
Simulation of Parallel Programs on
Application and System Level

Dissertation

zur Erlangung des akademischen Grades
Dr. rer. nat

an der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Universität Hamburg

eingereicht beim Fachbereich Informatik von

Julian Martin Kunkel
aus Heidelberg

5. Februar 2013

Gutachten:

Prof. Dr. Thomas Ludwig
Prof. Dr.-Ing. Stefan Olbrich

Datum der Disputation: 11. Juli 2013

I

Abstract

Computer simulation revolutionizes traditional experimentation providing a virtual laboratory. The
goal of high-performance computing is a fast execution of applications since this enables rapid exper-
imentation. Performance of parallel applications can be improved by increasing either capability of
hardware or execution efficiency. In order to increase utilization of hardware resources, a rich variety
of optimization strategies is implemented in both hardware and software layers. The interactions of
these strategies, however, result in very complex systems. This complexity makes assessing and un-
derstanding the measured performance of parallel applications in real systems exceedingly difficult.

To help in this task, in this thesis an innovative event-driven simulator for MPI-IO applications and
underlying heterogeneous cluster computers is developed which can help us to assess measured per-
formance. The simulator allows conducting MPI-IO application runs in silico, including the detailed
simulations of collective communication patterns, parallel I/O and cluster hardware configurations.
The simulation estimates the upper bounds for expected performance and therewith facilitates the
evaluation of observed performance.

In addition to the simulator, the comprehensive tracing environment HDTrace is presented. HDTrace
offers novel capabilities in analyzing parallel I/O. For example, it allows the internal behavior of
MPI and the parallel file system PVFS to be traced. While PIOsimHD replays traced behavior of
applications on arbitrary virtual cluster environments, in conjunction with HDTrace it is a powerful
tool for localizing inefficiencies, conducting research on optimizations for communication algorithms,
and evaluating arbitrary and future systems.

This thesis is organized according to a systematic methodology which aims at increasing insight
into complex systems: The information provided in the background and related-work sections offers
valuable analyses on parallel file systems, performance factors of parallel applications, the Message
Passing Interface, the state-of-the-art in optimization and discrete-event simulation. The behavior
of memory, network and I/O subsystem is assessed for our working group’s cluster system, demon-
strating the problems of characterizing hardware. One important insight of this analysis is that due
to interactions between hardware characteristics and existing optimizations, performance does not
follow common probability distributions, leading to unpredictable behavior of individual operations.

The hardware models developed for the simulator rely on just a handful of characteristics and im-
plement only a few optimizations. However, a high accuracy of the developed models to explain
real world phenomenons is demonstrated while performing a careful qualification and validation.
Comprehensive experiments illustrate how simulation aids in localizing bottlenecks in parallel file
system, MPI and hardware, and how it fosters understanding of system behavior. Additional ex-
periments demonstrate the suitability of the novel tools for developing and evaluating alternative
MPI and I/O algorithms. With its power to assess the performance of clusters running up to 1,000
processes, PIOsimHD serves as virtual laboratory for studying system internals.

In summary, the combination of the enhanced tracing environment and a novel simulator offers
unprecedented insights into interactions between application, communication library, file system and
hardware.

I

Zusammenfassung

Die Computersimulation löst in vielen Bereichen traditionelle Experimente ab. Ziel des Hochleis-
tungsrechnens ist die schnelle Ausführung von Anwendungen, da dies die Durchführung der Experi-
mente beschleunigt. Die Leistung einer parallelen Anwendung kann erhöht werden, indem die Fähig-
keiten der Hardware verbessert werden oder durch die Steigerung der Effizienz während der Ausfüh-
rung. Um verfügbare Hardwareressourcen bestmöglich auszunutzen, werden sowohl in Hardware-
als auch in Softwareschichten verschiedenste Optimierungsstrategien implementiert. Ihr Zusammen-
spiel resultiert in einem hochkomplexen Systemverhalten. Dies erschwert eine Bewertung des Lauf-
zeitverhaltens der Anwendungen. Eine Analyse der Leistungsfähigkeit einzelner Komponenten ist
darüber hinaus unabdingbar, um Engpässe zu identifizieren und zu optimieren.

Aus diesem Grund werden in dieser Doktorarbeit Werkzeuge entwickelt, mit deren Hilfe das Verhal-
ten besser bewertet werden kann. PIOsimHD ist ein innovativer ereignisbasierter Simulator für die
Ausführung von MPI-IO-Anwendungen auf heterogenen Clustercomputern. Der Simulator beinhal-
tet eine detaillierte Simulation von kollektiven Kommunikationsmustern, paralleler Ein- und Ausga-
be und Modellen für die zu Grunde liegende Hardware. Mit Hilfe der Modelle können obere Schran-
ken für die erwartete Leistungsfähigkeit geschätzt werden; dies ermöglicht eine Bewertung der beob-
achteten Leistung.

Darüber hinaus wird mit HDTrace eine Umgebung für das Erfassen von Anwendungsverhalten in
Spurdaten präsentiert. HDTrace bietet neuartige Möglichkeiten der Analyse von paralleler E/A. Bei-
spielsweise gestattet HDTrace die Aufzeichnung des internen Verhaltens von MPI und des paral-
lelen Dateisystems PVFS. Programmläufe können auf bestehenden Systemen aufgezeichnet und in
PIOsimHD in beliebigen virtuellen Clusterumgebungen ausgeführt werden. Dieses Zusammenspiel
von HDTrace und PIOsimHD gestattet die Lokalisierung von Ineffizienzen, erleichtert die Optimie-
rung von Kommunikations- und E/A-Middleware und das Studium von Kommunikations- und E/A-
Verhalten der Anwendungen auf künftigen Systemen.

Diese Arbeit zielt systematisch darauf ab, die Einsicht in komplexe Systeme zu verbessern. Zunächst
werden Hintergrundinformationen zu verschiedenen Themen vorgestellt. Diese beinhalten Informa-
tionen zu parallelen Dateisystemen, grundlegenden Leistungsfaktoren von parallelen Anwendun-
gen, der Nachrichtenaustauschschnittstelle MPI, Optimierungsmöglichkeiten und ereignisbasierter
Simulation. Das Verhalten von Speicherzugriffen, Netzwerk und E/A-System des Clusters useres Ar-
beitsbereichs wird analysiert, hierbei werden einige Schwierigkeiten bei der Charakterisierung der
Hardware praktisch demonstriert. Eine wichtige Erkenntnis der Analyse ist, dass das Zusammenspiel
zwischen Hardwarecharakteristika und Optimierungen in einer unvorhersehbaren Geschwindigkeit
einzelner Operationen resultiert, die keiner typischen Wahrscheinlichkeitsverteilung folgt.

Die entwickelten Hardwaremodelle des Simulators stützen sich auf eine Handvoll Charakteristika
und konzentrieren sich auf die wichtigsten Optimierungen. Dennoch zeigt sich in der Validierung
des Simulators eine hohe Übereinstimmung der Simulationsergebnisse mit den beobachteten Phäno-
menen. In diversen Experimenten wird der neu entwickelte Simulator genutzt, um das Verhalten des
Systems besser zu verstehen. Hierbei werden zahlreiche Engpässe in parallelen Dateisystemen, MPI
und Hardware aufgespürt. Zusätzliche Experimente demonstrieren die Anwendung der neuen Werk-
zeuge, um alternative Kommunikations- und E/A-Algorithmen zu entwerfen. Mit der Möglichkeit,
effektiv die Leistungsfähigkeit von beliebigen Clustern mit bis zu 1000 Prozessen zu evaluieren, dient
PIOsimHD als virtuelles Labor, um die Interaktionen zwischen System, Anwendung und Kommuni-
kationsbibliothek zu studieren.

II

Acknowledgments

I would like to thank Prof. Dr. Thomas Ludwig, who has supported me ever since I attended his seminar
“Betriebsystemaspekte beim Cluster-Computing” in the 2003/2004 winter term.
I want to appreciate the support of my parents Ursula and Paul, who did not become tired of asking when
I finally graduate with my Ph.D.

I also want to thank to all the students who contributed to PIOsim and HDTrace, and to all those who sup-
ported me directly or indirectly throughout this project. Special thanks to Nathanael Hübbe and Michaela
Zimmer who reviewed parts of my lengthy thesis.

This last sentence should pay tribute to all the programmers who developed the software that helped me
to write this thesis; this includes software which I evaluated to prepare for this project. While no software
is perfect, without those software packets this thesis would not have been possible.

mIghtaHghachvo' yImej 'ej yIQaQ! roj yInej 'ej yItlha'

qatlho'

III

Table of Contents

Abstract I

1. Introduction 1

1.1. High-Performance Computing . 1
1.1.1. Architecture of Supercomputers . 3
1.1.2. Software Layers . 7
1.1.3. Example Application Execution . 8

1.2. Motivation . 11
1.3. Goals of this Thesis . 14
1.4. Outline of the Thesis . 15
Bibliography . 16

2. Background and Related Work 18

2.1. Parallel File Systems . 18
2.1.1. Capabilities of Parallel File Systems . 20
2.1.2. State of the Art . 21
2.1.3. The Parallel Virtual File System PVFS . 23
2.1.4. Client-Server Communication . 25

2.2. Performance of Parallel Applications . 26
2.2.1. Performance Relevant Hardware Components and Software Layers 27
2.2.2. Hardware . 29
2.2.3. Computation Performance . 33
2.2.4. Communication Performance . 35
2.2.5. I/O Performance . 36

2.3. Message Passing Interface . 41
2.3.1. Matching Sends to Receives . 42
2.3.2. Exemplary Collective Operations and Semantics . 43
2.3.3. Excerpt of MPI-IO Functions and Semantics . 47
2.3.4. Optimization Potential Within MPI . 51
2.3.5. State of the Art . 53

2.4. Performance Analysis and Tuning . 57
2.4.1. Developing Applications for Performance . 58
2.4.2. Closed Loop of Performance Tuning . 61
2.4.3. Available Tools for Analysis of Sequential Programs 65
2.4.4. Available Tools for Analysis of Parallel Programs . 71
2.4.5. Trace Formats . 81

2.5. Discrete-Event Simulation . 85
2.5.1. Modeling . 85
2.5.2. Simulation . 87
2.5.3. State of the Art . 91

2.6. Simulation of Computer and Cluster Systems . 97
2.7. Chapter Summary . 110
Bibliography . 112

3. Characterizing the Experimental System 123

3.1. Measuring System Behavior . 123
3.1.1. Mathematical Background . 124
3.1.2. Measurement Methodology . 125

3.2. Overview of the Cluster . 126
3.3. Processor . 126

IV

3.4. Main Memory . 127
3.4.1. Memory Behavior . 128
3.4.2. Throughput . 130
3.4.3. Analysis of Variability and Noise . 131

3.5. Inter-Process Communication . 143
3.5.1. Description of mpi-network-behavior . 144
3.5.2. Throughput . 144
3.5.3. Latency . 146
3.5.4. Performance . 148
3.5.5. Variability . 151

3.6. I/O Subsystem . 160
3.6.1. Theoretic Considerations . 161
3.6.2. Average Performance . 163
3.6.3. Timing Uncached Data Access . 169
3.6.4. Timing Accesses Bypassing the Linux Cache . 172
3.6.5. Timing Cached Operations . 174

3.7. Chapter Summary . 182
Bibliography . 184

4. HDTrace Environment 186

4.1. Component Overview . 187
4.2. HDTrace Format . 188

4.2.1. Design Criteria . 189
4.2.2. On-Disk Format . 190

4.3. MPI-Wrapper . 196
4.3.1. Tracing Workflow . 197

4.4. Sunshot . 198
4.4.1. Overview . 199
4.4.2. Analyzing Statistics . 202
4.4.3. Highlighting Relevant Information . 206
4.4.4. Visualizing of (I/O) Datatypes . 208
4.4.5. Analyzing MPI Internals . 211
4.4.6. Analyzing MPI and PVFS Interplay . 212

4.5. Research Activities Associated with the HDTrace Environment 213
4.6. Chapter Summary . 216
Bibliography . 217

5. PIOsimHD – The MPI-IO Simulator 219

5.1. Modeling Behavior on Application and System Level . 219
5.2. Hardware Model . 220

5.2.1. Node and Hosted Processes . 221
5.2.2. Block Device . 223
5.2.3. Network . 226

5.3. Transport Layer Communication Model . 227
5.3.1. Packet Routing . 228
5.3.2. Congestion and Bottlenecks . 229
5.3.3. Flow Model . 231
5.3.4. Illustration of Data Flow . 232

5.4. Software Model . 234
5.4.1. Execution of Parallel Applications . 235
5.4.2. Inter-process Communication . 236
5.4.3. Parallel I/O . 239
5.4.4. Interaction of Server Cache and Block Device . 242

5.4.5. Implemented Cache Layers . 243
5.5. Simulation Workflow . 247

5.5.1. Model Creation . 247
5.5.2. Executing PIOsimHD . 249
5.5.3. Interpretation of Simulation Results . 250

5.6. Chapter Summary . 254
Bibliography . 256

6. Simulator Implementation 257

6.1. Model Classes . 257
6.2. Implementation of a Component . 258
6.3. Dynamic Selection of Implementations . 261

6.3.1. Adjusting Model Implementations . 261
6.3.2. Changing Command Implementations . 262
6.3.3. Mapping Trace Entries to Command Models . 264

6.4. Defining an Application and System Model in Java . 264
6.5. Implementation and Execution of Commands . 268
6.6. Chapter Summary . 273

7. Evaluation 275

7.1. Overhead of HDTrace . 276
7.2. Performance of PIOsimHD . 277

7.2.1. Event processing speed . 278
7.2.2. Scalability . 279
7.2.3. Alternative NIC models . 280
7.2.4. Extrapolation of performance . 282
7.2.5. Summary and Conclusions . 283

7.3. Parameterization . 283
7.3.1. Network Topology . 283
7.3.2. Network Edges and Nodes . 285
7.3.3. Compute Performance . 285
7.3.4. Memory . 286
7.3.5. Hard Disk Drive . 286
7.3.6. Overview of the Parameters for the Experimental Cluster Model 287
7.3.7. Summary and Conclusions . 287

7.4. Qualification of the Domain Model . 288
7.4.1. Network Behavior . 289
7.4.2. Hard Disk Drive . 291
7.4.3. Summary and Conclusions . 297

7.5. Verification of Network Behavior and Hard Disk Model . 299
7.5.1. Network Behavior . 299
7.5.2. I/O Subsystem . 302
7.5.3. Summary and Conclusions . 304

7.6. Evaluation of the Network Model with Complex Communication Patterns 304
7.6.1. The mpi-bench Benchmark . 305
7.6.2. Methodology . 306
7.6.3. Assessing MPI_Barrier() and computation time . 307
7.6.4. Point-to-point Communication of 10 KiB of Data . 309
7.6.5. Collective Communication of 10 KiB of Data . 312
7.6.6. Point-to-point Communication of Large Messages . 319
7.6.7. Collective Communication of Large Messages . 324
7.6.8. Summary and Conclusions . 331

7.7. Evaluation of Parallel I/O . 332
7.7.1. Methodology . 333
7.7.2. Accessing Data on tmpfs . 335
7.7.3. Cached Data . 345
7.7.4. Hosting Multiple Processes per Node . 350
7.7.5. Overlapping Client and Servers . 354
7.7.6. Simulating Server Behavior . 355
7.7.7. Summary and Conclusions . 361

7.8. Verification of the Implemented Collective Communication 362
7.9. Simulating Behavior of Scientific Applications . 362

7.9.1. The PDE Solver partdiff-par . 363
7.9.2. Methodology . 364
7.9.3. Network-Bound Workload . 367
7.9.4. Critical Path Analysis . 370
7.9.5. Computation-bound Workload . 373
7.9.6. In-memory I/O . 377
7.9.7. I/O-Bound Workload . 380
7.9.8. Mixed and Synchronization-bound Workload . 384
7.9.9. Summary and Conclusions . 388

7.10. Alternative MPI_Bcast() Implementations . 389
7.11. Chapter Summary . 393
Bibliography . 394

8. Summary & Conclusions 395

8.1. Summary . 395
8.2. Executive Summary . 397

8.2.1. Background and Related Work . 397
8.2.2. Characterizing the Experimental System . 399
8.2.3. PIOsimHD – the MPI-IO Simulator . 401
8.2.4. Simulator Implementation . 403
8.2.5. Evaluation . 404

9. Future Works 407

9.1. Conceivable MPI(-IO) Optimizations . 408

List of Figures 411

List of Tables 418

Index 419

A. Appendix 421

A.1. OTF API . 421
A.2. NTP Accuracy . 423
A.3. MPIMAP . 424
A.4. Limiting the Amount of Free Memory . 425
A.5. Memory Benchmark . 427
A.6. MPI Configuration . 429
A.7. Software Used to Write this Thesis . 430

Introduction

Chapter 1 I

In this chapter an overview of high-performance computing is given based on illustrating examples. The com-
partments of a supercomputer, the general usage models, and the interplay of hardware components and software
layers is introduced. The execution of a simple parallel application illuminates some of the difficulties a system is
confronted with when attempting to achieve optimal performance.

A deeper understanding of the system allows for assessing performance limitations and shortcomings when de-
signing and programming a supercomputer and its software stack. Analysis of the observed behavior in order to
understand the causes for performance degradation is cumbersome which ultimately motivates this thesis.

1.1. High-Performance Computing

Supercomputers combine the performance of hundreds or thousands of office computers to tackle prob-
lems which could not otherwise be solved on PCs in a reasonable amount of time. With the capabilities
offered by supercomputers, scientists no longer have to conduct time-consuming and error-prone exper-
iments in the real world. Instead, the modeling and simulation of the laws of nature within computer
systems offers a well-defined environment for experimental investigation. Models for climate, protein
folding or nano materials, for example, can be simulated and manipulated at will without being restricted
by the laws of nature. This method leads to new observations and understandings of phenomena which
would otherwise be too fast or too slow to comprehend in vitro [KS92].

With the improvement of computing performance, better experiments can be designed and conducted. As
such, a thorough understanding of hardware and software design is vital to providing the necessary com-
puting power for scientists. This understanding has developed into its own branch within the computer
science field: High-Performance Computing (HPC). High-performance computing is the discipline in which
supercomputers are designed, integrated, programmed and maintained.

Supercomputers are tools used in the natural sciences to analyze scientific questions in silico. Indeed, HPC
provides a new model of scientific inquiry – that is, a new way to obtain scientific knowledge. Mahootian
and Eastman state:

“The volume of observational data and power of high-performance computing have increased by sev-
eral orders of magnitude and reshaped the practice and concept of science, and indeed the philosophy
of science” [ME09]

Exponential growth of performance Depending on the processing power of the system, a number of
varying scientific questions can be tackled. For example, the prediction and simulation of microbial sys-
tems in order to produce an ecological alternative to fossil fuels is one such scientific question that could
be solved with future supercomputers [JKN09].

Because supercomputer performance is the crucial factor in successful modeling and simulations, perfor-
mance is one of the key metrics to compare the various supercomputers currently in use. Faster machines
allow bigger and more complex experiments to be conducted in silico. Therefore, methods which speed up
systems are of interest.

Since 1993 the Top500 list [Meu08] has been gathering information on the achieved performance of super-
computers, and this database provides a rich set of tools to analyze information regarding vendors, system
architectures and trends of the fastest computers worldwide.

1

INTRODUCTION 1.1

Up to now an exponential growth in computing performance, which is proportional to Moore’s “law”1 [TP06],
is observable and the observable speed even exceeds it slightly.

As of 2011 the fastest system offers a theoretical peak performance2 of 10 Petaflop/s. Thus, between 1993
and November of 2011 the performance of the fastest listed supercomputer improved from 60 Gigaflop/s
to about 10 Petaflop/s, which is a factor of roughly 217.

On the one hand, the factor correlates to the improvement of chip design and miniaturization that has
been achieved in these 18 years and is analogous to Moore’s “law”. On the other hand, it is a result of the
improved clustering of independent chips into a large supercomputer and of increased investments.

This is a basic consideration since the designer, in order to increase the performance of a supercomputer,
can either increase the processing speed of a single processor or the total number of collaborating proces-
sors. The latter is achieved by fusing more chips into a single computers and by interconnecting multiple
independent computers into a so-called cluster computer.

While obstacles to achieve petascale have been overcome, designing and implementing machines and par-
allel algorithms scalable to exascale3 supercomputers is a task which must yet be solved.

Utilizing available transistors In regards to performance, transistors available on only a single silicon
chip can be used to improve performance of a single thread4 or by adding more cache or vector units. Also,
a chip can be partitioned into (almost) independent processing units which allows concurrent processing
of multiple threads5.

In the past, the application performance was improved by packing more functionality into a single chip
and by incrementing the clock frequency of this processor. However, power consumption of a processor
is proportional to the square of the clock frequency. Thus, combined with the steady miniaturization, at
some point chips would have been designed that produce more heat than a nuclear power plant or even
the sun [RMM+01]. As a result of this observation, a change in strategy was implemented. In order to
utilize available transistors, multiple processing units are replicated on a single chip and clocked with a
lower frequency. With this approach the aggregated performance of all cores is higher than by increasing
the complexity of a single core. Nowadays, all commodity chips consist of multiple cores.

The multi-core trend rapidly increased the numbers of processors in cluster systems. As of June 2011 the
fastest system on the Top500 is the K computer. It consists of more than 20,000 boards each equipped with
four 8-core SPARC64 chips leading to an aggregated number of 705,024 cores. In comparison with this
highly parallel system, the fastest supercomputer in 1993 was driven by a mere 1024 processors.

Efficiency of algorithms Potential performance of a supercomputer and the efficiency of an algorithm
running on the machine are two separate issues. Utilizing a high number of processing cores efficiently
is problematic. Applications must be rewritten to deal with multiple threads which is a challenge for the
software developer. Naturally, the number of parallel threads which can be used efficiently to tackle a
problem depends on both the problem and the algorithm used to solve that problem.

To give an example of a fast but inefficient algorithm consider the problem of sorting N distinct elements.
For a sequential processor this task has a time complexity of O(N · logN)6. Jindaluang’s parallel sorting

1Gordon E. Moore observed that the number of transistors which can be placed on an integrated circuit roughly doubled every
year between 1958 and 1965, and he predicted that this trend would continue in the future. This trend is referred to as Moore’s
law by computer scientists. However because it is no law of nature the author prefers to quote the term.

2A flop is a floating point operation. Peta is the prefix for 1015. Thus, a petascale computer executes 1015 operations per second.
In supercomputing the term FLOPS is often used to describe flop/s, but the author claims Flop/s is more intuitive.

3Exascale computers perform 1018 Flop/s.
4A thread can be thought of as a single stream of instructions that is processed sequentially on the chip.
5This principle is called ‘thread-level parallelism’.
6In practice, quicksort is most often used because it yield this complexity. However, new theoretical results show an improve-

ment to the complexity of O(N loglogN) [Han02].

2

1.1 HIGH-PERFORMANCE COMPUTING

algorithm for completely overlapping networks uses N processors to solve this problem in a time com-
plexity of O(N) [Jin04]7. However, the improvement of the complexity from sequential to parallel system
with a completely overlapping network is low. By adding more processors the amount of work to compute
the solution increases from O(N logN) to O(N ·N = N2), which is the number of processors multiplied
with the time complexity. Consequently, the efficiency, that is, the effective work used to solve the problem
divided by the number of executed operations, decreases on the parallel system.

Low utilization of hardware In addition to the potential lower efficiency of a parallel algorithm, the
resources provided by a machine are unfortunately not evenly utilized by parallel applications [SH94]. A
near-optimal utilization of all resources provided on a single chip (or processor) is already a challenging
task for a developer, a compiler and the software infrastructure. This list includes the operating system as
well, which manages the low-level hardware and dispatches tasks to the available resources.

The complexity of designing and implementing efficient parallel applications is of an even higher degree
than of their sequential versions. This is due to the additional synchronization and communication because
the independent processors must exchange intermediate results to cooperate. This communication process
incurs some overhead to the computation and might cause processors to stall while waiting for (new) data
to process. Consequently, on the one hand, careful attention must be given to balance the work evenly
among the processors to keep them busy; On the other, the communication must be performed efficiently
to ensure a steady computation.

While some parallel numerical algorithms are capable of utilizing computing resources on a supercom-
puter to a high degree, most applications exploit only a small fraction of peak performance [OCC+07].
Therefore, tuning and optimization of applications to exploit the available resources is an important task
in the effort to improve performance of the supercomputer and efficiency of the compute facility as a
whole.

Benchmarking of supercomputers Because of the suboptimal utilization of the system, the maximum
theoretical peak performance, which can be determined by multiplying the processing capabilities of a
single chip with the number of available chips, is not sufficient to compare two supercomputers. Therefore,
the effective performance is determined by running an efficient numerical algorithm as a benchmark.

A highly-optimized and well-parallelized algorithm that solves a system of linear equations is the LINPACK
benchmark [DLP03], which typically achieves about 60-80% of the theoretical peak performance of the
hardware.

The LINPACK benchmark is used to determine the ranking of supercomputers in the Top500 List, where
the highest performance achieved with the HPC LINPACK is labeled Rmax. The theoretical performance
is also listed in the Top500 List and is labeled with Rpeak. The K computer, for example, has a peak
performance of 11.3 PFlop/s. By dividing both values a metric for a system’s efficiency can be derived8.
For example, with a large problem size the optimized HPC LINPACK version for the K computer achieves
a phenomenal 93% of its theoretical peak performance.

Since the architectural design of the supercomputer has a major impact on the observable performance
and its characteristics, the compartments of a supercomputer and their arrangement are sketched next.

1.1.1. Architecture of Supercomputers

In the past, a supercomputer was a big monolithic computer built using tightly coupled components,
similar to a mainframe. The number of components in a supercomputer rose quickly, and for various

7For a Parallel Random Access Machine (PRAM) that offers Concurrent Read Exclusive Write (CREW) memory access, a parallel
merge sort completes in O(logN) time complexity [Col86]. But, to illustrate overhead in an interconnected network topology
Jindaluang’s algorithm has been chosen.

8Note that this metric is rather artificial, typically scientific applications achieve only a fraction of a system’s peak performance.

3

INTRODUCTION 1.1

reasons it was no longer affordable to build one big monolithic system. Instead, independent components
now form building blocks which can be put together in arbitrary configurations to handle the requirements
of a given computing center.

Those, so-called compute clusters9 combine several independent resources into one big computer. In a
cluster computer autonomous servers are referred to as node. A schematic view of a cluster computer is
shown in Figure 1.1: Compute nodes run the (parallel) application which accesses required input data and
stores the computed results on a storage system. All resources are interconnected by at least one network.

Applications are usually compiled and prepared on a cluster frontend on which users log in over the Inter-
net (or just the local area network). Once logged in to the frontend, the user can prepare parallel applica-
tions and access produced data. In the preparation step the parallel application is compiled to generate a
sequence of machine instructions which can be executed on the particular hardware of the compute nodes.
Further, a job description is prepared. This description includes the required compute resources for the
parallel job and a sequence of parallel applications that shall be executed on those resources. Once the
applications are ready to run, the scientist submits the job description to the cluster’s batch system. The
batch system exclusively assigns compute nodes to the job and initiates startup of the job script.

Clusters could be built from identical hardware, or from inhomogeneous hardware. In the former case ho-
mogeneous components, that is, identical components with the same characteristics, are deployed. While
cluster nodes are usually equipped homogeneously, multiple storage systems are connected when dealing
with specific workload requirements. Individual components of a cluster can either be special (propri-
etary) hardware, or standard consumer and enterprise hardware. Typically, the latter components are
cheaper. Clusters built using those Commercially available Off-The-Shelf (COTS) components are widely
known as Beowulf cluster systems [GLS03]. Nowadays, many systems use both types of hardware. For ex-
ample, in 2010 the fastest supercomputer was Jaguar, a Cray XT which uses off-the-shelf AMD processors
but a proprietary network technology from Cray.

Traditionally, the supercomputer is built independently of the applications, which are to be executed later
on in the system. Thus, the demands of the software and the system capabilities may not match opti-
mally. Recent studies show the importance of software-hardware co-design to cope with the challenges of
applications on very large scale systems [JKN09, SHS09]. With this approach, software aspects are kept in
mind as the hardware is designed, but the hardware design also influences the programming model of the
software.

Computation Typically, processing of data in a cluster computer follows the von Neumann architec-
ture [vN93]: A processing unit executes one instruction after another. Each instruction causes one of
the available processing units to perform modifications of the data stored in a memory system. In fact,
most processors implement a memory-hierarchy: To speed up access of the slow, but large, main memory,
several faster caches should hold the working set. Operations are performed in the fastest memory – the
so-called registers, which are embedded in the processing unit itself.

Nodes of a cluster computer are equipped with at least one microprocessor (Central Processing Unit) and
one memory system. Modern multi-core processors provide not only multiple cores – each core is a full
featured processing unit – but also provide multiple functional units, which can be operated simultane-
ously to manipulate data. Thus, a CPU can execute multiple instructions concurrently. Therefore, a CPU
(or the compiler for the system) keeps track of data dependencies to ensure that the computation result is
identical to a sequential execution.

In a cluster computer the nodes by themselves are independent components. Thus, memory of one node
cannot be accessed directly from CPUs of other nodes. For that reason a cluster is a distributed memory
architecture. However, data of one node can be transferred over the network to the memory of a remote
node.

9Sometimes a compute cluster is referred to as a cluster computer as well.

4

1.1 HIGH-PERFORMANCE COMPUTING

...Nodes

Network

Internet

Frontend Storage

Cluster computer

Figure 1.1.: Schematic view of a cluster computer. A scientist can connect to the frontend and work inter-
actively.

In contrast, within a single cluster node or a supercomputer like the Cray XT5, all memory can be accessed
from all CPUs. Therefore, the type of system is a shared memory architecture. In a shared memory system
the time required to access data can vary with the CPU trying to access data. Some CPUs might be directly
connected to the physical memory location while others have an indirect access. Such a system is called
non-uniform memory access architecture (NUMA), otherwise it is called uniform memory access architecture.

Multi-socket systems with newer multi-core processors from Intel and AMD are already NUMA architec-
tures by themselves. The available memory space is partitioned among the available processors, which are
interconnected with a fast network to exchange data. Thus, CPUs (cores) of a processor need slightly more
time to access memory assigned to another processor.

Network Design and performance of a network depends on the technology deployed and the layout of
the interconnect between the network components. Gigabit Ethernet [Int01] is a commodity technology
provided in consumer hardware. Contrary to the cost-effective Ethernet, the Infiniband technology [Tec00],
for instance, is specifically designed for high performance.

Layout of the interconnection between nodes is defined by the system’s network topology. In the best case,
a node is connected to all other nodes with a direct connection, requiring a quadratic number of links
to interconnect all nodes. In this case, partitioning of nodes into two disjoint groups leads to maximum
throughput – half of the nodes can communicate with the other half without interference. Thus, the full
bisection bandwidth is available for communication. Since cluster computers are deployed with node counts
in the tens of thousands, the number of links must be reduced for practical reasons.

One way to reduce cost is to share network links, and therewith, multiple nodes relay messages over a
shared link. However, when multiple messages should be transferred over the same link at the same time,
then a congestion occurs; the available resources must be multiplexed among all of them resulting in lower
performance. There are several communication methods that allow concurrent data transfer of messages
over a shared network link. For instance with packet switching messages are partitioned into packets (or
frames), a network component transfers one packet after another but can interleave packets from multiple
messages.

To give an example for congestion, consider the Jaguar supercomputer that uses a 3D-torus SeaStar-2 net-
work. An example of a 2D-torus of nine nodes is shown in Figure 1.2. In this example the network
interface of a node itself relays messages from other nodes to the destination node. Due to this network
topology, a congestion might occur when messages from multiple sources are routed over one device or
link. For instance, in the sketched 2D-torus it could happen that the upper left (0,0) and right nodes (0,2)

5

INTRODUCTION 1.1

(0,0)

(1,0)

(2,0)

(0,1)

(1,1)

(2,1)

(0,2)

(1,2)

(2,2)

(0,2)

(1,2)

(2,2)

(0,0)

(1,0)

(2,0)

(2,0) (2,1) (2,2)

(0,0) (0,1) (0,2)

Figure 1.2.: Network topology of a 2D-Torus. Leftmost nodes (X,0) are interconnected with the rightmost
nodes (X,2). Top nodes (0,X) are connected with the bottom nodes (2,X).

send a message to the center node (1,1). The routing algorithm might route both messages via node (0,1);
however, the node has only one link to node (1,1).

Another frequently deployed class of network topologies are hierarchical networks which add intermediate
layers of hardware that relay the data; a switch connects many links and forwards incoming data into
the direction of the intended receiver. This approach provides a higher aggregated bandwidth between
the nodes, but increases the latency of the communication. One hierarchical network topology is a Clos
network, where a high number of links between switches offers the maximum available network bandwidth
between all connected hosts. This network topology is often deployed with Infiniband technology. Refer
to [AK11] for more details on network technologies and topologies.

Storage Data management in bigger clusters is performed by distributed file systems, which scale with
the demands of the users. Usually, multiple file systems are deployed to deal with disjoint requirements.

In a typical setup two file systems are provided: a fast and large scratch space to store temporary results,
and a slower, but highly available volume to store user data (e.g., for home directories). Looking at a
particular distributed file system, a set of storage servers provides a high-level interface to manipulate
objects of the namespace. The namespace is the logical folder and file structure the user can interact with;
typically it is structured in a hierarchy. Files are split into parts which are distributed on multiple resources
and which can be accessed concurrently to circumvent the bottleneck of a single resource. Replication of
a part on multiple servers increases availability in case of server failure. Truly parallel file systems support
concurrent access to disjoint parts of a file; in contrast, conventional file systems serialize I/O to some
extent10.

An example of the hierarchical namespace and its mapping to servers is given in Figure 1.3. The directory
“home” links to two subfolders which contain some files. In this case, directories are mapped to exactly
one server each, while the data of logical files is maintained on all three servers. Data of “myFile.xyz” is
split into ranges of equal size and these blocks are distributed round-robin among the data servers. Each
server holds three ranges of the file.

Storage devices are required to maintain the state of the file system in a persistent and consistent way. A
storage device can be either directly attached to a server (e.g., a built in hard disk), or the server controls
devices attached to the network. In contrast to the interface provided by file systems, the interface to

10More details on file systems in HPC systems are provided in Section 2.1.

6

1.1 HIGH-PERFORMANCE COMPUTING

Parallel file system

/

dev
home
proc
usr

home

hans
franz

hans

solutionA.txt
myProgram
tmp

franz

myFile.xyz
computed.dat

Hierarchical namespace

stored on

offset0

myFile.xyz

1 2 3 4 5 6 7 8 9

1 4 7 3 6 92 5 8file

Figure 1.3.: Example hierarchical namespace and mapping of the objects to servers of a parallel file sys-
tem. Here, metadata of a single logical object belongs to exactly one server, while file data is
distributed across all servers.

Operating SystemOperating System

Low-level I/OLow-level I/O

Communication middlewareCommunication middleware

Parallel applicationParallel application

Domain specific librariesDomain specific libraries High-level I/O librariesHigh-level I/O libraries

Low-level networkLow-level network

Figure 1.4.: Representative software stack for parallel applications.

storage devices is low-level. At the block-level, data can be accessed with a granularity of full blocks by
specifying the block number and access type (read or write).

In a Storage Area Network (SAN) the block device seems to be connected directly to the server. To communi-
cate with the remote block storage device, servers use the Small Computer System Interface (SCSI) command
protocol. A SAN could share the communication infrastructure, or another network just for I/O can be
deployed. Fibre Channel and Ethernet are common network technologies with which to build a SAN. In
the latter case, SCSI commands are encapsulated into the IP protocol, that is, the so-called Internet SCSI
(iSCSI). Therefore, the existing communication infrastructure can be used for I/O, too.

1.1.2. Software Layers

Several software layers are involved in running applications on supercomputers. A representative software
stack is shown in Figure 1.4.

A parallel application uses a domain-specific framework and libraries to perform tasks common to most
applications in that field. For example, the numerical library Atlas11 is widely adopted by scientists.

Since collaboration between remote processes of an application requires communicating data, a conve-
niently programmable interface and an efficient implementation is important. The service to exchanged
data is offered by the communication middleware. Several programming paradigms and models exist for

11Automatically Tuned Linear Algebra Software

7

INTRODUCTION 1.1

each architectural type of the parallel computer, and those models often explicitly address the way com-
munication is performed. Communication models can be classified according to the characteristics of the
model. For instance, a classification made by the level of abstraction for communication distinguishes
whether data exchange happens automatically whenever necessary, (i.e., is hidden from the programmer),
or if data exchange must be encoded explicitly. The middleware might offer a high-level interface that ab-
stracts from the physical location of processes, instead the user just specifies the particular communication
partner.

Two models used to program the distributed memory architecture of cluster machines are MPI and PGAS.
With the Message Passing Interface (MPI) [Mes09] the programmer embeds instructions in his code to ex-
plicitly send and receive messages. MPI also offers routines for parallel input and output of data. With
Partitioned Global Address Space (PGAS) a process can access data that is stored in remote memory by us-
ing the syntax of the programming language, such as array access. Run-time environments ensure that, if
required, data is transferred between the systems. However, the data partitioning is still encoded by the
programmer. The language extensions which enable remote memory access in C and Fortran are called
Unified Parallel C (UPC) or Coarray Fortran (CAF), respectively.

It is common practice to use MPI to communicate within a distributed memory architecture, and to use
Open Multi-Processing (OpenMP) [BC07] to collaborate within a single node. Since developers may use both
programming paradigms at the same time, the efficiency of this hybrid-programming model is specific to
the problem being addressed and to the underlying hardware.

Input data and results are accessed either by harnessing high-level I/O libraries or by using low-level
I/O interfaces such as the Portable Operating System Interface (POSIX). The Network Common Data Form
(NetCDF) [HR08] and the Hierarchical Data Format (HDF5) are common high-level I/O libraries, that hide
the complexity of defining low-level data formats from the user and offer features such as automatic data
conversion. I/O can be performed with semantics close to the data structures used in the code. Domain
specific libraries or high-level I/O libraries could be parallelized with MPI or OpenMP in order to utilize
available cluster resources.

Low-level network communication enables the node to transfer data with another node. In contrast to a
communication middleware, it operates directly with the network device and uses the network specific
address formats. Programmers of an application usually work with the communication middleware, which
provides a higher level of abstraction to address remote processes that is closely related to application
logic. For example, the programmer should not have to care about the address (i.e., host name and port)
on which the process might be listening. Distributed file systems provide their own low-level I/O interface
to transmit operations and data between the storage servers and the node calling for I/O.

An operating system (OS) controls the local hardware and provides a software basis to run applications on
a node. Often, the POSIX standard is supported by the OS. However, to reduce the overhead and com-
plexity of background interaction a few supercomputers provide a reduced operating system. BlueGene,
for example, offers a compute kernel with restricted threading support for processes [AAA+02].

The figure is representative of most applications, but theoretically a layer could use all underlying layers
directly. For example, a parallel application could call the functionality of the operating system to drive a
network interface, however, programming of the communication would be cumbersome.

Software layers can be provided by the vendor of the technology, a supercomputer vendor, a cluster in-
tegrator or by the open source community. For performance reasons a cluster’s integrator often gears the
software stack towards the cluster’s hardware.

1.1.3. Example Application Execution

Consider a simple parallel MPI program running on four processors; each node has two logical processors
which execute commands concurrently. Figure 1.5 shows the relevant code for each process: An input
matrix is read on Process 0 by a high-level I/O library and broadcasted to all processes. Each process

8

1.1 HIGH-PERFORMANCE COMPUTING

#include <stdio.h>
#include <mpi.h>

int main(){
…

.

...
}

read(&matrix, file, 0, 3xMiB)
broadcast(&matrix, 0, WORLD)
myRes = COMPUTE(matrix)
receive(&remRes, 1)
finalRes=COMPUTE(remRes, myRes)
print finalRes

Process 0

broadcast(&matrix,0, WORLD)
myRes=COMPUTE(matrix)
receive(&remRes, 2)
finalRes=COMPUTE(remRes, myRes)
send(&finalRes, 0)

Process 1
#include <stdio.h>
#include <mpi.h>

int main(){
…

.

...
}

broadcast(&matrix,0, WORLD)
myRes=COMPUTE(matrix)
receive(&remRes, 3)
finalRes=COMPUTE(remRes, myRes)
send(&finalRes, 1)

Process 2
#include <stdio.h>
#include <mpi.h>

int main(){
…

...
}

broadcast(&matrix,0, WORLD)
myRes=COMPUTE(matrix)
send(&myRes, 2)

Process 3
#include <stdio.h>
#include <mpi.h>

int main(){
…

.

...
}

Figure 1.5.: Pseudo code for a simple parallel application.

Process 0

Node

Network

Application Process 1 Process 2 Process 3

Processor

Figure 1.6.: Mapping of the application processes to two nodes of a cluster.

performs some computation on the matrix and then receives and incorporates results from later processes.
Finally, the first process prints the results.

Commands in bold font are provided by the communication middleware. With the message passing
paradigm sending and receiving of data must be explicitly encoded in the program. All processes are
enumerated upon application startup, which enables addressing of a communication partner by specify-
ing its process number.

Mapping the program to available hardware The mapping of the application to a homogeneous cluster
is outlined in Figure 1.6. In this scheme a process is mapped exclusively to a processor, and applications are
mapped exclusively to nodes, that means nodes and processors are dedicated to one application or process,
respectively. Widely spread in HPC, this concept of space sharing of compute resources isolates concur-
rently running applications as those might interfere which each other. In general, this kind of cross-talk
is unpredictable because each application has individual requirements for different hardware resources
such as network, I/O or memory12. As scientific applications include inter-processor communication, the
goal of mapping processes to available resources is to place processes which collaborate more with each
other, close together – in the best case, on the same processor (but on different cores). Task scheduling on
cluster systems is still under research – for example, recent papers such as [JM10] investigate scheduling
algorithms.

Reading the input data Process 0 reads the whole matrix (3 MiB) with a single I/O request. Hardware
and operations involved in retrieving the data from the file are sketched in Figure 1.7: The file data is split
among three I/O servers; given a round-robin distribution of the file, the parallel file system could request
one MiB per server for the data objects. Each server translates the offset to block position on the storage
devices and requests access via SCSI commands from the storage device attached to the server. At the
block-level, file data could be scattered across the device, requiring multiple low-level requests to fetch all
blocks – this is illustrated for the rightmost storage server. Note that the file system objects composing the
logical file, and the location of the physical data on the storage devices are hidden from the application
developer.

12Further information about scheduling in HPC can be found in [CCS+06].

9

INTRODUCTION 1.1

Node

Network

Storage
Server

SAN

read(<obj>, 0, 1xMiB) read(<obj>, 0, 1xMiB) read(<obj>, 0, 1xMiB)

read(<block>, 1xMiB) read(<block>, 1xMiB) read(<block>, 512 KiB)
read(<block>, 512 KiB)

Storage device

read(<obj>, 0, 1xMiB)
read(<obj>, 0, 1xMiB)
read(<obj>, 0, 1xMiB)

Application
#include <stdio.h>
#include <mpi.h>

int main(){
…

.

...
}

read(file, 0, 3xMiB)

Figure 1.7.: Involved hardware and operations to retrieve 3 MiB of data from a file stored on a parallel file
system. In the example file servers access storage devices attached to a SAN.

Broadcasting input data to all peers In the meantime the other processes execute the broadcast op-
eration. A broadcast command will transfer data from a root process (in this case, Process 0) to all other
processes. The MPI implementation could choose between one of multiple algorithms to achieve this goal.
One algorithm is to simply transfer the data from Process 0 to all other processes in a for loop. Another,
and more sophisticated algorithm, is to transfer data along edges of a spanning tree among the processes.
In our toy example this is realized as follows: first Process 0 sends data to Process 2, then Process 0 and
Process 2 have the data. Next, both processes concurrently copy data to their neighboring processes. Since
Process 1 is hosted on the same node as Process 0 and the other two processes are hosted on the other node,
data can be copied locally, which reduces the network communication between the nodes.

Whatever implementation is chosen, once a process finishes the broadcast operation, semantics define that
the data has been received from the root. Therefore, the root process must have initiated the broadcast
operation before data can be received; synchronization is not mandatory. Similar, semantics of send and
receive operations do not require explicit synchronization between sender and receiver. As a consequence a
send operation could complete, even though the recipient is not yet ready to accept the particular message.
Internally the recipient could just keep the message in a buffer.

Execution variants Next, the execution of a parallel program, the caused activities and data dependen-
cies are illustrated. Depending on the MPI implementation and duration of the individual operations,
various interaction patterns are observable. The illustrating example visualized in Figure 1.8 on page 12
demonstrates four execution variants. The figure shows an interaction diagram alike to the Unified Mod-
eling Language (UML): Activities of the components over time are printed in rectangles below the process.
Actually, the quantitative timing is not so important, but to foster the discussion the timestamps are pro-
vided. Dependencies between the processes are shown as arrows – a receiver has to wait for the sender’s
data. For the moment assume the main computation needs 6 time units and every data exchange and I/O
operation takes 1 time unit. Several factors define the actual speed of the communication and computation
process, those are further explained in Section 2.2. The internal implementation of the broadcast operation
within MPI, i.e., the sequence of send and receive operations, is outlined by arrows as well.

In Figure 1.8a the naive and sequential broadcast is performed. Due to the data dependency the send
operation of Process 3 is blocked an additional time unit until the receive operation of Process 2 is called.

10

1.2 MOTIVATION

The execution of the example needs 15 time units since Process 0 finishes at that time. It is also possible
to communicate data in the reverse order, that means Process 0 sends data first to Process 1. This scheme
would increase the total runtime by 1 time unit, because the time critical Process 3 would be the last
process that finishes the broadcast.

The tree communication scheme is used in Figure 1.8b. While Process 0 and 1 finish the broadcast quicker,
completing the broadcast on the last process takes longer because it receives data later as when using
the sequential broadcast implementation. Overall, due to the data dependencies the same execution time
as with the naive algorithm is observable. If the process mapping as depicted in Figure 1.6 is used in
this theoretical consideration, then the communication between processes hosted on the same compute
node will be faster, which decreases the time from 1 time unit to a fraction, for example to 0.1 time unit.
Since in that case one slow intra-node communication is saved, this scheme would outperform the naive
algorithm.

Load balance With both implementations the processes have to wait to receive data from their successors
– a late sender defers program execution on the first two processes both execution variants. In Figure 1.8c
the potential computation time, which does not increase the run-time of the algorithm, is provided13.
Computation could be done during the wait time, therefore, 30 units of work could be done compared to
the 24 units which are actually used.

Since the program just needs to compute for 24 time units the load must be distributed differently among
the processors. The ratio in which work is distributed among processors is called load balance, and load
balancing [SKH95] is the methodology to balance work among the processors in such a manner that all
available resources are well utilized. In example (a) and (b) the main computation of the processes takes the
same amount of time – 6 units of work – therefore the work is perfectly balanced among the processes.

To avoid idle time an optimal load balancing would have lead to configuration (d), illustrated in Fig-
ure 1.8d. In this configuration the 24 time units of computation are distributed such that less computation
on the processes 2 and 3 cause an earlier reception of the intermediate results. Computation on Process 0
is finished just in time to receive the aggregated results from Process 1. With this configuration Process 0
finishes after 13.5 time units, which is faster than for the other execution variants which need 15 time
units.

Nevertheless, optimally balancing the load in scheme (d) depends on the execution of the broadcast al-
gorithm, the actual hardware configuration and the knowledge about the broadcast algorithm within the
application. Without an estimate for the processing time of the broadcast operation on the processes
data cannot be distributed optimally. One possible approach to balance load is to time the broadcast on all
processes and distribute work according to the measured timings. Even a slight variation in the process-to-
hardware mapping, or changes in the MPI internal broadcast algorithm, would lead to completely different
distribution of idle time on the processors, which in turn would require another workload.

1.2. Motivation

Since understanding hardware and software performance is the foundation for optimizing application and
system behavior, providing innovative insights into these fields is the driving force of this thesis.

With regard to a computing facility, existing hardware resources should be utilized as well as possible in
order to justify its acquisition and the resultant maintenance costs. Users of computing resources have
a keen interest in reducing the runtime of their applications in their effort to solve scientific questions
quickly; therefore, an application is scaled up to run on as many resources as possible. However, a typical

13In general, the data dependency of an algorithm restricts the possible communication patterns. For the trivial example appli-
cation the data aggregation phase at the end could be implemented with a better collection algorithm. However, to illustrate
the concepts in this discussion, the given communication pattern (and the algorithm) is considered to be fixed.

11

INTRODUCTION 1.2

Receive

Compute

Process 0Process 0 Process 1Process 1 Process 2Process 2 Process 3Process 3

Read

Send

Receive

Receive

Compute
(6 units)

Compute

Compute

Send

Broadcast

Broadcast Broadcast Broadcast
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Compute
(6 units)

Compute
(6 units)

Compute
(6 units)

Send

(a) Balanced computation using the naive sequential broad-
cast algorithm.

Receive

Compute

Process 0Process 0 Process 1Process 1 Process 2Process 2 Process 3Process 3

Read

Send

Receive

Receive

Compute
(6 units)

Compute

Compute

Send

Broadcast

Broadcast Broadcast Broadcast
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Compute
(6 units)

Compute
(6 units)

Compute
(6 units)

Send

(b) Balanced computation using the tree broadcast algo-
rithm.

Receive

Compute

Process 0Process 0 Process 1Process 1 Process 2Process 2 Process 3Process 3

Read

Send

Receive

Receive

Compute
(10 units)

Compute

Compute

Send

Broadcast

Broadcast Broadcast Broadcast
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Compute
(8 units)

Compute
(6 units)

Compute
(6 units)

Send

(c) Maximum computation using up existing wait time in
the communication.

Receive

Compute

Process 0Process 0 Process 1Process 1 Process 2Process 2 Process 3Process 3

Read

Send

Receive

Receive

Compute
(8.5 units)

Compute

Compute

Send

Broadcast

Broadcast Broadcast Broadcast
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Compute
(6.5 units)

Compute
(4.5 units)

Compute
(4.5 units)

Send

(d) Perfect distribution of work among processors to avoid
idle time.

Figure 1.8.: Some possible interaction pattern between the four processes of the example application. The
actual observable pattern depends on the hardware and software configuration. In this ex-
ample all processes are mapped to disjoint nodes, i.e., the communication between processes
always takes 1 time unit.

12

1.2 MOTIVATION

HPC user has a limited amount of time to adapt an application to a given system and to configure the
environment in an optimal way.

Consequently, even if very efficient algorithms are implemented resources are often wasted. The following
lists a few reasons why resources might be utilized suboptimally:

• Limited scalability of the algorithm adds computational and communication overhead.

• A wrong mapping of processes to hardware leads to unnecessary communication.

• An inefficient I/O access pattern degrades performance of the parallel file system.

• Load imbalance in I/O or computation causes bottlenecks and idle resources on the system.

Efficiency also depends on the system characteristics, that is the hardware characteristics of the basic com-
ponents: network, storage and compute nodes; the topologies of all interconnects, software layers involved
and finally, on the configuration made by the administrator and user.

In software layers the system’s algorithms for communication and I/O have a large influence on the ob-
servable performance14. Performance of the communication library itself is influenced by a number of
factors. First, it is obvious that the library should be geared towards a given system, after which the right
communication algorithm must be chosen. However, the tuning is complicated because performance of
each communication algorithm depends on the parameters specified by the user. For example, while the
broadcasting of small messages could be faster on the given hardware by sending data sequentially from
the root, a tree algorithm might perform better for larger data, and a pipelined peer-to-peer alike algorithm
would be preferable for big data. While the performance of the algorithm could be optimized for itself,
efficiency also depends on the context of the application, that is, the number of processes and the current
and future instructions executed by the processes.

Heterogeneous systems like Grids and Clouds increase complexity of the optimization exponentially, as
more inhomogeneous components are involved.

It certainly is not easy to understand the interplay between all the hardware characteristics and potential
bottlenecks, and unfortunately, mechanisms designed to optimize the system make it even harder to assess
achieved performance and relate that performance to the system’s capability. Further, on a high level
of abstraction the communication interface implementation and I/O layers use techniques that, in most
cases, improve performance. This is achieved by manipulating the request, deferring the operation, or
fusing operations into one compound operation.

The complexity of analyzing an application on a distributed supercomputer becomes clear when a devel-
oper tries is to understand performance of a particular sequential code, which is only executed on a single
processor. On the one hand, observed performance depends on the CPU architecture – branch-prediction,
caches, the translation lookaside buffer, to name just a few mechanisms for optimizing hardware. On the
other hand, it also depends on the compiler, which tries to transform the given high-level code to machine
instructions in the best way possible.

From the user’s perspective, post-mortem performance optimization is state-of-the-art. In this process
performance of an application is measured on an existing system and analyzed to identify bottlenecks.
Nowadays, developers are happy to achieve 10% peak performance on a given system15. It is important to
optimize from the most promising and performance-boosting bottleneck to the least one. When confronted
with this issue an important question arises concerning how much work is necessary to tune or modify the
algorithm, the code and the system, and what will be gained by these modifications.

Estimating performance Modeling the system allows assessing obtained performance and therewith es-
timate the performance potentially gained by optimizations. Simple approaches to optimize floating point
operations are to measure them and compare them with the theoretical peak performance of the system.

14More information of relevant performance factors is given in Section 2.2.
15This information is derived from available presentations of compute centers and scientific applications.

13

INTRODUCTION 1.3

Since this theoretical value might not be achieved in practice due to inter-process communication and con-
trol structures, performance of an application can be also compared with the floating point values achieved
with the high-performance LINPACK. If only 1% of LINPACK is achieved, then it might be advised to op-
timize the code; in the best case, performance is expected improve by a factor of 100. One should start on
the code sections that run most of the time; it does not help much to optimize a function which runs for
only a fraction of the total run-time.

While systems can be upgraded to enhance the performance of applications, it is important to consider
the amount of improvement that could be observed using this approach. By replacing CPUs with newer
generations that have twice as many cores per CPU, the performance of a particular algorithm is not in-
creased twofold. If scalability of an application is limited by memory bandwidth or network, it might
not benefit from an extension at all. Projecting application behavior on a potentially extended or future
system could be helpful in deciding whether particular hardware should be purchased. By estimating ap-
plication performance on possible configurations of a future system, the most promising extensions could
be deployed.

Similarly, it may be advantageous to analyze the performance of applications before a new system is built
from scratch. Carrying out such an evaluation during the design of a new system could guide the process
of development in an effort to avoid later disappointments.

While inefficiencies in the code can be assessed once a target machine is up and running, this optimization
process is difficult and time-consuming. To justify operating costs of a multi-million-euro supercomputer
it is absolutely necessary to provide the community with tools to assess application and system perfor-
mance as well as efficiency during the design of an algorithm, and to further assess and optimize systems
and the software stack before they are built.

Modeling and simulating a cluster computer and the applications running on it addresses these issues.
With the help of simulation the behavior of applications and systems could be predicted for arbitrary
configurations. With this approach we go one step towards understanding system behavior, which is also a
step in the direction of the integrated development of algorithms and supercomputers. All natural sciences
harness models of the world and use simulations as frames through which to gain knowledge, computer
science can keep pace by designing supercomputers and their software stacks with the same tools. This
thesis aims to address these issues.

1.3. Goals of this Thesis

The main goal of this thesis is to simulate the execution behavior of MPI programs that run on arbitrary
(virtual) cluster systems.

The simulator developed for this purpose should assist us in the following use-cases:

• Understanding of performance factors in cluster systems and application execution.

• Localization of bottlenecks in a cluster configuration and their causes in application logic and the
software stack.

• Evaluation and optimization of the I/O path, the client-server communication and the server cache
layers.

• Extrapolation of system performance towards future systems.

• Experimentation with various MPI-internal algorithms to gear them towards application and sys-
tems.

• Evaluation of new MPI commands and alternative MPI semantics.

• Teaching of the above aspects.

14

1.4 OUTLINE OF THE THESIS

These goals are achieved by composing a model for cluster computers and MPI applications which should
be easy to understand, yet powerful enough to represent major performance aspects of a cluster system.
The created simulator implements the composed model. Consequently, the computed theoretical perfor-
mance estimate should enable us to assess observed performance qualitatively. This thesis does not aim to
provide a full-featured low-level simulation of system and application activity.

To ease evaluation of existing applications, tools should permit to record application behavior and to replay
the behavior in the virtual environment. Furthermore, the simulation results should be assessable with the
same methodology when analyzing parallel program execution.

As the software environment of this thesis evolved the goals have been extended to further evaluate novel
visualization techniques that simplify the analysis of parallel MPI programs. Both the simulation and the
visualization extensions allow to gain new insight into the behavior of applications and systems.

1.4. Outline of the Thesis

Since this chapter plunged deep into the topic of high-performance computing, several aspects relevant
for this thesis are described in more detail in Chapter 2. Those aspects include parallel file systems, MPI
details, and performance aspects of parallel applications and hosting systems. Further, the state-of-the-art
methodology to analyze and optimize performance issues is introduced, as well as simulation concepts and
existing tools.

Performance of the working group’s cluster is characterized in Chapter 3. By assessing computation,
communication and local I/O performance, the complex interplay of performance aspects as discussed
in Chapter 2 should become more clear. Additionally, performance behavior of the experimental system is
measured and assessed to characterize it for later experiments.

In Chapter 4 the new software environment created to record MPI activity and to simulate system and
application behavior is presented. A tool that offers several unique capabilities to visualize and compare
the simulated behavior with observations from real application runs is also introduced. System and ap-
plication models and the simulator implementing them are discussed in detail in Chapter 5. The general
workflow of simulating application and system behavior is then illustrated. For the interested reader,
some implementation details fostering modularity and configuration of the simulator are given in Chap-
ter 6. This includes: model creation, configuration and selection of modules, abstract event processing in
components, and execution of arbitrary application commands.

HDTrace and the simulator are evaluated in Chapter 7. This evaluation includes validation of the basic
cluster model. Also, the chapter assesses the differences between observations presented in Chapter 3 and
the results computed by analytical models behind the simulator. Additional experiments with the simula-
tor verify the implemented model against the conceptual model. Furthermore, sophisticated experiments
are performed with the simulator, which indicate how the environment can be applied to analyze synthetic
benchmarks and real applications.

The summary in Chapter 8 presents the scientific achievements in condensed form and concludes the the-
sis. Finally, Chapter 9 discusses potential improvements of the environment and outlines future work.

Chapter summary

This introductory chapter outlined the scope and complexity of high-performance computing as well as high-
lighting some system characteristics and several application aspects related to performance. The basic usage of
supercomputers, and several problems in their development were briefly discussed, and the aim to address these
issues via a new simulation environment has been sketched.

In the next chapter existing concepts and related work to relevant topics are discussed in more detail.

15

Bibliography

[AAA+02] N. R. Adiga, G. Almasi, G. S. Almasi, Y. Aridor, R. Barik, D. Beece, R. Bellofatto, G. Bhanot,
R. Bickford, M. Blumrich, A. A. Bright, J. Brunheroto, C. Cascaval, J. Castanos, W. Chan,
L. Ceze, P. Coteus, S. Chatterjee, D. Chen, G. Chiu, T. M. Cipolla, P. Crumley, K. M. De-
sai, A. Deutsch, T. Domany, M. B. Dombrowa, W. Donath, M. Eleftheriou, C. Erway, J. Esch,
B. Fitch, J. Gagliano, A. Gara, R. Garg, R. Germain, M. E. Giampapa, B. Gopalsamy, J. Gun-
nels, M. Gupta, F. Gustavson, S. Hall, R. A. Haring, D. Heidel, P. Heidelberger, L. M. Herger,
D. Hoenicke, R. D. Jackson, T. Jamal-Eddine, G. V. Kopcsay, E. Krevat, M. P. Kurhekar, A. P.
Lanzetta, D. Lieber, L. K. Liu, M. Lu, M. Mendell, A. Misra, Y. Moatti, L. Mok, J. E. Moreira,
B. J. Nathanson, M. Newton, M. Ohmacht, A. Oliner, V. Pandit, R. B. Pudota, R. Rand, R. Regan,
B. Rubin, A. Ruehli, S. Rus, R. K. Sahoo, A. Sanomiya, E. Schenfeld, M. Sharma, E. Shmueli,
S. Singh, P. Song, V. Srinivasan, B. D. Steinmacher-Burow, K. Strauss, C. Surovic, R. Swetz,
T. Takken, R. B. Tremaine, M. Tsao, A. R. Umamaheshwaran, P. Verma, P. Vranas, T. J. C. Ward,
M. Wazlowski, W. Barrett, C. Engel, B. Drehmel, B. Hilgart, D. Hill, F. Kasemkhani, D. Krolak,
C. T. Li, T. Liebsch, J. Marcella, A. Muff, A. Okomo, M. Rouse, A. Schram, M. Tubbs, G. Ulsh,
C. Wait, J. Wittrup, M. Bae, K. Dockser, L. Kissel, M. K. Seager, J. S. Vetter, and K. Yates. An
Overview of the BlueGene/L Supercomputer. page 60, 2002.

[AK11] Dennis Abts and John Kim. High Performance Datacenter Networks: Architectures, Algorithms,
and Opportunities. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publish-
ers, March 2011.

[BC07] Ruud Van Der Pas Barbara Chapman, Gabriele Jost. Using OpenMP: Portable Shared Memory
Parallel Programming. Mit Press, 2007.

[CCS+06] Jiannong Cao, Alvin Chan, Yudong Sun, Sajal Das, and Minyi Guo. A Taxonomy of Application
Scheduling Tools for High Performance Cluster Computing. Cluster Computing, 9:355–371,
2006.

[Col86] R. Cole. Parallel Merge Sort. In 27th Annual Symposium on Foundations of Computer Science,
pages 511–516. IEEE, October 1986.

[DLP03] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK benchmark: Past, Present,
and Future. Concurrency and Computation: Practice and Experience, 15:2003, 2003.

[GLS03] William Gropp, Ewing Lusk, and Thomas Sterling. Beowulf Cluster Computing with Linux. The
MIT Press, 2nd edition, 2003.

[Han02] Yijie Han. Deterministic Sorting in O(nlog log n) Time and Linear Space. In STOC ’02: Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 602–608, New
York, NY, USA, 2002. ACM.

[HR08] Edward Hartnett and R. K. Rew. Experience With an Enhanced netCDF Data Model and In-
terface for Scientific Data Access. 24th Conference on Interactive Information Processing Systems
(IIPS), 2008.

[Int01] Intel. Gigabit Ethernet - Technology and Solutions. http://www.intel.com/network/

connectivity/resources/doc_library/white_papers/gigabit_ethernet/gigabit_

ethernet.pdf, 2001.

[Jin04] W. Jindaluang. Time-Optimal Parallel Sorting Algorithm on a Completely Overlapping Net-
work. In Proceedings of the First Thailand Computer Science Conference (ThCSC2004), Bangkok,
Thailand, 2004.

[JKN09] Wayne Joubert, Douglas Kothe, and Hai Ah Nam. PREPARING FOR EXASCALE: Application

16

http://www.intel.com/network/connectivity/resources/doc_library/white_papers/gigabit_ethernet/gigabit_ethernet.pdf
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/gigabit_ethernet/gigabit_ethernet.pdf
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/gigabit_ethernet/gigabit_ethernet.pdf

1.4 Bibliography

Requirements and Strategy. Technical report, ORNL Leadership Computing Facility, Decem-
ber 2009.

[JM10] Emmanuel Jeannot and Guillaume Mercier. Near-Optimal Placement of MPI Processes on
Hierarchical NUMA Architectures. In Pasqua D’Ambra, Mario Guarracino, and Domenico
Talia, editors, Euro-Par 2010 - Parallel Processing, volume 6272 of Lecture Notes in Computer
Science, pages 199–210. Springer Berlin / Heidelberg, 2010.

[KS92] William J. Kaufmann and Larry L. Smarr. Supercomputing and the Transformation of Science. W.
H. Freeman & Co., New York, NY, USA, 1992.

[ME09] Farzad Mahootian and Timothy E. Eastman. Complementary Frameworks of Scientific Inquiry:
Hypothetico-Deductive, Hypothetico-Inductive, and Observational-Inductive. World Futures:
Journal of General Evolution, 65:61–75, 2009.

[Mes09] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard – Version 2.2.
Technical report, September 2009.

[Meu08] Hans Werner Meuer. The TOP500 Project: Looking Back over 15 Years of Supercomputing
Experience, 2008.

[OCC+07] Leonid Oliker, Andrew Canning, Jonathan Carter, Costin Iancu, Michael Lijewski, Shoaib
Kamil, John Shalf, Hongzhang Shan, Erich Strohmaier, Stéphane Ethier, and Tom Goodale.
Scientific Application Performance on Candidate PetaScale Platforms. In International Parallel
& Distributed Processing Symposium, IPDPS, 2007.

[RMM+01] Ronny Ronen, Senior Member, Avi Mendelson, Konrad Lai, Shih lien Lu, Fred Pollack, John,
and P. Shen. Coming Challenges in Microarchitecture and Architecture. volume 89, pages
325–340. IEEE, 2001.

[SH94] W. Schönauer and H. Häfner. Explaining the Gap Between Theoretical Peak Performance
and Real Performance for Supercomputer Architectures. Scientific Programming, 3(2):157–168,
1994.

[SHS09] Vivek Sarkar, William Harrod, and Allan E Snavely. Software Challenges in Extreme Scale
Systems. Journal of Physics: Conference Series, 180(1):012045, 2009.

[SKH95] Behrooz A. Shirazi, Krishna M. Kavi, and Ali R. Hurson, editors. Scheduling and Load Balancing
in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos, CA, USA, 1995.

[Tec00] Mellanox Technologies. Introduction to Infiniband. Document Number 2003WP, http://www.
mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf, 2000.

[TP06] Scott E. Thompson and Srivatsan Parthasarathy. Moore’s Law: the Future of Si Microelectron-
ics. Materials Today, 9(6):20–25, 2006.

[vN93] John von Neumann. First Draft of a Report on the EDVAC. IEEE Annals of the History of
Computing, 15:27–75, October 1993.

17

http://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
http://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf

Background and Related Work

Chapter 2 II

This chapter provides solid background to a rich variety of topics1. After discussing each topic, the state of the art
and related work are discussed. In this context recent research and several software tools are shown2.

The first three sections provide more detail about HPC hardware and software, and their performance implica-
tions. First, the concepts of file systems and several real world representatives are introduced in Section 2.1. Then,
aspects involved in the performance of parallel applications are discussed in Section 2.2. This indicates the com-
plexity of those systems, but also enables classifying of relevant aspects. Next, the Message Passing Interface is
introduced in Section 2.3 – special emphasis is put on the optimization potential within MPI.

Fast execution of an application is of main interest to the user since scientific goals should be achieved in time.
To design fast programs, a user must understand the run-time behavior of the program on the system on which
the program will be executed. Nowadays, users typically measure run-time behavior of their application, locate
the bottleneck and try to improve performance in these long-running and thus critical code sections. There are
also software-engineering concepts that can be applied during the whole software development cycle that take
performance factors into account. Methodologies that lead to improved run-times in the implemented application
are discussed in Section 2.4.

In Section 2.5 background about creation and verification of a model for a system is provided. The concept
of simulation is introduced, too. A simulator implements a model and allows analyzing its behavior in silico.
Further, several simulation tools that ease the implementation of models are introduced. While this section is not
related to HPC, it provides relevant background to the art of simulation.

At last, in Section 2.6 a couple of simulators related to the simulation of cluster and I/O systems are presented.
None of them allow to simulate parallel I/O and MPI at the level of detail required for this thesis.

2.1. Parallel File Systems

In contrast to a distributed file system, a parallel file system is explicitly designed for achieving performant
and concurrent access to files. Therefore, internally data of a file is physically scattered among a subset
of the available servers and their I/O subsystems. This enables those servers to participate in one I/O
operation thus bundling their hardware resources to achieve higher aggregated performance.

This section extends the description of storage in Chapter 1 in three directions. First, by introducing
representative enterprise and parallel file systems, important fundamental concepts are described. This
enables assessing alternative I/O architectures and client-server communication protocols. Therewith,
it helps us to define the scope of the architectural model and communication protocol that should be
implemented in the simulation; the model should be flexible enough to represent several file systems. With
the Parallel Virtual File System (PVFS) the architecture of one representative parallel file system is discussed
in detail. Then, the I/O path of PVFS is described. This archetypal path is general enough to represent
communication optimization strategies available in parallel file systems. With this knowledge, the I/O

1Note that a few passages are based on descriptions given in the author’s master’s thesis [Kun07].
2It is my personal opinion that all mentioned third-party software and published paper deserve a tribute because of the time

spent by the authors to provide helpful tools and since they drive computer science forward. It is also my belief that software
is never static and must be maintained to deal with new user and platform requirements. Such a dynamic software is probably
never bug-free, and at any time some desirable features are missing. If I argue about missing features or suboptimal solutions
in this chapter, then it is done in order to distinguish this thesis from existing approaches – all of the references deserve to be
honored. It is not my intention to highlight or to criticize any of the papers or software mentioned. And I hope I succeeded in
honoring work cited in an objective and constructive way.

18

2.1 PARALLEL FILE SYSTEMS

path used in the simulator can be assessed better. Furthermore, it supports performance considerations
which are discussed in the next section.

But first, a few basic terms:

Hierarchical namespace For convenient access of data, sequences of bytes are organized in file systems.
The namespace is a concept that describes the organization scheme. Traditionally, file systems organize
data in logical3 objects: files and directories4. Files contain raw data. Internally, a file is like an array of
bytes that can grow or shrink at the end. Thus, data must be serialized into a sequence of bytes to be stored.
Directories structure the namespace by allowing to put other file system objects into them and give them
a name, which results in a hierarchy of “labeled” objects.

This common organization scheme for file system objects is called hierarchical namespace. An example
namespace is provided in Figure 1.3. By knowing the absolute path name within the hierarchical names-
pace, a logical file is unambiguously identified. Specific bytes of data can be addressed by referring to the
offset within the “array” of data and the number of bytes (the size) to read or write . This type of address-
ing is referred to as file-level interface. However, the interpretation of the accessed bytes must be known
to the program accessing it. For convenient access, a hierarchical namespace supports typically alternative
names for individual objects, i.e., a single object can be found under different absolute file names. This is
achieved by storing a reference to the original data (or directory) under an alternative name – this reference
is called link. With a global namespace, the file system hierarchy can be accessed from multiple components
in a distributed environment.

Beside the hierarchical namespace, there are other data access paradigms: In the cloud storage provided
by Amazon Simple Storage Service (S3), data is referenced by a bucket (which can be thought of as a folder)
and by using a key (similar to a file name). Arbitrary information can be stored for a given key. With
the Structured Query Language (SQL), databases offer a high-level approach to access and to manipulate
structured data. In contrast to a file-level interface data is managed on a higher level of abstraction: stored
data is structured, every element of the structure has a label and datatype. Also, with SQL a user specifies
the logic of the operations to perform with data and not the control flow that defines execution5.

Client and Server Applications (and their processes) that access objects of a distributed file system are
referred to as clients. In the context of hardware, the term describes a node hosting at least one process
accessing the distributed file system. In this sense a node that provides parts of the parallel file system to
a client is referred to as server.

(Meta)data Data refers to the raw content of a file. Metadata refers to the information about files and
other file system objects themselves – the organization of objects in the namespace and their attributes.
Attributes like timestamps or access permissions describe file system objects further. Usually, data and
metadata are treated differently within the file system because of the semantic difference and the amount
of stored information.

Block storage File systems use block storage to persist data. Block storage offers a block-level interface:
Storage space is partitioned into an array of blocks that can be read or written individually. Access must
be performed with a granularity of full blocks (typically 512 byte or 4 KiB), that means no block can be
accessed partially. A number in a linear space specifies which block to access – this scheme is called logical
block addressing (LBA). The relation between the blocks a file system object is made of is not defined on the
block-level and must be managed by the file system.

3The term logical refers to the fact that this kind of object is accessed by using the file system interface. Internally, the file system
might use several objects that work together to look like the logical object (e.g., file) to the user.

4Directories are also referred to as folders.
5Although there are procedural extensions, SQL is a declarative programming language.

19

BACKGROUND AND RELATED WORK 2.1

A block device is a single hardware component that offers such a block-level interface. Multiple devices
can be combined into a larger block storage that looks like a single block device.

2.1.1. Capabilities of Parallel File Systems

There are several requirements for file systems: persistence, consistence, performance, and manageability,
just to name a few. Persistence describes that stored data can be accessed any time later. Also, the namespace
should be in a correct state and all data read should also match the data that has been stored (consistence).
Both requirements are vital because production of data is costly, and reading of corrupted (wrong) data
can be disastrous. Performance describes the requirement that the file system should be able to utilize
the underlying block storage efficiently6. Tools must be supported to mount the file system, to check the
correctness or to repair a broken file system.

Additionally, for parallel file systems scalability, fault-tolerance and availability are of interest. Scalabil-
ity of the file system allows deployment of the file system to provide sufficient performance for arbitrary
workloads and to operate with any number of clients; performance just depends on the provided hard-
ware resources and is not limited by the software. A fault-tolerant file system can tolerate transient and
persistent errors to a certain extent without corrupting data, although the file system might be unavail-
able while errors are being corrected and it might crash when an error occurs. Availability describes a file
system that continues to operate in the presence of hardware and software errors (usually with degraded
performance).

The concepts of scalability and fault-tolerance will be briefly illustrated. In the context of this thesis other
features are not relevant and therefore subsequently disregarded.

Scaling performance and capacity The architecture of most existing file systems and appliances can
handle the demand of any customer ranging from small to very big (and fast) systems – these architectures
are considered to be scalable. Furthermore, the requirements for an installed storage system might change
over time. Since a storage system is costly and management of multiple systems is difficult, it is also
important that the existing system can scale with increasing storage demands, either in performance or
capacity. Otherwise, the money invested will be lost. Therefore, major enterprise file system vendors offer
seamless upgrades of already installed solutions.

In the example storage system depicted in Figure 2.1 – it can be imagined that the single NAS server may
be a bottleneck. With a scalable architecture, the storage system could be upgraded easily, with minimal
modifications to the existing infrastructure; in the example additional NAS servers could be integrated.

There are two orthogonal principles to extend the capabilities of an existing system: scale out and scale up.
The term scale out (or scale horizontally) is used to advertise modular systems which allow adding more
storage nodes as they are needed – additional storage nodes add further capacity and performance at the
same time. In contrast scale up (or scale vertically) means to equip the existing infrastructure with faster
components; for example, by replacing a complete node or a single hardware component of the server.
While upscaling is limited by the capability of available hardware technology, a scale-out solution provides
high extensionability by adding more components. Both principles also apply to cluster computers.

To enable scaling, vendors typically put a distributed file system on top of storage nodes that aggregates
all resources into a global namespace; data of a single file is distributed across all nodes. Thus, with an
increasing number of storage nodes, the available capacity and performance can be scaled horizontally to
any demand.

6Performance aspects of file systems are discussed explicitly in section 2.2.

20

2.1 PARALLEL FILE SYSTEMS

Fault-tolerance Fault-tolerance as a requirement for high availability in parallel file systems is usually
provided by replicating data over multiple devices in such a manner that permanent failure of a single
component does not corrupt the file system integrity. Keeping a complete copy of data (mirroring) is costly
as twice as much space is required. Therefore, mainly error-correcting codes such as the RAID levels 1 to
6, or Reed-Solomon codes are implemented.

Traditionally, error-correcting codes are applied on the block-level, in most cases multiple block devices
are combined into a redundant array of independent disks (RAID). The RAID looks like a regular block device
to the file system. If an error occurs and a block device of the array must be replaced, then the data of the
broken device must be reconstructed by reading data from all disks and writing the lost information to the
new block device.

File-level RAID is a software concept in which the file system controls the redundancy explicitly – for
every file, the locations of the file blocks including the redundant data blocks are known. In contrast to
block-level RAID, this has the advantage that hardware problems in the system only trigger a rebuild of the
currently used space. Thus, empty (not-allocated) space of the system is not rebuilt. Failures that happen
during the rebuild of a file, do not invalidate the whole RAID and thus file system – instead, the broken
file can be identified and reported.

2.1.2. State of the Art

This section describes some parallel file systems that are deployed in enterprises and in a HPC center.
This will allow us later to design an abstract communication protocol to simulate their interactions. Since
performance of a file system depends on the communication path between client and servers, the focus of
this section lies on the I/O path.

Enterprise storage In enterprise business, often a complete storage “solution” or appliance is purchased
that is a bundle of hardware and software which can be integrated seamlessly into the existing communi-
cation network. Several commercial vendors for enterprise and datacenter storage sell Network Attached
Storage (NAS) systems. Well-known vendors of network storage are: Panasas [NSM04], Netapp, Xyratex,
BlueArc and Isilon [Kir10].

A customer connects the purchased storage system to the existing network infrastructure and accesses
storage on the new system via standardized remote network protocols like the Network File System (NFS)
or the Common Internet File System (CIFS)7.

With NFS and CIFS, a remote node or workstation connects to exactly one file server (this scheme is illus-
trated in Figure 2.1). Clients forward file system operations to this server which executes them on a local
file system. The block storage persisting this file system can be either integrated into the server, attached
to it or provided in a storage area network (SAN)8. Recently, distributed file systems rely on Object-based
Storage Devices (OSD) [Pan04] as underlying storage. Compared to low-level block devices, object-based
storage provides a higher level of abstraction – access is performed by addressing file system objects di-
rectly. See Figure 1.7 and the descriptions on Page 9 for an example data access on a file system and the
underlying block storage.

Panasas ActiveStor With ActiveStor Panasas delivers a performant and extensible system. The customer
buys blade enclosures, which are equipped with a number of metadata servers (so-called director blades)
and/or storage servers (so-called storage blades). Internally, the parallel file system PanFS distributes
data across the available hardware. Metadata operations are performed on director blades, while data is
stored on storage blades. The storage grows by adding further metadata and storage server blades or new

7An advantage of using those protocols is that they are available for most operating systems.
8A SAN is an additional network for block oriented storage. Devices that is part of a SAN, is usually addressed with the SCSI

protocol. A single storage can be utilized from multiple servers, although not concurrently.

21

BACKGROUND AND RELATED WORK 2.1

StorageStorage

Workstation

LAN
Workstation

Workstation NAS Server

Figure 2.1.: Logical view of network attached storage. Multiple clients can access a central server that
manages the persistent storage.

ClientClient ClientClient

...

Storage blades Director blade

Enclosure

(a) Physical view – an enclosure holds 11 independent
blade servers interconnected via a fast network link
to the LAN. This example depicts a situation with a
single director blade.

ClientClient ClientClient

...

Storage blades Director blade

Parallel I/O
(DirectFlow)

NFS
CIFS

Metadata

I/O

(b) Logical view. Clients communicate via a director
blade when they use NFS or CIFS. By utilizing Direct-
Flow, they can communicate with the storage blades
directly.

Figure 2.2.: Panasas ActiveStor system.

enclosures. A logical and physical view of an example system consisting of one enclosure is shown in
Figure 2.2.

Enclosures have a fast interconnection to the clients, for example via 10 gigabit Ethernet (10 GbE). Inter-
nally, the enclosure is interconnected with each blade system by a slower 1 gigabit Ethernet – the name
corresponds to the nominal data rate, for example, 10 GbE supports a rate of 10 GBit/s. Each blade holds
two disk drives (or SSDs) to persist the file system.

Proprietary software can be installed on a client to allow it to interact directly with PanFS. In essence, the
so-called DirectFLOW communication protocol implements a variant of the parallel NFS (PNFS) [HH07]9;
block I/O is performed with iSCSI, while an OSD protocol addresses the file system objects.

A client can also access storage via the NFS or CIFS protocol. In this case, clients simply mount the file
system on one of the director blades with the one of this protocols. However, all I/O is communicated via
the selected director blade, which forwards the I/O to the storage blades. Internally, the director blade
translates the client operations into file system calls, and thus accesses PanFS (basically like a client which
supports DirectFLOW).

9In fact, Panasas are member of the consortium for PNFS and share their file system knowledge to establish an industrial
standard that might replace DirectFLOW in the future.

22

2.1 PARALLEL FILE SYSTEMS

ClientClient ClientClient

...

Infiniband

CIFS, NFS, FTP, HTTP

Figure 2.3.: Abstract view on an Isilon scale-out solution.

Isilon S-Series Isilon offers a NAS storage system in which the storage nodes have an additional Infini-
band interconnect as a backend that balances load within the storage cluster (the S-Series [Har09]). Clients
transfer data to one storage node by using either the NFS, CIFS, HTTP or FTP protocol. Clients and servers
are interconnected with either Ethernet or Infiniband technology. The parallel file system OneFS orches-
trates the servers into a coherent global namespace: Data is distributed across all servers of the storage
system, the servers exchange data by using the internal Infiniband network. A schematic view is provided
in Figure 2.3.

By supporting protocols in which clients connect to only one server, the server might become a bottleneck.
To allow coarse grained load balancing, the assigned storage node is rotated by using DNS round-robin,
that is, each DNS request is assigned to a different storage node. Each node hosts up to 36 storage devices
and the scale-out system is expandable up to 10 PByte.

Both Isilon and Panasas support RAID protection on file-level.

Parallel file systems in HPC For HPC it is important that all processes of a parallel program can access
the file system efficiently. A storage solution of the enterprise market might not match the architectures of
supercomputers well, and thus may not provide the required performance. Performant concurrent access
of multiple processes to a single file is especially difficult. For those reasons, only a subset of the existing
enterprise solutions can handle HPC workloads.

The parallel file systems Lustre [SM08, YV07] and IBM’s General Parallel File System (GPFS) [SH02,
BICG08] are widely deployed in HPC environments – currently, 15 out of the 30 fastest systems use Lustre.
GPFS is installed on many lower ranked systems of the Top500 list, too. Besides those file systems, mostly
enterprise systems serve the storage needs of smaller supercomputers.

Xyratex offers Lustre based storage servers. In contrast to solutions mentioned from other vendors, this en-
ables truly parallel access without modification of the client, i.e., the standard Lustre client can be installed.
In the long term perspective, the parallel NFS (PNFS) will become widely supported, thus, allowing paral-
lel I/O across I/O systems from various vendors.

The Parallel Virtual File System (PVFS) is an open source file system developed for efficient reading and
writing of large amounts of data. There are many file systems designed with similar principles as PVFS,
therefore, PVFS introduced as an archetype for parallel file systems.

2.1.3. The Parallel Virtual File System PVFS

PVFS is designed as a client-server architecture – servers provide storage and the client contains the logic to
access this distributed storage. Multiple file systems can be served by one server infrastructure. According

23

BACKGROUND AND RELATED WORK 2.1

Application

BMI

System Interface
acache ncache

User Level Interface

Flow

Main

BMI Trove

Flow

...Kernel-VFS

Job

Job

S
e
rv

e
r

C
lie

n
t

MPI-IO

Network I/O-
system

Figure 2.4.: PVFS software architecture.

to the type of storage provided, servers can be categorized into data servers and metadata servers. Data
servers maintain parts of logical files. Metadata servers store attributes of logical file system objects – their
metadata, and the namespace. A server operates either as metadata server or data server, or both at once.

Logical file system objects which can be stored in PVFS are files, directories and symbolic links. Internally,
additional system-level objects exist: metafiles contain metadata for a file system object, datafiles contain
pieces of the file data and directory data objects map names of logical objects to internal objects. A logical
file is represented as a metafile which refers to several datafiles – file data is partitioned among the datafiles
which are then placed on the available data servers. In PVFS neither file data nor metadata is replicated
explicitly. Instead, configurations aiming for high availability rely on shared storage, i.e., storage that is
accessible from multiple servers over a network – SAN storage for example.

Architecture PVFS uses the layered architecture illustrated in Figure 2.4. One of the main advantages
of a layered architecture is that an implementation for a layer can be replaced, in order to match the
underlying hardware.

The user-level interface allows access to a file system with a standardized interface – PVFS provides inter-
faces for the Linux kernel, the Filesystem in Userspace (FUSE)10, and MPI. The kernel interface integrates
PVFS into the kernel’s Virtual File System Switch (VFS), a user-space daemon connects to the kernel mod-
ule via the /proc interface and communicates with the servers.

The system interface enables direct manipulation of file system objects, yet some internal details are hidden
from the user. Internally, the processing of file system operations is modeled with finite state machines –
states can fetch information from a server, or send a request to a server to modify the file system.

Several client-side caches are incorporated to reduce the number of requests to the servers. An attribute
cache (acache) maintains metadata, the name cache (ncache) buffers mappings from file names to internal
objects.

The job layer is a thin layer consolidating all lower interfaces – BMI, Flow and Trove, into one interface.

The Buffered Message Interface (BMI) provides a network independent interface for message exchange be-
tween two nodes. Clients communicate with the servers by using the so-called request protocol, which
defines the layout of the messages for every file system operation. Depending on the underlying network
technology like TCP or Infiniband, the appropriate communication method can be selected.

Trove interfaces with the storage subsystems to store the system level objects. Data can be either stored as
a key/value pair or as a bytestream. Key/value pairs are used to store metadata, while byte streams keep
the file data. By default, PVFS uses multiple Berkeley databases to store the metadata and regular UNIX
files to store bytestreams.

10http://fuse.sourceforge.net/

24

http://fuse.sourceforge.net/

2.1 PARALLEL FILE SYSTEMS

Logical file data

0 416 KiB

Physical file data

64 320128 ...

Datafile 1 Datafile 2 Datafile 5....

Figure 2.5.: Exemplary file distribution for 5 datafiles – data is split in 64 KiB chunks and striped over the
datafiles in a round-robin fashion.

The I/O subsystem indicated in the figure can be any block storage – disks integrated in a SAN or direct
attached storage, usually RAID systems. When a SAN is deployed, PVFS can be configured for high avail-
ability, i.e., to tolerate server crashes.

A server’s main loop drives the processing of communication and I/O layers. Also, the server checks for
new requests and initiates state machines to process them.

On the server side, it is important to overlap I/O with communication, the orchestration of data streams
between two endpoints is performed by Flow. Data might flow between memory, BMI, or Trove. Data
on the server flows between network and I/O subsystem, while on the client side it is transferred between
memory and the network. The flow protocol defines how data is transferred between two endpoints in-
cluding the caching strategy. By default, PVFS allocates 8 data buffers for every I/O request, a buffer is
either accessed by the network or the storage layer. That is, up to 8 operations can be pending on Trove or
BMI – once all buffers are filled due to a congestion on I/O subsystem or network, further operations are
deferred.

Data distribution of a logical file A selectable distribution function defines how data of a file is dis-
tributed among the different datafiles (often also referred to as stripes). By default, file data is split in
64 KiB chunks which are distributed over all file servers. Similar to a RAID-0, the first chunk is mapped
into the first datafile, the second chunk into the second datafile, until one chunk has been mapped to each
datafile. Then, the next chunk is assigned to the first stripe again, until all chunks are assigned. The map-
ping of a logical file with a size of 416 KiB into 5 datafiles is illustrated in Figure 2.5. A datafile is mapped
to exactly one server; this way file data is distributed among the available servers.

When a user creates a new logical file in PVFS, the datafiles are created and assigned to the file servers.
Actually, PVFS tries to pre-create logical files and keeps them in a pool to avoid the overhead of creating
and mapping of datafiles.

Small files might never use all datafiles; thus, the empty datafiles cause overhead during file access and
they crowd the underlying local file system. Therefore, some parallel file systems like PanFS from Panasas
grow the number of stripes dynamically. In this concept, small files are first stored within the metadata,
then the number of stripes grows with the file size – while appending new data, existing data could be
redistributed among the servers to re-balance it optimally, or just be kept in place.

2.1.4. Client-Server Communication

Due to the distributed nature of the clients and servers, a protocol defines how the clients interact with
the servers to access and manipulate the file system. In contrast to Isilon’s OneFS, with PVFS (or GPFS) a
server accesses only its own storage and thus, knows local objects. Therefore, no server has an overview of
the complete file system. To perform an operation, a client gathers intelligence where metadata and data
reside and communicates with the required servers. A slightly simplified client-server protocol of PVFS is
discussed here, but it is close to the request protocol actually used.

25

BACKGROUND AND RELATED WORK 2.2

If a client wants to access file data, it first figures out on which metadata servers the metadata about
this file is found by traversing the namespace hierarchy. In the metadata the information about the data
distribution, i.e., the RAID layout, is found and the object IDs for all datafiles the file is composed of.

Now, depending on whether a read or write is requested, a different sequence of operations is performed;
either way the client contacts each data server that holds data of this particular file.

In the read path, the server sends an acknowledge including the amount of data which can be read, the
server then transfers the data to the client. When all data is received, the client knows that the read has
been completed.

In the write path, an acknowledge is sent indicating that the server permits the write operation. Then,
the client sends its data to the server which starts to write back the data; usually, data is cached in main
memory first. Once all data is written to the cache, the server sends a completion message to the client.

In the client-server communication, a small amount of data can be piggy-backed to the initial request
or response message and thus avoids additional data flow. Bigger requests start the rendezvous protocol
mentioned above. The amount of data which is transferred with the initial request depends on the network
module, for TCP/IP 16 KiB are allowed.

To support concurrent network and file operations, the accessed data is split into a stream of buffers trans-
ferred between client and server. By default, up to 8 streams of 256 KiB each are used. Write operations
on the I/O subsystem are initiated once all required data of the current buffer is received from a client.
Once a read request is received, all eight operations are issued to Trove. When one of the read operations
complete, the buffer is ready to be transferred by BMI.

PVFS supports non-contiguous I/O to reduce the number of messages and the file system overhead – i.e.,
with one request a user can access several non-overlapping file regions. Without this feature one request
must be created for each file region. There are several possible methods to announce the non-contiguous
file regions. The term ListIO indicates that a list of non-contiguous accesses is transferred in a single
request. The user can invoke an I/O call with a list containing multiple size and offset tuples. PVFS
additionally supports several derived datatypes similar to the structured data types of MPI, in fact the
structures of PVFS are some kind of lightweight replacement for MPI datatypes.

Usually, multiple remote clients access a parallel distributed file system simultaneously. Therefore, a
mechanism must be implemented, either in the clients or in the servers, to prevent potential corruption
of the file system. Especially concurrent modifications of the namespace are dangerous. In PVFS a re-
quest scheduler defers conflicting metadata operations. Concurrent access to a file’s data is allowed but
concurrent writes might corrupt data (further details of the semantics are given in Section 2.3.3).

2.2. Performance of Parallel Applications

In this section factors contributing to application performance are discussed. First, in Section 2.2.1, rele-
vant components and layers are identified from the perspective of the application. Then, particular hard-
ware characteristics and software strategies to mitigate negative hardware characteristics are discussed in
Section 2.2.2.

In this discussion the performance of the application is attributed to four areas: the raw performance is
supplied by the hardware; the computation performance is the speed at which the desired calculation of the
result is performed; the communication performance addresses inter-process communication of a parallel
application; finally, the I/O performance is required to read input data and to stage results.

Communication is actually an undesired byproduct of the collaboration – at best it can be avoided – as it
does not contribute to computing of the parallel application, instead it just enables several independent

26

2.2 PERFORMANCE OF PARALLEL APPLICATIONS

Figure 2.6.: Performance factors. Hardware aspects are orthogonal to computation, communication and
I/O performance.

hardware components to contribute to one computation11. Intermediate I/O such as for checkpointing are
similar to communication in that respect.

Generally, scientific applications are typically composed of phases of activity. Consequently, some regu-
larity of computation, communication and I/O phases is expected. Former evaluations showed that most
scientific applications tend to regularly access data with similar patterns [MK91, PP94, SACR96, Rot07,
CHA+10].

Relevant characteristics and factors are summarized in Figure 2.6. Note that all hardware and software
components have diverse character and performance limitations and thus this list does not claim to be
complete. Main goal of the discussion is to increase awareness of the diversity of the performance influ-
ences and optimization potential.

The optimization strategies introduced are a double-edged sword: On the one hand, they posses the poten-
tial to improve performance. On the other hand, they might be counter productive by degrading perfor-
mance in some cases. To mitigate the risk of performance degradation, exact knowledge of the processing
layers below is necessary; then, optimizations could be turned off if they are not appropriate for the situa-
tion.

2.2.1. Performance Relevant Hardware Components and Software Layers

In an abstract view all hardware components and software layers which are involved in executing an appli-
cation contribute to the observable activity and measurable performance – refer to Section 1.1.2 on Page 7
for more detail on software layers in parallel scientific applications.

11Reduction operations, as part of many parallel programming models actually perform some wanted calculation, but this could
be done without communication as well.

27

BACKGROUND AND RELATED WORK 2.2

Either an application triggers activity on other components directly or indirectly by calling intermediate
software layers, or concurrent background activity of hardware and software interfere with the desired
computation of the result. Activity, which is caused by the application neither directly nor indirectly is
referred to as external activity in this thesis. Both the internal (application caused) activity and external
activity is performed on the same computer system.

As resources provided by any system are limited, a program and background activity (or to be more formal,
the sequence of instructions actually executed) could utilize some resources to a bigger extent than others.
If the hardware does not match the characteristics required by a sequence of instructions, then the limiting
characteristic is a bottleneck for those instructions – execution of further instructions is deferred until the
required operations are finished. Since background activity requires resources as well, internal activity is
influenced by external activity.

Due to the characteristics of the application it is typically impossible to utilize all resources at 100%;
consequently, some resources are utilized in a suboptimal way. As the requirements might change during
run-time, the bottleneck can be another component or layer. In the application example in section 1.1.3, for
instance, the application reads data, communicates, computes the local results and then collects the local
results and aggregates them into the desired output. While the computation is performed, the speed of the
CPUs determines the performance, during communication the network infrastructure and communication
library define how long the communication takes – the other components are not required and idle12.

Another view of the layers and components involved in application performance is given in Figure 2.7.
Here, several of the software layers are grouped by their basic function:

• The application’s internal behavior has certainly a high impact on performance, the programmer
could modify the design, algorithm, source code or assembler code to achieve better performance.
This is also true for all further software layers, such as libraries, run-time system or OS. Source code
is also a good starting point for the analysis because resource consumption and execution time can
be assigned to each line in the source code.

• Libraries provide all kinds of functionality – usually provided by third parties – which are added to
the original application. These could be domain specific libraries or high-level I/O libraries.

• The run-time system is the software that provides an environment to execute the application in.
Python and Java are examples of programming languages that translate the application code into
machine code at run-time. Therefore, efficient intermediate code representation and translations are
provided. Partitioned global address space (PGAS) languages provide their own run-time system to
transfer data between remote processes; optimizations for network communication, which will be
discussed later, apply to them as well.

• Access to hardware is controlled by the operating system, also basic functionality is provided. The
operating system incorporates several strategies to optimize throughput and concurrent processing
of programs. On this level, a proper configuration of the hardware towards the needs of the upper
layers is required. Also, background activity of concurrently running software or operating system
daemons can disturb the execution of the user’s application.

• Hardware provides the resources which are used for computation and I/O. The orchestration and
concurrent utilization of all hardware components is desirable to complete the execution as fast as
possible. In this sense, knowing that performance is limited by a specific hardware component, and
that measured performance is close to theoretical capabilities, provides the foundation to perfor-
mance optimization and tuning.

In additional to local layers and components, applications might access remote (hardware) resources like
persistent storage in a Storage Area Network (SAN) or rely on remote services like a parallel file system,
databases or online visualization. Thus, depending on the environment and application, remote activities
might be of interest.

12However, in a real system during communication some CPU time is required for the interrupt handling, memory transfer and
inter-process communication. But here, the influence is expected to be rather low.

28

2.2 PERFORMANCE OF PARALLEL APPLICATIONS

Operating System

Application

Hardware

Libraries

Runtime System

Operating System

Remote Service 1

Hardware

Libraries

Runtime System

Figure 2.7.: An abstract view of layers and components involved in application execution.

Next, the hardware aspects contributing to performance are examined. Software aspects contributing to
performance are discussed in more detail in Section 2.2.3.

2.2.2. Hardware

Clearly, observable performance is limited by the physical capability of the hardware to perform computa-
tion, communication and I/O. In the following, a subset of relevant hardware characteristics is provided.

Network Since a network transfers data between two independent nodes, it limits the communication ca-
pability. To share the available links among all communication streams, most technologies utilize the com-
munication method of packet switching: Data is fragmented into packets13, which are transported between
source and target. This allows to multiplex available network links among multiple streams. Common net-
work technologies are Ethernet, Infiniband and (for storage servers) FibreChannel. Many supercomputers
deploy their own custom network interface.

Within the scope of this section, important hardware characteristics are14:

• Latency: the delay between the moment network transfer of a message is initiated, and the moment
data is starting to be received. Latency can be referred to as propagation delay as well. It is measured
either one-way, or round-trip, which is the one-way latency from source to destination plus the one-
way latency from the packet destination back to the original source. Round-trip time can be easily
measured between two machines by inducing low-overhead network communication. Tools like net-
perf are designed to determine the network latency and throughput on top of the network protocols.
Latency has a high influence on small messages, e.g., metadata operations in file systems, but it
becomes negligible for large messages. Each inter-process message involves latency, therefore it is
favorable to reduce the number of messages by packing more data into one big message.

• Bandwidth/Throughput: In computer networking, the term bandwidth refers to the data transfer rate
supported by a network connection or interface – how many bits are transferred over the wire. Band-
width can be thought of as the capacity of a network connection. Network protocols and encoding of
information add overhead to the actual transferred data and thus the effective throughput of the hard-
ware is lower than the actual available bandwidth. For this reason, the term throughput is preferred
in this thesis.

• Topology: is the physical (and logical) arrangement of a network’s elements like nodes and intercon-
nections between them. In a fully-meshed network each node is able to communicate directly with
each other node. Unfortunately, realization of this topology is very expensive in reality and almost
impossible for large numbers of nodes. Common topologies try to mitigate this problem by reducing
the number of links, but still aim to provide a high bandwidth and a low latency. To reduce the num-
ber of communication links an indirect network topology either restricts communication to a subset
of neighbor nodes15, or it uses hierarchies such as trees.

13Packets on an Ethernet link are called frames.
14Further information on the topic of networking is offered in [PM04, PD11].
15These nodes, in-turn, are able to route the packets further towards to the destination (for instance the 2D-Torus, which has been

shown in Figure 1.2).

29

BACKGROUND AND RELATED WORK 2.2

A star topology interconnects all components via an intermediate switch resulting in a distance of
one hop for every communication. It is frequently deployed on small clusters. With this kind of
indirect communication, however, the bandwidth of the intermediate network components and links
is shared amongst all packets which are routed through the same network path. Thus, the topol-
ogy determines the maximum throughput which can be achieved transferring multiple data streams
between different nodes concurrently.

Tightly coupled applications need a matching topology to communicate efficiently. For a parallel file
system, it is important that the amount of data which can be shipped between clients and servers is at
least slightly higher than the maximum aggregated physical I/O throughput. Otherwise the available
devices cannot be fully saturated, and caching mechanisms on the server-side are not beneficial.

Bisection bandwidth is a valuable metric which provides insight into the fundamental performance
limitations of a topology. Bisection bandwidth is defined as the minimum sum of the bandwidth of
the links, when the network is partitioned into two sub-graphs of equal size.

• Protocol: Network protocols like the Transmission Control Protocol (TCP) define how communication
is established between sender and receiver and define rules for data exchange between the partici-
pants. Furthermore, guaranteed properties for the data transfer (quality of service) like reliability
or minimum throughput of the data transfer could be provided by a protocol.

Effectiveness of the communication is a crucial factor. It is desirable that hardware is exploited
already with small messages, and that a high transfer rate can be achieved in the presence of transfer
errors, for instance caused by package loss.

• Flow control: Amounts of data larger than the packet size are partitioned into smaller chunks which
are then transported over the network topology. There are several ways to realize the flow of individ-
ual packets.

“Flow control is the process of managing the pacing of data transmission between two nodes to
prevent a fast sender from outrunning a slow receiver. It provides a mechanism for the receiver
to control the transmission speed, so that the receiving node is not overwhelmed with data from
transmitting node.” [Wik11]

The typical network communication method of packet switching, as used by Ethernet and Infiniband,
does not provide flow control by itself. In detail, data streams (or messages) are fragmented into
packets and transferred between the network components in the following way: In the simple store-
and-forward switching, packets are stored completely on an intermediate node, i.e., the whole packet
content is stored in a buffer, once the link towards the target turns idle, buffered data is transferred.
One drawback is that with slower sinks the buffer space might not suffice and thus packets are lost –
this must be covered by the network protocol to ensure reliable communication. A common approach
is to check for lost packets and resend them.

Cut-through switching tries to avoid receiving the complete packet. Instead, once the packet header is
received it determines the target link. If the target link is not busy right now, then the header is sent
to the target and the packet data is streamed directly to the outgoing node. If the link is busy, then
the packet is buffered similar to the store-and-forward switching.

In wormhole switching, the route of a message is defined during startup of the communication, then
subsequent packets of the message are all shipped over the same route. Since a virtual channel is
reserved to transmit data from a particular sender to an receiver, effectively only one communication
occurs over a link16. An advantage in reserving virtual channels is that no buffer space is required,
data can flow directly from source to sink – without buffering it. Thus, wormhole routing provides
flow control on the network layer; packet loss that is observable with the two other switching methods
cannot happen. Also, the latency is lower because the intermediate nodes do not have to receive the

16With virtual channels multiple concurrent communications are possible and share the resources, but a discussion is out of the
scope.

30

2.2 PERFORMANCE OF PARALLEL APPLICATIONS

whole packet before resending it. Bandwidth reservation is an extension to this concept that allows
utilizing a link only partly.

Flow control can be directly implemented by a network protocol such as TCP to avoid outpacing a
slow receiving process. Therewith, flow control on the network level is achieved, too.

• Load balancing: Depending on the topology, a dynamic load balancing could transfer packets over
a less utilized path. For example, in the 2D-Torus topology sometimes two neighbors are possible
candidates to transfer data towards the destination node. Fat-trees do not permit load-balancing
as there are no alternative routes between source and destination. In a hierarchical topology like
the Clos network, multiple paths to one target exist as well, but often load balancing is performed
implicitly by distributing packets in a round-robin fashion among all switches. There is a rich variety
of approaches available to balance the network load; refer to [LFL09] for further reading.

Processor architecture Capabilities of the CPU determine the time needed to process the instructions of
the application and a parallel file system. While there are so many aspects of a processor microarchitecture,
the following characteristics are contributing a lot to the performance:

• Functional units: Depending on the micro-architecture, multiple instructions can be dispatched
to independent functional units in one cycle. IBM’s Power6 and Intel’s Nehalem architecture are
instances of those so-called superscalar architectures. For example, the Power6 can process two fused
multiply add instructions per cycle. Several CPU internal optimizations try to utilize the functional
units in the best way; widely known approaches are branch-prediction, translation look-aside buffers
and speculative execution.

• Cache: Offers very fast, but small memory. Several levels of cache and the main memory form the
memory hierarchy of the system. To achieve optimal performance, the size of the cache must suffice
to hold the working set of an application. The working set can be thought of as the data that is accessed
frequently during an execution phase. If it does not fit in the caches, the data must be fetched from
main memory which reduces performance.

• Cores: Nowadays, all processors contain multiple interconnected logical CPUs on one silicon die –
called cores, each is capable of processing one independent thread. Clearly, a higher number of cores
enhances raw computational power. Simultaneous multithreading (SMT) enables a CPU to schedule
multiple threads concurrently; the functional units are shared among them. With SMT, latency of
memory access from one thread can be hidden by processing instructions from the other threads
in the meantime. Hence, an SMT CPU tries to utilize the existing functional units by scheduling
instructions from multiple threads.

• Interconnect: When multiple processors are installed in one node, then those processors are intercon-
nected with each other to provide a cache-coherent17 view of data in memory. The processor inter-
connect defines the efficiency of the inter-processor communication. In systems with more than four
processors, their layout forms a topology similar to the network topology. Actually, a communication
network interconnects the microprocessors.

Some processors might be attached to the bus system of the I/O devices while others must commu-
nicate via intermediate processors. Hence, the communication is made more efficient if the right
processor is used for communication and I/O.

Memory In the von Neumann architecture, memory contains data to process. Memory supports random-
access to individual data words. See also Page 4 for the interplay between CPU and memory. The memory
technology implies a specific latency and bandwidth, while the capacity (the amount of memory) can be
extended depending on the processor and system architecture.

17This means that data manipulations done by one processor are immediately visible to all other processors and prevents that an
old state of the data is accessed accidentally.

31

BACKGROUND AND RELATED WORK 2.2

Capacity: Available memory can be either used to hold processing data or to cache communication and I/O.
By caching data performance can be improved significantly. For a parallel file system, a large server cache
is vital because it allows performing optimizations that help to saturate the I/O subsystem (see below).

Typical main memory has a latency in the order of 100 processor cycles. Therefore, if the processor requires
a particular piece of data, the computation is stalled for several 100 cycles until the data becomes available
in the registers.

Bandwidth is the speed at which data is accessible. Similar to network communications, the effective
throughput is typically lower.

Block storage The block storage provides a random-access storage which is used to persist data. Block
devices are only able to access blocks of a certain size aligned to the block boundaries18. Modification of a
few bytes of a block requires to read the full block, then modify it and write it back. Also, unaligned
reads require more data to be fetched than required. As a consequence, unaligned accesses degrades
performance.

Block storage might be either a single directly attached block device, a RAID system consisting of multiple
block devices, or a SAN. In the latter, the network interconnect plays an important role, but block storage
must be deployed in the SAN as its backend, too. Direct-attached storage is either a hard disk drive (HDD)
or a solid state drive (SSD). Nowadays, SSDs are mostly built with flash technology, therefore, the following
brief discussion focuses on hard disk drives and flash storage.

Important characteristics of a block device are:

• Access time: The time needed until the storage is ready to transfer data. A hard disk needs a few
milliseconds to move the access arm to the correct position (seek time) and to wait until the block
sought rotates under the platter’s disk head (rotational latency). The time the access arms has to wait
until the data is available depends on the speed at which the disk spins – the revolutions per minute
(RPM). The actuator, which moves the heads of an HDD, accelerates depending on the distance from
the current to the next track. Therefore, the time to seek from one position to another is non-linear.

The disk’s characteristics include the average access time, which is the average time needed to move
the access arm from one random location on the disk to another; this measure is the sum of the
average seek time and the rotational latency19. Track-to-track seek time is the time needed to move the
access arm just to an adjacent cylinder. Full-stroke seek time is the time needed to move the access
arm from the first cylinder to the last one. Good values for disks are around 5 ms for an average seek
time, 0.5 ms track-to-track seek time and 10 ms for full-stroke seeks.

An SSD has different characteristics. The access time is usually very low and independent of the
previously accessed block on the device. However, write performance can vary depending on the
controller and actual flash memory. On the one hand, the slower write path is due to the fact that
flash storage must be erased before it can be written, on the other hand, wear-leveling costs some
performance as it tries to utilize all blocks to the same extent to increase the life-time. In a flash
device data can be erased only in blocks of a larger granularity, like 256 KiB.

• Sustained transfer rate: Once the heads are placed on the disk, subsequent blocks can be read or
modified very fast, which results in a higher transfer rate. However, depending on the underlying
local file system and disk fragmentation, additional seeks might be necessary. If the data being
accessed is spread over the entire drive, extensive access arm movement is required resulting in low
aggregated throughput. Thus, it is preferable to issue I/O requests for data that is physically close to
other data that has been requested recently. Also, the possible speed of read and write operations

18Nowadays, a block has a size of 4 KiB.
19In some datasheets and benchmarking results, the average access time is confused with the average seek time. In this thesis, the

terms are used according to this definition.

32

2.2 PERFORMANCE OF PARALLEL APPLICATIONS

may differ. Hard disks rotate with a fixed speed and contain more data on the cylinders with a larger
circumference, therefore subsequent blocks can be accessed faster on the outer cylinders than on the
inner cylinders. For an SSD, the throughput depends on the speed data is transferred between the
chips and the controller, which should utilize multiple flash chips concurrently.

• Concurrency: Depending on the access pattern and deployed block device, it can be useful to issue
multiple requests at a time to increase aggregated performance. In case of small requests, a disk
scheduler might optimize throughput by reordering requests – for SATA disks this is called Native
Command Queuing (NCQ). On SANs, multiple pending requests keep the disk(s) busy. Thus, ad-
ditional network latency due to communication with the SANs does not show up in the aggregated
performance, although individual operations take longer.

All technologies deploy mechanisms that enable them to tolerate errors occurring while data is accessed.
For instance, a HDD verifies data written to disk by re-reading the magnetic information. Any read and
write error detected will cause the disk to spin again over the same track while trying to recover the
information. SSDs deploy wear-leveling algorithms to increase the life time of flash memory, but also have
reserve cells to tolerate failure to a certain extent. RAID schemes on top of block storage may increase
capacity or throughput, and might protect the system from failures – depending on the scheme. While all
those mechanisms mitigate and protect from errors, recovering from an erroneous state requires time and
resources. Thus, an error degrades performance in a real I/O subsystem, but might be transparent by the
user. More information about HDD’s is available in [Mey07].

Platform A computer is built with a particular processor platform in mind. The platform includes
chipset, internal technology and interconnect to peripheral devices such as I/O devices. For example,
PCI-Express is a bus-system that is deployed with newer processor platforms. Thus, a platform determines
how fast data can be shipped between the different hardware components of a computer. In most cases,
the performance provided by the platform suffices to saturate network, disk or memory. However, very
fast networks like Infiniband put the internal bus systems under pressure.

Certain optimization techniques and technologies might also be provided by a platform. For example,
Direct Memory Access (DMA) is an access method that enables data to be transferred between peripheral
devices and main memory without copying it through the CPU. Together with the network card, the plat-
form might enable remote direct memory access (RDMA). This technique transfers data directly into a re-
mote main memory, without involving the operating system of any of those systems. Thus, data need
not be copied between application buffers and kernel20. RDMA reduces the communication latency, but
usually requires data to be aligned contiguously in memory, i.e., only a contiguous region of data can be
transferred with RDMA.

2.2.3. Computation Performance

From the user’s perspective, an application computes some valuable result; I/O and communication just
help to get the work done. Therefore, computation performance is prime importance. The following as-
pects are relevant on all software layers and include the operating system. The experience of the developer
is important to pick the appropriate algorithm, programming language and compiler for solving a given
task. Finally, the coding in the programming language expresses how a problem is solved.

Algorithms are blueprints describing how computation will be performed to calculate the results. An
algorithm determines the data dependency and thus communication patterns. Furthermore, certain data
structures might be required to perform an algorithm efficiently. Therefore, the algorithmic specifica-
tion restricts the formulation in a programming language. An algorithm has a computational complexity,

20Since data can be transferred without copying buffers is often called zero-copy.

33

BACKGROUND AND RELATED WORK 2.2

approximately defining how the computation time grows with an increasing problem size, i.e., the data
itself.

Overlapping of I/O, communication and computation In the best case, the application spends all its
time to compute valuable results. In this sense time needed for I/O and communication are wasted. There-
fore, any communication and I/O should take place concurrently to computation. Usually, communication
and I/O libraries provide non-blocking calls. When such a call is invoked, it initiates communication (or
I/O activity) and returns immediately. The actual activity is performed in the background. The possi-
ble speedup achievable by overlapping I/O and computation is bounded: if I/O takes the same time as
the computation, a speedup of two can be achieved [BKL09]. If communication and I/O can be perfectly
overlapped a speedup of three is possible. However, overlapping requires additional memory space to
temporarily buffer the I/O (or communication) data until the background activity completes. Also, the
programming and debugging of the application becomes usually more difficult.

Programming language The programming language is a formal notation in which the developer tells
the system what to execute (in imperative paradigms) or the result he/she is interested in (in declarative
paradigms). Expressibility and semantics limit possible formulations of code to solve the problem. The
programming language is tightly coupled with the potential optimizations a compiler can apply.

Compiler The compiler parses a programming language and transforms it into another programming
language, typically a sequence of machine code, which can be executed on the target machine. While the
compilation is performed, the compiler tries to optimize the code in order to increase performance21. Com-
pilers provide different sets of available optimizations. Users have to select the appropriate optimizations
to achieve efficient machine code; for example, a brief evaluation of compiler optimizations for stencil
operators is provided in [KN10].

Run-time system The transformation of interpreted languages or byte-code into machine-specific instruc-
tions depends on the capabilities of the run-time system. Java’s just-in-time compiler aggressively opti-
mizes the code regions that are used frequently, while at its first execution, code it is translated quickly in
order to reduce translation time. A PGAS language needs a run-time system to manage remote memory ac-
cess; buffers are used to store local results. In this case, the strategy, such as potential background transfer
of data, reduces the communication overhead. Making use of the platforms’ RDMA feature of platforms is
favorable as it permits modification of remote data without disturbing the remote processing.

