- (316 + ¢33, 2620 4 030 4 15, 2630 16 | £ 0% (), 0 (1,0,000,0) -
e €{0,1}
As 59 29 (616 —|—e35,e45 + e467836,6567070) 1(2,2,2,1,0,0) —
Ag 60 2° (616 + &35 4 &6, 2626 1 615 (), o6 1 56 &% () 0 (2,1,0,0,0,0) —
A§ 61 (2e'0 4- %5, 2ae2® + ¢*° 36 + %5 (2a — 1)e*%,¢%%,0)
A {-2-3-1-%-1,0,3,4) 0 (100000) -
a=1 0 (2,1,0,0,0,0) —
a=0 1 (1,1,2,1,0,0) -
a=_1 0 (1,1,1,1,1,0) —
a=1 0 (1,1,1,0,0,0) -
ac{-1,-2%} 0 (1,0,1,1,0,0) —
a=—2 0 (1,0,0,1,1,0) —
a=-32 0 (1,0,0,0,1,1) —

AG 62 (2e'0 4- €%, 6?0 4 3¢ 4 e e3¢ 1 e76,0,e76,0), e € {0,1} O (2,1,0,0,0,0) -

6,63 (616 + 635, a0 4 &% 4 16,630 266 0, 0)
a¢{-2,-1,-1,0} 0 (2,1,0,0,0,0) —
a=0 1 (3,4,3,1,0,0) —
a— 1 0 (2,2,2,2,2,1) v
ac{-2 -1} 0 (2,1,1,2,1,0) —
664t (e0 4 €% + 16 620 4 2630 4 e%5 36 6%6,0,0), e = +1 0 (2,1,0,0,0,0) -
Ag6s (ee'+e% e fee® +e*, (e —a)e®® e 4 (e —a)e?® ae®®, 0)
e=1a¢{-2,-1,01,3,2} 0 (1,0,0,0,0,0) —

29The parameter h in Mubarakzyanov’s class ge 59 is redundant since it can be normalised for h # 0 and
0
96,50 = Ag g3 for h = 0.
30The parameter w in Mubarakzyanov’s class ge 60 is redundant since gs 60 = Aéyss for w = 0.
3140 " _ 40
6,64 = A6,55
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
e=1,a=1 0 (2,2,1,0,0,0) —
c=1,a=0 0 (2,1,0,0,0,0) —
e=1,a=2 0 (1,1,1,1,1,0) v
e=1,a=-1 0 (1,1,1,0,0,0) —
e=0,a=1 1(1,0,1,2,1,0) —
e=1,a€c{-2, % 0 (1,0,1,1,0,0) —

As 66 (2616 4 €35, 016 4 2026 4 645, 636 4 56 036 | 16 36 () 0 (1,0,0,0,0,0) —
”" 26;6;)76;; + actt, o164 o6 4 o5 36 36 4 16 o () 0 (210000) -
As 69 (€' + 65,616 4 626 4 %5 4 16,630 6% 4 6460, 0) 0 (2,1,0,0,0,0) —
e (be'® — 26 4 ¥ 016 | ho?® 4 %5, (b — a)e® — o4,
' e3® 4+ (b —a)e®® ae®®, 0)
a>0,bé¢ {f%a,O, %a, %a, a} 0 (1,0,0,0,0,0) —
a=0,b>0 0 (2,1,0,0,0,0) —
b=1laa>0, 0 (1,1,1,1,1,0) v
b—a a>0 0 (1,1,1,0,0,0) —
b:—%a, a>0orb=0,a>0 0 (1,0,1,1,0,0) —
b=1laa>0 0 (1,0,0,0,1,1) —
(a,b) = (0,0) 0 (2,3,4321) v
Nilradical As >
As.m ((a+3)e'® +e?°, (a+2)e? +e3°, (a+1)e® +e*° ae®f, e 0)
ag{-4,-3,-1,-2,-7 -2 1 -1 0} 0 (1,0,0,0,0,0) —
a=0 0 (2,1,0,0,0,0) —
a=—32 0 (1,1,1,1,1,0) v
a€{—4,-11 0 (1,1,1,0,0,0) —
a— _3 1 (1,0,1,1,0,0) —
a——9 0 (1,0,1,1,0,0) —
a— 1 0 (1,0,1,1,0,0) v

32Mubarakzyanov’s class ge,67 is redundant since gff g7 = Aé:éf for all h € R.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
a=-1 0 (1,0,0,1,1,0) —
a=-1 0 (1,0,0,0,1,1) —

