
Computational Gene Structure Prediction

Dissertation

zur Erlangung des akademischen Grades
Dr. rer. nat.

an der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Universität Hamburg

eingereicht beim Fach-Promotionsausschuss Informatik von

Gordon Gremme

aus Wesel

August 2012

Gutachter:
Prof. Dr. Stefan Kurtz, Universität Hamburg
Prof. Dr. Wolfgang Menzel, Universität Hamburg
Prof. Dr. Volker Brendel, Indiana University Bloomington

Tag der Disputation:
15. Mai 2013

Dedicated to my mother. I miss you.

1

Acknowledgments

I want to thank Stefan Kurtz for his guidance and encouraging support over the years. He never
lost his patience with me, for what I am very grateful. Furthermore, I want to thank Volker
Brendel for his helpful explanations concerning gene structure prediction and the nice stays with
him in Ames, Iowa. I also want to thank Volker’s group for their hospitality and interesting
discussions, in particular Michael Sparks for writing an XML parser for GenomeThreader and
showing me around Ames.

At the Center for Bioinformatics (ZBH) I want to thank all my colleagues for the great time I
had while being there, it was an inspiring experience. In particular, I want to thank Ute Willhöft
for many helpful discussions on biology, Sascha Steinbiß for the good and fruitful collaboration,
and Karin Lundt for her uplifting support.

From Matthias Rarey’s group I especially want to thank Patrick Maaß for our countless dis-
cussions and for what he taught me about programming. It meant a lot to me. I also want to
thank him and Jörg Degen, Axel Griewel, Juri Pärn, Ingo Reulecke, Ingo Schellhammer, Jochen
Schlosser, and Katrin Stierand for the fun times playing tabletop soccer together.

Last but not least I want to thank my friends, my family, and my loved ones who helped
writing this dissertation with their knowledge, their patience, and their love. You are too many
to thank individually here, but I hope you know who you are. I will be forever in your debt and
all I can offer is a sincere “Thank you!”.

2

Abstract

Modern molecular biology research is characterized by the availability of an increasing amount
of biological data which is often fuzzy due to the nature of the experimental methods used to
derive it. Bioinformatics, a branch of computer science, deals with the storage, retrieval, and
analysis of this data. DNA, the basic information carrier of life, is now sequenced industrially in
large quantities and assembled to complete genomes. The automatic annotation of genes in these
genomes, a process called computational gene structure prediction, is the scope of this thesis.

This dissertation describes the computational gene structure prediction software Genome-
Threader which uses homologous biological sequences (so-called cDNAs/ESTs and/or protein
sequences) to predict gene structures by computing spliced alignments. GenomeThreader uses a
multi-phase approach, filtering the possibly very large sequence data sets in early phases to obtain
promising gene candidates which are then refined by more computationally expensive algorithms
in later phases. The results of this gene structure predictions, genome annotations, can become
quite large and cumbersome to process. To deal with such annotations easily and efficiently, the
GenomeTools genome analysis system has been developed, which is also described in this thesis.

The prediction quality of GenomeThreader was evaluated on a variety of datasets and the
results show that the software performs very well on common gene structure prediction tasks.
The quality of the results is comparable with the results of the best other programs and in some
cases it is even better. The software is very easy to use due to its integrated nature, a feature which
distinguishes it from its competitors. GenomeThreader has been adopted widely in the scientific
community, it has approx. 150 users world-wide and over 30 publications cite the scientific article
which describes an earlier version of the software. The open source package GenomeTools was
used as a foundation for 10 published sequence and annotation processing tools.

3

Kurzfassung

Moderne molekularbiologische Forschung ist durch die Verfügbarkeit stetig wachsender Daten-
mengen charakterisiert. Diese Daten sind auf Grund der experimentellen Methoden, die sie
erzeugen, oftmals fehlerbehaftet. Die Bioinformatik, ein Teilbereich der Informatik, beschäftigt
sich damit molekularbiologische Daten zu speichern, abzurufen und zu analysieren. DNA, der
grundlegende Informationsträger des Lebens, wird heutzutage im industriellen Maßstab sequen-
ziert und zu kompletten Genomen zusammengefügt. Diese Disseration befasst sich mit der au-
tomatische Annotation von Genen in vollständig sequenzierten Genomen, ein Prozess der rech-
nergestützte Genstrukturvorhersage genannt wird.

Diese Dissertation beschreibt die Methoden und Techniken, die die Grundlage der Gen-
strukturvorhersagesoftware GenomeThreader bilden. GenomeThreader benutzt homologe biol-
ogische Sequenzen (sogenannte cDNA/EST und/oder Proteinsequenzen) und berechnet Spliced
Alignments, die Genstrukturen beschreiben. Zur Vorhersage der Genstrukturen wird ein mehr-
phasiger Ansatz benutzt. Dabei werden die unter Umständen sehr großen Sequenzdatenmengen
in frühen Phasen auf vielversprechende Genkandidaten reduziert, die dann in späteren Phasen
durch rechenaufwendigere Algorithmen verfeinert werden. Die Resultate dieser Genstruktur-
vorhersagen, die Genomannotationen, können sehr umfangreich werden und aufwendige Schritte
der Weiterverarbeitung erfordern. Um mit solchen Annotationen einfach und effizient umgehen
zu können, wurde das GenomeTools Genomanalysesystem entwickelt, das ebenfalls in dieser
Arbeit beschrieben wird.

Die Vorhersagequalität von GenomeThreader wurde auf verschiedenen Datensätzen evaluiert.
Es zeigt sich, dass GenomeThreader für die üblichen Genvorhersageaufgaben sehr gute Ergeb-
nisse liefert. Die Qualität der Ergebnisse ist vergleichbar mit den Ergebnissen der besten anderen
Programme und teilweise sogar besser. Durch die gelungene Integration der einzelnen Phasen ist
die Software sehr einfach zu benutzen, eine Eigenschaft, die sie von ihren Wettbewerbern unter-
scheidet. GenomeThreader hat weite Verbreitung in der Wissenschaftsgemeinde gefunden. Es
gibt ca. 150 Nutzer weltweit und 30 Publikationen zitieren den wissenschaftlichen Artikel, der
eine frühe Version der Software beschreibt. Das quelloffene Softwarepaket GenomeTools diente
als Grundlage für 10 weitere publizierte Werkzeuge zur Sequenz- und Annotationsverarbeitung.

4

Contents

1 Introduction 16
1.1 Background . 16
1.2 Contributions . 17
1.3 Structure of this Thesis . 18

2 Biology Background 20
2.1 The Science of Life . 20
2.2 Prokaryotes and Eukaryotes . 20
2.3 Basic Macromolecules . 21

2.3.1 Nucleic Acids . 21
2.3.2 Proteins . 22

2.4 Information Carrier DNA . 23
2.5 Single Pieces of Information: Genes . 23
2.6 Flow of Information: From a Gene to a Protein 23

2.6.1 Splicing . 24
2.6.2 Translation . 25

2.7 What is an EST? . 25
2.7.1 Construction of ESTs . 26

2.8 Next-Generation Sequencing Methods . 26
2.8.1 RNA-Seq . 28

2.9 What is a Gene? Attempting a Definition . 29
2.9.1 Gene as a Heredity Unit . 29
2.9.2 Gene as a Distinct Locus . 29
2.9.3 Gene as a Protein Blueprint . 29
2.9.4 Gene as a Physical Molecule . 29
2.9.5 Gene as Transcribed Code . 30
2.9.6 Gene as ORF Sequence Pattern . 30
2.9.7 Gene as Annotated Genomic Entity Stored in a DB (pre-ENCODE) . . . 31
2.9.8 Problems with the Current Definition 31
2.9.9 Experience of the ENCODE Project . 32
2.9.10 Gene as Dispersed Genome Activity (ENCODE) 34

5

3 Computational Background 37
3.1 Basic Definitions . 37
3.2 Gene Prediction Categories . 41

3.2.1 Ab initio Methods . 41
3.2.2 Comparative Methods . 41
3.2.3 Homology methods . 42
3.2.4 Combiners . 43

3.3 Measures of Prediction Accuracy . 43
3.3.1 Nucleotide Level . 43
3.3.2 Exon Level . 45
3.3.3 Gene Level . 47

3.4 Prediction Accuracy . 48
3.5 Related Work: Ab initio Methods . 49

3.5.1 GENSCAN . 49
3.5.2 AUGUSTUS . 49
3.5.3 mGene . 49

3.6 Related Work: Comparative Methods . 49
3.6.1 TWINSCAN . 49

3.7 Related Work: Homology Methods . 50
3.7.1 GMAP . 50
3.7.2 EuGÉNE . 50

3.8 Related Work: Combiners . 50
3.8.1 JIGSAW . 50
3.8.2 Evigan . 51

4 GenomeThreader Gene Prediction Software 52
4.1 The Computational Problem . 52

4.1.1 Basic Notions . 54
4.1.2 The Spliced Alignment Problem for cDNA/EST Sequences 54
4.1.3 The Spliced Alignment Problem for Protein Sequences 57

4.2 Easy-to-Use Bayesian Splice Site Models (BSSMs) 59
4.3 Computing Optimal Spliced Alignments with ESTs 59
4.4 Computing Optimal Spliced Alignments with Proteins 60
4.5 The Intron Cutout Technique . 63

4.5.1 Computing cDNA/EST Matches . 64
4.5.2 Chaining the cDNA/EST Matches . 64
4.5.3 Computing and Chaining Protein Matches 66
4.5.4 Chain Enrichment . 67
4.5.5 The Cutout Step . 69

4.6 Jump Tables . 69
4.7 Computing Consensus Spliced Alignments . 73
4.8 GenomeThreader Implementation . 77

4.8.1 Fast Matching for Filtering of Exon Candidates 79

6

4.8.2 Chaining . 80
4.8.3 Representation of BSSMs . 80
4.8.4 Dynamic Programming . 81
4.8.5 Representation of Spliced Alignments 82
4.8.6 Consensus Spliced Alignments . 83
4.8.7 Output of Spliced Alignments . 84
4.8.8 Incremental Updates . 84
4.8.9 Software Development Tools . 85
4.8.10 Test Strategy . 85
4.8.11 Practical Applications . 86

5 GenomeTools Genome Analysis Software 88
5.1 Basic Notions . 90
5.2 The Generic Feature Format Version 3 (GFF3) 91

5.2.1 Meta Lines . 91
5.2.2 Comment Lines . 92
5.2.3 Feature Lines . 92
5.2.4 Termination Lines . 93
5.2.5 Example GFF3 File . 94

5.3 GenomeTools Overview . 94
5.4 Representing GFF3 Files with Genome Nodes 96
5.5 Processing Genome Nodes with Node Streams and Node Visitors 99

5.5.1 Sorted Streams . 100
5.5.2 Merging Sorted Stream . 101
5.5.3 The Case for Sorted Streams . 101
5.5.4 Memory Efficient Representation of Genome Nodes 102
5.5.5 Memory Footprint of Parsed GFF3 Files 104
5.5.6 Efficient GFF3 Parsing . 105
5.5.7 Node Visitors . 106

5.6 LTRdigest . 107
5.7 AnnotationSketch Genome Annotation Drawing Library 107

5.7.1 Introduction . 107
5.7.2 Design and Implementation . 108
5.7.3 Conclusion . 110

6 Evaluation of Gene Prediction Methods 111
6.1 nGASP Evaluation . 111

6.1.1 nGASP Dataset . 111
6.1.2 nGASP Gene Finder Categories . 112
6.1.3 GenomeThreader Assessment . 113
6.1.4 Influence of BSSMs on Prediction Accuracy 113
6.1.5 Intron Cutout Technique and Jump Table Prediction Accuracy 115
6.1.6 Chain Enrichment . 116

7

6.1.7 Comparison with GMAP . 116
6.2 Mapping 454 Sequences . 119
6.3 ENCODE Evaluation . 119

6.3.1 The ENCODE Dataset . 121
6.3.2 Comparing GenomeThreader with GMAP 121
6.3.3 Chain Enrichment Improves Prediction Results 125
6.3.4 Influence of Match Size on Prediction Accuracy 125

6.4 General Discussion of GenomeThreader vs. GMAP 127

7 Conclusion 128
7.1 Future Developments . 129

A Manual of GenomeThreader 130
A.1 Introduction . 130

A.1.1 The Parts of GenomeThreader . 131
A.1.2 Structure of the Manual . 131

A.2 Installation . 132
A.3 gth: Computing Gene Predictions . 132

A.3.1 Input Options . 134
A.3.2 Parameter File Options . 135
A.3.3 Strand Direction Options . 137
A.3.4 Genomic Sequence Positions Options 137
A.3.5 Output Options . 138
A.3.6 Data Preprocessing . 140
A.3.7 Options of the Similarity Filter . 141
A.3.8 Intron Cutout Technique Options . 143
A.3.9 Advanced Options . 143

A.4 gthconsensus: Incremental Updates . 149
A.4.1 The Options of gthconsensus . 150

A.5 gthsplit: Split Intermediate Files . 151
A.5.1 Applying gthsplit . 151
A.5.2 The Script gthsplit2dim.sh . 152
A.5.3 Applying gthsplit2dim.sh . 152

A.6 gthgetseq: Get FASTA Sequences . 152
A.6.1 Applying gthgetseq . 153

A.7 gthfilestat: Show Statistics . 154
A.7.1 Applying gthfilestat . 155

A.8 gthbssmfileinfo: BSSM File Information 155
A.9 gthbssmtrain: Train BSSMs . 155

A.9.1 Applying gthbssmtrain . 156
A.10 gthbssmbuild: Build BSSM files . 157

A.10.1 The BSSM Training Data Directory . 158
A.11 gthclean.sh: Remove Indices . 158

8

A.12 Construction of the Indices . 159
A.13 Tutorial . 159

A.13.1 Mapping a Single EST on the A. thaliana Chromosome 1 160
A.13.2 Using the Intron Cutout Technique . 166
A.13.3 Employing gthconsensus . 167

B Manual of GenomeTools 169
B.1 The bed to gff3 Tool . 169
B.2 The chseqids Tool . 170
B.3 The cds Tool . 171
B.4 The csa Tool . 172
B.5 The eval Tool . 174
B.6 The extractfeat Tool . 175
B.7 The gff3 Tool . 177
B.8 The gff3 to gtf Tool . 179
B.9 The gff3validator Tool . 180
B.10 The gtf to gff3 Tool . 181
B.11 The id to md5 Tool . 182
B.12 The interfeat Tool . 183
B.13 The md5 to id Tool . 184
B.14 The merge Tool . 185
B.15 The mergefeat Tool . 186
B.16 The select Tool . 187
B.17 The seqmutate Tool . 188
B.18 The seqtransform Tool . 189
B.19 The sketch Tool . 190
B.20 The splicesiteinfo Tool . 191
B.21 The stat Tool . 192
B.22 The uniq Tool . 193

C GenomeTools API Reference 194
C.1 Class GtAddIntronsStream . 196
C.2 Class GtArray . 196
C.3 Class GtBEDInStream . 199
C.4 Class GtBittab . 199
C.5 Class GtCDSStream . 201
C.6 Class GtCSAStream . 202
C.7 Class GtCommentNode . 202
C.8 Class GtCstrTable . 203
C.9 Class GtDlist . 204
C.10 Class GtDlistelem . 205
C.11 Class GtError . 205
C.12 Class GtExtractFeatureStream . 206

9

C.13 Class GtFeatureNode . 206
C.14 Class GtFeatureNodeIterator . 211
C.15 Class GtFile . 211
C.16 Class GtGFF3InStream . 212
C.17 Class GtGFF3OutStream . 213
C.18 Class GtGFF3Parser . 214
C.19 Class GtGFF3Visitor . 215
C.20 Class GtGTFInStream . 216
C.21 Class GtGTFOutStream . 216
C.22 Class GtGenomeNode . 217
C.23 Class GtHashmap . 218
C.24 Class GtIDToMD5Stream . 220
C.25 Class GtInterFeatureStream . 220
C.26 Class GtMD5ToIDStream . 220
C.27 Class GtMergeFeatureStream . 221
C.28 Class GtMergeStream . 221
C.29 Class GtNodeStream . 221
C.30 Class GtNodeStreamClass . 223
C.31 Class GtNodeVisitor . 223
C.32 Class GtOption . 223
C.33 Class GtOptionParser . 229
C.34 Class GtPhase . 231
C.35 Class GtQueue . 231
C.36 Class GtRange . 232
C.37 Class GtRegionMapping . 233
C.38 Class GtRegionNode . 234
C.39 Class GtSelectStream . 234
C.40 Class GtSequenceNode . 235
C.41 Class GtSortStream . 236
C.42 Class GtStatStream . 236
C.43 Class GtStr . 237
C.44 Class GtStrArray . 238
C.45 Class GtStrand . 240
C.46 Class GtTagValueMap . 240
C.47 Class GtTypeChecker . 241
C.48 Class GtTypeCheckerOBO . 241
C.49 Class GtUniqStream . 242
C.50 Class GtVisitorStream . 242
C.51 Module FunctionPointer . 243
C.52 Module Init . 243
C.53 Module Strcmp . 243
C.54 Module Symbol . 244
C.55 Module Undef . 244

10

D Example GFF3 Sorter Program 245

E GenomeTools Contributors 247

F GenomeTools License 248

G GFF3 Test Runs in Detail 249
G.1 Retrieving the Original Files . 249
G.2 The Test Runs . 250

H The nGASP Evaluation in Detail 251
H.1 Retrieving the Original Files . 251
H.2 Preparing the Annotation Files . 251
H.3 Preparing the Sequence Files . 253
H.4 Creating a Custom Nematode BSSM . 253
H.5 Predicting the Genes . 254
H.6 Alternative Approach Using Intermediate Files 255
H.7 Evaluating the Predictions . 256
H.8 Evaluating the Competing Prediction Programs 256

I Mapping 454 Sequences in Detail 258
I.1 Used Files . 258
I.2 Extract mRNA Sequences . 258
I.3 Simulate 454 Reads . 259
I.4 Align 454 Reads . 259

J The ENCODE Evaluation in Detail 260
J.1 Retrieving the Original Files . 260
J.2 Preparing the Annotation Files . 260
J.3 Extract mRNA Sequences . 261
J.4 Aligning with GenomeThreader . 261
J.5 Aligning with GMAP . 263
J.6 Evaluating the Prediction Results . 263

K Hardware and Software Setup 264

Bibliography 265

Index 284

11

List of Figures

2.1 General Structure of Amino Acids . 22
2.2 Gene Expression . 24
2.3 Overview of EST Construction . 27
2.4 Updated Gene Definition Example . 35

3.1 Status Combination Table . 44
3.2 Gene Feature Projection for Evaluation . 46

4.1 Example of a Spliced Alignment . 53
4.2 Spliced Alignment with EST . 55
4.3 States and State Transitions of a Spliced Alignment 56
4.4 Spliced Alignment with Protein . 58
4.5 Hypothetical Alignment . 60
4.6 Optimal Spliced Alignment . 61
4.7 A Graphical Explanation of the Intron Cutout Idea 63
4.8 Example Fragments . 66
4.9 Example Chain Enrichment . 68
4.10 Example for Match Classes . 70
4.11 Example for Reducing the DP Computation with Match Classes 71
4.12 Example for Reducing the Complete DP Computation 72
4.13 Example Consensus Spliced Alignment . 74
4.14 Spliced Alignment Compatibility . 75
4.15 Overview of the GenomeThreader-Phases . 78

5.1 Example of an Directed and Undirected Graph 90
5.2 Drawing of Example GFF3 File . 95
5.3 Implementations of the Genome Node Interface 96
5.4 Feature Node DAG . 97
5.5 Pseudo-Feature and Multi-Feature Example . 98
5.6 Example Image of the cnn and cbs Genes from Drosophila melanogaster 109

6.1 Result Comparison for 454 Sequence Mapping 120
6.2 GMAP ENCODE Result Comparison . 123
6.3 GenomeThreader ENCODE Result Comparison 124

12

6.4 GenomeThreader ENCODE Result Comparison with Chain Enrichment 126
6.5 Runtimes on ENCODE Dataset . 127

13

List of Tables

2.1 Comparison of Next-Generation Sequencing Platforms 26
2.2 Comparison of Transcriptomics Methods . 28

4.1 Parameters Determining the Weight of a Spliced Alignment 57
4.2 L-Set and R-Set Example . 76

5.1 Properties of GFF3 Test Files . 105
5.2 Memory Consumption of Different GFF3 Parsers 105
5.3 Memory Consumption Ratios . 106
5.4 Runtime of Different GFF3 Parsers . 106

6.1 The Genomic nGASP Test and Training Regions 112
6.2 Number of Features in nGASP Annotation Files 113
6.3 nGASP Gene Prediction Results . 114
6.4 BSSM Comparison . 115
6.5 Intron Cutout Technique and Jump Table Prediction Accuracy 116
6.6 Intron Cutout Technique and Jump Table Running Times 116
6.7 Chain Enrichment Results on nGASP Dataset 117
6.8 GMAP nGASP Results. 117
6.9 Running Times on nGASP Dataset . 117
6.10 GenomeThreader Mapping 454 Sequences Results 118
6.11 GMAP Mapping 454 Sequences Results . 118
6.12 GenomeThreader ENCODE Results for Match Length 12 122
6.13 GenomeThreader ENCODE Results for Match Length 15 122
6.14 GenomeThreader ENCODE Results with Default Match Parameters 122
6.15 GMAP ENCODE Results (with Option -n 1) 122
6.16 GMAP ENCODE Results . 123
6.17 GenomeThreader ENCODE Results without Chain Enrichment 125
6.18 Runtimes on ENCODE Dataset . 126

A.1 Overview of the gth-Options Sorted by Categories 133
A.2 The Possible Codon Translation Table Numbers and Table Names 136
A.3 Available BSSM Parameter Files . 137

H.1 GenomeThreader nGASP Options . 255

14

J.1 GenomeThreader ENCODE Options . 262
J.2 Minimum Alignment Scores for Different Mutation Rates 262

K.1 Used Software Versions . 264

15

Chapter 1

Introduction

1.1 Background

The research area now commonly called “bioinformatics” has brought together biologists, com-
puter scientists, statisticians, and scientists of many other fields of expertise to work on compu-
tational solutions to biological problems.

Modern molecular biology research is characterized by the ability to study questions from a
genome-wide perspective. Whereas only 15 years ago a research project would typically fo-
cus on a single gene or pathway, it is now possible to view and evaluate the same genes and
pathways in the context of all the genes of an organism, mapped onto the chromosomes that
constitute the species’ entire genetic blueprint. Of course, these possibilities require prior correct
identification and annotation of all the genes, a challenging problem that has not been entirely
solved [Bre08]. And with the ever increasing amount of DNA information produced by classi-
cal Sanger sequencing [SNC77] and next-generation DNA sequencing (NGS) methods [SJ08] at
decreasing cost, the number of genomes awaiting annotation [PLJ+12] and accompanying tran-
scriptome (the set of all messenger RNA molecules in a cell) [BLT93] and proteome (the entire
set of proteins expressed by a genome) information [Con12] is rising sharply.

Whereas obtaining the genetic blueprint, or, more technically, genomic DNA sequencing, is a
mostly technological process, gene annotation is largely computational, involving both statisti-
cally based prediction methods and integration of various sources of experimental and knowledge-
based evidence.

The automatic process of gene annotation with computational methods is called computational
gene structure prediction. This thesis describes the GenomeThreader gene structure prediction
software which is well-suited for this task.

16

1.2 Contributions

GenomeThreader uses a similarity-based approach with cDNA/EST and/or protein sequences
to predict gene structures. GenomeThreader computes so-called spliced alignments (for every
given cDNA/EST/protein sequence) and combines them into consensus spliced alignments which
represent the predicted gene structures.

The main algorithmic contributions of this thesis are the intron cutout technique, the accompa-
nying chain enrichment, and jump tables. The main conceptual contributions are easy-to-use
BSSMs (Bayesian Splice Site Models) and incremental updates. The main software engineer-
ing contributions are the combination of both cDNA/EST-based spliced alignments and protein-
based spliced alignments into consensus spliced alignments and the development of the Genome-
Tools genome analysis system. The seven main contributions in more detail:

1. The intron cutout technique allows to predict gene structures stretching over large regions
of a genome or chromosome. Such gene structures are often present in vertebrate genomes.
The intron cutout technique consists of an efficient filtering step and a dynamic program-
ming step, and we describe how to combine these steps to compute spliced alignments in
an efficient manner.

2. The accompanying chain enrichment, although algorithmically simple, can mitigate some
problems of the intron cutout technique on genomes containing very large introns. It im-
proves the prediction results, but increases the running time.

3. Jump tables allow to significantly reduce the amount of necessary calculations in the dy-
namic programming step which computes spliced alignments. The intron cutout technique
can be combined with jump tables, resulting in a compound speedup.

4. BSSMs assign splice site probabilities to genomic DNA bases. Splice site probabilities
are a very important component for gene prediction methods, but such models have to be
trained for the organism in question. The easy-to-use BSSMs in GenomeThreader make
the training and application of custom (that is, organism specific) BSSMs very easy.

5. The GenomeThreader phase which computes consensus spliced alignments requires much
less resources than the phase calculating the spliced alignments and with incremental up-
dates one can incrementally compute the spliced alignments for a growing collection of
ESTs and proteins, store these on file, and quickly recompute the consensus for the en-
tire set of spliced alignments. This is of great importance in practice, because genome
sequences are often already stable while additional EST and full-length cDNA collections
are being generated.

6. The combination of both cDNA/EST-based spliced alignments and protein-based spliced
alignments into consensus spliced alignments allows to use all available gene product se-
quences for the prediction. To our knowledge, no other gene prediction program has this
feature.

17

7. The GenomeTools genome analysis system allows to process genome annotation data in
a very fast and flexible manner, a capacity which proofed to be very useful in performing
interactive genome annotations. In practice, genome annotations are usually not obtained
in a fully automatic manner, but with manual intervention from computational biologists.
Therefore, having a system which allows to test different parameter sets in a fast and easy-
to-use way is very important.

We discuss not only the algorithmic details of GenomeThreader and GenomeTools in this thesis,
but also important software engineering aspects, because we believe that for bioinformatics soft-
ware the engineering should not be an afterthought or left aside, but instead should be considered
from the beginning. In our opinion, the good prediction results and widespread adoption (Sec-
tion 4.8.11 lists many published scientific applications of GenomeThreader by other authors)
were only made possible, because we strove to a create a modular and robust software tool from
the inception of this dissertation.

For example, on the dataset from the nematode genome annotation assessment project, nGASP
for short [CFM+08], GenomeThreader performs better than all competing programs in its cat-
egory (see Section 6.1). Performed tests with 454 RNA-Seq reads on the nGASP dataset show
that GenomeThreader is also well suited to use sequences produced by NGS methods to predict
gene structures (see Section 6.2). This is also underlined by the fact that GenomeThreader was
successfully used to align 454 RNA-Seq reads to the tomato genome and that these results are
integrated into the tomato annotation pipeline [Fil10, FTD+12, BAG+10, CDT+08]. The tests on
the ENCODE dataset [HDF+06] show that GenomeThreader is very robust against sequencing
errors and able to align sequences from cognate organisms correctly (see Section 6.3 for details).

This dissertation project was motivated by disabling limitations in an original, ad-hoc, and yet
widely popular implementation named GeneSeqer [BXZ04, UZB00]. It has led to the robust,
highly versatile, and extensible tool GenomeThreader that not only overcomes the limitations of
the earlier implementation but greatly improves space and time requirements while giving very
good prediction results.

1.3 Structure of this Thesis

In Chapter 2 the biological background of the gene structure prediction problem is explained.
Chapter 3 introduces the different approaches to solve the gene structure prediction problem,
how to measure their accuracy, and related work in this area. Chapter 4 describes the Genome-
Threader gene structure prediction software in detail. In Chapter 5 the GenomeTools genome
analysis system is discussed. In Chapter 6 the evaluation of GenomeThreader is given. In Chap-
ter 7 the thesis is concluded.

Some parts of this thesis have been previously published in G. Gremme, V. Brendel, M.E. Sparks,
and S. Kurtz, Engineering a Software Tool for Gene Structure Prediction in Higher Organisms,

18

Information and Software Technology, 47(15):965–978, 2005 (part of Chapter 4) and S. Stein-
biss, G. Gremme, C. Schärfer, M. Mader, and S. Kurtz, AnnotationSketch: A Genome Annotation
Drawing Library, Bioinformatics, 25(4):533–534, 2009 (in Section 5.7).

The author of this thesis also contributed to LTRdigest which was published in S. Steinbiss,
U. Willhoeft, G. Gremme, and S. Kurtz, Fine-Grained Annotation and Classification of de novo
Predicted LTR Retrotransposons, Nucleic Acids Res., 37(21):7002–7013, 2009. A paper on
GenomeTools is currently being written and will be submitted in Autumn 20121.

Some of the definitions in Section 3.1 have been taken from S. Kurtz, Foundations of Sequence
Analysis, Unpublished Lecture Notes, May 2003.

The manuals of GenomeThreader and GenomeTools and further information referred in the main
body of the thesis are given in the various appendices.

1Addendum June 2013: The corresponding paper [GSK13] has been accepted.

19

Chapter 2

Biology Background

This chapter starts off with a high-level view of biology and then zooms in on the central notion
of gene. This should give further motivation for this thesis and put it in a wider context. For a
more thorough introduction, the reader is referred to textbooks of molecular biology, for example
[Lew04, AJL+02].

2.1 The Science of Life

Biology is the science of life. Life is usually defined (e.g. in [NC01]) as something which

1. can reproduce itself,

2. absorbs energy from the environment, in form of nutrition or sunlight,

3. has a higher degree of complexity than the environment.

Viruses are not considered to be life, because they cannot reproduce themselves. The living world
of organisms is divided into three domains: Bacteria (Eubacteria), Archaea (Archaebacteria) and
Eukarya [AJL+02]. Organisms are composed of cells: From one in simple bacteria up to several
billion in the most complex eukaryotes like humans.

2.2 Prokaryotes and Eukaryotes

The three domains of life can also be differentiated as being either prokaryotes or eukaryotes.
All organisms from the domains Bacteria and Archaea are prokaryotes, whereas all organisms
from the domain Eukarya are, as the name implies, eukaryotes. Eukaryotes and prokaryotes
differ substantially in the structure of their cells. The main difference between prokaryotic cells
and eukaryotic cells is that the former are absent of nuclei. There are many more differences

20

between these, but in the context of this thesis it is only important to know that the structure of
genes is much simpler in prokaryotes and that they lack splicing (the terms gene and splicing are
described further below). Because of the fairly different properties of pro- and eukaryotes, gene
prediction methods are usually only suited for one of them. From now on in this thesis, we will
only deal with eukaryotes, and the methods described here only apply to them.

2.3 Basic Macromolecules

In a cell four types of macromolecules occur. Each macromolecule is a composition of smaller
monomers (see e.g. [AJL+02, p. 59]):

1. nucleic acids (composed of nucleotides)

2. proteins (composed of amino acids)

3. fats and lipids (composed of fatty acids)

4. polysaccharides (composed of sugars)

Only nucleic acids and proteins will be addressed here further. Neither fats and lipids nor
polysaccharides are relevant in this context.

2.3.1 Nucleic Acids

The two kinds of nucleic acids, namely DNA and RNA are described in this subsection. After
describing the structure of the DNA it is shown how RNA differs from DNA.

DNA

Deoxyribonucleic acid (DNA) is the genetic material of the cell. It is present in the cell in
the form of a double helix. The double helix is composed of two complementary, antiparallel
strands. Each strand consists of a sugar-phosphate backbone with nitrogenous purine and pyrim-
idine bases attached to it by N-glycosidic linkage. The sugar-phosphate backbone consists of
pentose carbon rings, where the 5′ position of one pentose carbon ring is connected to the 3′

position of the next pentose carbon ring by a phosphate group (phosphodiester bond). This gives
the strand a direction, which is usually written down from 5′ to 3′. There are four types of ni-
trogenous bases in DNA, adenine (A), cytosine (C), guanine (G) and thymine (T). Adenine and
guanine are purines, whereas cytosine and guanine are pyrimidines. The DNA double helix is
formed be hydrogen bonds between the bases on the two antiparallel strands, a process which is
called base paring. Thereby a purine always pairs with a pyrimidine and vice versa, but only in
two combinations: Adenine pairs with thymine (A− T) through 2 hydrogen bonds and guanine
pairs with cytosine (G− C) via 3 hydrogen bonds [Lew04].

21

CH N

side chain

H

COOH2

Figure 2.1: General structure of amino acids (nonionized).

RNA

The sugar in RNA is a ribose instead of the 2-deoxyribose in DNA and instead of the pyrimidine
thymine in RNA we have a pyrimidine called uracil (U). Single-stranded RNA can form sec-
ondary structures, where the RNA-strand forms base pairs with itself. RNA is generally more
unstable than DNA.

The RNA in the cell can be divided into different classes according to its function, like messenger
RNA (mRNA), transfer RNA (tRNA) and ribosomal RNA (rRNA).

2.3.2 Proteins

Proteins are linear polymers made up of amino acids which are connected by peptide bonds.
All amino acids consist of an α-carbon linked to a carboxyl group, an amino group and a single
H-atom (see Figure 2.1). The difference between the 20 natural amino acids is the fourth group
attached to the α-carbon, the so-called side chain. The α-carbon is a chirality center which leads
to the two optical isomers of every amino acid, namely the L- and the D-form. “But only L-forms
are ever found in proteins” (page 63 of [AJL+02]).

The peptide bonds link the carboxyl group of one amino acid with the amino group of a second
one. The amino acid with a free amino group is called the N-terminus and the one with a free
carboxyl group the C-terminus.

The amino acid sequence of a protein, usually written down from the N-terminus to the C-
terminus, is called its primary structure. This sequence of amino acids does not occur in the cell
in a linear form, instead it is folded in a three dimensional structure, the tertiary structure. The
secondary structure are common structural elements in the tertiary structure, like α-helices and
β-sheets. If a protein consists of more than one polypeptide chain, the overall structure is called
quaternary.

If proteins catalyze reactions, they are called enzymes. If they have structural functions in the
cell, we call them structural proteins. Usually structural proteins do self-assemble into larger
structures.

22

2.4 Information Carrier DNA

The DNA in the cell nucleus is distributed among chromosomes. In a simplified view one can
say that each chromosome is a very large DNA double helix associated with proteins. During
meiosis and mitosis chromosomes are recognizable as very condensed structures under a light
microscope.

The DNA serves as an information carrier: the information necessary for synthesizing the pro-
teins is stored in its genes.

Proteins are encoded by the genetic code: 3 consecutive bases encode one amino acid, which
means there are 43 = 64 possible codons. 61 of the codons actually encode for amino acids,
whereas 3 are STOP-codons. Because there are more codons than amino acids, some codons
encode the same amino acids. In these cases the codons differ in the third positions, a fact which
is called third-base degeneracy.

2.5 Single Pieces of Information: Genes

The total hereditary information contained in the DNA of a cell can be divided into genes. A
gene is a contiguous piece of DNA, which contains the information for a protein or an RNA
molecule.

In the following Section the typical “processing” of a protein-coding gene is described. See
Section 2.9 for a description of the historical formation of the gene concept and an overview of
other gene types (besides protein-coding genes).

2.6 Flow of Information: From a Gene to a Protein

The Central Dogma formulated by Francis Crick states that the information in the cell flows
from DNA to RNA to protein and that once information got into a protein it cannot get out again
[Cri51]. For a schematic presentation of this Section see Figure 2.2. Here the description of this
flow of information will be given in a simplified manner. For a more detailed description see
[Lew04] or [AJL+02].

The RNA-polymerase binds to the start of a gene at the promoter region. From there on it moves
along the DNA (from 5′ to 3′) while synthesizing the so-called pre-mRNA until a terminator se-
quence is reached and the RNA-polymerase falls off the DNA strand. The start of the transcribed
DNA segment is called the transcription start site and the end the transcription termination site.

Usually the pre-mRNA contains one gene, what is called monocistronic. Transcripts with more
than one gene (polycistronic) mainly occur in bacteria.

The pre-mRNA is modified at the ends: it gets a cap at the 5′ end and a poly(A) tail at the 3′ end.
The 7-methylguanosine cap is bound by a 5′-5′ triphosphate linkage to the first nucleotide at the

23

Poly(A)

site

RNA processing

polyadenylation)

(capping, splicing,

Promotor

TSS TTSAUG Stop

Nucleus

Cytoplasm

Cap Poly(A)

2 3 4 51

ATG Stop

AUG Stop

5’UTR CDS 3’UTR

RNA transport

and translation

Protein

Transcription

Genomic DNA

Pre−mRNA

mRNA

Figure 2.2: Gene expression. See Section 2.6 for an explanation. TSS stands for transcription
start site; TTS for transcription termination site. Diagram adapted from [Zha02]. Note that exons
in the 5′ UTR are rare.

5′ end of the pre-mRNA. The poly(A) usually consists of 150-250 adenine nucleotides [Kni97,
p. 403-404].

2.6.1 Splicing

In the next step, some parts of the pre-mRNA are cut out in a process called splicing. The cut
out pieces are called introns, whereas the remaining ones are called exons. Splicing essentially
occurs in two forms.

In the first case a large complex of proteins and ribonucleoproteins, the spliceosome, is formed.
The proteins of the spliceosome recognize conserved regions at the beginning and the end of the
intron (so-called donor and acceptor sites) and one within the intron near the acceptor site (the
branch site). The spliceosome cuts out the intron in two stages. In the first stage a cut at the
donor site is performed and the intron forms a lariat. In the second stage it is cut at the acceptor
site, the intron is released as a lariat and the remaining exons are joined.

24

In the second case a pre-mRNA can also have self-splicing properties, where the intron forms a
characteristic secondary/tertiary structure, which performs self-splicing activity.

The splice sites (which are totally within the intron) are highly conserved: the generic donor site
is GT and the generic acceptor site is AG . This introns are often referred to as GT − AG . The
branch site lies usually 18-40 nucleotides upstream of the acceptor site. In yeast, the sequence
of the branch site is highly conserved, while the conservation is weaker in higher eukaryotes
[AJL+02].

The product of the splicing process without the introns is called mature mRNA or for short just
mRNA.

The processed RNA can be sampled experimentally, either as full-length molecules (termed
cDNA; the term results from the fact that, for experimental reasons, the RNA is reverse tran-
scribed back into the complementary DNA string) or as fragments (termed ESTs — Expressed
Sequence Tags).

2.6.2 Translation

After the mature mRNA has been transported out of the nucleus it is processed by ribosomes,
large ribonucleoproteins consisting of rRNA and proteins.

The mRNA can be divided into three parts: in the middle is the coding sequence (CDS), which
will be translated into a protein, while at the 5′ and 3′ end untranslated regions (UTRs) are found.

A ribosome consists of two subunits, a small and a large one. The small subunit of a ribosome
binds to the cap of an eukaryotic RNA and moves along the 5′ UTR until it reaches the start
codon AUG. At this point the whole ribosome assembles and the newly translated polypeptide
chain starts by involvement of a special tRNA, the N-formyl-methionyl-tRNA. Afterwards, the
starting polypeptide chain is elongated while aminoacyl-tRNAs deliver the new amino acids. The
“decision” which amino acid to use is done by base paring between the codons on the mRNA and
anticodons on the tRNAs. Different codons which encode the same amino acids are sometimes
recognized by the same tRNA through wobbling. When a stop codon is reached, translation stops
and the newly sequenced protein is ready (if no post-translational modifications are performed
beforehand).

A DNA sequence of triplets which can be translated into protein (that is, which begins with a
start codon, ends with a stop codon, and contains no embedded stop codons) is called an open
reading frame (ORF).

2.7 What is an EST?

EST stands for expressed sequence tag. Because ESTs are very important for the gene prediction
approach incorporated into GenomeThreader, it is described here in greater detail how ESTs are
constructed. This is done following [WL01]. A summary can be found in Figure 2.3.

25

Platform Read length (bases) Run time (days) GB per run Machine cost (US$)
Roche/454’s 330 (avg.) 0.35 0.45 500,000
GS FLX
Titanium
Illumina/ 75 or 4 (fragment run) 18 540,000
Solexa’s GA 100 9 (mate-pair run) 35
Life/APG’s 50 7 (fragment run) 30 595,000
SOLiD 3 14 (mate-pair run) 50
Polonator 26 5 (mate-pair run) 12 170,000
G.007

Table 2.1: Comparison of next-generation sequencing platforms. Adapted from [Met10, p. 37].
GA stands for genome analyzer and GS for genome sequencer.

2.7.1 Construction of ESTs

First, mRNAs are extracted from a specific tissue or cell line. Afterwards the mRNAs are reverse
transcribed to so called complementary DNAs (cDNAs). For the reverse transcription usually
oligo(dT) primer are used. They hybridize with the poly(A) tail of the mRNA, whereas random
primers bind somewhere to the mRNA.

The cDNAs are cloned into vectors and propagated in E. coli resulting in a cDNA library. The
cDNA library consists of the cDNA clones from most of the mRNA population of the corre-
sponding tissue or cell line. The mRNA population is represented quantitative and qualitative.

Individual clones from such a cDNA library are randomly picked out and the 5′ and 3′ ends of
the cDNA insert are sequenced in a single read. Single reading of the ESTs makes determination
fast and cheap, but leads to a rather high error rate compared to “normal” DNA sequencing. The
length of single reads is approximately 400 bp. This means that the middle part of longer cDNAs
is usually not covered by ESTs.

There is steadily growing number of ESTs available. The dbEST [BLT93] release from the 1th
July 2012 contains 73,360,923 ESTs in total (among them are 8,692,773 from Homo sapiens).

ESTs are for example useful for discovering unknown protein coding genes. This can be ei-
ther done biologically via hybridization or computationally by spliced alignment gene structure
prediction methods (as described in this thesis).

2.8 Next-Generation Sequencing Methods

Traditionally, Sanger sequencing [SNC77] has been used almost exclusively for DNA sequenc-
ing. After more than three decades of refinements, the Sanger biochemistry can be applied to
achieve read-length of up to about 1,000 bp, and per-base “raw” accuracies as high as 99.999%

26

cDNA

vector

cDNA

vector

cDNA

vector

cDNA

vector

cell or

tissue

isolate mRNA and

reverse transcribe

into cDNA

clone cDNA into a vector

to make a cDNA library

pick individual

clones

sequence the

ends of

cDNA insert

vector

3’ EST

5’ EST

deposit the

EST sequences

in database

5’ and 3’

Figure 2.3: This diagram gives an overview of EST construction. It has been adapted from
[WL01].

27

Technology Tiling microarray cDNA/EST sequencing RNA-Seq
Principle Hybridization Sanger sequencing High-throughput
Resolution From several to 100 bp Single base Single base
Throughput High Low High
Reliance on gen. sequence Yes No In some cases
Background noise High Low Low
Required RNA High High Low
Cost High High Relatively low

Table 2.2: Comparison of transcriptomics methods. Adapted from [WGS09, p. 59].

[SJ08, p. 1135]. In high-throughput shotgun genome sequencing, Sanger sequencing costs on
the order of $0.50 per kilobase. But the technology has inherent drawbacks, like the necessary
in vivo cloning of the DNA in Escherichia coli and limited scalability.

In recent years, so-called next-generation sequencing (NGS) methods have been developed which
strive to overcome these limitations. They allow DNA sequencing at a much lower cost than
Sanger sequencing, are better to parallelize, and allow in vitro preparation of the DNA samples.
But NGS methods have shorter read length and lower accuracies than Sanger sequencing, which
poses new challenges for bioinformatics. But since these technologies just have been introduced
recently, they have not yet seen the refinements which appeared in Sanger sequencing and im-
provements are likely to expect in the coming years. Table 2.1 gives an overview of various
NGS methods and important parameters like read-lengths and the type of errors they produce.
As one can see from the table, NGS methods are two to three orders of magnitude cheaper than
traditional Sanger sequencing.

The first NGS platform which was available as a commercial product is the so-called 454 py-
rosequencing [MEA+05]. This is also the technology which allows the longest read-lengths.

For reviews of next generation sequencing methods see [LCC+12, LMD+12, Met10, SJ08,
Mar08a, Mar08b].

2.8.1 RNA-Seq

NGS methods have many applications and an important one is the sequencing of the transcrip-
tome of an organism. A transcriptome is the complete set of transcripts in a cell, and their
quantity, for a specific developmental state or physiological condition [WGS09, p. 57].

The high-throughput NGS methods described above allow to determine the transcriptome of
an organism better than previous methods. The methods to determine the transcriptome with
NGS methods have been coined RNA-Seq (stands for RNA sequencing) and they have various
advantages over the two older approaches tiling microarrays and cDNA/EST sequencing. Table
2.2 gives a comparisons of the three prevalent approaches for transcriptomics. A review of RNA-
Seq is given in [WGS09].

28

2.9 What is a Gene? Attempting a Definition

The etymology of the term gene derives from the Greek genesis (“birth”) or genos (“origin”)
[GBR+07]. Although it is a central notion in (molecular) biology, it’s exact meaning changed
considerably during it’s history. In this Section we will review the evolution of the term from
it’s first appearance up to it’s most recent definition which is used in this thesis, following the
timeline given in [GBR+07].

The related term genetics was coined by William Bateson in 1905 [Bat].

2.9.1 Gene as a Heredity Unit

In 1866 Gregor Mendel developed the concept of a gene (without naming it that way) as a dis-
tinct, discrete heredity unit related to certain traits he observed during his famous plant breeding
studies [Men66]. The actual term gene was first used in 1909 by Wilhelm Johannsen [Joh09].

Mendel postulated that certain phenotypes have a genotype as their cause without being able to
identify the molecular basis of the genotypes in the cells.

2.9.2 Gene as a Distinct Locus

This situation improved in the 1910s when Alfred Henry Sturtevant created the first genetic
map [Stu13] and The Mechanism of Mendelian Inheritance which studied the segregation of
mutations in Drosophila melanogaster was published by Thomas Hunt Morgan and his students
[MSMB15]. This established that genes are arranged linearly and that their ability to cross-over
is proportional to their distance.

But it wasn’t until 1929 that Barbara McClintock established that genetic linkage corresponds to
actual physical locations on chromosomes [McC29].

2.9.3 Gene as a Protein Blueprint

In 1941 George Wells Beadle and Edward Lawrie Tatum published the results of their study of
the Neurospora metabolism and stated the “one gene, one enzyme” hypothesis which was later
modified to “one gene, one polypeptide” [BT41].

2.9.4 Gene as a Physical Molecule

In the 1950s the view of a gene as a physical molecule was finally established – the deoxyribonu-
cleic acid (DNA) was identified as the carrier of the genetic information.

29

Earlier findings by Hermann Joseph Muller and Frederick Griffith supported this view. In 1927
Hermann Joseph Muller showed the mutagenic effects of X-ray radiation [Mul27]. One year later
Frederick Griffith discovered the transforming principle: He showed that a non-virulent strain of
Streptococcus pneumoniae can become virulent if mixed with dead Streptococcus pneumoniae
from a virulent strain [Gri28].

In 1944 Oswald Theodore Avery et al. showed that the substance underlying the transforming
principle can be destroyed by the deoxyribonuclease enzyme [AMM44].

On these previous breakthroughs Alfred Day Hershey and Martha Chase could build upon with
their famous Hershey-Chase experiment. They conducted two similar experiments. In the first
one, T2 phages with radioactive 32P-labeled DNA infected an Escherichia coli (E. coli) culture.
In the second one, T2 phages with radioactive 35S-labeled protein infected an E. coli culture.
In both experiments they separated the phages from the bacteria after infection with a blender
and measured where most of the radioactivity could be found. In the first case, most of the
radioactivity could be measured in the E. coli cells and in the second case, most of it in the
phages. This proved that DNA and not protein, as it was thought at the time, is the carrier of
genetic information [HC52].

2.9.5 Gene as Transcribed Code

After DNA has been identified as heredity carrier the structure of this molecule became the focus
of scientific concern and was successfully solved by James Dewey Watson and Francis Harry
Compton Crick in 1953 [WC53] (partially based upon earlier work by Erwin Chargaff [Cha51]).
This was an important starting point for the field of molecular biology which developed rapidly
thereafter. Shortly after this discovery the Central Dogma of molecular biology was formulated
(see Section 2.6) and the genetic code was deciphered.

The genetic code is a set of rules which describe how triplets of nucleic acids (DNA or RNA)
are translated into a protein. It was solved in 1965 by Marshall Nirenberg et al. [NLB+65] and
Dieter Söll et al. [SOJ+65] (see also Section 2.4).

2.9.6 Gene as ORF Sequence Pattern

After the genetic code has been solved the actual nucleotide sequence of genes became the focus
of scientific attention. The bacteriophage MS2 was the first fully sequenced organism and its
sequenced contained the first gene whose sequence was known [FCDW+71, FCD+76].

Furthermore, the first algorithms for the identification of genes based on their sequence charac-
teristics were developed (see Chapter 3 for a detailed introduction to gene prediction methods).
These methods effectively identified genes as annotated ORFs.

These developments led to the new concept of a “nominal gene”, which is defined by the pre-
dicted sequence in contrast to the genomic locus used in earlier definitions [GS06].

30

2.9.7 Gene as Annotated Genomic Entity Stored in a DB (pre-ENCODE)

The predominant view today sees a gene as an annotated genomic entity which is stored in the
public databases. This was the exclusive view before the ENCODE project [Con04] started (pre-
ENCODE). The findings of the ENCODE project have challenged and refined this view (see
Section 2.9.10).

This view can be exemplified with the following two recent definitions. The Human Genome
Nomenclature Organization defined a Gene as “a DNA segment that contributes to phenotype/
function. In the absence of demonstrated function a gene may be characterized by sequence,
transcription or homology” [WBL+02, p. 464]. A couple of years later the Sequence Ontol-
ogy Consortium defined a gene as “a locatable region of genomic sequence, corresponding to a
unit of inheritance, which is associated with regulatory regions, transcribed regions and/or other
functional sequence regions” [Pea06, p. 401].

The increasing number of completely sequenced genomes, like the first completely sequenced
genome of Haemophilus influenzae [FAW+95] and the human genome [Int01, VAM+01], largely
increased the amount of sequences this definitions could be applied to. This even led to a large
interest of the public in the number of genes of various organisms, especially human.

2.9.8 Problems with the Current Definition

The sequence centric view of a gene which is currently most dominant has a number of problems
which will be discussed below.

Gene regulation

Because regulatory elements can be far away (sequence-wise not chromatin structure-wise) from
the actual transcribed sequence it is unclear how they fit into the view of a gene as a compact
genetic locus. Furthermore, many-to-many relationships between genes and their enhancers have
been found [SLTF05].

Overlapping

Genes with overlapping reading frames have been found [CRVdVF77] which weakens the cur-
rently used gene concept further. Even genes which are completely contained in the introns of
other genes have been reported [HKFF86].

Splicing

When splicing was discovered in 1977 [BMS77, CGBR77, GR77] it became clear that a single
locus can transcribe multiple distinct mRNA products which complicates possible gene defini-
tions considerably.

31

Trans-splicing

The ligation of two separate mRNA molecules in a process called trans-splicing [Blu05] com-
pletely nullifies the concept of a gene as “a locus” for such products (where the actual DNA can
be widely separated across the genome).

Tandem chimerism

In a recently discovered phenomenon called tandem chimerism two consecutive genes are tran-
scribed into a single mRNA which leads to a fused protein [ATE+06, PRD+06].

Transposons

A transposon (transposable element) is a DNA sequence which is able to insert itself at a new
location in the genome. Transposons were first discovered in the 1930s in maize and later it was
confirmed that they exists in a wide variety of organisms, including human [McC48]. When a
gene is part of a transposon, it can no longer be thought of as having a fixed location.

2.9.9 Experience of the ENCODE Project

The experience of the ENCODE project has shown that the exceptions described above are much
more common then previously thought [Con07]. These findings stem mainly from the mapping
of transcriptional activity and regulation using tiling arrays. They are described below and should
make clear why an updated definition of gene became necessary.

Unannotated transcription

The results of the ENCODE project confirmed earlier results [BSR+04, CKD+05] that a large
amount of DNA which is not annotated as known gene is transcribed into RNA [Con07]. These
novel transcribed regions are called transcriptionally active regions (TARs). “While the majority
of the genome appears to be transcribed at the level of primary transcripts, only about half of
the processed (spliced) transcription detected across all the cell lines and conditions mapped is
currently annotated as genes” [GBR+07, p. 673].

Unannotated and alternative TSSs

Furthermore, it was found that a large number of unannotated transcription start sites (TSSs)
exist and that many known protein genes have alternative TSSs which can be more then 100 kb
upstream of the annotated TSSs [Con07].

32

More alternative splicing

Motivated by these findings the well-curated GENCODE annotation was made at the Sanger
Institute [HDF+06]. GENCODE showed that most of the new transcripts do not correspond to
previously unknown genes but rather to previously unknown alternative splice forms of known
protein-coding genes or to novel ncRNAs. In the current GENCODE annotation a gene contains
on average 5.4 transcripts.

Dispersed regulation

The results of the ENCODE project show that regulation is dispersed throughout the genome and
does not necessarily lie upstream of the regulated gene. Despite the fact that regulatory elements
can be found in the entire genome, evidence has been found that the genome contains regulatory
rich “forests” and regulatory poor “deserts” [ZPF+07].

Furthermore, large-scale evidence has been found that some of the regulatory elements them-
selves are transcribed and hence should be considered as part of a gene which contradicts the
traditional gene model [CBN+04, ERB+04, KBZ+05, Con07, ZPF+07].

Noncoding RNAs

A part of the rich transcriptional activity observed by the ENCODE project is due to non-coding
RNAs (ncRNAs). Non-coding RNA is an umbrella term for all sorts of RNAs which do not code
for a protein sequence. This includes micro RNAs (miRNAs) used for gene regulation, small
nucleolar RNAs (snoRNAs) used for RNA processing, and transfer RNAs (tRNAs) as well as
ribosomal RNAs (rRNAs) used for protein synthesis.

Genes coding for ncRNAs are computationally hard to identify, because they do not necessarily
contain ORFs.

Pseudogenes

Another part of the rich transcriptional activity which cannot be attributed to protein-coding
genes belongs to pseudogenes. Pseudogenes are derived from functional genes through retro-
transposition or duplication.

Their prevalence (in the same order of magnitude as protein-coding genes) and their similarity
to protein-coding genes makes distinguishing them from protein-coding genes hard. Recent
evidence shows that up to 20% of them are transcribed which makes this even worse, because
transcription can no longer be taken as good evidence for locating genes [YSY+03, HZZ+05,
ZZH+05, ZFB+07, FWF+06]

33

2.9.10 Gene as Dispersed Genome Activity (ENCODE)

Since many of the found ncRNAs and pseudogenes are located within introns of protein-coding
genes it became clear that a gene definition based on overlapping transcripts would coalesce
functionally very different entities into single genes which is clearly not desired.

This lead to three aspects which have to be included in an updated gene definition (taken from
[GBR+07, p. 676-677]):

1. A gene is a genomic sequence (DNA or RNA) directly encoding functional product molecules,
either RNA or protein.

2. In the case that there are several functional products sharing overlapping regions, one takes
the union of all overlapping genomic sequences coding for them.

3. This union must be coherent—i.e., done separately for final protein and RNA products—
but does not require that all products necessarily share a common subsequence.

This can be summarized as [GBR+07, p. 677]:

“The gene is a union of genomic sequences encoding a coherent set of potentially
overlapping functional products.”

Figure 2.4 gives an example on how to apply the updated gene definition. Under the pre-
ENCODE definition the example DNA would have been annotated as a single gene (consisting
of exons A, B, C, D, and E), because the various transcripts overlap and would therefore be
considered as part of the same gene (despite their different functions).

In the rest of this thesis the prediction of protein-coding genes will be considered in-depth. The
different properties of genes coding for ncRNAs (see Section 2.9.9) renders predicting them a
different problem which will not be considered here.

The computational approach to gene finding discussed in this thesis consists of aligning cD-
NAs/ESTs and/or protein sequences to genomic DNA (gDNA, for short) and thereby identifying
the exons and introns of genes. The problem is non-trivial because in practice the alignments
sought are not necessarily of exactly matching strings. Because of natural variations (termed
polymorphisms) and sequencing errors, matching sequences should tolerate several percent of
single symbol mismatches as well as differences arising from insertions and deletions (so-called
indels). Solutions to such alignment tasks are of great practical importance, both for genome
projects in the public domain and for projects within the pharmaceutical and biotechnology in-
dustries. The data provided for input of the GenomeThreader software come from public do-
main projects. Internationally maintained public databases such as the database resources of the
National Center for Biotechnology Information (NCBI) [WBB+05] or the EMBL Nucleotide
Sequence Database [KAA+05] provide access to very large numbers of DNA, RNA, and pro-
tein sequences. For example, at the time of writing this thesis, the entire genomes of human,

34

Functional

products

Spliced

transcripts

Primary

transcripts

3’

5’ 3’

5’

5’ncRNA

proteins

Genes

DNA

5’

5’

5’

5’

5’

5’

5’3’

3’

3’ 5’ 3’

3’

3’

3’

3’3’ 5’

3’

Y

Y

Y

X

X

X

X

Y

#2 #3

#4

#1

A B C D E

A

A

B

B

B

B

C

C

C

D

E

E

A

B C

D

D

D

E

EA B C

A

A

C

Figure 2.4: Updated gene definition example. Diagram adapted from [GBR+07]. The DNA
shown in the example (A-E) produces three primary transcripts which lead to six spliced tran-
scripts. These six transcripts encode five different proteins and one of them is a ncRNA. Because
the three protein A, B, and C overlap on the DNA level they are combined to gene #1. The
proteins D and E do not overlap on the DNA level and therefore they belong to separate genes #2
and #3. Since the ncRNA consisting of X and Y is a different “product category” it constitutes a
separate gene #4.

35

chimpanzee, mouse, rat, and dog are available for download, as well as several million EST
sequences for human and mouse, respectively. The genomes of many plants (for example, Ara-
bidopsis thaliana, a laboratory model organism, and rice) are also available, and sequencing of
the world-wide most important crop, maize, is finished [SWF+09]. The plant EST and cDNA
collections are not as extensive as for human and mouse for any given species, however the cu-
mulative numbers for related species are also in the millions. These sequences can be used for
gene structure annotation provided the alignment algorithms are robust with respect to sequence
divergence between related genes in the different species.

In the next chapter different approaches for predicting the structure of protein-coding genes
which have been described in the scientific literature will be introduced. Furthermore, the mea-
sures of how to assess the quality of gene predictions and some example programs in the different
gene prediction categories will be shown.

36

Chapter 3

Computational Background

Four main categories of gene prediction methods exist: Ab initio methods, comparative methods,
homology methods, and so-called combiners. Methods and programs implementing them will
be described below after precisely defining the notion “gene prediction”. Afterwards measures
for the quality of gene prediction methods will be introduced. Finally, for each category a few
programs will be introduced in more detail. For reviews on computational gene prediction meth-
ods and their accuracy see for example [CFM+08, GFA+06, Bre05, GR05, BG04, GW03, Bre02,
HVT+02, MSSR02, Zha02, RMO01, GAA+00, RHH+00, Sto00, PRD+99, BK98, BG96].

3.1 Basic Definitions

N denotes the set of positive integers including 0. The symbols a, b, i, j, k, l,m, n, o, t, u, v, w
refer to integers if not stated otherwise.

Let A be a finite set, the alphabet. The elements of A are characters. Strings1 are written by
juxtaposition of characters. In particular, ε denotes the empty sequence. The setA∗ of sequences
over A is defined by

A∗ =
⋃
i≥0

Ai

where A0 = {ε} and Ai+1 = {aw | a ∈ A, w ∈ Ai}. A+ denotes A∗ \ {ε}. The length of a
sequence s, denoted by |s|, is the number of characters in s. si is the i-th character of s. That is,
if |s| = n, then s = s1 . . . sn where si ∈ A. If i ≤ j, then si . . . sj is the substring of s beginning
with the i-th character and ending with the j-th character. These notions have been taken from
[Kur03] (with slight modifications).

A substring si . . . sj is also denoted as s(i, j). From now on let A = {A,C,G, T,N}, where
A refers to adenine, C to cytosine, G to guanine, T to thymine and N denotes an undetermined

1The term string is equivalent to the term sequence. But the term substring is not equivalent to the term sub-
sequence: consecutive characters in substrings have to be consecutive in the originating string, whereas this is not
mandatory in subsequences.

37

character. An element b ∈ A is also called a base. Let g ∈ A+ be a genomic sequence (|g| = n)
and c ∈ A+ be a cDNA/EST sequence (|c| = m).

Definition 1 Let g = g1g2 . . . gn be a genomic sequence. The total function % : [1, n]→ {c, nc}
is called a status function, where c stands for coding and nc stands for non-coding. That is, by
means of % every position t, 1 ≤ t ≤ n, has a status %(t) assigned. Note that % is a boolean
function. We however use the two symbols c and nc for ease of readability. �

Definition 2 Given a genomic sequence g = g1g2 . . . gn and a status function %. An exon ac-
cording to % is a pair (i, j) of positions such that 1 ≤ i ≤ j ≤ n where

• %(t) = c for all t ∈ [i, j],

• i = 1 or %(i− 1) = nc,

• j = n or %(j + 1) = nc.

That is, an exon denotes a maximal substring gi . . . gj such that each position is a coding position.
A predicate exon is defined as follows:

exon(g, %, i, j) =

{
True if (i, j) is an exon according to %
False otherwise

�

Definition 3 Let g be a genomic sequence and % be a status function. Assume all exons of g
(namely (i1, j1), . . . , (ik, jk)) are numbered from 1 to k from left to right. A partition of the set
{1, . . . , k} into intervals [a1, b1], [a2, b2], . . . , [al, bl] is called a grouping if

• a1 = 1,

• bt + 1 = at+1 for t ∈ [1, l − 1], and

• bl = k.

A single interval of a grouping is called a gene.

The exon mapping function ϕ : [1, k] → N × N maps the set {1, . . . , k} given above on the
according exons (i1, j1), . . . , (ik, jk). �

Definition 4 Given a genomic sequence g, a status function %, and a grouping (of the resulting
exons) [a1, b1], [a2, b2], . . . , [al, bl]. We map the intervals (of the grouping) on genomic substrings
by means of the exon mapping function ϕ:

[ϕ(a1), ϕ(b1)], [ϕ(a2), ϕ(b2)], . . . , [ϕ(al), ϕ(bl)]

= [g(ia1 , ja1), g(ib1 , jb1)], [g(ia2 , ja2), g(ib2 , jb2)], . . . , [g(ial , jal), g(ibl , jbl)]

38

The substrings g(0, ia1 − 1), g(jbt + 1, iat+1 − 1) for t ∈ [1, l − 1], and g(jbl + 1, n) are called
intergenic regions.

Colloquially, intergenic regions are the genomic regions between genes. �

Definition 5 Given a genomic sequence g, a status function %, and a grouping. In this definition
only the intervals (of the grouping) [a, b] where a 6= b are considered. In such intervals a, a +
1, . . . , b denotes a numerical order of exons. By ϕ every exon can be expressed as a subsequence
of g:

ϕ(a), ϕ(a+ 1), . . . , ϕ(b)

= g(ia, ja), g(ia+1, ja+1), . . . , g(ib, jb)

The substrings g(jt + 1, it+1 − 1) for t ∈ [a, b− 1] are called introns.