Cache usage The ratio of memory bandwidth per floating point operation is rather low at around 1 byte
per Flop, hence optimization of memory access is crucial. Caching is a standard practice in computer
systems to exploit access locality of computer programs. Most programs need the same data or instruction
sequence multiple times (the working set). If the data is already held on media that is faster accessible, it
is not necessary to request it from a slower one. As a CPU cache is much faster to access than the main
memory, the algorithm and program should operate on a small working set – the more local accesses are
performed, the better. Random access to small pieces of data degrades memory performance due to the
fact that memory access is performed in larger cache lines of, e.g., 64 bytes. Thus, if only one byte is needed
per cache line then effectively 63/64 of the memory bandwidth is wasted. The efficiency of cache re-use
depends on the characteristics of memory and the platform (see above).

21However, the language semantics must be obeyed in this step even if relaxed semantics would be valid for the given code. If
too many optimizations cannot be applied due to the semantics, then typically the programming language is adjusted. For
example, this has led to the new restrict keyword in C99.

34

2.2 PERFORMANCE OF PARALLEL APPLICATIONS

2.2.4. Communication Performance

Cooperation between processes requires information exchange – inter-process communication transfers
data between processes. The observable performance is restricted by the semantics of the interface, the
actual communication pattern, the internal communication algorithms, memory alignment of the provided
data and placement of the processes which communicate. During the communication local resources such
as CPU and memory might be required.

Interface and semantics The API and semantics of the communication paradigm defines how inter-
process communication is performed. Usually a rich variety of potential operations is provided; this en-
ables the user to pick the best abstraction to realize his communication pattern. Two interaction patterns
are common, either two processes communicate with each other in a point-to-point operation, or a set of
processes exchange information together in a collective operation. Operations might follow rather strict
semantics, sometimes more strict than needed, which degrades performance. Internally, the library and
run-time system can use any (additional) provided information to gear the communication pattern towards
the available hardware.

Communication pattern The communication pattern refers to the observable inter-process communi-
cation, which is the sequence of collective or point-to-point operations invoked by the program and the
communication partners. In most scientific codes, the communication pattern varies between the pro-
cesses. Typically, processes communicate sparsely with other peers; only rarely, all processes talk to each
other.

In point-to-point communication, a late start of the receive operation or the send operation cause a ready
communication partner to wait – late processes are referred to as late sender and late receiver, respectively.

The arrival pattern determines the temporal order in which processes start a collective operation. A process
is referred to as early starter if it starts a collective operation earlier than other processes (in terms of wall-
clock time); in comparison, a late starter joins an already started collective operation. Optimally, all pro-
cesses invoke the collective operation concurrently; this balanced start yields the best performance[FPY07].

When a program tries to send data from multiple processes to one process at a given time, then the sin-
gle receiver imposes a bottleneck. Therefore, implementations of collective operations try to reduce the
network congestion and balance network transfer among the participants.

Algorithms Internally, the communication must be realized by implementing some inter-process com-
munication protocol. Several algorithms can be thought of for point-to-point communication: By using a
rendezvous protocol, a sender waits until a receiver is ready to start transmission, or a sender can start
transfer immediately without knowing the actual state of the receiver.

Collective operations are implementable in several communication patterns; the algorithm that realizes the
semantics of the collective operation has a major impact on the observable communication pattern. An effi-
cient algorithm follows the semantics, yet utilizes provided hardware resources at any time and minimizes
redundant operations. Further information about the optimization of MPI is provided in Section 2.3.4.

Memory and CPU Performance of network data transfer is limited by memory performance because data
from the network card must be copied from, or to, main memory. Without direct memory access (DMA)
capability of the platform the CPU must also move data explicitly, which implies a performance limitation
for fast networks. Also, the CPU might be necessary to initiate or control communication, or it does some
bookkeeping such as computing checksums for the network packets. Therefore, many network adapters

35

BACKGROUND AND RELATED WORK 2.2

accelerate communication protocols by supporting DMA and by providing so called offload engines, which
perform most of the required computation inside the adapter.

Data must be copied at least between network device and memory. However, often data cannot be trans-
ferred directly between the network device and the buffer that is specified in the application. Therefore,
multiple copies are needed and the available memory throughput is degraded further. On the one hand,
this might be necessary because the user space does not have direct access to the network device. On
the other hand, protocols such as TCP embed further control data, the Internet Protocol, for example,
requires post-processing to compute and to verify checksums which are embedded in the data packets.
Zero-copy is a feature of the platform which enables direct data transfer between network device and
user-space [KT95]. Without zero-copy capability of the platform, the OS must copy data between an OS
internal buffer, in which the data is exchanged with the network device, and the buffer of the process. In
the best case, data is copied from the memory of a process to the memory region of the remote process via
RDMA.

Alignment of provided buffers Hardware technology and te platform can offer the capability to transfer
contiguous data via RDMA which enables zero-copy. Typically, transfer of multiple non-contiguous regions
in memory either requires to pack them in additional memory buffers for RDMA, or to send them without
RDMA support. On some systems, copying data in memory from (or into) a fragmented buffer takes a
considerable amount of time. Also, buffers not aligned to cache lines might waste memory bandwidth.

Software to hardware mapping Processes and threads of a parallel application must be assigned to
available CPUs and nodes. Typically, the inter-process communication between some pairs of processes is
more efficient than between others. The reason for this may be the network topology, or that intra-node
communication is faster than communication via the network interface. In most cases in HPC, the user will
start more processes than fitting onto one node, hence multiple nodes must be used. The communication
path between two communication partners defines the performance of the inter-process communication.

Assigning the processes to the processors in an appropriate way yields high potential for optimizing ap-
plications with well-known communication and I/O behavior. Two processors which communicate often
should exchange data in an efficient way. Especially, for tightly coupled applications22, the inter-process
communication should be as efficient as possible.

Complexity and potential of the mapping in the context of MPI is discussed on Page 51.

2.2.5. I/O Performance

There are several aspects involved in delivering high I/O performance to parallel applications. While
given hardware characteristics are discussed on Page 37, this section focuses on the methods applicable to
manipulate workloads to improve achievable performance.

Since many file systems such as PVFS2 and Lustre use local file systems like Ext4 to store their data,
they are influenced by the mapping of logical blocks to physical blocks on the block devices. To ensure
persistency and consistency, file systems write additional data to the block device. Those add overhead
when modifying data or metadata. Further, file systems are implemented in the operating system which
deploys strategies to improve performance such as scheduling, caching and aggregation.

Therefore, the observable I/O performance depends on more than the capabilities of the raw block device.
In this thesis, the term I/O subsystem is used to refer to all the hardware components and the software layers

22Tightly coupled applications are programs which processes must communicate frequently with each other due to data depen-
dency. In contrast, an embarrassingly parallel problem can be solved by processes which compute their result independent from
other processes.

36

2.2 PERFORMANCE OF PARALLEL APPLICATIONS

involved in providing node-local persistent storage23. Typically an I/O subsystem consists of the operating
system which provides a file system on top of the block storage. The file system maps file system object
to available blocks by using the block-level interface; it also schedules the raw block I/O. A parallel file
system adds a layer on top of many independent I/O subsystems. The I/O path inside the operating system
and the (bus) systems involved to transport data between memory and block storage are also addressed by
the term I/O subsystem.

In the following, general considerations about the influences to I/O performance are discussed. Further
information specific to local file systems is given in Section 3.6.1.

Access patterns The access pattern describes how spatial access is performed over time. With an access
pattern, the I/O of a single client process can be described, but also the actual observable patterns on the
I/O servers, or on a single block device. The pattern on the I/O servers is caused by all clients and defines
the performance of the I/O subsystems.

An access pattern can be characterized by:

• Access granularity: Depending on the context, this is the amount of data accessed per I/O call or
request. It is desirable to access a large amount of data per request, to reduce the influence of latency
induced by I/O subsystems and network. In the best case, a single large contiguous I/O region is
accessed per call.

To access multiple non-contiguous regions of a file, either one request is issued per region, or a so-
called non-contiguous I/O request bundles them into a single request. Non-contiguous I/O enables
optimizations on the I/O subsystem such as scheduling, because the server has more pending opera-
tions to choose from. Also, the setup time for the initial link establishment and preparations of the
I/O is reduced. Access to non-contiguous data in memory and on disk requires additional computa-
tion and may lead to in-memory aggregation of the contiguous regions into a temporal buffer. The
extra computation time increases with the number of fragments while the costs of in-memory copies
depend on their sizes.

• Randomness: Defines how close the accessed bytes are in the file (or on the block device). When
multiple operations are issued in a sequence, then the locality of the accessed data matters. Disks
achieve best performance with contiguous accesses where physical locations on the persistent storage
are close together. For an SSD, random access is not so harmful, well designed controllers handle
sequential and random workloads with the same efficiency; still access granularity should be in the
order of the erasure-block size.

• Concurrency: Describes the number of concurrently issued I/O requests. The hardware resources
must be multiplexed among all requests. Even if multiple sequential accesses to files are issued, an
I/O scheduler might interleave these requests. Thus, from the perspective of the I/O subsystem it
might look like a non-sequential access pattern.

• Load balance: This is the distribution of the workload among the servers in a parallel file system (or
multiple block devices in a RAID).

While distribution of a file among the servers is assigned by the parallel file system, the actual usage
of servers depends on the access pattern. Depending on both the data distribution and the client
usage, the requests to parallel or distributed file systems may access data only from a subset of the
servers. This may potentially lead to a different utilization of the servers – a load imbalance. It
is expected that the aggregated throughput of these requests is reduced. Intuitively, the highest
throughput is achieved if data is accessed on all servers and if the amount of data accessed on each
server depends on the server’s current capabilities.

23In literature, the term I/O subsystem is often used in a relaxed manner; for example, to refer to a software layer which performs
I/O. In this thesis, the term is used to highlight that performance and observable behavior is determined by more than the
block device.

37

BACKGROUND AND RELATED WORK 2.2

• Access type: All layers can either perform read or write accesses. There are other types of access for
file servers, such as flushes, which cause cached data to be written to the block devices, or metadata
operations. The I/O path might distinguish the different types of access; depending on incorporated
optimizations and observed access patterns, other optimizations might be involved.

• Predictability: This measure indicates if data access follows a more or less regular pattern over time.
The easier a pattern, the better predictable it is. Checkpointing24, for example, stores a big amount
of data in a well defined period and thus it is easily predictable. Predictable access patterns might
be recognized and automatically enable comprehensive I/O optimizations in the operating system or
file system like read-ahead, for example.

I/O strategy In general, the mechanisms introduced in this paragraph are orthogonal to the hardware
and the architecture of the parallel file system. On the client-side, for instance, requests could already be
tuned to improve the access pattern which will be observed on the servers. Similar to optimizations found
in communication, these strategies could be applied on any layer involved in I/O.

A set of potential strategies are:

• Caching algorithm: Physical I/O is much slower than access to main memory. Therefore, it is fa-
vorable to hide the slow device performance by buffering I/O in main memory. Caching of requests
is also a necessary prerequisite for many further optimizations like reordering or aggregation of re-
quests.

Write bursts fitting into the memory can be delayed – an early acknowledge to the writer permits it to
proceed with processing. In the presence of bursts, this write-behind strategy can saturate the slower
media constantly; while the writer continues with its computation, the data is slowly persisted on the
storage. Unaligned writes might benefit from data already cached by allowing to combine multiple
small accesses into a full block; this avoids the need to read the old block from the block device.

Read-ahead is a strategy in which data is read in advance into a faster cache. Later reads access the
cached data and avoid loading data from the slow I/O subsystem. However, in case the data is not
needed in the near future it was fetched from the I/O subsystem unnecessarily. Thus, a balance of
the read-ahead size is important and depends on the predictability of the access patterns and costs
of the additional operations.

Distributed systems could build a coherent distributed cache in which cached data not necessarily
belongs to the local disk subsystem. This strategy increases the total available size of the cache at the
expense of inter-process network communication. As network is often faster than the I/O subsystem,
this boosts performance of applications whose working sets fit into the cache. On the client side,
these strategies can be applied to avoid creation of requests to servers at all – all data is simply held
locally. One difficulty with caching strategies is that it is necessary to update cached data to ensure
a coherent view – this is often defined by the consistency semantics of the system that provides the
caching.

• Replication: This strategy creates distributed copies of data, which then can be used to satisfy read
requests. This effectively balances read-mostly workloads among the available components by read-
ing the data from replicates located on idle servers. The number of copies can be varied depending
on the level of load-imbalance and regarding the costs of the replicas’ distribution. Replication is
also a method to provide high availability: if one server crashes, data of the file is still accessible on
a replica.

The replication protocol defines the approach by which data is replicated: In a parallel file system
typically either the clients or the servers are responsible for mirroring data. Also, data written could

24A checkpoint contains all the data that is required to continue computation later. This is especially useful to restart long-
running applications that crashed due to hardware errors.

38

2.2 PERFORMANCE OF PARALLEL APPLICATIONS

be replicated synchronously – during the write call, or asynchronously in the background. Since more
data must be communicated than necessary, the chosen algorithm has a big impact on performance.

• High availability (HA) support: Mechanisms to increase availability of the computing environment
imply additional expenses for hardware, and they reduce performance of the system by requiring it
to write more data than necessary.

Redundant components like hot spares and redundancy by storing data on multiple devices with
error correction codes tolerate a number of failures of components or physical data. In case of a
hardware failure, reconstruction of the original data with the redundant information implies a per-
formance impact, though. Complete data replication multiplies the amount of stored data but has
the advantage to provide load-balancing for files that are mostly read as well. HA could be provided
just on a per server basis, or could be built into the parallel file system itself by spanning multiple
servers to tolerate complete server faults.

In large data sets the so-called silent data corruption [Mic09] becomes important25. There are methods
to identify data corruption, for example, by storing checksums of the data. Another approach for
fault tolerance is end-to-end data integrity. It validates that data accessed by the client is the same
as stored on the I/O subsystem. However, transmitting the checksums and verification may reduce
performance slightly.

• I/O forwarding: An I/O server can handle only a limited number of concurrent clients because each
connection requires resources on the network interface and in memory. I/O forwarding [ACI+09] is
a technique in which clients do not communicate with servers directly26. Instead they communicate
with intermediate I/O nodes – the so-called I/O forwarders. Those nodes channel the I/O of all
responsible clients to the file system and thus, reduce the burden on the file system.

I/O forwarding could reduce performance because data must be communicated to another node, and
might be a bottleneck in a system. However, this depends on the network topology and placement:
In indirect network topologies an I/O forwarder can be placed on a node that is directly on the
path between client and server. Thus, in such a configuration the I/O forwarding does not imply
additional network communication. This is true, for example, for the network topology of a BlueGene
system.

However, optimization techniques, such as caching, aggregation or scheduling, can be implemented
on the I/O forwarders that improve performance of I/O servers.

• Aggregation: This technique combines a set of smaller requests to a larger request containing all
the data and operations. Aggregation can be performed on various layers: on the client side, on
intermediate I/O forwarders, on the server or on the I/O subsystem.

This technique is very useful, when independent operations are interleaved or overlapping, multiple
operations can be combined into a bigger sequential access. It is also possible to integrate indepen-
dent requests into one non-contiguous request, even across disjoint applications, if they access the
same file. However, additional buffer space is required to merge the data into the new request. Also,
the number of requests to decode is lowered – reducing computation time to process operations.

• Scheduling: A scheduler queues pending work and dispatches it according to a strategy. Requests
can be deferred to avoid flooding of layers which are unable to process all the pending requests
concurrently. In the meantime, the outstanding requests can be reordered or aggregated in order to
optimize the access pattern.

Scheduling algorithms can be applied on different abstraction layers. For example, with NCQ the
block device incorporates reordering schemes for block accesses as discussed in the hardware section.

25Data corruption means read data does not match the written data any more – this can happen due to bit flips or hardware
errors. Silent refers to the fact that this data corruption cannot be detected by the system. Thus, the user is not aware that data
has been corrupted.

26Note that sometimes in literature the intermediate nodes are referred to as I/O aggregators, too.

39

BACKGROUND AND RELATED WORK 2.2

Also, scheduling strategies could be applied not only on block-level but also on file-level.

Parallel file system Performance of a parallel file system highly depends on its design as it provides the
frame for the deployed optimization strategies. Several aspects like consistency semantics also apply to
higher level interfaces like domain specific I/O libraries.

The following important factors tend to vary over the available parallel file systems:

• Design: Software architecture of a parallel file system defines the I/O paths within the file system
and the distribution of data among the available servers. Naturally, the parallel file system should be
able to saturate all participating components (network, servers and I/O subsystem); even with a low
number of concurrent clients. Therefore, it is necessary to utilize all components to the best extent.
This requires to perform operations on disk and network at the same time. An efficient path for
performing I/O on the client side to the server and back is crucial. The higher the abstraction layer
of the file system the more intelligent optimizations could be integrated, and the more background
information a user can provide the better potential for optimization exists.

• Implementation: Usually, computation is not the bottleneck of the file system as CPU’s are much
faster than the I/O subsystem. However, it is important to be able to saturate both network and
disk subsystem; to schedule and optimize operations, data structures are required. Efficient basic
data structures like hashes or trees, which scale well with the number of concurrent requests, are
necessary to reduce the overhead of the operations. Regarding compute performance, in principle,
all the aspects mentioned in Section 2.2.3 apply.

• Resource consumption: The parallel file system itself needs some of the available hardware re-
sources to operate. On the client side, these resources are not available for the application and con-
sidered overhead. The amount of memory consumed for internal data structures and allocated buffer
space reduces the available I/O (and metadata) cache. The number and complexity of instructions
which have to be processed in order to prepare or serve requests increase utilization of a CPU – thus,
a perfect overlapping of computation and I/O may not be possible. Examples for communication
overhead are additional control information transferred within the request and response messages,
or server-to-server communication needed for replication.

• Communication: Performance factors of the communication between client and server are the steps
necessary to establish a connection, to provide data encoding into a common format (in order to
support heterogeneous environments), data transfer and the communication protocol. Additional
control information must be transferred to the server to initiate the request. Protocols that permit
bursts of commands to be transferred in a single request reduce the processing overhead. Support
of parallel streams between client and server can improve performance. Several aspects like non-
contiguous communication are also discussed in Section 2.1.4.

• Data distribution: Distribution of data among the available servers defines the maximum concur-
rency and highly influences the potential usage of the I/O subsystems. Large contiguous data ac-
cess is preferable, hence data must be stored in large chunks on a server, yet the number of servers
involved should be high to provide a good aggregated performance by utilizing all of them concur-
rently. Adaptive striping depending on the file size meets both requirements. In most cases auto-
matic re-striping is not supported by the file systems, instead the user (and system administrator)
can define the way data is distributed on file creation to match the expected access patterns.

• Metadata handling: Regular file system operations involve metadata about the objects, as it must
be acquired before I/O can be performed. Metadata performance is crucial to many workloads.
Metadata is rather small, therefore it has to be organized in a manner that allows bulk transfers
between the servers and persistent storage. Network and I/O subsystem should be utilized, which
requires a large number of metadata operations to be initiated per request.

On the server side, an efficient metadata management is necessary. For example, logical files could

40

2.3 MESSAGE PASSING INTERFACE

be pre-allocated to already contain all information; thus avoiding additional communication to data
servers during file creation. PVFS supports some bulk operations: when listing a directory, for ex-
ample, a large number of directory entries are transferred in one response. Also, PVFS incorporates
read-only client side caches for metadata.

• Consistency semantics: The semantics of a file system define how the API calls are translated to
file system manipulations and accesses. Of special interest is how and when a server (and a client)
realizes concurrent modifications made to file system objects. Relaxed guarantees open the potential
for additional optimizations. For instance, when a client does not need to realize all modifications
made in the past, it could save communication that would refresh the state of cached objects. Also,
operations could be deferred on a client to bundle them with future requests, then other clients
would not realize modifications until they were communicated to the servers.

Assume a client which tries to create a number of files; this client could request file creation of every
file individually, or it could avoid some of the communications by assuming the state of the directory
is still valid. With strong consistency semantics, locking is mandatory to perform bulk operations
because with a lock modifications of the file system status could be prevented. For example, Lustre
allows to issue a set of metadata operations at once by locking metadata, and Lustre pre-creates files,
too.

With relaxed consistency semantics, modifications will be lost, if client or server crash prior to exe-
cution and thus persistence is not ensured. However, in this case, locking mechanisms might become
costly, too; the crash has to be detected and the lock must be released to continue operation.

Consistency semantics are defined by the application program interface. POSIX for example has very
restrictive semantics since I/O operations have to be applied in the same order as issued, even if they
are non-overlapping. Thus, communication with the I/O subsystem must be serialized to guarantee
proper handling. This is a major drawback of the POSIX interface. Most programs could be adapted
to loose semantics to exploit parallelism. PVFS does not provide guarantees for I/O data in case of
concurrent operations, data could be a mixture of data blocks of different requests. However, with
PVFS all metadata operations are ordered in a specific way to guarantee metadata consistency of
objects in the accessible namespace27.

Further information on concurrent access is given when MPI-IO semantics are discussed (see
Page 49).

• Locking strategy: Locking as a mechanism can be used to prevent concurrent access to one (or
multiple) file system objects. Depending on the required file system semantics, measures must be
taken to ensure that clients access the current state of the file system. While GPFS and Lustre provide
a locking protocol, PVFS does not offer locking; hence, when using PVFS the application must avoid
concurrent access to file regions. In presence of a locking mechanism, the granularity of the lock
defines the potential concurrency with related data and metadata – a lock could be valid for a file
region, a logical file itself or whole directories. Different lock types could be available – depending
on the type of the lock, another access type could be permitted. A particular lock, for instance, could
prevent modifications to a file but allow concurrent reads, while another one may restrict the type of
access possible. Locking algorithms can become expensive in a distributed environment, since they
require a consistent view.

2.3. Message Passing Interface

The Message Passing Interface [Mes09] is a standard to enable inter-process communication. With MPI the
user explicitly encodes the sending and receiving of data in the source code as function calls to MPI.

27There could be broken objects not yet linked to the namespace and inaccessible, though. These broken objects can be identified
and cleaned by performing a file system check.

41

BACKGROUND AND RELATED WORK 2.3

In this section the focus is placed on semantical aspects and communication performance implications
imposed by the interface; features are only listed if they are relevant to this thesis.

The standard offers a rich set of point-to-point and collective functions to address many use-cases while
keeping communication efficiency in mind. In point-to-point communication two processes communicate,
one sends a message and the other receives it. With collective operations an arbitrary number of pro-
cesses can participate to exchange data. In general, collective operations can be grouped into three classes
depending on the number of processes that provide the initial data and the number of receiving pro-
cesses: all-to-one (for example MPI_Gather() and MPI_Reduce()), one-to-all (e.g., MPI_Bcast()), all-to-all
(e.g., MPI_Allreduce()).

With MPI-2 a set of functions to manipulate files are standardized. Directory operations are provided to a
limited extent, only creation and deletion of files is supported. Basically, MPI-2 stretches communication
concepts of MPI to I/O. I/O functions rely on communication between MPI processes with the I/O servers;
in the context of I/O the MPI processes performing an I/O call are referred to as clients. MPI defines
individual and collective I/O operations and permits non-contiguous access to file data.

First, Section 2.3.1 describes the rules how transferred messages are matched by a receiver. Then some MPI
functions are introduced in Section 2.3.2. An excerpt of semantical aspects is provided in Section 2.3.3.
Based on the semantical aspects, available optimization potential is elaborately discussed in Section 2.3.4.
In Section 2.3.5 related work is presented to gear the MPI run-time towards system and application.

2.3.1. Matching Sends to Receives

A program can perform multiple collective calls and point-to-point operations at the same time. To en-
sure proper operation, data must be received by the intended receiver and not by an arbitrary process.
Therefore, several rules are defined by MPI that match send messages to receives – the rules were chosen
to permit efficient implementations but still offer a comfortable programming interface. One basic rule,
for instance, is that messages are usually received in the order they are sent, i.e., whenever two messages
match all rules of the receiver, then the one received first is given preference over the others.

Point-to-point communication Messages include metadata in an envelope which contains the source,
destination, tag and communicator. A communicator describes a group of processes that participate and a
context. The source and the destination are the rank of the respective processes in the specified commu-
nicator, i.e., their numeric ID within it. The tag is a numeric identifier that distinguishes messages from
a sender, typically a tag has a user-specific semantic. For example, a message with Tag 1 could mean that
this message contains input data, while Tag 2 indicates that computation is completed.

According to the parameters supplied to the receive operation, incoming message envelopes must match
some or all of the information to be received. Wildcards can be used to receive a message from any rank
of the communicator, or one with an arbitrary tag. However, the communicator must always match as
specified by the MPI standard:

“A communicator specifies the communication context for a communication operation. Each commu-
nication context provides a separate “communication universe:” messages are always received within
the context they were sent, and messages sent in different contexts do not interfere.” [Mes09]

Further, in a message envelope information about the transferred data types is contained. This information
is not used to match sends to receives, but it helps the library to check the correct data transmission: When
a message matches the conditions, received data is copied from the message into the output buffer on the
receiver side. During this process the elementary datatypes specified on the sender side and receiver side
are compared to ensure consistency. When they do not match the received data is invalid. Also, the number
of elements to receive must match the number of elements transferred. While it is not possible to receive
more elements than specified, because usually the provided buffer does not suffice, it is possible to receive

42

2.3 MESSAGE PASSING INTERFACE

less data than expected. For example, a sender can send 10 integers while the receiver specifies a buffer
for 50 integers; the actual number of elements received can be checked in the program after the receive
completed.

Derived datatypes in the MPI standard allow developers to directly transmit non-contiguous regions in
memory – that means multiple non-overlapping memory areas can be sent with one MPI call. Non-
contiguous communication avoids the need to pack data explicitly in a contiguous buffer. MPI defines
a large number of datatypes to ease definition of vectors, structures or expansions of primitive datatypes.
By referring to already defined datatypes the user can compose arbitrarily nested datatypes. In the commu-
nication process the datatypes are converted to the receiver’s machine architecture if necessary, and copied
from/to the specified memory regions. Datatypes on sender and receiver side can be different, although
the elementary datatypes below must match (it does not make sense to transfer an integer and receive a
double value).

MPI-2 applies this concept to enable non-contiguous I/O (see Section 2.3.3 for details on how to use it).
See section Type Matching Rules in [Mes09] for more details.

Collective calls MPI forbids interference of messages from point-to-point operations with messages sent
by collective operations. To quote the standard:

“Collective communication calls may use the same communicators as point-to-point communication;
MPI guarantees that messages generated on behalf of collective communication calls will not be con-
fused with messages generated by point-to-point communication.” [Mes09]

Interference between collectives shall not happen as well, as it makes no sense for one collective operation
to receive a message from another.

Different datatypes on sender and receiver are permitted, but the amount of data must match, according
to the standard:

“The type-matching conditions for the collective operations are more strict than the corresponding
conditions between sender and receiver in point-to-point. Namely, for collective operations, the
amount of data sent must exactly match the amount of data specified by the receiver. Different type
maps (the layout in memory [...]) between sender and receiver are still allowed.” [Mes09]

Consequently, MPI collective calls receive a message from another collective call iff the communicator is
identical and the collective call matches. When one process of a communicator starts one collective call and
another process starts a different call, then a deadlock occurs. MPI-3 will allow asynchronous collective
calls; it is likely that multiple non-blocking starts of the same collective operation will be serialized to
avoid false matching of messages.

2.3.2. Exemplary Collective Operations and Semantics

To foster discussion of performance aspects, the parameters and the invocation semantics for at least one
representative of each collective pattern is listed. Data exchanged between processes is visualized in Fig-
ure 2.8. Gray boxes symbolize buffer space for input and output buffers – for the sake of simplicity it is not
distinguished between input and output buffer. In the figure it is assumed, that one-to-all or all-to-one oper-
ations are performed with Rank 0 as root/target. The definitions and semantics are taken from [Mes09].

Synchronization behavior Once a collective function returns, the required operation for the local pro-
cess has been performed in its output buffer; this implies that collective functions are blocking28. Collec-
tive operations do not imply synchronization. Synchronization between processes depends on the imple-
mentation of the specified semantics; for example, with a broadcast operation all processes must wait for

28With MPI-3 non-blocking collective calls will be introduced.

43

BACKGROUND AND RELATED WORK 2.3

0

P
ro
ce
ss

Data

Broadcast

0

0

0

(a) Broadcast data from root.

0

P
ro
ce
ss

Data

GatherV
1

2

0

1

2

1 2

ScatterV

(b) Gather with and scatter from root.

Reduce

01 02

11 12

21 22

∆1 ∆2

(c) Reduce data of multiple elements in root. ∆i is com-
puted from pi (for all processes p in the communica-
tor).

01 02

11 12

21 22 AllToAll

03

13

23

01

02

11

12

21

22

03 13 23

(d) All ranks exchange data.

Figure 2.8.: Data transfer scheme of a few collective operations.

the root process to be ready. But theoretically other processes could complete even if some processes did
not call the collective operation, yet.

To quote a lengthy, but informative general introduction to collective calls:

“Collective routine calls can (but are not required to) return as soon as their participation in the col-
lective communication is complete. The completion of a call indicates that the caller is now free to
modify locations in the communication buffer. It does not indicate that other processes in the group
have completed or even started the operation (unless otherwise implied by the description of the op-
eration). Thus, a collective communication call may, or may not, have the effect of synchronizing all
calling processes. This statement excludes, of course, the barrier function.
[...]
Advice to users.
It is dangerous to rely on synchronization side-effects of the collective operations for program correct-
ness. For example, even though a particular implementation may provide a broadcast routine with
a side-effect of synchronization, the standard does not require this, and a program that relies on this
will not be portable.

On the other hand, a correct, portable program must tolerate a synchronizing side-effect of a col-
lective call. Thus, though it cannot be relied on the synchronization effect of a collective call, one must
formulate the program to deal with it.” [Mes09]

Several functions can replace existing data in the input buffer directly with new data29, that means input
data is replaced with the result of the collective call. This enables the MPI library to conserve about half
of the memory. Internally, the implementation might provide additional data buffers. However, buffer
capacity should be minimized as the description of All-to-All Scatter/Gather in [Mes09] states: “Users may
opt to use the “in place” option in order to conserve memory. Quality MPI implementations should thus, strive to
minimize system buffering.”

29To do so the user has to set the buffer to MPI_IN_PLACE.

44

2.3 MESSAGE PASSING INTERFACE

Broadcast The MPI_Bcast() operation transfers data from a root process to all other processes in the
group (Figure 2.8a), upon return of a callee the data is available in its local output buffer. The signature30

of the call is:

MPI_BCAST(buffer, count, datatype, root, comm)

INOUT buffer starting address of the buffer (choice)

IN count number of entries in buffer (non-negative integer)

IN datatype data type of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

The datatype can be an elementary datatype or a derived datatype.

Gather A gather operation transfers data of a fixed size from each process’s buffer to the root buffer
(Figure 2.8b). Data of the processes is stored subsequently in the buffer of the root, that is data of Process i
is stored right in front of data from Process i + 1. MPI_GatherV() customizes the amount of data sent by
each process to the root.

Signature of the call:

MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype,

root, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at root)

IN recvcounts non-negative integer array (of length group size) containing the

number of elements that are received from each process

(significant only at root)

IN displs integer array (of length group size). Entry i specifies the

displacement relative to recvbuf at which to place the incoming

data from process i (significant only at root)

IN recvtype data type of recv buffer elements (significant only at root)

(handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

Gather can be thought of to be the inverse function to an scatter operation, which distributes subsequent
blocks of data from the root among all processes. Broadcast is quite similar to scatter. Consider that Rank 0
transmits individual data to each process, which is indicated on the right side of Figure 2.8b. After the
operation completed each process has its part of the data locally (left side of the figure).

Another explanation to the execution of collective operations is to specify the operation in terms of point-
to-point operations – the definition for MPI_GatherV() is:

“[...] the outcome is as if each process, including the root process, sends a message to the root,
MPI_Send(sendbuf, sendcount, sendtype, root, ...),
and the root executes n receives,
MPI_Recv(recvbuf + displs[j] · extend(recvtype), recvcounts[j], recvtype, j, ...)
The data received from process j is placed into recvbuf of the root process beginning at offset displs[j]
elements (in terms of the recvtype).” [Mes09]

By setting the displs vector accordingly it is possible to change the order in which the data is stored, i.e.,
it is possible to store data from Process 2 at the beginning of the output buffer. However, it is erroneous to
receive data from multiple processes in the same memory location.

30In the signature the description of the input and output parameters is given in a language independent notation according to
the standard. Parameters are prefixed with the type (input, output or both).

45

BACKGROUND AND RELATED WORK 2.3

Reduce Aim of a global reduction operation is to perform an associative operation like sum or minimum,
across data provided by the processors of a group. A vector of count elements can be supplied in each
process, then a reduction is performed for each element of the vector individually. In Figure 2.8c, each
process has two elements, after the reduce the root process has the two independent results (∆1 and ∆2)
computed with the associative operation.

Signature of the call:

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer (choice, significant only at root)

IN count number of elements in send buffer (non-negative integer)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

The user can define further operations, which might also operate on derived datatypes – pre-defined oper-
ations work only on elementary datatypes. To quote [Mes09] regarding the semantics of the operation:

“The operation op is always assumed to be associative. All predefined operations are also assumed
to be commutative. Users may define operations that are assumed to be associative, but not commu-
tative. The “canonical” evaluation order of a reduction is determined by the ranks of the processes
in the group. However, the implementation can take advantage of associativity, or associativity and
commutativity in order to change the order of evaluation. This may change the result of the reduc-
tion for operations that are not strictly associative and commutative, such as floating point addition.
Advice to implementors.

It is strongly recommended that MPI_REDUCE be implemented so that the same result be obtained
whenever the function is applied on the same arguments, appearing in the same order. Note that this
may prevent optimizations that take advantage of the physical location of processors.”

The advice to the implementors impacts the performance, as numerically unstable floating point opera-
tions must be executed in the same order. Therefore, independent of the process mapping, the same oper-
ations must be executed, thus locality of the processes cannot be exploited in all cases. MPI_Allreduce()

is a variant of reduce in which the result is stored on all processors – not only on the root process.

All-To-All With this operation each process transfers individual data to each other process; the amount of
data exchanged between all processes is the same, see Figure 2.8d.

Signature of the call:

MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each process (non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-negative integer

→)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

In this all-to-all function the user may specify that the data in one buffer is used as input and output, thus
it can be replaced with new data. Effectively, this halves memory consumption.

46

2.3 MESSAGE PASSING INTERFACE

2.3.3. Excerpt of MPI-IO Functions and Semantics

The I/O interface of MPI can be thought of as an extension of POSIX I/O for parallel programs. While
the basic idea of file manipulation is connected to POSIX, the interface and semantics enable coding of
portable and efficient parallel applications.

There are several MPI functions that deal with input and output of data. The semantics differ in the way
the file pointer is used – either all processes share a common file pointer, or each process has its own
file pointer. An orthogonal aspect is whether the call is blocking or non-blocking (and shall be executed
concurrently with further program activity). Further, each process can perform I/O independently, or mul-
tiple processes can participate during the I/O (so-called collective I/O). As the functions are quite similar,
only a subset of the available functions is introduced to enable later performance discussion: opening of a
file, to enable non-contiguous file access by defining a file view, the non-blocking read operation and the
collective write operation.

At last, the access semantics for multiple processes accessing the same file are discussed.

Opening of files With the collective function MPI_File_open() all processes of the communicator open
a file. Once the file is opened individual (independent) or collective I/O can be performed by referencing
the returned file handle. It is expected that all processes of the communicator participate in subsequent
collective I/O operations with that file handle. The implementation must ensure that communication
routines do not interfere with I/O operations. Therefore, no message from communication routines shall
be received by an I/O operation and vice versa (see also Section2.3.1).

Signature of the call:

MPI_FILE_OPEN(comm, filename, amode, info, fh)

IN comm communicator (handle)

IN filename name of file to open (string)

IN amode file access mode (integer)

IN info info object (handle)

OUT fh new file handle (handle)

The specified filename on all processes must reference the same logical file – for example it is invalid for
multiple processes to collectively open files on a temporary directory that cannot be accessed from all
processes. The implementation defines how the filename is interpreted, ROMIO uses prefixes to distin-
guish various file systems. To access files in the PVFS namespace, for instance, the prefix “PVFS2://” is
specified.

The file access mode is similar to the POSIX open call, with MPI_MODE_CREATE the call creates a new file
and thus it alters the namespace of the file system if the file does not yet exist. Besides a delete function,
there is no other way to alter metadata and the namespace with MPI functions.

Users can supply optimization parameters, which are in the form of key/value pairs, to the info object.
Those parameters are referred to as hints. The access_style is an example of a reserved hint, the user
can specify the temporal and spatial access patterns in which file access is performed until the file is
closed – possible values are read_once, read_mostly, write_once, write_mostly, sequential, reverse_
sequential, and random. Multiple access patterns can be defined, e.g., to announce that a file is read
and written exactly once. Note that file hints can be changed with the MPI_File_set_info() function at
run-time. Further information about hints is given in Section 2.3.5.

Defining a file view A file view defines how and which areas of the file are accessible by a process.
This supports a better interpretation to the raw bytes of the file – by setting the data types contained, the
implementation could perform file type conversion automatically. Further, non-contiguous file accesses are

47

BACKGROUND AND RELATED WORK 2.3

Etype

Process 0 filetype

0 1 2 3 4 5

Displacement

...File blocks

Process 1 filetype

Process 2 filetype

Offset

Figure 2.9.: Example partitioning of a file by using a file view. The accessible area for each process is
colored, the offsets for accessible etypes are printed for Process 2.

implemented with the help of file views. First, the file is partitioned into regions which can be accessed,
then non-accessible regions are skipped by subsequent I/O calls.

This function is collective – all processes which opened the file set their own view. While the file is open
the file view can be altered by invoking MPI_File_set_view() again. It is invalid to change the view of a
file while non-blocking I/O is performed.

Signature of the call:

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

INOUT fh file handle (handle)

IN disp displacement (integer)

IN etype elementary datatype (handle)

IN filetype filetype (handle)

IN datarep data representation (string)

IN info info object (handle)

The elementary datatype defines the unit of positioning and data access. From the program’s point of view
access to parts of an etype does not make sense, e.g., to read half of an integer. Only full etypes can be
read/written and data positioning is relative to this datatype, i.e., the first etype is accessed, then the
second etype and so on. For I/O calls the datatypes are restricted to use non-negative and monotonically
increasing displacements.

The filetype sets how etypes form the whole file. Unimportant file regions are skipped, those non-accessible
areas are usually referred to as holes. By using datatypes with holes non-contiguous file access is possible.

In datarep the interpretation of data types is set. Either the system’s native representation is used – that
means no conversion will be performed, or datatypes can be converted to a fixed representation. There
are two alternatives that guarantees portability of the files created: An MPI implementation specific rep-
resentation, which is portable across architectures as long as the same MPI implementation is used. And
a standardized data type representation that is understood by all MPI implementations, but potentially
slower.

An illustrated example of a collective file view for three processes is given in Figure 2.9. In this example the
etype could be any portable datatype starting from a single integer to a complex record. Process 0 accesses
the first etype, Process 1 the next three etypes and Process 2 the two following etypes. The datatypes are
repeated infinitely in the file. In the figure the offsets for Process 2 are printed into the data blocks.

Independent non-blocking read With independent I/O, each process performs I/O without knowledge
of the other processes’ state. The operations are marked with an “I” in their name, read and write calls are
treated similarly.

48

2.3 MESSAGE PASSING INTERFACE

In the following example, the signature of the read call is provided:

MPI_FILE_IREAD(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

Accessed data is read from/written into the provided buffer with the specified memory datatype. If a file
view has been applied like in Figure 2.9, then a process accesses only its visible data, e.g., if Process 2 reads
6 elements, then all 6 etypes of the example file are read in one call – thus, non-contiguous file access is
performed. A potential data conversion is performed on the fly, too.

An independent non-blocking I/O operation just extends the signature of the blocking call by an opaque
request object31. This opaque request object can be used to check the completion of the operation by MPI-1
functions such as MPI_Wait().

Collective write In collective operations all processes which open a file might work together to access
file data; this enables certain client-sided optimizations.

From the signature, a collective call is differentiated from the independent calls only by its prefix “_all”.
Depending on the implementation collective I/O operations might be synchronizing or not; the author of
this thesis, however, has not seen non-synchronizing collective I/O in an MPI implementation, yet.

Signature of the call:

MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

Access semantics Compared to the consistency model of POSIX, the MPI standard follows relaxed I/O
semantics.

In the POSIX I/O semantics, each read and write operation is an atomic operation – concurrent operations
are serialized and follow the strict consistency model. When a call finishes all manipulations become im-
mediately visible – the first executed call is executed first and has to terminate before the next one can
start. Consequently, when a write() and read() call are performed concurrently, then one of those two
operations is scheduled first. Partly written data is not returned in the read function – if the read finishes
first, then the old data is read, if the write finishes first, then read will retrieve all new data. Concurrently
scheduled processes obey these semantics as well, ultimately this requires to serialize all file operations.

Sequential consistency relaxes the strict model slightly: The order in which the calls are invoked (in terms
of wall-clock time) can now vary from the actual execution order. However, all processors have the same
picture of the execution order, and from the perspective of a processor its operations are executed in the
same sequence as they have been issued. These semantics are a consequence of the distributed nature of
the system; it is hard to tell which operation started first. Since all processors see the same execution order,
the operations are serialized, but not necessarily the first call issued is executed first.

Three consistency levels are available in MPI: sequential consistency of one file handle, sequential consis-
tency with atomic mode and explicit, user-imposed, consistency.

31Non-blocking MPI communication routines such as MPI_Isend() use a similar technique.

49

BACKGROUND AND RELATED WORK 2.3

Process 0: write Process 1: write

or ...

After completion of both operations data is modified to either:

offset0 offset0

, , , ,

With atomic mode:

or

Figure 2.10.: Example of concurrent file operations, two processes write the same file regions.

In terms of MPI, the sequential consistency model implies that the behavior of accesses performed on one
file handle follows any of the potential serializations of the execution, as implied by the synchronizations
of the parallel program’s processes: Read operations enforced to occur later in program execution than a
write operation to the same file handle read the altered data, and writes to the same file regions overwrite
previously written data. To illustrate this issue, consider two processes opening one shared file, one process
writes some data, then both processes invoke a MPI_Barrier()32 before the second process reads the data
back. With the barrier, the sequential consistency enforces that the first process reads the same file region
which was written before because in any execution the read always follows the write operation. Without
the barrier, some old data (if the file existed before it was opened) or a mixture of already modified and
old data could be returned to the other process.

This example illustrates that while each I/O operation by itself produces a well defined result, concurrent
I/O to overlapping file areas result in unpredictable data – parallel accesses to overlapping file regions are
not handled atomically as in POSIX.

Assume two processes opening one file, then each process writes three elements of local data. In theory
the observed data in the file can be any combination of the data stored by the two processes, e.g., the first
two elements from the first process and the remaining datatype from the other process – this example
is illustrated in Figure 2.10. This kind of mixed data might break integrity of file records. Not only the
datatypes but even the bytes in the file could be interleaved in the same fashion. In practice, file systems
usually update data in the granularity of a full block. Thus, data of two processes is not mixed within one
block but across block boundaries.

Atomic mode changes the behavior by serializing independent I/O to the same file handle if necessary,
concurrent modifications by third-party processes or by using another file handle to access the same file
are still under responsibility of the programmer (and user). If supported by the MPI library and the file
system, atomic mode can be set by calling the collective function MPI_File_set_atomicity() with the file
handle.

The sequential consistency of MPI does not specify the state of the file in regards to concurrent modifica-
tions by other programs – MPI might be unaware of these modifications. Also, the atomic mode does not
protect the integrity of records in case multiple file handles point to the same logical file – it is undefined
what data is accessed by independent processes and file handles. To deal with this issues the collective
function MPI_File_sync() enforces to persist and to synchronize manipulations of one file handle with
the file system. After a synchronization is performed, subsequent read operations access data updated
by third-party software (or by the same program that used other file handles) in the background. Both
opening and closing of a file imply this kind of synchronization.

The MPI semantics are quite comparable to the NFS semantics, as in NFS there is no cache consistency
between different clients and the server. In MPI the set of processes which collectively open a file share
the access with the sequential consistency model, this is exactly the behavior NFS enforces for one client

32A barrier is a synchronization point for all processes of the communicator. The processes wait until all of them reach an MPI_

Barrier(), then they continue.

50

2.3 MESSAGE PASSING INTERFACE

as each node uses local cache to increase performance.

MPI can share a single file pointer among multiple processes. Whenever a process reads or writes data,
the file pointer is modified accordingly. The current semantics of a shared file pointer require a strict
serialization of concurrent calls to avoid that two processes access the same file regions. However, the
semantics define that the file pointer could be updated immediately after an I/O call is initiated. Thus,
theoretically, the actual data transfer can happen concurrently.

2.3.4. Optimization Potential Within MPI

Several issues mentioned in Section 2.2 are related to performance of communication and I/O. The seman-
tics of Message Passing Interface enable additional concepts that improve performance, some of them have
been integrated on purpose into the interface. The potential that resides in using MPI is now discussed on
an abstract level before details are provided on the state of the art.

In general, the usage of MPI within the application limits how well an MPI library could optimize interpro-
cess communication – in the best case, the programmer uses the highest-level function to perform his tasks
and ensures a balanced startup of all communication partners, i.e., all processes start synchronously. To
reduce the complexity of the discussion, let us assume the hardware setup and the communication pattern
of the application are fixed.

The performance of inter-process communication certainly depends on the hardware characteristics – the
specific hardware configuration limits potential network throughput, computation power and available
memory bandwidth. Therefore, it is our goal to exploit the available hardware resources to reduce appli-
cation run-time.

There are two orthogonal concepts that have a large impact on performance: Either the process mapping
to the existing hardware can be adjusted, or the MPI internal algorithms are adapted. Actually, many
minor optimizations exist that may gear an implementation towards a system and a specific (application’s)
workload. For I/O calls all these options permit to optimize throughput, but even further optimizations
can be applied to improve the access pattern and to decrease the burden on the I/O servers. A discussion
of the state of the art that addresses the optimization potential mentioned is provided in Section 2.3.5.

Process mapping The logical MPI processes must be mapped to the available processing elements33.
Without modifying MPI internally, placing the MPI processes in an appropriate manner on the processors
yields a high potential to optimize communication and I/O behavior. However, selecting an appropriate
mapping requires that the access patterns of the application are known before the program is executed.

Consider the example in Figure 1.8 (page 12). Assume, the 4 processes should be placed on two nodes with
dual core processors (the example in Figure 1.6, page 9)). There are 4 ·3/2 options to map the 4 processes to
the two nodes – the two processes on the first node are either (0,1), (0,2), (0,3), (1,2), (1,3) or (2,3). Actually,
if the two nodes are equivalent, then the mapping (0,2) is equal to (1,3), the same with the mappings (0,1)
and (2,3). In the example only neighboring processes communicate via point-to-point communication, but
additionally a broadcast operation is performed. It can be seen that the mapping (0,1) (or (2,3)) requires
less inter-node communication than a mapping like (0,2) because this way only one message is sent be-
tween process 2 and 1 over the slower network. The other two send operations can be performed within a
single node. Therefore, this placement is typically faster.

Coming back to the difficulty of the process mapping, even under homogeneous hardware the number of
possible permutations of the process mappings grows exponentially with the number of processes. It has
been shown that the mapping problem is NP-hard. See [LB98, CCH+06] for a discussion of issues related
to task scheduling. Tools have been developed that apply heuristics to place processes on the system
topology.

33The mapping from processes to hardware is introduced on Page 36.

51

BACKGROUND AND RELATED WORK 2.3

Communication algorithm Under the assumption that the placement is fixed, i.e., either because it is
optimal or pre-defined, then there is potential to adjust the MPI internal algorithm towards the given
application and network topology. To cope with the complex interplay of system and application, many
different algorithms must be implemented in each MPI library. However, choosing the right algorithm
for a given function call remains difficult. Presumably, suboptimal performance can be observed on every
system (for at least some applications).

Point-to-point operations are of simple nature, as just two processes participate; therefore, the low-level
network driver has a major impact on the performance. From the algorithmic point of view an MPI im-
plementation has only a few options if it sticks to the standard’s semantics. The semantics of MPI_Send()
permit a completion of the operation, even if the receiver did not yet get the message; this allows the im-
plementation to buffer the message either on the side of the sender or the receiver. Many variants of the
point-to-point communication exist which enforce a certain buffering or synchronization behavior.

Collective operations are of much more interest. Related work shows the impact of the arrival pattern on
performance and that tuning for individual message size is important [FPY07]. From a library’s point
of view, optimization can be done based on the parameters provided by the programmer. Typically, this
includes the memory datatype, the communicator, target/source rank (for all-to-one or one-to-all operations),
and the actual amount of data shipped with the call:

• The memory datatype is relevant because contiguous datatypes can be transferred via RDMA.
Datatype on sender and receiver side can be be different, requiring to pack or unpack data.

• The communicator defines the participating processes in a given communication, even if an algo-
rithm is optimal for one defined group of processes, for another set of processes a different algorithm
might be faster. The problem of choosing the appropriate algorithm for a given group of processes is
linked closely to network topology.

• The target rank is relevant because the implementation must perform the last operations on the target
rank, therefore, for instance a spanning tree algorithm should put its root on the target rank. Simi-
larly, for a one-to-all operation the source rank provides some information which must be transferred
to all other clients.

• Depending on the amount of data the communication time varies. A basic consideration is that
latency becomes more important for small messages, while larger messages are dominated by the
bandwidth between the communication partners.

Concepts to optimize I/O Due to the complexity of I/O, that involves communication as well as server
activity, there exists a rich variety of opportunities to optimize access patterns and metadata operations.
First, a few hardware considerations are recapitulated from section 2.2.2. Those help in assessing the
mentioned optimizations. From the perspective of the servers it is important that clients access as much
data as possible in one I/O request, because it keeps the pipelines on the server busy and, furthermore, it
enables sophisticated server-sided optimizations. A server can access data on block-level in a granularity
of full blocks – modification of a few bytes of a block requires reading the full block – then modify it and
write it back. Hence, performance is wasted. Due to the characteristics of hard disk drives, random access
achieves only a small fraction of available performance (at least on hard disk drives) – the mentioned
optimizations are all designed having disks as persistent storage in mind. Processing of a request requires
some CPU and memory resources. As requests must travel over a network from client to server, processing
involves additional delay.

To tackle the issues mentioned, the non-contiguous operations and collective calls have been defined in
MPI-IO. In [TGL02] access to data with MPI is classified into four levels of access. The levels are character-
ized by two orthogonal aspects: contiguous vs. non-contiguous data access, and independent vs. collective
calls. Thus, the levels are: contiguous independent, contiguous collective, non-contiguous independent
and non-contiguous collective. Depending on the level a different set of optimizations can be thought
of.

52

2.3 MESSAGE PASSING INTERFACE

When using collective I/O calls, clients can collaborate to access data on I/O servers efficiently. There-
fore, the clients exchange information about their spacial access pattern, then MPI orchestrates the I/O
operations. Thus, optimizations are possible with collective I/O which are impossible to perform with in-
dividual I/O. For example, the MPI implementation might aggregate requests for neighboring blocks into
a few larger request. This not only reduces the amount of requests, but also the resulting requests have a
more sequential access pattern, than the individual operations. Also, the schedule for the requests can be
adjusted. For example, the order in which data is requested can be swapped.

Further, to overlap computation or communication with I/O, analogous to non-blocking communication
the non-blocking I/O is defined in the standard. A non-contiguous read or write operation usually triggers
a sequence of contiguous data accesses within MPI. Internally, MPI could start the requests in another
order, or perform a single larger access to avoid spamming the server with a high number of operations.

Our discussion for the access semantics of MPI on Page 49 revealed that its sequential consistency requires
an implementation to persist file modifications by calling MPI_File_sync(). The access semantics can be
exploited further to cache data in faster devices of the memory-hierarchy, to aggregate accesses, or to keep
the file’s data in an suitable internal data structure. However, until function invocation all data access
could be cached in a buffer specific to the particular file handle.

Another possibility for the user is to provide additional information to MPI about the access pattern, or to
change internal defaults to values which prove to improve performance. The implementation can honor
this information to perform additional and better internal operations. Technically, in MPI-2 an opaque
info object is defined, which basically consists of key-value pairs; this info object can be supplied to some
MPI-IO functions to change their internal behavior. Note that the implementation is not forced to support
or even obey hints; but the implementation can use it to (hopefully) tune the internals. Unfortunately, the
hint is not incorporated in the function prototypes of collective calls.

2.3.5. State of the Art

Optimized collective calls With the upcoming of MPI many algorithms were proposed to optimize col-
lective communication [KHB+99, TRG05]. Depending on the hardware, especially network topology and
interconnect, the algorithm which achieves best performance varies.

Proprietary systems could add special hardware to realize or just support collective operations. The MPI
library could be adjusted to utilize the hardware. On the SciCortex machine, for example, the network
devices forward network packets for broadcast operations directly to their neighbors34. The new Mellanox
Infiniband adapter enables offloading of communication operations. This way, the communication protocol
can be handled directly on the network adapter [KST+11].

As algorithms must be handcrafted towards the system, for instance for a BlueGene [AHA+05, MK05],
one major problem is to pick the best algorithm for a system. Heterogeneous systems complicate this
issue, inhomogeneous hardware within a cluster makes it a tedious task to determine the best algorithms
because the algorithm depends on the nodes that participate in the communication. Another issue is
the interconnection of homogeneous clusters in a WAN or Grid environment. Potentially different MPI
implementations on each homogeneous part of such a system must collaborate in an efficient way [BTR03,
ITKT00].

The influence of the starting times of processes invoking a collective operation is measured and discussed
in [FPY07]. In their work process synchronization and the pattern of process arrival is proven to make an
important contribution to the efficiency of selected collective algorithms and it is claimed that application
developers cannot control the arrival pattern.

34Unfortunately, SciCortex is out of business.

53

BACKGROUND AND RELATED WORK 2.3

Choosing the best collective algorithm Several approaches have been developed that assist in deter-
mining the best algorithm and MPI configuration. The search for the best algorithm and its configuration is
an optimization problem. Theoretically, all available implementations (and configurations) could be eval-
uated by brute-force. However, due to the large number of potential configurations often historic knowledge
about previous execution is used to predict performance. To reduce the parameter space promising candi-
dates could be identified by a performance model, or by classifying configurations manually. For example,
the topology of a 3D-torus restricts the number of algorithms that could achieve best performance.

The Abstract Data and Communication Library (ADCL) [GH07] uses historic knowledge during the appli-
cation run. ADCL assumes a program performs operations iteratively – in the first few iterations ADCL
evaluates a set of MPI functions to determine which one is best suited for the given problem, then this
function is applied to subsequent invocations. Evaluation is performed on the fly during the program run,
every time a function is invoked another internal algorithm is evaluated, until the winning function is
decided. Therefore, no artificial data is communicated to evaluate the performance of the functions. Com-
pared to other solutions ADCL provides a new interface with higher abstraction than MPI, for instance,
to allow users to specify neighbor communication explicitly. Communication is performed internally by
calling MPI_IRecv(), MPI_Recv(), MPI_Put and other point-to-point calls. The function which performs
best for a problem is called for subsequent invocations. Astonishingly, already on the abstract level of MPI
function calls, the function best suited depends on application, problem size and system [GFBR10]. ADCL
does not care about MPI-internals, it just treats MPI functions as a black box.

In [FG08], ADCL is extended to use historic knowledge across program executions. Therefore, achieved
performance is recorded in XML files and used to predict performance of future executions. This reduces
the number of high-level MPI functions to evaluate. Especially, functions which are well known for their
slow execution on similar problems could be skipped, speeding up the run-time decision process of ADCL
and consequently reduce application run-time.

Compared to ADCL, the Self-Tuned Adaptive Routines for MPI Collective Operations (STAR-MPI) provides
a rich set of MPI implementations for collective operations by itself [FYL06], for instance a set of 13 al-
gorithms is supplied for MPI_Alltoall(). Those algorithms are inspired by the algorithmic research on
efficient collective communication. Similar to ADCL, STAR-MPI evaluates the performance of the imple-
mentations on the fly during program execution. In the first stage, during each collective function call
STAR-MPI evaluates the performance of an alternative implementation. Once all implementations are
tested multiple times, the processes pick the best function and use it for subsequent calls. While the win-
ning function is used to realize the MPI call, the time spent for subsequent calls to this function call is
monitored in order to deal with changes in workload and environmental conditions. The algorithm is
adaptive because it tries to keep the current selection as long as possible but still adjusts to changes. For
instance, if the difference between previous run-times is too high, then the second best algorithm will be
chosen for further calls. STAR-MPI selection of algorithms depends also on the message size, for each size
a best algorithm is kept. To reduce the training phase, algorithms which are expected to behave similarly
are partitioned into groups, e.g., a group for inter-node communication, or for a switched network. Now,
instead of checking all algorithms of all groups, the group is selected by testing only one algorithm of each
group and choosing the best group for further evaluation. On average between two to three algorithms are
grouped together.

Selecting the appropriate methodology for benchmarking and to interpret measured performance results
is tedious and thus there are tools which assist in creating new benchmarks. MPIBlib [LRO08] is a library
which bundles common features of MPI benchmarking suites including timing, repetition of experiments
and calculation of statistics. Features of such a library can be embedded directly into the application or
into the tools selecting the fastest communication implementation.

Process placement and topology awareness Besides tuning MPI internals, the mapping of the pro-
cesses to the available CPUs and nodes plays an important role – as the application communication be-
havior should match the node-internal and external network topology to minimize communication time

54

2.3 MESSAGE PASSING INTERFACE

(see Page 51). The Moab scheduler knows the physical layout of the cluster, which enables it to provide a
mapping with low communication costs [CCS+06]. Mapping of processes to processors is done in Hypertool
by a heuristic taking the communication traffic into account [WG90].

An automatic profile-guided approach is introduced in [CCH+06]. The MPI Process Placement toolset pro-
vides a set of tools: one tool records the communication profile, another one explores the system topology,
at last an optimization algorithm determines a viable solution for the application mapping. This solution
can then be applied in subsequent application executions by the user itself.

Neither of those mapping tools takes process I/O to servers into account, although at first glance it could
be handled similarly to communication.

When a placement is chosen, the topology must be explored by MPI to utilize it. Starting with the recent
Open MPI 1.3, Carto, a framework which determines the topology of the inter-process communication
partners, is incorporated. By using Carto, for example a graph is built for the shared memory interconnect
and one for the remote network. For each interconnect, the topology is stored in a weighted graph and
available for other internal frameworks to tune their interconnection to remote processes. As an example,
Open MPI can use the NIC closest to a particular sender process, or shared memory collective operations
can take the memory distribution into account.

MVAPICH2 also aims to become topology aware to tune collective operations according to the topology.
Recent work in this area has demonstrated the potential of this approach [KSVP10], for MPI_Gather() and
MPI_Scatter() up to 50% improvement could be achieved on an Infiniband cluster.

Individual I/O Client-side I/O optimizations for MPI are presented in [TGL99]. Data-sieving is introduced
to optimize independent non-contiguous I/O – it operates by issuing one request to access required data
together with intermediate holes; unwanted data is just discarded. This avoids unnecessary seeking on hard
disk drives and can improve performance, especially for very small blocks. However, it causes unneeded
data to be read and transported to the clients.

General write-behind for MPI files is realized in [LCCW05, LCC+07], in their implementation all clients
dedicate a piece of their memory to form a cooperative cache.

Non-blocking I/O enables overlapping communication (and computation) with I/O, the efficiency is ana-
lyzed theoretically and empirically in [BKL09]. Theoretically, a perfect overlapping of I/O with computa-
tion halves execution time.

To reduce the number of messages for non-contiguous I/O, Ching et al.[CCC+03] extend ROMIO to use
ListIO in PVFS client-server communication.

In [KRVP07] a method to optimize non-contiguous (random) writes is introduced. Basically all write oper-
ations are appended to a logfile in the order they are performed. Consequently, non-contiguous operations
are converted into sequential operations. This manipulation does not preserve the logical order of data in
the physical file because the file format is different. However, when the file is read from the same file han-
dle the actual file format must be recreated by replaying the log. Once a file is closed, it could be converted
to the correct logical file and thus the sequential consistency of MPI is satisfied. Hence, this optimization
has a good use-case for write-mostly access patterns, e.g., for checkpoints.

With shared file pointers, the actual data transfer could happen concurrently, however, in most cases I/O
is suboptimal. Most implementations are not performing well because file system constructs such as a
file lock or hidden files are used to realize the semantics of a shared file pointer. Some purely MPI-based
implementations have been investigated and evaluated [LRT07].

Collective I/O The PVFS implementation of ROMIO reduces the metadata overhead of opening a new file
by delegating the file open (and the potential create operation) to Rank 0 of the communicator specified

55

BACKGROUND AND RELATED WORK 2.3

during the open call. All other participating processes receive the information required to access the file
by a broadcast from the root and thus the burden of the metadata server is reduced.

The collective optimization of the Two-Phase protocol is discussed in [CCC+03]. With Two-Phase, processes
exchange their spatial access pattern and coordinate amongst themselves, which process will access a se-
quential file domain – data to be accessed is partitioned among all clients. Then, (for a read operation) the
clients repeat two phases: a set of the processes reads the assigned file domains sequentially, then during
the communication phase data is shipped to the clients which needs it35.

Multiple-Phase Collective I/O, an extended version of the Two-Phase protocol, is presented in [SIC+07,
SIPC09]. With Multi-Phase I/O, the communication phase is split up in several steps, in which pairs
of clients communicate with each other in parallel. These multiple steps are used to progressively increase
the locality of the data to be accessed by aggregating more operations into larger blocks. Then, during
the I/O phase, sequential blocks can be accessed; the block size of the sequential access depends on the
number of steps performed.

In [HYC05], the collective I/O scheme is adjusted to exploit the features of Infiniband.

A cooperate cache is integrated in [PTH+01], this allows GPFS to cache read and defer write operations.
With a write-behind strategy, write operations are buffered. Effectively, data updates and storing the
changed data on the file system happens concurrently. To ensure consistency, every physical data block is
assigned to exactly one client which performs all I/O operations.

In [Wor06] an adaptive approach is introduced which automatically sets hints for collective I/O, based on
the access pattern, topology and the characteristics of the underlying file system.

Higher-level I/O optimizations The following two approaches are not optimizing MPI-IO by itself, in-
stead they provide a layer above MPI that enables further interesting optimizations.

Initially, SIONlib [FWP09] was developed to deal with I/O forwarding and communication topology of
a BlueGene system. This library channels I/O operations to a logical file from POSIX via MPI, i.e., in a
program regular POSIX (e.g., fwrite()) calls are used, which are mapped to a set of shared files by using
the MPI-IO interface. Depending on the underlying system, one or multiple files are generated to optimize
performance. Conflicts on parallel access of a shared file are reduced, yet, the number of files is less than
the number of processes which minimizes metadata overhead on the underlying file system. For instance,
on a BlueGene, all processors routing to a particular I/O aggregator can be mapped to one physical file.
Hence, the I/O forwarder does not have to share access to the file with other aggregators. The mapping
from logical to physical files is hidden behind the library and transparent to the application. The user
just specifies the number of files in the library open call and whether or not collective calls should be
performed.

The Adaptable IO System (ADIOS) [LKK+08, LZKS09] provides an abstract I/O API and library that de-
couples application logic from the actual I/O setting. In an XML file, the desired I/O method can be
selected and parameterized – I/O operation can be realized either with HDF5, MPI (collective or inde-
pendent), POSIX or several asynchronous staging methods. With ADIOS, each I/O performed in a C (or
Fortran) program is annotated with a name that can be referred to in the XML file. The amount of data
accessed, datatype and further attributes of the call are defined in the XML36. An advantage of decoupling
the underlying I/O procedure is that the best-fitting implementation can be selected for a group of files.

Settings for the implementation, e.g., buffer size, can be defined without changing code. Moreover, data
could be forwarded to a visualization system, simply discarded, or even multiple I/O methods can be se-
lected to visualize and store data at the same time. Similar to SIONlib, the system is able to either write
a shared file or to split logical I/O into several file system objects. With ADIOS, the BP file format is
proposed that improves data locality for a single process and minimizes collisions between the processes.

35The communication and exchange phases are swapped for write operations.
36Elementary datatypes or arrays of arbitrary dimension are supported.

56

2.4 PERFORMANCE ANALYSIS AND TUNING

The API provides functions to the programmer to indicate when the computation starts or ends, or when
the scientific application main loop occurs. On the one hand, this enables efficient communication to the
servers without disturbing application communication. On the other hand, the pace in which data is cre-
ated and written back is announced to the library. Concluding, ADIO provides a completely new API in
which the programmer is forced to deal with I/O related aspects consciously – but due to the XML, system
optimizations are possible without source-code modifications.

In our paper [KMKL11], the ADIOS interface is explained in detail. In this paper the interface is extended
to offer visualization capabilities and improved energy efficiency.

Tuning library settings MPI libraries like IBM’s Parallel Environment or Open MPI offer a rich set of
environment specific parameters to tune the library internals towards a system or application. For example
buffer sizes for the eager message protocol can be adjusted to the network characteristics. In Open MPI, the
Modular Component Architecture (MCA) provides more than 250 parameters on a COST Beowulf cluster.
The libraries provide empirically chosen defaults, which might be determined for a completely different
system than the system the library is deployed on. Thus, the defaults might achieve only a fraction of
theoretical performance. To provide a starting point for application specific tuning of those values, an
administrator should provide appropriate values for the given system.

Chaarawi et.al. developed the Open Tool for Parameter Optimization (OTPO) for Open MPI which uses the
automatic optimization algorithm from ADCL to determine the best settings of available MCA parameters
for a given cluster system [CSGF08]. OTPO could be configured and run by administrators to set up
efficient cluster defaults.

2.4. Performance Analysis and Tuning

In computer science, performance analysis refers to activity that fosters understanding in timing and re-
source utilization of applications. In terms of a single computer, the CPU, or to be more formal, each
functional unit provided by the CPU, is considered to be a resource. Therefore, understanding resource
utilization includes understanding run-time behavior and wall-clock time. For parallel applications, the
concurrent computation, communication and parallel I/O increase the complexity of the analysis. There-
fore, many components influence the resource utilization and run-time behavior; those have been dis-
cussed in Section 2.2.1.

Computational complexity theory is the field of computer science that provides methods to classify and
estimate algorithm run-time depending on the problem size. Theoretical analysis of source code is usually
infeasible as utilization of hardware at run-time can only be roughly estimated. Therefore, in practice,
theoretical analysis is restricted to small code-pieces or clear application kernels, and typically software
behavior is measured and assessed.

Programs can be classified according to their utilization characteristics and demand – important algo-
rithms are categorized into 13 motifs [ABC+06]. Most applications could be thought of as a combination of
the basic functionality required by those motifs. But even so, the characteristics of each real program must
be analyzed individually.

In this section, it is first shown how application design and software engineering can assist in developing
performance-demanding applications (Section 2.4.1). Those methods focus on integrated and automatic
development to achieve efficient and performant applications.

As scientific programs usually require a huge amount of resources, one could expect them to be especially
designed for performance. Unfortunately, that is not the case. One reason is that many scientific codes
evolved over decades at a time when performance has been of low priority. Usually performance is ana-
lyzed after the correctness of the program has been evaluated. At this late stage, a functional version of the

57

BACKGROUND AND RELATED WORK 2.4

code exists, which has been tested to some extent. Thus, a complete redesign is usually out of reach for the
scientist because it is time-consuming.

Once the behavior of an application is understood, it can be modified to make the code more efficient
with respect to resource consumption. Tuning refers to the iterative process in which the current status is
systematically analyzed and optimized, it is described further in Section 2.4.2).

Plenty of tools exist which assist the developer and user in tuning an application and the underlying
run-time system according to this closed loop of performance tuning. In Section 2.4.3, several tools to
analyze sequential programs are introduced, followed by tools suitable for parallel applications in Sec-
tion 2.4.4. Capabilities of each tool are illustrated on the same parallel code, i.e., all tools are tested with
the same application and parameters. The experiment run uses our partial differential equation (PDE)
solver partdiff-par37, which implements the Jacobi and Gauß-Seidel methods. The sequential version
called partdiff-seq excludes the MPI calls; apart from these modifications, the code base is identical.

Since behavior of a program is often analyzed after the program terminates, at last a common file format
is introduced, which stores program activity for such a post-mortem analysis (Section 2.4.5). Some parts of
this chapter have been published in the book [MMK+12].

The simulation environment that is presented later in this thesis will assist in post-mortem performance
analysis but also in a performance oriented development of applications. Therefore, understanding these
areas is important.

2.4.1. Developing Applications for Performance

In the industry the process of system and application tuning is often referred to as performance engineer-
ing. Software engineers designed special methods to embed performance engineering into the application
development. With these approaches, performance is considered explicitly during the application design
and its implementation.

Important existing approaches that embed performance engineering into the development cycle are pre-
sented next. Unfortunately, the research and processes in industry are not integrated in state-of-the-art
HPC application development, although there are a few tools which assist in the development of parallel
applications.

Computer-aided software engineering Tools and methodologies serve the developer during the life-
cycle of software. In 1982, the term Computer-aided software engineering (CASE) was formed:

“Computer-aided software engineering is the scientific application of a set of tools and methods to
a software system which is meant to result in high-quality, defect-free, and maintainable software
products” [Wik11], Wikibook: Introduction to Software Engineering/Tools/Modeling and Case
Tools

CASE tools assist the programmer in the software development process, which basically consists of the
following phases: requirement engineering, analysis, design, coding, documentation and testing. Infor-
mation of one phase is linked to other phases by those tools. This way, information about early phases is
accessible in later phases; for example, the requirements are referenced directly in the source code.

Automatic code generation from a model The Model-Driven Architecture (MDA) is a design methodol-
ogy in which abstract models of the desired application are refined until a code skeleton representing the
model is generated. Multiple existing technologies are bundled together with tools to assist in top-down
development. For example, developers can create the models in appropriate description languages like the

37This PDE solver is frequently used in the lectures of our working group as an exercise to implement various parallel program-
ming models. More information about the program is given in Section 7.9.1.

58

2.4 PERFORMANCE ANALYSIS AND TUNING

Unified Modeling Language (UML). UML class diagrams are then translated into Java skeletons; a reverse
engineering of modified classes into the model is also possible.

CASE and MDA do not explicitly honor the non-functional requirement for performance. Certainly, due
to the difficulty to meet this requirement in later stages of the development, as it is hard to estimate
performance of complex applications beforehand.

Integrating performance aspects into code development In the industry, the direction towards design
for performance – Software Performance Engineering [CUS01] (SPE) – is a newer development. Performance
tuning guides or best practices on the other hand, are usually available for all programming languages.

Performance evaluation is anchored into the software development cycle; for example, see [CUS01,
BGM03, BFG+04, PW05, SSM+09]. The book [CUS01] discusses performance-oriented design and pro-
vides best-practice and a methodology for predicting performance of object-oriented software quantita-
tively. Microsoft targets performance modeling of the .NET language explicitly in [Cor04] and discusses
software development for performance.

Continuous performance management of Java or .NET applications is made available in the product dy-
naTrace [dyn10]. During the entire software life-cycle, the performance is monitored and compared with
earlier results to detect performance degradation due to code modification.

The Tuning and Performance Utilities have been recently integrated into the Eclipse Parallel Tools Plat-
form [SSM+09] to make them available to a wider audience (refer to section 2.4.4 for a description of
TAU).

Modeling and estimating performance The Object Management Group, the standardization consor-
tium which defined UML, extended the diagrams by defining annotations for performance require-
ments [Obj03]. Several systems exists which feed these annotations into performance models and sim-
ulators, this is discussed in [BGM03, BFG+04, WPP+05, PW05].

For example, in [PW05], interactions between actors and system components are evaluated by converting
a use case map into a performance model. PUMA [WPP+05] is a tool set which actually translates arbitrary
design models with performance annotations into a Core Scenario Model (CSM) containing the performance
relevant aspects. This CSM can then be evaluated with various performance models. In their paper, an
example is given in which behavior is modeled in UML and converted into Petri Nets and a Queueing
Network Model.

Resource and network utilization of distributed systems is accounted for in the Layered Queueing Network
(LQN) model: An entity performs activities which consume some resource, need time, impose wait delay
or communicate with other entities via synchronous or asynchronous messages. As a third possibility,
a request can be forwarded to another entity. The LQN model honors resource contention. It has been
used to study many kinds of distributed systems [Fra00]. Simple models can be solved analytically to
compute mean values of service time and utilization of it’s components. To solve more sophisticated models,
simulation is needed.

The Trace-Based Load Characterization (TLC) in [HWRI99] records trace information in a production en-
vironment and feeds it into an LQN model.

The integrated modeling and simulation environment CoFluent Studio [CoF09, CoF10] allows designing
embedded multiprocessor systems and their software. Developers formulate requirements and specifica-
tions and finally specify their algorithm as an abstract sequence of functions. Similar to MDA, the model
is synthesized into architecture specific code, but here the functions are considered as well. Then the
performance characteristics of software under the given hardware are simulated and analyzed prior to
implementation. The system model for embedded systems contains models for computing units, system
buses, network routers, point-to-point links, memory and I/O interfaces including schedulers. Full system

59

BACKGROUND AND RELATED WORK 2.4

simulation of the hardware/software system in a virtual prototype is also supported but does not target
HPC.

Designing hardware and software together In hardware/software co-design, both the perspective of
software and hardware are considered which is especially important for embedded systems [DM94]. This
means that the hardware is designed with the software in mind which will run later on the hardware.
Through this concurrent development, a synergy is achieved – the hardware supports the required func-
tionality and the software is geared towards the hardware.

With this approach performance critical software functionality can be directly implemented in the hard-
ware. To avoid the high costs involved in the design of an Application-Specific Integrated Circuit (ASIC),
often Field-Programmable Gate Array (FPGA) technology is deployed. An FPGA can be reprogrammed on-
line to implement a particular function.

Recently, hardware/software co-design became a hot topic for designing HPC environments [Ebc05,
HMD+10, KWM+10] as it promises to increase energy efficiency of applications and paves the road for
exascale:

“The traditional model of single-domain research activities where hardware and software techniques
are explored in isolation will not address the current challenges.” [KBB+08]

The similarities and differences between HPC and embedded systems are discussed in [HMD+10], for
example, in HPC the processor is not designed for a specific application as it could be for embedded
systems.

On a side note, another, similar approach to co-design is to configure a system towards the requirements
of the software. However, that means the system provides capabilities to be reconfigured according to the
demand of the software. In earlier times this was called configurable computing [MSHA+97]. Slight recon-
figuration and modification of hardware was recently deployed; for example, with the Fermi architecture
of its GPUs, NVIDIA can partition available memory into shared memory and as local cache, depending
on the user configuration [Pat09].

Performance-oriented development of parallel applications An early tool for semi-automatic devel-
opment of parallel programs was Hypertool [WG90]. Hypertool takes a sequential data-partitioned pro-
gram and generates code for parallel execution based on the user-supplied partitioning. Additionally,
performance estimates and quality measures for the code are computed. In their paper, state-of-the-art
software shows that the development issues were already a topic in the 90th.

Software Engineering for Parallel Processing [WK94] (SEPP) was an European project which tried to realize
the design for performance during development of parallel applications by developing new CASE tools.
Among these tools, a simulator should allow rapid prototyping and benchmarking. The contribution to the
EDPEPPS environment [DZV+97] simulate parallel programs that use the Parallel Virtual Machine (PVM)
message passing paradigm.

Computer Aided Parallel Software Engineering (CAPSE) was a similar approach, developed in parallel to
SEPP, it is discussed in [GHKV96]. N-MAP is an environment developed within CAPSE that predicts ap-
plication performance already during the development phase [FM95, FJ95]. In [FJ00], N-MAP is claimed
to be superior to performance models, because a model abstracts from reality which they state “is sus-
pect to fail”. Instead they propose that the developer prototypes the distributed algorithm directly in a
N-MAP specification. The N-MAP specification is basically a language dialect derived from C in which
inter-process communication is programmed explicitly. Functions can be implemented that represent the
real algorithm, or the computation time can be specified by a particular function which might include ran-
dom variables of some distributions. This implicit performance model is executed inside a simulator that
multiplexes a single processor among all parallel processes and executes them sequentially. With this ap-
proach, the computation time will be accurately represented iff the real algorithm is encoded. Further, with

60

2.4 PERFORMANCE ANALYSIS AND TUNING

this approach, the simulation prototype can be transformed into a real PVM executable. With N-MAP, the
workload of application processes can be optimized online: performance metrics are measured by sensors,
future states and utilization are estimated, and then appropriate actions are initiated pro-actively.

Pllana et al. [PBXB08] propose performance-oriented program development instead of code-based perfor-
mance tuning. With Performance Prophet, they describe a system which combines mathematical modeling
and discrete-event simulation to predict application performance. In their workflow, a developer speci-
fies the program behavior in an UML extension which is geared towards modeling parallel applications.
Then, the program is translated into simulator code and executed to predict its performance. The execu-
tion time of code blocks is modeled mathematically by assigning a cost function to each code block. Cost
functions could be designed by measuring behavior of the code for some inputs and extrapolating them to
arbitrary inputs. In their approach, inter-process communication and the control flow are modeled with
discrete-events.

All the mentioned tools try to change the way of software engineering to incorporate the performance rel-
evant aspects early in the development cycle. In contrast, the closed loop of performance tuning optimizes
programs after a running version exists.

2.4.2. Closed Loop of Performance Tuning

The localization of a performance issue on an existing system is a process in which a hypothesis is sup-
ported by measurement and theoretic considerations. Measurement is performed by executing the pro-
gram while monitoring run-time behavior of the application and the system. In general, tuning is not
limited to source code, it could be applied to any system.

The schematic view of the typical iterative optimization process, the closed loop of performance tuning, is
shown in Figure 2.11:

1. To measure performance in an experiment, the environment consisting of hardware and software in-
cluding their configuration is chosen, also the appropriate input, i.e., problem statement, is decided.
While theoretic considerations allow projecting run-time behavior of arbitrary input sets, monitoring
is limited to instances of program input. Thus, it might happen that optimizations made for a partic-
ular configuration degrade performance on a different setup or program input. Therefore, multiple
experimental setups could be measured together. Often, the measurement itself influences the sys-
tem by degrading performance, which must be kept in mind. Picking the appropriate measurement
tools and granularity can reveal the relevant behavior of the system.

2. In the next step, obtained empirical performance data is analyzed to identify optimization potential
in the source code and on the system. As execution of each instruction requires some resources,
the code areas must be rated. First, hot-spots – code regions where execution requires significant
portions of run-time (or system resources), are identified. Then, optimization potential of the hot
spots is assessed based on potential performance gains and the estimated time required to modify
the current solution. Knuth describes this issue excellently:

“We should forget about small efficiencies, say about 97% of the time: premature optimization is
the root of all evil. Yet we should not pass up our opportunities in that critical 3%. A good pro-
grammer will not be lulled into complacency by such reasoning, he will be wise to look carefully
at the critical code; but only after that code has been identified. ” [Knu79]

Changing a few code lines to improve run-time by 5% is more efficient than to recode the whole
input/output of a program, especially if I/O might account for only 1% of the total run-time. How-
ever, care must be taken when the potential is assessed, depending on the overall run-time, a small
improvement might be valuable. From the view of the computing facility, decreasing run-time of a
program which runs for millions of CPU hours by 1% yields a clear benefit by saving operational
costs in form of 10.000 CPU hours (which is about 1.5 CPU years).

61

BACKGROUND AND RELATED WORK 2.4

#include <stdio.h>
#include <mpi.h>

int main(){
…

...
}

Current state

Measure
performance
characteristics

Measure
performance
characteristics

Analyze data
and localize

issues

Analyze data
and localize

issues
Generate
alternatives

Generate
alternatives

Modify the
system

Modify the
system

Start

Figure 2.11.: Closed loop cycle of optimization and tuning.

“The conventional wisdom shared by many of today’s software engineers calls for ignoring ef-
ficiency in the small; but I believe this is simply an overreaction to the abuses they see being
practiced by penny-wise-and-pound-foolish programmers, who can’t debug or maintain their
“optimized” programs. In established engineering disciplines a 12% improvement, easily ob-
tained, is never considered marginal and I believe the same viewpoint should prevail in software
engineering.” [Knu79]

3. Based on the insight gained by the analysis, alternatives for the implementation are generated, or sys-
tem modifications are considered, respectively, which apparently mitigate the observed performance
issue. This is actually the hardest part of the tuning because it requires that the behavior of the new
system can be predicted or estimated. However, often in practice multiple potential alternatives are
evaluated, and based on the results the best one is chosen. Sometimes a modification requires mod-
ifications that affect other parts of the program and might even degrade overall performance. With
increasing experience and knowledge of the person tuning the system, the number of alternatives is
reduced as the future behavior can be better anticipated.

4. At the end of a loop the current system is modified, i.e., one of the performance relevant layers
is adjusted, to realize the potential improvement of the new design. The system is reevaluated in
the next cycle until the time required to change the system outweights potential improvements, or
potential gains are too small because the performance measured is already near-optimal. However,
in practice, in most cases the efficiency of the current solution is not estimated; instead, the current
run-time is considered to be potentially saved.

Large systems/applications are often complex; thus it is important to reduce the complexity. Therefore,
application logic can be reduced to the core of the algorithm – the application kernel, which is then im-
plemented in a benchmark. Such a benchmark can already provide a rough estimate for running the full
application on a system.

In the following paragraphs, a few aspects of the loop are highlighted and discussed: the layers and compo-
nents that are relevant, then the nature and diversity of performance data, concepts that enable collecting
performance data, and the analysis of collected data.

Relevant layers and components In the context of this thesis all of the layers and components partici-
pating in an application execution38 are subject to the optimization process. The information about state
and activities of all of them could be important to assess the observations.

38See Section 2.2.1 on Page 27 for the layers involved in parallel programming.

62

2.4 PERFORMANCE ANALYSIS AND TUNING

Especially, if a component’s characteristics contribute to the observed performance to a large extent, under-
standing its internals might enable tuning of future run-time behavior. To identify reasons for a bottleneck
it is mandatory to look inside the particular component (or activity). Without this knowledge, one can
deduct only that the process within a particular component causes the suboptimal behavior, but not the
reason. It could happen, for instance, that dependencies of the spotted behavior are the cause, while a layer
itself is very efficient. Also, external (background) activities influence the observable performance. There-
fore, during a measurement observations must be accounted to the right activity, otherwise the resource
consumption might be attributed to the wrong cause.

Consequently, striving for the best analysis capabilities requires us to obtain a transparent view of all
concurrent activities to a very detailed level, however, in a complex system such as a parallel computer this
is infeasible because every event must be accurately captured with a global time. Therefore, a promising
compromise is to look at relevant activity on all layers and components and the application code, this way
performance bottlenecks can be assigned to the particular layer. Furthermore, such a concepts permits
identifying the particular application code that limits performance.

The implementation of a stub39 for a layer which pretends to perform the operation allows an implicit
performance evaluation of all layers above or below the replaced layer. An example of this technique can
be found in [Kun06]; in this thesis the persistency layer of PVFS has been replaced with a stub to reveal
the achievable metadata and data performance of PVFS.

Performance data In the closed loop, data is collected which characterizes the application run and sys-
tem utilization. There are many types of data that can be collected. For example, the operating system pro-
vides a rich set of interesting characteristics such as memory, network and CPU usage. These characterize
the activity of the whole system, and sometimes usage can even be assigned to individual applications.

The semantics of this data can be of various kinds, usually, a metric defines the measurement process and
the way subsequent values are obtained. For example, time is a simple metric, which indicates the amount
of time spent in a program, function or hardware command. The resident set size (RSS), i.e., the amount of
occupied memory, is another metric.

Depending on the metrics, data can be obtained for a subset or all layers involved in application execution.
For example, data can be collected from hardware devices or generated within software, either by the
operating system, the application or from additional performance analysis tools.

The expressiveness of a metric depends on its measurement process: A metric can be fine-grained – just
describing a single operation executed on a particular component at a given time; or it can be coarse-
grained – aggregating all activity that is observed on a given component or even on the whole system.

One way of managing performance information is to store statistics, e.g., absolute values like number
of function invocations, utilization of a component, average execution time of a function, or performed
floating point operations. Statistics of the activity of a program is referred to as profile. A profile aggregates
events by a given metric, for example by summing up the inclusive duration of function calls. In contrast
to a profile, a trace records events of a program together with a timestamp and thus it provides the exact
execution chronology and, therewith, allows analysis of temporal dependencies. External metrics like
hardware performance can be integrated into traces as well. Tracing of behavior produces much more data,
potentially degrading performance and distorting attempts of the user to analyze observation; therefore,
in many cases only profiles are recorded. A combination of both approaches can be applied to reduce the
overhead while still offering enough information for the analysis: Events that happen during a timespan
can be recorded periodically as a profile for an interval – this allows analysis of temporal variability; By
generating profiles for disjoint code regions, behavior of the different program phases can be assessed.

Once a way of aggregation is chosen, the performance data must be correlated to the interesting applica-
tion’s behavior and source code. Depending on the measurement process the assignment of information to

39In software engineering a stub refers to code that implements a method (or interface). It may simulate the behavior of existing
code for some inputs to ease testing of other components that rely on the method (or interface).

63

BACKGROUND AND RELATED WORK 2.4

the cause can be impossible, for example a statistic cannot reveal the contribution of concurrent activity.

Typically, it is not possible to gather detailed information for hardware activity because that would imply
much overhead. Hardware sensors are available in some devices, which measure internal utilization or
other metrics like energy consumption or error rate. For example, all decent consumer CPUs have built-
in programmable performance counters. Depending on the CPU architecture, a wide range of counters
are available which measure efficiency of cache and branch-prediction, the number of instructions run
or the number of floating point operations performed. Modern processors provide a variety of over one
hundred counters covering different aspects of a CPU. However, using performance counters of a CPU
for analysis has a flaw – the CPUs provide only a limited number of registers to manage the counter
values. Effectively only 4 to 6 counters can be active at any given time. This issue can be tackled by
multiplexing the metrics from time to time and thus over long running processes a good estimate of the
values can be provided. Some of the recorded counters actually capture the aggregate events for the full
microprocessor, that means multiple physical CPUs share one event. Consequently, this statistical data
cannot be associated with a particular process. Newer network interface cards accumulate the number of
packets and the amount of data received and transmitted.

Collecting performance data There are several approaches of measuring the performance of a given
application. A monitor is a system which collects data about the program execution. Approaches could be
classified based on where, when and how run-time behavior is monitored.

A monitor might be capable of recording activities within an application (e.g., function calls), across used
libraries, activities within the operating system such as interrupts, or it may track hardware activities; in
principle, data can be collected from all components or layers described in Figure 2.7. Most monitors rely
on software to measure the state of the system, data from available hardware sensors is usually queried
from the software on-demand. Hardware monitors are too expensive, complicated and inflexible to capture
program activity in detail.

Usually, changes are made to the program under inspection to increase analysis capabilities; the activity
that alters a program is called instrumentation. Popular methods are to modify source code, to relink
object files with patched functions or to modify machine code directly [SMAb01]. During execution, such
a modified program invokes functions of the monitoring environment to provide additional information
about the program execution and the system state. The described instrumentation functionality could also
be supported directly by the (operating) system and, therewith, it could be possible to collect performance
data without modifying the application.

As a software monitor requires certain resources to perform its duty (those can be considered as overhead),
monitoring of an application perturbs the original execution. Observed data must be kept in memory and
might be flushed to disk if memory space does not suffice. Additionally, computation is required to update
the performance data. The overhead depends on the characteristics of the application and system – it might
perturb behavior of the instrumented application so much that an assessment of the original behavior is
impossible. Therefore, to reduce the overhead users enable only a subset of the potential features in a
typical optimization setup.

Automatic instrumentation by tools usually tries to gather as much information as possible, therefore, the
overhead is higher than with an approach in which the user modifies the source code manually. Normally,
the user starts with an automatic instrumentation, then if the overhead is too high filters are applied until
the trace file includes just enough information for the analysis. Some tools automatically filter activity if
an event is fired to often, if the overhead of the measurement system itself grows too high. If filtering still
incurs too much overhead, then interesting functions can be manually instrumented, i.e., by inserting calls
to the monitoring interface by hand.

Additionally, a selective activation of the monitor can significantly reduce the amount of recorded data.
Also, a monitor could sample events at a lower frequency, reducing the overhead and the trace detail level
on the same extent.

64

2.4 PERFORMANCE ANALYSIS AND TUNING

Analyzing data Users analyze the data recorded by the monitoring system to localize optimization po-
tential. Performance data is either recorded during program execution and assessed after the application
finished, this approach of post-mortem analysis is also referred to as offline analysis. An advantage of this
methodology is that data can be analyzed multiple times and compared with older results. Another ap-
proach is to gather and assess data online – while the program runs. This way feedback is provided imme-
diately to the user, who could adjust settings to the monitoring environment depending on the results.

Due to the vast amount of data, sophisticated tools are required to localize performance issues of the sys-
tem and correlate them with application behavior and finally identify source code causing them. Tools
operate either manually, i.e., the user must inspect the data himself; a semi-automatic tool could give hints
to the user where abnormalities or inefficiencies are found, or try to assess data automatically. Tool envi-
ronments, which localize and tune code automatically, without user interaction, are on the wishlist of all
programmers. However, due to the system and application complexity those are only applicable for a very
small set of problems. Usually, tools offer analysis capability in several views or displays, each relevant to a
particular type of analysis.

2.4.3. Available Tools for Analysis of Sequential Programs

There exist plenty of tools that assist in performance analysis and optimizations of sequential code, a hand-
ful of tools of different categories are briefly introduced: GNU gprof generates a profile of the application
in user-space. OProfile can record and investigate application and system behavior including activity of the
Linux kernel. CPU counters can be related to the individual operations. PAPI is a library which accesses
CPU counters and provides additional hardware statistics. Likwid is a lightweight tool suite that reads
CPU counters for an application. LTTng traces and visualizes activity of processes and within the kernel.
However, compared to OProfile symbolic information of the application program is not supported.

All tools mentioned are licensed under an open and free license. The state of the latest stable versions
available is discussed as of February 2011.

GNU gprof

GNU compilers can be instructed to include code into a program that will periodically collect samples of
the program counter. During run-time profiles of function call timings and the call graph40 are stored in a
file. This profiling data can then be analyzed by the command line tool gprof.

To demonstrate the application of the tool, an excerpt of the gprof output for a run of the partdiff-seq

PDE solver is given in Listing 2.1. In the flat profile (up to Line 12), the time is shown per function. While
6 functions have been invoked once (Lines 6 to 11), all run-time is spent in the function calculate()

(Line 6). The textual representation of the call graph is also provided starting with Line 15 of the output.
In Line 20 and Line 21, it is shown that the function calculate() is called from main once, additional
invocations from different functions would generate further sections. The main function calls all 6 sub-
routines (Lines 24-30).

Most platforms provide tools alike to gprof to analyze performance of sequential programs. To analyze a
parallel application, a profiler must be aware of the parallelism and provide an approach to handle it, for
example, by generating one output for each of the spawned processes.

Listing 2.1: Excerpt of a gprof output for partdiff-seq
1 F l a t p r o f i l e :
2
3 Each sample counts as 0.01 seconds .
4 % cumulative s e l f s e l f t o t a l
5 time seconds seconds c a l l s s / c a l l s / c a l l name
6 100.05 30.95 30.95 1 30.95 30.95 c a l c u l a t e
7 0.00 30.95 0.00 1 0.00 0.00 AskParams

40The call graph is a directed graph providing information about function invocation, the nodes of the graph represent functions
and the edges function calls.

65

BACKGROUND AND RELATED WORK 2.4

8 0.00 30.95 0.00 1 0.00 0.00 DisplayMatrix
9 0.00 30.95 0.00 1 0.00 0.00 a l l o c a t e M a t r i c e s

10 0.00 30.95 0.00 1 0.00 0.00 d i s p l a y S t a t i s t i c s
11 0.00 30.95 0.00 1 0.00 0.00 i n i t M a t r i c e s
12
13 [. . .]
14
15 Cal l graph (explanat ion fo l lows)
16
17 g r a n u l a r i t y : each sample h i t covers 2 byte (s) for 0.03% of 30.95 seconds
18
19 index % time s e l f ch i ldren c a l l e d name
20 30.95 0.00 1/1 main [2]
21 [1] 100.0 30.95 0.00 1 c a l c u l a t e [1]
22 −−−
23 <spontaneous>
24 [2] 100.0 0.00 30.95 main [2]
25 30.95 0.00 1/1 c a l c u l a t e [1]
26 0.00 0.00 1/1 AskParams [3]
27 0.00 0.00 1/1 i n i t M a t r i c e s [7]
28 0.00 0.00 1/1 a l l o c a t e M a t r i c e s [5]
29 0.00 0.00 1/1 d i s p l a y S t a t i s t i c s [6]
30 0.00 0.00 1/1 DisplayMatrix [4]

OProfile

OProfile41 provides a sophisticated system-level profiling for the Linux operating system. Compared to
gprof, OProfile gathers information from all running processes at the same time. Also, kernel internals are
captured, and a configurable set of hardware performance counters. Profiling must be enabled and started
by the super user, then all activities are recorded. Several tools are provided that analyze data recorded
from user-space.

An example for system-level profiling of a desktop system running our PDE is given in listing 2.2. In
this profile, the concurrent activities can be identified, also the time spent in kernel space42 and in cer-
tain libraries becomes apparent. For each application, the user can create an individual profile, covering
activities of the particular application as well as activities triggered by library and system calls.

A very handy feature of the OProfile system is that source code (and additionally assembler) can be an-
notated with the performance observations. This makes it easier to localize the time-consuming lines. In
Listing 2.3, the source code of calculate() is shown with the sample count. The time spent in individual
code lines becomes apparent, for example, 12% of the run-time is spent in Line 20, showing the optimiza-
tion potential within this line.

Accessible hardware counters on the desktop system are shown in Listing 2.443.

Listing 2.2: Excerpt of a system-wide OProfile output while running partdiff-seq
1
2 CPU: I n t e l A r c h i t e c t u r a l Perfmon , speed 1199 MHz (est imated)
3 Counted CPU_CLK_UNHALTED events (Clock c y c l e s when not halted) with a unit mask of 0x00 (No unit mask) count 100000
4 samples % image name app name symbol name
5 1068951 71.0457 p a r t d i f f −seq p a r t d i f f −seq c a l c u l a t e
6 185685 12.3412 no−vmlinux no−vmlinux /no−vmlinux
7 26927 1.7896 libgstf lump3dec . so l ibgstf lump3dec . so / usr / l i b / gstreamer −0.10/ l ibgstf lump3dec . so
8 16738 1.1125 l ibspeexdsp . so . 1 . 5 . 0 l ibspeexdsp . so . 1 . 5 . 0 / usr / l i b / l ibspeexdsp . so . 1 . 5 . 0
9 13980 0.9292 Xorg Xorg / usr / bin /Xorg

10 12617 0.8386 libQtGui . so . 4 . 7 . 0 libQtGui . so . 4 . 7 . 0 / usr / l i b / libQtGui . so . 4 . 7 . 0
11 12110 0.8049 libQtCore . so . 4 . 7 . 0 libQtCore . so . 4 . 7 . 0 / usr / l i b / libQtCore . so . 4 . 7 . 0
12 10177 0.6764 l i b x u l . so l i b x u l . so / usr / l i b / f i r e f o x −3.6 .13/ l i b x u l . so
13 8375 0.5566 l ibmozjs . so l ibmozjs . so / usr / l i b / f i r e f o x −3.6 .13/ l ibmozjs . so
14 8311 0.5524 l i b f l a s h p l a y e r . so l i b f l a s h p l a y e r . so / usr / l i b / f lashplugin − i n s t a l l e r / l i b f l a s h p l a y e r . so
15 6670 0.4433 l ibdrm_inte l . so . 1 . 0 . 0 l ibdrm_inte l . so . 1 . 0 . 0 / l i b / l ibdrm_inte l . so . 1 . 0 . 0
16 6097 0.4052 libpulsecommon −0 . 9 . 2 1 . so libpulsecommon −0 . 9 . 2 1 . so / usr / l i b / libpulsecommon −0 . 9 . 2 1 . so
17 4185 0.2781 o p r o f i l e d o p r o f i l e d / usr / bin / o p r o f i l e d
18 4111 0.2732 l ibpthread −2 . 1 2 . 1 . so l ibpthread −2 . 1 2 . 1 . so pthread_mutex_lock
19 3819 0.2538 l ibgstreamer −0.10 . so . 0 . 2 6 . 0 l ibgstreamer −0.10 . so . 0 . 2 6 . 0 / usr / l i b / l ibgstreamer −0.10 . so . 0 . 2 6 . 0
20 3255 0.2163 l ibpthread −2 . 1 2 . 1 . so l ibpthread −2 . 1 2 . 1 . so pthread_mutex_unlock

Listing 2.3: Excerpt of the annotated partdiff-seq source code
1 : / */

41Visit http://oprofile.sourceforge.net/ for further information.
42By providing the kernel symbol table, all activity inside the kernel is accounted in a fine-grained manner to the kernel-internal

symbols; in the listing the no-vmlinux symbol aggregates all kernel activities.
43The output was created by using opcontrol -list-events.

66

http://oprofile.sourceforge.net/

2.4 PERFORMANCE ANALYSIS AND TUNING

2 : / * c a l c u l a t e : s o l v e s the equation */
3 : / */
4 : void c a l c u l a t e (void)
5 : { /* c a l c u l a t e t o t a l : 1068951 99.9979 */
6 : i n t i , j ; /* l o c a l v a r i a b l e s f or loops */
7 :
8 : while (term_i tera t ion >0)
9 : {

10 2 1.9 e−04 : maxresiduum=0;
11 5088 0.4760 : f or (i =1; i<N; i ++) /* over a l l rows */
12 : { /* */
13 74459 6.9655 : for (j =1; j <N; j ++) /* over a l l columns */
14 : {
15 484776 45.3497 : s t a r= −Matrix [m2] [i −1] [j]
16 : −Matrix [m2] [i] [j −1] −Matrix [m2] [i] [j +1]
17 : −Matrix [m2] [i +1][j] +4.0*Matrix [m2] [i] [j] ;
18 : residuum=getResiduum (i , j) ;
19 315 0.0295 : korrektur=residuum ;
20 134782 12.6086 : residuum = (residuum <0) ? −residuum : residuum ; // i f (residuum <0) residuum=residuum * (−1) ;
21 135906 12.7137 : maxresiduum = (residuum < maxresiduum) ? maxresiduum : residuum ;
22 :
23 66943 6.2624 : Matrix [m1] [i] [j]= Matrix [m2] [i] [j]+ korrektur ;
24 : }
25 : }
26 : s t a t _ i t e r a t i o n = s t a t _ i t e r a t i o n +1;
27 56 0.0052 : s t a t _ p r e c i s i o n=maxresiduum ;
28 : checkQuit () ;
29 : }
30 : }
31 :

Listing 2.4: Available OProfile events (accessible hardware counters) on an Intel Nehalem system
1
2 OProf i le : a v a i l a b l e events f or CPU type " I n t e l � A r c h i t e c t u r a l �Perfmon "
3
4 See I n t e l 64 and IA−32 A r c h i t e c t u r e s Software Developer ’ s Manual
5 Volume 3B (Document 253669) Chapter 18 f or a r c h i t e c t u r a l perfmon events
6 This i s a l imi ted s e t of f a l l b a c k events because o p r o f i l e doesn ’ t know your CPU
7 CPU_CLK_UNHALTED: (counter : a l l)
8 Clock c y c l e s when not halted (min count : 6000)
9 INST_RETIRED : (counter : a l l)

10 number of i n s t r u c t i o n s r e t i r e d (min count : 6000)
11 LLC_MISSES : (counter : a l l)
12 Last l e v e l cache demand reques ts from t h i s core that missed the LLC (min count : 6000)
13 Unit masks (de fau l t 0x41)
14 −−−−−−−−−−
15 0x41 : No unit mask
16 LLC_REFS : (counter : a l l)
17 Last l e v e l cache demand reques ts from t h i s core (min count : 6000)
18 Unit masks (de fau l t 0x4f)
19 −−−−−−−−−−
20 0x4f : No unit mask
21 BR_INST_RETIRED : (counter : a l l)
22 number of branch i n s t r u c t i o n s r e t i r e d (min count : 500)
23 BR_MISS_PRED_RETIRED : (counter : a l l)
24 number of mispredicted branches r e t i r e d (p r e c i s e) (min count : 500)

PAPI and Likwid

There are several approaches that access CPU counters. PAPI, the Performance API [MCW+05, TJYD09],
is a portable library which enables programs to gather performance events of all modern x86 and Power
processors.

PAPI evolved from an interface for CPU counters to the component-oriented PAPI-C [TJYD10], which
extends the original PAPI to capture counters from a multitude of sources – ACPI, lm_sensors for temper-
ature, or specific network interfaces (Myrinet). PAPI-C leverages the existing inhomogeneous vendor (and
software) interfaces.

An alternative library and user space program to profile hardware counters for an application is Lik-
wid [THW10]. Likwid is a user space tool that profiles hardware counters for the whole application
execution. When the tool is started, it initializes the counters, then starts the application, and once the
application terminates, the counters are stopped and a brief report is created. A small API is offered that
allows a developer to restrict the measured code regions and, furthermore, it supports to split execution
into phases that can be assessed individually.

An exemplary profile of the floating point group of partdiff-seq is given in Listing 2.5. In this ex-
ample the Intel processor operated on an average clock of 3.427 GHz (Line 28), the number of cycles per

67

BACKGROUND AND RELATED WORK 2.4

instruction(CPI) is 0.52, which means every other cycle one instruction is retired44 on the core. The num-
ber of double precision floating point operations per second is about 1.7 GFlop/s. One can easily conduct
from the average clock speed and CPI that if we execute one instruction every other cycle, then effectively
1.7 Gigainstructions are executed per second, which means most operations were floating point instruc-
tions. This little example already demonstrates the power of hardware counters and simple theoretic
considerations.

Available groups for Likwid are shown in Listing 2.6. The group to measure is selected upon startup of
Likwid. Note that the memory group is aggregated for all cores on a given chip.

Listing 2.5: Excerpt of the likwid output for partdiff-seq
1
2 −−−
3 −−−
4 CPU type : I n t e l Core Westmere processor
5 CPU clock : 2.79 GHz
6 Measuring group FLOPS_DP
7 −−−
8 / opt / l ikwid / bin / likwid−pin −c 1 . / p a r t d i f f −seq 0 2 100 1 2 10000
9 [likwid−pin] Main PID −> core 1 − OK

10
11 [. . .]
12 < program output >
13 [. . .]
14
15 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+
16 | Event | core 1 |
17 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+
18 | INSTR_RETIRED_ANY | 2.02167 e+11 |
19 | CPU_CLK_UNHALTED_CORE | 1.04973 e+11 |
20 | CPU_CLK_UNHALTED_REF | 8.55369 e+10 |
21 | FP_COMP_OPS_EXE_SSE_FP_PACKED | 1.16896 e+06 |
22 | FP_COMP_OPS_EXE_SSE_FP_SCALAR | 5.22953 e+10 |
23 | FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 1.0281 e+07 |
24 | FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 5.22862 e+10 |
25 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+
26 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−+
27 | Metric | core 1 |
28 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−+
29 | Runtime [s] | 37.5892 |
30 | Clock [MHz] | 3427.22 |
31 | CPI | 0.51924 |
32 | DP MFlops/ s (DP assumed) | 1696.62 |
33 | Packed MUOPS/ s | 0.037923 |
34 | S c a l a r MUOPS/ s | 1696.55 |
35 | SP MUOPS/ s | 0.333533 |
36 | DP MUOPS/ s | 1696.25 |
37 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−+

Listing 2.6: Available Likwid groups on an Intel Nehalem system
1 BRANCH: Branch pr ed ic t ion miss r a t e / r a t i o
2 CACHE: Data cache miss r a t e / r a t i o
3 CLOCK: Clock of cores
4 DATA: Load to s t o r e r a t i o
5 FLOPS_DP : Double P r e c i s i o n MFlops/ s
6 FLOPS_SP : S ingle P r e c i s i o n MFlops/ s
7 FLOPS_X87 : X87 MFlops/ s
8 L2 : L2 cache bandwidth in MBytes/ s
9 L2CACHE: L2 cache miss r a t e / r a t i o

10 L3 : L3 cache bandwidth in MBytes/ s
11 L3CACHE: L3 cache miss r a t e / r a t i o
12 MEM: Main memory bandwidth in MBytes/ s
13 TLB : TLB miss r a t e / r a t i o
14 VIEW: Double P r e c i s i o n MFlops/ s

LTTng

The Linux Trace Toolkit45 provides a user-space and a kernel-space tracer [FDD09]. The user space tracer
(UST) provides an API by which a developer can instrument the source code. Also, the GNU Project De-

44Many modern CPUs execute operations that might depend on operations that are still in the pipeline, for example, speculative
execution of branches before the branch condition is actually evaluated; if the prediction is correct, the results of the executed
instructions are stored, otherwise these results are invalid and must be discarded. When there are no conflicts, a processor
retires the instruction allowing write back of the results. For the speed of the execution the speculatively executed instructions
are irrelevant, therefore, they are not covered by the CPI metric.

45Documentation of the Linux Trace Toolkit including all tools is elaborate and available on http://lttng.org/. A quick-start
tutorial can be found here: http://omappedia.com/wiki/Using_LTTng.

68

http://lttng.org/
http://omappedia.com/wiki/Using_LTTng

2.4 PERFORMANCE ANALYSIS AND TUNING

bugger (gdb) can use UST to record GDB tracepoints. The kernel tracer captures activity for all processes
and the system.

Traces are recorded in the Common Trace Format (CTF)46. The user-space tracer records events with zero-
copy47, resulting in a low overhead of 700 ns per event (according to the documentation). The overhead
for the kernel-tracer is even lower.

LLTV is the LTTng Viewer, a tool providing statistical, graphical and text-based views of the recorded traces.
Internally, the individual views are realized as modules. It has been shown capable of handling traces with
a size of 10 GiB. Another viewer is incorporated into the eclipse48 IDE as a plugin. With LTTng, several
traces can be visualized concurrently; this technique has been used to view traces of a virtual machine
together with a trace of the XEN host system [DD08].

Exemplary screenshots of LLTV for the desktop system running partdiff-seq are discussed next. In
Figure 2.12, the event view and control flow view are presented. The event view – shown in the upper half
of the screenshots – lists individual events in a textual representation while the control flow view – visible
in the lower half of the screen – shows the activity in a timeline for each individual process. Graphical
representation of the trace encodes the activity of each process in colors; green, for instance, encodes that
the process on the left executes in user space (this is partdiff-seq).

The statistical view and resource view are shown in Figure 2.13. In the statistical view, aggregated informa-
tion of all kinds of activity is provided. In the resource view, the activity on each CPU and interrupt can be
observed, white color encodes user-space activity dispatched on a CPU. For easy analysis, the screenshot
has been modified to show the likely49 execution of partdiff-seq on the CPUs with green color. The vertical
line marks the start of the program, then the single threaded program is migrated between all 4 cores on
the quad-core system.

Consequently, with the tool, interactions between processes and system activity at a given time can be
analyzed extensively. Note that while the overhead of the tracer is very low compared to other tools tracing
50 seconds of system activity created a set of files with the aggregated size of 57 MiB.

The tool provides capabilities to filter events, which is unfortunately not available for the graphical trace
representation.

2.4.4. Available Tools for Analysis of Parallel Programs

Compared to the tools for sequential programs, tools for parallel applications are more involved. In the
following, a few tools are presented which are aware of the programming and execution models of paral-
lel applications, hence, they explicitly support the analysis of parallel applications. VampirTrace records
execution behavior of HPC applications in the Open Trace Format50. Popular post-mortem performance
analysis tools that analyze these trace files are TAU, Vampir and Scalasca. Those tools provide several ways
to assist a developer in assessing application behavior.

An experimental tool environment which should be named is PIOviz [LKK+06a]. This environment is
capable of tracing not only parallel applications, but also triggered activity on the Parallel Virtual File
System version 2 (PVFS). In the following, brief introductions and screenshots are provided for all the
mentioned tools.

46http://www.efficios.com/ctf
47Zero-copy is a technique in which data is communicated without copying it between memory buffers – in this case no copy

between kernel-space and user-space is necessary.
48http://www.eclipse.org/
49It is not possible with the tool to actually relate applications with the resource view, therefore, the execution is guessed by the

author based on the information provided by the control flow view.
50Further information is provided on Section 2.4.5.

69

http://www.efficios.com/ctf
http://www.eclipse.org/

BACKGROUND AND RELATED WORK 2.4

Figure 2.12.: Screenshot of the LTTV viewer for a trace of the system – event view and control flow view.

70

2.4 PERFORMANCE ANALYSIS AND TUNING

Figure 2.13.: Screenshot of the LTTV viewer for a trace of the system – statistic view and resource view.
The likely scheduled execution of the program on the CPUs is marked in green.

71

BACKGROUND AND RELATED WORK 2.4

VampirTrace

VampirTrace [MKJ+07, KBD+08] is a library and tool set which generates traces or profiles for MPI and
OpenMP applications. It instruments applications to write files in the Open Trace Format (OTF) at run-
time. Depending on the type of instrumentation, function calls of the application, MPI and OpenMP
activity are recorded. Additionally, low-level POSIX I/O calls and POSIX Threads are intercepted, CPU
counters are supported. Additional counters can be supplied by plugins [STHI10].

VampirTrace utilizes MPI Profiling Interface (PMPI), a profiling interface provided by MPI51. Vampir-
Trace stores a subset of parameters and context information from MPI calls. This enables identifying
communication partners and provides information about the exchanged data, e.g., the message size.
OpenMP provides an interface that eases instrumentation, the OpenMP Pragma and Region Instrumentor
(OPARI) [MMSW02], which is used by VampirTrace.

Furthermore, it supports performance counters provided by PAPI. In case the tracing of performance coun-
ters is enabled by the user, selected counters are recorded for every generated event.

To perform source code instrumentation, the application must be recompiled using provided build scripts.
These are wrappers for the compiler and include a source-to-source compiler which modifies functions
in order to generate events at every function entry and exit. Dyninst52 [BH00] can be used to instrument
binaries, too. However, the binary instrumentation has the drawback that only limited information about
application internals are accessible.

TAU

The Tuning and Analysis Utilities [SM06], are the swiss army knife for performance analysis. They support
not only many languages (C, C++, Java, Python, CUDA, ...), but also a rich variety of capabilities like
profiling and tracing, sampling, throttling of event generation, extended information for POSIX I/O and
communication and hardware counter support via PAPI.

Several tools are shipped with TAU which include: converters to export data to other trace or profile
formats, automatic instrumentation for source code, and a visualizer for trace profiles (ParaProf). Jump-
shot [ZLGS99] or Vampir can be used to visualize traces. The Jumpshot viewer53, shipped with TAU, is
originally part of the MPI Parallel Environment (MPE) and visualizes the SLOG2 trace format.

ParaProf is a Java GUI which displays profiling results. Compared to the tools for sequential analysis,
like gprof, with ParaProf all processes and threads of a parallel application can be analyzed together. The
tool focuses on analyzing behavior of the processes and threads for a single metric at a time. Values for
the selected metric can be compared, additionally average and standard deviation is provided. The metric
under investigation can be chosen – for example, time or floating point operations, and the data is provided
either for the executed functions or a group of functions. Additionally, derived metrics like Flop/s can be
created. To analyze time-dependent behavior, TAU provides an API that can be used in a program to divide
execution into phases, which are profiled and analyzed independently.

The available views in ParaProf are histograms, a communication matrix showing the interaction between
the processes, textual or a 3D visualization. The 3D visualization shows the value of a selected metric for
each pair of thread and function.

Performance results of experiments can be archived, either directly in ParaProf or in a (remote) database.
Metrics can be compared across experiments to monitor performance over the application development, or

51The MPI Profiling Interface defines that every MPI function is exported with two names, an MPI prefixed call and a PMPI
prefixed version. Users use the MPI call; by providing an instrumented version of the MPI function, all user calls can be
intercepted. Instrumented functions can perform appropriate logging and they usually call PMPI functions that are directly
provided by the MPI library.

52http://www.dyninst.org/
53See Page 77 for further information on Jumpshot.