As.72 (4616 4+ 025, 3020 | ¢35 2676 4 15 26 | %6 036 () 0 (1,0,0,0,0,0) —

AG 73 (e'® + e + e, 6?0 435 40?0 ¢35 4-¢°¢%,0,0), e =41 0 (2,1,0,0,0,0) -

As.74 (€16 4 025,626 1 35,63 4 o1 016 0,0) 0 (2,1,0,0,0,0) —

Ae,75 (16 4 2° 4 %6 %6 4 o35 36 4 o%5 616 ) ) 0 (2,1,0,0,0,0) —

s 5 (€16 4 625 1+ 2630 1 act® 626 4 ¥ 1 el 63 4 615,616, 0,0), 0 (210000) —

’ e==41,a#0
Nilradical As 3

A 76 ((2a+1)e'®+e? (a+1)e?0+e* 2+ (a+2)e®®, e*®, ae®®, 0)

o “l<a<l,a¢{0,—1 -1 -4} 0 (1,0,0,0,0,0) v
a=0 0 (2,1,0,0,0,0) v
a=—1 0 (1,1,2,1,1,1) —
a=—3 0 (1,1,1,0,0,0) v
a=—2 1 (1,0,1,1,0,0) v
a=—1 0 (1,0,0,1,1,0) v

AG 77 (e'® + e®® + e, e%0 4 e, e 4 2¢%,¢%,0,0), e = £1 0 (2,1,0,0,0,0) v

Ag 78 (—e'® 4 625 o5 624 | 36 | o6 o6 656 () 0 (1,1,2,1,1,1) —
As,79 (3e'® + e 4 36,220 4 e*°, e2* 4+ 330 46 %0 4 656 0) 0 (1,0,0,0,0,0) v/

(2&616 + 645,615 + 3&626 + 636, e14 _ e26 + 38.6367

Bis 46 _ 56 46 56
ae™ —e”°,e"® + ae’”,0)
35 a0 0 (1,0,0,0,0,0) v
a=0 0 (1,1,2,1,1,1) -
B (e*®,e® + 36 e — e 1 €60, —e%¢ e%,0), e = %1 0 (1,1,2,1,1,1) -

Nilradical As 4

33 Bs.2 is denoted by ne 76 in [Shal.
34 qa 1/a 0 — A0
A6,76 = 6,761 A6,76 - A6,77
% Bs,3 and Bs 4 are denoted by mes3 and n6 g4 in [Sha], Mubarakzyanov’s classes gs,so and ge g1 are
redundant since ge,s0 = AQ 76 and g§ g1 = A 77.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf

Asab (2ee’® 4+ e** + 35, (e + a)e?®, (e + b)e, (¢ — a)e,

' (e — b)e®,0)

% e=1,0<a<hb a¢ {15}, b¢{1,52+ad+a} 0 (1,0,0,0,0,0) —
e=1l,a=1,b>0,b¢{1,3,5} 0 (2,1,0,0,0,0) —
e=1,b=a+2a>-1,a¢{0,1,3,5} 0 (1,1,1,0,0,0) -
e=Lb=a+4,a>-2a¢{-1,0,1,5} 0 (1,0,1,1,0,0) —
e=1,a=5b>0,b¢{1,3,579} 0 (1,0,0,1,1,0) —
e=1, (a,b) = (1,1) 0 (3,3,1,0,0,0) -
e=1, (a,b) = (1,3) 0 (2,2,2,1,0,0) -
e=1, (a,b) = (1,5) 0(211,21,0) -
e=1, (a,b) = (0,2) 0 (1,2,2,0,0,0) -
e=1, (a,b) € {(5,3), (5,7)} 0 (1,1,1,1,1,0) -
e=1, (a,b) = (0,4) 0 (1,0,2,2,0,0) -
e=1, (a,b) = (5,9) 0 (1,0,1,2,1,0) v
e=1, (a,b) = (5,5) 0 (1,0,0,2,2,0) -
e=0,a=1,0<b<1 1(1,1,2,1,11) v
e =0, (a,b) = (1,0) 1(3,3,2,331) v
e=0, (a,b) = (1,1) 1(1,36,311) v

A2 (2ee™® + e®* +¢° (e +a)e?%, e + (e 4 a)e®®,

' (e —a)e*® — e (e —a)e’®,0)

o e=1,a>0,a¢{1,2,5} 0 (1,0,0,0,0,0) —
e=1l,a=1 0 (2,2,1,0,0,0) —
e=1,a=2 0 (1,0,1,1,0,0) —
e=1,a=>5 0 (1,0,0,1,1,0) —
e=0,a=1 1(1,1,2,1,1,1) -

Apg 84 (624 + &35 26,656 %6 0, 0) 1(2,2,2,2,21) v

A g5 (2616 + e** + &%, (a4 1)e?6,e36 + e, (1 — a)e*®,e?5,0)

PATEY > ATh > AT > Ag

37 40,0 . . £,a g,—a
Ag gz is nilpotent, Aggs = Ag'gs’.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf
a>0, a¢{1,24,5} 0 (1,0,0,0,0,0) —
a=1 0 (2,1,0,0,0,0) —
a=2 0 (1,1,1,0,0,0) —
a=4 0 (1,0,1,1,0,0) -
a=>5 0 (1,0,0,1,1,0) —