For all t ∈ [a, b−1]: If |g(jt+1, it+1−1)| ≥ 4 then the substring g(jt+1, jt+2) is called donor
site and the substring g(it+1 − 2, it+1 − 1) is called acceptor site. Donor and acceptor sites are
also called splice sites.

Colloquially, introns are the genomic regions between the exons of a gene. �

Definition 6 Given a genomic sequence g. A gene prediction method computes a status function
% of g and a grouping of the resulting exons. The result of a gene prediction method is called a
gene prediction. �

After a gene prediction a genomic sequence g is a sequence of substrings of the type exon, intron,
and intergenic region (according to the definitions above).

Remark 1 The definitions above refer to single stranded DNA for simplicity. Gene prediction
methods are usually applied to both strands of the genomic DNA, the forward strand and the
reverse complementary strand. �

Now we define the more special case of a gene prediction method via spliced alignment. A
definition of an optimal spliced alignment is given in Sections 4.1.2 and 4.1.3, where the spliced
alignment algorithm of GeneSeqer2 and GenomeThreader is described.

For this purpose we need the definition of an edit operation and of an alignment (both taken from
[Kur03], with slight modifications):

Definition 7 An edit operation is a pair (α, β) ∈ (A1 ∪ {ε})× (A1 ∪ {ε}) \ {(ε, ε)}. �

α and β denote sequences of length ≤ 1. However, if α 6= ε and β 6= ε, then the edit operation
(α, β) is identified with a pair of characters.

An edit operation (α, β) is usually written as α→ β. This reflects the operational view which
considers edit operations as rewrite rules transforming a source sequence into a target sequence,
step by step. In particular, there are three kinds of edit operations:

39

• α→ε denotes the deletion of the character α,

• ε→β denotes the insertion of the character β,

• α→β denotes the replacement of the character α by the character β.

Notice that ε→ ε is not an edit operation. Insertions and deletions are sometimes referred to
collectively as indels.

Sometimes sequence comparison just means to measure how different sequences are. Often it is
additionally of interest to analyze the total difference between two sequences into a collection of
individual elementary differences. The most important mode of such analyses is an alignment of
the sequences.

Definition 8 An alignment A of two sequences x and y (x, y ∈ A∗) is a sequence

(α1→β1, . . . , αh→βh)

of edit operations such that x = α1 . . . αh and y = β1 . . . βh. �

Example 1 The alignmentA = (ε→d, b→b, c→a, ε→d, a→a, c→ε, d→d) of the sequences
bcacd and dbadad is written as follows:(

- b c - a c d
d b a d a - d

)
�

(Excerpt from [Kur03] ends here.) Now we are able to define a spliced alignment:

Definition 9 Given a genomic sequence g, a cDNA/EST sequence c, and a gene prediction of
g containing exactly on gene. The predicted exons are numbered from 1 to k from left to right:
g(i1, j1), g(i2, j2), . . . , g(ik, jk).

A spliced alignment is defined as an alignment between g(i1, j1)g(i2, j2) . . . g(ik, jk) and c1c2 . . . cm.
�

Definition 10 Given a genomic sequence g and a cDNA/EST sequence c. A gene prediction via
spliced alignment method (or simply a spliced alignment method) computes a gene prediction of
g containing one gene and a spliced alignment. �

Remark 2 Again, this is a simplified view: The DNA sequences processed in the actual algo-
rithms contain more than one gene. And usually a set of cDNA/EST sequences is used. �

40

3.2 Gene Prediction Categories

3.2.1 Ab initio Methods

Ab initio methods are purely based on two kinds of inputs: The genomic sequence in which the
gene(s) shall be predicted. And a statistical model, which captures features which are specific
for genes, e.g. exon and intron features.

Early approaches tried to recognize shifts in codon usage. The idea is, that coding sequences have
a different bias in the use of the 64 possible codons than the noncoding ones. These approaches
have not been very successful, mainly due to the short length of coding regions. In eukaryotes
the situation becomes even more complicated: Due to exon-intron structure of the genes the
coding regions are too short to be recognized. The average length of an exon in vertebrates is
130 bp [Pev00, p. 156]. This led to more realistic modeling trying to capture more biological
knowledge, like modeling the splice sites.

For example, the program GENSCAN [BK97] merges in a Hidden Markov Model the statistics
of splice sites, promoters, polyadenylation sites and coding region statistics. It also takes into
account the influence of the G + C composition on gene structure and gene density. Beside
GENSCAN there are many other ab initio methods, for example mGene [SZZ+09], EuGÉNE
[FS05], AUGUSTUS [SW03], Fgenesh [SS00], GeneGenerator [KHV+98], GeneMark.hmm
[LB98], Morgan [SDFH98], HMMgene [Kro97], MZEF [Zha97], and Genie [KHRE96].

Ab initio programs use training sets to adjust their model parameters. Training sets contain
positive or negative test samples. Positive samples contain sequences with known genes, where
the complete gene structure is already correctly annotated. Negative samples contain for example
pseudogenes2, which shall not be predicted as genes. With the training sets the parameters can be
adjusted. For example, it is possible to derive statistics on the splice sites by simply computing
frequencies or consensus splice sites. The splice sites statistics can then be used when one tries
to recognize splice sites. In GenomeThreader splice site statistics are used via Bayesian Splice
Site Models (BSSMs, see Section 4.2).

3.2.2 Comparative Methods

The idea of these methods is that exons and certain signals (like promoters, donor- and acceptor
sites and so on) are more conserved between related species than other sequence parts, because
mutations in these would corrupt functionally important proteins, change expression level or
disturb splicing. One wants to detect this stronger conserved regions by means of comparative
genomics of two or more genomic sequences.

2Pseudogenes are derived from ancestral genes by duplication events. In contrast to genes they are not function-
ally active due to inactivating mutations.

41

Programs of this type are mGene [SZZ+09], N-SCAN [GB06], SGP2 [PAA+03], AGenDa
[TRG+03], TWINSCAN [KFDB01] (derived from GENSCAN [BK97]), SLAM [PAC01], CEM
[BH00], and ROSETTA [BPM+00].

One problem of these approaches is that the rate of evolution varies among species. Therefore
it is not trivial to choose appropriate species for these methods. The rate of evolution can also
be different between genes in a single species, which makes the situation even more difficult.
Ideally one would like to have a method of this kind, which takes a single genomic sequence and
finds suitable sequences to compare it with by a similarity search in a database.

The publication [GW03] comprehensively reviews the comparative gene prediction field.

3.2.3 Homology methods

Homology methods are also called the similarity-based approach. The idea of the similarity-
based approach is to use additional sequence information, either ESTs or Proteins to predict
gene structures.

We call these sequences reference sequences in contrast to the genomic sequence (or template).
Appropriate means that the ESTs or Proteins are from the same species or (if not available) from
closely related species.

ESTs contain, beyond question, important information because they are derived from mature
mRNAs (as described in Section 2.7), which are spliced transcripts of genes. Therefore, if
a genomic region shows similarity to a reference sequence from a cDNA/EST (or protein)
database, it is more likely that this genomic region contains a coding sequence. Similar re-
gions can be found with programs like BLAST [AGM+90], FASTA [PL88, Pea00] or Vmatch
(http://vmatch.de/).

Similarity does not reveal the exon-intron structure of a putative gene, though. Therefore, in
the matching regions a spliced alignment is computed, which reveals the exon-intron-structure.
Figure 4.1 shows an example of a spliced alignment. Methods of the similarity-based approach
using ESTs or Proteins are also called spliced alignment methods. Known programs which com-
pute a spliced alignment of a cDNA/EST with a homologous genomic sequence segment are
GMAP [WW05] and sim4 [FHZ+98].

Programs which use protein sequences for a similarity-based approach are, for example, GE-
NEWISE [BD97] and PROCRUSTES [GMP96].

Further programs which should be considered as homology methods, because they use reference
sequence information, are mGene [SZZ+09], AUGUSTUS [SDBH08] and EuGÉNE [FS05].

GeneSeqer can use both, cDNAs/ESTs (described in [UZB00]) and proteins (described in [UB00])
as reference sequences. GeneSeqer is not a pure spliced alignment method, because it also takes
the splice site strength into consideration. This makes it a hybrid approach. Since Genome-
Threader [GBSK05] extends upon ideas from GeneSeqer, it can also use cDNA/EST and pro-
tein sequences at the same time to predict gene structures. But GenomeThreader is the only

42

program known to us which can combine both cDNA/EST and protein based spliced alignments
into consensus spliced alignments.

3.2.4 Combiners

Combiners are a special breed of gene prediction programs, they use the gene models created
by other gene prediction methods and possibly additional data and combine them into their own
gene models, thereby refining the input models.

They are usually among the best gene prediction methods available, but it is not fair to com-
pare them with the other three categories, because combiners would not exist without the other
programs from which they draw their initial gene models.

Example programs of this category are Evigan [LMRP08], GENOMIX [CD07], GLEAN [EMR+07],
JIGSAW [AS05], and GeneID [PBG00].

3.3 Measures of Prediction Accuracy

To be able to make statements about the quality of gene prediction methods, one has to compare
the predicted gene structure with the real, known gene structure. This can be done by measures
at different levels of detail. There are at least three reasonable levels of detail: The nucleotide
level, the exon level and the whole-gene level. On the nucleotide level it is measured how many
of the coding nucleotides have been predicted to be coding. On the exon level it is measured how
many complete exons have been predicted entirely correctly and on the whole-gene level how
many complete gene-structures have been entirely correctly predicted. Below some widely used
measures for the different levels will be defined following the “classical” paper from Burset and
Guigó [BG96] on gene prediction evaluation, the review in [GW03], and the human ENCODE
Genome Annotation Assessment Project (EGASP) [GFA+06].

3.3.1 Nucleotide Level

The definition of the quality measures are based on the formal definitions of Section 3.1. We
are comparing prediction and reference, which both can be seen as status functions of the same
genomic sequence g: %p and %r, respectively. The prediction status function %p is derived from a
gene prediction, whereas the reference status function %r comes from an annotation of g which
(ideally) reflects the reality.

Let us consider two bases at the same sequence position t, one from the prediction, one from
the reference: Each base can be either coding or non-coding, as said in the definitions. When
alternative splicing exists where a base exists that is coding in one splice form as well as non-
coding in another, that base is defined as coding. That is, coding bases take precedence over
non-coding bases in the same genomic region. See Figure 3.2 for a graphical explanation of this

43

TP FP

FN TN

 noncodingcoding

Reality

co
d

in
g

n
o

n
co

d
in

g

P
re
d
ic
ti
o
n

Figure 3.1: 2 × 2 table representing the possible status combinations from prediction and refer-
ence. Adapted from [BG96].

idea. This means four possible combinations (see Figure 3.1 for visualization). Counting the
frequency of each combination along the sequences leads to four measures:

• TP : Number of positions, where both bases are coding.
Formally, TP = |{t ∈ [1, n] | %p(t) = %r(t) = c}|.

• TN : Number of positions, where both bases are non-coding.
Formally, TN = |{t ∈ [1, n] | %p(t) = %r(t) = nc}|.

• FP : Number of positions, where the prediction base is labeled coding, but in reality the
base is non-coding. Formally, FP = |{t ∈ [1, n] | %p(t) = c and %r(t) = nc}|.

• FN : Number of positions, where the prediction base is labeled non-coding, but in reality
the base is coding. Formally, FN = |{t ∈ [1, n] | %p(t) = nc and %r(t) = c}|.

Hereof the two well known measures sensitivity (denoted as Mnuc
sens) and specificity (denoted as

Mnuc
spec) can be derived:

Mnuc
sens =

TP

TP + FN
Mnuc

spec =
TP

TP + FP

The sensitivity Mnuc
sens denotes the proportion of nucleotides correctly predicted as coding from

all coding nucleotides and the specificity Mnuc
spec the proportion of nucleotides correctly predicted

as coding from all as coding predicted nucleotides.

One can also define the “negated” measures for sensitivity (denoted as ¬Mnuc
sens) and specificity

(denoted as ¬Mnuc
spec), which focus on non-coding3 instead of coding nucleotides:

¬Mnuc
sens =

TN

TN + FP
¬Mnuc

spec =
TN

TN + FN
3That is, the sensitivity ¬Mnuc

sens denotes the proportion of nucleotides correctly predicted as non-coding from all
non-coding nucleotides and the specificity ¬Mnuc

spec the proportion of nucleotides correctly predicted as non-coding
from all as non-coding predicted nucleotides.

44

Neither sensitivity nor specificity alone represent a good measure about prediction quality, be-
cause it is possible to gain high values for each of them without having a meaningful prediction:
Simply predicting all values as coding would yield in an Mnuc

sens value of 1 and a very low Mnuc
spec

value. Predicting only very few nucleotides as coding (correctly) would yield in a very high
Mnuc

spec value but in a very low Mnuc
sens value. That means one has always to consider both values.

This is somewhat inconvenient, and therefore there are approaches to combine these two mea-
sures into a single one. A very common one is the correlation coefficient (CC) (see [BG96, p.
357]):

CC =
(TP × TN)− (FN × FP)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

The correlation gives a combined value of sensitivity and specificity ranging from −1 to 1 but
has the disadvantage of being not defined if one of the sums TP + FN , TN + FP , TP + FP
and TN +FN equals zero. This led to the development of other measures, which overcome this
disadvantage. The approximate correlation (AC) ranges from −1 to 1 and is defined by:

AC = (ACP − 0.5)× 2

where the average conditional probability ACP (ranging from 0 to 1) is defined by:

ACP =
1

4

[
Mnuc

sens +Mnuc
spec + ¬Mnuc

sens + ¬Mnuc
spec

]
But these combined values are not used widely in practice. For example, EGASP [GFA+06]
uses only CC and nGASP [CFM+08] uses no combined value at all (see Chapter 6 for more
information on these evaluation projects).

Remark on notation

Usually the sensitivity is denoted as Sn and the specificity as Sp. However, this leads to ambiguity
when defining sensitivity and specificity on exon and gene level, which are usually denoted the
same. Therefore here we use Msens for the sensitivity measure and Mspec for the specificity
measure with superscript strings denoting the level of the prediction. For nucleotide level, we
use nuc (i.e. Mnuc

sens and Mnuc
spec), for the exon level ex (i.e. M ex

sens and M ex
spec), and for the gene

level gen (i.e. M gen
sens and M gen

spec).

3.3.2 Exon Level

An exon is considered to be predicted correctly, if its borders are exactly the same as in the
annotation. TE denotes the number of such true exons and AE the number of actual exons in
the annotation. PE is the total number of predicted exons. Formally:

Definition 11 Given a genomic sequence g and two status functions %p and %r reflecting predic-
tion and reference. We define:

45

(a) Evaluation at Nucleotide Level (b) Evaluation at Exon Level

Reference Set Prediction Set True Positives False Positives False Negatives

Figure 3.2: Gene feature projection for evaluation, adapted from [GFA+06]. This figure shows
the process of projecting genic features into unique nucleotide (a) and exon (b) coordinates in
order to compute the accuracy values (see Sections 3.3.1 and 3.3.2).

46

• TE = |{(i, j) | 1 ≤ i ≤ j ≤ n, exon(g, %p, i, j) = exon(g, %r, i, j) = True}|

• Let the exons of g according to %p be numbered from 1 to kp. Then PE = kp.

• Let the exons of g according to %r be numbered from 1 to kr. Then AE = kr.

Definition 12 With Definition 11 sensitivity M ex
sens and specificity M ex

spec on exon level are de-
fined:

M ex
sens =

TE

AE
M ex

spec =
TE

PE

On the exon level one can combine sensitivity and specificity by evaluating their average. Two
other important measures are the number of actual exons without any overlap with a prediction
(the missing exons ME) and the number of predicted exons without overlap to any actual exons
(the wrong exons WE).

In the case of alternative splicing, the procedure to evaluate the exon level is similar to the nu-
cleotide level. That is, all exons from different splice forms with the same borders are collapsed
into one. Each (possibly collapsed) exon from the reference set has to be predicted in at least
one splice form from the prediction set to be considered correctly predicted. See Figure 3.2 for a
graphical explanation of this idea.

3.3.3 Gene Level

The overall prediction accuracy on the gene level is the most important one. Considered are com-
plete genes. A gene is predicted correctly if the same exons (as in the annotation) are assigned
to that gene and all of these exons are predicted correctly (as defined above).

Based on this the sensitivity (denoted as M gen
sens) on the gene level can be defined as the fraction

of all genes which are predicted correct and the specificity on the gene level (denoted as M gen
spec)

as the fraction of all predicted genes which are correct.

Definition 13 Given a genomic sequence g, two status functions %p and %r, and two groupings
of the resulting exons. The set of intervals of the grouping for %p is denoted Ip. Accordingly, the
set of intervals of the grouping for %r is denoted Ir. We define:

• TG = |Ip ∩ Ir|

• Let the intervals of the groupings for %p be numbered from 1 to lp. Then PG = lp.

• Let the intervals of the groupings for %r be numbered from 1 to lr. Then AG = lr.

Definition 14 With Definition 13 sensitivity M gen
sens and specificity M gen

spec on gene level are de-
fined:

M gen
sens =

TG

AG
M gen

spec =
TG

PG

47

Also common is the measure of the missing genes (MG), i.e. genes which are totally missed
in the prediction. And wrong genes (WG), i.e. predicted genes with no overlap to any existing
gene.

3.4 Prediction Accuracy

In this section some actual values for the measures and programs introduced above will be given.

Much effort was put into computational gene prediction methods, but the results are still dissat-
isfying. The best methods are the ones designed for specific organisms.

Generally speaking the best recognition rates in C. elegans are as follows (according to the
nGASP project [CFM+08]):

• Nucleotide level: > 99% sensitivity and > 93% specificity (best programs).

• Exon level: > 91% sensitivity and > 83% specificity (best programs).

• Gene level: a median of 68% (sequence-based) and 54% (ab initio) sensitivity, as well as
a median of 39% (sequence-based) and 32% (ab initio) specificity.

Accuracy values for many different gene finders on the nGASP dataset can be found in Section
6.1. In human the recognition rates are as follows (according to the EGASP project [GFA+06]):

• Nucleotide level: > 90% sensitivity and specificity.

• Exon level: > 80% sensitivity and nearly 90% specificity.

• Gene level: > 70% sensitivity and > 65% specificity.

One has to be careful when looking at quality values like this. It is important to differentiate
between prediction accuracy for short genomic sequences containing exactly one gene and large,
more realistic, genomic sequences, which contain many genes and possibly also pseudogenes.
For short sequences containing exactly one gene, the problem is significantly easier to solve.
But in practice, we are now usually confronted with complete genomes. This makes the gene
prediction task harder to solve. A fact which is reflected in the accuracy numbers given above.

48

3.5 Related Work: Ab initio Methods

3.5.1 GENSCAN

GENSCAN [BK97] was one of the earliest ab initio gene structure prediction programs which
achieved good prediction results (for the time). It is based on a general probabilistic model.
Namely, a Hidden Markov Model (HMM), see Section 4.1.1 for a definition. The model GEN-
SCAN uses represent the functional units of a gene as different HMM states, at which each state
has a duration function. GENSCAN was quite influential in the gene prediction field and many
later programs draw from ideas first introduced there.

3.5.2 AUGUSTUS

The ab initio gene prediction software AUGUSTUS [SW03] also used ideas from GENSCAN ,
but extended them with a new way of modeling intron length, new splice site models, and better
parameter estimation based on the GC-content of genomic sequences. With this techniques it was
able to predict genes on longer genomic sequences better than previous programs. AUGUSTUS
[SDBH08] was later extended to also take informations from cDNA alignments into account in
order to improve its gene finding capabilities.

3.5.3 mGene

mGene [SZZ+09] combines the well studied HMMs used in earlier programs with modern ma-
chine learning methods, namely Support Vector Machines (SVMs). mGene is also capable of
taking other genomic sequences (like comparative methods) or other transcriptomic information
(like homology methods) into account, which makes it in fact a hybrid approach to gene pre-
diction. It was among the best prediction programs in nGASP [CFM+08], see Section 6.1 for
details.

3.6 Related Work: Comparative Methods

3.6.1 TWINSCAN

TWINSCAN [KFDB01] was based on ideas from GENSCAN , but uses the homology between
two related genomes to improve upon the results from GENSCAN which makes it a comparative
method. It was specifically designed for the analysis of high-throughput genomic sequences.

49

3.7 Related Work: Homology Methods

3.7.1 GMAP

GMAP [WW05] is a widely used similarity-based gene prediction program which aligns cDNA
sequences to a genome (GMAP stands for Genome Alignment and Mapping Program). It is a
stand-alone program which can map single sequences with minimal startup time and allows for
fast batch processing of large cDNA sets. It does not employ probabilistic splice site models.
The GMAP methodology consists of the following four phases:

1. A minimal sampling strategy for genomic mapping.

2. Oligomer chaining for approximate alignment.

3. Sandwich DP for splice site detection.

4. Microexon identification with statistical significance testing.

Sequence Mutations

The GMAP paper also describes a procedure to mutate sequences which works as follows. For
each position in the given sequences it is randomly determined with probability (mutation rate /
100) if the given position is mutated. If so, in 80% of the cases a substitution is performed, in
10% an insertion, and in 10% a deletion, respectively. For substitution and insertion events, the
nucleotide is generated randomly without regard to the original nucleotide [WW05, p. 1867].

This procedure was implemented in the seqmutate tool which is documented in Section B.17
and was used for the ENCODE evaluation described in Section 6.3.

3.7.2 EuGÉNE

EuGÉNE [FS05] is another gene prediction program which uses the similarity-based approach.
It uses multiple homologous sequences to predict gene structures. In the nGASP [CFM+08]
competition (see Section 6.1 for details) it performed in the mid-range.

3.8 Related Work: Combiners

3.8.1 JIGSAW

JIGSAW [AS05] was one of the early programs which successfully automated the integration
of multiple sources of evidence (from other gene prediction programs) into gene structures. It
usually outperforms ab initio gene prediction programs. It is also based on a Hidden Markov
Model.

50

3.8.2 Evigan

Evigan [LMRP08] is another combiner which uses a dynamic Bayes network whose parameters
are adjusted to maximize the probability of observed evidence instead of a HMM to integrate
multiple sources of evidence. It has been successfully validated on the ENCODE regions.

51

Chapter 4

GenomeThreader Gene Prediction Software

This chapter describes the following six major contributions of GenomeThreader, which were
already mentioned in the introduction given in Chapter 1, in detail:

1. The intron cutout technique, see Section 4.5.

2. The accompanying chain enrichment, see Section 4.5.4.

3. Jump tables, see Section 4.6.

4. Easy-to-use BSSMs (Bayesian Splice Site Models), see Section 4.2.

5. Incremental updates, see Section 4.8.8.

6. The combination of both cDNA/EST-based spliced alignments and protein-based spliced
alignments into consensus spliced alignments, see Section 4.7.

4.1 The Computational Problem

We now formulate the computational problem solved by the GenomeThreader software. In the
simplest case, the input to GenomeThreader consists of one (typically long) gDNA sequence
(supplied in any one of the most commonly used sequence file formats) and a set of cDNA/EST
and/or protein sequences (depending on the application, this could be a single, for example newly
experimentally derived, sequence or a large set consisting of thousands or even millions of indi-
vidual sequences (each uniquely identified in the public databases)). The gDNA sequence could
be several million symbols, whereas each cDNA/EST sequence would typically be about 500
symbols long and maximally about 20,000 symbols (the EST lengths were taken from dbEST
[BLT93]) . Protein sequences are typically a few hundred amino acids long, but can reach lengths
of up to multiple ten thousand amino acids (numbers based on sequences from the curated pro-
tein knowledge base UniProtKB/Swiss-Prot [Con12]). The cDNA/EST/protein sequences are

52

Alignment (genomic DNA sequence = upper lines):

ACCGTTCTTG ACCAGCAGTG TCCCACTGAA AATAAGTGAA GAGGGAAAAA TATGAATTAA 51658
|||||||||| |||||||||| |||||||||| |||||||||| |||||||||| ||||||||||
ACCGTTCTTG ACCAGCAGTG TCCCACTGAA AATAAGTGAA GAGGGAAAAA TATGAATTAA 60

GGGAAAGAGA CGTA-AGCTA TTAACTTGAC AAGTGTGAAA ATAGTTACAT ACAATTTGGA 51718
|||||||||| |||| ||||| |||||||||| |||||||||| |||||||||| ||||||||||
GGGAAAGAGA CGTAGAGCTA TTAACTTGAC AAGTGTGAAA ATAGTTACAT ACAATTTGGA 120

GCTTAATTGT TTTGCCATCT TGTTCCACAG TCCTAATTTT GTGAACAAGA GATATATAAG 51778
|||||||||| |||||||||| |||||||||| ||||||||||
GCTTAATTGT TTTGCCATCT TGTTCCACAG TCCTAATTTT 160

AAAAAAAAAA AGGTCAGATC AAAGCATCGT CATCAGTAGC AAGAAGAAAA AAAAGAAAAC 51838

.......... 160

ATCAACTTAG AAAATCGACT CCAATAGTGC TAATGTAACT TTCTACATAA GAATCATCCT 51898
|||||||||| |||||||||| ||||||||| |||||||||| ||||||||

.......... AAAATCGACT CCAATAGTGC TAATGTAAC- TTCTACATAA GAATCATCAG 209

Figure 4.1: Example of a spliced alignment consisting of two exons enclosing one intron. The
intron is shown as a sequence of dots in the lower cDNA/EST sequence. A few indels and
mismatches are shown in bold.

also called reference sequences, see Section 3.2.3 for details. It is unknown how many of the
cDNA/EST/protein sequences will match the gDNA sequence in some location. The alignment
problem thus can be divided into two subproblems: first, identification of the cDNA/EST/pro-
tein sequences and corresponding gDNA locations that may constitute high-quality matching
pairs, and second, derivation of the optimal alignment (delineating the exons and introns in the
gDNA). In GenomeThreader, the first task is solved by fast string matching algorithms based on
enhanced suffix arrays [AKO04], with a subsequent chaining phase combining several consis-
tent matches. The second task involves application of classical dynamic programming [Bel57].
The idea is to take an expressed gene product (a cDNA/EST or a protein) and perform a “back-
ward calculation” of the biological process shown in Figure 2.2. In the so-called splicing (see
Section 2.6.1), the introns are cut out and only the enclosing exons remain (which comprise the
cDNA/EST/protein sequences). The goal is to reveal the (previously unknown) gene structure
from which the (known) product was derived. That is, one aligns the product against the gDNA
allowing for introns. Therefore, this kind of alignment is called spliced alignment. See Section
2.9 for a general introduction into genes.

When computing a spliced alignment, one also has to allow for errors (insertions, deletions, and
mismatches) because of sequencing errors. Furthermore, this allows to use non-cognate (from a
different organism), but homologous (still similar) sequences for gene prediction.

Figure 4.1 shows an example of a spliced alignment consisting of two exons enclosing one intron.

The spliced alignment problem has been extensively considered over the last ten years. Our al-

53

gorithms are closely related to the GeneSeqer spliced alignment algorithm based on cDNA/EST
sequences [BXZ04, UZB00] and the one based on protein sequences [UB00]. Other recent pro-
grams with similar capabilities are mGene [SZZ+09], Augustus [SDBH08], MAKER [CKR+08],
EuGène [FS05], ExonHunter [BBLV05], GMAP [WW05], Genomewise [BCD04], BLAT [Ken02],
Spidey [WCO01], Fgenesh++ [SS00], and sim4 [FHZ+98]. Some of these programs are ex-
plained in more detail in Section 3.5.

Different spliced alignments in the same region of the gDNA may not be mutually consistent.
Inconsistencies of particular biological interest are different assignments of exons and introns,
which may indicate physiologically significant alternative splicing. Therefore, a third task solved
by GenomeThreader is the derivation of all possible alternative transcripts covering a particular
gDNA region that are consistent with some, but not necessarily all cDNA/EST/protein align-
ments in that region. This consensus spliced alignment computation (see Section 4.7) is done
by a method described in [HDM+03]. GenomeThreader is capable to simultaneously combine
spliced alignments based on cDNA/EST sequences with spliced alignments based on protein se-
quences (located in the same region, of course) into consensus spliced alignments. To our best
knowledge, no other published software tool can do this.

4.1.1 Basic Notions

We consider sequences over an alphabet Σ. The length of a sequence s, denoted by |s|, is the
number of symbols in s. si is the i-th symbol of s. If i ≤ j, then si . . . sj is the substring of
s beginning with the i-th symbol and ending with the j-th symbol. If i > j, then si . . . sj is
the empty sequence. The edit distance of two sequences s and s′ is the minimum number of
insertions, deletions, and replacements of single symbols required to transform s into s′.

The following definition was taken from [Kur12].

Definition 15 A HMM (Hidden Markov Model) is a quadruple M = (Σ, S, A, e) consisting of

• an alphabet Σ,

• a set of states S,

• a matrix A = (as,t)s,t∈S of transition probabilities as,t for all s, t ∈ S, and

• an emission probability ek(b) for every k ∈ S and b ∈ Σ.

4.1.2 The Spliced Alignment Problem for cDNA/EST Sequences

We consider the problem of computing an optimal spliced alignment of a gDNA g = g1 . . . gn
and a cDNA/EST sequence c = c1 . . . cm, both over the alphabet Σ = {A,C,G,T,N}, where N is
the undetermined symbol.

54

ACCGTCAAGTT-CG
| | || ||
AGC......TTACG

Figure 4.2: A spliced alignment between a gDNA and an EST sequence where the sequence of
intron and exon states is left implicit. The gDNA sequence is shown in the upper line and the
EST sequence in the lower line. Each column of the form

[α.] corresponds to an intron state. All
other columns correspond to exon states. Matching symbols are denoted in the second row with
the symbol “|”. Insertions and deletions are shown using the “-” symbol.

A spliced alignment is characterized by a subset of n exon states ext, t ∈ [1, n] and n intron states
int, t ∈ [1, n]. Each of the states ext and int describes the status of position t in g. That is, the set
of states S is defined as S = {ex1, ex2, . . . , exn, in1, in2, . . . , inn}. In each exon state an output
column

[
α
β

]
for α, β ∈ Σ∪{-} is generated. In each intron state an output column

[
α
.

]
for α ∈ Σ

is generated. We use the symbol “-” for denoting deletions. That is,
[-
β

]
denotes the deletion of

symbol β from sequence g, while
[
α
-
]

denotes the deletion of symbol α from c. The symbol “.”
stands for a symbol spliced out of the gDNA. That is, the emissions are somewhat different from
a “normal” HMM defined in Section 4.1.1, because we have more complex outputs (the output
is not just defined over Σ).

Consider a sequence Q = q1, q2, . . . , qk of intron and exon states, and let A =
[
α1
β1
α2
β2 · · ·

αk
βk

]
be

the corresponding sequence of column outputs in these states, that is
[
αi
βi

]
is the output in state qi.

(Q,A) is a spliced alignment of g and c if we obtain g from α1α2 . . . αk and c from β1β2 . . . βk
after deleting all occurrences of the symbols “-” and “.”. Figure 4.2 shows an artificial spliced
alignment with two exons enclosing one intron.

Because we consider an optimization problem, we assign weights to each state transition in
the state sequence Q and to each output column in the alignment A. The state transitions are
weighted by a function w as follows:

w(ext, ext+1) = log((1− P∆g)(1− PD(t+1)))

w(int, ext+1) = log(PA(t)(1− P∆g))

w(ext, int+1) = log((1− P∆g)PD(t+1))

w(int, int+1) = log(1− PA(t))

w(ext, ext) = log(P∆g)

w(int, ext) = log(PA(t)P∆g)

for t ∈ [1, n− 1] (first four lines) and t ∈ [1, n] (last two lines), respectively. All other transition
weights are set to −∞. P∆g denotes the probability of deleting a single symbol in g. See Figure
4.3 for a graphical overview of the weight assignments. PD(t) reflects the probability that t is the
first position of a donor site in g and PA(t) reflects the probability that t is the last position of an
acceptor site in g. The collective term for donor and acceptor site is splice site. The terms donor
and acceptor site are biologically motivated. For the discussion here, it suffices to know that a

55

�	
 #

 �	
 #

�
��@

@@
�

��@
@@

6

�
��@

@@
�

��@
@@

�
��@

@@
�
��@

@@

6

�
��@

@@
�
��@

@@
-

-
��

�
�
�
�
�
�
�3QQ

Q
Q
Q
Q
Q
Q
Qs

ext

int

log((1 − P∆g)(1 − PD(t+1)))

log(1 − PA(t))

log(P∆g)

log(PA(t)P∆g)

int+1

ext+1

log(PA(t)(1 − P∆g))

log((1 − P∆g)PD(t+1))

Figure 4.3: States and state transitions of a spliced alignment. Adapted from [UZB00].

donor site indicates the start of an intron, and an acceptor site indicates the end of an intron in the
genomic sequence. An intron is completely specified by giving the corresponding pair of donor
and acceptor sites. The calculation of the parameters PD(t) and PA(t) follows Bayesian splice
site models (BSSM) described in [BXZ04, SB05] (see Section 4.2). Therefore, PD(t) and PA(t)

are called BSSM parameters. That is, the function w defines the transition probability matrix A
introduced in Section 4.1.1.

Note the systematics in assigning the probabilities:

• A transition from a state for position t to a state for position t + 1 involving at least one
intron-state always means that gt is bound in some edit operation, that is, it is not deleted.
This expressed by using the multiplier (1− P∆g). Note that the transition from int or et+1

corresponds to a base which is part of an intron. This is not considered a deletion and
hence the term P∆g is not used for defining the probability of this transition. If we would
use it, then probability would be proportional to this score, which contradicts the fact that
an intron can become very large.

• A transition from int or et to et means that gt is not bound in the emitted edit operation,
that is, gt is deleted. This expressed by using the multiplier P∆g.

• The transition from et to et+1 means that position t+ 1 is not the start of an intron, and so
we use the multiplier 1− PD(t+1).

While the weight of a state transition depends on the position t, the weight of an output column
is independent of t: An output column

[
α
β

]
generated in an exon state is assigned a weight w

([
α
β

])
as follows:

56

Parameter Notation Default
initial exon state probability w(ex1) 0.5
probability of inserting a gap P∆g 0.03
in gDNA
identity weight σ 2.0
mismatch weight µ −2.0
weight for alignment positions ν 0.0
involving undetermined symbol N
weight for deletions δ −5.0
splice site parameter PD(t), PA(t) from BSSM

Table 4.1: Parameters determining the weight of a spliced alignment. The BSSM parameters are
explained in Section 4.2.

w
([
α
β

])
=

σ if α, β ∈ Σ \ {N}, α = β
µ if α, β ∈ Σ \ {N}, α 6= β
ν if α, β ∈ Σ, α = N or β = N
δ otherwise

σ denotes the identity weight, µ the mismatch weight, ν the weight for alignment columns in-
volving undetermined symbols, and δ the deletion weight. In an intron state int the column

[
gt
.

]
with weight 0 is generated.

The emission probabilities in the HMM are called output weights, because output weights do not
necessarily add to one.

The sum of the weights of all state transitions and all output columns of a spliced alignment
(Q,A) is its weight, denoted by w(Q,A). The spliced alignment problem for cDNA/EST se-
quences is to find a spliced alignment of g and c with maximum weight, denoted by w(g, c).
A spliced alignment (Q,A) of g and c satisfying w(Q,A) = w(g, c) is called optimal spliced
alignment.

Table 4.1 gives an overview of the parameters required to determine the weight of a spliced
alignment.

4.1.3 The Spliced Alignment Problem for Protein Sequences

We consider the problem of computing an optimal spliced alignment of a gDNA g = g1 . . . gn
and a protein sequence sequence p = p1 . . . pm, where g is defined over the alphabet Σ =
{A,C,G,T,N} (N denotes the undetermined symbol) and p is defined over the alphabet A =
{L, V, I, F,K,R,E,D,A,G, S, T,N,Q, Y,W, P,H,M,C} (the 20-letter alphabet of naturally

57

GAACACTTGTGTAAGCCTAGGCAAAACG
E H L C K T
| | | | | |
E H LC K T

Figure 4.4: A spliced alignment between a gDNA and a protein sequence where the sequence of
intron and exon states is left implicit. The gDNA sequence is shown in the upper line and the
protein sequence in the lower line. The second row shows the translated codons of the gDNA
in their corresponding positions. Each column of the form

[α.] corresponds to an intron state
(in1 states in this example). All other columns correspond to exon states. Matching symbols are
denoted in the third row with the symbol “|”. The intron is an in1 intron, because it starts after
the first codon base.

occurring amino acids). An alignment of the sequences g and p may include gaps in either se-
quence, denoted by the gap symbol “-”. The symbol “.” stands for a symbol spliced out of the
gDNA. Such an alignment can be viewed as the output of a Hidden Markov Model (HMM) . That
is, the set S of states is defined as S = {ex1, ex2, . . . , exn, in0,1, in0,2, . . . , in0,n, in1,1, in1,2, . . . ,
in1,n, in2,1, in2,2, . . . , in2,n}. The HMM defines a probability space consisting of all possible
“threadings” of protein sequences of length m onto the given genomic sequence of length n
[UB00, p. 1077].

Consider a sequence Q = q1, q2, . . . , ql of intron states (of type in0, in1, and in2, respectively)
and exon states ex, where max(3m,n) ≤ l ≤ 3m + n. The three intron states represent introns
in three different coding phases: in0 introns start after a complete codon, in1 introns start after
codon base one, and in2 introns start after codon base two. Let

A =
[
α1,1α1,2α1,3

β1
α2,1α2,2α2,3

β2 · · · αl,1αl,2αl,3
βl

]
be the corresponding sequence of column outputs in these states, that is

[
αi,1αi,2αi,3

βi

]
is the output

in state qi. (Q,A) is a spliced alignment of g and p if we obtain g from

α1,1α1,2α1,3α2,1α2,2α2,3 . . . αl,1αl,2αl,3

and p from β1β2 . . . βl after deleting all occurrences of the symbols “-” and “.”. Figure 4.4 shows
an artificial spliced alignment with two exons enclosing one intron.

Because we consider an optimization problem, we assign weights to each state transition in the
state sequence Q and to each output column in the alignment A. For the transition weights,
the same PD(t) and PA(t) values are used as in the spliced alignment problem for cDNAs/ESTs
described in Section 4.1.2 above. The details on how this state transition weights are employed
can be seen in the actual recurrences given below in Section 4.4.

While the weight of a state transition depends on the position t, the weight of an output column is
independent of t: An output column

[
α ,1α ,2α ,3

β

]
(where α ,j means that the first index of α is not

specified) generated in an exon state is assigned a weight w
([
α ,1α ,2α ,3

β

])
by using scaled values

58

of the BLOSUM62 amino acid substitution matrix [HH92]1. Thereby, the nucleotide triplet
α ,1α ,2α ,3 is translated into a amino acid according to the chosen codon translation table2. All
deletions (one to three nucleotide deletions in the gDNA or an amino acid deletion in the protein
sequence) are given the same deletion penalty corresponding to twice the lowest mismatch score
of the BLOSUM62 matrix [UB00, p. 1078]. In an intron state int the column

[
g[t]
.

]
with weight

0 is generated.

The sum of the weights of all state transitions and all output columns of a spliced alignment
(Q,A) is its weight, denoted by w(Q,A). The spliced alignment problem for protein sequences
is to find a spliced alignment of g and p with maximum weight, denoted by w(g, p). A spliced
alignment (Q,A) of g and p satisfying w(Q,A) = w(g, p) is called optimal spliced alignment.

4.2 Easy-to-Use Bayesian Splice Site Models (BSSMs)

Bayesian Splice Site Models (BSSMs) were first described in [Sal97] and later adopted for use
by GeneSeqer in [BXZ04]. BSSMs assign splice site probabilities to genomic DNA bases (for
donor sites and acceptor sites, respectively). Briefly, the training of BSSMs consists of tabulat-
ing dinucleotide relative frequencies over the 102 positions of interest (a window of length 50
to either side) for the trained splice site type, for seven classes of training data corresponding
to seven alternative hypotheses to be evaluated using Bayes rules [SB05]. The training and em-
ployment of BSSMs in GenomeThreader has been designed in a very easy-to-use fashion. More
information on the representation of BSSMs and more details on how to train custom (that is,
organism specific) BSSMs are given below in Section 4.8.3.

4.3 Computing Optimal Spliced Alignments with ESTs

As with many problems in biological sequence comparison, the spliced alignment problem for
cDNA/EST sequences can be solved by a dynamic programming (DP) algorithm. This computes
two (m + 1) × (n + 1)-matrices E and I such that the following holds for all i ∈ [0,m] and
j ∈ [0, n]:

• Ej
i is the maximum weight of any spliced alignment of g1 . . . gj and c1 . . . ci such that the

state sequence ends with an exon state.

• Iji is the maximum weight of any spliced alignment of g1 . . . gj and c1 . . . ci such that the
state sequence ends with an intron state.

Obviously, w(g, c) = max(En
m, I

n
m). To simplify the computation, we introduce an additional

exon state ex0 and intron state in0, and define w(ex0, ex1) = w(in0, ex1) = log(w(ex1)) and

1This is the default matrix, it can be changed by using option -scorematrix of GenomeThreader.
2Can be set with the option -translationtable of GenomeThreader, see manual in Appendix A.

59

index j 1 2 3 4 5 6 7 8 9 10 11 12 13
gDNA g A C C G T C A A G T T - C G
EST c A G C T T A C G
index i 1 2 3 4 5 6 7 8
states Q ex1 ex2 ex3 in4 in5 in6 in7 in8 in9 ex10 ex11 ex11 ex12 ex13
out. weights σ µ σ 0 0 0 0 0 0 σ σ δ σ σ

Figure 4.5: Adapted from [UZB00]. Hypothetical alignment of a gDNA g = ACCGTCAAGTTCG
with an EST sequence c = AGCTTACG. The gDNA position j is in the range [1, 13] and the
EST sequence position i in the range [1, 8]. As one can see from the optimal state sequence Q,
positions 4 to 9 of the gDNA have been assigned intron status.

w(ex0, in0) = w(in0, in1) = log(w(in1)) = log(1 − w(ex1)). Here w(ex1) denotes the initial
exon state probability. Now each matrix entry can be computed by the following recurrence:

Ej
i = max

max

{
Ej−1
i + w(exj−1, exj), I

j−1
i + w(inj−1, exj)

}
+ w

([
gj
-
])

max
{
Ej−1
i−1 + w(exj−1, exj), I

j−1
i−1 + w(inj−1, exj)

}
+ w

([
gj
ci

])
max

{
Ej
i−1 + w(exj, exj), I

j
i−1 + w(inj, exj)

}
+ w

([-
ci

])

Iji = max
{
Ej−1
i + w(exj−1, inj), I

j−1
i + w(inj−1, inj)

}
for i > 0 and j > 0. Additionally, Ej

i = 0, for j = 0 or i = 0, Iji = 0 for i = 0, and Iji = −∞
for j = 0. The first column of the I matrix (case j = 0) is set to −∞, because cDNAs/ESTs
do not, theoretically speaking, contain introns. This is also the reason why a value in matrix I
only depends on two other values. Inspection of the data dependencies in the recurrence shows
that each matrix entry only depends on a constant number of entries in the previous row or
column. Hence the matrices can be computed column by column or row by row. Each entry
can be computed in constant time. Hence both matrices can be computed in O(mn) time, which
also gives the time bound for determining w(g, c). An optimal spliced alignment is recovered by
tracing back from the entry max(En

m, I
n
m) to an entry in its multi-way maximum that yielded it,

determining which entry gave rise to that entry, and so on back to the entry E0
0 . This requires

saving backtrace information for each matrix entry, and leads to an algorithm that takes O(mn)
space. The backtracing procedure can be organized in such a way that a spliced alignment of g
and c is computed in time proportional to its length.

Figure 4.5 shows a (hypothetical) optimal spliced alignment including output column weights.
The same alignment is shown in Figure 4.6 as a path in the superimposed matrices E and I .

4.4 Computing Optimal Spliced Alignments with Proteins

Similar to the spliced alignment problem for cDNA/EST sequences, the spliced alignment prob-
lem for protein sequences can be solved by a dynamic programming (DP) algorithm. In this case,

60

E,I

E,I

E,I

E,I

E,I

E,I

E,I

Intron

E,I E,I E,I E,I E,I E,I

E,I

E,I

C

A

A C C G T C A A G T T C G

T

T

C

A

(,) (,)(E,) (,I)

(,)

Exon Exon

(,)

E
S

T
 S

eq
u
en

ce

maximum

G

G

A G T T
 . . T T

 −
A

C
C

G
G

AC
 . .

T
 .C

CC
GA

A G
 .

Genomic Sequence

weight

Figure 4.6: An optimal spliced alignment of the sequences g = ACCGTCAAGTTCG and c =
AGCTTACG represented by a path in the superimposed matrices E and I . The insert in the lower
left part of the matrix shows dependencies of the E and I entries. The optimal path through the
matrix is depicted (starting at the position marked with “maximum weight”). Thereby, transitions
E → I and I → E are marked red and transitions representing indels or mismatches are marked
blue. The computed gene structure of the artificial genomic sequence is denoted above the matrix
and the resulting spliced alignment with an artificial EST is shown below.

61

it computes four (m + 1) × (n + 1)-matrices E, I0, I1 and I2 such that the following holds for
all i ∈ [0,m] and j ∈ [0, n]:

• Ej
i is the maximum weight of any spliced alignment of g1 . . . gj and p1 . . . pi such that the

state sequence ends with an exon state ex.

• (If)
j
i is the maximum weight of any spliced alignment of g1 . . . gj and p1 . . . pi such that

the state sequence ends with an intron state inf , for f ∈ {0, 1, 2}.

Obviously, w(g, p) = max(En
m, (I0)nm, (I1)nm, (I2)nm). Now each matrix entry can be computed

by the following recurrence:

Ej
i = max

Ej−3
i−1 + log(1− PD(j−2)) + w

([
gj−2gj−1gj

pi

])
,

Ej−2
i−1 + log(1− PD(j−1)) + w

([
gj−1gj-

pi

])
,

Ej−1
i−1 + log(1− PD(j)) + w

([
gj--
pi

])
,

Ej
i−1 + log(P∆gj) + w

([---
pi

])
,

Ej−3
i + log(1− PD(j−2)) + w

([
gj−2gj−1gj

-
])
,

Ej−2
i + log(1− PD(j−1)) + w

([
gj−1gj-
-

])
,

Ej−1
i + log(1− PD(j)) + w

([
gj--
-
])
,

(I0)j−3
i−1 + log(PA(j−3)) + w

([
gj−2gj−1gj

pi

])
,

(I1)j−2
i−1 + log(PA(j−2)) + w

([
gxgj−1gj

pi

])
,

(I2)j−1
i−1 + log(PA(j−1)) + w

([
gxgx+1gj

pi

])

(I0)ji = max

{
(I0)j−1

i + log(1− PA(j−1)), E
j−1
i + log(PD(j))

}
(I1)ji = max

{
(I1)j−1

i + log(1− PA(j−1)), E
j−2
i + log(PD(j))

}
(I2)ji = max

{
(I2)j−1

i + log(1− PA(j−1)), E
j−3
i + log(PD(j))

}
for i > 0 and j > 2. Additionally, Ej

i = (I0)ji = (I1)ji = (I2)ji = 0 for i = 0 and j ≥ 0, Ej
i = 0

for i > 0 and j ≤ 2 , and (I0)ji = (I1)ji = (I2)ji = −∞ for i > 0 and j ≤ 2. The probability of a
genomic insertion P∆gj is defined as follows:

P∆gj =

{
1− PD(j+1) if j < n
1− PD(j) otherwise

gx and gx+1 denote upstream nucleotides of split codons that are recored at the appropriate intron
opening transitions [UB00, p. 1078].

The first three columns of the I0, I1 and I2 matrices (case i > 0 and j ≤ 2) are set to−∞, because
proteins, theoretically speaking, do not contain introns. This is also the reason why a value in
the matrices I0, I1 and I2 only depends on two other values. Inspection of the data dependencies
in the recurrence shows that each matrix entry only depends on a constant number of entries in
the previous row or column. Hence the matrices can be computed column by column or row by

62

≈ ≈

cDNA/EST sequence
︸ ︷︷ ︸

Genomic
DNA @

@
@
@
@
@
@

@
@
@
@
@
@
@

�
�
�

�
�
�

�

�
�
�

�
�
�

�
cDNA/EST
DB

cut out
︸ ︷︷ ︸

Figure 4.7: A graphical explanation of the intron cutout idea.

row. Each entry can be computed in constant time. Hence all four matrices can be computed
in O(mn) time, which also gives the time bound for determining w(g, p). An optimal spliced
alignment is recovered by tracing back from the entry max(En

m, (I0)nm, (I1)nm, (I2)nm) to an entry
in its multi-way maximum that yielded it, determining which entry gave rise to that entry, and so
on back to the entry E0

0 . This requires saving backtrace information for each matrix entry, and
leads to an algorithm that takes O(mn) space. The backtracing procedure can be organized in
such a way that a spliced alignment of g and p is computed in time proportional to its length.

4.5 The Intron Cutout Technique

When predicting the gene structure for genomic sequences of vertebrates (for example, human
or mouse) or plants one is faced with the problem of long introns. Some known introns con-
sist of several 10,000 or even 100,000 bases (see for example, [Lew04, AJL+02]), and thus the
dynamic programming algorithm described in the previous section is too slow and requires too
much space. On the other hand, an intron does not contribute to the overall weight of a spliced
alignment. Therefore, we could skip most of the internal parts of introns in the dynamic program-
ming algorithm, if we knew the intron locations. While the exons of a potential gene structure
should be highly similar to the EST/protein sequences derived from this genomic locus, the in-
trons should be devoid of any but chance matches to the EST/protein sequences. Thus, the idea
is to apply a similarity filter: this first finds approximate matches between the gDNAs and the
ESTs/proteins. Several of these matches are combined into a chain if they are compatible with
each other, that is, if they could serve as parts of a spliced alignment. On the gDNA these chains
provide candidates for exons. All stretches of the gDNA not covered by a chain are considered
as potential introns. They are cut out before applying dynamic programming. See Figure 4.7
for a graphical explanation of this idea. In the backtracing phase of the dynamic programming
algorithm the previously cut out parts of the introns are inserted back. This produces a complete
spliced alignment and thus retains the properties of the DP algorithm, allowing to recognize the
exact exon/intron boundaries. Most important, the cutout technique considerably reduces the
effort for the dynamic programming algorithm. Note however, that the technique is heuristic: if

63

an exon does not contain a sufficiently long and well conserved match, it is cut out, which leads
to an incorrect gene structure prediction.

Although the cutout technique is conceptually simple, we are not aware of any software tools
fully employing it for predicting gene structures. In the following, we first describe how to
identify parts of the gDNA where to possibly apply the intron cutout technique. The idea is to
first efficiently compute matches between the gDNA and the ESTs/proteins, and then to chain
these. The chain gives regions which possibly contain exons, delineating an alignment. The
regions between these exons can be cut out.

4.5.1 Computing cDNA/EST Matches

We consider maximal approximate matches between the gDNA g and the EST sequence c. For-
mally, a maximal approximate match is a pair of substrings gj . . . gr and ci . . . ch which is left
maximal and right maximal. Left maximality means that j = 1 or i = 1 or gj−1 6= ci−1.
Right maximality means that r = n or h = m or gr+1 6= ch+1. We are only interested in
maximal approximate matches of some minimum length `min with some maximum number of
differences dmax. That is, we require that min(r − j + 1, h − i + 1) ≥ `min and d ≤ dmax,
where d is the edit distance of gj . . . gr and ci . . . ch. A standard approach to compute these
approximate maximal matches is the seed-and-extend approach. This relies on the fact that a
maximal approximate match contains at least one maximal exact match of length

⌊
`min

dmax+1

⌋
or

longer. This is called an exact seed. Each maximal approximate match can be derived from an
exact seed by extending this to both sides in sequence g and c. The extension is performed by a
dynamic programming algorithm that allows up to dmax errors. See [ZSWM00] for a description
of the technical details. This seed-and-extend approach is implemented in the program Vmatch
(http://vmatch.de/), and we utilize Vmatch for computing maximal approximate matches
between g and c.

The basic concept of Vmatch is to preprocess a set of database sequences (in our case the gDNA)
into an enhanced suffix array, which provides a very powerful index structure for string matching
[AKO04]. This index structure is stored on file and computed only once. Unlike traditional
hashing methods (which first generate exact matches of some fixed length k and then extend these
to maximal matches), Vmatch directly computes maximal exact matches. As a consequence, it
is considerably faster than tools utilizing hashing methods.

4.5.2 Chaining the cDNA/EST Matches

To derive a potential exon in the gDNA, usually several approximate matches have to appear
in collinear order. Therefore, the next step of our similarity filter is to chain the approximate
matches. To clarify this step, we introduce some new notions. Because a match always refers
to the sequences g and c, we denote it by the left and right boundaries. That is, the matching
substrings gj . . . gr and ci . . . ch are denoted by ([j..r], [i..h]). For any pair of matches f =

64

([j..r], [i..h]) and f ′ = ([j′..r′], [i′..h′]) we define a function gap(f, f ′) = max{0, j′− r− 1, i′−
h − 1} and a binary relation� as follows: f � f ′ if and only if j < j′, i < i′, r < r′, h < h′,
and gap(f, f ′) ≤ m. m is the (user defined) maximum gap width. If f � f ′, then we say that f
precedes f ′. Note that the definition of� allows for overlaps between matches both in g and c.
We want to account for these and define the overlap of f and f ′ by

ovl(f, f ′) := 2(max(0, r − j′ + 1) + max(0, h− i′ + 1))

For a given set M of matches, a chain is a sequence f1, f2, . . . , fq such that fa ∈M for a ∈ [1, q]
and fa � fa+1 for a ∈ [1, q − 1]. f1 is called start match and fq is called end match. To obtain
the score for a chain, we score matches: Each maximal approximate match f = ([j..r], [i..h]) is
assigned a positive score. This is defined on the basis of an optimal alignment of ci . . . ch and
gj . . . gr without any spliced out symbols and exon/intron states. In this alignment each matching
pair of nucleotides scores 2, each mismatch scores −1, and each insertion and deletion scores
−2. A simple calculation shows that score(f) = r − j + h − i + 2 − 3d, where d is the edit
distance of the match.

The score of a chain C is

score(C) :=

q∑
a=1

score(fa)−
q−1∑
a=1

ovl(fa, fa+1)

The chaining problem is to find a chain of maximum score, called optimal global chain. A direct
solution to this problem is to construct a weighted directed acyclic graph G = (V,E), the match
graph. The set V of vertices consists of all matches in M . The set E of edges is characterized as
follows: There is an edge f → f ′ with weight score(f ′) − ovl(f, f ′) if and only if f � f ′; see
Figure 4.8(b). An optimal chain of matches corresponds to a path of maximum score in the match
graph. Because the graph is acyclic, such a path can be computed as follows: Let scoremax (f ′)
be defined as the maximum score of all chains ending with f ′. scoremax (f ′) can be expressed
by the recurrence:

scoremax (f ′) = score(f ′) + max{scoremax (f)− ovl(f, f ′) | f � f ′} (4.1)

max{scoremax (f ′) | f ′ ∈M} gives the maximum score of any chain, and reconstructing a chain
of maximum score is an easy task. A dynamic programming algorithm based on recurrence (4.1)
takes O(|V | + |E|) time. Because (|V | + |E|) ∈ O(|M |2), computing an optimal global chain
takesO(|M |2) time. There is a method to compute global chains with overlaps inO(|M | log |M |)
time, see [SK03]. However, this method utilizes a different scoring scheme for matches and
overlaps.

We modified this approach to find all biologically meaningful chains, and not only the one with
maximum score. For each match f ∈ M we keep track of the start match of an optimal chain
ending with f . We divide all matches into equivalence classes according to their corresponding
start matches. That is, two matches belong to the same equivalence class, if and only if their
corresponding optimal chain share the same start match. For every equivalence class which

65

EST

gDNA

1 3 6 7

(a) (b)

EST

gDNA

3

1

2

2

1 3 5 6 7

4

4

5

6

7

Figure 4.8: Given a set of matches (upper left figure), an optimal global chain of collinear (pos-
sibly) overlapping matches (lower left figure) can be computed, for example, by computing an
optimal path in the graph in (b) (in which not all edges are shown). The overlapping part of
match 3 and match 6 is circled.

contains a chain covering a minimum user defined percentage of the EST (default is 50%), we
keep the chain with the highest coverage. Thus we avoid to report multiple chains which differ
only slightly. This modification allows to find chains matching at different loci in the genome
(resulting from paralogous genes).

4.5.3 Computing and Chaining Protein Matches

The computation of maximal approximate matches between a gDNA g and a protein sequence
p, which is necessary to compute optimal spliced alignments with protein sequences, works
similar to computing maximal approximate matches between a gDNA g and an EST sequence c
(described above in Section 4.5.1).

In this case, a six frame translation of g (three reading frames on the forward strand and three on
the reverse strand) is matched against an index of p and the Hamming distance (only mismatches
and no insertions or deletions are allowed) is used instead of the edit distance. This approach is
also implemented in Vmatch (http://vmatch.de) and we utilize Vmatch for computing the
maximal approximate matches between g and p.

The matches between the six frame translation of g and p are mapped back onto the original
genomic sequence g. Afterwards, the chaining for maximal approximate matches between g and
p is done in exactly the same way as the chaining for maximal approximate matches between g
and c (described above in Section 4.5.2).

66

4.5.4 Chain Enrichment

For each stored global chain for a given cDNA/EST (or protein) and gDNA pair, the regions
of the gDNA covered by the chain are considered in the dynamic programming step. Without
the intron cutout technique, the complete gDNA between the leftmost and the rightmost base
covered by the chain is considered in the DP step (after it has been extended to the right and
to the left by 300 bases). On the other hand, if the cutout technique is used, only the regions
of the gDNA covered by matches contained in the chain are considered during the dynamic
programming (after they have been extended, see Section 4.5.5 for details). That is, in the (rather
rare) case that a correct exon has been covered by a match which is not included in the chain, the
corresponding gDNA segment will be removed in the cutout step and a wrong spliced alignment
will result.

To prevent this, the chain enrichment was introduced. If the chain enrichment is enabled3, all
matches whose genomic region overlaps with the gDNA region covered by the optimal global
chain are added to the chain. Formally: We consider a set M of matches and an optimal global
chain C = f1, f2, . . . , fq such that fa ∈ M for a ∈ [1, q] and fa � fa+1 for a ∈ [1, q − 1]. The
� relation has been defined in Section 4.5.2 above. Given the start match f1 = ([j..r], [i..h]) and
end match fq = ([j′..r′], [i′..h′]) we define the genomic range of C by

gr(C) := [j..r′]

A match m = ([j..r], [i..h]) and a genomic range gr(C) = [x..y] overlap, if and only if j ≤ y
and r ≥ x. We define the enrichment set of M by

M ′ := {m ∈M | m and gr(C) overlap}

Then the enriched chain C ′ is a sequence of matches f ′1, f
′
2, . . . , f

′
q such that fa ∈ M ′ for a ∈

[1, q], q = |M ′| and for every pair of matches fa = ([j..r], [i..h]) and fa+1 = ([j′..r′], [i′..h′]) for
a ∈ [1, q − 1] one of the following two conditions holds:

• j < j′

• j = j′ and r ≤ r′

Figure 4.9 gives an example for the chain enrichment.

As is shown in Section 6.3.3 the chain enrichment clearly improves prediction results on datasets
containing long introns. Of course, using chain enrichment increases the total running time,
because the additional matches lead to less gDNA that is removed in the cutout step. But the
time measures also given in Section 6.3.3 show that this runtime increase is within reasonable
bounds.

3It will be switched on, if the option -enrichchains is passed to GenomeThreader.

67

1 3 6 7

EST

gDNA

2

1 3 5 6 7

4

(a)

(c)

(d)

(b)

(e)

Figure 4.9: Example chain enrichment for the matches given in Figure 4.8, shown in part (a).
Part (b) shows the matches comprising the optimal global chain (on both sequences) and part (c)
only the parts which lay on the gDNA. The additional matches shown in part (d) (depicted in red)
are the ones which overlap with the gDNA region covered by the optimal global chain. These
matches are added in the chain enrichment and the resulting covered gDNA region is shown in
(e).

68

4.5.5 The Cutout Step

For each stored global chains for a given EST/protein and gDNA pair, we consider the regions
of the gDNA covered by the matches of the chain. Each such region is extended to the right and
to the left by some user defined number of positions. This is to make sure that the splice sites
of adjacent introns are kept for the dynamic programming step. Extended regions that overlap
or are very close together are merged. Each region obtained in this way is a DP region, because
it defines a substring of the gDNA to which the dynamic programming algorithm of Section 4.3
(for ESTs) or Section 4.4 (for proteins) is applied. Technically, we create an artificial gDNA, the
spliced gDNA, by concatenating the gDNA substrings corresponding to DP regions, in the order
of the DP regions. For each border between concatenated substrings we keep a length value,
defined as the distance between the substrings in the original gDNA.

Given the spliced gDNA, the dynamic programming algorithm can be used in exactly the same
manner as without the intron cutout technique. The only part which needs to be modified is
the backtracking procedure. Whenever it crosses a border between different DP regions in the
spliced gDNA, an intron with the length of the border is included into the spliced alignment.

4.6 Jump Tables

In the dynamic programming, the complete DP matrix is computed. That means that the infor-
mation contained in the chained matches from the chaining and chain enrichment is not used,
although it is very likely that the optimal path would run through them.

The matches between a cDNA/EST/protein sequence and a gDNA can be divided into three
classes:

1. Straight matches between both sequences which do not overlap with other matches (on ei-
ther sequence). Straight matches have the same length on the cDNA/EST/protein sequence
as on the gDNA. That is, they contain only matches and mismatches.

2. Uneven matches between both sequences which do not overlap with other matches (on
either sequence). The length of unbalanced matches on the cDNA/EST/protein sequence
differs from their length on the gDNA. That is, they contain insertions and/or deletions.

3. Overlapping Matches: Matches which do overlap with other matches.

Figure 4.10 shows examples for the three match classes. This three match classes can be used to
reduce the DP computation by assuming the following:

1. The optimal path lies on balanced matches.

2. The optimal path goes through the rectangle outlined by unbalanced matches.

69

Genomic Sequence

cD
N

A
/E

S
T

/P
ro

te
in

 S
eq

u
en

ce

Figure 4.10: Examples for match classes. The single match in the upper left corner is a balanced
match. The single match in the middle is an unbalanced match. The two matches in the lower
right corner are overlapping matches and are part of the same cluster.

70

Genomic Sequence

cD
N

A
/E

S
T

/P
ro

te
in

 S
eq

u
en

ce

Figure 4.11: Example for Reducing the DP Computation with Match Classes. We assume that
the optimal path lies on the balanced match (in the upper left corner), on the two rectangles
outlined by the unbalanced match (in the middle), and on the cluster of overlapping matches (in
the lower right corner).