72

http://www.dyninst.org/

2.4 PERFORMANCE ANALYSIS AND TUNING

run-time behavior of various parameter sets can be assessed. PerfExplorer is another tool shipped with TAU,
it eases statistical analysis of profiles such as clustering and correlation across experiments. It can be used
to create diagrams, for example to illustrate achieved speedup. Furthermore, application performance can
be assessed over multiple runs, and even a longer time period.

In order to demonstrate a few of the available views, a profile of our PDE was generated for 4 processes
and visualized in ParaProf. In Figure 2.14, a few windows are shown. In the upper window, the experiment
is chosen and information about run-time environment characterization is given which identifies the ex-
perimental setup and run-time settings. The legend windows (on the left) show the color-code and name
of the recorded events and available groups. To improve user interaction, the events and function calls
are grouped into sets – in the example, the MPI group can be selected to assess communication overhead
quickly. In TAU, the call-graph is just encoded into the event names. Thus, the number of events in the
function legend is rather large; in the example, calculate invokes several functions.

The main data window (in the center) with the unstacked bars in the middle of the figure displays a metric
for all functions and processes. In the screenshot the time metric has been chosen and the mouse hovers
over the calculate function. By clicking an interesting function, a window pops up that just shows this
metric for all threads. In the figure, the window below shows the time for MPI_Sendrecv() which is called
by the exchange function.

Interaction between the 4 processes can be analyzed with a communication matrix, in Figure 2.15 the
number of calls is encoded in a heat-map. In the figure, a diagonal communication pattern of the PDE can
be observed – a process communicates with its two neighbors. A few communications from the ranks to
Rank 0 are seen, this is the finalization step in which the results are gathered.

Text statistics of Rank 0 for I/O and messages are provided in Figure 2.16, showing the number of I/O calls
and amount of data.

Note that the standard automatic instrumentation, which intercepts every function entry and exit, causes
serious overhead; by tracing, the wall-clock run-time of the PDE increases from 13 s to 576 s. In the same
run, more than 1.8 GiB of trace data will be generated per process, if tracing is enabled. Consequently,
this demonstrates the need to filter unimportant events during the instrumentation or at run-time. TAU
provides tools to automatically filter events, and it throttles an event when it is fired too often.

For more information about visualization and usage refer to the TAU User Guide [Tau10].

Vampir

Vampir [MKJ+07, KBD+08] is a mature commercial trace analysis tool, which visualizes files that have
been generated with VampirTrace. However, it has a proprietary code base and cannot be extended by
third parties.

Large trace files may not fit into the memory of one machine and take a long time to visualize and pre-
process, therefore, the software called VampirServer extends the performance of Vampir by outsourcing
analysis capabilities and trace handling to a set of remote processes. The number of server processes can
be scaled to match the size of the trace file and the required performance.

In Vampir, multiple displays, each performing a specific visualization, can be arranged to a workspace.
Displays can be configured, e.g., to show a particular process, to filter information or to visualize another
metric. Zooming on a timeline is propagated to all displays.

For a PDE run, a workspace containing all displays has been created and is shown in Figure 2.17. Here,
only a fraction of time is actually traced as the overhead with the default instrumentation that traces
invocations of all functions is overwhelming54.

54The PDE for the trace runs 100 iterations instead of the 10.000 that have been executed with an instrumented program for the
other tools.

73

BACKGROUND AND RELATED WORK 2.4

Figure 2.14.: Screenshot of ParaProf – PDE profile including experimental information.

Figure 2.15.: Screenshot of ParaProf – PDE communication matrix.

74

2.4 PERFORMANCE ANALYSIS AND TUNING

Figure 2.16.: Screenshot of ParaProf – user event statistics for Process 0 including MPI-IO statistics.

As Vampir has a huge number of displays, they are enumerated in the screenshot and described individu-
ally:

1. Next to the symbol toolbar is an overview timeline, which is visible all the time and does not change
with zooms. This timeline shows the observed activity of all processes over time in a condensed form.
The height of color in the bar encodes the number of processes that execute an operations of a given
kind at a given time. Functions are grouped during the tracing and represented by different colors,
example groups are I/O, communication or application. By default, MPI functions are colored in red
whereas time spent in the application is colored in green. If all processes perform operations of the
same group, then a column contains one color, for example at the beginning all processes perform
MPI calls. To add a certain display, a user can click on the specific icon in the toolbar.

2. The Master Timeline shows the activity for each individual thread in colors according to the group.
Inter-process messages are visualized by black lines. In Vampir there is no concept which associates
the processes to the hardware topology. Therefore, the user must know the mapping of the processes
to hardware.

3. In the Process Timeline, the call-stack of an individual process is given (here Process 0).

4. A Counter Timeline shows the values of one PAPI counter for one process. The minimum, maximum
and average values can be plotted into one graph. In this display, the total number of instructions
which were performed is plotted. The observed spike during startup might be an artifact caused by
an overflow of the counter.

5. This is also a counter timeline that visualizes the Flop/s for Process 0. Note that there could be as
many replicates of the displays as fit on the screen.

6. For one selectable metric, the Performance Radar encodes the counter values in a given color, sim-
ilar to a heat map. In contrast to the counter timeline, all processes can be visualized together.
Unfortunately, due to the counter overflow in the example, all processes are drawn in blue.

7. The Call Tree shows the call-graph together with a profile for the visualized time interval.

8. In the Context View, more information of the selected object is provided – most visible entities, such
as an event, function or process, can be selected. In the example, the whole function group is clicked.

9. The Function Summary provides information on a set of processes. In the left window, the exclusive
time of all processes is accumulated while the right window prints the number of invocations per
group.

10. Available groups and their color scheme are listed in the Function Legend. By instrumenting the
application manually with VampirTrace, more groups can be created.

11. An overview of the number of messages or message sizes is given in the Message Summary.

75

BACKGROUND AND RELATED WORK 2.4

Figure 2.17.: Screenshot of a Vampir workspace.

12. In the Process Summary, a profile is generated and visualized for every process. If the space does
not suffice, the display automatically clusters similar processes. In the example, it detected three
processes with the upper function profile and one with the lower function profile – the master process
which performs the actual I/O.

13. Similar to TAU, the inter-process behavior is visualized in the Communication Matrix View. Two
displays have been created, the left window just shows the number of messages exchanged between
two processes, while the right window indicates the average bandwidth.

14. The I/O Summary finishes our tour through the available displays: Several metrics are available and
related to the file name: accessed data volume, number of operations or bandwidth.

Scalasca

Scalasca [GWW+10], is a performance analysis toolset which automatically analyzes large-scale parallel
applications that use the MPI, OpenMP or a hybrid MPI/OpenMP programming model. It has been suc-
cessfully applied to applications running with 200.000 processes on a BlueGene/P system [WBM+10].

Scalasca can be run in two modes, either a summary of the parallel program is created at run-time, or the
application activity can be recorded in the EPILOG trace format and then analyzed post-mortem.

In the trace mode, Scalasca searches automatically for a common class of run-time communication bot-
tlenecks, for example, for late senders. Scalasca ships with the sequential analyzer expert [WM03] and
the parallel analyzer scout that identify wait-state patterns. The parallel analyzer runs with the same
number of processes as the original application. While the analysis is performed, it replays the communi-
cation pattern of the original program and updates statistics accordingly. Therefore, scout scales similarly
to the original application. However, the sequential tool expert detects more inefficient communication
patterns.

76

2.4 PERFORMANCE ANALYSIS AND TUNING

Scalasca can instrument the application automatically, either by using compiler options, by transformation
of the source code or by linking the program with an already instrumented library. Similarly to the other
tools, an API for manual instrumentation is provided.

In contrast to previously referenced tracing tools, with Scalasca the application is typically started with an
additional software monitoring system. After the application terminates the system can automatically run
scout to perform the parallel trace analysis.

Process statistics and identified bottlenecks are displayed in the Qt application Cube3, which allows brows-
ing through the analysis results.

To assess the features, the PDE configuration with 4 processes is instrumented with Scalasca and instructed
to generate summaries.

A screenshot of the summary is provided in Figure 2.18. The view is split into three columns: the first
column shows the available metrics, the second column displays all functions in the call-graph and the
contribution to the metrics, the last column shows the contribution of every process of the supercomputer
to the value of the function (and metrics). In the analysis session, the user selects a metric on the left,
then localizes the relevant function and, at last, analyzes the distribution of the selected metrics among
the processes. In the given example, the number of send operations is selected in the metrics tree; sends
are invoked in the call-graph by exchange() which is called by calculate() which in turn is called by
main().

The view on the left aggregates the metrics among all functions and processes. Also, note that in the
hierarchical view, a collapsed node of a column aggregates the values of all children. That means each node
shows the inclusive metric, while an expanded node displays the exclusive metric, i.e., the contribution to
the metrics which is not caused by any of the child nodes. Child nodes show their share by themselves
(compare the Execution node and children in the left column). A color scheme between blue and red
encodes the values similar to a heat map in all three columns. This assists in spotting bottlenecks in the
metrics, code and unbalanced processes on the hardware.

For figure Figure 2.18, 60.000 MPI_Sendrecv() functions have been invoked from the exchange() func-
tion. As the inner processes transfer twice as much messages, the four processes call the function 10.000
times, 20.000 times, 20.000 and 10.000 times, respectively. The right view visualizes either the topology
of the machine – here a flat topology – or the numerical values as shown in Figure 2.19.

By instrumenting all user functions, the wall-clock time increased from 12 s to 307 s, by instrumenting
just MPI with the provided PMPI library, the overhead is not measurable. With Cube, the bottleneck can
be identified by looking at the (run-)time metric of the functions and processes in Figure 2.19. A total
of 1158 s for all 4 processes is divided into 68 s MPI activity and the remaining time is spent for user
activity. In the call-graph, 558 s is spent in getResiduum() and another 600 s in the calculate function
itself; the right column shows that the load is almost balanced across all processes. As getResiduum()

has a tiny function body, the overhead of the measurement system dominates run-time. In a real scenario,
this function should not be instrumented and therefore would be filtered; Scalasca provides tools to filter
events.

For the existing metrics, a short description is provided in the online help that assists the user in under-
standing them. For example, a screenshot of the metrics for computational imbalance between processes
and the corresponding help is given in Figure 2.20.

Periscope [GO10] and PerfExpert [BKD+10] are other automatic tools. They scan performance properties
at run-time; appropriate metrics are measured and evaluated automatically. Ultimately, as in Scalasca, this
assists in automatic localization of certain types of bottlenecks. However, while all those automatic tools
provide some hints, the user might be forced to use a visualization tool such as Vampir to really understand
the behavior of the application.

77

BACKGROUND AND RELATED WORK 2.4

Figure 2.18.: Scalasca’s Cube3 browser – the left column shows available metrics, the middle column as-
signs the metric’s values to functions of the call-graph, the right column shows the contribu-
tion of every process to the function.

Figure 2.19.: Scalasca’s Cube3 browser – identifying the computational overhead in getResiduum().

78

2.4 PERFORMANCE ANALYSIS AND TUNING

Figure 2.20.: Scalasca’s Cube3 – assessing load imbalance and the online help for this metric.

MPE

The MPI Parallel Environment (MPE) is a loosely structured library of routines designed to support the
parallel programmer in an MPI environment. It includes performance analysis tools for MPI programs,
profiling libraries, graphical visualization tools and the trace visualization tool Jumpshot [ZLGS99]. MPE
is shipped with MPICH-2 and contains different wrapper libraries, which use the PMPI profiling interface
of MPI to replace the MPI calls with new functions.

The trace visualizer of MPE is Jumpshot, which reads files in the SLOG2 format. SLOG2 tries to be scal-
able by storing aggregated information about intervals directly inside the format – further information is
provided in [ZLGS99].

Upon startup of Jumpshot, the main window is shown in which a trace file can be loaded, a screenshot is
given in Figure 2.21a. Jumpshot distinguishes between three types of entries: an event, a state that has a
well defined start and end, and arrows which mark causal relations between states. A trace entry belongs
to one named category. All available categories, assigned colors and whether they shall be visualized or
searchable, are listed in the legend window (Figure 2.21b).

The timeline window shows the activity of each process over time. Processes are enumerated in a tree view
and mapped to the timelines according to a ViewMap. A screenshot of the timeline window is given in
Figure 2.21c. On the left side, the tree view shows two processes, the activity is drawn in the center. A
horizontal timeline renders the activity of one processor in one row, the activity is encoded with colors
as defined in the legend window. White areas in the activity correspond to computation by the client
processes, the colors show the MPI function; violet, for example, represents MPI_Reduce().

A user can select an interval and open a profile window, which aggregates the time of the states over each
category and process. An example is provided in Figure 2.21d; the violet color indicates that most time is
spent in MPI_Reduce().

Both windows offer functionality to zoom and scroll in the window, this is provided by the icons in the
toolbar. Timelines can be enlarged with the slider on the right of the windows. Additionally, individual
timelines can be deleted or moved around; to move a timeline, it must be cut by the user and inserted after

79

BACKGROUND AND RELATED WORK 2.4

(a) Main window (b) Legend window

(c) Timeline window

(d) Profile window

Figure 2.21.: Jumpshot windows.

80

2.4 PERFORMANCE ANALYSIS AND TUNING

Figure 2.22.: Modified screenshot of PIOviz visualizing the interaction between 4 clients and 4 servers with
explanations [KTML09].

another timeline.

PIOviz

The Parallel Input/Output Visualization Environment [LKK+06b, KTML09] (PIOviz) is able to trace and visu-
alize activities on the servers of the parallel file system PVFS in conjunction with the client events trigger-
ing these activities. PIOviz correlates the behavior of the servers with program events. Developers can use
these features to analyze and optimize MPI-IO applications together with PVFS. Additionally, PIOviz also
collects device statistics, such as network and disk utilization, from the operating system, and computes a
few PVFS-internal statistics [KL08].

The PMPI wrapper provided in MPE is used to trace the MPI function calls. However, with the original
MPE only MPI activity is recorded and analyzed. PIOviz extends its capabilities by recording communica-
tion inside MPI calls, client-sided PVFS activity, and corresponding operations in PVFS servers. Compared
to other tools, PIOviz is considered experimental, however, it provides novel capabilities that are not avail-
able elsewhere.

In brief, the environment consists of a set of user-space tools, modifications to the I/O part of MPICH2
and MPE, and logging enhancements to PVFS. To relate client and server activity, the following changes
are made: PIOviz modifies the MPE logging wrapper to add a call-ID to each I/O request. Patches to
MPI-IO and PVFS transfer this ID to the server and through the different layers, and record interesting
information. The call-ID allows us to associate the MPI call with the PVFS operations triggered by this
call. Also, the environment introduces additional user-space tools that transform SLOG2 files depending
on this extra information. It contains modifications to Jumpshot providing additional information in the
viewer.

To assess performance in the workflow, independent trace files are created on client-side and server-side
once a user executes an MPI(-IO) program. Then a set of tools post-process these files and finally merges
them into a single file containing all enriched information about client and server activities. PIOviz uses
MPICH’s SLOG2 format, therefore a user can analyze trace information with Jumpshot.

An example screenshot of PIOviz is given in Figure 2.22. Client process activity is given in the upper
four timelines, and the lower five timelines show the activity for one PVFS metadata server and four data
servers.

81

BACKGROUND AND RELATED WORK 2.4

By looking at the screenshot it can be observed that the second process spends about 20 ms more time
in the PVFS_sys_read() operation of the MPI_File_write_all() and thus the process waits for the read
operation to complete. However, the server activity finished already, therefore, the servers are waiting for
requests from clients and are not the cause of the inefficiency. Instead we claim the client library caused
the observed behavior. Without knowledge of the server activity, a hypothesis for a potential bottleneck
could not exclude the network, the server, or the client-server protocol.

Besides PIOviz, to our knowledge, there is no trace environment available which can gather information
of client and server activity and correlates them – a recent funded project aims to extend TAU towards this
goal [BCI+10], though.

2.4.5. Trace Formats

There are several trace formats available because many performance analysis tools rely on their own trace
format. Usually, command line tools are provided to convert the tool-specific trace format to other well-
known trace formats. Therefore, already existing tools can be applied to process the (converted) trace.
Scalasca and TAU, for example, provide converters into the Open Trace Format (OTF).

A few general aspects in designing a trace format and its interface are discussed at first, the list is a lose
collection of aspects and does not aim for completeness. Then, the concepts behind OTF are introduced.

Basically, all trace formats have been created with specific design goals in mind, however, several goals are
common to most of them. The following abstract requirements and concepts represent the author’s view;
they are defined after looking at several trace formats and existing tools55:

• Recording of all relevant information for post-mortem analysis must be possible. This includes the
possibility to record arbitrary data that is necessary to characterize an event in detail. A context pro-
vides more information about the recorded events or the utilized resources. For example, timestamps
are required to understand the temporal causality; an identifier can specify the processor a thread
is (currently) executed on. Timestamps are especially difficult: Since local clocks are not as accurate
as a primary reference clock, timestamps of different components are slightly incorrect thus sorting
events by the locally created timestamp can lead to a wrong order of events. Therefore, either all
clocks must be synchronized accurately with one reference clock, or mechanisms are provided that
are able to fix incorrect ordering. Metadata describes the invariant properties of the environment
in which the trace is recorded. This kind of description of system configuration and experiment is
important when traces are kept for a long time.

• In heterogeneous environments portability between machine architectures becomes relevant.

• Methods to reduce the trace file size and to handle large traces should be available. One simple ap-
proach that reduces the file size is permit selective activation and deactivation of the run-time trac-
ing, that means either the application activates tracing for the relevant area or the system deactivates
itself automatically after a threshold is reached. Another method is to support compression. If that
does not help to reduce the file size, then tools should be capable to process large trace files.

• Required post-processing of the trace files should be of low overhead. For example, the PIOviz envi-
ronment relies on several post-processing stages in which the trace data is read completely. For larger
traces this is infeasible.

• Analysis of the trace files should require limited resources. A subset of the data should be loadable.
Loaded information might be a subset of the processes or the record types, or just a restriction of the
time interval.

• Efficient parallel access. Technically, this can be achieved by splitting the trace information into
multiple files which can be accessed independently to prevent locking and synchronization between

55The inspected trace formats are RLOG2, SLOG2, TAU trace files and OTF. To encourage further reading in the design goals, two
literature references are provided explicitly.: The attempt for CTF [Des10] and design considerations for OTF [KBB+06].

82

2.4 PERFORMANCE ANALYSIS AND TUNING

processes.

• Partitioning of trace data into sections of related information. This fosters the previous points by
enabling independent and probably faster generation and analysis of those sections. In general, a
section should be independent of others but it might be related to activities recorded in another
section.

• Stability of the interface and the format. An adjustment of recorded events and their related infor-
mation or an extension of the basic trace format should be possible without rewriting the complete
tracing and analysis toolchain.

• Flexibility in terms of the stated requirements, that means gearing the format towards any specific
purpose should be possible.

By itself, each requirement can be realized with simple approaches. However, several requirements are
conflicting with each other, for instance recording of all potentially relevant information results in large
files, which must be analyzed later.

When work on this thesis has been started, no trace format existed that fulfilled all requirements for the
simulator, therefore, a new trace format has been developed (the format is described in Section 4.2). In
the following, the concepts behind OTF are introduced, to foster understanding of restrictions imposed by
trace formats and their interfaces.

Open Trace Format

OTF [KBB+06, KBB09] is developed in cooperation between the TAU tool group of the University of Oregon
and The Center for Information Services and High Performance Computing (ZIH) of the TU-Dresden. Initially,
OTF is designed to record trace information for MPI and OpenMP parallel applications. The API and
implementation and contained tools are licensed under a BSD open source license. First, a few basic
concepts of OTF are discussed:

• Traces of processes and threads are split into streams (consider them as independent sections), which
are mapped into a set of files, i.e., each file contains the trace information from one or multiple
streams. A master file contains information about the mapping from processes to streams.

• Within a trace file, an event is recorded as a single text line, the detailed structure of a record is
defined separately. A new type can be defined for a stream in a local definition, or it can be stored
globally. Definitions are stored in additional files. For some functions, such as MPI functionality,
the types are predefined. To reduce the amount of redundant data, several common properties, like
timestamps and information about threads, are written independently of event information, they are
valid for all subsequent events until they are reassigned.

• Files are encoded in ASCII to ensure platform independence and readability by third-party tools.
Random access is realized by performing binary search over the timestamp. To decrease the file size
blocks of data can be transparently compressed with zlib56.

• Auxiliary information, locally defined records, snapshot records and statistics can be optionally
added. Since information about the state of the program is stored implicitly in a stream, random
access is difficult. For example, the call graph is recorded by issuing several nested start events.
When a file is accessed at a random position, then the earlier events are skipped and should not be
read but they are essential to understand the current state of the process. Thus, in OTF, derived infor-
mation can be added in additional files, a snapshot holds the current state. That means the snapshot
keeps all variable information about the nested function invocation, or I/O activities. Statistics store
summary information from beginning up to the current time, arbitrary intervals can be derived from
these values by subtracting start from end statistics. Thus, information before the snapshot is not
needed and random access is possible.

56http://zlib.net/

83

http://zlib.net/

BACKGROUND AND RELATED WORK 2.4

• A low-level and a high-level C-interface are provided to access OTF files.

• Several tools are provided to access and manipulate trace files: to filter processes, to compress or
decompress traces, to dump tracefiles as text, to add statistics or snapshots, or to change the number
of streams per file.

API The low-level API is briefly introduced based on the source code of OTF and the included documen-
tation (version 1.7.0rc1 as of 2010-03-30).

Important OTF functions and an excerpt of the API documentation are provided in Section A.1. Exemplary
usage of the API to write a trace file is shown in Listing 2.7. In the example, a single function entry and
exit for the main function of one process are written.

Listing 2.7: OTF example code (as provided by the API documentation)
1 #include <assert.h>

2 #include "otf.h"

3

4 int main(int argc, char** argv) {

5 // Declare a file manager and a writer.

6 OTF_FileManager* manager;

7 OTF_Writer* writer;

8 // Initialize the file manager. Open at most 100 OS files.

9 manager= OTF_FileManager_open(100);

10 assert(manager);

11 // Initialize the writer. Open file "test", writing one stream.

12 writer = OTF_Writer_open("test", 1, manager);

13 assert(writer);

14 // Write some important Definition Records.

15 // Have a look at the specific functions to see what the parameters mean.

16 OTF_Writer_writeDefTimerResolution(writer, 0, 1000);

17 OTF_Writer_writeDefProcess(writer, 0, 1, "proc�one", 0);

18 OTF_Writer_writeDefFunctionGroup(writer, 0, 1000, "all�functions");

19 OTF_Writer_writeDefFunction(writer, 0, 1, "main", 1000, 0);

20 // Write an enter and a leave record. time = 10000, 20000

21 // process = 1 function = 1

22 // Sourcecode location doesn’t matter, so it’s zero.

23 OTF_Writer_writeEnter(writer, 10000, 1, 1, 0);

24 OTF_Writer_writeLeave(writer, 20000, 1, 1, 0);

25 // Clean up before exiting the program.

26 OTF_Writer_close(writer);

27 OTF_FileManager_close(manager);

28 return 0;

29 }

The API does not support mapping of processes to hardware topologies. However, a potential map-
ping could be recorded by forming process groups, or by storing comments according to the OTF de-
velopers. Relations between two processes are created explicitly by invoking the functions OTF_Writer_

write[Recv|Send]Msg(), or for a collective MPI call via OTF_Writer_writeBeginCollectiveOpera-

tion().

OTF is under constant development but the developers worry of modifying the existing interface or file
format because that could break comparability. Support to add arbitrary data to an event was added re-
cently, in new versions key-value pairs can be added to a call [KGS+10]. An example with these extensions
is provided in listing 2.8. First the key and the datatype of the value pair are defined by using OTF_

Writer_writeDefKeyValue() (Line 22), then a value must be set (Line 28). To additionally store the de-
fined key/value list to the trace records, the API function with the suffix KV can be invoked (Line 30).
Those new functions have been added for most previously existing API functions. Prior to this approach,

84

2.5 PERFORMANCE ANALYSIS AND TUNING

it was cumbersome to extend existing records, eventually comments could be used, but that was tedious
and inefficient.

Listing 2.8: Adding arbitrary information with key/value pairs (as provided in the API documentation)
1 #include <assert.h>

2 #include "otf.h"

3

4 int main(int argc, char** argv) {

5

6 OTF_FileManager* manager;

7 OTF_Writer* writer;

8 OTF_KeyValueList* KeyValueList;

9

10 manager= OTF_FileManager_open(100);

11 assert(manager);

12

13 writer = OTF_Writer_open("mytrace", 1, manager);

14 assert(writer);

15

16 // Initialize the prior declared OTF_KeyValueList.

17

18 KeyValueList = OTF_KeyValueList_new();

19

20 // Write a DefKeyValue record that assigns key=1 to name="first_arg" with

→description="first argument of function" and type=OTF_INT32.

21

22 OTF_Writer_writeDefKeyValue(writer, 0, 1, OTF_INT32, "first_arg", "first�
→argument�of�function");

23

24 // Append a signed integer for key=1 to the initialized KeyValueList.

25

26 OTF_KeyValueList_appendInt32(KeyValueList, 1, 25);

27

28 // Write the entries of the KeyValueList together with the enter record.

→Afterwards the KeyValueList will be empty!

29

30 OTF_Writer_writeEnterKV(writer, 10000, 100, 1, 0, KeyValueList);

31

32 // Clean up before exiting the program. Close the OTF_KeyValueList.

33

34 OTF_KeyValueList_close(KeyValueList);

35 OTF_Writer_close(writer);

36 OTF_FileManager_close(manager);

37

38 return 0;

39 }

In the Birds of a Feather [KWGS10], the future direction of (OTF) tools has been discussed. OTF evolves
into a new (OTF2) format with funding from the BMBF and DOE. A unified performance measurement in-
frastructure is envisioned in form of the Score-P[KO11] measurement environment, which handles creation
of event traces in OTF2 and call graph profiles for Cube-4. Similar approaches to unify the infrastructure
have been tried in the past, OMIS [LWSB97] is an example for an earlier interface, which also supported
debuggers and load management systems.

85

BACKGROUND AND RELATED WORK 2.5

2.5. Discrete-Event Simulation

In this section, the concept of modeling and simulating real world systems is briefly introduced. Then a
few simulation engines are presented that assist in formulating models of systems and their analysis.

2.5.1. Modeling

”A model is a system’s representation within a chosen experimental frame; i.e., a model must have a purpose or
set of questions it can answer” [PK05]. In other words, a system model is an abstraction and simplification
of the existing system. The purpose of such a model is usually to either explain a system’s behavior or to
predict it. Compared to the real system, a model makes it easier to conduct experiments and to understand
results.

The modeling process by itself already increases understanding of the system’s behavior. Besides gaining
knowledge of the system, models allow scientists to perform experiments which are impossible in reality
either because system manipulation is infeasible, too time-consuming, too expensive, or too dangerous.

During the creation of a model, an abstraction and simplification is made in such a way that “factors“ which
are relevant to answer the questions are considered – irrelevant factors are removed. Modeling is the process
of constructing a model for a real system. It involves identifying entities, i.e., compartments of the system
which might interact, and their characteristics. The importance of the interactions and characteristics
depends on the scientific question. On the one hand, characteristics include a set of attributes, each with
potential states, and on the other hand, rules define how these states change over time and upon interaction
with other entities.

There are many formalisms that assist in system modeling. Further, these formalisms provide concepts to
analyze the created models. Many models use mathematical concepts and language to describe and ana-
lyze the system. Example model formalism are: queueing models [Tak82], artificial neural networks [AB09],
agent-based models [MN10], game theory [Ras07] or modeling via differential equation (see [Ger99] for more
information about mathematical modeling).

For example, a cash desk in the supermarket could be represented by a queuing model: a random distri-
bution defines the time between the arrival of two customers, they queue up in a line and a cashier, who
needs a variable (random) time to scan the goods. Such a model, for example, would allow analyzing the
wait time for the customers to optimize the number of cashers in the shop depending on the arrival times
of the customers. Several advantages and limitations of modeling are discussed in [PK05] (Section 1.7.1).

Conceptual domain model Usually similar systems of a domain share similar processes and entities;
these common processes and entities can be described in isolation from a specific system with a model that
is conceptual. This conceptual domain model contains models for the relevant processes and entities, and
describes their characteristics. Thus, those models can be combined to model a class of real systems57.

For example, in cluster computers, behavior of nodes and network is similar for many existing systems,
these entities and processes can be abstracted into a domain model. In the process of parametrization,
a domain model is instantiated to create a representation of the real system; this is done by identifying
and defining all parameters necessary for the specification of the particular real system. Thus, to model
a specific real cluster, a model can be created by instantiating entities of the domain model and adjusting
their characteristics. The result of this process is a specific model representing the particular system.

57In literature related to processing there is no common abbreviation or description for something like a conceptual domain model
– typically it is just called model. The term domain model is used in software-engineering in a similar way as that intended
by the author of this thesis, though. The author claims the description helps the reader to distinguish a specific model that
represents a system and a model that represents multiple instances in that domain.

86

2.5 DISCRETE-EVENT SIMULATION

Figure 2.23.: Alternatives of passing time within a model.

Model time A model of a system can include dynamic behavior that is time dependent. Typically, the
virtual time of the model increases while states of entities are manipulated. The virtual time passing by is
also referred to as model time. Model time represents the time in the model, while the wall-clock time is the
time needed to run the simulation – in a simple model, years of model time can pass within one second of
simulation.

Several time representations are possible, the alternatives are shown in Figure 2.23. Static models do not
consider time at all and thus the model is time invariant. With a continuous time model, the states and
interactions change steadily over time. For example, this is true for formal mathematical models based on
differential equations with time as a variable. In analytical models those differential equations are solved
directly, that means the exact analytical solution to the equation is determined, then this function can be
evaluated for arbitrary model time.

Discrete time model By using a discrete time model, the state of an entity changes only at specific points
in time, that means no modification of the system occurs in between. Discrete time models can be subdi-
vided into time-driven and event-driven models. In a time-driven model, the time steps forward by a fixed
increment, e.g., 0.1 s. For example, the time of numerical models is incremented in these small steps, in
each step the equations are evaluated with approximations such as the finite-difference method or the finite
element method.

Event-driven models advance time by setting it to the next timestamp at which the system’s property
changes. In the context of event-driven models the cause of the system state manipulation is called event.
Therefore, an event-driven model skips intervals in which the system’s state is invariant:

“In discrete-event simulation, the operation of a system is represented as a chronological sequence of
events. Each event occurs at an instant in time and marks a change of state in the system” [Pid04]

Often, in discrete models stochastic behavior is involved, for example, the duration of a process or the
manipulation of a state is changed by a random influence. This causes nondeterministic behavior.

Checking the correctness of models As a model is an abstraction of reality it cannot serve all purposes.
There are methods for checking that the model resembles system behavior closely enough – in respect to
the scientific question. To ease assessment of results and to increase insight, complexity of a model should
be minimal.

One of the first papers about systematic correctness checking is [Ste79]. In this paper, a conceptual model,
which is implemented by a computer, is referred to as computerized model. Terminology about correctness
checking between reality, conceptual model and computerized model is provided, the definitions given are:

• Model qualification: “Determination of adequacy of the conceptual model to provide an acceptable level
of agreement for the domain of intended application.”

• Model validation: “substantiation that a computerized model within its domain of applicability posses a
satisfactory range of accuracy consistent with the intended application of the model” .

87

BACKGROUND AND RELATED WORK 2.5

Figure 2.24.: Process of creating a model for a real system.

• Model verification: “substantiation that a computerized model represents a conceptual model within
specified limits of accuracy.”

When a model is built parameters can be added or tuned until the model and the real system provide
similar results. This loop of refining a model until it resembles behavior of the real system is visualized
in Figure 2.24. While a model of a system is extended and evaluated, important processes and parameters
are identified. Eventually the domain model is adjusted, taking more or different characteristics of the real
system into account (this loop is omitted in the figure).

2.5.2. Simulation

“Simulation is the imitation of some real thing, state of affairs, or process. The act of simulating
something generally entails representing certain key characteristics or behaviors of a selected physical
or abstract system.” [Wik11]

“We define simulation as the modelling of dynamic processes in real systems, based on real data, and
seeking predictions for a real system’s behavior by tracing a system’s changes of states over time (start-
ing from some initial state). In computer-based simulations models are represented by (simulation)
programs, and simulation experiments (”runs”) are performed by a model’s execution for a specific
data set.” [PK05]

The latter definition given by Page is tailored to computer aided simulation. Compared to an analytical
model, computer aided simulation requires a conceptual model which is then translated into a computer
model – often directly into source code. Finally, the parameterized computer model can be executed to
simulate the system’s behavior. Verification of the computer model evaluates how well the implemented
model resembles the conceptual model. And validation proves that the (computerized) model is applicable
to answer the scientific questions.

A refined definition for validation in the domain of computer simulation is given by Page:

“Model validation is the activity of establishing that a model is a suitable substitute for a real system
with regard to the goals of a simulation study.
[...]
Model verification in the wider sense is the activity of establishing that a model is correctly represented
and consistently transformed from one form of representation into another[...]. Model verification in
the narrower sense is the activity of formally proving the correctness of model representations and
their transformations – relative to some canonical model (e.g., a formal specification).” [PK05], page
198

In this newer definition the previously used term qualification has been merged into validation; a simula-
tion program is considered to be a model for reality.

Discrete-event simulation With discrete-event simulation the state of the system is changed by events,
an event is executed at a specific point in time. The abstract processing of a discrete-event simulator is
visualized in Figure 2.25. Upon start of a simulator, the specific model of the system under analysis must

88

2.5 DISCRETE-EVENT SIMULATION

Figure 2.25.: Processing of a discrete-event simulator.

be initialized, in this process the simulator adds initial events to an event queue. While an event is available
there, the simulator processes the next (future) event in the queue. In general, an event is associated with
a particular entity of the model. In this process, the model time is incremented to the event’s time and
according to the type of the event and its content, the associated entity can then modify its internal states
and might submit new events to other entities (or itself).

Once all events have been processed, the simulation stops – presenting the results of the observed behavior.
Some models generate infinite events. To prevent endless execution in this case, the termination of the
simulation can be enforced, for example, if the accuracy of stochastic processes is sufficient, or if enough
events have been processed.

Interested readers find a solid background of discrete-event simulation in The Java Simulation Hand-
book [PK05] and in [Pra04].

Characteristics used to assess discrete-event simulators and relevant design variations To com-
pare and understand the basics of related work, first, a set of design aspects and characteristics is intro-
duced that will be used to further describe it. Additionally some design principles and alternatives are
introduced – the presented content is chosen because it is relevant for simulating parallel applications and
the system underneath. In brief, this includes: the environment the simulation framework runs on, the
way a system model is specified and read by the simulator, the model describing activity that shall be ex-
ecuted by the entities, the design of the simulation core, and the assistance provided by the framework to
assess simulation results. A description of these characteristics and some further explanation of common
techniques is given in the following:

• Environment: Aspects related to the environment in which the simulation framework operates are
mentioned – certain software and hardware requirements. Also, license terms are given, especially
whether the tool is open source or under a proprietary license.

• System model: Typically, a simulation engine can execute models of many discrete (or mixed) math-
ematical systems. All presented tools are suitable for discrete-event simulation and mixed systems
and simplify the modeling process; for example, various random number generators are supplied
in each framework to ease modeling of stochastic processes. While there are many approaches to
model a system, a simulator might require a certain formulation of the entities and their interaction
partners. On the one hand, the simulator must support constructing new model entities and defin-
ing their behavior. On the other hand, for an experiment domain, entities must be instantiated and
parameterized to represent a specific system.

There are two dominant styles for modeling interaction of entities in discrete-event simulation. Be-
havior and interactions of a simulated entity can be either modeled by defining all transformations
for the entity – this is called event-oriented modeling – or by specifying the life-cycle, i.e., the sequence

89

BACKGROUND AND RELATED WORK 2.5

of activity and interaction, for each entity. In the latter, so-called process-oriented modeling style, a
simulation framework must offer an API to advance model time, to wait for a given event, and to cre-
ate a new event. To give an illustrated example for a process, consider the life-cycle of an application
which first reads input data, then computes, and at last outputs the result. Whenever the application
performs one operation it passes model time until the operation has completed – for example, it starts
the read process and continues when the data is ready. A sophisticated process-oriented example is
provided for the CSIM20 simulation library on Page 92.

During the modeling-process, this domain model and a specific system model must be formulated in
a representation understood by the simulator. One possible representation is to describe the entities
and behavior in an abstract format which is parsed by the simulator at run-time, or it is transformed
into a simulator specific format. This format can be just a simple text format, or expressive such
as UML diagrams (especially state-diagrams and interaction diagrams are suitable to describe the
behavior of the entities). Often, it is possible to build the relevant entities by using a simulator
specific API. Thus, the developer formulates the model in a programming language.

• Activity model: With the system model, entities and their interaction partners are defined. How-
ever, as the system model fixes the entities and their behavioral scheme, the actual input which drives
execution must be described – e.g., in our supermarket example, the queue of customers and their
attributes must be provided to the system model. In this thesis, the methodology of supplying in-
put to the simulator is referred to as activity model. The model that translates activity into reactions
(entity behavior) must be implemented by the simulator. In a simulation run certain activities can
be initiated upon creation of entities; during the execution, those initial events can trigger further
activities.

Similar to the system model, a developer can encode the activity in a programming language or
directly into the entities; stochastic descriptions are also possible. To model activity in complex
systems, three modeling concepts are imaginable:

– A stochastic model computes state modifications with probability distributions, e.g., in our ex-
ample, the arrival rate of customers and the goods in their shopping cart.

– Trace-driven simulation [Kae93] is an approach where the activities are provided by a file; the
simulator executes the activities sequentially as they are described in the trace. Activities of an
existing system can be recorded to generate a trace, which is then fed into a simulation engine
to initiate activities based on the trace.

– The execution-driven simulation is dedicated to simulating compute systems. With this approach,
an existing system is modified to invoke the simulation API whenever an activity takes place.
While the real activities are performed, a simulator can compute model time and all relevant
metrics based on a system model that computes them in the background – therewith, predicting
the behavior for an arbitrary system. As an illustrated example, consider a network interconnect
that should be modeled for a client-server infrastructure. Whenever a client communicates
with the server, the simulator computes how long the communication took. Thus, the model
time is completely independent from the wall-clock time; at the end of the “simulation”, the
virtual communication time and computation time are accumulated and returned to the user –
therewith, predicting these characteristics for another system.

In respect to simulation of parallel applications, it is probably not useful to use a purely stochastic
model because that would imply that applications perform random operations; however, random
effects could be added to the other two activity models, too. Both execution-driven simulation and
trace-driven simulation reduce the burden to simulate realistic activities on a system’s model. The
execution-driven simulation reduces the time to port an application to the simulator because it just
requires a slight modification of the real application. In contrast to trace-driven simulation, it de-
pends on real processes and interactions – the original code and the simulation framework must be
run together on an existing system. Basically, trace-driven simulation adds another layer of abstract-

90

2.5 DISCRETE-EVENT SIMULATION

ing – while the activity in the execution-driven simulation is fixed by the real system, trace-driven
simulation offers the freedom to create arbitrary traces and to modify them.

• Simulation core: This characteristic gives more details about the core of the simulation engine. Since
performance and scalability of a simulator are critical, focus is put on the parallelization potential of
the core which is typically low.

Performance of the simulation main loop, presented in Figure 2.25, can be increased by paralleliz-
ing the simulation core. In parallel discrete-event simulation, the entities are distributed among the
available processors, each processor maintains its own model time, additional communication is nec-
essary to transfer events between two processors. On each processor, local events are executed and
model time increases independently from other processors. To guarantee accurate results, the events
must be executed in the right order – the event with the lowest timestamp must be dispatched first.

During an iteration of the simulation loop, the current event might spawn new events which are
communicated to the responsible processor. Consequently, a synchronization between two proces-
sors takes place. The receiving processor enqueues the new events; still, any processor must execute
events in the order of their start-time. Due to the distributed nature of a parallel simulation, it could
turn out that a remote processor sends an event which has a timestamp before already executed
events – this would invalidate the simulation.

There are two approaches to ensure correct causality: conservative or optimistic event execution. A
conservative algorithm prevents execution of further events if they might break causality. Therefore,
the next local event is scheduled iff it is clear that further generated events on all processors have
later timestamps than the current event. With this realization, it is evident that a parallel simulation
ensures the right order of events, although a processor must pause execution in case another process
might generate earlier events for this processor. This limits the scalability of a conservative imple-
mentation. In contrast, an optimistic approach can speculatively schedule events, causality violations
are detected and repaired a by a roll-back mechanism. The roll-back mechanism works as follows: If
an event with an earlier timestamp than the current model time is received, then the current state of
the simulation is reverted to a valid state of the entities before the conflict occurred – a state of the
system before the wrong event got scheduled.

Depending on the specific model one or the other approach works better; if just a few events violate
the causal event order, then the optimistic approach typically will yield better performance.

• Report generation: After a simulation experiment is conducted, the modeler must assess the simu-
lation results. Thus, the simulator must provide information about the simulation run in some kind
of report.

A framework can simply maintain certain metrics, like model time, globally, or collect statistics, like
server response time and utilization, per entity. Those metrics could be printed upon completion of
the simulation.

Analogous to performance optimization, the progress of executed events can be recorded in traces
and visualized post-mortem – showing the event order for each entity in a separate timeline similar
to the displays used for performance analysis. However, storing the accurate state of each entity
during each simulation step is expensive in terms of performance and storage capacity.

Another approach is to illustrate low-level processes and events in a domain-specific graphical view.
For instance, in a simulation of a traffic system a road map can be overlayed with the lights and cars.
With this so-called animation, processes and suitable key characteristics of the entities are presented
in an understandable way to the modeler.

91

BACKGROUND AND RELATED WORK 2.5

2.5.3. State of the Art

Discrete-event simulation is widely used in industry and science and thus many simulation engines and
tools exist to build domain specific simulators. Five mature frameworks under active development are
provided in this section, their differences and capabilities are discussed based on the characteristics stated
before.

CSIM20 The Parallel Process and Diagrams Simulator [MS09] is a toolkit for process-oriented discrete-
event simulation.

• Environment: The CSIM library operates on all common platforms: UNIX flavors, Mac OS X or
Windows. Several GUIs are shipped with the simulator to generate models or to visualize and analyze
simulation results. The simulator is primarily coded in C and supports C and C++ models. A Java
version is available, which has slightly reduced capabilities compared to the C version. CSIM is
commercialized by a company and thus not freely available.

• System model: The modeler encodes the model in C (or C++) by calling the CSIM API to create
entities and to describe the behavior of the processes. With the framework, many basic models are
supplied which assist in building more complex processes and entities.

In the following, a brief overview of the basics objects is given: A process represents an active element
of a system. Due to the process-oriented scheme, all active entities of a system are modeled processes.
Also, a message which is transferred between client and server over a network is such a process. Each
process has its own internal state encoded in arbitrary local variables, a priority and an activity state.
The state of a process is either executing, pending, holding (until a well-defined amount of time
passed by), or waiting for a particular event.
A facility is an execution unit which performs a task and realizes a queue model: processes can queue
jobs at a facility; once a facility becomes idle it executes the next pending job in an exclusive way,
similar to a server which serves pending requests sequentially. Real world instances of a facility are
the cashier in the supermarket or machines of an industrial factory – during the manufacturing of a
product, several different types of machines are occupied for a period of time. Multiple servers can
be provided by one facility.
A storage has limited capacity which can be allocated by processes. Main memory is an example of a
storage object. Whenever a storage or a facility does not contain the resources to satisfy the demand,
processes are stopped and queued until enough resource become available.
A buffer is a resource with a maximum capacity in which a process can store some resource while
other processes use them. Compared to the storage, both producer and consumer will be queued if
the storage capacity does not suffice to store/fetch the product. A warehouse with limited capacity
is an example buffer. If it is full then no more goods can be stored; if it is empty the consumer must
wait until goods are available.

Process communication is possible via mailboxes, a process can send a message to a mailbox or try to
receive a message. Sending of a message queues the message in the mailbox, the sender continues
without waiting for reception. Receiving processes are suspended until a message can be received.
In CSIM, messages are integers (or pointers to arbitrary data).

• Activity model: The activity is encoded directly in the C(++) system model in a processes-oriented
style. To increase model time, processes can wait for a period of time, or until a certain event occurs.
The purpose of an event is to synchronize processes. Remote processes can signal the event to start
either all waiting processes or to wake up the first process.

• Simulation core: In the documentation there is no information supplied regarding the simulation
core. Presumably, the simulation core is not parallelized at all, instead events and processes are
executed sequentially. However, theoretically, processes could be realized by spawning one thread
per process and activating them once an event is scheduled.

92

2.5 DISCRETE-EVENT SIMULATION

• Report generation: Provided components contain a basic reporting mechanism to collect statistical
information or histograms about element-specific metrics, for example, throughput and response
time of a facility can be provided. The simulation can be run until the metrics satisfy a certain
confidence interval. In debug mode, an ASCII trace of simulator activity can be printed.

To understand the process-oriented simulation better, we discuss a simple model for a factory which as-
sembles goods of specific sizes depending on the orders of customers. The owner of a factory could use
such a model to evaluate and optimize the factory setup consisting of a number of machines and workers
to satisfy demand in a cost-efficient manner.

Assume that in the production process two types of machines are needed. In the factory described in the
particular model below, one machine of type A and four machines of type B are available. When one of the
type B machines should be operated, a number of workers equal to the size of the order is required because
each worker places and assembles a compartment of the product; in total, 15 workers are employed. After
the product is produced one worker operates machine A with the product, which packs the completed
product and prepares it for shipping. Once the packaging completes, the worker transfers the product to
a truck, which is out of the scope of the simulation and the border of the factory system. Then the worker
is ready to handle the next product. This simple model implementation including timings for arrival of
orders and the processing is given in Listing 2.9. Normal and exponential distributions represent the
variance of the interval between order arrival and the processing time due to variability in the human
worksteps.

Listing 2.9: Simple factory model for CSIM20. The example is created with the specifications provided in
the starter guide [MS09].

include <cpp . h> / / i n c l u d e t h e CSIM C++ header f i l e

/ / In t h e f a c t o r y , t h e r e i s on ly one machine o f t y p e A.
f a c i l i t y * machineA ;

/ / There ar e m u l t i p l e machines o f t y p e B ; t o o p e r a t e one o f them s e v e r a l
/ / workers a r e r e q u i r e d , depending on t h e s i z e o f t h e produc t which i s o r d e r e d .
faci l i ty_ms * machineB ;

/ / Manages t h e a v a i l a b l e workers .
storage * workers ;

/ / The s i m u l a t i o n main r o u t i n e i s d e c l a r e d in a C header and i s d e f i n e d in C++.
extern "C" void sim ()
{

/ / Crea t e t h e main p r o c e s s o f t h e s i m u l a t i o n .
/ / Each p r o c e s s has i t s own s t a c k .
create (" sim ") ;

/ / I n s t a n t i a t e t h e system model :

/ / One machine o f t y p e A i s a v a i l a b l e .
machineA = new f a c i l i t y (" machine�A") ;

/ / We have 4 machines o f t y p e B .
machineB = new faci l i ty_ms (" machine�B" , 4) ;

/ / 15 workers a r e a v a i l a b l e .
workers = new storage (" workers " , 15) ;

/ / The system model i s now c o m p l e t e l y s e t up .

/ / Crea t e t h e incoming o rd e r s , a c t i v i t y and system model a r e mixed .
/ / Loop u n t i l 5000 s e c o n d s have been s i m u l a t e d .

93

BACKGROUND AND RELATED WORK 2.5

while (simtime () < 5000.0) {
/ / Wait f o r an amount o f t ime as d e f i n e d by t h e e x p o n e n t i a l d i s t r i b u t i o n (mean
→= 130) .

/ / Thus , mean time between two o r d e r s i s about 130 s e c o n d s .
hold (exponent ia l (1 3 0 . 0)) ;

/ / Assembly o f a produc t f o r an o r d e r r e q u i r e s between 1 and 10 workers ,
/ / depending on t h e s i z e o f t h e o b j e c t t o produce .
/ / A l l s i z e s a r e in equa l demand , t h e r e f o r e we use rand () .
/ / C a l l t h e o r d e r f u n c t i o n t o s t a r t an o r d e r p r o c e s s (s e e below) .
order (rand () % 10 + 1) ;

}

/ / Crea t e a r e p o r t f o r t h i s s i m u l a t i o n run .
report () ;

}

/ / L i f e − c y c l e o f a s i n g l e o r d e r in t h e f a c t o r y .
void order (int s i z e)
{

/ / De f ine t h i s as an independent p r o c e s s : The c u r r e n t i n s t r u c t i o n p o i n t e r and
/ / s t a c k ar e saved and s t o r e d in t h e next e v e n t l i s t .
/ / Contro l i s r e t u r n e d t o t h e c a l l i n g p r o c e s s .
create (" task ") ;

/ / Reques t a number o f workers ; i f th ey ar e not a v a i l a b l e wait u n t i l they ar e .
workers−>a l l o c (s i z e) ;

/ / To u t i l i z e machineB , an a d d i t i o n a l worker i s r e q u i r e d t o o p e r a t e t h e machine .
/ / The t ime i s normally − d i s t r i b u t e d with a mean o f 150 s and a v a r i a n c e o f 10 s .
/ / Each s i z e o f t h e produc t adds 10 s e c o n d s t o t h e a v e r a g e t ime needed .
machineB−>use (normal (150.0 + s i z e * 10.0 , 10)) ;

/ / A l l workers f i n i s h e d t h e i r work c a r r y i n g t h e produc t .
/ / One worker i s needed t o package t h e produc t on t h e t r u c k .
workers−>dealloc (s i z e − 1) ;

/ / A produc t f o r t h i s o r d e r u t i l i z e s machine A f o r 5 s t i m e s i t s s i z e .
machineA−>use (5 . 0 * s i z e) ;

/ / Complete t h e o r d e r by wai t ing u n t i l i t i s t r a n s p o r t e d o u t s i d e t h e f a c t o r y .
hold (exponent ia l (1 0 . 0)) ;

/ / The l a s t worker who brought t h e produc t o u t s i d e t o t h e t r u c k f i n i s h e s
/ / h i s work and r e t u r n s t o t h e worker " p o o l " .
workers−>dealloc (1) ;

}

Parallel Object-oriented Simulation Environment POSE [WK04] is a library which eases the creation
of simulators.

• Environment: POSE is coded in Charm++, which is a parallel programming interface for C(++) and
a run-time system. The POSE library and several examples are shipped with the Charm++ source
code distribution.

• System model: System model and activity model are explicitly encoded in the Charm++ program-
ming paradigm. While this freedom allows modeling of arbitrary systems, there is a lack of support

94

2.5 DISCRETE-EVENT SIMULATION

to handle common tasks of a simulator.

Process-oriented behavior of entities and reactions to events are basically coded in C++. A small
language extension is made to the C++ standard to increase the readability of the model code.

To model an entity – called poser, an interface description which specifies methods to accept events
and a C++ implementation are necessary. With a source-to-source compiler, the model objects are
translated to the C++ language. Entities are classes derived from POSE superclasses, messages
(events) transmit data and information between two posers.

• Activity model: New instances of posers can be scheduled for creation in the simulator with POSE_

create(), a message can be submitted to configure the entity according to its intended purpose.

Future events can be issued by calling the language extension POSE_invoke() with the event func-
tion, data (the argument to the function), a reference to the entity and the future timestamp at which
the event (the function) should be triggered with the data. With the elapse() function, an entity can
pass its model time. Both event-oriented and process-oriented simulation are possible.

• Simulation core: By leveraging Charm++, the simulation is parallelized, also automatic load bal-
ancing of the simulation objects is built-in.

Besides a conservative synchronization strategy, several optimistic and adaptive synchronization
strategies are contained in the parallelized core. To handle optimistic synchronization a roll-back
mechanism requires the programmer of a poser to guarantee that method invocation is free from
side effects. Internally, to perform a roll-back, the inverse function is invoked on all posers with the
events which must be undone.

• Report generation: Upon completion of a simulation statistics about the simulator itself are printed,
e.g., the run-time, the number of actual processed events and speculative events. There is an infras-
tructure provided that eases reporting, however, the distributed code uses printf() to print simula-
tion behavior for further assessment.

OMNet++ is a community simulation framework which provides powerful tools for the analysis of all
kinds of networks [VO10, VH08].

• Environment: While the simulation core is written in C++, several Eclipse GUIs and wizards assist
in developing, executing, debugging and analyzing the results. They are running on Linux, Mac and
the Windows platform.

OMNet++ is under an Academic Free License. For non-profit intentions, OMNet++ grants rights akin
to the GPL. OMNEST is a commercialized version of OMNet++, which permits commercial usage.

• System model: In OMNet++ models are built from modules. Simple modules from a palette of
disjoint archetypes are provided similarly to CSIM20. Existing simple models are interconnected,
their composition forms behavior and real-world entities. Inter-module communication takes place
by exchanging messages over connection links. A link can be used to model packet transmission and,
therefore, supports the parameters: data rate, propagation delay, bit and packet error rate. Events
are represented by messages.

Model communication topology is defined in a textual language, the NEtwork Description (NED). This
hierarchical format supports reuse of existing descriptions as templates and it permits a hierarchical
structure – simple modules form compound modules with a given purpose. A NED is created by
utilizing a library, or directly within a GUI editor similar to Labview.

If the model is not fixed in the NED, further parameterization of the modules can be provided in
a textual configuration file in the INI file format. Also, an automatic executing of experiment en-
sembles can be defined. At run-time, the program can adjust the communication topology and even
instantiate new modules.

95

BACKGROUND AND RELATED WORK 2.5

There are many publicly available models for OMNet++, especially in the area of low-level packet
simulation of networks. Those can be used to derive a model for new components and systems.

• Activity model: Activity is encoded in simple modules, either in a process-oriented or event-
oriented style. Upon instantiation of an object, its constructor can inject initial events. In the process-
oriented approach a single method of the module encapsulates the whole process; with wait(), con-
trol is returned to the simulator which keeps all the pending processes in memory.

The event-oriented style calls a function whenever a message (event) is received. However, an API
is provided to rewrite the event-oriented style with state-machines. State-machines can be nested to
increase readability and reuse.

• Simulation core: The simulation core and the simple modules are written in C++. MPI is supported
for parallel simulation. Internally, the parallel simulation offers a conservative synchronization strat-
egy.

• Report generation: The framework can record automatically several metrics’ human-readable
statistics and histograms, as well as the activity of modules (including message exchange and mod-
ule debug output) of the basic archetypes. In self-written modules, new statistics can be added by
specifying them in the NED of the module, the values can then be set within C++ by emitting signals.
Traces are recorded in so-called log files.

A viewer in the IDE displays the log files; activity per object is rendered as a timeline similar to
off-line visualization tools. Edges in the graph represent causal relations between the network layers.
Additionally, a visualization plugin animates and replays activity, e.g., the packet routing via network
links and nodes is overlayed to the network topology.

Layered Queueing Network Solver The Layered Queueing Network Solver software package (LQNS)
provides an analytical solver and a simulator tool to assess queuing systems [Woo02, FMW+11].

• Environment: The analytical solver and simulator are coded in C and C++, and they are available
on the Macintosh and Linux platforms.

In order to download LQNS, one must agree to a proprietary software license, sign it and send it to
Careton University, then username and password to access the executables of LQNS are provided.
The license permits personal evaluation within a period of 6 month, after that period annual reports
sketching LQNS usefulness must be sent to Careton University.

With the Java Layered Queueing Network Definition tool (JLQNDef), a Java swing GUI is provided to
create and manipulate models. The LQNS simulator is built on the ParaSol [MKR95] discrete-event
simulation system.

• System model: A queueing system contains waiting lines (queues) and servers which execute pending
requests. While a server performs the activities triggered by a request, it might spawn new requests
on arbitrary queues. Delays are represented in service times of servers. Layered queueing networks
extend the queueing model in the notion that queues and servers can form complex hierarchical
entities in which requests are passed between the layers58. Service times of an entity depend on
the definition by the components’ underlying layers. This eases the understanding of an entity and
allows a better reuse of entities within templates.

In the context of LQNS a simplified description of the elementary modeling concepts are: A processor
represents a pure server – executing requests on demand which requires time. Scheduling of pending
requests is done by selecting one of the tasks with the selected queueing discipline (FIFO, preemptive
priority based, completely fair queue (CFQ) or random).
A task encapsulates the activities and resources to process a particular type of request – a request
of a task can be parameterized according to a task description. Each task has a queue for incoming

58See also the description of layered queueing networks on Page 59.

96

2.5 DISCRETE-EVENT SIMULATION

requests. Upon execution computation time on a processor can be requested, or new requests are
issued to other tasks59. Processors with CFQ scheduling bundle several tasks into groups, then exe-
cution time is distributed equally among all tasks of a group.
Model components can be replicated, e.g., to distribute requests of one queue among multiple
servers.

In LQNS models are defined in the XML format – processors host tasks and perform activities. De-
velopers use the programming language LQX to control the execution of multiple experiments, input
and output parameters of the analysis and simulation can be defined. The language is similar to
PHP syntax and permits access to model components, for instance, to query metrics of a particular
processor.

• Activity model: Each task assigns an activity graph describing the sequence of operations which
get executed by a request. The activity sequence is specified in a directed graph, nodes represent
operations to perform, including the possibility to join or fork multiple operations or to repeat (loop)
activities, and edges symbolize the transition. Initial requests are created by reference tasks.

A request can be either synchronous (waiting for a reply) or asynchronous. Synchronous mode does
not require the operation to finish before the reply is created. Instead upon arrival operations needed
for the response can be performed, then further activity can be executed while the requester contin-
ues. Replies can also be delegated to another task, which then responds to the requester.

• Simulation core: As the simulation core of LQNS utilizes the Parallel Simulation Object Library
(ParaSol) and the limitations and advantages of ParaSol apply. ParaSol is coded in C++ and permits
parallel simulation by using PVM or MPI with an optimistic synchronization. Development of the
library seems to have stopped before the millennium, therefore, ParaSol is not described further in
this thesis.

• Report generation: Analytical solutions and simulations calculate statistics like the processor uti-
lization, queueing delays, service time or mean delay for (a)synchronous requests. This data is pro-
vided in XML or human-readable text files. Additionally, ASCII histograms for activities and tasks
can be created. During a simulation run internal activities can be filtered and output to standard-out,
the user specifies the interesting events with regular expressions.

An introduction to layered modeling of software performance and further documentation is available on
the project’s web-page http://www.sce.carleton.ca/rads/lqns/.

Discrete-Event Simulation and Modeling in Java DESMO-J [PK05] is a framework for discrete-event
simulation.

• Environment: DESMO-J and all models are build in Java. A customizable GUI called Experimental
Starter helps parameterizing the model and to assess experimental results. DESMO-J is distributed
under the Apache License (comparable to the GPL).

• System model: Developers encode the model explicitly in source code, both process-oriented and
event-oriented modeling styles are supported. For each entity and event type an own class is created
and inherits from the provided framework classes.

Analog to the CSIM several advanced modeling elements like queues and resources are provided,
they are called higher-level modeling constructs in DESMO-J.

• Activity model: Both event-oriented and process-oriented simulation are supported. In the event-
oriented model, the execution of an event starts an event method, which then manipulates the states
of the entities. In contrast, with the process-oriented style, the simulator performs all activity in the

59In fact, in LQNS a task is related to a resource and it might offer multiple entry points. Depending on the type of the request, a
particular activity can be started. In that sense, the terminology of a task seems different from the common notion.

97

http://www.sce.carleton.ca/rads/lqns/

BACKGROUND AND RELATED WORK 2.5

Figure 2.26.: DESMO-J GUI that can start an experiment and assists users to evaluate the outcome. Here
truck arrival and departure at a container terminal is shown (in the left diagram) and the
truck wait times until they were loaded (in the right diagram).

lifeCycle() method of an entity. An API supplies required functions to wait for a signal from other
entities or to pass model time. Therefore, it is quite comparable to CSIM20.

• Simulation core: The simulation core processes the events sequentially.

• Report generation: The framework provides classes to ease collection of statistics and histograms.
Higher-level modeling constructs report relevant metrics, such as the average time in a queue, auto-
matically,. Upon completion of an experiment the results including debugging and error messages
are output to HTML files. Additionally, a user can request to record scheduled events and actions in
an HTML (or XML) trace file.

To illustrate some capabilities example screenshots of the Experimental Starter and the evaluation are
provided. In this experimental run a queueing model shipped with the DESMO-J distribution60 is
executed. This model simulates a container loading station on a harbor: trucks load containers –
when a truck arrives it requests a container; only one truck can be loaded on the loading zone. A van
carrier picks up the requested container and moves it onto the truck. Finally, the truck leaves the
loading station.

The results are shown in Figure 2.26 and the HTML trace is displayed in Figure 2.27. In the left
window of Figure 2.26 the arrival times and completion times of each individual truck are marked;
in the right window, a histogram of the average truck wait time is plotted.

Model-specific adjustment of the GUI is done by modifying the GUI’s XML file. The latest version
(April 2011) includes support for 2D and 3D animations.

60http://desmoj.sourceforge.net/tutorial/events/1.html

98

http://desmoj.sourceforge.net/tutorial/events/1.html

2.6 SIMULATION OF COMPUTER AND CLUSTER SYSTEMS

Figure 2.27.: HTML trace file of the container simulation – rendered in the DESMO-J GUI.

Related to simulation tools, there are plenty of more relevant aspects which assist comparability, those
criteria and some other simulation tools are introduced in [PK05], chapter 9. A long list of available
simulation tools, engines and languages is given on http://www.idsia.ch/~andrea/sim/simtools.html

(last checked: Jan 2012).

2.6. Simulation of Computer and Cluster Systems

While generic frameworks, such as those referenced in the last section, allow modeling of many different
types of systems, in this section an small excerpt of domain-specific tools for simulation of computer and
cluster systems are introduced in more detail. A few tools which are just peripherally relevant are given in
brief at the end of this section.

Simulation as introduced in Section 2.5 depends on a model built with a particular goal in mind. In
the context of this thesis, we are interested in the simulation of cluster hardware and the execution of a
parallel program. One question that should be answered in this thesis is whether an application access
pattern is able to utilize the deployed parallel file system for a given cluster file system. In this sense, the
simulation could assist in spotting bottlenecks in the real cluster; thus it could explain the observation, and
it could predict performance of the parallel file system for arbitrary hardware. Key characteristics of the
real hardware and software should be represented in the simulated model to allow to conduct experiments
on optimization of parallel middleware and I/O behavior. Since mathematical models are not suitable to
model behavior of the dynamics of those systems, discrete-event simulation is the preferable tool.

To compare the simulation tools, the criteria from Section 2.5.3 are extended and concretized slightly
towards the application domain. In the system model, additionally the abstractions for relevant cluster
components are given, effectively splitting the model into CPU, node, memory, network and I/O models.
In the context of the simulator, core hints to the scalability of the solution are provided. The application
model is part of the activity model, in case other concepts such as the application trigger activities by
themselves – e.g., autonomously acting (active) storage, this fact is mentioned explicitly. It is required that
simulation experiments match the intentions of the specific simulator, otherwise the provided model might
lead to an insufficient representation of the aspects that are relevant for the experiment – thus leading to
a low accuracy. During the validation, typical accuracy for the mentioned simulators is in the order of
several percent, it is not uncommon to see a difference of 5 % in performance for simulation of network

99

http://www.idsia.ch/~andrea/sim/simtools.html

BACKGROUND AND RELATED WORK 2.6

and application behavior.

DiskSim simulates the behavior of block I/O in a fine grained manner [BSS+10]. It has been maintained
and extended since 1993 and is now available in version 4.

• Environment: The storage simulator is written in C and provided under a BSD-alike license. A sim-
ulation library and a library to access storage models are provided. The fast lexical analyzer generator
(Flex) and the GNU parser generator Bison are used to build parsers for the model descriptions. The
simulator can be run under Linux and on the Windows platform.

Dixtrac, a supplementary tool, extracts characteristics from a real HDD. Those parameters can be
loaded into DiskSim to characterize the behavior of an HDD closer to reality.

• System model: DiskSim simulates a storage subsystem, components not involved in low-level stor-
age are not modeled at all. Simulated devices are device drivers, controllers, bus systems and the
underlying block oriented storage device such as an HDD.

Topologies of components can be specified in a simple textual representation, exactly one device
driver connects to one or two controllers, a controller connects storage devices in a hierarchy of
system buses. Orthogonal software services such as I/O scheduling and disk caching are supported.
Components are instantiated as defined by the input component specification.

The description of the simulated components is provided next. A bus is either occupied exclusively
– e.g., only one component can acquire the bus and then transfer data, or it shares available band-
width equally among all pending transfers. Modeled characteristics include: time to acquire the bus,
transfer time to read a block and transfer time to write a block. The time to transfer a block over a
bus between two components is the maximum of the block transfer times of the components.

Controllers have an I/O scheduler and a caching strategy, and include parameters for the maximum
queue length and block transfer time.

Disk devices can use either a simple or an accurate device model. The accurate HDD model considers
the mechanics in the device and bus communication realistically and thus the actual position of the
actuator on the platter and position of the target block determines the duration of data access. There
are 65 parameters to configure a device in the accurate model. In contrast, the simple model does
not track the accessed blocks, instead it is parameterized by: the time to transfer a block, a constant
access time and a bus latency.

Twenty-seven schedulers have been implemented and evaluated in DiskSim – ranging from First-
Come-First-Served over VSCAN to experimental algorithms. In order to schedule the appropriate
operations, a scheduler can have access to the cylinder mapping strategy, i.e., the mapping of LBA
to physical location. Within a sequence of requests, a read request might overlap completely with
a previously scheduled request, in that case caching mechanisms provide the data for the second
request.

The block cache of a HDD simulates many aspects among which write-through/write back, pre-
fetching, flushing and replacement policy are controllable.

Further features permit to apply RAID schemes to storage devices, also the rotation of a set of devices
can be synchronized (spindle synchronization). Further, an I/O device can be configured to act as a
cache for another device.

Since 2008 there is a patch available which supports SSDs. The patch considers a multitude of char-
acteristics of flash storage including the hierarchical design of flash packages, lanes and (erasure)
blocks. Just to give an impression of the complexity of such a model, in total, 5131 lines of C source
code are required. Also, a model for Microelectromechanical systems (MEMS) [CGN00] is shipped with
DiskSim. In this model, energy consumption of I/O is considered.

100

2.6 SIMULATION OF COMPUTER AND CLUSTER SYSTEMS

• Activity model: Either recorded trace files or synthetic workloads can drive the modelled I/O sub-
system. To replay a trace file, the file contents is read on demand. In a simple case, the trace consists
of a sequence of requests, each characterized by arrival time, access type, the device to access, the
block number and the request size in blocks.

With a synthetic workload, the logical block number and the access size for the next I/O operation
are determined randomly with choosable probability distributions, for example with a normal, ex-
ponential or poisson distributed random variable. Multiple synthetic workloads can be executed to
simulate concurrent “applications”.

• Simulation core: DiskSim is a sequential program with supports application level checkpointing.
By injecting a specific event during the run, a checkpoint of the simulation state is requested and
created. Experiments are configured with a parameter file, specifying the storage subsystem and
further simulation parameters.

• Report generation: During the experiment DiskSim collects statistics for the storage components.
For each component, an individual set of statistics is maintained. For example more than 30 metrics
are available for the HDD model. A warm-up period can be specified, during which data collection
of values is not performed.

File System Simulation (FSS). In the PhD thesis [She99], a file system simulator is introduced, unfortu-
nately it has been abandoned after the PhD thesis finished. It seems the source code is not accessible in the
WWW any more and thus all the descriptions are based on the thesis.

• Environment: The file system simulation, which is distributed under the GNU GPL, uses OMNet++
as backend.

• System model: Provided layers are discussed from top (application) to bottom. The disk request
regenerator simulates application behavior by creating requests to an IO library. Interfaces for an IO
library, system call interface and file system are defined, yet they just pass the operations without
implementing a realistic behavior. Usually, in the file-system layer, the file to block mapping is per-
formed, according to the description, the current implementation is a simple layer mapping blocks
sequentially.

There is support for a block cache which orchestrates write-back of dirty pages; implemented caches
include FIFO, LRU and and Fair Share algorithms.

The disk driver layer should translate the logical block numbers to physical disk geometry, however,
the models take block numbers directly. Thus, operations are passed through the layer without
modifications. Another variation of the layer realizes a mutex, which queues pending operations and
dispatches just one operation at a given time.

A disk scheduler queues outstanding requests and schedules them according to its policy – among
the supported algorithms are FIFO, CScan and Preemptive Fair Share. The layer handles cases in
which completion of a request satisfies multiple pending requests. For instance, blocks read could be
requested by various pending read requests. Multiple writes to the same block only persist the data
written last. A pending write and read operation of one block can be satisfied from cache, even if the
write has not finish.

The physical disk model is either a simple fixed access time model, or an implementation of the HP
97560 Disk model based on previous descriptions in [RW94]. This advanced disk model respects
seek-time including head-positioning, rotation position of the platters, disk cache and read-ahead
capability.

• Activity model: To generate requests, FSS supports either a sequence of read and write requests
supplied by a trace file, or one out of three synthetic workloads: One is a random request generator.
Another one simulates an application that reads/updates a 2D clipping of a larger map and that

101

BACKGROUND AND RELATED WORK 2.6

also records some log file. The last synthetic workload represents a network printer, which spools a
remote job onto the disk while a printing engine reads pages when the printer is idle.

• Simulation core: FSS utilizes OMNet++ and thus parallel simulation might be possible.

• Report generation: The simulator gathers statistical information of all layers and includes request
time, seek distance, access time, cache hit/miss ratio and wait time.

SimSANs This simulator models storage area networks (SANs) and their administration.

• Environment: SimSANs is built with the OMNet++ framework. Additional GUIs support creation
of the model and analysis. Recent versions require the Windows platform and the .NET framework
because the GUIs are coded in C#. The source code is not available for the public.

• System model: In the system model, hosts access storage devices via the Fibre Channel protocol
and address them with their logical unit number (LUN). Besides simulation of the Fibre Channel
technology, SimSANs supports the tunneled Fibre Channel over Ethernet (FCoE) protocol.

Each LUN is accessed exclusively by one host. A host has a number of equal processors characterized
by cache, processing speed and front-side bus; the host defines a SCSI timeout and device queue
depth61. Network adapters connect the host via a switched topology to the Fibre Channel endpoints.

Data rate, MTU, frame payload size and receive buffer count are attributes of a port. Ports are also
part of a switch. Virtual ports are supported as well.

Storage devices are specified by a range for the sequential and for the random response time; the range
is defined by a minimum and a maximum access time and a probability distribution.

• Activity model: I/O traffic is injected by assigning at least one I/O generator to a host. An I/O
generator creates requests randomly; it is characterized by the read ratio, the sequential ratio, the
maximum number of outstanding operations, the amount of data requested per operation, burst
length and burst delay.

With SimSANs, many parameters of the system configuration can be adjusted at run-time; one can
even adjust the system by adding new hosts and I/O generators.

• Simulation core: The simulation tool is coded in OMNet++. The author has not found further
information about the simulation core.

• Report generation: The GUI can display and assess Fibre Channel packets in the way common
protocol analyzers, like Wireshark62, capture and show real protocol traffic. In fact, traces can be
exported into the Wireshark file format and analyzed directly in the network analyzer. Additionally,
the GUI can be configured to draw performance charts for each host and SCSI device.

BigSim [ZWJK05, ZKK04, WZB+05] is an environment consisting of the machine emulator BigEmulator
and the trace-based simulation tool BigSimulator. BigSim was initially designed to assess performance of a
BlueGene/C system.

• Environment: Both tools are written in Charm++ and are offered under an open source license,
BigEmulator is shipped within the tarball of Charm++. Compile scripts for many UNIX platforms
and Windows are enclosed. The BigSimulator depends on the POSE framework (also included in the
distribution of Charm++).

The emulator realizes the execution-driven approach, thus it runs existing applications and estimates
communication time. The BigSimulator loads and replays trace files generated by the emulator. A

61The maximum number of pending requests. A pending request is one that has been issued to the SCSI device but is yet
unfinished.

62http://http://www.wireshark.org/

102

http://http://www.wireshark.org/

2.6 SIMULATION OF COMPUTER AND CLUSTER SYSTEMS

tool permits to adjust computation time of the trace files, e.g., to simulate compute nodes that are
twice as fast as the original ones.

• System model: BigEmulator and BigSimulator only support homogeneous architectures. Parame-
ters of a simulation experiment are defined in a simple text file, specified parameters are used for all
model components. The emulator model consists of interconnected single chip nodes, a chip has a
number of threads each supplied with an integer execution unit.

BigEmulator computes communication time for point-to-point and broadcast operations while the
computation is performed on a real system. For communication, it uses an algorithmic network
model – performance depends on an initial latency, the latency per hop and the bandwidth. The
distance between two nodes depends on the network topology, congestion effects are not addressed.
Several topologies are supported: 2D/3D grids and tori, a fully meshed network, or machine-specific
routing algorithms on a 2D/3D node arrangement.

With BigSimulator, either a simple algorithmic model or a network contention model can be used in
experiments. The simple model computes the communication time from a latency, bandwidth, and
optionally, with an overhead per packet, it does not depend on the actual network topology. The
network contention model is made of links, switches and network interfaces. Arbitrary topologies
are supported, several models like 3D grids, tree topologies or hypercubes are already templated. A
compute node is connected to one NIC which fragments messages into packets. The NIC is charac-
terized by two delay values representing DMA overhead – one for small and one for large messages.
Also, latency and bandwidth attributes are supported.

Store-and-forward switches route the packets with one of the available strategies, switches buffer
packets either on the incoming or the outgoing port. The routing algorithm can be static or adaptive;
in the latter case, the outgoing port with the lowest load is chosen.

Modeled switches perform multicast, barrier and reduction operations in hardware. Supported MPI
operations are send, receive, barrier and allreduce. Communicators are not modeled. Startup of a
barrier operation adds a delay, which is hard-coded and depends on the number of processes per
node.

• Activity model: Real applications can be linked with the BigEmulator to mimic the BlueGene
scheduling and communication layer – including 3D grid topology. Supported programming mod-
els are Charm++ and MPI 1.0, a BlueGene low-level API for the emulator is also supplied. The
emulator is initialized with the dimensions of the 3D torus and the number of communication and
computation threads per node – these parameters are specified via command line. Or, if the low-
level emulation API is used, values are set in initialization functions embedded in the application.
While the computation is executed on the available processors, the virtual time is managed by the
emulator. When the simulation finishes, the model time is output thus estimating performance for a
real BlueGene system.

During execution, the emulator can record activity in a trace file. To predict performance of non-
existent machines and architectures, a tool is supplied which alters the compute time of recorded
functions individually.

Three models are supported to adjust computation time: first, all times can be scaled by a fixed
factor, hence modeling a faster or slower processor. Also, execution time for a function call can
be estimated by an equation that computes the complexity of the function based on the supplied
parameters. Also, the tool can extrapolate measured timing information automatically with the least
squares method. At last, BigEmulator provides an API to instrument the compute kernels; for each
execution, timing and hardware performance counters such as floating-point, integer and branch
instructions are recorded and can be used in the extrapolation tool.

At last, cycle-accurate simulation of the routines for a target system can be combined with parame-
terized complexity of a routine. Alternatively, hardware performance counters on the traced machine

103

BACKGROUND AND RELATED WORK 2.6

can be extrapolated to estimate the speed for the target machine’s execution units and its cache per-
formance.

BigSimulator additionally provides some stochastic generators for network traffic.

• Simulation core: Parallel simulation is supported by utilizing capabilities of POSE. By running on
100 physical processors, BigSim demonstrated parallel simulation of machines with 100.000 proces-
sors.

• Report generation: The simulator can gather statistics of link utilization and message arrival. Also,
both simulator and emulator can record activity in trace files. A command line tool extracts commu-
nication information of trace files and prints statistics.

Charm++ ships with the Projections analysis framework for those trace files. This framework consists
of a trace writer API, its implementation and a Java viewer. Multiple views are provided: profiles,
histograms and timelines, a utilization graph shows the CPU usage of the individual logical proces-
sors, and the communication activity (number of messages, messages bytes ...) for all remote methods
can be stacked for each processor. Further, the aggregated communication activity of all processors
over time, a 2D visualization of processor usage – colors encode the utilization at any given time,
clustering functionality to spot outliers in processor utilization via a k-means clustering algorithm,
and at last a noise detection tool to identify OS or computational noise in the data.

SIMCAN The SIMCAN [NFG+10] simulation project aims to simulate large storage networks in order to
predict performance and scalability. SIMCAN has been developed in parallel to this thesis – both projects
started at the same time. Recently, we found this interesting project when updating the bibliography and
references. Although there are similar features as those developed in this thesis, the approaches are differ-
ent; components of PIOsimHD operate on a higher level of abstraction and focus on simulating alternative
MPI algorithms. The reported characteristics represent the status of the project as of April 2011.

• Environment: SIMCAN is based on OMNet++. The INET framework is utilized for simulation of
communication networks. INET models network technology and protocols including Ethernet and
TCP/IP.

By itself, SIMCAN is licensed under the GPL, INET is licensed under GPL or LGPL. However, OM-
Net++ by itself is provided with the academic private license that prevents commercial usage free of
charge. SIMCAN is available for Windows and Linux.

• System model: Modeled system components are largely along the lines of cluster systems: racks,
nodes, operating system, CPU, file system layer, communication and services represent their real
systems. The abstraction level of a component can be varied. The developers explicitly mention
simple stochastic models and realistic implementations. While the stochastic models are easier to
understand, the realistic models provide more accurate and comparable results.

Modeled components are as follows: A rack consists of a number of node boards each with an equal
number of nodes. Each node board contains a number of nodes and interconnects these nodes (char-
acterized by a data rate and latency). Nodes have a number of CPUs of a given type (attributed by
instructions per second and core count) an OS layer with several I/O layers and, optionally, a local
storage device. CPUs schedule computation either in FIFO, or with a Round Robin scheme in which
each job is processed for a time slot – called quantum – before the next pending job is dispatched.

Memory can be allocated by the application and is used for buffer space; messages can allocate or
release memory. The access time is modeled as a function with the access size as a parameter – when
more data is accessed, time increases.

A file system maps the logical block of an operation its physical block address; there are three models
provided that define the processing time of metadata operations and block I/O. In a simple model,
the latency to open, create or close a file is hard-coded and a straight forward mapping of bytes from

104

2.6 SIMULATION OF COMPUTER AND CLUSTER SYSTEMS

a file to disk is realized. An advanced model for ReiserFS and Ext2 distributes the file across the disk
similar to these file systems. There is a parallel file system model without explicit metadata servers,
the model uses NFS servers to maintain data. In this implementation, metadata is considered to be
part of the file’s data stream, i.e., the first few KiB represent metadata. Metadata operations involve
communication with all servers: open and delete require one message exchange per server – open
reads the metadata. Create needs two messages; with the first, the file is created, and with the next
request, metadata is written to the file. Block I/O is distributed with a RAID 0 concept among the
servers.

NFS servers operate on block-level and realize a thin layer relaying operations between operating
system and requester. The OS contains a cache layer and it controls modules for the I/O – right now,
only FIFO scheduling is supported. Data blocks of files can be cached; one memory model provides
write-behind and read-ahead capabilities.

Implemented disk models are: a simple model – characterized by latency and transfer time for read
and write, respectively. The detailed disk model contains tables with the measured throughput for
read and write access in relation to the distance of the access. Therefore, it tracks the last accessed
offset; when an access shall be performed, the knowledge of the next offset allows picking the right
elements of the table. Since the values in the table are samples, they are linearly interpolated to match
the actual distance and size implied by the request. There is no scheduling algorithm implemented
for the disk model.

Nodes are interconnected with a switched network topology provided by the INET framework. INET
models Ethernet switches and communications protocols in high detail. High-level protocols, such
as TCP, are fragmented into frames of the lower MAC layer and are communicated with store-and-
forward switching. Switches have a number of CPUs relaying the frames between the ports and
a buffer for frames, processing of a frame takes some time. If this buffer is full then frames are
dropped.

• Activity model: A node hosts client or server processes. All workload is generated by simulated
client applications. On the client-side, there are several modules provided for independent or se-
quential programs, and for parallel MPI applications. To be more specific: an NFS client – receiving
I/O requests via TCP and generating NFS requests, a master/server MPI-IO application, and replay
engines for sequential and parallel applications. In their paper, a PMPI wrapper has been presented
which intercepts MPI-IO calls to record the activity, those activity can be later replayed. Computa-
tion time is simulated by waiting the time between MPI calls. The sequential replay engine supports
open, close, delete, read and write calls.

Collective MPI calls are supported to gather, scatter, send and receive data; for synchronization,
the MPI_barrier() is provided. The MPI routines to open, close, delete, read and write files are
provided. A drawback of the implemented functions is that for each function, only the naive imple-
mentation is provided, that means all communication of collective operations happens between the
root of the collective and all other nodes. Communicators are not supported, also all implementa-
tions are hosted in one file. Each processing step of a complex operation, for example, to wait for
receiving a message, is implemented in its own method.

• Simulation core: Although OMNet++ is used, the simulation core is executed sequentially.

• Report generation: There is no explicit report generation provided, the MPI replay module main-
tains additional statistics about the time spent in computation, IO and communication.

Scalable Simulation Framework (SSF) [LNBG03] is a process-oriented discrete-event simulation frame-
work which is mainly used to simulate large networks – SSFNet aims to simulate Internet traffic.

• Environment: This project has been abandoned in 2004, although the proposed API of SSF has
been implemented by several third parties in C++ and Java, for example in the Darthmouth Scalable

105

BACKGROUND AND RELATED WORK 2.6

Simulation Framework (DaSSF); further commercial implementations of the API for Java and C++
exist.

• System model: The model is specified in their Domain Modeling Language (DML). This language is
a public-domain standard. DML can be thought of as an XML-like language with features to support
inheritance; parameters are specified in textual form in hierarchically organized key-value pairs.

SSFNet simulates protocols and networks based on the Internet Protocol (or above). Models for sev-
eral protocols such as IP, UDP, TCP, BGP63 closely resemble the real behavior of an IP network. The
basic network model consists of hosts, routers, NICs and links. NICs are characterized by bitrate and
latency, a link is characterized by latency. Internally, these components are implemented in a process-
oriented scheme. Networks can be arbitrarily nested and connected by routers to form autonomous
systems. Layer 2 switches are supported, but network contention seems not to be addressed by a
switch.

• Activity model: Activity is specified in so-called protocol graphs and protocol sessions, each individual
connection starts a protocol session controlling message exchange.

Several protocol sessions to generate workloads are provided, they can be instantiated and param-
eterized in DML. Common application schemes include: HTTP and TCP client & server – the TCP
servers accepts client sessions and the TCP test client sends a fixed amount of data. HTTP client
activity is simulated with probability functions. The communication partner, that is, the server net-
work interface and port, for a client is defined in another section of the DML; upon initialization of
the model, SSFNet assigns IP addresses automatically.

• Simulation core: Parallel execution on shared memory machines is anticipated with the API speci-
fication. However, the model developer must indicate the dependency of entities in the DML of the
model specification. Otherwise the partitioning is unclear and the model runs on just one processor.

• Report generation: SSFNet provides monitoring extensions to capture and visualize all states of
the network activity. For instance, TCP or IP packets can be dumped by all components – similar to
the protocol analyzer Wireshark. Also, the queue length of pending packets in routers can be output
periodically, and an animation of traffic is provided in a 2D representation of the network model. To
start the recording of activity, in the DML code of the model, probes and monitors must be defined.

Structural Simulation Toolkit The SST [RHB+11, HRR+11] is a recent attempt to co-design hardware
structure and software technologies. Besides performance, SST estimates parameters for energy consump-
tion. Recently it has been used to evaluate temperature and space requirements of a processor, the authors
envision to estimate costs and reliability as well. This project has been developed in parallel to this the-
sis.

• Environment: SST is coded in C++ and generously uses the Boost libraries. It works on the Linux
and Unix platforms. The code is provided under a BSD license. Native MPI applications can be
executed inside the simulated environment.

• System model: SST provides a modular architecture to simulate memory hierarchies, bus, compu-
tation, network and I/O at arbitrary levels of abstraction. On one hand, it provides cycle-accurate
simulation, on the other hand, abstract analytical models are supported. Coarse-grained simula-
tion with SST/macro [JAC+10] estimates performance of large scale systems while fine-grained cycle-
accurate simulation aims to understand system details. Especially for fine-grained simulation, SST
incorporates and interfaces many existing simulators to avoid redundant development. In the modu-
lar concept, each component has its own local virtual time and synchronizes with other components
to exchange events and update its local time.

For the cycle-accurate simulation, some integrated simulators are mentioned briefly64. DiskSim is

63Routers use the Border Gateway Protocol to exchange routing information.
64Although many simulators are mentioned in the context of SST, only a few are provided in the source code distribution.

106

2.6 SIMULATION OF COMPUTER AND CLUSTER SYSTEMS

adjusted and incorporated into the source tree to estimate single disk I/O. However, currently, par-
allel I/O is not supported.

The compute model permits execution of native programs (with small modifications) in the simula-
tion environment. Both the activity and system models can be chosen independently. Execution of
native programs is handled by one of the following simulators. The hardware processor framework
Multicore Power, Area, and Timing (McPAT) [LAS+09] simulates the microarchitecture of many-core
processors from 90 nm to 22 nm including caches and execution units. Due to the high level of
detail of this simulation, McPAT permits assessing of energy characteristics. Alternatively, Monte
Carlo models for the Niagara or Opteron processor quantitatively resemble the microarchitecture. A
stochastic model does not maintain the complete virtual state of a processor; instead, the activity
of instructions depends on the probability distribution, e.g., a load instruction is satisfied by the L1
cache in 50% of the cases. Also, with genericProc, an adjusted version of the SimpleScalar open source
computer architecture simulator is provided. SimpleScalar models a complete virtual computer sys-
tem executing the PowerPC instruction set architecture (ISA). Finally, QSim is mentioned in the SST
documentation, it acts as a front-end for the QEMU processor emulation that emulates the x86 ISA.

In SST/macro, a processor executes jobs characterized by a number of load/store instructions, which
are interpreted as memory operations, and the number of floating point operations to be executed.

Memory simulation is supported by DRAMSim2, which models a complete DDR2 (or DDR3) memory
subsystem including controller and DRAM devices.

The network simulation contains models for the Portals API[BMRH02], the SeaStar network and Hy-
perTransport. Network attributes are primarily latency and bandwidth; in the SeaStar network, the
queue depths and packet flow can be adjusted as well. According to the documentation, their net-
work congestion model shares links among the data streams – the available bandwidth is allocated
in the order the communication is started. To be more precise, the oldest flow operates at maximum
possible bandwidth, then the remaining bandwidth is available for the next flow, until all flows are
handled. One router model, that is provided with the source distribution, models congestion by
queueing messages and scheduling them in FIFO order. This model characterizes the performance
by its bandwidth and a router delay that represents the costs for an additional hop.

Templates for network topologies allow simulation of large networks. Predefined topologies are
supplied, e.g., 3D meshes, binary fat tree, hypercube or a fully connected graph. A command line
tool eases creation of large networks.

An experiment is set up in an XML file that describes the components and parameters, and the links
between the components.

• Activity model: Two ways to execute applications are supported, either a native executable is loaded
into the virtual environment and started, or a replay mechanism executes MPI calls according to the
trace information. The former scheme is used to prototype application behavior in skeletons that
use MPI. In the latter, DUMPI, an MPI trace library, intercepts and records MPI function calls and
their parameters for a replay within SST/macro. To evaluate network architectures, there are also
components which inject communication patterns on the network layer to avoid time-consuming
simulation of processes.

Regarding MPI implementations, in the SST distribution a subset of MPI functions are realized:
currently MPI_Bcast(), MPI_Reduce(), MPI_Allreduce() and MPI_Barrier() are implemented. In
the SST/macro package, many more functions are implemented with a naive communication pat-
tern. For a few collective operations, sophisticated collective algorithms like Rabenseifner’s reduce
algorithm[Rab04] are provided.

• Simulation core: Parallel simulation is supported by using MPI. A conservative synchronization
occurs between the processors – the minimum latency of a (simulated) link between two components
determines the synchronization frequency. Static load balancing is done by partitioning the compo-
nents into groups which have many links between them. Every group is then mapped onto a logical

107

BACKGROUND AND RELATED WORK 2.6

processor. This scheme also maximizes the latency between components placed on disjoint proces-
sors. Checkpoint/restart of the simulation is implemented by serializing the state of all components
into a file in configurable intervals.

• Report generation: Supported simulators output their statistics independently, e.g., DiskSim main-
tains the total number of operations, the average service time and standard deviation, and DRAM-
Sim2 outputs the energy consumption. The genericProc simulation module can record the activity
of the simulated application in text files; among the traced activities are MPI point-to-point commu-
nication, DMA, network activity and internal operations.

In SST, derived components and several connected simulators can disclose named statistics and other
data. Data collection can be triggered by events, or data can be queried by other components explic-
itly. Supported metrics, for instance, are: core temperature, L2 cache reads and floating point opera-
tions (supplied by McPAT). For a router, the number of processed messages and the aggregated delay
of all communication are supported. Energy consumption and power information are monitored for
DRAM, router and processor.

LogGOPSim The LogGOPSim [HSL10] is a recent project for simulating the LogGPS performance model
of homogeneous machines. This project has been developed in parallel to this thesis.

• Environment: LogGOPSim is coded in C++ and utilizes several existing libraries: The graphviz
library to draw simple communication timelines, the scanner generator re2c, and several projects
hosted on the university of Illinois. There is no licensing information provided.

• System model: The LogP model family supports analytical models with parameters for the maxi-
mum latency of two processors, the CPU overhead per message, the costs per byte of a message. It
distinguishes between eager and rendezvous sends – messages with a size below a threshold set as a
parameter are performed in eager mode. In the paper written by Hoefflers et.al., the LogGP model
is extended to allow overlapping of communication and computation, this model is implemented in
the simulator. Note that all components share the same characteristics.

Topologies of switches and NICs can be created and read from a file in the annotated DOT format65.
Besides the analytical model based on LogGP, a simple congestion scheme is offered. In the imple-
mentation, the startup and completion of a message update all messages routed over the same path
and change the congestion level – the bandwidth is shared among all messages equally. The simula-
tor processes 1 byte of the message per time-step of the simulation – the model parameters are not
yet supported. I/O is not addressed in the simulator.

• Activity model: Three basic operations are supported: Sending and receiving of messages with a
matching close to MPI, and computation. In the latter activity, time is defined which elapses on the
selected processor. In this process, a random time can be added to simulate operating system noise.
A recorded noise profile can be injected as well to study the impact of OS jitter.

Application communication behavior is supplied to the simulator in a file of the Group Operation
Assembly Language (GOAL), an example for a binary tree between four processors is given in List-
ing 2.10. Every operation is labeled and dependencies between the operations are explicitly coded
with the requires keyword. To simulate more complex MPI operations, these operations must be
translated into a sequence of send and receive primitives. The simulator is shipped with some basic
communication patterns for MPI collectives, such as linear gather, binomial tree patterns and the
dissemination pattern.

MPI application profiling traces can be recorded and fed into the simulator. The tracing library of-
fered by Torsten Hoeffler intercepts PMPI calls and records the activity in a simple text format. Then,
this format can be converted into the GOAL input schedule for the simulator. During this procedure,

65http://www.graphviz.org/content/dot-language

108

http://www.graphviz.org/content/dot-language

2.6 SIMULATION OF COMPUTER AND CLUSTER SYSTEMS

collective operations must be translated into a sequence of elementary send, receive and compute op-
erations. Currently, only collective operations running on all processes, e.g., MPI_COMM_WORLD,
are supported. Also, the way MPI operations are translated is fixed in the provided Schedgen tool.
That means, for instance, that MPI_Allreduce() operations create a dissemination pattern.

Listing 2.10: GOAL example input for LogGOPSim
num_ranks 4

rank 0 {

l0: calc 1000 cpu 0

l1: send 1b to 1 tag 0

l2: send 1b to 2 tag 0

}

rank 1 {

l1: recv 1b from 0 tag 0

l2: send 1b to 3 tag 0

l2 requires l1

}

rank 2 {

l1: recv 1b from 0 tag 0

l2: calc 1000 cpu 0

l2 requires l1

}

rank 3 {

l1: recv 1b from 1 tag 0

}

• Simulation core: The simulator is a sequential program. Due to its fast execution – 1 million events
per second, the simulator has been successfully used to study existing applications. With memory-
mapping techniques, the out-of-core execution of a GOAL input file is possible [HSL10].

• Report generation: The simulator outputs the virtual end-time for the simulation and the model
parameters of LogGOPS. Optionally, the simulated end-time of every process can be printed. The
output for the schedule in Listing 2.10 is given in 2.11

For small simulations, a trace file can be created which is then visualized with the help of Graphviz.
The output for our example schedule is illustrated in Figure 2.28. Due to the default settings of
Graphviz, the behavior and text is barely readable in this example. Since the overlapping parameter
O is set to 0, the computation and communication are not overlapped.

Listing 2.11: Output of LogGOPSim for the GOAL input in Listing 2.10
LogGP network backend; size: 4 (1 CPUs, 1 NICs); L=2500, o=1500 g=1000, G=6, O

→=0, P=4, S=65535

PERFORMANCE: Processes: 4 Events: 11 Time: 0 s Speed: inf ev/

→s

Times:

Host 0: 4000

Host 1: 7000

Host 2: 8000

Host 3: 11000

Other tools A few more simulation tools with peripheral relevance to this thesis are introduced in
brief.

109

BACKGROUND AND RELATED WORK 2.6

Figure 2.28.: Visualized binary tree pattern for four processes as created by Graphviz.

JitSim [DM10] simulates the influence of jitter in large systems. The application behavior is modeled as a
sequence of computation, communication and jitter phases. Jitter is either traced on a real system and
replayed in the simulator, or synthetically created. Synchronization points of the program are simulated
by passing send and receive messages in a tree topology. Currently, the barrier is the only synchronization
primitive supported. The system model defines latency between cores, sockets and nodes. To be able to
simulate very large systems, homogeneity of the systems is assumed and network congestion is ignored.

N-MAP [FJ95], as mentioned in Section 2.4.1, is an early discrete-event simulation tool which predicts
performance of SPMD programs. From a program specification, that is, a sketched communication and
execution scheme, the tool generates either a simulation program – which upon execution writes a simu-
lation trace, or a skeleton for an instrumented real program, which writes a trace file during run-time. In
their workflow, assessment of the obtained performance leads to an iterative refinement and improvement
of the specification. The program is specified in a C-like dialect, which is transformed into a C simulator or
executable. The tool is not specifically designed for MPI, yet the programmer uses some kind of simplified
message passing interface.

PS [AMMV98] is a trace-driven PVM simulator. Simulation runs are analyzed for instance with the visual-
izing tool ParaGraph. Further, in some cases, traces can be derived from source code by using static code
analysis. In their system model, the relative processing speed of each processor is specified, the model con-
siders one PVM application, the hosts running the applications, and NICs communicating via TCP/IP.

In [BDCW91], PROTEUS, an execution-driven simulator for MIMD processors is presented. PROTEUS
executes instrumented message-passing code or shared-memory code – the code calls the simulator which
processes mode-time accordingly. The system model includes nodes, one processor, a network chip, cache
and memory. The sequential simulator offers multiple implementations for memory and network. De-
pending on the accuracy and performance requirements, the user can pick the right implementation.
Shared-memory as well as distributed memory machines are supported. Independent nodes are connected,
either via a direct or an indirect network. Network congestion is addressed, but the user can select an ana-
lytical model for the network as well. Programs are written in a C dialect, extensions to C include ways for
declaring data to reside in shared memory and controlling placement of data structures. Further, library
routines for message passing, thread management and memory management are provided. A GUI assists
to define the architectural characteristics, then an application and an architecture-specific simulator are
generated and compiled. Running the executable simulator generates some output and a trace file, which
can be analyzed with another GUI. Real applications, which do not invoke the simulator, can be created
from the C dialect. Thus, production runs with designed programs can be made.

The Performance Prophet [PBXB08] utilizes the CSIM engine and simulates message-passing applications.
Activity of an application is specified in the UML language and translated into C++ simulation code. Possi-
ble message passing activity includes the following operations: blocking and non-blocking send, blocking
receive, broadcast, barrier and OpenMP-like parallel regions. The simulation generates a trace file, which

110

2.7 CHAPTER SUMMARY

can be assessed in the Java GUI Teuta. This GUI also supports the workflow to generate the application
model. In the model, a cost function is assigned to sequentially executed code blocks, this in turn deter-
mines the run-time. System parameters include the number of processors per node, the number of nodes,
and the processes and threads per node. It seems that network activity is modeled mathematically, and the
model does not take network congestion into account.

Several other approaches to predict performance of parallel computing systems are summarized in [PBB07].
Although the simulation of supercomputers recently gained inertia since it fosters co-design of exascale
machines, none of the available tools simulate MPI-IO applications as offered by PIOsimHD, the simulator
designed for this thesis. PIOsimHD handles parallel I/O activity and MPI application behavior in software,
and allows concurrent execution of multiple parallel applications on heterogeneous cluster systems. With
these features, PIOsimHD fosters parallel I/O analysis and assessment of alternative MPI collectives.

2.7. Chapter Summary

This extensive chapter introduced related topics and presented the relevant state of the art. On the one hand, with
this knowledge, the novel scientific aspects of this thesis will become clear, on the other hand, results presented can
be assessed better.

Some background to parallel file systems and their deployment was presented; this included important architec-
tures of vendors. Since the Parallel Virtual File System is used as a reference to compare simulation results, an
in-depth introduction to PVFS as an archetype for parallel file systems was given. Later, this knowledge will
assists in validating the I/O model of the simulator. Further, it fosters understanding of measured behavior and
observed I/O activity.

Then, aspects were listed that influence performance of parallel applications: Many hardware capabilities have an
impact on performance. Mainly they can be attributed to CPU, memory, network and block device. Also, various
characteristics for hardware and software on all different layers were explained together with optimizations that
mitigate performance shortcomings of the hardware.

Details about the Message Passing Interface recalled its programming model and I/O semantics. The MPI seman-
tics offer a level of freedom to vendors that allows to adjust an implementation to the architecture of a supercom-
puter. Performance implications of the programming model and the defined semantics were discussed, and related
work showed a diversity of approaches that improve communication performance.

The section about performance analysis presented concepts that deal with integrating software engineering into the
development process to achieve efficient applications. Those approaches require performance models and often use
simulation tools to estimate performance before the application code is completely written. However, the state of
the art in high-performance computing is to evaluate application’s performance after they are coded. This process
is illustrated in the closed loop of performance tuning which explains a general workflow to improve performance
of a system: Achieved performance of the current state is measured and analyzed, leading to code modifications.
This cycle is repeated until the code efficiency suffices, or further tuning is not worth the effort. Several tools were
introduced which assist in analyzing serial and parallel programs in order to localize performance bottlenecks.
Most of the introduced tools instrument an application to record information of interest into trace files. These
trace files are then analyzed post-mortem.

The last sections highlighted the general concept of modeling and simulating complex systems. During model-
ing, an abstraction must be found from the real system that should be investigated. Discrete-event simulation
implements a system model by maintaining a global model time that is incremented to the next event that should
be executed. Therewith, an arbitrary accuracy of model time can be achieved while periods of inactivity are
skipped.

A couple of frameworks, which are suitable for simulation, were introduced. The presentation of simulation tools
for cluster systems (and I/O paths) showed the rich diversity of previous work. Recently, many new simulation
projects were started that aim to estimate performance for exascale installations. However, this thesis can be

111

BACKGROUND AND RELATED WORK 2.7

distinguished from existing work because it aims to fully simulate MPI-IO behavior on a virtual heterogeneous
cluster system.

In the next chapter, the behavior of our working group’s cluster is analyzed. Several of the performance character-
istics are determined and the complex interplay of hardware and software factors will be illustrated.

112

Bibliography

[AB09] M. Anthony and P.L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 2009.

[ABC+06] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry Husbands, Kurt
Keutzer, David A. Patterson, William L. Plishker, John Shalf, Samuel W. Williams, and Kather-
ine A. Yelick. The Landscape of Parallel Computing Research: a View from Berkeley. Techni-
cal Report UCB/EECS-2006-183, Electrical Engineering and Computer Sciences, University
of California at Berkeley, December 2006.

[ACI+09] Nawab Ali, Philip H. Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert Latham,
Robert B. Ross, Lee Ward, and P. Sadayappan. Scalable I/O Forwarding Framework for High-
performance Computing Systems. In CLUSTER. IEEE, 2009.

[AHA+05] George Almási, Philip Heidelberger, Charles J. Archer, Xavier Martorell, C. Chris Erway,
José E. Moreira, B. Steinmacher-Burow, and Yili Zheng. Optimization of MPI Collective Com-
munication on BlueGene/L Systems. In Proceedings of the 19th annual international conference
on Supercomputing, ICS, pages 253–262, New York, NY, USA, 2005. ACM.

[AMMV98] Rocco Aversa, Antonino Mazzeo, Nicola Mazzocca, and Umberto Villano. Heterogeneous
System Performance Prediction and Analysis Using PS. IEEE Concurrency, 6(3):20–29, 1998.

[BCI+10] Pete Beckman, Jason Cope, Kamil Iskra, Sam Lang, Kwan-Liu Ma, Chris Muelder, Robert
Ross, and Carmen Sigovan. System Software Instrumentation to Support the Visual Charac-
terization of I/O System Behavior for High-End Computing. Poster, 2010.

[BDCW91] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. PROTEUS: A High-Performance
Parallel-Architecture Simulator. Technical report, Cambridge, MA, USA, 1991.

[BFG+04] Steffen Becker, Viktoria Firus, Simon Giesecke, Willi Hasselbring, Sven Overhage, and Ralf H.
Reussner. Towards a Generic Framework for Evaluating Component-Based Software Archi-
tectures. In Architekturen, Komponenten, Anwendungen - Proceedings zur 1. Verbundtagung Ar-
chitekturen, Komponenten, Anwendungen (AKA 2004), volume 57 of GI-Edition of Lecture Notes
in Informatics, pages 163–180. Bonner Köllen Verlag, 2004.

[BGM03] Simonetta Balsamo, Mattia Grosso, and Moreno Marzolla. Towards Simulation-Based Per-
formance Modeling of UML Specifications. Technical report, Dipartimento di Informatica,
University Foscari Venezia, 2003.

[BH00] Bryan Buck and Jeffrey K. Hollingsworth. An API for Runtime Code Patching. Int. J. High
Perform. Comput. Appl., 14:317–329, November 2000.

[BICG08] Francisco Blas, Florin Isailă, Jesús Carretero, and Thomas Großmann. Implementation and
Evaluation of an MPI-IO Interface for GPFS in ROMIO. In Alexey Lastovetsky, Tahar Kechadi,
and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message Passing
Interface, volume 5205 of Lecture Notes in Computer Science, pages 159–166. Springer Berlin /
Heidelberg, 2008.

[BKD+10] Martin Burtscher, Byoung-Do Kim, Jeff Diamond, John McCalpin, Lars Koesterke, and James
Browne. PerfExpert: An Easy-to-Use Performance Diagnosis Tool for HPC Applications. In
Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC, pages 1–11, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[BKL09] David Buettner, Julian Kunkel, and Thomas Ludwig. Using Non-blocking I/O Operations in
High Performance Computing to Reduce Execution Times. In Proceedings of the 16th European

113

Bibliography 2.7

PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 134–142, Berlin, Heidelberg, 2009. CSC - IT, Springer-Verlag.

[BMRH02] R. Brightwell, A.B. Maccabe, R. Riesen, and T. Hudson. The Portals 3.2 Message Passing
Interface Revision 1.1. Sandia National Laboratories, 2002.

[BSS+10] John Bucy, Jiri Schindler, Steve Schlosser, Greg Ganger, and et al. The DiskSim Simulation
Environment (v4.0). http://www.pdl.cmu.edu/DiskSim/. Last accessed 2010-06-13., 2010.

[BTR03] Daniel Balkanski, Mario Trams, and Wolfgang Rehm. Communication Middleware Systems
for Heterogenous Clusters: A Comparative Study. Cluster Computing, IEEE International Con-
ference on, 0:504, 2003.

[CCC+03] Avery Ching, Alok Choudhary, Kenin Coloma, Wei-keng Liao, Robert Ross, and William
Gropp. Noncontiguous I/O Accesses Through MPI-IO. In Proceedings of the 3st International
Symposium on Cluster Computing and the Grid, CCGRID, pages 104–, Washington, DC, USA,
2003. IEEE Computer Society.

[CCH+06] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and H. Kuhn. MPIPP: an Automatic
Profile-guided Parallel Process Placement Toolset for SMP Clusters and Multiclusters. In
Proceedings of the 20th annual international conference on Supercomputing, ICS, pages 353–360,
New York, NY, USA, 2006. ACM.

[CCS+06] Jiannong Cao, Alvin Chan, Yudong Sun, Sajal Das, and Minyi Guo. A Taxonomy of Applica-
tion Scheduling Tools for High Performance Cluster Computing. Cluster Computing, 9:355–
371, 2006.

[CGN00] L. Richard Carley, Gregory R. Ganger, and David F. Nagle. MEMS-based Integrated-circuit
Mass-storage Systems. Commun. ACM, 43:72–80, November 2000.

[CHA+10] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, , and R. Ross. Storage Ac-
cess Characteristics of Computational Science Applications. Preprint ANL/MCS-P1791-0910,
September 2010.

[CoF09] CoFluent Design. The MCSE Methodology – Overview. White Paper, Online, 2009.

[CoF10] CoFluent Design. CoFluent Studio – System-Level Modeling and Simulation Environment.
White Paper, Online, Dec 2010.

[Cor04] Microsoft Corporation. Improving .Net Application Performance and Scalability (Patterns & Prac-
tices). Microsoft Press, 6 2004.

[CSGF08] Mohamad Chaarawi, Jeffrey Squyres, Edgar Gabriel, and Saber Feki. A Tool for Optimizing
Runtime Parameters of Open MPI. In Alexey Lastovetsky, Tahar Kechadi, and Jack Dongarra,
editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume 5205
of Lecture Notes in Computer Science, pages 210–217. Springer Berlin / Heidelberg, 2008.

[CUS01] Lloyd G. Williams Connie U. Smith. Performance Solutions: A Practical Guide to Creating Re-
sponsive, Scalable Software. Addison-Wesley, 2001.

[DD08] Mathieu Desnoyers and Michel R. Dagenais. LTTng: Tracing Across Execution Layers, from
the Hypervisor to User-space. In Linux Symposium 2008, page 101, July 2008.

[Des10] Mathieu Desnoyers. [RFC] Common Trace Format Requirements (v1.4). Discussion on a
Mailinglist, Oct 2010.

[DM94] Giovanni De Micheli. Computer-Aided Hardware-Software Codesign. IEEE Micro, 14:10–16,
August 1994.

[DM10] Pradipta De and Vijay Mann. jitSim: A Simulator for Predicting Scalability of Parallel Appli-
cations in Presence of OS Jitter. In Pasqua D’Ambra, Mario Guarracino, and Domenico Talia,

114

http://www.pdl.cmu.edu/DiskSim/

2.7 Bibliography

editors, Euro-Par 2010 - Parallel Processing, volume 6271 of Lecture Notes in Computer Science,
pages 117–130. Springer Berlin / Heidelberg, 2010.

[dyn10] dynaTrace software. Application Performance Managment. http://www.dynatrace.com/

en/, 2010.

[DZV+97] T. Delaitre, M.J. Zemerly, P. Vekariya, GR Justo, J. Bourgeois, F. Schinkmann, and SC Winter.
EDPEPPS: An Environment for the Design and Performance Evaluation of Portable Parallel
Software. In Proceeedings of the 5-th Euromicro Workshop on Parallel and Distributed Processing,
1997.

[Ebc05] Kemal Ebcioglu. IBM PERCS Project: Hardware-software Co-design of a Future Supercom-
puter for High Programmer Productivity. Presentation, 2005.

[FDD09] Pierre-Marc Fournier, Mathieu Desnoyers, and Michel R. Dagenais. Combined Tracing of the
Kernel and Applications with LTTng. In Proceedings of the 2009 Linux Symposium, July 2009.

[FG08] Saber Feki and Edgar Gabriel. Incorporating Historic Knowledge into a Communication Li-
brary for Self-Optimizing High Performance Computing Applications. In Proceedings of the
2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pages
265–274, Washington, DC, USA, 2008. IEEE Computer Society.

[FJ95] A. Ferscha and J. Johnson. N-MAP: A Virtual Processor Discrete Event Simulation Tool for Per-
formance Prediction in the CAPSE Environment. In Proceedings of the Twenty-Eighth Hawaii
International Conference on System Sciences, pages 276–285 vol.2. 1995.

[FJ00] Alois Ferscha and James Johnson. N-MAP – an Environment for the Performance Oriented
Development Process of Efficient Distributed Programs. Future Generation Computer Systems,
16(6):571 – 584, 2000.

[FM95] Alois Ferscha and Allen Malony. Performance-oriented Development of Irregular, Unstruc-
tured and Unbalanced Parallel Applications in the N-MAP Environment. In Heinz Beilner
and Falko Bause, editors, Quantitative Evaluation of Computing and Communication Systems,
volume 977 of Lecture Notes in Computer Science, pages 340–356. Springer Berlin / Heidel-
berg, 1995.

[FMW+11] Greg Franks, Peter Maly, Murray Woodside, Dorina C. Petriu, Alex Hubbard, and Martin
Mroz. Layered Queueing Network Solver and Simulator User Manual. Technical report,
Department of Systems and Computer Engineering, Carleton University, 2 2011.

[FPY07] Ahmad Faraj, Pitch Patarasuk, and Xin Yuan. A Study of Process Arrival Patterns for MPI
Collective Operations. In Proceedings of the 21st annual international conference on Supercom-
puting, ICS, pages 168–179, New York, NY, USA, 2007. ACM.

[Fra00] Roy Gregory Franks. Performance Analysis of Distributed Server Systems. PhD thesis, Ottawa,
Canada, Canada, 2000.

[FWP09] Wolfgang Frings, Felix Wolf, and Ventsislav Petkov. Scalable Massively Parallel I/O to Task-
local Files. In Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, SC, pages 17:1–17:11, New York, NY, USA, 2009. ACM.

[FYL06] Ahmad Faraj, Xin Yuan, and David Lowenthal. STAR-MPI: Self Tuned Adaptive Routines
for MPI Collective Operations. In Proceedings of the 20th annual international conference on
Supercomputing, ICS, pages 199–208, New York, NY, USA, 2006. ACM.

[Ger99] N.A. Gershenfeld. The Nature of Mathematical Modeling. Cambridge University Press, 1999.

[GFBR10] Edgar Gabriel, Saber Feki, Katharina Benkert, and Michael M. Resch. Towards Performance
Portability Through Runtime Adaptation for High-Performance Computing Applications.
Concurrency and Computation: Practice & Experience - International Supercomputing Conference,
22:2230–2246, November 2010.

115

http://www.dynatrace.com/en/
http://www.dynatrace.com/en/

Bibliography 2.7

[GH07] E. Gabriel and S. Huang. Runtime Optimization of Application Level Communication Pat-
terns. In International Parallel & Distributed Processing Symposium, IPDPS, pages 1–8. IEEE,
2007.

[GHKV96] B. Gruber, G. Haring, D. Kranzlmueller, and J. Volkert. Parallel Programming with CAPSE – A
Case Study. In Proceedings of the 4th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing, volume 0 of PDP, page 130, Los Alamitos, CA, USA, 1996. IEEE
Computer Society.

[GO10] M. Gerndt and M. Ott. Automatic Performance Analysis with Periscope. Concurrency and
Computation: Practice & Experience – Scalable Tools for High-End Computing, 22:736–748, April
2010.

[GWW+10] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Abraham, Daniel Becker, and Bernd
Mohr. The Scalasca Performance Toolset Architecture. Concurrency and Computation: Practice
and Experience, 22(6):277–288, April 2010.

[Har09] Shai Harmelin. Whitepaper: Isilon IQ Scale-out NAS for High-Performance Applications.
Technical report, 2009.

[HH07] Dean Hildebrand and Peter Honeyman. Direct-pNFS: Scalable, Transparent, and Versatile
Access to Parallel File Systems. In Proceedings of the 16th international symposium on High
performance distributed computing, HPDC, pages 199–208, New York, NY, USA, 2007. ACM.