Ag.87 38 (216 + 0?4 | 35 026 36 | 56 36 4 46 (26 +e%,0) 0 (1,0,0,0,0,0) —

Ag,géb (2ee™® + e®* +¢° (e + a)e?® — be®® be? + (¢ 4 a)e’C,

' (e — a)e™® — be® be'® 4 (e — a)e®,0)

%9 e=1,a>0a¢{1,2},b>0 0 (1,0,0,0,0,0) —
e=1l,a=1,b>0 0 (1,1,1,0,0,0) -
e=1,a=2b>0 0 (1,0,1,1,0,0) -
e=0,a=1,b>0 1(1,1,2,1,1,1) v
=0, (a,b) = (0,1) 1(1,3,6,3,1,1) v

Agig;;’ (2i§16 + §Z4 1635, (e + b)e, ee® — ae®, (e — b)elS,
ae”’ 4 ee’’,0)

40 e=1,a>0,b>0,b¢ {15} 0 (1,0,0,0,0,0) —
e=1,b=1,a>0 0 (2,1,0,0,0,0) -
e=1,b=52a>0 0 (1,0,0,1,1,0) -
e=0,a=1,b#0 1(1,1,2,1,1,1) v
e=0, (a,b) = (1,0) 1(3,3,2331) v

AEZZO (266:: + e2;16+ e35, ge®® 4+ 646, ee®® + ae56, 5646,

—ae”” 4+ e°,0)

4 e=1,acR 0 (1,0,0,0,0,0) -
e=0,a=+1 1(222221) v

Ag;;‘g (28616 +e* 4 635, ge?® — ae56, ge®0 — aet® — 656,

e26 + ae36 + 5646, 3626 + 565670)

. . 1

38Mubarakzyaunov’s class gg,86 is redundant since ge,z6 = A6’g3.
39 45,a,0 v g&,a5a g,a,b nu pge,—a,b n, g€,a,—b ’

Aa,gsb = A6’§20 and Ae,ssb = Agss . A8y N
40 A€,0,b ~v €,D, £€,a,b ~v g, —a,b ~v £,a,—
41A6,89 = Agsy and Agigy’ = Aglsg = Aglsy o1

The Lie brackets of Mubarakzyanov’s classes gs,00, g6,01 = Aggo and ge,03 are corrected in [Sha,

Appendix G]J.
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim.

non-Abelian nilradical

g Lie bracket h*(g) hf
2 e=1,a>0 (1,0,0,0,0,0) —
e=0,a=1 (1,1,2,1,1,1)
Bgzé’ i (2612(:r 62;+ ¥ 626 1 2610 63 4 he?®, —ae?® 4 o6 (1,0,0,000) —
—be’® +€°°,0), a > 0, |b| < |a|
Big (€ + ¢, 6% 2%, — 06 a6 0)
“ “l<a<1,a#0 (1,1,2,1,1.1) v
a=+1 (1,3,6,3,1,1) v
Nilradical As 5
6,94 ((a+2)e'® 4+ e + e (a+1)e?® 4 3% ae®, 2¢%6 76 0)
a¢{-5-3,-2,-2, -3 4.1 10} (1,0,0,0,0,0) —
a0 (2,1,0,0,0,0) —
a— 9 (1,1,2,1,1,1) v
a—_3 (1,1,1,1,1,0) v
a1 (1,1,1,0,0,0) —
Az _1 (1,0,1,1,0,0) v
a€{-5-3} (1,0,1,1,0,0) —
a= -3 (1,0,0,1,1,0) v
a=—14 (1,0,0,1,1,0) —
As,95 (2e'6 4 €% 4 3 4 6 26 1 3% 0,2¢%0 %5, 0) (2,1,0,0,0,0) -
As o6 (3016 4 2 4 €34, 2070 1 6% 4 616, 6% 4 636, 2010 &3 0) (1,0,0,0,0,0) —
Ag.o7 (4616 4 625 4 67 3620 4 635,260 63 | 2616 656 ) (1,0,0,0,0,0) —
6,98 (e16 + e 4?0 631, 26 435 &30 65,0, 0)
e=0 (3,3,1,0,0,0) —

“2Mubarakzyanov’s class ge o2 is redundant since

QG H05V0 A o,V —HOoY0,V —HOY0
96,92 = 96,82

o, p10,v0 A~ 0,3/ 10V0
6,88

96,92

for povo > 0,

QG H0,V0 Ay

96,92

~ - b b, —a,—b pa, -
“*Bg.s is denoted by neos in [Sha], Bgy = Bgt = Bg2 ™", By = AG’/;;* where Ag g2+ is the class

mentioned in [CS].