3. The optimal path goes through the rectangle outlined by clusters of overlapping matches.

Figure 4.11 shows an example for this. With this assumption we can reduce the parts of the
complete DP matrix that have to be computed by connecting the areas outlined by the matches
with overlapping rectangles. The rectangles between the match areas should overlap with them
to make sure that the borders are aligned correctly (an overlap of 5 base pairs was chosen in the
implementation). Figure 4.12 shows an example.

With the information which parts of the matrix have to be computed, there are basically two
approaches to do that. The first one is to compute each rectangle as a separate DP matrix (with
the appropriate transfer of values between consecutive overlapping matrices). The second one
is to allocate just one large DP matrix and compute just the parts of it which are covered by
rectangles (as shown in the example in Figure 4.12). The latter approach was chosen in Genome-

71

Genomic Sequence

cD
N

A
/E

S
T

/P
ro

te
in

 S
eq

u
en

ce

Figure 4.12: Example for reducing the complete DP computation. The complete DP computation
can be reduced by connecting the areas defined by the match classes (see Figure 4.11) with
overlapping rectangles (drawn with dashed lines). That is, only the outlined parts of the DP
matrix have to be computed.

72

Threader and implemented with a so-called jump table4 and a sparse DP matrix. See Section
4.8.4 for the implementation details concerning jump tables.

In conclusion, with the jump table array and the techniques described above basically the same
DP computation routine can be used to speed up the DP matrix calculation considerably, because
only the parts of the DP matrix covered by matches and the connecting rectangles have to be
computed. Of course, it is still necessary to allocate the memory for the complete matrix (in
contrast to the first approach mentioned above), but the implementation is much simpler and the
extra memory does not pose a problem in practice.

Since the intron cutout and the jump table technique are orthogonal, both techniques can be
applied simultaneously which leads to a combination of their speedups.

Section 6.1.5 gives an example how the intron cutout and the jump table technique influence the
run times and prediction accuracies on a real dataset.

4.7 Computing Consensus Spliced Alignments

Spliced alignments derived from ESTs often do not cover full genes, because ESTs are usually
not longer than 500 nucleotides, whereas genes can be much longer. To resolve the complete
gene structure, one has to join more than one compatible spliced alignment occurring in the
same region of the gDNA. The result of joining such spliced alignments may not lead to a single
gene structure. This is often due to events of alternative splicing, that is, exons or parts of exons
are combined in different ways. As a consequence, simple merging of spliced alignments is
not possible. Often one has to compute many different consensus spliced alignments. This is
typically implemented as a post-processing step after all spliced alignments have been delivered.
In this step, it is not important, if the spliced alignments are based on cDNA/EST sequence, or
protein sequences, or both! Fig. 4.13 shows an example of several spliced alignments occurring
in the same region of the gDNA.

To calculate consensus spliced alignments, we use the method of [HDM+03]. While the orig-
inal description is operational involving the computation of set sizes, we give a more compact
description of this method directly describing how certain sets are constructed.

Suppose we are given a gDNA g = g1 . . . gn, a set of EST sequences, and a set of spliced
alignments SA. Recall that a spliced alignment always begins and ends with an exon. Since
we consider more than one spliced alignment here, each spliced alignment in SA refers to some
substring gj . . . gr of the gDNA. Therefore, in this section, a spliced alignment is denoted by a
pair (j, r) of positions in g. Of course, for each spliced alignment (j, r) we store which positions
in the interval [j, r] are in an exon and which are in an intron.

Two spliced alignments (j, r), (j′, r′) ∈ SA overlap if j ≤ r′ and j′ ≤ r. Consider the overlap
graph (V,E) with the node set V = SA and the edge set E defined by (sa, sa′) ∈ E if and only
if sa and sa′ overlap. We assume that this overlap graph is connected, that is, there is at least

4This can be activated in the spliced alignment DP of GenomeThreader with the option -fastdp.

73

Figure 4.13: An example of consensus spliced alignments, adapted from [HDM+03]. The 9
spliced alignments shown in the upper part of the figure have been processed into two consensus
spliced alignments named Consensus 1 and Consensus 2. The rightmost column in the figure
shows which consensus the spliced alignments are part of. Spliced alignments 1, 3, 8 and 9 are
part of both consensi. The spliced alignments 2 and 4 give rise to consensus 1 while 5, 6 and
7 give rise to consensus 2. The circled shortened exon suggests that this gene is alternatively
spliced.

74

sa

sa′

sa′′

0 100

130

140100

100

120

120

12080 160 200

15040

4030 60

60

Figure 4.14: Adapted from [HDM+03]. Three spliced alignments. sa and sa′ are compatible, as
well as sa′ and sa′′. sa and sa′′ are not compatible since the second intron of sa′′ overlaps with
the last exon of sa. Thus the compatibility relation is not transitive.

one path from each node to each other node. Given an arbitrary set of spliced alignments, we
can easily divide this into disjoint subsets such that the overlap graph for the subset is connected.
Hence this assumption is not a restriction of generality.

Two spliced alignments (j, r), (j′, r′) ∈ SA are compatible, if they overlap and for all i ∈
[j, r]∩ [j′, r′], i is an exon position in (j, r) if and only if i is an exon position in (j′, r′). In other
words, spliced alignments are compatible, if the overlapping regions are consistent w.r.t. exon
and intron assignments. Note that compatibility is not transitive, see Figure 4.14 for an example.

The consensus spliced alignment problem of SA is to find a minimal collection {SA1, . . . , SAk}
of subsets of SA satisfying:

1. SA1 ∪ . . . ∪ SAk = SA

2. For each p ∈ [1, k] and each sa, sa′ ∈ SAp, sa and sa′ do not overlap or sa and sa′ are
compatible.

3. For each p ∈ [1, k], SAp is maximal w.r.t. to compatibility, i.e., for each sa′ ∈ SA \ SAp a
sa ∈ SAp exists, such that sa and sa′ are not compatible.

The last condition means that additional values in SAp would violate the compatibility. We say
that each SAp represents a consensus spliced alignment or a splice form. A spliced alignment
(j, r) contains a spliced alignment (j′, r′) if (j, r) and (j′, r′) are compatible and j ≤ j′ ≤ r′ ≤ r.
Note that each spliced alignment contains itself.

The spliced alignment problem is solved by iteratively constructing the consensus spliced align-
ments, with the largest one being constructed first. For each spliced alignment (j, r) we define
L(j, r) as a maximal subset of SA satisfying the following conditions:

• L(j, r) contains (j, r),

75

1 2 3 4 5
L {1, 3} {1, 2, 3, 4, 8} {3} {1, 3, 4} {1, 3, 5, 6, 7}
R {1, 3, 5, 6, 7, 8, 9} {2, 3, 4, 8, 9} {3, 5, 6, 7, 8, 9} {4, 8, 9} {5, 6, 7, 8, 9}

6 7 8 9
L {1, 3, 6, 7} {1, 3, 7} {1, 3, 5, 6, 7, 8} {1, 3, 5, 6, 7, 8, 9}
R {6, 7, 8, 9} {7, 8, 9} {8, 9} {9}

Table 4.2: The L-sets and the R-sets for the spliced alignments in Figure 4.13. The numbering
is consistent with the numbering of the spliced alignments in Figure 4.13.

• for each pair (j′, r′), (j′′, r′′) ∈ L(j, r), (j′, r′) and (j′′, r′′) do not overlap or are compati-
ble, and

• r′ ≤ r for each (j′, r′) ∈ L(j, r) \ {(j, r)}.

R(j, r) is defined in an analogous way, with the third condition replaced by

• r′ ≥ r for each (j′, r′) ∈ R(j, r) \ {(j, r)}.

Table 4.2 gives an example for L-sets and R-sets.

The algorithm constructs a sequence of sets U0, U1, U2, . . . , Uk such that Up 6= ∅ for p ∈ [0, k−1]
and Uk = ∅, and a solution SA1, SA2, . . . , SAk to the consensus spliced alignment problem as
follows:

• compute U0 = SA,

• for each i, 1 ≤ i ≤ k, compute

– SAi = L(sai) ∪R(sai) where sai ∈ Ui−1 satisfies

|L(sai) ∪R(sai)| ≥ |L(sa′) ∪R(sa′)|

for all sa′ ∈ Ui−1,

– Ui = Ui−1 \ SAi.

Since SAi 6= ∅ for all i ≥ 1, the algorithm clearly terminates. It remains to show how to compute
the L-sets and R-sets. To do so, we define

C(sa) = {sa′ ∈ SA | sa contains sa′}
left(j, r) = {(j′, r′) ∈ SA | j′ < j, r′ < r, (j′, r′) and (j, r) are compatible}

right(j, r) = {(j′, r′) ∈ SA | j′ > j, r′ > r, (j′, r′) and (j, r) are compatible}

76

Then L(sa) and R(sa) can be computed by the following recurrences:

L(sa) =

{
C(sa) if left(sa) = ∅
L(sa′) ∪ C(sa) if left(sa) 6= ∅

where sa′ ∈ left(sa) satisfies
|L(sa′) ∪ C(sa)| ≥ |L(sa′′) ∪ C(sa)| for all sa′′ ∈ left(sa)

R(sa) =

{
C(sa) if right(sa) = ∅
R(sa′) ∪ C(sa) if right(sa) 6= ∅

where sa′ ∈ right(sa) satisfies
|R(sa′) ∪ C(sa)| ≥ |R(sa′′) ∪ C(sa)| for all sa′′ ∈ right(sa)

These recurrences can easily be implemented in a dynamic programming scheme tabulating
|L(sa)| and |R(sa)| for each spliced alignment sa ∈ SA.

Consider the running time of this algorithm. For each pair of spliced alignments we can decide in
constant time if they overlap. By sorting the spliced alignments according to their start position
we can also decide inO(l) time if the corresponding overlap graph is connected, where l = |SA|.
For two spliced alignments sa, sa′ ∈ SA assume that the start position of sa is smaller or equal
to the start position of sa′. Then we check compatibility by starting at the first overlapping
exon and simultaneously scanning the exons from left to right. For each exon pair we decide
the consistency of exon/intron assignment in constant time. Pairs of two internal exons have to
be identical. Other pairs of exons only have to have identical left or identical right boundaries.
Hence compatibility can be determined in time proportional to the number of exons in each pair
of spliced alignments. Let η be the maximal number of exons in all spliced alignments. Then
we can compute an l × l table storing the compatibility relation using O(l2η) time. Given this
table, we can also decide in constant time, if one spliced alignment is contained in another. The
dominating step in the described algorithm is the computation of SA1. We have to compute
L(sa) and R(sa) for l spliced alignments. For each spliced alignment we have to iterate over all
O(l) elements in left(sa) and right(sa) and join it with C(sa). Joining also requires O(l) time.
Hence the total running time is O(l3 + l2η).

4.8 GenomeThreader Implementation

GenomeThreader is a command line tool with many different options. For a complete description
of these options and examples of its application, we refer to the manual in Appendix A. Genome-
Threader has a modular structure. Each module implements a certain phase of the data flow, as
depicted in Figure 4.15. The interfaces between the different modules are kept small. They
exchange information via a small number of different data types, which are described in this
section. Some of these data types are also used in other software tools, and are therefore more
general than required for GenomeThreader.

77

enhanced
suffix array
of gDNA

spliced alignment

compute consensus

output

(incremental updates)

intermediate output

spliced align.
incl. scores

spliced align.
incl. scores

collection

alignment

spliced

collection

alignment

spliced

collection

alignment

spliced

.

.

.

similarity

filter

matching

approximate

maximal
matches

intron cutout

optimal

global chain

spliced
gDNA

backtrace
table

backtrace with

intron insertion

alignment trimming

and evaluation

consensus
SAs

unprocessed

spliced align.

Gthconsensus

EST

(multiseq)

database

protein

database

(multiseq)

chaining

spliced alignment DP

(jump tables)

(chain enrichment)

Figure 4.15: Overview of the GenomeThreader-phases.

78

4.8.1 Fast Matching for Filtering of Exon Candidates

The fast matching for the filtering of exon candidates is implemented with Vmatch (http:
//vmatch.de) and this is the reason why the Vmatch code is necessary for GenomeThreader,
although it could, in principle, be replaced by other matchers like BLAST [AGM+90].

Multiple Sequences

A data type for handling sequences is central to every software for sequence analysis. Because
GenomeThreader handles many sequences at the same time, we use a data type multiseq for sets
of sequences. A set {S1, . . . , Sk} of k ≥ 1 sequences is stored in a consecutive memory area
of length k − 1 +

∑k
j=1 |Sj| with a separator symbol between each adjacent pair of sequences.

If necessary, we also store the reverse complement of every sequence Si in another consecutive
memory area of the same size and in the same order as the original sequences. Because the data
type multiseq handles sequences over alphabets of up to 254 symbols, we use one byte for each
sequence character. An additional array stores the positions of the separator symbols. This array
allows to map a position in the concatenated string to a position in sequence Si using O(log2 k)
time by a binary search. Besides the sequence content, the data type multiseq also stores the
description of each sequence in one large string. The description gives basic information about
the origin of the sequence and references to sequence databases. For preparing the final output,
an additional array allows to access each sequence description in constant time, given a sequence
number.

As a possible future development, this functionality could be implemented with the more efficient
GtEncseq data structure [SK12].

Enhanced Suffix Arrays

An enhanced suffix array consists of several tables, which encode a tree structure storing all
suffixes of a given sequence in linear space. Different algorithms require different tables from
the enhanced suffix array, and so the tables are stored in separate files and mapped in memory
on demand. Due to its simple structure, an enhanced suffix array is thus represented by a record
of pointers which refer to the corresponding table, if this is mapped. To minimize the risk of
accessing corrupted tables, we perform several simple consistency checks when mapping a table.
The enhanced suffix arrays are necessary to perform the fast matching in Vmatch.

The construction of enhanced suffix arrays mainly consists of sorting the suffixes in lexicographic
order to obtain the suffix array. In a first sorting phase, the counting sort algorithm [CLR90] is
used to lexicographically sort all suffixes by their prefix of length d, where d ≤ logσn, n is the
total length of all sequences, and σ = |Σ| is the alphabet size. This step requires O(n + σd) =
O(n) time and n bytes in addition to the array storing the start positions of the suffixes (the suffix
array). In the second step, we adapt the string sorting algorithm of [BS97] to independently sort

79

sets of suffixes with the same prefix of length d. This algorithm is a variant of the quicksort-
algorithm which, apart from the space for the suffix array, only requires space for a stack to store
intervals left to be sorted.

4.8.2 Chaining

We collect all approximate matches between the EST/protein and the genomic sequence in an
array. The matches are sorted according to their start position in the genomic sequence. Then for
two matches f and f ′, the relation f � f ′ implies that f occurs to the left of f ′ in the sorted array.
Hence we scan the array of matches from left to right, evaluate equation (4.1) for each match f ′,
and keep a reference to the match f which maximizes equation (4.1). We call f the previous
match. Furthermore, for each match we keep a reference to the start match of its chain and the
coverage of the chain up to this match. This allows us to easily divide all end matches (this are
the only one we have to consider) into equivalence classes. For each equivalence class which
contains a chain with sufficient coverage, we can retrieve the chain with the highest coverage by
following the reference to the previous match, until we reach the first match of a chain. Each
chain is represented as an array of references to the matches of a chain in the order they occur in
the chain.

4.8.3 Representation of BSSMs

A BSSM can be represented by cascading tables which require a text format that is not trivial to
parse. For this reason BSSMs are represented as Lua tables (see http://www.lua.org/)
which form a textual format that is easy to read and write by users and other programs.

In the implementation of GenomeThreader and related tools, the BSSMs are represented by
objects of the BSSM class. These objects are created from the textual BSSM files in a simple
fashion: The BSSM file is interpreted by a Lua interpreter. Thereby, the interpreter takes care of
all the parsing and error checking which simplifies the implementation. Afterwards, the BSSM
table is contained in the state of the interpreter from where it can be retrieved easily by the C
Code via Lua’s C API.

There are various BSSM related tools distributed alongside GenomeThreader, the most important
ones are GthBSSMtrain and GthBSSMbuild. GthBSSMtrain creates BSSM training data from an
annotation given in a GFF3 file (which can, for example, result from an annotation established
by GenomeThreader). GthBSSMbuild can then be used to build a BSSM file from the resulting
training data. Details of this process are described in the GenomeThreader manual given in
Appendix A (in Sections A.9 and A.10). The GFF3 format is described in detail in Section 5.2.

In summary, GthBSSMtrain and GthBSSMbuild make it very easy for the user to create custom
BSSMs which have been shown to improve prediction results (see, for example, Section 6.1.4).

80

4.8.4 Dynamic Programming

For a given spliced genomic sequence without cut out regions, we first calculate the BSSM
parameters PD(t) and PA(t), for t ∈ [1, n], see Section 4.2.

cDNA/EST Sequences

To solve the spliced alignment problem for cDNA/EST sequences (see Section 4.3) we use an
array of length m + 1 of pairs of floating point numbers for storing a column of matrix E and
matrix I . For each entry Ej

i and Iji , we have to store the cases of the corresponding recurrence
(see page 60) that gave rise to the maximum value. There are six different cases for Ej

i and
two different cases for Iji to store. Because we only have to store one case at a time, we need
dlog2(6)e+dlog2(2)e = 4 bits for each index pair (i, j) ∈ [0, n]× [0,m]. Hence a backtrace table
B of 4 · (m + 1) · (n + 1) bits suffices. Let B [j][i] denote the 4-bit block storing the backtrace
information for Ej

i an Iji . After computing the weights column by column and filling table B ,
a backtracing procedure recovers the spliced alignment encoded in B . The backtrace procedure
starts at B [m][n]. In each step it jumps to a value in the previous row and/or previous column,
until it reaches B [0][0]. Each step generates an exon or intron state and an output column, making
up the spliced alignment. In the following subsection, we describe how to efficiently represent
the spliced alignment.

Protein Sequences

To solve the spliced alignment problem for protein sequences (see Section 4.4) we use four
arrays of length m+ 1 of quadruples of floating point numbers for storing a column of matrix E,
matrix I0, matrix I1, and matrix I2. For each entry Ej

i , (I0)ji , (I1)ji , and (I2)ji , we have to store
the cases of the corresponding recurrence (see page 62) that gave rise to the maximum value.
There are 9 different cases for Ej

i and two different cases to store for (I0)ji , (I1)ji , and (I2)ji ,
respectively. Because we only have to store one case at a time, we need dlog2(9)e+ dlog2(2)e+
dlog2(2)e + dlog2(2)e = 7 bits for each index pair (i, j) ∈ [0, n] × [0,m]. Hence a backtrace
table B of 7 · (m + 1) · (n + 1) bits would suffice, but for practical reasons a backtrace table B
of 8 · (m+ 1) · (n+ 1) bits was chosen: We store the 7 bits in a byte to simplify the access to the
bits.

The backtracing procedure for protein spliced alignments works analogous to the backtracing
procedure for cDNA/EST spliced alignments described in the previous paragraph.

Jump Tables

The jump table is an array of length n (the length of the gDNA) which contains two values
per column: the last value “from” to be computed in this column and the first value “to” to be
computed in the next column. That is, it contains a jump pair from-to. It is used in combination

81

with a column-wise calculation of the DP matrix as follows. The first column calculation starts
at the upper left position of the matrix and computes all entries of this column until the from
position in the jump table is reached, the computation of this column is aborted and a jump to the
to position in the next column is performed where the same process starts again. To make sure
a computed matrix entry uses only correctly initialized values of the matrix, two checks have to
be performed: The computed matrix entry directly after a jump cannot depend on the cell above
it (that is, the corresponding recurrences are not used to compute this entry). Furthermore, a
matrix entry cannot depend on the entry to the left of it, if this entry is in a row below the from
jump table position of its column and therefore has not been computed (that is, the corresponding
recurrences are also not used to compute this entry). The entry to the upper left of a computed
matrix entry is always properly initialized.

Because in the jump table approach, the used DP entries always are a contiguous part of each row,
the DP matrix was implemented as a sparse matrix. That is, only the used parts of the matrix are
actually allocated, but the access to the matrix still works in the same way, which is possible with
pointer arithmetic. This leads to a solution which contains the best of both worlds: A memory
efficient matrix (no space wasted for unused matrix entries) and a simple DP implementation
(because the matrix access stays the same with and without jump tables).

4.8.5 Representation of Spliced Alignments

As a result of the spliced alignment phase, we obtain a collection of spliced alignments for
different EST sequences and the same gDNA (the representation of protein-gDNA-alignments
is described below). We efficiently represent a spliced alignment by references to the substrings
of the EST and the gDNA being aligned, and by a sequence of multi edit operations. An edit
operation represents an output column of a spliced alignment, ignoring the symbols. This is
possible, because we access the columns of a spliced alignment in sequential order, and thus the
symbols are implicitly represented by the two substring references. As there are five different
kinds of output columns, there are five edit operations: match, mismatch, insertion, deletion, and
intron. Large stretches of a spliced alignment consist of consecutive columns of the same kind of
output columns. Thus, with the exception of deletion columns, we aggregate each such sequence
of output columns of the same kind into a corresponding multi edit operation. Each multi edit
operation has an iteration flag, telling how many output columns it represents. Technically, a
multi edit operation is represented by a 16-bit integer. The first two bits store a flag identifying
the edit operation. The remaining 14 bits store the iteration flag. We use the same identification
flag for deletion and intron. A deletion always has iteration flag 0, while an intron has iteration
flag larger than 0. A sequence of l output columns of the same kind is thus represented by⌈

l
214

⌉
multi edit operations. As a result, a spliced alignment usually does not require more than

2 kilobytes. This allows to store hundred thousands of spliced alignments in main memory, as
often required when processing large data sets.

Alignments between a protein sequence and a gDNA are represented in a similar fashion. In ad-
dition to the five edit operations needed to represent EST-gDNA-alignments (match, mismatch,

82

insertion, deletion, intron) protein-gDNA-alignments need the following six edit operations: mis-
match with one gap, mismatch with two gaps, deletion with one gap, deletion with two gaps, in-
tron with one base left, and intron with two bases left. This leads to 11 edit operations in total for
protein-gDNA-alignments, which means that four bits are needed to represent the edit operations
in protein-gDNA-alignments. The remaining 12 bits can be used to store the iteration flag (multi
edit operations for protein-gDNA-alignments are also represented as a 16-bit integer).

Each spliced alignment is processed in several different ways, each requiring a sequential scan
over aligned sequences and the sequence of multi edit operations:

• The spliced alignment has to be shortened on both sides, to get rid of deletion columns
resulting from the symmetric extension of regions stemming from matches of a chain pro-
jected on the gDNA, see Section 4.5.5.

• From the shortened spliced alignment the exact exon/intron boundaries are determined.

• Additionally score values are computed: the shortened spliced alignment is assigned an
overall score, which is different from the optimal weight computed in the dynamic pro-
gramming algorithm. Each exon is assigned an exon score. For the donor site and the
acceptor site of each intron, probability values and scores are determined.

To simplify the implementation of these evaluation steps we have implemented the spliced align-
ment as an abstract data type with few generic functions to decode the edit operations in forward
or backward order, and apply appropriate functions to the encoded output column.

All spliced alignments exceeding some user defined minimum score are collected into a bal-
anced binary search tree, the spliced alignment collection. The spliced alignments are ordered
by their start position in the gDNA. Large collections of ESTs/proteins often contain the same
ESTs/proteins which lead to identical spliced alignments. When inserting a spliced alignment
into the search tree, such a situation is detected, and the identical spliced alignment is not stored
in the tree. Once all ESTs/proteins are processed, the spliced alignments are output or they are
processed into consensus spliced alignments.

4.8.6 Consensus Spliced Alignments

The spliced alignment in the spliced alignment collection are clustered according to their gDNA
location and gDNA strand. The resulting clusters represent connected overlap graphs (see Sec-
tion 4.7). Each cluster is assembled into a consensus spliced alignment with the method of
[HDM+03] (also described in Section 4.7). The resulting consensus spliced alignments are stored
in an object of the consensus spliced alignment collection class.

The sets used in the consensus spliced alignment computation are represented as bit tables of the
size x

w
, where x is the number of spliced alignments and w is the word size (see Section C.4 for

the bit table API).

83

4.8.7 Output of Spliced Alignments

GenomeThreader provides three output formats. The first format is text-based, intended to be
read by users. It shows spliced alignments as in Fig. 4.2, with additional information about
alignment scores, exon and intron boundaries, splice site scores, and probabilities, see http:
//genomethreader.org/ for an example.

Alternatively, output is in XML conforming to a specification implemented in the RELAX
NG schema language, available at http://genomethreader.org/GenomeThreader.
rng.txt. The benefit of an XML-based approach is that any program intercepting Genome-
Threader output can expect a standards-conforming, monomorphic data structure that can be val-
idated using a tool such as jing (http://www.thaiopensource.com/relaxng/jing.
html). Given a static, universally-accepted schema standard, such otherwise brittle tools should
never break, greatly diminishing code maintenance overhead.

Michael Sparks contributed an assortment of software to utilize the XML output, including a
Perl script to parse the data into a MySQL database of our design (GthDB, which is optimized
for warehousing and querying high volumes of spliced alignment information in a multitude of
ways), and a Python program for converting results to the GFF format used by GMOD’s Generic
Genome Browser (http://www.gmod.org/) [SMS+02]. These are distributed both with
the GenomeThreader package and independently at the GenomeThreader web site.

The third output format is GFF3 (described in detail in Section 5.2), a line-based format which
is commonly used in Bioinformatics. This compact format allows for an easy preprocess-
ing of the gene structures predicted by GenomeThreader with other tools, for example with
GenomeTools (described in Chapter 5), and the easy rendering of the results, for example with
GMOD’s Generic Genome Browser (http://www.gmod.org/) [SMS+02] or Annotation-
Sketch [SGS+09] (see Section 5.7 for details).

Technically, the different output formats are implemented with the visitor pattern (see [GHJV94]
for an introduction to object-oriented design patterns): A spliced alignment visitor can traverse
the spliced alignment collection and accept every spliced alignment in it (and showing the cor-
responding output in the process). Similarly, a consensus spliced alignment visitor can traverse
a consensus spliced alignment collection. This leads to a clear separation of the representation
of (consensus) spliced alignments and the different output routines. It also makes it very easy
to implement additional output formats. For that purpose, it is only necessary to implement
a spliced alignment visitor and a consensus spliced alignment visitor which shows the desired
output format.

4.8.8 Incremental Updates

We have also defined an intermediate XML output schema for the spliced alignment data struc-
ture that allows GenomeThreader to dump alignments held in main memory into a string rep-
resentation. This output can be validated against the provided schema specification, facilitating
safe incremental updates of spliced alignment results.

84

The intermediate XML format differs from the “normal” XML format mentioned above in the
way, that it only represents spliced alignments (and no consensus spliced alignments) and does
so in a very detailed fashion. It is optimized for the purpose of incremental updates, for postpro-
cessing purposes the normal XML output should be used.

There is an extra program Gthconsensus which reads the intermediate XML-format and runs the
consensus spliced alignment algorithm, as described in Section 4.7. Because the phase gener-
ating consensus spliced alignments requires much less resources than the phase calculating the
spliced alignments, one can incrementally compute the spliced alignments for a growing col-
lection of ESTs/proteins, store these on file, and quickly recompute the consensus for the entire
set of spliced alignments. This is of great practical importance because in practice, genome
sequences are often already stable while additional EST and full-length cDNA collections are
being generated. Thus, the GenomeThreader design allows quick cycles of incorporation of new
data.

If the spliced alignments have been stored in GFF3 format, the role of Gthconsensus can be
filled by the csa tool from GenomeTools (documented in Section B.4) which has the same
functionality.

4.8.9 Software Development Tools

GenomeThreader is implemented in ANSI C using an object oriented style. The source code is
single threaded and it is written in such a way that it can be compiled without any changes on
32-bit and 64-bit platforms.

We used the GNU C compiler with high levels of optimization. We use gdb for debugging and
valgrind (http://valgrind.org/) to track memory errors and leaks. The code is portable
for different UNIX platforms. In fact, we have compiled and tested it on 8 different UNIX
platforms.

4.8.10 Test Strategy

Systematic and automatic testing plays an important role in the entire software development pro-
cess for GenomeThreader. Test data is abundant, as there are many genomes for which to predict
gene structures, and many ESTs/proteins which can help with this. However, the number of
data sets which would allow to evaluate sensitivity and specificity values against a gold standard
is still small. Moreover, the results computed by other gene prediction methods are often not
reproducible.

To check for the consistency of the data structures, we systematically implemented assertions
in the program code. The assertions help to catch unexpected cases in the code very early in
the development phase. Although the assertions slightly slow down the program, we leave them
in production versions of GenomeThreader. Besides the code level testing, we employ output
level testing, supported by autotest, a GNU-tool. In particular, we compare the results produced

85

by GenomeThreader to older versions of it, or to the output of GeneSeqer [UZB00], a program
implementing the same spliced alignment algorithm, but with a different similarity filter and
without intron cutout technique.

4.8.11 Practical Applications

GenomeThreader has been used in the following practical applications:

1. GenomeThreader was extensively used for the annotation of Solanum lycopersicum (tomato):
“I just wanted to let you know that I successfully used GenomeThreader for (spliced) map-
ping of 6.7M 454 RNA-seq reads to tomato genome and results are integrated into the
tomato annotation pipeline.” [Fil10]. Also cited in [FTD+12], [BAG+10], and [CDT+08].

2. The Ectocarpus siliculosus (a filamentous brown alga) genome was annotated with the
help of GenomeThreader [GBGS+11].

3. GenomeThreader was used in the annotation of the Arabidopsis lyrata genome [HPB+11].

4. GenomeThreader was used to predict the genomic structure and localization of the candi-
date genes of the bovine genome sequence [PFJ+11].

5. In the project which analyzed the filamentous seaweed Ectocarpus siliculosus (Dillwyn)
Lyngbye, a model organism for brown algae, GenomeThreader was used to compute
spliced alignments with the Ectocarpus cDNA sequences [Coc10].

6. In [LSH+10] GenomeThreader was used in a Soybean genome annotation pipeline for
gene prediction with mRNA evidence.

7. GenomeThreader is used to compute spliced alignments in EuGène-maize, a web site for
maize gene prediction [MJ10].

8. GenomeThreader was used to annotate Physcomitrella patens [RTL+10, SZB+10, MLH+09].

9. GenomeThreader was used in a study of of the APOSPORY locus in Hypericum perfora-
tum [SAJ+10].

10. GenomeThreader was used in the creation of the SolEST database for spliced alignment
[DTFC09]. SolEST is a database for the study of Solanaceae transcriptomes.

11. In a study on small RNAs in Medicago truncatula ESTs were aligned with the help of
GenomeThreader [LBNS+09].

12. Proteins spliced alignments computed by GenomeThreader were used for MaizeGDB
[SAS+09].

86

13. Alignments of assembled barley sequences against protein and EST databases were per-
formed using GenomeThreader in [STG+09].

14. GenomeThreader was used to predict genes in a study on perennial flowering in Arabis
alpina [WFV+09].

15. GenomeThreader was used to align available ESTs against the genome of the metazoan
plant-parasitic nematode Meloidogyne incognita [AGA+08].

16. GenomeThreader was used in a comparative genomics study in rice [CBM08].

17. The genomics database PlantGDB uses GenomeThreader to spliced-align predicted polypep-
tides to genomic sequences [DFM+08].

18. GenomeThreader was used in a genome survey of the fungus Moniliophthora perniciosa
to make protein-DNA spliced alignments between the BLAST first hit against and the
genomic sequence, serving as a guide to delimit the start and stop codons and exon-intron
boundaries of the regions of the contigs containing similarity with GenBank [MCC+08].

19. The MetWAMer system [SB08] can be used to refine gene structure predictions generated
by the GenomeThreader.

20. Putative exons and open reading frames (ORFs) were predicted by alignment of ESTs and
protein sequences using GenomeThreader [BJV+07].

21. GenomeThreader is used to compute spliced alignments in the Tracembler software [DWB07].

22. At the Munich Information Center for Protein Sequences (MIPS) GenomeThreader was
used for for the annotation of plant genomes, for example Zea mays (maize) [BBG+06].

150 scientists from research institutions in 24 different countries acquired a GenomeThreader
license which is available at http://genomethreader.org/.

87

Chapter 5

GenomeTools Genome Analysis Software

This chapter describes the GenomeTools open source genome analysis software. The Genome-
Tools project was started by the author of this thesis in 2006 to solve some problems encountered
with GenomeThreader at the time (which has become rather monolithic at this point) and other
open source bioinformatics projects (which were often hard to use, slow, and had many depen-
dencies which made them hard to set up).

The goal of the project was to create a collection of command-line tools which would allow to
analyze genomes and their annotations in a flexible manner. That is, the tools should be fast
enough to allow interactive usage and allow to set up genome analysis pipelines easily (with
UNIX pipelines).

Another goal of the project was to produce reusable software classes and modules which would
simplify the development of additional software in the realm of genome informatics.

The GenomeTools software package consists of a software library named libgenometools
and a collection of programs (the tools) based on the library which are combined into a single
binary named gt. A single binary has the advantages that it needs less space on the machine
(especially if it is statically linked) and is easier to update. It has the disadvantage that command-
line completion is harder to set up.

GenomeTools is written in ANSI C in an object-oriented fashion with a focus on correctness,
portability, efficiency and minimalism. Minimalism in this context means, that we strive for
simple solutions which tend to have better usability and are easier to maintain in the long run.

To achieve correctness, many classes and modules of libgenometools have built-in unit tests
and the tools contained in gt are tested automatically with an extensive test suite. To achieve
high portability, C was chosen as programming language and very few external dependencies
(libraries) were used in the project. GenomeTools was coded in standard-conformant ANSI C
following the C90 standard with a few extensions from the C99 standard.

It is possible to compile most parts of GenomeTools on every POSIX compliant UNIX system

88

with just an ANSI C compiler and the GNU Make build system installed1. It is also possible
to run gt on Windows with the help of Cygwin [Cyg]. To achieve an efficient implementation,
C was used as a programming language and care was taken in the coding to get efficient code.
Runtime and memory profiling helped to determine the bottlenecks of certain parts of the system
an improve them. The Sections 5.5.5 and 5.5.6 show an example which illustrates that these
efforts payed off. Minimalism was kept in mind during the development of the GenomeTools
system to obtain a system which remains maintainable. This of course sometimes means to trade
performance of the software for a simpler solution in order to get a maintainable system.

libgenometools is written in C, but with script bindings it is possible to use the library from
languages like Lua, Python, Ruby, and Java.

The GenomeTools project was started by the author of thesis and saw many contributions by
other developers during its development. Please refer to Appendix E for details. This chapter
focuses on the parts of GenomeTools which the author of this thesis developed alone or in which
he played a major role.

One of the reasons leading to the development of GenomeTools in 2006 where problems with
GenomeThreader’s – at that time – rather monolithic design. Evaluating different parameter set-
tings required rerunning large parts of the GenomeThreader pipeline which took too long to be
usable in an interactive setting. This hindered a proper evaluation of GenomeThreader. There-
fore, the idea was to break the monolithic GenomeThreader pipeline up into separate communi-
cating tools based around a common annotation format. This allows for more flexible workflows,
because it is much easier to introduce new steps into the annotation pipeline and to rerun parts of
the pipeline with different parameter settings.

The Generic Feature Format Version 3 (GFF3) which is described in the Section 5.2 was chosen
as an annotation format for the purpose of exchanging data between different parts of the pipeline,
because it is generic enough to represent all kind of genome annotations (including the gene
structure predictions produced by GenomeThreader) and at the same time compact enough to
use it for large datasets in an interactive setting.

Instead of using the actual annotation files (as we do in GenomeTools) other toolkits (like Bio-
Perl [SBB+02]) represent the contents of annotation files as relational databases (for example,
Chado [MEC07]). This has the advantage, that the annotations are stored in a single location and
consistency is easier to enforce. On the other hand, this approach is much harder to set up (the
user has to install and populate the corresponding database first), which makes it inconvenient
for small jobs. Furthermore, having a database means having a possible bottleneck, because the
operations of retrieving and storing large annotation sets if often quite costly. For this reason, we
chose to stay with simple annotation files (where large jobs are easier to parallelize).

This approach worked out nicely, as can be seen in Chapter 6 which describes the evaluation
of GenomeThreader and the corresponding Appendix H which gives all the details on how the
different tools comprising the GenomeThreader pipeline can be combined (and used to try out

1Some parts of GenomeTools have external dependencies. For example AnnotationSketch requires the Cairo 2D
library [WP03], but GenomeTools can also be compiled without AnnotationSketch.

89

1

2 3 4

1

2 3 4

(a) (b)

Figure 5.1: Example of an directed and undirected graph. Part (a) shows a directed graph
G = (V,E), where V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (1, 4)}. Part (b) shows an
undirected graph G′ = (V ′, E ′) (which is the undirected version of G), where V ′ = V and
E ′ = {{1, 2}, {1, 3}, {1, 4}}. G is also a DAG and a tree.

different parameter settings very easily). Most code which comprises GenomeThreader (except
for the Vmatch code) is now open source and part of libgenometools. GenomeTools has
been published under the ISC license which is documented in Appendix F.

5.1 Basic Notions

A directed graph G is a pair (V,E), where V is a finite set and E is a binary relation on V . The
set V contains the vertices of the graph and the set E the edges. Edges from a vertex to itself
are called self-loops. In an undirected graph G = (V,E), the edge set E consists of unordered
pairs of vertices, rather than ordered pairs. That is, an edge is a set {u, v}, where u, v ∈ V and
u 6= v. In an undirected graph, self-loops are forbidden, and so every edge consists of exactly
two distinct entries.

A path of length k from a vertex u to a vertex u′ in a graphG = (V,E) is a sequence 〈v0, v1, v2, . . . , vk〉
of vertices such that u = v0, u′ = vk, and (vi−1, vi) ∈ E for i = 1, 2, . . . , k. The length of the
path is the number of edges in the path. The path contains the vertices v0, v1, . . . , vk and the
edges (v0, v1), (v1, v2), . . . , (vk−1, vk).

A path 〈v0, v1, . . . , vk〉 forms a cycle if v0 = vk and the path contains at least one edge. A
self-loop is a cycle of length 1. A graph with no cycles is acyclic. A directed acyclic graph is
abbreviated as DAG. A tree is a DAG where no vertex has an in-degree larger than 1.

An undirected graph is connected if every pair of vertices is connected by a path. Given a
directed graph G = (V,E), the undirected version of G is the undirected graph G′ = (V,E ′),
where {u, v} ∈ E ′ if and only if u 6= v and (u, v) ∈ E. A directed graph G is weakly connected
if the undirected version of G is connected.

A topologically sorted depth-first search [CLR90, pp. 485-487] is necessary to show GFF3
DAGs (see the following Section) in a linear order without forward references.

90

5.2 The Generic Feature Format Version 3 (GFF3)

The Generic Feature Format Version 3 (GFF3) is a file format commonly used in bioinformatics
to describe genomic features in a generic way [Ste11]. That is, it allows to describe features
on a genomic sequence and relations between them. GFF3 was defined as an attempt to unify
diverging earlier definitions like GFF2 [GFF] and GTF [GTF] in a backward compatible manner.
GFF3 is a line based format and a GFF3 file has to start with the following line:

##gff-version 3

which denotes that this files is a GFF file confirming to version 3 of the specification. GFF3
defines four different kinds of lines: meta, comment, feature and termination lines.

5.2.1 Meta Lines

A meta line starts with “##” and defines important meta information about the annotation given
in the file. For example, the common sequence-region meta directive looks like this:

##sequence-region seqid start end

It defines that the genomic sequence (segment) seqid is annotated by this GFF3 file (from position
start up to position end). The sequence-region lines are not mandatory but strongly encouraged,
because they allow GFF3 parsers to perform feature bound checking. A GFF3 file can contain
multiple sequence-region lines. Here is an example for a single sequence-region meta line:

##sequence-region ctg123 1 1497228

This states that in this file the genomic sequence segment named “ctg123” is annotated from
position 1 up to position 1497228. In GFF3 genomic sequences start with position 1.
Another meta directive is the FASTA directive which looks like this:

##FASTA

It denotes that the annotation part of the GFF3 file is completed and a list of sequence entries
in FASTA format follows. This allows to bundle annotations and sequences together in a single
file. Example that shows the last part of a GFF3 file:

##FASTA
>ctg123
cttctgggcgtacccgattctcggagaacttgccgcaccattccgccttg
tgttcattgctgcctgcatgttcattgtctacctcggctacgtgtggcta
tctttcctcggtgccctcgtgcacggagtcgagaaaccaaagaacaaaaa
aagaaattaaaatatttattttgctgtggtttttgatgtgtgttttttat
aatgatttttgatgtgaccaattgtacttttcctttaaatgaaatgtaat
cttaaatgtatttccgacgaattcgaggcctgaaaagtgtgacgccattc
gtatttgatttgggtttactatcgaataatgagaattttcaggcttaggc
ttaggcttaggcttaggcttaggcttaggcttaggcttaggcttaggctt

91

aggcttaggcttaggcttaggcttaggcttaggcttaggcttaggcttag
aatctagctagctatccgaaattcgaggcctgaaaagtgtgacgccattc
>cnda0123
ttcaagtgctcagtcaatgtgattcacagtatgtcaccaaatattttggc
agctttctcaagggatcaaaattatggatcattatggaatacctcggtgg
aggctcagcgctcgatttaactaaaagtggaaagctggacgaaagtcata
tcgctgtgattcttcgcgaaattttgaaaggtctcgagtatctgcatagt
gaaagaaaaatccacagagatattaaaggagccaacgttttgttggaccg
tcaaacagcggctgtaaaaatttgtgattatggttaaagg

5.2.2 Comment Lines
Comment lines start with a single # and are usually ignored by GFF3 parsers. Example:

example comment

5.2.3 Feature Lines

The actual annotations in GFF3 files are defined by feature lines. They do not start with a “#”
character and contain exactly 9 tabulator separated columns. Undefined columns are replaced
with the “.” character. The columns have the following meanings:

1. seqid: The sequence ID of the defined feature. Usually corresponds to the sequence ID
defined by a sequence-region meta line earlier in the GFF3 file.

2. source: The source of the feature. This is usually the name of a software program (for
example, GenomeThreader) or a database (for example, GenBank).

3. type: The type of the feature, which has to be from one of the following three sources:

(a) A term from the Sequence Ontology Feature Annotation (SOFA). SOFA is a con-
densed version of the Sequence Ontology (SO) that is especially well suited for
labeling the outputs of automated or semi-automated sequence annotation pipelines
[ELM+05].

(b) A term from the (full) SO.

(c) A SOFA or SO accession number written in the following way: SO:000000.

4. start: The start of the feature (relative to the sequence ID defined in the first column).

5. end: The end of the feature (relative to the sequence ID defined in the first column). end
has to be greater or equal than start.

6. score: The score of the feature (a floating point number). The exact semantics is not
defined, but it is recommended to use E-Values for sequence similarity values and P-values
for ab initio gene prediction features.

92

7. strand: The strand character of the feature (on the sequence ID defined in the first column).
“+” denotes features on the forward strand, “-” denotes features on the reverse strand, “.”
denotes features without a defined strand, and “?” denotes features where the strand is
relevant but unknown.

8. phase: The phase of features with the type “CDS” (for all other feature types, this column
has to be set to “.”). The phase can be one of the integers “0”, “1”, or “2” and it denotes the
number of bases which have to be removed from the start of the currently defined feature
to get the next codon start. A correct phase entry is mandatory for CDS features.

9. attributes: The attribute column defines the list of feature attributes in the form tag=value
which are separated by semicolons.

Some attribute tags have predefined meanings, for example:

• ID: The ID indicates the name of the feature and must be unique within the scope
of the GFF3 file. IDs can be auto-generated. The main purpose of ID attributes is to
define an anchor used in part-of relationships defined by the Parent attribute described
below.

• Name: The name of the features which is shown to the user. In contrast to IDs the
names do not have to be unique.

• Parent: Denotes the parent of the feature with the ID of an earlier feature as attribute
value. Thereby a part-of relationship between the feature and its parent is estab-
lished. That is, the feature with the parent attribute is part-of the referred feature
(with the corresponding ID). A feature can have multiple parents. Because the par-
ent attributes denote a strict part-of relationship, features linked together by parent
and ID attributes form a directed acyclic graph (DAG): The features are the nodes
in the graph, the parent and ID attributes define directed links, and the strict part-of
requirement prevents cycles.

• Note: A note defined in free text.

Multiple attributes of the same type are separated by commas (“,”). For example:

Parent=mRNA1,mRNA2,mRNA3

Attribute names are case sensitive. Attributes that start with an uppercase letter are reserved
for GFF3 (that is, they have a predefined meaning already or might have it in the future).
Attributes that start with an lowercase letter can be freely used by users and applications
(that is, the meaning can be defined by and is depended on the corresponding application).

5.2.4 Termination Lines
A termination line consists solely of three “#” characters in a row:

###

93

It denotes that all features introduced up to this point are completely defined. That is, a features
with a given ID defined before a termination line cannot be referenced by a feature after the
termination line (via a “Parent” attribute). This allows to process a GFF3 file in sections, because
if a termination line is encountered all features before it are complete and can be processed by
the software that parses the GFF3 file. The use of termination lines is recommended in order to
allow processing the file section by section.

5.2.5 Example GFF3 File

The middle part of Figure 5.2 shows an example of a GFF3 file which annotates the sequence
“ctg123” with a gene named “EDEN” comprised of three alternative splice forms. A graphical
representation is shown in the upper part of Figure 5.2. Since some exons have multiple parents,
the features described in the GFF3 feature lines of the file form a DAG . The same annotation
can also be described as a tree (that is, no feature has multiple parents), as shown in the lower
part of Figure 5.2.

5.3 GenomeTools Overview

Due to the flexibility of GFF3 it is well suited to represent genome annotations of all kinds
including gene structure predictions. But in order to store and manipulate such annotations in
a software program, they have to be represented in an abstract way independent of the GFF3
notation. We chose to represent a GFF3 file as a collection of genome nodes as described in
Section 5.4 below.

Since genome annotations and their corresponding GFF3 files can become rather large (on the
order of Gigabytes) it is advisable to allow processing section by section for performance reasons.
Annotations are usually created and modified locally (only in a small portion of the annotated
genomic sequence at the same time) and therefore it is possible to treat a genome annotation as
a stream of genome nodes, a so-called node stream which can be processed with so-called node
visitors. Node streams and visitors are described in Section 5.5 below.

Treating genome annotations as streams also allows to easily combine multiple tools by chaining
them, analogous to UNIX pipelines.

Hence the name GenomeTools, a collection of tools which create or modify genome annota-
tions. Due to the well-known advantages of object-oriented programming (OOP) all parts of
the GenomeTools system have been implemented in an object-oriented fashion. It is assumed
that the reader is familiar with the object-oriented terminology and common design patterns. If
necessary, please refer to [GHJV94] for more details on OOP and design patterns.

94

##gff-version 3
##sequence-region ctg123 1 1497228
ctg123 . gene 1000 9000 . + . ID=gene1;Name=EDEN
ctg123 . TF_binding_site 1000 1012 . + . Parent=gene1
ctg123 . mRNA 1050 9000 . + . ID=mRNA1;Parent=gene1
ctg123 . mRNA 1050 9000 . + . ID=mRNA2;Parent=gene1
ctg123 . exon 1050 1500 . + . Parent=mRNA1,mRNA2
ctg123 . mRNA 1300 9000 . + . ID=mRNA3;Parent=gene1
ctg123 . exon 1300 1500 . + . Parent=mRNA3
ctg123 . exon 3000 3902 . + . Parent=mRNA1,mRNA3
ctg123 . exon 5000 5500 . + . Parent=mRNA1,mRNA2,mRNA3
ctg123 . exon 7000 9000 . + . Parent=mRNA1,mRNA2,mRNA3
###

##gff-version 3
##sequence-region ctg123 1 1497228
ctg123 . gene 1000 9000 . + . ID=gene1;Name=EDEN
ctg123 . TF_binding_site 1000 1012 . + . Parent=gene1
ctg123 . mRNA 1050 9000 . + . ID=mRNA1;Parent=gene1
ctg123 . exon 1050 1500 . + . Parent=mRNA1
ctg123 . exon 3000 3902 . + . Parent=mRNA1
ctg123 . exon 5000 5500 . + . Parent=mRNA1
ctg123 . exon 7000 9000 . + . Parent=mRNA1
ctg123 . mRNA 1050 9000 . + . ID=mRNA2;Parent=gene1
ctg123 . exon 1050 1500 . + . Parent=mRNA2
ctg123 . exon 5000 5500 . + . Parent=mRNA2
ctg123 . exon 7000 9000 . + . Parent=mRNA2
ctg123 . mRNA 1300 9000 . + . ID=mRNA3;Parent=gene1
ctg123 . exon 1300 1500 . + . Parent=mRNA3
ctg123 . exon 3000 3902 . + . Parent=mRNA3
ctg123 . exon 5000 5500 . + . Parent=mRNA3
ctg123 . exon 7000 9000 . + . Parent=mRNA3
###

Figure 5.2: Drawing of example GFF3 file. The drawing was done with AnnotationSketch (de-
scribed in Section 5.7), namely with the sketch tool (documented in Section B.19). The two
shown GFF3 files describe the same gene structure, with the first beeing more compact.

95

GtGenomeNode

GtRegionNode GtCommentNode GtFeatureNode GtSequenceNode

Figure 5.3: Implementations of the genome node interface (the arcs denote the implementors of
the abstract genome node interface).

5.4 Representing GFF3 Files with Genome Nodes

The different kinds of GFF3 lines have been represented as different implementations of a com-
mon interface, the genome node interface. This allowed to design node streams in a way that
they handle only one kind of object (namely, genome nodes). The following four implementa-
tions exist (an overview is given in Figure 5.3):

1. region node: a region node represents a sequence-region meta line and contains the se-
quence ID and the corresponding range (genomic start and stop position).

2. comment node: a comment node represents a comment line and contains the actual com-
ment.

3. sequence node: a sequence node represents a singular embedded FASTA sequence (that is,
each sequence after the FASTA meta directive described above is represented as a separate
sequence node).

4. feature node: a feature node represents a GFF3 feature line and contains all information of
such a line (sequence ID, source, type, genomic range, score, strand, phase and attributes).
The parent attribute is handled in a unique fashion: It is used to link different feature nodes
together into connected DAGs. For each feature DAG a “representative” is determined
which can be used to pass the DAG around. Usually, this is the unique top-level feature.
A top-level feature is a feature that is not the child of another feature (it has no parent
attribute) but has one or multiple children (its ID attribute is listed as a parent attribute
value of at least one other feature). In the example shown in Figure 5.2 the feature line
describing the feature with type “gene” is the unique top-level feature and all other feature
lines are part of its connected DAG (see Figure 5.4).

96

exon

1050−1500

gene

1000−9000

TF_binding_site

1000−1012 1050−9000 1050−9000

exon

1300−1500

exon

3000−3902

exon

5000−5500

exon

mRNA

1300−9000

mRNA mRNA

7000−9000

Figure 5.4: Feature node DAG for the GFF3 file given in Figure 5.2.

A special kind of feature is the multi-feature, a feature spanning multiple feature lines. It
is denoted by the same ID attribute. For each part of a multi-feature a separate node in the
feature DAG is introduced (with a special multi-feature flag set). Furthermore, one of the
nodes comprising the multi-feature is distinguished as a representative. Figure 5.5 shows
an example GFF3 file containing one multi-feature comprised of three feature lines.

In the rare case that a connected DAG has no unique top-level feature, an artificial pseudo-
feature is introduced which has all top-level features of the connected DAG as children
(and thus becomes the unique top-level feature). This technique allows to have a unique
representative for each connected DAG which can be used to easily pass connected DAGs
through the streaming machinery (described below in Section 5.5). There are two cases in
which a pseudo-feature has to be introduced.

First, if a multi-feature has no parent. Then all features which comprise the multi-feature
become the children of a pseudo-feature.

Second, if two or more top-level features have the same children (and are thereby con-
nected). Then all these top-level features become the children of a pseudo-feature.

The upper part of Figure 5.5 shows the internal representation of a multi-feature comprised
of three feature line (as shown in the lower part of the Figure 5.5) with a top-level pseudo-
feature.

Termination lines do not have to be represented, their only purpose is to hint the GFF3 parser
that all feature nodes up to this point are completed. When genome nodes are output as GFF3
(after the processing of them in a tool is done), termination lines can be introduced after each

97

1050−1500

cDNA_match

7000−9000

pseudo−

feature

cDNA_match

5000−5500

cDNA_match

##gff-version 3
##sequence-region ctg123 1 1497228
ctg123 . cDNA_match 1050 1500 5.8e-42 + . ID=cDNA_match1;Target=cdna0123 12 462
ctg123 . cDNA_match 5000 5500 8.1e-43 + . ID=cDNA_match1;Target=cdna0123 463 963
ctg123 . cDNA_match 7000 9000 1.4e-40 + . ID=cDNA_match1;Target=cdna0123 964 2964
###

Figure 5.5: Pseudo-feature and multi-feature example. The upper part of the figure shows the
internal representation of the multi-feature given in the lower part. The lower “line” (of the upper
part) shows the three feature nodes which comprise the multi-feature. The first one has a dotted
border to denote that this node is the representative. The other two nodes have dotted links to
their multi-feature representative. All three of them are children of the pseudo-feature top-level
shown in the upper “line” with a dashed border.

98

(connected DAG) feature node — producing a GFF3 file which is optimally divided into the
smallest possible parts.

5.5 Processing Genome Nodes with Node Streams and Node
Visitors

The node stream interface (see Section C.29) allows to process genome annotations piecewise.
Its next method returns the next available genome node in the stream. This means that the node
stream architecture is pull-based: In a chain of streams, nodes are pulled from the last one which
in turn pulls from the second last and so forth up to the first. The first stream is a node source
which produces the genome nodes.

This is basically a lazy evaluation strategy [Wad71, HM76] for feature nodes. The feature nodes
are pulled (and generated) from the previous stream only when they are actually required.

Node sources usually generate the genome nodes by reading them from a file. For example, this
can be a file in GFF3 (see Section C.16), GTF (see Section C.20) or BED (see Section C.3)
format. Tools like GenomeThreader [GBSK05] and LTRharvest [EKW08] are also node sources
which generate genome annotations in the first place.

The GFF3 input stream employs a GFF3 parser (see Section C.18) to construct the corresponding
genome nodes. After reading a proper termination line, the GFF3 parser can process the current
section of the GFF3 file to return genome nodes. Thus the GFF3 input stream doesn’t have
to store all genome nodes resulting from the GFF3 file internally before returning them upon
its next method calls. This makes it very memory efficient. If the GFF3 file does not contain
the sequence-region meta directives, the GFF3 parser introduces the corresponding region nodes
automatically.

All the other streams (which are not node sources) are called node processors. They take one or
more node streams, process the nodes they retrieve from them, and pass them along. For example,
the GFF3 output stream (see Section C.17) takes the nodes from its input stream, shows them
as GFF3, and passes them along unmodified. The GFF3 output stream automatically inserts
appropriate termination lines.

In combination with the different node sources this makes the construction of converters rather
easy. One just has to combine a node source with an output stream. The bed to gff3
tool (see Section B.1), gtf to gff3 tool (see Section B.10), and gff3 to gtf tool (see
Section B.8) are examples of this technique. The bed to gff3 tool chains the BED input
stream (see Section C.3) with the GFF3 output stream (see Section C.17). Correspondingly, the
gtf to gff3 tool chains the GTF input stream (see Section C.20) with the GFF3 output stream
and gff3 to gtf tool the GFF3 input stream with the GTF output stream (see Section C.21).

This approach allows to construct s · o converters using s node sources and o output streams.

99

5.5.1 Sorted Streams

For many applications it is important that the genome nodes returned by a stream are sorted,
according to a specific order. The order of genome nodes is defined as follows2:

• Region nodes come first. They are ordered by their sequence ID (lexicographically). Re-
gion nodes with the name sequence ID are ordered by their genomic range (similar to the
order used for feature nodes, see below).

• Comment nodes are shown after region nodes. They are kept in the same order as they
have been found in the input file

• Feature nodes come in the middle (that is after region and comment nodes, but before
sequence nodes). They are lexicographically ordered by their sequence ID. Feature nodes
with the same sequence ID are ordered by their genomic range as follows:

– Two ranges a and b are the same, if their start and end points are exactly the same.

– Range a is before the range b, if and only if the start point of a is before the start point
of a or the start points are equal and if the end point of a is before the end point of b.

This range comparison it implemented in the method gt range compare() which is
documented in Section C.36.

• Sequence nodes are last. They are lexicographically ordered by their descriptions.

The sort stream (see Section C.41) allows to order genome nodes. It pulls all genome nodes from
its input stream (storing them in memory), sorts them (according to the order described above)
in a stable way and returns them one after the other upon calls of its next method. To sort GFF3
files on the command line, the gff3 tool (see Section B.7) can be used with option -sort.

Appendix D shows how a simple GFF3 sorter could be implemented using the libgenometools
and illustrates how the chaining of streams works on the source code level.

The sorting performed by the sort stream only refers to top-level feature nodes. Children of top-
level feature nodes are sorted according to the same order used for the construction of the feature
DAGs (described below in Section 5.5.4).

The ordering of input streams happens right at the interface level (see method gt node stream create()
documented in Section C.29) which allows to get this functionality in all implementing classes
without any code duplications.

2the method which implements this is gt genome node cmp() documented in Section C.22

100

5.5.2 Merging Sorted Stream

Because sorting genome nodes requires large amounts or memory (all genome nodes have to be
held in main memory at the same time), for very large input sets a multiway merge strategy can
be employed:

1. Split the input data set into bins.

2. Sort the bins separately.

3. Merge the sorted bins in a sorted fashion.

To implement this strategy, the merge stream (see C.28) was implemented. It takes a list of
sorted input streams and merges them to deliver a single sorted output stream — without storing
all genome nodes in main memory. A sorted input stream is a GFF3 input stream which enforces
that the GFF3 file it reads is already sorted3. At the command line level, the merge functionality
is available with the merge tool (see Section B.14). Of course, the merge tool was implemented
with the merge stream.

5.5.3 The Case for Sorted Streams

The sortedness of streams and feature DAGs allows to simplify the implementation of many
tools. It also allows for memory efficient implementations, because the corresponding tool needs
only “local” knowledge of the annotation, allowing for a piecewise processing.

For example, the uniq tool (described in Section B.22) which filters out repeated feature node
graphs uses a sorted input stream. This allows the uniq stream (which is used to implement
the uniq tool, see Section C.49) to look only at adjacent nodes when is looks for repetitions.
Without a sorted input it would have to hold all feature nodes in main memory before looking
for repetitions, a huge difference in memory consumption.

Another example is the csa tool (described in Section B.4) which transforms spliced alignments
into consensus spliced alignments (CSAs). A sorted input stream allows the CSA stream (which
is used to implement the csa tool, see Section C.6) to slide a window over the annotation, to
determine which sets of spliced alignments must possibly be combined into consensus spliced
alignments. This considerably reduces the running time compared to an approach that process
an unsorted stream and thus has to store all features in main memory.

The automatic sorting of children of feature nodes (described below in Section 5.5.4) also sim-
plifies the implementations of several tools.

An example for this is the interfeat tool (described in Section B.12) which adds interme-
diary features between outside features (outside features are features which are supposed to en-
close the intermediary features on the genomic sequence). The sortedness of children during the

3See the constructor gt gff3 in stream new sorted() documented in Section C.16

101

traversal of a feature node DAG allows the inter feature stream (which is used to implement the
interfeat tool, see Section C.25) to keep a single pointer to the last encountered feature node
and use this pointer to determine if an intermediary feature needs to be introduced. Otherwise
it would have to look at all children of a feature node, sort them itself, and figure out where to
introduce intermediary features.

Another example is the mergefeat tool (described in Section B.15) which merges adjacent
features of the same type (which might have been introduced by other tools or are artifacts in
GFF3 files not conforming to the notational conventions). The sortedness of children reduces
the amount of feature node pointers the merge feature stream (which is used to implement the
mergefeat tool, see Section C.27) has to keep in memory to determine if a merge is necessary.

Similar advantages of the automatic sorting of children can be found in the cds tool (see Section
B.3, implemented with the CDS stream documented in Section C.5) and the extractfeat tool
(see Section B.6, implemented with the extract feature stream documented in Section C.12).

5.5.4 Memory Efficient Representation of Genome Nodes

Because it is sometimes still necessary to hold large amounts of genome nodes in main memory
at the same time, great care has been taken to represent them efficiently. Thereby, the efficient
representation of feature nodes is most important, because GFF3 files are usually dominated by
feature lines. Each implementation of genome nodes shares the instance variables defined in the
genome node interface.

For some string classes (for example, filenames and feature node types), the following holds:
The number of different strings is small compared to the number of nodes, so that this number
and the space used for the strings can be considered a constant.

Common Representation of Genome Nodes

The common representation of all implementation of the genome node interface is as follows:

• A pointer to the class implementing the genome node interface. This is where the method
pointer of the implementation are stored. The class is only held once in memory (for
each implementation), therefore the class is represented by a single pointer and the space
consumption for each object can be considered constant.

• A pointer to a string (see Section C.43) containing the filename from which this genome
node originates. This is just a new reference to a string containing the filename (that is,
each filename is only stored once in memory). Therefore the string is represented by a
pointer and the space consumption for each object can be considered constant.

• A pointer to a hash map (see Section C.23) containing the user data attached to this genome
node (user data means auxiliary data which can be added to the genome node by the user

102

of the genome node interface). The hash map is only created on demand (that is, if user
data is attached to the node) and therefore usually a null pointer is stored. For example,
user data is used in LTRdigest [SWGK09] to attach related alignments to genome nodes
which are output at a later stage in the streaming machinery.

• A 32-bit integer storing the line number of the file where this genome node originated
from.

• A 32-bit integer storing the reference count to this object.

• A 32-bit integer storing the number of items in the user data hash map mentioned above.
This bookkeeping allows to free the hash map, if it is no longer needed (that is, if it does
not contain any more user data items).

Representation of Region Nodes

• A string (see Section C.43) storing the sequence ID of this region node. The GFF3 parser
(see Section C.18) reuses the sequence ID string it passes to the constructor of region and
feature nodes, therefore the the sequence ID string of each object is represented by a single
pointer and the space consumption for each object can be considered constant.

• A genomic range (see Section C.36) to store the range which this region node refers to. It
consists of two word length integers storing the start and end positions of the region node.

Representation of Comment Nodes

A comment node just contains a null terminated (“\0”) array of characters (C string) representing
the comment.

Representation of Feature Nodes

• A string (see Section C.43) storing the sequence ID of this feature node. The GFF3 parser
(see Section C.18) reuses the sequence ID string it passes to the constructor of region and
feature nodes, therefore the the sequence ID string of each object is represented by a single
pointer and the space consumption for each object can be considered constant.

• A string storing the source of this feature node. The GFF3 parser caches the source strings
it uses for feature nodes. Therefore the source is represented by a single pointer and the
space consumption for each object can be considered constant (usually only a few different
sources can be found in a GFF3 file).