[HMD+10] X. Sharon Hu, Richard C. Murphy, Sudip Dosanjh, Kunle Olukotun, and Stephen Poole. Hard-
ware/software Co-design for High Performance Computing: Challenges and Opportunities.
In Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, CODES/ISSS, pages 63–64, New York, NY, USA, 2010. ACM.

[HRR+11] Ming-yu Hsieh, Arun Rodrigues, Rolf Riesen, Kevin Thompson, and William Song. A Frame-
work for Architecture-level Power, Area, and Thermal Simulation and its Application to
Network-on-chip Design Exploration. SIGMETRICS – Performance Evaluation Review, 38:63–
68, March 2011.

[HSL10] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. LogGOPSim: Simulating Large-
Scale Applications in the LogGOPS Model. In Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing, HPDC, pages 597–604, New York, NY,
USA, 2010. ACM.

[HWRI99] Curtis E. Hrischuk, C. Murray Woodside, Jerome A. Rolia, and Rod Iversen. Trace-Based
Load Characterization for Generating Performance Software Models. IEEE Trans. Softw. Eng.,
25:122–135, January 1999.

[HYC05] Ding-Yong Hong, Ching-Wen You, and Yeh-Ching Chung. An Efficient MPI-IO for Noncon-
tiguous Data Access over InfiniBand. In Proceedings of the 8th International Symposium on
Parallel Architectures,Algorithms and Networks, ISPAN, pages 140–147, Washington, DC, USA,
2005. IEEE Computer Society.

[ITKT00] Toshiyuki Imamura, Yuichi Tsujita, Hiroshi Koide, and Hiroshi Takemiya. An Architecture of
Stampi: MPI Library on a Cluster of Parallel Computers. In Proceedings of the 7th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 200–207, London, UK, 2000. Springer-Verlag.

[JAC+10] Curtis L. Janssen, Helgi Adalsteinsson, Scott Cranford, Joseph P. Kenny, Ali Pinar, David A.
Evensky, and Jackson Mayo. A Simulator for Large-scale Parallel Architectures. International
Journal of Parallel and Distributed Systems, 1(2):57–73, 2010.

[Kae93] David Kaeli. Issues in Trace-driven Simulation. In Lorenzo Donatiello and Randolph Nel-
son, editors, Performance Evaluation of Computer and Communication Systems, volume 729 of
Lecture Notes in Computer Science, pages 224–244. Springer Berlin / Heidelberg, 1993.

116

2.7 Bibliography

[KBB+06] Andreas Knüpfer, Ronny Brendel, Holger Brunst, Hartmut Mix, and Wolfgang Nagel. Intro-
ducing the Open Trace Format (OTF). In Vassil Alexandrov, Geert van Albada, Peter Sloot,
and Jack Dongarra, editors, Computational Science – ICCS 2006, volume 3992 of Lecture Notes
in Computer Science, pages 526–533. Springer Berlin / Heidelberg, 2006.

[KBB+08] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William
Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, Sherman Karp,
Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan
Snavely, Thomas Sterling, and R. Stanley Williams andKatherine Yelick. ExaScale Computing
Study: Technology Challenges in Achieving Exascale Systems. Technical report, DARPA, 9
2008.

[KBB09] Andreas Knüpfer, Holger Brunst, and Ronny Brendel. Open Trace Format Specification. Tech-
nical report, Center for Information Services and High Performance Computing (ZIH), April
2009.

[KBD+08] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger
Mickler, Matthias S. Müller, and Wolfgang E. Nagel. The Vampir Performance Analysis Tool-
Set. In Tools for High Performance Computing, Proceedings of the 2nd International Workshop on
Parallel Tools, pages 139–155. Springer, 2008.

[KGS+10] Andreas Knüpfer, Markus Geimer, Johannes Spazier, Joseph Schuchart, Michael Wagner, Do-
minic Eschweiler, and Matthias S. Müller. A Generic Attribute Extension to OTF and Its Use
for MPI Replay. Procedia Computer Science, 1(1):2109–2118, May 2010.

[KHB+99] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and Raoul A. F. Bhoedjang.
MagPIe: MPI’s Collective Communication Operations for Clustered Wide Area Systems. In
Proceedings of the seventh ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming, PPoPP, pages 131–140, New York, NY, USA, 1999. ACM.

[Kir10] Nick Kirsch. Whitepaper: OneFS Operating System. Technical report, 2010.

[KL08] Julian Kunkel and Thomas Ludwig. Bottleneck Detection in Parallel File Systems with Trace-
Based Performance Monitoring. In Euro-Par ’08: Proceedings of the 14th international Euro-Par
conference on Parallel Processing, pages 212–221, Berlin, Heidelberg, 2008. University of Las
Palmas de Gran Canaria, Springer-Verlag.

[KMKL11] Julian Kunkel, Timo Minartz, Michael Kuhn, and Thomas Ludwig. Towards an Energy-Aware
Scientific I/O Interface – Stretching the ADIOS Interface to Foster Performance Analysis and
Energy Awareness. Computer Science - Research and Development, 2011.

[KN10] Julian Kunkel and Petra Nerge. System Performance Comparison of Stencil Operations with
the Convey HC-1. Technical Report 1, Deutsches Klimarechenzentrum GmbH, Bundesstraße
45a, D-20146 Hamburg, 11 2010.

[Knu79] Donald Knuth. Structured Programming with Goto Statements, pages 257–321. Yourdon Press,
Upper Saddle River, NJ, USA, 1979.

[KO11] Andreas Knüpfer and Others. Score-P - Scalable Performance Measurement Infrastructure
for Parallel Codes. Webpage http://www.score-p.org, 2011.

[KRVP07] Dries Kimpe, Rob Ross, Stefan Vandewalle, and Stefaan Poedts. Transparent Log-Based Data
Storage in MPI-IO Applications. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, volume 4757 of Lecture Notes in Computer Science, pages 233–241. Springer
Berlin / Heidelberg, 2007.

[KST+11] Krishna Kandalla, Hari Subramoni, Karen Tomko, Dmitry Pekurovsky, Sayantan Sur, and
Dhabaleswar Panda. High-performance and Scalable Non-blocking All-to-all with Collective
Offload on InfiniBand Clusters: a Study with Parallel 3D FFT. Computer Science - Research and
Development, 26:237–246, 2011.

117

http://www.score-p.org

Bibliography 2.7

[KSVP10] Krishna Chaitanya Kandalla, Hari Subramoni, Abhinav Vishnu, and Dhabaleswar K. Panda.
Designing Topology-aware Collective Communication Algorithms for Large Scale InfiniBand
Clusters: Case Studies with Scatter and Gather. In International Parallel & Distributed Process-
ing Symposium, IPDPS, pages 1–8. IEEE, 2010.

[KT95] Yousef A. Khalidi and Moti N. Thadani. An Efficient Zero-Copy I/O Framework for UNIX.
Technical report, Mountain View, CA, USA, 1995.

[KTML09] Julian Kunkel, Yuichi Tsujita, Olga Mordvinova, and Thomas Ludwig. Tracing Internal Com-
munication in MPI and MPI-I/O. In International Conference on Parallel and Distributed Com-
puting, Applications and Technologies, PDCAT, pages 280–286, Washington, DC, USA, 12 2009.
Hiroshima University, IEEE Computer Society.

[Kun06] Julian Kunkel. Performance Analysis of the PVFS2 Persistency Layer. Online
http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2006/6330/pdf/

PerformanceAnalysis.pdf, 02 2006.

[Kun07] Julian Martin Kunkel. Towards Automatic Load Balancing of a Parallel File System with
Subfile Based Migration. Master’s thesis, Ruprecht-Karls-Universität Heidelberg, 08 2007.

[KWGS10] Andreas Knüpfer, Felix Wolf, Michael Gerndt, and Sameer Shende. The Future of the Open
Trace Format (OTF) and Open Event Trace Recording. BoF www.vi-hps.org/datapool/page/

41/sc_bof_slides.pdf, 12 2010.

[KWM+10] Alex Kaiser, Samuel Williams, Kamesh Madduri, Khaled Ibrahim, David Bailey, James Dem-
mel, and Erich Strohmaier. A Principled Kernel Testbed for Hardware/Software Co-Design
Research. In USENIX Workshop on Hot Topics in Parallelism, HOTPAR, 2010.

[LAS+09] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P.
Jouppi. McPAT: an Integrated Power, Area, and Timing Modeling Framework for Multicore
and Manycore Architectures. In Proceedings of the 42nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO, pages 469–480, New York, NY, USA, 2009. ACM.

[LB98] Oren La’adan and Amnon Barak. PhD thesis, 8 1998.

[LCC+07] Wei-keng Liao, Avery Ching, Kenin Coloma, Arifa Nisar, Alok Choudhary, Jacqueline Chen,
Ramanan Sankaran, and Scott Klasky. Using MPI File Caching to Improve Parallel Write Per-
formance for Large-scale Scientific Applications. In SC ’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, pages 1–11, New York, NY, USA, 2007. ACM.

[LCCW05] Wei-keng Liao, Kenin Coloma, Alok N. Choudhary, and Lee Ward. Cooperative Write-Behind
Data Buffering for MPI I/O. In Beniamino Di Martino, Dieter Kranzlmüller, and Jack Don-
garra, editors, PVM/MPI, volume 3666 of Lecture Notes in Computer Science, pages 102–109.
Springer, 2005.

[LFL09] D. Lugones, D. Franco, and E. Luque. Dynamic and Distributed Multipath Routing Policy
for High-Speed Cluster Networks. In Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGRID, pages 396–403, Washington, DC,
USA, 2009. IEEE Computer Society.

[LKK+06a] Thomas Ludwig, Stephan Krempel, Julian Kunkel, Frank Panse, and Dulip Withanage. Trac-
ing the MPI-IO Calls’ Disk Accesses. In Bernd Mohr, Jesper Larsson Träff, Joachim Worringen,
and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message Passing In-
terface, number 4192 in Lecture Notes in Computer Science, pages 322–330, Berlin / Heidel-
berg, Germany, 2006. C&C Research Labs, NEC Europe Ltd., and the Research Centre Jülich,
Springer.

[LKK+06b] Thomas Ludwig, Stephan Krempel, Julian Kunkel, Frank Panse, and Dulip Withanage. Trac-
ing the MPI-IO Calls’ Disk Accesses. In Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, number 4192 in Lecture Notes in Computer Science, pages 322–330,

118

http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2006/6330/pdf/PerformanceAnalysis.pdf
http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2006/6330/pdf/PerformanceAnalysis.pdf
www.vi-hps.org/datapool/page/41/sc_bof_slides.pdf
www.vi-hps.org/datapool/page/41/sc_bof_slides.pdf

2.7 Bibliography

Berlin / Heidelberg, Germany, 2006. C&C Research Labs, NEC Europe Ltd., and the Research
Centre Jülich, Springer.

[LKK+08] J. Lofstead, S. Klasky, Schwan K., N. Podhorszki, and C. Jin. Flexible IO and Integration
for Scientific Codes Through The Adaptable IO System (ADIOS). In CLADE 2008 at HPDC,
Boston, Massachusetts, June 2008. ACM.

[LNBG03] Michael Liljenstam, David M. Nicol, Vincent H. Berk, and Robert S. Gray. Simulating Realistic
Network Worm Traffic for Worm Warning System Design and Testing. In Proceedings of the
2003 ACM workshop on Rapid malcode, WORM, pages 24–33, New York, NY, USA, 2003. ACM.

[LRO08] Alexey Lastovetsky, Vladimir Rychkov, and Maureen O’Flynn. MPIBlib: Benchmarking MPI
Communications for Parallel Computing on Homogeneous and Heterogeneous Clusters. In
Alexey Lastovetsky, Tahar Kechadi, and Jack Dongarra, editors, Recent Advances in Parallel
Virtual Machine and Message Passing Interface, volume 5205 of Lecture Notes in Computer Sci-
ence, pages 227–238. Springer Berlin / Heidelberg, 2008.

[LRT07] R. Latham, R. Ross, and R. Thakur. Implementing MPI-IO Atomic Mode and Shared File
Pointers Using MPI One-Sided Communication. International Journal of High Performance
Computing Applications, 21(2):132–143, 2007.

[LWSB97] T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS — On-line Monitoring Inter-
face Specification (Version 2.0). Technical Report TUM-I9733, SFB-Bericht Nr. 342/22/97 A,
Technische Universität München, Munich, Germany, July 1997.

[LZKS09] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, Metadata Rich IO Methods for
Portable High Performance IO. In International Parallel & Distributed Processing Symposium,
IPDPS, 2009.

[MCW+05] Shirley Moore, David Cronk, Felix Wolf, Avi Purkayastha, Patricia Teller, Robert Araiza,
Maria Gabriela Aguilera, and Jamie Nava. Performance Profiling and Analysis of DoD Appli-
cations Using PAPI and TAU. In DOD_UGC ’05: Proceedings of the 2005 Users Group Confer-
ence on 2005 Users Group Conference, page 394, Washington, DC, USA, 2005. IEEE Computer
Society.

[Mes09] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard – Version 2.2.
Technical report, September 2009.

[Mey07] Mike Meyers. Mike Meyers’ CompTIA A+ Guide: PC Technician. Online http://mrdanault.
com/aplus/chap8.pdf, 2007.

[Mic09] S. Michalak. Silent Data Corruption: A Threat to Data Integrity in High-End Computing
Systems. In Invited Panelist at 2009 National HPC Workshop on Resilience, 2009.

[MK91] Ethan L. Miller and Randy H. Katz. Input/Output Behavior of Supercomputing Applications.
In Supercomputing ’91: Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pages
567–576, New York, NY, USA, 1991. ACM Press.

[MK05] Sam Miller and Ricky Kendall. Implementing Optimized MPI Collective Communication
Routines on the IBM BlueGene/L Supercomputer. Technical report, Iowa State University,
2005.

[MKJ+07] Matthias S. Müller, Andreas Knüpfer, Matthias Jurenz, Matthias Lieber, Holger Brunst, Hart-
mut Mix, and Wolfgang E. Nagel. Developing Scalable Applications with Vampir, Vam-
pirServer and VampirTrace. In Parallel Computing: Architectures, Algorithms and Applications,
volume 15 of Advances in Parallel Computing, pages 637–644. IOS Press, 2007.

[MKR95] Edward Mascarenhas, Felipe Knop, and Vernon Rego. ParaSol: A Multithreaded System for
Parallel Simulation Based on Mobile Threads. In Proceedings of the Winter Simulation Confer-
ence, pages 690–697, 1995.

119

http://mrdanault.com/aplus/chap8.pdf
http://mrdanault.com/aplus/chap8.pdf

Bibliography 2.7

[MMK+12] Timo Minartz, Daniel Molka, Julian Kunkel, Michael Knobloch, Michael Kuhn, and Thomas
Ludwig. Tool Environments to Measure Power Consumption and Computational Performance,
pages 709–743. Chapman and Hall/CRC Press Taylor and Francis Group, 6000 Broken Sound
Parkway NW, Boca Raton, FL 33487, 2012.

[MMSW02] Bernd Mohr, Allen D. Malony, Sameer Shende, and Felix Wolf. Design and Prototype of a
Performance Tool Interface for OpenMP. Supercomputing, 23:105–128, August 2002.

[MN10] C.M. Macal and M.J. North. Tutorial on Agent-based Modelling and Simulation. Journal of
Simulation, 4(3):151–162, 2010.

[MS09] Inc. Mesquite Software. Getting Started: CSIM 20 Simulation Engine. On-
line document: http://www.mesquite.com/documentation/documents/CSIM20_Getting_

Started-C++.pdf, 2009.

[MSHA+97] William H. Mangione-Smith, Brad Hutchings, David Andrews, André DeHon, Carl Ebeling,
Reiner Hartenstein, Oskar Mencer, John Morris, Krishna Palem, Viktor K. Prasanna, and Henk
A. E. Spaanenburg. Seeking Solutions in Configurable Computing. Computer, 30:38–43, De-
cember 1997.

[NFG+10] Alberto Núñez, Javier Fernández, Jose Garcia, Félix Garcia, and Jesús Carretero. New Tech-
niques for Simulating High Performance MPI Applications on Large Storage Networks. The
Journal of Supercomputing, 51:40–57, 2010.

[NSM04] David Nagle, Denis Serenyi, and Abbie Matthews. The Panasas ActiveScale Storage Cluster:
Delivering Scalable High Bandwidth Storage. In Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, SC, pages 53–, Washington, DC, USA, 2004. IEEE Computer Society.

[Obj03] Object Management Group. UML Profile for Schedulability, Performance and Time. Online
Document: http://www.omg.org/spec/SPTP/1.0/, sep 2003.

[Pan04] INC. Panasas. Whitepaper: Object Storage Architecture. Technical report, 2004.

[Pat09] David Patterson. The Top 10 Innovations in the New NVIDIA Fermi Architecture, and the
Top 3 Next Challenges. Whitepaper http://www.nvidia.com/content/PDF/fermi_white_

papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf, September 2009.

[PBB07] Sabri Pllana, Ivona Brandic, and Siegfried Benkner. Performance Modeling and Prediction of
Parallel and Distributed Computing Systems: A Survey of the State of the Art. In Proceedings
of the First International Conference on Complex, Intelligent and Software Intensive Systems, pages
279–284, Washington, DC, USA, 2007. IEEE Computer Society.

[PBXB08] Sabri Pllana, Siegfried Benkner, Fatos Xhafa, and Leonard Barolli. Hybrid Performance Mod-
eling and Prediction of Large-Scale Computing Systems. In CISIS ’08: Proceedings of the 2008
International Conference on Complex, Intelligent and Software Intensive Systems, pages 132–138,
Washington, DC, USA, 2008. IEEE Computer Society.

[PD11] L.L. Peterson and B.S. Davie. Computer Networks: A Systems Approach. Morgan Kaufmann,
March 2011.

[Pid04] Michael Pidd. Computer Simulation in Management Science. Wiley, 5th edition, April 2004.

[PK05] Bernd Page and Wolfgang Kreutzer. The Java Simulation Handbook: Simulating Discrete Event
Systems with UML and Java. Shaker Verlag, 12 2005.

[PM04] Michal Pioro and Deepankar Medhi. Routing, Flow, and Capacity Design in Communication and
Computer Networks. Elsevier, July 2004.

[PP94] Barbara K. Pasquale and George C. Polyzos. Dynamic I/O Characterization of I/O Intensive
Scientific Applications. In Supercomputing ’94: Proceedings of the 1994 conference on Super-
computing, pages 660–669, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

120

http://www.mesquite.com/documentation/documents/CSIM20_Getting_Started-C++.pdf
http://www.mesquite.com/documentation/documents/CSIM20_Getting_Started-C++.pdf
http://www.omg.org/spec/SPTP/1.0/
http://www.nvidia.com/content/PDF/fermi_white_papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf

2.7 Bibliography

[Pra04] Herbert Praehofer. Simulation Technischer Systeme. Lecture notes, 2004.

[PTH+01] Jean-Pierre Prost, Richard Treumann, Richard Hedges, Bin Jia, and Alice Koniges. MPI-
IO/GPFS, an Optimized Implementation of MPI-IO on Top of GPFS. In Supercomputing ’01:
Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), pages 17–17, New
York, NY, USA, 2001. ACM.

[PW05] Dorin Bogdan Petriu and Murray Woodside. Software Performance Models from System Sce-
narios. Performance Evaluation, 61(1):65–89, 2005.

[Rab04] Rolf Rabenseifner. Optimization of Collective Reduction Operations. Computational Science-
ICCS 2004, pages 1–9, 2004.

[Ras07] E. Rasmusen. Games and Information: An Introduction to Game Theory. Wiley-blackwell, 2007.

[RHB+11] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston, R. Risen,
J. Cook, P. Rosenfeld, E. Cooper-Balis, and B. Jacob. The Structural Simulation Toolkit. SIG-
METRICS – Performance Evaluation Review, 38:37–42, March 2011.

[Rot07] Philip C. Roth. Characterizing the I/O Behavior of Scientific Applications on the Cray XT. In
Proceedings of the 2nd international workshop on Petascale data storage: held in conjunction with
Supercomputing ’07, PDSW, pages 50–55, New York, NY, USA, 2007. ACM.

[RW94] Chris Ruemmler and John Wilkes. An Introduction to Disk Drive Modeling. Computer, 27:17–
28, March 1994.

[SACR96] E. Smirni, R. A. Aydt, A. A. Chen, and D. A. Reed. I/O Requirements of Scientific Appli-
cations: An Evolutionary View. In Proceedings of the 5th IEEE International Symposium on
High Performance Distributed Computing, HPDC, pages 49–, Washington, DC, USA, 1996. IEEE
Computer Society.

[SH02] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for Large Computing
Clusters. In Proceedings of the 2002 Conference on File and Storage Technologies, FAST, pages
231–244, 2002.

[She99] Joel Reece Sherrill. Priority Inversion in Real-time File Systems. PhD thesis, 1999.

[SIC+07] David E. Singh, Florin Isaila, Alejandro Calderon, Felix Garcia, and Jesus Carretero. Multiple-
Phase Collective I/O Technique for Improving Data Access Locality. In Proceedings of the 15th
Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP,
pages 534–542, Washington, DC, USA, 2007. IEEE Computer Society.

[SIPC09] David E. Singh, Florin Isaila, Juan C. Pichel, and Jesús Carretero. A Collective I/O Implemen-
tation Based on Inspector–Executor Paradigm. The Journal of Supercomputing, 47(1):53–75,
2009.

[SM06] Sameer S. Shende and Allen D. Malony. The TAU Parallel Performance System. Int. J. High
Perform. Comput. Appl., 20(2):287–311, 2006.

[SM08] Inc Sun Microsystems. Peta-Scale I/O with the Lustre File System. Technical report, Oak
Ridge National Laboratory, 2 2008.

[SMAb01] Sameer Shende, Allen D. Malony, and Robert Ansell-bell. Instrumentation and Measure-
ment Strategies for Flexible and Portable Empirical Performance Evaluation. In International
Conference on Parallel and Distributed Processing Techniques and Applications, PDPTA, pages
1150–1156, 2001.

[SSM+09] W. Spear, S. Shende, A. Malony, R. Portillo, P. Teller, D. Cronk, S. Moore, and D. Terpstra. Mak-
ing Performance Analysis Tuning Part of the Software Development Cycle. IEEE Computer
Society, 2009.

[Ste79] Schlesinger Stewart. Terminology for Model Credibility. Simulation, pages 103–104, 1979.

121

Bibliography 2.7

[STHI10] Robert Schöne, Ronny Tschüter, Daniel Hackenberg, and Thomas Ilsche. The VampirTrace
Plugin Counter Interface: Introduction and Examples. In Proceedings of the EuroPar 2010 -
Workshops, 2010.

[Tak82] L. Takács. Introduction to the Theory of Queues. Greenwood Press, 1982.

[Tau10] TAU User Guide. Online Document http://www.cs.uoregon.edu/research/tau/

tau-usersguide.pdf, 2010.

[TGL99] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and Collective I/O in ROMIO.
In FRONTIERS ’99: Proceedings of the The 7th Symposium on the Frontiers of Massively Parallel
Computation, page 182, Washington, DC, USA, 1999. IEEE Computer Society.

[TGL02] Rajeev Thakur, William Gropp, and Ewing Lusk. Optimizing Noncontiguous Accesses in
MPI-IO. Parallel Computing, 28:83–105, 2002.

[THW10] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: A lightweight Performance-oriented
Tool Suite for x86 Multicore Environments. In 39th International Conference on Parallel Pro-
cessing Workshops, ICPPW, pages 207–216. IEEE, April 2010.

[TJYD09] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting Performance Data
with PAPI-C. In Tools for High Performance Computing, Proceedings of the 3rd International
Workshop on Parallel Tools, pages 157–173. Springer, 2009.

[TJYD10] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting Performance Data
with PAPI-C. In Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E.
Nagel, editors, Tools for High Performance Computing 2009, pages 157–173. Springer Berlin
Heidelberg, 2010.

[TRG05] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of Collective Commu-
nication Operations in MPICH. International Journal of High Performance Computing Applica-
tions, 19(1):49–66, February 2005.

[VH08] András Varga and Rudolf Hornig. An Overview of the OMNeT++ Simulation Environment. In
Proceedings of the 1st international conference on Simulation tools and techniques for communica-
tions, networks and systems & workshops, Simutools, pages 60:1–60:10, ICST, Brussels, Belgium,
Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering).

[VO10] András Varga and OpenSim Ltd. OMNet++ User Manual Version 4.1. Technical report, June
2010.

[WBM+10] Brian J. N. Wylie, David Böhme, Bernd Mohr, Zoltán Szebenyi, and Felix Wolf. Performance
Analysis of Sweep3D on Blue Gene/P with the Scalasca Toolset. In International Parallel &
Distributed Processing Symposium, IPDPS. IEEE Computer Society, April 2010.

[WG90] M. Y. Wu and D. D. Gajski. Hypertool: A Programming Aid for Message-Passing Systems.
IEEE Transactions Parallel Distributed Systems, 1:330–343, July 1990.

[Wik11] Wikipedia, the Free Encyclopedia, 2011.

[WK94] S.C. Winter and P. Kacsuk. Software Engineering for Parallel Processing. IEE Colloquium on
High Performance Computing for Advanced Control, 12 1994.

[WK04] Terry L. Wilmarth and Laxmikant V. Kale. POSE: Getting Over Grainsize in Parallel Discrete
Event Simulation. In Proceedings of the 2004 International Conference on Parallel Processing,
ICPP, pages 12–19, Washington, DC, USA, 2004. IEEE Computer Society.

[WM03] Felix Wolf and Bernd Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Ap-
plications. Journal of Systems Architecture, 49(10-11):421–439, 2003.

122

http://www.cs.uoregon.edu/research/tau/tau-usersguide.pdf
http://www.cs.uoregon.edu/research/tau/tau-usersguide.pdf

2.7 Bibliography

[Woo02] Murray Woodside. Tutorial Introduction to Layered Modeling of Software Performance –
Version 3.0, 5 2002.

[Wor06] Joachim Worringen. Self-Adaptive Hints for Collective I/O. Presentation, available online,
2006.

[WPP+05] Murray Woodside, Dorina C. Petriu, Dorin B. Petriu, Hui Shen, Toqeer Israr, and Jose
Merseguer. Performance by Unified Model Analysis (PUMA). In WOSP ’05: Proceedings of
the 5th international workshop on Software and performance, pages 1–12, New York, NY, USA,
2005. ACM.

[WZB+05] Terry L. Wilmarth, Gengbin Zheng, Eric J. Bohm, Yogesh Mehta, Nilesh Choudhury, Praveen
Jagadishprasad, and Laxmikant V. Kale. Performance Prediction Using Simulation of Large-
Scale Interconnection Networks in POSE. In PADS ’05: Proceedings of the 19th Workshop on
Principles of Advanced and Distributed Simulation, pages 109–118, Washington, DC, USA, 2005.
IEEE Computer Society.

[YV07] Weikuan Yu and Jeffrey Vetter. Exploiting Lustre File Joining for Effective Collective IO. In
Proceedings of the 2007 7th IEEE/ACM International Symposium on Cluster Computing and the
Grid, CCGRID, pages 267–274. IEEE Computer Society, Los Alamitos, CA, USA, 2007.

[ZKK04] Gengbin Zheng, Gunavardhan Kakulapati, and Laxmikant V. Kalé. BigSim: A Parallel Simu-
lator for Performance Prediction of Extremely Large Parallel Machines. In International Paral-
lel & Distributed Processing Symposium, volume 1 of IPDPS, page 78b, Los Alamitos, CA, USA,
2004. IEEE Computer Society.

[ZLGS99] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward Scalable Performance
Visualization with Jumpshot. High Performance Computing Applications, 13(2):277–288, Fall
1999.

[ZWJK05] Gengbin Zheng, Terry Wilmarth, Praveen Jagadishprasad, and Laxmikant V. Kalé.
Simulation-Based Performance Prediction for Large Parallel Machines. International Journal
of Parallel Programming, 33(2):183–207, June 2005.

123

Characterizing the Experimental System

Chapter 3 III

Various performance factors and characteristics have been introduced in Section 2.2.1. Before a model of a system
can be built the behavior and performance must be understood. Thus, the characteristics must be determined.

Measurement of system characteristics is tedious work and requires careful interpretation of obtained values.
Therefore, in this chapter a measurement methodology is introduced in Section 3.1. Then, the working groups
compute cluster and its configuration is described in Section 3.2. This cluster is used in later validation experi-
ments. Next, performance of memory, inter-process communication and I/O subsystem is measured and assessed
in Section 3.4, 3.3, 3.5 and 3.6 respectively. This will show the complex interplay between hardware components
and operating system. Further, these results will be used to validate the behavior of the simulation of these basic
components.

3.1. Measuring System Behavior

To obtain experimental characteristics of a system measurements are necessary. The term characteristics
is used in this thesis to indicate qualitative but also quantitative observable behavior of a hardware or
software component. The term characteristics is frequently used synonymously to the term metrics, which
just indicates a quantitative measure of behavior, such as network latency.

A metric is an “analytical measurement intended to quantify the state of a system” ([Wik11], Metric). By
interpreting metrics the qualitative characteristics of the system can be obtained. The definition of a metric
includes instructions how to measure values for this metric. In the context of computer science typically
small code pieces – called benchmarks try to stress relevant aspects of the system and quantify them with
certain metrics. Often the term benchmark is referred to as a collection of several kernels. A kernel is a
small code piece that is the essence of a specific use case. Typically, a kernel either mimics a particular
aspect of an application, or it stresses a particular aspect of the system.

Unfortunately, measurement does not necessarily reveal the real value of a metric; systematic mistakes may
bias the result, and background activity influences the utilization of hardware components. This error is
common to all measurements and called observational error. An informal definition of this term is given in
the Wikipedia:

“Every time we repeat a measurement with a sensitive instrument, we obtain slightly different results.
The common statistical model we use is that the error has two additive parts: systematic error which
always occurs (with the same value) when we use the instrument in the same way, and random error
which may vary from observation to observation.” [Wik11], article about Observational Error

The terms precisions and accuracy state how close the measurements are to the real value:

“In the fields of science, engineering, industry and statistics, the accuracy of a measurement system
is the degree of closeness of measurements of a quantity to that quantity’s actual (true) value. The
precision of a measurement system, also-called reproducibility or repeatability, is the degree to which
repeated measurements under unchanged conditions show the same results. Although the two words
can be synonymous in colloquial use, they are deliberately contrasted in the context of the scientific
method.” [Wik11], Accuracy and precision

Both facets are relevant for measurements conducted in this thesis. To assess the accuracy and precision of
obtained values mathematics can help.

124

3.1 MEASURING SYSTEM BEHAVIOR

(a) First bin starts with minimum value. (b) Alternative representation.

Figure 3.1.: Possible histograms for the vector m = (3,5,4,2,4) with three bins.

3.1.1. Mathematical Background

This small section offers a brief introduction related to the error estimation mathematics. The presented
collection is a selection of practical methods to quantify metrics and the errors of the measurement envi-
ronment.

Assume the small vectorm = (3,5,4,2,4) has been measured for the metricm; every value is an independent
observation that is measured by repeating an experiment. When many measurements are made, listing the
vector becomes tedious. It is interesting to see the rough distribution of values. This is possible with a
histogram. In a histogram the range of the observed values are split into intervals – called bins, and the
frequency of observations within every interval is given. While arbitrary intervals are possible, usually the
range of the values is split into equidistant intervals – the user just selects the number of bins. In this case,
the interval length is computed with the following equation: interval len = maxValue - minValue

number of bins .

Attention must be spent in the interpretation of a histogram. The look depends on the construction – the
number of bins and the minimum and maximum value. Data for our example is visualized in histograms
with equidistant binning and three bins in Figure 3.1. In Figure 3.1a the defaults of the statistical tool R has
been chosen showing two values in the interval [2,3] and (3,4] – the minimum value is accounted for the
first bin. However, by picking a minimum of 1, each interval has a length of 1.33 resulting in Figure 3.1b;
suddenly three values are accounted for the last interval. This is pathological example because the first
figure renders values that are the interval boundaries, also the number of observation is very low. However,
it demonstrates that comparison between histograms must be done carefully.

Since experimental measurements are expected to be suspect to random error, statistical methods are nec-
essary to estimate the true value. Often in natural science it is assumed that the random error leads to
observations that are distributed with a Gaussian probability distribution. Thus, the average value of the
observations is an estimate for the real value – in our example the average is 3.6. Frequently the standard
error of the mean (SEM) is used as an indicator for the precision of the estimate. The SEM denotes how close
the average value (X) is to the real value (µ), see equation 3.3 for the computation of the SEM. The average
value (X), the so-called sample standard deviation (s) and the standard error of the mean are computed ac-
cording to equations 3.1 and 3.2, respectively. In the equations n is the number of samples, Xi the observed
value for the i-th sample.

The sample standard deviation is an estimate for the real standard deviation in the noisy environment. It
can be used to reject observations that skew the average value – these values are expected to be skewed by
processes and systematic mistakes. Outliers are then removed from the vector of observations and thus
do not contribute to the estimated average. Then, the computation would be repeated with the remaining
values to obtain the new average and an improved estimate for the standard error. It is expected that 95%
of the values are in the interval [X−2 ·s,X+2 ·s] and 3 standard deviations cover 99.7% of the samples1. In
our example the sample standard deviation is 1.1. Thus, the interval is [1.2,5.8] and no value is rejected.

1Refer to [Wik11](Standard deviation) for further information.

125

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.1

With the help of the SEM and the estimated mean a confidence interval for the true mean can be deter-
mined ([Wik11] Standard error (statistics)). The real value of the mean and thus the true value of the
metric is expected to be in the interval [X − 2 · SEM,X + 2 · SEM]. This is motivated by the fact that the
estimated average ± 2 standard deviations already cover 95% of data points. And since SEM is an esti-
mate for the standard deviation of the sample-mean’s estimate, with a probability of 95% the true mean
should be within the range of the sample mean ± 2 SEM. In the example the SEM is 0.51 and thus, with
a probability of 95% the true value is in the range of 3.6 ± 1. With an increase in the number of samples
the confidence interval becomes smaller, thus the real value can be approximated better. However, due to
the square-root, reducing the interval to half the size requires four times the number of observations. Re-
member, the equations require that the measured data points are distributed with a Gaussian probability
distribution.

Besides the average value, another description of observations is the concept of percentiles. “In statistics,
a percentile (or centile) is the value of a variable below which a certain percent of observations fall.” ([Wik11],
Percentile). Quartiles are the 25th, 50th and 75th percentile. Thus, quartiles are the three data points that
divide the data set into four (almost) equally sized groups of values. Roughly one quarter of the values lies
in every group. To obtain the percentiles (or quartiles) all values are sorted, then the value of the sorted
vector is picked below which a given percentage of the data points reside. In the example five values are
considered; the sorted vector is s = (2,3,4,4,5) and thus below the second value (and of course above the
minimum value) are roughly 25% of values. Thus, quartiles for the example vector are (3,4,4). Note that
the second quartile is defined as the median.

X =
1
n

n∑
i=1

Xi (3.1)

s =

√√
1

n− 1

n∑
i=1

(
Xi − ·X

)2
=

√√
1

n− 1

 n∑
i=1

X2
i −n ·X

2
 (3.2)

SEM =
s
√
n

(3.3)

3.1.2. Measurement Methodology

When we characterize the hardware we are interested in real behavior, however, software and hardware
optimizations influence the outcome and bias the results. The effect of long term background noise, that is
background activity which occurs a substantial amount of time while the kernel runs, and singular effects
can be mitigated by performing multiple measurements on independent components of the homogeneous
cluster system. To increase statistical independence some time should pass between two measurements to
reduce the impact of long term background noise. Consequently, a benchmark which consists of multiple
kernels which are all repeated in a loop is more robust to background influence than one which repeats
every test before it moves to the next kernel. All measurements made for this thesis were repeated at
least three times, in most cases even on different nodes of the cluster. A node is reserved exclusively for a
benchmark and thus other users could not cause further background noise.

To ensure correctness of a benchmark measurements are also conducted with multiple third-party tools.
This increases the confidence in reported values by revealing potential measurement errors caused by pro-
gramming mistakes. Hardware specification serves as a reference, this allows detecting whether systematic
errors impair the measurements.

Unfortunately, as we will see, most performance metrics obtained in a computer system do not follow the
Gaussian distribution. This is due to the fact that optimizations are not triggered randomly and several
optimizations interfere when a performance metric is measured. Hence, the common methodology to

126

3.3 OVERVIEW OF THE CLUSTER

compute the standard deviation to remove outliers is not applicable. To assess the fluctuation of observed
data, the first and third quartile will be given for many important metrics.

Measurements require timing. However, the physical hardware timer of the system has a limited accuracy,
that depends on the selected timer (depending on the hardware and operating system multiple low-level
timers are provided). All used timers provide an accuracy of at least 1µs. Consequently, the granularity of
the timed events must be chosen to ensure that multiple µs are needed to perform the timed operations.

Timing in parallel benchmarks running on multiple nodes is problematic because clock synchronization
in distributed system is non-trivial. On our cluster a Network Time Protocol (NTP)2 service is installed to
support synchronization of the clocks to some degree. See A.2 for details and a discussion of the accuracy
of NTP on our cluster. To avoid skewed timing of the distributed clocks, the timing of parallel benchmarks
is always measured on Rank 0 and typically shielded with a MPI_Barrier(). While this guarantees that
all processes finished their work, the processing of the barrier adds overhead and thus it is source of a
systematic error. However, we will see that this overhead is negligible for the conducted experiments.

3.2. Overview of the Cluster

In Figure 3.2 the available hardware resources and the network topology of the working group’s cluster is
illustrated. The cluster front-end is a gateway to an internal switched network that connects all available
nodes with star topology. The front-end schedules operations on the available 11 nodes, 10 nodes (host-
name West1 to West10) are equipped with two Intel Westmere processors, also a 4 socket AMD Magny-
Cours node (called Magny1) is available.

The cluster is installed with Ubuntu 10.04 and offers additional repositories with newer software versions
for scientific software and middleware. Jobs are executed by the batch scheduler Torque3 and the cluster
status is monitored by Munin4. Both services depend on background daemons which periodically (in
second intervals) communicate with the front-end. In experiments with MPI either Open MPI (version
1.5.3) or MPICH2 (version 1.3.1) are used.

Since the testbed for all experiments are the Westmere nodes, those are analyzed in more detail in the
following.

3.3. Processor

A Westmere node is equipped with two Intel Xeon 5650 processors each offering 6 cores [Int11, Int]. Hyper-
threading is enabled on our cluster and thus 24 logical processors are visible in Linux. Those processors
operate at a nominal frequency of 2.66 GHz and utilize three memory channels.

Dynamic voltage and frequency scaling (DVFS) of the CPUs is activated on our cluster and the ondemand
governor5 is active. Therefore, the frequency of the processor is adjusted to match the utilization. When the
frequency is low enough the processor reduces the voltage, which, in-turn, decreases power consumption.
Basically, the processor supports Intel’s Turbo Boost technology, which means the actual frequency could
be above the nominal 2.66 GHz. However, this feature is disabled on our cluster by limiting the maximum
frequency of the CPU governor because the frequency depends on the actual temperature of the processor
and its production6.

2http://www.ntp.org/
3http://www.clusterresources.com/
4http://munin-monitoring.org/
5Refer to the Linux kernel documentation enclosed in the tarball of the vanilla kernel (cpu-freq/governors.txt).
6Due to the production process of the small structures there are minimal differences between produced microprocessors.

127

http://www.ntp.org/
http://www.clusterresources.com/
http://munin-monitoring.org/

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.4

10 x Westmere (westX)
cluster.wr.informatik.uni-hamburg.de

Internet

HLREgate.dkrz.de

Netgear 48-port

Netgear 24-port

2 x 1 Gbit

100 Mbit

IPMI network (blue)

Communication and storage network

Employee PCs

DKRZ (internal) network

AMD Magny-Cours (magny1)

Figure 3.2.: Physical view of the working groups’ cluster.

The amounts of cache available per physical core are 64 KByte L1 cache (split into a 32 KByte instruction
and a 32 KByte data cache) and 256 KByte L2 cache. Every processor has an inclusive 12 MByte L3-Cache,
thus all L2 data of the cores is also available in the shared L3 cache.

In the system architecture of a node, all PCI(-Express) components, such as the NIC, are connected to
the I/O Hub (IOH) via Intel’s QuickPath technology [Int09b]. To communicate between two sockets data
is shipped via a 6.4 GT/s QPI interface. According to the specification 16 bit of data are transferred per
cycle, thus the uni-directional speed is 12,800 MB/s[Int09a] (12,207 MiB/s). The communication protocol
has an overhead of roughly 11 %, therefore, the effective I/O throughput is limited by 10,864 MiB/s.

3.4. Main Memory

A node is equipped with 12 GByte DDR-3 main memory (6 times 2 GByte modules). The Nehalem microar-
chitecture actually offers up to three memory-channels per socket, which is utilized in our case. Memory
operates at 1333 MHz, and thus with the triple channel a maximal theoretical throughput of 32 GB/s is
achievable (per socket). Data is transferred in the granularity (cache line size) of 64 bytes between processor
L3 cache and memory.

To access memory from the remote socket data must be shipped via QuickPath and thus memory through-
put from/to the remote processor is also limited by the performance of the QPI interconnect (which is
10,864 MiB/s). The achieved memory bandwidth is sensitive to the benchmark’s kernel, and thus, varies
with the specific access patterns.

When data is accessed it is likely to be located on the same processor, because Linux allocates memory with
the first touch policy. With first touch space is allocated on the memory controller of the socket on which
the data is written the first time7. Since every program used in the following experiments initializes its

7The allocation of memory in a program with malloc() does not count, because the OS defers allocation of physical pages until
data is written the first time.

128

3.4 MAIN MEMORY

buffers, memory should be allocated on the right socket and thus no QPI transfer should be necessary. This
expectation has been validated with Likwid for one of the memory benchmarks, the experiment showed
that only a very small fraction of data data is accessed on the remote socket.

Although every socket has its own memory controller, the conducted experiments just utilize a single
controller. An improved performance by reading from the memory of one socket and writing to the other
socket might be possible, but has not been checked. This is evaluated later in the section about inter-process
communication. In the following the quantitative and qualitative analysis of the memory performance of
a single socket is conducted.

Further information about the architecture and some comparative analysis is available in [Rol09].

3.4.1. Memory Behavior

The general behavior of memory access is evaluated with the bandwidth8 benchmark (version 0.26) which
is run in Linux9. This tool contains assembler kernels to perform sequential and random read/write tests.
It iterates over various amounts of data to determine caching and memory behavior. To measure a reliable
average performance, the benchmark times the execution and loops over every test for at least 5 s.

Obtained throughputs for accessing data with a granularity of 64 bit and 128 bit are visualized in Fig-
ure 3.3a and Figure 3.3b, respectively. The benchmark permits to measure write accesses which bypass the
cache and directly hit main memory, those results are given in Figure 3.3c.

Also, the benchmark has been run on several nodes to compare performance of the different servers. As
expected by the homogeneous configuration of the nodes, those values fluctuate only slightly. Therefore,
all figures show the results obtained on the first Westmere node.

Observations and interpretation

a) Performance drops when the accessed data is above 32 KiB, 256 KiB and 8 MiB. The three plateaus
are caused when data does not fit any more in the processor L1, L2 and L3 caches, respectively.
Sequential read and sequential write achieve similar results, except when data does not fit into L3
cache any more – in this case, reads are faster.

b) The single threaded benchmark is not capable to extract the memory bandwidth of 32 GB/s that is
theoretical available on a single socket. The achieved sequential read and write performance mea-
sured for 64 MiB accesses is about 11 to 12 GiB/s. Performance could be lost if the bandwidth bench-
mark does not fit the platform well – for example, operations might not suffice to generate enough
memory requests to utilize the memory controller, it might be dominated by latency. On the other
hand, our Westmere platform and the configuration might degrade performance. This cannot be
answered in the scope of this thesis.

c) Performance of 128 bit access is roughly twice as high as with 64 bit access – as long as data fits into
L1 or L2 cache. Sequential L3 accesses show little improvement, but random access almost doubles
performance.

d) Random access is slower than sequential access. This is caused by the fact that data is transferred
with a granularity of 64 bytes between the caches and main memory. When just 128 bit (16 bytes) are
accessed, three times the accessed amount of irrelevant data must be transferred. Thus, performance
is expected to drop to 1/4. In the measurement the write performance halves for L2 access and is

8http://home.comcast.net/~fbui/bandwidth.html
9 Although the operating system and the glibc library are expected to influence the benchmark results, a benchmark running

on top of an operating system has been chosen because this is the regular use-case. This includes the conducted experiments,
which are also influenced by the OS. With Memtest86+ (http://www.memtest.org/), there is actually a tool which can run at
boot-time. Originally intended to detect memory errors, it also reports the average performance of L1, L2 and main memory.

129

http://home.comcast.net/~fbui/bandwidth.html
http://www.memtest.org/

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.4

(a) 64 bit accesses.

(b) 128 bit accesses.

(c) 128 bit accesses bypassing the cache.

Figure 3.3.: Memory throughput measured with bandwidth.

130

3.4 MAIN MEMORY

roughly 1/4 for L3 access and for larger amounts of data. For an access granularity of 64 bit just 1/8
of data is typically accessed. Therefore, performance degrades by the same factor.

e) Interestingly, performance of random reads does not degrade to the same extent, this might be caused
by the inclusive character of the L3 cache and the required write-back of data to the next cache level.

f) The impact of the cache hierarchy becomes apparent when cache is bypassed (see Figure 3.3c). Write
throughput goes down to 7.5 GiB/s for sequential access, and to 1 GiB/s for random access already
with small memory sizes. With 64 MiB of data, performance of random writes with and without
bypassing cache behave almost equal.

Several interesting caching and memory behavior are quantified by the presented benchmark. With data
fitting in L1 cache a rate of 40 GiB/s is measured with bandwidth, but larger amounts of data do not fit in
the caches any more. This is a typical situation for memory-bound scientific problems. Therefore, more
benchmark kernels are evaluated to determine and verify the memory throughput of the nodes.

3.4.2. Throughput

Several kernels and benchmarks are executed to assess the observed behavior and to derive a valid estima-
tion for the maximum memory throughput. The resulting memory throughput for accessing large memory
regions are presented in Table 3.1. In repeated tests a slight fluctuation of obtained performance (within a
few percent) is noticeable.

The conducted experiments are as follows:

• bandwidth – the 64 MiB values from the previous experiments are taken.

• Writing data to the in-memory file system tmpfs via the command dd if=/dev/zero bs=1024k

count=2000 of=/dev/shm/test. This value measures reading from a buffer and writing to mem-
ory and adds the overhead of the tmpfs file system. The tmpfs is an in-memory file system offered
by the Linux kernel, all data of the file system is maintained in main memory.

• A local TCP connection with iperf10. This value approximates the performance of the TCP stack for
an inter-node communication based on sockets, and, therefore, is lower than accessing main memory.
Nowadays efficient MPI implementations communicate local messages directly via shared memory
to avoid the additional overhead of the TCP protocol, but still the value serves as an approximate for
the real performance.

• memory-bandwidth, a benchmark developed for this thesis which measures performance of three ac-
cess patterns with a smaller access granularity to allow assessing the variability of performance. The
benchmark loops over a larger amount of data and times subsequent groups of multiple data accesses.
The average value is shown in the table, a detailed analysis of the results is given in Section 3.4.3.

Observations and interpretation

a) Memory throughput varies between 1 GiB/s and 10 GiB/s, it is sensitive to the actual access pattern
and access granularity.

b) Writing data to tmpfs achieves roughly half the performance of memcpy() (measured with band-

width). memcpy() copies data in user-space, while the transfer to tmpfs with dd copies data from
kernel-space into a user buffer and from the user-space back to tmpfs in kernel-space. An additional
internal processing of the data structures is required within tmpfs and two mode changes between
kernel-space and user-space. Compared to memcpy() data is copied twice with dd. Therefore, it is
expected that the performance of the I/O is below half the invocation of a plain memcpy() – when
all operations hit main memory. This translates to an upper bound of roughly 2,100 MiB/s (half the

10http://iperf.sourceforge.net/

131

http://iperf.sourceforge.net/

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.4

Benchmark and configuration Measured throughput

bandwidth (64 MiB of data)

128 bit

sequential read ca. 12000
random read 5328
sequential write 7642
random write 1226
sequential write bypassing cache 7616
sequential copy 4517

64 bit

sequential read 10947
random read 4005
sequential write 7582
random write 1692

library
memset 7464
memcpy 4212

dd writing to tmpfs 2087
iperf local connection 1540

memory-bandwidth
sequential read 8347
sequential write 7614

Table 3.1.: Memory throughput in MiB/s achieved with several tools.

performance of memcpy()). Since this performance can be seen in the measurements, caches do not
help dd although only 1 MiB of data is transferred between /dev/null and tmpfs.

c) With iperf performance is just 1.5 GiB/s. Internally, since two processes communicate data must be
copied from the first process to kernel-space, in this process it is segmented into TCP packets with an
maximum size of 16 KiB. Then the context changes to the second process, the TCP packets are then
unpacked by the second process and copied from kernel space to user-space. Therefore, two copies
are necessary which translates to an upper bound of roughly 2,100 MiB/s (half the performance of
memcpy()). Due to the context changes and the processing of TCP, performance is lower.

d) The benchmarks validate the results of memory-bandwidth because the sequential write performance
is close to the results obtained with bandwidth. The cause of a degraded read throughput has been
investigated; the loop which accesses memory in memory-bandwidth is not forced to be unrolled11,
while the assembler kernel in bandwidth has an unrolled kernel. When the code is unrolled similar
results have been measured. Again, this shows the influence of the memory access pattern and the
hardware architecture to the observable performance.

3.4.3. Analysis of Variability and Noise

This experiment fosters understanding the hardware variability between different servers, and the impact
of background noise to memory performance.

The benchmark memory-bandwidth12 measures memory throughput with three memory intense kernels:
The first two tests write and read a consecutive chunk of memory, respectively. The last kernel (called
RWW) reads a piece of memory then writes the read data and overwrites it again. Data is accessed in a (not
unrolled) loop with a 64 byte granularity, since it has been observed with bandwidth, that this configuration
yields a good performance. Each kernel iterates over a memory region of a given size multiple times.
Additionally for a reference and burn-in phase, the memory is initialized with memset() for given number
of iterations.

A main difference to other conducted benchmarks is that while the memory is accessed performance is

11The benchmark is compiled with gcc -O3 which does not include -funroll-loops.
12The benchmark is part of the PIOsimHD distribution. The source code is given in Section A.5.

132

3.4 MAIN MEMORY

Experiment / Host West1 West2 West3 West4 West5 West6 West7 West8 West9 Lap.

Write 7615 7618 7637 7505 7640 7630 7624 7619 7604 3024
Read 8347 8344 8339 8346 8333 8328 8347 8338 8345 3119
RWW 3031 3034 3036 3019 3036 3036 3035 3035 3034 1021

Table 3.2.: Average memory throughput in MiB/s to access 100 GiB of data with memory-bandwidth.

timed with a finer granularity and those timings are written out after the benchmark. This behavior of
fine-grained timing is the main reason for the new benchmark; by looking at the distribution of timings
background noise is revealed and, further, outliers of an experiment can be identified and removed later
on. The physical hardware timer of the system has a limited accuracy, therefore, time cannot be measured
accurately for just accessing a single byte. Thus, a consecutive memory region of a given size is accessed in
this benchmark to obtain a single timing. Both the size of the memory chunk accessed and the frequency
of the timing can be configured in order to measure cache effects or main memory performance.

In the conducted experiment 1000 MByte of data are accessed in a loop 100 times, and the time is measured
for every Megabyte accessed13. That means in total the durations to access 100,000 samples are gathered.
Clearly, the total amount of data accessed suffices to overrun the available L3 cache. The chosen granularity
of one Megabyte ensures that the clock accuracy of the system suffices to provide accurate timings.

Coming back to the RWW benchmark, this benchmark reads data in the granularity of the timing, that
means in this experiment 1 MByte of data is read, then written and re-written. Then the next MByte of the
whole Gigabyte of data is processed. This amount of data can fit into the processors L3 cache, consequently,
the performance of RWW is different than just executing a sequence of read and write benchmarks over
the full data set.

All 10 homogeneous cluster nodes are compared by their average value and with histograms, to reveal
machine differences. Further, the authors laptop system is measured for comparison. The samples are fed
into the statistical analysis tool R and analyzed to assess variability and average performance.

Average performance First, the average performance results to access the 100 GiB of data is listed in
Table 3.2. All systems achieve quite similar results. This is due to the fact that in total 100 GByte of data is
accessed, which means short fluctuations and the impact of noise is mitigated. Since the values are close
together the accuracy of the average values is good. The performance of the laptop differs significantly
from the Westmere nodes.

Read performance is slightly higher than write performance; the average throughput of the nodes
is 8,340 MiB/s and 7,610 MiB/s for reads and write, respectively. The average RWW throughput is
3,032 MiB/s which is higher than the performance of conducting the read test, and then executing two
times the write test. If RWW kernel would behave like executing the other two kernels sequentially, then
according to the measurements in the table, this combination should yield about 2,613 MiB/s. This shows
the impact of caching for this simple workload.

Distribution of the measured values The throughput of the individual memory accesses of 1 MiB is
visualized in histograms, that means the x-axis shows intervals (called bins) of observed values and the
y-axis the number of samples which fit into the given bin.

Results from two nodes and the desktop machine are analyzed in the following; since all nodes reveal
comparable behavior the first two are picked. Due to background activity additional memory load might
be generated and thus some measurements might be delayed. In these experiments, values which are below
the 1th percentile are considered to be outliers. While this value seems high, it ensures that results can
be compared between the machines. For every benchmark and machine, two histograms with 100 bins are

13The benchmark is called with ./memory-bandwidth $((1000*1000*1000)) 100 1000

133

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.4

generated: One histogram shows valid data points and another is restricted to outliers. The x-axis of the
figure with valid data points is identical for all Westmere nodes – the x-axis is fit to the smallest data point
among them.

The diagrams for the read, write and RWW kernel are shown in Figure 3.4, Figure 3.5 and Figure 3.6,
respectively. In the read figure the outliers are provided to illustrate how they might look like. The x-axis
is given in terms of the throughput that is achieved while accessing a chunk of one Megabyte.

Observations and interpretation

a) Time for accessing one MiB of data varies and variability can be quite large. For example, while it
can be seen that most read accesses achieve a performance between 8300 and 8,450 MiB/s (see Fig-
ure 3.4c), on West2 some accesses achieve just about 2,000 MiB/s. A detailed analysis of the causes
is difficult since it involves operating system, processor and its caches, memory controller and the
physical memory14. Also, as the benchmark measures time for chunks of 1 MiB of data, variability
of accessing individual cache lines cannot be revealed. If this variability would be statistically in-
dependent, these effects should be distributed evenly among the large blocks and result in a similar
performance. Since performance variability is quite large in some cases, it can be concluded that
either hardware behavior changes for longer periods – for example, when a memory controller is sat-
urated – or a single operation is interrupted for a longer period. For example, the OS could suspend
the benchmark for a while to dispatch background processes on the same core, or the processing of
hardware interrupts could defer execution.

b) For the read and the write kernel the observed histograms of both cluster nodes look similar. While
the read graph is identical, in the write kernel several data points between 7500 and 7,750 MiB/s
occur for West2. The distribution of the laptop can be clearly distinguished from the nodes, and also
shows significantly more variability. Interestingly, for the laptop the histograms for read and write
are similar – besides the shift of the read performance by 100 MiB/s.

c) There are several outliers in the range between 6,500 and 7,000 MiB/s, although there are just a hand-
ful between 7,000 MiB/s and 8,000 MiB/s – overall the both graphs look similar (look at Figure 3.4c
and Figure 3.4d). Since this behavior is observable for both machines, it is likely that it is caused by
platform-specific behavior.

d) The histograms measured with the RWW kernel differs slightly on all cluster nodes. However, the
valid data points of a diagram are between 2,800 and 3,150 MiB/s, which is a small range explaining
the identical average value.

e) Although the main peak for reads looks almost like a Gaussian distribution, none of the results
obtained for a kernel shows histograms in which data is distributed with a normal distribution or
another well-known distribution. The different peaks indicate hardware influences such as CPU
caching behavior, or they are caused by background noise of the OS and running daemons.

Platform dependency of the results A slightly modified benchmark15 has been run one year after ob-
taining the initial results. It turned out that the results for the write kernel (and the RWW kernel) differ
compared to previous results, although the read results are still similar to the previous results. Further-
more, different nodes now show a different behavior under the write kernels. For this reason an extensive
test is conducted that expands the previous results.

Each executed run iterates 10 times more often over the data; by accessing a total of 1 TByte of data it is
expected that potential background noise is leveraged because in this configuration the initial memset()
and the write kernel take about 120 s. The experiment is repeated 15 times.

14Unfortunately, details about memory controllers seem to be treated confidential.
15The benchmark now uses a high-resolution timer.

134

3.4 MAIN MEMORY

MiB/s

F
re

qu
en

cy

8200 8250 8300 8350 8400 84508200 8250 8300 8350 8400 8450

0
10

00
20

00
30

00
40

00
0

10
00

20
00

30
00

40
00

(a) West1 – valid data points.
MiB/s

F
re

qu
en

cy

8200 8250 8300 8350 8400 84508200 8250 8300 8350 8400 8450

0
10

00
20

00
30

00
40

00
0

10
00

20
00

30
00

40
00

(b) West2 – valid data points.

MiB/s

F
re

qu
en

cy

2000 3000 4000 5000 6000 7000 80002000 3000 4000 5000 6000 7000 8000

0
10

0
20

0
30

0
40

0
50

0
0

10
0

20
0

30
0

40
0

50
0

(c) West1 – outliers.
MiB/s

F
re

qu
en

cy

2000 3000 4000 5000 6000 7000 80002000 3000 4000 5000 6000 7000 8000

0
10

0
20

0
30

0
40

0
50

0
0

10
0

20
0

30
0

40
0

50
0

(d) West2 – outliers.

MiB/s

F
re

qu
en

cy

2700 2800 2900 3000 3100 32002700 2800 2900 3000 3100 3200

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(e) Laptop – valid data points.
MiB/s

F
re

qu
en

cy

1400 1600 1800 2000 2200 2400 26001400 1600 1800 2000 2200 2400 2600

0
50

10
0

15
0

0
50

10
0

15
0

(f) Laptop – outliers.

Figure 3.4.: Read performance – histograms show the timings obtained with memory-bandwidth.

135

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.4

MiB/s

F
re

qu
en

cy

5500 6000 6500 7000 7500 80005500 6000 6500 7000 7500 8000

0
20

00
40

00
60

00
80

00
0

20
00

40
00

60
00

80
00

(a) West1 – valid data points.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
20

00
40

00
60

00
80

00
0

20
00

40
00

60
00

80
00

(b) West2 – valid data points.

MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(c) Laptop – valid data points.

Figure 3.5.: Write performance – histograms show the timings obtained with memory-bandwidth.

MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
10

00
20

00
30

00
40

00
0

10
00

20
00

30
00

40
00

(a) West1 – valid data points.
MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
10

00
30

00
50

00
0

10
00

30
00

50
00

(b) West2 – valid data points.

MiB/s

F
re

qu
en

cy

950 1000 1050950 1000 1050

0
20

00
60

00
10

00
0

14
00

0
0

20
00

60
00

10
00

0
14

00
0

(c) Laptop – valid data points.

Figure 3.6.: RWW performance – histograms show the timings obtained with memory-bandwidth.

136

3.4 MAIN MEMORY

Experiment / Host West1 West2 West3 West4 West5 West6 West7 West8 West9

Write 7115 7121 7146 7100 6906 7622 7271 7449 7100
Read 8331 8332 8337 8339 8334 8340 8337 8331 8331
RWW 2936 2936 2942 2931 2888 3036 2968 3005 2931

Table 3.3.: Average memory throughput in MiB/s of 15 runs to access 100 GiB of data with memory-

bandwidth.

This time by using Likwid the benchmark process is explicitly pinned to CPU 0 on all systems – this ensures
that the process is run on the first physical core and never migrated16. Like before, Turbo Boost is disabled
by restricting the maximum frequency the CPU governor can set.

An overview of the average performance is provided in Table 3.3. The average, minimum and maximum
performance for all runs is illustrated in Figure 3.7. Histograms for three repeats of the big runs are pre-
sented in Figure 3.8, Figure 3.12 for the read and the RWW kernel – up to 300 buckets are used per his-
togram to generate diagrams with a fine resolution. Since the write kernel is discussed the most, 5 runs are
presented for each node in a diagram for three nodes each (Figure 3.9, Figure 3.10 and Figure 3.11)17. For
an easier comparison for every kernel the axes of all these diagrams are scaled identically.

Observations and interpretation

a) The read kernel behaves similar to the previous measurements. Overall, the average read perfor-
mance fluctuates between 8,200 MiB/s and 8,360 MiB/s, but the average across all runs and nodes is
about 8,335 MiB/s (look at Figure 3.7a). In Figure 3.8 one histogram is provided for a run on each
node. The runs on West1 and West9 has been that result in the minimal observable throughput on
these nodes (8,280 and 8,200 MiB/s). While the typical run on most nodes behaves alike, these two
nodes result in histograms which values are shifted to the left. These could be caused by the physical
memory pages that are actually allocated by the OS.

b) The write histograms look now much different to previous results. Depending on the run there are
two to three spikes below 7,200 MiB/s, and a hill between 7,400 MiB and 8,000 MiB. The hill has been
measured in the runs before, while the spikes are new.

West5 does not show the hill, therefore, the average performance is lower. Apparently West6 is the
only node that has not changed its behavior, its histogram is close to the ones previously measured
on West1 and West2 (look at Figure 3.5), also the average performance and fluctuation is similar to
the previous results. West7 and West8 show an intermediate behavior between the well working
behavior of West6 and the behavior of West5.

c) By comparing the five independent runs on one node the variability of the measured data becomes
visible. It is surprising to see that the first spike either appears completely or not at all between the
runs (compare the runs of West1 to West5, West7 and West9).

d) Overall the RWW kernel behaves a bit smother than the write kernel, but it mimics the behavior of
the write kernel (see Figure 3.12). The fluctuation of performance is identical to the fluctuation of
the write performance (compare Figure 3.7b and Figure 3.7c.

e) Since the hardware has not been modified, presumably it looked like the software causes this be-
havior – while the major version of Ubuntu is still 10.04 the software and kernel has been updated
regularly. Also, modifications of the BIOS settings in the meantime seemed possible18. The obser-
vations suggest that the run has an impact on the result but also that the hardware of the systems
behaves now differently.

16In the initial measurement this fact has not been considered since the behavior is similar on all runs.
17The results for West10 are omitted.
18The author does not know whether the BIOS has been modified in the year between the measurements.

137

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.4

West1
West2

West3
West4

West5
West6

West7
West8

West9

8200

8220

8240

8260

8280

8300

8320

8340

8360

8380

8400

T
h

ro
u

g
h

p
u

t i
n

 M
iB

/s

(a) Read.
West1

West2
West3

West4
West5

West6
West7

West8
West9

6600

6800

7000

7200

7400

7600

7800

T
h

ro
u

g
h

p
u

t i
n

 M
iB

/s

(b) Write.
West1

West2
West3

West4
West5

West6
West7

West8
West9

2800

2850

2900

2950

3000

3050

3100

T
h

ro
u

g
h

p
u

t i
n

 M
iB

/s

(c) RWW.

Figure 3.7.: Average memory throughput measured with memory-bandwidth – overwriting 1000 times a
memory region of 1000 MB (error bars indicate the minimum and maximum of 15 runs).

MiB/s

F
re

qu
en

cy

8150 8200 8250 8300 8350 8400 84508150 8200 8250 8300 8350 8400 8450

0
10

00
0

20
00

0
30

00
0

40
00

0
0

10
00

0
20

00
0

30
00

0
40

00
0

(a) West1.
MiB/s

F
re

qu
en

cy

8150 8200 8250 8300 8350 8400 84508150 8200 8250 8300 8350 8400 8450

0
10

00
0

20
00

0
30

00
0

40
00

0
0

10
00

0
20

00
0

30
00

0
40

00
0

(b) West2.
MiB/s

F
re

qu
en

cy

8150 8200 8250 8300 8350 8400 84508150 8200 8250 8300 8350 8400 8450

0
10

00
0

20
00

0
30

00
0

40
00

0
0

10
00

0
20

00
0

30
00

0
40

00
0

(c) West3.

MiB/s

F
re

qu
en

cy

8150 8200 8250 8300 8350 8400 84508150 8200 8250 8300 8350 8400 8450

0
10

00
0

20
00

0
30

00
0

40
00

0
0

10
00

0
20

00
0

30
00

0
40

00
0

(d) West4.
MiB/s

F
re

qu
en

cy

8150 8200 8250 8300 8350 8400 84508150 8200 8250 8300 8350 8400 8450

0
10

00
0

20
00

0
30

00
0

40
00

0
0

10
00

0
20

00
0

30
00

0
40

00
0

(e) West5.
MiB/s

F
re

qu
en

cy

8150 8200 8250 8300 8350 8400 84508150 8200 8250 8300 8350 8400 8450

0
10

00
0

20
00

0
30

00
0

40
00

0
0

10
00

0
20

00
0

30
00

0
40

00
0

(f) West6.

MiB/s

F
re

qu
en

cy

8150 8200 8250 8300 8350 8400 84508150 8200 8250 8300 8350 8400 8450

0
10

00
0

20
00

0
30

00
0

40
00

0
0

10
00

0
20

00
0

30
00

0
40

00
0

(g) West7.
MiB/s

F
re

qu
en

cy

8150 8200 8250 8300 8350 8400 84508150 8200 8250 8300 8350 8400 8450

0
10

00
0

20
00

0
30

00
0

40
00

0
0

10
00

0
20

00
0

30
00

0
40

00
0

(h) West8.
MiB/s

F
re

qu
en

cy

8150 8200 8250 8300 8350 8400 84508150 8200 8250 8300 8350 8400 8450

0
10

00
0

20
00

0
30

00
0

40
00

0
0

10
00

0
20

00
0

30
00

0
40

00
0

(i) West9.

Figure 3.8.: Scaled histograms for accessing 1 TByte of data – read performance.

138

3.4 MAIN MEMORY

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(a) West1 – Run 1.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(b) West2 – Run 1.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(c) West3 – Run 1.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(d) West1 – Run 2.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(e) West2 – Run 2.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(f) West3 – Run 2.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(g) West1 – Run 3.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(h) West2 – Run 3.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(i) West3 – Run 3.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(j) West1 – Run 4.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(k) West2 – Run 4.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(l) West3 – Run 4.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(m) West1 – Run 5.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(n) West2 – Run 5.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(o) West3 – Run 5.

Figure 3.9.: Scaled histograms for accessing 1 TByte of data – write performance (1).

139

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.4

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(a) West4 – Run 1.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(b) West5 – Run 1.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(c) West6 – Run 1.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(d) West4 – Run 2.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(e) West5 – Run 2.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(f) West6 – Run 2.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(g) West4 – Run 3.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(h) West5 – Run 3.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(i) West6 – Run 3.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(j) West4 – Run 4.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(k) West5 – Run 4.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(l) West6 – Run 4.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(m) West4 – Run 5.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(n) West5 – Run 5.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(o) West6 – Run 5.

Figure 3.10.: Scaled histograms for accessing 1 TByte of data – write performance (2).

140

3.4 MAIN MEMORY

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(a) West7 – Run 1.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(b) West8 – Run 1.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(c) West9 – Run 1.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(d) West7 – Run 2.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(e) West8 – Run 2.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(f) West9 – Run 2.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(g) West7 – Run 3.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(h) West8 – Run 3.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(i) West9 – Run 3.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(j) West7 – Run 4.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(k) West8 – Run 4.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(l) West9 – Run 4.

MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(m) West7 – Run 5.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(n) West8 – Run 5.
MiB/s

F
re

qu
en

cy

5000 5500 6000 6500 7000 7500 80005000 5500 6000 6500 7000 7500 8000

0
50

00
15

00
0

25
00

0
0

50
00

15
00

0
25

00
0

(o) West9 – Run 5.

Figure 3.11.: Scaled histograms for accessing 1 TByte of data – write performance (3).

141

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.4

MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(a) West1.
MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(b) West2.
MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(c) West3.

MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(d) West4.
MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(e) West5.
MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(f) West6.

MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(g) West7.
MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(h) West8.
MiB/s

F
re

qu
en

cy

2600 2700 2800 2900 3000 31002600 2700 2800 2900 3000 3100

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

(i) West9.

Figure 3.12.: Scaled histograms for accessing 1 TByte of data – RWW performance.

142

3.4 MAIN MEMORY

Potential reasons for observed variability In general, there are two potential sources for variability, the
hardware and the software. Here is a short discussion of imaginable causes for the measured histograms.
This list is not claimed to cover all causes, but it shows the complexity of the matter.

1) As the nodes are setup with the same hardware, BIOS revision, software and the configuration, these
cannot influence the behavior. However, minimal fluctuations during the production process of the
hardware might lead to a variability in microscopic behavior that is visible in the initial measure-
ments of the write kernel. This even leads to variation in the thermal property of a multicore pro-
cessor [CK11]. The process variability and a strategy to mitigate it is discussed in [RBOS08]. Micro-
processor vendors cover a large part of the variability by testing the processor and by determining a
frequency at which it can operate correctly. Still microprocessors are subject to timing fluctuations.
The variability can be caused by phase lock loop (PLL) jitter, clock distribution skew, across chip line
width variation and power supply noise [FRJ+07, Mak08].

2) The mapping of the virtual memory pages to physical memory pages might be a cause – the assign-
ment determines which memory controller to use and how data is put onto the physical DIMM. By
using the first-touch strategy the kernel allocates memory pages on the local memory controller, this
has been verified by looking at the performance counters with LIKWID19. This theory could be true
for the new results, because individual runs show an additional peak with a lower performance. Also,
the aging system and ECC-DRAM might change its behavior to ensure that data is written properly.

3) While an interruption of the OS can delay only access of a single memory chunk, congestion on the
memory channel due to background activity could either cover a single access or delay multiple sub-
sequent timings. Overall, periodic activity is likely to manifest itself in a peak of the histogram. Note
that a throughput of 8,400 MiB/s corresponds to a duration of about 110µs, between 6,500 MiB/s
and 7,000 MiB/s the time to access one MB of data differs by a mere of 10µs. Therefore, an influence
is searched that delays operations by that extent.

4) Automatic C-state switching in the CPU or power saving strategies in the memory subsystem could
also increase the time for individual operations – CPU frequency scaling alters the processing speed
depending on the CPU load. However, the benchmark always uses 100% of the CPU time, therefore
from the OS perspective CPU frequency is set the highest possible and automatic switching of CPU
states is at least not initiated by the OS20.

5) The scheduling strategy of the OS could have a major impact. Apparently, whenever a background
activity such as an interrupt or background daemon disturbs access of a chunk, the processing takes
more time. Background traffic on the memory subsystem can defer pending operations. Depending
on the duration of an interruption the throughput of the measurement is degraded. With vmstat a
low number of context switches and interrupts can be observed during the experiment (about 131
interrupts and 230 context switches per second). Apparently, they cannot be the cause of the overall
behavior on the Westmere nodes, because the write kernel needs about 12 s to complete leading to at
most 4200 accesses that are influenced by interrupts and context switches21.

6) The Nehalem architecture provides hardware prefetchers to load the required data into the caches22.
This could leverage potential latencies of the memory and the cache hierarchy.

7) The measurement by itself and the timer could also be a source of systematic mistakes. However, the
initial results are consistent and many aspects of correctness have been validated by using LIKWID
or by comparing obtained results with results measured by other benchmarks.

19The benchmark is run with likwid-perfCtr -g MEM -c 0 likwid-pin -c 0 memory-bandwidth <ARGS>. This shows that
remote read bandwidth is around 150 KiB per second.

20This is verified by inspecting the pseudo file /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state.
21Under the assumption that every access takes at most the same amount of time than the duration of an interrupt and context

switch, this is feasible, because the performance in the histograms does not vary that much. Also, there are 12 cores in the
system, which makes it unlikely that all the reported interrupts are executed on the first CPU.

22See http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf.

143

http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.5

Conclusions A consequence of the presented histograms is that common probability density functions
such as the normal distribution do not suffice to describe memory performance of our system. Whenever
processing of the benchmark is disturbed, the processing of the currently accessed memory chunk takes
more time; periodic operations manifest in a peak. Initially, the observed noise revealed by the benchmark
mostly behaves alike on all our cluster nodes, which is expected because identical hardware and software
is deployed. However, performance measured with the RWW kernel differs between the nodes, although
the nodes are equipped with the same memory system. Presumably, the cause of the observed variability is
the hardware, especially the interplay between CPU cache, memory controller and DRAM. The degraded
performance and change in the histograms under the new measurement is interesting, somehow this might
be related to the aging system.

With the help of fine-grained histograms differences between systems become visible. By analyzing the
latencies of basic operations one could derive a probability density function, which classifies the system
and OS noise. We used this technique already to fingerprint systems and to classify LAN and Internet hosts
by measuring ICMP-echo round-trip-times [KNL10]. The referenced paper also gives some hints how the
probability density functions (PDFs) can be estimated and different PDFs can be compared quantitatively;
the visual inspection done in this thesis is just a qualitative analysis.

However, as the performance for accessing a single chunk of memory varies depending on the node and
run, a simulation of memory access by using a PDF for the distribution of access will not lead to accurate
results. Presumably, an accurate simulation of memory throughput is expected to fail without knowing
the exact system state and without simulating all the involved components in details. Clearly, this is
infeasible.

Since I/O and network communication use memory operations to transfer data a slight variability is ex-
pected in these operations, too. It is probably impossible to determine if an observed performance fluctua-
tion of these operations is caused by a fluctuation in memory or by the additional processes and technology
that are involved.

Overall, the real cause for the observations are unclear and require further research. Unfortunately, an
in-depth analysis of the hardware is out of the scope of this thesis. OS noise analysis for computation has
been done for other systems in the past (for example see [TEFK05]).

3.5. Inter-Process Communication

When data between two processes is exchanged three placements of the processes can be distinguished:
The processes are placed on the same processor socket, on two disjoint sockets of one cluster node, or the
processes reside on two disjoint nodes. Consequently, the behavior of those three process mappings is
assessed. Communication with a placement on two disjoint nodes is referred to as inter-node communica-
tion, with a placement on two sockets of a single node it is referred to as inter-socket communication, and
placement on one socket is referred to as intra-socket communication.

In inter-node communication the deployed network technology on the cluster is Gigabit Ethernet and
TCP/IP is used as a communication protocol in all conducted experiments. A Netgear GS748TS switch in-
terconnects the components [Net08]. In intra-node message exchange the MPI implementation can choose
to either transfer messages by using shared memory, or by using TCP/IP over the loop-back device.

The general MPI communication behavior is measured with the benchmark mpi-network-behavior, the
benchmark is part of PIOsimHD and introduced in Section 3.5.1. Latency and throughput are important
characteristics to describe data exchange (as discussed in Section 2.2). The performance of those character-
istics is assessed in two separate sections, in Section 3.5.2 and Section 3.5.3, respectively. In those sections
the results of mpi-network-behavior are validated and assessed with theory and verified by measurements
obtained with third-party tools. Finally, the network communication behavior of mpi-network-behavior

144

3.5 INTER-PROCESS COMMUNICATION

is assessed for a variable message size in Section 3.5.4. The analysis includes a discussion of the observed
fluctuation.

3.5.1. Description of mpi-network-behavior

The pseudo code of mpi-network-behavior is given in Listing 3.1. With mpi-network-behavior the time
for MPI_Sendrecv() and for the MPI PingPong is determined for message sizes with a power of two (be-
tween 128 bytes and 8 MiB and also for empty messages). The PingPong kernel uses MPI_Send() on one
process to sends data to the second process. Then the role changes; the first process waits for the response
of the other process with MPI_Recv(). Thus, the operation is analogue to the ping utility.

To ensure a long enough runtime the benchmark operates in two phases: First, the number of repeats is
measured and set high enough to run for at least 1 s, at the same time this parameter is determined a
multiplier is set which defines the number of operations which are timed together. The reason is that the
system timer might be not accurate enough23, hence as many operations as necessary are aggregated to
take around 0.1 ms.

In the second phase four repeats over the determined parameters lead to a rough run-time of 8 s per
configuration. After that, all measured timings are output for further analysis with R.

3.5.2. Throughput

The throughput is one major characteristic of the network. TCP/IP throughput between two nodes has
been measured with iperf, bandwidth and with nuttcp to provide a reference. All these tests achieve a
comparable average performance of about 70 MiB/s.

Throughput of interprocess communication is also measured with a simple MPI benchmark called mpi-

communication-test, which is derived from mpi-network-behavior. In contrast to mpi-network-

behavior this benchmark just starts 100 times a message transfer of 1,000 MiB data and times every
transfer individually. PingPong or Sendrecv kernels are supported and thus in total 2,000 MiB of data
is transferred in every iteration.

To test the variation between nodes and the robustness of the benchmark, it is run on three different
node configurations. Quantitative results are provided in Table 3.4. The minimum and the maximum
throughput is listed as well. Additionally, the measured average intra-node performance of all runs is
visualized for MPICH2 and Open MPI in Figure 3.13.

Observations and interpretation

a) Achieved throughput of the inter-node communication sticks behind expectations. With Gigabit
Ethernet performance is limited to a bandwidth of 1000 Gbit/s. TCP and the frame header add over-
head to the potentially achievable throughput of 125 MiB/s. While in early tests a throughput of
117 MiB/s has been measured on the nodes, recent measures on the cluster yield a degraded per-
formance of just around 70 MiB/s with all programs. Many software and kernel updates have been
installed since the initial configuration, therefore, it is likely that a software configuration limits per-
formance. The latest upgrade to kernel 2.6.38 improved performance from an average 67 MiB/s to
the current 70 MiB/s limit. Recompilation and testing of various configure flags and the attempt to
tune the Linux kernel and its TCP options24 did not increase performance further, though.

Theoretically, the switch could limit performance. However, the deployed Netgear GS748TS switch
offers full-bisection bandwidth of 96 GiB/s according to its documentation [Net08]. To validate the

23Internally, the benchmark uses gettimeofday() to determine the system time, this function returns the time in microseconds.
However, testing revealed that some systems do not return time in microsecond accuracy, which includes our system.

24Refer to the kernel documentation (networking/ip-sysctl.txt).

145

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.5

Listing 3.1: Pseudo code of mpi-network-behavior

for size in [0, 128, 256, ... 8 MiB]:

// First phase:

// Adjust count until at least 1s is spentin the test.

// Start with at least 1 iteration.

count = 1

while(true):

start timing

for i = 0 ; i < count ; i++:

execute communication kernel (depends on the test: PingPong or Sendrecv)

compute elapsedTime

MPI_Allreduce(elapsedTime, MPI_MAX, MPI_COMM_WORLD)

if elapsedTime is larger than 1s:

break

if runTime == 0:

count = count * 10 // Quickly increase the number of operations.

else:

count = count / elapsedTime * 2 // After tuning the time should be around 2s.

// We found the number of operations to run.

// Determine multiplier, around 0.1ms per batch of operations.

if count > 10000:

multiplier = count / 10000

else:

// On average a single operation takes longer than 0.1ms.

multiplier = 1

// Second phase, execute with determined parameters:

// 4 repeats, each with approximately 2s duration.

for r = 0; r < 4 ; r++:

// Compute elapsedTime for every batch of operations:

start timing

for i = 0 ; i < count ; i++:

execute communication kernel

for every batch of multiplier operations record and restart timing

if rank == 0:

print timing

146

3.5 INTER-PROCESS COMMUNICATION

Figure 3.13.: Average intra-node throughput to transfer 1,000 MiB of data measured with mpi-network-

behavior (error bars indicate the minimum and maximum).

speed the performance in the initial setup with iperf has been measured before – processes were
started in groups of all 10 nodes concurrently with the result, that the achieved performance scaled
linear with the number of pairs. Therefore, it is claimed that the full-bisection bandwidth is available.

b) In the best case, observed MPICH2 inter-node PingPong throughput and iperf achieve comparable
performance. Since both rely on the TCP/IP stack this is expected.

c) With Open MPI and the PingPong kernel an average performance of 121.6 MiB/s is observable, which
is above the theoretical possible performance. In fact, Open MPI uses all available network adapters
for communication if possible, and because every node is connected with two independent adapters
performance should roughly double. Therefore, the performance of Open MPI should be twice the
performance of MPICH2 which is almost achieved.

d) Bi-directional communication between the nodes should double the observable performance, because
the deployed Ethernet technology supports full-duplex mode. This can be observed for the average
and maximum value of the Sendrecv test with both implementations. However, the minimum value
stays on the same level as for the PingPong test. The maximum of the Sendrecv kernel is twice the
minimum. Thus, the variance to transfer 1,000 MiB of data is quite high. Also, the bi-directional
communication does not improve communication performance of Open MPI further in the average
case, but for a few runs the performance doubles to 262 MiB/s.

e) Local communication is much faster than inter-node communication. This is because data can be
copied between the processes in memory and does not have to be transmitted via Ethernet. Thus,
the memory performance of roughly 4212 MByte/s (measured with memcpy()) is a good estimate for
shared memory data exchange and verifies obtained results.

f) Open MPI and MPICH2 achieve similar performance in inter-socket and intra-socket communica-
tion. The bi-directional communication in memory is roughly 10% faster than uni-directional access.
Intra-socket communication is slightly faster than inter-node communication. Performance between
two cores of the same socket yields a 20% improvement for bi-directional communication, and 10%
for PingPong.

3.5.3. Latency

Latency is determined with the MPI benchmark mpi-network-behavior and the measurements are veri-
fied with the ping utility.

The ping program sends ICMP echo requests to the target and measures the time for the arrival of the
response – the round-trip time. Half of this duration is considered to be an estimate for the network

147

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.5

Communication MPI Benchmark Throughput in MiB/s
Min Average Max

Inter-node
MPICH2

PingPong 71.3 71.9 72.2
Sendrecv 70.8 139.7 147.1

Open MPI
PingPong 109.1 121.6 124.0
Sendrecv 112.6 130.3 262.7

Inter-socket
MPICH2

PingPong 3272 3427 3673
Sendrecv 3456 3778 3834

Open MPI
PingPong 3373 3416 3434
Sendrecv 3457 3780 3799

Intra-socket
MPICH2

PingPong 3467 3781 3799
Sendrecv 4524 4556 4561

Open MPI
PingPong 3647 3714 3721
Sendrecv 4502 4651 4661

Table 3.4.: Throughput to transfer 1,000 MiB of data measured with mpi-communication-test.

Communication Benchmark Latency / operation
Min Average Max

Intra-node
ping -c 500 5µs 6µs 10µs
ping -A -c 5000 4µs 4.5µs 14.5µs

Inter-node
ping -c 500 54µs 100µs 125µs
ping -A -c 5000 27.5µs 54.5µs 8 ms

Table 3.5.: Measured network latency with ping.

latency25. Latency is measured for inter-node communication and intra-node communication. The exper-
imentally determined latencies including minimum, average and maximum are provided in Table 3.5.

The ping utility supports to select the type of request and provides several modes of operation. Two
different parameter sets have been used. In the first test a total of 500 packets is transmitted in sequence,
by default ping waits for approximately 1 s between two consecutive packets to reduce the network load.
With the adaptive mode (flag -A) ping sends an ICMP request once it receives the response for the previous
packet. Hence it floods the network with packets26. Since this test runs faster it is measured for 5000
packets. Neither of those tests sends more than one request at a time.

Among other tests the benchmark mpi-network-behavior executes the PingPong kernel with an empty
payload. Thus, the latency can be derived by halving the obtained round-trip-time27. The quantitative
results of the determined round-trip-time are listed in Table 3.6. The table contains the minimum, the
maximum and the quartiles for three independent runs with the benchmark; every run is conducted on a
different cluster node.

Observations and interpretation

a) Interestingly, the average round-trip time for the adaptive mode is less than that for a regular ping
which pauses for 1 s. For communication between nodes the response time roughly halves with the
adaptive mode.

b) Average means for the communication of mpi-network-behavior is 84.39602µs, 0.969855µs and

25Actually, the processing by the program and by the operating system causes some overhead. For simplicity this overhead is
considered to be part of the network latency.

26As a regular user, a small pause is added in this mode to prevent flooding, too. But this delay is not active if the program is run
by the super-user.

27MPICH2 uses the eager protocol for this kind of messages, therefore, the round-trip time can be obtained.

148

3.5 INTER-PROCESS COMMUNICATION

Configuration Run Minimum 1st quartile Mean 3rd quartile Maximum

Inter-node
1 67.0µs 82.0µs 85.8µs 90.0µs 181.0µs
2 64.0µs 81.5µs 83.8µs 86.5µs 263.0µs
3 64.5µs 80.5µs 83.5µs 88.0µs 139.5µs

Inter-socket
1 0.978µs 0.9217µs 0.9282µs 0.926µs 1.313µs
2 1.032µs 1.053µs 1.061µs 1.058µs 1.505µs
3 0.8986µs 0.9124µs 0.9204µs 0.9217µs 1.290µs

Intra-socket
1 0.4148µs 0.4271µs 0.4293µs 0.4292µs 2.096µs
2 0.4253µs 0.4336µs 0.4354µs 0.4357µs 1.305µs
3 0.4130µs 0.4235µs 0.4277µs 0.4277µs 1.386µs

Table 3.6.: Round-trip time statistics measured in three independent runs of mpi-network-behavior.

4.308µs, for the inter-node, inter-socket and intra-socket communication. Consequently, the average
latency of 42.248µs is slightly better than the time determined with ping. Inter-node communication
is much faster, this is due to the fact that shared-memory access is used in MPI but not for ping. The
ICMP echo requires to communicate via the IP network stack which takes additional time.

c) Inter-node communication has a much higher variance than intra-node communication. The vari-
ance of the three configurations becomes clear when the range between minimum, first and third
quartile are compared. In intra-socket communication 75% of the timings are between 0.41µs and
0.43µs. Communication between two sockets is about twice as high while the range for inter-node
communication is between 64µs to 90µs (refer to Table 3.6).

d) Observed quartiles vary by the run. In most cases the mean value between the runs behave alike,
but the first and third quartile vary by a few percent. The minimum time for the communication
between two sockets in Run 2 is even higher than the third quartile of the two other runs. While in
general the intra-node communications varies less, this high discrepancy of more than 10% of the
average shows the need for an in-depth assessment of the variability between runs. Remember, every
test is repeated to run for roughly 4 s. Thus, the fluctuation is expected to be caused by additional
background activity, or it may depend on the node the benchmark is executed.

3.5.4. Performance

So far latency has been determined for empty messages, and the potential throughput is computed for
very large data transfers. The performance of intermediate message sizes and the overall character of
point-to-point communication is discussed in this section.

Therefore, results obtained by mpi-network-behavior are analyzed, the benchmark times data transfer for
a variable message size between 128 bytes and 128 MiB. Diagrams containing the minimum, the average
(mean) value, the first and third quartile are presented to assess the variance of the observations. For every
configuration three runs of the benchmark are executed; the nodes the benchmark is run on are varied.
If not mentioned explicitly, the presented results show values obtained in a single run. At the end of the
section independent runs are compared to assess the deviation between runs.

For inter-node communication two diagrams show the observed communication timings as a reference
(Figure 3.14a and Figure 3.14b). Since all figures look quite similar and achieved throughput is more
of interest, the performance is computed from the timings and visualized for all cases in Figure 3.14.
Throughput can be derived from the message size and the measured timing; 40 bytes are added to the
message size to represent the message headers28. Thus, throughput is computed with the equation
throughput = 2 · (message size + 40)/measured timing.

28The minimum size of the TCP header is 20 bytes and the minimum IP header adds another 20 bytes. The MPI envelope (header)
depends on the implementation and therefore it is not considered.

149

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.5

Observations and interpretation

a) The logarithmic timing diagrams are hard to assess (look at Figure 3.14b). The maximum values are
not plotted since they are much bigger than the average duration. In the computed throughput dia-
gram the maximum can be drawn, because a very slow communication results in a low throughput.
Also, the throughput diagrams can be assessed better because the maximum throughput is limited
by the bandwidth of Gigabit Ethernet and the memory subsystem.

b) For several message sizes a low maximum throughput can be spotted in each diagram. Messages
with less than a few MiB of data are more sensitive to these outliers and longer operations are rather
stable. The reasons are fluctuations on the network and OS jitter that disturbs the communication.
Larger messages are not influenced to a high degree because the duration of background activity and
hardware fluctuations is limited, after some time the data is communicated.

c) Performance increases with the message size and saturates with about 64 KiB message sizes for all
kernels and process placements. Overhead of the MPI implementation and latency in the communi-
cation path reduces performance for smaller message sizes.

d) The communication inside a socket or between two sockets looks alike (compare the two kernels,
e.g., Figure 3.14e). Throughput for intra-socket communication is just higher than for inter-socket
communication.

e) In intra-node communication a plateau appears up to 4 MiB of data. It is likely that this is caused
by the cache hierarchy: The L3 cache can hold up to 12 MiB of data for all cores, which boosts per-
formance for intermediate message sizes. Additionally, the Sendrecv kernel shows another plateau
between 8 KiB and 32 KiB when data fits into the L2 cache. Since data must be copied between the
shared memory and a process in both directions at most half of the cache is available for the message.

f) For message sizes below 64 KiB the PingPong kernel achieves half the throughput as the Sendrecv
kernel for intra-node communication (compare Figure 3.14e with Figure 3.14d).

The PingPong kernel copies data sequentially from one process to another and then back; in this
process data must be copied from the L1 cache of the sender to the L1 cache of the other processor
(or main memory). Probably the concurrent processing of the Sendrecv kernel utilizes available L1
caches concurrently, which increases performance. Exact analysis would require to evaluate the CPU
cache strategy and put it into relation to the shared memory implementation inside MPICH2, which
is out of the scope of this thesis.

g) A high variance in data ranges between 2 KiB and 64 KiB can be identified for inter-node communi-
cation. In order to to understand the deviation between independent transmissions the variability is
analyzed next.

Comparing MPICH2 with OpenMPI Open MPI runtime is measured with mpi-network-behavior and
compared to the results of MPICH2 to gain some insight in performance influences of different MPI im-
plementation. In this comparison the average timings over four independent runs are calculated and used
for the analysis.

Figure 3.15 shows the throughput of inter-node communication and the relative performance for inter-
node and inter-socket communication. To compare the two MPI implementations a relative performance
is computed in which the performance measured with Open MPI is divided by the time for MPICH2. Thus,
for a given message size values above 100% indicate that Open MPI performs better and values below 100%
show that MPICH2 achieves better performance.

Observations and interpretation

a) Overall, it can be observed that performance is highly depending on the implementation – the per-
formance of both implementations differ by more than 50%. This is much higher than re-runs with

150

3.5 INTER-PROCESS COMMUNICATION

(a) Inter-node PingPong kernel timing. (b) Inter-node Sendrecv kernel timing.

(c) Inter-node PingPong kernel throughput. (d) Inter-node Sendrecv kernel throughput.

(e) Inter-socket PingPong kernel throughput. (f) Inter-socket Sendrecv kernel throughput.

(g) Intra-socket PingPong kernel throughput. (h) Intra-socket Sendrecv kernel throughput.

Figure 3.14.: Communication performance for a variable message size and the three quartiles.

151

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.5

MPICH2 which are in the order of 10%. Therefore, design and implementation details must cause
this behavior.

b) The inter-node performance of both implementations is close together up to 64 KiB messages (see
Figure 3.15c and Figure 3.15d). Then the behavior changes and OpenMPI is much faster.

c) Starting with larger amounts of data Open MPI needs roughly 60% of MPICH2’s time (see Fig-
ure 3.15c). The cause for the faster communication with Open MPI is that Open MPI tries to use all
available network adapters for communication and since each node has two independent networks
performance should roughly double.

d) With 64 KiB messages and the PingPong kernel Open MPI achieves 10% less performance (see Fig-
ure 3.15c). The reason is the usage of the eager protocol: Starting with a payload of 64 KiB Open MPI
switches to the rendezvous protocol in the default configuration29, but MPICH2 uses the eager pro-
tocol up to 128 KiB. Therefore, two network round-trip times are necessary in Open MPI which
reduces the performance compared to MPICH2.

e) With the Sendrecv kernel Open MPI is slower for data ranges between 32 KiB and 1 MiB (Fig-
ure 3.15d), transmitting more data improves its performance, while MPICH2’s performance de-
creases.

f) MPICH2 dominates Open MPI in intra-node communication. A comparison is given in Figure 3.15g.
The results measured for a message size of 64 KiB and the Sendrecv kernel is actually slightly better
for Open MPI. The reason has not been identified for our cluster, but it seems that small message
transportation in MPICH2 are handled better by MPICH2’s Nemesis communication subsystem (re-
fer to [BM06] for a description of Nemesis). In intra-socket communication the relative performance
graphs look similar – additionally, the performance of Open MPI is slightly better for the Sendrecv
kernel.

Conclusions In the diagrams a different behavior between the two MPI implementations becomes ap-
parent. The discrepancy of inter-node communication behavior could be partly explained by the features
of the implementations (usage of the eager protocol and network devices). However, the low performance
of the Sendrecv kernel is surprising, because the hardware is full-duplex capable, and the character of
the curve depends on the implementation. In intra-node communication both implementations behave
differently, while in overall, Open MPI is worse than MPICH2 the relative performance reveals several
spikes and small plateaus. This gives an impression of the influence an implementation has to achievable
performance and reveals the non-linear character of the point-to-point communication.

3.5.5. Variability

To assess the variability, the measurement differences of a single run and the results of three runs are
compared for MPICH2.

Fluctuations within a single run Diagrams are generated which show the relative performance of the
duration for the first and third quartile to the mean value (see Figure 3.16). With the percentage of the
relative performance in the diagrams the variance of the experiments can be quantified better than with a
logarithmic timing diagram, or a throughput diagram. Presented results just show the values for one run,
but are representative for the other two runs.

Observations and interpretation

29This value can be determined with ompi_info -param btl tcp.

152

3.5 INTER-PROCESS COMMUNICATION

(a) Average inter-node PingPong kernel throughput. (b) Average inter-node Sendrecv kernel throughput.

(c) Relative inter-node PingPong performance. (d) Relative inter-node Sendrecv kernel performance.

(e) Average inter-socket PingPong kernel throughput. (f) Average inter-socket Sendrecv kernel throughput.

(g) Relative inter-socket PingPong kernel performance. (h) Relative inter-socket Sendrecv kernel performance.

(i) Average intra-socket PingPong kernel throughput. (j) Average intra-socket Sendrecv kernel throughput.

Figure 3.15.: Comparison of Open MPI and MPICH2 point-to-point communication performance for a
variable message size. The green line marks the 100% relative performance of MPICH2.

153

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.5

a) For most inter-node data transfers the first and third quartile of the PingPong kernel are between
95% and 105% and thus the individual performance varies by more than 10% (see Figure 3.16a). For
128 KiB and up to 512 KiB the third quartile lies below the average indicating that some operations
take a long time and thus increase the average significantly. For example, with 128 KiB operations
three quarter of the operations need about half the average time. Note that by default MPICH2 starts
to use the rendezvous protocol with 128 KiB of data, that might cause the performance degradation.

b) In intra-node communication (Figure 3.16c) this high variance is not observed. Instead most data
points are between 99% and 101%. This is also true for the Sendrecv kernel. Therefore, the Ethernet
network (and its handling by the OS) has a significant impact on the variability.

c) In the inter-node communication with the Sendrecv kernel a very high fluctuation can be seen when
transferring between 2 KiB and 128 KiB of data (see Figure 3.16d). The explanation for the observa-
tion is simple – since timing is measured only on the first node background noise could cause an
eager message from the second node to be in-flight before the local MPI_Sendrecv() is invoked. For
this message the process is a so-called early-receiver. Then, if the MPI function is invoked the remote
message is already available in a buffer which allows finishing the call quicker than network latency
would theoretically permit. Therefore, in general the variance of the Sendrecv kernel is expected to
be higher 30. On average sender and receiver are expected to be synchronized, since one call can only
complete when the message from the remote peer arrived.

d) With messages bigger than the limit for the eager protocol the processes are synchronized before data
is exchanged. Therefore, it is not possible that a process completes a MPI_Sendrecv() while the other
process still waits for data. The limit for eager messages is 128 KiB, it can be seen that the variance
decreases with messages of that size. The reason for the tight timings up to 1 KiB messages are not
completely clear31.

Timing of individual operations Due to the unexpected high average for 128 KiB and the difference
between the average latency between two runs (as listed in Table 3.6) the deviance of message communi-
cation times is assessed further. Therefore, a histogram and a few timelines are presented that focus on
the fluctuation of inter-node communication. With the help of the timelines the behavior can be assessed
over the whole benchmark run. Additionally, the deviations can be assessed over time and outliers can be
spotted.

A histogram for transferring 2 KiB with the Sendrecv kernel is given in Figure 3.17d and the corresponding
timeline of activity in Figure 3.17b. Every sample counted in a timeline represents one low-level commu-
nication by the kernel32.

For empty messages and for 16 KiB data transfer the timelines of the observations are given in Figure 3.19
and Figure 3.18, respectively. In the diagrams the outliers, that are the uppermost 0.1% of data points,
are removed. The diagram for empty messages is plotted with outliers and without to foster the discus-
sion about this methodology. Timelines for intra-socket communication of big messages are provided in
Figure 3.20. Other diagrams do not offer substantial new insights and are therefore omitted.

Observations and interpretation

a) Noise of the data transfer becomes visible by looking at the diagrams of the PingPong kernel (Fig-
ure 3.17a and Figure 3.18a). The histograms of communicating 2 KiB and 16 KiB of data show an

30Actually, the issue with early-receives could be mitigated by timing the operation on both processes and computing the average
duration for both MPI_Sendrecv() operations. However, that would complicate comparison between PingPong and Sendrecv
kernel.

31Maybe a single network frame is transferred so quick, that both processes operate synchronously. The Ethernet packet trans-
mission packs messages smaller (or equal) to the maximum transmission unit (MTU) of the network into one Ethernet frame.
On our cluster the MTU is 1500 bytes. TCP/IP controls the fragmentation into packets with a size of at most MTU.

32 While the number of calls per timing is adjusted to cope with the timing accuracy a single communication needs more time on
average than required. Refer to the benchmark description in Section 3.5.1.

154

3.5 INTER-PROCESS COMMUNICATION

(a) Inter-node PingPong kernel. (b) Inter-node Sendrecv kernel.

(c) Inter-socket PingPong kernel. (d) Inter-socket Sendrecv kernel.

(e) Intra-socket PingPong kernel. (f) Intra-socket Sendrecv kernel.

Figure 3.16.: Relative communication time of the first and third quartile to the mean for a variable message
size.

155

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.5

(a) PingPong timeline. (b) Sendrecv timeline.

(c) PingPong timeline. (d) Sendrecv histogram.

Figure 3.17.: Behavior of the inter-node communication transferring 2 KiB of data.

(a) PingPong timeline. (b) Sendrecv timeline.

(c) PingPong histogram. (d) Sendrecv histogram.

Figure 3.18.: Behavior of the inter-node communication transferring 16 KiB of data.

156

3.5 INTER-PROCESS COMMUNICATION

(a) PingPong timeline for empty messages – all data points. (b) PingPong timeline for empty messages – no outliers.

Figure 3.19.: Timelines of the inter-node communication for empty messages.

(a) PingPong timeline – inter-socket communication. (b) PingPong timeline – intra-socket communication.

(c) Sendrecv timeline – inter-socket communication. (d) Sendrecv timeline – intra-socket communication.

Figure 3.20.: Timelines of intra-node communication for 8 MiB messages.

157

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.5

interesting pattern with several connected spikes. This noise is caused by the interplay of the hard-
ware (e.g., network, CPU and memory) and the software (e.g., TCP, Linux kernel, MPI).

b) Noise is visible in intra-socket communication of large data as well. In Figure 3.20d the timeline for
bi-directional communication of 8 MiB of data reveals long-term background activity leading to a
plateau with 5% higher transfer time for a sequence of 100 communications (duration of approxi-
mately 0.3 s).

It is possible that the processor executed some OS related services such as updating the Munin statis-
tics during that time interval. This pattern manifests in many timelines of several intra-socket com-
munications. Therefore, such a hypothesis must be assessed carefully – it is unlikely that the pattern
occurs just in those tests and repeatedly.

c) By looking at the timeline for the same case four horizontal bands can be observed throughout the
whole diagram (Figure 3.17b). Since the behavior is time-independent, the observation represents
background noise caused by the system and/or the network.

Interestingly, the three clusters of the Sendrecv kernel have rather sharp borders (look at Fig-
ure 3.17d). The histogram for the Sendrecv kernel of 2 KiB of data in Figure 3.17d shows the time
discrepancy that has been observed in the quartiles. The figure does not look like a Gaussian prob-
ability distribution instead three clusters can be identified: one at 50µs, one at 100µs and one at
150µs. It is interesting to see that these clusters have a sharp border and thus background noise
must have a non-linear influence. They correspond to approximately one to three times network
latency (which is about 40µs). Since at least 2 frames are transported by Ethernet for the 2 KiB
Sendrecv kernel, random effects for individual packets should compensate to an average and thus
a random pattern close to the one in Figure 3.17a is expected. We will discuss the observation in a
minute.

d) Compared to the timeline with just 2 KiB, the bi-directional communication with 16 KiB of data
(Figure 3.18b) even more horizontal bands are visible. While the lowest band is caused by a late
receiver (all data is already received – consequently time is below network latency), the time for
most operations vary between 0.1 ms and 0.8 ms during the whole test.

e) The exact cause of the horizontal bands in the Sendrecv kernels is unknown to the author – but some
ideas are discussed in the following. Since the histogram for the PingPong kernel does not show these
bands, it is unlikely that our full-duplex Ethernet technology is the cause.

One theory might be that the peaks are caused by the number of early-received packets; the transfer
of 2 KiB of data requires 2 packets leading to four peaks: Either none, 1 or 2 packets are ready.
At least a few fast operations due to an early-receive of the message are observable in the left bins
of the histogram. However, the latency benchmark showed that the average latency is about 40µs
and transferring the 2 KiB of data with 71 MiB/s takes about 28µs. Thus, the cluster around 50µs
represents the case in which the processes are synchronized – all the slower operations take longer
than expected. The time difference between the visible spikes is also quite high – it is unlikely that
that much time is needed to receive a single packet. For those reasons the three hills in the histogram
are not expected to be caused by early reception of data.

A different view to the data is to compare the Sendrecv data with the PingPong time of about 20µs.
In this sense the last hill of the figure is surprising, because it is at 15µs which is more than twice
the expected time of 10µs. This is also true for the 16 KiB messages, the highest band takes about
60µs which is the same duration as exchanging two messages (look at the PingPong kernel). Most
likely the MPI implementation requires additional time by executing the send and receive operations
suboptimally on our system.

f) Timings for transferring empty messages with the PingPong kernel show a horizontal cluster around
80µs. Subsequent timings are sometimes offset by roughly 10µs from the average (Figure 3.19a). To
carve out the behavior the handful samples which needed more time are removed in Figure 3.19b. In
this figure the restrictions due to the timer resolution are visible, too.

158

3.5 INTER-PROCESS COMMUNICATION

The duration of such a shift is between 5,000 and 10,000 samples (corresponding to approximately
0.85 s). This indicates that some additional activity on the switch or the background daemons is
degrading performance. However, the repeated runs reveal a similar behavior of the timeline and
the effect lasts for a long time. Activity caused by daemon processes on the nodes is unlikely because
these services transfer little data and thus they would last for a short amount of time.

g) This kind of bias is not visible for larger messages, for example see Figure 3.18a. This is surprising,
because for larger messages the random behavior of transferring multiple small messages is expected
to add up – which is explained in the following. While the payload of an empty message is transferred
in a single Ethernet frame, TCP must fragment the 16 KiB message in at least 11 packets. On theoretic
consideration is to predict the figure for 16 KiB of data by drawing 11 times from the probability
distribution of a single packet (or by drawing 8 times from the 2 KiB histogram Figure 3.17d) – let
us ignore latency for the moment. Although random effects would level out speed of individual
packets, in this case the periods in which empty messages are transferred faster would add up for
larger messages, too. Since this is not observable there are other issues leading to the behavior of
empty messages. Presumably they are caused by our Ethernet network or by the operating system.

h) While in communication between two sockets two horizontal clusters can be identified, there are
three in the intra-socket communication (compare Figure 3.20c to Figure 3.20d). There are many
potential explanations, and due to the previous research some are unlikely. For instance, the behavior
of the memory controller discussed previously has not caused this observation in this benchmark. L3
cache behavior, or more likely the OS or the MPI implementation could cause it by handling data
structures of shared memory, or they could be due to context switches.

i) By comparing the figures for empty messages (Figure 3.19b and Figure 3.19a) the impact of removing
outliers from the data can be studied; in the figure with all data points it could be seen that long
executions happen occasionally and they are not clustered. Apparently, they are caused by short-term
random effects and no systematic slowdown of the network by background activity is observable.
Since they can occur at any time and they seem not be caused by background activity, they should
not be removed from the computation of the mean.

In contrast the plateau in Figure 3.20c is caused by some short-term activity that degrades perfor-
mance. This can be identified as a real outlier that should be removed from the computation of the
average value. An analysis of the reason behind this plateau would be interesting as well.

Variability between runs It has been observed that an average value can vary between different runs.
This behavior differs from the fluctuations that are visible in a run and it is assessed briefly in the following.
Remember, due to the construction of the benchmark computed average values are obtained for a test
which runs at least 4 s (and typically 8 s) – during this time a loop communicates the same memory regions
over and over between the two processes. The benchmark measures every data point for at least one second
and repeats this process four times after which the average time is computed. Thus, the benchmark should
be invariant to short-term effects such as hardware interrupts.

To assess the difference between multiple runs, the relative time of the three runs which have been used
to compute the average, is compared with the time of every run. The first and the third run of the inter-
node communication is conducted on the same node configurations (West9, West10) to see if the difference
between those runs is similar to executing it on other node configurations. Runs for intra-node commu-
nication are executed on different nodes. The variability is just discussed qualitatively, for a detailed and
statistical relevant analysis many more runs must be executed.

The relative performance for the conducted experiments is rendered in Figure 3.21. In the figures the y-
axis offset is adjusted to highlight the variation between the runs. Note that for a proper analysis many
more runs are necessary, this experiment just targets to increase awareness of variability between runs.

Observations and interpretation

159

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.5

(a) PingPong kernel – inter-node communication. (b) Sendrecv kernel – inter-node communication.

(c) PingPong kernel – inter-socket communication. (d) Sendrecv kernel – inter-socket communication.

(e) PingPong kernel – intra-socket communication. (f) Sendrecv kernel – intra-socket communication.

Figure 3.21.: Relative performance of the three runs to the average of all runs.

a) Overall the individual conducted PingPong averages differ by 8% when doing intra-node commu-
nication (case for 256 KiB), by 16% in inter-socket communication (case for 0 KiB), and by 3.5% for
intra-socket communication. With the Sendrecv kernel the variance is even higher. Considering
the long running experiment this result is surprising, especially since intra-node communication is
independent from the variable Ethernet network.

b) In intra-node communication the variability between runs is higher than the spread between first
and third quartile of a single run (compare the variance in Figure 3.16a). Consequently, averages of
longer running applications are expected to vary slightly.

c) While there is a fluctuation on individual message sizes an overall trend that a single run achieves
other performance values is not visible; for some message sizes a run is faster than another, some-
times it is worse. An exception to this observation is Run 2 in the inter-socket communication, here
performance of small data points is much better than the two other runs. The data points for larger
messages are close to the other runs; since performance is just better for very small messages there is
no general advantage of Run 2 visible.

d) Typically, the fluctuation between repeated runs with the identical placement are in the order as run-
ning on another configuration (compare the three runs in Figure 3.21e, Run 1 and Run 3 are executed
on the same host).

160

3.6 I/O SUBSYSTEM

Conclusions It is obvious that noise disturbs individual communications; a variation of 10% in inter-
node communication time happens frequently. For small messages the inter-process communication can
need several the time of the previous operation. With a visual inspection of timelines atypical behavior
could be spotted. This helps identifying true outliers that are probably caused by background activity.

It is interesting to see horizontal clustering of communication times. For larger messages it would be
expected that these horizontal bands are hidden because random effects should add up and result in an
“average” behavior. This indicates that non-linear hardware and software aspects are involved that could
not be explained in the scope of this thesis. Consequently, similar to memory accesses a common random
distribution is not capable to describe the observed behavior.

Even the average values that are determined by measuring performance for several seconds vary. Repeating
a run results in a performance difference of up to 8%, 16% and 3.5% in inter-node, inter-socket and intra-
socket communication, respectively. Sendrecv is even worse. This high variability leads to difficulties in
determining the true average performance characteristics of the network.

3.6. I/O Subsystem

Understanding the behavior of a single data server is important to assess performance of parallel file sys-
tems, which use those capabilities. Our cluster nodes are equipped with a Seagate Barracuda ST3250318AS
disk drive [Sea10], which is controlled by the Linux kernel.

The I/O path describes all the layers (and components) involved in I/O and how they interact. In brief, the
I/O path of a write operation can be described as follows: When an application issues an I/O call, data is
copied between the user-space buffer and the page cache that is offered in kernel-space. In kernel-space
memory the data is cached and write operations can be deferred as long as free memory is available. At this
point the write call can complete, because a programmer cannot modify kernel-space directly. A scheduler
inside the kernel decides when modified pages are transferred to the block device. The mapping from
offsets in logical files to addresses on the block storage is managed by a file system. Further, file systems
provide the hierarchical namespace and offer additional management features.

Since the I/O path of the Linux kernel is even more complicated and offers several optimizations, important
background information is provided in Section 3.6.1. Caching has a major impact on performance in most
test cases. Therefore, the available memory has to be limited. This is achieved with a simple program
called mem-eater, see Section A.4 for a description of the tool.

A reference value for the performance of the described write path is obtained by using the copy command
dd; a throughput of approximately 100 MiB/s is observable33. Although the nodes are identical, the ac-
tual performance of the nodes varies between 92 MiB/s and 120 MiB/s34. On a single node a repeated
measurement of the I/O throughput varies by a few MB/s.

All further reported benchmarks are made on the same node to understand the system’s behavior. Since a
file system must be deployed on the raw block device to store logical objects, further analysis is restricted
to the Ext4 file system that is deployed on our cluster nodes.

The observable performance of the prominent I/O benchmark IOzone35 is given in Section 3.6.2. Assess-
ing the average values with IOzone shows interesting effects and thus it serves as a seed point for in-depth
analysis of individual operations. By default IOzone measures the average performance of repeatedly
invoking a choosable I/O call. It is also interesting to see how the OS and disk activity interfere with
individual I/O operations – later the simulator must assess performance of every I/O operation individu-
ally. In the follow-up sections timings for all I/O operations are recorded to understand the interplay of

33dd is executed as follows: dd if=/dev/zero of=/tmp/test bs=1024k count=4000. Main memory is limited to 1 GiB.
34In fact the disk drives on the nodes are partitioned identically, so are the system configurations. Further, the file system in /tmp

is empty to ensure identical test conditions.
35http://www.iozone.org/

161

http://www.iozone.org/

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

operating system and HDD better. Therefore, a little I/O benchmark called posix-io-timing has been
written which times every sequential or random operation and exports timing for further analysis with
the statistics tool R. Note that IOZone can time individual operations for sequential access, too36. But it
is limited to sequential patterns and the new posix-io-timing benchmark uses timers with a nanosecond
accuracy37.

Timelines for the sequence of execution individual operations are generated and provide additional insight
about the complex behavior of local data access. To understand the impact of internal optimizations the
following experiments are conducted:

1. Accessing a file bypassing Linux and Disk cache (results are provided in Section 3.6.3). In this exper-
iment overwriting of blocks is assessed, too.

2. Direct access to a file that bypasses the Linux page cache (see Section 3.6.4).

3. Regular file access that supports caching inside the OS (see Section 3.6.5).

Several of the discussed aspects are complicated and also depend on the underlying file system. Therefore,
just a few possible explanations are offered but many facets could not be assessed further in this thesis.

3.6.1. Theoretic Considerations

Observable performance of our local I/O subsystem is determined by four factors:

• Hardware technology and characteristics of the block device

• Scheduling policy

• Caching

• File system

For all these aspects cluster specific information is provided in the following. Refer to page 32 for general
information about I/O subsystems and for background information of factors which have an impact on
(parallel) I/O performance.