) . 1 0,1,0
4 Bg,s is denoted by ng g6 in [Sha], B¢ = BG’/;, Bl = Ag'sy , B = A g
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Table 7.7: Indecomposable 6-dim. Lie algebras with 5-dim. non-Abelian nilradical

g Lie bracket 3 h*(g) hf

e=1 0 (27271703030) -

Nilradical As 6

Ag,99 (5e'0 4 % 4 31, 46?5 4 €%, 336 + 15 2¢%¢, %, 0) 0 (1,0,0,0,0,0) v/

Table 7.8: Indecomposable nilpotent almost Abelian 7-dim. Lie algebras

g [Gong] Lie bracket 3 h*(g) cocalibrated calibrated

nz (37A) e e 7,0,0,0,0) 3 (4,12,18,18,12,4,1)

nz.2 (247A)

27

e’",e%",0,e°,e%7,0,0) 2 (3,7,13,13,7,3,1)
e ,e

nrs (2457A) 7,e',0,e°7,0,0) 2 (3,7,10,10,7,3,1)

N NN
\

(
(
(
nra (123457A) (e77,€%7,e",e%7,e%7,0,0) 1 (2,4,6,6,4,2,1)

Table 7.9: Direct sums of a four-dimensional and a two-dimensional Lie algebra admitting
a half-flat SU(3)-structure which are not a sum of two three-dimensional Lie algebras and

so are not contained in [SH]

Lie 15

Half-flat SU(3)-structure
algebra

W= —e'0 42 _ o3
e p=el2 _ 15 | o156 _ o216 4 (315 _ 9356

T
4,1 2 g= (61)2 + (ez)z + 2(63)2 + (64)2 + (65)2 + 2(e6)2 —2¢l.e3 4 2¢t.e8

B? @1,

B >0 46 w = e15 + 624 + 836, p= e123 _ e146 + e256 4 6345, ONB

%5In each case except B?, the exterior derivatives of the one-forms e', ..., e* are those given in Table 7.3
and de® = 0, de® = &S,
46The family B®, 8 > 0, with the Lie bracket (Be'*—e**, e, —Be*,0) unifies the cases A;g, AZ?(“H)

for —-1<a<-—3 aundA46°‘/2 for a > 0 since
B~ po—a/2 . 28
B” = Ay f0r0<5<2anda_\/@7
B*= A3,
Bf =~ AZ,’;(QH) for >2and a=—-1— \/[;Zj,
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Table 7.9: Direct sums of a four-dimensional and a two-dimensional Lie algebra admitting
a half-flat SU(3)-structure which are not a sum of two three-dimensional Lie algebras and

so are not contained in [SH]

Lie 15
Half-flat SU(3)-structure
algebra
W= —el el 24 4 25 4 31 ¢35
p — 26123+46124+461347261567262344’2623676245 +36246736256+6345
B 136346 4 36356 | 126456
8Dt
4.8 2 g= 2(61)2 +4(62)2 +4(e3)2 +57(e4)2 +2(e5)2 +3(e6)2+461'62 —461‘63
—18et-e* +2e!-e® — 46?63 — 26e2-e* — 2e%.¢% + 4e?-e% + 26€3-e* — 2e3-€°
—4e%.e5 — 18e*-€°
w = e!® — 3621 4 2625 4 30,
p =
A;é e V3 (e124 420134 _ 135 | o146 _ 9156 | 9,236 | 4245 _ (345 | ?6456)7
, g=

(e')2+4(e?)? +4(e®)? +84(e*)24+17(e”)* +29(e)? —18e'e? +-8e' e’ 4-4e%e?
+16e?-e% — 4e3.e® — 7het . e°

14 25 36

—ett — !0 — 25 _ 30
123 _ (156 | (234 | (236 | (246 _ (345 4 (356 _ o456

w
Ag10Dr2 p=e )

g = (€)2 4+ (€2)2 4 ()2 +2(e4)2 + (€%)2 + 3(e5)? + 2elet + 26 €5 + dete®
W= el6 _ 262 4 o2 _ &3 _ o6
p = el 9pl34 | QM6 4 135 | (156 (245 (236 4 90450
g = (€)% + (€2)? + ()2 + 9(e")? + 2(e%)? + 3(e%)? + det et — 2¢t-¢°

—22.65 — 8e*-e® — 2¢3.e°

As12 Do

w=el? _ e _ o2 _ 35 4 %6
o BBt p— 24 — 126 4 90134 4 30156 _ (231 | (256 | (315 | 9356
4 g=6(e")?+ (e*)? +4(e*)? + (e*)® + 3(e®)® + 2(e®)® + 8e' -e® + 6e' -&°

+2e%-e3 — 2e2.e® 4 2e3.€% 4 28

“"The exterior derivatives of the basis one-forms are (0,e'?,0,e3*,0,¢°°).
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Table 7.10: Direct sums of indecomposable non-nilpotent five-dimensional Lie algebras

and R admitting a half-flat SU(3)-structure

Lie algebra Half-flat SU(3)-structure®®

AP OR,0< B,

AS%SO’Y@R77>Oa W:*613+924+6567P:

AW SR, 0<y <1,
A3 ®R, A2, &R

AP @R, a >0,

5
w:el3+624fe“’6,p:e

e126 +€145 + e235 + e3467 ONB

5 5
125 4 e146 _ 6236 _ 634d, ONB

A7 OR
Ag,ls a&R w=el2 3 _ 656, p= o136 + el45 _ o235 + e2467 ONB
w=el!d T 24 _ 9¢25 _ 856,
A5 Fe R p= _el26 + el45 _ o234 =+ 346 _ 6356,
g= (61)2+2(62)2+(e3)2+(e4)2+2(65)2+(66)27262'66 26 65
A_173 o R w=eBd 922 _ 646, p= el26 _ 9,145 + o234 4 26356, OB,
5,19 2
lles||” =2
A2 @]R w=e!? 4 2e3% _ 646, p= el34 + 26156 —|—6236 —|—2€245, OB,
5,19 2
lles||” =2
w=ell 42 4+ e34,
Ag,30 aR p= el23 + 2e145 _ 156 _ 246 _ 345 + 6356,
g:2(61)2+(e2)2+(e3)2+2(e4)2+(e5)2+(66)272el-e3+2e4~66
As—éé—l e R w=el? 36 _ e457 p= _el35 + o146 + o234 + e2567 ONB
w=el® +e25 -‘,—3626 —|—634
Ag = ® R p= el23 + el45 + 2146 + e245 + 246 + e356
g=(e")"+2(e*)?+(e*)” + (") +(€7)* +5(e")” + 2¢"e” + de™e”

“®In each case, the exterior derivatives of the one-forms e!,

de® =
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Lie algebra

Half-flat SU(3)-structure

As36 @R

As 37 @R

As40 PR

wz%em—i—em—i—ew—ie24+e46+e56,

5 X ann ,.
p= 7%61244»%612076134761354»46146+4e236+3634o+3e4067

9= 15(e")” + $5(e*)* +12(e”)” + (") + 7(e”)” + 28(e")?
4 5

—|—%e et — %el~e5 +2e2.e8 4 246365 — et-e

_ _%ew + 3624 1 e3s,

w
p= —6125 + 36134 + 26146 + e236 + 68345 _ ?6456,
9

(e1)2+3(62)2+3(e3)2+3(e4)2+%(65)2_’_%(66)2+4el'es_4e3_e6

— el 4 o5 4 31 _ o3,
4 12 1 234 4
_ o126 _ o135 4 o234 | 456

— e12
— (61)2 + (62)2 + (63)2 + 2(64)2 + (65)2 + (66)2 _ 264'66

Q@ ™ &

Table 7.11: Half-flat SU(3)-structures on non-solvable indecomposable 6-dim. Lie alge-

bras

Lie algebra

Half-flat SU(3)-structure

L6,1, 50(3, 1)

Le,2

L3

L4

w=elt p e o3 = _el26 oI35 4 o234 | 456 ONB
w=—el 162 1630 p= 20125 _ 26126 | 36135 | 96136 4 (156
496234 | 245 | o345 _ (346 _ %64567

9= 2 +4(P)? + 6 + L (e!)? + B() + ()2

—8el-e? — 8e2-e® — 4e2-e® — 1063 -e® — 4e®.€% 4 21e° €5

w = e15 +€24 _ e26 —|—636 +656,
p= 36124 + 116126 _ elS4 _ 26136 _ 26156 + e235 _ e246 + e346 + e456
g= 5(61)2 + 14(62)2 + (63)2 + (64)2 + (65)2 + 18(66)2 _ 461'64

—18e!-e5 — 6e?-e3 — 4e?-e° + 8et-ef

w= 7%\/§(el4 + e15 _ 2624 _ e25 + 636),
p= l\/g(e123 + e126 + e134 +€235 _ e456)

2 ’
g= (61)2 + 2(62)2 + (63)2 + 2(64)2 + (65)2 + (66)2 _ 261'62

s s
+el-et +el-e® —2e%.ef —e2.e® + 6368 4 2e%6°
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Table 7.12: Indecomposable 6-dim. Lie algebras with 5-dim. nil-
radical admitting a half-flat SU(3)-structure

Lie algebra

Half-flat SU(3)-structure

a,—(2a+1),3a+1
A ;

6,13

a#£0
0,-1,1
Ag1s

a,—(2a+1),3a+2
Ag'13 )

a#—1

-3
A6,28

a,—3a,l

Aglzr ,a#0
0,0,1

A7
0

Ag 38

a,—1(a+3)
’ 3
A6,39 )

a¢{3,0}

w=—e" 422620 + % p=e!?! 4 22e!%% — ¥ — 22¢316 OB,
lles|l = 2[al
w=el® _ 2 1 o3 p= el _l36 _ o235 _ 156 ONB