103

• A C string storing the type. Symbols (see Section C.54) are used for types, which makes
the space consumption basically just this pointer, because the actual string is only stored
once for every type (and the set of types is small compared to number of type strings). Note
that the set of types is not known at compile time, therefore the type cannot be represented
with an enum.

• A genomic range (see Section C.36) consisting of two word length integers which stores
the start and the end of the feature node.

• A floating point number storing the score of this feature node.

• A tag/value map (see Section C.46) used to store the attribute tags and values. The tag/-
value map is optimized for space (that is, memory consumption) at the cost of time. Ba-
sically, each read/write access requires O(n) time, where n denotes the total length of
all tags and values contained in the map. The space requirement for a tag/value map is
n+ 2t+ 1 bytes (where t is the number of tags) plus the pointer to the memory area.

• A 32-bit integer is used as a bit field storing certain properties of the feature node in a
space efficient manner. For example, the strand, the phase, the multi-feature status, and the
pseudo-feature status are all stored here.

• A double-linked list storing the children of the feature node. The double-linked list is
sorted according to the order described in Section 5.5.1 above. The double-linked list is
created on demand (that is, once the first child is added to a feature node).

• A pointer to the multi-feature representative (described above in Section 5.4) of this fea-
ture, if it has one.

Representation of Sequence Nodes

A sequence node contains pointers to two strings (see Section C.43): one stores the description
and the other the actual sequence.

5.5.5 Memory Footprint of Parsed GFF3 Files

The memory representation of genome nodes has some space advantages over the representation
in the GFF3 file, because duplicated things are only stored once with pointers referring to them
for each of their occurrences: this holds for sequence IDs, sources, and types.

On the other hand the additional information stored in genome nodes (filename, userdata and its
count, reference count, line number) and the linking between feature nodes has its cost. Espe-
cially on 64-bit system with pointers requiring 8 bytes main memory to hold a GFF3 file is larger
than the actual file size. This can be seen in the test runs given below4.

4Details on how the tests were performed are given in Appendix G.

104

File file size # genome node DAGs # Genes # mRNAs # Exons
tair.gff3 40 MB 33616 28775 35386 215909
fruitfly.gff3 88 MB 290238 - - -
ensembl.gff3 157 MB 51859 51715 113694 1036805

Table 5.1: Properties of GFF3 test files. The fruitfly.gff3 file contains only EST based
spliced alignments and no annotations.

Program tair fruitfly ensembl
gt gff3 -show no (32-bit) 0.15 0.08 0.60
gt gff3 -show no (64-bit) 0.28 0.15 1.01
gt gff3 -show no -sort (32-bit) 87.82 151.40 289.10
gt gff3 -show no -sort (64-bit) 141.83 222.05 447.42
parse.pl 10.53 10.53 10.63
parse and store.pl 1161.29 2047.49 4293.83

Table 5.2: Memory consumption of different GFF3 parsers on test files (the memory peak in MB
is shown).

The memory footprint was determined on three test files with the properties described in Ta-
ble 5.1. The test files have been retrieved from The Arabidopsis Information Resource (TAIR)
[RBB+03], the Berkeley Drosophila Genome Project (BDGP) [MCM+02] and Ensembl [FAB+11]
(see Appendix G for the exact sources). To determine the actual space requirement of the GFF3
parsing machinery from the GenomeTools, we applied the gff3 tool with the option -show no

(to test the streamed memory consumption) and with the additional option -sort (to test the
memory consumption, if all genome nodes are held in main memory). To test the influence of the
word size on the memory footprint, both the 32-bit and the 64-bit binary were used. The mem-
ory consumption was compared with two Perl script parse.pl and parse and store.pl
which employ the Bio::Tools::GFF class from BioPerl [SBB+02] to do the same job as the gff3
tool calls (details are given in Appendix G). The results are given in Table 5.2: As one can see,
the memory consumption of the streaming calls is very low. For the calls which store the fea-
tures, the memory consumption is a multiple of the file size (see Figure 5.3): for the gff3 tool
(32-bit) the memory consumption is around 2 times the file size and for the 64-bit binary around
3 times the file size. In comparison, the memory consumption for the BioPerl script is around 27
times the files size.

5.5.6 Efficient GFF3 Parsing

As one can see from the memory peaks shown in Figure 5.2, the GenomeTools GFF3 processing
machinery is well suited to process very large GFF3 sets, especially if they are streamed in a
sorted fashion. But to achieve interactive usage, short runtimes are important. Figure 5.4 shows

105

Program tair fruitfly ensembl
gt gff3 -show no -sort (32-bit) 2.2× 1.7× 1.8×
gt gff3 -show no -sort (64-bit) 3.4× 2.5× 2.9×
parse and store.pl 29.0× 23.3× 27.3×

Table 5.3: Memory consumption ratios (the memory peak in relation to GFF3 file size).
parse and store.pl employs the Bio::Tools::GFF class from BioPerl [SBB+02].

Program tair fruitfly ensembl 1.5GB.gff3
gt gff3 -show no (64-bit) 3s 5s 8s 89s
parse.pl 88s 160s 338s 3500s

Table 5.4: Runtime of different GFF3 parsers.

the runtime of the GenomeTools GFF3 parser in comparison to the one from BioPerl (employed
in the parse.pl script). The results clearly show, that the GFF3 parser from GenomeTools
allows interactive usage for all but the largest GFF3 files and the BioPerl parser is not well suited
for interactive usage, because the runtime is quite long even for GFF3 files of moderate size.

5.5.7 Node Visitors

The node visitor interface (see Section C.31) is an interface following the visitor pattern (see
[GHJV94]). This allows implementing classes to differentiate between different implementations
of the genome node interface in an elegant manner. Each node visitor implements a method for
each genome node implementation it wants to process and the genome node interface takes care
of calling the correct method.

The following example illustrates the process. Let’s look at a node stream that pulls a genome
node from its node source and wants to process it with its node visitor. It just has to call the
method gt genome node accept() (which is documented in Section C.22) with the node
visitor passed as an argument. gt genome node accept() simply calls the accept method
of its implementing class (this differentiates between the different genome node implementa-
tions). Suppose we have a feature node. That means the accept method of the feature node class
is called which in turn dispatches the call to gt node visitor visit feature node()
(which is documented in section C.31) in which the feature node is processed.

That is, the visitor pattern allows to differentiate between different implementations of an inter-
face (the genome node interface in our case) in the visitor class — without the need to do that in
every class which processes genome nodes. With the visitor pattern, it is easy to add a new im-
plementation of the genome node interface without much change in all the classes which process
them.

106

For many node streams, most of the action happens in the corresponding node visitor class. If
everything happens inside the visitor class, the visitor stream (documented in Section C.50) can
be used. This applies its node visitor to every genome node passed through it.

5.6 LTRdigest

The program LTRdigest [SWGK09] which is also part of GenomeTools profits from the versa-
tility of the node stream machinery. It uses a GFF3 input stream to read LTR retrotransposon
candidates given in a GFF3 file, passes them through an LTRdigest stream to add annotations
of internal features of the putative LTR retrotransposons, and shows the enriched feature nodes
with the help of the GFF3 output stream

Although the whole genome node and node stream machinery was primarily developed to pro-
cess gene structure annotations, LTRdigest shows that it is generic enough to process completely
different genomic features like LTR retrotransposons (which, of course, is also due to the flexi-
bility of the GFF3 format).

GenomeTools also contains the LTRharvest software [EKW08] which can be used to predict LTR
retrotransposon candidates possibly further processed by LTRdigest. Instead of using GFF3 input
files, LTRdigest can directly process nodes directly from LTRharvest.

Despite the fact that GenomeTools was very useful for the implementation of LTRdigest, most
parts of the GenomeTools are not yet published. A publication is in preparation5.

5.7 AnnotationSketch Genome Annotation Drawing Library

5.7.1 Introduction

Genome annotations are often provided in the GFF3 format [Ste11] using the vocabulary of the
Sequence Ontology [ELM+05]. It is not uncommon for annotations to contain tens of thousands
of features. This makes it difficult to obtain an overview of the structure and hierarchy of the
features in a particular genomic location by looking at tabular data. For this reason, annotation
browsers like the UCSC Genome Browser [KSF+02] or GBrowse [SMS+02] as well as curation
tools like Apollo [LSH+02] provide an intuitive graphical representation of annotated features,
allowing, for example, to jump to a specific feature. However, such drawing components are of-
ten tied to the particular tool’s data model and programming language, limiting their reusability
in other contexts. While the BioPerl toolkit [SBB+02] includes the Bio::Graphics module as an
established reusable and extensible solution for genome annotation drawing, it has the disadvan-
tage to be conveniently usable in Perl applications only. Furthermore, its output is limited to files,

5Addendum June 2013: The corresponding paper [GSK13] has been accepted.

107

which is inefficient in desktop GUI applications because temporary files must be created. An-
other disadvantage is the need for a database backend and the explicit definition of aggregators
to visualize feature relationships.

5.7.2 Design and Implementation

AnnotationSketch is designed to be a small and efficient drawing library for genome annotations
with a focus on simplicity, allowing to draw any given annotation in a wide variety of application
fields while automatically considering feature relationships. AnnotationSketch directly uses an-
notation graphs as its underlying data model. They can be created and manipulated dynamically
by user code (for example in custom gene prediction software) via library functions available in
GenomeTools. Alternatively, they can be imported from GFF3, GTF or BED files by using the
respective GenomeTools parser. The actual drawing process is divided into three separate phases:

1. Feature selection phase. Obtain a collection of features, either by retrieving, from an ef-
ficiently searchable feature index, all features overlapping the range of sequence positions
to draw, or by supplying an array of features. Based on user preferences and feature rela-
tionships, group single features into blocks, the smallest units which can be laid out.

2. Layout phase. Distribute the blocks into a hierarchical structure representing vertical tracks
(containing all blocks with a common feature, for example type) and lines (each containing
non-overlapping blocks) such that the obtained packing in the 2D representation is most
compact.

3. Rendering phase. Use the track and line structure as a blueprint for drawing a specific
output format.

While some concepts (such as the use of tracks) are shared with Bio::Graphics, tracks need not
be explicitly created by the programmer but are determined from the feature types encountered in
the input data. This minimizes programming overhead. Nevertheless, user-defined tracks can be
created according to arbitrary block properties. Each feature can also optionally be drawn trans-
parently on top of its parent feature (for example, all exon and intron features are placed into
their parent mRNA or gene track). Relationships are implicitly given by the annotation graph.
This approach, called collapsing, can significantly improve visual clarity in renderings of anno-
tations with many levels of hierarchy.The AnnotationSketch library is implemented using ANSI
C in an object-oriented style. This approach makes it straightforward to create bindings to other
object-oriented languages. Bindings for the Ruby, Python and Lua scripting languages are in-
cluded with the software. We also provide an AnnotationSketch-based command line tool named
sketch (documented in Section B.19), allowing to draw GFF3, GTF and BED annotation data.

An image is represented by one class per structural component (Element, Block, Line, Track
and Diagram) or processing result (Layout). Additionally, custom tracks – special classes imple-
menting a common interface – can be added to a Diagram and allow development of user-defined

108

Figure 5.6: Two images drawn by AnnotationSketch, showing the cnn and cbs gene region from
the Ensembl Drosophila melanogaster annotation (release 51, (a) 2R:9326816–9341000, (b)
2R:9338169–9341000). At the bottom, the GC content of the respective sequence (calculated
on the fly) is drawn via an example custom track attached to the diagram. Image (a) shows the
exon (dark blue), CDS (yellow) and intron type features collapsed into their mRNA type parent
features (medium blue) for a more concise view. Image (b) shows an uncollapsed rendering of
the cbs gene.

drawing functionality, for example to display arbitrary plots along the annotation (see Figure 5.6
for example output). On user request, the Layout’s sketch method invokes rendering methods
for each component in a drawing surface abstraction called Canvas, which in turn calls primitive
shape drawing methods of a Graphics object wrapping a graphics back-end. The currently used
Graphics implementation uses the Cairo 2D graphics library [WP03], allowing output to PNG
bitmaps as well as PDF, SVG and PostScript vector formats. Cairo also facilitates integration
into GUI-based applications by providing native rendering surfaces for windowing systems like
the X Window System or Mac OS X Quartz. Attaching a rendered image to a user interface is
possible by mapping 2D image coordinates to the respective feature. This enables Annotation-
Sketch to be used, for example, in a genome annotation browser or editor. Recent examples are
the FISH Oracle web server [MSSK11] for flexible visualization of DNA copy number data in a
genomic context and the CASSys software system [AKB11] which is an integrated solution for
the interactive analysis of ChIP-Seq data.

User preferences are stored in instances of the Style class. Configuration options (colors, bor-
ders, collapsing flags etc.) can be set and retrieved both globally and for specific feature types.
Additionally, it is possible to supply callback functions to make colors or captions dependent on
individual feature properties.

To evaluate the performance, 100 random regions of 500 kb length from the Drosophila melanogaster
Ensembl release 50 GTF gene annotations were drawn to a 800 pixels wide PNG image from
a FeatureIndex held in memory, resulting in an average rendering time of 0.61 seconds per im-

109

age. It has to be noted that the time-consuming part appeared to be the bitmap rastering process.
Using SVG or PDF for output reduced the time to 0.05 seconds (SVG) and 0.04 seconds (PDF)
per image. In contrast, creating a comparable output with a Perl script using Bio::Graphics took
3.98 seconds on average per PNG image and 4.58 seconds per SVG file. This makes Annota-
tionSketch favorable in SVG-based web applications to reduce server load. Memory usage of the
AnnotationSketch-based program peaked at 34.1 MB for a single run, of which 33.3 MB were
occupied by the feature index for the 15.6 MB GFF3 file. The Perl script’s average peak memory
usage for a single run was 15.45 MB. However, the memory usage of the Perl script did not
include the MySQL database storing the features.

5.7.3 Conclusion

AnnotationSketch provides a fast and easy to use library for drawing annotations to be used in
any application in which a light-weight visualization of annotation data compatible with an anno-
tation graph format is desired. By implementing all functionality in C and using foreign function
interfaces to add high-level bindings to a variety of other languages afterwards, applications can
benefit from both portability and interface consistency across all bindings. For further details
on AnnotationSketch, please refer to the AnnotationSketch documentation which can be found at
http://genometools.org/annotationsketch.html.

110

Chapter 6

Evaluation of Gene Prediction Methods

6.1 nGASP Evaluation

The paper [CFM+08] describes the nematode genome annotation assessment project (nGASP),
an experiment to test the accuracy of different gene finders on a C. elegans data set. All test and
training data which have been used for the gene predictions have been published, which makes
this assessment well suited to compare GenomeThreader with the results of other similarity-
based gene prediction programs of the assessment published in the paper.

6.1.1 nGASP Dataset

The nGASP dataset is comprised of the following components:

• 10 Mb of the C. elegans genome (WormBase release WS160 [WB06]) as a training set
and 10 Mb as a test set. The 10 MB of the training and test set are both comprised of
non-overlapping 1 Mb regions and they represent ≈ 10% of the C. elegans genome. See
Table 6.1 for further details about the regions.

• Two gene reference sets ref1 and ref2 for the test and the training regions, respectively.
ref1 contains all genes from Wormbase release WS160 that were supported by full-length
cDNAs across their entire coding region. ref2 additionally contains manually curated
genes, based on gene predictions and experimental data [CFM+08]. Table 6.2 shows the
number of features contained in the sets.

ref1 was used to compute the sensitivity and ref2 to compute the specificity values. The
reason for this is that true-positive and false-negative values computed in relation to ref1
are more dependable, because the gene models in ref1 are of higher quality than the ones
in ref2 (because the gene models in ref1 are all supported by full-length cDNAs). On the
other hand, the false-positive values computed in relation to ref2 are more dependable,
because a higher fraction of true genes are contained in ref2 [CFM+08].

111

Type of nGASP
Criterion used for selecting region

Coordinates in the
region C. elegans WS160 genome
Training High conservation, high gene density, autosomal II: 2000001–3000000
Training High conservation, high gene density, autosomal V: 9000001–10000000
Training High conservation, low gene density, autosomal III: 1000001–2000000
Training High conservation, low gene density, autosomal IV: 2000001–3000000
Training Low conservation, high gene density, autosomal I: 12000001–13000000
Training Low conservation, high gene density, autosomal V: 4000001–5000000
Training Low conservation, low gene density, autosomal I: 2000001–3000000
Training Low conservation, low gene density, autosomal II: 13000001–14000000
Training High conservation, low gene density, X-chromosome X: 3000001–4000000
Training High conservation, low gene density, X-chromosome X: 2000001–3000000
Test High conservation, high gene density, autosomal IV: 7000001–8000000
Test High conservation, high gene density, autosomal V: 12000001–13000000
Test High conservation, low gene density, autosomal IV: 1–1000000
Test High conservation, low gene density, autosomal I: 14000001–15000000
Test Low conservation, high gene density, autosomal V: 16000001–17000000
Test Low conservation, high gene density, autosomal II: 1–1000000
Test Low conservation, low gene density, autosomal IV: 14000001–15000000
Test Low conservation, low gene density, autosomal I: 1000001–2000000
Test High conservation, low gene density, X-chromosome X: 4000001–5000000
Test High conservation, low gene density, X-chromosome X: 8000001–9000000

Table 6.1: The genomic nGASP test and training regions. The table was taken from [CFM+08]
.

• 42496 protein sequences with BLAST [AMS+97] matches in the training or test regions,
but excluding matches to proteins encoded by genes in the test regions. For details on the
BLAST run see [CFM+08]. The average length of the protein sequences is 688.35 bp.

• 44820 cDNA/EST sequences with BLAT [Ken02] matches in the training or test regions.
The average length of the cDNA/EST sequences is 479.64 bp.

The coordinates of the BLAST and BLAT runs mentioned above are also available, but they have
not been used to run GenomeThreader on the nGASP dataset, because GenomeThreader has its
own matching phase (which is described in Section 4.5.1).

6.1.2 nGASP Gene Finder Categories

The gene prediction programs assessed for nGASP have been divided into four categories:

112

File # Genes # mRNAs # Exons
training ref1.gff3 432 780 4348
training ref2.gff3 1907 2429 14375
test ref1.gff3 493 894 5294
test ref2.gff3 1948 2549 15558

Table 6.2: Number of features in nGASP annotation files. The numbers refer to the number of
protein-coding features. That is # genes refers to the number of protein-coding genes, # mRNAs
to the number of protein-coding isoforms, and # exons to the number of protein-coding exons.

1. Ab initio gene finders, programs which predict genes solely based on the genomic se-
quence.

2. Multi-genome alignment programs.

3. Similarity-based methods which predict genes based on cDNA/EST and/or protein se-
quences.

4. So-called combiners, software tools which combine the prediction results from other pre-
dictors and potentially refine them.

GenomeThreader uses cDNAs/ESTs to predict gene structures, therefore it belongs into cate-
gory 3 and to assess it’s prediction quality it has to be compared against other programs in this
category.

6.1.3 GenomeThreader Assessment

A step-by-step outline on how this was done is given in Appendix H. This makes the results
shown in Table 6.3 easy to reproduce. To compare the results of the different programs, the
average of the nucleotide sensitivity, nucleotide specificity, exon sensitivity, and exon specificity
has been used as a metric (these measures are explained in Section 3.3).

As one can see in Table 6.3, GenomeThreader is slightly better than all the other competing gene
prediction programs in the categories 1, 2, and 3.

6.1.4 Influence of BSSMs on Prediction Accuracy

It was also tested how different BSSMs influence the prediction accuracy of GenomeThreader
on the nGASP dataset.

For this purpose, GenomeThreader was used with different parameterizations as follows:

• For gth bssm, GenomeThreader was called with the options described in Appendix H.5.

113

Program Cat NSn NSp NAvg ExSn ExSp ExAvg Average
gth bssm 3 94.70 95.83 95.27 90.39 79.67 85.03 90.15
mgene v1 3 98.13 91.37 94.75 89.37 80.41 84.89 89.82
mgene v3 3 98.14 91.36 94.75 89.40 80.35 84.88 89.81
augustus 3 98.46 89.69 94.07 90.98 79.98 85.48 89.78
fgenesh++ 3 96.84 89.17 93.00 88.64 80.68 84.66 88.83
mgene v2 3 98.53 87.36 92.94 90.19 75.64 82.91 87.93
gramene v1 3 97.53 94.94 96.23 87.03 71.63 79.33 87.78
mgene v1 2 97.31 90.42 93.87 84.20 78.08 81.14 87.50
mgene v2 2 97.31 90.41 93.86 84.20 78.03 81.12 87.49
mgene v1 1 96.64 90.97 93.81 83.11 78.30 80.70 87.25
mgene v2 1 96.36 91.08 93.72 82.75 78.42 80.59 87.15
mgene v3 1 96.36 91.07 93.72 82.75 78.35 80.55 87.13
gramene v2 3 97.98 94.17 96.08 87.03 67.63 77.33 86.70
eugene v2 3 98.28 84.08 91.18 90.98 70.11 80.55 85.86
craig 1 95.15 90.36 92.75 79.07 77.89 78.48 85.62
fgenesh 1 97.87 86.56 92.22 84.73 73.29 79.01 85.61
augustus v2 1 96.43 88.73 92.58 83.15 74.10 78.62 85.60
augustus v1 1 96.64 88.28 92.46 84.60 72.32 78.46 85.46
eugene v1 3 96.88 84.79 90.84 87.06 72.00 79.53 85.18
glimmerhmm 1 97.05 87.11 92.08 82.88 71.14 77.01 84.55
nscan 2 97.08 87.51 92.30 82.06 70.60 76.33 84.31
eugene 2 96.00 86.94 91.47 81.34 72.58 76.96 84.22
exonhunter v1 3 97.17 86.77 91.97 82.49 69.10 75.79 83.88
eugene 1 93.71 88.92 91.31 78.87 72.72 75.80 83.55
maker v2 3 91.09 90.55 90.82 78.44 69.36 73.90 82.36
sgp2 2 92.95 89.37 91.16 76.10 70.00 73.05 82.11
genemarkhmm 1 98.03 82.52 90.28 82.06 65.32 73.69 81.98
exonhunter v2 3 97.59 83.47 90.53 83.34 61.62 72.48 81.50
geneid 1 93.40 87.65 90.53 75.81 68.36 72.09 81.31
maker v1 3 91.70 87.97 89.84 78.70 66.10 72.40 81.12
exonhunter 1 95.21 85.48 90.34 71.76 62.30 67.03 78.69
snap 1 93.67 83.92 88.80 73.11 61.05 67.08 77.94
agene 1 93.52 82.86 88.19 68.01 60.86 64.44 76.31

Table 6.3: The nGASP gene prediction results for all gene prediction programs in categories
1-3. Cat stands for the category of the the gene prediction program. NSn denotes the nucleotide
sensitivity, NSp the nucleotide specificity, NAvg the average of NSn and NSp, ExSn the exon
sensitivity, ExSp the exon specificity, ExAvg the average of ExSn and ExSp, and Average the
average of NSn, NSp, ExSn, and ExSp.

114

BSSM parameter NSn NSp NAvg ExSn ExSp ExAvg Average
gth bssm testset 94.67 95.86 95.27 90.36 79.80 85.08 90.17
gth species 94.70 95.90 95.30 90.26 79.78 85.02 90.16
gth bssm 94.70 95.83 95.27 90.39 79.67 85.03 90.15
gth generic 94.66 95.62 95.14 90.26 76.76 83.51 89.33

Table 6.4: BSSM comparison.

• For gth species the nematode BSSM distributed with GenomeThreader was used (option
-species nematode).

• For gth bssm testset the nGASP test set was used to create the custom BSSM instead of
the training set.

• For gth generic, the generic splice site model of GenomeThreader was used (that is, the
option -bssm was removed).

The results are shown in Table 6.4. As one can see, the three runs where a BSSM was used have
quite similar results. gth bssm testset has the best results, because it was trained with the test
data. gth species gives slightly better results than gth bssm, probably because it is more generic
(that is, not so biased for the training set as gth bssm).

The results for gth generic are worse than the other three runs with BSSMs. Especially the
exon specificity suffers. This is an expected effect, because without a BSSM it is “harder” for
the spliced alignment algorithm to predict the exact exon-intron boundaries. This shows that
BSSMs clearly improve prediction accuracy and it is therefore worthwhile for the user to take
the time to create them, if he wants to achieve good prediction results.

6.1.5 Intron Cutout Technique and Jump Table Prediction Accuracy

It was tested how the intron cutout technique (described in Section 4.5) and the jump table (de-
scribed in Section 4.6) impact the prediction accuracy on the nGASP dataset.

For this purpose, GenomeThreader was called with the options described in Appendix H.5
(gth bssm). For gth bssm ic the option -introncutout was added to activate the intron cutout
technique. For gth bssm fast the option -fastdp was added to activate the jump table. For
gth bssm fast ic both options -introncutout and -fastdp were used. The results are shown in
Table 6.5.

As one can see, this heuristic still leads to good results and the sensitivity/specificity values differ
not much, despite considerable speed improvements which can be seen in Table 6.6. Instead of
being the best gene prediction program on the nGASP dataset (for the gth bssm parameter set),
the other parameter sets (gth bssm ic, gth bssm fast, and gth bssm fast ic) land in fourth.

115

Parameter Set NSn NSp NAvg ExSn ExSp ExAvg Average
gth bssm 94.70 95.83 95.27 90.39 79.67 85.03 90.15
gth bssm ic 94.28 95.81 95.05 89.47 79.10 84.29 89.67
gth bssm fast 94.50 95.78 95.14 89.99 78.08 84.04 89.59
gth bssm fast ic 94.08 95.76 94.92 89.14 77.53 83.34 89.13

Table 6.5: Intron cutout technique and jump table prediction accuracy on the nGASP dataset.

Program Time Speedup
gth bssm 2188s —
gth bssm ic 1772s ≈ 19%
gth bssm fast 1947s ≈ 11%
gth bssm fast ic 1440s ≈ 34%

Table 6.6: Intron cutout technique and jump table running times on the nGASP dataset. Appendix
K gives an overview of the used hardware and software setup.

Because the introns in the nGASP dataset are relatively short, the speed improvements are much
smaller than what was measured on organisms with larger introns.

6.1.6 Chain Enrichment

It was tested how the chain enrichment (described in Section 4.5.4) impact the prediction accu-
racy on the nGASP dataset.

For this purpose, GenomeThreader was called with the options described in Appendix H.5
(gth bssm). For gth bssm ec the option -enrichchains was added to activate the chain en-
richment. For gth bssm ic the option -introncutout was added to activate the intron cutout
technique. For gth bssm ec ic both options -enrichchains and -introncutout were used.
The results are shown in Table 6.7.

As one can see, the chain enrichment does not improve the results significantly on the nGASP
dataset (in contrast to the chain enrichment on the ENCODE dataset described below in Section
6.3.3). This is due to the fact that the introns in the nGASP dataset are relatively short (in contrast
to the introns contained in the ENCODE dataset). The running times of the runs with and without
chain enrichment do not differ significantly.

6.1.7 Comparison with GMAP

GMAP (see Section 3.7.1) was also tested on the nGASP dataset and it performs rather poorly
on this dataset (results with default parameter were named gmap, results were option -n 1 was

116

Parameter Set NSn NSp NAvg ExSn ExSp ExAvg Average
gth bssm 94.70 95.83 95.27 90.39 79.67 85.03 90.15
gth bssm ec 94.70 95.84 95.27 90.39 79.68 85.04 90.15
gth bssm ic 94.28 95.81 95.05 89.47 79.10 84.29 89.67
gth bssm ec ic 94.28 95.86 95.07 89.47 79.27 84.37 89.72

Table 6.7: Chain enrichment results on nGASP dataset.

Parameter Set NSn NSp NAvg ExSn ExSp ExAvg Average
gth bssm 94.70 95.83 95.27 90.39 79.67 85.03 90.15
gth cdna 92.19 94.58 93.39 86.54 69.42 77.98 85.68
gth prot 49.88 98.24 74.06 44.57 88.09 66.33 70.20
gmap n1 92.32 78.65 85.49 66.59 11.24 38.92 62.20
gmap 92.39 78.13 85.26 66.69 11.09 38.89 62.08

Table 6.8: GMAP nGASP results.

used gmap n1). Namely, GMAP performed worse than all the other gene finders which were
tested. This is probably due to the fact that GMAP does not have a consensus phase built in.
To have a fair comparison, GenomeThreader was used with the cDNAs only (gth cdna) which
puts GenomeThreader still in middle of all gene finders tested on the nGASP dataset. The run
gth prot shows the GenomeThreader results with proteins only. The specificity is rather high
(which is to be expected with protein sequences), but the low sensitivity suggests that the protein
dataset does not contain enough sequences to perform a successful gene prediction with them
alone. GMAP is about twice as fast as GenomeThreader on the cDNA set (see running times in
Table 6.9).

Program Time
gth bssm 2188s
gth cdna 1384s
gth prot 705s
gmap 752s
gmap n1 732s

Table 6.9: Running times on nGASP dataset for GenomeThreader and GMAP.

117

x-fold cov. ref1 cov. ref2 NSn NSp NAvg ExSn ExSp ExAvg Average
5 1.76 1.64 74.72 97.33 86.03 59.12 66.89 63.01 74.52
10 3.55 3.29 90.34 96.97 93.66 76.70 76.67 76.69 85.17
25 8.80 8.23 96.83 96.07 96.45 87.43 78.83 83.13 89.79
50 17.63 16.45 98.27 95.44 96.86 90.78 75.78 83.28 90.07
100 35.29 32.95 98.41 94.95 96.68 92.76 68.88 80.82 88.75
200 70.43 65.80 98.99 94.42 96.71 95.00 61.92 78.46 87.58

Table 6.10: GenomeThreader Mapping 454 sequences results for different numbers of reads
(x-fold for x ∈ {5, 10, 25, 50, 100, 200}). The different number of reads result in the shown
coverages for the gene reference sets ref1 and ref2. NSn denotes the nucleotide sensitivity, NSp
the nucleotide specificity, NAvg the average of NSn and NSp, ExSn the exon sensitivity, ExSp the
exon specificity, ExAvg the average of ExSn and ExSp, and Average the average of NSn, NSp,
ExSn, and ExSp.

x-fold cov. ref1 cov. ref2 NSn NSp NAvg ExSn ExSp ExAvg Average
5 1.76 1.64 78.32 92.17 85.25 42.66 11.78 27.22 56.23
10 3.55 3.29 92.92 89.81 91.37 60.17 9.22 34.70 63.03
25 8.80 8.23 99.05 85.33 92.19 76.93 5.54 41.24 66.71
50 17.63 16.45 99.63 81.62 90.63 84.40 3.38 43.89 67.26
100 35.29 32.95 99.75 78.10 88.93 87.85 1.96 44.91 66.92
200 70.43 65.80 99.77 75.52 87.65 89.80 1.13 45.47 66.56

Table 6.11: GMAP Mapping 454 sequences results for different numbers of reads (GMAP was
used with option -n 1). The column names have the same meaning as in Figure 6.10.

118

6.2 Mapping 454 Sequences

Next-generation sequencing (NGS) methods have become an important source of transcriptomic
data (see Section 2.8 for an overview of NGS methods). To show that GenomeThreader is also
suited to predict genes with transcriptomic sequences from NGS methods, we simulated 454
reads on the nGASP dataset and aligned them with GenomeThreader as follows:

1. Extract mRNA sequences from the ref1 and ref2 gene reference sets with the extractfeat
tool (see Section B.6).

2. Simulate 454 reads with Flowsim [BML+10] with different numbers of reads (x-fold for
x ∈ {5, 10, 25, 50, 100, 200}).

3. Align simulated 454 reads with GenomeThreader.

The results are shown in Table 6.10, at which the sensitivity values have been computed with the
alignment of ref1 reads and the specificity values with the alignment of ref2 reads. A step-by-step
outline on how this was done is given in Appendix I.

As was already mentioned in Section 4.8.11, GenomeThreader was used successfully to align
454 RNA-Seq reads in the tomato annotation project [Fil10], which shows that GenomeThreader
also works well on real 454 reads.

To compare the performance on 454 reads, GMAP was also run on the simulated 454 reads
(with option -n 1). The results are given in Table 6.11. Figure 6.1 compares the sensitivity
and specificity results on the nucleotide and exon level between GenomeThreader and GMAP
for different x-fold values. As one can see, the nucleotide sensitivity for GMAP is a little bit
better than for GenomeThreader, but GenomeThreader is better for the exon sensitivity and much
better for the nucleotide and exon specificity. This is probably due to the fact that GMAP does
not contain a consensus phase and therefore produces many incomplete gene structure, because
the 454 reads usually do not cover the complete gene. In contrast, GenomeThreader is able to
successfully reconstruct the genes in the consensus phase (which is reflected in the much higher
specificity values). The decreasing specificity for large read numbers is due to the fact that wrong
alignments become more likely with larger number of reads. On this dataset GenomeThreader is
about 10% faster than GMAP.

6.3 ENCODE Evaluation

EGASP, the human ENCODE Genome Annotation Assessment Project [GFA+06] was a commu-
nity experiment to assess the state-of-the-art in genome annotation within the ENCODE regions.
The ENCODE regions span 1% of the human genome and a reference annotation exists which
was generated as part of the related GENCODE project. EGASP followed closely the model of
its predecessor GASP1 [RHH+00].

119

0 50 100 150 200

80

90

100

x-fold

N
uc

le
ot

id
e

se
ns

iti
vi

ty
(%

)

0 50 100 150 200

75

80

85

90

95

x-fold

N
uc

le
ot

id
e

sp
ec

ifi
ci

ty
(%

)

0 50 100 150 200
40

60

80

100

x-fold

E
xo

n
se

ns
iti

vi
ty

(%
)

0 50 100 150 200

0

20

40

60

80

x-fold

E
xo

n
sp

ec
ifi

ci
ty

(%
)

Figure 6.1: Result comparison for 454 sequence mapping. GenomeThreader results are shown
in red and GMAP results in blue.

120

6.3.1 The ENCODE Dataset

The ENCODE dataset is comprised of the following components:

• The 44 ENCODE regions with a total length of ≈ 30 million base pairs. 33 of the regions
have a size of 500.000 base pairs and the remaining 11 regions have a size from 600.000
up to 1.9 million base pairs.

• The GENCODE annotation gives all protein-coding genes in the 44 ENCODE regions (40
regions contain protein-coding genes). In total, 1332 protein-coding genes are annotated
which are comprised of 10938 exons (10072 of those are actually translated). The longest
annotated gene spans 321157 base pairs.

6.3.2 Comparing GenomeThreader with GMAP

To test GenomeThreader on the ENCODE dataset and compare it against GMAP, the following
evaluation was performed:

1. Preparing the GENCODE annotation files for later processing.

2. Extracting the mRNA sequences annotated in the GENCODE files and mutate them with
different mutation rates (with the seqmutate tool, documented in Section B.17).

3. Aligning the resulting mRNA sequences for different mutation rates against the ENCODE
regions with GenomeThreader and GMAP.

This procedure shows how good GenomeThreader and GMAP are capable to reproduce an anno-
tation when the complete mRNA is given (for mutation rate 0) and how good they perform under
sequencing errors and when non-homologous mRNAs are given (for higher mutation rates). Ap-
pendix J describes the procedure in more detail to make it reproducible.

The result names used in the tables were contructed as follows: The prefix gth was used for
GenomeThreader and the prefix gmap for GMAP results. After that the corresponding mutation
rate was denoted in the form rx, where x is the mutation rate. If the option -n 1 was used with
GMAP, the suffix n 1 was added. If the option -enrichchains was used with GenomeThreader,
the string ec was added, for option -introncutout the string ic, for a match length of 12 the
string m12 and for a match length of 15 the string m15.

Table 6.15 and Table 6.16 show the results for GMAP on this dataset (see Figure 6.2 for a graphi-
cal comparison). On average, GMAP performs better with option -n 1 on this dataset. Therefore,
the GenomeThreader results were compared against these GMAP results.

The results of GenomeThreader and GMAP on the ENCODE dataset are very similar. Table 6.12
shows the best results for GenomeThreader (for match length 12) and Table 6.15 for GMAP.

121

Parameter Set NSn NSp NAvg ExSn ExSp ExAvg Average
gth r0 ec ic m12 99.18 99.84 99.51 97.82 99.46 98.64 99.08
gth r1 ec ic m12 99.18 99.84 99.51 97.59 98.85 98.22 98.87
gth r3 ec ic m12 98.99 99.82 99.41 96.72 98.01 97.37 98.39
gth r5 ec ic m12 97.75 99.77 98.76 95.29 96.78 96.04 97.40
gth r10 ec ic m12 95.02 99.62 97.32 90.35 93.92 92.14 94.73

Table 6.12: GenomeThreader ENCODE results for match length 12. The average of the averages
is 97.69.

Parameter Set NSn NSp NAvg ExSn ExSp ExAvg Average
gth r0 ec ic m15 99.21 99.83 99.52 97.77 99.30 98.54 99.03
gth r1 ec ic m15 99.19 99.74 99.47 97.45 98.51 97.98 98.72
gth r3 ec ic m15 99.20 99.63 99.42 96.40 97.28 96.84 98.13
gth r5 ec ic m15 98.18 99.60 98.89 94.88 96.25 95.57 97.23
gth r10 ec ic m15 94.59 99.24 96.92 86.96 91.81 89.39 93.15

Table 6.13: GenomeThreader ENCODE results for match length 15. The average of the averages
is 97.25.

Parameter Set NSn NSp NAvg ExSn ExSp ExAvg Average
gth r0 ec ic 99.21 99.82 99.52 97.54 99.14 98.34 98.93
gth r1 ec ic 99.19 99.71 99.45 97.10 98.17 97.64 98.54
gth r3 ec ic 99.19 99.54 99.37 95.68 96.65 96.17 97.77
gth r5 ec ic 98.22 99.38 98.80 93.75 94.92 94.34 96.57
gth r10 ec ic 89.52 98.70 94.11 75.77 88.90 82.34 88.22

Table 6.14: GenomeThreader ENCODE results with default match parameters. The average of
the averages is 96.01.

Parameter Set NSn NSp NAvg ExSn ExSp ExAvg Average
gmap r0 n1 99.74 99.84 99.79 98.88 99.20 99.04 99.42
gmap r1 n1 99.73 99.83 99.78 98.07 97.97 98.02 98.90
gmap r3 n1 99.76 99.82 99.79 96.05 95.44 95.75 97.77
gmap r5 n1 99.47 99.80 99.64 94.40 93.31 93.86 96.75
gmap r10 n1 99.55 99.72 99.64 89.71 86.64 88.18 93.91

Table 6.15: GMAP ENCODE results (with option -n 1). The average of the averages is 97.35.

122

Parameter Set NSn NSp NAvg ExSn ExSp ExAvg Average
gmap r0 99.83 99.54 99.69 99.06 97.92 98.49 99.09
gmap r1 99.82 99.55 99.69 98.26 96.87 97.57 98.63
gmap r3 99.77 99.59 99.68 96.21 94.09 95.15 97.42
gmap r5 99.76 99.43 99.60 94.72 91.98 93.35 96.47
gmap r10 99.60 99.19 99.40 89.89 85.47 87.68 93.54

Table 6.16: GMAP ENCODE results. The average of the averages is 97.03.

0 1 2 3 4 5 6 7 8 9 10

99.5

99.6

99.7

99.8

Mutation rate

N
uc

le
ot

id
e

se
ns

iti
vi

ty
(%

)

0 1 2 3 4 5 6 7 8 9 10

99.2

99.4

99.6

99.8

Mutation rate

N
uc

le
ot

id
e

sp
ec

ifi
ci

ty
(%

)

0 1 2 3 4 5 6 7 8 9 10

90

92

94

96

98

Mutation rate

E
xo

n
se

ns
iti

vi
ty

(%
)

0 1 2 3 4 5 6 7 8 9 10

85

90

95

100

Mutation rate

E
xo

n
sp

ec
ifi

ci
ty

(%
)

Figure 6.2: ENCODE result comparison between GMAP used with option -n 1 (in red) and
without (in blue).

123

0 1 2 3 4 5 6 7 8 9 10

90

92

94

96

98

100

Mutation rate

N
uc

le
ot

id
e

se
ns

iti
vi

ty
(%

)

0 1 2 3 4 5 6 7 8 9 10
98.6

98.8

99

99.2

99.4

99.6

99.8

Mutation rate

N
uc

le
ot

id
e

sp
ec

ifi
ci

ty
(%

)

0 1 2 3 4 5 6 7 8 9 10

75

80

85

90

95

100

Mutation rate

E
xo

n
se

ns
iti

vi
ty

(%
)

0 1 2 3 4 5 6 7 8 9 10

90

95

100

Mutation rate

E
xo

n
sp

ec
ifi

ci
ty

(%
)

Figure 6.3: ENCODE result comparison between GenomeThreader for different matching pa-
rameter and GMAP with option -n 1 (in blue). GenomeThreader results for match length 12 are
shown in red, for match length 15 in brown, and for default matching parameter in black.

124

Parameter Set NSn NSp NAvg ExSn ExSp ExAvg Average
gth r0 ic m15 99.29 99.68 99.49 97.02 98.28 97.65 98.57
gth r1 ic m15 99.26 99.59 99.43 96.72 97.55 97.14 98.28
gth r3 ic m15 99.22 99.47 99.35 95.75 96.24 96.00 97.67
gth r5 ic m15 97.59 99.42 98.51 94.23 95.12 94.68 96.59
gth r10 ic m15 91.89 98.70 95.30 85.74 90.37 88.06 91.68

Table 6.17: GenomeThreader ENCODE results without chain enrichment (for match length 15).
The average of the averages is 96.56.

The average of the averages for the five different mutation rates is slightly higher for Genome-
Threader (97.69 vs. 97.35). GMAP is better in terms of exon sensitivity while GenomeThreader
is better in terms of exon specificity. The GenomeThreader results for a match length of 15 and
for default matching parameter are shown in Table 6.13 and Table 6.14, respectively. Figure 6.3
shows a graphical comparison of this results.

6.3.3 Chain Enrichment Improves Prediction Results

The chain enrichment (described in Section 4.5.4) clearly improves prediction results on the
ENCODE dataset. Table 6.17 shows the results for the same parameters as in Table 6.13, except
that the chain enrichment was disabled. As one can see, the chain enrichment improves all results
significantly: The exon sensitivity and the exon specificity is better for all mutation rates and the
average of the averages for the different mutation rates is 0.69% better with chain enrichment
than without. Figure 6.4 compares the results graphically. From Table 6.18 one can see that this
comes at a price of about 50% increased runtime, because of the chain enrichment fewer parts of
the dynamic programming matrix can be cutout in the intron cutout step (see Section 4.5.4 for
algorithmical details).

This result shows that the chain enrichment improves prediction results on datasets with long
introns (in contrast to datasets with relatively short introns, see example given in Section 6.1.6).

6.3.4 Influence of Match Size on Prediction Accuracy

The Tables 6.12, 6.13 and 6.14 and Figure 6.3 show that small matches improve the prediction
accuracy. With shorter matches it is less likely that exons are “missed” in the dynamic pro-
gramming. This comes at a cost in terms of increased runtimes (see Table 6.18 and Figure 6.5),
especially for a match length of 12. If the match length is shorter, more matches are computed in
the matching phase and have to be chained in the chaining phase. GMAP is much faster on this
dataset, because it contains only cDNAs which match to the genomic region and the actual DP
computation is faster in GMAP.

125

0 1 2 3 4 5 6 7 8 9 10

92

94

96

98

100

Mutation rate

N
uc

le
ot

id
e

se
ns

iti
vi

ty
(%

)

0 1 2 3 4 5 6 7 8 9 10
98.6

98.8

99

99.2

99.4

99.6

99.8

Mutation rate
N

uc
le

ot
id

e
sp

ec
ifi

ci
ty

(%
)

0 1 2 3 4 5 6 7 8 9 10
85

90

95

Mutation rate

E
xo

n
se

ns
iti

vi
ty

(%
)

0 1 2 3 4 5 6 7 8 9 10

90

92

94

96

98

100

Mutation rate

E
xo

n
sp

ec
ifi

ci
ty

(%
)

Figure 6.4: GenomeThreader ENCODE result comparison with chain enrichment (shown in red)
and without (shown in blue). The runs were performed with a match length of 15.

Program 0 1 3 5 10
gth ec ic m12 7858s 7700s 6957s 6884s 4975s
gth ec ic m15 1535s 1565s 1521s 1674s 1308s
gth ec ic 1222s 1267s 1215s 1420s 1196s
gth ic m15 806s 835s 814s 832s 931s
gmap n1 30s 51s 123s 138s 284s

Table 6.18: Runtimes on ENCODE Dataset for GenomeThreader and GMAP (for mutation rates
0, 1, 3, 5, and 10).

126

0 1 2 3 4 5 6 7 8 9 10

0

2,000

4,000

6,000

8,000

Mutation rate

R
un

tim
e

(i
n

se
co

nd
s)

Figure 6.5: Runtimes on ENCODE dataset. GenomeThreader results for a match length of 12 are
shown in blue (with circles), for a match length of 15 with chain enrichment in red, for default
matching parameter in brown, and for a match length of 15 without chain enrichment in black.
GMAP results are shown in blue (with diamonds).

6.4 General Discussion of GenomeThreader vs. GMAP

The conclusions for the three GenomeThreader vs. GMAP comparisons are as follows. Genome-
Threader has a slower dynamic programming, but usually produces better prediction results, es-
pecially if multiple overlapping gene predictions have to be combined into a consensus. Genome-
Threader has the better similarity filter (matching and chaining), which allow to efficiently cut
out cDNA/EST sequences which do not match the genomic region. The following use case
exemplifies this.

A 50 MB EST file from dbEST [BLT93] (which contains 148.385 ESTs) was aligned to human
chromosome 21 (with masked repeats). On this task GenomeThreader was nearly 8 times as fast
as GMAP (index construction times have not been considered for both programs, because they
are usually performed only once for every genomic file). This is because only a fraction of the
ESTs from the file are actually aligned to the human chromosome. The ESTs which show no
similarities with the reference are discarded by the similarity filter in GenomeThreader before
the DP. In contrast, GMAP tries to align all of them which leads to the higher runtime.

127

Chapter 7

Conclusion

This thesis presented the GenomeThreader gene structure prediction software, which was de-
veloped with adherence to strict software engineering principles, in the context of seven main
contributions:

1. The intron cutout technique, which allows to predict gene structures stretching over large
regions of a genome efficiently, was presented in Section 4.5. It speeds up the computation
without effecting the prediction accuracy much (see Section 6.1.5).

2. The accompanying chain enrichment was described in Section 4.5.4 and it was shown that
it significantly improves the prediction results on datasets with long introns (see Section
6.3.3).

3. Jump tables were explained in Section 4.6 and it was shown that they speed up the com-
putation without a large effect on the accuracy of the prediction (see Section 6.1.5). They
can be combined with the intron cutout technique, resulting in a compound speedup.

4. Easy-to-use BSSMs were introduced in Section 4.2 and it was experimentally confirmed
that an organism specific BSSM improves the prediction compared to a generic splice site
model (see Section 6.1.4).

5. The concept of incremental updates was given in Section 4.8.8. It allows to grow the used
EST/protein collection without the need to recompute all spliced alignments. This has
been proven to be very useful in practice. For example, incremental updates are used in
PlantGDB [DFM+08].

6. The combination of both cDNA/EST-based spliced alignments and protein-based spliced
alignments into consensus spliced alignments was described in Section 4.7. To our knowl-
edge, GenomeThreader is the only gene prediction program with this feature. This is also
used in practice, for example in PlantGDB.

128

7. The GenomeTools genome analysis system was described in Chapter 5. It allows to process
genome annotations in a fast an flexible manner. For example, this capability is demon-
strated in the workflow described in Appendix H which was used for the nGASP evaluation
in Section 6.1.

GenomeThreader implements several datatypes in reusable manner. Compared to its predecessor
GeneSeqer, it is considerably faster, easier to maintain and extensible. Besides the description
of the most important algorithms, we have focused on implementation aspects, which are often
neglected in the development of bioinformatics software.

7.1 Future Developments

With several years of development time, GenomeThreader has become a robust and well-tested
software tool which is widely used in practice (see Section 4.8.11 for a list of practical applica-
tions). However, as software is never finished, there are still several aspects of the software to
improve:

• We want to improve the running time of the chaining phase from O(k2) to O(k log k),
where k is the number of approximate matches to chain. It might be possible to adapt the
O(k log k) method described in [SK03], where a different scoring function is used.

• GenomeThreader provides many different options to influence the different phases of the
computation and thus often trade running time and space requirement for quality of gene
structure predictions. Careful selection of default parameters depending on the specific
organism and the quality of the EST and protein sequences is very important to balance the
resource requirements and quality of the gene structure predictions. Furthermore, BSSMs
(see Section 4.2) for a wider collection of organisms could be provided with the software.

• The single-threaded GenomeThreader binary can easily be parallelized on the command
line by splitting up the input dataset for the spliced alignment computation (which is com-
putationally the most expensive) and combining the results in the consensus spliced align-
ment phase. Although this approach is successfully used in practice, it would be conve-
nient to parallelize GenomeThreader in such a way that it is possible to employ the ever
more common multi-core CPUs without manually splitting the input dataset. This could be
achieved by computing the spliced alignments in parallel via multi-threading. The spliced
alignment computation itself could also be accelerated by leveraging highly-parallel GPUs
(graphical processing units) or employing acceleration heuristics similar to the ones which
are successfully used in HMMER3 [Edd11].

Despite this possible improvements we believe that GenomeThreader is a well integrated and
easy-to-use gene prediction software package which delivers good prediction results in practice
and that the algorithms, software architecture, and evaluation results which have been presented
in this thesis successfully back up this claim.

129

Appendix A

Manual of GenomeThreader

A.1 Introduction

This manual describes how to use GenomeThreader, a software tool to compute gene structure
predictions. The gene structure predictions are calculated using a similarity-based approach
where additional cDNA/EST and/or protein sequences are used to predict gene structures via
spliced alignments.

The algorithms, the phases, and the software engineering of GenomeThreader1 are described in
[GBSK05]. More details on the core dynamic programming (DP) algorithms used to computed
spliced alignments via cDNAs/ESTs are given in [UZB00]. The DP algorithms used to compute
spliced alignments via protein sequences are described in [UB00]. Here are the most important
features of GenomeThreader.

Intron Cutout Technique

The core DP algorithms have been extended by the intron cutout technique [GBSK05] which
allows to apply GenomeThreader to organisms with long introns. This overcomes the time and
space limitations the algorithms described in [UZB00] and [UB00] have when applied to ge-
nomic sequences containing long introns.

Incremental Updates

With the help of incremental updates a lot of duplicated computations can be avoided, when the
used cDNA/EST and/or protein databases have been updated. See Section A.4 for details.

1The name was suggested by Volker Brendel, because the method can be seen as a spliced “threading” of ESTs
with a genomic template, allowing gene structure predictions to be computed.

130

Highly Parameterized

GenomeThreader is highly parameterized. That is, you can set many of the internal parameters
via command line option to adjust the program to your personal gene prediction needs.

A.1.1 The Parts of GenomeThreader

When referring to GenomeThreader we mean the collection of gene prediction tools with this
name. Whereas gth (in typewriter font) denotes the most important tool in this collection which
computes the gene structure predictions. Besides gth, there are the following tools available:

1. gthconsensus computes consensus spliced alignments using intermediate files.

2. gthsplit splits intermediate files.

3. gthgetseq gets FASTA sequences from intermediate files.

4. gthfilestat show statistics of spliced alignments contained in intermediate files.

5. gthbssmfileinfo prints information about BSSM 2.

6. gthbssmtrain trains a BSSM.

7. gthbssmbuild builds a BSSM file.

8. gthclean.sh removes all indices.

A.1.2 Structure of the Manual

In Section A.3 it is shown how to use the various options of gth to perform gene predictions
and in Section A.4 it is described how to use gthconsensus to process intermediate files
produced by gth. In the following three sections some tools are explained which are helpful in
handling intermediate files. In Section A.8 the small tool gthbssmfileinfo is introduced. In
Section A.9 the BSSM training tool gthbssmtrain is documented. In Section A.10 the tool
gthbssmbuild to build BSSMs is explained. In Section A.11 the shell script gthclean.sh
is described. In Section A.12 it is explained how to construct the indices used by Genome-
Threader. If you are new to GenomeThreader and want to use the program as fast as possible
skip this sections in the first run and go directly to the tutorial given in Section A.13. At the
end of the manual you can find the acknowledgments, the recent changes, the references, and the
index.

2BSSM stands for Bayesian Splice Site Model

131

A.2 Installation

Extracting the GenomeThreader distribution for your platform gives you a directory named af-
ter your distribution. For your convenience you should extend your PATH variable by its bin
subdirectory.

To be able to use all features of GenomeThreader, you have to set two environment variables,
namely BSSMDIR and GTHDATADIR, pointing to the subdirectories bssm and gthdata of your
distribution.

If one uses the csh or the tcsh shell, the definition of the environment variables could look like
this:

$ setenv BSSMDIR "$HOME/gth-0.9.36-sparc-sun-solaris-64bit/bssm"
$ setenv GTHDATADIR "$HOME/gth-0.9.36-sparc-sun-solaris-64bit/gthdata"

For the bash or the sh the definitions could look like:

$ export BSSMDIR="$HOME/gth-0.9.36-sparc-sun-solaris-64bit/bssm"
$ export GTHDATADIR="$HOME/gth-0.9.36-sparc-sun-solaris-64bit/gthdata"

One can also specify more then one directory. In this case, they have to be separated by a colon
in the according environment variable definition.

To disable file locking in GenomeThreader (not recommended), set the environment variable
GTHNOFLOCK to any value. In csh or tcsh, this would look like this:

$ setenv GTHNOFLOCK "yes"

In bash or sh like this:

$ export GTHNOFLOCK="yes"

The GTHNOFLOCK environment variable should only be used, if one experiences problems with
file locking. This may happen if a Network File System (NFS) is used.

A.3 gth: Computing Gene Predictions

gth is called as follows:

gth [options] -genomic genseqfiles -cdna cdnafiles -protein proteinfiles

Here genseqfiles denotes the input files containing the genomic template, cdnafiles denotes the in-
put files containing cDNAs/ESTs sequences, and proteinfiles the input files containing protein se-
quences. -cdna and -protein do not have to be used simultaneously. For the input files indices

132

have to be constructed, either by mkvtree or automatically, as described in Section A.12. If an
error occurs during the computation of GenomeThreader, the program exits with error code 1.
Otherwise, the exit code is 0. All available options are explained below. They have been divided
into different categories for clarity. An overview of the option categories with a short one-line
description of each option is given in Table A.1.

Table A.1: Overview of the gth-Options Sorted by Categories

Input Options
-genomic specify input files containing genomic sequences
-cdna specify input files containing cDNA/EST sequences
-protein specify input files containing protein sequences

Parameter Files
-species specify species to select splice site model
-bssm read bssm parameter from file
-scorematrix read amino acid substitution scoring matrix from file
-translationtable set the codon translation table

Strand Direction
-f analyze only forward strand of genomic sequences
-r analyze only reverse strand of genomic sequences

Genomic Sequence Positions
-frompos analyze genomic sequence from this position
-topos analyze genomic sequence to this position
-width analyze only this width of genomic sequence

Output
-v be verbose
-xmlout show output in XML format
-gff3out show output in GFF3 format
-md5ids show MD5 fingerprints as sequence IDs
-o redirect output to specified file
-gzip gzip compressed output file
-bzip2 bzip2 compressed output file
-force force writing to output file
-skipalignmentout skip output of spliced alignments
-mincutoffs show full spliced alignments
-showintronmaxlen set the maximum length of a fully shown intron
-minorflen set the minimum length of an ORF to be shown
-startcodon require than an ORF must begin with a start codon
-finalstopcodon require that the final ORF must end with a stop codon
-showseqnums show sequence numbers in output
-pglgentemplate show genomic template in PGL lines
-gs2out output in old GeneSeqer2 format

Data Preprocessing
-maskpolyatails mask poly(A) tails in cDNA/EST files
-proteinsmap specify smap file used for protein files
-noautoindex do not create indices automatically
-createindicesonly stop program flow after the indices have been created
-skipindexcheck skip index check (in preprocessing phase)

Similarity Filter
-minmatchlen specify minimum match length (cDNA matching)
-seedlength specify the seed length (cDNA matching)
-exdrop specify the Xdrop value for edit distance
-prminmatchlen specify minimum match length (protein matches)
-prseedlength specify seed length (protein matching)
-prhdist specify Hamming distance (protein matching)
-online run the similarity filter online

133

-inverse invert query and index in vmatch call
-exact use exact matches
-gcmaxgapwidth set the maximum gap width for global chains
-gcmincoverage set the minimum coverage of global chains
-paralogs compute paralogous genes (different chaining procedure)
-enrichchains enrich genomic sequence part of global chains with additional matches

Intron Cutout Technique
-introncutout enable the intron cutout technique
-fastdp use jump table to increase speed of DP calculation
-autointroncutout set the automatic intron cutout matrix size
-icinitialdelta set the initial delta used for intron cutouts
-iciterations set the number of intron cutout iterations
-icdeltaincrease set the delta increase during every iteration
-icminremintronlen set the minimum remaining intron length

U12-type Intron Model
-nou12intronmodel disable the U12-type intron model
-u12donorprob set the probability for perfect U12-type donor
-u12donorprob1mism set the prob. for U12-type donor w. 1 mismatch

Basic DP Algorithm
-probies set the initial exon state probability
-probdelgen set the genomic sequence deletion probability
-identityweight set the pairs of identical characters weight
-mismatchweight set the weight for mismatching characters
-undetcharweight set the weight for undetermined characters
-deletionweight set the weight for deletions

Short Exon/Intron Parameters
-dpminexonlen set the minimum exon length for the DP
-dpminintronlen set the minimum intron length for the DP
-shortexonpenal set the short exon penalty
-shortintronpenal set the short intron penalty

Special Parameters DP Algorithm
-wzerotransition set the zero transition weights window size
-wdecreasedoutput set the decreased output weights window size

Processing of “raw” spliced alignments
-leadcutoffsmode set the cutoffs mode for leading bases
-termcutoffsmode set the cutoffs mode for terminal bases
-cutoffsminexonlen set the cutoffs minimum exon length
-scoreminexonlen set the score minimum exon length

Advanced Similarity Filter Option
-minaveragessp set the minimum average splice site prob.

Spliced Alignment Filter
-minalignmentscore set the minimum alignment score
-maxalignmentscore set the maximum alignment score
-mincoverage set the minimum coverage
-maxcoverage set the maximum coverage
-intermediate stop after calc. of spliced alignments
-sortags sort alternative gene structures
-sortagswf set the weight factor for the sorting of AGSs
-exondistri show the exon length distribution
-introndistri show the intron length distribution
-refseqcovdistri show the reference sequence coverage distribution
-first set the maximum number of spliced alignments
-help show basic options and exit
-help+ show all options and exit
-version display version information and exit

A.3.1 Input Options

-genomic genseqfiles
genseqfiles denotes the input files containing the genomic sequences, for which the gene
prediction is to be computed.

134

-cdna cdnafiles
cdnafiles denotes the input files containing the cDNAs/ESTs which are spliced aligned to
the genomic sequences.

-protein proteinfiles
proteinfiles denotes the input files containing the protein sequences which are spliced aligned
to the genomic sequences.

The option -genomic is mandatory. Furthermore, at least one of the options -cdna and -protein

has to be used.

The names of the input files are separated by white spaces. We support the following formats for
the input files. They are recognized according to the first non-white space symbol in the file.

multiple FASTA format If the file begins with the symbol >, then this file is considered to be a
file in multiple FASTA format (i.e. it contains one or more sequences). Each line starting
with the symbol > contains the description of the sequence following it.

multiple EMBL/SWISSPROT format If the file begins with the string ID, then this file is con-
sidered to be a file in multiple EMBL format (i.e. containing one or more sequences, each
in EMBL-format). The information contained in the ID and DE-lines is taken as the de-
scription of the corresponding sequence. The EMBL format is identical to the SWISSPROT

format (w.r.t. the information we need to extract from such entries). So one can also use
files in multiple SWISSPROT format as input.

multiple GENBANK format If the file begins with the string LOCUS, then this file is considered
to be a file in multiple GENBANK format (i.e. containing one or more entries in GEN-
BANK-format). The information contained in the LOCUS and the DEFINITION-lines is
taken as the description of the corresponding sequence.

plain format If the file does not begin with the symbol > or the strings ID or LOCUS, then the
file is taken verbatim. That is, the entire file is considered to be the input sequence (white
spaces are not ignored).

A.3.2 Parameter File Options

If no BSSM parameter file is specified by one of the following two options, the generic splice
site model is used. BSSM stands for Bayesian Splice Site Model.

-species speciesname
Use precomputed BSSM parameter file for species with name speciesname, according to
Table A.3. gth searches for the file in the directory where it is run and in the directory
specified by the environment variable BSSMDIR. How to set BSSMDIR is explained in Sec-
tion A.2.

135

1 Standard
2 Vertebrate Mitochondrial
3 Yeast Mitochondrial
4 Mold Mitochondrial; Protozoan Mitochondrial; Coelenterate Mitochondrial; My-

coplasma; Spiroplasma
5 Invertebrate Mitochondrial
6 Ciliate Nuclear; Dasycladacean Nuclear; Hexamita Nuclear
9 Echinoderm Mitochondrial

10 Euplotid Nuclear
11 Bacterial
12 Alternative Yeast Nuclear
13 Ascidian Mitochondrial
14 Flatworm Mitochondrial
15 Blepharisma Macronuclear
16 Chlorophycean Mitochondrial
21 Trematode Mitochondrial
22 Scenedesmus Obliquus Mitochondrial
23 Thraustochytrium Mitochondrial

Table A.2: The possible codon translation table numbers and table names.

-bssm paramfileprefix
Load the BSSM parameter file paramfileprefix.bssm. If paramfileprefix.bssm is not in the
current directory, the directories given by BSSMDIR are searched for paramfile.bssm.

-scorematrix scorematrixname
Use the amino acid substitution matrix given in the file scorematrixname for spliced align-
ments with protein sequences. The default score matrix file is BLOSUM62. gth searches
for the file scorematrixname in the directory where it is run and in the directory specified
by the environment variable GTHDATADIR. How one can set GTHDATADIR is explained in
Section A.2.

-translationtable t

Set the codon translation table t used in the matching, DP, and output phase. t must be a
number in the range [1, 23] except for 7, 8, 17, 18, 19 and 20. Table A.2 gives the possible
numbers and their names. The codon translation tables were taken from the website ftp:
//ftp.ncbi.nih.gov/entrez/misc/data/gc.prt.

Option -species and option -bssm exclude each other. If two excluding options are used to-
gether, an error is thrown.

All BSSM parameter files have the extension .bssm.