Block device hardware The deployed Seagate Barracuda (ST3250318AS) has 7200 RPM. It is connected
via a 3 Gb/s SATA interface and has a capacity of 250 GByte. The bus interface limits the performance of
the disk drive to 300 MByte/s. According to the datasheet [Sea10] the disk is characterized by a sustained
data rate of 125 MB/s, an average latency of 4.17 ms (derived by the RPM), a track-to-track seek time below
1 ms (for reads) and 1.2 ms (for writes), and an average seek time of around 8.5 ms and 9.5 ms for reads
and writes, respectively. The drive uses a single platter with a single head and has 8 MB of cache. Note
that the raw write performance of 125 MB/s, as provided by the vendor, is measured without a file system
on top.

Scheduling policy All communication with the block device is controlled by a scheduler, on our cluster
the deadline scheduler is enabled38. This scheduler may aggregate, defer and select operations which are
then issued to the block device. While it performs these optimizations it usually serves requests in a fair
manner.

Similarly, the hard disk drive deploys Native Command Queuing (NCQ), which optimizes the schedule
to perform all currently pending I/Os. Due to fragmentation on disk even a single I/O call issued by
an application may hit multiple non-neighboring blocks (LBAs) on the physical device. This enables a
scheduler to actually optimize performance.

36By specifying the -Q parameter the offset and the timing in microsecond is recorded.
37Internally, clock_gettime() is used and the available accuracy is queried using clock_getres() and output.
38More information about the deadline scheduler is provided in the kernel documentation (block/deadline-iosched.txt).

162

3.6 I/O SUBSYSTEM

Caching To understand the observations a brief introduction to I/O handling in the Linux kernel and the
hard disk drive is provided.39 The behavior which is introduced in the following can be parameterized by
several files in the /proc file system, some relevant parameters are mentioned in the explanation; values
of our system are provided.

Hard disk drives provide a read-ahead mechanism of blocks which is usually called read look-ahead (or
just prefetch). Unfortunately, the specific caching algorithm for our hard disk drive is not documented, but
the documentation for previous device generations is probably valid40. According to this scheme Seagate
Barracuda has 8 MB of cache in which blocks are prefetched. Data written to the disk is copied to the
internal cache. Once stored in cache it is acknowledged to the host, this write-behind strategy improves
performance significantly. The cache of an HDD is typically not battery-backed, thus in case of a power
outage the data stored in the cache is lost. To avoid an inconsistent state, SCSI defines synchronize cache
commands which ensure that cached data of a range of blocks (or all blocks) is actually synchronized with
the medium. The ATA/ATAPI Command Set defines flush cache which forces the cache to write out all
data to the medium. In Linux, the protocol independent concept of write barriers is build on top of these
concepts. A write barrier will complete if and only if all previous issued write requests have completed.
Also, all later issued operations are deferred until the barrier completes.

In Linux, the file system uses pages of the virtual memory subsystem to cache data. In the write path,
the kernel copies user-space data into this page cache; in the read path, data of the block device is read
into the pages and kept for further usage. The file system maps the memory pages of a file to logical
block addresses of the block device and performs additional metadata updates to record the state of the
system. Background threads called pdflush try to asynchronously flush modified (dirty) pages to the I/O
subsystem which are older than a given period of time (/proc parameter dirty_expire_centisecs: 500 ⇒
5 s threshold on our system), or if a certain percentage of main memory is filled with dirty pages (dirty_
background_ratio: 10% of memory).

When a process writes data, it is written to cache and the process can proceed immediately until a certain
percentage of pages is dirty 41. Then future write calls will block and data is written back (dirty_ratio: 20%
of memory). Also, in newer versions the kernel permits to set a number of bytes instead of these percentage
values, but this is not the default behavior on our system.

Reads of data which is currently in the page cache happens without physical I/O by just copying data
between kernel-space and the application and thus it executes at memory speed. Additionally, the kernel
performs read-ahead of file’s data, if it detects a sequential access pattern. Therefore, further data is fetched
from the disk drive. Read-ahead is performed when data of at least 128 KiB is accessed sequentially – the
algorithm grows the amount of data prefetched with the hit rate42.

On our system the file system layer implements read-ahead of 256 sectors (each 512 bytes), prefetching
128 KiB of data 43. Unmounting of a file system flushes dirty data to the underling devices and all cached
data is dropped. This includes the page cache and the VFS caches. Therefore, all cached data is dropped
and must be read from the block device if it is needed again.

The caching of the kernel can be avoided by specifying the O_DIRECT flag to the open() function. When
this flag is set, then the data is copied directly between block device and the provided user-space buffer44.
Thus, it omits the additional copy to the page cache in kernel space. As O_DIRECT bypasses the virtual
memory management it also disables read-ahead of the Linux kernel.

39Refer to http://www.kernel.org/doc/Documentation/sysctl/vm.txt for information beyond this brief introduction.
40Refer to http://www.seagate.com/support/disc/manuals/scsi/29471c.pdf Page 21ff. for a description of the strategy.
41The concept of write-behind makes it difficult for an application to detect errors which occur while data is written back – an

application might even be finished at this point. An application can use fsync() and check the return value to ensure that
dirty data of a file has been persisted.

42 In [GGJL10] the mechanism of Linux is explained in detail. Also, the paper introduces a methodology to adapt the buffer
depending on observed access patterns. Refer also to [Wu10] for a description of the kernel implementation.

43The value is defined in /sys/devices/.../sda/queue/read_ahead_kb.
44An requirement for direct I/O is that the buffer is aligned to the page size.

163

http://www.kernel.org/doc/Documentation/sysctl/vm.txt
http://www.seagate.com/support/disc/manuals/scsi/29471c.pdf

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

Caching inside the I/O device is not prevented with O_DIRECT, for instance, write-behind can still be per-
formed by a hard disk drive. A specification of the O_SYNC flag blocks the process writing to the file until
data has actually been written by the hardware. Note that the O_SYNC flag enforces dirty metadata of the
file system to be flushed to disk as well. Appending to the file causes updates of the file size and requires
to allocate blocks which in turn alters metadata. Therefore, O_SYNC requires further modifications to the
file system structure besides modifying the plain data blocks.

All the mentioned caches are related to file data, there are also several metadata caches that are provided
on the layer of the virtual file system switch (inode and dentry cache), or within the file system itself.

File system Since a file system maps file system objects and the logical data of a file to the blocks on the
block device it must manage additional information about this mapping. For every file metadata stores
the list of blocks (LBAs) the byte range is made up of. Initially, upon creation of a file this list is empty
and grows when data is appended to the file. Ext4 [MCB+07a, MCB+07b] stores ranges of blocks (extents)
and tries to allocate neighboring blocks for the data of a file to improve performance on disk drives –
typically, neighboring LBAs are also neighbors on the physical geometry of the disk45. Also, Ext4 defers
the allocation of blocks to the moment data is written out from the page cache to the disk drive. For more
information on the delayed block allocation scheme see [AKCSD08].

File system operations might update multiple LBAs on disk. Failure to replace one LBA on the disk, e.g.,
by a power outage, leads to an inconsistent state of the file system. This is critical if multiple metadata
blocks are updated – in this case the file system can be corrupted leading to non-reachable files and folders.
To ensure file system consistency in such operations transaction concepts are implemented to guarantee
consistency even in case of power outage. For example, to ensure consistency Ext4 writes all metadata
updates to a log that is stored in a reserved area of the underling device (the so-called journal) and then
updates the LBAs. Thus, all activity triggered by a metadata update can be considered to be encapsulated
by a transaction. If a power outage occurs while a block is overwritten, then the journal can be replayed
which guarantees consistency of the file system.

The volumes of our cluster are formatted with Ext446 and mounted with the following options: noatime,
barrier=1, data=ordered. The noatime flag means that accessing of a file system object does not update
the atime, the timestamp that records the last access of the inode. Otherwise, reading of a file causes a
modification of the inode which must be written. Write barriers are enabled, which means that a journal
update enforces disk activity and waits for completion. With data=ordered first data blocks are updated
on the disk, then metadata is committed to the journal. For further information refer to the kernel source
documentation (filesystems/ext4.txt).

3.6.2. Average Performance

The IOzone benchmark supports in-depth analysis of file system performance. Many tests are provided: a
variation of POSIX I/O operations is supported, multiple access patterns can be executed, and orthogonal
aspects can be assessed47. An automatic mode allows measuring average performance for a variation in
the access granularity (called record size) and the file size.

For this thesis three experiments are conducted with IOzone: one which remounts the file system between
every test, one which uses all available memory (12 GB) and one in which main memory is limited to

45There is an exception in newer disk drive: Every drive provides spare blocks to cover for defect blocks, when a defect is detected
the LBA of the physical block is remapped to one spare block – this is transparent to the operating system which can still access
all LBAs.

46Features of the mounted file system: has_journal, ext_attr, resize_inode, dir_index, filetype, needs_recovery, extent, flex_bg,
sparse_super, large_file, huge_file, uninit_bg, dir_nlink and extra_isize.

47For example, concurrent access by multiple threads, usage of the O_DIRECT flag or remounting of the file system.

164

3.6 I/O SUBSYSTEM

one GiB 48 For every experiment the average performance for a variable file size, record size and a few
access patterns is measured. The evaluated file size is between 10 MiB and 5 GiB and the record size
between 16 KiB and 8 MiB. The following access patterns are executed in a sequence for every file size and
record size: data is written sequentially, then read sequentially, then written randomly and, at last, read
randomly. Actually, a random experiment accesses every record just once, a Fisher-Yates card shuffle creates
a permutation of offsets.

Average performance of the experiments is rendered in graphs for every access pattern. Those graphs are
shown in Figure 3.23, Figure 3.24 and Figure 3.22. An excerpt of the quantitative performance values are
given as reference. The experiments without remounting are listed in Table 3.7 and the experiment with
remount in Table 3.8. File sizes that achieve too high performance for all access patterns (that means they
are fully cached) are not included in the tables. Values for the largest file size that achieves comparable
performance to all sizes below is provided, for example, if performance is roughly 1,500 MiB/s up to files
with a size of 1,280 MiB, then the file sizes below this limit are omitted.

Observations and interpretation

a) Performance for smaller file sizes is in the order of several GiB/s, but drops with increasing file sizes.
See the read and write graphs in Figure 3.23 and Figure 3.22. With less main memory, performance
drops earlier, e.g., at 320 MiB, while with the large amount of main memory it drops at 2,560 MiB.

The caching explains the high performance in the range of several GiB/s, which is at memory speed.
Due to the settings of dirty_ratio the IOzone process is blocked when writing more than 2 GiB
or 200 MiB of data, which reduces observable write performance for 12 GiB or 1 GiB of available
memory, respectively.

b) Read performance is very high in the measurements up to a file size of 640 MiB and 2.5 GiB for 1 GiB
and 12 GiB of main memory, respectively. This is due to the caching, after the write test has been
executed this data is read but available in cache.

c) With file sizes bigger than the cache, for a few combinations of record sizes the observable perfor-
mance increases while the file size increases. For example compare the read and write results for
16 KiB records for the 1 GiB, 2 GiB and 5 GiB file (look at Table 3.7). Performance of the 2 GiB file is
lower than for a 1 GiB file (78 MiB/s vs. 86 MiB/s), and the 5 GiB file behaves like the 640 MiB file
(about 94 MiB/s). This is a performance increase of about 16%.

For larger record sizes than 128 KiB, the accesses to the 2 GiB file are faster than for 1 GiB or 5 GiB.
Since this result is visible in the sequential read, write and the re-read and re-write of data it is
probably not caused by a background activity. The cause is unknown.

d) The sequential (and random) read performance degrades for the 5 GiB file and larger record sizes
even when 12 GiB of main memory is available. This indicates that some data is removed from the
cache before it is read (see Figure 3.23d and Figure 3.23b). An interesting result is that 16 KiB accesses
are cached efficiently for random read achieving 6,000 MiB/s while larger record sizes are hitting
disk. Also, sequential and random read achieve a better performance for the 16 KiB record size than
for 64 KiB records (look at Table 3.7). For example, 116 MiB/s is measured for 16 KiB sequential
access but just 84 MiB/s for 64 KiB records.

e) In Figure 3.23 and Figure 3.22 the performance of all cached record sizes behave similar. The perfor-
mance degradation due to shortage in cache is just shifted to smaller file sizes.

f) Sequential write and random write of the experiment with remounting (see Figure 3.24) look like the
results obtained without remounting. Since the benchmark does not include the time for unmounting
the file system both perform the identical operations. Thus, this is expected.

48The run parameters for IOzone are: iozone -a -n 10m -g 5g -q 10m -y 16k -f /tmp/remount/test -i 0 -i 1 -i 2 -

i 9 -i 10 -R [-U /tmp/remount]. The -U flag commands IOzone to remount the file system between testing two access
patterns.

165

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

(a) Sequential write. (b) Sequential read.

(c) Random write. (d) Random read.

Figure 3.22.: Performance of several access patterns measured with IOzone – 1 GiB of memory is available.

g) Sequential read performance of the remount experiment hits disk because the cache is purged before
the data is read. Performance is relatively invariant to the block size and file size. In this case, read-
ahead of the OS and disk works and improve observed throughput because the read-ahead window
can grow until best performance is achieved.

h) When the random read performance is determined for the remount experiment, the disk charac-
teristics are revealed because the data is not cached in disk drive or the operating system. Now,
performance depends on the block sizes and increases with larger record sizes up to 90 MiB/s (see
Figure 3.24). Latency of the disk dominates I/O time for small record sizes and thus the performance
drops significantly for smaller records.

i) With larger file sizes random performance is significantly slower than sequential access, it depends
on the record size and decreases further with increasing file sizes (see Table 3.7). Under the assump-
tion that data of a single file is stored in a consecutive area, the average distance between two random
offsets in the file increase with the file size. Therefore, the time to move the disk heads to the right
track increases as well, which increases latency and thus reduces observable throughput.

j) For the largest file sizes (i.e., 5 GiB) measured throughput of random read for the 12 GiB remount
run and for the run with 1 GiB are in the same order, but vary (see Table 3.7). Since in both cases
memory cannot cache data any more, those cases are expected to behave alike, which is only true to
some extent. In most cases remounting the file system increases performance slightly. For record
sizes 16 and 32 KiB the bigger memory cache improves throughput to 5 MiB/s which is a factor of 2,
for the 8 MiB records performance without the remount are a bit better.

Theoretically, experiments which do not enforce remount could defer write operations. Then during
the read kernel there are still some dirty pages available, which must be written-back. Thus, the
additional writes performed in the read test spoil the results and reduce the observable performance.
Consequently, the measured values of the experiment without remount do not represent the intention
of the experiment. While this could be fixed by enforcing flush during the write operations, this
would not allow to measure the throughput of the write-behind cache. To understand the internal
processing better individual operations are timed in the next section.

166

3.6 I/O SUBSYSTEM

(a) Sequential write. (b) Sequential read.

(c) Random write. (d) Random read.

Figure 3.23.: Performance of several access patterns measured with IOzone – 12 GByte of memory is avail-
able.

(a) Sequential write. (b) Sequential read – note the different scaling.

(c) Random write. (d) Random read – note the different scaling.

Figure 3.24.: Performance of several access patterns measured with IOzone – 12 GByte main memory is
available, a remount is performed between two tests.

167

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

C
on

fi
gu

ra
ti

on
A

cc
es

s
p

at
te

rn
Fi

le
si

ze
R

ec
or

d
si

ze
in

K
iB

in
M

iB
16

32
64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

12
G

iB
m

em
or

y

Se
qu

en
ti

al
w

ri
te

12
80

16
00

15
33

16
23

16
89

16
90

16
39

17
08

17
14

16
78

15
62

25
60

43
4.

2
47

5.
8

47
6.

2
48

0.
0

47
3.

8
46

9.
1

45
8.

1
43

3.
3

47
5.

6
44

8.
5

51
20

14
1.

7
13

5.
4

13
4.

4
13

7.
3

13
4.

5
13

6.
8

13
4.

3
12

6.
9

14
0.

4
13

0.
3

Se
qu

en
ti

al
re

ad
25

60
73

61
71

93
64

24
68

33
63

15
63

22
63

51
63

55
61

59
46

67
51

20
11

6.
6

11
3.

3
84

.5
83

.7
86

.0
83

.9
80

.8
80

.6
79

.1
80

.4

R
an

d
om

w
ri

te
12

80
28

10
29

84
30

84
32

82
32

29
32

68
33

38
32

77
28

85
27

75
25

60
13

2.
4

22
6.

7
29

3.
7

36
3.

9
39

2.
3

40
9.

8
44

7.
0

44
9.

0
30

0.
3

32
0.

4
51

20
24

.3
39

.4
58

.5
79

.9
97

.6
10

5.
4

10
5.

8
10

9.
4

12
2.

4
10

9.
2

R
an

d
om

re
ad

25
60

59
73

67
30

68
50

67
72

62
89

63
60

64
14

64
13

62
12

46
81

51
20

54
90

35
.3

10
.9

17
.9

28
.1

45
.5

60
.1

88
.2

84
.2

89
.1

1
G

iB
m

em
or

y

Se
qu

en
ti

al
w

ri
te

16
0

13
65

13
52

12
67

14
12

14
15

14
27

14
01

14
08

14
04

13
30

32
0

17
2.

6
16

7.
2

16
4.

4
16

1.
8

16
2.

0
16

4.
7

16
3.

5
16

2.
4

15
8.

6
16

3.
8

64
0

94
.0

95
.5

94
.8

96
.7

96
.3

96
.1

10
5.

3
10

6.
5

95
.3

95
.0

12
80

86
.6

85
.2

86
.1

86
.0

83
.8

85
.6

82
.8

85
.5

82
.0

85
.8

25
60

78
.5

77
.3

83
.2

99
.8

98
.6

99
.5

10
0.

0
98

.1
99

.0
97

.6
51

20
93

.7
93

.8
94

.2
91

.5
90

.3
90

.6
90

.6
89

.2
87

.1
86

.2

Se
qu

en
ti

al
re

ad

64
0

71
43

66
04

68
08

65
63

60
32

61
97

61
06

62
59

61
65

44
99

12
80

82
.9

82
.6

81
.7

80
.9

78
.8

79
.9

78
.5

81
.1

79
.4

79
.2

25
60

77
.3

77
.6

81
.7

96
.7

98
.2

98
.7

96
.8

96
.5

96
.9

95
.7

51
20

94
.6

94
.4

94
.5

91
.5

91
.1

90
.7

91
.0

89
.3

87
.6

86
.9

R
an

d
om

w
ri

te

16
0

28
38

30
06

29
73

29
88

29
81

29
83

30
27

29
73

29
68

26
44

32
0

38
.1

53
.3

86
.1

11
6.

3
13

0.
9

14
1.

6
14

9.
0

16
0.

6
16

2.
2

16
1.

0
64

0
14

.2
21

.5
36

.0
53

.3
71

.7
82

.5
89

.8
96

.2
97

.5
10

1.
2

12
80

8.
5

15
.7

24
.5

39
.5

52
.3

63
.4

70
.8

76
.7

79
.5

79
.9

25
60

6.
8

12
.8

21
.1

36
.3

53
.1

65
.9

78
.7

85
.8

90
.3

91
.2

51
20

6.
0

11
.5

19
.9

31
.8

46
.5

58
.3

66
.7

74
.6

72
.7

78
.8

R
an

d
om

re
ad

64
0

64
78

65
16

65
70

63
53

61
39

61
08

61
36

61
85

61
24

46
37

12
80

4.
9

8.
6

14
.2

23
.4

34
.5

51
.6

69
.5

84
.0

95
.0

10
4.

3
25

60
2.

7
5.

0
6.

5
16

.3
26

.4
40

.6
57

.3
74

.4
85

.4
91

.2
51

20
2.

3
4.

3
8.

1
14

.5
23

.7
36

.6
52

.3
66

.0
74

.3
80

.4

Ta
bl

e
3.

7.
:I

/O
th

ro
u

gh
p

u
t

in
M

iB
/s

m
ea

su
re

d
w

it
h

IO
zo

ne
fo

r
a

va
ri

ab
le

re
co

rd
si

ze
s

w
it

h
12

G
B

yt
e

(o
r

1
G

iB
)o

f
av

ai
la

bl
e

m
ai

n
m

em
or

y.

168

3.6 I/O SUBSYSTEM

A
cc

es
s

p
at

te
rn

Fi
le

si
ze

R
ec

or
d

si
ze

in
K

iB
in

M
iB

16
32

64
12

8
25

6
51

2
10

24
20

48
40

96
81

92

Se
qu

en
ti

al
w

ri
te

12
80

15
83

16
36

16
48

16
12

16
03

16
92

15
98

15
96

16
00

14
94

25
60

42
2.

2
40

8.
2

43
5.

8
48

4.
2

45
2.

1
43

0.
7

45
5.

5
43

9.
6

43
9.

1
47

2.
4

51
20

15
8.

9
15

9.
3

15
6.

0
15

8.
7

15
7.

3
15

6.
8

15
8.

3
15

7.
8

15
9.

4
15

8.
3

Se
qu

en
ti

al
re

ad

10
87

.4
87

.3
87

.4
87

.4
93

.0
87

.4
93

.0
87

.6
86

.2
87

.1
20

90
.7

93
.6

93
.6

90
.7

93
.6

90
.7

93
.6

93
.7

91
.0

93
.5

40
93

.9
93

.9
92

.4
93

.9
92

.5
93

.9
94

.0
92

.5
94

.0
92

.8
80

95
.8

96
.6

96
.6

95
.8

96
.6

95
.8

96
.6

95
.9

95
.9

96
.0

16
0

93
.3

92
.9

92
.9

92
.9

92
.9

92
.9

96
.1

93
.3

92
.8

96
.2

32
0

96
.4

96
.4

96
.4

95
.9

96
.4

96
.1

96
.4

96
.4

96
.4

96
.4

64
0

96
.0

96
.0

95
.7

96
.0

95
.9

95
.9

95
.9

95
.7

96
.0

95
.6

12
80

96
.3

96
.3

96
.0

96
.5

96
.3

96
.5

96
.3

96
.3

96
.3

96
.3

25
60

96
.4

96
.6

96
.6

96
.3

96
.6

96
.7

96
.4

96
.0

96
.3

96
.6

51
20

96
.4

96
.7

96
.4

96
.4

96
.6

96
.2

96
.3

96
.6

96
.4

96
.5

R
an

d
om

w
ri

te
12

80
18

08
19

73
20

77
20

70
21

09
20

28
21

24
21

07
20

67
18

92
25

60
15

0.
8

25
9.

4
24

7.
3

23
7.

3
34

8.
3

23
6.

6
45

3.
7

24
1.

1
47

5.
0

45
8.

0
51

20
23

.4
39

.7
59

.7
79

.1
10

8.
7

12
0.

8
12

5.
0

14
3.

0
13

9.
7

14
8.

3

R
an

d
om

re
ad

10
9.

0
14

.2
18

.2
26

.7
33

.0
47

.6
58

.8
74

.9
85

.6
83

.7
20

7.
5

11
.4

15
.3

21
.3

32
.0

42
.7

59
.8

75
.0

84
.4

89
.0

40
6.

8
10

.2
15

.0
21

.4
30

.8
44

.3
57

.8
76

.8
83

.2
90

.2
80

6.
6

10
.4

14
.3

20
.5

30
.6

43
.4

57
.5

76
.2

84
.3

91
.2

16
0

6.
4

9.
8

14
.1

20
.1

30
.1

43
.8

60
.2

74
.0

84
.0

90
.5

32
0

6.
1

9.
4

13
.6

19
.9

29
.9

42
.1

59
.8

73
.9

83
.5

89
.8

64
0

5.
9

9.
2

13
.1

18
.8

28
.9

41
.9

57
.9

72
.6

83
.5

89
.0

12
80

5.
6

8.
8

12
.6

18
.2

28
.3

40
.6

57
.5

71
.7

82
.5

89
.4

25
60

5.
2

8.
2

11
.9

17
.3

27
.0

39
.5

56
.0

71
.2

82
.0

88
.7

51
20

5.
0

7.
0

11
.2

15
.3

25
.0

37
.1

54
.1

69
.1

81
.3

88
.2

Ta
bl

e
3.

8.
:I

/O
th

ro
u

gh
p

u
t

in
M

iB
/s

m
ea

su
re

d
w

it
h

IO
zo

ne
fo

r
a

va
ri

ab
le

re
co

rd
si

ze
s

in
th

e
ex

p
er

im
en

t
w

it
h

12
G

B
yt

e
av

ai
la

bl
e

m
ai

n
m

em
or

y.
T

he
fi

le
sy

st
em

is
re

-m
ou

nt
ed

by
IO

Z
on

e
be

tw
ee

n
m

ea
su

ri
ng

tw
o

ac
ce

ss
p

at
te

rn
s.

169

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

(a) Write performance. (b) Read performance.

Figure 3.25.: Performance of direct IO for a variable access granularity using O_DIRECT (and O_SYNC)
measured with posix-io-timing for several access patterns.

3.6.3. Timing Uncached Data Access

In the following three sections the benchmark posix-io-timing is used to time I/O operations individ-
ually. The benchmark contains kernels to perform sequential or random access of either POSIX read or
write calls. The benchmark iterates over record sizes between 16 KiB and 8 MiB. During each test a file
with a size of 1 GiB is created and accessed with a fixed record size. In contrast to IOzone the kernel for
random I/O of posix-io-timing accesses blocks with truly random offset, thus it may access the same
record multiple times49. The random generator uses always the same seed to allow us to compare the
observed performance.

In this experiment files are opened with the O_DIRECT and O_SYNC flags. By opening the file with O_
DIRECT the kernel page cache is avoided and data is transferred directly between provided user-space
buffers and the disk. With the O_SYNC flag the kernel will wait for the disk’s notification of write opera-
tions, before it proceeds.

A general overview of the average performance achieved with direct IO is provided in Table 3.9, those
results are also visualized in Figure 3.25. The read case and direct writes (without O_SYNC) are discussed
in Section 3.6.4. Timelines are generated for interesting cases and discussed in the evaluation. In the
timelines throughput of accessing a single record is plotted to simplify the comparison between record
sizes and the theoretical peak performance. All timings are included in the timelines, that means outliers
are not removed, because they provide insight about jitter in the system.

Observations and interpretation

a) The random read performance which adds the O_SYNC flag is similar because the flag does not alter
the behavior and consequently the results are comparable (look at Table 3.9). Due to this fact and
because write is complicated the discussion of the reads is done in the next section, where just O_
DIRECT is used.

b) Synchronous sequential write performance is very low (about 0.4 MiB/s) and reveals several hori-
zontal bands (see Figure 3.26a). At beginning of the random write performance just looks alike the
sequential performance (see Figure 3.26b). The reason for the low performance is the necessary block
allocation when appending to a file hosted on Ext4. Block allocation updates the file system’s meta-
data to mark the blocks as used, and it also updates the file’s metadata. By supplying the O_SYNC
flag those modifications also require the metadata to be flushed to disk. This in turn requires the
journal of the file system to be updated and flushed before the actual modifications are made. Since

49The file is partitioned into records of the given size, records are accessed completely.

170

3.6 I/O SUBSYSTEM

Access pattern Record size in KiB
16 32 64 128 256 512 1024 2048 4096 8192

Sequential write 95.6 95.3 95.4 95.0 81.2 75.0 75.6 74.9 74.9 74.9
Sequential write sync 0.4 0.9 1.7 3.3 6.4 11.5 18.4 27.6 35.1 49.3
Sequential re-write sync 1.8 3.6 6.9 12.9 22.8 36.8 53.2 57.5 67.9 79.2

Random write 5.3 10.4 18.6 29.1 38.3 51.3 54.9 56.1 60.3 68.9
Random write sync 0.6 1.3 2.5 4.8 8.8 15.4 24.4 33.9 40.7 55.0
Random re-write sync 2.1 4.1 7.6 13.7 22.7 33.8 44.3 52.7 56.0 72.0

Sequential read 96.7 95.5 96.6 96.8 96.7 76.4 76.3 76.2 76.2 76.4
Sequential read sync 96.5 96.4 96.5 96.7 96.6 76.3 75.4 76.2 75.9 75.8

Random read 2.3 4.6 8.5 15.8 25.9 39.7 52.0 61.0 67.7 73.7
Random read sync 2.4 4.6 8.6 15.8 26.3 39.8 52.0 62.3 70.6 76.7

Table 3.9.: Average throughput in MiB/s of direct I/O by using O_DIRECT (and O_SYNC) to access 1 GiB
of data – measured with posix-io-timing for a variable access granularity.

in Ext4 certain blocks are reserved for this metadata, which are not in sequence, disk seeks are nec-
essary in both cases. Consequently, to append a single record multiple blocks are updated that are
spread over the disk. Therefore, both operations look like a random access pattern to the disk. Thus,
by specifying O_SYNC performance degrades seriously.

c) When data is written to a file which already exists the performance is higher; compare the figures for
sequential and random re-write of data blocks (Figure 3.26e and Figure 3.26f) with the first writes.
Also, the horizontal clusters change.

Thus, presumably preallocation performed by Ext4 explains some of the horizontal bands. With the
implemented preallocation algorithm a single allocation reserves a bigger consecutive extend than
required and assigns it to the file. Therefore, a few further updates of the file do not require to
allocate new blocks from the file system, instead just the file’s metadata is modified. Since the files
exist in the re-write test no blocks must be allocated at all. Therefore, the workload of updating the
file system structures is reduced.

d) Average random write performance increases over time – data points spread up to 7 MiB/s on the
right (see Figure 3.26c). Performance stays on one level for a random re-write of data (Figure 3.26f).

Again, the reason is the block allocation: As the benchmark accesses data at offsets of the record size
either a record has been written or not. Overwriting of a record that has been written does not trigger
block allocation and the metadata again, which reduces the workload.

Since the number of already written blocks increase over the run the average performance increases.
Approximately 62% of the logical file blocks are written at the end50.

e) Writing with a larger record improves performance because all blocks can be allocated together re-
quiring one update of the file’s metadata and of the file system structures (compare the performance
of synchronous I/O in Table 3.9).

A timeline for 2 MiB records is given in Figure 3.26d. Probably every data point in the figure which
is in the horizontal line at either 30 MiB/s or 28 MiB/s is caused by a new block allocation and thus
existing data is not overwritten in those cases.

50Every written block reduces the probability that another write accesses a previously unwritten block. The value has been
approximated with the command line tool bc: echo "y = 0; for(i=0; i < 10000; i++) y=y+0.0001*(1-y); ; print y"

| bc -l.

171

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

(a) Sequential write – 16 KiB records. (b) Random write – 16 KiB records.

(c) Random write – 16 KiB records, first 5000 timings. (d) Random write – 2048 KiB records.

(e) Sequential re-write – 16 KiB records. (f) Random re-write – 16 KiB records.

Figure 3.26.: Direct I/O performance using O_DIRECT and O_SYNC measured with posix-io-timing for
several access patterns.

172

3.6 I/O SUBSYSTEM

3.6.4. Timing Accesses Bypassing the Linux Cache

In this section the benchmark posix-io-timing is used to time I/O operations that are performed by the
block device, therefore, the O_DIRECT flag is used. In this case, I/O is done without involving the Linux
page cache and thus all operations are handled by the disk drive. Read and writes are assessed. While the
read path is identical to the previous results, in the write path updates of the file system’s metadata (and
journal) can be deferred (because O_SYNC is not specified), so that block allocation is done in memory.

All results are obtained with the posix-io-timing benchmark to time individual I/O operations. Time-
lines for all access patterns and 16 KiB records are given in Figure 3.27. Average throughput for all access
granularities is listed in Table 3.9.

Observations and interpretation

a) Sequential read performance of 16 KiB records achieve already a high performance of 96 MiB/s (see
Table 3.9). Since read-ahead of Linux does not work when a file is opened with O_DIRECT, the high
performance must be caused by the disk internal read-ahead mechanism: Whenever data is fetched
the disk reads the next data blocks while the data is returned to the callee. Therefore, when the next
blocks are requested they are already available in the disk cache and copied from the internal cache.

b) The performance drops to 76 MiB/s when more data than 256 KiB are requested. At this point the
read-ahead and the read call seem not to overlap any more. Probably the disk cache does not read-
ahead that much of data. Actually, the Linux kernel reported a read-ahead window of 128 KiB for the
hard disk drive, but the result suggest twice that much. This could be caused by the hard disk drive’s
look-ahead feature.

The behavior is probably influenced by the maximum amount of data that can be handled by a file
system request, which is limited to 512 KiB on our system51. Effectively, this parameter limits the
amount of data that can be exchanged between block device and Linux in a single request.

c) Compared to the discussed variation in read performance the observed throughput of cached se-
quential reads is stable (compare the throughput of IOZone in Table 3.8, typically 96 MiB/s). Direct
I/O is similar to the IOZone results for small records, but it is slower for larger record sizes.

d) Sequential write performance is also very high when less than 512 KiB of data is written per access.
Then performance drops similar to sequential read performance. Probably the max_sectors_kb limit
mentioned previously, that hinders larger data transfers to occur in a single transfer between device
and the kernel, is a performance bottleneck.

e) Random read performance is slightly better than synchronous random re-write performance (see
Table 3.9). This is probably since Ext4 requires to update the file system metadata for writes, but not
for reads. Also, the physical read and write process of the HDD differs slightly.

f) A few operations for sequential read and writes need much more time (see Figure 3.27b and Fig-
ure 3.27a). Thus, some slower random-like operations are caused by the sequential access patterns,
those could be metadata reads or updates. In the write-path the disk cache could be full, degrading
the next operations until it is ready – this would explain the periodic slow operations. To assess this
further the first 5000 timings are printed in additional diagrams.

g) In the sequential read diagram an interesting step pattern is observable; many data points aggregate
at 115 MiB/s or 105 MiB/s (see Figure 3.27d). Mainly, performance alternates between those two
steps. Also, several very fast operations can be observed.

h) There are bursts of faster I/O visible when performing random writes – roughly every 1750 opera-
tions (see Figure 3.27d). The 1750 operations correspond to a data volume of roughly 28 MByte. The

51This information is provided in the variable /sys/block/<blk-device>/queue/max_sectors_kb variable, according to the
kernel documentation (block/queue-sysfs.txt).

173

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

(a) Sequential write. (b) Sequential read.

(c) Sequential write – first 5000 timings. (d) Sequential read – first 5000 timings.

(e) Random write. (f) Random read.

(g) Random write – first 5000 timings. (h) Random read – first 100 timings.

Figure 3.27.: Direct I/O performance using O_DIRECT measured with posix-io-timing for several access
patterns and 16 KiB records.

174

3.6 I/O SUBSYSTEM

observed number of operations which are handled faster are 63 to 64 operations in every burst, which
is about 1 MiB of data.

Without the sync flag the kernel can submit multiple operations to the disk without waiting for com-
pletion of an individual operation. With the NCQ capability offered by the drive up to 31 concurrent
operations can be scheduled. Thus, NCQ would explain that 31 operations are transferred rapidly,
then performance should drop. Thanks to the improved scheduling in the disk the average random
write performance is much better than the random read performance (e.g., 5.3 MiB/s vs. 2.3 MiB/s
for 16 KiB).

i) Since NCQ cannot be applied to random reads, obtained performance reveals the disks behavior
(Figure 3.27f). Compared to the random write with the sync flag (see Figure 3.26f), some operations
complete much faster than most operations which achieve less than 10 MiB/s. This is probably due to
the true random access which might result in re-reading of cached information or sequential access.

3.6.5. Timing Cached Operations

In this experiment the timings for 16 KiB and 256 KiB accesses are measured with posix-io-timing. Sev-
eral tests with a variable amount of free memory are conducted: not restricted (and roughly 12 GB is
available), or memory is restricted to 200 MiB or 1 GiB. Data is stored on the Ext4 file system (like in the
tests before). Further, a test of the in-memory file system tmpfs is performed that assists in comparing the
performance of the Ext4 file system with tmpfs. In all cases, the test file has a file size of 1 GiB. Between
two kernels data is kept in the caches and thus read benefits from the caching done in the write pattern
before.

An overview of the quantitative values is given in Table 3.10a and Table 3.10b for West1 and West2, re-
spectively. For all measured memory sizes and access patterns the average throughput of the whole run is
provided, also the minimum, the maximum and the three quartiles. Results are listed for the two nodes to
foster a qualitative intercomparison of repeated runs on distinct nodes.

Although, on tmpfs the benchmark just has a total runtime of about 0.2 s the correctness of the averages
can be assessed qualitatively by inspecting the timelines. Timelines of the calls are given in Figure 3.28,
Figure 3.29, Figure 3.30 and Figure 3.31: The first diagrams act as reference and show the timings when
accessing data randomly from tmpfs; it also compares timings obtained on two nodes. In the second set of
diagrams an overview of the access patterns is provided for one node and 16 KiB records. The last set of
diagrams focuses on operations actually hitting disk, therefore, it cuts the y-axis of the previous diagrams
at 20 MiB/s to reveal very slow operations.

Observations and interpretation

a) Quantitative results for accessing data on Ext4 depend largely on the amount of free memory (see
Table 3.10a). With 200 MiB of memory the average small record performance is around 95 MiB/s for
sequential access and in the order of 5 MiB/s for random access. This performance is similar to the
one obtained with O_DIRECT. An increase in memory to 1 GiB improves the average performance of
the random access to 18 MiB/s. When the cache is much bigger than the file size or if data is stored
on tmpfs, then a performance of several GiB/s is observable, since operations causing disk activity
are much slower than memory operations.

b) The spread between minimum, the quartiles and the maximum is very high, e.g., for sequential write
and 200 MiB of cache a minimum of 0.06 MiB/s has been measured and a maximum of 1929 MiB/s.
This is still true for fully-cached small accesses (compare the first and the third quartile in Ta-
ble 3.10a, or look at Figure 3.28). Further, the minimum throughput can be quite low achieving
only 20 MiB/s for individual records (0.8 ms per operation). Slow access seems to occur periodically
(look at some of the figures in Figure 3.28). Because the I/O device is not involved on tmpfs it can
be concluded that the fluctuations are already caused by OS jitter and/or the memory access. For

175

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

Memory Pattern Record size Average Min 1st quartile Mean 3rd quartile Max

200 MiB

Seq. write
16 KiB

93.0 0.06 863.3 1034 1177 1929
Seq. read 95.8 1.58 3503.0 3416 4101 6483

Rand. write
16 KiB

6.6 0.01 1134.0 1377 1606 5425
Rand. read 2.7 0.20 1.8 394 4.4 4569
Rand. write

256 KiB
47.6 0.67 966.4 1294 1530 4561

Rand. read 26.5 3.57 20.9 259 34 7009

1000 MiB

Seq. write
16 KiB

107.6 0.019 1017 1261 1541 1717
Seq. read 96.8 1.5 3685 3593 4257 7007

Rand. write
16 KiB

11.1 0.002 1257 1749 2100 5333
Rand. read 27.9 0.7 3100 3395 4080 8585
Rand. write

256 KiB
67.7 0.2 1308 1882 2461 5532

Rand. read 95.1 13.4 45.2 3230 5003 9416

unlimited

Seq. write
16 KiB

1527 67.7 1487 1546 1653 1736
Seq. read 5530 162.7 5809 5759 6300 6621

Rand. write
16 KiB

2101 236.7 1817 2256 2867 5351
Rand. read 5743 143.4 4852 5993 6823 10210
Rand. write

256 KiB
2334 1030.0 1987 2531 3406 5285

Rand. read 6120 2346.0 6274 6198 6430 9513

on tmpfs

Seq. write
16 KiB

2380 19.55 2301 2421 2604 2775
Seq. read 5463 285.8 5541 5557 5830 6104

Rand. write
16 KiB

2122 19.49 1903 2309 2801 8778
Rand. read 4561 19.56 4269 4676 4976 9952
Rand. write

256 KiB
2995 1366 2542 3282 4437 8039

Rand. read 5421 2254 5098 5516 5964 8384
(a) West1

Memory Pattern Record size Average Min 1st quartile Mean 3rd quartile Max

200 MiB

Seq. write
16 KiB

103.3 0.05 835.1 1006 1158 1682
Seq. read 116.0 1.52 3685.0 3559 4223 6706

Rand. write
16 KiB

6.3 0.01 1105.0 1316 1492 5243
Rand. read 2.6 0.17 1.8 382 4.3 4976
Rand. write

256 KiB
44.6 0.46 969.2 1286 1487 5031

Rand. read 27.2 12.10 21.5 250 35 7490

1,000 MiB

Seq. write
16 KiB

121.7 0.02 1027 1245 1517 1700
Seq. read 116.0 0.8 3527 3425 4156 6706

Rand. write
16 KiB

10.3 0.003 1282 1729 2126 5502
Rand. read 27.0 0.8 3094 3353 4037 8828
Rand. write

256 KiB
65.7 0.2 1312 1857 2365 5425

Rand. read 100.0 11.1 46.3 3286 4920 8945

unlimited

Seq. write
16 KiB

1474 108.3 1440 1513 1653 1910
Seq. read 5996 40.1 6104 6119 6430 6735

Rand. write
16 KiB

2119 70.2 1834 2276 2888 5407
Rand. read 6600 340.1 6565 6678 6944 12020
Rand. write

256 KiB
2323 756.2 2000 2537 3441 5361

Rand. read 6271 1277.0 6361 6333 6465 9498

on tmpfs

Seq. write
16 KiB

2350 103.9 2294 2405 2626 2780
Seq. read 5493 316.8 5580 5590 5852 6200

Rand. write
16 KiB

2167 38.91 1929 2357 2878 8980
Rand. read 4634 279.9 4316 4751 5073 10280
Rand. write

256 KiB
2969 509.9 2523 3276 4462 8010

Rand. read 5478 2560 5130 5564 5991 8406
(b) West2

Table 3.10.: I/O throughput in MiB/s for individual operations as measured by posix-io-timing. The
average value is the throughput overead the whole run.176

3.6 I/O SUBSYSTEM

(a) West1 random read from tmpfs. (b) West2 random read from tmpfs.

(c) West1 random read with unlimited memory. (d) West2 random read with unlimited memory.

(e) West1 random write to tmpfs. (f) West2 random write to tmpfs.

(g) West1 random write with unlimited memory. (h) West2 random write with unlimited memory.

Figure 3.28.: Performance measured with posix-io-timing on two nodes for random access patterns and
16 KiB records. Results for accessing data on tmpfs and on Ext4 with unlimited memory are
provided.

177

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

(a) West1 sequential read of 16 KiB records. (b) West2 sequential read of 16 KiB records.

(c) West1 sequential read of 16 KiB records, the y-axis
is limited to 20 MiB/s.

(d) West2 sequential read of 16 KiB records, the y-
axis is limited to 20 MiB/s.

(e) West1 sequential write of 16 KiB records. (f) West2 sequential write of 16 KiB records.

(g) West1 random write of 256 KiB records . (h) West2 random write of 256 KiB records.

Figure 3.29.: Performance measured with posix-io-timing on two nodes for several access patterns –
memory is limited to 200 MiB.

178

3.6 I/O SUBSYSTEM

(a) Sequential write – memory is not limited. (b) Sequential read – memory is not limited.

(c) Sequential write – memory is limited to 1 GiB. (d) Sequential read – memory is limited to 1 GiB.

(e) Sequential write – memory is limited to 200 MiB. (f) Sequential read – memory is limited to 200 MiB.

(g) Random write – memory is limited to 200 MiB. (h) Random read – memory is limited to 200 MiB.

Figure 3.30.: Performance measured with posix-io-timing for several access patterns and 16 KiB records
on West1 – all data points.

179

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

(a) Sequential write – memory is limited to 1 GiB. (b) Sequential read – memory is limited to 1 GiB.

(c) Sequential write – memory is limited to 200 MiB. (d) Sequential read – memory is limited to 200 MiB.

(e) Random write – memory is limited to 1 GiB. (f) Random read – memory is limited to 1 GiB.

(g) Random write – memory is limited to 200 MiB. (h) Random read – memory is limited to 200 MiB.

Figure 3.31.: Performance measured with posix-io-timing for several access patterns and 16 KiB records
– the y-axis is limited to 20 MiB/s.

180

3.6 I/O SUBSYSTEM

disk operations the situation is even worse, the first (and third) quartile is below the mean value for
several access patterns. Presumably, because these 75% of operations are so slow (below 34 MiB/s),
they are expected to hit disk.

c) The timelines’ patterns are quite complex in their nature (for example look at Figure 3.28). Also,
timelines for read and write patterns look substantially different. Even observed timings of ac-
cesses which are completely cached are rather complicated. Cached operations achieve a much better
throughput and in general read access to cached data is faster than a write. Some operations are con-
ducted at full memory speed (the measured throughput is around 8,000 MiB/s).

d) Next, the performance deviation between the two nodes is assessed quantitatively. By comparing the
tmpfs results of both hosts it can be observed that the average values for all accesses are quite similar
(e.g., 2,380 MiB/s vs. 2,350 MiB/s for sequential writes), so is the maximum and the three quartiles
(compare Table 3.10a and Table 3.10b). A similar behavior can also be seen in the timelines (for
example compare Figure 3.28a and Figure 3.28b). Due to the identical random seed of the benchmark
and the hardware, this is expected.

e) The values for unlimited memory are also quite similar between West1 and West2, they are close
to the values of tmpfs (compare Table 3.10a and Table 3.10b). A bit surprising is that cached read
performance on the disk drives achieves better performance than reading from tmpfs in all cases
because tmpfs is implemented in the page cache, which is used by all file systems, too.

The difference could be explained by the short runtime of the benchmark but also be caused by
the implementation differences between tmpfs and the page cache implementation for regular file
systems. This can be assessed with the timelines.

f) By comparing the timelines for the two scenarios it can been observed that the behavior of the two
implementations differ qualitatively (see Figure 3.28). All four read plots start with a performance
around 4,000 MiB/s and performance improves after 1,000 records have been read. Additionally,
performance of reading data from tmpfs increases after 40,000 records while the performance of
reading data from the page cache achieves a higher throughput. Although, the timelines for random
read on Ext4 reveals an additional band on West1, it looks similar to the one obtained on West2. Fur-
ther, most figures look very similar between the two nodes (for example see Figure 3.29). Presumably,
the file system implementations are the reason.

g) The performance of sequential accesses with 16 KiB of data are an exception to the rule that both
machines behave similar; West2 achieves better performance than West2 (compare Table 3.10a and
Table 3.10b). It can be also seen that the average random access performance with a restricted amount
of memory is higher. e.g., West2 achieves 116 MiB/s average read performance with 200 MiB of main
memory, while West1 achieves 95.8 MiB/s.

To assess this further look at the timelines in Figure 3.29. First of all, the overall sequential read
and sequential write behavior of the two nodes looks similar. However, when the y-axis is limited
to 20 MiB/s difference between the two nodes can be observed. Due to the limitation on the y-axis
these accesses are probably executed by the disk drive and not by the page cache: Performance of
the sequential reads on West1 alternate in a zigzag pattern around 15 MiB/s while the performance
is stable at 17 MiB/s for West2 (look at Figure 3.31d and Figure 3.29d). Two other horizontal bands
can be identified on both timelines (one at 4 MiB/s and one at 6 MiB/s). While this explains the
quantitatively higher performance of West2, the reason for the pattern is unknown. Since most other
figures look quite similar further analysis is based on the results of West1.

h) The pattern from memory access is partially observed in all diagrams and the appearance implies
that data is cached. In writes in principle data is cached for write-behind (refer to Section 3.6.1 for a
description and the limitations). In reads a high performance indicates that data is already available,
either due to read-ahead or that it is still in the page cache from the write-phase. Since the 12 GiB
main memory suffices to cache all data, the sequential read is almost identical to the accesses from
tmpfs (compare Figure 3.30b with Figure 3.28a).

181

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.6

With a decrease in available free memory more and more accesses hit the disk and less operations
benefit from the caching (compare for example Figure 3.30a, Figure 3.30c and Figure 3.30e).

i) The random write pattern for 200 MiB has more variance in the range between 2000 and 0 MiB/s
than the sequential read pattern (see Figure 3.30g and Figure 3.30e). There are also some calls which
actually perform faster in the random write. These are probably caused by a re-write of already
cached data blocks.

j) The higher deviation might be caused by the write-back policy of Linux: When enough pages are
modified write-back of data is blocked by the Linux kernel and the process must write out data by
itself. This would also explain the few long-running calls in Figure 3.31a, the frequency increases
with memory pressure, e.g., when less memory is available for caching (Figure 3.31c).

Under the random write access pattern (Figure 3.31e) the first 10,000 writes of 16 KiB, i.e., roughly
160 MiB are stored in the cache without blocking the application. Then slow operations are observed,
since the kernel blocks the operations, later there are two regions around index 50,000 in which
write-back is again very fast. In the sequential write case clusters of slow operations can be seen in
an almost regular pattern every 10,000 operations.

k) Writing bigger records reveals a comparable behavior, but varies more, see Figure 3.30g and Fig-
ure 3.29g. In this case, the time to access 16 times more pages than for 16 KiB, thus presumably
random effects that manifest during access of 16 KiB of data add up. Thus, accessing a larger amount
of data is a superposition of accessing individual pages from the cache. Since the experiment with
larger block sizes has less samples it does not look so dense.

l) In random read patterns which cannot be cached a random distributed access pattern is expected,
that means every data point should vary independently from the previous. For actual performed
operations this can be seen in Figure 3.31f. Even for 200 MiB of main memory some operations can be
cached, approximately 20% of accesses are expected to hit the cache and thus most operations hit the
disk. With the 1 GiB of main memory almost all accesses can be cached. Due to the random character
of the benchmark, the accesses that hit disk still look alike but are less dense (see Figure 3.31h). and
most accesses aggregate around 2,200 MiB/s and 3,000 MiB/s.

Conclusions Assessing average performance of a system is important, however, it cannot reveal the com-
plex interplay of hardware and software. Operations show a variability by several orders of magnitude.
Since the mechanical parts of an HDD result in very slow performance, many optimization strategies such
as read-ahead and write-behind are implemented in operating systems and hardware. In the best case,
these optimizations can improve performance up to memory speed (up to 10,000 MiB/s), while operations
with a speed of 0.01 MiB/s have been observed. Therefore, understanding behavior of the system requires
a benchmark which measures performance of individual operations.

Several performance critical aspects are identified and discussed during the experiments. While many
observations could be explained, some aspects remain unclear. The combination of optimizations in the
operating system, the file system and the hardware cause very complex patterns of behavior. In the time-
lines, horizontal performance bands are visible. It can be assumed that the operations of each band share
the I/O path including applied optimizations.

When an application wants to ensure data consistency with synchronous operations, performance degrades
seriously showing the impact of the cache. Since a file system maps logical data of a file to physical blocks,
its implementation and on-disk format interferes with the application’s access pattern and thus influences
achievable performance. For example, appending data to a file triggers block allocation on the medium
and involves metadata operations to change the list of free blocks. In our case, this caused sequential write
operations to behave similar to random I/O.

In principle, both identically configured nodes behave quantitatively and qualitatively similar in many
experiments. However, in several tests differences can be observed in the timelines and even a divergence

182

3.7 CHAPTER SUMMARY

in the average performance becomes visible. Presumably, these effects are caused by minimal hardware
and software fluctuations.

To predict performance of a single access accurately, even these hidden effects must be modeled, described
and the exact system state must be known. Therefore, an accurate prediction of every single I/O operation
seems to be impossible.

3.7. Chapter Summary

In this chapter the working groups cluster is introduced and an analysis is conducted in which the quantitative
and qualitative behavior of several hardware components is discussed. To this end, benchmarks are introduced
that measure performance of memory, point-to-point communication, and the I/O subsystem. Results of these
benchmark are cross-validated with other benchmarks to ensure that results are trustworthy.

Several interesting and even counter-intuitive results have been found:

• The operating system behavior can be parameterized with many switches in the /proc and /sys pseudo file
system that influence performance of CPU, network and I/O subsystem. Also, performance depends on the
kernel version and probably on the compile flags used to generate the kernel.

• Hardware components of a system can be characterized using timelines. In most cases the timelines obtained
on different nodes are very similar, because the deployed hardware and software is identical. For a complex
memory kernel (reading and two times writing data) and for operations that actually hit disk differences
can be found between the nodes that exceeds the variability of a rerun of the benchmark. Thus, hardware
and software causes non-neglectable fluctuation that results in a large variability of behavior.

• The time for a single operation (memory, network or disk) shows a high variability; the span between
minimum and maximum can be very wide. For example the network latency can vary by a factor of 5.
Also, almost any duration is imaginable for the slowest operation. In many experiments at least the 50%
of timings between first and third quartile might be close together, but still the quartiles can vary to a large
extent.

• With the help of timelines operations can be identified that are influenced by background activity – as long
as the background activity changes the behavior for several subsequent operations.

• In point-to-point communication the average value determined by kernels that run several seconds are often
stable, but may also vary between the runs. For the PingPong kernel and Open MPI the variability is around
10%, but the the time to transfer 1 GiB of data between two nodes with MPI_Sendrecv() varies between
71 MiB/s and 147 MiB/s.

• Performance of inter-process communication depends on the used MPI implementation. Beside the design
difference in inter-node communication Open MPI and MPICH2 behave different in intra-node communi-
cation. The difference depends on the used message size.

• Due to the variance of the measurements a specification of results with a high accuracy, i.e., many positions
after the decimal point, is not adequate and suggest a precision which is not measurable. However, since
the variability has been assessed in depth in this chapter those reference values and their deviation can be
assessed quantitatively.

• Access patterns have a large impact on memory and I/O performance. For instance CPU features such as
L1, L2 and L3 cache behavior influence memory throughput to a large extent. Therefore, the intra-node
communication and I/O which fits into these cache levels is likely to be handled much faster.

• I/O performance of individual operations depends on many factors: the OS cache, scheduler and the directly
attached HDD. Optimizations in operating system and hard disk drive make it hard to assesses the cause for
observed behavior. Just by looking at the measured timelines of cached I/O the system looks rather chaotic
and unpredictable. By analyzing direct and synchronous I/O several file system and kernel dependent

183

CHARACTERIZING THE EXPERIMENTAL SYSTEM 3.7

aspects have been isolated and discussed. While simulators such as DiskSim try to accurately simulate a
single disks behavior an accurate simulation must cover the operating system that controls block I/O and
the file system dependent behavior.

• Most important, variance of the analyzed components cannot be described by a mathematical probability
density function. Histograms of accessing 1 MiB of memory show multiple peaks and the timelines of I/O
operations and even point-to-point communication reveal several horizontal bands on which timings aggre-
gate. This kind of non-linear behavior is caused by the complex interplay of software and hardware effects.
Performance of cached I/O measured with IOzone for instance improved with increasing file sizes but drops
when cache does not suffice to hold data (see Figure 3.23).

Consequently, exact simulation of a single node would require to deal with CPU and memory behavior but also
requires to handle network protocol, the file system (here Ext4), kernel features for optimizations in TCP/IP, the
virtual memory management, and background activity caused by services.

Clearly, an accurate cluster simulation of all those factors is not only tedious, but infeasible since all parameters
of the system must be known and understood to some extent. Therefore, an abstraction to the real world system is
needed which can be used for experimentation.

In the next chapter the HDTrace environment is introduced. This software eco-system contains a model of hard-
ware and software, and a simulator implementing this model. The model tries to cover the most important
performance factors and abstracts from the low-level aspects such as the network protocol. During the validation
of the simulator the values measured in this section will be used.

184

Bibliography

[AKCSD08] KV Aneesh Kumar, M. Cao, J.R. Santos, and A. Dilger. Ext4 Block and Inode Allocator Im-
provements. In Proceedings of the Linux Symposium, pages 263–274, 2008.

[BM06] Darius Buntinas and Guillaume Mercier. Implementation and Shared-memory Evaluation of
MPICH2 Over the Nemesis Communication Subsystem. In Proceedings of the Euro PVM/MPI
Conference. Springer, 2006.

[CK11] C.Y. Cher and E. Kursun. Exploring the Effects of On-chip Thermal Variation on High-
performance Multicore Architectures. ACM Transactions on Architecture and Code Optimization
(TACO), 8(1):2, 2011.

[FRJ+07] R. Franch, P. Restle, N. James, W. Huott, J. Friedrich, R. Dixon, S. Weitzel, K. Van Goor, and
G. Salem. On-chip Timing Uncertainty Measurements on IBM Microprocessors. In Test Con-
ference, 2007. ITC 2007. IEEE International, pages 1–7. IEEE, 2007.

[GGJL10] Ekaterina Gorelkina, Sergey Grekhov, Jaehoon Jeong, and Mikhail Levin. Prediction of Op-
timal Readahead Parameter in Linux by Using Monitoring Tool. In Proceedings of the Linux
Symposium, pages 83–91, July 2010.

[Int] Intel. Intel® Xeon® Processor X5650. Online: http://ark.intel.com/products/47922/

Intel-Xeon-Processor-X5650-%2812M-Cache-2_66-GHz-6_40-GTs-Intel-QPI%29.

[Int09a] Intel. An Introduction to the Intel® QuickPath Interconnect. Online: http://www.intel.

com/technology/quickpath/introduction.pdf, January 2009.

[Int09b] Intel. Intel® 5520 Chipset and Intel® 5500 Chipset Datasheet. Online: http://www.intel.
com/content/www/us/en/chipsets/server-chipsets/server-chipset-5500.html, March
2009.

[Int11] Intel. Intel® Xeon® Processor 5600 Series. Online: http://www.intel.com/content/www/

us/en/processors/xeon/xeon-processor-5000-sequence.html, June 2011.

[KNL10] Julian Kunkel, Jan C. Neddermeyer, and Thomas Ludwig. Classification of Network Comput-
ers Based on Distribution of ICMP-echo Round-trip Times. Technical Report 1, Staats- und
Universitätsbibliothek Hamburg, 09 2010.

[Mak08] TM Mak. Jitters in High Performance Microprocessors. In Test Conference, 2008. ITC 2008.
IEEE International, pages 1–6. IEEE, 2008.

[MCB+07a] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier. The New Ext4 Filesys-
tem: Current Status and Future Plans. In Ottawa Linux Symposium, 2007.

[MCB+07b] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier. The New Ext4 Filesys-
tem: Current Status and Future Plans. In Ottawa Linux Symposium. sn, 2007.

[Net08] Netgear. ProSafe 48-port Gigabit Smart Switch DataSheet. Online: http://www.netgear.

com/images/gs748t_ds_19dec0818-5390.pdf, December 2008.

[RBOS08] B.F. Romanescu, M.E. Bauer, S. Ozev, and D.J. Sorin. Reducing the Impact of Intra-core Process
Variability with Criticality-based Resource Allocation and Prefetching. In Proceedings of the
5th conference on Computing frontiers, pages 129–138. ACM, 2008.

[Rol09] Trent Rolf. Cache Organization and Memory Management of the Intel Nehalem Computer
Architecture. Computer Engineering, page 6, 2009.

185

http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-%2812M-Cache-2_66-GHz-6_40-GTs-Intel-QPI%29
http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-%2812M-Cache-2_66-GHz-6_40-GTs-Intel-QPI%29
http://www.intel.com/technology/quickpath/introduction.pdf
http://www.intel.com/technology/quickpath/introduction.pdf
http://www.intel.com/content/www/us/en/chipsets/server-chipsets/server-chipset-5500.html
http://www.intel.com/content/www/us/en/chipsets/server-chipsets/server-chipset-5500.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-5000-sequence.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-5000-sequence.html
http://www.netgear.com/images/gs748t_ds_19dec0818-5390.pdf
http://www.netgear.com/images/gs748t_ds_19dec0818-5390.pdf

Bibliography 3.7

[Sea10] Seagate. Product Manual – Barracuda 7200.12 Serial ATA. Online: http://www.seagate.

com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369h.

pdf, 2010.

[TEFK05] D. Tsafrir, Y. Etsion, D.G. Feitelson, and S. Kirkpatrick. System Noise, OS Clock Ticks, and
Fine-grained Parallel Applications. In Proceedings of the 19th annual international conference
on Supercomputing, pages 303–312. ACM, 2005.

[Wik11] Wikipedia, the Free Encyclopedia, 2011.

[Wu10] Fengguang Wu. Sequential File Prefetching in Linux. page 218, 2010.

186

http://www.seagate.com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369h.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369h.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369h.pdf

HDTrace Environment

Chapter 4 IV

In this chapter software created and extended for this thesis is described.

The GPL licensed HDTrace environment is the tracing environment developed in the context of this thesis which
gathers information necessary for simulation, to assess results and to increase insight in MPI activity. It consists of
extensions of MPICH2 and PVFS for tracing internal behavior. Compared to existing tracing environments HD-
Trace concentrates on evaluation of new ideas and collects all information required for simulation. The sections
of this chapter introduce individual components, and rationales and design considerations behind the current
implementations.

In summary, HDTrace provides unprecedented insight in system behavior by offering:

• A flexible trace format which allows recording of arbitrary information.

• A set of libraries for the instrumentation of applications and modification of middleware to permit recording
application and PVFS activity, MPI internal communication and system behavior.

• A visualization tool which explores new analysis and visualization methods for system statistics such as
energy metrics and for parallel I/O.

• A simulator with the capability to replay recorded application traces and I/O behavior in virtual cluster
environments.

By offering these features, HDTrace targets the stated research goals of this thesis in the following way:

• Understanding of performance factors in cluster systems and application execution is fostered by the ability
of the trace environment to record and analyze system behavior with the visualization tool and the simulator.

• With the extended insight into I/O and communication middleware, bottlenecks in a cluster configuration
and their causes in application logic and the software stack can be localized more easily. Further, the
behavior can be studied in silico by using the replay mechanisms of the simulator.

• Together, the advanced introspection capabilities into I/O activity and the simulation on system and appli-
cation level permit a novel way of evaluating and optimizing the I/O path, the client-server communication
and the server cache layers.

• Since the system characteristics can be defined at will during a simulation study, an extrapolation of system
performance towards future systems becomes possible. Additionally, the modularity of the simulator allows
experimentation with alternative hardware and software models that are not yet available in the market.

• The modular software model of the simulator and a global view over the system permits experimentation
with MPI-internal algorithms to gear them towards application and systems. Together with the visualiza-
tion tool, the simulation results can be evaluated and compared to the current behavior of a real system.

• Similarly, the modularity of the simulator and the visualization features ease evaluation of new MPI com-
mands and alternative MPI semantics to assess their quality before they are actually implemented in a real
system.

• Teaching of the above aspects is fostered by providing an environment which increases insight into a system
while easing experimentation with it.

This chapter is organized as follows. First, an overview of all software components is given in Section 4.1. Sec-
tion 4.2 describes the developed trace format. This format provides all necessary information for enhanced visual-
ization and for the developed simulator. The software which records the trace information from MPI applications
is described briefly in Section 4.3. Sunshot, the visualization tool for traces and its capabilities are presented in
Section 4.4.

187

HDTRACE ENVIRONMENT 4.1

TraceWriting C LibraryTraceWriting C Library

MPI-WrapperMPI-Wrapper SunshotSunshot

PIOsimHDPIOsimHD

TraceFormat Java LibraryTraceFormat Java LibraryPVFS2HDPVFS2HD

PIOsimHD-ModelPIOsimHD-Model

HDPowerEstimationHDPowerEstimationMPICH2HDMPICH2HD

PowerTracerPowerTracer

Resource Utilization
Tracing Library

Resource Utilization
Tracing Library

HDReplayHDReplay

Components involved in tracing Components related to simulation and visualization

<uses>

Figure 4.1.: HDTrace components and dependencies between components.

As the author supervised several contributions to HDTrace, those are listed in Section 4.5. While detailed descrip-
tions of all components is beyond the scope of this thesis, these contributions offer further insight in several design
and implementation aspects relevant to HDTrace. Since the simulator is of major interest for this thesis, further
descriptions of the simulator are provided in a separate chapter.

4.1. Component Overview

The components of the HDTrace environment and their dependencies are shown in Figure 4.1. Two kinds of
components can be distinguished: the components involved in tracing and the components responsible for
simulation and visualization. The former software is primarily coded in C, the latter is written in Java.

Except for PVFS2HD and HDReplay, all tracing components are libraries which are linked into an ap-
plication, at run-time each process has its own copy of all required libraries. With the exception of the
MPI-Wrapper, libraries do not communicate with other processes, thus each library instance is completely
independent. All libraries are controlled by the MPI-Wrapper. The MPI-Wrapper is the only component
which communicates at run-time with other instances. HDPowerEstimation, Sunshot and PIOsimHD are
independent programs. Details of the workflow are provided in Section 4.3.1.

Components involved in tracing

• The TraceWriting C Library is responsible to store events of an application and parallel file system in
XML trace files and statistics about the execution in a binary format with an XML description header.
A project file links together trace and statistic files of multiple sources. The format is designed to
avoid post-mortem re-write of whole trace files. Instead, only the project file or trace file header must
be adjusted. Statistics group a number of arbitrary counters together with a timestamp. Relations
between activities of different programs can be recorded explicitly. HDTrace uses the local clock to
generate timestamps for the data, therefore, nodes should have synchronized clocks (e.g., by using
NTP).
Additionally, to compensate drifts in the clocks, offsets between timestamps of the trace files can be
fixed post-mortem by adjusting the file headers, or inside the trace visualization tool Sunshot.

• The Resource Utilization Tracing Library (libRUT) provides routines to start periodic gathering of sys-
tem information and utilization from the operating system about network, I/O and CPU usage. This
information is stored in statistics files and can be referred easily within a project file.

• PowerTracer is a library and a tool which periodically traces information about power usage from
an external power meter in statistics files. Therewith, it becomes possible to visualize node energy
metrics together with their MPI activities.

• The MPI-Wrapper uses PMPI to intercept MPI calls and the trace library to store the observed events.
Additional information about file accesses, communicators and the mapping from application to
hardware are recorded as well. It controls the functionality of the Resource Utilization Tracing Library
and the PowerTracer.

188

4.2 HDTRACE FORMAT

• PVFS2HD contains a modified PVFS that allow tracing of internal activities within client library,
kernel module and server. MPI activities of PVFS clients can be related to PVFS server activities.
Further, statistics about utilization of PVFS-internal layers are computed and stored. Server and
client activity can be visualized together to understand causal relations. PVFS2HD can use libRUT to
gather information from the operating system on PVFS nodes and the clients as well. The currently
instrumented version of PVFS is orangefs-2.8.3-20101113.

• MPICH2HD is a slightly modified version of the MPI implementation MPICH2 that traces MPI in-
ternals: The point-to-point operations within collective calls are recorded and PVFS internal calls
as well. It is based on MPICH2 1.3. HDTrace also supports tracing with Open MPI, but it does not
instrument Open MPI to record communication details within the library.

• HDReplay is a program which is intended to replay recorded MPI-IO behavior on arbitrary environ-
ments. Therewith, potential bottlenecks of communication and parallel I/O can be evaluated before
an application is ported. It is currently under development (more details are discussed below).

Components related to simulation and visualization

• The TraceFormat library provides interfaces to read and write trace files in Java.

• PIOsimHD-Model supports the simulator by providing an abstraction layer for application traces and
for the cluster model. MPI commands which are read from the trace files are converted to a sequence
of commands which can be executed by the simulator. Methods are provided to create and process
models of components and commands; each model is represented by a Java (model) class. Actually, a
model class can be considered as a container which carries the parameters for a modeled component
or command that should be executed.

• PIOsimHD is the discrete-event simulator which simulates hardware and software behavior on ap-
plication and system level. It offers several alternative implementations for hardware components
and command behavior. For each modeled component or command one of the available implemen-
tations can be selected. For instance the MPI_Bcast() command can be implemented in multiple
variants; while using the same parameters each implementation can operate with its own communi-
cation algorithm. The simulation generates trace files of the virtual execution for further inspection,
information about processing on internal components such as network switches can be included to
investigate the operation on all components.

• Trace files of application, PVFS or simulation runs are visualized by Sunshot, a Java-Swing applica-
tion, which is a major rewrite of Jumpshot. The original Jumpshot viewer is distributed with the
MPI implementation MPICH2, it visualizes the SLOG2 trace format of the MPI Parallel Environment
(MPE) (see Page 77 for a detailed description).

• HDPowerEstimation estimates the energy consumption of a node and, therewith, power saving strate-
gies can be tested. Internally it reads the node statistics recorded by libRUT to estimate the energy
consumed by the system components (CPU, network and disk).

4.2. HDTrace Format

When the project started at the end of 2008, the existing trace formats such as the OTF, the SLOG2 format
and the TAU trace format were not suitable to provide all information necessary for the desired simulation.
Thus, the design criteria for a new format are driven from the idea to support simulation. In the later
stages of the project, the evaluation of new visualization ideas played a role as well. As a consequence a full
featured tracing and visualization environment for arbitrary processes and activities has been developed.

189

HDTRACE ENVIRONMENT 4.2

4.2.1. Design Criteria

The following criteria guided the design of HDTrace. For each of them motivating examples are presented
and some implementation details are provided.

• Flexibility: The trace format should permit to record arbitrary trace data, this especially includes
MPI, OpenMP and parallel file system (client and server) activity. Semantics of recorded events is
decoupled from the stored raw information. Instead, the tools writing trace information and the tools
analyzing the trace must be aware of the semantics. It is the responsibility of any processing tool such
as the Sunshot viewer to provide additional visualization capabilities based on the semantics. Most
information which can be recorded is not mandatory, attributes recorded together with an event can
be chosen at the moment the event is written.

The mentioned flexibility enables users to extend the recorded information easily. It is used for in-
stance to record any number of IDs for the MPI_Wait*() calls, or to include the important parameters
for an MPI call. Once new attributes or XML tags are used their semantics should be defined to avoid
misinterpretation of the stored information. Currently, this type of information is not stored ex-
plicitly. However, theoretically this information could be stored in a simple text file; whenever new
information should be recorded its semantics and syntax could be added to the file.

• Simple on-disk file format: The simpler the format, the easier it is for users to quickly create new
scripts and tools to process and analyze the traces from the command line. With an understandable
and human readable format the user can manipulate the traces post-mortem with arbitrary program-
ming languages or tools. Further, a simple trace format allows direct modification of existing trace
events in an editor, and example trace files can be easily forged. The format must be simple enough
to allow efficient parsing by a machine, thus a description via a context-free grammar is favorable.

• Lightweight post-processing: The simple on-disk format should foster a lightweight post-processing
of the traces. Common manipulation of the trace files and project should not require to rewrite all
trace files of the project since the trace files can be very large.

For instance, with HDTrace a user can shift the timestamps of all trace events within a file by adjust-
ing the reference time in the file header. The reference time is initialized with many digits that can be
changed. Thus, only the first block of the file must be rewritten to change a time offset accordingly.
Also, event sources, such as a process or a parallel file system server, can be added and removed to
the project easily – in many cases by just moving the files into the right place.

• Identity of the event source: In many popular tracing formats the event source is enumerated, e.g.,
they are enumerated as Process 0 to Process N. Thus, it is not clear on which node or system a partic-
ular trace source is run. Also, an event source could be an MPI process or a process of a parallel file
system.

With HDTrace human readable identifiers are given to the event sources, also the event sources are
arranged in a hierarchical topology tree. Information relevant to multiple event sources can be added
to the parent node in the tree, then this information is valid for all children in the tree. For example,
node statistics such as CPU utilization are valid for all processes and parallel file system servers that
run on the node. Hence, with HDTrace the mapping of recorded information to processes (or event
sources) becomes clear.

• Causal relation of events: An event source such as an MPI process might trigger activity on other
event sources. As the cause-and-effect chains of events are generally of interest, with HDTrace the
program developer can explicitly relate events with other events.

Trace formats like OTF or TAU record explicitly the activity of “sending” and “receiving” an MPI
message between two processes. The semantics of HDTrace is of a higher level, due to the fact that
the causal relation do not have to be a simple message. For instance in the PVFS client/server commu-
nication, HDTrace needs to overhaul the message concept. The relation concept of HDTrace relates

190

4.2 HDTRACE FORMAT

two events, one event being the cause of another one. This permits to relate client activity with server
activity, and also to relate the activities of any intermediate layers with their callee.

• Recording of bare activity: In the trace format, there should be no information embedded which
is used just for the sake of a post-processing tool like the visualization tool. Instead tools should
derive any required information by themselves directly from the recorded trace files1. For instance,
arrows which relate sending and receiving of MPI calls are computed directly in Sunshot, and thus
not added to the trace explicitly.

Since just the bare activity is stored, it might still be advantageous for some tools to derive informa-
tion and store this information in additional files to speedup re-use of this information. But it is clear
that it is not required to describe the original data. For example, the recorded traces do not permit
access to random positions. This issue can be mitigated by indexing files post-mortem, eventually
even automatically when they are read the first time.

• Time synchronization: Typically hardware clocks have a slight systematic drift depending on tem-
perature and minimal hardware fluctuations. Therefore, from a global view, times of disjoint com-
ponents always differ slightly, except if there is special hardware which synchronizes the remote
timers.

Local time should be accurate enough to allow assessing of trace results. Assume that all nodes have
an identical offset to a global clock, then all recorded activity could be related between each other
and thus this case is unproblematic. However, when one node has a positive time offset to the wall-
clock and another has a negative offset, then the discrepancy accumulate when the events should be
related.

Synchronization of clocks in a distributed system is tedious. Existing tracing environments try to
compensate for the time offset between the processes inside the tracing environment. HDTrace does
not, because a Network Time Protocol (NTP) service is deployed on many cluster systems to ensure
an synchronized clock for debugging/logging and services such as Kerberos. When the trace envi-
ronment and NTP change the system clock they should work together, however, both approaches
might interfere with each other leading to wrong timestamps. Thus, for HDTrace we rely solely on
NTP to handle the time synchronization2. In case a source has an offset to other sources, this can be
compensated by adjusting the XML header of the trace file.

• Research friendly environment: The mentioned aspects foster an environment which is suitable for
research in tracing and visualization techniques as well as in simulation and the analysis of parallel
file systems. All code in the context of the HDTrace environment is open-source and free of charge
to allow researchers to realize their ideas.

4.2.2. On-Disk Format

There are three different types of files, each contains events with different properties. Trace files store
activities of one event source and permit recording nested cause-and-effect chains of the events. A relation
file permits to record multiple concurrent activities and the chain-and-effect of the events. Those activities
can be related over process boundaries and even across nodes. Statistics files hold numerical values for
an arbitrary number of metrics. A project file describes all the trace sources of interest for the analysis by
linking all those files together.

In the following an instructional description of the various file types and concepts is demonstrated based
on illustrating examples:

• Trace: A trace file contains information from a single trace source in plain XML. A trace source
could be a process or any other entity which generates activity. An example trace file is given in

1An additional minor advantage of this strategy is also that avoiding redundant information saves disk space.
2See Appendix A.2 for details and discussion of the accuracy of NTP.

191

HDTRACE ENVIRONMENT 4.2

Listing 4.1. In the header the attribute “timeAdjustment” defines an offset (in seconds) that applies
to all timestamps in the file. Thus, a later manipulation of this attribute shifts the recorded activity in
the indented direction. The size of the field is big enough to permit a modification without rewriting
the remaining parts of the file – when a clever editor is used. The fields “processorModelName” and
“processorSpeedinMHZ” record information of the processor, currently this information is taken
from /proc/cpuinfo. With “processorSpeedinMHZ” the current speed of the processor is indicated,
this is needed for the simulator to approximate the number of cycles per compute step.

Activity is either an event or state that is marked with an XML tag. A state has a well defined begin-
ning and end. Events are indicated with the reserved tag “Event”. In comparison to a state they just
have a single time; for instance, receiving of a signal is an event.

When a state invokes other states of interest they are nested, for instance the first nested section of the
listing defines the operations within the MPI_Barrier() command of MPICH2. For the simulation
and some post-processing tools the nesting areas are not of interest; with this annotation they can be
stripped easily from the trace file. Attributes of arbitrary semantics can be added to each recorded
state or event individually, this is used in the example to record all parameters of the MPI calls.
Communicator, datatypes and files are referred to by a numeric ID. The ID and mapping is currently
stored in the project file.

Activities can also record arbitrary information in the XML body of the tag. This is used for MPI_

Wait() calls to indicate which asynchronous operation they matched. There could be an arbitrary
number of asynchronous operations which are matched by an MPI_Wait_all() call. In our listing
only one MPI_Irecv() call is matched by the wait. Also, the same mechanism records all hints
associated with a file. Those hints could be set by the user or an intermediate high-level I/O library.

Listing 4.1: Example trace file for one process
<Program timeAdjustment=’1293732233’ processorSpeedinMHZ=’1600’ processorModelName=’Intel(R)�
→Xeon(R)�CPU�X5650�@�2.67GHz’>

<Init time=’0.137998’ end=’0.137998’/>

<Nested>

<Sendrecv size=’0’ toRank=’2’ toTag=’1’ fromRank=’2’ fromTag=’1’ cid=’1’ count=’0’ sendTid=’1’

→recvTid=’1’ time=’0.138009’ end=’0.138030’/>

<Sendrecv size=’0’ toRank=’1’ toTag=’1’ fromRank=’1’ fromTag=’1’ cid=’2’ count=’0’ sendTid=’1’

→recvTid=’1’ time=’0.138032’ end=’0.142847’/>

<Send size=’1’ count=’1’ tid=’1’ toRank=’2’ toTag=’2’ cid=’1’ time=’0.142852’ end=’0.142855’/>

</Nested>

<Barrier cid=’0’ time=’0.138007’ end=’0.142859’/>

...

<Irecv fromRank=’7’ fromTag=’1001’ cid=’18’ rid=’0’ time=’8.844311’ end=’8.844433’/>

...

<Wait time=’30.896758’ end=’30.896785’>

<For rid=’1’ />

</Wait>

...

<Nested>

<Allreduce size=’4’ cid=’1’ count=’1’ tid=’1’ time=’31.505869’ end=’31.506637’/>

<Gatherv size=’7’ root=’0’ cid=’1’ count=’7’ tid=’0’ time=’31.506850’ end=’31.506873’/>

<Bcast size=’4’ rootRank=’0’ cid=’1’ count=’1’ tid=’1’ time=’31.506881’ end=’31.506905’/>

<Bcast size=’20’ rootRank=’0’ cid=’1’ count=’5’ tid=’1’ time=’31.506906’ end=’31.506923’/>

<Type_commit tid=’2’ time=’31.691927’ end=’31.691965’/>

<Bcast size=’20’ rootRank=’0’ cid=’1’ count=’1’ tid=’2’ time=’31.691968’ end=’31.692016’/>

<Type_free tid=’2’ time=’0.692018’ end=’0.692023’/>

<Allreduce size=’4’ cid=’1’ count=’1’ tid=’1’ time=’31.692025’ end=’31.692350’/>

</Nested>

<File_open cid=’0’ name=’pvfs2:///pvfs2/visualization.dat’ flags=’5’ fid=’0’ time=’31.470393’

→end=’0.692391’/>
<File_write fid=’0’ offset=’0’ size=’4’ count=’1’ tid=’1’ time=’31.692397’ end=’31.734785’/>

...

<Finalize time=’268.376843’ end=’268.377122’/>

</Program>

• Relation: A relation file permits to store multiple nested and also interleaved activities for one trace
source. Each relation can be thought of as a single trace file manufactured for the purpose to handle

192

4.2 HDTRACE FORMAT

a set of sequential and nested activities. The number of concurrent activities is not limited. This is
important for file servers as the number of connected clients defines how many concurrent states are
expected. Existing tools must open another trace stream for each concurrent activity. HDTrace per-
mits to store all information in one file. Furthermore, it allows Sunshot to map the states to timelines
automatically – concurrent activities can be mapped to one timeline or to as many as needed.

An example relation file is shown in Listing 4.2. Here only one relation is started with the “rel” tag
and closed with the “un” tag. Similar to a trace file states of a relation can be nested and a tag can
piggyback arbitrary attributes or XML entities. States are associated with a particular relation by a
token; indicated with the “t” attribute in the XML.

Stored activity can be related to other relation events, this way the causality between multiple ac-
tivities becomes clear – activity A triggers activity B which triggers C. These information can be
forwarded to remote systems to relate events across processes and even systems. In the example the
relation Token 0 relates to the activity created by the remote token with ID “west8:25555:5”. The
latter ID should be unique in the system and consists of the hostname, process ID (also referred to as
local token) and a token ID3.

Interleaved operations are omitted in the example, but the potential interleaving of the XML tags
should be obvious. The relation concept has been used, for instance, to store the simulator output
and the instrumentation of PVFS. The presented XML snippet shows the execution of the PVFS state
machine which handles configuration requests.

Listing 4.2: Example relation file
<relation version="1" hostID="west9" localToken="25776" topologyNumber="0"

→timeAdjustment="1293627993" processorSpeedinMHZ=’1600’ processorModelName=’Intel(R)�Xeon(R)�
→CPU�X5650�@�2.67GHz’>

<rel t="0" time="10.368761" p="west8:25555:5"/>

<s name="pvfs2_get_config_sm" t="0" time="10.368771"/>

<s name="pvfs2_prelude_sm" t="0" time="10.368773"/>

<s name="setup" t="0" time="10.368777"/>

<e t="0" time="10.368779"/>

<s name="prelude_work_sm" t="0" time="10.368781"/>

<s name="req_sched" t="0" time="10.368782"/>

<e t="0" time="10.368784"/>

<s name="getattr_if_needed" t="0" time="10.368786"/>

<e t="0" time="10.368787"/>

<s name="perm_check" t="0" time="10.368788"/>

<e t="0" time="10.368789"/>

<e t="0" time="10.368790"/>

<e t="0" time="10.368791"/>

<s name="init" t="0" time="10.368792"/>

<e t="0" time="10.368793"/>

<s name="final_response_sm" t="0" time="10.368795"/>

<s name="release" t="0" time="10.368796"/>

<e t="0" time="10.368799"/>

<s name="send_resp" t="0" time="10.368800"/>

<e t="0" time="10.368847"/>

<s name="cleanup" t="0" time="10.368848"/>

<e t="0" time="10.368854"/>

<e t="0" time="10.368855"/>

<s name="cleanup" t="0" time="10.368856"/>

<e t="0" time="10.368859"/>

<e t="0" time="10.368860"/>

<un t="0" time="10.368861"/>

...

• Statistics: A statistics file contains the trend for a group of metrics which semantically belong to-
gether. Values of a group are stored together in one record which can be updated regularly. In typical
tracing environments such as VampirTrace those statistics are referred to as counters.

3Although this scheme does not guarantee the uniqueness of the created ID it suffices for most use cases. An example in which
it is not unique any more is the case in which a processes finishes, a new process is spawned dynamically and the OS reuses
the PID.

193

HDTRACE ENVIRONMENT 4.2

Initially, statistics were designed to store average values over time as obtained, for instance, from
the operating system and thus the name was obvious. Now, the statistics have also been used to
accurately store the values of a metric, whenever the values of the metric changes new values are
written. Hence, the accuracy of the statistics depend on the update approach.

A statistics file consists of an XML header describing the statistics group and a simple structured
binary body carrying the timestamps and records. As the content of the group is fixed for a statistic
file a binary format was chosen to minimize the overhead for data representation.

Listing 4.3 shows an exemplary XML header. The first line is an ASCII number which represents
the length of the XML header. In the topology node the user can encapsulate information about the
component on which the statistics have been stored. The group name specifies the actual statistics
group, here the utilization of the system. Time can be adjusted in the group in the same fashion as
in the other file formats, therefore a placeholder timestamp is provided. For each value of the group
the name, the type and unit of measure can be specified; for example, in the listing “CPU_TOTAL” is a
float which is labeled with percent.

The grouping attribute is made to associate similar metrics with each other. Identical strings means
the metrics are related. For instance, “MEM_FREE” and “MEM_BUFFER” relate to the resource
of main memory. When the statistics are visualized this semantical information can be used, for
instance, to normalize across all values of a group. Thus, a user can normalize the network traffic
to the maximum value of inbound and outbound speed to quickly spot which channel served more
data.

Listing 4.3: Example file header of a statistics file
01381

<Statistics>

<TopologyNode>

<Label value="west7"/>

</TopologyNode>

<Group name="Utilization" timestampDatatype="EPOCH" timeAdjustment=" -0000000000.000000000">

<Value name="CPU_TOTAL" type="FLOAT" unit="%" grouping="CPU" />

<Value name="MEM_USED" type="INT64" unit="B" grouping="MEM" />

<Value name="MEM_FREE" type="INT64" unit="B" grouping="MEM" />

<Value name="MEM_SHARED" type="INT64" unit="B" grouping="MEM" />

<Value name="MEM_BUFFER" type="INT64" unit="B" grouping="MEM" />

<Value name="MEM_CACHED" type="INT64" unit="B" grouping="MEM" />

<Value name="NET_IN_lo" type="INT64" unit="B" grouping="NET" />

<Value name="NET_OUT_lo" type="INT64" unit="B" grouping="NET" />

<Value name="NET_IN_eth0" type="INT64" unit="B" grouping="NET" />

<Value name="NET_OUT_eth0" type="INT64" unit="B" grouping="NET" />

<Value name="NET_IN_eth1" type="INT64" unit="B" grouping="NET" />

<Value name="NET_OUT_eth1" type="INT64" unit="B" grouping="NET" />

<Value name="NET_IN_EXT" type="INT64" unit="B" grouping="NET" />

<Value name="NET_OUT_EXT" type="INT64" unit="B" grouping="NET" />

<Value name="NET_IN" type="INT64" unit="B" grouping="NET" />

<Value name="NET_OUT" type="INT64" unit="B" grouping="NET" />

<Value name="HDD_READ" type="INT64" unit="B" grouping="HDD" />

<Value name="HDD_WRITE" type="INT64" unit="B" grouping="HDD" />

</Group>

</Statistics>

... BINARY DATA ...

• Project: A project file maps multiple event files, statistics or relation files into a hierarchical orga-
nized namespace. In HDTrace this namespace is called topology. The project file contains also in-
formation that is frequently accessed and thus should be accessible without scanning through trace
files. For example, the processes participating in each communicator are stored. Therewith, tools
know all communication partners of collective operations without scanning through additional trace
files. User defined datatypes and accessed files are also registered in the project file. This information
is read by the simulator and enables the user to change the data distribution across the file servers
for each file.

Event files belonging to a project share the same prefix and are placed into one directory. When a

194

4.2 HDTRACE FORMAT

project is loaded the topologies are scanned for all known file types. Thus, the association of the files
to the project can be modified by the user easily by moving files into the right spot.

An example project file is provided in Listing 4.4. First, the accessed files are listed, then information
about the topology is maintained. Here, the topology defines three ranks on two disjoint hosts – as
illustrated in Figure 4.2. Since more information about the topology concept is provided on the next
page, further description is omitted here. Two communicators are defined; the “WORLD” commu-
nicator contains all ranks, the other one is not named by the user and contains Rank 0 and Rank 2.
Then, the constructed datatypes and basic datatypes are listed with their identifier, in the example
the processes just use the basic datatypes Char, Byte and Double. Two statistic groups – energy and
utilization, are known in the project. The existence of statistics files is checked when the project file
is loaded.

In principle a project file must be created manually because arbitrary sources might generate infor-
mation that should be visualized together. For example energy metrics might be generated externally
and should be visualized together with the parallel application. HDTrace does not impose restriction
on the information that might belong together.

However, there is a tool that helps users to automatically derive a project file for MPI applications.
Therefore, small file snippets that contain the required information for executing the program are
written by the MPI-Wrapper and read by the tool. This tool is described in Section 4.3.1.

Listing 4.4: Example project file
<?xml version="1.0" encoding="UTF-8"?><Application name="example">

<Description>Just a small description, this is an example for the project file contents

→</Description>
<FileList>

<File name="pvfs2:///pvfs2/visualization.dat">

<InitialSize>4</InitialSize>

<Distribution implementation="de.hd.pvs.piosim.model.inputOutput.distribution.SimpleStripe">

<ChunkSize>64K</ChunkSize>

</Distribution>

</File>

</FileList>

<Topology>

<Level type="Hostname">

<Level type="Rank">

<Level type="Thread">

</Level>

</Level>

</Level>

<Node name="west3">

<Node name="0">

<Node name="0" />

</Node>

</Node>

<Node name="west4">

<Node name="1">

<Node name="0" />

</Node>

<Node name="2">

<Node name="0" />

</Node>

</Node>

</Topology>

<CommunicatorList>

<Communicator name="WORLD">

<Rank global="1" local="1" cid="0" />

<Rank global="2" local="2" cid="0" />

<Rank global="0" local="0" cid="0" />

</Communicator>

<Communicator name="">

<Rank global="2" local="1" cid="1" />

<Rank global="0" local="0" cid="1" />

</Communicator>

195

HDTRACE ENVIRONMENT 4.3

Hostname

Rank

Thread

west2

0

west3

1 2

0 00

Figure 4.2.: An example MPI topology for two nodes and three processes. The labels for the levels are listed
on the left; the instances of the tree nodes are shown on the right.

</CommunicatorList>

<Datatypes>

<Rank name="1" thread="0">

<NAMED id="0" name="MPI_CHAR" />

<NAMED id="1" name="MPI_BYTE" />

<NAMED id="2" name="MPI_DOUBLE" />

</Rank>

...

</Datatypes>

<ExternalStatistics>

<Energy/>

<Utilization/>

</ExternalStatistics>

</Application>

• Topology: Users can define an arbitrary tree for the namespace of the traces, for instance the MPI-
Wrapper labels the levels of the tree with “Hostname”, “Rank”, “Thread”.

Labels on the levels are associated with a semantics, those semantical aspects can be interpreted by
viewer plugins to permit content-specific operations4.

The concept could also be extended to associate multiple topologies with one project – for instance,
to permit an additional physical view which also contains the racks. Since those multiple views could
be of interest for the user, the user could pick and switch the displayed topology in the viewer.

An illustration of the topology concept is provided in Figure 4.2, here the default MPI topology is
shown for two nodes and three processes. The hostname identifies the node the process runs on,
multiple MPI processes can run on one node, here Rank 1 and Rank 2 are placed on host west3. For
a PVFS server the labels for the topology levels are “Hostname” and “Layer” to identify the internal
part of PVFS which generated the events.

When an event file is created it is attached to one node of the topology tree. The basic semantics
requires that the information contained should be applicable to all child elements. For instance,
the operating system can provide node local information, such as local network and I/O activity.
Those values are caused by the activities of all processes on the node and cannot be assigned to one
particular process. Thus, the topology feature permits to indicate shared system resources. Each
node of the topology tree can hold at most one trace or relation file, and an arbitrary number of
statistics groups. The file names of the event files are the prefix of the project file and a serialization
of the topology node names and a suffix depending of the type of the file (.trc, .stat or .rel). A statistics
filename contains the group name as well and, thereby, multiple statistics groups can be associated
with one topology node.

More details about the topology concept and statistics are given in [Kre09].

4There is no way to fix labels and their semantics, yet. To avoid false sharing of a semantics it seems mandatory to register labels
and semantical aspects in the future.

196

4.3 MPI-WRAPPER

4.3. MPI-Wrapper

The generation of MPI traces is of major importance for this thesis and thus the abstract capabilities of
the MPI-Wrapper are listed in this section. Paul Müller implemented the first full-featured version from a
prototype, see [Mü09] for implementation details beyond the descriptions provided in this section.

The basic MPI-Wrapper intercepts most MPI-2 calls by implementing the PMPI interface and it records
MPI calls in trace files attached to a “Hostname”, “Rank”, “Thread” topology. Computation time is not
recorded explicitly. A recorded trace file is provided in Listing 4.1. The MPI-Wrapper works for non-
threaded MPI implementations and is tested with Open MPI5 and MPICH2.

When an MPI program is traced the wrapper writes independent trace files for each process, also each
process writes relevant information for the project file into one additional file. Those information files
guide the project-description-merger, a python script which automatically generates a project file for
an executed MPI program, this is discussed in section 4.3.1. The MPI-Wrapper is the only HDTrace library
which communicates at run-time, but only during initialization.

The overhead of tracing depends on the frequency at which MPI calls are invoked by the application. Each
function call adds a little overhead as the call is intercepted and recorded. The induced overhead of the
wrapper and HDTrace is comparable to other PMPI interceptors such as VampirTrace, Scalasca or MPE
(see Section 7.1). Since the wrapper buffers the latest events in memory to increase responsiveness and
performance, cached and unflushed trace information is lost when a deadlock or crash of the application
occurs6.

Features which have been added later to the MPI wrapper include:

• Control of libRUT, the PowerTracer and the PVFS client tracing API. Those event sources are attached
to the created topology at the right layer. During initialization, i.e., when MPI_Init() is called, the
MPI-Wrapper analyzes the run-time environment by communicating with all MPI-Wrapper instances
of the application. Then it configures these libraries and ensures that PowerTracer and libRUT are
initialized exactly once for each node the program runs on.

• Fortran support: A python script generates wrapper code which intercepts Fortran calls and trans-
lates them into calls to the appropriate C pendants. The Fortran calling convention alters function
symbols by prefixing one or two underscores or converting the function name into lower, or up-
per case (depending on compile time options). Parameters must be converted as well, since Fortran
passes arguments as references (pointers). Additionally, strings are not null-terminated in Fortran,
instead the string length is appended as an additional parameter to the C function signature.

• Information about the source code permits to record source file and line of code for the user activity
and within MPI (ROMIO) internal activity. This has been realized by simple C macros which call an
extended MPI interface. Thereby, file name and code line can be passed in – the extended interface
embeds the desired information into the trace file. Another possible realization would be to use
libraries to query debugging information from the object file, for example, by relying on DWARF7.

• An experimental intercepting library for POSIX I/O calls. This library implements wrappers for I/O
operations and records all parameters. Upon invocation of an wrapped function the information is
traced and the original function is called by using the dynamic linking loader to open the shared
library via dlopen() and dlsym(). Another alternative to this approach, for example, would be to
use the GNU linker wrapper functionality 8. Further, basic wrappers for NetCDF and HDF5 have
been generated.

5http://www.open-mpi.org/
6This is the current behavior, a modification of the scheme would be to periodically flush the buffer as well – then the reason for

a deadlock could be identified.
7The Debugging With Attributed Record Formats is a standardized debugging format used in UNIX systems.
8See the linker manual pages (man ld) for a description.

197

http://www.open-mpi.org/

HDTRACE ENVIRONMENT 4.3

PowerTracerPowerTracer

<Uses><Uses> <Uses> <Uses>

ApplicationApplication

<Linked with>

<Uses>

TraceWriting C LibraryTraceWriting C Library TraceWriting C LibraryTraceWriting C Library

Client side Server side

libRUTlibRUT libRUTlibRUTPVFS2HDPVFS2HD

PVFS2HDPVFS2HD

MPI-WrapperMPI-Wrapper

Figure 4.3.: HDtrace libraries involved in the creation of trace files for MPI-IO applications – all these
libraries are linked into the application. The server side lists the libraries linked into PVFSHD.

• Hardware counter support by using Likwid [THW10]. With Likwid CPU counters for the instructions
per cycle (IPC), Flop/s – partitioned in multiple categories (double precision, single precision, SSE) and
memory bandwidth are gathered and recorded for consecutive compute section. Thus, between two
recorded activities exactly one compute section is recorded and annotated with these attributes. This
would permit HDReplay and PIOsimHD to simulate the computation characteristics on a system more
accurately because the workload is roughly defined by these counters instead of just the runtime.
Also, this information could be used to increase accuracy for estimates of the power consumption.
Unfortunately, current processor counters aggregate memory demand for all hosted cores. Thus, if
multiple processes run on one multiprocessor, it will be impossible to determine the memory utiliza-
tion caused by one process. The extension is not ported for AIX systems, hence, there has not been
the need to use the CPU counters in the simulator.

The MPI-Wrapper is integrated into the modified MPICH2HD distribution to automatically instrument all
programs compiled with mpicc or mpif90.

4.3.1. Tracing Workflow

Components involved in the tracing-and-visualization workflow are illustrated in Figure 4.3.

An application is linked with the MPI-Wrapper which internally parameterizes the Resource Utilization
Tracing Library, the PowerTracer and the PVFS client instrumentation. Usage of those libraries is optional,
support must be built in during compile time. Several runtime parameters, such as the buffer size for the
tracing or the usage of libRUT, can be set with environment variables.

The modified parallel file system PVFS2HD interfaces with libRUT to add statistics from the local node,
further server behavior is instrumented directly in PVFS2HD to record relevant information. All of those
components use the TraceWriting C Library to generate independent trace and statistics files. The server
trace files are usually created on nodes disjoint to the client nodes.

The workflow to visualize trace files is illustrated in Figure 4.4. When the MPI-Wrapper generates trace
files it also puts information about the client topology into so-called info files. All data which is relevant
in the global environment is stored in these info files. The project-description-merger extracts this global
information and generates a project file which links together all the trace files of the parallel application –
application of this tool is indicated with generate in the figure. Once, the project file has been generated the
info files are not needed any more. With a later modification of the project file arbitrary statistics groups,
such as system utilization or power statistics, can be incorporated.

While the MPI-Wrapper generates trace files automatically, a user must activate tracing of PVFS2HD re-
motely (if desired) – this is due to the fact that the file system processes are spawned as daemons. Hence,
they usually exist for a longer time than just for one application run. Currently, in order to visualize traces

198

4.4 SUNSHOT

Analysis

<Uses>

<Visualizes>

ApplicationApplication

<Linked with>

<Write> <Write>

T
race fi les

T
race fi les &

 In fo files

Project file

<Generate>

Project file

<Create>

MPI-WrapperMPI-Wrapper

PVFS2HDPVFS2HD

TraceFormat Java LibraryTraceFormat Java Library

SunshotSunshot

Figure 4.4.: Workflow to create and to visualize trace files.

of the parallel file system, the user has to create a project file for the PVFS traces manually. More details
about the tracing of PVFS activities are provided in [Tie09].

Sunshot visualizes the projects, therefore, it uses the TraceFormat Java Library to load the project file and
then it loads related trace files for analysis. In Sunshot multiple projects can be loaded and visualized at
the same time – therefore, once the inital project is loaded further projects can be added. For instance,
with this feature independent client and server traces can be related.

4.4. Sunshot

Sunshot is a Java-Swing application which visualizes trace activity. The code is a major rewrite of Jumpshot
(see Page 77) to support HDTrace and includes many new features. By harnessing the Jumpshot code it
was possible to reuse and extend the already existing graphical interface without writing a completely new
interface.

The focus of this section is to introduce new features which are not not possible with other visualiza-
tion tools. While Sunshot served as incubator for visualization ideas, all development was driven by the
demand of the HDTrace projects.

Since Sunshot visualizes HDTrace, special care is taken to visualize statistics, the topology and I/O rele-
vant aspects. Further, event details (e.g., MPI parameters) and additional features are incorporated into
Sunshot. To my knowledge there are no other tools available which permit to visualize I/O datatypes9, or
which offer analysis capabilities for the statistics (counters) as sophisticated as Sunshot.

Extended functionality is presented and discussed based on illustrating examples: First, an overview of
the main window types and basic handling is given. Then it is discussed how statistics are visualized and
analyzed by the user (in Section 4.4.2). More information about user-interaction in the timeline window is
given in Section 4.4.3. The visualization of MPI(-IO) datatypes is presented in Section 4.4.4. An example
how to assess MPI communication inside collective calls of MPICH2 is listed in Section 4.4.5. At last, in
Section 4.4.6, an example illustrates how MPI-IO and server activity are visualized.

9One other tool exists which visualizes memory datatypes: MPIMAP [May01] is a visualization tool which eases the creation of
MPI datatypes, yet it just unrolls the datatype in a simple way. It is described in Section A.3 on Page 424.

199

HDTRACE ENVIRONMENT 4.4

4.4.1. Overview

When the Sunshot program is started the main window opens (see Figure 4.5a). This view of the GUI allows
a user to load multiple projects at the same time. Therewith, MPI activity and PVFS server activity can be
visualized simultaneously.

The timeline window visualizes timelines for every topology node and further renders statistics (see Fig-
ure 4.7). Activity and statistics at any given time are rendered as boxes, the colors encode the type of the
event. White areas in the process activity correspond to activity which is not traced, which is typically
some sort of computation.

The legend window of Jumpshot is extended to provide additional options for statistics (see Figure 4.5b,
the lower part). A profile window can be opened (see Figure 4.6), in this view all events on each timeline
are aggregated by a given metric; for example, by summing the inclusive duration of the events of a time-
line. The interval for which the profile is computed is synchronized with the visible area in the timeline
window.

A brief overview of the visualizable information is given next.

Topology mapping Timeline and profile windows show the topology of the loaded projects at the left.
In our example the project mpi-bench-1G is loaded, this is a run of an MPI benchmark for two processes –
one process (Rank 0) is run on the host west4, Rank 1 is executed on west 3. To provide a quicker overview
states are labeled with their category names if the space inside the box suffices. When Jumpshot was
extended to Sunshot the functionally to move timelines around has been removed, still timelines can be
hidden by the user. A plugin permits to alter the topology for MPI processes, with this plugin the recorded
default topology “Hostname”, “Rank”, “Thread” is altered to a “Rank”, “Thread” topology (application of
the plugin can be seen in the topology in Figure 4.8). When the file contains the default topology labels,
the plugin is activated – a menu option becomes available when the user right-clicks on the topology.

Statistics and counters Statistic groups of HDTrace are attached to the topology nodes they belong to.
If the group consists of multiple values then a folder is created to contain all group metrics, otherwise the
metric is drawn directly on the topology. In our example a few statistics about the utilization are attached
to each host in the timeline window: Network traffic, used memory, aggregated CPU utilization and disk
write operations are drawn in individual timelines, the height of each value drawn is proportional to the
value at a given time. The handling of statistics is one major improvement over Jumpshot. Several features
are supported that simplify the analysis of statistics, histograms and derived statistics, for example. This
is discussed in detail in Section 4.4.2.

Relations between events Arrows are not recorded in the event files, instead they are computed on de-
mand in the viewer. Plugins permit to draw arrows for MPI communication and for relations10. Figure 4.8
shows arrows between the nested MPI_Sendrecv() calls in MPI_Allreduce().

Getting more information about an event When a user right clicks on a trace entry, additional informa-
tion about the trace entry is presented in the info box window (center window in Figure 4.8). For relations
and states the XML containing all attached attributes and nested tags are printed with syntax highlighting.
In the figure the MPI_Sendrecv() transfers 65,536,000 elements (according to the count attribute) of the
specified datatatype (sendTypeID – sendTid and receiveTypeID – recvTid) to Rank 1 with Tag 14. Plugins
can extend the information shown in the window, one plugin maps the communicator ID to the user de-
fined communicator and prints further information: the name (here “WORLD”), the global rank and the
communicator specific local rank. Another plugin automatically decodes the memory datatype for many
user-defined datatypes and visualizes them; this feature is presented in Section 4.4.4.

10The drawing of communication arrows is an experimental feature.

200

4.4 SUNSHOT

(a) Main window (b) Legend window

Figure 4.5.: Sunshot main windows.

Figure 4.6.: Sunshot profile window showing the aggregated duration for each state.

201

HDTRACE ENVIRONMENT 4.4

Figure 4.7.: Sunshot timeline window.

Figure 4.8.: Timeline Window with arrows and the info box window.

202

4.4 SUNSHOT

4.4.2. Analyzing Statistics

This section focuses on analyzing energy metrics and most parts (except the derived statistics) have been
published as a chapter in the Handbook of Energy-Aware and Green Computing [MMK+12]. Traces of the
HPC Challenge Benchmark (HPCC)11 demonstrate in the following how Sunshot visualizes energy metrics
and especially statistics. Additionally, the HPCC results are discussed in brief.

A run of the HPC Challenge (HPCC) including energy metrics and client activity, is rendered in Figure 4.9.
The topology on the left shows that hpcc was run on node06 to node09, for example, Process 0 and Process 4
are run on node06 and the energy metrics (I, P, U) belong to node06. From this view a slight fluctuation of
the power consumption can be observed between different nodes – during the broadcast operation (purple
operation on the right) the power consumption is lower.

Moving the mouse over an state or statistics adds further information in the bar above the timeline canvas,
this can be seen in Figure 4.10. In this figure only the timelines for energy metrics and some metrics
for node local activity of node06 are shown. Here, the bar prints the yellow color and the text “Itrms”
underneath, the average current over time on node06 is 0.838 Ampere and the value under the mouse
pointer is about 0.92 Ampere.

The performance statistics offered by libRUT provide a hint how the power consumption is related to node
behavior. On this system most energy is spent in the CPU and thus the power consumption is mainly a
linear function – idle power plus the aggregated CPU utilization (“CPU_TOTAL”) times a constant.

Scaling of statistics Since the height of each bar is scaled linearly between 0 and the maximum value
of a timeline, the fluctuation cannot be seen easily in this figure. Sunshot supports adjusting the scale for
metrics. For example, the values can be scaled logarithmically, or across multiple timelines of the same
category and of the same grouping (e.g., one can scale to the maximum network activity, see Page 193).
In Figure 4.11 the energy metric timelines are scaled to the minimum and maximum value of all nodes,
therefore the minimal fluctuation between 229 V and 230.4 V of the voltage becomes visible as well.

During the first phase of the benchmark the observed power utilization between the nodes varies. However,
the supply voltage stays the same for all nodes, this is expected because all nodes are connected to the same
power distribution unit.

Overlapping statistics The resolution of the timeline is limited by by the monitor resolution. Therefore,
if the sampling frequency of the value is higher than what can be drawn, then drawn pixel represents the
average value for the timespan covering the particular pixel. Further, a shifted color scheme shows the
minimum and the maximum observation during the timespan. This behavior is visualized in Figure 4.12a.
Figure 4.12b is an excerpt of a zoomed timeline from Figure 4.12a that represents the values as they were
observed on the measuring device.

Drawing histograms The values of a given statistic metric can be visualized in histograms with a config-
urable number of bins showing the distribution of values for a given timeline. To draw a histogram a user
right-clicks on the statistics timeline in the topology viewer and selects the histogram. Multiple histogram
windows can be opened at the same time. In the histogram the average value is drawn and the standard
deviations for one, two and three σ .

Power and voltage of the first node are presented in Figure 4.13, the power fluctuates between 135 W and
220 W. Three peaks can be observed (at 138 W, 175 W and 208 W), this is due to the CPU activity, and
more specifically the number of CPUs utilized. During the program run, there are phases in which both

11The HPC Challenge Benchmark consists of 7 applications: the High Performance LINPACK, DGEMM, Stream, PTRANS, Rando-
mAccess and FFT [LDK+05]. It can be obtained from: http://icl.cs.utk.edu/hpcc/.

203

http://icl.cs.utk.edu/hpcc/

HDTRACE ENVIRONMENT 4.4

Figure 4.9.: Timelines of the first phase of the HPCC-run including energy metrics and client side commu-
nication activity.

CPUs are utilized, sometimes one CPU is completely utilized while the other process waits for input from
another process, or both CPUs are idle because both wait for data from processes hosted on other nodes.

Similar to the profile window the histogram windows adjusts according to the area visualized in the time-
line window. When a user zooms in or moves the clipping area, all other displays and histograms update
accordingly, presenting content relevant only for the visible area.

Creating derived statistics The available statistics information can be used to derive new statistics time-
lines. Often a user might want to grasp the program state quickly, looking at a complex statistics can help
to achieve this goal. To create a new statistics timeline a user can right-click on a topology label, provide
a name for the new metrics and an equation how to compute it. The values of the new timeline are com-
puted based on the user-supplied function and the values of existing timelines. In the previous example (in
which the visualization of energy metrics is described), the power consumption could easily be derived by
multiplying the voltage (V) with the current (I). Therefore, with derived statistics redundant information
in the statistics file could be spared.

To give another example, Figure 4.14 extends Figure 4.7 by introducing two new metrics, the Net_T otal
aggregates the two node local network traffic statistics, that is, Net_Total = NET_IN + NET_OUT. Those
node local metrics are aggregated by NET_TOTAL across all hosts and thus the aggregated network traffic
of all nodes is visible at a glance.

Once created, the user supplied function can be altered by the user at will, whenever it is modified the
values are recomputed based on the specified function and the values of required statistics.

Specification of the function includes names of statistics, floating point constants and operators for addi-
tion, multiplication, subtraction, division, minimum and maximum (+∗−/ ,̂). The unary operators “+”, “∗”,
minimum (“,”) and maximum (“ ˆ ”) are also supported as functions. These functions work as reduction
operations across multiple timelines. Metrics to use in those timelines are specified in parentheses after
the operation. For instance to compute the aggregated value for the network traffic, the function of the

204

4.4 SUNSHOT

Figure 4.10.: Energy metric timelines of the HPCC-run.

Figure 4.11.: Energy metric timelines of the HPCC-run – all timelines are scaled with the global minimum
and maximum for each of the metrics (I, P, U).

205

HDTRACE ENVIRONMENT 4.4

(a) Overview (b) Zoomed

Figure 4.12.: Excerpt of the first process timelines of I and P to demonstrating how minimum, average and
maximum are visualized in the timelines.

(a) Power

(b) Voltage

Figure 4.13.: Energy histograms for a node. The pink dashed line is the mean value, gray lines indicate
standard deviation for 1,2 and 3 σ .

206

4.4 SUNSHOT

Figure 4.14.: User derived statistics are created in Sunshot by aggregating network traffic of the nodes. This
figure extends Figure 4.7.

NET _TOTAL metric was specified as +(Net_T otal).

Required statistics are taken from the current topology node and all visible child nodes. Thus, on the one
hand, a hierarchy of new statistics can be created in the topology, and, on the other hand, derived metrics
can be introduced on the same topology node12.

Modifications of the topology by the user, that is caused by expanding, collapsing or removing of topology
nodes, are not automatically propagated to derived metrics. Instead users can request to recompute the
user defined timeline by right-clicking on its topology node.

More sophisticated derived metrics are possible, as the function can consist of arbitrary mathematical
expressions, e.g., ˆ (NET_IN + NET_OUT ∗ 2.0) will compute for each child topology the weighted inner
term (NET_IN + NET_OUT · 2.0), then the statistics is filled with the maximum computed value. Another
example to assess energy is to divide the consumed power by the CPU utilization (plus a small value to
avoid division by zero). Such a metric would indicate the energy consumption per work. Together with
recorded CPU counters and utilization models for network and I/O subsystem, energy consumption can
be estimated. Thus, model and measurement can be directly compared in Sunshot.

4.4.3. Highlighting Relevant Information

The huge amount of information presented in the timeline and profile view can be overwhelming for the
user. Features that ease this task is color-coding of interesting events and user-defined filter mechanisms.

Color-coding Heat-maps are a straight forward way to visualize interesting values in a matrix; the matrix
cells are colored depending on the value of the cell – a high value is usually colored in red while a low value
is colored in green. This concept is stretched to timelines in Sunshot. Activity in the timeline window
can be automatically colored based on a user-selected attribute – the color scheme can even be selected
using an equation with multiple input attributes. A visualization based on the “size” attribute is shown in

12As data points of the new metric depend on a set of statistics (here NET _IN and NET _OUT), computation of the values for
the new statistic timeline is performed as follows: starting from the initial time all required metrics are scanned, whenever
one of the statistics values changes its value, then the derived value for the user defined metric is computed according to the
function description and the current values. One consequence of this scheme is that the number of statistic entries of derived
metrics is proportional to the number of changes in all required statistics.

207

HDTRACE ENVIRONMENT 4.4

Figure 4.15.: Timeline window with an applied color-coding based on the size of the communicated data.

Figure 4.15 (the run from Figure 4.7 is adjusted accordingly). Thus, the figure colors collective calls and
point-to-point messages based on the message size. With the more sophisticated equation of size/ .duration,
the throughput of all activities could be assessed directly.

All states which contain the attributes requested in the equation specified by the user are processed in
two phases: First all entries are scanned and the resulting values are computed to determine the global
minimum and maximum. Then, in the second phase, the states are colored depending on the value of
the derived metrics; the gradient is between green, black and red, green indicates low values and red
high values, black values correspond to average values. Since the example calls mainly communicate two
amounts of data – a very small amount and a large amount, only the green and red color is visible.

As the altered colors do not encode the category of the state any more, there are other ways to identify the
category, e.g., by moving the mouse over a state. This reveals the real type in the information toolbar (here
an MPI_Allreduce() is selected).

Color-codings (heat maps) are specified in the left text area in the toolbar of the timeline window, in the
figure the area is colored in lime. This feature can be combined with a filter function which is discussed
next.

Filter functions Timeline and profile window contain a text box in which a user-defined expression can
be entered, states and statistics are filtered based on the entered expression. Users can specify expressions
that use attribute names or statistic names. The computed values can be compared with floating point
values; complex expressions can be constructed by using the boolean operators AND (&) and OR (|), and
by nesting expressions with brackets. All states and statistics which do not match the specified condition
are hidden, as are states which do not contain all required attributes.

Two reserved keywords exists that can be referred to as regular attributes: With .category the name
of the category can be filtered quickly by specifying a regular expression, for example, the expression
.category = Send.∗ shows all categories which are prefixed by “Send”. The actual duration of an activity is
comparable by using the .duration keyword.