_(2a+2)e16 _ 28 —|—e45, p= el24 | o185 4 (2a+2)e256
—(2a+2)e™°, OB, ||es|| = 2Ja + 1|

w=—el® — e 1 o3 p= ol _ o135 4 6230 _ o156 (ONB
W= —e' 4 %626+e457 p=el? %6146 4234 _ %63567 OB,
4
lles|| = 3
1 24 12 134 2 4
w=rell —e? 163 p=—el? _el31 _ 236 _ 156 ONB

w= 4616 +623 +€45, p= e125 +6134 +46246 _ 46356, OB,
lles|| = 4

w=—el3 14620 4 o35 p= o125 | 4ol46 _ 6234 | 4356 OB,
lles|| = 4

w=—e'® e % -
p=el26 4 o134 _ ol46 4 (235 | 256 9456

g = (") +(e*)?+(e®)? +2(e)* +2(e”)” +(e%)* ~ 2! -e” —2¢ ¢"
w=—el® et 1 &35 _ 4615

p= el 4 o134 | o236 _ 40246 456

g= (61)2 + (62)2 + (63)2 + 17(64)2 + (65)2 + (66)2 _ 863 . e4

w= 74&616 + e23 _ e457 p= e125 _ e134 + 4&6246 + 4a6356’ OB,
lles|| = 4]al

w = —616 +624 + 635, p= —6125 4 e134 =+ e236 _ 6456, ONB

w = —616 _ e25 + e347 p= —6124 _ e135 4 e236 _ 6456, ONB
w= 7614 + e23 + ;:-H; e34 ( 1)656

,O:(—%a-‘r 1) 126 6135+( 1)62 245-{-(%&—1)6346,
g=(e")? +(e7)? + 25 (P )2+(e4)2 +(e%)?

+é (2& _ 3)2 ( ) 4 —213 3661 e3
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Table 7.12: Indecomposable 6-dim. Lie algebras with 5-dim. nil-
radical admitting a half-flat SU(3)-structure

Lie algebra

Half-flat SU(3)-structure

Agse, a ¢ {~1,0}

-1
A6,42

Ay, e €{0,£1}

—1,-2
Ag 4¥

0,-2
A6,47

1,-2
A6:47

A2’517 e==1

0,—1
A6:54

W= —e'? 3 1 2656 = 135 | 0146 | 9236 _ e2457

g=(")2+ ()’ +(*)? + (e")” + (e°)? + 4(e%)?

w=(1+a)ed +e23 — 3 1 o5

p=—e 4 o135 4 (1+4a)e? + (1+a)e®® + (1+a)e®

g = ()2 +(e?)? +2(e? 2+(e4)2+(65)2+(1+a)2 (€%)2 +2¢% .
W= —e'B el 4 23 _ 363 _ %656’ p= %e126 _ 135 4 o136
tel45 4 %el46 _ 26236 _ o245 _% 246 _ 1346

g =2(e")? + (€)2 + 10(e®)2 + (e*)? + (e°)2 + %(ee)z —9el . a2

+6e! e +e° . ef

W= —el 42 a2 _ §e34 . 3656,
p= 39126 —e!35 4 iel‘?’ﬁ 420145 _ %6236 _ 215y %e345 o 36346,
9= ()2 + () + () +5(eh) + (¢°)* + §(e°)°

+%e1 e® + %62 e — 4e® . et

1 4
w=2e'0 42 — &3 L e
p= —el | ol35 | 96236 4 96256 | 90346

g:(e1)2+(e2)2+2(e3)2+(e4)2—|—(e5)2+4(e6)2+2e3-es

w=e'? 4 e 1 o34 4 2656,
5 5
p= —20126 _ 135 | 00146 | 90236 4 ;245

g= (el)Q + 2(62)2 + (63)2 + (64)2 + (65)2 +4(66)2 _ 262 . e4

w=el? o2 | o35 _ 16 4 7636

126 _ o134 | 70135 _ o156 _ 7236 _ o245 _ 3,356

p=2e e
g =(e")* +5(c*)* +10(c*) + (")” + 50(e”)* + (¢°)?

+6e! - e® —4e? .5 — 14e* - &°

12 1 4
w=-¢e'"? — 2! — &35 4 6 4 56
p = 26120 | o134 | 135 4 o156 _ (236 _ o245

g:5(e1)2—|—(e2)2+(e3)2—|—(e4)2+2(es)2+(e6)2—|—4e1-e3+2e4~e5

w=—e' 462 40
p=—V2" — 12! 4 11267 + V267, OB, [|ea|| = I,
lles|| = v2

w = elG + e23 _ 634 + e457 p= _el24 + e135 + e236 + e256 + 6346,

g:(e1)2+(e2)2—|—2(e3)2+(e4)2—|—(e5)2+(e6)2+2e3-95

w = e12 4 634 + e567 p= e136 + el45 4 e235 _ 6246, ONB
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Table 7.12: Indecomposable 6-dim. Lie algebras with 5-dim. nil-
radical admitting a half-flat SU(3)-structure

Lie algebra

Half-flat SU(3)-structure

1,2
A6:65

A
672073‘7&0

A§ 76, a # —1

A7y € = %1

w =20 4 24 _ 3

125 _ 25,134 | 3,146 236 | 3,345 456
p=—e — e e +2e77 + 3677 +2e77, g =

2+’ +B(®) 2+ (")’ +(°)* +4(e®)* — Ze' e+ 3¢> - e°

e, p=e" —e

e13 + e25 + 646 _ 96 126 145 e234 + e235 _ e356
g = (61)2 + (62)2 + (63)2 + (64)2 + 2(65)2 + (66)2 _ 264 . e5