It is highly recommended to use an adequate BSSM parameter file via the option -species or
-bssm, if one is available. Because it is most likely that using a BSSM parameter file for the

136

Species Filename Class GT GC AG
1 Homo sapiens human 2

√
−

√

2 Mus musculus mouse 2
√

−
√

3 Rattus norvegicus rat 7
√

−
√

4 Gallus gallus chicken 7
√

−
√

5 Drosophila drosophila 7
√

−
√

6 Caenorhabditis elegans nematode 7
√

−
√

7 Schizosaccharomyces pombe fission yeast 7
√

−
√

8 Aspergillus aspergillus 7
√

−
√

9 Arabidopsis thaliana arabidopsis 7
√ √ √

10 Zea mays maize 7
√ √ √

11 Medicago truncatula medicago 7
√

−
√

12 Oryza sativa rice 7
√ √ √

Table A.3: Available BSSM parameter files: GenomeThreader comes with BSSM parameter files
for twelve different species. All parameter files have the extension .bssm. Class denotes the
Bayesian classification model: Either a Bayesian two classification model or a Bayesian seven
classification model was used for calculation of the parameter (as described in [BXZ04]). A

√

in the GT, GC, and AG columns means that the corresponding BSSM file contains a model for
GT donor, GC donor, or AG acceptor sites, respectively.

species under consideration (or a cognate one) will yield in better gene predictions. If no such
file is available, feel free to contact us.

If possible, one should prefer -species over -bssm, because in this case additional internal
parameters can be adjusted for the given species.

A.3.3 Strand Direction Options

-f

Analyze only the forward strand of the genomic sequences.

-r

Analyze only the reverse strand of the genomic sequences.

Option -f and option -r exclude each other. If neither -f nor -r is used, both strands of the
genomic sequences are analyzed.

A.3.4 Genomic Sequence Positions Options

Positions in the genomic sequence begin with 1. The following options are available to specify
a region of the genomic sequence for which the gene prediction should be computed. They are

137

only applicable if exactly one genomic sequence is given.

-frompos i
Specify first position i of a genomic region to analyze. The parameter i must be a positive
integer.

-topos j
Analyze genomic sequence up to (and including) position j, whereas j must be a positive
integer.

-width w
Analyze only width w of genomic sequence, whereas w must be a positive integer.

If option -topos or -width are used, the option -frompos is required and the other way round,
that is, -topos and -width exclude each other. If the parameters do not specify a substring of
the genomic sequence, then an error is thrown.

Furthermore, if option -frompos is used the option -inverse is set automatically. This may lead
to a large memory consumption which can be avoided by putting the desired part of the genomic
sequence in a separate file and running gth without the options -frompos and -inverse.

A.3.5 Output Options

The following options concern the output of GenomeThreader:

-v

Be verbose, that is, give reports about the different steps as well as the resource require-
ments of the computation.

-xmlout

Shows the output in XML format. This can be useful, if one wants to postprocess the
output files.

-gff3out

Shows the output in GFF3 format. Either the spliced alignments (if option -intermediate

is used) or the consensus spliced alignments (if option -skipalignmentout is used) are
shown.

-md5ids

Show MD5 fingerprints as sequence IDs. This makes subsequent mapping of the annota-
tion to the actual sequences less error-prone.

-o outputfile
Redirect output to specified file outputfile.

138

-gzip

Compress the output file given by -o with gzip.

-bzip2

Compress the output file given by -o with bzip2.

-force

Forces writing to the output file outputfile given by -o. By default, writing to outputfile is only
performed if the file does not exist already.

-skipalignmentout

Skip the output of spliced alignments.

-mincutoffs

The complete spliced alignments are shown. That is, on either side of the alignment only
insertions and introns are cut off. This option has the same effect as using -leadcutoffsmode

MINIMAL -termcutoffsmode MINIMAL.

-showintronmaxlen maxintronlen
Sets the maximal length of an intron to be shown completely. If an intron is larger than
maxintronlen, it is shown in an abbreviated form. Set to 0 to show all introns completely
regardless of their lengths.

-minorflength o
Sets the minimum length of an open reading frame to be shown. Thereby, o denotes the
number of amino acids which must be an integer value greater 0. The default value is 64.

-startcodon

Require than an ORF must begin with a start codon.

-finalstopcodon

Require that the final ORF must end with a stop codon.

-showseqnums

Show the sequence numbers in output. That is, in the output lines describing the sequences
used in a spliced alignment an additional tag is added giving the number of the sequence in
the corresponding sequence file. Sequences are numbered from 0 on. This may be useful
when GenomeThreader output is postprocessed.

-pglgentemplate

Show genomic template in PGL lines. The default is yes. Switch off with -pglgentemplate no

for backward compatibility.

-gs2out

139

Output is shown in the format of the program GeneSeqer2 , which is a predecessor of
GenomeThreader. We do not recommend to use this option. It is available for compat-
ibility. For example, all wildcards (S, Y , W , R, K, V , B, D, H and M) of the input
sequences are replaced by the wildcard N .

If the options -o and -v are invoked together: The additional output produced by the option -v

is not redirected to the file outputfile given by the option -o. This allows to save the results of the
computation in a file while watching its progress on stdout.

A.3.6 Data Preprocessing

This options affect the preprocessing of the input data, for a detailed discussion see Section
A.12. This is done by calling mkvtree, which is part of the Vmatch package (see http:
//vmatch.de/), internally.

-maskpolyatails

When this option is used, all poly(A) tails and poly(T) heads in cDNA/EST reference
sequences are masked automatically. To be able to predict gene structures correctly it is
very important that poly(A) tails are masked!

-proteinsmap smapfile
Specifies the smap file smapfile used for the (automatic) index construction of protein files.
That is, internally mkvtree is called with option -smap smapfile (see the Vmatch man-
ual for details). If this option is not used, mkvtree is called internally with its option
-protein.

-noautoindex

This option disables the automatic construction of the necessary indices. That is, it is
assumed that they have been created manually beforehand using mkvtree. See Section
A.12 for details.

If you use gth with option -createindicesonly (instead of mkvtree) to construct the
indices, use the option -skipindexcheck and not this option.

-createindicesonly

This option stops the program flow after the indices have been created (that is, after the
preprocessing phase). This is useful if one wants to let multiple instances of Genome-
Threader run on the same data set simultaneously without interfering each other during
the index construction.

-skipindexcheck

This option skips the index checks. That is, it is not checked anymore if an index ex-
ists or is corrupted. This is useful if one lets multiple instances of GenomeThreader run
on indices created with -createindicesonly. This option speeds up the preprocessing

140

phase, especially if one uses multiple indices over a network file system. To ensure the
correct functioning of this option, one has to use the same type of input data (that is, us-
ing -cdna and/or -protein in a similar way) and use -maskpolyatails, -online, and
-inverse similarly in both index construction and splice alignment computation. If you
want to use this option together with -frompos, pass option -inverse to the corresponding
-createindicesonly call.

The options -maskpolyatails and -noautoindex as well as -proteinsmap and -noautoindex

exclude each other. Furthermore, the option -createindicesonly excludes using the option
-noautoindex or -skipindexcheck (and the other way around).

A.3.7 Options of the Similarity Filter

The following options are used to compute the similarity regions, that is, the regions in the
genomic sequence which are similar to the cDNAs/ESTs and/or proteins. This is done by calling
Vmatch (http://vmatch.de/) internally.

Vmatch matches a sequence file called query against a persistent index named subject of another
sequence file. When matching a cDNA/EST file against a genomic file, the default is to use the
cDNAs/ESTs as query and the genomic sequences as subject. For proteins it is the other way
round.

-minmatchlen `
Specify the length value ` for the initial matches used in the similarity filter for cDNA/EST
matching. The default value is 20.

-seedlengthm
Set the length m of the exact seeds used for cDNA/EST matching. m must be a positive
integer. The default value is 18.

-exdrop x
Specify the Xdrop-score x when extending a seed in both directions allowing for matches,
mismatches, insertions, and deletions. The argument x must be a positive integer smaller
or equal to 255. Matches are scored 2, mismatches are scored −1, and indels are scored
−2. The default value is 2. The extension procedure is further explained in the Vmatch
manual which can be found at http://vmatch.de/. The minimum length of the seeds
is specified by the argument to option -seedlength.

-prminmatchlen `
Specify the length value ` for the initial matches used in the similarity filter for protein
matching. The default value is 24.

-prseedlengthm
Set the lengthm of the exact seeds used for protein matching. mmust be a positive integer.
The default value is 10.

141

-prhdist h
Set the maximum Hamming distance h a protein match is allowed to have. The default
value is 4.

-online

Run online algorithms to compute initial matches in the similarity filter. In this case the
complete index is not needed, except for the original and the transformed input sequences
plus the descriptions. Therefore, this option is more space efficient. However, the online
algorithms usually run not as fast as the indexed based algorithms.

-inverse

This option only affects cDNA/EST files. Invert subject and query, i.e., use the genomic
files as query and the cDNA/EST files as subject.

-exact

Use exact matches in the similarity filter. If this option is invoked it is not possible to use
the options -seedlength and -exdrop, because it would make no sense.

-gcmaxgapwidth gw
Set the maximum gap width gw for global chains. This width is approximately the same as
the maximum intron length in the studies organism. The default is 1000000 which might
be a good guess for human. It is very important to set this parameter appropriately!

-gcmincoverage mc
Set the minimum coverage a global chain must achieve to be kept. That is, at least this
proportion of the according cDNA/EST/protein sequence must be covered by the global
chain. Thereby, mc is an integer denoting the minimum coverage in percent. The default is
50. This option has a great influences on the number of computed spliced alignments!

-paralogs

By default, the chaining returns all global chains with maximal score (usually 1), if their
coverage is higher than the argument mc to option -gcmincoverage. If this option is used,
all non-overlapping global chains with a coverage higher than mc are reported. This can
be helpful to detect paralogous genes. The total run time usually increases, because more
spliced alignments need to be computed.

-enrichchains

Enrich genomic sequence part of global chains with additional matches.

Using option -inverse without using option -online can lead to a large main memory con-
sumption.

142

A.3.8 Intron Cutout Technique Options

In this section the options used for the intron cutout technique are described.

-introncutout

Enable the intron cutout technique.

-fastdp

Use jump table to increase speed of DP calculation.

-autointroncutout s
Enables the automatic intron cutout technique. That is, the intron cutout technique is only
used if the dynamic programming matrix in the “normal” DP call would be larger than s
megabytes. Increasing s increases the computation time and decreases the probability of
wrong gene predictions.

-icinitialdelta d
Set the initial delta d used for intron cutouts. The parameter d must be a positive integer.
The default value is 50.

-iciterations i
Set the number of iterations i the initial delta d is increased by the increase delta di. Thereby,
the first iteration counts, too. That is, in the default setting of 2 d is increased once by di,
resulting in (up to) two iterations. The incrementation is only triggered if the intron cutout
technique did not succeed.

-icdeltaincrease di
Set the increment di for the delta used in the intron cutout technique.

-icminremintronlen r
Set the minimum remaining intron length r for an intron to be cut out. The parameter r
must be a positive integer. The default value is 10.

The options -introncutout and -autointroncutout exclude each other.

A.3.9 Advanced Options

This section describes the advanced options. To understand their semantics, a basic understand-
ing of the underlying spliced alignment algorithms is required. For the initial use of Genome-
Threader, this section can safely be skipped.

143

Options for U12-type introns

GenomeThreader has a model for U12-type introns built in. That is, donor sites which match
the consensus /[AG]TATCCTT (where / denotes the exon end and [AG] indicates A or G) [ZB03]
perfectly or with one mismatch get a high probability. The mismatch is only allowed in the last
6 bases of the consensus. See [ZB03] for details on U12-type introns and additional pointers to
the literature.

-nou12intronmodel

If this option is used, the U12-type intron model is disabled.

-u12donorprob p
Sets the probability p for perfectly matching U12-type donor sites. The default value is
0.99.

-u12donorprob1mism p
Sets the probability p for U12-type donor sites with exactly one mismatch. The default
value is 0.9.

In both cases, p must be a positive floating point value smaller or equal than 1.0.

Basic DP Algorithm Options

With these options all DP parameters can be changed.

-probies τe1
Sets the probability that the initial state is an exon state. τe1 must be a positive floating
point value smaller or equal than 1.0. The default value is 0.5.

-probdelgen P∆g

Sets the probability of a nucleotide deletion in the genomic sequence. τe1 must be a positive
floating point value smaller or equal than 1.0. The default value is 0.03.

-identityweight σ
Sets the weight for pairs of identical characters. σ must be a floating point value. The
default value is 2.0.

-mismatchweight µ
Sets the weight for mismatching characters. µ must be a floating point value. The default
value is −2.0.

-undetcharweight ν
Sets the weight for alignment positions involving undetermined characters, i.e., involving
character N . ν must be a floating point value. The default value is 0.0.

144

-deletionweight δ
Sets the weight for deletions. δ must be a floating point value. The default value is −5.0.

Short Exon/Intron Parameters

The following options allow to change the parameters for short exons and introns. If an exon is
shorter than the minimum exon length ξ, then a penalty for short exons χ is subtracted from the
actual weight. Analog, if an intron is shorter than the minimum intron length η, then a penalty
for short introns ψ is subtracted from the actual weight.

-dpminexonlength ξ
Sets the minimum exon length. ξ must be an integer value greater 0. The default value is
5.

-dpminintronlength η
Sets the minimum intron length. η must be an integer value greater 0. The default value is
50.

-shortexonpenal χ
Sets the short exon penalty. χ must be a floating point value greater or equal 0.0. The
default value is 100.0.

-shortintronpenal ψ
Sets the short intron penalty. ψ must be a floating point value greater or equal 0.0. The
default value is 100.0.

Special Parameters for the DP Algorithm

With these options, the more special DP Parameter can be changed.

-wzerotransition ϑ
Sets the window size for zero transition weights. ϑ must be an integer value greater or
equal to 0. The default value is 80.

-wdecreasedoutput ω
Sets the window size for decreased output weights. ω must be an integer value greater or
equal to 0. The default value is 80.

Options for Processing of “raw” Spliced Alignments

The following options affect the processing of “raw” spliced alignments after the dynamic pro-
gramming.

145

-leadcutoffsmode leadingmode
Set the mode for determination of the leading cutoffs. The mandatory argument leadingmode
can be RELAXED, STRICT, or MINIMAL. The default is RELAXED.

-termcutoffsmode terminalmode
Set the mode for determination of the terminal cutoffs. The mandatory argument terminalmode
can be RELAXED, STRICT, or MINIMAL. The default is STRICT.

-cutoffsminexonlen κ
Set the minimum length κ an exon must have, such that it is not cut off when the corre-
sponding cut off mode is STRICT. The default is 5.

-scoreminexonlen λ
Set the minimum length λ an exon must have, such that it is included in the computation
of the overall similarity score of a spliced alignment. The default is 50.

Spliced Alignment Filter

The spliced alignment filter controls which spliced alignments are stored in the internal set of
spliced alignment. That is, only these spliced alignments are shown or written to an output file
and are used to compute consensus spliced alignments.

When a spliced alignment is computed, its coverage is also determined. The coverage of a
spliced alignment is the maximum of the the genomic coverage and the reference coverage.
Thereby, the genomic coverage denotes the cumulative exon length divided by the length of the
genomic sequence part used for the dynamic programming. The reference coverage denotes the
cumulative exon length divided by the length of the reference sequence. If the genomic coverage
was maximal a G in shown in the output3. If the reference coverage was maximal a C (for
cDNA/EST based spliced alignments) or P (for protein based spliced alignments) is shown in the
output.

-minalignmentscore s
A spliced alignment must at least an alignment score of s.

-maxalignmentscore s
A spliced alignment is not allowed to have an alignment score higher than s.

-mincoverage c
A spliced alignment must at least a coverage of c.

-maxcoverage c
A spliced alignment is not allowed to have a coverage higher than c.

By default all computed spliced alignments are used.
3In the textual output as last part of the MATCH line and in the final XML output as the high type attribute.

146

Advanced Similarity Filter Option

-minaveragessp ζ
Sets the minimum average splice site probability. ζ must be a floating point value in the
interval [0.0, 1.0]. The default value is 0.5.

-duplicatecheck mode
Set the criterion used to check for spliced alignment duplicates. The mandatory argument
mode can be none, id, desc, seq, or both. The default is both.

With the option -duplicatecheck the “sameness” criterion of the duplicate check is set. The
duplicate check is designed to prevent duplicate alignments (that is, alignments from the “same”
cDNA/EST or protein sequence to the same genomic region on the same strand of a particular
genomic sequence). Duplicate alignments can occur for two reasons:

1. The chaining algorithm (which chains the matches before the actual spliced alignment
computation) produced two overlapping chains in the same genomic region which leads
to the same spliced alignments. This is a rather rare event, but it can happen from time to
time. For this reason alone, a duplicate check is needed, if we don’t want to see spliced
alignment duplications.

2. The same cDNA/EST or protein sequence was fed to GenomeThreader more than once.
The duplicate check should prevent that it appears in the output multiple times and the
“sameness” criterion used to compare the sequences depends on the mode supplied to
-duplicatecheck.

The different duplicate check modes work as follows:

none: No duplicate check is done whatsoever. Only useful for testing purposes.

id: The duplicate check is based on the “ID” of the cDNA/EST or protein sequence. The
“ID” is parsed from the sequence description as follows: leading ’gi|’, ’SQ;’, ’(gi|’ ,
’ref|’ are dropped and the part until the first ’:’, ’|’, ’ ’ or ’\t’ is stored. This can cause
problems if the description is empty or starts with a prefix that is not recognized. This was
the behavior up to (and including) version 1.4.6.

desc: In contrast to the ID mode, the complete description is used to compare sequences. This
can cause problem if the description is empty or ambiguous.

seq: The actual sequences is used to determine, if two cDNA/EST or protein sequences are
the same. This would lead to the exclusion of cDNA/EST or protein sequences where
the actual sequence equals but the descriptions differ (for example, equal ESTs sequenced
independently from another and therefore with different descriptions).

both: This mode combines the desc and seq modes. That is, a cDNA/EST or protein se-
quences is only considered equal to another one, if the complete descriptions and the actual
sequences are equal. This is the default (from version 1.4.7 onwards).

147

Interrupt Option

With the following option it is possible to perform the incremental updates which are described
in Section A.4.

-intermediate

If this option is invoked, the dataflow of gth is interrupted after the output of the spliced
alignments.

This option implies option -xmlout since the intermediate results are stored in an XML format.
You should save the intermediate results using option -o instead of redirecting them to a file,
because this allows for an internal check which ensures that the intermediate output reflects
the spliced alignments stored in main memory. Do not process the intermediate XML output
yourself, use the “normal” XML output instead!

Options for Postprocessing of Predicted Gene Locations

With the following options it is possible to postprocess the predicted gene locations (PGLs), also
referred to as consensus spliced alignments.

-sortags

If this option is invoked, the alternative gene structures (AGSs) of every PGL are sorted
according to the so-called overall score. Every AGS has an exon score for every contained
exon and a donor and a acceptor site probability for every contained intron (if any). The
overall score o of an AGS is computed as follows:

• If the AGS consists of exactly one exon, the overall score simply equals the exon
score.

• Otherwise, the average exon score e and the average spliced site probability s is
calculated. Then

o =
w · e+ s

w + 1.0
,

whereas w is the weight factor (see option below).

-sortagswf wf
Set the weight factor wf for the calculation of the overall score (see option above). wf must
be a floating point value larger than 0.0. If wf is set to a value larger than 1.0, the average
exon score gets more weight in the calculation of the overall score. If wf is set to a value
smaller than 1.0, the average splice site probability gets more weight. The default value is
1.0.

If option -sortagswf is used, option -sortags is required.

148

Statistical Options

In this section the options are described which yield in the output of additional statistical infor-
mation at the end of a program run.

-exondistri

Show the exon length distribution at the end of the gth output.

-introndistri

Show the intron length distribution at the end of the gth output. This option might be
useful to get a feeling for a good setting of the option -gcmaxgapwidth.

-refseqcovdistri

Show the reference sequence coverage distribution at the end of the gth output. This
option might be useful to get a feeling for a good setting of the option -gcmincoverage.

Miscellaneous Options

-first n
The positive integer n specifies the maximum number of computed spliced alignments per
genomic DNA input. The default value is 0, which leads to the computation of all sensible
spliced alignments.

-help

Show a summary of the basic options. That is, only the most common options. Afterwards
terminate.

-help+

Show a summary of all options and terminate.

-version

Show version number and built-date of GenomeThreader. Afterwards terminate.

If one of the last three options is used, gth terminates with exit code 0 after showing the corre-
sponding output.

A.4 gthconsensus: Incremental Updates

With the help of gthconsensus one can perform so-called incremental updates of cDNA/EST
and protein databases4:

4To simplify the explanation, in the following we mention only cDNA/EST databases, but everything said also
applies to protein databases.

149

In a typical application of gth one uses a cDNA/EST database to annotate a genomic sequence.
As a result of the ongoing sequencing efforts it is very likely that a few weeks after such an
annotation the used cDNA/EST database is not up-to-date anymore, because new suitable cD-
NAs/ESTs are available. The conventional approach was to rerun the whole annotation process
using an updated database. This has the drawback that one repeats a lot of spliced alignment cal-
culations of the cDNAs/ESTs which have already been in the database before the update while
computing typically only a few new spliced alignments of the added cDNAs/ESTs.

This observation leads to the idea to split the annotation process into two parts, such that one can
reuse the already computed spliced alignments (that is, to perform incremental updates):

1. In one part one performs the computations which are independent of each other only once
and stores the intermediate results.

2. In the other part the stored results are used to perform the calculations which depend on
one another.

The first part refers to the calculation of spliced alignments (or predicted gene structures) and is
realized in gth by the option -intermediate (see Section A.3.9). If these results are stored in
a file, we call it an intermediate file.

The second part refers to the calculation of consensus spliced alignments (or predicted gene lo-
cations) and is realized by the program gthconsensus, which processes a set of intermediate
files. In the following section the application of gthconsensus is explained. An example
session using gth -intermediate and gthconsensus is shown in Section A.13.

A.4.1 The Options of gthconsensus

gthconsensus is called as follows:

gthconsensus [options] intermediate files

Here intermediate files denotes a list of one or more files containing XML intermediate out-
put produced by gth invocations using the option -intermediate. The options available for
gthconsensus are a subset of the options available for gth. To find out which options are
included in the subset try:

gthconsensus -help

Basically all options are included into gthconsensus which make sense for the purpose of it.
If you think a useful option is missing in gthconsensus, feel free to contact the author.

150

A.5 gthsplit: Split Intermediate Files

With the help of gthsplit one can split GenomeThreader output files containing intermediate
results into multiple sets according to different criteria. gthsplit is called as follows:

gthsplit [options] intermediate files

If no intermediate file is given as input, stdin is used instead. This allows to use gthsplit in a
UNIX pipe.

gthsplit offers the following options:

-alignmentscore

If this option is used, the input files are split according to the overall alignment score (scr).

-coverage

If this option is used, the input files are split according to the coverage (cov).

-range <
Set the percentage range < used to create the sets. Each set contains the spliced alignments
where the corresponding percentage (i.e., the alignment score or the coverage) is greater
or equal then the lower set bound and lower then the higher bound. Spliced alignments
with a percentage of 100% go into the last set. <must divide 100 without rest. The default
range is 5.

Furthermore, the options -v, -gzip, -bzip2, -force, and -help are available and have the same
semantic as in gth.

The spliced alignment filter options described in Section A.3.9 can also be used to reduce the set
of spliced alignment accordingly before splitting it.

A.5.1 Applying gthsplit

The following examples show how to use gthsplit and its output:

$ gthsplit -alignmentscore -v -gzip U89959.inter.gz
$ process all intermediate output files
$ process file 1/1: U89959.inter.gz
$ split file created: U89959.inter.scr70-75.gz (size=1)
$ split file created: U89959.inter.scr80-85.gz (size=11)
$ split file created: U89959.inter.scr85-90.gz (size=18)
$ split file created: U89959.inter.scr90-95.gz (size=25)
$ split file created: U89959.inter.scr95-100.gz (size=144)

151

A.5.2 The Script gthsplit2dim.sh

With the shell script gthsplit2dim.sh on can split up an intermediate file in both dimen-
sions (i.e., along the alignment score and the coverage) at the same time. It offers the following
options:

-r <
Same as -range when gthsplit is used.

-f

Same as -force when gthsplit is used.

-v

Same as -v when gthsplit is used.

-g

Same as -gzip when gthsplit is used.

-b

Same as -bzip2 when gthsplit is used.

A.5.3 Applying gthsplit2dim.sh

The following example shows how to use gthsplit2dim.sh and its output:

$ gthsplit2dim.sh -r 10 -v -g ceres_full.inter.gz
$ split according to alignment score
$ process all intermediate output files
$ process file 1/1: ceres_full.inter.gz
$ split file created: ceres_full.inter.scr70-80.gz (size=30)
$ split file created: ceres_full.inter.scr80-90.gz (size=102)
$ split file created: ceres_full.inter.scr90-100.gz (size=1310)
$ split according to coverage

A.6 gthgetseq: Get FASTA Sequences

With the help of gthgetseq one can get the used FASTA sequences from GenomeThreader
output files containing intermediate results. That is, all sequences which are represented in
the intermediate files are printed in FASTA format on stdout. Strictly speaking, the sequences
are not extracted from the intermediate file, but from the corresponding input sequence files.
gthgetseq is called as follows:

gthsplit [options] -getcdna | -getprotein | -getgenomic intermediate files

152

If no intermediate file is given as input, stdin is used instead. This allows to use gthgetseq in
a UNIX pipe. gthgetseq offers the following options:

-getcdna

Get cDNA/EST sequences used in the spliced alignments contained in the given interme-
diate files.

-getcdnacomp

Get cDNA/EST sequences not used in the spliced alignments contained in the given inter-
mediate files. That is, the complement of -getcdna.

-getprotein

Get protein sequences used in the spliced alignments contained in the given intermediate
files.

-getproteincomp

Get protein sequences not used in the spliced alignments contained in the given intermedi-
ate files. That is, the complement of -getprotein.

-getgenomic

Get genomic sequences used in the spliced alignments contained in the given intermediate
files.

-getgenomiccomp

Get genomic sequences not used in the spliced alignments contained in the given interme-
diate files. That is, the complement of -getgenomic.

Furthermore, the options -gzip, -bzip2, and -help are available and have the same semantic as
in gth.

The spliced alignment filter options described in Section A.3.9 can also be used to extract se-
quences only from spliced alignments which pass the filter.

At least one of the options -getcdna, -getcdnacomp, -getprotein, -getproteincomp, -getgenomic,
-getgenomiccomp is mandatory.

A.6.1 Applying gthgetseq

Lets assume we have an intermediate file called ceres full.inter.gz. To get all cDNAs
which led to a spliced alignment with a maximum alignment score of 0.75, we would issue the
following command:

$ gthgetseq -getcdna -gzip -maxalignmentscore 0.75 ceres_full.inter.gz
>7894
accactacaaccaccgcaacaaccaccaaaaaccctctcaaagaaatttcttttttttct

153

tactttcttggtttgtcaaatatggtcagccatccaatggagaaagctgcaaatggtgcg
tctgcgttggaaacgcagacgggtgagttagatcagccggaacggcttcgtaagatcata
tcggtgtcttccattgccgccggtgtacagttcggttgggctttacagttatctctgttg
actccttacgtgcagctactcggaatcccacataaatgggcttctctgatttggctctgt
ggtccaatctccggtatgcttgttcagcctatcgtcggttaccacagtgaccgttgcacc
tcaagattcggccgtcgtcgtcccttcatcgtcgctggagctggtttagtcaccgttgct
gttttccttatcggttacgctgccgatataggtcacagcatgggcgatcagcttgacaaa
ccgccgaaaacgcgagccatagcgatattcgctctcgggttttggattcttgacgtggct
aacaacaccttacaaggaccctgcagagctttcttggctgatttatcagcagggaacgct
aagaaaacgcgaaccgcaaacgcgtttttctcgtttttcatggcggttggaaacgttttg
ggttacgctgcgggatcttacagaaatctctacaaagttgtgcctttcacgatgactgag
tcatgcgatctctactgcgcaaacctcaaaacgtgttttttcctatccataacgcttctc
ctcatagtcactttcgtatctctctgttacgtgaaggagaagccatggacgccagagcca
acagccgatggaaaagcctccaacgttccgtttttcggagaaatcttcggagctttcaag
gaactaaaaagacccatgtggatgcttcttatagtcactgcactaaactggatcgcttgg
ttccctttccttctcttcgacactgattggatgggccgtgaggtgtacggaggaaactca
gacgcaaccgcaaccgcagcctctaagaagctttacaacgacggagtcagagctggtgct
ttggggcttatgcttaacgctattgttcttggtttcatgtctcttggtgttgaatggatt
ggtcggaaattgggaggagctaaaaggctttggggtattgttaacttcatcctcgccatt
tgcttggccatgacggttgtggttacgaaacaagctgagaatcaccgacgagatcacggc
ggcgctaaaacaggtccacctggtaacgtcacagctggtgctttaactctcttcgccatc
ctcggtatcccccaagccattacgtttagcattccttttgcactagcttccatattttca
accaattccggtgccggccaaggactttccctaggtgttctgaatctagccattgtcgtc
cctcagatggtaatatctgtgggaggtggaccattcgacgaactattcggtggtggaaac
attccagcatttgtgttaggagcgattgcggcagcggtaagtggtgtattggcgttgacg
gtgttgccttcaccgcctccggatgctcctgccttcaaagctactatgggatttcattga
attttagcagtggttgtttggctctctttctctcataaaacagtagtgttgtgcaaatcc
tacataaagaaaaaagaaaaggaaattaaactcattgggttggtttgtattttacctaaa
cccacgaagttcctttttctttttgtaactcaatttaaatttggagtatattttactttt
tgc

To store the output in a file cdna, one can redirect the output like this:

$ gthgetseq -getcdna -gzip -maxalignmentscore 0.75 ceres_full.inter.gz > cdna

A.7 gthfilestat: Show Statistics

gthfilestat shows statistics about spliced alignments in GenomeThreader output files con-
taining intermediate results. This might be helpful in getting an overview of a set of intermediate
files, before they are processed further, for example, with gthsplit.

gthfilestat [options] intermediate files

If no intermediate file is given as input, stdin is used instead. This allows to use gthfilestat
in a UNIX pipe.

Besides the options -v and -help, the spliced alignment filter options described in Section A.3.9
are available. The semantic is the same as in gth.

154

A.7.1 Applying gthfilestat

The following example shows how to use gthfilestat and its output:

$ gthfilestat ceres_sub.inter.gz
spliced alignment alignment score distribution:

spliced alignment coverage distribution:

memory statistics:
5 spliced alignments have been stored
5 predicted gene locations have been stored

date finished: 2011-07-30 22:13:04

A.8 gthbssmfileinfo: BSSM File Information

With gthbssmfileinfo one can print out information about BSSM files. It is called as
follows:

gthbssmfileinfo bssm file

gthbssmfileinfo uses the directories specified by the environment variable BSSMDIR to
look for the specified bssm file. For example, printing information about the human BSSM file
works like this:

$ gthbssmfileinfo human
$ the specified BSSM parameter file contains the following models:
$ GT donor sites = True (two-class)
$ GC donor sites = False
$ AG acceptor sites= True (two-class)

A.9 gthbssmtrain: Train BSSMs

gthbssmtrain is called as follows:

gthbssmtrain [options] -seqfile(s)|-regionmapping arg GFF3 file

-outdir dir
Specify the name of the output directory to which the training files are written. The default
is training data.

-gcdonor arg
Extract training data for GC donor sites. The default is yes.

155

-filtertype type
Set type of features used for filtering (usually exon or CDS). The default is exon.

-goodexoncount n
Set the minimum number n of good exons a feature must have to be in the training data.
The default is 1.

-cutoff s
Set the minimum score s an exon must have to count towards the “good exon count” (exons
without a score count as good). The default is 1.0.

-extracttype type
Set type of features to to be extracted as exons (usually exon or CDS). The default is CDS.

-seqfile file
Set the sequence file from which to extract the features.

-seqfiles file ...
Set the sequence files from which to extract the features. The list of sequence files can be
terminated with --.

-matchdesc arg
Match the sequence descriptions for the desired sequence IDs. The default is no.

-usedesc arg
Use sequence descriptions to map the sequence IDs (in the GFF3 file) to actual sequence
entries. If a description contains a sequence range position (for example, III:1000001..2000000),
the first part is used as sequence ID (’III’) and the first range as offset (’1000001’). The
default is no.

-regionmapping file
Set file containing sequence-region to sequence file mapping.

-seed s
Set seed for random generator manually. 0 generates a seed from the current time and the
process id. The default is 0.

One of the options -seqfile, -seqfiles, or -regionmapping is mandatory. The mandatory
argument GFF3 file must contain the annotation used to train the BSSM in GFF3 format.

A.9.1 Applying gthbssmtrain

The following example shows how to use gthbssmtrain.

At first we have to create the annotation data which can be used to train a BSSM. For this pur-
pose, gth or gthconsensus is called with the options -gff3out and -skipalignmentout.

156

Furthermore, the option -md5ids should be used to make the subsequent sequence ID mapping
of the GFF3 file used in gthbssmtrain easier and less error prone. The annotation should
be of high quality (that is, all gene predicted gene structures seem to be correct) and contain at
least a couple of hundred splice sites. A gth call could look like this (we store the result in a file
called arab.gff3):

$ gth -genomic U89959_genomic.fas -cdna U89959_ests.fas -gff3out -skipalignmentout -md5ids

Afterwards we can train the BSSM with gthbssmtrain using the following command. Thereby,
we supply the genomic sequence file used in the annotation to the option -seqfile. If more than
one genomic sequence file was used, the option -seqfiles can be used. Because we used
-md5ids when we produced the GFF3 file, the mapping from sequence ID works automatically:

$ gthbssmtrain -seqfile U89959_genomic.fas arab.gff3
gt-ag: 94.33% (n=133)
gc-ag: 0.71% (n=1)

The output of gthbssmtrain shows you how many gt-ag and gc-ag splice sites have
been processed. If this number looks wrong, probably something is wrong with the sequence ID
mapping. Because we did not set option -outdir, the training data is stored in the default output
directory training data.

We can now use gthbssmbuild (which is described in detail in the next Section) to build the
actual BSSM file arab.bssm. We use only the options -gtdonor and -agacceptor, because
there were not enough donor sites that it would make sense to build the GC donor model into the
BSSM file with -gcdonor:

$ gthbssmbuild -gtdonor -agacceptor -datapath training_data -bssmfile arab.bssm

We now have a new BSSM file named arab.bssm which can be used in subsequent gth or
gthconsensus calls with the option -bssm (without the .bssm suffix), like this:

$ gth -bssm arab -genomic U89959_genomic.fas -cdna U89959_ests.fas

A.10 gthbssmbuild: Build BSSM files

With the help of gthbssmbuild one can build a BSSM file from a directory tree containing the
training data. The training data is usually generated with gthbssmtrain which is described
in the previous section.

gthbssmbuild is called as follows:

gthsplit [options] -databasedir dir -bssmfile file

157

-bssmfile file
Specify the name of the BSSM file file to store parameters in.

-datapath dir
Specify root of species-specific training data directory tree dir.

-gtdonor

Train the GT donor model.

-gcdonor

Train the GC donor model.

-agacceptor

Train the AG acceptor model.

Furthermore, the options -gzip and -help are available and have the same semantic as in gth.

The options -bssmfile and -datapath are mandatory. Furthermore, at least one of the options
-gtdonor, -gcdonor, and -agacceptor is required.

A.10.1 The BSSM Training Data Directory

A BSSM training data directory has up to three subdirectories named GT donor, GC donor,
and AG acceptor which contain the training data files for the corresponding models. Each
such directory must contain seven files named F0, F1, F2, Fi, T0, T1, and T2 (with an addi-
tional suffix .gz if they are compressed). For example, the directory tree containing the com-
pressed training data for rice looks like this:

$ ls -R rice
AG acceptor/ GC donor/ GT donor/

rice/AG acceptor:
F0.gz F1.gz F2.gz Fi.gz T0.gz T1.gz T2.gz

rice/GC donor:
F0.gz F1.gz F2.gz Fi.gz T0.gz T1.gz T2.gz

rice/GT donor:
F0.gz F1.gz F2.gz Fi.gz T0.gz T1.gz T2.gz

A.11 gthclean.sh: Remove Indices

The script gthclean.sh removes all automatically and manually constructed indices in the
directory where it is called. Furthermore, all files ending with .polya and .polya.info

158

created by using the option -maskpolyatails of gth are removed. Do not use the endings
removed by the script, otherwise the corresponding files will be deleted when gthclean.sh
is called! The script looks as follows:

A.12 Construction of the Indices

GenomeThreader uses an persistent index to determine which spliced alignments have to be
computed during an initial matching and chaining phase called similarity filter.

If gth is called the first time on a set of input files (without using the option -noautoindex),
these indices are constructed automatically. In subsequent calls it is recognized that these indices
already exist and the construction phase is skipped. That is, the index construction is completely
transparent to the user, the only difference is the reduced execution time when the index already
exists.

If the option -noautoindex is used, it is assumed that the indices already exist. They have to be
created by mkvtree beforehand. It is part of the Vmatch software suite, which is available on
the website http://vmatch.de. On this website you can also find a manual for mkvtree.
For DNA files, indices are constructed as follows (the file is called dna.fasta):

$ mkvtree -v -dna -allout -pl -db dna.fasta

And for protein files like this (the filename is protein.fasta):

$ mkvtree -v -protein -allout -pl -db protein.fasta

If you use DNA reference files, you have to construct the index for the genomic files, if option
-inverse is not used. And for the reference files, if option -inverse is used. If you use pro-
tein reference files, the index has to be constructed for the reference files, no matter if option
-inverse is used or not. You can mix both types of input files.

Input files can be compressed with gzip. In this case they must end with .gz.

A.13 Tutorial

In this section we give an tutorial on how to use GenomeThreader by presenting some typi-
cal uses of GenomeThreader. On our walk through the different examples, the most important
features and options of GenomeThreader are introduced.

159

A.13.1 Mapping a Single EST on the A. thaliana Chromosome 1

We invoke gth in the simplest possible way, just using two mandatory options -genomic and
-cdna to map the EST with gi number 19875482 against the first chromosome of Arabidopsis
thaliana (gi 42592260). The EST is supplied as file AU236313.gbk.gz in GENBANK for-
mat and the chromosome in FASTA format (file NC 003070.fna.gz). Both files have been
compressed with the program gzip beforehand, which is indicated by the ending .gz.

$ gth -genomic NC_003070.fna.gz -cdna AU236313.gbk.gz
$ GenomeThreader 1.4.9 (2011-07-02 14:50:10)
$ Date run: 2011-07-30 22:13:35
$ Arguments: -genomic NC_003070.fna.gz -cdna AU236313.gbk.gz

**
EST Sequence: file=AU236313.gbk.gz, strand=+, description=AU236313 AU236313 RAFL14 Arabidopsis thaliana cDNA clone RAFL14-87-E12 5’,

1 GCGTGTTGTT AAAGAGCTCA CTAGTTGGGT GATTTATTCA GAGGAGGATC CGGAAGCTCA
61 ACAAAGATAT TACTATTGGT CTTATCCAGC GTGAGTTGCT TAGCCTAGCG GAGTACAATG
121 TCCACATGGC GAAGCATCTT GATGGAGGGA GAAACAAGAC CGCAACTGAC TTTGCTATTT
181 CTCTACTCCA ATCCTTGGTC ACTGAGGAGT CNAGTGTCAT TTNNTAG

Genomic Template: file=NC_003070.fna.gz, strand=+, from=382240, to=383395, description=gi|42592260|ref|NC_003070.5| Arabidopsis thaliana chromosome 1, complete sequence

Predicted gene structure:

Exon 1 382540 382567 (28 n); cDNA 1 28 (28 n); score: 1.000
Intron 1 382568 382802 (235 n); Pd: 0.050 (s: 0), Pa: 0.050 (s: 0.95)
Exon 2 382803 382929 (127 n); cDNA 29 156 (128 n); score: 0.980
Intron 2 382930 383029 (100 n); Pd: 0.050 (s: 1.00), Pa: 0.050 (s: 1.00)
Exon 3 383030 383100 (71 n); cDNA 157 227 (71 n); score: 0.944

MATCH 42592260+ AU236313+ 0.967 226 0.996 C
PGS_42592260+_AU236313+ (382540 382567,382803 382929,383030 383100)

Alignment (genomic DNA sequence = upper lines):

GCGTGTTGTT AAAGAGCTCA CTAGTTGGGT ATGTTTACAA CCTTTTCAAG ATTTCACTTC 382599
|||||||||| |||||||||| ||||||||
GCGTGTTGTT AAAGAGCTCA CTAGTTGG.. 28

GCTGATGTGC TTTGTTCAGT TACTTCTCCA TTAATTTGTC ACTATTTCTG TCAGAACACA 382659

.......... 28

TAGGATAACA CATATCATAT AAGTGCTAGG TCGAGTCTGT TTCCTGTAGT TGGAGCCTAT 382719

.......... 28

CCTCAACTGG TTATAGATAC TAGATTTGTT TCTTTGGTAT TTTTAGTTAT AATTAATTAT 382779

.......... 28

CTTTCTTCAA ACTTTTGACA CAGGTGATTT ATTCAGAGGA GGAT-CGGAA GCTCAACAAA 382838
||||||| |||||||||| |||| ||||| ||||||||||

..........GTGATTT ATTCAGAGGA GGATCCGGAA GCTCAACAAA 65

GATATTACTA TTGGTCTTAT CCAGCGTGAG TTGCTTAGCC TAGCGGAGTA CAATGTCCAC 382898

160

|||||||||| |||||||||| |||||||||| |||||||||| |||||||||| ||||||||||
GATATTACTA TTGGTCTTAT CCAGCGTGAG TTGCTTAGCC TAGCGGAGTA CAATGTCCAC 125

ATGGCGAAGC ATCTTGATGG AGGGAGAAAC AGTATGCTGA ATTGCTTAAC CTTTGTTGAT 382958
|||||||||| |||||||||| |||||||||| |
ATGGCGAAGC ATCTTGATGG AGGGAGAAAC A......... 156

GTCCTTGTGT GGTAACATTC TTTTTTTGTT TTGGCTAGTG AACTTGTTTT AACAAGTTGT 383018

.......... 156

TTGTTACGCA GAGACCGCAA CTGACTTTGC TATTTCTCTA CTCCAATCCT TGGTCACTGA 383078
||||||||| |||||||||| |||||||||| |||||||||| ||||||||||

.......... .AGACCGCAA CTGACTTTGC TATTTCTCTA CTCCAATCCT TGGTCACTGA 205

GGAGTCGAGT GTCATTTCAG AG 383100
|||||| ||| ||||||| ||
GGAGTCNAGT GTCATTTNNT AG 227

--

Predicted gene locations (1):

PGL 1 (+ strand): 382540 383100
AGS-1 (382540 382567,382803 382929,383030 383100)
SCR (e 1.000 d 0.050 a 0.050,e 0.980 d 0.050 a 0.050,e 0.944)

Exon 1 382540 382567 (28 n); score: 1.000
Intron 1 382568 382802 (235 n); Pd: 0.050 Pa: 0.050

Exon 2 382803 382929 (127 n); score: 0.980
Intron 2 382930 383029 (100 n); Pd: 0.050 Pa: 0.050

Exon 3 383030 383100 (71 n); score: 0.944

PGS (382540 382567,382803 382929,383030 383100) AU236313+

3-phase translation of AGS-1 (+strand):

. . . : . . .
382540 GCGTGTTGTTAAAGAGCTCACTAGTTGG : GTGATTTATTCAGAGGAGGATCGGAAGCTCAA

A C C * R A H * L : G D L F R G G S E A Q
R V V K E L T S W : V I Y S E E D R K L N
V L L K S S L V G : * F I Q R R I G S S

.
382835 CAAAGATATTACTATTGGTCTTATCCAGCGTGAGTTGCTTAGCCTAGCGGAGTACAATGT

Q R Y Y Y W S Y P A * V A * P S G V Q C
K D I T I G L I Q R E L L S L A E Y N V

T K I L L L V L S S V S C L A * R S T M

. . . . : . .
382895 CCACATGGCGAAGCATCTTGATGGAGGGAGAAACA : AGACCGCAACTGACTTTGCTATTTC

P H G E A S * W R E K Q : D R N * L C Y F
H M A K H L D G G R N : K T A T D F A I S

S T W R S I L M E G E T : R P Q L T L L F

.

161

383055 TCTACTCCAATCCTTGGTCACTGAGGAGTCGAGTGTCATTTCAGAG
S T P I L G H * G V E C H F R
L L Q S L V T E E S S V I S E

L Y S N P W S L R S R V S F Q

Maximal non-overlapping open reading frames (>= 64 codons)

>42592260+_PGL-1_AGS-1_PPS_1 (382541 382567,382803 382929,383030 383100) (frame ’1’; 225 bp, 75 residues)
1 RVVKELTSWV IYSEEDRKLN KDITIGLIQR ELLSLAEYNV HMAKHLDGGR NKTATDFAIS
61 LLQSLVTEES SVISE

$ general statistics:
$ 1 chain has been computed
$
$ memory statistics:
$ 1 spliced alignments have been stored
$ 1 predicted gene locations have been stored
$ 0 megabytes was the average size of the backtrace matrix
$ 2 backtrace matrices have been allocated
$
$ date finished: 2011-07-30 22:13:58

In the first line (starting with symbol $) of all examples, the user input consisting of the called
program plus the arguments are shown. Output lines starting with the symbol $ give you useful
information about the job — which parameters have been used is shown in the beginning and
various statistical information is output at the end. In our example call an additional warning was
issued after the parameter section complaining about the missing usage of the option -species

which specify a so-called BSSM5 parameter file. These files contain statistical information which
makes it possible to “get the splice sites right” more easily (this is an oversimplification, [BXZ04]
provides a good starting point to the theory behind this). So we execute the job again with the
correct splice site file and the option -v which gives us additional information about the run:

$ gth -species arabidopsis -genomic NC_003070.fna.gz -cdna AU236313.gbk.gz -v
$ GenomeThreader 1.4.9 (2011-07-02 14:50:10)
$ Date run: 2011-07-30 22:13:58
$ Arguments: -species arabidopsis -genomic NC_003070.fna.gz -cdna AU236313.gbk.gz -v
$ make sure all necessary indices exist
$ make sure the necessary indices of all genomic input files exist
$ check the following file for index:
$ NC_003070.fna.gz
$ index exists
$ make sure the necessary indices off all reference input files exist
$ check the following file for index:
$ AU236313.gbk.gz
$ index exists
$ invoking similarity filter
$ compute direct matches
$ call vmatch to compute matches
args=-d -v -l 20 -seedlength 18 -exdrop 2 -q AU236313.gbk.gz.dna /Users/gordon/work/dissertation/NC_003070.fna.gz.dna
$ file=NC_003070.fna.gz 30867397 30432563
$ databaselength=30432562
$ alphabet "aAcCgGtTuUnsywrkvbdhmNSYWRKVBDHM" (size 32) mapped to "acgtn" (size 5)

5BSSM stands for Bayesian Splice Site Model

162

$ NC_003070.fna.gz.dna.tis read
$ NC_003070.fna.gz.dna.suf read
$ NC_003070.fna.gz.dna.lcp read
$ NC_003070.fna.gz.dna.llv read
$ NC_003070.fna.gz.dna.sti1 read
$ NC_003070.fna.gz.dna.bck read
$ file=AU236313.gbk.gz 2488 227
$ databaselength=226
$ alphabet "aAcCgGtTuUnsywrkvbdhmNSYWRKVBDHM" (size 32) mapped to "acgtn" (size 5)
$ AU236313.gbk.gz.dna.tis read
$ AU236313.gbk.gz.dna.des read
$ AU236313.gbk.gz.dna.sds read
$ AU236313.gbk.gz.dna.ssp read
matches are reported in the following way
l(S) n(S) r(S) t l(Q) n(Q) r(Q) d e s i
where:
l = length
n = sequence number
r = relative position
t = type (D=direct, P=palindromic)
d = distance value (negative=hamming distance, 0=exact, positive=edit distance)
e = E-value
s = score value (negative=hamming score, positive=edit score)
i = percent identity
(S) = in Subject
(Q) = in Query
$ find direct substring matches against query (maximal exact matches)
$ overall space peak: main=0.02 MB (0.00 bytes/symbol), secondary=214.19 MB (7.38 bytes/symbol)
$ d=+, compute chains for bucket 1/1 (matches in bucket=4)
$ sort global chains according to reference sequence coverage
$ calculate spliced alignment for every chain
$ d=+, compute spliced alignment, genseq=+, chain=1/1, refseq=+
$ compute palindromic matches
$ call vmatch to compute matches
args=-p -v -l 20 -seedlength 18 -exdrop 2 -q AU236313.gbk.gz.dna /Users/gordon/work/dissertation/NC_003070.fna.gz.dna
$ file=NC_003070.fna.gz 30867397 30432563
$ databaselength=30432562
$ alphabet "aAcCgGtTuUnsywrkvbdhmNSYWRKVBDHM" (size 32) mapped to "acgtn" (size 5)
$ NC_003070.fna.gz.dna.tis read
$ NC_003070.fna.gz.dna.suf read
$ NC_003070.fna.gz.dna.lcp read
$ NC_003070.fna.gz.dna.llv read
$ NC_003070.fna.gz.dna.sti1 read
$ NC_003070.fna.gz.dna.bck read
$ file=AU236313.gbk.gz 2488 227
$ databaselength=226
$ alphabet "aAcCgGtTuUnsywrkvbdhmNSYWRKVBDHM" (size 32) mapped to "acgtn" (size 5)
$ AU236313.gbk.gz.dna.tis read
$ AU236313.gbk.gz.dna.des read
$ AU236313.gbk.gz.dna.sds read
$ AU236313.gbk.gz.dna.ssp read
matches are reported in the following way
l(S) n(S) r(S) t l(Q) n(Q) r(Q) d e s i
where:
l = length
n = sequence number
r = relative position
t = type (D=direct, P=palindromic)
d = distance value (negative=hamming distance, 0=exact, positive=edit distance)
e = E-value
s = score value (negative=hamming score, positive=edit score)
i = percent identity
(S) = in Subject
(Q) = in Query
$ find palindromic substring matches against query

163

$ overall space peak: main=29.04 MB (1.00 bytes/symbol), secondary=214.19 MB (7.38 bytes/symbol)
$ calculate spliced alignment for every chain
$ output spliced alignments

**
EST Sequence: file=AU236313.gbk.gz, strand=+, description=AU236313 AU236313 RAFL14 Arabidopsis thaliana cDNA clone RAFL14-87-E12 5’,

1 GCGTGTTGTT AAAGAGCTCA CTAGTTGGGT GATTTATTCA GAGGAGGATC CGGAAGCTCA
61 ACAAAGATAT TACTATTGGT CTTATCCAGC GTGAGTTGCT TAGCCTAGCG GAGTACAATG
121 TCCACATGGC GAAGCATCTT GATGGAGGGA GAAACAAGAC CGCAACTGAC TTTGCTATTT
181 CTCTACTCCA ATCCTTGGTC ACTGAGGAGT CNAGTGTCAT TTNNTAG

Genomic Template: file=NC_003070.fna.gz, strand=+, from=382240, to=383395, description=gi|42592260|ref|NC_003070.5| Arabidopsis thaliana chromosome 1, complete sequence

Predicted gene structure:

Exon 1 382540 382567 (28 n); cDNA 1 28 (28 n); score: 1.000
Intron 1 382568 382802 (235 n); Pd: 0.985 (s: 0), Pa: 0.999 (s: 0.95)
Exon 2 382803 382929 (127 n); cDNA 29 156 (128 n); score: 0.980
Intron 2 382930 383029 (100 n); Pd: 0.956 (s: 1.00), Pa: 0.983 (s: 1.00)
Exon 3 383030 383100 (71 n); cDNA 157 227 (71 n); score: 0.944

MATCH 42592260+ AU236313+ 0.967 226 0.996 C
PGS_42592260+_AU236313+ (382540 382567,382803 382929,383030 383100)

Alignment (genomic DNA sequence = upper lines):

GCGTGTTGTT AAAGAGCTCA CTAGTTGGGT ATGTTTACAA CCTTTTCAAG ATTTCACTTC 382599
|||||||||| |||||||||| ||||||||
GCGTGTTGTT AAAGAGCTCA CTAGTTGG.. 28

GCTGATGTGC TTTGTTCAGT TACTTCTCCA TTAATTTGTC ACTATTTCTG TCAGAACACA 382659

.......... 28

TAGGATAACA CATATCATAT AAGTGCTAGG TCGAGTCTGT TTCCTGTAGT TGGAGCCTAT 382719

.......... 28

CCTCAACTGG TTATAGATAC TAGATTTGTT TCTTTGGTAT TTTTAGTTAT AATTAATTAT 382779

.......... 28

CTTTCTTCAA ACTTTTGACA CAGGTGATTT ATTCAGAGGA GGAT-CGGAA GCTCAACAAA 382838
||||||| |||||||||| |||| ||||| ||||||||||

..........GTGATTT ATTCAGAGGA GGATCCGGAA GCTCAACAAA 65

GATATTACTA TTGGTCTTAT CCAGCGTGAG TTGCTTAGCC TAGCGGAGTA CAATGTCCAC 382898
|||||||||| |||||||||| |||||||||| |||||||||| |||||||||| ||||||||||
GATATTACTA TTGGTCTTAT CCAGCGTGAG TTGCTTAGCC TAGCGGAGTA CAATGTCCAC 125

ATGGCGAAGC ATCTTGATGG AGGGAGAAAC AGTATGCTGA ATTGCTTAAC CTTTGTTGAT 382958
|||||||||| |||||||||| |||||||||| |
ATGGCGAAGC ATCTTGATGG AGGGAGAAAC A......... 156

GTCCTTGTGT GGTAACATTC TTTTTTTGTT TTGGCTAGTG AACTTGTTTT AACAAGTTGT 383018

.......... 156

164

TTGTTACGCA GAGACCGCAA CTGACTTTGC TATTTCTCTA CTCCAATCCT TGGTCACTGA 383078
||||||||| |||||||||| |||||||||| |||||||||| ||||||||||

.......... .AGACCGCAA CTGACTTTGC TATTTCTCTA CTCCAATCCT TGGTCACTGA 205

GGAGTCGAGT GTCATTTCAG AG 383100
|||||| ||| ||||||| ||
GGAGTCNAGT GTCATTTNNT AG 227

$ compute predicted gene locations
$ output predicted gene locations
--

Predicted gene locations (1):

PGL 1 (+ strand): 382540 383100
AGS-1 (382540 382567,382803 382929,383030 383100)
SCR (e 1.000 d 0.985 a 0.999,e 0.980 d 0.956 a 0.983,e 0.944)

Exon 1 382540 382567 (28 n); score: 1.000
Intron 1 382568 382802 (235 n); Pd: 0.985 Pa: 0.999

Exon 2 382803 382929 (127 n); score: 0.980
Intron 2 382930 383029 (100 n); Pd: 0.956 Pa: 0.983

Exon 3 383030 383100 (71 n); score: 0.944

PGS (382540 382567,382803 382929,383030 383100) AU236313+

3-phase translation of AGS-1 (+strand):

. . . : . . .
382540 GCGTGTTGTTAAAGAGCTCACTAGTTGG : GTGATTTATTCAGAGGAGGATCGGAAGCTCAA

A C C * R A H * L : G D L F R G G S E A Q
R V V K E L T S W : V I Y S E E D R K L N
V L L K S S L V G : * F I Q R R I G S S

.
382835 CAAAGATATTACTATTGGTCTTATCCAGCGTGAGTTGCTTAGCCTAGCGGAGTACAATGT

Q R Y Y Y W S Y P A * V A * P S G V Q C
K D I T I G L I Q R E L L S L A E Y N V

T K I L L L V L S S V S C L A * R S T M

. . . . : . .
382895 CCACATGGCGAAGCATCTTGATGGAGGGAGAAACA : AGACCGCAACTGACTTTGCTATTTC

P H G E A S * W R E K Q : D R N * L C Y F
H M A K H L D G G R N : K T A T D F A I S

S T W R S I L M E G E T : R P Q L T L L F

.
383055 TCTACTCCAATCCTTGGTCACTGAGGAGTCGAGTGTCATTTCAGAG

S T P I L G H * G V E C H F R
L L Q S L V T E E S S V I S E

L Y S N P W S L R S R V S F Q

Maximal non-overlapping open reading frames (>= 64 codons)

>42592260+_PGL-1_AGS-1_PPS_1 (382541 382567,382803 382929,383030 383100) (frame ’1’; 225 bp, 75 residues)
1 RVVKELTSWV IYSEEDRKLN KDITIGLIQR ELLSLAEYNV HMAKHLDGGR NKTATDFAIS
61 LLQSLVTEES SVISE

165

$ general statistics:
$ 1 chain has been computed
$
$ memory statistics:
$ 1 spliced alignments have been stored
$ 1 predicted gene locations have been stored
$ 0 megabytes was the average size of the backtrace matrix
$ 1 backtrace matrix has been allocated
$
$ date finished: 2011-07-30 22:13:59

As one can see, the output grew quite a bit. In lines starting with the symbol # output from
internal vmatch and mkvtree calls is shown. There is no mkvtree output in our example,
because the necessary indices did already exist (see Section A.12 for details). To combine the
option -v with option -o which saves the output in the supplied output file is quite useful when
performing larger tasks, because this gives us progress information on stdout while the actual
output is saved in the output file. For example, to match 5000 full-length cDNAs against the first
200000 bases of the A. thaliana chromosome 1, we issue the following command (only the last
20 lines of progress information is shown):

$ gth -v -frompos 1 -topos 200000 -inverse -force -o arab_mapping.txt -cdna CeresTigr.gz -species arabidopsis -genomic NC_003070.fna.gz
$ d=-, compute chains for bucket 368/377 (matches in bucket=1)
$ d=-, compute chains for bucket 369/377 (matches in bucket=1)
$ d=-, compute chains for bucket 370/377 (matches in bucket=1)
$ d=-, compute chains for bucket 371/377 (matches in bucket=1)
$ d=-, compute chains for bucket 372/377 (matches in bucket=1)
$ d=-, compute chains for bucket 373/377 (matches in bucket=9)
$ d=-, compute chains for bucket 374/377 (matches in bucket=1)
$ d=-, compute chains for bucket 375/377 (matches in bucket=2)
$ d=-, compute chains for bucket 376/377 (matches in bucket=2)
$ d=-, compute chains for bucket 377/377 (matches in bucket=1)
$ sort global chains according to reference sequence coverage
$ calculate spliced alignment for every chain
$ d=-, compute spliced alignment, genseq=-, chain=1/5, refseq=+
$ d=-, compute spliced alignment, genseq=-, chain=2/5, refseq=+
$ d=-, compute spliced alignment, genseq=-, chain=3/5, refseq=+
$ d=-, compute spliced alignment, genseq=-, chain=4/5, refseq=+
$ d=-, compute spliced alignment, genseq=-, chain=5/5, refseq=+
$ output spliced alignments
$ compute predicted gene locations
$ output predicted gene locations

After this run, the output can be found in the file arab mapping.txt. To get better results,
we would also add the option -gcmaxgapwidth 5000, limiting the maximal intron size in A.
thaliana to 5000 bases.

A.13.2 Using the Intron Cutout Technique

Assume we want to map a single mRNA against human chromosome 21. The obvious call would
not succeed (only last 3 lines of output shown):

166

$ gth -species human -genomic hs_ref_chr21.fa.gz -cdna NM_003253.gbk
$ important messages:
$ 1 matrix allocations failed
$ 1 undetermined spliced alignments

This is due to the fact that human genes can contain very long introns. Therefore, we have to
use the option -introncutout. Furthermore, we use the option -introndistri which gives us
a distribution of the intron sizes (only this distribution is shown from the output):

$ gth -introncutout -introndistri -species human -genomic hs_ref_chr21.fa.gz -cdna NM_003253.gbk

$ length distribution of all introns:
88: 1 (prob=0.0357,cumulative=0.0357)
304: 1 (prob=0.0357,cumulative=0.0714)
574: 1 (prob=0.0357,cumulative=0.1071)
1112: 1 (prob=0.0357,cumulative=0.1429)
2134: 1 (prob=0.0357,cumulative=0.1786)
2370: 1 (prob=0.0357,cumulative=0.2143)
3060: 1 (prob=0.0357,cumulative=0.2500)
3182: 1 (prob=0.0357,cumulative=0.2857)
3684: 1 (prob=0.0357,cumulative=0.3214)
4080: 1 (prob=0.0357,cumulative=0.3571)
4354: 1 (prob=0.0357,cumulative=0.3929)
4984: 1 (prob=0.0357,cumulative=0.4286)
5076: 1 (prob=0.0357,cumulative=0.4643)
5390: 1 (prob=0.0357,cumulative=0.5000)
5632: 1 (prob=0.0357,cumulative=0.5357)
5706: 1 (prob=0.0357,cumulative=0.5714)
6081: 1 (prob=0.0357,cumulative=0.6071)
7032: 1 (prob=0.0357,cumulative=0.6429)
7602: 1 (prob=0.0357,cumulative=0.6786)
8136: 1 (prob=0.0357,cumulative=0.7143)
9748: 1 (prob=0.0357,cumulative=0.7500)
10534: 1 (prob=0.0357,cumulative=0.7857)
13820: 1 (prob=0.0357,cumulative=0.8214)
17355: 1 (prob=0.0357,cumulative=0.8571)

A.13.3 Employing gthconsensus

Assume we want to perform incremental updates, i.e., we want to annotate a genomic sequence
with a set of cDNAs/ESTs and/or proteins and update the annotation as soon as new sequences
become available.

Because we do not want to redo the complete computation every time new sequences become
available, we save the intermediate results containing the spliced alignments and only recompute
the consensus spliced alignments using gthconsensus.

For explanatory purposes, we use the same files as in the examples above. We produce the
intermediate results of the mapping of 5000 cDNAs using the option -intermediate and store
these in a file. The option -intermediate requires that we also use the option -xmlout, because
the intermediate results are stored in an XML format. To save disk space we compress the output
file on the fly using the option -gzip. The output is stored in the file ceres.inter.gz.

167

$ gth -intermediate -xmlout -gzip -o ceres.inter.gz -genomic NC_003070.fna.gz -cdna CeresTigr.gz -frompos 300000 -topos 500000 -inverse

To look at the results stored in the file ceres.inter.gz, we employ gthconsensus (with
-gzip, because the file is compressed). The output was piped through grep ˆPGS to shorten
it:

$ gthconsensus ceres.inter.gz
PGS_42592260+_24737-(319898 320145,320252 320296,320380 320457,320769 321417,321745 321865,321958 322406,322513 322843)
PGS_42592260+_116833+ (345866 347527)
PGS_42592260-_1693+ (370967 370859,370751 370258)
PGS_42592260-_40042+ (389646 389410,389301 389226,389138 389050,388940 388851,388760 388716,388609 388539,388406 388268,387672 387584,387503 387278)
PGS_42592260-_35733+ (404439 404186,403947 403771,403526 403195)

We can also print some information about the intermediate file with the help of gthfilestat:

$ gthfilestat ceres.inter.gz
spliced alignment alignment score distribution:

spliced alignment coverage distribution:

memory statistics:
5 spliced alignments have been stored
5 predicted gene locations have been stored

date finished: 2011-07-30 22:15:10

Now we map an additional EST and store the result in new.inter.gz.