Figure 4.16 shows an applied filter to our example from the color-coding. The filter requires that an event
uses the communicator with ID 0, and that the memory datatype is of Type 2. Thus, a user can quickly

208

4.4 SUNSHOT

Figure 4.16.: Timeline with filtered communicator and type identifier.

see operations performed by one communicator, or the events involving a particular memory datatype13.
Users can query the required information by looking at the trace entry info box.

Another use-case is to identify small message exchanges that takes longer than one second to execute. This
indicates either an early sender in point-to-point messages or an early start of a collective operation, or it
might be caused by a hardware bottleneck. Application of such a filter is illustrated in Figure 4.17.

4.4.4. Visualizing of (I/O) Datatypes

Sunshot has the capability to visualize user-defined datatypes of MPI for memory and I/O access in a
simple hierarchical view14. Many nested datatypes can be expanded and presented in a compact form.
Also, file regions accessed in non-contiguous I/O calls can be visualized in terms of the original datatype.
The introduced visualization assists developers and users during analysis to understand the spatial I/O
access patterns of their application. Also, it reveals the memory regions accessed by a derived datatype.

Sunshot provides classes to handle the MPI datatypes: named15, contiguous, vector and structure are fully
supported. MPI datatypes can be constructed by referring to already defined datatypes. The visualiza-
tion of Sunshot is restricted to the supported datatypes and to a subset of the memory datatypes: In the
specification of memory datatypes it is permitted to refer to data with a negative offset, whereas datatypes
for file I/O must refer to ascending positions in a file. For simplicity the visualization engine in Sunshot
concentrates on the latter case because this eases the visualization, and, also, datatypes with a negative
offset can be typically converted to a datatype with increasing offsets.

When a user selects a particular event to see details in the info box a plugin decodes information and shows
information about the datatype used in this call. Memory datatypes are provided for all communication
routines. If MPI operations access data of a file which has a view set, then the spatial access pattern of the

13In fact several calls such as collective calls might use multiple memory datatypes, one for send buffer and one for receive buffer
– the correct attribute name must be specified.

14Work presented under this section has been published in [KL12].
15Those are the primitive datatypes such as an integer.

209

HDTRACE ENVIRONMENT 4.4

Figure 4.17.: Timeline with an filter to show messages which are below a given size but take longer than
1 s to be processed.

non-contiguous I/O operations will be visualized, too. First, the visualization is described for the memory
datatypes and then for the non-contiguous I/O.

Memory Datatypes For visualization of memory datatypes a single datatype is unrolled in the viewer.
Eventually nested datatypes are visualized in the same fashion and their usage is linked together by a
directed acyclic graph. This corresponds to the way MPI datatypes are created.

In Figure 4.18 an example screenshot for an MPI_File_set_view() operation is provided. The user can see
the file the call refers to (here /tmp/test-test), the file datatype and the elementary datatype. Furthermore,
all parameters including MPI_Info arguments are listed in the XML information. For each datatype, the
actual size and extent are drawn next to the type name in angle brackets (<size, extent>). Also, the com-
partments and holes – including their sizes, are given. Each kind of datatype is colored with an individual
color, for example, structures are colored in green, vectors in yellow and holes in gray.

The displayed datatype represents a structure which has a hole of 4 bytes at the beginning, then 4 integers,
a gap of 20 bytes, a nested vector datatype, another gap of 960 bytes and, finally, one structure. The user can
dig into the nested datatype by double-clicking a datatype. Then the datatype expands into its elements;
here the structure and the vector have already been expanded. Upon each expansion, the acyclic graph
is redrawn: The initial (memory) datatype is drawn on the first row, nested datatypes are drawn in rows
depending on their dependency. Lines show the usage of nested datatypes.

The fully expanded datatype is visualized in Figure 4.20. Here, it can be seen that both the contiguous
datatype and the initial structure, refer to the structure shown in the bottom row.

Non-contiguous I/O In MPI-IO a user can position the file pointer with respect to the elementary file
datatype, holes are skipped directly16. Sunshot unrolls the datatype to show which parts of the file are
actually accessed by the file I/O. Unrolling of repeated datatypes is indicated by multiplying the unrolled
region. As the access size might span multiple repeats of the file datatypes and the offset might start in

16Refer to Page 47 for more information about file datatypes and the MPI-IO semantics.

210

4.4 SUNSHOT

Figure 4.18.: Sunshot info box for a MPI_file_set_view() function invocation with a partly expanded file
datatype.

Figure 4.19.: Visualization of the spatial access pattern of a non-contiguous write operation.

211

HDTRACE ENVIRONMENT 4.4

Figure 4.20.: Visualization of a fully expanded datatype as a directed acyclic graph.

the middle of a datatype, three parts must be identified – the partial start, repeats of the full matched
datatypes and the end in which only the first part of the datatype is accessed. Each unrolled datatype is
drawn in a box to indicate the nesting.

Visualization of our demonstration datatype is given in Figure 4.19. In this example the user begins to
write at offset 501760 and writes 501760 bytes. These values are transformed by the view to skip the
displacement of the view (here 0); only full elementary datatypes are matched. The write hits the datatype
in the middle of the structure’s vector datatype, which is just repeated 3 times. Inside the vector datatype
the contiguous datatype is unrolled two times, from the first contiguous repeat 26 bytes are written, then
a hole of 5 bytes. Next, the second structure of the contiguous datatype is unrolled and so forth. In the
example the full datatype is repeated 470 times, then only the beginning of the datatype is written.

Both visualized datatypes assist the user in understanding the performed access pattern: to debug behavior
and to compare it with the intended pattern and to understand occurring inefficiencies. This is especially
useful, when PVFS2HD is used to reveal the server behavior.

4.4.5. Analyzing MPI Internals

As single collective calls can be slow due to several factors (see Section 2.2). An identification of the cause
requires to look inside MPI and at the hardware utilization. While the latter is partly achieved by libRUT,
the former requires instrumentation of the MPI library.

The MPI-Wrapper works with MPICH2 and Open MPI. MPICH2HD has been modified to also permit
tracing of the MPI internal communication and MPI-IO operations of MPICH2. Most collective operations
of MPICH2 issue a sequence of send, receive or of combined Sendrecv() operations. That usually means
only one operation is performed at a given time. The tracing of the internals integrates seamlessly as nested
operations into the MPI-Wrapper.

To illustrate the capabilities the visualization of a traced MPI_Bcast() with 100 MiB of data to 8 processes
is listed in Figure 4.21. Each process is located on a separate node equipped with Gigabit Ethernet and two
Intel Westmere processors. Without the internal tracing, the MPI_Bcast() would be a black box.

On our cluster MPICH2 performs a binomial tree scatter operation followed by an allgather. This explains
the observed pattern: at the beginning Rank 0 sends 50 MiB to Rank 4, then 26 MiB to Rank 2, 13 MiB
to Rank 1, then 7 times 13 MiB are sent to Rank 1 and received from Rank 7. Later in this thesis it will
become clear that the observed communication pattern is suboptimal for our cluster. Consequently, the
gained insight into the MPI calls foster understanding and identification of inefficient behavior.

212

4.4 SUNSHOT

Figure 4.21.: MPI_Bcast() of 100 MiB of data to 8 processes.

4.4.6. Analyzing MPI and PVFS Interplay

Tracing parallel file system activities together with MPI activities allows spotting bottlenecks which remain
hidden otherwise. The capabilities of HDTrace are demonstrated with an illustrating example.

In this experiment our parallel PDE solver for a 2-dimensional problem (partdiff-par, see Section 7.9.1)
is instrumented with HDTrace. This PDE solver periodically stores the current state by writing diagonals
of the matrix in a file with MPI-IO. This information then can be read-out during the processing in order to
look at the convergence behavior of the algorithm. Full matrices are written after a configurable number
of iterations to permit checkpoint/restart and to compare all values of the matrix at fixed numbers of
iterations.

In this (artificial) problem the matrix has a dimension of about 8000x8000 double values, which corre-
sponds to a resident set of about 450 MiB for a single matrix. The application is run on a single processor.
Every 5 iterations a checkpoint of the full matrix is made and the progress information data (the diago-
nal has a size of 64 KiB) are written in every iteration. The PDE uses MPI_File_write_at() to store data
without setting a file view, therefore access on disk is always contiguous. Access to the matrix diagonal in
memory is performed by applying a derived memory datatype.

MPI and PVFS server activities are provided in Figure 4.22 and Figure 4.23. Activities of the PVFS client
library are not included in these screenshots, because they resemble the behavior on the server side. In
the first screenshot an overview of 20 iterations of the solver is provided. On top the client MPI activity
including the long duration of the checkpointing can be seen. Below, the PVFS activity of one server is
visualized. Each layer recorded events and/or statistics associated with the activities. Statistics encapsulate
the number of concurrent operations of the particular layer. This information is not sampled or aggregated,
therefore, at each point in time the value accurately represents the number of pending operations: BMI
indicates the network activity, FLOW contains the regular I/O operations (very small requests are not
included), REQ represents the number of outstanding requests. SERVER shows the pending state machines
and processing of each state machine – here we can see performed activity by the write_sm. TROVE
indicates the activity on the persistency layer of PVFS. In TROVE not only the number of concurrent
operations are traceable. Additionally, each individual I/O operation that is issued to the operating system,
can be traced with its offset and size. Concurrent operations will be expanded automatically to multiple
timelines by Sunshot.

In the example up to 8 concurrent operations are observed – note this is the maximum number of out-
standing operations FLOW enforces per request. Additionally several statistics of the OS are given (the
folder is called “Utilization” on the left): CPU utilization, write throughput of the storage, and network
activity.

While the process accesses data, it is possible to follow the server activity in detail – writing the data in
the checkpoints takes most of the time. In fact it turns out the network configuration of the machines and
switch degrades network throughput to 77 MiB/s while the disk has a performance of about 100 MiB/s.
Therefore, with this configuration and the access pattern the network is the bottleneck. This can be iden-

213

HDTRACE ENVIRONMENT 4.5

Figure 4.22.: Traced behavior of the 2D-PDE solver and the caused PVFS server activity. The first 10 itera-
tions of the PDE solver are shown.

Figure 4.23.: Traced behavior of the the 2D-PDE solver writing the progress information (the 64 KiB ma-
trix diagonal) and the caused PVFS server activity. One single diagonal leads to 126 small
requests.

tified also by looking at the BMI statistics; mostly network data is requested (BMI > 0) but the operations
queue up on the TROVE layer. Effectively, the FLOW layer waits for completion of outstanding I/O before
additional data can be transferred.

However, the shorter duration of writing the 64 KiB progress information is also of interest. Looking at one
write operation, we can see a sequence of many requests, which are observed on the server; these are all
small I/O operations (see Figure 4.23). In fact, writing the PDE diagonal generates 125 small I/O requests
with a size of 512 bytes and one with 72 bytes.

Code inspection of PVFS and MPI revealed that this is due to the non-contiguous datatype in memory.
MPI-IO avoids to copy the non-contiguous data in memory into an additional buffer, thus theoretically
one requests would be necessary per memory region. PVFS permits to encapsulate a list of up to 64 non-
contiguous operations with one ListIO request, which is used by the MPI module. This explains why
512 bytes are written per access (64 · 8 bytes per double). PVFS also offers MPI alike memory and file
datatypes. However, this feature must be explicitly activated with hints such as romio_pvfs2_listio_write.
When this hint is enabled, then the time to write out the matrix diagonal is reduced from an average of
69 ms to 3.4 ms.

4.5. Research Activities Associated with the HDTrace Environment

In order to build and extend the HDTrace framework, the author supervised several student software labs
and Bachelor and Master theses in the working group of Thomas Ludwig – at the University of Heidelberg

214

4.5 RESEARCH ACTIVITIES ASSOCIATED WITH THE HDTRACE ENVIRONMENT

and the University of Hamburg. These research activities are now mentioned to honor their contribution
to the project. Some projects have evaluated some basic concepts before the thesis was officially started at
the end of 2008. The student activity and publications related to HDTrace are listed in chronological order,
this includes the aim of the activity in a brief description, the outcome and a reference to supplementary
material.

In 2007 some preliminary work for this thesis has been started, in the software lab “Simulations-Prototyp
für PIOsim” by Anton Ruff and Artjom König, a primitive prototype for simulation of network activity
was built. The implementation achieved only suboptimal performance for the simulated network. An
important result of their work was that the approach to simulate network contention and the re-transmit
of packets caused too much jitter. Therefore, this early code has been discarded completely17.

At the same time a first GUI to generate and alter cluster configurations was created in the software lab
entitled “Java-GUI für die Modellierung eines Clusters im PIOsim” [Bra07]. Further, a simple graphical
representation of component utilization was designed to demonstrate how that could be presented to the
user.

In 2009 Dulip Withanage extended the GUI to handle the developed XML model format and to use the
Java reflection API which is utilized by the simulation model. With provided annotations, the GUI auto-
matically understood component parameters of the model classes automatically and allowed the user to
parameterize them. Several ideas to easily generate and parameterize a machine configuration have been
tested in his student lab [Wit09]. Components of the cluster and the interconnecting links were drawn as
a JPanel which turned out to be problematic. Due to the layering of multiple links the identification of
the link which is clicked by a user was error-prone (see his work for more details about the GUI). Later
the idea of a GUI was dropped. One one hand, the complexity of GUI programming was too high and
parameterization could be done quickly in Java, too. On the other hand, little further research seemed to
be possible with the GUI that already realized many requirements.

A prototype for the python based automatic MPI-Wrapper generator, which was written by the thesis au-
thor, was largely extended by Paul Müller in his software lab [Mü09]. With this PMPI interceptor all
parameters of most MPI functions could be recorded in the XML trace format, also communicator infor-
mation and file information could be stored in detail.

At the same time the XML format for the tracing and the binary format for the statistics were co-designed
with Stephan Krempel in his master thesis [Kre09] entitled “Design and Implementation of a Profiling
Environment for Trace Based Analysis of Energy Efficiency Benchmarks in High Performance Computing”.
As the title suggests, the main goal of his thesis was to design an energy efficiency benchmark, therefore,
measuring power was mandatory. Back then, existing performance tools lacked support to visualize those
metrics. Therefore, I modified Jumpshot and designed HDTrace to support meaningful assessment of the
consumed power together with program activity. Stephan implemented the TraceWriting C library, the
Resource Utilization Tracing Library and the PowerTracer to generate the trace information.

Timo Minartz wrote the HDPowerEstimation tool for his master thesis “Model and simulation of power
consumption and power saving potential of energy efficient cluster hardware” [Min09]. This tool reads
the statistical utilization of components, computes the energy consumption and evaluates strategies to
switch the components depending on the future utilization into power saving modes. This work has been
published as a poster [MKL10a] and in a journal [MKL10b].

The development of HDTrace has been influenced by our previous project PIOviz [LKK+06]. During the
development of HDTrace the tracing of internal communication in MPI and MPI-IO has been prototyped
in PIOviz and was published [KTML09]. With this extended PIOviz version several internal shortcomings
of MPI-(I/O) were revealed. This proved the usefulness of the approach, the features were then ported by
the author to HDTrace.

17See Section 5.3 for the currently implemented network communication model.

215

HDTRACE ENVIRONMENT 4.6

The previously unique feature of PIOviz to trace client and server activity of parallel file systems has been
ported in the Bachelor’s thesis of Tien Duc Tien entitled “Tracing Internal Behavior in PVFS” [Tie09]. In
this thesis Duc instrumented PVFS with the HDTrace API to visualize the internals of the file system.
The modifications made gather even more information from the file system than before. Therewith, the
author’s knowledge of the PIOviz project got incorporated in this project and allows tracing and visualizing
of activity in a better way than previously with PIOviz.

There is a vast number of I/O benchmarks available, yet, achieved performance could not be projected to
any application workload. Therefore, the author started to write a programmable MPI benchmark already
in his master thesis [Kun07].

This idea has been extended in the software lab “Programmable I/O-Pattern Benchmark for Cluster File
Systems” [RS09] in which the customizable benchmark Parabench was created which is designed to mimic
arbitrary access patterns and inter-process synchronization. Since then, this benchmark has been used
in several conducted software labs [SK10] and will be used in the future. Parabench was published in
2010 [MRKL10].

To gather application benchmarks for scientific applications the software lab “Community Platform for
Parabench” was started[RS10]. In this work a community portal where users can share I/O patterns and
their results was created. This would not only help the users as they can determine on which machine their
I/O workload runs best, but also would support vendors and scientists since it allows them to evaluate
systems with realistic workloads.

A further extension of the programmable I/O benchmark was planned in which the recorded trace files
from HDTrace are directly executed by an interpreter. With that approach any MPI(-IO) program could be
recorded and replayed on any other system – without the need to port the original application. Thus, this
tool would estimate the efficiency of I/O and communication patterns. As all parameters of MPI activities,
communicators as well as mapping information are already provided by HDTrace, that tool seemed to be
an ideal extension to the environment. Also, this is a similar idea to simulating behavior for any architec-
ture. To seek for collaboration for the community platform of Parabench and the trace replay mechanism
a poster has been presented on ISC 2010 [KMR+10]. Unfortunately, searching for collaboration was not
fruitful and we started development ourselves. However, while a first version of HDReplay has been de-
veloped it turned out that another group already created a replay mechanism for MPI communication
behavior [KGS+10]. Their version does not support I/O (which is our main focus). Nevertheless, the de-
velopment of HDReplay and the community platform was then suspended until we find a collaborative
approach for the community in the future. Negotiation with several researchers was unsuccessful and
as of 2012 the development branch of OTF has been modified by their development to provide similar
features.

With PIOviz [LKK+06] a suboptimal performance of collective I/O for various workloads and system con-
figurations has already been shown. Michael Kuhn evaluated client-side and server-side I/O in his Master’s
thesis for PIOsimHD [Kuh09]. The thesis aimed to evaluate sophisticated I/O scheduling on the server side
in conjunction with the client side collective I/O. It turned out that for many workloads the easier imple-
mentable server-side I/O is superior to the collective I/O and leads to an almost optimal performance. A
research paper of his results has been published recently [KKL12]. After complementation of the theses
the implementation of the cache layers and the client implementation inside the simulator has been refac-
tored and rewritten by the author. On the one hand, in order to reduce redundant code and, on the other
hand, to add some missing capabilities, for instance to combine partly overlapping accesses properly.

In 2011 Artur Thiessen analyzed the communication patterns in MPICH2 for several collective calls and
started to mimic the existing communication patterns in PIOsimHD[Thi12]. While multiple algorithms are
used in MPICH2 to realize a single collective operation, for every collective call one of the used algorithms
was chosen and implemented.

216

4.6 CHAPTER SUMMARY

4.6. Chapter Summary

This chapter introduces the HDTrace environment, a software ecosystem which supports tracing and visualizing
of MPI activity, system statistics, and I/O behavior on client and servers. The components of HDTrace assist users
in analyzing and understanding existing behavior in order to identify bottlenecks on application and system level.
Especially focused on analyzing I/O behavior, HDTrace offers many unique features.

For these features information must be available in the recorded trace. However, due to the lack of support from
existing trace formats when the thesis was started, a new trace format was developed for HDTrace. This chapter
also discussed the creation of traces and the features of the Sunshot visualization tool. Compared to existing tools,
the HDTrace format supports visualizing aspects of parallel applications which are not yet possible with other
tools and environments.

Statistics, such as operating system activity and energy efficiency, can be investigated with histograms or by
rescaling the timelines. Derived metrics permit to compute the metrics of interest; for example, the global network
throughput and power consumption are computed based on other available statistics.

Filtering of relevant information is important, since rendering the vast amount of information requires the user to
localize the relevant aspects. Sunshot offers custom color-codings and filtering with textual expressions, to reduce
the amount of data that must be understood by the user.

Analysis of user defined data types and I/O access patterns is a new capability that eases the understanding of
user composed datatypes – still, it preserves the nested character of the datatypes. A few screenshots indicate how
derived datatypes can be visualized in a meaningful way. File views can be used to address non-contiguous data
in a file with one contiguous MPI-IO call, the visualization allows users to see how a datatype is unrolled and
ultimately which bytes of the logical file are addressed.

PIOsimHD simulates application and system behavior, among other use cases this capability can be used to com-
pare simulation results with measured behavior to localize bottlenecks. In the next chapter the simulator and the
underlying hardware and software models are introduced in more detail.

217

Bibliography

[Bra07] Mathias Braun. Java-GUI für die Modellierung eines Clusters im PIOsim. Technical report,
Ruprecht-Karls-Universität Heidelberg, 10 2007.

[KGS+10] Andreas Knüpfer, Markus Geimer, Johannes Spazier, Joseph Schuchart, Michael Wagner, Do-
minic Eschweiler, and Matthias S. Müller. A Generic Attribute Extension to OTF and Its Use
for MPI Replay. Procedia Computer Science, 1(1):2109–2118, May 2010.

[KKL12] Michael Kuhn, Julian Kunkel, and Thomas Ludwig. Simulation-Aided Performance Evaluation
of Server-Side Input/Output Optimizations. In Proceedings of the 20th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, PDP. Munich Network Man-
agement Team, IEEE, 2012.

[KL12] Julian Kunkel and Thomas Ludwig. Visualization of MPI(-IO) Datatypes. In ParCo 2011,
Amsterdam, New York, Tokio, 2012. University of Ghent, ELIS Department, IOS Press.

[KMR+10] Julian Kunkel, Olga Mordvinova, Dennis Runz, Michael Kuhn, and Thomas Ludwig. Bench-
marking Application I/O in the Community, 06 2010.

[Kre09] Stephan Krempel. Design and Implementation of a Profiling Environment for Trace Based
Analysis of Energy Efficiency Benchmarks in High Performance Computing. Master’s thesis,
Ruprecht-Karls-Universität Heidelberg, 08 2009.

[KTML09] Julian Kunkel, Yuichi Tsujita, Olga Mordvinova, and Thomas Ludwig. Tracing Internal Com-
munication in MPI and MPI-I/O. In International Conference on Parallel and Distributed Com-
puting, Applications and Technologies, PDCAT, pages 280–286, Washington, DC, USA, 12 2009.
Hiroshima University, IEEE Computer Society.

[Kuh09] Michael Kuhn. Simulation-Aided Performance Evaluation of Input/Output Optimizations for
Distributed Systems. Master’s thesis, Ruprecht-Karls-Universität Heidelberg, 09 2009.

[Kun07] Julian Martin Kunkel. Towards Automatic Load Balancing of a Parallel File System with Subfile
Based Migration. Master’s thesis, Ruprecht-Karls-Universität Heidelberg, 08 2007.

[LDK+05] Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas, Jeremy Kepner,
John Mccalpin, David Bailey, and Daisuke Takahashi. Introduction to the HPC Challenge
Benchmark Suite. Technical report, 2005.

[LKK+06] Thomas Ludwig, Stephan Krempel, Julian Kunkel, Frank Panse, and Dulip Withanage. Tracing
the MPI-IO Calls’ Disk Accesses. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, number 4192 in Lecture Notes in Computer Science, pages 322–330, Berlin /
Heidelberg, Germany, 2006. C&C Research Labs, NEC Europe Ltd., and the Research Centre
Jülich, Springer.

[May01] John May. MPIMap User’s Guide, 2001.

[Min09] Timo Minartz. Model and Simulation of Power Consumption and Power Saving Potential of
Energy Efficient Cluster Hardware. Master’s thesis, Ruprecht-Karls-Universität Heidelberg, 08
2009.

[MKL10a] Timo Minartz, Julian Kunkel, and Thomas Ludwig. Simulation of Cluster Power Consumption
and Energy-to-Solution, 04 2010.

[MKL10b] Timo Minartz, Julian Kunkel, and Thomas Ludwig. Simulation of Power Consumption of
Energy Efficient Cluster Hardware. Computer Science - Research and Development, pages 165–
175, 2010.

218

4.6 Bibliography

[MMK+12] Timo Minartz, Daniel Molka, Julian Kunkel, Michael Knobloch, Michael Kuhn, and Thomas
Ludwig. Tool Environments to Measure Power Consumption and Computational Performance,
pages 709–743. Chapman and Hall/CRC Press Taylor and Francis Group, 6000 Broken Sound
Parkway NW, Boca Raton, FL 33487, 2012.

[MRKL10] Olga Mordvinova, Dennis Runz, Julian Kunkel, and Thomas Ludwig. I/O Performance Eval-
uation with Parabench – Programmable I/O Benchmark. Procedia Computer Science, pages
2119–2128, 2010.

[Mü09] Paul Müller. PIOsim MPIWrapper to Create XML-traces. Technical report, Ruprecht-Karls-
Universität Heidelberg, 04 2009.

[RS09] Dennis Runz and Christian Seyda. Programmable I/O-Pattern Benchmark for Cluster File
Systems. Technical report, Ruprecht-Karls-Universität Heidelberg, 11 2009.

[RS10] Dennis Runz and Christian Seyda. Community Plattform for Parabench. Technical report,
Ruprecht-Karls-Universität Heidelberg, 06 2010.

[SK10] Jens Schlager and Marcel Krause. Evaluating Selected Cluster File Systems with Programmable
I/O-pattern Benchmark Parabench. Technical report, Ruprecht-Karls-Universität Heidelberg,
04 2010.

[Thi12] Artur Thiessen. Simulation von MPI-Collectives in PIOsimHD. Technical report, Universität
Hamburg, 04 2012.

[THW10] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: A lightweight Performance-oriented
Tool Suite for x86 Multicore Environments. In 39th International Conference on Parallel Process-
ing Workshops, ICPPW, pages 207–216. IEEE, April 2010.

[Tie09] Tien Duc Tien. Tracing Internal Behavior in PVFS. Bachelor’s thesis, Ruprecht-Karls-
Universität Heidelberg, 10 2009.

[Wit09] Dulip Withanage. Analyse und Erweiterung der JavaGUI für PIOsimHD. Technical report,
Ruprecht-Karls-Universität Heidelberg, 02 2009.

219

PIOsimHD – The MPI-IO Simulator

Chapter 5 V

This chapter introduces PIOsimHD, the simulator for cluster systems. General considerations of modeling hard-
ware and software components, and an appropriate level of detail are discussed in Section 5.1. The implemented
models of the physical entities for a cluster system, are discussed in Section 5.2. Since network communica-
tion plays an important role in the performance of a distributed system the underlying communication model is
assessed separately in Section 5.3.

The software model for executing parallel applications is presented in Section 5.4. Furthermore, models for layers
involved in parallel I/O on client-side and server-side are included.

The workflow of conducting experiments in silico is explained in Section 5.5. This describes approaches to setup
models, to control the simulator and to the process of visualizing and analyzing simulation results.

5.1. Modeling Behavior on Application and System Level

In PIOsimHD parallel applications and the system hardware on which those programs run, are modeled
and simulated. The Java based simulator comes along with PIOsimHD-Model, which offers an abstraction
layer for application behavior and for the system model, including simulated entities and their attributes1.
While behavior of the modeled components is coded inside the Java simulator, the parameters offered by
the model specify the characteristics of the implemented behavior; for example, the average seek time
of a hard disk drive. When the simulator is started it takes the model of the system and instantiates
the implementations that represent and realize these models. An advantage of this approach is a clean
separation between abstract model and implementation details.

To answer a scientific question, such as the localization of bottlenecks during execution of parallel appli-
cations2, the model must cover the right level of detail. Also, the concept of model time is a fundamental
aspect to understand how processes are simulated. Hence, aspects for the discrete-event processing in
PIOsimHD are discussed in this section: the level of detail, the event processing engine and the model
time.

Appropriate level of detail The complexity of a live system is demonstrated in Chapter 3: memory ac-
cess, point-to-point communication and I/O with a local hard disk drive are analyzed. Individual opera-
tions show various non-linear behavior and, additionally, jitter leads to unpredictable duration. To model
the behavior of cluster hardware and software accurately a very high level of detail is necessary. However,
a high level of detail is disadvantageous for various reasons:

• Simulation complexity: A detailed level of abstraction requires low-level behavior simulation (even-
tually down to the circuits of a component and every line of a software). Since real components are
sophisticated pieces of hardware that consist of billions of transistors some level of abstraction is
required for a cluster simulator.

• Expensive simulation: A high level of detail requires more CPU time to compute the next state of
the model, and additional memory is required to maintain the internal states.

• False accuracy: When a component such as a hard disk drive is modeled close to reality, then during
parametrization all required parameters of the real system must be known. Otherwise, the simula-
tion of the real system is based on wrong facts which leads to an incorrect result. Thus, the level
of detail is restricted to characteristics of the component that can be measured or determined by

1Refer to Section 2.5 for an introduction to the field of modeling and simulation.
2Refer to Section 1.3 for the list of questions that are addressed with PIOsimHD.

220

5.2 HARDWARE MODEL

other means. To give an example, in modern hard disk drives the controller remaps bad blocks, this
mapping cannot be obtained easily.

• Tough interpretation: Since the user must interpret simulation results a simple and understandable
model is advantageous. Interpretation of a very detailed model is as hard as to understand the real
behavior of the system: The cross-talk between the activities and the cause-and-effect chain increases
the complexity of identifying the reasons for observed behavior.

Consequently, it is mandatory to focus on the right characteristics which represent the system well enough
to answer the scientific questions. Therefore, one requirement for PIOsimHD is to support a variability of
characteristics which is realized by a modular design.

With the knowledge about system behavior several characteristics that, in general, influence performance,
and theoretic performance limitations are discussed in Section 2.2. This includes characteristics that might
lead to non-linear behavior in the real system. The relevance of individual performance factors depends on
the system and the workload. Most of these characteristics can be understood by the user. Therefore, these
characteristics serve as a starting point for the developed models. Currently, all implemented models focus
on the most important characteristics of the real hardware and software. Nevertheless, with the modular
concept of PIOsimHD the models of components can be exchanged varying the level of detail – in many
cases an individual model can be selected per component.

Event processing Two types of events are distinguished: regular events indicate the start or completion
of work and internal events created by components to control their behavior, for instance to set up a work-
timer which fires at a given model time. Typically, the processing of an event creates new (future) events.

Events are managed in a data structure, that permits to quickly retrieve the next (future) event. The events
are processed in a loop which picks the next pending event, increments model time to the event start time
and executes the event on the component it shall be executed (the abstract processing of discrete-event
simulators is illustrated in Figure 2.25).

Most components are so-called blocking components, which means that they exclusively process one job of a
given type after another. When jobs arrive faster than they are processed, they queue up in the component.
A component can select one of the pending jobs with an arbitrary algorithm. Typically pending jobs are
processed with the first-come, first-served strategy, hard disk drives, however, include complex schedulers
that can combine multiple operations into one.

Currently, a CPU is the only component which shares available resources equally among all pending jobs,
all other components process jobs sequentially – usually in the order they were submitted.

Model time The simulator maintains model time with a special datatype – the Epoch. Epoch manages
time in nanosecond accuracy, in the simulator it is implemented with two integers, one that stores seconds
and one that stores nanoseconds. Implementation of an own datatype has been chosen to guarantee ex-
tensibility in the future and simulation accuracy. First, the Epoch datatype can be adjusted in the future
to increase the resolution of the model time on demand. Second, with Epoch numerical errors that could
occur with floating point datatypes are not possible: While a model time of 1,000 s stored in nanosecond
accuracy requires only 12 significant decimals and thus fit in the IEEE 754 double-precision floating-point
format, a deterministic execution would require rounding of trailing decimals. Otherwise the simulation
might change depending on the model time. Also, users may simulate long-running processes exceeding
the accuracy of 15 significant decimals.

5.2. Hardware Model

The basic hardware model reflects the common sense of a cluster computer: One or multiple client pro-
cesses of an MPI applications are executed on a node. Resources required for computation, such as CPU

221

PIOSIMHD – THE MPI-IO SIMULATOR 5.2

Node #1

Switch #1

Node #2

Client Process
Rank: 1
Application: Jacobi

Client Process
Rank: 0
Application: Jacobi

Client Process
Rank: 0
Application: Matrix

Connection Connection

Node #3

Server

Block DeviceCache Layer

Switch #2

...

(a) Components

Node #1

Node #2

Node
Node

Edge Edge

Node #3

Node
Node

...

Node

Node

NodeNodeNode

(b) Star topology of a switched network

Figure 5.1.: Illustration of the modeled hardware components and their interactions.

and memory are hosted on the node and shared among all hosted processes. On each node one I/O server of
the file system can be placed. A server holds a block device which is controlled by the server’s cache layer.
The cache layer is an intermediate layer which does not perform time-consuming operations, instead it
interfaces between network and block device, and it manages the available cache space.

An illustration of a regular cluster system with a sketched network is shown in Figure 5.1a: Three processes
of two different applications are placed on two nodes, a third node hosts a single I/O server. Nodes are
interconnected with a switched network topology, this is outlined in the figure by the two switches.

The network model is not limited to a switched network topology, instead arbitrary network graphs con-
sisting of network nodes and edges can be created. A network topology defines how network edges are con-
nected to intermediate (network) nodes. Each hosted process brings its own network interface (NIC), that
must be connected. A central switch is modeled with the network topology presented in Figure 5.1b.

To cope with several levels of abstraction, the model for a component can be selected. In this context
the model refers to the parameters that represent specific characteristics of the component’s behavior – a
model can use any number of parameters. Currently, the characteristics of provided models do not depend
on stochastic processes, although it would be easy to extend the simulator in that direction.

Additionally, a modeled component can have several implementations that all rely on the same set of
characteristics. When the model specification is made for a simulation experiment, the model parameters
and the implementation are selected (more details are provided in Section 6.3) – during simulation the
models and all characteristics are fixed. Usually, those parameters are provided in vendor specifications –
in datasheets, for example, or they are obtained by benchmarking the existing system.

For this project several models have been implemented. The currently available hardware models and
their implementations are discussed in more detail in the following: Nodes and process in Section 5.2.1,
the block device in Section 5.2.2 and the network in Section 5.2.3. UML class diagrams of implemented
models and their parameters are provided. For a sake of simplicity only a subset of the model class hier-
archy is provided and interfaces are omitted in the class diagrams. As the implementation is usually more
complicated, the behavior is illustrated and described in prose.

5.2.1. Node and Hosted Processes

The model for a node and for software processes, which can be hosted on a node, is shown in Figure 5.2. A
Node offers memory and computation resources: it is equipped with an amount of memory and a number of

222

5.2 HARDWARE MODEL

NodeHostedProcessNodeHostedProcess

networkInterface : NIC
parentNode : Node

networkInterface : NIC
parentNode : Node

ClientProcessClientProcess

rank : int
thread : int
application : String

rank : int
thread : int
application : String

ServerServer

device : BlockDevice
cache : ServerCacheLayer

device : BlockDevice
cache : ServerCacheLayer

IORouterIORouter

NodeNode

cpus : int
instructionsPerSecond : long
memorySize : long
hostedComponents : NHP

cpus : int
instructionsPerSecond : long
memorySize : long
hostedComponents : NHP

Figure 5.2.: Nodes and hosted processes that share the resources provided by a node.

CPUs3. Each CPU processes a fixed number of instructions per second. An instance of a NodeHostedProcess
subclass can be placed on a node and use the provided resources. The resources of a node are shared
among all processes that are hosted on the node.

A ClientProcess represents an MPI process which has a rank and an application assigned. A Server process
is associated with a block device (see Section 5.2.2) and a cache layer that controls the block device and
manages the available cache. IORouters (I/O forwarders) relay network traffic between client and servers
of the simulated parallel file system – they are mentioned in the discussion of the I/O path. Execution of
the MPI process and the client-server communication are part of the software model (which is discussed
in Section 5.4.1).

Job execution Any NodeHostedProcess may start a computation job on the node. The node executes the
jobs and drives the processing. If multiple jobs run concurrently and the number of CPUs does not suffice
to permit an exclusive assignment of a job per CPU, the available execution time will be multiplexed among
all processes in a fair manner.

This behavior is illustrated in Figure 5.3. In this example three independent processes submit compute
jobs to one node which has two CPUs – a CPU processes one instruction per second. When more than
two jobs are scheduled, all three run concurrently but each of the processes will proceed at a speed of
2/3 instructions per second. Starting of new jobs is indicated in the figure by an arrow, the number of
instructions to compute (the workload) is printed next to the arrow. At t=0 process A issues a job which
takes three cycles, at t=4 a new job with 3 instructions is issued and at t=5 process B issues a job. All those
jobs can run concurrently at full speed on the two CPUs. At t=7 all three processes issue a job, now the
processes must share their computation resources among them and thus a job which needs 2 cycles requires
3 seconds. During these three seconds process C reduces the remaining cycles of its 6 cycle workload by 2
(4 remain). The next two seconds the job can run at full speed as only one job is scheduled and thus two
cycles remain. In the last phase, A and B again submit a 2 cycle job, therefore 3 seconds are required to
process the last 2 cycles. Due to the overcommitment of the CPUs the job submitted by process C took 8
seconds instead of 6.

On real world systems, a scheduler dispatches processes in round-robin exclusively for a given time quan-
tum. That means available computation time is split into small slices (e.g., 10 ms), and a process is assigned
to a single CPU and executed during its turn. In contrast to a real system, the current implementation of
the model shares CPU time equally among all processes. For long-running jobs the behavior of model
and reality converge, but for short jobs the fair sharing leads to a different completion behavior. In a real
system, for example, multiple jobs that require one time slice would finish one after another. It is faster

3The mapping of these CPUs to physical sockets and cores can be taken into account by creating an appropriate network topology
for the processes, i.e., processes hosted on one socket are connected with faster links.

223

PIOSIMHD – THE MPI-IO SIMULATOR 5.2

3Process A

Process B

Process C

time in s

3

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

2

6

2

2

2

2

Figure 5.3.: Illustration of a node model for concurrent computation on two CPUs. Arrows indicate sub-
mission of compute jobs and the number next to the arrow corresponds to the workload (in s).
The height of a bar indicates the CPU utilization of the job.

to do this analytical computation than simulating time sharing of a real CPU because an update is only
necessary when a new job is submitted (or if a dispatched job completes).

Memory Right now, available memory is only used for caching I/O on the server side. The amount of
memory required for an application is not considered, neither are additional buffers for network commu-
nication. Theoretically, memory usage for caching incoming messages could be taken into account, while
application memory footprint in simulation would require a modification of the trace environment.

Simulation of memory access times required for a compute job is not performed because this information
is not available in trace files. This, in turn is due to microprocessor design: Memory bandwidth is shared
among all processor cores because all processes access memory through the L3 cache. Thus, memory
accesses cannot be assigned to one process explicitly. Memory access times for data communication can be
covered by the network model to some extent (this is described in the network section).

5.2.2. Block Device

Operations performed on a block device are characterized in the model by the type, the amount of data
to access (called jobSize), the file to access (the jobFile) and the offset at which the data is accessed (called
jobOffset). The type of an operation is either read, write or flush – the latter ensures that write operations
are completed. This is the identical information that is available in the cache layer, in contrast to the
traditional block-oriented interface, the models are based on objects. Therewith, a mapping from blocks to
LBAs is not done in the cache layer. In fact, currently all block devices abstract from the block allocation.

Implemented models for the block device are shown in Figure 5.4. Two models are currently supported,
the SimpleDisk model and the RefinedDiskModel. A block device might optimize the accesses when multiple
requests are on the fly, the number of requests that can be issued concurrently is controlled by the cache
layer. The base class of a cache layer offers a parameter to specify the maximum number of concurrent
requests that can be issued.

Simple disk model In the primitive SimpleDisk model, the time for an I/O job depends on the amount of
data accessed and the latency. The duration of an I/O is computed using the equation t = avgAccessTime+

jobSize
maxThroughput

. Variables in typewriter style are model parameters and parameters that depend on the

job are italic. Requests are processed with the first-come, first-served (FCFS) strategy, read and write accesses
are treated symmetrically. Dispatched flush operations complete instantaneously. This simplified model
can be applied to resemble SSDs to some extent.

224

5.2 HARDWARE MODEL

BlockDeviceBlockDevice

parentServer: ServerparentServer: Server

SimpleDiskSimpleDisk

avgAccessTime : Epoch
maxThroughput : long

avgAccessTime : Epoch
maxThroughput : long

RefinedDiskModelRefinedDiskModel

trackToTrackSeekTime : Epoch
averageSeekTime : Epoch
sequentialTransferRate : long
shortSeekDistance : long
RPM : long

trackToTrackSeekTime : Epoch
averageSeekTime : Epoch
sequentialTransferRate : long
shortSeekDistance : long
RPM : long

Figure 5.4.: Modeled block devices.

Refined disk model The RefinedDiskModel takes the following parameters into account: sequential trans-
fer rate, an average seek time, track-to-track-seek time and the revolutions per minute (RPM). When an I/O
operation is dispatched the time to seek over the disk is determined by the distance to the last accessed
byte and the new offset. A simple block mapping is applied: Each file is assumed to be stored sequentially
on disk; the implementation tracks the last file and offset in the variables lastFile and lastOffset.

The distance is determined in the model as follows: If the same file is accessed, then the distance of
lastOffset and the jobOffset defines which type of seek to perform. When the offset matches then no seek is
necessary, also it is assumed that data can be accessed via the disk cache – thus no latency applies at all.
The maximum tolerable distance for a track-to-track seek operation is specified in the shortSeekDistance
parameter of the model. Access to other files always enforce an average seek, this is motivated by the
fact that files are considered to be larger than the shortSeekDistance. Equation 5.1 shows equations for the
computation of access time.

rotLat = 30/RPM (5.1)

latency =

0 if lastFile = jobFile AND lastOffset = jobOffset

rotLat + trackToTrackSeekTime if lastFile = jobFile AND
‖lastOffset− jobOffset‖ < shortSeekDistance

rotLat + averageSeekTime otherwise

(5.2)

t = latency +
amount of accessed data

sequentialTransferRate
(5.3)

The implementation tries to reorder requests to optimize access. Pending requests are scheduled with an
elevator alike algorithm4 which works similar to NCQ of SATA disks.

In detail, the implemented algorithm groups pending jobs based on their filename in a queue. The list of
files which have pending operations is processed sequentially – the first file is selected and all pending
operations for that file are moved to a queue that is ready for execution (the scheduled file queue). Jobs for
the scheduled file are processed from low offset to high offset in similar fashion to the elevator algorithm.
When the execution of all scheduled operations is completed, the next pending file is scheduled and all
operations that are currently pending are moved to the pending file queue. Therefore, operations for a file
are queued until the file is actually dispatched. There is one exception: If a new job is issued that operates
on the same file as lastFile and also with a higher jobOffset than lastOffset, it will be appended to the list
of currently scheduled jobs as well. Otherwise, the file operation is appended to the list of pending files.
Consequently, operations might be reordered.

4Often this algorithm is referred to as SCAN.

225

PIOSIMHD – THE MPI-IO SIMULATOR 5.2

Pending operations
per file

time in ms

Scheduled operation

Scheduled file queue

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

6

8
9

7

7
8

6

6

.

9

8

.

.

4

6

4

4

.

9

8

.

.

4

6

4

4

.
8

.
6

3

3

3

9
.
5

5

9
.
6

9
8
7

.
8

.
6

2

2

2
3

.
8

.
6

1

1

1
2
3

9
9
9

8

9

9

8
9
8
9

7

8
9

8
9

7

7

8

7

8
9

8
9

7

7

8

7 8 9

8
9

6

8
9

7

7
8

6

5

5

6

5

9

4

.
8

.
6

2

2

2
3

6 777 8 9

9
8 98

9
8
9

8
9

8
9

8
9

9
.
5

9
.
5

9
.
5

9
.
5

9
.
5

.
8

.
6

4

4

9
9
9

9
9
9

8

8
9
8
9

8

8
9
8
9 7

8
9

7

8 6

8
9

7

7
8

6

6

6

8
9

7

7
8

6

6
6

8
9

7

7
8

6

5

5

6

5
6

8
9

7

7
8

6

5

5

6

5

.
8

.
6

3

3

3

.
8

.
6

3

3

3

.
8

.
6

2

2

2
3

.

.
6

2

2
3

.
8

2
. .

8

.
6

1

1

1
2
3

.
8

.
6

1

1

1
2
3

.
8

.
6

1

1

1
2
3

.
6

1

1
2
3

.
8

1

1 ...

 ...

 ...

Figure 5.5.: Illustrated example for the elevator algorithm of the RefinedDiskModel. For every timestep the
pending operations per file, the operations of the currently dispatched file and the scheduled
operation is provided. Elements of modified lists are highlighted.

Flush operations are scheduled with other accesses and executed once all other operations have completed;
execution of a flush operation takes zero time. They are always appended to the pending file queue which
guarantees the synchronization character: New jobs that have a higher jobOffset could be executed before
a previously submitted flush is performed, but never after.

Illustration of the processing for the refined disk model The operation of the algorithm is illustrated
in a small example: Assume three files are accessed concurrently backwards in blocks of 512 bytes. The
accessed blocks are numbered from 1 to 9, and one I/O job arrives every 3 millisecond for each of the
files. The processing of an operation which does not involve a seek takes 1 ms and one which includes the
average seek time needs 7 ms; short seeks are not performed in this example.

The elevator principle and simulated processing of this experiment is shown in Figure 5.5 – time increases
from left to right, timestamps are printed at the bottom. The upper row indicates the pending jobs per file,
the next row shows the operations of the scheduled file – jobs of the same file share one color. And the last
row illustrates the processing of the scheduled operation – long operations represent accesses performed
with average seeks, short blocks represent accesses executed without seeks.

At t=0, a job is submitted for the last block of every file. The first file is dispatched, however, it contains just
one operation which takes 7 ms as it is the first scheduled file. In the meantime (at t=3 and t=6) operations
for two new blocks are queued up for all files.

Actually, new operations to the file can be queued directly in the scheduled file queue, if the jobOffset if
the new operation is bigger than the currently processed offset. This does not happen during the example,
though, therefore new operations are always queued in the pending list and not in the scheduled file
queue.

At t=7, the next file is scheduled; now operations for block 7, 8 and 9 are pending. While the first operation
involves the average seek time, the other two are performed quickly (at t=14 and t=15) because the jobOffset
matches lastOffset. It can be observed that operations queue up, if average seek time is involved, but due
to grouping and dispatching a sequential list of blocks for every file, only 6 average seeks are performed in
total.

Discussion of the models Internally, the models of a block device operate on file-level and extents rather
than on block-level as block devices usually do. This permits to handle the mapping of blocks to the
hardware inside the block device (if desired) and reduces the complexity of the cache layer.

226

5.2 HARDWARE MODEL

Additionally, writing of a small amount of data does not involve a read-modify-write cycle in the presented
model. However, in real systems a read-modify-write cycle might be necessary. This functionality could be
realized in the implementation of a block device but has not been considered important, yet. In practice,
applications should avoid accessing of partial blocks and, furthermore, caching algorithms on all layers
of real systems try to aggregate operations into full blocks of data to mitigate degradation due to read-
modify-write.

Right now there is no disk geometry oriented implementation because such a detailed model is quite
complex and it is hard to assess its results for several reasons: The mapping from file offset to disk blocks
is tedious, as explained before. Recording of block-level data access is not available inside the parallel file
system. Thus, a comparison of simulation results with observations would not be possible. Furthermore,
such a model can pretend false accuracy when the parameters of the disk cannot be determined correctly.

Later experiments will show that the current level of detail suffices to achieve a realistic and understand-
able behavior.

5.2.3. Network

Network connectivity is modeled by a graph of nodes and directed edges. Edges represent links between
the nodes, a node routes packets over one of the outgoing edges or consumes the packet – messages are
fragmented into packets. While packets are routed over the network graph a contention on a node or
an edge defers processing of the packet (further details about the data flow between the components are
provided in Section 5.3).

The class hierarchy of available network models is presented in Figure 5.6. These classes just hold the
necessary attributes for the models, the connectivity between network components is stored in the network
topology object.

Edges and nodes Network edges are characterized by latency and throughput. Implemented network
nodes are derived from the StoreForwardNode which implements generic store-and-forward switching.
Nodes are also characterized by a maximum throughput, which limits the speed data is relayed. A node or
link is busy while it processes the data of a packet, once the job is completed the packet is transferred to
the next component – the arrival of the packet is delayed by the network edge latency.

Network interface card A NIC is a special types of node that injects and destroys packets. Network
interfaces interact with NodeHostedProcesses. They provide an interface for submission of high-level com-
munication jobs, which are referred to as messages. Basically, messages which are sent are fragmented into
packets of fixed size by the network interface. The packet flow from source to target is explained in detail
in Section 5.3.

A NICAnalytical determines the duration of a submitted send job with an analytical methodology by com-
puting arrival time for the target NIC upon job submission. For this the route to the target is determined
when the message is initiated. Processing time for a job is determined with equation 5.4. In the equa-
tion components are referred to by the variable c. The network component on the route with the smallest
throughput determines the effective throughput of the job, the latencies of intermediate hops are summed
up.

The analytical approach causes less events in the simulator and thus computes faster. But the analytical
approach cannot handle congestions in the network. However, the analytical model provides a rough
performance estimate, and by comparing the analytical NIC model with a store-and-forward node, it can
be used to assess the impact of network congestion.

Two implementations of an analytical model have been tested: In one implementation the message is
transferred directly, in the other version data is segmented into packets. An advantage of the former

227

PIOSIMHD – THE MPI-IO SIMULATOR 5.3

NICNIC

StoreForwardNodeStoreForwardNode

throughput : longthroughput : long

SimpleNetworkEdgeSimpleNetworkEdge

throughput : long
latency : Epoch

throughput : long
latency : Epoch

StoreForwardLocalNodeStoreForwardLocalNodeNICNICNICNICNICNICNICNICNICNICNICNIC

NICAnalyticalNICAnalytical

StoreForwardMemoryNodeStoreForwardMemoryNode

localThroughput: longlocalThroughput: long

Figure 5.6.: Modeled network components.

implementation is that simulation time is reduced dramatically. However, network congestion is not mod-
elled and parallel I/O cannot be simulated since transport is not pipelined. With the latter model network
congestion on sending and receiving nodes are simulated explicitly, but it is limited to these nodes; con-
gestion on intermediate nodes is not covered. Further, parallel I/O is supported. Therefore, the model for
transferring a full message at once is deprecated.

t =

 ∑
c∈route

latency(c)

+
jobSize

minc∈route throughput(c)
(5.4)

Simulation of memory access for data exchange Memory throughput limits communication perfor-
mance to some extent because data must be copied between memory and network adapter5. The concept
of network nodes can be stretched to simulate memory access time due to communication: By setting
the maximum throughput of a network node to the available memory performance it limits network per-
formance as memory does. Consequently, traffic is routed over the node that represents memory and,
therewith, limits performance.

This is especially useful for intra-node communication – shared-memory is used when two processes
within the same node communicate. Typically, this is faster than communicating data over the network
interconnecting nodes. However, with intra-node communication data is read from memory and might be
written to the same memory subsystem; consequently memory throughput is shared between those two
processes.

The StoreForwardLocalNode model considers this fact and simply halves available throughput when data
is exchanged by two processes within one node. The StoreForwardMemoryNode has an additional parame-
ter, the localThroughput, which restricts throughput if data is exchanged between two direct neighboring
components of a network node. By connecting NICs of processes with this node, communication between
NICs of these share the memory system, this approximates the memory architecture of the Intel Nehalem
architecture6.

5.3. Transport Layer Communication Model

Similar to existing communication concepts the developed transport layer communication model requires
that messages are fragmented into packets. Packets are created by a NIC, which additionally provides

5Refer to Page 2.2.4 for a discussion of the memory usage involved in communication.
6Example models for our cluster are discussed in Section 7.3 and illustrated in Figure 7.3.

228

5.3 TRANSPORT LAYER COMMUNICATION MODEL

a high-level message interface. Thus, the basis for transferring messages between two processes is data
transport of single packets and a stream of multiple packets. The reliable packet transfer and flow control
is discussed in this section.

Packets are forwarded by all network components (nodes and edges in a network topology) from the source
to the target. Incoming data is buffered on each intermediate node; it performs store-and-forward switching
on the input port. Multiple network topologies can be created with an individual routing algorithm7. The
routing of individual packets is explained in Section 5.3.1.

The development of the packet transport layer for the simulation has mainly been guided by two require-
ments: 1) Bottlenecks should cause understandable and realistic behavior. 2) Available resources should
be utilized to provide estimates for possible performance. An illustrating example of a bottleneck in the
network topology and potential throughput is given in Section 5.3.2.

Several transport algorithms have been evaluated for the simulator. Mechanisms like wormhole routing
or store-and-forward switching with dropping, are not capable to saturate congested networks completely.
Common protocols and technology, such as for TCP and Infiniband, are also sensitive to certain parameters
(such as the TCP window size) that depend on the hardware configuration. In the literature many cases are
provided in which TCP or Infiniband deliver suboptimal performance (for example, see [LM94, FLS+06]).
Therefore, for this thesis another network flow model is designed that is based on streams. In Section 5.3.3
the principle of this data flow concept is explained. Our example is then adjusted in Section 5.3.4 to
demonstrate the packet transport of the flow model.

The packet flow model covers physical layer, data link layer, network layer and transport layer of the OSI
model [Zim80]. The application layer that allows message matching similar to MPI is discussed separately
in Section 5.4.2.

5.3.1. Packet Routing

The NIC on the sender-side fragments messages into chunks called packets of a maximum size which is
specified in the global parameter network granularity. In the network graph packets must be transported
between the source and the target of the packet (destination). The source and destination are NICs, while
the intermediate network nodes can be instances of a StoreAndForwardNode subclass.

Individual packets are processed with store-and-forward switching8 on the input port of a component:
When a single packet arrives on an input port, the component queues the packet. Basically, a packet is
processed when the required outgoing port is ready – this decision is made by the packet flow model (see
below). The term processing means the component actively relays a packet to another component; this
symbolizes copying data from input port to output port.

The model applies store-and-forward switching to nodes and edges. Processing of a packet utilizes a
network component completely. The time needed to forward a packet is determined by the component’s
throughput. Additionally, when an edge finishes to transmit a packet towards the next node, it arrives
there later – determined by the latency of the edge. This approach is different from the processing model
of a block device as the block device is considered to be busy while seeking on the drive.

Since an edge is connected to just two endpoints, a packet that is submitted to one end of the edge is
transported directly to the other end. A node can be connected to multiple edges and thus multiple routes
can exist in the network graph. Therefore, every node maintains a routing table that is created upon startup
of the simulator. A routing algorithm decides which route to use: While a packet is on its path through the
network graph, each intermediate node decides which outgoing edge to relay the packet to and thus each

7See Page 30 for an introduction to routing strategies.
8In an earlier stage of the simulation, a cut-through network model was implemented as well. However, cut-through switching

does not improve performance when an outgoing link is congested, and since this project does not focus on network simulation
the model has not been maintained in newer versions of the simulator.

229

PIOSIMHD – THE MPI-IO SIMULATOR 5.3

packet is routed individually. This algorithm can be selected in the system model. When multiple routes
exist, the algorithm can use them to improve performance and to balance workloads.

Currently, packets can be either routed statically on the shortest path, or they can be transferred in a
round-robin fashion to neighbors that have the same distance to the target. The latter algorithm is useful
to improve performance in regular structures such as N-dimensional grids.

An efficient routing algorithm must take the network flow model into account: It can happen that a com-
munication partner blocks data transfer because a component is saturated. To achieve optimal performance
in a congested network an algorithm must take this into account, otherwise it achieves suboptimal perfor-
mance. A routing algorithm that is aware of the flow status checks whether a target node has capacity
to receive the packet before it is relayed to the component. Since a component has a global view on all
components in PIOsimHD, good load-balancing schemes can be evaluated.

5.3.2. Congestion and Bottlenecks

The concept and potential problems of simulating packet transport are clarified in three thought experi-
ments. A very simple experiment illustrates prioritization of slower data streams by overloading an inter-
mediate link. In a more involved example, the propagation of congestion is assessed. This experiment is
also used later in the section to demonstrate how a flow is processed. In the last example the interaction
between prioritization of data data streams and propagation of congestion is discussed.

Prioritization of data streams Assume two source nodes (A and B) send a very large message to one
target node (node Y), one intermediate node interconnects the sources with the target. This topology is
shown in Figure 5.7; node A has a faster connection than B, latency is not considered. In this setup the link
of the central node towards node Y is the bottleneck because the maximum performance of the incoming
edges is 120 MiB/s while the outgoing edge can only transfer packets with a speed of 100 MiB/s.

A well designed flow algorithm achieves the maximum flow of 100 MiB/s on the edge towards Y by throt-
tling the incoming data flow to the node. There are several ways to distribute the available bandwidth
among the incoming edges. Available throughput on all edges can be throttled by the percentage the
incoming data flow exceeds the possible outgoing flow; i.e., performance of all streams is reduced to a
percentage of the requested demand, in the example to 100/120 = 83%. In the steady state this would lead
to the effective throughput illustrated in Figure 5.7b.

One disadvantage of this solution is that even the slow performance of the edge from node B is throttled
further to 17 MiB/s. Another solution is to prioritize the slower data stream, this solution is depicted in
Figure 5.7b. While this is not completely fair to node A, the performance degradation of its data stream is
minimal. Such a configuration may lead to a better overall behavior because the communication of node B
finishes earlier9.

Now imagine the throughput of the edge from node B is improved to 50 MiB/s. In this case, a total of
150 MiB/s could flow into the center node. With a fair sharing, the steady state would transfer 66 MiB/s
and 34 MiB/s from node A and B, respectively. With the priority scheme, both edges would achieve
50 MiB/s. In both cases the transfer of A is delayed by B.

Attention must be paid to the priority algorithm to avoid unfair treating of the faster edge: Assume per-
formance of the edge is increased further to 60 MiB/s. If an algorithm that prioritizes data flow grant the
60 MiB/s to the slower edge, the performance of the edge would degrade to 40 MiB/s. Thus, the faster
edge could actually be throttled to be slower. Now imagine the slower edge achieves 99 MiB/s – this would
effectively starve the faster edge. Therefore, when an edge has a speed of more than half of the faster edge,

9 In general, to achieve optimal performance, the communication that is on the critical path of the execution should be performed
as quickly as possible. Since a priority scheme does not know about the critical path, it is impossible to prioritize optimally.
A prioritization of slower data streams tries to balance communication time under all streams – especially if the amount of
communicated data is similar, this scheme improves performance.

230

5.3 TRANSPORT LAYER COMMUNICATION MODEL

YY

NodeNode

AA BB

20 MiB/s100 MiB/s

100 MiB/s

(a) Network topology

YY

NodeNode

AA BB

17 MiB/s83 MiB/s

100 MiB/s

(b) Steady state of the network –
percental reduction

YY

NodeNode

AA BB

20 MiB/s80 MiB/s

100 MiB/s

(c) Steady state of the network –
slower transfers are prioritized

Figure 5.7.: Network congestion and prioritization of data streams based on a simple example. One in-
termediate node (switch) connects the two sources (A, B) to the destination node (Y). Speed
of the links is 100 MiB/s (thick line) or 20 MiB/s (thin line). In the steady state the effective
throughput is annotated.

YY ZZ

NodeNode

AA BB CC

NodeNode

10 MiB/s, 0.1s

100 MiB/s, 0.001s

100 MiB/s, 0.001s

(a) Network topology

YY ZZ

NodeNode

AA BB CC

NodeNode

10 MiB/s

100 MiB/s
10 MiB/s

36.66.. MiB/s

(b) Steady state of the network

Figure 5.8.: Propagation of network congestion. Two intermediate switches connect the sources (A, B, C)
to the destination nodes (Y, Z). Speed of the links is 100 MiB/s (thick line) or 10 MiB/s (thin
line). In the steady state the effective throughput is annotated.

the algorithm must distribute performance equally – leading to a performance of 50 MiB/s for both edges.
This is actually done by the developed flow model.

Propagation of network congestion Assume three source nodes (A, B and C) transmit data to two des-
tination nodes (Y and Z); all sources try to send a very high number of packets to both targets at the same
time. All edges except the one to Y have a characteristic throughput of 100 MiB/s and a latency of 0.001 s;
the edge to node Y has less throughput and a higher latency. For the moment the processing speed of all
intermediate nodes is considered to be infinite. This configuration is shown in Figure 5.8a.

The steady state of the network is illustrated in Figure 5.8b10. The illustrated transfer speed is optimal and
fair for all streams. Further, the picture looks realistic to the observer.

A network model that provides unlimited buffers, leads to a configuration in which all sources send data at
100 MiB/s; packets would queue up on the intermediate nodes. With a limited buffer size some throughput
would be wasted due to retransmission of lost packets. Further, such a model must implement complex
schemes to detect and to treat packet loss.

10Note that the flow for steady networks can be computed by using max flow algorithms.

231

PIOSIMHD – THE MPI-IO SIMULATOR 5.3

YY ZZ

NodeNode

AA BB CC

NodeNode

10 MiB/s

100 MiB/s

100 MiB/s 10 MiB/s

(a) Network topology

YY ZZ

NodeNode

AA BB CC

NodeNode

10 MiB/s

10 MiB/s
(3.3+3.3+3.3)

50 MiB/s
(3.3+46.7) 10 MiB/s

(3.3+6.6)

100 MiB/s
(46.7+46.7+6.6)

(b) Steady state of the network – slower transfers
are prioritized

Figure 5.9.: Propagation of network congestion with the flow concept. Two intermediate switches connect
the sources (A, B, C) to the target nodes (Y, Z). Speed of the links is 100 MiB/s (thick line) or
10 MiB/s (thin line). In the steady state the effective throughput is annotated.

Propagation of network congestion with multiple bottlenecks In this thought experiment the topology
illustrated in Figure 5.8a is slightly modified – one edge of a source node now transfers data at a speed of
10 MiB/s. The modified topology is shown in Figure 5.9a.

A steady state with prioritized slower transfers is given in Figure 5.9b. In the figure a possible throughput
distribution for the individual data transfers is provided, for example node C distributes the maximum
throughput for transfers to node Y and Z into 31

3 MiB/s and 62
3 MiB/s, respectively. While the maximum

throughput can be determined with a maximum flow algorithm, the distribution of capacity to the indi-
vidual data transfers is undetermined and a complex policy decision.

The advantage of the priority scheme over a percental sharing will become clear, if we assume all nodes
just transfer data to node Y. In such a configuration the available performance of the intermediate edge
(10 MiB/s) is largely overcommited because 210 MiB/s can be delivered by the incoming edges. Thus, the
edge is utilized by 2100% and, therefore, with a percental sharing, each node is assigned 4.76% of the
potential link performance. Thus, performance of node A and B would be throttled to 4.76 MiB/s and the
performance of node C to 0.476 MiB/s. By increasing the potential throughput of the edges for node A and
B further (e.g., to 1 GiB/s), the ratio for the slow connection becomes even smaller. This almost starves
communication of node C. With the priority scheme for slower edges all edges would operate at 3.3 MiB/s,
which allows a continuous data transfer.

5.3.3. Flow Model

The designed flow model results in the steady configurations for prioritized data transfer as indicated in
the examples. For this, every component in the data flow model maintains a local status of all streams to
control data flow in an optimal way. A stream is the set of packets with the same sender and receiver, i.e.,
every pair of source and destination starts exactly one stream. Basically, a stream owns a virtual channel
through which data is transferred. Packets in a stream are processed with an FCFS strategy, thus they
arrive in the order they are sent11. This concept works without packet loss (and without re-transmission
of packets).

The maximum number of packets of a stream allowed to be simultaneously in flight is limited by the max-
imum amount of data which can be send until the target component receives it; a network link should

11If alternative network paths exist in the graph and load balancing is done by the routing algorithm, then this condition might
be violated.

232

5.3 TRANSPORT LAYER COMMUNICATION MODEL

be saturated with the packets if possible. In essence the amount of data that could be transferred over a
single link is defined by the bandwidth-delay-product. Also, to fully utilize a link, the time for a compo-
nent to transmit a local packet to the next component, that is, its processing time for the packet, must be
considered.

Therefore, for every stream a component maintains the sum of the processing time of packets that are
currently in flight to the next component. This time covers the latency of the connected edge and the pro-
cessing time of the sending component. When a job is about the be started, the currently pending latency
of the stream is compared with the component’s bandwidth-delay-product: latency + maxProcessingTime.
If the pending latency is higher than the bandwidth-delay-product then the current job is processed but
further transfer to the target is stalled 12. The maximum processing time is estimated using the maximum
packet size (which equals the global network granularity) and the component’s throughput. The process-
ing time of a component is bound by the maximum processing time of that component. Overestimation of
the maximum processing time causes more packets in flight. Note, that the size of the packets is limited
by the network granularity.

When a component cannot process incoming packets quickly, the amount of data in flight increases on
the source component and all connected components stop data transfer to the saturated component. The
component still receives the data, thus it must buffer these packets on the input port. The amount of data
received per stream is in the order of the bandwidth-delay-product of the incoming link that is connected
to the input port. At most one stream is established for every pair of source and destination13.

While packets travel from source to target, such slower components on the communication path delay
packet acceptance, which propagates towards the source. Ultimately, the congestion reduces network
transmission upstream as suggested in Figure 5.8b. Whenever data is processed on a saturated component,
the transmission of one blocked incoming data flow is continued. If multiple incoming edges deliver data
to a node which is currently saturated, this node will multiplex its capabilities among all incoming streams
(the flow to continue is selected in round-robin fashion).

Packets received on a NIC are removed from the network, which usually means the data is stored some-
where in memory. Network cards can be instructed to stall reception of further data. This is used, when
the cache of an I/O server is filled up because further data could not be stored in memory. Thereby, I/O
servers participate in the network flow protocol.

5.3.4. Illustration of Data Flow

Several facets of the flow model are discussed for the example of propagating network congestion that is
illustrated in Figure 5.8. In this example the bandwidth-delay-product is 100 KiB for the fast network links
and 1 MiB for the slower network link. A network granularity of 100 KiB is assumed in the following.

Steady-state in the example A snapshot of the links and buffers for the steady state of the network is
visualized in Figure 5.10.

The behavior of node A, node B, node C is the same, for simplicity the discussion focuses on node A: Two
packets, one for target Z and one for Y, would be queued on node A. One packet from node A would be on
the outgoing edge from node A – this could be either a packet to target Z or one for target Y. The central
node buffers most packets, for each target one queue is maintained that contains one packet from each
source node. Both outgoing edges transfer one packet at a time, the packet is from any of the sources;
packets of all sources are transferred in round-robin. The intermediate node on the path to node Y buffers
just one packet. Due to the higher capacity of the link to Y exactly 10 packets are transferred at a given
time to the destination. They can be thought of to be in-flight. Due to the fair strategy, three are from each

12The job must be started to ensure that the packets in flight fill the “pipe” towards the next component completely.
13Therefore, in a real system the packet flow scheme would require a large, but limited buffer space – in the order of O(N2),

where N is the number of nodes in the network graph. The coefficient depends on the latency and packet size.

233

PIOSIMHD – THE MPI-IO SIMULATOR 5.3

YY ZZ

NodeNode

AA BB CC

NodeNode

Z Y
Z Y
Z Y

Z Y

Y

Y

Y

Y
Y
Y

Y

Y

Y
Y

Y

Z

Y
Y

Figure 5.10.: Steady state of the network that is computed with the flow scheme. Buffered packets on the
nodes and on the wires are indicated, colors encode the source node and letters the target. In
case the source node is unknown, the color of the target node is taken.

source and the last could be from any of them. As soon as one packet is received by a component another
one is transferred towards the sink; this propagates upwards the stream.

The example assumed unlimited fast processing on intermediate nodes, to account for the processing time
on the components. One additional packet is buffered on every component in the implementation.

Component utilization The processing of the packets on the edges is illustrated in Figure 5.11 – the left
column displays the edges and each row highlights the packet transport over this edge. Processing inside
nodes is omitted in this figure.

In this visualization packets with the same source and destination are depicted with the same color, for
instance the blue color indicates packets flowing from node A to node Y. Bottleneck of this configuration
are edges towards Y and Z; they process packets all the time. Due to the lower throughput, Y takes 10
times longer to relay a packet. A steady flow of packets occurs, yet, there is plenty of idle time for the
central edge that connects the intermediate nodes. Multiplexing between the two targets causes the source
nodes to send one packet to Y for every 10 packets transferred to Z. Behavior of this figure matches the
throughput observed in Figure 5.8b.

The wakeup and propagation mechanism can be illustrated with this figure, too. Look at the completion
of a packet on the edge to Y: Once a new packet starts, to be processed the edge that leads to the node
transmits another packet. Once this process starts the center node determines one of the three streams in
a round-robin manner, and a packet of that stream is transferred towards Y.

Flow control in a single stream To demonstrate how the steady state of the network is achieved, the
data flow of a single stream is discussed in this thought experiment: Assume only node A transfers packets
to node Y. The startup phase of a transmission of 10 packets (100 KiB each) is illustrated in Figure 5.12. In
this figure the processing on intermediate nodes, which process data quickly, is included, too.

At the beginning of the transfer, node A manages to transmit data at full speed. It is throttled only for the
last two packets. This late throttling is caused by the fact that transfer is resumed once the next component
starts to process the packet and the edges have a latency equal to the processing time of one packet. To
ensure seamless packet transfer, that means packet transfer without interrupts that utilizes the full net-
work performance, processing time must be taken into account. Consequently, in this experiment edges
are actually permitted to transfer one packet to cover for the latency, and one additional packet can be
processed on a component to cover the processing time of the next component towards the destination.

234

5.4 SOFTWARE MODEL

Figure 5.11.: Steady state of the network – the processing of packets on the edges from and to the nodes is
indicated. Arrows illustrate the transport of individual packets.

Figure 5.12.: Startup phase of a single transmission from node A to node Y. The processing of packets on
nodes and edges is illustrated – latency defers reception on node Y. Arrows demonstrate the
flow of packets.

In contrast to the last figure, in this display the latency of the slow link to node Y can be seen – the first
packet arrives on node Y after the incoming edge finished to transfer all packets. At time 0.11 s all packets
are in-flight.

5.4. Software Model

Important aspects of models for software components are described in this section: In Section 5.4.1 the ex-
ecution model of parallel applications is introduced and demonstrated on an MPI_Allreduce() implemen-
tation. The inter-process communication with message exchange is presented in Section 5.4.2. Processing
of the parallel file system and the client-server communication protocol is the focus of Section 5.4.3. An ab-
stract description of the interplay between server, cache layer and block device is provided in Section 5.4.4.
Currently implemented cache layers are introduced in Section 5.4.5. The implementation and processing
of these models is clarified with small examples.

235

PIOSIMHD – THE MPI-IO SIMULATOR 5.4

5.4.1. Execution of Parallel Applications

PIOsimHD is designed to simulate programs utilizing the MPI standard for communication. This includes
support for asynchronous communication and collectives defined by MPI-3.

The client process, which is hosted on a node, executes a predefined sequence of commands. A command is
of a certain type, for example, an MPI function call or any other imaginable individual or collective opera-
tion. Commands further contain parameters for the execution: For each command type a class provided in
PIOsimHD-Model defines the parameters which are supported during the later execution. An instance of
a command type will just be referred to as a command. When the model is built the sequence of commands
and their parameters are fixed. During the simulation this sequence is processed sequentially without
branching or other control structures. To simulate execution of a command at least one implementation
must be provided for a command within the simulator – currently the most important MPI functions are
implemented.

Internally, the implementation of a potential client command is programmed as a state machine. The
discussed logic and processing of state machines is performed by the implementation of client processes –
refer to Section 5.2.1. In each step of the command one of the following operations can be triggered by the
state: Blocking network operations can be initiated, a child command can be started – that is, another MPI
alike operation, or the state machine is blocked until another process restarts it manually.

Once all issued operations of the state complete, the client state machine proceeds to the next step in the
state machine until the command is finished. To simulate calculation and CPU utilization a computation
job is executed before the operations of a step are executed; the number of instructions to process is set
by the state machine. Note, that the simulator requires that a step of a state machine must take some
time – with the current implementation of Epoch 1 ns must pass. This is important for the visualization,
as immediate completion of states is hard to see in the timeline, especially when a sequence of multiple
operations completes immediately.

By invoking child commands existing commands can be reused. Imagine a dynamic broadcast imple-
mentation which chooses existing MPI implementations for the broadcast based on the given parameters
and the cluster model. States can also spawn multiple child state machines, that means other commands.
With this capability, for example, a command can initiate concurrent data transport between a process and
multiple endpoints.

Upon execution the simulator keeps only one instance for each implemented client command, all invoca-
tions of the command are executed by this instance. Thus, a particular MPI function has the global view
of all clients calling the same operation in the simulation. This global world view, for instance, allows
implementing MPI_Barrier() without network communication at all: Clients block when they reach the
barrier; when the last client invokes the barrier it activates processing of all pending callees.

Multiple implementations for a given MPI function can be programmed and selected in the model spec-
ification upon simulator execution. Thus, available MPI implementations can be evaluated against each
other, or the implementation can be selected which matches the characteristics of the machine best.

When an operation is implemented in the simulator it is important to ensure proper operation. As the
simulator does not send real data, the verification of the communication algorithm itself must be done by
the modeler.

Processing of state machines illustrated for an MPI_Allreduce() implementation To illustrate the
execution of state machines consider a naive implementation for MPI_Allreduce() in which processes
transfer their data to a root process which reduces the result and transfers it back to the other processes.

A regular MPI implementation cannot allow sending of an arbitrary amount of data before the receiver is
ready, because memory and, therewith, buffer space is limited. If a communication partner is ready, data
can be stored in the final memory region. Hence, in a realistic implementation the receiving process sends

236

5.4 SOFTWARE MODEL

Rank 0Rank 0 Rank 2Rank 2Rank 1Rank 1

0

1

ready
ready

1

data

data

2

2data
data

0

1

0

Figure 5.13.: Interaction for an MPI_Allreduce() implementation in which processes communicate with
the root process – illustrated for three processes.

a message to the sender to indicate that it is ready, before a large data transfer is initiated. This scheme is
included in the implementation model which is discussed in the following.

The interaction diagram in Figure 5.13 visualizes the states and interaction between three processes. In
State 0 the siblings announce to receive the ready message. Rank 0 announces to send the ready messages
in its first state. A process is suspended until all initiated network operations are completed, then it transits
to the next state that is programmed. Between states programmed operations are executed. In this case,
all processes will transit to State 1 when communication is finished: Once the ready message arrives the
siblings proceed to State 1 in which data is transferred to the root process, also a job to receive the reduction
result is posted at the same time. The root process computes the reduction result in State 2, and initiates
sending of the result to both siblings. They transit to State 2 which indicates that data has been received.
The Java implementation of the reduce operation is described in detail on Page 268.

A simulation run of this allreduce implementation is visualized in Sunshot in Figure 5.14. In this figure
client activity is traced on three clients and the processing time on Rank 0. Concurrent network jobs are
shown in separate timelines due to the relation concept of HDTrace. Send and receive operations contain
the name of the client component and the unique identifier. The topology viewer shown on the left lists
the modeled cluster components and nodes. More details about assessing simulation results are given in
Section 5.5.3.

The MPI_Allreduce() could also be implemented by invoking an MPI_Reduce() followed by an MPI_

Bcast(). By starting nested MPI calls existing implementations are re-used. The simulator permits a
developer to select a specific implementation for a command, or to rely on the default implementation.
In the default implementation the one picked by the run-time configuration is chosen (see Section 6.3 for
more information).

5.4.2. Inter-process Communication

In short, the model of the communication is similar to buffered point-to-point message exchange in MPI.
Inter-process communication is initiated by the state machine on a NIC. A network job either sends a mes-
sage from the local NIC to a remote NIC, or it starts receiving of a message. Data flow of the created packets
is controlled by the NIC as described in Section 5.3.

The typical addressing is done in the fashion of MPI: an envelope characterizes the posted messages, and
the receiver waits for a message with an envelope that matches certain criteria; these message matching
criteria describe the communication partner and matching conditions. Most criteria assist in matching of
messages required for proper MPI communication. A receive operation completes, when the last packet of

237

PIOSIMHD – THE MPI-IO SIMULATOR 5.4

Figure 5.14.: Simulated client activity for an MPI_Allreduce() implementation that transfers 10 MiB of
data. In this naive implementation all processes transfer their data to the root process which
computes the results and broadcasts it to all other processes.

a matching message arrives. If no receive is posted when a message arrives, the message is buffered on the
receiver-side until a receive with a matching criteria is posted. When a receive is posted that matches the
criteria of a previously received message, the receive will complete immediately.

Sends complete when the NIC transmitted all data packets to the wire. Consequently, in a real application
it would be safe to reuse potential data buffers. Since fragmentation of the NIC interleaves packets of
independent jobs, concurrent transmission of all messages is guaranteed. Therefore, large messages do not
block small jobs.

Messages can piggyback arbitrary user data, they have a total size (number of bytes on the wire) and
contain the source and target node. In a real system, protocols add a header that describes the packet
content, and which controls network parameters. PIOsimHD can add an overhead representing packet
or message headers. This overhead can be added per packet or per message. By default, the overhead is
40 bytes which is the minimal TCP header (20 bytes) and IP header (20 bytes). Currently, the additional
MPI header is not considered explicitly, but it could be incorporated into the simulator easily.

Usually, all data is ready when a message is initiated and can be transferred automatically by the NIC.
However, PIOsimHD can also create an empty message and append data on the fly until all data is trans-
mitted. In this approach available data is transferred on demand, similar to a TCP stream. This capability
is used in the I/O path to start a message before all data is read or written14.

Message matching Message matching criteria rely on the following attributes contained in the message
envelope:

• Source: The NodeHostedProcess data is send from. On the receiver side the source indicates from
which process data shall be received from. If it is not set, data is accepted from any source.

14With this concept it is possible to evaluate concepts of MPI communication which can be set up before all computed data is
available. Currently, the MPI standard just permits non-blocking I/O of memory regions; these cannot be modified while
the communication happens. Theoretically, a process could initiate many small messages to allow fine grained parallelism.
However, invoking an MPI call is time-consuming. Therefore, overlapping of communication and computation is typically
coarse grained. With the simulation the benefit of fine grained communication can be evaluated.

238

5.4 SOFTWARE MODEL

• Communicator: An instance of an MPI communicator – this field can be considered as a communi-
cator context.

• Tag: A numeric identification which distinguishes messages from one another. A receiving job can
also permit to receive from messages with any tag.

• CommandImplementation: To avoid false matching of messages between independent command
implementations, the command implementation that invoked the network operation is contained in
the envelope. Since operations can be nested, the root command implementation is stored in the
envelope, too. The CommandImplementation can be considered to act like an MPI communicator
context.

To permit reception, the envelope of the received message must match the conditions specified in the
posted receive. It is also possible to receive all messages from the network – this capability is used by I/O
servers to receive the initial requests (see the description of the client-server communication below).

If the network topology offers a single route between sender and destination, the nature of the flow protocol
will ensure that messages which are transferred arrive in the order they are started15.

Preventing false matching of messages The two CommandImplementation fields are automatically
filled with the implementation of an operation to avoid wrong matching. An example will clarify this
issue, let us take our MPI_Allreduce() implementation which invokes MPI_Reduce() on the root process
and then MPI_Bcast() to transfer the outcome to all siblings.

A wrong matching is illustrated based on the code snippet in Listing 5.1. Executed with more than one
process this code should produce a deadlock because none of the collective calls can terminate. Since
the implementation of MPI_Allreduce() in the simulator relies on nested functions that invoke the two
collective calls that are called from all other processes, the C code snippet will execute and terminate. In
this case, the computation of the correct result will happen, however this is pure luck and works only when
the MPI_Allreduce() call is implemented that way.

In general, without the CommandImplementation criterion, messages from one collective operation could
be received by another operation, hence, the outcome would be unpredictable and probably wrong. There-
fore, PIOsimHD requires the root implementation to match allowing nested operations to match if and
only if the parent implementation is identical. In most cases it is desired that an implementation of an op-
eration exchanges data only with itself and thus the current implementation must match. Consequently,
this criterion ensures that non-blocking collective operations will behave correctly as long as at most one
operation of a given collective is started with the same communicator.

There are a few exception to the strict matching requirement: Client-server communication and matching
of messages between MPI_Send(), MPI_Recv() and MPI_Sendrecv(). To allow this, the CommandImple-
mentation can be overridden when a network job is submitted.

Listing 5.1: Code snippet which illustrates a wrong matching of messages from two MPI collectives by
the MPI_Allreduce() implementation. On a correct MPI implementation, this code should
deadlock.

Initialize MPI and buffers correctly

if(rank == 0){

MPI_Allreduce(& sum, & sumTotal, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

}

if (rank != 0){

With the MPI_Allreduce() implementation that invokes MPI_Reduce()

and MPI_Bcast() the code will terminate.

MPI_Reduce(& sum, & sumTotal, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

15When multiple routes are used by the routing algorithm, the order might change, though.

239

PIOSIMHD – THE MPI-IO SIMULATOR 5.4

MPI_Bcast(& sumTotal, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

}

5.4.3. Parallel I/O

An abstract parallel file system defines how client-server interaction takes place. While inspired by the
operation of the PVFS client-server protocol, the abstraction layer of this interface is generic enough to
approximate the I/O path behavior of many parallel file systems: File data is partitioned among all servers
as defined by a selectable distribution function. In the default configuration data is distributed in round-
robin fashion across all servers. Fault-tolerance mechanisms and data replication are not considered in the
model.

Metadata operations are not considered in the client-server communication as the communication protocol
for metadata is heavily dependent on the underlying parallel file system. However, file sizes are maintained
as a global attribute for a file. This global attribute is adjusted (enlarged) when a write beyond the current
end-of-file completes.

Client-server communication protocol In the model clients and servers interact similar to PVFS, which
is an archetype for accessing raw data. The server provides an implementation (a so-called processor) for
each type of request, which is either: read, write or flush. A server listens to new requests and forwards
them to the processor responsible for this type of request, allowing new operations to be added easily.
Non-contiguous I/O requests in form of ListIO are explicitly supported. Network transfer and I/O are
pipelined for reads and writes. Thus, data transfer and I/O can happen concurrently.

Client-server interaction, the internal processing on their NIC’s, and the operations performed on server-
side are shown in Figure 5.15 and in Figure 5.16.

In the read path a client requests data from all servers holding necessary data and waits until data has been
received. In detail, the following steps are performed16:

1. An MPI_File_*read*() invocation first checks the file size and removes accesses to non-existing file
areas, that means extents bigger than the file size are not transferred to a server.

2. Supported by the distribution function, the client translates all read accesses to the physical ad-
dresses and the servers. For every server that holds parts of the required data one request is created.

3. For each participating server, the request and the receive for the expected response (the data) are
posted. All receives are processed concurrently. The client is stalled until all operations complete.
When data has been received, the read call will complete (see Step 10).

4. The network forwards a request to an involved server, which invokes the process() method of the
read processor.

5. The request processor invokes initiateSend() on the NIC to create a response message that will
hold all data. At beginning this message is empty, but it will grow continuously while data is read
from disk.

6. Arrival of the I/O request is also announced to the cache layer which causes the block device to fetch
the required data.

7. Once some data has been fetched from the block device, the cache layer calls readPartitialData()
on the request processor to announce this fact. The processor, in turn, appends the fetched data to
the pre-created message.

16Due to the complexity of the field, caching strategies are discussed on Page 242.

240

5.4 SOFTWARE MODEL

8. The network interface can transmit parts of the received data before all reads are completed. Data is
partitioned into packets according to the network granularity; once a packet is full it is sent as soon
as possible.

9. Whenever a packet leaves the NIC, a callback of the request processor (messagePartSendCB()) is
invoked. Basically, this tells the cache layer that buffering of this data is not necessary any more.

10. Upon completion of one pending server request, the NIC invokes the callback recvCompletedCB().
The client process implementation ensures that the client state machine defers further execution
until all outstanding receives are completed.

In the write path, a client sends requests to all involved server, and waits for acknowledgements. In detail,
the client-server interaction works like this:

1. An invocation of an MPI_File_*write*() derivate creates requests to all the involved servers. Data
is partitioned with the distribution function – similar to the read operation.

2. Requests are transferred to the servers, which start the appropriate request processor.

3. The request processor announces the write request to the cache layer and starts a job to receive data
from the client.

4. The client sends the I/O data to the servers and waits for an acknowledge from the server that the
data has been received completely (see Step 10).

5. Data is partitioned into packets (according to the network granularity) by the NIC and transferred to
the target servers.

6. Upon reception of a packet the server informs the write processor about this condition by invoking
messagePartReceivedCB(). The write processor asks the cache layer if the data fits in the cache, if it
does, the data is written into the cache.

7. Later in the process it might happen that the block device cannot store data quick enough and thus
the cache fills up. If that happens, then arrival of a new message part causes the write processor to
call blockFurtherRecv() on the network card. This call forces the network flow protocol to deny
reception of further packets, due to the flow protocol, ultimately the network transport to the server
stalls. Note, that the NIC does not distinguish between data or other requests and thus no new
requests are received on the server as long as the NIC is blocked.

8. Upon completion of a write operation the cache layer calls writePartialData(). This checks if one
of the pending and already received data fragments fit into the cache. If so, it will be written to
the cache. If all pending write operations completed, packet transfer is enabled again by calling
unblockFurtherRecv(). This check is omitted if data transfer is not stalled.

9. Submission of the last packet of a data transfer into the cache causes the request processor to forge
an acknowledge message for the client. Consequently, from the client perspective, the write request
may complete before all data is actually persisted. In case the client wants to enforce persistent data,
it must submit a flush operation after the write.

10. When the client has received the acknowledgements from all involved servers, it updates the size of
the file if required.

The flush operation is a simple remote procedure call: The client creates a flush request which is executed
by the flush request processor. By calling announceIOrequest(), the operation is given to the cache layer.
When the cache layer completes processing of the flush, it notifies the processor. The processor, in turn,
posts an acknowledge message for the client.

I/O forwarding It is possible to add I/O forwarders to the communication path. On the client, a for-
warding process can be defined that relays communication for at least one server. All data between this
particular client and server is then routed via the forwarder. In detail, a forwarder accepts incoming mes-
sages. Upon arrival of a (request) message a new message is created; for every packet that arrives, data is

241

PIOSIMHD – THE MPI-IO SIMULATOR 5.4

MPI_File_read

Create requests

ClientClient Server: NICServer: NIC CacheLayerCacheLayer

Check file size

Client: NICClient: NIC Server:
RequestProcessorRead

Server:
RequestProcessorRead

initiateSend(req) read request
process(req)

initiateSend(empty msg)

announceIORequest(req)

readPartialData(size)

appendDataToSend(size)

readDataSendByNIC(size)
messagePartSendCB()

data

readDataSendByNIC(size)
messagePartSendCB()

data
recvCompletedCB()

readPartialData(size)

appendDataToSend(size)

Repeated until
data is sent

Repeated until
data is sent

Repeated until
data is read

Repeated until
data is read

1.

2.

10.

4.
3.

5.

6.

7.
7.

8.
9.

9.

7.
7.

8.
9.

9.

Figure 5.15.: Illustration of the client-server communication protocol – read path.

MPI_File_write

Create requests

ClientClient Server: NICServer: NIC CacheLayerCacheLayer

Start write

Client: NICClient: NIC Server:
RequestProcessorWrite

Server:
RequestProcessorWrite

recvCompletedCB(ack)

Update size

writePartialData(req,size)

canIPutDataIntoCache(req,size)

writeDataIntoCache(req,size)

announceIORequest(req)

messagePartReceivedCB()

process(req)

initiateRecv(data)

data

initiateRecv(ack)

initiateSend(data)

write request
initiateSend(req)

messagePartReceivedCB()

blockFurtherRecv()

data

writeDataIntoCache(req,size)

unblockFurtherRecv()

If CacheLayer
announces “no”
If CacheLayer

announces “no”

If CacheLayer
announces “yes”
If CacheLayer

announces “yes”

Repeated until
data is sent

Repeated until
data is sent

canIPutDataIntoCache(req,size)

canIPutDataIntoCache(req,size)
messagePartReceivedCB()data

initiateSend(ack)
Last packet
triggers ACK
Last packet
triggers ACK

1.
2. 2.

3.
3.

4.

5. 6. 6.

7.

8.

9. 9.

9.
acknowledge

10.

Figure 5.16.: Illustration of the client-server communication protocol – write path.

242

5.4 SOFTWARE MODEL

appended to this message until data transfer completes. Forwarders can form a hierarchy to relay data via
additional forwarders, if desired. The current implementation of the I/O forwarder does not offer sophisti-
cated optimization techniques, instead each request and response is simply forwarded between client and
server.

Modeling MPI calls Variants of the MPI_File_open() and MPI_File_close() commands are imple-
mented which simulate the fact that on a real system, clients may exchange file information. Both imple-
mentations call MPI_Barrier() to synchronize the clients. The BroadcastOpen implementation simulates
the behavior in which one client has gathered the metadata for the file and broadcasts them to all other
processes which reduces load on metadata servers – such an implementation can be found in PVFS, for
example. One implementation of the MPI_File_close() operation flushes the file data when it is invoked.
Processing of this implementation in detail: All processes synchronize by calling MPI_Barrier(), then
Rank 0 sends a synchronize call to all servers; finally, all processes synchronize with a barrier – now all
data is flushed to disk.

Client-side collective I/O with the two-phase protocol is modeled, too17. By default the implementation
uses 16 MiB of buffer size per client (like MPICH2). The two-phase implementation and a variant of it is
compared to server-side optimizations in [KKL12].

5.4.4. Interaction of Server Cache and Block Device

Network communication between client and server transfers requests and data to the cache layer, which
steers the block device and cache usage in order to optimize performance18. First, the orchestration be-
tween cache layer, network and block device is described, then the implemented models of the cache layers
are clarified.

Typical file systems do not announce all non-contiguous requests to the block device. This effectively
prevents certain optimizations, especially aggregation within the cache layer. Therefore, with the designed
abstract file system, all information is propagated as soon as possible.

The read path is illustrated in Figure 5.17 and consists of the following steps:

1. The read processor of the server announces the complete non-contiguous request, that is, the ListIO,
to the cache layer.

2. Extents which have to be read are added to a job queue that manages accesses for all read operations
across requests and files.

3. Whenever the block device is not fully utilized, that means the number of currently scheduled re-
quests is below maxConcurrentIOOps, another job is initiated. The job to schedule is selected from
the list of pending jobs in the job queue and it is transferred to the block device by invoking start-

NewIO(). Read jobs are preferred over write jobs because an application waiting for data cannot
proceed19. However, to perform an operation enough cache space must be available: It is checked
whether the node has enough free memory to buffer the data to fetch. If so, the memory is reserved
and the read job is executed20. Otherwise, an available write job is scheduled to free more memory.

4. Completion of an I/O job fires a callback in the cache layer; upon invocation the cache layer notifies
all requests for which data has been read, this in turn appends the data to their messages.

5. Whenever read data has been sent by the NIC, used memory on the node is freed.

17Refer to Page 55 for a description of two-phase.
18Refer to the performance factors mentioned in Section 2.2.5.
19The policy to prefer read over write operations is driven by the fact that a process usually requires the data read to continue

its operation. However, writes can be deferred with caching strategies. The local file system ZFS prioritizes operations in this
manner, too.

20Since the simulator is executed sequentially, a correct accounting of the memory is possible.

243

PIOSIMHD – THE MPI-IO SIMULATOR 5.4

In contrast to the read path, in the write path a cache layer must wait for data to arrive on the NIC, hence,
not all operations can be started immediately. As a consequence, read operations are not symmetric to
write operations. The write path is visualized in Figure 5.18. It processes operations with the following
steps:

1. The write processor of the server announces the complete ListIO to the cache layer – with this knowl-
edge the cache layer can defer pending operations and might even wait for the data to build a better
access pattern.

2. Whenever data arrives on the server, the request processor invokes the canIPutDataIntoCache()

function to ask the cache layer to accept the incoming data, which usually queries the free memory
on the node and tries to allocate free memory on the node. If there is not enough memory available,
the server blocks reception of further packets21.

3. Every packet fitting into the cache is submitted to the cache layer by the write processor. Extents
that have been received are still undecided – this permits the cache layer to pick the best selection
and assume the right data has been transmitted by some kind of hint from the server. Normally, file
systems transmit data in the order the bytes are written by the non-contiguous access pattern, i.e., in
sequential manner – the first extent, then the second extent and so forth.
The currently implemented cache layers decide at this point which data they actually received and
add I/O jobs to the job queue. While the cache layer can change the order, current implements do
not exploit that feature. In most cases a reordering of write operations is possible later, too, due to
the caching in memory on the server. When data is written to the cache layer, it also allocates the
required buffer space on the node.

4. It is checked if another I/O job can be submitted to the block device with the same method as in the
read path (see Step 3).

5. Upon completion of a write job, a callback in the cache layer is invoked. Similar to reads, for every
request of which some data has been written by the I/O job this fact is propagated to the write
processor. Memory space to buffer the data is immediately freed once the data has been written to
the block device.

This general cache layer behavior is designed to permit aggressive (write) caching; a cache implementation
might aggregate multiple high-level I/O operations into fewer operations on the block device. Data which
is read is not cached for future reuse currently. Applications should avoid this kind of accesses and re-
use already fetched data. Moreover, behavior of a read cache can be unpredictable due to interference of
concurrent applications and, further, mechanisms such as read-ahead can even degrade performance.

Aggregation of multiple operations is limited by the I/O granularity which is the maximum size of data that
can be accessed in a single block-device job. It defaults to 10 MiB and can be set at simulation time. Since
data sent across the network is split into smaller chunks to accommodate the network granularity (default
100 KiB), network transfer and I/O access can be pipelined. To illustrate the pipelining scheme consider
reading of 20 MiB data. Once the first 10 MiB have been read from block device, the fetched data can be
sent to the requesting client.

A consequence of the implementations for the read and write path is that large accesses (bigger than I/O
granularity) cause the cache layer to create read jobs in the size of the I/O granularity, but write jobs are
limited to the size of network granularity. Consequently, if the cache layer does not buffer or defer write
operations, the effective I/O granularity of write requests is limited by the network granularity.

5.4.5. Implemented Cache Layers

Implemented models of cache layers build on the abstract interaction between network, block device and
cache layer. The class hierarchy of the currently available cache layers is illustrated in Figure 5.19.

21This has been discussed in Section 5.4.3

244

5.4 SOFTWARE MODEL

IOJobQueue:
readQueue

IOJobQueue:
readQueue

Server:
RequestProcessorRead

Server:
RequestProcessorRead CacheLayerCacheLayer IOSubsystemIOSubsystem

announceIORequest(req)
addIOJob(Read, size, offset)

startNewIO(job)

job=getNextSchedulableJob()

For all requests
of the I/O job

For all requests
of the I/O job

readPartialData(req, size) dataReadCompletelyFromDisk(job)

For all contiguous
regions of the job
For all contiguous
regions of the job

NodeNode

readDataSendByNIC(size)

isEnoughMemoryFree(size)

reserveMemory(size)

freeMemory(size)

1.
2.

3. 3.

3.
3.

4.4.

5. 5.

Figure 5.17.: Read path – illustration of the interaction between request processor, cache layer and the
block device.

IOJobQueue:
writeQueue

IOJobQueue:
writeQueue

Server:
RequestProcessorWrite

Server:
RequestProcessorWrite CacheLayerCacheLayer IOSubsystemIOSubsystem

announceIORequest(req)

For all requests
of the I/O job

For all requests
of the I/O job

writePartialData(req, size) dataWrittenCompletelyToDisk(job)

writeDataIntoCache(req,size)

Repeated for
every packet
Repeated for
every packet addIOJob(Write, size, offset) For all contiguous

regions of the packet
For all contiguous

regions of the packet

startNewIO(job)

job=getNextSchedulableJob()

canIPutDataIntoCache(size)

announceIORequest(req)

NodeNode

isEnoughMemoryFree(size)

reserveMemory(size)

freeMemory(size)

1.

2. 2.

3.

3.

4.

4.

5.5.

5.

3.

Figure 5.18.: Write path – illustration of the interaction between request processor, cache layer and the
block device.

245

PIOSIMHD – THE MPI-IO SIMULATOR 5.4

All cache layers are derived from ServerCacheLayer. The maxConcurrentIOOps attribute limits the max-
imum number of operations issued to the block device. To allow application of scheduling algorithms
inside the block device this parameter must be set to a value larger than 1.

NoCache The NoCache implementation issues one I/O job operation after another on the block device
with an FCFS strategy. Read operations are preferred over write operations – as long as any read operation
is available write operations are stalled22. At most one write operation can be pending inside the cache.
Consequently, write-behind is not possible with NoCache. Internally, this is done by returning false from
canIPutDataIntoCache() when one write operation is queued or already executed by the cache layer (and
block device). I/O operations are not aggregated in NoCache, therefore, the maximum operation size of
write operations equals the network granularity. For read operations it is limited by the I/O granularity.

SimpleWriteBehindCache SimpleWriteBehindCache is a cache layer which permits write-behind by
caching pending write operations in the memory of the node – as long as memory is available. The class
extends the NoCache implementation slightly as most functionality of the cache layer is embedded in No-
Cache. Only the canIPutDataIntoCache() function is overridden to check for free memory on the node.
It does not aggregate operations, thus the maximum I/O size for write operations is still bound by the
network granularity.

AggregationCache The AggregationCache performs write-behind but also aggregates pending I/O oper-
ations into extents up to the size of the I/O granularity. Reads are still preferred over write operations.
A fair mechanism processes the earliest issued operation (the oldest operation in cache). Thereby, it com-
bines all operations of the same type which overlap with the extent of the selected operation. This step is
repeated until no further combination is possible, or if the aggregated operation reaches the I/O granular-
ity. Hence, a single block device operation can contain data from multiple requests – even from multiple
clients. Overlapping areas in the accessed extent are handled by reading data once and distributing it to
all requesters. Data from multiple writers to a region is discarded because only the newest data must be
written. Compared to the mentioned NoCache and SimpleWriteBehindCache, the aggregation allows write
operations with larger chunks than the network granularity.

However, the aggregation process can be quite time-consuming; the current implementation iterates over
all pending operations and repeats this process when one of the operations can be aggregated. Therefore,
the implementation has a worst-case complexity of O(N2), where N is the number of currently pending
operations.

AggregationReorderCache The AggregationReorderCache extends the policy of the AggregationCache by
allowing the cache to change the order in which operations are executed. Scheduling of pending operations
is performed in the following way: Read operations and write operations are scheduled in phases, first all
read operations are scheduled. After they complete, all write operations are processed and vice versa –
new operations are queued up in the meantime.

When a type of operation is selected, files are processed sequentially, that means all operations of the
selected type are executed for the first file, then for the next file, until all files are processed. Operations
for each file are executed in the order of their offset and thus with an algorithm similar to the SCAN
algorithm of disk drives.

Flush operations are combined in this cache and performed after write operations of the file completed and
thus a flush operation could be deferred for later execution – still the synchronizing character is preserved.

22Since read operations are always synchronizing, i.e. they require the client to wait until data is fetched from the I/O subsystem,
but written data can be buffered, this strategy usually improves performance.

246

5.5 SOFTWARE MODEL

NICNICNICNICNICNICNICNICNICNICNICNICServerCacheLayerServerCacheLayer

maxConcurrentIOOps : intmaxConcurrentIOOps : int

NICNICNICNICNICNICNICNICNICNICNICNICNoCacheNoCacheNICNICNICNICNICNICNICNICNICNICNICNICNoCacheNoCache

AggregationReorderCacheAggregationReorderCacheAggregationCacheAggregationCacheSimpleWriteBehindCacheSimpleWriteBehindCache

Figure 5.19.: Implemented cache layers.

While internal implementation is more complicated than the elevator algorithm of the RefinedDiskModel,
internal data structures and behavior are similar23.

Right now, all implemented cache layers process received data of non-contiguous requests in the order of
the ListIO. An extension of the concept would add the appropriate I/O job on demand – thus, enabling
the cache layer to virtually decide in which order data is received. With this extensions an assessment of
disk-directed methods for write operations would be possible. Disk-directed methods for read operations
are already implemented in the AggregationReorderCache; these have been evaluated in [KKL12].

Discussion of the I/O path All these cache layers are abstractions for mechanisms in real systems. To
qualitatively assess them, they are compared to optimizations available in Linux for accessing the local
file system, and with mechanisms in PVFS. Linux aggressively caches data, it supports write-behind as
well as read-ahead. The cache can grow to fill all available memory, this is similar to modeled caches that
may use all available memory. When data of the cache is modified it is not immediately written to disk,
instead Linux defers it until a timer fires or if the amount of dirty pages is too high. Furthermore, Linux
stalls writing processes if more than a given percentage of available page cache is dirty, and thus defers the
writing process24. In the write path modified cache pages are aggregated similar to the AggregationCache
in many cases.

Compared to PVFS, the described I/O model permits additional optimizations. By default PVFS uses a
buffer size of 256 KiB per I/O operation (according to the flow protocol). Effectively, accesses are frag-
mented into accesses with a granularity of the buffer size. This limits the number and size of reads which
can be dispatched to the block device. Unfortunately, in this case the aggregation and scheduling offered
by Linux do not help, as only up to 8 read operations are issued to the OS. When multiple clients access the
file system concurrently, this leads to random access patterns on the block device, which, in turn, causes
performance degradation25.

Therefore, with large data sets the PVFS read performance is expected to be comparable to the NoCache
implementation. As caching and aggregation of I/O operations is done by the OS, observable write perfor-
mance should be comparable to the one achieved with the simulated AggregationReorderCache. Short term
fluctuation due to updates of file system metadata and the complex interplay between multiple caches of
a real I/O subsystem are not covered by any of the models.

Consequently, while there are similarities between the modeled I/O path and a real system, the modeled
I/O behavior is much simpler and depends on only two variables (the granularity of network and I/O).

23Therefore, refer to Figure 5.5 on Page 225 for internal processing details.
24Refer to Section 3.6.1 for additional information about the behavior of the Linux cache.
25Refer to [Kun07] for an additional description of this issue.

247

PIOSIMHD – THE MPI-IO SIMULATOR 5.5

<Nodes/>
<Processs/><Servers/>

<Topology/>

Cluster model

PIOsimHDPIOsimHD

<Program>
<Init t='0.6' end='0.7'/>

 <Send size='256'
t='0.7' end='0.8'/>

Application activity

1. Model creation

2. Execution

3 Interpretation

-t output.trace
...

Run-time parameters

Simulator simulate() Mon Jun 13 17:17:31 CEST 2011
0.000000000s GClientProcess <"0C" id=2>: uses Program: "Jacobi" alia
Methods for command: Fileopen in class: de.hd.pvs.piosim.simulator.pro
Methods for command: Bcast in class: de.hd.pvs.piosim.simulator.progra
Methods for command: Filewrite in class: de.hd.pvs.piosim.simulator.pro
Methods for command: Fileclose in class: de.hd.pvs.piosim.simulator.pro
0.033286565s GClientProcess <"0C" id=2>: finished
GClientProcess "0C" id=2

Bcast 1 calls
Fileclose 1 calls
Filewrite 1 calls
Fileopen 1 calls
Barrier 3 calls

Simulation finished: 156 events
 realTime: 0.115s
 events/sec: 1356.5217391304348
 virtualTime: 0.033286565s
 virtualTime/realTime: 0.2894483913043478

Simulation output

SunshotSunshot

Simulation traces

Process mapping

Figure 5.20.: Simulation workflow with required input and generated output.

5.5. Simulation Workflow

The workflow to run a simulation experiment with PIOsimHD consists of three phases: model creation,
execution of the simulator and interpretation of simulator output. These phases are separated from each
other, which provides modularity. With this approach, for example, it is possible to change simulation
parameters without modifying a created model.

The overall workflow for conducting a simulation study is illustrated in Figure 5.20. The following steps
are required:

1. Model creation

a) Instantiate a cluster model

b) Describe or load application activity

c) Map applications and ranks to available processes

2. Executing PIOsimHD

a) Prepare run-time parameters

b) Simulation model initialization: bind model and parameters

c) Start simulation

3. Interpretation of the results

a) Analyze simulation output

b) Inspect traces (with Sunshot)

These steps are described further in this section.

5.5.1. Model Creation

The cluster is described in a system model that covers hardware and software behavior: These models are
constructed by using classes provided in PIOsimHD-Model. Currently available model classes including

248

5.5 SIMULATION WORKFLOW

their parameters, have been introduced in this section. For example, a SimpleDisk model has a parameter
for average seek time.

Theoretically, it would be possible to create system and software models independently from each other.
However, in many cases software and hardware are tightly coupled – software needs the resources offered
by hardware, and must be placed on a system that provides it. Therefore, it was decided that individual
software parameters are part of the model that needs them during simulation. There are also several global
model parameters, such as the network granularity and I/O granularity that are set for all hardware and
software components that need them.

Application behavior can be defined independently of a system model. However, there is a slight depen-
dency between system model and application activity: a process (and its placement) is part of the system
model – it contains the name of the application that should be executed and the MPI rank. Clearly, the
number of processes that are referenced by an application should match the provided hardware resources.
Note that PIOsimHD permits concurrent processing of multiple applications and thus the influence of
activity that stresses network and I/O infrastructure can be investigated in silico.

PIOsimHD-Model offers the alternative to either define system model and application behavior in Java,
or to read them from XML files. Helper classes simplify creation of cluster model and application be-
havior in a Java program. This is especially useful to perform small tests of I/O systems or MPI internal
communication. It can also be used to prototype parallel applications and to assess communication and
I/O performance before the application is actually implemented. Classes are provided that can read (and
write) a system model from a file, behavior of existing applications can directly be read from trace files26.
Trace files can be loaded into memory at simulator initialization, or, since they can be rather large, the
simulator can load commands on demand. It is also possible to instantiate a system model in Java and
bind applications to project files. This allows users to evaluate a variety of system models, while activity
of a real application is fed into the simulator.

Reading commands from trace files The HDTrace MPI-wrapper records MPI calls and all required
parameters, therefore, PIOsimHD can just instantiate commands and load the contained information27.
Computation is not recorded explicitly, however, this information can be deducted – the time between two
subsequent calls determines the computation time of jobs for the simulator. In the header of each trace and
relation file the current processor speed and model information is recorded28. This information is used to
compute the required cycles for compute jobs.

To change the computation time, the instructionsPerSecond parameter of a node can be changed. Therewith,
the overall processing speed can be altered; scaling of computation time enables simulation of arbitrary
computation speeds. However, the relation between computation phases will stay the same. By manipu-
lating activities in the trace file certain regions can be sped up individually. Some existing simulators use
this technique to change the behavior of parts of trace files (see for example BigSim in Section 2.6). Since
the trace files are just XML files, modification is quite simple.

By itself, the currently used metric (instructions per second) is not very representative for the complexity
of a CPU. Furthermore, the initially measured CPU speed may change at run-time because CPU frequency
could be adjusted by an operating system at runtime to improve energy efficiency. The MPI-Wrapper can
explicitly store computation phases and several hardware counters can be measured during the compu-
tation, for which it utilizes Likwid. Recorded counters include the actually observed instructions per cycle
metric and Flop/s. In the future, those hardware counters could be used by a refined computation model.
Thus, by using the hardware counters processing time on a target machine could be estimated better; the-
oretically, cache performance and memory footprint could be approximated by the percentage of memory

26These trace files are created by applications instrumented with HDTrace.
27The simulator maps trace entries to command types, this is described in Section 6.3.3.
28See Listing 4.1 on Page 191 for an example.

249

PIOSIMHD – THE MPI-IO SIMULATOR 5.5

Trace files & Project file Analysis / Comparision

<Read>

ApplicationApplication

<Linked with>

Simulation traces

<Write>

<Uses>

<xml>
<Nodes>

<Processs/><Servers/>
<Topology></xml>

<Uses>

Model specification

<Read>

 <
Use

s>

<Write> <Write>

SunshotSunshot

TraceFormat Java LibraryTraceFormat Java Library TraceFormat Java LibraryTraceFormat Java Library

PIOsimHDPIOsimHD

PIOsimHD-ModelPIOsimHD-ModelPVFS2HDPVFS2HD

MPI-WrapperMPI-Wrapper

Figure 5.21.: Analysis workflow for existing applications including relevant components of HDTrace.

access and an expected cache hit/miss ratio. Since the application of Likwid is limited to some platforms
such an extended model is not implemented in the simulator, yet29.

5.5.2. Executing PIOsimHD

Run-time parameters control the behavior of PIOsimHD – the output of simulation results and information
for debugging. When the parameters and the model are ready, the simulator can be initialized with them.
Once initialized, further modification of parameters is not allowed.

The model classes provided by PIOsimHD-Model represent components and commands, and encapsulate
necessary parameters. The simulator uses this information to instantiate required simulation classes. By
binding the model, PIOsimHD prepares the simulation model which means instantiating simulation classes
representing the model classes. A simulation class encapsulates behavior of the model class and contains
all functionality required for simulation. An implementation uses parameters supplied by the model class
for parameterization; the simulator must provide an implementation for every model. Once all objects are
initialized, the routing algorithm is invoked on every network to determine potential routes.

The simulator core offers capabilities to change the implementation of a model, and of each command
type30. Therefore, it is possible to evaluate alternative implementations for a model class without chang-
ing the model. Once the model is created for each network topology, the selected routing algorithm is
executed.

The simulator is also shipped with a command line interface that executes models which are defined in a
model specification file. This XML file is basically the serialized version of the hardware model: The map-
ping from application names to the sequence of commands that should be executed is done by specifying
HDTrace project files. A model in PIOsimHD-Model can be serialized to such a specification file. There-
with, users can exchange models that are encoded in Java because the generated model specification file
can be loaded with the command line interface that is part of PIOsimHD.

Simulating behavior of existing applications The workflow of simulating execution of an existing MPI
program in a virtual cluster environment is depicted in Figure 5.21. Components of HDTrace that are
involved in the different steps of the workflow are included in the figure: To trace the application activity,
the MPI-wrapper is linked with the application, then all MPI(-IO) activities are intercepted and events are

29Refer to Page 197 for more discussion of this feature in the context of the wrapper.
30This is discussed in Section 6.3.

250

5.5 SIMULATION WORKFLOW

recorded by using the TraceWriting C Library. If PVFS is used as the underlying file system, additional
traces for client and server I/O activities can be included. While events of PVFS are not used during
simulation, they allow us to compare simulated and real I/O behavior.

The system model of the target machine architecture must be set up by the user in a model specification
file. This model also contains references to the project files of applications and a mapping of processes to
available nodes. To model a real system, the characteristics of the system must be determined and specified
accordingly.

A user starts the command line interface and specifies the model specification file. PIOsimHD-Model reads
the model from the file and loads required application trace files. In this process, the raw trace informa-
tion is read and converted into a sequence of commands which can be understood by the simulator. The
mapping of recorded activity to commands that are executed by the simulator is defined by a configura-
tion file. Since the simulator should perform similar activity, the recorded parameters are read into the
commands, but timestamps are explicitly computed during the simulation run and thus the timestamps
from the trace files are discarded. Compute jobs are an exception, the simulator creates compute jobs by
determining the time between two neighboring events – the number of cycles for a job are determined
by using the compute times and CPU speed recorded in the trace file. A trace file is assigned to a single
process; during the simulation this process replays the activities of the recorded application process. The
simulator is executed with additional parameters provided on the command line, which control output
behavior and verbosity, for example.

While PIOsimHD performs the discrete-event simulation, it can record the simulated activity by using
the TraceFormat Java Library. Results of simulation can be visualized by Sunshot. Thus, simulation run
and recorded application (and PVFS) activities can be compared visually by the user. By modeling the
hardware on which the application has been executed, the models can be validated and inefficiencies of
the system can be analyzed. This brings us to the reporting features of the simulator.

5.5.3. Interpretation of Simulation Results

There are two approaches to assess simulation results: For a first overview the simulator outputs internal
information such as component usage profiles to the console. Also, activity of the simulated components
can be written to trace files for a comparison with the original run. Supported output formats for the traces
are HDTrace and TAU. The latter can be converted to SLOG2 format and then visualized by Jumpshot.
With the evolving of HDTrace, the TAU trace writer became deprecated because HDTrace offers more
capabilities.

By recording activity it is possible to look into behavior of simulated components. Thus, analyzing network
flow or low-level I/O access is possible, which is unfortunately impossible with HPC tracing tools, yet.
Parameters can be set to define the project name and the type of information which should be traced:
On the client-side MPI activity, nested operations and state machine states can be selected individually.
Further, server activity – which is the processing of state machines and block-device activity – and internal
activity (packet transport) can be enabled separately. During simulation of an experiment, relations and
regular trace files are written depending on this configuration. So far, the capability offered by statistics
is not used, but in the future it could be used to record metrics similar to libRUT: CPU, network and disk
utilization.

Visualization of client activity and packet transport The Sunshot visualization of the cluster config-
uration for the flow-example in which only node A sends data is given in Figure 5.2231. The topology
viewer on the left shows the traced components: The node with the name “NA” (and internal id 4) hosts
client process “A”, the activity of the client process is rendered in a relation. Here, the client performs a

31See Page 230 for a description of the experiment configuration.