W= el 24 _ ae567 p= _ael26 _ o145 4 0235 4 ae346, OB,
lles|| = al

W= —eld 24 _ e567 p= _el26 _ 145 4 o235 e3467 ONB
w=el? 4¢3 +656

5,136 145 _ 1,146 235 |, 1236 246
p=3e""te — € +e 4 je —e 7,

5 2 5(.3)\2 4\2 512 6v2 , 1. .2 3 4
9= 30"+ () +3(e*)? + (") + () + () e -e® —e’ e
W= el 24 _ 26567 p= _9el26 _ o145 4 235 4 26346, OB,
lles|| = 2
w=e3 424 ae567 p= —ael26 _ ol45 | o235 a63467 OB,
lles|| = lal
w=—e2 463 _ 656’ p= _el36 4 o145 _ 0235 _ 6246’ ONB

w=el2 4% _ 3636 _ o5 | 1867,

4
126 4 o135 _ gold6 _ o234 _ 245 _ 3,456

p=3e
g =2(e")? 4 (e®)? + (e*)? + 2(e*)? + 37(e)? + 9(e%)?
—2e!-e® —2e? et — 1283 - 6°

12 o234 o34 56 ) o136 _ gld5 235 4 (246 (345

w=e e’

— (61)2 + (62)2 +2(e3)2 + (64)2 4 (e5)2 + (66)2 +2€1 . e3

w=-e" 4 (4a + 4)e? —%344—645
p= e124 + (3a+3)e'3C + (4a + 4)e'5% + 3% + (4a + 4)e®C,
g=(e")2+(e*) + % (%) +(e4)2+(e) +16 (a+1)% (e°)?
+363 .65

2
w=—e _ 4e% 4 %e34 _ e457

— e124 + 36136 +4el56 +e235 +46346,
— (61)2 + (62)2 + %(63)2 + (64)2 + (65)2 + 16(66)2 + %eS . e5
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Table 7.12: Indecomposable 6-dim. Lie algebras with 5-dim. nil-
radical admitting a half-flat SU(3)-structure

Lie algebra Half-flat SU(3)-structure

w=e" 48" — 3 4 e,
As.7o p = el | 6el30 | 8el%6 4 6235 | go346

g=—()?— (M) = (") — ()" — (e

o
—
V)
\
[«
=
—
o)
=Y
N>
(V)
\
|0
@
w
@
o

w= 8&616 +e23 _ %6344—645,
Bg’:}’ a#o p= 761244»6135+6a6236+8a6256+83.e346,
g:(61)2+(62)2+%(63)24—(84)2+(65)2+64a2(€6)2+%€‘3‘€5

Algy, 0<b <1,
A6,847 Ag:é§b7 b 2 07 W= e16 + e23 + e457 p= 76124 + e135 +6256 + 6346, ONB
and Ag§), a = +1

w= e — 3¢24 — 12676 — o,
AV p=el25 _ 126136 _ 6234 | 366236 _ 126156
g = (e)? +10(e?)? + (e®)? + ()2 + (e7)? + 144(c%)* — 6e' - ?

0,1,b 0,0,1
A6:8é , b> O, Aﬁ:sé w = _el6 _ e23 + e457 p= —6125 + elS4 + e246 + e3567 ONB

B2,67 71§a'§ 1,
a#£0

w = elG + e23 + e457 p= —6124 + e135 +e256 + 6346, ONB

w=e 4 el® _ 3016 _ 3026 4 &34
Ag§,4 p=el23 _ 3146 | 30156 _ o245 | 3,246 4 3,356

g= 2(61)2+(e2)2+(63)2+(e4)2+(65)2+18(66)2+261'63—665'66

w:eu—%e23+%e25+e34—§e36+%e56,
1,126 135 | 7,146 234 | 7,236 , 245 | 7 256 | 49 456
A3 p=3ze 7 —e T +ge T e f e fet T et Fe,
6,94 _ (a1)2 50 (422 332 4\2 53 (,5\2 49 (.62
g=(e)"+ 55(e7)" +2(e”)" + ()" + (") + F(e”)
—7e1~e5+$e2~e4—263 e’
- w=eld —el6 2624 620 | 35 = o125 | o134 4 236 o456
6,94 12 2\2 312 472 512 612 1.2 4 6
= (e")*42(e*) +(e’) +2(e*)*+(e*)*+(e°)*+2¢ -e*—2¢e" e
W= —eld _ 25 _ %ez«m — 3¢%,
Ag’g4 p:3el267e135+e2347362367364567
_ 182 2\2 | 13,312 442 512 612 1.3
g=(e)"+ () + () + () +(e7)"+9(e”)" +3e -e
_ 4,12 14 | 42 23 25 _ 63,34 _ .36 _ 729 56
w=3e"+e 4+ 5 +e 35€ 9 55 ,
B — 026 _ o135 4 (234 _ %e2367 %6245Jr126256Jr964567
6,99
) _ (a1\2 | 25(.2\2 | 5413(.3\2 4\2 | 8005 (.52
g=1(e)"+ 5(e7)" + 75z (e”)" + (") + Tozi(e”)
6v2 63,1 .3, 8.2 4, 8.3 5
+81(e”)° — g€ -e” + e”-e” + {ge° - e
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Table 7.13: Dual adapted bases for cocalibrated Ge-structures