$ gth -intermediate -xmlout -gzip -o new.inter.gz -genomic NC_003070.fna.gz -cdna AU236313.gbk.gz -frompos 300000 -topos 500000 -inverse

Afterwards we combine the two results (the output was also shortened):

$ gthconsensus ceres.inter.gz new.inter.gz
PGS_42592260+_24737-(319898 320145,320252 320296,320380 320457,320769 321417,321745 321865,321958 322406,322513 322843)
PGS_42592260+_116833+ (345866 347527)
PGS_42592260-_1693+ (370967 370859,370751 370258)
PGS_42592260+_AU236313+ (382540 382567,382803 382929,383030 383100)
PGS_42592260-_40042+ (389646 389410,389301 389226,389138 389050,388940 388851,388760 388716,388609 388539,388406 388268,387672 387584,387503 387278)
PGS_42592260-_35733+ (404439 404186,403947 403771,403526 403195)

168

Appendix B

Manual of GenomeTools

This appendix describes the tools of the GenomeTools package which are relevant for this disser-
tation.

B.1 The bed to gff3 Tool

$ gt bed_to_gff3 -help
Usage: gt bed_to_gff3 [BED_file]
Parse BED file and convert it to GFF3.

-featuretype Set type of parsed BED features
default: BED_feature

-thicktype Set type of parsed thick BED features
default: BED_thick_feature

-blocktype Set type of parsed BED blocks
default: BED_block

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

169

B.2 The chseqids Tool
$ gt chseqids -help
Usage: gt chseqids [option ...] mapping_file [GFF3_file]
Change sequence ids by the mapping given in mapping_file.

-sort sort the GFF3 features after changing the sequence ids
(memory consumption is proportional to the input file size)
default: no

-v be verbose
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

File format for mapping_file:

The supplied mapping file defines a mapping table named ‘‘chseqids’’. It maps
the sequence-regions given in the GFF3_file to other names. It can be defined
as follows:

chseqids = {
chr1 = "seq1",
chr2 = "seq2"

}

When this example is used, all sequence ids ‘‘chr1’’ will be changed to ‘‘seq1’’
and all sequence ids ‘‘chr2’’ to ‘‘seq2’’.

Report bugs to <gt-users@genometools.org>.

170

B.3 The cds Tool
$ gt cds -help
Usage: gt cds [option ...] [GFF3_file]
Add CDS (coding sequence) features to exon features given in GFF3 file.

-minorflen set the minimum length an open reading frame (ORF) must have to
be added as a CDS feature (measured in amino acids)
default: 64

-startcodon require than an ORF must begin with a start codon
default: no

-finalstopcodon require that the final ORF must end with a stop codon
default: no

-seqfile set the sequence file from which to extract the features
default: undefined

-seqfiles set the sequence files from which to extract the features
use ’--’ to terminate the list of sequence files

-matchdesc match the sequence descriptions from the input files for the
desired sequence IDs (in GFF3)
default: no

-usedesc use sequence descriptions to map the sequence IDs (in GFF3) to
actual sequence entries.
If a description contains a sequence range (e.g.,
III:1000001..2000000), the first part is used as sequence ID
(’III’) and the first range position as offset (’1000001’)
default: no

-regionmapping set file containing sequence-region to sequence file mapping
default: undefined

-v be verbose
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

File format for option -regionmapping:

The file supplied to option -regionmapping defines a ‘‘mapping’’. A mapping
maps the sequence-regions given in the GFF3_file to a sequence file containing
the corresponding sequence. Mappings can be defined in one of the following two
forms:

mapping = {
chr1 = "hs_ref_chr1.fa.gz",
chr2 = "hs_ref_chr2.fa.gz"

}

or

function mapping(sequence_region)
return "hs_ref_"..sequence_region..".fa.gz"

end

The first form defines a Lua (http://www.lua.org/) table named ‘‘mapping’’
which maps each sequence region to the corresponding sequence file.
The second one defines a Lua function ‘‘mapping’’, which has to return the
sequence file name when it is called with the sequence_region as argument.

171

B.4 The csa Tool
$ gt csa -help
Usage: gt csa [option ...] [GFF3_file]
Transform spliced alignments from GFF3 file into consensus spliced alignments.

-join-length set join length for the spliced alignment clustering
default: 300

-v be verbose
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Example:

Let’s assume we have a GFF3 file ’csa_example_spliced_alignments.gff3’
containing the following four overlapping spliced alignments (represented as
genes with exons as children):

##gff-version 3
##sequence-region seq 1 290
seq . gene 1 209 . + . ID=gene1
seq . exon 1 90 . + . Parent=gene1
seq . exon 110 190 . + . Parent=gene1
seq . exon 201 209 . + . Parent=gene1
###
seq . gene 1 290 . + . ID=gene2
seq . exon 1 90 . + . Parent=gene2
seq . exon 101 190 . + . Parent=gene2
seq . exon 201 290 . + . Parent=gene2
###
seq . gene 10 290 . + . ID=gene3
seq . exon 10 90 . + . Parent=gene3
seq . exon 110 190 . + . Parent=gene3
seq . exon 201 290 . + . Parent=gene3
###
seq . gene 181 290 . + . ID=gene4
seq . exon 181 190 . + . Parent=gene4
seq . exon 201 290 . + . Parent=gene4
###

To compute the consensus spliced alignments we call:

$ gt csa csa_example_spliced_alignments.gff3

Which returns:

##gff-version 3
##sequence-region seq 1 290
seq gt csa gene 1 290 . + . ID=gene1
seq gt csa mRNA 1 290 . + . ID=mRNA1;Parent=gene1
seq gt csa exon 1 90 . + . Parent=mRNA1
seq gt csa exon 110 190 . + . Parent=mRNA1
seq gt csa exon 201 290 . + . Parent=mRNA1
seq gt csa mRNA 1 290 . + . ID=mRNA2;Parent=gene1

172

seq gt csa exon 1 90 . + . Parent=mRNA2
seq gt csa exon 101 190 . + . Parent=mRNA2
seq gt csa exon 201 290 . + . Parent=mRNA2
###

As one can see, they have been combined into a consensus spliced alignment
(represented as genes with mRNAs as children which in turn have exons as
children) with two alternative splice forms. The first and the third spliced
alignment have been combined into the first alternative splice form (mRNA1) and
the the second and the fourth spliced alignment into the second alternative
splice form (mRNA2).

As one can see, the second exon from the first alternative splice form ist
shorter than the corresponding exon from the second alternative splice form.

Report bugs to <gt-users@genometools.org>.

173

B.5 The eval Tool
$ gt eval -help
Usage: gt eval reference_file prediction_file
Compare annotation files and show accuracy measures (prediction vs. reference).

-nuc evaluate nucleotide level (memory consumption is proportional to the
input file sizes)
default: yes

-ltr evaluate a LTR retrotransposon prediction instead of a gene prediction
(all LTR_retrotransposon elements are considered to have an
undetermined strand)
default: no

-ltrdelta set allowed delta for LTR borders to be considered equal
default: 20

-v be verbose
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

The program shows sensitivity and specificity values for certain feature types
(e.g., gene, mRNA, and exon). For some feature types the number of missing and
wrong features of that type is also shown. Thereby, ‘‘missing’’ means the number
of features of that type from the ‘‘reference’’ without overlap to a feature of
that type from the ‘‘prediction’’. Vice versa, ‘‘wrong’’ denotes the number of
features of that type from the ‘‘prediction’’ without overlap to a feature of
that type from the ‘‘reference’’.

Report bugs to <gt-users@genometools.org>.

174

B.6 The extractfeat Tool
$ gt extractfeat -help
Usage: gt extractfeat [option ...] [GFF3_file]
Extract features given in GFF3 file from sequence file.

-type set type of features to extract
default: undefined

-join join feature sequences in the same subgraph into a single one
default: no

-translate translate the features (of a DNA sequence) into protein
default: no

-seqid add sequence ID of extracted features to FASTA descriptions
default: no

-target add target ID(s) of extracted features to FASTA descriptions
default: no

-seqfile set the sequence file from which to extract the features
default: undefined

-seqfiles set the sequence files from which to extract the features
use ’--’ to terminate the list of sequence files

-matchdesc match the sequence descriptions from the input files for the
desired sequence IDs (in GFF3)
default: no

-usedesc use sequence descriptions to map the sequence IDs (in GFF3) to
actual sequence entries.
If a description contains a sequence range (e.g.,
III:1000001..2000000), the first part is used as sequence ID
(’III’) and the first range position as offset (’1000001’)
default: no

-regionmapping set file containing sequence-region to sequence file mapping
default: undefined

-v be verbose
default: no

-width set output width for FASTA sequence printing
(0 disables formatting)
default: 0

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

File format for option -regionmapping:

The file supplied to option -regionmapping defines a ‘‘mapping’’. A mapping
maps the sequence-regions given in the GFF3_file to a sequence file containing
the corresponding sequence. Mappings can be defined in one of the following two
forms:

mapping = {
chr1 = "hs_ref_chr1.fa.gz",
chr2 = "hs_ref_chr2.fa.gz"

}

or

function mapping(sequence_region)
return "hs_ref_"..sequence_region..".fa.gz"

end

175

The first form defines a Lua (http://www.lua.org/) table named ‘‘mapping’’
which maps each sequence region to the corresponding sequence file.
The second one defines a Lua function ‘‘mapping’’, which has to return the
sequence file name when it is called with the sequence_region as argument.

Report bugs to <gt-users@genometools.org>.

176

B.7 The gff3 Tool
$ gt gff3 -help
Usage: gt gff3 [option ...] [GFF3_file ...]
Parse, possibly transform, and output GFF3 files.

-sort sort the GFF3 features (memory consumption is proportional
to the input file size(s))
default: no

-tidy try to tidy the GFF3 files up during parsing
default: no

-retainids when available, use the original IDs provided in the source
file
(memory consumption is proportional to the input file
size(s))
default: no

-checkids make sure the ID attributes are unique within the scope of
each GFF3_file, as required by GFF3 specification
(memory consumption is proportional to the input file
size(s))
default: no

-addids add missing "##sequence-region" lines automatically
default: yes

-fixregionboundaries automatically adjust "##sequence-region" lines to contain
all their features (memory consumption is proportional to
the input file size(s))
default: no

-addintrons add intron features between existing exon features
default: no

-offset transform all features by the given offset
default: undefined

-offsetfile transform all features by the offsets given in file
default: undefined

-typecheck check GFF3 types against "id" and "name" tags in given OBO
file
default: undefined

-show show GFF3 output
default: yes

-v be verbose
default: no

-width set output width for FASTA sequence printing
(0 disables formatting)
default: 0

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

File format for option -offsetfile:

The file supplied to option -offsetfile defines a mapping table named
‘‘offsets’’. It maps the sequence-regions given in the GFF3_file to offsets.
It can be defined as follows:

offsets = {
chr1 = 1000,
chr2 = 500

}

177

When this example is used, all features with seqid ‘‘chr1’’ will be offset by
1000 and all features with seqid ‘‘chr2’’ by 500.

If -offsetfile is used, offsets for all sequence-regions contained in the given
GFF3 files must be defined.

Report bugs to <gt-users@genometools.org>.

178

B.8 The gff3 to gtf Tool

$ gt gff3_to_gtf -help
Usage: gt gff3_to_gtf [GFF3_file ...]
Parse GFF3 file(s) and show them as GTF2.2.

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

179

B.9 The gff3validator Tool

$ gt gff3validator -help
Usage: gt gff3validator [option ...] [GFF3_file ...]
Strictly validate given GFF3 files.

-typecheck check GFF3 types against "id" and "name" tags in given OBO file
default: undefined

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

180

B.10 The gtf to gff3 Tool

$ gt gtf_to_gff3 -help
Usage: gt gtf_to_gff3 [GTF_file]
Parse GTF2.2 file and convert it to GFF3.

-tidy try to tidy the GTF file up during parsing
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

181

B.11 The id to md5 Tool
$ gt id_to_md5 -help
Usage: gt id_to_md5 [option ...] [GFF3_file ...]
Change sequence IDs in given GFF3 files to MD5 fingerprints of the corresponding sequences.

-seqfile set the sequence file from which to extract the features
default: undefined

-seqfiles set the sequence files from which to extract the features
use ’--’ to terminate the list of sequence files

-matchdesc match the sequence descriptions from the input files for the
desired sequence IDs (in GFF3)
default: no

-usedesc use sequence descriptions to map the sequence IDs (in GFF3) to
actual sequence entries.
If a description contains a sequence range (e.g.,
III:1000001..2000000), the first part is used as sequence ID
(’III’) and the first range position as offset (’1000001’)
default: no

-regionmapping set file containing sequence-region to sequence file mapping
default: undefined

-subtargetids substitute the target IDs with MD5 sums
default: yes

-v be verbose
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

File format for option -regionmapping:

The file supplied to option -regionmapping defines a ‘‘mapping’’. A mapping
maps the sequence-regions given in the GFF3_file to a sequence file containing
the corresponding sequence. Mappings can be defined in one of the following two
forms:

mapping = {
chr1 = "hs_ref_chr1.fa.gz",
chr2 = "hs_ref_chr2.fa.gz"

}

or

function mapping(sequence_region)
return "hs_ref_"..sequence_region..".fa.gz"

end

The first form defines a Lua (http://www.lua.org/) table named ‘‘mapping’’
which maps each sequence region to the corresponding sequence file.
The second one defines a Lua function ‘‘mapping’’, which has to return the
sequence file name when it is called with the sequence_region as argument.

Report bugs to <gt-users@genometools.org>.

182

B.12 The interfeat Tool

$ gt interfeat -help
Usage: gt interfeat [option ...] [GFF3_file ...]
Add intermediary features between outside features in given GFF3 file(s).

-outside set outside type
default: exon

-inter set intermediary type
default: intron

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

183

B.13 The md5 to id Tool
$ gt md5_to_id -help
Usage: gt md5_to_id [option ...] [GFF3_file ...]
Change MD5 fingerprints used as sequence IDs in given GFF3 files to ‘‘regular’’ ones.

-seqfile set the sequence file from which to extract the features
default: undefined

-seqfiles set the sequence files from which to extract the features
use ’--’ to terminate the list of sequence files

-matchdesc match the sequence descriptions from the input files for the
desired sequence IDs (in GFF3)
default: no

-usedesc use sequence descriptions to map the sequence IDs (in GFF3) to
actual sequence entries.
If a description contains a sequence range (e.g.,
III:1000001..2000000), the first part is used as sequence ID
(’III’) and the first range position as offset (’1000001’)
default: no

-regionmapping set file containing sequence-region to sequence file mapping
default: undefined

-v be verbose
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

File format for option -regionmapping:

The file supplied to option -regionmapping defines a ‘‘mapping’’. A mapping
maps the sequence-regions given in the GFF3_file to a sequence file containing
the corresponding sequence. Mappings can be defined in one of the following two
forms:

mapping = {
chr1 = "hs_ref_chr1.fa.gz",
chr2 = "hs_ref_chr2.fa.gz"

}

or

function mapping(sequence_region)
return "hs_ref_"..sequence_region..".fa.gz"

end

The first form defines a Lua (http://www.lua.org/) table named ‘‘mapping’’
which maps each sequence region to the corresponding sequence file.
The second one defines a Lua function ‘‘mapping’’, which has to return the
sequence file name when it is called with the sequence_region as argument.

Report bugs to <gt-users@genometools.org>.

184

B.14 The merge Tool

$ gt merge -help
Usage: gt merge [option ...] [GFF3_file ...]
Merge sorted GFF3 files in sorted fashion.

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

185

B.15 The mergefeat Tool

$ gt mergefeat -help
Usage: gt mergefeat [option ...] [GFF3_file ...]
Merge adjacent features of the same type in given GFF3 file(s).

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

186

B.16 The select Tool
$ gt select -help
Usage: gt select [option ...] [GFF3_file ...]
Select certain features (specified by the used options) from given GFF3 file(s).

-seqid select feature with the given sequence ID (all comments are
selected).
default: undefined

-source select feature with the given source (the source is column 2 in
regular GFF3 lines)
default: undefined

-contain select all features which are contained in the given range
default: undefined

-overlap select all features which do overlap with the given range
default: undefined

-strand select all top-level features(i.e., features without parents)
whose strand equals the given one (must be one of ’+-.?’)
default: undefined

-targetstrand select all top-level features (i.e., features without parents)
which have exactly one target attribute whose strand equals the
given one (must be one of ’+-.?’)
default: undefined

-targetbest if multiple top-level features (i.e., features without parents)
with exactly one target attribute have the same target_id, keep
only the feature with the best score. If -targetstrand is used at
the same time, this option is applied after -targetstrand.
Memory consumption is proportional to the input file size(s).
default: no

-hascds select all top-level features which do have a CDS child
default: no

-maxgenelength select genes up to the given maximum length
default: undefined

-maxgenenum select the first genes up to the given maximum number
default: undefined

-mingenescore select genes with the given minimum score
default: undefined

-maxgenescore select genes with the given maximum score
default: undefined

-minaveragessp set the minimum average splice site probability
default: undefined

-v be verbose
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

187

B.17 The seqmutate Tool
$ gt seqmutate -help
Usage: gt seqmutate [option ...] [sequence_file ...]
Mutate the sequences of the given sequence file(s).

-rate set the mutation rate
default: 1

-width set output width for FASTA sequence printing
(0 disables formatting)
default: 0

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

For each position in the given sequences it is randomly determined with
probability (mutation rate / 100) if the given position is mutated. If so, in
80% of the cases a substitution is performed, in 10% an insertion, and in 10% a
deletion, respectively. For substitution and insertion events, the nucleotide is
generated randomly without regard to the original nucleotide. That is,
resubstitutions are possible. This procedure equals the one described on page
1867 of the following paper

T.D. Wu and C.K. Watanabe. GMAP: a genomic mapping and alignment program for
mRNA and EST sequences. Bioinformatics, 21(9):1859-1875, 2005.

Report bugs to <gt-users@genometools.org>.

188

B.18 The seqtransform Tool
$ gt seqtransform -help
Usage: gt seqtransform [option ...] [sequence_file ...]
Perform simple transformations on the given sequence file(s).

-addstopaminos append stop amino acids (’*’) to given protein sequences, if not
already present
default: no

-width set output width for FASTA sequence printing
(0 disables formatting)
default: 0

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

189

B.19 The sketch Tool
$ gt sketch -help
Usage: gt sketch [option ...] image_file [GFF3_file ...]
Create graphical representation of GFF3 annotation files.

-pipe use pipe mode (i.e., show all gff3 features on stdout)
default: no

-flattenfiles do not group tracks by source file name and remove file names from
track description
default: no

-seqid sequence region identifier
default: first one in file

-start start position
default: first region start

-end end position
default: last region end

-width target image width (in pixel)
default: 800

-style style file to use
default: /home/gordon/genometools/bin/../gtdata/sketch/default.style

-format output graphics format
choose from png|pdf|svg|ps
default: png

-input input data format
choose from gff|bed|gtf
default: gff

-addintrons add intron features between existing exon features (before
drawing)
default: no

-unsafe enable unsafe mode for style file
default: no

-v be verbose
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

190

B.20 The splicesiteinfo Tool
$ gt splicesiteinfo -help
Usage: gt splicesiteinfo [option ...] [GFF3_file ...]
Show information about splice sites given in GFF3 files.

-seqfile set the sequence file from which to extract the features
default: undefined

-seqfiles set the sequence files from which to extract the features
use ’--’ to terminate the list of sequence files

-matchdesc match the sequence descriptions from the input files for the
desired sequence IDs (in GFF3)
default: no

-usedesc use sequence descriptions to map the sequence IDs (in GFF3) to
actual sequence entries.
If a description contains a sequence range (e.g.,
III:1000001..2000000), the first part is used as sequence ID
(’III’) and the first range position as offset (’1000001’)
default: no

-regionmapping set file containing sequence-region to sequence file mapping
default: undefined

-addintrons add intron features between existing exon features
(before computing the information to be shown)
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

File format for option -regionmapping:

The file supplied to option -regionmapping defines a ‘‘mapping’’. A mapping
maps the sequence-regions given in the GFF3_file to a sequence file containing
the corresponding sequence. Mappings can be defined in one of the following two
forms:

mapping = {
chr1 = "hs_ref_chr1.fa.gz",
chr2 = "hs_ref_chr2.fa.gz"

}

or

function mapping(sequence_region)
return "hs_ref_"..sequence_region..".fa.gz"

end

The first form defines a Lua (http://www.lua.org/) table named ‘‘mapping’’
which maps each sequence region to the corresponding sequence file.
The second one defines a Lua function ‘‘mapping’’, which has to return the
sequence file name when it is called with the sequence_region as argument.

Report bugs to <gt-users@genometools.org>.

191

B.21 The stat Tool
$ gt stat -help
Usage: gt stat [option ...] [GFF3_file ...]
Show statistics about features contained in GFF3 files.

-genelengthdistri show gene length distribution
default: no

-genescoredistri show gene score distribution
default: no

-exonlengthdistri show exon length distribution
default: no

-exonnumberdistri show exon number distribution
default: no

-intronlengthdistri show intron length distribution
default: no

-cdslengthdistri show CDS length distribution (measured in amino acids)
default: no

-source show the set of used source tags (column 2 in regular GFF3
lines)
default: no

-addintrons add intron features between existing exon features (before
computing stats)
default: no

-v be verbose
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

Report bugs to <gt-users@genometools.org>.

192

B.22 The uniq Tool
$ gt uniq -help
Usage: gt uniq [option ...] [GFF3_file]
Filter out repeated feature node graphs in a sorted GFF3 file.

-v be verbose
default: no

-o redirect output to specified file
default: undefined

-gzip write gzip compressed output file
default: no

-bzip2 write bzip2 compressed output file
default: no

-force force writing to output file
default: no

-help display help and exit
-version display version information and exit

A depth-first traversal of a feature node graph starts at the top-level feature
node (or pseudo-node) and explores as far along each branch as possible before
backtracking. Let’s assume that the feature nodes are stored in a list in the
order of their traversal (called the ‘‘feature node list’’).

Two feature node graphs are considered to be repeated if their feature node list
(from the depth-first traversal) have the same length and each feature node pair
(from both lists at the same position) is ‘‘similar’’.

Two feature nodes are ‘‘similar’’, if they have the same sequence ID, feature
type, range, strand, and phase.

For such a repeated feature node graph the one with the higher score (of the
top-level feature) is kept. If only one of the feature node graphs has a defined
score, this one is kept.

Report bugs to <gt-users@genometools.org>.

193

Appendix C

GenomeTools API Reference

Table of Classes

• Class GtAddIntronsStream . page 196

• Class GtArray . page 196

• Class GtBEDInStream . page 199

• Class GtBittab .page 199

• Class GtCDSStream . page 201

• Class GtCSAStream . page 202

• Class GtCommentNode . page 202

• Class GtCstrTable . page 203

• Class GtDlist . page 204

• Class GtDlistelem . page 205

• Class GtError . page 205

• Class GtExtractFeatureStream . page 206

• Class GtFeatureNode . page 206

• Class GtFeatureNodeIterator . page 211

• Class GtFile . page 211

• Class GtGFF3InStream . page 212

194

• Class GtGFF3OutStream . page 213

• Class GtGFF3Parser . page 214

• Class GtGFF3Visitor . page 215

• Class GtGTFInStream . page 216

• Class GtGTFOutStream . page 216

• Class GtGenomeNode . page 217

• Class GtHashmap . page 218

• Class GtIDToMD5Stream . page 220

• Class GtInterFeatureStream . page 220

• Class GtMD5ToIDStream . page 220

• Class GtMergeFeatureStream . page 221

• Class GtMergeStream . page 221

• Class GtNodeStream . page 221

• Class GtNodeStreamClass . page 223

• Class GtNodeVisitor . page 223

• Class GtOption .page 223

• Class GtOptionParser . page 229

• Class GtPhase . page 231

• Class GtQueue . page 231

• Class GtRange . page 232

• Class GtRegionMapping . page 233

• Class GtRegionNode . page 234

• Class GtSelectStream . page 234

• Class GtSequenceNode . page 235

• Class GtSortStream . page 236

• Class GtStatStream . page 236

195

• Class GtStr . page 237

• Class GtStrArray . page 238

• Class GtStrand .page 240

• Class GtTagValueMap . page 240

• Class GtTypeChecker . page 241

• Class GtTypeCheckerOBO . page 241

• Class GtUniqStream . page 242

• Class GtVisitorStream . page 242

Table of Modules

• Module FunctionPointer . page 243

• Module Init . page 243

• Module Strcmp . page 243

• Module Symbol . page 244

• Module Undef . page 244

C.1 Class GtAddIntronsStream

Implements the GtNodeStream interface. A GtAddIntronsStream inserts new feature
nodes with type intron between existing feature nodes with type exon. This is a special case of
the GtInterFeatureStream.

Methods

GtNodeStream* gt add introns stream new(GtNodeStream *in stream)

Create a GtAddIntronsStream* which inserts feature nodes of type intron between
feature nodes of type exon it retrieves from in stream and returns them.

C.2 Class GtArray

GtArray objects are generic arrays for elements of a certain size which grow on demand.

196

Methods

GtArray* gt array new(size t size of elem)

Return a new GtArray object whose elements have the size size of elem.

GtArray* gt array ref(GtArray *array)

Increase the reference count for array and return it. If array is NULL, NULL is re-
turned without any side effects.

GtArray* gt array clone(const GtArray *array)

Return a clone of array.

void* gt array get(const GtArray *array, unsigned long index)

Return pointer to element number index of array. index has to be smaller than
gt array size(array).

void* gt array get first(const GtArray *array)

Return pointer to first element of array.

void* gt array get last(const GtArray *array)

Return pointer to last element of array.

void* gt array pop(GtArray *array)

Return pointer to last element of array and remove it from array.

void* gt array get space(const GtArray *array)

Return pointer to the internal space of array where the elements are stored.

#define gt array add(array, elem)

Add element elem to array. The size of elem must equal the given element size when
the array was created and is determined automatically with the sizeof operator.

void gt array add elem(GtArray *array, void *elem, size t
size of elem)

Add element elem with size size of elem to array. size of elem must equal
the given element size when the array was created. Usually, this method is not used
directly and the macro gt array add() is used instead.

void gt array add array(GtArray *dest, const GtArray *src)

Add all elements of array src to the array dest. The element sizes of both arrays must
be equal.

void gt array rem(GtArray *array, unsigned long index)

Remove element with number index from array in O(gt array size(array))
time. index has to be smaller than gt array size(array).

197

void gt array rem span(GtArray *array, unsigned long frompos,
unsigned long topos)

Remove elements starting with number frompos up to (and including) topos from
array in O(gt array size(array)) time. frompos has to be smaller or equal
than topos and both have to be smaller than gt array size(array).

void gt array reverse(GtArray *array)

Reverse the order of the elements in array.

void gt array set size(GtArray *array, unsigned long size)

Set the size of array to size. size must be smaller or equal than
gt array size(array).

void gt array reset(GtArray *array)

Reset the array. That is, afterwards the array has size 0.

size t gt array elem size(const GtArray *array)

Return the size of the elements stored in array.

unsigned long gt array size(const GtArray *array)

Return the number of elements in array. If array equals NULL, 0 is returned.

void gt array sort(GtArray *array, GtCompare compar)

Sort array with the given compare function compar.

void gt array sort stable(GtArray *array, GtCompare compar)

Sort array in a stable way with the given compare function compar.

void gt array sort with data(GtArray *array, GtCompareWithData
compar, void *data)

Sort array with the given compare function compar. Passes a pointer with userdata
data to compar.

void gt array sort stable with data(GtArray *array,
GtCompareWithData compar, void *data)

Sort array in a stable way with the given compare function compar. Passes a pointer
with userdata data to compar.

int gt array cmp(const GtArray *array a, const GtArray *array b)

Compare the content of array awith the content of array b. array a and array b
must have the same gt array size() and gt array elem size().

void gt array delete(GtArray *array)

Decrease the reference count for array or delete it, if this was the last reference.

198

C.3 Class GtBEDInStream

Implements the GtNodeStream interface. A GtBEDInStream allows one to parse a BED
file and return it as a stream of GtGenomeNode objects.

Methods

GtNodeStream* gt bed in stream new(const char *filename)

Return a GtBEDInStream object which subsequently reads the BED file with the given
filename. If filename equals NULL, the BED data is read from stdin.

void gt bed in stream set feature type(GtBEDInStream

*bed in stream, const char *type)

Create BED features parsed by bed in streamwith given type (instead of the default
”BED feature”).

void gt bed in stream set thick feature type(GtBEDInStream

*bed in stream, const char *type)

Create thick BED features parsed by bed in stream with given type (instead of the
default ”BED thick feature”).

void gt bed in stream set block type(GtBEDInStream *bed in stream,
const char *type)

Create BED blocks parsed by bed in stream with given type (instead of the default
”BED block”).

C.4 Class GtBittab

Implements arbitrary-length bit arrays and various operations on them.

Methods

GtBittab* gt bittab new(unsigned long num of bits)

Return a new GtBittab of length num of bits, initialised to 0.

void gt bittab set bit(GtBittab *bittab, unsigned long i)

Set bit i in bittab to 1.
void gt bittab unset bit(GtBittab *bittab, unsigned long i)

Set bit i in bittab to 0.

199

void gt bittab complement(GtBittab *bittab a, const GtBittab

*bittab b)

Set bittab a to be the complement of bittab b.

void gt bittab equal(GtBittab *bittab a, const GtBittab

*bittab b)

Set bittab a to be equal to bittab b.

void gt bittab and(GtBittab *bittab a, const GtBittab *bittab b,
const GtBittab *bittab c)

Set bittab a to be the bitwise AND of bittab b and bittab c.
void gt bittab or(GtBittab *bittab a, const GtBittab *bittab b,
const GtBittab *bittab c)

Set bittab a to be the bitwise OR of bittab b and bittab c.
void gt bittab nand(GtBittab *bittab a, const GtBittab *bittab b,
const GtBittab *bittab c)

Set bittab a to be bittab b NAND bittab c.
void gt bittab and equal(GtBittab *bittab a, const GtBittab

*bittab b)

Set bittab a to be the bitwise AND of bittab a and bittab b.
void gt bittab or equal(GtBittab *bittab a, const GtBittab

*bittab b)

Set bittab a to be the bitwise OR of bittab a and bittab b.
void gt bittab shift left equal(GtBittab *bittab)

Shift bittab by one position to the left.

void gt bittab shift right equal(GtBittab *bittab)

Shift bittab by one position to the right.

void gt bittab unset(GtBittab *bittab)

Set all bits in bittab to 0.
void gt bittab show(const GtBittab *bittab, FILE *fp)

Output a representation of bittab to fp.

void gt bittab get all bitnums(const GtBittab *bittab, GtArray

*array)

Fill array with the indices of all set bits in bittab.

bool gt bittab bit is set(const GtBittab *bittab, unsigned long
i)

Return true if bit i is set in bittab.

200

bool gt bittab cmp(const GtBittab *bittab a, const GtBittab

*bittab b)

Return true if bittab a and bittab b are identical.
unsigned long gt bittab get first bitnum(const GtBittab *bittab)

Return the index of the first set bit in bittab.
unsigned long gt bittab get last bitnum(const GtBittab *bittab)

Return the index of the last set bit in bittab.
unsigned long gt bittab get next bitnum(const GtBittab *bittab,
unsigned long i)

Return the index of the next set bit in bittab with an index greater than i.

unsigned long gt bittab count set bits(const GtBittab *bittab)

Return the number of set bits in bittab.
unsigned long gt bittab size(GtBittab *bittab)

Return the total number of bits of bittab.
void gt bittab delete(GtBittab *bittab)

Delete bittab.

C.5 Class GtCDSStream

Implements the GtNodeStream interface. A GtCDSStream determines the coding sequence
(CDS) for sequences determined by feature nodes of type exon and adds them as feature nodes
of type CDS.

201

Methods

GtNodeStream* gt cds stream new(GtNodeStream *in stream,
GtRegionMapping *region mapping, unsigned int minorflen, const
char *source, bool start codon, bool final stop codon, bool
generic star codons)

Create a GtCDSStream* which determines the coding sequence (CDS) for sequences
determined by feature nodes of type exon it retrieves from in stream, adds them as
feature nodes of type CDS and returns all nodes. region mapping is used to map the
sequence IDs of the feature nodes to the regions of the actual sequences. minorflen
is the minimum length an ORF must have in order to be added. The CDS features are
created with the given source. If start codon equals true an ORF must begin with
a start codon, otherwise it can start at any position. If final stop codon equals true
the final ORF must end with a stop codon. If generic start codons equals true,
the start codons of the standard translation scheme are used as start codons (otherwise the
amino acid ’M’ is regarded as a start codon).

C.6 Class GtCSAStream

Implements the GtNodeStream interface. A GtCSAStream takes spliced alignments and
transforms them into consensus spliced alignments.

Methods

GtNodeStream* gt csa stream new(GtNodeStream *in stream, unsigned
long join length)

Create a GtCSAStream* which takes spliced alignments from its in stream (which
are at most join length many bases apart), transforms them into consensus spliced
alignments, and returns them.

C.7 Class GtCommentNode

Implements the GtGenomeNode interface. Comment nodes correspond to comment lines in
GFF3 files (i.e., lines which start with a single “#”).

202

Methods

GtGenomeNode* gt comment node new(const char *comment)

Return a new GtCommentNode object representing a comment. Please note that the
single leading “#” which denotes comment lines in GFF3 files should not be part of
comment.

const char* gt comment node get comment(const GtCommentNode

*comment node)

Return the comment stored in comment node.

C.8 Class GtCstrTable

Implements a table of C strings.

Methods

GtCstrTable* gt cstr table new(void)

Return a new GtCstrTable object.

void gt cstr table add(GtCstrTable *table, const char *cstr)

Add cstr to table. table must not already contain cstr!

const char* gt cstr table get(const GtCstrTable *table, const
char *cstr)

If a C string equal to cstr is contained in table, it is returned. Otherwise NULL is
returned.

GtStrArray* gt cstr table get all(const GtCstrTable *table)

Return a GtStrArray* which contains all cstrs added to table in alphabetical
order. The caller is responsible to free it!

void gt cstr table remove(GtCstrTable *table, const char *cstr)

Remove cstr from table.
void gt cstr table reset(GtCstrTable *table)

Reset table (that is, remove all contained C strings).

void gt cstr table delete(GtCstrTable *table)

Delete C string table.

203

C.9 Class GtDlist

A double-linked list which is sorted according to a GtCompare compare function (qsort(3)-
like, only if one was supplied to the constructor).

Methods

GtDlist* gt dlist new(GtCompare compar)

Return a new GtDlist object sorted according to compar function. If compar equals
NULL, no sorting is enforced.

GtDlistelem* gt dlist first(const GtDlist *dlist)

Return the first GtDlistelem object in dlist.

GtDlistelem* gt dlist last(const GtDlist *dlist)

Return the last GtDlistelem object in dlist.

GtDlistelem* gt dlist find(const GtDlist *dlist, void *data)

Return the first GtDlistelem object in dlist which contains data identical to data.
Takes O(n) time.

unsigned long gt dlist size(const GtDlist *dlist)

Return the number of GtDlistelem objects in dlist.

void gt dlist add(GtDlist *dlist, void *data)

Add a new GtDlistelem object containing data to dlist. Usually O(n), but O(1)
if data is added in sorted order.

void gt dlist remove(GtDlist *dlist, GtDlistelem *dlistelem)

Remove dlistelem from dlist and free it.
int gt dlist example(GtError *err)

Example for usage of the GtDlist class.

void gt dlist delete(GtDlist *dlist)

Delete dlist.

204

C.10 Class GtDlistelem

GtDlistelem* gt dlistelem next(const GtDlistelem *dlistelem)

Return the successor of dlistelem, or NULL if the element is the last one in the
GtDlist.

GtDlistelem* gt dlistelem previous(const GtDlistelem *dlistelem)

Return the predecessor of dlistelem, or NULL if the element is the first one in the
GtDlist.

void* gt dlistelem get data(const GtDlistelem *dlistelem)

Return the data pointer attached to dlistelem.

C.11 Class GtError

This class is used for the handling of user errors in GenomeTools. Thereby, the actual GtError
object is used to store the error message while it is signaled by the return value of the called
function, if an error occured.
By convention in GenomeTools, the GtError object is always passed into a function as the
last parameter and -1 (or NULL for constructors) is used as return value to indicate that an error
occurred. Success is usually indicated by 0 as return value or via a non-NULL object pointer for
constructors.
It is possible to use NULL as an GtError object, if one is not interested in the actual error
message.
Functions which do not get an GtError object cannot fail due to a user error and it is not
necessary to check their return code for an error condition.

Methods

GtError* gt error new(void)

Return a new GtError object

#define gt error check(err)

Insert an assertion to check that the error err is not set or is NULL. This macro should be
used at the beginning of every routine which has an GtError* argument to make sure
the error propagation has been coded correctly.

void gt error set(GtError *err, const char *format, ...)

Set the error message stored in err according to format (as in printf(3)).

void gt error vset(GtError *err, const char *format, va list ap)

Set the error message stored in err according to format (as in vprintf(3)).

205

void gt error set nonvariadic(GtError *err, const char *msg)

Set the error message stored in err to msg.

bool gt error is set(const GtError *err)

Return true if the error err is set, false otherwise.

void gt error unset(GtError *err)

Unset the error err.
const char* gt error get(const GtError *err)

Return the error string stored in err (the error must be set).

void gt error delete(GtError *err)

Delete the error object err.

C.12 Class GtExtractFeatureStream

Implements the GtNodeStream interface. A GtExtractFeatureStream extracts the cor-
responding sequences of features.

Methods

GtNodeStream* gt extract feature stream new(GtNodeStream

*in stream, GtRegionMapping *region Mapping, const char *type,
bool join, bool translate, bool seqid, bool target, unsigned
long width, GtFile *outfp)

Create a GtExtractFeatureStream* which extracts the corresponding sequences
of feature nodes (of the given type) it retrieves from in stream and writes them in
FASTA format (with the given width) to outfp. If join is true, features of the given
type are joined together before the sequence is extracted. If translate is true, the
sequences are translated into amino acid sequences before they are written to outfp.
If seqid is true the sequence IDs of the extracted features are added to the FASTA
header. If target is true the target IDs of the extracted features are added to the
FASTA header. Takes ownership of region mapping!

C.13 Class GtFeatureNode

Implements the GtGenomeNode interface. A single feature node corresponds to a GFF3 fea-
ture line (i.e., a line which does not start with #). Part-of relationships (which are realized in
GFF3 with the Parent and ID attributes) are realized in the C GenomeTools API with the
gt feature node add child() method.

206

Besides the “mere” feature nodes two “special” feature nodes exist: multi-features and pseudo-
features.
Multi-features represent features which span multiple lines (it is indicated in GFF3 files by the
fact, that each line has the same ID attribute).
To check if a feature is a multi-feature use the method gt feature node is multi().
Multi-features are connected via a “representative”. That is, two features are part of the same
multi-feature if they have the same representative. The feature node representative can be be
retrieved via the gt feature node get multi representative() method.
Pseudo-features became a technical necessity to be able to pass related top-level features as a
single entity through the streaming machinery. There are two cases in which a pseudo-feature
has to be introduced.
First, if a multi-feature has no parent. In this case all features which comprise the multi-feature
become the children of a pseudo-feature.
Second, if two or more top-level features have the same children (and are thereby connected). In
this case all these top-level features become the children of a pseudo-feature.
It should be clear from the explanation above that pseudo-features make only sense as top-level
features (a fact which is enforced in the code).
Pseudo-features are typically ignored during a traversal to give the illusion that they do not exist.

Methods

GtGenomeNode* gt feature node new(GtStr *seqid, const char *type,
unsigned long start, unsigned long end, GtStrand strand)

Return an new GtFeatureNode object on sequence with ID seqid and type type
which lies from start to end on strand strand. The GtFeatureNode* stores a
new reference to seqid, so make sure you do not modify the original seqid afterwards!
start and end always refer to the forward strand, therefore start has to be smaller
or equal than end.

GtGenomeNode* gt feature node new pseudo(GtStr *seqid, unsigned
long start, unsigned long end, GtStrand strand)

Return a new pseudo-GtFeatureNode object on sequence with ID seqid which lies
from start to end on strand strand. Pseudo-features do not have a type. The
<GtFeatureNode > stores a new reference to seqid, so make sure you do not mod-
ify the original seqid afterwards. start and end always refer to the forward strand,
therefore start has to be smaller or equal than end.

GtGenomeNode* gt feature node new pseudo template(GtFeatureNode

*feature node)

Return a new pseudo-GtFeatureNode object which uses feature node as
template. That is, the sequence ID, range, strand, and source are taken from
feature node.

207

GtGenomeNode* gt feature node new standard gene(void)

Return the “standard gene” (mainly for testing purposes).

void gt feature node add child(GtFeatureNode *parent,
GtFeatureNode *child)

Add child feature node to parent feature node. parent takes ownership of child.

const char* gt feature node get source(const GtFeatureNode

*feature node)

Return the source of feature node. If no source has been set, ”.” is returned. Corre-
sponds to column 2 of GFF3 feature lines.

void gt feature node set source(GtFeatureNode *feature node,
GtStr *source)

Set the source of feature node. Stores a new reference to source. Corresponds
to column 2 of GFF3 feature lines.

bool gt feature node has source(const GtFeatureNode

*feature node)

Return true if feature node has a defined source (i.e., on different from ”.”).
false otherwise.

const char* gt feature node get type(const GtFeatureNode

*feature node)

Return the type of feature node. Corresponds to column 3 of GFF3 feature lines.

void gt feature node set type(GtFeatureNode *feature node, const
char *type)

Set the type of feature node to type.

bool gt feature node has type(GtFeatureNode *feature node, const
char *type)

Return true if feature node has given type, false otherwise.

unsigned long gt feature node number of children(const
GtFeatureNode *feature node)

Return the number of children for given feature node.

unsigned long gt feature node number of children of type(const
GtFeatureNode *parent, const GtFeatureNode *node)

Return the number of children of type node for given GtFeatureNode parent.

bool gt feature node score is defined(const GtFeatureNode

*feature node)

Return true if the score of feature node is defined, false otherwise.

208

float gt feature node get score(const GtFeatureNode

*feature node)

Return the score of feature node. The score has to be defined. Corresponds to col-
umn 6 of GFF3 feature lines.

void gt feature node set score(GtFeatureNode *feature node, float
score)

Set the score of feature node to score.
void gt feature node unset score(GtFeatureNode *feature node)

Unset the score of feature node.
GtStrand gt feature node get strand(const GtFeatureNode

*feature node)

Return the strand of feature node. Corresponds to column 7 of GFF3 feature lines.

void gt feature node set strand(GtFeatureNode *feature node,
GtStrand strand)

Set the strand of feature node to strand.
GtPhase gt feature node get phase(const GtFeatureNode

*feature node)

Return the phase of feature node. Corresponds to column 8 of GFF3 feature lines.

void gt feature node set phase(GtFeatureNode *feature node,
GtPhase phase)

Set the phase of feature node to phase.

const char* gt feature node get attribute(const GtFeatureNode

*feature node, const char *name)

Return the attribute of feature node with the given name. If no such attribute has
been added, NULL is returned. The attributes are stored in column 9 of GFF3 feature
lines.

GtStrArray* gt feature node get attribute list(const
GtFeatureNode *feature node)

Return a string array containing the used attribute names of feature node. The caller
is responsible to free the returned GtStrArray*.

void gt feature node add attribute(GtFeatureNode *feature node,
const char *tag, const char *value)

Add attribute tag=value to feature node. tag and value must at least have
length 1. feature node must not contain an attribute with the given tag already.
You should not add Parent and ID attributes, use gt feature node add child()
to denote part-of relationships.

209

void gt feature node set attribute(GtFeatureNode* feature node,
const char *tag, const char *value)

Set attribute tag to new value in feature node, if it exists already. Oth-
erwise the attribute tag=value is added to feature node. tag and value
must at least have length 1. You should not set Parent and ID attributes, use
gt feature node add child() to denote part-of relationships.

void gt feature node remove attribute(GtFeatureNode*
feature node, const char *tag)

Remove attribute tag from feature node. feature node must contain an at-
tribute with the given tag already! You should not remove Parent and ID attributes.

bool gt feature node is multi(const GtFeatureNode *feature node)

Return true if feature node is a multi-feature, false otherwise.

bool gt feature node is pseudo(const GtFeatureNode *feature node)

Return true if feature node is a pseudo-feature, false otherwise.

void gt feature node make multi representative(GtFeatureNode

*feature node)

Make feature node the representative of a multi-feature. Thereby feature node
becomes a multi-feature.

void gt feature node set multi representative(GtFeatureNode

*feature node, GtFeatureNode *representative)

Set the multi-feature representative of feature node to representative.
Thereby feature node becomes a multi-feature.

void gt feature node unset multi(GtFeatureNode *feature node)

Unset the multi-feature status of feature node and remove its multi-feature represen-
tative.

GtFeatureNode* gt feature node get multi representative(GtFeatureNode

*feature node)

Return the representative of the multi-feature feature node.

bool gt feature node is similar(const GtFeatureNode

*feature node a, const GtFeatureNode *feature node b)

Returns true, if the given feature node a has the same seqid, feature type, range,
strand, and phase as feature node b. Returns false otherwise.

void gt feature node mark(GtFeatureNode*)

Marks the given feature node.

void gt feature node unmark(GtFeatureNode*)

If the given feature node is marked it will be unmarked.

210

bool gt feature node contains marked(GtFeatureNode *feature node)

Returns true if the given feature node graph contains a marked node.

bool gt feature node is marked(const GtFeatureNode *feature node)

Returns true if the (top-level) feature node is marked.

C.14 Class GtFeatureNodeIterator

GtFeatureNodeIterator* gt feature node iterator new(const
GtFeatureNode *feature node)

Return a new GtFeatureNodeIterator* which performs a depth-first traversal of
feature node (including feature node itself). It ignores pseudo-features.

GtFeatureNodeIterator* gt feature node iterator new direct(const
GtFeatureNode *feature node)

Return a new GtFeatureNodeIterator* which iterates over all direct children of
feature node (without feature node itself).

GtFeatureNode* gt feature node iterator next(GtFeatureNodeIterator

*feature node iterator)

Return the next GtFeatureNode* in feature node iterator or NULL if none
exists.

void gt feature node iterator delete(GtFeatureNodeIterator

*feature node iterator)

Delete feature node iterator.

C.15 Class GtFile

This class defines (generic) files in GenomeTools. A generic file is is a file which either uncom-
pressed or compressed (with gzip or bzip2). A NULL-pointer as generic file implies stdout.

211

Methods

GtFile* gt file new(const char *path, const char *mode, GtError

*err)

Return a new GtFile object for the given path and open the underlying file handle
with given mode. Returns NULL and sets err accordingly, if the file path could not
be opened. The compression mode is determined by the ending of path (gzip compres-
sion if it ends with ’.gz’, bzip2 compression if it ends with ’.bz2’, and uncompressed
otherwise).

void gt file xprintf(GtFile *file, const char *format, ...)

printf(3) for generic file.

void gt file xfputs(const char *cstr, GtFile *file)

Write \0-terminated C string cstr to file. Similar to fputs(3), but terminates on
error.

int gt file xfgetc(GtFile *file)

Return next character from file or EOF, if end-of-file is reached.

int gt file xread(GtFile *file, void *buf, size t nbytes)

Read up to nbytes from generic file and store result in buf, returns bytes read.

void gt file xwrite(GtFile *file, void *buf, size t nbytes)

Write nbytes from buf to given generic file.

void gt file xrewind(GtFile *file)

Rewind the generic file.

void gt file delete(GtFile *file)

Close the underlying file handle and destroy the file object.

C.16 Class GtGFF3InStream

Implements the GtNodeStream interface. A GtGFF3InStream parses GFF3 files and re-
turns them as a stream of GtGenomeNode objects.

212

Methods

GtNodeStream* gt gff3 in stream new unsorted(int num of files,
const char **filenames)

Return a GtGFF3InStream object which subsequently reads the num of files
many GFF3 files denoted in filenames. The GFF3 files do not have to be sorted. If
num of files is 0 or a file name is ”-”, it is read from stdin. The memory footprint
is O(file size) in the worst-case.

GtNodeStream* gt gff3 in stream new sorted(const char *filename)

Create a GtGFF3InStream*which reads the sorted GFF3 file denoted by filename.
If filename is NULL, it is read from stdin. The memory footprint is O(1) on average.

void gt gff3 in stream check id attributes(GtGFF3InStream

*gff3 in stream)

Make sure all ID attributes which are parsed by gff3 in stream are correct. Increases
the memory footprint to O(file size).

void gt gff3 in stream enable tidy mode(GtGFF3InStream

*gff3 in stream)

Enable tidy mode for gff3 in stream. That is, the GFF3 parser tries to tidy up fea-
tures which would normally lead to an error.

void gt gff3 in stream show progress bar(GtGFF3InStream

*gff3 in stream)

Show progress bar on stdout to convey the progress of parsing the GFF3 files underly-
ing gff3 in stream.

C.17 Class GtGFF3OutStream

Implements the GtNodeStream interface. A GtGFF3OutStream produces GFF3 output. It
automatically inserts termination lines at the appropriate places.

213

Methods

GtNodeStream* gt gff3 out stream new(GtNodeStream *in stream,
GtFile *outfp)

Create a GtGFF3OutStream* which uses in stream as input. It shows the nodes
passed through it as GFF3 on outfp.

void gt gff3 out stream set fasta width(GtGFF3OutStream

*gff3 out stream, unsigned long fasta width)

Set the width with which the FASTA sequences of GtSequenceNodes passed through
gff3 out stream are shown to fasta width. Per default, each FASTA entry is
shown on a single line.

void gt gff3 out stream retain id attributes(GtGFF3OutStream

*gff3 out stream)

If this method is called upon gff3 out stream, use the original ID attributes provided
in the input (instead of creating new ones, which is the default). Memory consumption
for gff3 out stream is raised from O(1) to O(input size), because bookkeeping
of used IDs becomes necessary to avoid ID collisions.

C.18 Class GtGFF3Parser

A GtGFF3Parser can be used to parse GFF3 files and convert them into GtGenomeNode
objects. If the GFF3 files do not contain the encouraged sequence-region meta directives, the
GFF3 parser introduces the corresponding region nodes automatically. This is a low-level class
and it is usually not used directly. Normally, a GtGFF3InStream is used to parse GFF3 files.

Methods

GtGFF3Parser* gt gff3 parser new(GtTypeChecker *type checker)

Return a new GtGFF3Parser object with optional type checker. If a
type checker was given, the GtGFF3Parser stores a new reference to it internally
and uses the type checker to check types during parsing.

void gt gff3 parser check id attributes(GtGFF3Parser *gff3 parser)

Enable ID attribute checking in gff3 parser. Thereby, the memory consumption of
the gff3 parser becomes proportional to the input file size(s).

void gt gff3 parser check region boundaries(GtGFF3Parser

*gff3 parser)

Enable sequence region boundary checking in gff3 parser. That is, encountering
features outside the sequence region boundaries will result in an error.

214

void gt gff3 parser do not check region boundaries(GtGFF3Parser

*gff3 parser)

Disable sequence region boundary checking in gff3 parser. That is, features outside
the sequence region boundaries will be permitted.

void gt gff3 parser set offset(GtGFF3Parser *gff3 parser, long
offset)

Transform all features parsed by gff3 parser by the given offset.

void gt gff3 parser set type checker(GtGFF3Parser *gff3 parser,
GtTypeChecker *type checker)

Set type checker used by gff3 parser.

void gt gff3 parser enable tidy mode(GtGFF3Parser *gff3 parser)

Enable the tidy mode in gff3 parser. In tidy mode the gff3 parser parser tries to
tidy up features which would normally lead to a parse error.

int gt gff3 parser parse genome nodes(GtGFF3Parser *gff3 parser,
int *status code, GtQueue *genome nodes, GtCstrTable *used types,
GtStr *filenamestr, unsigned long long *line number, GtFile

*fpin, GtError *err)

Use gff3 parser to parse genome nodes from file pointer fpin. status code is
set to 0 if at least one genome node was created (and stored in genome nodes) and
to EOF if no further genome nodes could be parsed from fpin. Every encountered
(genome feature) type is recorded in the C string table used types. The parser uses
the given filenamestr to store the file name of fpin in the created genome nodes or
to give the correct filename in error messages, if necessary. line number is increased
accordingly during parsing and has to be set to 0 before parsing a new fpin. If an error
occurs during parsing this method returns -1 and sets err accordingly.

void gt gff3 parser reset(GtGFF3Parser *gff3 parser)

Reset the gff3 parser (necessary if the input file is switched).

void gt gff3 parser delete(GtGFF3Parser *gff3 parser)

Delete the gff3 parser.

C.19 Class GtGFF3Visitor

Implements the GtNodeVisitor interface with a visitor that produces GFF3 output. This is a
low-level class and it is usually not used directly. Normally, a GtGFF3OutStream is used to
produce GFF3 output.

215

Methods

GtNodeVisitor* gt gff3 visitor new(GtFile *outfp)

Create a new GtNodeVisitor*which writes the output it produces to the given output
file pointer outfp. If outfp is NULL, the output is written to stdout.

void gt gff3 visitor set fasta width(GtGFF3Visitor *gff3 visitor,
unsigned long fasta width)

Set the width with which the FASTA sequences of GtSequenceNodes visited by
gff3 visitor are shown to fasta width. Per default, each FASTA entry is shown
on a single line.

void gt gff3 visitor retain id attributes(GtGFF3Visitor

*gff3 visitor)

Retain the original ID attributes (instead of creating new ones), if possible. Memory con-
sumption for gff3 visitor is raised from O(1) to O(input size), because book-
keeping of used IDs becomes necessary to avoid ID collisions.

C.20 Class GtGTFInStream

Implements the GtNodeStream interface. A GtGTFInStream parses a GTF2.2 file and
returns it as a stream of GtGenomeNode objects.

Methods

GtNodeStream* gt gtf in stream new(const char *filename)

Create a GtGTFInStream* which subsequently reads the GTF file with the given
filename. If filename equals NULL, the GTF data is read from stdin.

C.21 Class GtGTFOutStream

Implements the GtNodeStream interface. A GtGTFOutStream produces GTF2.2 output.

Methods

GtNodeStream* gt gtf out stream new(GtNodeStream *in stream,
GtFile *outfp)

Create a GtNodeStream* which uses in stream as input. It shows the nodes passed
through it as GTF2.2 on outfp.

216

C.22 Class GtGenomeNode

The GtGenomeNode interface. The different implementation of the GtGenomeNode interface
represent different parts of genome annotations (as they are usually found in GFF3 files).

Methods

GtGenomeNode* gt genome node ref(GtGenomeNode *genome node)

Increase the reference count for genome node and return it. genome node cannot be
NULL.

GtStr* gt genome node get seqid(GtGenomeNode *genome node)

Return the sequence ID of genome node. Corresponds to column 1 of GFF3 feature
lines.

GtRange gt genome node get range(GtGenomeNode *genome node)

Return the genomic range of of genome node. Corresponds to columns 4 and 5 of
GFF3 feature lines.

unsigned long gt genome node get start(GtGenomeNode *genome node)

Return the start of genome node. Corresponds to column 4 of GFF3 feature lines.

unsigned long gt genome node get end(GtGenomeNode *genome node)

Return the end of genome node. Corresponds to column 5 of GFF3 feature lines.

unsigned long gt genome node get length(GtGenomeNode

*genome node)

Return the length of genome node. Computed from column 4 and 5 of GFF3 feature
lines.

const char* gt genome node get filename(const GtGenomeNode*
genome node)

Return the filename the genome node was read from. If the node did not originate from
a file, an appropriate string is returned.

unsigned int gt genome node get line number(const GtGenomeNode*)

Return the line of the source file the genome node was encountered on (if the node was
read from a file, otherwise 0 is returned).

void gt genome node set range(GtGenomeNode *genome node, const
GtRange *range)

Set the genomic range of genome node to given range.

217

void gt genome node add user data(GtGenomeNode *genome node, const
char *key, void *data, GtFree free func)

Attach a pointer to data to the genome node using a given string as key. free func
is the optional destructor for data.

void* gt genome node get user data(const GtGenomeNode

*genome node, const char *key)

Return the pointer attached to the genome node for a given key.

void gt genome node release user data(GtGenomeNode *genome node,
const char *key)

Call the destructor function associated with the user data attached to genome node
under the key on the attached data.

int gt genome node cmp(GtGenomeNode *genome node a, GtGenomeNode

*genome node b)

Compare genome node a with genome node b and return the result (similar to
strcmp(3)). This method is the criterion used to sort genome nodes.

void gt genome nodes sort(GtArray *nodes)

Sort node array nodes

void gt genome nodes sort stable(GtArray *nodes)

Sort node array nodes in a stable way

int gt genome node accept(GtGenomeNode *genome node,
GtNodeVisitor *node visitor, GtError *err)

Let genome node accept the node visitor. In the case of an error, -1 is returned
and err is set accordingly.

void gt genome node delete(GtGenomeNode *genome node)

Decrease the reference count for genome node or delete it, if this was the last reference.

C.23 Class GtHashmap

A hashmap allowing to index any kind of pointer (as a value). As keys, strings or any other
pointer can be used.

218

Methods

GtHashmap* gt hashmap new(GtHashType keyhashtype, GtFree
keyfree, GtFree valuefree)

Creates a new GtHashmap object of type keyhashtype. If keyfree and/or
valuefree are given, they will be used to free the hashmap members when the
GtHashmap is deleted. keyhashtype defines how to hash the keys given when using
the GtHashmap. GT HASH DIRECT uses the key pointer as a basis for the hash func-
tion. Equal pointers will refer to the same value. If GT HASH STRING is used, the keys
will be evaluated as strings and keys will be considered equal if the strings are identical,
regardless of their address in memory

GtHashmap* gt hashmap ref(GtHashmap *hm)

Increase the reference count of hm.
void* gt hashmap get(GtHashmap *hashmap, const void *key)

Return the value stored in hashmap for key or NULL if no such key exists.

void gt hashmap add(GtHashmap *hashmap, void *key, void *value)

Set the value stored in hashmap for key to value, overwriting the prior value for that
key if present.

void gt hashmap remove(GtHashmap *hashmap, const void *key)

Remove the member with key key from hashmap.

int gt hashmap foreach ordered(GtHashmap *hashmap,
GtHashmapVisitFunc func, void *data, GtCompare cmp, GtError

*err)

Iterate over hashmap in order given by compare function cmp. For each member, func
is called (see interface).

int gt hashmap foreach(GtHashmap *hashmap, GtHashmapVisitFunc
func, void *data, GtError *err)

Iterate over hashmap in arbitrary order. For each member, func is called (see inter-
face).

int gt hashmap foreach in key order(GtHashmap *hashmap,
GtHashmapVisitFunc func, void *data, GtError *err)

Iterate over hashmap in either alphabetical order (if GtHashType was speci-
fied as GT HASH STRING) or numerical order (if GtHashType was specified as
GT HASH DIRECT).

void gt hashmap reset(GtHashmap *hashmap)

Reset hashmap by unsetting values for all keys, calling the free function if necessary.

219

void gt hashmap delete(GtHashmap *hashmap)

Delete hashmap, calling the free function if necessary.

C.24 Class GtIDToMD5Stream

Implements the GtNodeStream interface. A GtIDToMD5Stream converts “regular” se-
quence IDs to MD5 fingerprints.

Methods

GtNodeStream* gt id to md5 stream new(GtNodeStream *in stream,
GtRegionMapping *region mapping, bool substitute target ids)

Create a GtIDToMD5Stream object which converts “regular” sequence IDs from
nodes it retrieves from its in stream to MD5 fingerprints (with the help of the given
region mapping). If substitute target ids is true, the IDs of Target at-
tributes are also converted to MD5 fingerprints. Takes ownership of region mapping!

C.25 Class GtInterFeatureStream

Implements the GtNodeStream interface. A GtInterFeatureStream inserts new feature
nodes between existing feature nodes of a certain type.

Methods

GtNodeStream* gt inter feature stream new(GtNodeStream

*in stream, const char *outside type, const char *inter type)

Create a GtInterFeatureStream* which inserts feature nodes of type
inter type between the feature nodes of type outside type it retrieves from
in stream and returns them.

C.26 Class GtMD5ToIDStream

Implements the GtNodeStream interface. A GtMD5ToIDStream converts MD5 fingerprints
used as sequence IDs to “regular” ones.

220

Methods

GtNodeStream* gt md5 to id stream new(GtNodeStream *in stream,
GtRegionMapping *region mapping)

Create a GtMD5toIDStream* which converts MD5 sequence IDs from nodes
it retrieves from its in stream to “regular” ones (with the help of the given
region mapping). Takes ownership of region mapping!

C.27 Class GtMergeFeatureStream

Implements the GtNodeStream interface. A GtMergeFeatureStream merges adjacent
features of the same type.

Methods

GtNodeStream* gt merge feature stream new(GtNodeStream

*in stream)

Create a GtMergeFeatureStream*which merges adjacent features of the same type
it retrieves from in stream and returns them (and all other unmodified features).

C.28 Class GtMergeStream

Implements the GtNodeStream interface. A GtMergeStream allows one to merge a set of
sorted streams in a sorted fashion.

Methods

GtNodeStream* gt merge stream new(const GtArray *node streams)

Create a GtMergeStream* which merges the given (sorted) node streams in a
sorted fashion.

C.29 Class GtNodeStream

The GtNodeStream interface. GtNodeStream objects process GtGenomeNode objects in
a pull-based architecture and can be chained together.

221

Methods

GtNodeStream* gt node stream ref(GtNodeStream *node stream)

Increase the reference count for node stream and return it.
int gt node stream next(GtNodeStream *node stream, GtGenomeNode

**genome node, GtError *err)

Try to get the the next GtGenomeNode from node stream and store it in
genome node (transfers ownership to genome node). If no error occurs, 0 is re-
turned and genome node contains either the next GtGenomeNode or NULL, if the
node stream is exhausted. If an error occurs, -1 is returned and err is set accord-
ingly (the status of genome node is undefined, but no ownership transfer occured).

int gt node stream pull(GtNodeStream *node stream, GtError *err)

Calls gt node stream next() on node stream repeatedly until the
node stream is exhausted (0 is returned) or an error occurs (-1 is returned and
err is set). All retrieved GtGenomeNodes are deleted automatically with calls
to gt genome node delete(). This method is basically a convenience method
which simplifies calls to gt node stream next() in a loop where the retrieved
GtGenomeNode objects are not processed any further.

bool gt node stream is sorted(GtNodeStream *node stream)

Return true if node stream is a sorted stream, false otherwise.

void gt node stream delete(GtNodeStream *node stream)

Decrease the reference count for node stream or delete it, if this was the last reference.