251

PIOSIMHD – THE MPI-IO SIMULATOR 5.5

Figure 5.22.: Visualization of simulated client and network activity. The cluster configuration of the flow
example in Figure 5.8 in which only node A sends data is simulated.

SendRendezvousSend operation; a command is suffixed with the implementation name used during simu-
lation. Internally, the state machine of this implementation triggers a network send operation to the client
process Y (rendered below). Again, the target name and its id are encoded in the name of the activity
category (here “Y id20”).

Normally, computation time required for processing of a state machine is rendered inside the command
trace entry as a nested state; as the SendRendezvousSend implementation does not perform extra computa-
tion it is not visibile in this example32.

A network card belongs to its process and is therefore found underneath the process in the topology tree.
Timelines for node NY and the process Y are rendered in a similar fashion. Edges are grouped under their
target’s node. Labels on edges contain the name of the source network node. Therewith, the interconnec-
tion and flow of packets can be understood; in the example, packets sent by “nodeToY” are received on the
NIC of node NY.

In the example the high network latency of the slowEdge becomes apparent. Intermediate network nodes
and all their incoming edges are grouped in the same way, therefore, the two nodes (“nodeToY” and “node”)
are visible.

To track the flow of packets, relation arrows can be computed in Sunshot; a screenshot that includes all
arrows is shown in Figure 5.23. Note that this small example already shows a vast amount of visual infor-
mation. For this reason, the advanced filter mechanisms and the color-coding feature were implemented
in Sunshot to help users concentrating on relevant information.

Visualization of I/O activity I/O components are structured in the topology node in a straight forward
manner: A server is rendered as a child of a node, a server hosts a block device, its activity is listed
underneath the server. Execution of concurrent requests on the server is visualized by the relation concept
like client activity. A screenshot of one process is given in Figure 5.24. In this example the process opens
a file, writes 1 MB of data and then closes the file. The startup phase of this example is provided in
Figure 5.25.

32In fact, every state performs at least one computation cycle, thus computation is rendered, but very small.

252

5.5 SIMULATION WORKFLOW

Figure 5.23.: Visualization of simulated client and network activity including relation arrows. The cluster
configuration of the flow example in Figure 5.8 in which only node A sends data is simulated.

Since the aggregation cache is used, write operation are cached quickly on the server; the client performs a
flush operation when the file is closed. The block device performs two write operations: the first operation
writes 100 KiB with an average seek; 100 KiB is the maximum size of a message due to the selected network
granularity. Then data is aggregated and, due to the sequential nature of the access pattern, subsequent
data can be written without seeks.

Detailed information about the accessed extents of I/O requests and the block device operations are pro-
vided in the info box window33.

Output of internal information In addition to the tracing, the simulator can output internal informa-
tion and statistics that have been acquired during the simulation. At run-time, the simulator prints the
mapping of applications to processes and the implementations which are used for simulating particular
commands. When a client terminates the model time is written to the console. This type of output allows
tracking of processing inside the simulator, it can be disabled.

Upon termination, basic information is provided: Current model time – that is the virtual program’s run-
time including deferred I/O activity, number of processed events and wall-clock time. Further, uncom-
pleted client activity and network operations are reported because any unfinished activity indicates a
problem: Either the application specification is erroneous and caused a deadlock, or the implementation
of a command in the simulator has a bug.

Additionally, individual components manage their own internal information which are available after the
simulation terminates. This information is provided in container classes – it can be serialized for output on
the console, or automatically analyzed. Currently, implemented components maintain statistical informa-
tion about the number of total operations and partition them into efficient and inefficient operations. By
providing an overview, a first assessment of the simulation run is possible without looking at simulation
traces.

An example output is provided in Listing 5.2. Collected internal information is just serialized to the con-
sole in this example: Clients track the numbers of commands executed, the refined disk model maintains

33See Page 199 for more information about the info box window.

253

PIOSIMHD – THE MPI-IO SIMULATOR 5.5

Figure 5.24.: Visualization of simulated I/O activity – one client writes 1 MB of data to one server. Due
to the write-behind mechanisms most data is written to disk while the client waits for the
completion of the flush operation.

Figure 5.25.: A zoom into the start phase of Figure 5.24.

254

5.6 CHAPTER SUMMARY

the number of performed operation, seeks performed and the total amount of accessed data. On the block
device three operations have been executed, one fast operation and two slow operations – a total of 1 MB of
data has been written. Simulation completed in 0.115 s (realTime) and execution of this experiment takes
0.0333 s on the virtual cluster (virtualTime).

Listing 5.2: Simulation output for the simple I/O experiment including internal information collected dur-
ing simulation.

Simulator simulate() Mon Jun 13 17:17:31 CEST 2011

0.000000000s GClientProcess <"0C" id=2>: uses Program: "Jacobi" alias: "Jacobi" rank 0

Methods for command: Fileopen in class: de.hd.pvs.piosim.simulator.program.FileOpen.BroadcastOpen

Methods for command: Bcast in class: de.hd.pvs.piosim.simulator.program.Bcast.PipedBlockwise

Methods for command: Filewrite in class: de.hd.pvs.piosim.simulator.program.Filewrite.FileWriteDirect

Methods for command: Fileclose in class: de.hd.pvs.piosim.simulator.program.FileClose.FlushClose

0.033286565s GClientProcess <"0C" id=2>: finished

GClientProcess "0C" id=2

Bcast 1 calls

Fileclose 1 calls

Filewrite 1 calls

Fileopen 1 calls

Barrier 3 calls

GRefinedDiskModel "ioIOSUBIBM" id=7 <#ops, noSeekAccesses, fastAccesses, slowAccesses, dataAccessed> =

→<3, 1, 0, 2, 1000000>

Simulation finished: 156 events

realTime: 0.115s

events/sec: 1356.5217391304348

virtualTime: 0.033286565s

virtualTime/realTime: 0.2894483913043478

5.6. Chapter Summary

In this chapter PIOsimHD, the Java discrete-event simulator for cluster systems, is introduced. Goal of PIOsimHD
is to assist researching MPI-IO for arbitrary systems, and to foster understanding of performance factors in
HPC.

Experiments with simulated hardware and application behavior can either be conducted by tracing existing MPI-
IO applications or by coding the actions directly in Java. Providing the appropriate level of detail for the sim-
ulation of application and system behavior is difficult. Therefore, PIOsimHD allows users to choose a level of
abstraction for hardware and software layers at execution time. Basic, simple to understand, models of network,
disk and CPU represent most relevant performance factors. Sophisticated models of hardware and software com-
ponents can be implemented as well. Model classes offered by PIOsimHD-Model represent a certain behavior and
hold the parameters for components and commands. Parameters of a component are used in a simulation class
that represents and implements behavior of the model class.

Simulation with PIOsimHD provides the freedom of constructing arbitrary system and application behavior:
Hardware components are interconnected with user-defined network topologies; the characteristics of components
can be parameterized at will. For inter-process communication, messages are partitioned into packets by the NIC.
Packet travel is controlled by a flow algorithm that ensures optimal utilization of the network. To utilize the links,
the flow model fills the bandwidth-delay-product of the wires per data stream and packets are never lost. Several
examples demonstrated how a realistic maximum network throughput is obtained.

A software model describes the execution of a parallel application: A process executes a sequence of commands;
each command is represented by a state machine which may trigger network operations and nested state machines.
The I/O model for the abstract parallel file system is analogous to PVFS client-server processing but focuses on data
transfer. A file system server contains a block device which is controlled by a cache layer. Several implementations
of the cache layer are introduced, they incorporate optimization strategies such as write-behind, aggregation and
scheduling of requests.

The current approach of assessing simulated behavior is discussed. To give a first impression of the simulation
result to the user, PIOsimHD outputs basic information on the command line and provides statistics of component

255

PIOSIMHD – THE MPI-IO SIMULATOR 5.6

activity. However, experiments conducted with the simulator can be also recorded for later analysis with Sunshot.
Depending on the desired level of detail, several types of client, server, and network activity can be recorded. With
this feature existing traces can be compared with the simulated behavior.

The abstract knowledge gained in this chapter is complemented by interesting internals of the simulator provided
in the next chapter.

256

Bibliography

[FLS+06] J. Flich, P. López, J. Sancho, A. Robles, and J. Duato. Improving InfiniBand Routing through
Multiple Virtual Networks. In Hans Zima, Kazuki Joe, Mitsuhisa Sato, Yoshiki Seo, and Masaaki
Shimasaki, editors, High Performance Computing, volume 2327 of Lecture Notes in Computer Sci-
ence, pages 363–368. Springer Berlin / Heidelberg, 2006.

[KKL12] Michael Kuhn, Julian Kunkel, and Thomas Ludwig. Simulation-Aided Performance Evaluation
of Server-Side Input/Output Optimizations. In Proceedings of the 20th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, PDP. Munich Network Manage-
ment Team, IEEE, 2012.

[Kun07] Julian Martin Kunkel. Towards Automatic Load Balancing of a Parallel File System with Subfile
Based Migration. Master’s thesis, Ruprecht-Karls-Universität Heidelberg, 08 2007.

[LM94] T. V. Lakshman and Upamanyu Madhow. Performance Analysis of Window-based Flow Control
Using TCP/IP: Effect of High Bandwidth-Delay Products and Random Loss. In Proceedings of the
IFIP TC6/WG6.4 Fifth International Conference on High Performance Networking V, pages 135–149,
Amsterdam, The Netherlands, The Netherlands, 1994. North-Holland Publishing Co.

[Zim80] H. Zimmermann. OSI Reference Model – The ISO Model of Architecture for Open Systems
Interconnection. Communications, IEEE Transactions on, 28(4):425–432, 1980.

257

Simulator Implementation

Chapter 6 VI

This chapter highlights selected aspects of the implementation and brings them into the context of the design.
Illustrating examples give an impression of model development and implementation, and of processes involved in
model selection and parameterization for an experiment. An exhausting documentation of all involved aspects
and interfaces has been omitted; it is documented by and inside the source code.

Model classes offer the parameters for the implementations of components and commands, this is demonstrated
for the RefinedDiskModel in Section 6.1. The implementation of a model is explained in Section 6.2 for the
SimpleDiskModel.

Implementations for the models are can be selected in configuration files. This allows the user to extend the
simulator and to evaluate various modules for the same model (see Section 6.3). Since selection of a model is very
important, the selection process and underlying file formats are discussed extensively.

In Section 6.4 code is listed that illustrates how to set up a cluster model and to configure the simulator to execute
a small experiment. This example demonstrates how to encode a model directly in Java.

Implementation and execution of commands on client-side is another aspect that demonstrates the extensibility
of the simulator. Section 6.5 documents the state machine implementations for two implementations of MPI_
Bcast().

6.1. Model Classes

Model classes are relatively simple containers for the data required during the simulation. Java annotations
constrain the content of fields. Correct usage is checked once the model is provided to the simulator.
Furthermore, the annotations are used for automatic serialization and deserialization of the model – Java
objects are converted to XML files.

The introspection and analysis of the field attributes is done in the implemented (de)serializing classes
via the Reflection API. Existing classes or frameworks such as java.beans.XMLEncoder or XStream1 have not
been used. The reason is that new attributes are not only used to serialize the models, but also to perform
elementary consistency checks. Furthermore, the attributes have been used in the former simulation GUI
to automatically display available parameters and restrict possible values.

A model implementation is exemplified for the RefinedDiskModel. The implementation is provided in
Listing 6.1. For convenience the base class BlockDevice is listed as well – the BlockDevice class inherits
from the BasicComponent class. The template parameter (Server) indicates that the parent component of
an I/O subsystem is of a Server class. The BasicComponent implements getObjectType() – this function
is required during the serialization process to know the component type. A model class (or its supertype)
must implement this function to return the name of the component type – such as BlockDevice.

The implementation of the RefinedDiskModel class is very simple. Parameters of the model are defined
as variables2. These variables are annotated with @Attribute to indicate that they are parameters for the
model. Additionally, values can be restricted with annotations. For example, the Epoch of trackToTrack-
SeekTime must defined and cannot be Null, therefore, it is annotated with @NotNull. RPM is constrained
by @NotNegativeOrZero, which checks that the value conforms to this condition. The class provides ac-
cessors for its parameters. To make sure that all values are assigned during the parameterization, values
are initialized with an invalid state.

1http://xstream.codehaus.org/
2Refer to Section 5.2.2 for a discussion of this model.

258

http://xstream.codehaus.org/

6.2 IMPLEMENTATION OF A COMPONENT

Listing 6.1: Excerpt of the model class for the RefinedDiskModel and its superclass
abstract public class BlockDevice extends BasicComponent<Server> {

public final String getObjectType() {

return BlockDevice.class.getSimpleName();

}

}

public class RefinedDiskModel extends BlockDevice {

/**

* Time needed to position the access arm to a neighbouring track:

* This is the minimum seek time.

*/

@Attribute

@NotNull

private Epoch trackToTrackSeekTime = Epoch.ZERO;

/**

* The average time needed to move the access arm to another track.

*/

@Attribute

@NotNull

private Epoch averageSeekTime = Epoch.ZERO;

/**

* Rotations per minute. It is used to calculate rotational latency.

*/

@Attribute

@NotNegativeOrZero

private int RPM = -1;

/**

* Sustained transfer rate of the disk, once the access arm is placed.

*/

@Attribute

@NotNegativeOrZero

private long sequentialTransferRate = -1;

[...]

/* Example accessors: get() and set() method of the RPM. */

public void setRPM(int rpm) {

RPM = rpm;

}

public int getRPM() {

return RPM;

}

...

6.2. Implementation of a Component

An implementation of a component accesses data stored in the corresponding model class. This is used to
parameterize the model. Since discrete-event simulation is used, the component must implement methods
to process events. Several superclasses are provided that provide an execution scheme, which simplifies

259

SIMULATOR IMPLEMENTATION 6.2

development of new component implementations. For example, classes derived from a SSequentialBlock-
ingComponent issue one job after another and schedule pending operations with FCFS strategy.

For a discussion of the concept, the implementation of the simple disk model is provided in Listing 6.2, this
class relies on the SSequentialBlockingComponent supperclass to dispatch I/O jobs. The implementation
of the SimpleDisk model is directly documented in the source code.

It is important to note that the SSequentialBlockingComponent class drives the dispatching of the events
and thus eases the implementation of components that execute jobs sequentially. Internally, the superclass
queues pending operations, and tries to dispatch a pending job whenever it is idle. The execution model
of a blocking component works as follows: When a job is dispatched for execution, the jobStarted()

method is called. Duration of the job is determined by the getProcessingTimeOfScheduledJob() method.
A blocking component queues an internal event when the job is considered to be finished and suspends
further operations. Once the model time matches the completion time of the job, this event reactivates the
component. The SSequentialBlockingComponent invokes the jobCompleted() function. After that, the
next pending operation is executed.

This little example just indicates the processing of very simple components. The processing schemes of
superclasses and, especially, the implementation of node component and client processes are complex.
Therefore, a description is out of the scope for this thesis.

Listing 6.2: Implementation of the simple disk model
// Implementation of a SimpleDisk model.

// The superclass defines a sequential execution model for pending operations.

// Template parameters for the superclass indicate the model (here SimpleDisk) and

// the type of work which is scheduled (here an IOJob).

// The IGIOBlockDevice interface must be implemented because it is used by the

→cache

// layer to communicate with the I/O subsystem

public class GSimpleDisk

extends SSequentialBlockingComponent <SimpleDisk, IOJob>

implements IGIOBlockDevice<SimpleDisk>

{

// Reference to the component which uses this disk.

// Whenever an I/O operation completes on the simulated block device, a method

// of the callback is invoked to inform the using component about the completion.

IBlockDeviceCaller callback;

// Some internal statistics about execution of operations

// are maintained during simulation:

// The total number of operations that have been dispatched.

int totalOperations = 0;

// The total amount of data that has been accessed.

long totalAmountOfData = 0;

// Set the callback, this method is declared in the IGBlockDevice interface.

// It is invoked when components are instantiated to represent the model.

@Override public void setIOCallback(IBlockDeviceCaller callback) {

this.callback = callback;

}

// Determine the processing time of an I/O job; declared (and used) in the

// SSequentialBlockingComponent class.

@Override protected Epoch getProcessingTimeOfScheduledJob(IOJob job) {

if(job.getOperationType() == IOOperationType.FLUSH){

// A flush finishes immediately.

260

6.2 IMPLEMENTATION OF A COMPONENT

return Epoch.ZERO;

}

// Compute the processing time with the model parameters for throughput and

// average access time from the SimpleDisk model. The size of the processed I/O

// job is needed.

final long accessedData = ((StreamIOOperation)

→job.getOperationData()).getSize();

return getModelComponent().getAvgAccessTime().add(

accessedData / (float) getModelComponent().getMaxThroughput()

);

}

// This method is invoked whenever a job is dispatched by the superclass.

@Override protected void jobStarted(Event<IOJob> event, Epoch startTime) {

// Start tracing of the I/O job; use a helper class which eases tracing

// for arbitrary block device implementations.

IOSubsytemHelper.traceIOStart(this, event.getEventData());

}

// This method is invoked by the SSequentialBlockingComponent class,

// when a job completes.

@Override protected void jobCompleted(Event<IOJob> event, Epoch endTime) {

// Access the actual IOJob from the event.

IOJob job = event.getEventData();

// End the tracing of the I/O job.

IOSubsytemHelper.traceIOEnd(this, job);

// Update the statistics.

totalOperations++;

switch(job.getOperationType()){

case READ:

case WRITE:

totalAmountOfData += ((StreamIOOperation) job.getOperationData()).getSize();

}

// Notify the callee of the I/O subsystem about the completion of the I/O job.

callback.IOComplete(endTime, job);

}

// A cache layer invokes this method to submit a new IOJob.

// This method is declared in the IGIOBlockDevice interface.

@Override public void startNewIO(IOJob job) {

// The current model time.

Epoch time = getSimulator().getVirtualTime();

// Add a new event to this component which should be executed ASAP.

// The SSequentialBlockingComponent will queue this event for future execution

// if it is currently busy.

addNewEvent(new Event<IOJob>(this, this, time, job, null));

// Try to actually start a pending operation;

// this call is implemented in the SSequentialBlockingComponent superclass.

startNextPendingEventIfPossible(time);

}

// This method is called by the simulator, when simulation finishes.

// It is declared in the base class for a simulated component.

// Normally, the method checks that the internal state of this component is

→clean,

261

SIMULATOR IMPLEMENTATION 6.3

// that means no further operations are pending, which would indicate a bug in

// the simulator. But here this method is stretched to output data.

@Override public void simulationFinished() {

// Some statistics are output for the purpose of demonstration.

// In general, this should be done by implementing getComponentInformation()

// because that allows automatic processing and analysis of the collected data.

System.out.println("BlockDevice�" + getIdentifier() +

"�<#ops,dataAccessed>�=�<" + totalOperations + ",�" + totalAmountOfData+">");

}

}

6.3. Dynamic Selection of Implementations

The simulator core offers capabilities to select an implementation for a component model, such as the Sim-
pleDisk model, and for each command type. By using the Java Reflection API, the simulator instantiates
selected classes at run-time (on demand). Therewith, an easy extension of currently implemented models
is possible. An alternative implementation can be provided outside of the packet namespace used in this
dissertation3. Also, intercomparison of implementations can be done without changing the model. In Sec-
tion 6.3.1 the selection of an alternative component implementation is discussed. Choosing a command
implementation is detailed in Section 6.3.2.

Additionally, a configuration file defines the mapping of HDTrace information to commands. Therewith,
trace entries can be excluded from a simulation run by modifying the mapping. This is described in
Section 6.3.3.

6.3.1. Adjusting Model Implementations

In the cluster model each component can have its own model class. For instance, one I/O server can use
the SimpleDisk model class, while another uses the RefinedDiskModel. The implementing class of a model
uses the data provided in the model class as parameters.

The implementations for model classes can be chosen before the simulator is run. The mapping of a
model class to an implementation is encoded in a simple text file which is read during simulator startup.
One simulation class can be chosen per model class; the selected mapping is fixed during simulation. At
run-time the simulator instantiates the chosen implementations for all components that use the imple-
mentation. In our example, one implementation can be chosen for all SimpleDisk models and one for all
RefinedDiskModel models. Consequently, existing models and contained parameters can be re-used and
evaluated with alternative implementations without the need to replicate or modify the model.

An excerpt of the file is provided in Listing 6.3: For each of the component types such as a Server or a
BlockDevice, a section starting with “+” contains a list of all model classes implementing the component
type, and the mapping to the implementation. Elements are listed with the canonical class name 4, followed
by the canonical class name of the implementation that is used for simulation. For example, it can be seen
that the Server component is currently implemented by the class GSimpleServer. There are several cache
layers available; an implementation is provided for each of them.

Listing 6.3: Mapping from model components to simulator implementations. Excerpt of the file Model-

ToSimulationMapper.txt.
+Server

de.hd.pvs.piosim.model.components.Server.Server =

→de.hd.pvs.piosim.simulator.components.Server.GSimpleServer

3The packet namespace that has been used for all developed components is de.hd.pvs.piosim.
4The canonical class name includes the fully qualified packet name and class name.

262

6.3 DYNAMIC SELECTION OF IMPLEMENTATIONS

+Router

de.hd.pvs.piosim.model.components.Router.Router =

→de.hd.pvs.piosim.simulator.components.Router.GRouter

+ServerCacheLayer

de.hd.pvs.piosim.model.components.ServerCacheLayer.NoCache =

→de.hd.pvs.piosim.simulator.components.ServerCacheLayer.GNoCache

de.hd.pvs.piosim.model.components.ServerCacheLayer.SimpleWriteBehindCache =

→de.hd.pvs.piosim.simulator.components.ServerCacheLayer.GSimpleWriteBehind

de.hd.pvs.piosim.model.components.ServerCacheLayer.AggregationCache =

→de.hd.pvs.piosim.simulator.components.ServerCacheLayer.GAggregationCache

[...]

6.3.2. Changing Command Implementations

Similar to model classes of hardware components, the parameters of a command are specified in a model as
well, also XML serialization follows the same rules. Mapping from the model of a given command to an im-
plementation is selected in another text file. Additionally, the implementations of the command types can
be set in Java, too, making it possible to evaluate alternative command implementations automatically.

An excerpt of the mapping by the file is given in Listing 6.4. For each command, such as an MPI_Barrier(),
the file contains a list with all available implementations. The goal of this list is to allow a user to query
available implementations.

The list for a command is started with the canonical class name of the command model prefixed by a
“+”. All the consecutive lines are potential implementations. For example, a barrier command could do
nothing, or it could be implemented by doing a virtual barrier5. Currently, two other implementations are
provided.

When multiple commands are related to each other thus requiring matching implementations, a group
has to be defined. For example, MPI_Send(), MPI_Recv() and MPI_Sendrecv() depend on each other.
Consequently, they are defined as a group, ensuring matching implementations.

By default the simulator takes the last implementation in the list to implement the command, however,
a user can override this behavior in the model XML, or upon startup of the simulator. It is very easy
to integrate new commands or implementations for existing ones by adding the appropriate lines to the
file.

Usually, it does not make sense to pick different implementations for a command on different processes
since processing and communication in distinct implementations follow their own protocol. Imagine com-
bining a dummy MPI_Barrier() implementation which does not send any message with another imple-
mentation sending messages for synchronization – obviously, this will lead to a deadlock. Therefore, for
each command one implementation is used during the whole simulation and across all client processes.
There is one exception to this rule – a command can invoke arbitrary implementations in nested com-
mands.

NoOperation and Compute operations are internal operations. The first does not do anything; all unknown
trace entries are mapped to this command type. The latter deals with the computational time in the
application: When an XML trace is loaded, computation jobs are forged in the simulator to fill the gaps
between consecutive trace entries. This is necessary because the MPIWrapper does not record compute
jobs explicitly. The number of cycles of a job depends on the time passed between the two trace jobs and
the speed of CPU that created the trace; this information is provided in the trace header. For example, if

5This is a barrier which continues when all clients started it without triggering any network activity.

263

SIMULATOR IMPLEMENTATION 6.3

the first trace entry ends at t=1.0 s and the second trace entry starts at 2.0 s, then a compute job is created
that needs exactly one second.

With the extension introduced on Page 197, an explicit recording of compute jobs is possible. This could
include passed cycles accurately. Hence, computation could be simulated better. Yet, these extensions are
not utilized in the simulator 6.

Listing 6.4: Mapping from model commands to simulator implementations. Excerpt of the file Command-

ToSimulationMapper.txt.
Define command groups and mapping from models to simulator implementations.

Each section defines a command (or a set of commands), which is then

implemented by several following classes.

All undefined operations are mapped to NoOperation, which also needs an

→implementation.

+NoOperation

de.hd.pvs.piosim.simulator.program.Global.NoOperation

Implementation for a compute job, a job can do nothing or just pass time

→(cycles).

+Compute

de.hd.pvs.piosim.simulator.program.Global.NoOperation

de.hd.pvs.piosim.simulator.program.Compute.Time

Define a group for MPI_Send, MPI_Recv and MPI_Sendrecv.

+de.hd.pvs.piosim.model.program.commands.Send,

→de.hd.pvs.piosim.model.program.commands.Recv,

→de.hd.pvs.piosim.model.program.commands.Sendrecv

Either implement all three with NoOperation.

de.hd.pvs.piosim.simulator.program.Global.NoOperation,

→de.hd.pvs.piosim.simulator.program.Global.NoOperation,

→de.hd.pvs.piosim.simulator.program.Global.NoOperation

Or with a rendezvous implementation.

de.hd.pvs.piosim.simulator.program.SendReceive.Rendezvous.RendezvousSend,

→de.hd.pvs.piosim.simulator.program.SendReceive.Rendezvous.RendezvousRcv,

→de.hd.pvs.piosim.simulator.program.SendReceive.Rendezvous.RendezvousSendrecv

The MPI_Barrier command is implemented with several alternatives.

+de.hd.pvs.piosim.model.program.commands.Barrier

de.hd.pvs.piosim.simulator.program.Global.NoOperation

de.hd.pvs.piosim.simulator.program.Global.VirtualSync

de.hd.pvs.piosim.simulator.program.Barrier.Direct

de.hd.pvs.piosim.simulator.program.Barrier.BinaryTree

[...]

+de.hd.pvs.piosim.model.program.commands.Filereadall

de.hd.pvs.piosim.simulator.program.Global.NoOperation

de.hd.pvs.piosim.simulator.program.Filereadall.Direct

de.hd.pvs.piosim.simulator.program.Filereadall.TwoPhase

de.hd.pvs.piosim.simulator.program.Filereadall.ContiguousTwoPhase

[...]

+de.hd.pvs.piosim.model.program.commands.Bcast

de.hd.pvs.piosim.simulator.program.Global.NoOperation

de.hd.pvs.piosim.simulator.program.Global.VirtualSync

de.hd.pvs.piosim.simulator.program.Bcast.BroadcastScatterGatherallMPICH2

6Refer to Section 197 for a discussion of the issues with the implementation.

264

6.4 DEFINING AN APPLICATION AND SYSTEM MODEL IN JAVA

de.hd.pvs.piosim.simulator.program.Bcast.BinaryTreeSimple

de.hd.pvs.piosim.simulator.program.Bcast.BinaryTree

de.hd.pvs.piosim.simulator.program.Bcast.BinaryTreeMultiplex

de.hd.pvs.piosim.simulator.program.Bcast.BroadcastScatterGatherall

de.hd.pvs.piosim.simulator.program.Bcast.BroadcastScatterBarrierGatherall

de.hd.pvs.piosim.simulator.program.Bcast.BinaryTreeSimpleBlockwise

de.hd.pvs.piosim.simulator.program.Bcast.PipedBlockwise

6.3.3. Mapping Trace Entries to Command Models

When trace files are read, individual trace entries (state names) of the trace file must be mapped to
command models that should keep the information (these are defined in the CommandToSimulationMap-

per.txt). A text file defines the interpretation of a state name; an excerpt of this mapping is listed in 6.5.
A comma separated list specifies XML state names which are mapped to the command model following
the colon. For example, an MPI_Init() is mapped to the GlobalSync implementation, which is basically a
barrier across MPI_COMM_WORLD. If the name of the state name and the implementation are identical, the
state name can be omitted. Most operations follow this one to one mapping. However, I/O operations are
renamed in the simulator, also variants of one operation such as MPI_File_write() and MPI_File_write_

at() are mapped to one model class. This mapping also shows the currently supported MPI functions.

Listing 6.5: Mapping from trace states to command models. Excerpt of the file TraceEntryNameToCom-

mandMapper.txt.
Init,Finalize:GlobalSync

:Send

:Recv

:Sendrecv

:Wait

:Allreduce

:Allgather

:Barrier

:Reduce

:Gather

:Bcast

:ReduceScatter

:Scatter

File_set_view:Filesetview

File_open:Fileopen

File_close:Fileclose

File_read,File_read_at:Fileread

File_write,File_write_at:Filewrite

File_read_all,File_read_all_at:Filereadall

File_write_all,File_write_all_at:Filewriteall

6.4. Defining an Application and System Model in Java

PIOsimHD supports conducting experiments with recorded trace files, but also building a model directly
in Java7. Actually, it is also possible to create the system model in Java and then load trace files for some,
or all applications.

Several builder classes assist in building a model on the fly. This is supported by a template library which
can duplicate components, and classes which can create primitive SMP and cluster topologies with a cen-

7For further information refer to the description of the workflow in Section 5.5.

265

SIMULATOR IMPLEMENTATION 6.4

tral switch. Those classes could also be adjusted to build arbitrary systems. After a model is built it can
also be exported to XML.

Example code to build and run the experiment is demonstrated for the flow experiment that is discussed
in Section 5.3.2 on Page 230. The code to set up a sequence of commands in the application model and
to run the simulation is provided in Listing 6.6. Code to build the underlying cluster model is given in
Listing 6.7. To ease model creation, templates are defined and instantiated in the code. Since the example
is well documented, further code discussion is omitted.

When the simulator completes execution, the internal run-time information of the components is printed
on the command line. Additionally, the code activates tracing, so traces including a project file, are written
at run-time. A visualization of executing this program is provided in Section 5.5.3 (Page 250); the output
of the internal run-time information is shown on Page 252.

Listing 6.6: Java code to construct a simulation experiment in Java by using builder classes. In this example
one process sends data to another process.

public class ModelTest{

public void runTest(){

// Create the model builder and a single network topology.

ModelBuilder mb = new ModelBuilder();

INetworkTopology topology = mb.createTopology("LAN");

// Chose a routing algorithm for the network topology.

PaketRoutingAlgorithm routingAlgorithm = new PaketFirstRoute();

topology.setRoutingAlgorithm(routingAlgorithm);

// Create the system model here, see the code snippet in Listing 6.7

createSystemModel(mb);

// Helper class to ease building of applications.

// Each ApplicationBuilder is responsible for a single application.

// Prepare an application with three processes.

ApplicationBuilder aB = new ApplicationBuilder("flowExample", "Application�
→illustrating�data�flow", 3, 1);

// Create a program builder which assists in application model building.

ProgramBuilder pb = new ProgramBuilder(aB.getApplication());

// Use the created application in the system model.

// The mapping is defined in the system model:

// Every client provides a String which sets the application and the rank to use.

mb.setApplication("flowExample", aB.getApplication());

// Set up the sequence of commands to execute:

// Rank 0 sends a message with 1000 KiB of data to process 3.

pb.addSend(world, 0, 3, 1000*KiB, 0);

// Process 3 receives data from process 0 that matches tag 0.

pb.addRecv(world, 0, 3, 0);

// Add a barrier at the end of the processing.

pb.addBarrier(world);

// Configure the global model.

// Adjust the eager size of MPI send/receive.

mb.getGlobalSettings().setMaxEagerSendSize(1000 * MiB);

// Set up parameters for the execution.

RunParameters parameters = new RunParameters();

parameters.setTraceEnabled(true);

parameters.setTraceInternals(true); // Trace communication details.

266

6.4 DEFINING AN APPLICATION AND SYSTEM MODEL IN JAVA

parameters.setTraceFile("/tmp/three");

Simulator sim = new Simulator();

// Initialize the model; this creates entities based on system model and

→configuration.

sim.initModel(mb.getModel(), parameters);

// Run the simulation. Results are stored in the simRes object.

SimulationResults simRes = sim.simulate();

// Write the internal run-time information of all components to standard out.

// For this purpose, a serializer is provided that writes all information to a

→String.

SimulationResultSerializer serializer = new SimulationResultSerializer();

System.out.println(serializer.serializeResults(simRes));

// An automatic analysis of the output could be implemented here, too...

}

Listing 6.7: Java code to set up a cluster model with the builder classes. In this example a cluster model for
the flow example of Page 5.3.2 is created.

public void createSystemModel(Modelbuilder mb){

// Instantiate objects that are later used as templates.

final Node node = new Node();

final NIC nic = new NIC();

final StoreForwardNode fastNode = new StoreForwardNode();

final SimpleNetworkEdge fastEdge = new SimpleNetworkEdge();

final SimpleNetworkEdge slowEdge = new SimpleNetworkEdge();

// Set model properties.

nic.setTotalBandwidth(100*GBYTE);

nic.setName("nic");

node.setName("node");

node.setInstructionsPerSecond(1000000000);

node.setCPUs(1);

node.setMemorySize(GBYTE);

fastNode.setName("fastNode");

fastNode.setTotalBandwidth(100*GBYTE);

fastEdge.setName("fastEdge");

fastEdge.setLatency(new Epoch(0.001));

fastEdge.setBandwidth(100*MiB);

slowEdge.setName("slowEdge");

slowEdge.setLatency(new Epoch(0.1));

slowEdge.setBandwidth(10*MiB);

// Add the instances to the template library.

mb.addTemplateIf(node);

mb.addTemplateIf(nic);

mb.addTemplateIf(fastNode);

mb.addTemplateIf(fastEdge);

mb.addTemplateIf(slowEdge);

// Create the central node by cloning the template.

// Therewith, instances of the model objects are created that have the same

267

SIMULATOR IMPLEMENTATION 6.4

→parameters.

// New instances can be created by referring to the template object, or

// by using the name of a template.

final NetworkNode nodeInner = mb.cloneFromTemplate(fastNode);

nodeInner.setName("node");

// Add the node to the system model.

mb.addNetworkNode(nodeInner);

// Create nodeToY from the same template.

final NetworkNode nodeToY = mb.cloneFromTemplate(fastNode);

nodeToY.setName("nodeToY");

mb.addNetworkNode(nodeToY);

// Create the interconnect between the inner nodes.

// Instantiate edges for incoming and outgoing data transfer.

NetworkEdge e1 = mb.cloneFromTemplate(fastEdge);

NetworkEdge e2 = mb.cloneFromTemplate(fastEdge);

// Connect the edges with the nodes in the topology.

mb.connect(topology, nodeInner, e1, nodeToY);

mb.connect(topology, nodeToY, e2, nodeInner);

// Add all clients and interconnect them.

// An array encodes the processes’ names.

final String [] names = {"A", "B", "C", "Y", "Z"};

for(int i=0; i < names.length; i++){

NIC clientNIC = mb.cloneFromTemplate(nic);

clientNIC.setName(names[i]);

final ClientProcess clientProc = new ClientProcess();

clientProc.setName("C" + names[i]);

// Set the rank and application.

clientProc.setRank(i);

clientProc.setApplication("flowExample");

// Assign the NIC.

clientProc.setNetworkInterface(clientNIC);

// Instantiate the node.

final Node node = mb.cloneFromTemplate(node);

node.setName("N" + names[i]);

mb.addNode(node);

// Add the client to the node.

mb.addClient(node, clientProc);

// Interconnect the nodes, node Y is treated differently.

if(i != 3){

// Interconnect via the central network node.

e1 = mb.cloneFromTemplate(fastEdge);

e2 = mb.cloneFromTemplate(fastEdge);

mb.connect(topology, clientNIC, e1, nodeA);

mb.connect(topology, nodeA, e2, clientNIC);

}else{

// Interconnect node Y.

e1 = mb.cloneFromTemplate(slowEdge);

e2 = mb.cloneFromTemplate(slowEdge);

mb.connect(topology, clientNIC, e1, nodeToY);

mb.connect(topology, nodeToY, e2, clientNIC);

}

268

6.5 IMPLEMENTATION AND EXECUTION OF COMMANDS

}

}

6.5. Implementation and Execution of Commands

The implementation of commands is demonstrated with a few examples. Additionally, this illustrates the
concept of state machine execution8.

First, the implementation of MPI_Allreduce() that calls MPI_Reduce() followed by an MPI_Bcast() is
shown in Listing 6.89. Implementations are sublasses of CommandImplementation – a template parameter
specifies the model of the command realized.

The processing of an operation using the state machine concept is encoded in the process() method.
Arguments to the command, e.g., communicator and data size, are part of the model instance (here cmd).
Instructions on how to proceed with the state machine must be stored in the ICommandProcessing object
passed to process().

The step encodes the current state of the state machine. Our example state machine has two states which
are executed on all clients. An implementation can define arbitrary operations for each state and the next
step to proceed. When a new command is executed, the step number is set to CommandProcessing.STEP_

START. A command is considered to be finished when the state CommandProcessing.STEP_COMPLETED is
reached.

In the example, nested operations are started by creating a new command and then calling invokeChild-

Operation(). The first parameter to this function is the command to submit, the next is the state to which
the state machine should transit when the nested operation completes. With the last parameter, a specific
implementation for the command can be selected; even if another one is chosen in the global description
of the experiment it can be overridden for the execution of this single command.

Before a state is executed, the number of CPU cycles for processing this state are fetched by calling
getInstructionCount(). Since no extra computation has to be simulated in the example, the default
value of 1 cycle is returned.

Listing 6.8: Java code of the MPI_Allreduce() implementation which calls MPI_Reduce() followed by MPI_

Bcast()

// This implementation performs a reduce operation followed by a broadcast.

public class ReduceBroadcast extends CommandImplementation <Allreduce >{

@Override public void process(Allreduce cmd, ICommandProcessing OUTresults,

GClientProcess client, long step, NetworkJobs compNetJobs){

if (cmd.getCommunicator().getSize() == 1){

// Only one process in the communicator.

// Consequently, we have no data to broadcast and we can complete.

return;

}

// We need two states: The first state is STEP_START,

// the second state is called BROADCAST.

// A step with this value indicates that the previous reduce operation has

→completed.

final int BROADCAST = 2;

// Distinguish the two states of this state machine.

if (step == CommandProcessing.STEP_START){

8Details about the abstract execution concept of client operations is provided in Section 5.4.1.
9Background information about this naive implementation is provided on Page 235.

269

SIMULATOR IMPLEMENTATION 6.5

// Create a reduce operation to reduce data to root of the

→communicator.

Reduce reduce = new Reduce();

reduce.setCommunicator(cmd.getCommunicator());

reduce.setSize(cmd.getSize());

reduce.setRootRank(0);

// When the reduce completed, transit to the state BROADCAST.

// The simulator will use the global broadcast implemenation.

OUTresults.invokeChildOperation(reduce, BROADCAST, null);

}else if(step == BROADCAST){

// Initiate a broadcast from root.

Bcast bc = new Bcast();

bc.setCommunicator(cmd.getCommunicator());

bc.setSize(cmd.getSize());

bc.setRootRank(0);

// Once the operation completes, finish the state machine.

OUTresults.invokeChildOperation(bc, CommandProcessing.STEP_COMPLETED,

→null);

}

}

// This function provides the number of instructions required to process each

→step

// of the state machine. Since the actual computation is encoded in

→MPI_Reduce, no

// additional computation is required.

@Override

public long getInstructionCount(Allreduce cmd, GClientProcess client, long

→step) {

return 1;

}

}

Pipelined broadcast implementation Now, a more sophisticated implementation of MPI_Bcast() is
discussed. Actually, this broadcast might be invoked as a child operation from the previously discussed
ReduceBroadcast implementation.

The PipedBlockwise broadcast implementation builds a pipeline between processes of the communicator;
the root process sends data to Rank 1 which sends data to Rank 2 and so on. Data is fragmented into
smaller packets to allow pipelining, transfer on a node is started once the first packet is received. The
implementation assumes the first packet can be buffered on the receiver side. Before the second packet of
data is sent, a process waits for notification from its successor indicating that it is ready to receive further
data; this happens when the successor actually invokes MPI_Bcast() with the same communicator. This
implementation prevents that a late starter is overwhelmed by incoming data.

An estimate for the time costs of this implementation is given in equation 6.1. Throughput and latency
characterize the network components that process a packet, and the time packets travel across connections.
In the equation the variable path contains all network components of the route which the packets travel,
i.e., the network edges and nodes involved while the packet is sent from Rank 0 to Rank 1, then from
Rank 1 to Rank 2 and so forth. The count function defines how often a component is used in the pipeline’s
path as the throughput of a component is multiplexed among all streams. If no congestion happens and
all processes start at the same time, then this formal estimate should be close to practice.

270

6.5 IMPLEMENTATION AND EXECUTION OF COMMANDS

t =
∑

c∈path
latency(c) +

splitSize
minc∈path throughput(c)/count(c)

(6.1)

Code implementing the pipelined variant is listed in Listing 6.9. Since the simulator and the tracing
primarily operate with the global rank, the extended class CommandImplementationWithCommunicator-

LocalRanksRemapRoot remaps a global rank into local ranks, simplifying implementations of collective
commands which follow a one-to-many or many-to-one operation. In those schemes, one process is spe-
cial, this class translates the ranks in such way that the implementation can always assume Rank 0 refers
to the dedicated source or target rank. Currently, the method getLocalRankExchangeRoot() is used when
network operations are issued, it maps a potentially remapped rank back to the real rank10.

This state machine is more complicated than the previous one, it encodes the current progress of the
pipeline in the step number; the step number represents the number of blocks which have been transferred.
Three types of processes can be distinguished: The root process transmits data to the first process, the last
process just receives data and intermediate processes receive and transmit data. To communicate with
other processes, the methods addNetSend() or addNetReceive() are invoked which queue a request on
the NIC. Note that no real data is sent, the network message is just characterized by its size. Messages
received from other clients are provided in the compNetJobs data structure and can be inspected. In this
implementation, data of the first receive is sent to the next process in the pipeline. An MPI header is
attached to each message to to simulate additional MPI overhead. The state machine will not proceed to
the next step before all message jobs are completed.

Listing 6.9: Java code of the pipelined MPI_Bcast() implementation. Data is transferred in blocks of
splitSize.

public class PipedBlockwise extends

→CommandImplementationWithCommunicatorLocalRanksRemapRoot <Bcast>{

// Define the packet size for fragmenting messages.

final long splitSize = 1 * 1024*1024;

// Size of the packet message headers.

final int msgHeader = 20;

// Tags used in communication. They are normally used to distinguish ready

// messages and data, in this case they are just used to increase readability.

final int READY_TAG = 5;

final int DATA_TAG = 30;

// Return the special rank which will be mapped to Rank 0 by the superclass.

@Override public int getSingleTargetWorldRank(Bcast cmd) {

return cmd.getRootRank();

}

// This method is a variant of the previously mentioned process() method.

// In addition to process(), it takes the remapped rank in the communicator and

// the rank of the root process as arguments.

// The activity of each process and its steps is listed separately; while this

// approach leads to more code, each of the states can be coded independently.

@Override public void processWithLocalRanks(Bcast cmd, ICommandProcessingMapped

→OUTresults, Communicator comm, int clientRankInComm , int rootRank,

→GClientProcess client, long step, NetworkJobs compNetJobs){

if (cmd.getCommunicator().getSize() == 1){

// No peer to broadcast data to.

10It would be possible to overload the addNetSend() and addNetReceive() calls to get rid of this requirement – this is future
work.

271

SIMULATOR IMPLEMENTATION 6.5

return;

}

if(clientRankInComm == 0){

// Rank 0 starts the pipeline.

// Amount of data which remains to be sent.

final long dataRemains = cmd.getSize() - (splitSize * step);

// Variable that keeps the amount of data to send in this step.

long amountToTransfer;

// Determine amount of data to send

if (dataRemains > splitSize){

// Another block of data must be transmitted.

OUTresults.setNextStep(step + 1);

amountToTransfer = splitSize;

}else{

// This is the last block to transmit.

OUTresults.setNextStep(CommandProcessing.STEP_COMPLETED);

amountToTransfer = dataRemains;

}

// Each message adds a small message header.

IMessageUserData data = new NetworkSimpleData(amountToTransfer + msgHeader);

// The rank to send data to, which is the remapped rank 1.

int targetRank = getLocalRankExchangeRoot(rootRank, 1);

// Send the first packet without waiting for a notification.

OUTresults.addNetSend(targetRank, data, DATA_TAG, cmd.getCommunicator());

if(step == 0){

// Wait for an acceptance notification from the other rank to prevent

// sending of messages which are not yet ready to be received.

OUTresults.addNetReceive(targetRank, READY_TAG, comm);

}

}else if(clientRankInComm == (comm.getSize() - 1)){

// The last rank only accepts packets.

if(step == 0){

// Announce to be ready to the previous rank.

OUTresults.addNetSend(

getLocalRankExchangeRoot(rootRank, clientRankInComm -1),

new NetworkSimpleData(msgHeader), READY_TAG, cmd.getCommunicator());

}

// The number of iterations to run before all data is received.

// The number of steps is equal to the number of blocks to transmit.

final int stepsToPerfom = (int)((cmd.getSize() - 1)/splitSize);

// Decide if more data must be accepted.

if(step < stepsToPerfom){

OUTresults.setNextStep(step + 1);

}else{

// This is the last iteration.

OUTresults.setNextStep(CommandProcessing.STEP_COMPLETED);

}

// Post a receive operation to receive data from the previous rank.

OUTresults.addNetReceive(

272

6.5 IMPLEMENTATION AND EXECUTION OF COMMANDS

getLocalRankExchangeRoot(rootRank, clientRankInComm -1),

DATA_TAG, cmd.getCommunicator());

}else { ////////////////////////////////

// A rank which receives and forwards data.

if(step == 0){

OUTresults.setNextStep(1);

// Post an operation to receive the first packet from the previous rank.

OUTresults.addNetReceive(

getLocalRankExchangeRoot(rootRank, clientRankInComm -1),

DATA_TAG, cmd.getCommunicator());

// Announce to be ready to the previous rank.

OUTresults.addNetSend(

getLocalRankExchangeRoot(rootRank, clientRankInComm -1),

new NetworkSimpleData(msgHeader), READY_TAG, cmd.getCommunicator());

// Wait for the next process to be ready before starting data transfer.

OUTresults.addNetReceive(

getLocalRankExchangeRoot(rootRank,clientRankInComm+1),

READY_TAG, cmd.getCommunicator());

return;

}

assert(step != 0);

// The number of steps to perform adds one step for the initial receive.

final int stepsToPerfom = (int)((cmd.getSize() - 1)/splitSize) + 1;

// Only receive data from the previous rank.

if(step < stepsToPerfom){

OUTresults.setNextStep(step + 1); // Receive again.

// Post a receive operation to access data from the previous rank.

OUTresults.addNetReceive(

getLocalRankExchangeRoot(rootRank, clientRankInComm - 1),

DATA_TAG, cmd.getCommunicator());

}else{

OUTresults.setNextStep(CommandProcessing.STEP_COMPLETED);

}

// Pass received data to the next process by just forwarding

// received message content.

final IMessageUserData data = compNetJobs.getResponses()[0].getJobData();

int targetRank = clientRankInComm + 1 ;

OUTresults.addNetSend(getLocalRankExchangeRoot(rootRank, targetRank), data,

DATA_TAG, cmd.getCommunicator());

} // End of the block for an intermediate rank.

} // End of process().

}

From the perspective of a client, this pipeline involves one sending and one receiving process, so one
stream of data is processed. Assume a developer intends to write an algorithm in which data streams are
processed independently at the same time – for example, to allow an independent communication with
different file servers. To implement such a scheme, first it is necessary to implement a streamed point-

273

SIMULATOR IMPLEMENTATION 6.6

to-point connection (like in the example above). Another state machine could instantiate this command
for every communication partner and all commands can be spawned as nested operations. Then the state
machine executes every nested state machine independently, once all children completed, the parent state
machine proceeds.

Visualization of the pipelined broadcast A screenshot showing the execution of a pipelined broadcast
on a homogeneous cluster configuration is shown in Figure 6.1: Three processes join a broadcast of 10 MiB
of data, that means the pipelined broadcast transfers 10 blocks of data. Activity on the switch and the
processes illustrate the pipelined character; pipeline startup happens quickly and outgoing edges of the
switch are busy transferring data.

Interestingly, Rank 1 needs more time to receive a packet from Rank 0 than to pass it on to Rank 2. A
similar fast transmission is observable for the first packet of Rank 0. This is no mistake, the behavior is
caused by the flow protocol: The model of a compute node adds several internal network nodes to permit
faster intra-node communication. Since each network component buffers at least one network packet, the
network topology can hold multiple packets. A packet that is submitted to the NIC requires additional time
to arrive at its target because of the latencies along the way. Therefore, forwarding of previously received
data happens a bit quicker than receiving data for the next step. In a real system such a behavior could
manifest as well because in many cases network streams are buffered by the OS (or by the NIC). Therefore,
it is realistic that completion of a data transfer is announced before data is completely received11.

By inspecting the behavior in Sunshot the correct operation of the implementation could be verified. For
this example, communication pattern and the amount of data transferred matches the expected behavior
of the pipelined implementation.

6.6. Chapter Summary

To provide insight into the implementation of the simulator, selected aspects of the implementation are discussed in
this chapter. This includes creation and implementation of the cluster and application model that are executed.

Model classes represent components and commands; they are containers that encapsulate necessary parameters.
The simulator provides an implementation class for every model and uses parameters supplied by the model
class. This is illustrated by the class for the RefinedDiskModel model. Java annotations support automatic
(de)serialization of parameters to/from XML. Additionally, these annotations are used to perform an automatic
model check. Code for the SimpleDisk implementation demonstrates creation of a new component by using such a
model. This process is simplified by using a superclass that processes issued operations with the FCFS strategy.

At run-time, the simulator loads a mapping that defines the implementations responsible for the corresponding
component models. Implementations for commands can be adjusted similarly and, further, the mapping from
trace entries to commands can be changed. Selection of the implementations is done by adjusting text files.
Therewith, different (MPI) command implementations can be compared without changing the model. Command
implementations can be changed directly in the model or Java as well.

Preparation and execution of a model are demonstrated for the flow example; in this process system model and
application commands to execute are defined. An alternative way to coding applications in Java is the instrumen-
tation of an MPI program to automatically create traces that can be loaded by the simulator.

Two examples for an implementation of a command illustrate internal processing and state machine concept:
An MPI_Allreduce() implementation is realized with a nested call to MPI_Reduce() and MPI_Bcast(). An
implementation of a broadcast exemplifies the programming of complex algorithms and their state machines.

In the next chapter, the model for our cluster is built, validated and experiments with the simulator are con-
ducted.

11The amount of data that can be buffered is expected to be different, though.

274

6.6 CHAPTER SUMMARY

Figure 6.1.: Visualization of the pipelined broadcast implementation. 10 MiB of data is broadcasted to two
processes resulting in 10 transfers of 1 MiB each. The upper process is the root process sending
blocks of data, the center process forwards data to the last process which just receives data.

275

Evaluation

Chapter 7 VII

A thorough evaluation of the HDTrace environment requires an assessment of the non-functional requirement of
performant code. Therefore, the overhead of HDTrace and the suitability of PIOsimHD to estimate performance
for large cluster systems is evaluated. Overhead in terms of computation time and storage space is briefly discussed
in Section 7.1. Performance and scalability of PIOsimHD is assessed in Section 7.2.

Validation of the model and a correct implementation of it is very important to provide sufficient simulation
accuracy. To validate the results, model parameters must be identified. Compared to the real system the mod-
els introduced in Section 5 are rather simple and can be parameterized with just a few characteristics. Still,
these representative characteristics must be determined. The conceptual model is adjusted and parameterized in
Section 7.3 to represent the experimental cluster that has been introduced in Chapter 3.

The characterization of our system presented in Chapter 3 has multiple roles during the evaluation. First, the
average performance measurements are used to parameterize the model. Second, several performance results act
as a reference during the validation process. Finally, the measurements put expectations for exact simulation into
perspective: The complex performance behavior of individual operations showed the difficulty in analyzing, char-
acterizing and infeasibility of capturing all relevant aspects in a model. A consequence of the revealed behavior
is the need for a detailed analysis of the implemented models. Also, it shows that it is insufficient to compare the
average performance of simulation and observation. To assess overall correctness and behavior of individual oper-
ations, a visual inspection and comparison of trace files and simulation results is performed during the validation.
This also helps localizing reasons for diverging simulation results.

After the parameterization, in Section 7.4 a qualification of analytical model is performed by comparing measured
results for simple experiments with estimated performance. Therefore, the simulator’s model is simplified to
analytical models, which can estimate performance for a subset of experiments. The simulator cannot do better
than the underlying model, therefore, this process fosters understanding the inaccuracy that is inherent to the
implemented model. Then, the primary network and I/O model of the simulator are verified against the conceptual
analytical model in Section 7.5. This proves that the basic behavior of the analytical model is captured by the
implementation.

All collective calls of MPICH2 use more or less complex point-to-point communication patterns underneath.
In Section 7.6, measured performance of collective calls is compared to the times obtained by replaying the un-
derlying point-to-point communication patterns. This does not only validate the communication model, it also
shows potential performance loss of MPICH2 on our cluster – with this methodology the achieved performance of
MPICH2 can be validated as well. Simulated and measured performance of a parallel I/O benchmark is assessed
in Section 7.7. Collective operations are implemented inside the simulator, the approach of their implementation
is discussed in Section 7.8.

Complex application behavior is evaluated with PIOsimHD in Section 7.9; this demonstrates its applicability to
scientific programs. To this purpose, traces of the MPI calls of a scientific application are recorded and replayed in
the simulation. To show the capabilities of PIOsimHD to evaluate alternative collective calls, several alternative
implementations of the MPI_Bcast() function are evaluated in Section 7.10.

The additional supplementary experiments utilize the simulator to localize bottlenecks in existing systems. Al-
together, this scientific methodology shows that PIOsimHD can be applied to analyze behavior of MPI-IO ap-
plications, and that the underlying hardware and software model is capable to predict performance of a cluster
system sufficiently. Furthermore, several phenomenons that could be revealed with post-mortem tracing can be
observed in recorded activity of the simulation as well. Considering the rather simple system model, it is aston-
ishing to see the high level of accuracy in predicting performance and the capability to recreate many real world
phenomenons.

276

7.1 OVERHEAD OF HDTRACE

7.1. Overhead of HDTrace

Tracing with HDTrace intercepts regular function calls and records the activity, hence, the activation of
tracing influences the application performance. A qualitative analysis of this overhead is important to
verify that the influence is neglectable for the results that are presented in this thesis. Further, in a small
experiment, the overhead of HDTrace is compared with VampirTrace.

For this test, the VampirTrace distribution which is part of Open MPI has been used in combination with
OTF output. A single process is started on a cluster node. This process loops 1 million times over an MPI_

Barrier(). A barrier has been selected since it involves almost no parameter checking and avoids copying
of memory regions. The source code of this program is provided in Listing 7.1. While this simple test does
not evaluate performance of complex operations it shows the behavior of the tracing infrastructure.

Listing 7.1: Source code used to evaluate the tracing overhead
#include <mpi.h>

#include <stdio.h>

#define COUNT 1000000

int main (int argc, char *argv[])

{

MPI_Init (&argc, &argv);

// In this benchmark the MPI timer is used. Thus, accuracy is limited.

double start_time = MPI_Wtime();

for(int i=0; i < COUNT; i++){

MPI_Barrier(MPI_COMM_WORLD);

}

double end_time = MPI_Wtime();

printf("time:�%fs�per�Iter:�%fs\n", end_time - start_time ,(end_time - start_time)

→ / COUNT);

MPI_Finalize();

return 0;

}

Computation overhead Measured times are shown in Table 7.1. The wall-clock time gives the total run-
time of the program. When tracing is enabled, initialization and finalization takes some time. During the
finalization, trace data must be written to NFS, which is time-consuming. This additional overhead is ig-
nored, the time per barrier is computed by dividing the run-time of the loop by the number of iterations.

Running the code just with Open MPI and MPICH2 yields a run-time in the order of 20 ns per barrier.
VampirTrace and HDTrace add an overhead of 1.8µs and 1.4µs, respectively. Further, trace-initialization
and finalization increase wall-clock time by a few seconds. Judged by the collected information, overhead
of both tracing methods is comparable. In this configuration neither of them includes tracing of the per-
formance counters. If the Likwid feature is enabled in HDTrace, additional time will be spent to set and
query the performance counters between two MPI calls. When the Likwid extension is used to record
performance counters in the trace, the total overhead of 95µs is very high1. The overhead per call is in
the order of the round-trip time for MPI on our cluster. Therefore, communication of small messages is
notably deferred by this extension.

1The overhead is caused by the current implementation, which requires re-initialization of performance counters between two
subsequent (MPI_Barrier()) calls.

277

EVALUATION 7.2

Configuration Wall-clock time Time for the loop Time/barrier
Open MPI 0.197 s 0.011 s 11 ns
MPICH2 0.038 s 0.022 s 22 ns
HDTrace 3.12 s 1.37 s 1.37µs
VampirTrace 5.46 s 1.82 s 1.82µs
HDTrace-Likwid 117 s 95.00 s 95.00µs

Table 7.1.: Time overhead of HDTrace and VampirTrace.

Configuration Size of the trace files Size of bzip2 compressed trace files
HDTrace 49 MiB 3.7 MiB
OTF 53 MiB 7.1 MiB
HDTrace-Likwid 300 MiB 17 MiB

Table 7.2.: Size of unpacked and packed trace files.

A tracing environment must output trace information to a file, to reduce this overhead both libraries buffer
activity. When the buffer capacity is reached, it is written out to the file system, this is time-consuming
and defers further activity of the process. Since the benchmark only measures the time of the whole loop,
a potential flush that happens in the loop is accounted to all events. The additional overhead to finalize
the library is not measured by this benchmark.

Storage requirements The size of the recorded trace files is given in Table 7.2. Roughly 50 bytes of data
is stored in the traces per barrier. Compression with bzip2 noticeably reduces the amount of stored data,
this works even better for the XML file. Note that OTF natively offers the capability to compress files on
the fly with zlib2. If this is enabled, then the OTF trace file is compressed to 8.2 MiB. HDTrace does not
compress recorded data.

In general, HDTrace files are expected to be bigger than OTF files, because all parameters of the MPI calls
are recorded and the length of the timestamp increases in longer running programs. However, in this
simple benchmark HDTrace’s overhead – in terms of space and time, is comparable to VampirTrace.

Summary and Conclusions

The overhead of HDTrace is assessed by measuring system behavior upon invoking MPI_Barrier(). Since
the collective call is invoked with just a single process, the time spent inside MPI is very low – about 10-
20 ns, and the overhead is high; on average, HDTrace adds 1.3µs to each call. The overhead is expected
to be similar for other MPI calls. To put it into context, this value is about three times the duration for
an intra-socket message transfer of an empty message (0.4µs) but much smaller than inter-node latency
(about 0.4 ms). Thus, the overhead matters only for measuring local inter-process communication of small
messages. Measurements with VampirTrace lead to a similar overhead, proving that the chosen design is
not inferior to state-of-the-art tracing tools. During the later experiments, tracing is disabled for experi-
ments in which small messages are exchanged, therefore, the overhead is negligible during the validation
experiments.

7.2. Performance of PIOsimHD

Performance of the simulator is important, because a simulation study could involve 100,000 of processors
each running 1,000 of commands. Each simulation run consists of three phases: Model creation, the

2http://zlib.net/

278

http://zlib.net/

7.2 PERFORMANCE OF PIOSIMHD

initialization of the simulation model, and the event processing by the simulator. The time for initialization
and model creation depends on the complexity of the network topology, the components the model consists
of, and the parsing of commands if commands are loaded into memory.

The time needed to create an application model with multiple commands increases with the number of
commands linearly. Since the performance of running a sequence of multiple operations is expected to be
similar to running each command in isolation, it suffices to determine performance for a single command.
To assess simulation performance, the raw event processing speed and the scalability of the simulator
phases is evaluated. Experiments measure the performance of inter-node communication, which is the
basis for I/O as well. To reduce the number of events to process, two available alternative NIC models are
evaluated, too. All experiments are encoded in Java and use builder classes to set up the system model;
they rely on the introduced system model for our Westmere cluster that uses a StoreForwardMemoryNode
to model processor sockets.

Performance of I/O simulation is not analyzed explicitly because measurable speed of simulated I/O de-
pends on the chosen cache layer and its implementation. For instance, picking the next operation out of
N pending operations has currently a worst-case complexity of O(N2) when using the AggregationCache
implementation – this cache tries to merge the first pending operation with all other pending operations
in a linear fashion. The actual duration of picking the next operation is proportional to the number of
fused operations, but the complexity to process all N operations yields this bound. Therefore, execution
typically slows down when choosing this implementation. However, during the whole processing of the
operations the other cache layers yield an average-case complexity of O(N) (for NoCache) or O(N · log(N))
(for AggregationReorderCache). The additional complexity of log(N) of the AggregationReorderCache is
caused by managing operations in a heap data structure in order to fuse them.

Event processing performance is measured on a laptop equipped with an Intel i7-640M (2.8 GHz) and
the scalability on an AMD Opteron system. The Opteron system is equipped with four 6168 processors
running at 1900 MHz and 128 GByte main memory. Both systems run under Ubuntu 11.10 (64-bit), and
OpenJDK 1.6_23 (IcedTea6) with the server VM3. Since the Laptop supports Intel’s Turbo Boost technology,
which could affect shorter experiments, the CPU governor is set to userspace and the frequency is fixed to
2.8 GHz.

7.2.1. Event processing speed

To measure the speed of the event processing, a simple experiment is conducted: One process sends
100 GiB of data to another one; both are hosted on a single node. In the experiments the NIC model frag-
ments data into chunks of 100 KiB resulting in more than 10 million processed events. The implementation
of the simulator uses asserts to check the correctness of parameters and it offers debugging capabilities of
the internal states. These features have an impact to performance and are therefore evaluated, too.

Table 7.3 provides the measured times – every test is repeated three times and the average time is listed
in the table. Reported time concentrates on the actual processing of the events, that means time to build
a model is excluded. The compute time variance is small, less than 2 % for long runs. For runs without
debugging calls, a variation of 5 % can be observed. The variability of wall-clock time increases to more
than 10% with TurboBoost enabled.

If debugging calls are commented out, on average 1.5 million events are processed by the simulator per
second. The impact of removing debugging calls is tremendous – with enabled debugging only about
45,000 events/s can be processed, which is a factor of 30. With instrumentation it has been found that
the string processing in Java slows down execution: Whenever two strings are concatenated a StringBuffer
object is instantiated. Processing of asserts needs some time, too (even if they are disabled). Therefore,
scripts are available that comment out asserts and the invocations of debugging messages. To evaluate the
impact, those scripts have been applied to clean the code.

3The times on the Opteron system were measured with a slightly newer Java version.

279

EVALUATION 7.2

Assertion calls Debugging calls Wall-clock time Events per second
Enabled Disabled 426 s 44,200
Disabled Disabled 423 s 44,600
Commented out Disabled 418 s 45,200
Disabled Commented out 12.5 s 1,500,000
Commented out Commented out 12.5 s 1,500,000

Table 7.3.: Event processing speed of PIOsimHD.

Therefore, once the model and simulator is verified it is recommended to remove debugging calls from the
simulator. The impact of asserts is not measurable with OpenJDK and those should be kept4. Preliminary
tests with the JDK from Sun showed similar improvements, but with this JDK disabling of assertions
improved performance, too.

Note that the speed of the simulator, as measured by the number of events processed per second, is in the
order of state-of-the-art simulators such as the LogGOPSim [HSL10].

7.2.2. Scalability

To assess scalability, an MPI_Bcast()5 with 100 MiB data is simulated with an increasing number of nodes;
each node in the cluster model hosts exactly one process6. All three phases of simulation are measured:
The time to create the cluster model with one socket per node, the time to instantiate the simulation classes,
and the time to execute the simulation.

Memory consumption (resident set size) of PIOsimHD has been determined after pausing execution once
the simulation model is instantiated and it is ready for simulation7. Measured values for 1024, 2048, 4096
and 65536 processes are 198 MiB, 256 MiB, 322 MiB and 2232 MiB, respectively. Therefore, the amount of
memory per simulation process decreases to roughly 30 KiB of memory. During the execution the amount
increases because internal states must be kept, especially packet fragmentation over the whole network
topology requires additional intermediate objects. For example, the high-watermark for used memory
during the whole simulation run is 254 MiB, 345 MiB, 1239 MiB and 4763 MiB for 1024, 2048, 4096 and
65536 processes, respectively. There is a high fluctuation in the maximum amount of memory occupied,
for example, for 2048 processes three measurements resulted in: 303 MiB, 345 MiB and 397 MiB. Probably
the irregular execution of the garbage collection causes this variation, objects that are eligible for garbage
collection and not referenced further can still exist and the garbage collection can decide to allocate new
memory. Since it is not possible to force the garbage collector to clean all unused memory objects, the
observed memory usage is above the actually needed amount of memory. For that reason the observed
values must be taken with a grain of salt.

The times obtained from the Opteron system are presented in Figure 7.1a. With 65536 processes, build-
ing the model takes 6.3 minutes, initialization of the simulation model finishes after 5 minutes and the
simulation of the single MPI_Bcast() needs 85 minutes. To assess scalability, the relative run-time per
process is given in Figure 7.1b; with perfect linear scaling the times would produce horizontal lines in
the diagram. The relative times of the simulation line are determined dividing the measured run-time by
the number of receiving processes, which is one less than the total number of processes because the root
process broadcasts its data.

4Coded assertions can be enabled in Java by specifying -ea to the Java application launcher (java).
5The implementation of the broadcast uses a binary tree algorithm to distribute data among all processes; if a node must send

data to multiple receivers, it will send these messages concurrently. Therefore, the number of transferred messages is one less
than the total number of processes.

6Internally, the congestion model is used, therefore, the NIC fragments data into 100 KiB chunks.
7Data has been fetched from /proc/<PID>/status.

280

7.2 PERFORMANCE OF PIOSIMHD

Model creation becomes faster with an increasing number of clients and starting with 4096 processes it
saturates at roughly 5 ms per receiving process (look at Figure 7.1b). Simulation performance improves up
to 128 processes, then time to simulate a single process doubles between 128 processes and 65536 processes
which is not perfectly linear but almost.

For model creation and simulation of this experiment, a linear scaling is desired and expected: The total
amount of data that is transferred scales linearly with the number of processes that receive data, which is
the total number of processes minus one (the initial root process). Thus, the number of processed network
packets and created events is linear as well8. Also, efficient data structures are used in the implementa-
tions, for example, heaps manage events and pending operations on the components. In combination with
a low number of pending events per component, performance of these data structures behave linearly. The
reason for the “superlinear” scaling with lower number of processes is unknown.

Time to initialize the simulation model shows a completely different behavior (the red lines in the figures):
Up to 128 processes time decreases like with the other phases; starting with 8196 processes, the times per
process becomes quadratic. This indicates that during this process quadratic complexity is involved. This
is a bit surprising, because mainly, the simulation model initialization performs operations that scale linear
with the number of model components (including network edges and nodes). The reason for performance
degradation with high number of processes is not completely clear. One reason might be that the routing
algorithm does not scale linearly (the routing algorithm is invoked after all components are initialized).
Therefore, the routing algorithm is briefly discussed.

Two alternative routing implementations have been evaluated:first route and the hierarchical route. The
times of both are included in Figure 7.1a. The first route algorithm is implemented naively with a breadth-
first-search (BFS). For every process the BFS is started; it updates the routing information to this process.
Therefore, it yields an average complexity of Θ(N2) (where N is the number of processes). This results in
a very high runtime, simulation initialization needs 9000 s for 8196 processes. Therefore, more efficient
routing algorithms had to be deployed.

Theoretically, a routing algorithm could be used that matches the given topology to avoid creation of
routing tables at all. However, this restricts the topology that can be created by the user. Since the network
topology in this experiment does not provide alternative routes, a variant of the general purpose routing
algorithm has been implemented that exploits all kind of hierarchical topologies. The hierarchical route
algorithm creates default routes from the processes towards the central switch. Compared to first route this
algorithm conserves computation time and memory. Internally, the hierarchy is formed by determining the
distance from a network node to all processes with a single BFS. For every inner node a default route is set
towards the node that is more distant (towards the center); the routing table of this node is the last table
that must be adjusted. Routes to other nodes than the default route are determined with the approach of
first route. Theoretically, in a switched topology this algorithm yields a complexity of Θ(N).

However, starting with 8196 processes, the runtime becomes quadratic, again. Further performance anal-
ysis is required to identify the cause. While scalability of the model initialization is currently limited, the
author claims a scalable implementation is possible with small modifications of the current code base.

7.2.3. Alternative NIC models

Since processing of the broadcast operation takes a long time on large configurations, alternative commu-
nication models are investigated that reduce the number of events to process; the simulation of the network
traffic is evaluated for three different models: The congestion model, the analytical NIC, and transfer of just
a single packet per message with the analytical NIC. Note, that the time to build a model is independent
of the chosen NIC model.

8 The total number of created events with 22 = 4 processes is 80,047 events and with 216 processes 1,748,539,339 events, there-
fore, the number of events per receiving process is constant at about 26,680.

281

EVALUATION 7.2

(a) Times measured on the Opteron system including error bars for minimum and maximum. Two different routing
algorithms are evaluated during initialization of the simulator.

(b) Scalability – time per process measured on the Opteron system. For the simulation line, the time is relative to
the number of receiving processes (N − 1).

(c) Simulation time of different NIC models measured on the Laptop.

Figure 7.1.: Performance of the simulator executing a binary broadcast operation.

282

7.2 PERFORMANCE OF PIOSIMHD

The simulation of a single point-to-point message exchange depends on the chosen NIC model. The default
NIC model fragments data into packets with a size of network granularity that are transmitted with the
flow protocol. When this congestion model is applied, the number of events depends on the message size
and the network granularity. The analytical NIC model processes packets only on sender and receiver
side, therefore, intermediate congestion is not covered9. This model reduces the number of events because
intermediate nodes do not process the packet. Many other simulators use analytical models to estimate
communication time. Therefore, by using a large transfer granularity and the analytical NIC model a
similar setup is generated.

In this experiment times from the laptop are presented that are measured for up to 1024 processes. As
expected, the total number of executed events roughly doubles with the number of processes and so does
the execution time (see Figure 7.1c). Performance of the analytical model is better by approximately a
factor of 5. When just a single packet is sent, the execution time is much faster because the number of
packets is decreased by a factor of 1,000 (compared to using a transfer granularity of 100 KiB). As this
trend is expected to continue for larger configurations, the alternative NIC models can be used to reduce
simulation time – by reducing accuracy.

7.2.4. Extrapolation of performance

Runtime of larger systems is extrapolated and discussed based on measured results. First, by extrapolation
a memory usage of 5 GiB to simulate MPI_Bcast() on 65,536 processes, 1.5 million processes could be
simulated on the working groups Opteron system. Additional commands, representing an application
program, that are kept in memory increase the occupied space. In order to use the feature of the simulator
to load trace files on demand, the maximum number of open files must suffice, which is unlikely for
1.5 million processes. Since simulating that large number of processes would take a prohibitively large
amount of time, the memory utilization is ignored in the following discussion.

The time to build a cluster model and to instantiate the simulation model are neglected in this considera-
tion because theoretically model creation and instantiation could scale linearly with the number of created
objects. If the measured 0.08 s per process were valid for 1.5 million processes, then it would take 33 hours
to simulate the single MPI_Bcast(). Therefore, simulation of programs that execute thousand or millions
of MPI commands is infeasible. Program execution requires simulation of multiple commands and thus a
fast execution of individual operations is important. By applying an analytical model, the time to simulate
the single command decreases by a factor of 1000 – to 2 minutes and thus the behavior of small programs
can be analyzed.

For a medium scale of 1,000 processes, simulation on the Opteron node takes 40 s with the network gran-
ularity of 100 KiB. With this model network congestion can be approximated well and interaction of small
programs can be investigated. Since hybrid applications spawn less processes and use threads for the com-
putation, it suffices to create less processes per socket. This also reduces the number of MPI processes
to simulate and thus complexity by an order of magnitude. Thus, the demonstrated scalability of the
congestion model suffices to simulate runs with 1,000 processes.

An easy way to achieve better scalability is to rely on homogeneous hardware characteristics and fixed
topologies as implemented by most existing cluster simulators. Since PIOsimHD is able to model arbitrary
network topologies and heterogeneous components, this optimization potential cannot be exploited. While
a parallel simulation is desirable, achieving scalability is difficult because modeling of network congestion
and I/O scheduling algorithms imply data dependencies. These dependencies, in turn, restrict expected
benefit of conservative synchronization algorithms and the overhead of optimistic approaches. Also, one
design goal of the simulator is to allow inspection of the global system state in order to evaluate best-case
selection of collective algorithms and I/O algorithms. Since a global state requires synchronization, this
approach becomes prohibitive in a parallelized simulator.

9The NIC models are described in Section 5.2.3.

283

EVALUATION 7.3

7.2.5. Summary and Conclusions

The performance and scalability of the simulator is evaluated demonstrating that the simulator is able
to process about 1.5 million events per second. This raw sequential performance is comparable to other
simulators such as LogGOPSim, which is written in C. To evaluate scalability, the time for simulating
an MPI_Bcast() operation with a variable number of processes between 2 and 65536 is measured. The
time needed for model creation and simulation are almost proportional to the number of processes. This
is expected because the number of generated events is proportional to the number of processes and the
creation of the model depends on the number of components. Therefore, the selected data structures and
the implementation are appropriate. However, the initialization of the simulation model takes more time.
Partly, this is due to the setup of the routing table – further optimization of this process is necessary.

With 16384 processes, it takes about 1000 s to simulate the single broadcast operation, about 60 ms for a
single process. In the experiment, the MPI_Bcast() transfers 100 MiB of data per process; message data is
fragmented into 100 KiB packets. These packets are transferred with the network flow model from source
to sink. When the analytical NIC model is used instead of the congestion model, many events can be saved
because intermediate network components do not actively participate – this reduces simulation time by a
factor of 4. By sending a single packet with the analytical model, the number of events is reduced by a
factor of 1,000 and the simulation time by two orders of magnitude. This performance analysis shows that
although PIOsimHD is a sequential program, it is suitable for simulating applications running on medium
sized clusters – a simulation of thousands of processes with network congestion is feasible.

7.3. Parameterization

For our Westmere cluster, a representing model is derived from the introduced domain model for clus-
ter supercomputers by parameterizing the network topology, network edges and nodes, compute perfor-
mance, memory and the block device. Most model parameters are directly derived from the characteriza-
tion experiments described in Chapter 3, the others are determined with the help of product datasheets
offered by vendors.

7.3.1. Network Topology

A model of our clusters’ network topology is shown in Figure 7.2. In this star topology, one central switch
interconnects all available nodes with Gigabit Ethernet. Within a node, all hosted processes and their
network interfaces are connected via a fast connection with a specification according to Intel’s QuickPath
Interconnect [Int09]. Besides the QPI node in a compute node, all other network nodes are modeled by a
StoreForwardNode.

While there is no direct simulation of memory access, it is an important factor to estimate performance of
intra-node communication. In the system architecture of a compute node, all PCI(-Express) components,
such as the NIC, are connected to the I/O Hub (IOH) via QuickPath. The Nehalem microarchitecture actu-
ally offers up to three memory-channels per socket. Thus, in our cluster, the local node communication can
be represented by one “memory” node per socket; this QPI node simulates memory access of communica-
tion, and also shares the memory bandwidth when local data transfer happens – hence it is implemented
by the StoreForwardLocalNode model. Refer to Page 227 for a description of this model. Consequently, the
network topology shown in Figure 7.3 represents the system architecture better and is used for simulation
experiments. In this model, memory is shared just between processors of a socket; memory nodes connect
to the I/O Hub which is represented by the QPI node.

284

7.3 PARAMETERIZATION

Switch

<Node>

QPI

<Process>
NI

Gigabit Ethernet

......
<Process>

NI

QPI

<Node>

QPI

<Process>
NI...

<Process>
NI

QPI

Figure 7.2.: Simple model of the cluster’s star topology with a fast node-internal communication and
slower inter-node communication. The number of nodes and processes per node can vary.

<Node>

QPI

Socket #0

mem

<Process>
NI...

<Process>
NI

QPI

Socket #1

mem

<Process>
NI...

<Process>
NI

Figure 7.3.: Refined network topology of a node to represents the memory limitations in a dual-socket
system better. The mem nodes limit the actual communication performance by memory band-
width and latency. The QPI node represents the I/O-Hub.

<Node>

10864 MIB/s

Socket #0

<Process>
...

<Process>
40 GiB/s

3427 MiB/s

Socket #1

48,000 MByte/s

71.9 MiB/s

3781 MiB/s 4556 & 3778 MiB/s

(a) Throughput of edges and nodes; The memory node
transfers messages faster between processes of the lo-
cal socket.

<Node>

Socket #0

<Process>
...

<Process>

0.038 µs

Socket #1

19.9815 µs

0.079 µs

QPI

mem

NI

Switch

(b) Latency of edges

Figure 7.4.: Schematic network topology of the cluster model with annotated characteristics.

285

EVALUATION 7.3

7.3.2. Network Edges and Nodes

Throughput must be selected for all nodes and edges in the model’s network topology (Figure 7.3) and
latency for all edges. To derive the required parameters, mainly characteristics measured for MPICH2 are
consulted: By picking average latency and throughput as observed in the experiments in Section 3.5, the
model should resemble behavior of the MPI implementation.

Throughput In Figure 7.4a the selected throughput for nodes and edges is annotated next to them.
Throughput is directly taken from the experiments measuring point-to-point throughput between two
processes with the PingPong kernel. Three configurations have been analyzed: inter-node communication,
inter-socket communication and intra-socket communication. According to Table 3.4, achieved through-
put for this process placement is 71.9 MiB/s, 3427 MiB/s and 3781 MiB/s, respectively. However, the bi-
directional intra-socket performance is better than uni-directional performance. Since the mem node rep-
resent the memory bottleneck, the larger bi-directional throughput of 3778 MiB/ and 4556 MiB/s is chosen
to represent the memory node for inter-process and intra-process communication, respectively.

NICs have a very high throughput of 40 GiB/s to avoid interference with the other models. Edges are anno-
tated with the uni-directional throughput. For the model the throughput of the QPI node interconnecting
both sockets is limited by the theoretical QPI performance of roughly 10 GiB/s – any very high value would
work, because node edges have a lower limit.

Determining latency The latency of the network edges can be reconstructed from the experimentally
determined average latency measured by mpi-network-behavior. The observed MPI latency is 42.198µs,
0.4849275µs and 0.2154µs for inter-node, inter-socket and intra-socket communication, respectively (refer
to Section 3.5.3). To determine the latency for edges, observed network latency must be attributed to all
links of a communication path. Time to process an empty message (at least 40 bytes) with the throughput
of intermediate nodes and edges must be taken into account because data is copied between the network
nodes.

First, the latency of NIC edges is computed. Due to the store-and-forward scheme, two edges and a
memory node are involved in the data transport and the processing time of them must be subtracted:
NIC_EdgeLatency = 0.2154µs/2 − 2 · 40 bytes/3781 MiB/s − 40 bytes/4556 MiB/s = 0.1077µs − 0.00837µs −
0.02µs = 0.0791488µs. Processing time on the model’s NIC nodes is much faster and thus can be ne-
glected.

With the same scheme, latency of the other edges can be computed; latency between two sockets on
one node is: SocketEdgeLatency = 0.4849275µs/2 − 2 · NICEdgeLatency − 2 · 40 bytes/3778 MiB/s − 2 ·
40 bytes/3427 MiB/s−40 bytes/10864 MiB/s = 0.038198µs, and the latency of the Ethernet edge is given by:
EthernetEdgeLatency = 42.198µs/2−2 ·NICEdgeLatency−2 ·SocketEdgeLatency−2 ·40 bytes/3778 MiB/s−
2 ·40 bytes/3427 MiB/s−2 ·40 bytes/10864−40 bytes/48,000 MByte/s = 19.9815µs. Since the simulator op-
erates at an accuracy of nanoseconds, times are rounded accordingly. An overview of the model’s latencies
is given in Figure 7.4b.

7.3.3. Compute Performance

During the execution of commands in the simulator, their run-time is approximated by the processor speed
and the number of instruction performed10. In the model, the actual speed is set to 2.66 GHz, although
dynamic voltage and frequency scaling (DVFS) of the CPU is activated on our cluster. Since this setup repro-
duces the exact times of compute jobs, that is, the measured run-time and the simulated time are identical,
the impact of DVFS on the simulation results can be ignored for the conducted experiments.

10Refer to Page 5.5.1 for more details.

286

7.3 PARAMETERIZATION

7.3.4. Memory

Each node is equipped with 12 GByte DDR-3 main memory. On a real system this memory is used to run
applications, to manage administrative structures in the operating system, and to cache data on storage
nodes. In the system model of the simulator, available memory is currently used only for caching I/O on
servers. In order to reduce the total amount of data that must be written until data is actually flushed
to disk, in most test cases the available memory is restricted to 1 GiB. Memory throughput and latency is
already discussed since those parameters influence the point-to-point intra-node communication.

7.3.5. Hard Disk Drive

To parameterize the RefinedDiskModel, five values must been chosen: RPM, short seek distance, sequential
transfer rate, track-to-track seek time and average seek time.

Most information is available in the datasheet [Sea10]11. While RPM specification can be directly taken
from the datasheet (7200 revolutions per minute), the other values are subject to additional overhead of
the local file system. These values are discussed and assessed together with experimentally determined
performance in the following.

Estimating short-seek distance Short-seek distance of the model is considered to represent the amount
of data at which a seek to a neighboring track is performed with the track-to-track seek time. Data per
track is the only physical value which could not be measured and must be derived based on the vendor’s
information instead. To estimate the average amount of data which can be stored per track, information
from the data sheet is used: The recording density (1413 kb/in) specifies the maximum number of bits which
are recorded in one inch of a track, the track density (236,000 tracks/in) indicates the number of tracks per
inch of the radius, the areal density (329 Gb/in2), which is the number of information bits per area, and
form factor (3.5 in) indicates the size of the platter 12. Only one head and one platter is used. For simplicity,
it is assumed that data is stored to the outer border (up to 1.75" distance from the center of the platter).
However, the innermost circle cannot be used due to the spindle and the read/write head. Note, that a hard
disk platter might a bit smaller than the form factor. The size of the inner circle is unknown but can be
approximated with the areal density and the used space from the data sheet with the following equation:
usedAreal = 250GB·8bit/ bytes

329Gb/in2 = 6.08in2 = π · (1.752 − r2
inner). Hence, the radius of the unused inner circle is

about 1.08 in, which seems very high.

The average track length is about (3.5in + 2in)/2 · π = 8.64in. Therefore, the average amount of data in
a single track is 7.64in · 1413kb/in

8bit = 1.5MiB. The outermost track (at 1.75 in) could hold at most 1.9 MiB,
since the recording density specifies the maximum value.

The amount of data per track can be also calculated by using track density and device capacity:
250GB·1000MB/GB

236000 tracks/in·(3.5−2)/2 in = 1.4MB/track. These calculations are just approximating the amount of data per
track. Since the identical specifications are also used for a HDD with a capacity of 160 GB, it is likely that
some sections of the disk are not accessible by the OS – it might be reserved for spare sectors and/or to
improve the production yield, the sections might account for defects during the manufacturing process. If
data would be stored across the whole radius, then a density of about 0.6MB/track could be achieved. For
simplicity, a compromise of 1 MiB/track is chosen for the disk model.

Throughput Under the assumption that all data of a track can be accessed in one revolution of the
7200 RPM drive, and by assuming 1 MiB/track, the sequential read rate would be 120 MiB/s. The data

11The values of the datasheet are introduced in Section 3.6.1.
12The values provided by the manufacturer are expected to include the overhead of the data-encoding scheme to store bits in

magnetic fluxes. Actually, inner tracks carry less data than outer tracks; since the average short-seek distance is used this is
ignored.

287

EVALUATION 7.3

sheet [Sea10] mentions 125 MByte/s, which is about 119 MiB/s and thus the result indicates that the basic
considerations about the capacity per track match.

The experiments presented in Section 3.6 revealed a rich fluctuation of I/O throughput with some unintu-
itive results. For example, a sequential read and write throughput of 96 MiB/s is observable with direct I/O
for small record sizes up to 128 KiB, but for larger records, performance decreased to 75 MiB/s. An excerpt
of the measurements is given in Table 7.8 and in Table 7.9 for IOZone and posix-io-timing, respectively.
Sequential reads with IOZone from a re-mounted file system achieved a performance of about 96 MiB/s,
independent of the record size and the file size (see Table 3.8). Several configurations which actually hit
the available disk, are evaluated in this table. In experimental results, performance of PVFS is determined,
which uses cached I/O. Thus, the IOZone results are considered to be representative. Therefore, a sequen-
tial transfer rate of 96 MiB/s is assumed for the disk drive.

Actually, with the I/O model, the maximum throughput can be achieved iff data is accessed sequentially. In
case file offsets do not match, an additional latency is added as determined by the RPM and seek times.

Seek times The datasheet of the HDD lists a typical track-to-track seek time for reads “below” 1 ms,
and an average seek time of around 8.5 ms, the values for writes are 0.2 ms and 1 ms higher, respectively.
Since the refinedDiskModel takes only one value, the average of read and write is computed and results in a
track-to-track seek time of 1.1 ms and an average seek time of 9 ms.

To cross-validate model values with the datasheet, assume that the disks head must move after accessing a
track of 1 MiB with a seek time of 1.1 ms, this decreases the theoretical sequential throughput of 119 MiB/s
to 106 MiB/s (computation is shown in Equation 7.6). This still matches with our observations, because the
model’s sequential transfer rate of 96 MiB/s is lower. For sequential access, the simulation does not add
these seeks so that the model’s sequential transfer rate is the same as the measured one.

The average seek time is only valid when the accessed data is distributed across the whole hard disk. But,
in all experiments, not more than 5 GiB of data is accessed, which is just a fraction of the disk’s capacity of
250 GByte. Therefore, the average seek time of 9 ms is expected to be too high. There are reasons that the
exact duration of a seek is unknown: The heads of an HDD are accelerated depending on the distance from
the current to the target track, the amount of data on a track depends on the track’s length, and, at last, the
file system places data of files on arbitrary tracks. Consequently, without simulating the whole file system
and disk in detail, a perfectly accurate model is not possible. Therefore, the RefinedDiskModel just takes the
character of those two seek times as representative behavior and the values provided by the datasheet are
used. The influence of the seek time is assessed in more detail during the following validation process.

7.3.6. Overview of the Parameters for the Experimental Cluster Model

A summary of the parameters used in the cluster’s system model is given in Table 7.4. Characteristics of
network edges and nodes are also annotated to the virtual network topology in Figure 7.4 to show where
they are applied.

7.3.7. Summary and Conclusions

In the parameterization process, a network topology is created that matches the configuration of our dual
socket nodes – it consists of a hierarchy for intra-socket, inter-socket and inter-node communication. For
each socket, a memory node models local communication and thus restricts performance of node-internal
inter-process communication. By using the characteristics measured during system analysis, the param-
eters for the simulation model are selected: Throughput is directly annotated to nodes and edges; about
4000 MiB/s for local data access and 72 MiB/s for Ethernet edges. The latency of edges is computed hierar-
chically starting from intra-socket communication: 0.08µs, 0.04µs and 20µs for intra-socket, inter-socket
and Ethernet edges, respectively. During the computation of these values, the throughput of the edges and

288

7.4 QUALIFICATION OF THE DOMAIN MODEL

Component Metric Value

Node
CPUs 12

instructions per second 2.66 · 109

memory size 1 GiB

I/O subsystem

track-to-track seek time 1.1 ms
average seek time 9 ms

sequential transfer rate 96 MiB/s
short seek distance 1 MiB

RPM 7200

NI node throughput 40 GiB/s

Memory node
intra-socket throughput 4556 MiB/s

external throughput 3778 MiB/s
QPI node throughput 10864 MiB/s
Switch node throughput 48,000 MiB/s

NIC edge
latency 0.079µs

throughput 3781 MiB/s

Socket edge
latency 0.038µs

throughput 3427 MiB/s

Ethernet edge
latency 19.982µs

throughput 71.9 MiB/s

Table 7.4.: Parameters for the hardware components in the system model of our Westmere cluster.

nodes and the latencies of the edges already computed are taken into account. Computation speed is set
to the processor frequency of 2.66 GHz. The amount of available memory is set to a value that matches
the available cache in the experiments – memory is limited depending on the experiment configuration.
Parameters for the RefinedDiskModel are partly taken from the datasheet: 7200 RPM, track-to-track and
average seek times (1.1 ms and 9 ms). In all I/O experiments, a file with several GiB of data is accessed.
Therefore, the average seek time is an overestimation of expected seek time; however, it turns out that the
values still lead to acceptable behavior. The short seek distance is computed as the amount of data stored
on a single track (1 MiB). For throughput, the measured value of 96 MiB/s is used.

7.4. Qualification of the Domain Model

In this section the hardware model for point-to-point network communication and the hard disk drive,
which is introduced in Section 5.2, are qualified against the obtained system characteristics from Sec-
tion 3.6.

To this end, the underlying analytical models of the simulator are extracted and compared to observations.
This allows assessing the accuracy of the introduced models and to derive expectations to the simulator
implementing those models13.

Since the analytical models are simplifications of the inner processing of the simulator, they do not cover
certain dynamics which are implemented by the simulator, such as network congestion or disk caching.
Instead, in this qualification, underlying mathematical models for network and disk behavior are validated
against the measurements for basic behavior of point-to-point communication and disk I/O.

13Remember that a perfect matching of reality and a model is not possible because a model abstracts from reality.

289

EVALUATION 7.4

Configuration Latency Throughput in MiB/s
Uni-directional Bi-directional

Inter-node 42.198µs 71.9 71.9
Inter-socket 0.485µs 3427 3778
Intra-socket 0.2154µs 3781 4556

Table 7.5.: Characteristics for the analytical network model.

7.4.1. Network Behavior

To validate the network behavior, point-to-point communication of the model is compared with inter-node,
inter-socket and intra-socket message transfer of MPICH2 for the PingPong and Sendrecv (bi-directional)
kernels.

First, the analytical model is recapitulated: The network model implemented in the simulator uses latency
and bandwidth to characterize individual links and intermediate nodes. In a simplified model, such as
in the LogP family (Page 107), the time for communication of a given message size is estimated by a
single homogeneous latency and throughput as shown in Equation 7.1 – all communications are treated
identically and congestion is not covered. For a concurrent bi-directional communication the equation can
still be applied because both channels operate at the given speed. An estimation of the PingPong kernel
doubles the obtained time (see Equation 7.2).

Network nodes representing memory share their performance among all concurrent operations, therefore,
the amount of data transferred is twice as much as for a uni-directional link. Thus, for intra-node commu-
nication with the Sendrecv kernel, Equation 7.3 is applied.

The analytical model discussed here does not cover the distinction between the eager and the rendezvous
protocol since it is not too important on our cluster – this will become clear when the results are compared.
However, the simulator supports both communication schemes and it includes a parameter that controls
when the rendezvous protocol should be used.

Remember, the computed latency of the simulator model is corrected by the size of an empty message
(40 bytes) and the link topology for our cluster (refer to Table 7.4 to see the performance characteristics
of the network). With the time, the throughput can be estimated as listed in Equation 7.4. The analytical
model represented by the equation uses the original values obtained by the hardware characterization –
these values are recapitulated in Table 7.5.

estimated Sendrecv time =
message size

latency + message size/maximum throughput
(7.1)

estimated PingPong time = 2 · estimated Sendrecv time (7.2)

estimated Sendrecv time (memory) =
message size

latency + 2 ·message size/maximum throughput
(7.3)

estimated throughput =
2 ·message size + 40bytes

estimated time
(7.4)

For every kernel and placement of the processes, a graph that contains throughput of the measurement
and the model estimate is generated by using Equation 7.4. Graphs for inter-node, inter-socket or intra-
socket are shown in Figure 7.5, 7.6 and 7.7, respectively. In intra-node communication, a comparison of
results between memory throughput – as measured with the uni-directional PingPong kernel, and the bi-
directional kernel is performed. The average and minimum times of the first run measured with MPICH2
are used for comparison14.

14The first run is used for comparison, because the average value across all runs is expected to be closer to the model, which is
built with the average latency and throughput across all runs. Therefore, by comparing model and measurements for a single
run, deviation can be assessed better. The variation between independent runs is discussed in Section 3.5.5.

290

7.4 QUALIFICATION OF THE DOMAIN MODEL

Configuration Kernel Relative accuracy in %
Empty message 128 MiB message

Inter-node
PingPong 128 (average 99.6%) 100.3
Sendrecv 102 85 (average 112%)

Inter-socket
PingPong 109 113
PingPong 109* 103*
Sendrecv 93 103

Intra-socket
PingPong 109 129
PingPong 108* 107*
Sendrecv 86 107

Table 7.6.: Relative model accuracy of the analytical network model compared to the minimum measured
duration of the first run with MPICH2. The values marked with * are estimated by applying the
higher bi-directional throughput characteristics

An additional graph is generated showing relative accuracy which is defined as estimated time of the model
divided by the measured time. Therefore, a value above 100% indicates that the approximation is below
measured throughput, i.e., too slow, and a value below 100% underestimates the runtime, that means the
model is too fast.

The relative accuracy of the two kernels is shown for empty messages and for 128 MiB messages in Ta-
ble 7.6. For inter-node communication, the relative accuracy of the average throughput is mentioned, too,
because it differs significantly from the best case.

Observations and interpretation

a) Qualitatively, the throughput diagrams highlight that the simple network model roughly recreates
the measured behavior (for example look at Figure 7.5a).

Especially for empty and 128 MiB messages, the estimation is close to the observed average; the error
is typically within 10% (look at Table 7.6). This is expected because the latency and throughput has
been chosen by looking at the performance of these cases. Consequently, all relative diagrams for the
PingPong kernel should match well for empty and large message payloads.

b) Besides the range between 1 KiB and 16 KiB, the estimate of the PingPong kernel is close to 100%
for inter-node communication (see Figure 7.5b). For small and large payloads some messages arrive
earlier than the average, pushing the error relative to the MPICH2 minimum above 100%.

One reason for the overestimation between 1 KiB and 16 KiB could be the Ethernet technology and
the interaction with the TCP protocol. The maximum transmission unit (MTU) of the cluster’s Ethernet
interfaces on the cluster is 1500 bytes. Thus, larger messages are fragmented into packets of that size
and are transmitted with store-and-forward switching. Smaller messages are fragmented in just a
few packets and cannot utilize all components through the network route. Therefore, the time of
such messages depends on the throughput of all intermediate components. Consequently, the model
predicts a higher throughput than measurable.

For larger messages, this effect can be ignored. Transfer of very small messages is dominated by
latency and, therefore, this effect plays a minor role for messages smaller than 1024 bytes.

c) The time of the bi-directional kernel is also matched quite well for very small and very large mes-
sages (Figure 7.5d). Message sizes between 1024 bytes and 128 KiB can be received much faster than
approximated (about 16 times, the figure is clipped). This is due to an early-receive of the message –
the process with Rank 1 might start data transfer before Rank 0 and thus it completes transfer of the
data to Rank 0 before this rank starts. Message sizes handled by the eager-protocol (slightly below
128 KiB of data) are influenced by this behavior.

291

EVALUATION 7.4

d) In local communication the approximation for the PingPong kernel underestimates performance by
up to 20% for messages below 32 KiB (see Figure 7.7d and Figure 7.6d).

e) Qualitatively, the intra-node estimates are on a comparable level – the relative accuracy is appro-
priate for many cases (see Figure 7.6 and Figure 7.7). However, there are regions in which predicted
throughput is just half of the measured throughput.

f) In the range between 64 KiB and 8 MiB the approximation of inter-socket communication is 40-100%
slower than the real system. This is probably caused by the cache hierarchy: the L1, L2 and L3 cache
have a capacity of 32 KiB, 256 KIB and 12 MiB, respectively. In the experiment data is available in the
cache, therefore, the cache helps. But in general, messages can contain data which is currently not in
a CPU cache. Caches are not covered by the communication model and thus this kind of data error
is inherent to the model.

g) By using the higher bi-directional characteristics, a better approximation is achieved for large mes-
sages – above 8 MiB (compare Figure 7.6a with Figure 7.6c). But with the slower uni-directional
throughput, results match better for smaller messages.

The throughput has been obtained with the modified mpi-network-behavior benchmark which
transfers 100 times 1 GiB of data (see Section 3.5.2). Somehow the benchmark underestimates the
memory throughput for the smaller accesses of the test cases.

Concluding this section, the model can be applied to approximate performance for inter-node, inter-socket
and intra-socket communication on our test system. Cached data and architectural details lead to a better
communication performance in intra-node communication than the model predicts.

However, building a model which addresses the cache hierarchy requires simulating the processor mi-
croarchitecture in detail: An exact bookkeeping where data is currently cached, and the processor com-
munication to ensure cache consistency between cores (for example performed by the MESI protocol). It
does not suffice to expect that data is cached when it is small enough, since the user can start a point-to-
point communication any time. Simulation on that level of detail is out of the scope for a cluster-wide
simulator.

Scientific applications are expected to communicate larger amounts of data which do not fit into the pro-
cessor caches. Thus, the necessity of such a detailed cache model for this project is questionable.

7.4.2. Hard Disk Drive

To validate the general approach of the RefinedDiskModel15, estimated throughput is compared with mea-
surements of Section 3.6.2 for a variable record size. The model matches performance of observed sequen-
tial access perfectly (96 MiB/s) because seeks are ignored in the model and it is parameterized with the
maximum throughput. Random access in contrast, must be assessed in detail to show the appropriateness
of the model.

First, the behavior of the basic model which estimates performance is briefly recapitulated and analyzed:
The RefinedDiskModel depends on the last accessed offset, therefore, an exact computation is only possible
in the simulator. However, a qualitative analysis of the underlying analytical model for random access can
be performed by computing potential throughput with Equation 7.6.

rotLat =
1
2
· time for one rotation =

1
2
· 60s

revolutions per minute
=

30s
RPM

(7.5)

throughput =
record size

latency + record size/sequentialTransferRate
(7.6)

15Refer to Section 5.2.2 for an introduction of this model.

292

7.4 QUALIFICATION OF THE DOMAIN MODEL

(a) PingPong kernel throughput. (b) PingPong kernel – relative accuracy.

(c) Sendrecv kernel throughput. (d) Sendrecv kernel – relative accuracy.

Figure 7.5.: Inter-node communication performance – comparison of determined mpi-network-behavior

performance of one run with the network model.

In this model, throughput and latency can be modified or omitted. To show a corridor of potential through-
put, several latency values are compared: the rotational latency (given by the spinning speed), track-to-
track seek time and average seek time. As noted above, the values of the disk model are: an RPM of 7200
(rotLat = 4.166 ms), track-to-track seek time of 1.1 ms, average seek time of 9 ms and a maximal sequential
transfer rate of 96 MiB/s. The expected throughput with this model is visualized in Figure 7.8. Computed
values of the analytical modes are listed in Table 7.7. The rotational latency is included in all models,
while the throughput limitation (maximal sequential transfer) is included in a few (it is abbreviated with
TP). To model data aggregation, the Aggregate2 model assumes two records can be aggregated – that is,
two random 16 KiB records actually manifest as one 32 KiB record. For cached write calls, such kind of
aggregation could actually be done by the OS or the disk’s NCQ algorithm.

Most of the conducted measurements do not directly reveal the real characteristics of an HDD because all
I/O is passed through the file system and operating system. Therefore, measurements are chosen which are
actually related to the disk’s behavior. Two tables list a selection of throughputs measured by IOZone (see
Table 7.8) and posix-io-timing (Table 7.9). As the model is not valid for cached I/O, data points which
hit disk are taken – these are mostly results obtained with 1 GiB available memory, and the experiment
with remount. Several file sizes are taken and listed as a configuration. Direct I/O is compared for posix-
io-timing for synchronous re-write and the random read performance. The random re-write test is picked
because data blocks are already allocated by the file system and thus little update of file system structure
is necessary.

A diagram containing model performance and measured performance is given in Figure 7.9. With this
graph, a qualitative first analysis can be done.

Observations and interpretation

a) Seek time is the dominating factor for small record sizes (below 128 KiB), which is intuitive. See
Figure 7.8a and compare the performance of the models without limited sequential transfer rate with
those with limitation. Keep in mind that larger records could be fragmented on disk, which causes

293

EVALUATION 7.4

(a) PingPong kernel throughput. (b) PingPong kernel – relative accuracy.

(c) PingPong kernel throughput with the higher bi-directional
throughput.

(d) PingPong kernel with bi-directional characteristics – rela-
tive accuracy.

(e) Sendrecv kernel throughput. (f) Sendrecv kernel – relative accuracy.

Figure 7.6.: Inter-socket communication performance – comparison of determined mpi-network-behavior

performance of one run with the network model. The PingPong kernel is assessed by using two
different characteristics for throughput.

294

7.4 QUALIFICATION OF THE DOMAIN MODEL

(a) PingPong kernel throughput. (b) PingPong kernel – relative accuracy.

(c) PingPong kernel throughput with bi-directional character-
istics.

(d) PingPong kernel with bi-directional characteristics – rela-
tive accuracy.

(e) Sendrecv kernel throughput. (f) Sendrecv kernel – relative accuracy.

Figure 7.7.: Intra-socket communication performance – comparison of determined mpi-network-

behavior performance of one run with the network model. The PingPong kernel is assessed
by using two different characteristics for throughput.

(a) All record sizes. (b) Small records.

Figure 7.8.: Behavior of the disk model with different characteristics. The models incorporate revolutions-
per-minute (RPM), throughput (TP), track-to-track and average seek time.

295

EVALUATION 7.4

Configuration Record size in KiB
16 32 64 128 256 512 1024 2048 4096 8192

RPM 3.75 7.5 15 30 60 120 240 480 960 1920
RPM+track-seek 2.97 5.93 11.87 23.73 47.47 94.94 189.87 379.75 759.49 1518.99
RPM+avg-seek 1.19 2.37 4.75 9.49 18.99 37.97 75.95 151.90 303.80 607.59
RPM+TP 3.61 6.96 12.97 22.86 36.92 53.33 68.57 80.00 87.27 91.43
RPM+TP+track-seek 2.88 5.59 10.56 19.03 31.76 47.73 63.76 76.63 85.23 90.29
RPM+TP+avg-seek 1.17 2.32 4.52 8.64 15.85 27.21 42.40 58.82 72.95 82.90
RPM+TP+Aggegate2 6.96 12.97 22.86 36.92 53.33 68.57 80.00 87.27 91.43 93.66

Table 7.7.: I/O throughput computed with the analytical model (in MiB/s).

Configuration Record size in KiB
16 32 64 128 256 512 1024 2048 4096 8192

Read 1280 MiB 4.86 8.56 14.24 23.40 34.51 51.60 69.46 83.96 95.04 104.26
Read 2560 MiB 2.74 5.00 6.52 16.33 26.39 40.62 57.33 74.41 85.35 91.25
Read 5120 MiB 2.27 4.34 8.06 14.48 23.65 36.61 52.31 65.96 74.31 80.35
Read 10 MiB, remount 8.98 14.17 18.23 26.67 32.99 47.58 58.79 74.88 85.58 83.67
Read 1280 MiB, remount 5.61 8.84 12.64 18.20 28.27 40.60 57.49 71.71 82.49 89.43
Read 2560 MiB, remount 5.24 8.20 11.93 17.30 27.00 39.46 56.03 71.23 82.05 88.66
Read 5120 MiB, remount 5.00 7.05 11.22 15.31 24.97 37.11 54.14 69.13 81.30 88.17
Write 2560 MiB 6.80 12.77 21.08 36.28 53.12 65.90 78.73 85.80 90.29 91.22
Write 5120 MiB 5.98 11.52 19.88 31.79 46.47 58.30 66.75 74.63 72.66 78.82

Table 7.8.: Average random I/O throughput measured by IOZone (with 1 GiB of available memory; in
MiB/s).

Access pattern Record size in KiB
16 32 64 128 256 512 1024 2048 4096 8192

Sequential write 95.6 95.3 95.4 95.0 81.2 75.0 75.6 74.9 74.9 74.9
Sequential read 96.7 95.5 96.6 96.8 96.7 76.4 76.3 76.2 76.2 76.4
Random write 5.3 10.4 18.6 29.1 38.3 51.3 54.9 56.1 60.3 68.9
Random write sync 0.6 1.3 2.5 4.8 8.8 15.4 24.4 33.9 40.7 55.0
Random re-write sync 2.1 4.1 7.6 13.7 22.7 33.8 44.3 52.7 56.0 72.0
Random read 2.3 4.6 8.5 15.8 25.9 39.7 52.0 61.0 67.7 73.7

Table 7.9.: Average throughput in MiB/s of direct I/O by using O_DIRECT (and O_SYNC) to access 1 GiB
of data – measured using posix-io-timing with a variable access granularity.

296

7.4 QUALIFICATION OF THE DOMAIN MODEL

(a) Random read throughput. (b) Random write throughput.

Figure 7.9.: Comparison of the throughput of the analytical I/O models with the average random perfor-
mance obtained with IOZone and posix-io-timing.

additional seeks. These are not covered by the model because data layout on disk is not tracked.

b) Measured read throughput lies between the RPM+TP characteristics and results which include aver-
age seek time (see Figure 7.9a). The actual values for the observations with the large file are just in
between these two models.

c) Actually, the average seek time is too pessimistic for the experiment, because the file accessed is
just roughly 5 GiB of size. Under the assumption that file bytes are stored close together on disk,
the access arm does not have to move the average distance between two random positions on the
250 GByte disk – which would be covered by the average seek time. An average seek time of 4 ms
covers the behavior of the HDD for the 5 GiB file much better (see the gray line in the center of the
figure).

d) In the experiment with the 1280 MiB file parts of the file are still available in the page cache from
previous execution of the write kernel. Therefore, the measurements outperforms the measured
sequential transfer rate for the largest block size (see Figure 7.9a). Interestingly, the measurement
matches many data points with the estimated performance of RPM+TP characteristics.

e) Measured performance of the file with a size of 10 MiB for small block sizes is higher than any of
the models (refer to Table 7.8). This is probably due to the behavior of the Seagate HDD, which also
offers an 8 MiB cache and uses read-ahead to fetch records.

f) Interestingly, the write experiment of the 2560 MiB file behaves like the RPM+TP+Aggregate2 model
(see Figure 7.9a). Theoretically, it is possible that on average two operations in the OS cache are
fused into a single operation of twice the size. To illustrate the high probability for merging multiple
blocks, consider the file with the size of 2560 MiB and 1 GiB of main memory. Now almost every
other block can be kept in memory before data must be written out. Every new block that should be
written can be merged with at least one other block16 For small record sizes this assumption might
also be true for the 5120 MiB file; however, for larger record sizes performance drops.

Adjusting I/O characteristics to match observed behavior While it has been shown that the behavior
of the 5 GiB file could be matched for larger record sizes by choosing a latency of 8.16 ms (rotational latency
+ 4 ms), the model still does not match all observations. One explanation is the variation in the file size
which influences seek time – blocks of smaller files are located close together on disk and thus seek time is
lower. Also, write performance of the disk drive is slightly lower than read performance.

16While this result suggests that aggregation is actually performed, this has not been verified. A detailed monitoring and analysis
of block I/O is possible, but out of scope for this thesis.

297

EVALUATION 7.4

However, since the measured behavior is complex, the question arises if the general I/O model is appropri-
ate to explain observable throughput. Potentially, the RefinedDiskModel might not capture the behavior
well, for instance the file system could scatter data blocks across the block device leading to additional
latency while accessing these blocks.

To better understand the model, a small parameter study is conducted: the total latency (including rota-
tional latency) and sequential transfer rate are adjusted to predict each of the presented throughput curves.
By modifying latency, performance estimation of small records can be adjusted and by changing through-
put, large record sizes. The relative model accuracy of the differently parameterized model is visualized
in Figure 7.10 by plotting the quotient of model throughput and measurement – that means a value above
100% shows that the model is faster than the observation. As a reference, the throughput of the model
which takes sequential transfer rate and RPM into account, is given in Figure 7.10a.

Observations and interpretation

a) RPM+TP predicts better performance than measured by posix-io-timing; the model achieves a
stable 120% and 150% of measured throughput for reads and writes, respectively (see Figure 7.10a).
A higher predicted performance is expected because both operations require synchronization with
the HDD and additional seeks. However, the relative performance is stable across record sizes which
is surprising. IOZone write performance is much better because the OS can defer and aggregate
operations which improves throughput.

b) Model accuracy of the reference model RPM+TP+4 ms is between 30 and 150% (see Figure 7.10b).
The additional latency leads to better matching for larger read operations. However, the random
read performance of IOZone cannot be fitted with the two parameters of the model. One reason for
the discrepancy is that the kernel offers read-ahead to fetch more data than required. Read-ahead is
enabled for larger record sizes and the additional time for operation can be considered as additional
latency to regular disk reads.

c) By adjusting the sequential transfer rate and latency, three of the curves could be fitted well (see
Figure 7.10e, Figure 7.10c and Figure 7.10d). However, optimal sequential transfer rate and latency
vary.

A consequence of these observations is, that the RefinedDiskModel can be applied to estimate random
I/O throughput for disk accesses, if it is parameterized appropriately. Choosing appropriate parameters
depends on access type and file size. The source of latency, may it be rotational latency, overhead of read-
ahead, additional latency of the OS scheduler, or just seek time can be fit into the model. For instance,
direct I/O is slower than cached I/O, because the operating system and the disk cannot optimize the access
patterns in order to hide additional seeks to access and manipulate file system structures. The actual
observed behavior is hard to understand and to predict due to many involved factors.

While read and write operations could easily be distinguished in the implementation and thus handled
differently by adding additional characteristics to the RefinedDiskModel, the current model is kept. The
model follows the basic behavior of hard disk drives and can be used to assess common optimization
strategies. For example, in order to simulate write-behind and optimization by OS and HDD, several
caching algorithms have been implemented in PIOsimHD. Their performance impact is assessed in the
simulation experiments.

7.4.3. Summary and Conclusions

In the qualification for network and hard disk drive, the estimated performance for a variable message size
and record size is compared to measured performance. The network model that is based on the character-
istics of latency and throughput matches performance in many cases quite well (relative accuracy ±10%).
Prediction of the bi-directional kernel is worse, because the observations fluctuate much more and mea-
sured performance is lower for large messages. In intra-node communication, the CPU cache improves

298

7.4 QUALIFICATION OF THE DOMAIN MODEL

(a) RPM+TP model – sequential transfer rate: 96 MiB/s, la-
tency: 4.166 ms.

(b) RPM+TP+4 ms. Fitting the curve of IOZone read – sequen-
tial transfer rate: 96 MiB/s, latency: 8.166 ms.

(c) Fitting the curve of posix-io-timing re-write – sequential
transfer rate: 63 MiB/s, latency: 6.3 ms.

(d) Fitting the curve of posix-io-timing read – sequential
transfer rate: 80 MiB/s, latency: 5.1 ms.

(e) Fitting the curve of IOZone write – sequential transfer rate:
80 MiB/s, latency: 2.3 ms.

Figure 7.10.: Relative performance of several parameterizations of disk latency and transfer rate.

299

EVALUATION 7.5

throughput significantly in the measurements; especially message sizes that fit into the L3 cache are about
50% faster than predicted. Since CPU cache is not modeled, the simulation is biased for these message
sizes by the same extent. However, while data of the benchmark is available in the CPU cache, a real ap-
plication might also transfer data that is stored in main memory. In this case, performance will be lower
and expected to be more accurately approximated by the model. Without modeling the CPU cache, it is
impossible to determine the locality of data; also, such a model is complex and interwoven with the model
for computational activity because that involves memory activity as well.