in some exceptional cases

Lie algebra dual adapted basis *°

Asg De(l,1) (61,65,66,67,64,e2,63)

71 1 4 2 4 5 3, 2 6 5 6
As12 D3 (e,—gx/ge,\/ge,e —zvbhe’, e + £ 5e,e,e)

9 1 2,135 5 3 6 6 1 7 1 4
tQ@tQ@t&l (\/ﬁe,e +§e,e,e +3e,e,me,ﬁe)
“9In each case, (el7 ...,€7) denotes a basis such that e',...,e? satisfy the Lie algebra structure given in

Table 7.3 and €°, ..., e” satisfy the Lie algebra structure given in Table 7.1
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Zusammenfasssung

In dieser Arbeit werden verschiedene geometrische Strukturen auf sechs- und siebendimen-
sionalen Lie-Algebren untersucht. Besonderer Fokus wird dabei auf sogenannte halbflache
SU(3)-Strukturen in sechs Dimensionen und kokalibrierte Ga-Strukturen in sieben Dimen-
sionen gelegt. Diese beiden Strukturen treten natiirlicherweise auf Hyperflichen in sieben-
bzw. achtdimensionalen riemannschen Mannigfaltigkeiten mit Holonomie enthalten in der
exzeptionellen Holonomiegruppe Go bzw. Spin(7) auf. Umgekehrt dienen diese beiden
Strukturen als Startwerte von Evolutionsgleichungen, die 2001 von N. Hitchin eingefiihrt
wurden. Die Losungen dieser Evolutionsgleichungen erlauben es sieben- bzw. achtdimen-
sionale riemannsche Mannigfaltigkeiten zu definieren, deren Holonomie eine Untergruppe
von G bzw. Spin(7) ist. Dariiberhinaus werden Mannigfaltigkeiten mit halbflachen SU(3)-
Strukturen und kokalibrierten Go-Strukturen in der Physik im Kontext von Kompakti-
fizierungen zehndimensionaler Superstringtheorien betrachtet.

Das Hauptresultat dieser Dissertation ist die Klassifikation der direkten Summen von
vier- und dreidimensionalen Lie-Algebren, die kokalibrierte Go-Strukturen zulassen. Das
analoge Klassifikationsproblem 16sen wir auch fiir die Klasse der siebendimensionalen fast-
abelschen Lie-Algebren. In dieser Klasse bestimmen wir auch diejenigen Lie-Algebren die
kokalibrierte G3-, kalibrierte Go-/G3- oder parallele Go-/G3-Strukturen besitzen.

Aufbauend auf Resultaten von D. Conti und F. Schulte-Hengesbach, vollenden wir eine
Dimension niedriger die Klassifikation der zerlegharen sechsdimensionalen Lie-Algebren,
die eine halbflache SU(3)-Struktur besitzen. Anschliefsend betrachten wir das analoge
Klassifikationsproblem fiir den unzerlegbaren Fall und 18sen es vollstéindig bis auf die Klasse
aller unzerlegbaren auflésbaren Lie-Algebren mit vierdimensionalem Nilradikal. Zusétzlich
erzielen wir einige kleinere Resultate fiir die beiden pseudo-riemannschen Analoga von
halbflachen SU(3)-Strukturen.

Im letzten Kapitel wenden wir uns dem Hitchin-Fluss auf siebendimensionalen fast-
abelschen Lie-Algebren zu. Wir zeigen, dass in diesem Fall die Losungen des Hitchin-
Flusses keine Mannigfaltigkeiten mit Holonomie gleich Spin(7) liefern kénnen, sondern dass
die Holonomie maximal gleich SU(4) sein kann. Anschliefend bestimmen wir alle kokalibri-
erten Go-Strukturen auf einer bestimmten siebendimensionalen, nilpotenten, fast-abelschen
Lie-Algebra modulo Lie-Algebren Isomorphismen und Skalierungen. Wir benutzen diese
Klassifikation um den Hitchin-Fluss Hitchin-Fluss explizit fiir eine Zwei-Parameter-Familie
von kokalibrierten Go-Strukturen auf der eben genannten Lie-Algebra zu l6sen. Als Ergeb-
nis erhalten wir eine explizite Zwei-Parameter-Familie von riemannschen Metriken mit

Holonomie gleich SU(4).
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