GtNodeStream* gt node stream create(const GtNodeStreamClass

*node stream class, bool ensure sorting)

Create a new object of the given node stream class. If ensure sorting is
true, it is enforced that all genome node objects pulled from this class are sorted. That
is, for consecutive nodes a and b obtained from the given node stream class the
return code of gt genome node compare(a,b) has to be smaller or equal than 0.
If this condition is not met, an assertion fails.

void* gt node stream cast(const GtNodeStreamClass

*node stream class, GtNodeStream *node stream)

Cast node stream to the given node stream class. That is, if node stream is
not from the given node stream class, an assertion will fail.

222

C.30 Class GtNodeStreamClass

const GtNodeStreamClass* gt node stream class new(size t size,
GtNodeStreamFreeFunc free, GtNodeStreamNextFunc next)

Create a new node stream class (that is, a class which implements the node stream inter-
face). size denotes the size of objects of the new node stream class. The optional free
method is called once, if an object of the new class is deleted. The mandatory next
method has to implement the gt node stream next() semantic for the new class.

C.31 Class GtNodeVisitor

The GtNodeVisitor interface, a visitor for GtGenomeNode objects.

Methods

int gt node visitor visit comment node(GtNodeVisitor

*node visitor, GtCommentNode *comment node, GtError *err)

Visit comment node with node visitor.
int gt node visitor visit feature node(GtNodeVisitor

*node visitor, GtFeatureNode *feature node, GtError *err)

Visit feature node with node visitor.
int gt node visitor visit meta node(GtNodeVisitor *node visitor,
GtMetaNode *meta node, GtError *err)

Visit meta node with node visitor.
int gt node visitor visit region node(GtNodeVisitor *node visitor,
GtRegionNode *region node, GtError *err)

Visit region node with node visitor.

int gt node visitor visit sequence node(GtNodeVisitor

*node visitor, GtSequenceNode *sequence node, GtError *err)

Visit sequence node with node visitor.

void gt node visitor delete(GtNodeVisitor *node visitor)

Delete node visitor.

C.32 Class GtOption

GtOption objects represent command line options (which are used in a GtOptionParser).
Option descriptions are automatically formatted to GT OPTION PARSER TERMINAL WIDTH,

223

but it is possible to embed newlines into the descriptions to manually affect the formatting.

Methods

GtOption* gt option new bool(const char *option string, const
char *description, bool *value, bool default value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value.

GtOption* gt option new double(const char *option string, const
char *description, double *value, double default value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value.

GtOption* gt option new double min(const char *option string,
const char *description, double *value, double default value,
double minimum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum value.

GtOption* gt option new double min max(const char *option string,
const char *description, double *value, double default value,
double minimum value, double maximum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument to
this option must at least have the minimum value and at most the maximum value.

GtOption* gt option new probability(const char *option string,
const char *description, double *value, double default value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument
to this option must at larger or equal than 0.0 and smaller or equal than 1.0.

GtOption* gt option new int(const char *option string, const char

*description, int *value, int default value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value.

224

GtOption* gt option new int min(const char *option string,
const char *description, int *value, int default value, int
minimum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum value.

GtOption* gt option new int max(const char *option string,
const char *description, int *value, int default value, int
maximum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument
to this option must at most have the maximum value.

GtOption* gt option new int min max(const char *option string,
const char *description, int *value, int default value, int
minimum value, int maximum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument to
this option must at least have the minimum value and at most the maximum value.

GtOption* gt option new uint(const char *option string,
const char *description, unsigned int *value, unsigned int
default value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value.

GtOption* gt option new uint min(const char *option string,
const char *description, unsigned int *value, unsigned int
default value, unsigned int minimum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum value.

GtOption* gt option new uint max(const char *option string,
const char *description, unsigned int *value, unsigned int
default value, unsigned int maximum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument
to this option must at most have the maximum value.

225

GtOption* gt option new uint min max(const char *option string,
const char *description, unsigned int *value, unsigned int
default value, unsigned int minimum value, unsigned int
maximum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument to
this option must at least have the minimum value and at most the maximum value.

GtOption* gt option new long(const char *option string, const
char *description, long *value, long default value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value.

GtOption* gt option new ulong(const char *option string,
const char *description, unsigned long *value, unsigned long
default value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value.

GtOption* gt option new ulong min(const char *option string,
const char *description, unsigned long *value, unsigned long
default value, unsigned long minimum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum value.

GtOption* gt option new ulong min max(const char *option string,
const char *description, unsigned long *value, unsigned long
default value, unsigned long minimum value, unsigned long
maximum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The argument to
this option must at least have the minimum value and at most the maximum value.

GtOption* gt option new range(const char *option string, const
char *description, GtRange *value, GtRange *default value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. If
default value equals NULL, GT UNDEF LONG will be used as the default start and
end point of value.

226

GtOption* gt option new range min max(const char *option string,
const char *description, GtRange *value, GtRange *default value,
unsigned long minimum value, unsigned long maximum value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value. The first
argument to this option (which will be used as the start) must at least have the
minimum value and the second argument (which will be used as the end) at most
the maximum value.

GtOption* gt option new string(const char *option string, const
char *description, GtStr *value, const char *default value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing is stored in value.

GtOption* gt option new string array(const char *option string,
const char *description, GtStrArray *value)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing are stored in value.

GtOption* gt option new choice(const char *option string, const
char *description, GtStr *value, const char *default value,
const char **domain)

Return a GtOption with the given option string, description, and
default value which allows only arguments given in the NULL-terminated domain
(default value must be an entry of domain or NULL).

GtOption* gt option new filename(const char *option string, const
char *description, GtStr *filename)

Return a new GtOption with the given option string, description, and
default value. The result of the option parsing are stored in value.

GtOption* gt option new filename array(const char *option string,
const char *description, GtStrArray *filename array)

Return a new GtOption with the given option string, description, and
default value. The results of the option parsing are stored in value.

GtOption* gt option new debug(bool *value)

Return a new debug GtOption object: -debug, ”enable debugging output”, default is
false. The result of the option parsing is stored in value

GtOption* gt option new verbose(bool *value)

Return a new verbose GtOption object: -v, ”be verbose”, default is false. The result
of the option parsing is stored in value

227

GtOption* gt option new width(unsigned long *value)

Return a new width GtOption object: -width, ”set output width for FASTA sequence
printing (0 disables formatting)”, default is 0. The result of the option parsing is stored
in value

GtOption* gt option ref(GtOption *option)

Increase the reference count for option and return it.

const char* gt option get name(const GtOption * option)

Return the name of option

void gt option is mandatory(GtOption *option)

Make option mandatory.

void gt option is mandatory either(GtOption *option a, const
GtOption *option b)

Make it mandatory, that either option a or option b is used.

void gt option is mandatory either 3(GtOption *option a, const
GtOption *option b, const GtOption *option c)

Make it mandatory, that one of the options option a, option b, or option c is
used.

void gt option is extended option(GtOption *option)

Set that option is only shown in the output of -help+.

void gt option is development option(GtOption *option)

Set that option is only shown in the output of -helpdev.

void gt option imply(GtOption *option a, const GtOption

*option b)

Make option a imply option b.

void gt option imply either 2(GtOption *option a, const GtOption

*option b, const GtOption *option c)

Make option a imply either option b or option c

void gt option exclude(GtOption *option a, GtOption *option b)

Set that the options option a and option b exclude each other.

void gt option hide default(GtOption *option)

Hide the default value of option in -help output.

void gt option argument is optional(GtOption *option)

Set that the argument to option is optional

bool gt option is set(const GtOption *option)

Return true if option was set, false otherwise.

228

void gt option delete(GtOption*)

Delete option.

int gt option parse spacespec(unsigned long *maximumspace, const
char *optname, const GtStr *memlimit, GtError *err)

Parse the argument to option -memlimit. Could be made into a special parser, but I do
not know how. SK. 2011-09-19

C.33 Class GtOptionParser

GtOptionParser objects can be used to parse command line options.

Methods

#define GT OPTION PARSER TERMINAL WIDTH

The default terminal width used in the output of the GtOptionParser.

GtOptionParser* gt option parser new(const char *synopsis, const
char *one liner)

Return a new GtOptionParser object. The synopsis should summarize the com-
mand line arguments and mandatory arguments in a single line. The one liner should
describe the program for which the GtOptionParser is used in a single line and must
have an upper case letter at the start and a ’.’ at the end.

void gt option parser add option(GtOptionParser *option parser,
GtOption *option)

Add option to option parser. Takes ownership of option.

GtOption* gt option parser get option(GtOptionParser

*option parser, const char *option string)

Return the GtOption object if an option named option string is present in
option parser, and NULL if no such option exists.

void gt option parser refer to manual(GtOptionParser

*option parser)

Refer to manual at the end of -help output of opion parser.

void gt option parser set comment func(GtOptionParser

*option parser, GtShowCommentFunc comment func, void *data)

Set comment func in option parser (data is passed along).

229

void gt option parser set version func(GtOptionParser

*option parser, GtShowVersionFunc version func)

Set the version function used by option parser to version func. This version
function takes precedence to the one supplied to gt option parser parse().

void gt option parser set mail address(GtOptionParser*, const
char *mail address)

Set the mail address used in the final ”Report bugs to” line of the -help output. It
should be of the form <bill@microsoft.com> (email address enclosed in one pair
of angle brackets).

void gt option parser register hook(GtOptionParser

*option parser, GtOptionParserHookFunc hook function, void

*data)

Register a hook function with option parser. All registered hook functions are
called at the end of gt option parser parse(). This allows one to have a mod-
ule which registers a bunch of options in the option parser and automatically performs
necessary postprocessing after the option parsing has been done via the hook function.

void gt option parser set min args(GtOptionParser *option parser,
unsigned int minimum)

The the minimum number of additional command line arguments option parser
must parse in order to succeed.

void gt option parser set max args(GtOptionParser *option parser,
unsigned int maximum)

The the maximum number of additional command line arguments option parser
must parse in order to succeed.

void gt option parser set min max args(GtOptionParser

*option parser, unsigned int minimum, unsigned int maximum)

The the minimum and maximum number of additional command line arguments
option parser must parse in order to succeed.

GtOPrval gt option parser parse(GtOptionParser *option parser,
int *parsed args, int argc, const char **argv, GtShowVersionFunc
version func, GtError *err)

Use option parser to parse options given in argument vector argv (with argc
many arguments). The number of parsed arguments is stored in parsed args.
version func is used for the output of option -version. In case of error,
GT OPTION PARSER ERROR is returned and err is set accordingly.

void gt option parser delete(GtOptionParser *option parser)

Delete option parser.

230

C.34 Class GtPhase

This enum type defines the possible phases. The following phases are defined: GT PHASE ZERO,
GT PHASE ONE, GT PHASE TWO, and GT PHASE UNDEFINED.

Methods

#define GT PHASE CHARS

Use this string to map phase enum types to their corresponding character.

GtPhase gt phase get(char phase char)

Map phase char to the corresponding phase enum type. An assertion will fail if
phase char is not a valid one.

C.35 Class GtQueue

GtQueue objects are generic queues which can be used to process objects of any type in an
First-In-First-Out (FIFO) fashion.

Methods

GtQueue* gt queue new(void)

Return a new GtQueue object.

void gt queue add(GtQueue *queue, void *elem)

Add elem to queue (enqueue in computer science terminology).

void* gt queue get(GtQueue *queue)

Remove the first element from non-empty queue and return it (dequeue in computer
science terminology).

void* gt queue head(GtQueue *queue)

Return the first element in non-empty queue without removing it.

void gt queue remove(GtQueue *queue, void *elem)

Remove elem from queue (elem has to be in queue). Thereby queue is traversed
in reverse order, leading to O(gt queue size(queue)) worst-case running time.

unsigned long gt queue size(const GtQueue *queue)

Return the number of elements in queue.

void gt queue delete(GtQueue *queue)

Delete queue. Elements contained in queue are not freed!

231

C.36 Class GtRange

The GtRange class is used to represent genomic ranges in GenomeTools. Thereby, the start
must always be smaller or equal than the end.

Methods

int gt range compare(const GtRange *range a, const GtRange

*range b)

Compare range a and range b. Returns 0 if range a equals range b, -1 if
range a starts before range b or (for equal starts) range a ends before range b,
and 1 else.

int gt range compare with delta(const GtRange *range a, const
GtRange *range b, unsigned long delta)

Compare range a and range b with given delta. Returns 0 if range a equals
range b modulo delta (i.e., the start and end points of range a and range b are
at most delta bases apart), -1 if range a starts before range b or (for equal starts)
range a ends before range b, and 1 else.

bool gt range overlap(const GtRange *range a, const GtRange

*range b)

Returns true if range a and range b overlap, false otherwise.

bool gt range overlap delta(const GtRange *range a, const GtRange

*range b, unsigned long delta)

Returns true if range a and range b overlap at least delta many positions,
false otherwise.

bool gt range contains(const GtRange *range a, const GtRange

*range b)

Returns true if range b is contained in range a, false otherwise.

bool gt range within(const GtRange *range, unsigned long point)

Returns true if point lies within range, false otherwise.

GtRange gt range join(const GtRange *range a, const GtRange

*range b)

Join range a and range b and return the result.

GtRange gt range offset(const GtRange *range, long offset)

Transform start and end of range by offset and return the result.

unsigned long gt range length(const GtRange *range)

Returns the length of the given range.

232

C.37 Class GtRegionMapping

A GtRegionMapping objects maps sequence-regions to the corresponding entries of sequence
files.

Methods

GtRegionMapping* gt region mapping new mapping(GtStr

*mapping filename, GtError *err)

Return a new GtRegionMapping object for the mapping file with the given
mapping filename. In the case of an error, NULL is returned and err is set ac-
cordingly.

GtRegionMapping* gt region mapping new seqfiles(GtStrArray

*sequence filenames, bool matchdesc, bool usedesc)

Return a new GtRegionMapping object for the sequence files given in
sequence filenames. If matchdesc is true, the sequence descriptions from
the input files are matched for the desired sequence IDs (in GFF3).
If usedesc is true, the sequence descriptions are used to map the sequence IDs
(in GFF3) to actual sequence entries. If a description contains a sequence range (e.g.,
III:1000001..2000000), the first part is used as sequence ID (’III’) and the first range po-
sition as offset (’1000001’).
matchdesc and usedesc cannot be true at the same time.

GtRegionMapping* gt region mapping new rawseq(const char *rawseq,
unsigned long length, unsigned long offset)

Return a new GtRegionMapping object which maps to the given sequence rawseq
with the corresponding length and offset.

GtRegionMapping* gt region mapping ref(GtRegionMapping

*region mapping)

Increase the reference count for region mapping and return it.

int gt region mapping get raw sequence(GtRegionMapping

*region mapping, const char **rawseq, unsigned long *length,
unsigned long *offset, GtStr *seqid, const GtRange *range,
GtError *err)

Use region mapping to map the given sequence ID seqid and its corresponding
range to an actual sequence. The sequence is returned in rawseq, its length and offset
in length and offset. In the case of an error, -1 is returned and err is set accord-
ingly.

233

int gt region mapping get description(GtRegionMapping

*region mapping, GtStr *desc, GtStr *seqid, GtError *err)

Use region mapping to get the description of the MD5 sequence ID seqid. The
description is appended to desc. In the case of an error, -1 is returned and err is set
accordingly.

const char* gt region mapping get md5 fingerprint(GtRegionMapping

*region mapping, GtStr *seqid, const GtRange *range, unsigned
long *offset, GtError *err)

Use region mapping to return the MD5 fingerprint of the sequence with the se-
quence ID seqid and its corresponding range. The offset of the sequence is stored
in offset. In the case of an error, NULL is returned and err is set accordingly.

void gt region mapping delete(GtRegionMapping *region mapping)

Delete region mapping.

C.38 Class GtRegionNode

Implements the GtGenomeNode interface. Region nodes correspond to the ##sequence-region
lines in GFF3 files.

Methods

GtGenomeNode* gt region node new(GtStr *seqid, unsigned long
start, unsigned long end)

Create a new GtRegionNode* representing sequence with ID seqid from base po-
sition start to base position end (1-based). start has to be smaller or equal than
end. The GtRegionNode* stores a new reference to seqid, so make sure you do not
modify the original seqid afterwards!

C.39 Class GtSelectStream

Implements the GtNodeStream interface. A GtSelectStream selects certain nodes it re-
trieves from its node source and passes them along.

234

Methods

GtNodeStream* gt select stream new(GtNodeStream *in stream, GtStr

*seqid, GtStr *source, const GtRange *contain range, const
GtRange *overlap range, GtStrand strand, GtStrand targetstrand,
bool has CDS, unsigned long max gene length, unsigned long
max gene num, double min gene score, double max gene score,
double min average splice site prob, unsigned long feature num,
GtStrArray *select files, GtStr *select logic, GtError *err)

Create a GtSelectStream object which selects genome nodes it retrieves from its
in stream and passes them along if they meet the criteria defined by the other argu-
ments. All comment nodes are selected. If seqid is defined, a genome node must
have it to be selected. If source is defined, a genome node must have it to be se-
lected. If contain range is defined, a genome node must be contained in it to be
selected. If overlap range is defined, a genome node must overlap it to be se-
lected. If strand is defined, a (top-level) genome node must have it to be selected.
If targetstrand is defined, a feature with a target attribute must have exactly one
of it and its strand must equal targetstrand. If had cds is true, all top-level
features are selected which have a child with type CDS. If max gene length is de-
fined, only genes up to the this length are selected. If max gene num is defined, only
so many genes are selected. If min gene score is defined, only genes with at least
this score are selected. If max gene score is defined, only genes with at most this
score are selected. If min average splice site prob is defined, feature nodes
which have splice sites must have at least this average splice site score to be selected.
If feature num is defined, just the feature numth feature node occurring in the
in stream is selected. If select files is defined and has at least one entry, the
entries are evaluated as Lua scripts containing functions taking GtGenomeNodes that
are evaluated to boolean values to determine selection. select logic can be ”OR” or
”AND”, defining how the results from the select scripts are combined. Returns a pointer
to a new GtSelectStream or NULL on error (err is set accordingly).

void gt select stream set drophandler(GtSelectStream *sstr,
GtSelectNodeFunc fp, void *data)

Sets fp as a handler function to be called for every GtGenomeNode not selected by
sstr. The void pointer data can be used for arbitrary user data.

C.40 Class GtSequenceNode

Implements the GtGenomeNode interface. Sequence nodes correspond to singular embedded
FASTA sequences in GFF3 files.

235

Methods

GtGenomeNode* gt sequence node new(const char *description, GtStr

*sequence)

Create a new GtSequenceNode* representing a FASTA entry with the given
description and sequence. Takes ownership of sequence.

const char* gt sequence node get description(const GtSequenceNode

*sequence node)

Return the description of sequence node.

const char* gt sequence node get sequence(const GtSequenceNode

*sequence node)

Return the sequence of sequence node.

unsigned long gt sequence node get sequence length(const
GtSequenceNode *sequence node)

Return the sequence length of sequence node.

C.41 Class GtSortStream

Implements the GtNodeStream interface. A GtSortStream sorts the GtGenomeNode
objects it retrieves from its node source.

Methods

GtNodeStream* gt sort stream new(GtNodeStream *in stream)

Create a GtSortStream* which sorts the genome nodes it retrieves from in stream
and returns them unmodified, but in sorted order.

C.42 Class GtStatStream

Implements the GtNodeStream interface. A GtStatStream gathers statistics about the
GtGenomeNode objects it retrieves from its node source and passes them along unmodified.

236

Methods

GtNodeStream* gt stat stream new(GtNodeStream *in stream, bool
gene length distribution, bool gene score distribution, bool
exon length distribution, bool exon number distribution, bool
intron length distribution, bool cds length distribution, bool
used sources)

Create a GtStatStream object which gathers statistics about the GtGenomeNode
objects it retrieves from its in stream and returns them unmodified. Besides
the basic statistics, statistics about the following distributions can be gathered,
if the corresponding argument equals true: gene length distribution,
gene score distribution, exon length distribution,
exon number distribution, intron length distribution,
cds length distribution.
If used sources equals true, it is recorded which source tags have been encoun-
tered.

void gt stat stream show stats(GtStatStream *stat stream, GtFile

*outfp)

Write the statistics gathered by stat stream to outfp.

C.43 Class GtStr

Objects of the GtStr class are strings which grow on demand.

Methods

GtStr* gt str new(void)

Return an empty GtStr object.

GtStr* gt str new cstr(const char *cstr)

Return a new GtStr object whose content is set to cstr.

GtStr* gt str clone(const GtStr *str)

Return a clone of str.
GtStr* gt str ref(GtStr *str)

Increase the reference count for str and return it. If str is NULL, NULL is returned
without any side effects.

char* gt str get(const GtStr *str)

Return the content of str. Never returns NULL, and the content is always \0-terminated

237

void gt str set(GtStr *str, const char *cstr)

Set the content of str to cstr.
void gt str append str(GtStr *dest, const GtStr *src)

Append the string src to dest.

void gt str append cstr(GtStr *str, const char *cstr)

Append the \0-terminated cstr to str.

void gt str append cstr nt(GtStr *str, const char *cstr, unsigned
long length)

Append the (not necessarily \0-terminated) cstr with given length to str.

void gt str append char(GtStr *str, char c)

Append character c to str.

void gt str append double(GtStr *str, double d, int precision)

Append double d to str with given precision.

void gt str append ulong(GtStr *str, unsigned long ulong)

Append ulong to str.

void gt str append int(GtStr *str, int intval)

Append intval to str.

void gt str append uint(GtStr *str, unsigned int uint)

Append uint to str.

void gt str set length(GtStr *str, unsigned long length)

Set length of str to length. length must be smaller or equal than
gt str length(str).

void gt str reset(GtStr *str)

Reset str to length 0.

int gt str cmp(const GtStr *str1, const GtStr *str2)

Compare str1 and str2 and return the result (similar to strcmp(3)).

unsigned long gt str length(const GtStr *str)

Return the length of str. If str is NULL, 0 is returned.

void gt str delete(GtStr *str)

Decrease the reference count for str or delete it, if this was the last reference.

C.44 Class GtStrArray

GtStrArray* objects are arrays of string which grow on demand.

238

Methods

GtStrArray* gt str array new(void)

Return a new GtStrArray object.

GtStrArray* gt str array ref(GtStrArray*)

Increases the reference to a GtStrArray.

void gt str array add cstr(GtStrArray *str array, const char

*cstr)

Add cstr to str array. Thereby, an internal copy of cstr is created.

void gt str array add cstr nt(GtStrArray *str array, const char

*cstr, unsigned long length)

Add the non \0-terminated cstr with given length to str array. Thereby, an
internal copy of cstr is created.

void gt str array add(GtStrArray *str array, const GtStr *str)

Add str to str array. Thereby, an internal copy of str is created.

const char* gt str array get(const GtStrArray *str array,
unsigned long strnum)

Return pointer to internal string with number strnum of str array. strnum must
be smaller than gt str array size(str array).

void gt str array set cstr(GtStrArray *str array, unsigned long
strnum, const char *cstr)

Set the string with number strnum in str array to cstr.

void gt str array set(GtStrArray *str array, unsigned long
strnum, const GtStr *str)

Set the string with number strnum in str array to str.

void gt str array set size(GtStrArray *str array, unsigned long
size)

Set the size of str array to size. size must be smaller or equal than
gt str array size(str array).

void gt str array reset(GtStrArray *str array)

Set the size of str array to 0.

unsigned long gt str array size(const GtStrArray *str array)

Return the number of strings stored in str array.

void gt str array delete(GtStrArray *str array)

Delete str array.

239

C.45 Class GtStrand

This enum type defines the possible strands. The following strands are defined: GT STRAND FORWARD,
GT STRAND REVERSE, GT STRAND BOTH, and GT STRAND UNKNOWN.

Methods

#define GT STRAND CHARS

Use this string to map strand enum types to their corresponding character.

GtStrand gt strand get(char strand char)

Map strand char to the corresponding strand enum type. Returns
GT NUM OF STRAND TYPES if strand char is not a valid one.

C.46 Class GtTagValueMap

A very simple tag/value map absolutely optimized for space (i.e., memory consumption) on the
cost of time. Basically, each read/write access costs O(n) time, whereas n denotes the accumu-
lated length of all tags and values contained in the map. Tags and values cannot have length
0.
The implementation as a char* shines through (also to save one additional memory allocation),
therefore the usage is a little bit different compared to other GenomeTools classes. See the
implementation of gt tag value map example() for an ussage example.

Methods

GtTagValueMap gt tag value map new(const char *tag, const char

*value)

Return a new GtTagValueMap object which stores the given tag/value pair.

void gt tag value map add(GtTagValueMap *tag value map, const char

*tag, const char *value)

Add tag/value pair to tag value map. tag value map must not contain the
given tag already!

void gt tag value map set(GtTagValueMap *tag value map, const char

*tag, const char *value)

Set the given tag in tag value map to value.

240

const char* gt tag value map get(const GtTagValueMap
tag value map, const char *tag)

Return value corresponding to tag from tag value map. If tag value map does
not contain such a value, NULL is returned.

void gt tag value map remove(GtTagValueMap *tag value map, const
char *tag)

Removes the given tag from tag value map. tag value map must contain the
given tag already!

void gt tag value map foreach(const GtTagValueMap tag value map,
GtTagValueMapIteratorFunc iterator func, void *data)

Apply iterator func to each tag/value pair contained in tag value map and pass
data along.

int gt tag value map example(GtError *err)

Implements an example useage of a tag/value map.

void gt tag value map delete(GtTagValueMap tag value map)

Delete tag value map.

C.47 Class GtTypeChecker

The GtTypeChecker interface, allows one to check the validity of (genome feature) types.

Methods

GtTypeChecker* gt type checker ref(GtTypeChecker *type checker)

Increase the reference count for type checker and return it.

bool gt type checker is valid(GtTypeChecker *type checker, const
char *type)

Return true if type is a valid type for the given type checker, false otherwise.

void gt type checker delete(GtTypeChecker *type checker)

Decrease the reference count for type checker or delete it, if this was the last refer-
ence.

C.48 Class GtTypeCheckerOBO

Implements the GtTypeChecker interface with types from an OBO file.

241

Methods

GtTypeChecker* gt type checker obo new(const char *obo file path,
GtError *err)

Create a new GtTypeChecker* for OBO file with given obo file path. If the
OBO file cannot be parsed correctly, NULL is returned and err is set correspondingly.

C.49 Class GtUniqStream

Implements the GtNodeStream interface. A GtUniqStream filters out repeated features it
retrieves from its node source.

Methods

GtNodeStream* gt uniq stream new(GtNodeStream*)

Create a GtUniqStream object which filters out repeated feature node graphs
it retrieves from the sorted in stream and return all other nodes. Two fea-
ture node graphs are considered to be repeated if they have the same depth-
first traversal and each corresponding feature node pair is similar according to the
gt feature node is similar() method. For such a repeated feature node graph
the one with the higher score (of the top-level feature) is kept. If only one of the feature
node graphs has a defined score, this one is kept.

C.50 Class GtVisitorStream

Implements the GtNodeStream interface.

Methods

GtNodeStream* gt visitor stream new(GtNodeStream *in stream,
GtNodeVisitor *node visitor)

Create a new GtVisitorStream*, takes ownership of node visitor. This stream
applies node visitor to each node which passes through it. Can be used to implement
all streams with such a functionality.

242

C.51 Module FunctionPointer

int (*GtCompare)(const void *a, const void *b)

Functions of this type return less than 0 if a is smaller than b, 0 if a is equal to b, and
greater 0 if a is larger than b. Thereby, the operators smaller, equal, and larger are
implementation dependent. Do not count on these functions to return -1, 0, or 1!

int (*GtCompareWithData)(const void*, const void*, void *data)

Similar to GtCompare, but with an additional data pointer.

void (*GtFree)(void*)

The generic free function pointer type.

C.52 Module Init

void gt lib init(void)

Initialize this GenomeTools library instance. This has to be called before the library is
used!

void gt lib reg atexit func(void)

Registers exit function which calls gt lib clean() at exit.

int gt lib clean(void)

Returns 0 if no memory map, file pointer, or memory has been leaked and a value != 0
otherwise.

C.53 Module Strcmp

int gt strcmp(const char *s1, const char *s2)

Returns 0 if s1 == s2, otherwise the equivalent of strcmp(s1,s2). Useful as a
performance improvement in some cases (for example, to compare symbols).

243

C.54 Module Symbol

const char* gt symbol(const char *cstr)

Return a symbol (a canonical representation) for cstr. An advantage of symbols is
that they can be compared for equality by a simple pointer comparison, rather than using
strcmp() (as it is done in gt strcmp()). Furthermore, a symbol is stored only once
in memory for equal cstrs, but keep in mind that this memory can never be freed safely
during the lifetime of the calling program. Therefore, it should only be used for a small
set of cstrs.

C.55 Module Undef

#define GT UNDEF BOOL

The undefined bool value.
#define GT UNDEF CHAR

The undefined char value.
#define GT UNDEF DOUBLE

The undefined double value.
#define GT UNDEF FLOAT

The undefined float value.
#define GT UNDEF INT

The undefined int value.
#define GT UNDEF LONG

The undefined long value.

#define GT UNDEF UCHAR

The undefined <unsigned char> value.

#define GT UNDEF UINT

The undefined <unsigned int> value.

#define GT UNDEF ULONG

The undefined <unsigned long> value.

244

Appendix D

Example GFF3 Sorter Program

A simple GFF3 sorter implemented using libgenometools:
1 #include "genometools.h"

3 int main(int argc, const char *argv[])
4 {
5 GtNodeStream *gff3_in_stream, *sort_stream, *gff3_out_stream;
6 GtGenomeNode *gn;
7 GtError *err;
8 int had_err;

10 gt_lib_init();
11 err = gt_error_new();

13 gff3_in_stream = gt_gff3_in_stream_new_unsorted(argc-1, argv+1);
14 sort_stream = gt_sort_stream_new(gff3_in_stream);
15 gff3_out_stream = gt_gff3_out_stream_new(sort_stream, NULL);

17 while (!(had_err = gt_node_stream_next(gff3_out_stream, &gn, err)) && gn)
18 gt_genome_node_delete(gn);

20 if (had_err)
21 fprintf(stderr, "%s: error: %s\n", argv[0], gt_error_get(err));

23 gt_node_stream_delete(gff3_out_stream);
24 gt_node_stream_delete(sort_stream);
25 gt_node_stream_delete(gff3_in_stream);
26 gt_error_delete(err);

28 if (had_err)
29 return EXIT_FAILURE;
30 return EXIT_SUCCESS;
31 }

245

In line 10 libgenometools is initialized and in line 11 an error object (see Section C.11) is
created. In line 13 the GFF3 input stream (see Section C.16) is created which takes the command
line arguments of the tool as filenames. The GFF3 input stream is then used as node source for
the sort stream (see Section C.41) which is created in line 14. The sort stream in turn is used as
the node source for the GFF3 output stream (see Section C.17) which is created in line 15 (the
second argument is the output file pointer and NULL denotes that the stream writes its output to
stdout). In line 17 the actual streaming happens: in the while-loop genome nodes are requested
from the GFF3 output stream and freed directly afterwards (the output was already produced in
the GFF3 output stream). The GFF3 output stream requests the genome nodes internally from
its node source (the sort stream). The sort stream in turn requests its nodes from the GFF3 in
stream who reads it from the input files (with the help of the GFF3 parser documented in section
C.18). The sort stream buffers all nodes internally before it sorts them and starts handing them
out, but this is completely transparent for the user. If an error occurs in one of the streams, the
while loop will terminate with a had err value of -1 and the error is shown in line 21.

246

Appendix E

GenomeTools Contributors

The majority of GenomeTools has been developed by Gordon Gremme, Sascha Steinbiß and
Stefan Kurtz. The following persons contributed to the development (in alphabetical order):

• Stefan Bienert (patches)

• Joachim Bonnet (Huffman/Golomb/Elias coding, GtBit{In,Out}Stream)

• David Ellinghaus (parts of ltr/ subdirectory, ltrharvest tool)

• Johannes Fischer (range minimum query code)

• Giorgio Gonnella (codegen, simreads tool, patches)

• Thomas Jahns (BitPackArray and BitPackString class, block-compressed FM-
index)

• Malte Mader (AnnotationSketch, sketch tool)

• Brent Pedersen (python bindings, patches)

• Christin Schärfer (AnnotationSketch, sketch tool)

• David Schmitz-Hübsch (mgth/ subdirectory, mgth tool)

• Dirk Willrodt (genomediff tool, patches)

An up-to-date list can be found in the CONTRIBUTORS file which is part of the GenomeTools
distribution (available for download at http://genometools.org).

Some parts of GenomeTools have been published: ltrharvest [EKW08], tallymer [KNSW08],
uniquesub [GNK+07], AnnotationSketch [SGS+09], ltrdigest [SWGK09], mgth [SHK10],
and readjoiner [GK12].

247

Appendix F

GenomeTools License

GenomeTools has been published under the following open source license:

/*
Copyright (c) 2003-2012 G. Gremme, S. Steinbiss, S. Kurtz, and CONTRIBUTORS
Copyright (c) 2003-2012 Center for Bioinformatics, University of Hamburg

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

*/

The GenomeThreader copyright policy is modeled after the one of the OpenBSD operating sys-
tem (http://openbsd.org/). We chose one of the most simple and free licenses, the ICS
license. It is functionally equivalent to a two-term BSD copyright with language removed that is
made unnecessary by the Berne convention.

We use external sources which are covered by their respective licenses. See the LICENSE file in
the GenomeTools distribution (available at http://genometools.org) for details.

248

Appendix G

GFF3 Test Runs in Detail

G.1 Retrieving the Original Files

This appendix describes the GFF3 test runs (Sections 5.5.5 and 5.5.6) in detail to make them
reproducible. For the evaluation, the following GFF3 files have been retrieved on 2011/05/31:

ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff
ftp://ftp.fruitfly.org/pub/genomic/fasta/EST.gff.gz
Homo_sapiens_ENSEMBL.gff3 from
http://galaxy.fml.mpg.de/library_common/browse_library?show_deleted=False&cntrller=library
&use_panels=False&id=2f94e8ae9edff68a

An archive file containing all of the GFF3 files listed above (in uncompressed form) can be
downloaded from:

ftp://genomethreader.org/pub/dissertation/gff3_test_runs.tar.gz

The file has the following MD5 hash:

67055d2715e2ab630f75a9f252173a17

The files have been sorted (and tidied) as follows):

gt gff3 -sort -tidy -o tair.gff3 TAIR10_GFF3_genes.gff
gt gff3 -sort -o fruitfly.gff3 EST.gff
gt gff3 -sort -o ensembl.gff3 Homo_sapiens_ENSEMBL.gff3

Now we have three test files tair.gff3, fruitfly.gff3 and ensembl.gff3 whose
properties are described in more detail in Table 5.1. With these files a 1.5 GB large GFF3 file
(for testing purposes) was created as follows (the file all.gff3 was added multiple times in
order to create a large enough output file):

gt merge -o all.gff3 tair.gff3 fruitfly.gff3 ensembl.gff3
gt merge -o 1.5GB.gff3 all.gff3 all.gff3 all.gff3 all.gff3 all.gff3 fruitfly.gff3

249

G.2 The Test Runs

To test the GFF3 parsing machinery of GenomeTools the gff3 tool (see Section B.7) was used
with option -show no. An overview of the used hardware and software setup is given in Ap-
pendix K. The runtime was measured with the UNIX time command. To measure the memory
usage, the massif tool from the Valgrind [NS07] instrumentation framework was used (see
http://valgrind.org/).

The following parse.pl script uses the Bio::Tools:GFF parser from the BioPerl [SBB+02]
package (see http://bioperl.org/) to parse the GFF3 files.

1 #!/usr/bin/perl -w

3 use strict;
4 use Bio::Tools::GFF;

6 my $gff3file = $ARGV[0];

8 # create GFF3 parser
9 my $gffio = Bio::Tools::GFF->new(-file=>"$gff3file", -gff_version=>3);

11 while(my $feature = $gffio->next_feature()) {
12 # discard feature
13 }

The following parse and store.pl script is similar to the parse.pl script above, but
stores the parsed features. This allows to measure the memory consumption of all features held
in main memory.

1 #!/usr/bin/perl -w

3 use strict;
4 use Bio::Tools::GFF;

6 my $gff3file = $ARGV[0];

8 # create GFF3 parser
9 my $gffio = Bio::Tools::GFF->new(-file=>"$gff3file", -gff_version=>3);

11 my @features;

13 while(my $feature = $gffio->next_feature()) {
14 push @features, $feature # store feature
15 }

250

Appendix H

The nGASP Evaluation in Detail

H.1 Retrieving the Original Files

This appendix describes the nGASP evaluation (Section 6.1) in detail to make it reproducible.
For the evaluation, the following nGASP files have been retrieved on 2009/07/04:

http://dev.wormbase.org/ngasp/datasets/training_regions.fa
http://dev.wormbase.org/ngasp/datasets/test_regions.fa
http://dev.wormbase.org/ngasp/datasets/protein_matches_complete_filtered.fa
http://dev.wormbase.org/ngasp/datasets/rna_matches.fa
http://dev.wormbase.org/ngasp/datasets/confirmed.gff3
http://dev.wormbase.org/ngasp/datasets/unconfirmed.gff3
ftp://ftp.wormbase.org/pub/wormbase/nGASP/wormbase_genes/test_regions_confirmed.gff3.gz
ftp://ftp.wormbase.org/pub/wormbase/nGASP/wormbase_genes/test_regions_unconfirmed.gff3.gz

An archive file containing all of the nGASP files listed above can be downloaded from:

ftp://genomethreader.org/pub/dissertation/ngasp.tar.gz

The file has the following MD5 hash:

9a668f29b14269b169b7a8905a80f75b ngasp.tar.gz

H.2 Preparing the Annotation Files

The GFF3 files have been tidied up with the gff3 tool (described in Section B.7) using the
following commands1:

$ gt gff3 -tidy -addids no -o training_confirmed_tidy.gff3 confirmed.gff3

1The option -addidsno was used to prevent sequence-region collisions in the usage of the id to md5 tool
later on.

251

$ gt gff3 -tidy -addids no -o training_unconfirmed_tidy.gff3 unconfirmed.gff3

$ gt gff3 -tidy -addids no -o test_confirmed_tidy.gff3 test_regions_confirmed.gff3.gz

$ gt gff3 -tidy -addids no -o test_unconfirmed_tidy.gff3 test_regions_unconfirmed.gff3.gz

Afterwards, the sequence IDs contained in the files are replaced by the MD5 hashes of the actual
sequences using the id to md5 tool (described in Section B.11)2. This makes all subsequent
mappings between a sequence ID and its corresponding sequence less error-prone.

$ gt id_to_md5 -usedesc -seqfile training_regions.fa -o training_confirmed_md5.gff3 training_confirmed_tidy.gff3

$ gt id_to_md5 -usedesc -seqfile training_regions.fa -o training_unconfirmed_md5.gff3 training_unconfirmed_tidy.gff3

$ gt id_to_md5 -usedesc -seqfile test_regions.fa -o test_confirmed_md5.gff3 test_confirmed_tidy.gff3

$ gt id_to_md5 -usedesc -seqfile test_regions.fa -o test_unconfirmed_md5.gff3 test_unconfirmed_tidy.gff3

For better processing, the GFF3 files have been sorted:

$ gt gff3 -sort -o training_confirmed_sorted.gff3 training_confirmed_md5.gff3

$ gt gff3 -sort -o training_unconfirmed_sorted.gff3 training_unconfirmed_md5.gff3

$ gt gff3 -sort -o test_confirmed_sorted.gff3 test_confirmed_md5.gff3

$ gt gff3 -sort -o test_unconfirmed_sorted.gff3 test_unconfirmed_md5.gff3

As described in Section 6.1.1 and in [CFM+08], two gene sets were used to evaluate the predic-
tion qualities in the nGASP competition. ref1 consists only of confirmed genes and ref2 consists
of confirmed and unconfirmed genes. The GFF3 files corresponding to these sets have been
created as follows (for the training and test data, respectively):

$ cp training_confirmed_sorted.gff3 training_ref1.gff3

$ gt merge -o training_ref2.gff3 training_confirmed_sorted.gff3 training_unconfirmed_sorted.gff3

$ cp test_confirmed_sorted.gff3 test_ref1.gff3

$ gt merge -o test_ref2.gff3 test_confirmed_sorted.gff3 test_unconfirmed_sorted.gff3

The merge tool used above is described in Section B.14. At this point, the annotation files are
ready for later processing. The stepwise process outlined above to create them could have been
considerably shortened by using pipes to connect the tools directly instead of using intermediate
files. It was done in this way for explanatory purposes. The combined calls are as follows:

2The reverse operation can be performed with the md5 to id tool described in Section B.13

252

$ gt gff3 -tidy -addids no confirmed.gff3 |
gt id_to_md5 -usedesc -seqfile training_regions.fa |
gt gff3 -sort -o training_ref1.gff3

$ gt gff3 -tidy -addids no confirmed.gff3 unconfirmed.gff3 |
gt id_to_md5 -usedesc -seqfile training_regions.fa |
gt gff3 -sort -o training_ref2.gff3

$ gt gff3 -tidy -addids no test_regions_confirmed.gff3.gz |
gt id_to_md5 -usedesc -seqfile test_regions.fa |
gt gff3 -sort -o test_ref1.gff3

$ gt gff3 -tidy -addids no test_regions_confirmed.gff3.gz test_regions_unconfirmed.gff3.gz |
gt id_to_md5 -usedesc -seqfile test_regions.fa |
gt gff3 -sort -o test_ref2.gff3

H.3 Preparing the Sequence Files

The protein sequence file needs some preparation, because the protein sequence do not contain
stop amino acids, which are improving the predictions made by GenomeThreader. They have
been added with the seqtransform tool described in Section B.18:

$ gt seqtransform -addstopaminos -o protein_matches.fa protein_matches_complete_filtered.fa

H.4 Creating a Custom Nematode BSSM

With the given training data we can train a custom nematode BSSM to improve the prediction.

The splicesiteinfo tool (described in Section B.20) shows that GT donor sites are pre-
dominant in the training set and there are not enough GC donor sites to train a custom BSSM
model:

$ gt splicesiteinfo -seqfile training_regions.fa training_ref2.gff3
gc: 0.48% (n=46)
gt: 98.33% (n=9420)

To train the model the gthbssmtrain tool was used to extract BSSM training data from the
training set ref2:

$ gthbssmtrain -filtertype CDS -seed 2040532791 -seqfile training_regions.fa training_ref2.gff3
gt-ag: 98.13% (n=9401)
gc-ag: 0.46% (n=44)

Afterwards the actual BSSM file ngasp.bssm has been build from the extracted training data,
containing a GT donor and an AG acceptor model:

$ gthbssmbuild -bssmfile ngasp.bssm -datapath training_data -gtdonor -agacceptor

The separation of this process into the two tools gthbssmtrain tool and gthbssmbuild
tool allows to create BSSM files with different splice sites models (with the gthbssmbuild
tool) from the same training data (without the need to rerun the gthbssmtrain tool).

253

H.5 Predicting the Genes

Before we call GenomeThreader we need to determine the intron length ranges. The options
were chosen as follows.

With the help of the option -intronlengthdistri of the stat tool (see Section B.21) we
looked at the distribution of intron length in training file ref2. The shortest intron length in this
file was 15, the longest 103002 and the second longest 20948 (all three lengths occurring exactly
once). Therefore we use option -dpminintronlen to 10 and -gcmaxgapwidth to 22000 (treating
the longest intron as an outlier and adding some tolerance).

Because chain enrichment (see Section 4.5.4) does not improve the gene prediction results sig-
nificantly (see Section 6.1.6), the option -enrichchains was not used by default.

To include all exons in the similarity score computation we set option -scoreminexonlen to 1.
Furthermore, option -maskpolyatails was used to mask poly(A)-tails in the cDNA file.

To exclude very bad alignments from the consensus spliced alignment phase (see Section 4.7
option -minalignmentscore was set to 0.85. This options sets a minimum similarity score a
spliced alignment must have to be added to the set of spliced alignments and be included in the
consensus spliced alignment phase.

Since we predict complete genes here, we require that an ORF must begin with a start codon by
setting option -startcodon to yes.

Because we are only interested in the predicted coding sequences of the consensus spliced align-
ment phase in GFF3 format, the options -skipalignmentout and -gff3out have been used.
Furthermore, to be able to compare the results with the annotation files written above, the option
-md5ids was used to show MD5 fingerprints as sequence IDs in the GFF3 output.

Finally, the complete call looked like this:

gth
-genomic test_regions.fa
-cdna rna_matches.fa
-protein protein_matches.fa
-bssm ngasp
-dpminintronlen 10
-gcmaxgapwidth 22000
-scoreminexonlen 1
-maskpolyatails
-minalignmentscore 0.85
-startcodon yes
-skipalignmentout
-gff3out
-md5ids
-o gth_bssm.gff3

Table H.1 gives an overview of the options used on the nGASP dataset and their descriptions.

254

Option Description
-genomic test regions.fa genomic input file
-cdna rna matches.fa cDNA/EST input file
-protein protein matches.fa protein input file
-bssm ngasp BSSM parameter file
-dpminintronlen 10 the minimum intron length for the dynamic programming
-gcmaxgapwidth 22000 the maximum gap width for global chains
-scoreminexonlen 1 the minimum exon length (for score computation)
-maskpolyatails mask poly(A)-tails in the cDNA/EST files
-minalignmentscore 0.85 minimum similarity score a spliced alignment must have
-startcodon yes require than an ORF must begin with a start codon
-skipalignmentout skip output of spliced alignments
-gff3out show output in GFF3 format
-md5ids show MD5 fingerprints as sequence IDs
-o gth bssm.gff3 redirect output to specified file

Table H.1: GenomeThreader nGASP options.

H.6 Alternative Approach Using Intermediate Files

An alternative approach to compute the gene predictions of the previous Section is to use inter-
mediate files. First, we call GenomeThreader in a similar fashion, but write the results in the the
intermediate XML format using the options -intermediate and -xmlout. This intermediate
format stores the computed spliced alignments in a lossless fashion and allows to derive all other
output formats from it. To save disk space we compress the output file on the fly using the option
-gzip:

gth
-genomic test_regions.fa
-cdna rna_matches.fa
-protein protein_matches.fa
-bssm ngasp
-dpminintronlen 10
-gcmaxgapwidth 22000
-scoreminexonlen 1
-maskpolyatails
-intermediate
-xmlout
-gzip
-o ngasp.inter.gz

From output file a sorted intermediate GFF3 file was derived (using gthconsensus) with the
following command:

gthconsensus -intermediate -gff3out -md5ids -o ngasp.inter.gff3 ngasp.inter.gz

With the following three tools we can reproduce the results from the previous Section:

255

1. The select tool (described in Section B.16) allows us with option -mingenescore to
select only the spliced alignments above a certain score, similar to -minalignmentscore

passed to gth.

2. The csa tool (described in Section B.4) computes the consensus spliced alignments in
exactly the same fashion as it is done in GenomeThreader, but based on GFF3 input.

3. The cds tool (described in Section B.3) adds the coding sequences (CDS) to the consensus
spliced alignments.

The complete command looks like this:

gt select -mingenescore 0.85 ngasp.inter.gff3 |
gt csa |
gt cds -seqfile test_regions.fa -startcodon yes -o gth_bssm.gff3

Of course, the direct approach described in the previous Section is the simpler one, but this
approach allows to test different parameter settings (for example, different thresholds passed to
the select tool or different minimum ORF lengths passed to the cds tool) without the need
to recompute the spliced alignments with gth or parsing the versatile intermediate XML format
with gthconsensus multiple times.

Using the efficient GFF3-based tools from GenomeTools allows to try different parameter setting
in near “real-time” which makes it much more convenient – the user is not interrupted by long
waiting times and the multitasking that usually implies.

H.7 Evaluating the Predictions

The final prediction stored in the file gth bssm.gff3 was evaluated by the eval tool de-
scribed in Section B.5.

As it was done in the nGASP paper [CFM+08], the ref1 test set was used to assess the sen-
sitivity of the gene predictions and the ref2 to assess the specificity. From the output of the
eval tool, the CDS level (collapsed) was used to pull out the corresponding values, because this
corresponds to the metric used in the paper. The actual calls looked like this:

gt eval test_ref1.gff3 gth_bssm.gff3
gt eval test_ref2.gff3 gth_bssm.gff3

H.8 Evaluating the Competing Prediction Programs

The sensitivity and specificity values of the competing gene prediction programs have also been
computed with the eval tool from their GFF3 files submitted to the nGASP competition.

256

We downloaded all annotations in category 1-3. Category 3 is the relevant category to com-
pare GenomeThreader against (“gene-finders that take advantage of alignments of expressed
sequences such as proteins, ESTs, and assembled mRNAs” [CFM+08]). From

ftp://ftp.wormbase.org/pub/wormbase/nGASP/submissions_phaseI/

the following files have been retrieved on 2010/12/05:

GENE_validated.gff3.1
AUGUSTUS_validated.gff3.2
CRAIG_validated.gff3.1
EUGENE_validated.gff3
EXONHUNTER_validated.gff3.2
FGENESH++_validated.gff3.1
FGENESH_validated.gff3.1
GENEID_validated.gff3
GENEMARKHMM_validated.gff3.3
GLIMMERHMM_validated.gff3.2
GRAMENE_validated.gff3.1
MAKER_validated.gff3.1
MGENE_validated.gff3.1
NSCAN_validated.gff3.3
SGP2_validated.gff3
SNAP_validated.gff3.2

An archive file containing all of the annotation files listed above and a preparation script prepare.sh
can be downloaded from:

ftp://genomethreader.org/pub/dissertation/ngasp_competitors.tar.gz

The file has the following MD5 hash:

27df5958d9d2abf1441bb3a3020a2885 ngasp_competitors.tar.gz

For the evaluation the annotation files have been prepared with the prepare.sh preparation
script:

$ prepare.sh

The preprocessed annotation file have then been used to compute the results of the competing
programs with the eval tool, similar to the approach used in Section H.7. For example like this
(for agene):

$ gt eval test_ref1.gff3 agene.gff3
$ gt eval test_ref2.gff3 agene.gff3

The computed results differ slightly (they are a little bit worse) than the results published in
the paper. To find the reason for the difference between the sensitivity and specificity values
computed by the eval tool and the script used in [CFM+08] we tried multiple times to receive
the evaluation script from the authors of the publication. Although it was promised, we didn’t
receive the script.

257

Appendix I

Mapping 454 Sequences in Detail

I.1 Used Files

This appendix describes the mapping of 454 sequences (Section 6.2) in detail to make it repro-
ducible. For the evaluation, the following files from the nGASP evaluation (see Section 6.1 and
Appendix H) have been reused:

test_ref1.gff3
test_ref2.gff3
test_regions.fa

An archive file containing all files which are relevant for the 454 mapping can be downloaded
from:

ftp://genomethreader.org/pub/dissertation/454.tar.gz

The file has the following MD5 hash:

298e4f9bac7791103402c72acf036295 454.tar.gz

I.2 Extract mRNA Sequences

The mRNA sequences were extracted from gene reference set files test ref1.gff3 and
test ref2.gff3 and the sequence file test regions.fawith the help of the extractfeat
tool (see Section B.6) as follows:

$ gt extractfeat -type CDS -join -seqfile test_regions.fa -o test_ref1.fa test_ref1.gff3
$ gt extractfeat -type CDS -join -seqfile test_regions.fa -o test_ref2.fa test_ref2.gff3

The resulting mRNA sequences files test ref1.fa and test ref2.fa contain 894 and
2549 sequences, respectively.

258

I.3 Simulate 454 Reads

The 454 reads were simulated with Flowsim [BML+10] with different number of reads (x-fold
the number of sequences in the mRNA file, for x ∈ {5, 10, 25, 50, 100, 200}).
For example, for a 10-fold number of reads the following commands were used:

clonesim -c 8940 test_ref1.fa | kitsim | flowsim -o test_ref1x10.sff
clonesim -c 25490 test_ref2.fa | kitsim | flowsim -o test_ref2x10.sff

The read simulations result produce SFF files, which are usually used to store 454 sequence
reads. To extract sequences in FASTA format from the SFF files, the sff extract script was
used. See Appendix K for a detailed overview of the hardware and software setup.

I.4 Align 454 Reads

The simulated 454 read files were aligned with GenomeThreader using the similar parameter
setting as documented in Table H.1. For example, to align the 5-fold reads from the ref1 gene
set against the test regions contained the following command was used:

gth
-genomic test_regions.fa
-cdna test_ref1x5.fasta
-bssm ngasp
-dpminintronlen 10
-gcmaxgapwidth 22000
-scoreminexonlen 1
-maskpolyatails
-minalignmentscore 0.85
-startcodon yes
-skipalignmentout
-gff3out
-md5ids
-o gth_ref1x5.gff3

The evaluation of the results was done as similar to the evaluation described in Section H.7. All
test scripts and the result files are also contained in the 454.tar.gz file mentioned above.

259

Appendix J

The ENCODE Evaluation in Detail

J.1 Retrieving the Original Files

This appendix describes the ENCODE evaluation (Section 6.3) in detail to make it reproducible.
For the evaluation, the following ENCODE files have been retrieved on 2012/04/05:

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encode/regions/hg18.fa.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encode/database/encodeGencodeGeneKnownMar07.sql
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encode/database/encodeGencodeGeneKnownMar07.txt.gz

An archive file containing all of the ENCODE files listed above (in uncompressed form) can be
downloaded from:

ftp://genomethreader.org/pub/dissertation/encode.tar.gz

The file has the following MD5 hash:

367c9dc92232b24b8da27d389c892f66 encode.tar.gz

J.2 Preparing the Annotation Files

With the script encodesql2gff3 contained in the GenomeTools distribution, we convert the
ENCODE SQL dump to GFF3:

encodesql2gff3 encodeGencodeGeneKnownMar07.txt | gt gff3 -tidy -sort -o gencode_chr.gff3

We consider only protein-coding genes:

gt select -hascds -o gencode_cds.gff3 gencode_chr.gff3

260

The positions in resulting file gencode cds.gff3 refers to chromosomes and not to the EN-
CODE regions contained in the downloaded sequence file hg18.fa. Therefore, we change the
chromosome positions to region positions a script named create gencode region file.
The script uses the chseqids tool and select tool which are described in Appendices B.2
and B.16, respectively. This results in a GFF3 file gencode regions.gff3. Finally, we
map the IDs contained in this files to MD5s for better usability:

gt id_to_md5 -seqfile hg18.fa -usedesc gencode_regions.gff3 | gt gff3 -sort -o gencode.gff3

J.3 Extract mRNA Sequences

The mRNA sequences were extracted from gene reference set file gencode.gff3 and the
sequence file hg18.fa with the help of the extractfeat tool (see Section B.6) as follows:

gt extractfeat -seqfile hg18.fa -type exon -join -o mRNAs_rate_0.fas gencode.gff3

To mutate the sequences with different mutation rates, the seqmutate tool was used like in the
following example:

gt extractfeat -seqfile hg18.fa -type exon -join gencode.gff3 | gt seqmutate -rate 5 -o mRNAs_rate_5.fas -

The mutation procedure is described in Section 3.7.1 and the seqmutate manual is given in
Appendix B.17.

J.4 Aligning with GenomeThreader

To align the simulated mRNAs with GenomeThreader, different parameter combinations were
tested. Table J.1 options shows the used options and their used parameters. To make the results
comparable with GMAP, only the spliced alignments have been used to predict genes (that is,
GenomeThreader was used without the consensus spliced alignment phase). The resulting GFF3
files were processed with the select tool before the evaluation (see Appendix B.16). Thereby,
the options -targetbest and -mingenescore were used. With option -targetbest only the
best alignment for every simulated mRNA is used and with -mingenescore only alignments
above a certain minimum alignment score are kept. The minimum alignment score was set
according to the mutation rate of the simulated mRNAs as documented in Table J.2.

261

Option Used Parameter Comment
-genomic hg18.fa

-cdna mRNAs rate x.fa for x ∈ {0, 1, 3, 5, 10, 15}
-species human

-scoreminexonlen 1

-maskpolyatails true default
-intermediate true default
-gff3out true default
-md5ids true default
-introncutout true default
-autointroncutout 1024

-enrichchains true, false
-seedlength 12, 15, 18 combined with -minmatchlen. That is, only
-minmatchlen 12, 15, 20 {12, 12}, {15, 15}, and {18, 20} were used
-o gth rate x.gff3

Table J.1: GenomeThreader ENCODE options.

Mutation Rate Min. Alignment Score
< 3 0.95

≥ 3 and ≤ 5 0.90
> 5 and ≤ 10 0.85

Table J.2: Minimum alignment scores for different mutation rates.

262

J.5 Aligning with GMAP

To align the simulated mRNAs with GMAP we first had to build an index for the genomic se-
quence file:

$ gmap_build -d hg18 hg18.fa

Afterwards, GMAP could be used to map the mRNAs against that index. We set the output
format to GFF3 and run GMAP once with option -n 1 and once without on the different mRNA
files. Option -n 1 lets GMAP keep only the best alignment path for every mRNA.

The complete call looks like this:

$ gmap -d hg18 -f gff3_gene -n 1 mRNAs_rate_0.fas

The id to md5 tool (see Appendix B.11) with option -matchdesc was used to change the
GFF3 sequence IDs to MD5 fingerprints.

J.6 Evaluating the Prediction Results

The evaluation of the results was done with the eval tool (documented in Appendix B.5) like
this:

$ gt eval gencode.gff3 gmap_rate_0.gff3

263

Appendix K

Hardware and Software Setup

The test runs have been performed on an Intel i7-920 Quad-Core processor with 8 GB memory
running Ubuntu Linux 10.04.2 LTS. Table K.1 shows the versions of all software packages used
in this thesis.

Program Version Notes
GenomeThreader 1.5.2 64-bit version, http://genomethreader.org
GenomeTools 1.4.2 64-bit version, http://genometools.org
GMAP 2012-06-02 http://research-pub.gene.com/gmap/
Flowsim 0.3 from Biohaskell (http://biohaskell.org)
sff extract 0.2.13 http://bioinf.comav.upv.es/sff_extract/

Table K.1: Used software versions for all packages in this thesis.

264

Bibliography

[AGA+08] P. Abad, J. Gouzy, J.-M. Aury, P. Castagnone-Sereno, E.G.J. Danchin, E. Deleury,
L. Perfus-Barbeoch, V. Anthouard, F. Artiguenave, V.C. Blok, M.-C. Caillaud,
P.M. Coutinho, C. Dasilva, F. De Luca, F. Deau, M. Esquibet, T. Flutre, J.V. Gold-
stone, N. Hamamouch, T. Hewezi, O. Jaillon, C. Jubin, P. Leonetti, M. Magliano,
T.R. Maier, G.V. Markov, P. McVeigh, G. Pesole, J. Poulain, M. Robinson-
Rechavi, E. Sallet, B. Segurens, D. Steinbach, T. Tytgat, E. Ugarte, C. van
Ghelder, P. Veronico, T.J. Baum, M. Blaxter, T. Bleve-Zacheo, E.L. Davis,
J.J. Ewbank, B. Favery, E. Grenier, B. Henrissat, J.T. Jones, V. Laudet, A.G.
Maule, H. Quesneville, M.-N. Rosso, T. Schiex, G. Smant, J. Weissenbach,
and P. Wincker. Genome Sequence of the Metazoan Plant-Parasitic Nematode
Meloidogyne incognita. Nature Biotechnology, 89(26):909–915, 2008.

[AGM+90] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic Local
Alignment Search Tool. J. Mol. Biol., 215:403–410, 1990.

[AJL+02] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell. Garland Science, 2002.

[AKB11] M. Alawi, S. Kurtz, and M. Beckstette. CASSys: An Integrated Software System
for the Interactive Analysis of ChIP-Seq Data. J. Integr. Bioinform., 8(2):155,
2011.

[AKO04] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing Suffix Trees with En-
hanced Suffix Arrays. Journal of Discrete Algorithms, 2:53–86, 2004.

[AMM44] O.T. Avery, C.M. MacLeod, and M. McCarty. Studies on the Chemical Nature
of the Substance Inducing Transformation of Pneumococcal Types. J. Exp. Med.,
79(2):137–158, 1944.

[AMS+97] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and
D.J. Lipman. Gapped BLAST and PSI-BLAST: A New Generation of Protein
Database Search Programs. Nucleic Acids Res., 25(17):3389–3402, 1997.

[AS05] J.E. Allen and S.L. Salzberg. JIGSAW: Integration of Multiple Sources of Evi-
dence for Gene Prediction. Bioinformatics, 21(18):3596–3603, 2005.

265

[ATE+06] P. Akiva, A. Toporik, S. Edelheit, Y. Peretz, A. Diber, R. Shemesh, A. Novik, and
R. Sorek. Transcription-Mediated Gene Fusion in the Human Genome. Genome
Res., 16:30–36, 2006.

[BAG+10] A. Bazzini, R. Ası́s, V. González, S. Bassi, M. Conte, M. Soria, A. Fernie, S. Asur-
mendi, and F. Carrari. miSolRNA: A Tomato Micro RNA Relational Database.
BMC Plant Biology, 10(1):240, 2010.

[Bat] W. Bateson. Letter from William Bateson to Alan Sedgwick in 1905. The John
Innes Centre, http://www.jic.ac.uk/corporate/about/bateson.
htm. Retrived on 2008-05-01.

[BBG+06] R. Bruggmann, A.K. Bharti, H. Gundlach, J. Lai, S. Young, A.C. Pontaroli,
F. Wei, G. Haberer, G. Fuks, C. Du, C. Raymond, M.C. Estep, R. Liu, J.L. Ben-
netzen, A.P. Chan, P.D. Rabinowicz, J. Quackenbush, W.B. Barbazuk, R.A. Wing,
B. Birren, C. Nusbaum, S. Rounsley, K.F.X. Mayer, and J. Messing. Uneven
Chromosome Contraction and Expansion in the Maize Genome. Genome Res.,
16(10):1241–1251, 2006.

[BBLV05] B. Brejová, D.G. Brown, M. Li, and T. Vinař. ExonHunter: A Comprehensive
Approach to Gene Finding. Bioinformatics, 21(suppl 1):i57–i65, 2005.

[BCD04] E. Birney, M. Clamp, and R. Durbin. GeneWise and Genomewise. Genome Res.,
14(5):988–995, 2004.

[BD97] E. Birney and R. Durbin. Dynamite: A Flexible Code Generation Language
for Dynamic Programming Methods Used in Sequence Comparison. In Proc.
of ISMB 97, pages 56–64, 1997.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[BG96] M. Burset and R. Guigó. Evaluation of Gene Structure Prediction Programs. Ge-
nomics, 34(3):353–367, 1996.

[BG04] M.R. Brent and R. Guigo. Recent Advances in Gene Structure Prediction. Curr.
Opin. Struct. Biol., 14(3):264–272, 2004.

[BH00] V. Bafna and D.H. Huson. The Conserved Exon Method for Gene Finding. In
Proc. 8th Int. Conference on Intelligent Systems for Molecular Biology, pages
3–12. AAAI Press, 2000.

[BJV+07] A. Ballvora, A. Jocker, P. Viehover, H. Ishihara, J. Paal, K. Meksem, R. Brug-
gmann, H. Schoof, B. Weisshaar, and C. Gebhardt. Comparative Sequence
Analysis of Solanum and Arabidopsis in a Hot Spot for Pathogen Resistance on
Potato Chromosome V Reveals a Patchwork of Conserved and Rapidly Evolving
Genome Segments. BMC Genomics, 8(1):112, 2007.

266

[BK97] C. Burge and S. Karlin. Prediction of Complete Gene Structures in Human Ge-
nomic DNA. J. Mol. Biol., 268:78–94, 1997.

[BK98] C.B. Burge and S. Karlin. Finding the Genes in Genomic DNA. Curr. Opin.
Struct. Biol., 8(3):346–354, 1998.

[BLT93] M.S. Boguski, T.M.J. Lowe, and C.M. Tolstoshev. dbEST – Database for “Ex-
pressed Sequence Tags”. Nature Genetics, 4:332–333, 1993.

[Blu05] T. Blumenthal. Trans-Splicing and Operons. In The C. elegans Research Com-
munity, editor, WormBook. 2005. doi/10.1895/wormbook.1.5.1, http:
//www.wormbook.org.

[BML+10] S. Balzer, K. Malde, A. Lanzén, A. Sharma, and I. Jonassen. Characteristics of
454 Pyrosequencing Data—Enabling Realistic Simulation with Flowsim. Bioin-
formatics, 26(18):i420–i425, 2010.

[BMS77] S.M. Berget, C. Moore, and P.A. Sharp. Spliced Segments at the 5’ Terminus of
Adenovirus 2 Late mRNA. Proc. Nat. Acad. Sci. U.S.A., 74:3171–3175, 1977.

[BPM+00] S. Batzoglu, L. Pachter, J.P. Mesirov, B. Berger, and E.S. Lander. Human and
Mouse Gene Structure: Comparative Analysis and Application to Exon Predic-
tion. Genome Res., 10:950–958, 2000.

[Bre02] M.R. Brent. Predicting Full-Length Transcripts. Trends Biotechnol., 20(7):273–
275, 2002. News.

[Bre05] M.R. Brent. Genome Annotation Past, Present, and Future: How to Define an
ORF at Each Locus. Genome Res., 15(12):1777–1786, 2005.

[Bre08] M.R. Brent. Steady Progress and Recent Breakthroughs in the Accuracy of Auto-
mated Genome Annotation. Nature Reviews Genetics, 9:62–73, 2008.

[BS97] J.L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings.
In SODA ’97: Proceedings of the eighth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 360–369, Philadelphia, PA, USA, 1997. Society for In-
dustrial and Applied Mathematics.

[BSR+04] P. Bertone, V. Stolc, T.E. Royce, J.S. Rozowsky, A.E. Urban, X. Zhu, J.L. Rinn,
W. Tongprasit, M. Samanta, S. Weissman, M. Gerstein, and M. Snyder. Global
Identification of Human Transcribed Sequences with Genome Tiling Arrays. Sci-
ence, 306:2242–2246, 2004.

[BT41] G.W. Beadle and E.L. Tatum. Genetic Control of Biochemical Reactions in Neu-
rospora. Proc. Nat. Acad. Sci. U.S.A., 27(11):499–506, 1941.

267

[BXZ04] V. Brendel, L. Xing, and W. Zhu. Gene Structure Prediction from Consensus
Spliced Alignment of Multiple ESTs Matching the Same Genomic Locus. Bioin-
formatics, 20(7):1157–1169, 2004.

[CBM08] M. Calviõ, R. Bruggmann, and J. Messing. Screen of Genes Linked to High-Sugar
Content in Stems by Comparative Genomics. Rice, 1:166–176, 2008.

[CBN+04] S. Cawley, S. Bekiranov, H.H. Ng, P. Kapranov, E.A. Sekinger, D. Kampa,
A. Piccolboni, V. Sementchenko, J. Cheng, A.J. Williams, R. Wheeler, B. Wong,
J. Drenkow, M. Yamanaka, S. Patel, S. Brubaker, H. Tammana, G. Helt, K. Struhl,
and T.R. Gingeras. Unbiased Mapping of Transcription Factor Binding Sites along
Human Chromosomes 21 and 22 Points to Widespread Regulation of Noncoding
RNAs. Cell, 116:499–509, 2004.

[CD07] A. Coghlan and R. Durbin. Genomix: A Method for Combining Gene-Finders’
Predictions, Which Uses Evolutionary Conservation of Sequence and Intron-Exon
Structure. Bioinformatics, 23(12):1468–1475, 2007.

[CDT+08] M.L. Chiusano, N. D’Agostino, A. Traini, C. Licciardello, E. Raimondo, M. Aver-
sano, L. Frusciante, and L. Monti. ISOL@: an Italian SOLAnaceae Genomics
Resource. BMC Bioinformatics, 9(Suppl 2):S7, 2008.

[CFM+08] A. Coghlan, T. Fiedler, S. McKay, P. Flicek, T. Harris, D. Blasiar, the nGASP
Consortium, and L. Stein. nGASP - The Nematode Genome Annotation Assess-
ment Project. BMC Bioinformatics, 9(1):549, 2008.

[CGBR77] L.T. Chow, R.E. Gelinas, T.R. Broker, and R.J. Roberts. An Amazing Sequence
Arrangement at the 5’ Ends of Adenovirus 2 Messenger RNA. Cell, 12:1–8, 1977.

[Cha51] E. Chargaff. Some Recent Studies on the Composition and Structure of Nucleic
Acids. J. Cell Physiol. Suppl., 38:41–59, 1951.

[CKD+05] J. Cheng, P. Kapranov, J. Drenkow, S. Dike, S. Brubaker, S. Patel, J. Long,
D. Stern, H. Tammana, G. Helt, V. Sementchenko, A. Piccolboni, S. Bekiranov,
D.K. Bailey, M. Ganesh, S. Ghosh, I. Bell, D.S. Gerhard, and T.R. Gingeras.
Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution.
Science, 308:1149–1154, 2005.

[CKR+08] B.L. Cantarel, I. Korf, S.M.C. Robb, G. Parra, E. Ross, B. Moore, C. Holt,
A. Sánchez Alvarado, and M. Yandell. MAKER: An Easy-to-Use Annota-
tion Pipeline Designed for Emerging Model Organism Genomes. Genome Res.,
18(1):188–196, 2008.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

268

[Coc10] Cock, J.M. and Sterck, L. and Rouze, P. and Scornet, D. and Allen, A.E. and
Amoutzias, G. and Anthouard, V. and Artiguenave, F. and Aury, J.-M. and Bad-
ger, J.H. and Beszteri, B. and Billiau, K. and Bonnet, E. and Bothwell, J.H. and
Bowler, C. and Boyen, C. and Brownlee, C. and Carrano, C.J. and Charrier, B.
and Cho, G.Y. and Coelho, S.M. and Collen, J. and Corre, E. and Da Silva, C.
and Delage, L. and Delaroque, N. and Dittami, S.M. and Doulbeau, S. and Elias,
M. and Farnham, G. and Gachon, C.M.M. and Gschloessl, B. and Heesch, S. and
Jabbari, K. and Jubin, C. and Kawai, H. and Kimura, K. and Kloareg, B. and
Kupper, F.C. and Lang, D. and Le Bail, A. and Leblanc, C. and Lerouge, P. and
Lohr, M. and Lopez, P.J. and Martens, C. and Maumus, F. and Michel, G. and
Miranda-Saavedra, D. and Morales, J. and Moreau, H. and Motomura, T. and Na-
gasato, C. and Napoli, C.A. and Nelson, D.R. and Nyvall-Collen, P. and Peters,
A.F. and Pommier, C. and Potin, P. and Poulain, J. and Quesneville, H. and Read,
B. and Rensing, S.A. and Ritter, A. and Rousvoal, S. and Samanta, M. and Sam-
son, G. and Schroeder, D.C. and Segurens, B. and Strittmatter, M. and Tonon,
T. and Tregear, J.W. and Valentin, K. and von Dassow, P. and Yamagishi, T. and
Van de Peer, Y. and Wincker, P. The Ectocarpus Genome and the Independent
Evolution of Multicellularity in Brown Algae. Nature, 465:617–621, 2010.

[Con04] The ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Ele-
ments) Project. Science, 306:636–640, 2004.

[Con07] The ENCODE Project Consortium. Identification and Analysis of Functional El-
ements in 1% of the Human Genome by the ENCODE Pilot Project. Nature,
447:799–816, 2007.

[Con12] The UniProt Consortium. Reorganizing the Protein Space at the Universal Protein
Resource (UniProt). Nucleic Acids Res., 40(D1):D71–D75, 2012.

[Cri51] F.H.C. Crick. On Protein Synthesis. Symp. Soc. Exp. Biol., XII:138–163, 1951.

[CRVdVF77] R. Contreras, R. Rogiers, A. Van de Voorde, and W. Fiers. Overlapping of the
VP2-VP3 Gene and the VP1 Gene in the SV40 Genome. Cell, 12:529–538, 1977.

[Cyg] Cygwin Project. http://cygwin.com/. Retrieved on 2011-06-12.

[DFM+08] J. Duvick, A. Fu, U. Muppirala, M. Sabharwal, M.D. Wilkerson, C.J. Lawrence,
C. Lushbough, and V. Brendel. PlantGDB: A Resource for Comparative Plant
Genomics. Nucleic Acids Res., 36(suppl 1):D959–D965, 2008.

[DTFC09] N. D’Agostino, A. Traini, L. Frusciante, and M. Chiusano. SolEST Database: A
”One-Stop Shop” Approach to the Study of Solanaceae Transcriptomes. BMC
Plant Biology, 9(1):142, 2009.

269

[DWB07] Q. Dong, M. Wilkerson, and V. Brendel. Tracembler - Software for in-silico
Chromosome Walking in Unassembled Genomes. BMC Bioinformatics, 8(1):151,
2007.

[Edd11] S.R. Eddy. Accelerated Profile HMM Searches. PLoS Comput. Biol.,
7(10):e1002195, October 2011.

[EKW08] D. Ellinghaus, S. Kurtz, and U. Willhoeft. LTRharvest, an efficient and flexible
software for de novo detection of LTR retrotransposons. BMC Bioinformatics,
9:18, 2008.

[ELM+05] K. Eilbeck, S. Lewis, C. Mungall, M. Yandell, L. Stein, R. Durbin, and M. Ash-
burner. The Sequence Ontology: A Tool for the Unification of Genome Annota-
tions. Genome Biology, 6(5):R44, 2005.

[EMR+07] C. Elsik, A. Mackey, J. Reese, N. Milshina, D. Roos, and G. Weinstock. Creating
a Honey Bee Consensus Gene Set. Genome Biology, 8(1):R13, 2007.

[ERB+04] G. Euskirchen, T.E. Royce, P. Bertone, R. Martone, J.L. Rinn, F.K. Nelson, F. Say-
ward, N.M. Luscombe, P. Miller, M. Gerstein, S. Weissman, and M. Snyder.
CREB Binds to Multiple Loci on Human Chromosome 22. Mol. Cell. Biol.,
24:3804–3814, 2004.

[FAB+11] P. Flicek, M.R. Amode, D. Barrell, K. Beal, S. Brent, Y. Chen, P. Clapham,
G. Coates, S. Fairley, S. Fitzgerald, L. Gordon, M. Hendrix, T. Hourlier, N. John-
son, A. Kähäri, D. Keefe, S. Keenan, R. Kinsella, F. Kokocinski, E. Kule-
sha, P. Larsson, I. Longden, W. McLaren, B. Overduin, B. Pritchard, H.S.
Riat, D. Rios, G.R.S. Ritchie, M. Ruffier, M. Schuster, D. Sobral, G. Spu-
dich, Y.A. Tang, S. Trevanion, J. Vandrovcova, A.J. Vilella, S. White, S.P.
Wilder, A. Zadissa, J. Zamora, B.L. Aken, E. Birney, F. Cunningham, I. Dun-
ham, R. Durbin, X.M. Fernández-Suarez, J. Herrero, T.J.P. Hubbard, A. Parker,
G. Proctor, J. Vogel, and S.M.J. Searle. Ensembl 2011. Nucleic Acids Res.,
39(suppl 1):D800–D806, 2011.

[FAW+95] R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R.
Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, J.M. Merrick, and et al. Whole-
Genome Random Sequencing and Assembly of Haemophilus influenzae Rd. Sci-
ence, 269:496–512, 1995.

[FCD+76] W. Fiers, R. Contreras, F. Duerinck, G. Haegeman, D. Iserentant, J. Merregaert,
W. Min Jou, F. Molemans, A. Raeymaekers, A. Van den Berghe, G. Volckaert,
and M. Ysebaert. Complete Nucleotide Sequence of Bacteriophage MS2 RNA:
Primary and Secondary Structure of the Replicase Gene. Nature, 260:500–507,
1976.

270

[FCDW+71] W. Fiers, R. Contreras, R. De Wachter, G. Haegeman, J. Merregaert, W.M. Jou,
and A. Vandenberghe. Recent Progress in the Sequence Determination of Bacte-
riophage MS2 RNA. Biochimie, 53(4):495–506, 1971.

[FHZ+98] L. Florea, G. Hartzell, Z. Zhang, G.M. Rubin, and W. Miller. A Computer Pro-
gram for Aligning a cDNA Sequence with a Genomic DNA Sequence. Genome
Res., 8(9):967–974, 1998.

[Fil10] I. Filippis. Personal Communication, October 2010.

[FS05] S. Foissac and T. Schiex. Integrating Alternative Splicing Detection into Gene
Prediction. BMC Bioinformatics, 6(1):25, 2005.

[FTD+12] M.D. Filippo, A. Traini, N. D’Agostino, L. Frusciante, and M.L. Chiusano. Eu-
chromatic and Heterochromatic Compositional Properties Emerging from the
Analysis of Solanum lycopersicum BAC Sequences. Gene, 499(1):176–181,
2012.

[FWF+06] M.C. Frith, L.G. Wilming, A. Forrest, H. Kawaji, S.L. Tan, C. Wahlestedt,
V.B. Bajic, C. Kai, J. Kawai, P. Carninci, Y. Hayashizaki, T.L. Bailey, and
L. Huminiecki. Pseudo-Messenger RNA: Phantoms of the Transcriptome. PLoS
Genet., 2:e23, 2006.

[GAA+00] R. Guigó, P. Agarwal, J.F. Abril, M. Burset, and J.W. Fickett. An Assessment of
Gene Prediction Accuracy in Large DNA Sequences. Genome Res., 10(10):1631–
1642, 2000.

[GB06] S.S. Gross and M.R. Brent. Using Multiple Alignments to Improve Gene Predic-
tion. J. Comput. Biol., 13(2):379–393, 2006.

[GBGS+11] L. Grenville-Briggs, C.M.M. Gachon, M. Strittmatter, L. Sterck, F.C. Küpper, and
P. van West. A Molecular Insight into Algal-Oomycete Warfare: cDNA Analysis
of Ectocarpus siliculosus Infected with the Basal Oomycete Eurychasma dick-
sonii. PLoS ONE, 6(9):e24500, September 2011.

[GBR+07] M.B. Gerstein, C. Bruce, J.S. Rozowsky, D. Zheng, J. Du, J.O. Korbel,
O. Emanuelsson, Z.D. Zhang, S. Weissman, and M. Snyder. What is a Gene,
Post-ENCODE? History and Updated Definition. Genome Res., 17(6):669–681,
2007.

[GBSK05] G. Gremme, V. Brendel, M.E. Sparks, and S. Kurtz. Engineering a Software Tool
for Gene Structure Prediction in Higher Organisms. Information and Software
Technology, 47(15):965–978, 2005.

[GFA+06] R. Guigo, P. Flicek, J. Abril, A. Reymond, J. Lagarde, F. Denoeud, S. Antonarakis,
M. Ashburner, V. Bajic, E. Birney, R. Castelo, E. Eyras, C. Ucla, T. Gingeras,

271

J. Harrow, T. Hubbard, S. Lewis, and M. Reese. EGASP: the human ENCODE
Genome Annotation Assessment Project. Genome Biology, 7(Suppl 1):S2, 2006.

[GFF] Generic Feature Format Version 2. http://gmod.org/wiki/GFF2. Re-
trieved on 2011-04-07.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

[GK12] G. Gonnella and S. Kurtz. Readjoiner: A Fast and Memory Efficient String Graph-
Based Sequence Assembler. BMC Bioinformatics, 13(1):82, 2012.

[GMP96] M.S. Gelfand, A.A. Mironov, and P.A. Pevzner. Gene Recognition via Spliced
Alignment. Proc. Nat. Acad. Sci. U.S.A., 93:9061–9066, 1996.

[GNK+07] S. Gräf, F.G.G. Nielsen, S. Kurtz, M.A. Huynen, E. Birney, H. Stunnenberg, and
P. Flicek. Optimized Design and Assessment of Whole Genome Tiling Arrays.
Bioinformatics, 23 ISMB/ECCB 2007:i195–i204, 2007.

[GR77] R.E. Gelinas and R.J. Roberts. One Predominant 5’-Undecanucleotide in Aden-
ovirus 2 Late Messenger RNAs. Cell, 11:533–544, 1977.

[GR05] R. Guigó and M.G. Reese. EGASP: Collaboration Through Competition to Find
Human Genes. Nat. Meth., 2(8):575–577, 2005.

[Gri28] F. Griffith. The Significance of Pneumococcal Types. J. Hyg., 27:113–159, 1928.

[GS06] P.E. Griffiths and K. Stotz. Genes in the Postgenomic Era. Theor. Med. Bioeth.,
27:499–521, 2006.

[GSK13] G. Gremme, S. Steinbiss, and S. Kurtz. GenomeTools: A Comprehen-
sive Software Library for Efficient Processing of Structured Genome Annota-
tions. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
99(PrePrints):1, 2013.

[GTF] GTF2.2: A Gene Annotation Format. http://mblab.wustl.edu/GTF22.
html. Retrieved on 2011-04-07.

[GW03] R. Guigó and T. Wiehe. Gene Prediction Accuray in Large DNA Sequences. In
M.Y. Galperin and E.V. Koonin, editors, Frontiers in Computational Genomics,
chapter 1. Caister Academic Press, Wymondham, UK, 2003.

[HC52] A.D. Hershey and M. Chase. Independent Functions of Viral Protein and Nucleic
Acid in Growth of Bacteriophage. J. Gen. Physiol., 36(1):39–56, 1952.

272

[HDF+06] J. Harrow, F. Denoeud, A. Frankish, A. Reymond, C.-K. Chen, J. Chrast, J. La-
garde, J. Gilbert, R. Storey, D. Swarbreck, C. Rossier, C. Ucla, T. Hubbard, S. An-
tonarakis, and R. Guigo. GENCODE: Producing a Reference Annotation for EN-
CODE. Genome Biology, 7(Suppl 1):S4, 2006.

[HDM+03] B.J. Haas, A.L. Delcher, S.M. Mount, J.R. Wortman, R.K. Smith Jr, L.I. Hannick,
R. Maiti, C.M. Ronning, D.B. Rusch, C.D. Town, S.L. Salzberg, and O. White.
Improving the Arabidopsis Genome Annotation Using Maximal Transcript Align-
ment Assemblies. Nucleic Acids Res., 31(19):5654–5666, 2003.

[HH92] S. Henikoff and J.G. Henikoff. Amino Acid Substitution Matrices from Protein
Blocks. Proceedings of the National Academy of Sciences, 89(22):10915–10919,
1992.

[HKFF86] S. Henikoff, M.A. Keene, K. Fechtel, and J.W. Fristrom. Gene Within a Gene:
Nested Drosophila Genes Encode Unrelated Proteins on Opposite DNA Strands.
Cell, 44:32–42, 1986.

[HM76] P. Henderson and J.H. Morris, Jr. A Lazy Evaluator. In Proceedings of the 3rd
ACM SIGACT-SIGPLAN symposium on Principles on programming languages,
POPL ’76, pages 95–103, New York, NY, USA, 1976. ACM.

[HPB+11] T.T. Hu, P. Pattyn, E.G. Bakker, J. Cao, J.-F. Cheng, R.M. Clark, N. Fahlgren, J.A.
Fawcett, J. Grimwood, H. Gundlach, G. Haberer, J.D. Hollister, S. Ossowski, R.P.
Ottilar, A.A. Salamov, K. Schneeberger, M. Spannagl, X. Wang, L. Yang, M.E.
Nasrallah, J. Bergelson, J.C. Carrington, B.S. Gaut, J. Schmutz, K.F.X. Mayer,
Y. Van de Peer, I.V. Grigoriev, M. Nordborg, D. Weigel, and Y.-L. Guo. The Ara-
bidopsis lyrata Genome Sequence and the Basis of Rapid Genome Size Change.
Nat. Genet., 43:476–481, 2011.

[HVT+02] B.J. Haas, N. Volfovsky, C.D. Town, M. Troukhan, N. Alexandrov, K.A.
Feldmann, R.B. Flavell, O. White, and S.L. Salzberg. Full-length mes-
senger RNA sequences greatly improve genome annotation. Genome Biol.,
3(6):RESEARCH0029, 2002.

[HZZ+05] P.M. Harrison, D. Zheng, Z. Zhang, N. Carriero, and M. Gerstein. Transcribed
Processed Pseudogenes in the Human Genome: An Intermediate Form of Ex-
pressed Retrosequence Lacking Protein-Coding Ability. Nucleic Acids Res.,
33:2374–2383, 2005.

[Int01] International Human Genome Sequencing Consortium. Initial Sequencing and
Analysis of the Human Genome. Nature, 409:860–921, 2001.

[Joh09] W. Johannsen. Elemente der Exakten Erblichkeitslehre. Gustav Fischer, Jena,
1909.

273

[KAA+05] C. Kanz, P. Aldebert, N. Althorpe, W. Baker, A. Baldwin, K. Bates, P. Browne,
A. van den Broek, M. Castro, G. Cochrane, K. Duggan, R. Eberhardt, N. Faruque,
J. Gamble, F.G. Diez, N. Harte, T. Kulikova, Q. Lin, V. Lombard, R. Lopez,
R. Mancuso, M. McHale, F. Nardone, V. Silventoinen, S. Sobhany, P. Stoehr, M.A.
Tuli, K. Tzouvara, R. Vaughan, D. Wu, W. Zhu, and R. Apweiler. The EMBL
Nucleotide Sequence Database. Nucleic Acids Res., 33 Database Issue:29–33,
2005.

[KBZ+05] T.H. Kim, L.O. Barrera, M. Zheng, C. Qu, M.A. Singer, T.A. Richmond, Y. Wu,
R.D. Green, and B. Ren. A High-Resolution Map of Active Promoters in the
Human Genome. Nature, 436:876–880, 2005.

[Ken02] W.J. Kent. BLAT—The BLAST-Like Alignment Tool. Genome Res., 12(4):656–
664, 2002.

[KFDB01] I. Korf, P. Flicek, D. Duan, and M. R. Brent. Integrating Genomic Homology into
Gene Structure Prediction. Bioinformatics, 17:S140–148, 2001.

[KHRE96] D. Kulp, D. Haussler, M.G. Reese, and F.H. Eeckman. A Generalized Hidden
Markov Model for the Recognition of Human Genes in DNA. In D.J. States and
P. Agarwal, editors, Proc. Conf. on Intelligent Systems for Molecular Biology,
pages 134–142. AAAI/MIT Press, 1996.

[KHV+98] J. Kleffe, K. Hermann, W. Vahrson, B. Wittig, and V. Brendel. GeneGenerator–a
Flexible Algorithm for Gene Prediction and its Application to Maize Sequences.
Bioinformatics, 14(3):232–243, 1998.

[Kni97] R. Knippers. Molekulare Genetik. Thieme, 1997.

[KNSW08] S. Kurtz, A. Narechania, J.C. Stein, and D. Ware. A New Method to Compute K-
mer Frequencies and its Application to Annotate Large Repetitive Plant Genomes.
BMC Genomics, 9:517, 2008.

[Kro97] A. Krogh. Two Methods for Improving Performance of an HMM and Their Ap-
plication for Gene Finding. In Proc. of ISMB 97, pages 179–186, 1997.

[KSF+02] W.J. Kent, C.W. Sugnet, T.S. Furey, K.M. Roskin, T.H. Pringle, A.M. Zahler, and
D. Haussler. The Human Genome Browser at UCSC. Genome Res., 12(6):996–
1006, 2002.

[Kur03] S. Kurtz. Foundations of Sequence Analysis. Unpublished Lecture Notes, May
2003.

[Kur12] S. Kurtz. Genominformatik. Unpublished Lecture Notes, July 2012.

[LB98] A.V. Lukashin and M. Borodovsky. GeneMark.hmm: New Solutions for Gene
Finding. Nucleic Acids Res., 26(4):1107–1115, 1998.

274

[LBNS+09] C. Lelandais-Brière, L. Naya, E. Sallet, F. Calenge, F. Frugier, C. Hartmann,
J. Gouzy, and M. Crespi. Genome-Wide Medicago truncatula Small RNA Anal-
ysis Revealed Novel MicroRNAs and Isoforms Differentially Regulated in Roots
and Nodules. The Plant Cell Online, 21(9):2780–2796, 2009.

[LCC+12] H.Y.K. Lam, M.J. Clark, R. Chen, R. Chen, G. Natsoulis, M. O’Huallachain,
F.E. Dewey, L. Habegger, E.A. Ashley, M.B. Gerstein, A.J. Butte, H.P. Ji, and
M. Snyder. Performance Comparison of Whole-Genome Sequencing Platforms.
Nature Biotechnology, 30:78–82, 2012.

[Lew04] B. Lewin. Genes VIII. Prentice Hall, 2004.

[LMD+12] N.J. Loman, R.V. Misra, T.J. Dallman, C. Constantinidou, S.E. Gharbia, J. Wain,
and M.J. Pallen. Performance Comparison of Benchtop High-Throughput Se-
quencing Platforms. Nature Biotechnology, 30:434–439, 2012.

[LMRP08] Q. Liu, A.J. Mackey, D.S. Roos, and F.C.N. Pereira. Evigan: A Hidden Variable
Model for Integrating Gene Evidence for Eukaryotic Gene Prediction. Bioinfor-
matics, 24(5):597–605, 2008.

[LSH+02] S.E. Lewis, S.M.J. Searle, N. Harris, M. Gibson, V. Iyer, J. Richter, C. Wiel,
L. Bayraktaroglu, E. Birney, M.A. Crosby, J.S. Kaminker, B.B. Matthews,
S.E. Prochnik, C.D. Smith, J.L. Tupy, G.M. Rubin, S. Misra, C.J. Mungall,
and M.E. Clamp. Apollo: A Sequence Annotation Editor. Genome Biology,
3(12):research0082.1–0082.14, 2002. This article is part of a series of refereed
research articles from Berkeley Drosophila Genome Project, FlyBase and col-
leagues, describing Release 3 of the Drosophila genome, which are freely avail-
able at http://genomebiology.com/drosophila/.

[LSH+10] J.-Y. Lin, R.M. Stupar, C. Hans, D.L. Hyten, and S.A. Jackson. Structural and
Functional Divergence of a 1-Mb Duplicated Region in the Soybean (Glycine
max) Genome and Comparison to an Orthologous Region from Phaseolus vul-
garis. The Plant Cell Online, 22(8):2545–2561, 2010.

[Mar08a] E.R. Mardis. Next-Generation DNA Sequencing Methods. Annu. Rev. Genomics
Hum. Genet., 9:387–402, 2008.

[Mar08b] E.R. Mardis. The Impact of Next-Generation Sequencing Technology on Genet-
ics. Trends in Genetics, 24:133–141, 2008.

[McC29] B. McClintock. A Cytological and Genetical Study of Triploid Maize. Genetics,
14:180–222, 1929.

[McC48] B. McClintock. Mutable Loci in Maize. Carnegie Inst. of Wash. Year Book,
47:155–169, 1948.

275

[MCC+08] J. Mondego, M. Carazzolle, G. Costa, E. Formighieri, L. Parizzi, J. Rincones,
C. Cotomacci, D. Carraro, A. Cunha, H. Carrer, R. Vidal, R. Estrela, O. Garcı́a,
D. Thomazella, B. de Oliveira, A. Pires, M. Rio, M. Araújo, M. de Moraes, L. Cas-
tro, K. Gramacho, M. Goncalves, J. Neto, A. Neto, L. Barbosa, M. Guiltinan,
B. Bailey, L. Meinhardt, J. Cascardo, and G. Pereira. A Genome Survey of Monil-
iophthora perniciosa Gives New Insights into Witches’ Broom Disease of Cacao.
BMC Genomics, 9(1):548, 2008.

[MCM+02] S Misra, M. Crosby, C. Mungall, B. Matthews, K. Campbell, P. Hradecky,
Y. Huang, J. Kaminker, G. Millburn, S. Prochnik, C. Smith, J. Tupy, E. Whitfield,
L. Bayraktaroglu, B. Berman, B. Bettencourt, S. Celniker, A. de Grey, R. Drys-
dale, N. Harris, J. Richter, S. Russo, A. Schroeder, S. Shu, M. Stapleton, C. Ya-
mada, M. Ashburner, W. Gelbart, G. Rubin, and S. Lewis. Annotation of the
Drosophila melanogaster Euchromatic Genome: A Systematic Review. Genome
Biology, 3(12):research0083.1–0083.22, 2002.

[MEA+05] M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben,
J. Berka, M.S. Braverman, Y.-J. Chen, Z. Chen, S.B. Dewell, L. Du, J.M. Fierro,
X.V. Gomes, B.C. Godwin, W. He, S. Helgesen, C.H. Ho, G.P. Irzyk, S.C. Jando,
M.L.I. Alenquer, T.P. Jarvie, K.B. Jirage, J.-B. Kim, J.R. Knight, J.R. Lanza,
J.H. Leamon, S.M. Lefkowitz, M. Lei, J. Li, K.L. Lohman, H. Lu, V.B. Makhi-
jani, K.E. McDade, M.P. McKenna, E.W. Myers, E. Nickerson, J.R. Nobile,
R. Plant, B.P. Puc, M.T. Ronan, G.T. Roth, G.J. Sarkis, J.F. Simons, J.W. Simpson,
M. Srinivasan, K.R. Tartaro, A. Tomasz, K.A. Vogt, G.A. Volkmer, S.H. Wang,
Y. Wang, M.P. Weiner, P. Yu, R.F. Begley, and J.M. Rothberg. Genome Sequenc-
ing in Microfabricated High-Density Picolitre Reactors. Nature, 437:376–380,
2005.

[MEC07] C.J. Mungall, D.B. Emmert, and The FlyBase Consortium. A Chado Case Study:
An Ontology-Based Modular Schema for Representing Genome-Associated Bio-
logical Information. Bioinformatics, 23(13):i337–i346, 2007.

[Men66] G. Mendel. Versuche über Pflanzenhybriden, pages 3–47. Number 4 in Abhand-
lungen. Verhandlungen des Naturforschenden Vereines in Brünn, 1866.

[Met10] M.L. Metzker. Sequencing Technologies — The Next Generation. Nat. Rev.
Genet., 11:31–46, 2010.

[MJ10] P. Montalent and J. Joets. EuGène-Maize: A Web Site for Maize Gene Prediction.
Bioinformatics, 26(9):1254–1255, 2010.

[MLH+09] A. Martin, D. Lang, J. Heckmann, A.D. Zimmer, M. Vervliet-Scheebaum, and
R. Reski. A Uniquely High Number of ftsZ Genes in the Moss Physcomitrella
patens. Plant Biology, 11(5):744–750, 2009.

276

[MSMB15] T.H. Morgan, A.H. Sturtevant, H.J. Muller, and C.B. Bridges. The Mechanism of
Mendelian Heredity. Henry Holt & Company, New York, 1915.

[MSSK11] M. Mader, R. Simon, S. Steinbiss, and S. Kurtz. FISH Oracle: A Web Server for
Flexible Visualization of DNA Copy Number Data in a Genomic Context. Journal
of Clinical Bioinformatics, 1:20, 2011.

[MSSR02] C. Mathe, M.-F. Sagot, T. Schiex, and P. Rouze. Current Methods of Gene Pre-
diction, their Strengths and Weaknesses. Nucleic Acids Res., 30(19):4103–4117,
2002.

[Mul27] H.J. Muller. Artificial Transmutation of the Gene. Science, 66:84–87, 1927.

[NC01] D.L. Nelson and M.M. Cox. Lehninger Biochemie. Springer, 2001.

[NLB+65] M. Nirenberg, P. Leder, M. Bernfield, R. Brimacombe, J. Trupin, F. Rottman, and
C. O’Neal. RNA Codewords and Protein Synthesis, VII. On the General Nature
of the RNA Code. Proc. Nat. Acad. Sci. U.S.A., 53(5):1161–1168, 1965.

[NS07] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’07, pages 89–100,
New York, NY, USA, 2007. ACM.

[PAA+03] G. Parra, P. Agarwal, J.F. Abril, T. Wiehe, J.W. Fickett, and R. Guigó. Com-
parative Gene Prediction in Human and Mouse. Genome Res., 13(1):108–117,
2003.

[PAC01] L. Pachter, M. Alexandersson, and S. Cawley. Applications of Generalized Pair
Hidden Markov Models to Alignment and Gene Finding Problems. In Proc. of
the Fifth International Conference on Computational Molecular Biology, (RE-
COMB 01), pages 241–248, 2001.

[PBG00] G. Parra, E. Blanco, and R. Guigó. GeneID in Drosophila. Genome Res.,
10(4):511–515, 2000.

[Pea00] W.R. Pearson. Flexible sequence similarity searching with the FASTA3 program
package. Methods Mol. Biol., 132:185–219, 2000.

[Pea06] H. Pearson. Genetics: What is a Gene? Nature, 441:398–401, 2006.

[Pev00] P.A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. The
MIT Press, Cambridge, MA, 2000.

[PFJ+11] H. Pausch, K. Flisikowski, S. Jung, R. Emmerling, C. Edel, K.-U. Götz, and
R. Fries. Genome-Wide Association Study Identifies Two Major Loci Affect-
ing Calving Ease and Growth-Related Traits in Cattle. Genetics, 187(1):289–297,
January 2011.

277

[PL88] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence compari-
son. Proc. Nat. Acad. Sci. U.S.A., 85:2444–2448, 1988.

[PLJ+12] I. Pagani, K. Liolios, J. Jansson, I-M.A. Chen, T. Smirnova, B. Nosrat, V.M.
Markowitz, and N.C. Kyrpides. The Genomes OnLine Database (GOLD) v.4:
Status of Genomic and Metagenomic Projects and their Associated Metadata. Nu-
cleic Acids Res., 40(D1):D571–D579, 2012.

[PRD+99] N. Pavy, S. Rombauts, P. Dehais, C. Mathe, D. V. V. Ramana, P. Leroy, and
P. Rouze. Evaluation of gene prediction software using a genomic data set: appli-
cation to Arabidopsis thaliana sequences. Bioinformatics, 15(11):887–899, 1999.

[PRD+06] G. Parra, A. Reymond, N. Dabbouseh, E.T. Dermitzakis, R. Castelo, T.M. Thom-
son, S.E. Antonarakis, and R. Guigó. Tandem Chimerism as a Means to Increase
Protein Complexity in the Human Genome. Genome Res., 16:37–44, 2006.

[RBB+03] S.Y. Rhee, W. Beavis, T.Z. Berardini, G. Chen, D. Dixon, A. Doyle, M. Garcia-
Hernandez, E. Huala, G. Lander, M. Montoya, N. Miller, L.A. Mueller,
S. Mundodi, L. Reiser, J. Tacklind, D.C. Weems, Y. Wu, I. Xu, D. Yoo, J. Yoon,
and P. Zhang. The Arabidopsis Information Resource (TAIR): A Model Organ-
ism Database Providing a Centralized, Curated Gateway to Arabidopsis Biology,
Research Materials and Community. Nucleic Acids Res., 31(1):224–228, 2003.

[RHH+00] M.G. Reese, G. Hartzell, N.L. Harris, U. Ohler, J.F. Abril, and Lewis S.E. Genome
Annotation Assessment in Drosophila Melanogaster. Genome Res., 10(4):483–
501, 2000.

[RMO01] S. Rogic, A.K. Mackworth, and F.B.F. Ouellette. Evaluation of Gene-Finding
Programs on Mammalian Sequences. Genome Res., 11:817–832, 2001.

[RTL+10] S. Richardt, G. Timmerhaus, D. Lang, E. Qudeimat, L. Corrêa, R. Reski, S. Rens-
ing, and W. Frank. Microarray Analysis of the Moss Physcomitrella patens Re-
veals Evolutionarily Conserved Transcriptional Regulation of Salt Stress and Ab-
scisic Acid Signalling. Plant Molecular Biology, 72:27–45, 2010.

[SAJ+10] A. Schallau, F. Arzenton, A.J. Johnston, U. Hähnel, D. Koszegi, F.R. Blattner,
L. Altschmied, G. Haberer, G. Barcaccia, and H. Bäumlein. Identification and
Genetic Analysis of the APOSPORY locus in Hypericum perforatum L. The Plant
Journal, 62(5):773–784, 2010.

[Sal97] S.L. Salzberg. A Method for Identifying Splice Sites and Translational Start Sites
in Eukaryotic mRNA. Comput. Appl. Biosci., 13(4):365–376, 1997.

[SAS+09] T.Z. Sen, C.M. Andorf, M.L. Schaeffer, L.C. Harper, M.E. Sparks, J. Duvick, V.P.
Brendel, E. Cannon, D.A. Campbell, and C.J. Lawrence. MaizeGDB Becomes
Sequence-Centric. Database, 2009, 2009.

278

[SB05] M.E. Sparks and V. Brendel. Incorporation of Splice Site Probability Models for
Non-Canonical Introns Improves Gene Structure Prediction in Plants. Bioinfor-
matics, 21(Suppl 3):iii20–iii30, 2005.

[SB08] M. Sparks and V. Brendel. MetWAMer: Eukaryotic Translation Initiation Site
Prediction. BMC Bioinformatics, 9(1):381, 2008.

[SBB+02] J.E. Stajich, D. Block, K. Boulez, S.E. Brenner, S.A. Chervitz, C. Dagdigian,
G. Fuellen, J.G.R. Gilbert, I. Korf, H. Lapp, H. Lehväslaiho, C. Matsalla,
C.J. Mungall, B.I. Osborne, M.R. Pocock, P. Schattner, M. Senger, L.D. Stein,
E. Stupka, M.D. Wilkinson, and E. Birney. The Bioperl Toolkit: Perl Modules for
the Life Sciences. Genome Res., 12(10):1611–1618, 2002.

[SDBH08] M. Stanke, M. Diekhans, R. Baertsch, and D. Haussler. Using Native and Syn-
tenically Mapped cDNA Alignments to Improve de novo Gene Finding. Bioinfor-
matics, 24(5):637–644, 2008.

[SDFH98] S. Salzberg, A. Delcher, K. Fasman, and J. Henderson. A Decision Tree System
for Finding Genes in DNA. J. Comp. Biol., 5(4):667–680, 1998.

[SGS+09] S. Steinbiss, G. Gremme, C. Schärfer, M. Mader, and S. Kurtz. AnnotationSketch:
A Genome Annotation Drawing Library. Bioinformatics, 25(4):533–534, 2009.

[SHK10] D.J. Schmitz-Hübsch and S. Kurtz. MetaGenomeThreader: A Software Tool for
Predicting Genes in DNA-Sequences of Metagenome Projects. In Streit, W. and
Daniel, R., editor, Metagenomics. Methods and Protocols, volume 668 of Methods
in Molecular Biology, pages 325–338. Springer, Berlin, 2010.

[SJ08] J. Shendure and H. Ji. Next-Generation DNA Sequencing. Nature Biotechnology,
26:1135–1145, 2008.

[SK03] T. Shibuya and I. Kurochkin. Match chaining algorithms for cdna mapping. In
WABI, pages 462–475, 2003.

[SK12] S. Steinbiss and S. Kurtz. A New Efficient Data Structure for Storage and Re-
trieval of Multiple Biosequences. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics, 9:345–357, 2012.

[SLTF05] C.G. Spilianakis, M.D. Lalioti, G.R. Town, T. Lee, and R.A. Flavell. Interchromo-
somal Associations Between Alternatively Expressed Loci. Nature, 435:637–645,
2005.

[SMS+02] L.D. Stein, C. Mungall, S. Shu, M. Caudy, M. Mangone, A. Day, E. Nicker-
son, J.E. Stajich, T.W. Harris, A. Arva, and Lewis S. The Generic Genome
Browser: a Building Block for a Model Organism System Database. Genome
Res., 12(10):1599–1610, 2002.

279

[SNC77] F. Sanger, S. Nicklen, and A.R. Coulson. DNA Sequencing with Chain-
Terminating Inhibitors. Proc. Nat. Acad. Sci. U.S.A., 74(12):5463–5467, 1977.

[SOJ+65] D. Söll, E. Ohtsuka, D.S. Jones, R. Lohrmann, H. Hayatsu, S. Nishimura, and
H.G. Khorana. Studies on Polynucleotides, XLIX. Stimulation of the Binding of
Aminoacyl-sRNA’s to Ribosomes by Ribotrinucleotides and a Survey of Codon
Assignments for 20 Amino Acids. Proc. Nat. Acad. Sci. U.S.A., 54(5):1378–1385,
1965.

[SS00] A.A. Salamov and V.V. Solovyev. Ab initio Gene Finding in Drosophila Genomic
DNA. Genome Res., 10(4):516–522, 2000.

[Ste11] L. Stein. Generic Feature Format Version 3. http://www.
sequenceontology.org/gff3.shtml, 2011. Retrieved on 2011-04-07.

[STG+09] B. Steuernagel, S. Taudien, H. Gundlach, M. Seidel, R. Ariyadasa, D. Schulte,
A. Petzold, M. Felder, A. Graner, U. Scholz, K.F.X. Mayer, M. Platzer, and
N. Stein. De novo 454 Sequencing of Barcoded BAC Pools for Comprehensive
Gene Survey and Genome Analysis in the Complex Genome of Barley. BMC
Genomics, 10(1):547, 2009.

[Sto00] G.D. Stormo. Gene-Finding Approaches for Eukaryotes. Genome Res.,
10(4):394–397, 2000.

[Stu13] A.H. Sturtevant. The Linear Arrangement of Six Sex-Linked Factors in
Drosophila, as Shown by Their Mode of Association. J. Exp. Zool., 14:43–59,
1913.

[SW03] M. Stanke and S. Waack. Gene prediction with a hidden Markov model and a new
intron submodel. Bioinformatics, 19(90002):215ii–225, 2003.

[SWF+09] P.S. Schnable, D. Ware, R.S. Fulton, J.C. Stein, F. Wei, S. Pasternak, C. Liang,
J. Zhang, L. Fulton, T.A. Graves, P. Minx, A.D. Reily, L. Courtney, S.S. Kru-
chowski, C. Tomlinson, C. Strong, K. Delehaunty, C. Fronick, B. Courtney, S.M.
Rock, E. Belter, F. Du, K. Kim, R.M. Abbott, M. Cotton, A. Levy, P. Marchetto,
K. Ochoa, S.M. Jackson, B. Gillam, W. Chen, L. Yan, J. Higginbotham, M. Car-
denas, J. Waligorski, E. Applebaum, L. Phelps, J. Falcone, K. Kanchi, T. Thane,
A. Scimone, N. Thane, J. Henke, T. Wang, J. Ruppert, N. Shah, K. Rotter,
J. Hodges, E. Ingenthron, M. Cordes, S. Kohlberg, J. Sgro, B. Delgado, K. Mead,
A. Chinwalla, S. Leonard, K. Crouse, K. Collura, D. Kudrna, J. Currie, R. He,
A. Angelova, S. Rajasekar, T. Mueller, R. Lomeli, G. Scara, A. Ko, K. Delaney,
M. Wissotski, G. Lopez, D. Campos, M. Braidotti, E. Ashley, W. Golser, H. Kim,
S. Lee, J. Lin, Z. Dujmic, W. Kim, J. Talag, A. Zuccolo, C. Fan, A. Sebastian,
M. Kramer, L. Spiegel, L. Nascimento, T. Zutavern, B. Miller, C. Ambroise,
S. Muller, W. Spooner, A. Narechania, L. Ren, S. Wei, S. Kumari, B. Faga, M.J.

280

Levy, L. McMahan, P. Van Buren, M.W. Vaughn, K. Ying, C.-T. Yeh, S.J. Emrich,
Y. Jia, A. Kalyanaraman, A.-P. Hsia, W.B. Barbazuk, R.S. Baucom, T.P. Brut-
nell, N.C. Carpita, C. Chaparro, J.-M. Chia, J.-M. Deragon, J.C. Estill, Y. Fu, J.A.
Jeddeloh, Y. Han, H. Lee, P. Li, D.R. Lisch, S. Liu, Z. Liu, D.H. Nagel, M.C. Mc-
Cann, P. SanMiguel, A.M. Myers, D. Nettleton, J. Nguyen, B.W. Penning, L. Pon-
nala, K.L. Schneider, D.C. Schwartz, A. Sharma, C. Soderlund, N.M. Springer,
Q. Sun, H. Wang, M. Waterman, R. Westerman, T.K. Wolfgruber, L. Yang, Y. Yu,
L. Zhang, S. Zhou, Q. Zhu, J.L. Bennetzen, R.K. Dawe, J. Jiang, N. Jiang, G.G.
Presting, S.R. Wessler, S. Aluru, R.A. Martienssen, S.W. Clifton, W.R. McCom-
bie, R.A. Wing, and R.K. Wilson. The B73 Maize Genome: Complexity, Diver-
sity, and Dynamics. Science, 326(5956):1112–1115, 2009.

[SWGK09] S. Steinbiss, U. Willhoeft, G Gremme, and S. Kurtz. Fine-Grained Annotation
and Classification of de novo Predicted LTR Retrotransposons. Nucleic Acids
Res., 37(21):7002–7013, 2009.

[SZB+10] R. Sinha, A. Zimmer, K. Bolte, D. Lang, R. Reski, M. Platzer, S. Rensing, and
R. Backofen. Identification and Characterization of NAGNAG Alternative Splic-
ing in the Moss Physcomitrella patens. BMC Plant Biology, 10(1):76, 2010.

[SZZ+09] G. Schweikert, A. Zien, G. Zeller, J. Behr, C. Dieterich, C.S. Ong, P. Philips,
F. De Bona, L. Hartmann, A. Bohlen, N. Krüger, S. Sonnenburg, and G. Rätsch.
mGene: Accurate SVM-Based Gene Finding With an Application to Nematode
Genomes. Genome Res., 19(11):2133–2143, 2009.

[TRG+03] L. Taher, O. Rinner, S. Garg, A. Sczyrba, M. Brudno, S. Batzoglou, and
B. Morgenstern. AGenDa: Homology-Based Gene Prediction. Bioinformatics,
19(12):1575–1577, 2003.

[UB00] J. Usuka and V. Brendel. Gene Structure Prediction by Spliced Alignment of Ge-
nomic DNA with Protein Sequences: Increased Accuracy by Differential Splice
Site Scoring. J. Mol. Biol., 297:1075–1085, 2000.

[UZB00] J. Usuka, W. Zhu, and V. Brendel. Optimal Spliced Alignment of Homologous
cDNA to a Genomic DNA Template. Bioinformatics, 16(3):203–211, 2000.

[VAM+01] J.C. Venter, M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G. Sutton, H.O.
Smith, M. Yandell, C.A. Evans, R.A. Holt, and et al. The Sequence of the Human
Genome. Science, 291:1304–1351, 2001.

[Wad71] C.P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD thesis,
Oxford University, 1971.

[WB06] WormBase web site, http://wormbase.org, release WS160, date July 31,
2006.

281

[WBB+05] D.L. Wheeler, T. Barrett, D.A. Benson, S.H. Bryant, K. Canese, D.M. Church,
M. DiCuccio, R. Edgar, S. Federhen, W. Helmberg, D.L. Kenton, O. Khovayko,
D.J. Lipman, T.L. Madden, D.R. Maglott, J. Ostell, J.U. Pontius, K.D. Pruitt,
G.D. Schuler, L.M. Schriml, E. Sequeira, S.T. Sherry, K. Sirotkin, G. Starchenko,
T.O. Suzek, R. Tatusov, T.A. Tatusova, L. Wagner, and E. Yaschenko. Database
resources of the National Center for Biotechnology Information. Nucleic Acids
Res., 33 Database Issue:39–45, 2005.

[WBL+02] H.M. Wain, E.A. Bruford, R.C. Lovering, M.J. Lush, M.W. Wright, and S. Povey.
Guidelines for Human Gene Nomenclature. Genomics, 79(4):464–470, 2002.

[WC53] J.D. Watson and F.H.C. Crick. A Structure for Deoxyribose Nucleic Acid. Nature,
171:737–738, 1953.

[WCO01] S.J. Wheelan, D.M. Church, and J.M. Ostell. Spidey: A Tool for mRNA-to-
Genomic Alignments. Genome Res., 11(11):1952–1957, 2001.

[WFV+09] R. Wang, S. Farrona, C. Vincent, A. Joecker, H. Schoof, F. Turck, C. Alonso-
Blanco, G. Coupland, and M.C. Albani. PEP1 Regulates Perennial Flowering in
Arabis alpina. Nature, 459:423–427, 2009.

[WGS09] Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: A Revolutionary Tool for
Transcriptomics. Nat. Rev. Genet., 10:57–63, 2009.

[WL01] T.G. Wolfsberg and D. Landsman. Expressed Sequence Tags (ESTs). In A.D
Baxevanis and B.F.F. Ouellette, editors, Bioinformatics: A Practical Guide to the
Analysis of Genes and Proteins, chapter 12. John Wiley & Sons, 2001.

[WP03] C.D. Worth and K. Packard. Cairo: Cross-device Rendering for Vector Graphics.
Proceedings of the 2003 Linux Symposium, 2003.

[WW05] T.D. Wu and C.K. Watanabe. GMAP: A Genomic Mapping and Alignment Pro-
gram for mRNA and EST Sequences. Bioinformatics, 21(9):1859–1875, 2005.

[YSY+03] Y. Yano, R. Saito, N. Yoshida, A. Yoshiki, A. Wynshaw-Boris, M. Tomita, and
S. Hirotsune. A New Role for Expressed Pseudogenes as ncRNA: Regulation
of mRNA Stability of its Homologous Coding Gene. J. Mol. Med., 82:414–422,
2003.

[ZB03] W. Zhu and V. Brendel. Identification, Characterization and Molecular Phylogeny
of U12-dependent Introns in the Arabidopsis thaliana Genome. Nucleic Acids
Res., 31(15):4561–4572, 2003.

[ZFB+07] D. Zheng, A. Frankish, R. Baertsch, P. Kapranov, A. Reymond, S.W. Choo, Y. Lu,
F. Denoeud, S.E. Antonarakis, M. Snyder, Y. Ruan, C.-L. Wei, T.R. Gingeras,
R. Guigó, J. Harrow, and M.B. Gerstein. Pseudogenes in the ENCODE Regions:

282

Consensus Annotation, Analysis of Transcription, and Rvolution. Genome Res.,
17:839–851, 2007.

[Zha97] M.Q. Zhang. Identification of Protein Coding Regions in the Human Genome
by Quadratic Discriminant Analysis. Proc. Nat. Acad. Sci. U.S.A., 94:565–568,
1997.

[Zha02] M.Q. Zhang. Computational Prediction of Eukaryotic Protein-Coding Genes. Na-
ture Reviews Genetics, 3(9):698–709, 2002.

[ZPF+07] Z.D. Zhang, A. Paccanaro, Y. Fu, S. Weissman, Z. Weng, J. Chang, M. Snyder,
and M.B. Gerstein. Statistical Analysis of the Genomic Distribution and Correla-
tion of Regulatory Elements in the ENCODE Regions. Genome Res., 17:787–797,
2007.

[ZSWM00] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A Greedy Algorithm for Align-
ing DNA Sequences. J. Comp. Biol., 7(1/2):203–214, 2000.

[ZZH+05] D. Zheng, Z. Zhang, P.M. Harrison, J. Karro, N. Carriero, and M. Gerstein. Inte-
grated Pseudogene Annotation for Human Chromosome 22: Evidence for Tran-
scription. J. Mol. Biol., 349:27–45, 2005.

283

Index

acceptor site, 24, 39
adenine, 21, 37
AGenDa, 42
alignment, 40
alphabet, 37
alternative gene structure, 148

overall score, 148
amino acid, 22, 23
amino group, 22
AnnotationSketch, 84, 89, 95, 107, 110, 247
anticodon, 25
approximate correlation, 45
AUGUSTUS, 41, 42, 49
Augustus, 54
average conditional probability, 45
Avery, Oswald Theodore, 30

base, 21, 38
Bateson, William, 29
Bayesian splice site model, see BSSM
Beadle, George Wells, 29
BLAST, 42, 79, 112
BLAT, 54, 112
branch site, 24
BSSM, 41, 56, 59, 80
BSSM parameter

options, 135
BSSMDIR, 132, 135, 136, 155

C-terminus, 22
cap, 23
carboxyl group, 22
cDNA library, 26
CEM, 42
Central Dogma, 23, 30
character, 37

Chargaff, Erwin, 30
Chase, Martha, 30
chromosome, 23
coding sequence, 25, 42
codon, 23

usage, 41
consensus spliced alignment, 54, 73, 83, 85,

148
correlation coefficient, 45
coverage, 146
Crick, Francis Harry Compton, 30
cytosine, 21, 37

DAG, 93, 94, 96
dbEST, 26
DE, 135
DEFINITION, 135
deoxyribonuclease, 30
deoxyribonucleic acid, see DNA
description

EMBL, 135
FASTA, 135
GENBANK, 135
SWISSPROT, 135

directed acyclic graph, see DAG
DNA, 21, 29

complementary, 26
donor site, 24, 39
Drosophila melanogaster, 29
dynamic programming, 17, 53, 59, 60, 63–65,

67, 69, 77, 83

E. coli, 26
edit operation, 39
EMBL, 135
enzyme, 22

284

error code, 133
Escherichia coli, 30
EST, 25, 42
EuGène, 54
EuGÉNE, 41, 42, 50
eukaryotes, 20
Evigan, 43, 51
exit code, 149
exon, 24, 38
ExonHunter, 54
expressed sequence tag, see EST

FASTA, 42
Fgenesh, 41
Fgenesh++, 54
Flowsim, 119, 259, 264

GENBANK, 135
gene, 20, 23, 29, 38

protein-coding, 23
gene prediction, 39
gene prediction method, 39
GeneSeqer, 18, 42, 54, 59, 86, 129
GeneSeqer2, 39, 140
GeneGenerator, 41
GeneID, 43
GeneMark.hmm, 41
generic feature format, see GFF
genetic code, 23, 30
genetics, 29
GENEWISE, 42
Genie, 41
GenomeThreader, 2–4, 16–19, 25, 34, 39, 41,

42, 52–54, 59, 67, 71, 73, 77–80, 84–
90, 92, 99, 111–113, 115–122, 124–
133, 137–140, 143, 144, 149, 151, 152,
154, 159, 248, 253–257, 259, 261, 262,
264

GenomeTools, 3, 4, 17–19, 84, 85, 88–90, 94,
105–107, 129, 169, 194, 206, 247, 248,
250, 256, 260, 264

Genomewise, 54
genomic sequence, 42

GENOMIX, 43
genotype, 29
GENSCAN, 41, 42, 49
GFF, 91
GLEAN, 43
GMAP, 42, 50, 54, 116–127, 261, 263, 264
GPU, 129
Griffith, Frederick, 30
grouping, 38
GTF, 91
GthBSSMbuild, 80
GthBSSMtrain, 80
Gthconsensus, 85
GTHDATADIR, 132, 136
GTHNOFLOCK, 132
guanine, 21, 37

Haemophilus influenzae, 31
Hamming distance, 66
Hershey, Alfred Day, 30
Hershey-Chase experiment, 30
Hidden Markov Model, 41, see HMM
HMM, 49, 50, 58
HMMgene, 41
Homo sapiens, 26

ID, 135
incremental update, 149
incremental updates, 148
indel, 40
intergenic region, 39
intermediate file, 150
intron, 24, 39
intron cutout technique, 143

JIGSAW, 43, 50
Johannsen, Wilhelm, 29

lariat, 24
LOCUS, 135
LTRdigest, 19, 103, 107
LTRharvest, 99, 107

macromolecule, 21

285

MAKER, 54
McClintock, Barbara, 29
Mendel, Gregor, 29
mGene, 41, 42, 49, 54
monomer, 21
Morgan, 41
Morgan, Thomas Hunt, 29
Muller, Hermann Joseph, 30
multiple fasta, 135
MZEF, 41

N-SCAN, 42
N-terminus, 22
Neurospora, 29
next-generation sequencing, see NGS
NGS, 26, 119
Nirenberg, Marshall, 30

object-oriented programming, see OOP
OOP, 94
open reading frame, see ORF
Option

-agacceptor, 158
-alignmentscore, 151
-autointroncutout, 143
-bssmfile, 158
-bssm, 136
-bzip2, 139
-b, 152
-cdna, 135
-coverage, 151
-createindicesonly, 140
-cutoffsminexonlen, 146
-cutoff, 156
-datapath, 158
-deletionweight, 145
-dpminexonlength, 145
-dpminintronlength, 145
-duplicatecheck, 147
-enrichchains, 142
-exact, 142
-exdrop, 141
-exondistri, 149

-extracttype, 156
-fastdp, 143
-filtertype, 156
-finalstopcodon, 139
-first, 149
-force, 139
-frompos, 138
-f, 137, 152
-gcdonor, 155, 158
-gcmaxgapwidth, 142
-gcmincoverage, 142
-genomic, 134
-getcdnacomp, 153
-getcdna, 153
-getgenomiccomp, 153
-getgenomic, 153
-getproteincomp, 153
-getprotein, 153
-gff3out, 138
-goodexoncount, 156
-gs2out, 139
-gtdonor, 158
-gzip, 139
-g, 152
-help+, 149
-help, 149
-icdeltaincrease, 143
-icinitialdelta, 143
-iciterations, 143
-icminremintronlen, 143
-identityweight, 144
-intermediate, 148
-introncutout, 143
-introndistri, 149
-inverse, 142
-leadcutoffsmode, 146
-maskpolyatails, 140
-matchdesc, 156
-maxalignmentscore, 146
-maxcoverage, 146
-md5ids, 138
-minalignmentscore, 146
-minaveragessp, 147

286

-mincoverage, 146
-mincutoffs, 139
-minmatchlen, 141
-minorflength, 139
-mismatchweight, 144
-noautoindex, 140
-nou12intronmodel, 144
-online, 142
-outdir, 155
-o, 138
-paralogs, 142
-pglgentemplate, 139
-prhdist, 142
-prminmatchlen, 141
-probdelgen, 144
-probies, 144
-proteinsmap, 140
-protein, 135
-prseedlength, 141
-range, 151
-refseqcovdistri, 149
-regionmapping, 156
-r, 137, 152
-scorematrix, 136
-scoreminexonlen, 146
-seedlength, 141
-seed, 156
-seqfiles, 156
-seqfile, 156
-shortexonpenal, 145
-shortintronpenal, 145
-showintronmaxlen, 139
-showseqnums, 139
-skipalignmentout, 139
-skipindexcheck, 140
-sortagswf, 148
-sortags, 148
-species, 135
-startcodon, 139
-termcutoffsmode, 146
-topos, 138
-translationtable, 136
-u12donorprob1mism, 144

-u12donorprob, 144
-undetcharweight, 144
-usedesc, 156
-version, 149
-v, 138, 152
-wdecreasedoutput, 145
-width, 138
-wzerotransition, 145
-xmlout, 138

ORF, 25, 30
output weight, 57

PATH, 132
peptide bond, 22
phenotype, 29
polymer, 22
predicted gene location, 148, 150
predicted gene structure, 150
primers, 26
PROCRUSTES, 42
program

AGenDa, 42
AnnotationSketch, 84, 89, 95, 107, 110, 247
AUGUSTUS, 41, 42, 49
Augustus, 54
BLAST, 42, 79, 112
BLAT, 54, 112
CEM, 42
EuGène, 54
EuGÉNE, 41, 42, 50
Evigan, 43, 51
ExonHunter, 54
FASTA, 42
Fgenesh, 41
Fgenesh++, 54
Flowsim, 119, 259, 264
GeneSeqer, 18, 42, 54, 59, 86, 129
GeneSeqer2, 39, 140
GeneGenerator, 41
GeneID, 43
GeneMark.hmm, 41
GENEWISE, 42
Genie, 41

287

GenomeThreader, 2–4, 16–19, 25, 34, 39,
41, 42, 52–54, 59, 67, 71, 73, 77–80,
84–90, 92, 99, 111–113, 115–122, 124–
133, 137–140, 143, 144, 149, 151, 152,
154, 159, 248, 253–257, 259, 261, 262,
264

GenomeTools, 3, 4, 17–19, 84, 85, 88–90,
94, 105–107, 129, 169, 194, 206, 247,
248, 250, 256, 260, 264

Genomewise, 54
GENOMIX, 43
GENSCAN, 41, 42, 49
GLEAN, 43
GMAP, 42, 50, 54, 116–127, 261, 263, 264
GthBSSMbuild, 80
GthBSSMtrain, 80
Gthconsensus, 85
HMMgene, 41
JIGSAW, 43, 50
LTRdigest, 19, 103, 107
LTRharvest, 99, 107
MAKER, 54
mGene, 41, 42, 49, 54
Morgan, 41
MZEF, 41
N-SCAN, 42
PROCRUSTES, 42
ROSETTA, 42
SGP2, 42
sim4, 42, 54
SLAM, 42
Spidey, 54
TWINSCAN, 42, 49
Vmatch, 64, 66, 79, 90

prokaryotes, 20
promoter, 23
protein, 22

structural, 22
pseudogene, 33, 41, 48
purine, 21
pyrimidine, 21

reference sequence, 42

ribosome, 25
RNA, 22

mature, 25
messenger, 22
micro, 33
noncoding, 33
ribosomal, 22, 33
small nucleolar, 33
transfer, 22, 33

RNA-Seq, 28
ROSETTA, 42

Söll, Dieter, 30
Sanger sequencing, 26
sensitivity

exon level, 47
gene level, 47
nucleotide level, 44

sequence, 37
empty, 37

Sequence Ontology, see SO
SGP2, 42
sim4, 42, 54
SLAM, 42
SO, 92
SOFA, 92
specificity

exon level, 47
gene level, 47
nucleotide level, 44

Spidey, 54
splice site, 25, 39
spliced alignment, 40, 42

consensus, 150
method, 40, 42

spliceosome, 24
splicing, 24, 31
status function, 38
Streptococcus pneumoniae, 30
Sturtevant, Alfred Henry, 29
Support Vector Machine, see SVM
SVM, 49
SWISSPROT, 135

288

tandem chimerism, 32
TAR, 32
Tatum, Edward Lawrie, 29
third-base degeneracy, 23
thymine, 21, 37
tiling microarrays, 28
training set, 41
trans-splicing, 32
transcription start site, see TSS
transcriptionally active region, see TAR
transcriptomics, 28
transposon, 32
TSS, 24, 32
TWINSCAN, 42, 49

undetermined character, 37
untranslated region, 25

vector, 26
Vmatch, 64, 66, 79, 90

Watson, James Dewey, 30

289