The sequential performance of the RefinedDiskModel model matches observations perfectly, because the
value is chosen according to the measurements. The qualification of the model also assesses random access
performance: Qualitatively, most measurements are described by a model based on the characteristics of
throughput and latency – basically, the measurements lie between the model that incorporates average seek
time and the one that relies on the rotational latency. However, since the determined random performance
depends on the chosen benchmark and its configuration, an accurate match with all results is impossible.
A parameter study for latency and throughput shows that all benchmark results can almost perfectly be
matched by picking the right characteristics – but these characteristics depend on the benchmark, the
access type and the configuration. Therefore, latency and throughput suffice to describe random access on
an HDD. However, these characteristics depend on many optimizations and hardware features provided
by the real system: the physical block layout of the file accessed, the cache behavior and the efficiency of
aggregating smaller requests into bigger ones, for example. Basically, by improving the performance for
certain use cases, these optimizations make the system behave as if its characteristics are different.

7.5. Verification of Network Behavior and Hard Disk Model

In this section, network and I/O performance of simple test cases is computed with the simulator and
compared with the analytical models for our cluster, which serves as an experimental environment. During
this process, important and tunable simulation specific parameters are discussed.

7.5.1. Network Behavior

In contrast to the analytical model, the simulator has an implementation specific handling of messages.
Messages are fragmented into packets which are transferred via store-and-forward switching between the
components of the network topology (see Section 5.2.3). A larger network granularity reduces the con-
current processing on the simulated devices and bigger messages may defer short messages due to FCFS
scheduling. However, an advantage of increasing the network granularity is that it makes simulation
faster.

Overhead to represent communication protocol and message headers (currently 40 bytes) can be added
either per message, or per packet. The later is influenced by the fragmentation rate and adds much more
overhead for smaller network granularities. The network granularity parameter and protocol header over-
head are assessed in the following.

The figures in Figure 7.11, Figure 7.12 and Figure 7.13 compare network granularities of 512 bytes, 5 KiB
and 100 KiB with the reference provided by the analytical model – computed throughput and relative
accuracy17 of the PingPong and SendRecv kernel is provided. The first diagram shows performance with
protocol overhead per packet, the other two account protocol overhead once per message.

Observations and interpretation

a) The performance of intra-socket communication with 40 bytes overhead per packet reduces perfor-
mance for large messages when a packet size of 512 bytes is used. Throughput of a smaller network

17Relative accuracy is defined as simulation throughput divided by the analytical model’s throughput.

300

7.5 VERIFICATION OF NETWORK BEHAVIOR AND HARD DISK MODEL

(a) Throughput. (b) Relative performance.

Figure 7.11.: Intra-socket communication for the PingPong kernel with protocol overhead per packet.

granularity might be below the throughput of larger message sizes (see Figure 7.11b). This is ex-
pected because packet header is about 7.8% of a 512 byte packet. However, for most users perfor-
mance degradation due to smaller network granularity is not intuitive. Therefore, the simulator adds
overhead once per message by default to cover the message’s header.

b) The relative performance of analytical model and simulation matches well for a network granularity
of 512 bytes, at least 65 % accuracy for messages of that size in intra-node communication and more
than 90% in inter-node communication (see Figure 7.12).

For messages smaller than network granularity, achieved performance is lower than predicted by the
analytical model. The reason is the store-and-forward switching: the whole message must be received
by all components on the path between sender and receiver; in the cluster model up to 13 components
are involved in inter-node communication, every edge and node of the topology forwards the packet.
This takes more time than anticipated by an analytical model, because the analytical model assumes
optimal concurrent processing in intermediate nodes. With increasing message size (or decreasing
network granularity), data can be processed concurrently on intermediate nodes, improving overall
performance.

c) On our cluster system store-and-forward switching is performed in inter-node communication, the
MTU is 1500 bytes. It has been observed in Section 7.4.1, that the analytical model overestimates
performance slightly for message sizes between 1 KiB and 16 KiB. The difference between analytical
model and the store-and-forward simulation can be assessed in Figure 7.12f; for transferring a packet
of 512 bytes the discrepancy is 10% and decreases with the increase of the payload.

d) Starting with messages 32 times as large as the network granularity, almost optimal performance is
achieved for local communication (refer to Figure 7.12b). For example, with fragments of 100 KiB,
a good performance of 3500 MiB/s is estimated for 4 MiB messages. The ratio is slightly lower for
inter-node communication, although the communication path is longer (see Figure 7.12f).

e) A small performance dip appears for messages with a payload of 128 KiB and 256 KiB (look at Fig-
ure 7.13d). This is caused by the rendezvous protocol which is supported by the simulator, but not
incorporated into the simple analytical model. Since performance degradation is very low, the default
eager-size seems appropriate for our testbed.

f) The simulation of bi-directional communication behaves similar to uni-directional communication
(compare Figure 7.13 to Figure 7.12).

The conducted verification demonstrates that the simulation model approximates the point-to-point com-
munication of the analytical model well. The analytical model, in turn, is close to measured performance
of our testbed, in many cases. Since a network granularity of 100 KiB suffices to achieve a high throughput
(for messages larger than 4 MiB), this granularity is used for most further testing.

301

EVALUATION 7.5

(a) Intra-socket throughput. (b) Intra-socket communication – relative performance.

(c) Inter-socket throughput. (d) Inter-socket communication – relative performance.

(e) Inter-node throughput. (f) Inter-node communication – relative performance.

Figure 7.12.: Comparison of the network model with simulated performance of the PingPong kernel.

302

7.5 VERIFICATION OF NETWORK BEHAVIOR AND HARD DISK MODEL

(a) Intra-socket throughput. (b) Intra-socket communication – relative performance.

(c) Inter-node throughput. (d) Inter-node communication – relative performance.

Figure 7.13.: Comparison of the network model with simulated output for the Sendrecv kernel.

7.5.2. I/O Subsystem

To verify the simulation of a single I/O subsystem, performance of the NoCache, WriteBehind and the
AggregationReorderCache implementation is compared to the analytical model. A system model is built
that consists of one client, one server and a very fast interconnect (zero latency, throughput of 1000 GiB/s).
Network granularity is set to 100 KiB and I/O granularity is set to 10 MiB. Either a sequential or a random
pattern is created by the client, accessing records of a fixed size until 1280 MiB of data have been touched.

Results for random I/O are given in Figure 7.14 – other results are quite similar and obvious and, therefore,
these figures have been left out. As noted in Section 5.4.5, caching of read operations is currently not
modeled, therefore, it cannot be assessed.

Observations and interpretation

a) Sequential performance is 95.9 MiB/s and above 95.2 MiB/s for writes and reads, respectively. Note
that the performance is independent of the record size, it only depends on the characteristics of
the block device, therefore, the figures are omitted. Write is a bit faster because of the pipelining
scheme: Whenever a data block is received, it is put into the cache and thus, at the beginning of a
larger request, data is written in chunks of the network granularity (100 KiB). Therefore, network
and disk can operate concurrently.

A single read request can fetch up to 10 MiB of data from the disk. Once data is read, it is transferred
to the client. Therefore, the network and disk activity happen sequentially, although the network is
very fast, this reduces performance slightly.

b) The simulation of write operations match the analytical model quite well for all record sizes (see Fig-
ure 7.14a). Read operations achieve similar performance, therefore, they are omitted in the figure.
The relative accuracy of the simulation compared to the analytical model is shown in Figure 7.14b;
implementation in the simulator and theoretical model match well. A minimal drop in read perfor-
mance to 99.8% for larger record sizes is caused by the pipelining scheme.

Actually, a single I/O request is transported from the client to the server of the modeled file system.

303

EVALUATION 7.5

(a) Throughput estimated without caching. Read is omitted
since it is almost identical to the write performance.

(b) Relative accuracy compared to the model with
RPM+TP+avg-seek characteristics.

(c) Throughput using the AggregationReorderCache.

Figure 7.14.: Random I/O performance – comparing simulation with the analytical model.

At this point the behavior of the cache layers could differ, because the write path can be pipelined
and the cache layer schedules operations. Hence, performance of read and write operations could
be different. In this experiment there is no noticeable effect because the interconnect is very fast.
However, when performance of the simulated parallel file system is assessed, this effect will become
visible.

c) When using the AggregationCache or the AggregationReorderCache (ARC), write operations can be
deferred and aggregated, which is expected to increase performance. The impact of using 1 GiB,
500 MiB or 200 MiB of memory to cache and optimize operations is shown in Figure 7.14c. With an
increase in cache size performance of random writes increases as well.

d) When more cache is available, performance of the AggregationReorderCache improves to a larger
extend. Thus, the improvement is not proportional to available memory size. For example, for
16 KiB records simulated performance is 1.2 MiB/s, 1.7 MiB/s, 3.1 MiB/s and 12 MiB/s for NoCache,
and ARC with 200 MiB, 500 MiB and 1 GiB of main memory, respectively.

On average roughly 50% of the blocks are re-written during the run. Therefore, a performance higher
than the transfer rate of 96 MiB/s is possible because blocks can be overwritten in the cache before
actual I/O is performed. Also, consecutive blocks can be aggregated to improve performance. The
memory with a capacity of 1 GiB can hold all data; when a small cache is used, it is unlikely that
random blocks are neighbors, therefore, they cannot be aggregated into a larger request. The bigger
the cache the more likely a cached block is overwritten before it is stored on the virtual block device.
This behavior, in combination with the characteristics of the HDD, leads to the observed behavior.

e) Overall, observed behavior of the cache layers matches the analytical model. A comprehensible, yet
complex caching behavior is revealed by the AggregationReorderCache.

304

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

7.5.3. Summary and Conclusions

During the verification of the network behavior, the network granularity is varied and the communication
overhead of transferring a header per packet is compared to one header per message. As the mathematical
model does not fragment messages, it outperforms the simulation results. A small network granularity
increases the concurrent transfers within the network, because intermediate network components can al-
ready start to transfer packets while the sender is still emitting packets of the message. Up to 13 network
components are involved in inter-process communication. In the worst case, only one packet is trans-
ferred – in this case, the simulation achieves only 40% of theoretical performance. Achieving about 90%
of theoretical performance requires that the network granularity suffices to allow concurrent processing
on each component – the message size must be larger than the network granularity by at least an order of
magnitude. Model performance is achieved perfectly when the message size is more than two orders of
magnitude larger than the network granularity. Fragmentation is realistic for inter-node communication;
the Ethernet protocol, for example, fragments data into frames with a size of at most 1,500 byte (the MTU
on our system). On a real system, fragmentation does not apply to intra-node communication, therefore,
the simulator systematically underestimates performance for small message sizes.

The overhead per packet reduces potential throughput for larger messages as more data must be trans-
ferred. This leads to an improved performance of larger network granularities, which would be counterin-
tuitive for users; therefore, overhead is accounted only once per message in subsequent experiments.

To verify the performance of the I/O subsystem, a two node cluster setup is used, one node acts as a client
that performs random or sequential accesses, and one acts as a server. Client and server are connected
with a very fast network without latency. Without write cache, the simulation reproduces the performance
of the mathematical model perfectly (accuracy of 99.8%). Additionally, the benefit of the AggregationRe-
orderCache is evaluated for the random workload with three different cache sizes. As expected, it shows
that the benefit increases with the cache size, but in a non-linear fashion.

7.6. Evaluation of the Network Model with Complex Communication

Patterns

With the comparison of simulation and observation for more sophisticated communication patterns, the
cluster model is validated. Additionally, by comparing performance of MPICH2 with the simulated esti-
mate existing discrepancy is analyzed and discussed. This allows identification of suboptimal communi-
cation behavior.

While basic point-to-point communication between a single pair of processes has already been assessed
in Section 7.5, several point-to-point communication patterns involving multiple processes are discussed.
Therefore, a new benchmark has been written – mpi-bench, which measures times for several patterns and
message sizes – this benchmark is introduced in Section 7.6.1. Since all collective calls are implemented
with basic point-to-point communication, those experiments provide additional insight into simulation
accuracy.

The methodology of the validation are discussed in Section 7.6.2. Results of the validation is discussed in
subsequent sections of this chapter: MPI_Barrier() is used for time results in the benchmark, therefore,
it is assessed first in Section 7.6.3. Additionally, the impact of computation time on measurement and
simulation is sketched. Point-to-point communication of 10 KiB messages evaluated in Section 7.6.4 and
collective communication in Section 7.6.5. Larger message payloads are assessed in Section 7.6.6 and in
Section 7.6.7 for point-to-point communication and collective calls, respectively.

305

EVALUATION 7.6

7.6.1. The mpi-bench Benchmark

The mpi-bench benchmark measures the following MPI collective calls: MPI_Barrier(), MPI_Reduce(),
MPI_Allreduce(), MPI_Bcast(), MPI_Gather(), MPI_Allgather() and MPI_Scatter(). Further, the fol-
lowing point-to-point communication schemes are supported:

• Ring – every process sends data to its right neighbor and receives from the left neighbor.

• Paired – every even process exchanges data with the next odd process by using MPI_Sendrecv().

• SendToRoot – all processes send data to the root process, which receives data in order.

• SendrecvRoot – processes use MPI_Sendrecv() to exchange data with root.

A few point-to-point patterns require an even number of processes, invalid configurations are excluded
from the measurement.

The benchmark iterates over all collective and point-to-point communication kernels and message sizes.
Kernels are repeated a number of times (the trivial pseudo code is given in Listing 7.2). Evaluated message
sizes are 10 KiB18, 1 MiB, 10 MiB, 100 MiB and 1000 MiB. Note that the overall amount of communicated
data depends on the collective operation. The payload is the amount of data for the invocation of the MPI
function (e.g., Scatter() transfers this amount of data to every process). A few collective calls require
additional buffer space and could not be benchmarked for some configurations, because memory of the
nodes does not suffice.

Listing 7.2: Pseudo code of mpi-bench – main loop
for (i = 0; i < options.count ; i++):

for each kernel:

execute kernel

if rank == 0:

print time

Time for executing a kernel is measured with MPI_Wtime() on all processes. Timing is protected by a
barrier to ensure that initialization and cleanup of kernel relevant data structures are not measured. The
benchmark supports aggregating minimum and maximum times across all processes and runs. This is
interesting because the amount of work done by a collective call can vary with the rank of the process; it is
nice to see the variability between slowest and fastest process.

The time of the call including the final barrier is output for Rank 0, too. It is a good estimate for the
execution time of the whole kernel on all processes and determined by the slowest process. Listing 7.3
shows the pseudo code for kernel execution and time. The MPI_Barrier() function is an exception to this
rule, it does not require the second barrier.

Listing 7.3: Pseudo code of mpi-bench – archetype of a communication kernel
Initalize buffers and test-specific buffers

MPI_Barrier()

startTime = getTime()

Execute the collective operation or point-to-point communication scheme

callTime = getTime() - startTime

MPI_Barrier()

barrierTime = getTime() - startTime

Cleanup

18The benchmark for 10 KiB messages is slightly different, because it requires much more repetitions, this is mentioned in the
methodology.

306

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

7.6.2. Methodology

Conducted experiments The benchmark by itself iterates over several message sizes: 1 MiB, 100 MiB
and 1000 MiB. Additionally, a modified benchmark version assesses 10 KiB messages. Short messages help
assessing the latency model while larger payloads are increasingly affected by the network throughput
characteristics – for 100 MiB, the influence of the latency is expected to be rather low on our network. It
turned out that experiments with the largest payload do not offer more insight – results are comparable to
the tests with 100 MiB and, therefore, omitted.

The benchmark is run for many different configurations: Configurations are pairs of node count and pro-
cess count. Node numbers range from 1 to 10, and up to 20 processes are placed on the nodes. MPICH2
is run to distribute the processes in round-robin fashion on the available nodes and the sockets within.
To illustrate the placement scheme, consider the configuration 2-5, here 5 processes are placed on the two
nodes (and the four sockets) as follows: ((0,4),(2)),((1),(3)), that is, the first socket on the first node hosts
Rank 0 and 4, the second socket on the same node just Process 2, and so forth. Simulated process placement
mimics this process mapping, that means ranks are placed in the same fashion among the nodes.

The performance of Open MPI is measured for larger payloads, too. Results are put into the context of
MPICH2 and the simulation. This also fosters the discussion of the MPI implementations’ efficiency; one
goal of the simulator is to evaluate new implementations to achieve optimal performance on clusters in the
long run.

Measuring performance For larger payloads, three runs are performed in a single program execution.
To cover the variability between independent runs, mpi-bench is restarted four times; the cluster scheduler
might select other nodes for each run. Therefore, at least 12 measurements are made per configuration and
collective call. A variant of the benchmark measures payloads of 10 KiB. In this case, communication time
is much lower, therefore, more runs must be performed. For the small payload (and for assessing MPI_

Barrier()), 1.000.000 and 10.000 repetitions are executed for intra-node and inter-node communication,
respectively. In order to support analysis of the distribution of the times, short operations are timed indi-
vidually and analyzed with the statistics tool R. Since node-local operations complete quickly, batches of
100 operations are timed together.

Simulating communication patterns By using MPICH2HD, the benchmark is instrumented with HD-
Trace to record MPI-internal communication for all collective operations – remember, with HDTrace, the
point-to-point communication of collective operations can be traced. The real communication patterns are
extracted from the trace files and then fed into the simulator. Due to the simplicity of the Point-to-point
communication patterns, they are coded directly in Java. Thus, the simulated communication patterns are
identical to the communication performed within MPICH2.

The benchmark’s smallest payload is not instrumented, because tracing overhead disturbs the time –
roughly 1.4µs are required to trace an MPI command19. However, the simulation of collective opera-
tions includes this computational overhead if computation time is simulated (which is the case for most
results presented). Therefore, the result of the simulator is biased by the tracing overhead.

To cover for the variability of computation time during kernel execution, the pattern with the minimum
total runtime is extracted from the available trace files. With this methodology, the suitability of the
models to simulate the behavior of MPICH2 is shown. Furthermore, the discrepancy between simulation
and observation is discussed.

Since the measurements of local communication with 10 KiB messages measures time for batches of multi-
ple operations, the simulation of a single operation and/or subtraction of the time for the additional barrier
is not accurate because repeated invocation of MPI_Sendrecv() can cause the first process to finish much
quicker, for example. Consequently, to represent the effect of early starters in the collective operations

19This is discussed in Section 7.1.

307

EVALUATION 7.6

correctly, the simulation must recreate this behavior – the simulator loads the extracted point-to-point
communication pattern 100 times and adds the barrier pattern (as recorded in the collective pattern).

For larger operations, the extracted pattern of the barrier is appended to all executions. Therefore, the
exactly same operations are performed in the simulation as they are by the benchmark.

Computation time is taken into account by issuing compute jobs for the time between two MPI function
invocations in the extracted communication pattern – for example, inside the collective call, some compu-
tation can happen after an MPI_Recv() before the data is transmitted to another process. This is especially
true for MPI_Reduce().

In the simulation, a network granularity of 512 bytes is used for 10 KiB messages and for 1 MiB messages,
in order to allow pipelining of message packets. For larger payloads, 100 KiB packets are used.

Comparing observation and simulation In the comparison, absolute execution times for a command
are shown in separate diagrams for intra-node communication, and for inter-node communication. Two
diagrams are provided per kernel, because inter-node communication takes much longer than intra-node
communication; scales are adjusted in the diagrams. The time is given per operation, that means time for
batches is divided by the number of runs. The configuration (nodes, processes) is provided on the x-axis,
while the time is given on the y-axis.

For small payloads, the mean, first and third quartile are computed with R and included in the diagrams.
A diagram might include minimum and maximum; the maximum is omitted iff it is much worse and thus
far away from the mean value.

Simulation results are put into relation to the measured results by computing the relative value: virtual
time of the model is divided by the time for the metrics given in the legend, values larger than 100%
indicate a slower execution in the virtual environment than in reality.

7.6.3. Assessing MPI_Barrier() and computation time

Assessing behavior of MPI_Barrier() is the basis for understanding further collectives, because reported
times are protected by a barrier. The measurements and the simulator results that include computation
are presented in Figure 7.15. Without simulating computation time, variability decreases; results are given
in Figure 7.16.

Observations and interpretation

a) The time of MPICH2 increases with the number of nodes in inter-node communication, but is ro-
bust against increasing process counts (look at Figure 7.15b, compare the configurations n-n to the
configurations in which twice as many processes are deployed on the same nodes (n-2n) and to con-
figurations on two nodes). For example, the time for 8 processes on 4 nodes is better than deploying
the processes on 8 nodes. The reason is that the barrier algorithm in MPICH2 is SMP-aware – thus,
it tries to avoid inter-node communication. Internally, MPICH2 uses a binary tree algorithm, which
explains the increasing time for 3, 5 and 9 nodes.

b) In local communication, the maximum observed execution time is much higher than the third quar-
tile (see Figure 7.15c). The simulated time is three to four times the measured time of the first quartile
(look at Figure 7.15a and Figure 7.15c). Still, the model is much faster than the maximum observation
(triangles on the bottom). By looking at this figure, it seems that the simulation does not represent
the average value for intra-node communication well.

c) All the times measured are between the values from the respective PIOsimHD runs that simulate
computation, and the runs that do not model computation: When computation time is not simulated,
the simulator produces much better estimates (compare Figure 7.15a to Figure 7.16a). The simulation

308

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy.

Figure 7.15.: Performance of MPI_Barrier().

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

Figure 7.16.: Performance of MPI_Barrier() without simulating computation.

309

EVALUATION 7.6

that includes computation time estimates performance much more accurately; it does not reproduce
all maxima and minima of the measurement accurately, but many of them.

In fact, the overhead of tracing an MPI call (approximately 1.4µs) is in the order of the time for
executing a single barrier. Since the barrier is implemented as a sequence of MPI commands, the
recorded computation time (including overhead) is much higher than the actual communication time
for the barrier. This explains the deviation in the estimate.

d) Without simulating computation, the duration of an inter-node barrier is monotonically increasing
with the configuration, and of course lower than by performing computation (see Figure 7.16b). Be-
havior of intra-node communication is not monotonically increasing (see Figure 7.16a). However, the
general trend is.

e) The overall behavior of simulated inter-node communication resembles the behavior of the first quar-
tile quite well (refer to Figure 7.15b and Figure 7.15d); the accuracy of the simulation is above 80%.

f) Small variations are caused by the variation of computation and communication times. By comparing
the results of simulating computation time or ignoring it, the simulator permits us to quantify the
effect of MPI-internal computation on inter-node communication. For a barrier, the effect is in the
order of 10% (compare Figure 7.15b to Figure 7.16b).

Communication happens within several µs, which is in the order of the tracing overhead. However, the
edge in the network model for the socket has a latency of 0.038µs, which is a very small fraction of 1µs.
Since intra-node communication is biased by the tracing overhead, an accurate simulation of intra-node
communication that includes computation is not possible. When computation time is not taken into ac-
count, time to prepare and cleanup the communication MPI is not simulated. Therefore, simulation with-
out computation is expected to be faster than the observation.

Consequently, this effect must be considered when assessing intra-node communication of small mes-
sages with traced collective calls – therefore, it is important for 10 KiB point-to-point and collective mes-
sages. Inter-node communication is not affected by the tracing overhead because inter-node latency is
much higher.

7.6.4. Point-to-point Communication of 10KiB of Data

Results of the four evaluated point-to-point communication patterns are shown in Figure 7.17, Figure 7.18,
Figure 7.19 and Figure 7.20, respectively. In any case the sender transmits 10 KiB of data to the receiver
which is either the next process or root. Due to the simplicity of these communication patterns, the simu-
lation is directly encoded in Java. Similar to the simulation of collective calls, the point-to-point scheme is
repeated to match the measurement conditions, and protected by a barrier. Configurations which use an
odd number of processes cannot form pairs of processes. Thus, the reported duration is zero and the data
points are missing in the diagrams for relative model accuracy.

Observations and interpretation

a) In intra-node communication the time to transfer small amounts of data increases with the number
of processes. While the kernel in which the processes transmit data to root matches the observation
well (see Figure 7.19a and Figure 7.20a), the model overestimates the increase for the paired and the
ring pattern by up to 300%. The reason for the high accuracy of data transfer to the root process
is simple – the benchmark repeats the point-to-point communication by which the model has been
calibrated (refer to Section 7.3).

With the paired and the ring communication patterns, in the measurements, time increases linearly
by about 1µs per process when more than two processes are used, but there is an offset for two
processes of about 4µs(see Figure 7.17a and Figure 7.18a). This is an indicator that startup time for
small message transfer is quite high and that data processing happens concurrently. Due to the small

310

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.17.: Paired point-to-point communication and 10 KiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.18.: Ring point-to-point communication and 10 KiB of data.

311

EVALUATION 7.6

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy.

Figure 7.19.: SendToRoot point-to-point communication and 10 KiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.20.: SendrecvRoot point-to-point communication and 10 KiB of data.

312

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

payload, caching effects of the processors have an important impact on performance (as reported in
Section 7.4.1). The current system model handles concurrent processing suboptimally, but overall,
the behavior and the maximal observed time are estimated reasonable well for up to 6 processes.
Since PIOsimHD does not simulate computation at all in this test, higher intra-node communication
is not caused by tracing overhead.

b) Basic behavior of the inter-node communication is simulated quite accurately. However, results
match the minimum execution time (refer to Figure 7.17b, Figure 7.18b, Figure 7.19b and Fig-
ure 7.20b). This is a bit surprising, because during parameterization, the average latency has been
used as a reference. Therefore, intuitively, it is expected that the average observation matches the
estimation. The SendToRoot and the SendrecvToRoot kernels (Figure 7.20b) are an exception; here
the estimation matches the average time.

c) For many communication patterns, the communication time increases with the number of processes
that are placed on a fixed number of nodes (this can be seen in all figures, for example, refer to
the configurations with 2 nodes in Figure 7.18b and Figure 7.19b). The degradation is caused by
the process placement – a single network interface is shared among all processes of a node. If the
communication neighbor of a process is placed on the other node then additional communication
over the slow Ethernet interface occurs – which is the case for most communication patterns and
configurations. Due to the congestion model offered by PIOsimHD, this behavior can be simulated
well.

d) When data is sent to the root process by multiple nodes, many observations take much longer than
expected – the third quartile is above 200 ms which is too much comparing to a single paired com-
munication which needs about 1–2 ms (the y-axis is cropped for these kernels, but almost vertical
lines indicate the fluctuation, see Figure 7.19b). This happens if intra-node and inter-node commu-
nication occur at the same time for larger configurations starting with 6− 12. The cause of this effect
is unknown to the author. But due to the big discrepancy of simulation and conceptual model, it is
likely to be a bug in the MPI implementation. To back up the simulation results, estimate the time to
transmit data from 12 processes to Process 0 with 12 times 1 ms (according to the paired communica-
tion pattern). Since the result achieved by MPI is far slower than expected, the model cannot predict
performance accurately (see Figure 7.19d).

7.6.5. Collective Communication of 10KiB of Data

Now collective calls are invoked for the small 10 KiB payload. Figures 7.21, 7.22, 7.23,7.24, 7.25 and 7.26
show the measurements and compare the simulated results of the collective calls for MPI_Bcast(), MPI_
Gather(), MPI_Allgather(), MPI_Scatter(), MPI_Reduce() and MPI_Allreduce(), respectively.

Observations and interpretation

a) Before simulation results are compared, a few selected considerations about observed MPICH2 per-
formance: By looking at 7.21b, a monotone behavior with increasing node numbers, yet invariant to
increasing numbers of processes per node, becomes visible – the implementation of MPI_Bcast() is
SMP-aware.

The time for an Allgather of configuration 2-11 is similar to the ones measured for configurations
10-10 and 10-20 (see Figure 7.23b). However, MPI_Gather() behaves differently; remember, with
MPI_Gather(), all processes transfer data to the root process. This is due to the algorithm used in
MPICH2. A faster algorithm can be easily envisioned and approximated: consider 11 processes on
two nodes, doing an MPI_Gather() (roughly 1 ms) and an SMP-aware broadcast (10 times 0.25 ms),
leading to 3.25 ms rather than the 7 ms that have been observed. In the same diagram, faster perfor-
mance is achieved for configurations 4-8 and 8-16.

313

EVALUATION 7.6

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.21.: MPI_Bcast() and 10 KiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.22.: MPI_Gather() and 10 KiB of data.

314

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.23.: MPI_Allgather() and 10 KiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.24.: MPI_Scatter() and 10 KiB of data.

315

EVALUATION 7.6

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.25.: MPI_Reduce() and 10 KiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.26.: MPI_Allreduce() and 10 KiB of data.

316

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

(a) MPI_Bcast(). (b) MPI_Gather().

(c) MPI_Allgather(). (d) MPI_Scatter().

(e) MPI_Reduce(). (f) MPI_Allreduce().

Figure 7.27.: Execution time for local collective communication of 10 KiB of data – without simulating
computation.

317

EVALUATION 7.6

Performance of MPI_Reduce() and MPI_Allreduce() do not monotonically increase with the number
of nodes (see Figure 7.25b and Figure 7.26b). On the one hand, this is due to the semantics of MPI_
Reduce() (refer to page 46 for a discussion). On the other hand, it is inherent to the algorithm
implemented in MPICH2, which is realized by basically doing an MPI_Reduce_scatter() with the
recursive halving algorithm followed by the code to gather (or allgather) the distributed sums of the
vector.

Consequently, with algorithmic changes, the performance could probably be improved. Further dis-
cussion and more examples of suboptimal behavior are provided in [KTML09].

b) For inter-node communication, the measured minimums (and often the first-quartiles) are approx-
imated well by the simulator. Further, the parameterized model typically approximates the first
quartile with a relative value between 80% and 110%.

c) Performance of local communication is underestimated by the model for Bcast, Allgather, Scatter,
Reduce and Allreduce. The relative time is invariant with the number of processes, for most configu-
rations it takes around 300% of the measured duration. As discussed in the point-to-point communi-
cation, this could be an indicator that the general local communication model or the parameterization
has some bias. However, this is a bit counterintuitive to the fact that the estimation of MPI_Gather()
has different characteristics (see Figure 7.22c) – the discrepancy starts at 300% and decreases with an
increasing number of processes to match the observation quite well.

d) Unfortunately, as discussed in Section 7.6.3, tracing a single operation involves an average overhead
of 1.4µs per operation; the simulator replays traces for experiments, but compares the times to ap-
plication runs without tracing. For example, the total duration recorded in the trace file to perform
an MPI_Bcast() with 10 Processes is about 18µs– but the third quartile of the measurement without
tracing is 6µs. The granularity of recorded timestamps is 1µs. The simulator estimated 23.5µs for
the same execution. Therefore, an offset is expected.

Without simulating the computation contained in the traces, the tracing overhead could be ignored.
However, then the MPI internal computation is not addressed which has an impact on the results as
well. Either way, the accuracy cannot be determined accurately for small messages.

e) To assess the influence of the computation, the simulation is restarted without dealing with com-
putation; the generated additional diagrams for local communication allow assessing its influence
(compare the figures with computation with the simulation results without in Figure 7.27). Without
computation, the gather operation and the reduce are simulated well, also, for the first few configu-
rations, most other operations match well.

The broadcast operation is an exception to this rule – while it shows a linear increase in time with
the number of processes, the gradient of the simulation is much steeper and similar to the results
obtained without computation (see Figure 7.27a). As a side note, with 7µs the measured intra-node
broadcast is also much faster than the SendToRoot pattern, which can be considered to be an inverse
pattern (it took 30µs for 12 processes).

f) To assess the simulated behavior of MPI_Bcast() in intra-node communication, network activity has
been recorded by the simulator. The excerpt in Figure 7.28 shows activity of a single broadcast oper-
ation – remember, overall, 100 individual operations are executed to emulate overlapping occurring
in a real system.

In the simulation, the bottleneck is the modeled QPI interconnect, which interconnects both sockets
– the second socket is busy to receive data from the first socket (look at the legend on the left, the QPI
node is marked in red, the last time line shows the edge). Since the first socket is almost continually
busy transferring messages in the case with computation, not much speedup can be achieved by
skipping computation; at a certain point, the simulated memory channel of the socket is busy (as
seen on the NetworkNode below QPI in Figure 7.28b). During the computation phases of a process,
other processes still transfer data, hence the modeled memory channel is utilized to some extent.

318

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

The tree communication pattern used in MPICH2 communicates data through QPI (i.e., Rank 0 sends
data to Rank 8, Rank 4, Rank 2 and Rank 1), for the given placement. Instead of communicating
data to the second socket once, the observed pattern transfers almost always data between the two
sockets; since the model uses a lower throughput between the two sockets, performance is lower.
While the simulation model is rather simple and does not address cache usage, it is likely that an
extension of the SMP-aware MPI_Bcast() implementation to make it aware of node-internal topology
and memory channels could improve performance by transmitting data locally. The difference in the
simulation and the observation might be caused by the processors’ internal caches.

(a) Without simulating computation.

(b) With simulated computation.

Figure 7.28.: Simulated activity of the MPI_Bcast() and 10 KiB of data for local communication. The
screenshots of Sunshot show the activity of the client processes and all modeled hardware
components over time; colors encode the type of the activity – for messages one color is as-
signed to each pair of sender and receiver. Empty space on a client represents computation.

319

EVALUATION 7.6

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.29.: Paired communication and 1 MiB of data.

7.6.6. Point-to-point Communication of Large Messages

The results for message transport of the four point-to-point communication schemes are shown for 1 MiB
and 100 MiB messages in Figures 7.29, 7.30, 7.31, 7.32, 7.33, 7.34, 7.35 and 7.36. Times measured with
Open MPI are included, allowing a comparison to the results obtained with MPICH2 and the simulated
results. Minimum, average and maximum lines are drawn if possible; if values are too far above the graph,
then the line is removed. Frequently, the maximum value is removed because the outliers need much more
time than the average value.

Observations and interpretation

a) The time for the SendToRoot kernel is well approximated by the simulator for local communication
and intra-node communication (look at Figure 7.33, and Figure 7.34).

In general, the simulation represents the minimum duration of inter-node point-to-point commu-
nication patterns for MPICH2 well (look at the relative model accuracy of the figures). With many
kernels and local communication, estimated performance is slower by around 50%, but this is often
similar to the visible discrepancy between MPICH2 and Open MPI (for example, look at Figure 7.32).
However, high fluctuations in inter-node throughput increase the average measured value thus lead-
ing to an optimistic estimation by PIOsimHD.

b) In inter-node communication, the average and maximum measured transfer times are typically much
higher than the minimum when transferring 1 MiB of data, which shows again that measurements
vary to a large extent. In the paired or the ring communication scheme, average transfer of 1 MiB
takes up to 4 times longer than the fastest transfer, and about 10% longer for patterns which exchange
data with root only. Minimum and average values are closer together when 100 MiB of data are
transferred. This observation is valid for MPICH2 and for Open MPI.

320

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.30.: Paired communication and 100 MiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.31.: Ring communication and 1 MiB of data.

321

EVALUATION 7.6

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.32.: Ring communication and 100 MiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.33.: SendToRoot communication and 1 MiB of data.

322

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.34.: SendToRoot communication and 100 MiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.35.: SendrecvRoot communication and 1 MiB of data.

323

EVALUATION 7.6

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.36.: SendrecvRoot communication and 100 MiB of data.

c) In intra-node communication, Open MPI is typically about twice as fast as MPICH2. As discussed
before, the reason is the automatic utilization of both Gigabit Ethernet network adapters.

Interestingly, in intra-node communication Open MPI, is faster for the ring and the paired commu-
nication scheme, too. This contradicts the results presented in Section 3.5.4 on page 149; it has been
slower by 6% for messages sizes of 1 MiB and slower by 40% for smaller messages.

d) In the ring communication, with Open MPI kernel time increases linearly up to 7 processes, then
the transfer time increases only slowly (refer to Figure 7.32a). Thus, starting with 7 Processes, the
communication throughput increases from roughly 5 GiB/s to 9 GiB/s (100 MiB of data is transferred
per process in 0.14 s). Therefore, the observed memory access pattern of Open MPI utilizes available
memory bandwidth better than MPICH2, for which the simulator has been calibrated.

e) Interestingly, for inter-node communication and exchanging data with MPI_Sendrecv() (and for
larger configurations with a paired kernel), the simulator predicts half the measured time observed
with MPICH2 (see Figure 7.32 and Figure 7.30). However, the results measured with Open MPI
match the simulation quite well.

A brief theoretic consideration helps understanding the observations; Process 0 exchanges (sends and
receives) 100 MiB of data with all other processes. Due to the bi-directional network, a performance
is expected that is similar to the case where all processes just send data to root (see Figure 7.34). How-
ever, that is not the case, instead the time of the measurement doubles, it takes about 25 s to transfer
data for 10 processes (1000 MiB) which is a throughput of 40 MiB/s (and 70 MiB/s for Open MPI).
Therefore, it seems that just uni-directional communication is performed. Since for two processes,
the network performance of 71 MiB/s can be achieved (the simulation results match perfectly), there
is a problem in the MPI implementation and/or the network stack of our cluster.

324

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

7.6.7. Collective Communication of Large Messages

So far, point-to-point communication and collective operations with small amounts of data have been dis-
cussed. For a complete discussion, medium-sized and large messages must be assessed. Unfortunately, the
amount of memory available per node does not suffice to perform calls with 100 MiB payloads in all con-
figurations (where multiple processes are placed on one node). This is because both MPI implementations
use internal buffers to hold intermediate data; configurations which failed are 5 to 12 processes on one
node and 7 to 11 processes on two nodes. For these configurations in which memory suffices, the 100 MiB
messages show a similar behavior than the 10 MiB messages. Therefore, only the collectives with 10 MiB
messages are assessed.

Results for 1 MiB and for large 10 MiB collective MPI_Bcast(), MPI_Gather(), MPI_Allgather(), MPI_
Reduce() and MPI_Allreduce() are provided in Figures 7.37- 7.48.

Observations and interpretation

a) With the large payload, PIOsimHD approximates local communication well; not only behavior – in
many cases estimated runtime is at most 20-40% faster than observation (see Figure 7.38c, 7.40c,
7.42c, 7.44c, 7.46c, 7.48c). Since the collective calls rely on point-to-point communication, a small
deviation is expected.

For MPI_Bcast() and MPI_Reduce(), the 10 MiB payloads are more precisely approximated by
PIOsimHD than the smaller ones (e.g., compare Figure 7.38c to Figure 7.37c). Presumably, devia-
tion is caused by the processor cache; 1 MiB of data fits into the L3 cache, and the broadcast and the
reduce operation keep at most one copy per process in the buffer – the other calls need more data.
Therefore, all configurations fit into the available L3 cache of 12 MByte per processor. However, this
assumption cannot answer the question why performance of the other MPI collectives does not vary
for configurations which should fit into the cache, such as configuration 1–2.

MPI_Allreduce() is also better approximated for larger payloads. Since it is similar to MPI_Reduce()

in respect to semantics, it benefits from the same effects. While the simulation for MPI_Scatter()
matches well, it underestimates performance for 1 MiB of data, but overestimates performance for
more than 6 processes on a single node.

b) For inter-node communication of all collective calls, the variability of 1 MiB messages is much higher
than when transferring more data, that means on average much more time is needed for data trans-
fer than in the best case (e.g., compare Figure 7.39b to Figure 7.40b). The maximum is not given in
the figures, because it is be much longer than the average and thus could not be rendered into the
scale. For a payload size of 10 MiB of data, there is almost no difference between minimum and av-
erage for MPI_Gather(), MPI_Allgather() and MPI_Scatter() (see Figure 7.40b, Figure 7.42b and
Figure 7.44b). In general, there is more variation with MPI_Bcast(), MPI_Reduce() and MPI_Allre-

duce() (look at Figure 7.38b, Figure 7.46b and Figure 7.48b).

c) Neither MPICH2 or Open MPI show better performance in all cases; sometimes Open MPI performs
better, sometimes MPICH2. To give a few examples: MPICH2 performs better in inter-node configu-
rations of multiple processes per nodes for MPI_Bcast() and 10 MiB payload, but for 1 MiB payloads,
Open MPI is better (look at Figure 7.38b and Figure 7.37b). Open MPI does a faster MPI_Allgather()
of 10 MiB of data in configurations with 2 nodes but achieves similar performance for other config-
urations. Reduce is slower with Open MPI for configurations 2–7 to 2–11 and when more than one
process is placed per node, but it is faster for the other configurations (look at Figure 7.46b).

One might claim that there might be an issue on our cluster with the SMP-awareness of Open MPI.
However, Open MPI needs roughly half as much the time for MPI_Scatter() and MPI_Gather().
But by keeping in mind that Open MPI can use both network interfaces, observed performance is
disappointing.

325

EVALUATION 7.6

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.37.: MPI_Bcast() and 1 MiB of data.

In most cases, Open MPI performs better in intra-node configurations. An exception are a few con-
figurations of broadcasting 1 MiB of data, here MPICH2 is slightly faster (see Figure 7.37a).

d) A closer look at the local performance achieved by Open MPI shows for scatter, gather and allgather,
that the time for execution is proportional to the number of processes. However, for the ring point-to-
point communication and the remaining collective calls, starting with 6 or 7 processes, the execution
time increases only minimally (e.g., look at Figure 7.31a) – for reduce and 10 MiB of data it starts
already at 4 processes (see Figure 7.46a). Maybe this is caused by an increasing cache re-use or better
utilization of the memory subsystem. Due to the simulator’s coarse grained simulation of memory
access, it cannot simulate this behavior, yet.

e) The simulated time for intra-node configurations does not increase linearly in all cases; a large time
increase is visible for the configuration with 8 processes and MPI_Bcast() (see Figure 7.37a). This
can be seen in MPI_Gather() and MPI_Scatter(), too. Further, there are sometimes small plateaus
visible. In many cases, the simulated behavior is visible in the observation as well, although the
actual change in values is different. For example, the current model is able to predict a performance
increase for MPICH2 in configuration 1–8 with MPI_Reduce(); this configuration needs less time
than configurations 1–6 and 1–7 (see Figure 7.46a). In this case, the algorithm is responsible for the
lower performance.

Sometimes the performance jumps are shifted to the neighboring configuration, but sometimes the
gap is not visible in the observed times. In those cases, it is likely that the memory access pattern
changes throughput of the memory subsystem. Therefore, the current model cannot capture these
effects. However, by comparing model and measured behavior, the impact of the memory subsystem
could be better understood.

326

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.38.: MPI_Bcast() and 10 MiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.39.: MPI_Gather() and 1 MiB of data.

327

EVALUATION 7.6

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.40.: MPI_Gather() and 10 MiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.41.: MPI_Allgather() and 1 MiB of data.

328

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.42.: MPI_Allgather() and 10 MiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.43.: MPI_Scatter() and 1 MiB of data.

329

EVALUATION 7.6

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.44.: MPI_Scatter() and 10 MiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.45.: MPI_Reduce() and 1 MiB of data.

330

7.6 EVALUATION OF THE NETWORK MODEL WITH COMPLEX COMMUNICATION PATTERNS

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.46.: MPI_Reduce() and 10 MiB of data.

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.47.: MPI_Allreduce() and 1 MiB of data.

331

EVALUATION 7.6

(a) Execution time for local communica-
tion.

(b) Execution time for inter-node communication.

(c) Relative model accuracy – local. (d) Relative model accuracy – inter-node communication.

Figure 7.48.: MPI_Allreduce() and 10 MiB of data.

7.6.8. Summary and Conclusions

The network model is validated for a rich variety of point-to-point and collective communication patterns.
For this, the MPI-internal activity is traced with HDTrace and the resulting point-to-point activity is loaded
by PIOsimHD. The process mapping of the real runs are recreated in the simulation. Although it is very
small, the compute time between two MPI calls is also included in the simulation. Thus, the simulator
performs the identical operations as observed on the real system.

Performance is measured for 10 KiB, 1 MiB, 10 MiB, 100 MiB and 1000 MiB operations and several pro-
cess configurations with 1 to 10 nodes, and up to 20 processes are analyzed. Small amounts of data are
sensitive to latency and the network granularity while larger are dominated by the throughput charac-
teristics. The simulation resembles the SendToRoot communication pattern for intra-node and inter-node
communication very well because the model is parameterized based on the measurements for this pattern.
Independent measurements show a high fluctuation of the times, often a factor of two is observed between
minimum and third-quartile (or maximum) time even when 100 MiB of data is transferred. Therefore,
for individual configurations, the number of at least 12 measurements might not suffice to capture the
real minimum sufficiently well, the given minimum might still be much higher than the true minimum.
Clearly, the variability is caused by the interaction between communication pattern, MPI and our system
hardware. However, some patterns are rather robust and vary only slightly, especially MPI_Scatter()

and MPI_Gather() are stable to variation. Overall, the simulation matches many results with a relative
accuracy of about ±20% compared to the first quartile (or the minimum) of the measurement.

There are several cases in which the estimation and the measurement differ by more than 50%. Some
of these are due to the discrepancy between hardware model and real system, and several are caused by
bottlenecks in the system. The model for intra-node communication is far less accurate than the modeled
inter-node communication, for small messages the predicted time is 4 times slower than the observed time,
however, several communication schemes also match quite well (e.q. SendToRoot and MPI_Gather()).

332

7.7 EVALUATION OF PARALLEL I/O

Partly, this could be caused by caching effects. In general, local communication is better approximated for
larger message sizes overestimating execution time by about 40%. Also, several patterns are almost per-
fectly estimated, for example the MPI_Reduce() with 10 MiB of data, here a performance drop occurs on
configuration 1-8 that is also visible in the simulation. A bottleneck of the MPICH2 implementation is ex-
posed by the SendToRoot and SendrecvRoot kernels, for some data points the expected time is much lower
than the observation. In many cases, the bi-directional communication behaves just like the execution of
two uni-directional communications. Another example for unexpected behavior is MPI_Scatter() with
10 MiB of data per process. With this communication pattern the time of configuration 1-6 is half the time
for configuration 1-7. An abnormal increase is also visible in the simulation from configuration 1-7 to 1-8
which might indicate that it is due to the communication pattern. Reduce and Allreduce are predicted to
have a 30% better performance than observed, further investigation is necessary to determine the reasons
– presumably, additional internal buffering is done by the implementation that slows down execution.

In many cases, the simulated curves resemble the measurements well, proving that the model and the
identified characteristics sufficiently describe the system. Additionally, a close match between estimate
and observed performance proves that the analyzed call does not include additional overhead – it is imple-
mented well and, according to simulation, free of not modeled bottlenecks. However, the communication
algorithm can still be suboptimal, which is proven when the estimated performance matches but theoreti-
cal considerations lead to a better algorithm. It turns out that several communication patterns of MPICH2
are suboptimal. For example, MPI_Allgather() is just partly SMP aware; for a small message, the config-
uration 4-8 behaves as expected – it is slightly slower than 4-4, but configuration 5-10 takes longer than
10-10. Another suboptimal algorithm is MPI_Reduce(), its time does not monotonically increase with the
number of processes, instead some configurations with fewer processes take longer. With large messages,
MPI_Allgather() is slower in configuration 2-9 than with 10-10. Due to the estimation done by sim-
ulation, the algorithmic suboptimality can clearly be distinguished from unexpected bottlenecks inside
library and system.

For local communication, the overhead of HDTrace is investigated because intercepting MPI calls takes
time that is accounted to the computation time of MPI. By comparing the results with and without exe-
cuting recorded compute jobs, the time for many local communication patterns improved but not for MPI_
Bcast(). An in-depth analysis shows that a bottleneck is predicted in the interconnection of the two sock-
ets, the connection is already busy when computation jobs are simulated. Therefore, performance cannot
be improved significantly by removing waiting times – thus the bottleneck manifests also in the run with-
out computation. Although the performance of the real system is better than that of the modeled system,
the simulation still demonstrates expected system behavior for some communication patterns.

Open MPI is also benchmarked for large messages. In many cases, it shows a different behavior than
MPICH2, even in local communication times. To a large extent this is caused by different algorithms real-
ized in Open MPI, and to the fact that Open MPI tries to utilize both network interfaces. There are some
interesting patterns, for example in local communication Open MPI scales better – for several communi-
cation patterns the run-time increases almost linear up to 4 to 6 processes and then increases just slightly
with an increasing number of processes. This is surprising as it is also visible for larger message exchanges,
e.g., for the ring-communication of 100 MiB of data and MPI_Reduce(). Presumably, the implemented op-
timizations utilize the CPU cache more efficiently.

7.7. Evaluation of Parallel I/O

Similar to collective operations, this evaluation validates the simulation model; also it allows identification
of unexpected behavior and fosters a discussion about the potential discrepancy between simulation and
observation. To validate performance of parallel I/O, the MPI benchmark parabench[MRKL10] is used to
execute I/O patterns which are then compared with simulation results.

Many different experiments have been executed for this thesis, but due to space limitations, a specific sub-
set has been chosen for presentation and further assessment. The methodology used to measure system

333

EVALUATION 7.7

performance, the conducted experiments and the approach of comparing measurements with simulation
results are described in Section 7.7.1. Estimated and observed performance are discussed based on the fol-
lowing classes of experiments: Accessing data on tmpfs checks whether the abstract client/server commu-
nication model is correct (see Section 7.7.2). The performance of accessing cached data with two different
cache sizes is assessed in Section 7.7.3. Furthermore, results for different amounts of free memory and for
tmpfs are compared.

An experiment with a variable number of clients on 5 nodes is presented in Section 7.7.4. At last, an ex-
periment in with clients and servers are placed on the same nodes is shown in Section 7.7.5. The simulator
generates several patters which occur in the real system, and allows analysis beyond the possibilities in
vivo. A discussion of emerging complex patterns is given in Section 7.7.6.

7.7.1. Methodology

Conducted experiments The following orthogonal parameters show the diversity of I/O validation ex-
periments conducted20:

• Access pattern: All processes access a single shared file sequentially in several iterations. Either a
client performs 10 iterations with 100 MiB records (a total of 1 GiB), 10240 iterations with 100 KiB
records (a total of 1 GiB), or 100 iterations with 100 MiB records (a total of 10 GiB). Records of the
file are partitioned round-robin among the clients, that means that Rank 0 accesses the first record,
Rank 1 the second record and so on.

• Level of access: The access pattern is also influenced by the level of access: contiguous vs. non-
contiguous I/O and collective vs. independent I/O. These two parameters are orthogonal and the
benchmark supports all four patterns: independent contiguous (Ind-C), collective contiguous (Coll-
C), independent non-contiguous (Ind-NC) and collective non-contiguous (Coll-NC).

• Storage backend: PVFS is configured to put its storage space either on tmpfs or on the local hard disk
drive.

• Memory limitation: Without restricting memory about 10 GiB of free memory is available for
caching. To assess the impact of caching, memory is limited to either 400 MiB or 1 GiB by using
the mem-eater program (see Section A.4 for further information).

• Configuration of client and server processes: Several classes of configurations are possible on our
cluster system; the number of clients and servers and the actual placement can vary. To test scalabil-
ity, PVFS clients and servers are placed on disjoint nodes, that means every process is placed on its
own node. In this configuration, a variable but identical number of servers and clients is placed (be-
tween 1 to 5 each). Since these configurations do not necessarily lead to a bottleneck in the network,
one additional configuration with 3 clients and 2 servers is evaluated. This configuration enforces
network congestion on the servers’ network links.

To test concurrent access, 5 server nodes provide storage for an increasing process count located on 5
client nodes. In the last type of experiment, client and server processes are placed on the same nodes,
and thus clients and servers use overlapping nodes.

• System configuration: On the real system, many parameters are adjustable. For simplicity, the default
values of our Ubuntu servers are kept and not varied. Therefore, PVFS uses a flow buffer size of
256 KiB – data is accessed on disk with that granularity and network transport and I/O are performed
concurrently21. The deadline I/O scheduler is used. The maximum transmission unit of our Ethernet
connections is 1500 bytes. MPICH2 offers parameters to control I/O optimizations: By default the

20There are several simulation parameters that can be changed, the configuration is part of the experiment – these parameters are
described in a minute.

21Refer to Section 2.1.4 for a description of the I/O protocol.

334

7.7 EVALUATION OF PARALLEL I/O

two-phase protocol of MPICH2 uses a collective buffer of 16 MiB and data sieving uses a read buffer
of 4 MiB.

Measuring performance For a single measurement, a client and server configuration, the memory lim-
itation and the storage backend are chosen. Then parabench is started to execute all levels of access se-
quentially. For each level of access, data is written and then read. Between tests processes are synchronized
with a barrier and the file is deleted after it has been read.

The definition of the described access scheme is given in the PBL language [MRKL10] in Listing 7.4. The
access patterns that precede the PBL description are shown for 100 MiB records and for 100 KiB records in
Listing 7.6 and Listing 7.5, respectively. An example trace illustrates the temporal pattern – for a configu-
ration with three clients and two servers, the client-sided trace is given in Figure 7.51a.

Listing 7.4: Parabench description to measure the performance of all 4 levels of access
$env = "pvfs2:/pvfs2"; # Setup a global variable

Time all commands in the block and label the timer "MPI-IO�test".
time["MPI-IO�test"] {

Time an individual execution of the pattern with the name pattern0.

(independent, contiguous I/O)

time["pwrite-lvl0"] pwrite("$env/file.dat", "pattern0");

Synchronize all processes with an MPI_Barrier();

barrier;

time["pread-lvl0"] pread("$env/file.dat", "pattern0", "world");

barrier;

Delete the file.

pdelete("$env/file.dat");

barrier;

Repeat the sequence with pattern1 (collective, contiguous I/O).

time["pwrite-lvl1"] pwrite("$env/file.dat", "pattern1");

barrier;

time["pread-lvl1"] pread("$env/file.dat", "pattern1", "world");

barrier;

pdelete("$env/file.dat");

barrier;

Independent, non-contiguous I/O

time["pwrite-lvl2"] pwrite("$env/file.dat", "pattern2");

barrier;

time["pread-lvl2"] pread("$env/file.dat", "pattern2", "world");

barrier;

pdelete("$env/file.dat");

barrier;

Collective, non-contiguous I/O

time["pwrite-lvl3"] pwrite("$env/file.dat", "pattern3");

barrier;

time["pread-lvl3"] pread("$env/file.dat", "pattern3", "world");

barrier;

pdelete("$env/file.dat");

barrier;

}

335

EVALUATION 7.7

Listing 7.5: Parabench description of accessing 1 GiB of data with 100 KiB records
A pattern is defined by a name, the interleaving type (always 2),

the number of iterations, the record size per iteration and the access level.

Independent, contiguous (level 0):

define pattern {"pattern0", 2, (10 * 1024), (100 * 1024), 0};

Collective, contiguous:

define pattern {"pattern1", 2, (10 * 1024), (100 * 1024), 1};

Independent, non-contiguous:

define pattern {"pattern2", 2, (10 * 1024), (100 * 1024), 2};

Collective, non-contiguous:

define pattern {"pattern3", 2, (10 * 1024), (100 * 1024), 3};

Listing 7.6: Parabench description of accessing 1 GiB of data with 10 accesses of 100 MiB records
define pattern {"pattern0", 2, 10, (100 * 1024 * 1024), 0};

define pattern {"pattern1", 2, 10, (100 * 1024 * 1024), 1};

define pattern {"pattern2", 2, 10, (100 * 1024 * 1024), 2};

define pattern {"pattern3", 2, 10, (100 * 1024 * 1024), 3};

Simulation model Because all patterns are rather simple, they are encoded directly in PIOsimHD. The
system model for our cluster is used. Server nodes are supplied with the same amount of free mem-
ory as in the measurement. However, several parameters define the simulation behavior, for example,
cache layer and network granularity. The simulator offers multiple caching algorithms, if not mentioned
explicitly, then the AggregationReorderCache is used. For message transport, a transfer granularity of
100 KiB is chosen. However, this granularity impacts network performance due to the store-and-forward
switching. Therefore, for 100 KiB records, an additional simulation with an access granularity of 10 KiB is
performed.

To simulate collective I/O, the model for the original two-phase-protocol is used. Note that the simulator
offers a variant of two-phase as well (refer to [Kuh09] for further information). Data sieving that is applied
for independent, non-contiguous I/O on the real system is not simulated.

Comparing observation and simulation A single measurement is repeated three times, which allows
evaluation of deviation. Generated diagrams provide the average value and error bars for the minimum
and maximum. Sometimes execution was not successful because execution on clients stalls while accessing
data. Those experiments have been restarted several times to achieve a successful run. However, there are
reproducible crashes for a few experiments, for example when 100 KiB records are accessed from multiple
clients per node. Therefore, these values could not be measured and these missing values are omitted from
the diagrams.

In all cases, client activity is recorded with HDTrace to allow a later comparison with the simulation results.
Additionally, a few traces are generated in which PVFS server activity is recorded. However, since tracing
of the servers slows down activity slightly, those measurements are not shown, but they have been used to
identify issues in performance differences.

With PIOsimHD, the performance is estimated (simulated) and compared with the measurements. Due to
the slight difference in the client and server communication performance, and the improved scheduling of
PIOsimHD, it is not expected that simulation results match perfectly.

7.7.2. Accessing Data on tmpfs

In this validation experiment, the network model of parallel I/O is compared with measured activity. By
putting the data on a tmpfs, the influence of the I/O subsystem is ignored because data on tmpfs can be
accessed with 2,000 MiB/s, according to the characterization in Section 3.4.2.

336

7.7 EVALUATION OF PARALLEL I/O

(a) Write independent, contiguous. (b) Read independent, contiguous.

(c) Write collective, contiguous. (d) Read collective, contiguous.

(e) Write independent, non-contiguous. (f) Read independent, non-contiguous.

(g) Write collective, non-contiguous. (h) Read collective, non-contiguous.

Figure 7.49.: Performance of accessing data on tmpfs by using 100 MiB records – configuration with a
variable number of disjoint client and server nodes.

337

EVALUATION 7.7

(a) Write independent, contiguous. (b) Read independent, contiguous.

(c) Write collective, contiguous. (d) Read collective, contiguous.

(e) Write independent, non-contiguous. (f) Read independent, non-contiguous.

(g) Write collective, non-contiguous. (h) Read collective, non-contiguous.

Figure 7.50.: Performance of accessing data on tmpfs by using 100 KiB records.

338

7.7 EVALUATION OF PARALLEL I/O

For simulation, the disk model is adjusted to a sequential transfer rate of 2,000 MiB/s and without la-
tency. To assess the impact of the transfer granularity on results, the default granularity of 100 KiB and a
granularity of 10 KiB are compared for both record sizes.

The performance for accessing 100 MiB records and for accessing 100 KiB records is shown in Figure 7.49
and in Figure 7.50, respectively. Further, an overview of the client-side processing of the benchmark is
visualized in Figure 7.51.

Observations and interpretation

a) First, the results with 100 MiB records are assessed (see Figure 7.49). In many configurations, the
observed minimum and maximum differ by about 10% from the average value. With an increasing
number of clients and servers, the performance increases; about 70 MiB/s of data can be accessed
per client and server except for collective non-contiguous access. Note that 70 MiB/s is the observed
performance limit of our TCP/IP network connection. Interestingly, the configuration 3C–2S has
a slightly better performance of 170 MiB/s which is about 85 MiB/s per server22. The simulator
estimates performance very well in all cases. Especially the fastest observation and the simulation
are alike.

In a few cases, the measured performance is slightly better than the simulation results. Mostly it
happens for independent and non-contiguous I/O, see Figure 7.49e and Figure 7.49f).

b) Collective non-contiguous access is much lower; in the best case, an aggregated performance of about
120 MiB/s is achieved. Read and write achieve almost identical performance values. Performance
drops from 70 MiB/s to 50 MiB/s when using two instead of one client and server. PIOsimHD shows
a similar performance behavior. However, it slightly overestimates performance by at most 20 MiB/s
or roughly 20% (compared to the average observation). This is due to the improved scheduling of the
simulated parallel file system in PIOsimHD. In general, the low performance is due to the two-phase
protocol.

c) The change to the smaller access granularity has no noticeable effect for 100 MiB records; only the
performance for three clients and servers increases slightly for collective and non-contiguous writes
(see Figure 7.49g).

d) Next, look at the results for 100 KiB records in Figure 7.50. In the measured performance, the de-
viation between minimum and maximum is low for contiguous access but increases to +-25% for
non-contiguous access.

e) For contiguous I/O, PIOsimHD predicts an almost linear scaling with the number of servers (see
Figure 7.50). While the simulation matches the expectations for a parallel file system, the measured
performance stays behind – the measurement of independent writes shows a slow increase from
50 MiB/s to 100 MiB/s, for collective writes performance is reduced and stays on a low level.

Although the model matches expectations for a parallel file system at this point, it seems that the sim-
ulation and the real system differ too much. An explanation could be a wrong model for client/server
communication or systematic mistakes in modeling the system or application behavior. Another ex-
planation for degraded performance in the real system could be the variance of network and I/O
performance. However, with the discussion of cached I/O in Section 7.7.3 it will be shown that those
kind of effects can be seen in the simulation as well: Minimal timing effects can cause long-term
delays and congestions in the network which slow down the whole processing.

f) With the exception of non-contiguous access, choosing a network granularity of 10 KiB increases
performance. This behavior is expected: For independent I/O, the network granularity of 100 KiB

22Basically, one might claim that this result suggests that multiple streams perform better; however, with a growth in servers, the
number of concurrent data streams increases as well but does not improve over the 70 MiB/s per server. Presumably, network
performance is limited from client-side, although it is unclear how.

339

EVALUATION 7.7

fragments a single I/O into just two packets, thus the store-and-forward switching increases commu-
nication time. This is especially true for a single client. Data is exchanged in collective I/O between
the clients; therefore, the overhead is even higher in this case. When multiple clients are connected,
the latency is not so important any more, therefore, the experiments with configuration 2C–3S show
less improvement with a smaller granularity.

In non-contiguous I/O all data is transferred with a single server request. Consequently, in this case,
a lower network granularity does not change the situation much.

g) Non-contiguous I/O offers much better performance on the real system; also, the model estimates
the observed throughput well. With the simulation, the quality of the four levels of access can be
predicted; for five servers and clients, the four levels of access achieve roughly 220 MiB/s, 220 MiB/s,
350 MiB/s and 200 MiB/s, respectively. Thus, on our system, the additional network communication
of collective I/O in combination with the modified access pattern degrades performance.

h) The trace of the client activity also indicates that collective I/O is a bottleneck for both configura-
tions – non-contiguous collectives are slower for large records, as are contiguous collectives for small
records (refer to Figure 7.51).

By inspecting the traces, many dynamic effects can be observed. One example is the difference in
processing speed of the clients when independent I/O is performed. To visualize this activity a zoom
into independent-contiguous I/O is given in the screenshots.

Another effect is the aggregation of requests on a single server: When multiple clients access data
located on one server, it might be a bit slower. Since the server has to multiplex its speed among all
requests, subsequent operations could queue up. Therefore, a single server might be overloaded. A
further discussion of emerging patterns is provided in Section 7.7.6.

i) An interesting simulation result emerges for the configuration with three servers and clients each
(see Figure 7.50a). By writing contiguous blocks independently with a transfer granularity of 10 KiB,
the aggregated throughput is reduced from 132 MiB/s to 111 MiB/s.

To assess the simulation results better, traces and profiles for both network granularities are gener-
ated and shown in Figure 7.52. Profiles show the inclusive time; a run takes about 23 seconds. In the
profile, all three clients need almost the same time to perform the file write (orange colored entries
next to the clients). However, with 100 KiB network granularity, the second client needs more time to
receive data from the second server. Due to the fast I/O device almost no time is spent to perform I/O
(the write activity next to the I/O-subsystems is close to 0). Surprisingly, in all cases the first server
needs less time to process requests, although the amount of data written per server is identical.

An excerpt of the timeline for 100 KiB granularity is given in Figure 7.52c. The figure shows an
excerpt of client and server activity; on the client-side, every job which receives data from a particular
server is encoded by another color. In Figure 7.52d, the first few activities are shown for 10 KiB
granularity. In this figure, the requests from the client and server side are visualized, too. Further,
the network activity on Ethernet edges to the clients is provided: Every combination of client and
server is drawn in its own color.

By looking at the timelines, a complex communication pattern can be observed; this is caused by
the data partitioning (round-robin partitioning with chunks of 64 KiB). In Figure 7.52c, it becomes
apparent that the first server processes requests of the clients sequentially, while the second and third
process requests in a concurrent fashion. Since the NIC multiplexes all requests, it takes longer for
these servers to transfer data back to the clients. With a smaller network granularity the pattern
changes, now the first server needs almost as much time as the other servers (compare the profiles).
While all clients need the same amount of time, the total aggregated processing time on the servers
increases from 41 s to 45 s. Thereby, the concurrency on the servers increases, and although a smaller
network granularity is used, all requests take longer due to the shared network resource. This leads to
the performance degradation for 10 KiB access granularity. By comparing the speed of the individual

340

7.7 EVALUATION OF PARALLEL I/O

(a
)R

ec
or

d
si

ze
of

10
0

M
iB

.

(b
)R

ec
or

d
si

ze
of

10
0

K
iB

.

Fi
gu

re
7.

51
.:

C
li

en
t-

si
d

ed
tr

ac
e

fo
r

th
re

e
cl

ie
nt

s
ac

ce
ss

in
g

d
at

a
on

tw
o

se
rv

er
s

–
d

at
a

is
st

or
ed

on
tm

p
fs

.
T

he
ba

rr
ie

r
be

tw
ee

n
ru

ns
is

co
lo

re
d

in
or

an
ge

an
d

th
e
M
P
I
_
F
i
l
e
_
s
e
t
_
v
i
e
w
(
)

is
co

lo
re

d
in

bl
u

e.

341

EVALUATION 7.7

(c
)R

ec
or

d
si

ze
of

10
0

M
iB

–
zo

om
in

to
th

e
in

d
ep

en
d

en
t

co
nt

ig
u

ou
s

I/
O

p
ha

se
.

(d
)R

ec
or

d
si

ze
of

10
0

K
iB

–
zo

om
in

to
th

e
en

d
of

th
e

in
d

ep
en

d
en

t
co

nt
ig

u
ou

s
I/

O
p

ha
se

.

Fi
gu

re
7.

51
.:

C
li

en
t-

si
d

ed
tr

ac
e

fo
r

th
re

e
cl

ie
nt

s
ac

ce
ss

in
g

d
at

a
on

tw
o

se
rv

er
s

–
d

at
a

is
st

or
ed

on
tm

p
fs

.
T

he
ba

rr
ie

r
be

tw
ee

n
ru

ns
is

co
lo

re
d

in
or

an
ge

an
d

th
e
M
P
I
_
F
i
l
e
_
s
e
t
_
v
i
e
w
(
)

is
co

lo
re

d
in

bl
u

e.

342

7.7 EVALUATION OF PARALLEL I/O

(a
)P

ro
fi

le
fo

r
a

ne
tw

or
k

gr
an

u
la

ri
ty

of
10

0
K

iB
sh

ow
in

g
th

e
in

cl
u

si
ve

ti
m

e.

(b
)P

ro
fi

le
fo

r
a

ne
tw

or
k

gr
an

u
la

ri
ty

of
10

K
iB

sh
ow

in
g

th
e

in
cl

u
si

ve
ti

m
e.

Fi
gu

re
7.

52
.:

Si
m

u
la

ti
on

of
th

e
p

ro
ce

ss
in

g
fo

r
th

re
e

cl
ie

nt
s

ac
ce

ss
in

g
d

at
a

on
th

re
e

se
rv

er
s

–
d

at
a

is
st

or
ed

on
tm

p
fs

.

343

EVALUATION 7.7

(c
)E

xc
er

p
t

of
th

e
ti

m
el

in
es

fo
r

a
ne

tw
or

k
gr

an
u

la
ri

ty
of

10
0

K
iB

.

Fi
gu

re
7.

52
.:

Si
m

u
la

ti
on

of
th

e
p

ro
ce

ss
in

g
fo

r
th

re
e

cl
ie

nt
s

ac
ce

ss
in

g
d

at
a

on
th

re
e

se
rv

er
s

–
d

at
a

is
st

or
ed

on
tm

p
fs

.

344

7.7 EVALUATION OF PARALLEL I/O

(d
)E

xc
er

p
t

of
th

e
ti

m
el

in
es

in
cl

u
d

in
g

ne
tw

or
k

ac
ti

vi
ty

fo
r

a
ne

tw
or

k
gr

an
u

la
ri

ty
of

10
K

iB
.

Fi
gu

re
7.

52
.:

Si
m

u
la

ti
on

of
th

e
p

ro
ce

ss
in

g
fo

r
th

re
e

cl
ie

nt
s

ac
ce

ss
in

g
d

at
a

on
th

re
e

se
rv

er
s

–
d

at
a

is
st

or
ed

on
tm

p
fs

.

345

EVALUATION 7.7

clients it can be seen that the second client completes 5 requests while the other clients process 4
requests (look at Figure 7.52d).

As can be seen already, this simple access patterns leads to complex behavior, which, in turn, causes
a variation in server load. A modification of the network granularity changes timings and thus can
lead to a variation in behavior. This is realistic: Such parameter sensitivity has been reported for real
systems [Kun07]. Additional examples for insights into server behavior with the help of simulation
and a discussion of this issue is given in Section 7.7.6.

7.7.3. Cached Data

To assess the impact of caching, I/O is conducted on the local disk and the benchmark is run with a variable
amount of free memory. Originally, it was intended to measure performance for a cache size of 400 MiB,
1 GiB and 10 GiB, and to compare the results of the hard disk drive with tmpfs. However, PVFS crashed
reproducibly for 100 KiB accesses. Since the times of 1 GiB and 10 GiB are identical for accessing records
with 100 MiB size, those values are omitted. Due to the influence of network granularity, simulation for
100 KiB accesses rely on a granularity of 10 KiB. To evaluate the influence of the access granularity, 100 KiB
accesses with 1 GiB of memory are also simulated with a 100 KiB granularity. The results are shown in
Figure 7.53 and in Figure 7.54 for a record size of 100 MiB and 100 KiB, respectively.

Observations and interpretation

a) In the measurement conducted with MPICH2 and PVFS, the observable performance increases with
additional free memory, also performance of the disk I/O is below the one of tmpfs. This is intuitively
expected. A few runs are slightly faster with less memory available; presumably, this is caused by a
variation in the timing of operations.

In general, simulation provides an upper bound to throughput, or it is close to the observed perfor-
mance. There are some exceptions to this observation, which are discussed in detail in the following.

b) In several diagrams the read performance from disk is faster than the one estimated by PIOsimHD
(look at Figure 7.53d, Figure 7.54b and Figure 7.54h). The reason is the page cache of the Linux
kernel: Data is written shortly before it is read and Linux caches as much I/O as possible. Since
about 1 GiB of data is written per client, almost all data is still available during the read phase of
the benchmark. Consequently, the performance of measured reads can be on a similar level as the
measurements conducted on tmpfs. For a 400 MiB cache which is benchmarked for 100 MiB records,
this effect is not so big but still visible.

The simulator does not keep data in a cache, instead it fetches data from the disk drive model. Thus,
read performance is not influenced by the memory size in the experiments and might be below the
measurement. However, measured read performance with a smaller cache size is on a similar level
as the estimated performance. It is questionable if HPC algorithms read data which has been written
recently – typically, with an appropriate design such a pattern can be avoided.

c) There are a few cases in which the measurement outperforms simulated estimations. Mainly in the
2C–3C configuration for 100 MiB records a better performance of up to 200 MiB/s can be observed
– amounting to about 100 MiB/s per client (look at Figure 7.53e). This is higher than expected; the
benchmarked network throughput of a single data stream between two nodes is 71 MiB/s.

With the system model used in the simulation, performance is limited. Therefore, the observed
discrepancy is inherent to the parameters of the model. That effect also causes a higher maximum
measured performance for collective I/O and 100 KiB records than predicted by PIOsimHD even for
tmpfs; for instance, for two clients and three servers a maximum read performance of 130 MiB is
observable, while the simulation roughly estimates 100 MiB/s (see Figure 7.54h). A simple theoretic
consideration confirms this theory of too fast communication: On average, both clients must forward

346

7.7 EVALUATION OF PARALLEL I/O

(a) Write independent, contiguous. (b) Read independent, contiguous.

(c) Write collective, contiguous. (d) Read collective, contiguous.

(e) Write independent, non-contiguous. (f) Read independent, non-contiguous.

(g) Write collective, non-contiguous. (h) Read collective, non-contiguous.

Figure 7.53.: Performance of accessing data by using 100 MiB records. The amount of available memory
for disk I/O is suffixed in the legend.

347

EVALUATION 7.7

(a) Write independent, contiguous. (b) Read independent, contiguous.

(c) Write collective, contiguous. (d) Read collective, contiguous.

(e) Write independent, non-contiguous. (f) Read independent, non-contiguous.

(g) Write collective, non-contiguous. (h) Read collective, non-contiguous.

Figure 7.54.: Performance of accessing data by using 100 KiB records. The amount of available memory for
disk I/O is suffixed in the legend.

348

7.7 EVALUATION OF PARALLEL I/O

50% of data to the other process. Since reading of data and data exchange are not pipelined, they are
processed sequentially. Thus, the NIC which achieved 71 MiB/s throughput must transport 1.5 bytes
per byte of data read from disk. Therefore, an effective throughput of about 47 MiB/s is possible
leading to an aggregated performance of 95 MiB/s. Consequently, the network communication works
better in the experimental run than during the characterization of the system.

Therefore, it seems that the network limitation of our cluster is partly resolved when congestions
happen only on sender or receiver side. Since every client contacts every server, there are already
multiple streams in that case. Thus, as expected, the 71 MiB/s restriction does not look like a hard-
ware specific network limitation. Instead it seems like a software (or kernel) issue but the exact
reason could not be resolved, yet.

d) The simulation of the I/O-subsystem achieves a write performance similar to the simulation with
tmpfs. This is due to the write-behind caching strategy and the performed data aggregation.

Reads are not cached in the simulation. And since they must be requested from the disk drive, the
operation must wait for the slower drive. Consequently, estimated read performance of the disk drive
model must be lower than the one on tmpfs. For large (or non-contiguous) accesses, the modeled
scheduler can optimize access very well leading to an almost optimal throughput.

e) When 100 KiB records are read, the observed performance is very low, even for tmpfs (see Fig-
ure 7.54b). This has been mentioned for the measurements on tmpfs already. However, now the
slow performance becomes visible for simulation of the disk drive; even when assuming 10 GiB of
main memory, performance of the simulated tmpfs is much faster than the simulated disk drive. In-
terestingly, when using a larger network granularity, the simulator predicts a good performance for
the run with five clients and servers (roughly 190 MiB/s).

To assess this behavior, a screenshots of the simulation traces are provided for two and five processes
in Figure 7.55. With two processes, I/O scheduling does not help: The read request that arrives first
is dispatched, in the meantime the second request arrives and is processed shortly after. Since disk
and network speed are similar to I/O transfer rate, a pattern emerges in which the disk must skip
the 100 KiB region read from the other process. An alternative to this seek-dominated pattern would
be that the file is read sequentially; with a slightly different timing, the read pattern could look like
sequential access.

The pattern for five clients is already more complicated (look at Figure 7.55b). Although the load is
balanced, idle times on individual servers show up. It can be also seen that the duration for indi-
vidual client I/O operations varies, some clients proceed faster than others. During the processing,
it happens that multiple operations are queued on a single server. The scheduler of the server can
then aggregate these operations and read data faster; after some time, a sequential pattern emerges
(see Figure 7.55c). This sequential read improves throughput and eliminates idle phases and, conse-
quently, aggregated performance increases.

However, since low performance is observed for MPICH2 on tmpfs as well, slow disk I/O cannot be
the only explanation. Due to network congestion, even accessing data on a fast storage system could
cause imbalance on the servers (this has been seen for tmpfs in Figure 7.52). As reported before, the
reason is that a server multiplexes its NIC among all connected clients, thus performance of the NIC
is shared. Once requests of multiple clients are pending on a single server, all clients must wait for
data stored on this server. Since the server multiplexes the NIC, data transfers of all clients take
longer. This problem does not arises for collective I/O because in this mode another operation can be
started only if the current operation has been completed. Another example of this issue is provided
in Section 7.7.6

f) In the simulation, it looks like that the amount of free memory does not influence the observable
performance – results for 400 MiB, 1 GiB and 10 GiB of memory behave alike. However, in the mea-
surements a noticeable performance increase shows up. The reasons are the simulated caching al-
gorithms. The write scheduler dispatches operations efficiently on the disk model: in the simula-

349

EVALUATION 7.7

(a) Timeline for 2 clients/servers.

(b) Timeline for 5 clients/servers – startup phase.

(c) For 5 clients/servers – transition to efficient sequential I/O.

Figure 7.55.: Simulation of reading data from the hard disk drive using a record size of 100 KiB – excerpt.

350

7.7 EVALUATION OF PARALLEL I/O

tion, 400 MiB of memory suffice to hold enough data to schedule large sequential disk operations.
Although no caching of written data is done for later reads, the efficient scheduling improves per-
formance there too. In contrast to these results, the current behavior of our Linux servers seems
suboptimal – the measurements vary with the cache size. An example which demonstrates the im-
pact of cache size for simulated writes is given in Section 7.7.6.

g) Predicted performance for tmpfs, accessed by a small record size and independent writes, is worse
than the one obtained with the hard disk drive model (see Figure 7.54a). Further, for most exper-
iments with 100 KiB accesses, a smaller network granularity improves estimated time due to the
pipelining of the store-and-forward switching. An exception to this observation is the result of inde-
pendent reads for 5 clients/servers and of independent writes for 3 clients/servers (see Figure 7.54b
and Figure 7.54a). As reported before, in those cases, minimal timing effects change the I/O behavior
on the virtual servers leading to congestion and potentially less efficient disk access.

7.7.4. Hosting Multiple Processes per Node

To assess the behavior of concurrent operations, an experiment with five nodes hosting between 5 and 30
processes and five servers is discussed. Quantitative results are given in Figure 7.56.

Observations and interpretation

a) For writes, estimated and measured performance are alike. For reads, observed performance de-
creases with an increasing number of clients from more than 300 MiB/s to 250 MiB/s. The simulator
stays at almost the original performance level.

The causes for this behavior are the flow protocol in PVFS and the I/O-scheduling; a server mul-
tiplexes the block I/O among all pending requests, and for every read-request up to 8 operations
of 256 KiB are issued to the Linux kernel. Since multiple clients issue requests, the disk must seek
between the partitioned file regions. Thus, the observed I/O pattern is not sequential – depending
on the timings, it can look more or less like random I/O of 256 KiB records. A longer explanation is
given in [Kun07]. In the simulation, scheduling is done differently; therefore, the pattern looks like
sequential I/O to the disk.

b) The maximum observed and simulated performance are about 350 MiB/s. This is also the theoretical
limit of the network communication on our cluster (71 MiB/s for 5 clients). Simulation estimates this
performance with 30 clients for all levels of access, except for collective non-contiguous I/O and for
collective reads. Typically writes perform better – already with only five clients, the best performance
is observed.

The reason for slower collective performance is that these operations synchronize the clients. There-
fore, for collective I/O, the slowest client (and server) limits the speed of the group. While writes can
be cached with write-behind, read performance is limited by the disk. Thus, collective contiguous
read performance is lower than collective write (see Figure 7.56c and Figure 7.56d).

c) Even with an increasing number of clients, the performance of two-phase I/O is very low (look at
Figure 7.56g and Figure 7.56h). Measured performance is below 80 MiB/s and even decreases slightly
with the number of clients. This observation is caused by the suboptimal access pattern: By default
all clients participate as I/O aggregators. However, the clients placed on a single node share the NIC,
thus all their data must be communicated over the single NIC of the node. This is caused by PVFS
flow protocol – with an increasing number of clients, the sequential access pattern degrades into a
random read pattern.

In PIOsimHD, the I/O scheduler can improve the order of operations; the more operations are pend-
ing, the better they can be aggregated and ordered – this leads to sequential patterns. Thus, disk I/O
is not the bottleneck in the simulation. This can also be seen in traces for the simulated processing

351

EVALUATION 7.7

(a) Write independent, contiguous. (b) Read independent, contiguous.

(c) Write collective, contiguous. (d) Read collective, contiguous.

(e) Write independent, non-contiguous. (f) Read independent, non-contiguous.

(g) Write collective, non-contiguous. (h) Read collective, non-contiguous.

Figure 7.56.: Performance of accessing 100 MiB records with collective non-contiguous I/O – configuration
with 5 nodes hosting a variable number of processes and 5 servers with 1000 MiB cache.

352

7.7 EVALUATION OF PARALLEL I/O

(a
)T

im
el

in
e

ov
er

vi
ew

.
T

im
el

in
es

fo
r

al
l

30
p

ro
ce

ss
es

ar
e

sh
ow

n
on

to
p

,
ti

m
el

in
es

fo
r

tw
o

se
rv

er
s

ar
e

gi
ve

n
be

lo
w

.
Fo

r
ea

ch
se

rv
er

,
th

e
lo

w
es

t
ti

m
el

in
e

sh
ow

s
ac

ti
vi

ty
of

th
e

I/
O

-
su

bs
ys

te
m

.

Fi
gu

re
7.

57
.:

Si
m

u
la

ti
on

of
30

cl
ie

nt
s

re
ad

in
g

d
at

a
fr

om
th

e
ha

rd
d

is
k

d
ri

ve
u

si
ng

a
re

co
rd

si
ze

of
10

0
M

iB
st

or
ed

on
fi

ve
se

rv
er

s.
G

re
en

re
ct

an
gl

es
on

th
e

cl
ie

nt
si

d
e

in
d

ic
at

e
I/

O
re

qu
es

ts
,t

he
ot

he
r

(p
u

rp
le

)o
p

er
at

io
ns

ar
e

ca
u

se
d

by
th

e
d

at
a

ex
ch

an
ge

.

353

EVALUATION 7.7

(b
)T

im
el

in
es

in
cl

u
d

in
g

cl
ie

nt
-s

id
e

op
er

at
io

ns
–

ex
ce

rp
t

fo
r

4
p

ro
ce

ss
es

.

Fi
gu

re
7.

57
.:

Si
m

u
la

ti
on

of
30

cl
ie

nt
s

re
ad

in
g

d
at

a
fr

om
th

e
ha

rd
d

is
k

d
ri

ve
u

si
ng

a
re

co
rd

si
ze

of
10

0
M

iB
st

or
ed

on
fi

ve
se

rv
er

s.
G

re
en

re
ct

an
gl

es
on

th
e

cl
ie

nt
si

d
e

in
d

ic
at

e
I/

O
re

qu
es

ts
,t

he
ot

he
r

(p
u

rp
le

)o
p

er
at

io
ns

ar
e

ca
u

se
d

by
th

e
d

at
a

ex
ch

an
ge

.

354

7.7 EVALUATION OF PARALLEL I/O

(a) Writing 100 MiB records. (b) Reading 100 MiB records.

(c) Writing 100 KiB records. (d) Reading 100 KiB records.

Figure 7.58.: Overlapping 8 clients and servers transferring 1 GiB of data per process, 2 GiB main memory
per node.

of this experiment (look at Figure 7.57). It is interesting to see that clients terminate at a different
timestamp. Whenever a client requests data which is just needed for itself, it does not invoke point-
to-point operations for data exchange. Thus, it can skip the communication phase and proceed to the
next I/O phase23. In a later phase, communication to another participant might be necessary, thus
the client might stall until the other client is ready. Data which is read for another client is sent im-
mediately to the peer24. The synchronization and different pace of the clients causes the interesting
pattern.

Probably the answer for the increase in performance of the simulation result is the improved con-
current usage of the network by the clients. Unfortunately, due to the complexity of the algorithm, a
detailed evaluation is out of the scope for this thesis.

7.7.5. Overlapping Client and Servers

On a cluster system, servers can be placed on the same nodes which host the clients. In this overlapping
configuration, clients can exchange data quickly with the local server, but the network interface is shared
between application and the file system. Results for 8 nodes each hosting one client and one server are
shown in Figure 7.58. Every diagram shows the measured performance for all levels of access; tmpfs is
simulated to estimate theoretical peak performance.

23This implementation is slightly different from the real two-phase implementation that requests synchronization for all point-
to-point communications.

24This could be achieved with a real implementation, too. The buffer in which data read is to be stored could be set up during the
initialization of the collective call.

355

EVALUATION 7.7

Observations and interpretation

a) The maximum observed and the estimated performance are about 600 MiB/s. This is equal to the
performance delivered by 7 links each with 71 MiB/s, and one hard disk drive (96 MiB/s). This is
correct because we expect that, from the perspective of every client, 1

8 of data is written locally and
the remaining parts are communicated to remote servers. Thereby, the maximum performance of
this configuration is higher on our cluster than the one that could be achieved with disjoint clients
and servers (it would be approximately 570 MiB/s if we had that number of nodes).

b) With PIOsimHD, the maximum performance can be predicted well for 100 MiB records. In this case,
estimated performance of collective contiguous I/O is slightly lower than measured.

It seems that a higher write throughput could be achieved on the real system. Especially, performance
of many access patterns and 100 KiB records is below 50% of the value estimated by PIOsimHD. With
that record size, the collective I/O on the real system performs almost like independent-contiguous
I/O. For writes, the improved scheduling in PIOsimHD offers much better performance than ob-
served in the experiments.

c) Similar to previous results, a transfer granularity of 10 KiB leads to a higher contiguous I/O perfor-
mance. Measured read performance of contiguous accesses is higher than the estimate due to the
caching of Linux – during reads, data is still available in the page cache, thus performance of reads
is higher than for writes (as discussed before).

d) Contiguous reading small records achieves low performance because it creates a random pattern
on the disk (as reported for cached I/O). However, this is not only visible on the real system – the
simulated system achieves similar performance levels. Therefore, performance stays behind the the-
oretical possible throughput with tmpfs. The actual timing of the incoming requests influences the
pattern, which explains the deviation in the measurements.

7.7.6. Simulating Server Behavior

In the previous sections the validation of parallel I/O showed that overall simulation with the simple
model matches observable performance well. However, for writes PIOsimHD frequently outperforms the
measurement, this is due to the improved cache scheduler in PIOsimHD.

In some cases, there is a discrepancy between estimation and observed behavior that is due to the influence
of minimal timing effects on the server: A slight variation has a macroscopic effect. Consequently, the
efficiency of the simulation depends on timings and race conditions which fluctuate on a real system as
well.

A simple example will demonstrate the macroscopic impact of a slight variation: Assume two clients
requesting 10 MiB of data from two servers, the request of the first client arrives first on the first server, but
later than the request of the second client on the other server. Thus, when the first 10 MiB of data are read
on the servers, the first server transfers the data read to the first client, while the second server transfers
data to the second client. Then the second data block is read and sent to the other client. Thus, both clients
must wait for completion of both operations. If the request of the first client was executed on both servers
before that of the other client, then this client would have completed its task sooner. This timing issue can
be seen for some simulation results, for example in Figure 7.60b (look at the first operations for the two
clients and servers).

Complex patterns formed by minimal timing variations have been introduced in Figure 7.52, Figure 7.55
and in the figure for collective read from disk (Figure 7.60b). Further, it has been observed that individual
clients or servers proceed faster than other clients; for example compare the trace in Figure 7.51d with
Figure 7.52; in this simulation experiment, individual operations take longer, also the total time spent on
the server side requests differs.

Several reasons for timing effects have been identified in the simulation and on the cluster system:

356

7.7 EVALUATION OF PARALLEL I/O

• Concurrency: The network interface or the block device of a server might process multiple requests
concurrently. Therewith, the available resource (and performance) is multiplexed among all requests.
The disk drive has an additional disadvantage; since its operation speed depends on the previously
executed I/O operation, the observed access pattern is important.

Performance of the network does not depend on previous operation. But a network congestion causes
multiplexing of available network bandwidth among all streams. Therefore, it slows down the speed
of all individual streams. In our setup, this can be caused by the fact that a single network interface
needs to transfer data to multiple end-points, or multiple senders might send data to a single receiver.
This can happen during client/server communication, or two-phase collective I/O.

An example for network congestion is illustrated in Figure 7.52d.

• Random I/O: The disk drive could see a random-like pattern which increases seek-time and slows
down processing. This happens for PVFS, since it processes operations with a granularity of the flow
buffer size (256 KiB). In many cases, the simulator showed better performance because it aggregates
operations to chunks of 10 MiB; this, in turn, reduces the costs for disk seeks. PVFS just relies on
the capabilities of the Linux kernel and does not re-arrange read operations at all. Therefore, its
performance is worse than that of the improved scheduling in PIOsimHD.

Still, macroscopic behavior caused by minimal timing variations that can be observed in a real system
can be found in the simulator as well. To give an example for an inefficient I/O pattern: In one
experiment, 10 GiB of data is written per client, 15 clients access data on five servers. In Figure 7.59,
two screenshots show the behavior for 1 GiB of memory and for 100 MiB of memory. With 100 MiB of
memory, the amount of memory does not suffice to cache enough data to enable efficient aggregation
and I/O scheduling. Therefore, time increases from 410 s to 700 s. In the screenshot in Figure 7.59b,
it can be observed that the first server is a bottleneck; all requests queue up on the first server, while
the other servers are able to process operations quickly. Such overloading of a single server has been
reported for existing systems in [Kun07].

• Processing order of pending operations: When multiple operations are pending, one must be picked
for further processing; this choice has an performance impact. In the simulator, the order in which
operations are executed mainly depends on the timing by which events arrive. The I/O scheduler is
an exception because it tries to optimize the access pattern for the disk drive. It does not consider
the client; the client might wait for a single operation that is deferred by the I/O scheduler. When
the block device accesses data or a network component executes an operation, it might be that the
completion of that operation could still be blocked. For example, the network could be congested
or the client might wait for completion of another operation. However, picking the right operation
could enable issuing the next operation on the client side, thus processing could be theoretically
faster.

At the time an operation must be picked for execution, the system does not know which one is
optimal, because no information about future processing is available. To pick the right operation, an
oracle would be necessary. However, there could be rules which steer behavior in the hope to improve
performance, for example, by preferring smaller accesses over larger accesses. Unfortunately, any
rule could be suboptimal for other instances and the author claims that pathological cases can be
found for all rules.

• OS noise and hardware effects: On the real system, random-like effects are caused by the complex
interplay of the system components (refer to Section 3.6). An example of traced server behavior for
collective, non-contiguous I/O shows the deviation observed in real runs; even on tmpfs, perfor-
mance of individual operations can vary – a few I/O operations take much longer than on average
(look at Figure 7.60). In the figure, activity on the two servers is shown; every request and every I/O
call on the server-side is given in another timeline.

Currently, PIOsimHD implements fixed characteristics and does not add further noise. This can lead
to simpler and/or repeated patterns such as shown in Figure 7.55a and Figure 7.60b. The former

357

EVALUATION 7.7

(a
)1

G
iB

m
ai

n
m

em
or

y.

Fi
gu

re
7.

59
.:

Si
m

u
la

ti
on

of
15

cl
ie

nt
s

an
d

5
se

rv
er

s,
ea

ch
cl

ie
nt

w
ri

te
s

10
G

iB
of

d
at

a.

358

7.7 EVALUATION OF PARALLEL I/O

(b
)1

00
M

iB
m

ai
n

m
em

or
y.

Fi
gu

re
7.

59
.:

Si
m

u
la

ti
on

of
15

cl
ie

nt
s

an
d

5
se

rv
er

s,
ea

ch
cl

ie
nt

w
ri

te
s

10
G

iB
of

d
at

a.

359

EVALUATION 7.7

(a
)R

ea
d

be
ha

vi
or

.

Fi
gu

re
7.

60
.:

V
is

u
al

iz
at

io
n

of
m

ea
su

re
d

co
ll

ec
ti

ve
no

n-
co

nt
ig

u
ou

s
I/

O
fo

r
tw

o
cl

ie
nt

s/
se

rv
er

s
an

d
tm

p
fs

.

360

7.7 EVALUATION OF PARALLEL I/O

(b
)R

ea
d

be
ha

vi
or

.

Fi
gu

re
7.

60
.:

V
is

u
al

iz
at

io
n

of
si

m
u

la
te

d
co

ll
ec

ti
ve

no
n-

co
nt

ig
u

ou
s

I/
O

fo
r

tw
o

cl
ie

nt
s/

se
rv

er
s

u
si

ng
tm

p
fs

.

361

EVALUATION 7.8

figure has been discussed already. The latter figure visualizes the simulation results for tmpfs; the
pattern is repeated after a while.

All those effects can be observed for a real system, however, analysis is usually difficult due to the lack of
introspection. This kind of sensitivity to timing effects is inherent to the way parallel I/O is conducted. On
a real system, experiments which are sensitive for timing variations lead to a higher deviation of the timing
between repeated measurements. Since the models in the simulation are characterized by a fixed timing,
a run results in a deterministic result. However, despite the simple models in PIOsimHD, the simulated
behavior could be very complex by itself and reproduce many effects in silico.

The modifications in HDTrace to visualize internal processing of PVFS allow introspecting client and
server activity (refer to [Tie09] for details about the capabilities). With the help of Sunshot, those im-
balances could be spotted on traced data and in the simulation. If network congestions degrade perfor-
mance, for example as seen in Figure 7.52, then a trace of the system cannot determine the exact cause,
because existing tracing tools are not able to capture network traffic. Further discussion of performance
analysis with trace-based tools and trace results showing similar patterns to the simulation are provided
in [KTML09, KL08, Kun07].

7.7.7. Summary and Conclusions

Parallel I/O is evaluated with the programmable benchmark parabench for a number of experiments that
vary orthogonal parameters: the access type, record size (100 KiB or 100 MiB), level of access, storage
backend (tmpfs or HDD), amount of cache, number of clients and servers and whether clients and servers
are placed on the same or physically separated nodes.

In many cases, performance of PVFS is well approximated by the simulation; especially, cacheable accesses
and non-contiguous I/O demonstrate a good match. In most cases simulation provides upper bounds to
PVFS performance. Examples in which a much better performance is expected, are independent I/O and
small record sizes. Collective non-contiguous requests are usually slightly better in the simulation. In
general, simulation results are better because the simulator uses an improved server-sided I/O scheduler.
It can be observed that PVFS performance is much lower in many cases and degrades with an increase of
clients and servers for independent operations because it schedules operations of all clients concurrently
leading to a random-like pattern. For independent non-contiguous access, PVFS achieves its best perfor-
mance. In all cases, contiguous collective calls are typically slower, because they lead to random accesses
and involve additional communication.

In some cases, performance of the simulation is slightly lower (mostly by 20% and in a few cases by up to
50%). It turns out that the modeled system is sensitive to timing issues. The timing issues are investigated
by inspecting generated traces – the simulation allows detailed assessment of results. These effects are
also visible on the real systems, but, due to different data flow and variability in the system characteristics,
they usually manifest on other configurations. An example in which timing on real system and simulation
behave very similar are the collective reads with 100 KiB records. In this case, simulation and observation
lead to a performance of about 25 MiB/s, however, with tmpfs a performance of 250 MiB/s is possible.

The influence of the network granularity is investigated, showing that it influences timing and improves
performance for small record sizes but not for large record sizes, because data transfer through the network
can be pipelined. While the model does not incorporate short term variability explicitly, the individual I/O
operations lead to similar behavior as in the real system. For example, simulation traces reveal a transition
from random to efficient sequential I/O. Also, an overloading of individual servers is demonstrated that
degrades performance, i.e., one server is busy to schedule operations and causes random access on disks,
while the others have idle time. The revealed timing effects show that PIOsimHD is a valuable tool for
investigating real world behavior. In a master thesis the simulator has already been used for evaluating
collective I/O and disk-directed I/O.

362

7.9 VERIFICATION OF THE IMPLEMENTED COLLECTIVE COMMUNICATION

7.8. Verification of the Implemented Collective Communication

During the execution of the parallel program, every command and thus every MPI operation must explic-
itly be programmed in PIOsimHD. Currently, the following collective calls of MPI are implemented: MPI_
Barrier(), MPI_Reduce(), MPI_Allreduce(), MPI_Bcast(), MPI_Gather(), MPI_Allgather() and MPI_

Scatter(). The implementation makes use of the concept of state machines as discussed in Section 6.5.

The simulator provides at least two alternative implementations for these collective calls: A simple real-
ization that meets the semantics of MPI, and a re-implementation of MPICH2 algorithms. For every call,
the simple implementation transfers all data through the root process. Further, several more sophisticated
algorithms have been implemented. With the help of PIOsimHD, the efficiency of those algorithms can be
assessed. An example of obtained performance for alternative MPI_Bcast() implementations is given in
Section 7.10.

In order to assess simulation results and observation, the simulated collective call and the real call should
behave alike. Thus, the real communication behavior should be encoded in the simulator. However, it is te-
dious to replicate existing codes, and as we have observed, current behavior is suboptimal for MPICH2 and
Open MPI in many cases. Currently, one algorithm provided by MPICH2 is implemented in the simulator
for every collective call, although MPICH2 offers multiple algorithms for many collective calls.

Before details about the implemented collective are given recall the optimization potential within
MPICH2: the implementation tries to optimize performance by selecting an appropriate algorithm for
the specified parameters25. Typically, in MPICH2, the algorithm is selected depending on the size of the
data to be communicated, and the number of processes. In most collective calls, one algorithm is provided
which is optimized for latency and another one that is optimized for throughput. Environment variables
can be set to adjust the message size at which the algorithm is changed26. Several algorithms implemented
in MPICH2 are also SMP-aware (performance and SMP behavior has been discussed in Section 7.6).

In a software lab, a student re-implemented MPICH2 algorithms in PIOsimHD and assessed the correct-
ness of the implemented algorithms [Thi12]. In detail, first the existing algorithms have been analyzed by
inspecting the MPICH2 source code and by analyzing the trace files which have been used to validate the
collective patterns (see Section 7.6). Second, existing code in PIOsimHD has been extended to mimic one of
the used algorithm for every collective call. For the validation, the traces have been compared with the sim-
ulation results obtained by using the hardware model of our cluster. For every collective call screenshots
for two configurations are also provided. The implemented broadcast algorithm is also verified against the
extracted point-to-point communication patterns in Section 7.10.

Note that the implementation in the simulation may differ for certain observations. This is due to the fact
that most implementations in the simulator are not SMP-aware. Further, in order to optimize throughput,
MPICH2 uses multiple algorithms for a single MPI command. This is not realized in the simulator, yet.
However, the software lab proved the practicability of the modular design for implementing and evaluat-
ing new MPI implementations.

7.9. Simulating Behavior of Scientific Applications

With the help of the introduced HDTrace environment, communication and I/O behavior of existing ap-
plications can be traced and their behavior can be replayed on arbitrary virtual cluster systems27. While
several applications have been traced with HDTrace and replayed with the simulator already, the results
obtained with the simple Jacobi partial differential equation (PDE) solver partdiff-par are evaluated and

25For further details about the optimization potential refer to Section 2.3.4.
26The variables are documented in README.envvar which is distributed with the source tarball. For instance, the selected MPI_

Allreduce() implementation depends on the environment variable MPIR_PARAM_ALLREDUCE_SHORT_MSG_SIZE.
27Refer to Section 4.3.1 for a detailed description of the workflow.

363

EVALUATION 7.9

discussed28. The reason for this choice is that the PDE application can easily be parameterized for arbitrary
problem sizes. This allows us to select an arbitrary communication to computation ratio and, furthermore,
to specify the I/O workload.

Many of the experiments conducted behave similar. Therefore, a subset of the experiments has been chosen
for discussion that represents the parameter space and showed interesting behavior. The methodology of
the comparison including experiments conducted is described in Section 7.9.2.

The experiments are classified and discussed depending on the bottleneck on the real system: Network-
bound experiments are assessed in Section 7.9.3, computation-bound experiments in Section 7.9.5, I/O-
bound experiments storing data on tmpfs in Section 7.9.6 and I/O-bound experiments storing data on disk
drives in Section 7.9.7. In Section 7.9.8, a mixed unbalanced workload is evaluated which stresses CPU and
file system, implying a synchronization overhead.

The semantics of MPI functions implies certain synchronization of processes, early arriving processes have
to wait for their communication partners to be ready. With the simulator, these waiting times can be
studied. This problem is related to the critical path analysis. A definition of the critical path according to
Schulz:

“It identifies the longest execution sequence without wait delays throughout the code. In other words,
the critical path is the global execution path that inflict wait operations on other nodes without itself
being stalled. Hence, it dictates the overall runtime and knowing it is important to understand an
application’s runtime and message behavior and to target optimizations.” [Sch05]

A slight modification to this definition is applied for this thesis: The critical path is the global execu-
tion path on which data dependency of communication inflict wait time on other processes without being
stalled by not-ready communication partners. In other words, whenever a MPI call is performed on the
critical path, all other processes that participate due to the semantics of the MPI call are ready. Ana-
lyzing waiting time throughout the execution path is demonstrated with HDTrace for partdiff-par in
Section 7.9.4.

7.9.1. The PDE Solver partdiff-par

The partial differential equation solver partdiff-par implements the Jacobi method for a quadric 2D
matrix with fixed values on the borders. It iterates over all matrix elements and computes a new matrix,
which serves as input for the next iteration. For every element the new value is computed by applying a
four-point stencil – the four neighboring values are needed. This program does not read an input matrix,
instead the matrix is initialized.

The program is parallelized by distributing consecutive rows of the matrix among the processes. With 7
rows and 2 processes that means, for example, that row 1 to 4 is assigned to the first process, and row 5
to 7 to the other process. With this domain decomposition, every process can compute the local submatrix
for the next iteration. Due to the data dependency of the stencil, two halo rows are required: one for the
process above and one for the process below. After the new matrix is computed, the boundary rows are
exchanged with the neighboring processes using MPI_Sendrecv(). Then every process can start with its
next iteration.

The PDE terminates when a number of iterations has been computed, it outputs a few values of the final
matrix on the terminal and writes them into a file using POSIX I/O – these values can be used to check the
correctness of the computation.

Parallel I/O is done between two iterations, the frequency can be parameterized on the command line. The
PDE supports writing out the matrix diagonal or the full matrix; collective and individual MPI-IO calls
are supported. The matrix diagonal is written to allow assessing of the program’s convergence behavior. In
this process, data is appended to a file; this file can be inspected online – while the program still updates

28The program itself is introduced in Section 7.9.1.

364

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

the data. In the program terminology, this process is called visualization. The full matrix is stored in a file
to checkpoint the state of processing; two checkpoint files are kept and alternately overwritten every time
a checkpoint is written. This ensures that a crash during the checkpoint procedure does not corrupt the
previous checkpoint.

In all cases, data is written with a single MPI call and every process writes the data it manages. Actually,
due to the limitations of MPI-IO, at most 2 GiB of data can be written with a single MPI call. Therefore,
if more than 2 GiB of data have to be written for a checkpoint, the data will be partitioned into chunks of
1.9 GiB.

7.9.2. Methodology

Experiments conducted Due to the flexibility of the program, there are several parameters that define
an experiment. They can be classified into runtime parameters for partdiff-par and the system configu-
ration. Many different sets of experiments have been executed on our cluster. Conducted experiments are
listed in Table 7.10. Table entries and the experimental variability are explained in the following:

• Runtime parameters define the size of the matrix and the number of iterations performed by the pro-
gram. Further, the frequencies of appending visualization data and of checkpointing are considered
as runtime parameters. Data is written when the current iteration is a multiple of the specified num-
ber, e.g., with a frequency of 501, the operation is performed every time 501 iterations are completed.

• Matrix size: This value gives the size of the matrix which helps assessing runtime – for example, the
amount of data written in a checkpoint corresponds to the matrix size. The problem size depends on
the number of interlines, which is a runtime parameter. For a quick validation of the result, a subset of
the matrix is output (9 times 9 points). Interlines define the number of non-visible rows and columns
between these points and thus the full matrix size. The matrix is square with N = 8 · interlines + 9
rows, thus the required memory is in the order of O(interlines2) – each matrix element is a double
precision floating point number. In the table, the size of the matrix is encoded in the experiment
name: extra-small (XS), small (S), medium (M), large (L) and extra large (XL).

• Configuration: A single configuration is defined by the number of processes and the resources pro-
cesses run on. In detail: the total number of nodes, the number of nodes for the PDE and the number
of application processes and server processes (at most one server process is started per node). In most
experiments the numbers of processes etc. are varied, variable numbers are given withN in the table.
N is used as a single configuration parameter within an experiment, so, for example, in experiment
XS-0S the number of nodes and processes is always identical.

Experiments either use disjoint nodes to execute PDE and file system servers, or PDE and server
processes are executed on the same nodes. If the number of nodes is larger than the number of
PDE nodes, server processes are placed on these additional nodes. Such a configuration with disjoint
servers is indicated in the experiment name with a D. If server processes are run on the same nodes
and thus they overlap with the application this is indicated in the name with an O.

• Memory restriction: To enforce real disk I/O, the memory of the server nodes is limited with the
mem-eater utility for some experiments. The memory footprint of the PDE solver must be taken into
account for overlapping configurations – memory occupied by the PDE is not available for caching
of the server. Approximately twice the matrix size is required for the PDE. Further, approximately
100 MiB is needed for the Linux kernel and temporary server buffers. The memory limit of an exper-
iment can also depend on the number of clients and servers. Matrix size and memory limitation is
provided in the table.

For example, in the configurations M-O-1000M effectively about 1000 MiB of cache is available per
server process (and node). In configuration M-O-s1000M, an aggregated 1000 MiB of cache is avail-
able for all servers, thus at most 50% of a single matrix can be cached on the servers.

365

EVALUATION 7.9

Experiment
Matrix size Configuration Runtime parameters

in MiB Nodes Servers PDE nodes PDE procs Memory limit Interlines Iter. Freq chk Freq vis

XS-0S 4.9 N 0 N N Unlimited 100 1000 No No

S-2S-1CN-150M 488 3 2 1 N 150 1000 1000 501 10
S-2S-tmpfs 488 N+2 2 N N Unlimited 1000 1000 501 10
S-2S-150M 488 N+2 2 N N 150 1000 1000 501 10

M-D 1953 2 ·N N N N Unlimited 2000 100 5 1
M-O 1953 N N N N Unlimited 2000 100 5 1
M-D-1000M 1953 2 ·N N N N 1000 2000 100 5 1
M-D-s900M 1953 2 ·N N N N 100+900/N 2000 100 5 1
M-O-1000M 1953 N N N N 1000+3900/N 2000 100 5 1
M-O-s1000M 1953 N N N N 100+4800/N 2000 100 5 1

L-D 4394 2 ·N N N N Unlimited 3000 100 5 1
L-O 4394 N N N N Unlimited 3000 100 5 1

XL-0S 23,926 N 0 N N Unlimited 7000 40 No No
XL-0S-5CN 23,926 5 0 5 N · 5 Unlimited 7000 40 No No
XL-5C 23,926 N+5 N 5 5 Unlimited 7000 40 5 1
XL-O 23,926 N N N N Unlimited 7000 40 5 1

Table 7.10.: Experiments conducted with the Jacobi PDE solver – configurations and runtime parameters.
A variable number of clients and servers is indicated with N, i.e., these experiments are run for
different N. The name of the experiment encodes the size of the matrix (as defined by the inter-
lines), whether the configuration is overlapping (O) or disjoint (D) and further configuration
options of interest.

Depending on the experiment, CPU29, network and file system are stressed differently and run-time is
dominated by one hardware component: The XS experiment is network-bound, the M, L and XL experi-
ments are I/O-bound with the exception of the computation-bound XL-0S experiments. The S experiments
are computation bound but stress network and I/O-subsystem as well.

Simulating application behavior In order to replay the application behavior, the cluster model is used,
but in a few experiments multiple processes are placed per core. Since wall-clock time of the recorded
trace is used as a reference for simulating computation time, a virtual processor is created with a number
of cores equal to the placed processes – this model guarantees an accurate replay of the computation time
in the simulator.

The amount of memory per server is set according to the memory limit in the configuration. For exper-
iments in which client and servers are placed on the same node, the amount of memory is adjusted to
account for the matrices of the PDE. The available memory is reduced by two times the matrix size divided
by the number of processes placed per node, and additional 100 MiB to account for the Linux system. On
the real system, the available memory varies slightly and thus the value is not exact. However, the cluster
model offers at least a similar amount of cache.

In PIOsimHD, a network granularity of 100 KiB is set and implementations for collective operations are
chosen that mimic algorithms of MPICH230. A single row has a size of 6 KiB for 100 interlines and about
440 KiB for the large matrix, so due to the store-and-forward switching, the selected network granularity
seems suboptimal. However, as we will see the granularity suffices to mimic the application behavior. Note
that the sequential (POSIX) output of some matrix values at the end of the application is not simulated –
the duration of unknown calls are converted to a compute job. Thus, the time spend in the sequential
output is simulated perfectly.

Since computation time can vary in the observations, all traces for an experiment that have been measured
are also simulated; every configuration is measured three times to capture this variance. Minimum and
maximum are visualized as an error bar in generated graphs.

29Since memory access is included in the computation time, it is not mentioned separately. In fact, with the chosen functions, the
PDE algorithm is memory-bound for larger matrix sizes and not computation-bound.

30 Currently, only one collective algorithm of MPICH2 is supported (per MPI function), but MPICH2 might use several algo-
rithms. Refer to Section 7.8 for a description of implemented algorithms.

366

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

To analyze the traces better, PIOsimHD is re-run with different internal implementations for the traced
MPI commands. For example, the implementation for opening and closing a file can be altered to broadcast
metadata31. The following simulations are run with the recorded trace files:

• Validation: To validate the simulation the default settings are applied and the results are compared
to the measurement.

• Determination of the compute time: By replaying the traces and skipping all MPI calls the maximum
compute time of any processes is computed. The computed time will serve as baseline to estimate
the accuracy for the simulation, since execution cannot be faster than the maximum compute time.

While the value could be determined by inspecting traces or profiles, it was simpler to automatically
compute the values with the already existing code that runs the PDE traces in the simulator.

• In SyncVirtually an infinite fast network and IO subsystem is simulated. With this configuration the
load-balance between the processes is checked. Also, it approximates performance of deploying the
fastest imaginable network technology.

Internally, all MPI calls are replaced with implementations that ensure causality of the call, but do
not use the network at all. Collective operations will synchronize the processes – the last process
which joins a collective operation activates all other processes. Opening a file is treated as a collec-
tive operation, independent I/O and closing a file does nothing. An alternative implementation of
point-to-point communication matches messages directly in the commands without using network
communication. Thus, a receive will complete immediately if the message has been send; still the
rendezvous protocol will block a sender of a large message until the receiver is ready.

This experiment effectively computes the critical path and allows visualization of waiting times in
Sunshot; a small experiment in Section 7.9.4 shows how.

• In No-IO, the simulator is configured to ignore I/O calls. Thus, it replays just communication and
the impact of IO to the total run-time can be assessed. This value could not be determined from the
traces alone. While an executed I/O operation defers future operations of a process, the application
runtime increases iff it is on the critical path.

• Flush-on-close. In this experiment an alternative persistency semantics is evaluated. By default writes
can be deferred, thus a crash of a data server might cause data loss. To avoid data loss, a close could
invoke a flush on the storage. Internally, the MPI_File_close() is replaced with an implementation
that flushes cached data on all data servers. In detail, this implementation synchronizes all pro-
cesses by using a barrier, then Rank 0 sends flush requests to all servers, and finally, all processes
synchronize with another barrier.

Comparing observation and simulation Every configuration is measured and re-run three times to give
an impression on the variability of network, disk and computation performance. Runtime of Rank 0 is
extracted from the trace file and taken as a reference. The average value of all runs is computed and
diagrams are created which show the average and an error bar for the minimum and maximum.

It is tempting to compare only execution time and estimated run-time for the application. However, since
compute time can be simulated accurately and the application performs a good fraction of computation, a
relative measure is necessary. Otherwise any level of accuracy can be obtained by increasing the fraction
of computation.

To provide a quantitative comparison of the simulation with the observation the following metrics are
defined:

critical time = execution time− compute time (7.7)

relative accuracy =
critical time of the the simulation

critical time of the observation
· 100 (7.8)

31The selection process of implementations is described in Section 5.4.

367

EVALUATION 7.9

(a) Wall-clock time. (b) Critical time due to communication.

Figure 7.61.: Times of the network-bound experiment XS-0S – a variable number of processes each hosted
on its own node.

Execution time is the observed run-time of the program, it can be computed for simulation runs as well as
for the measurement. The critical time is equal to the amount of time lost by doing I/O and communication;
to be more precise, it is the amount of time spend in communication and I/O on the critical path of a
parallel application.

A relative accuracy can be computed by comparing the critical time of the simulation with the observation.
Originally, it was intended to compare simulation and observation with this relative measure, because the
accuracy of the simulated network and I/O behavior could be quantitatively assessed. However, it turned
out that such a relative comparison is not appropriate, because the PDE relies on many different calls and
the timings of individual operations can compensate. Instead of using the relative accuracy, recorded and
simulated profiles and traces are directly compared for selected experiments.

An additional advantage of critical time is that it provides a quantitative absolute view, this on the one
hand, allows to assess deviation in measurements and, on the other hand, allows comparison of simulation
results with different simulation configurations. Therefore, the critical time is used solely for assessing
measurement and the various simulation results quantitatively while visual inspection with Sunshot veri-
fies accurate simulation of individual operations.

7.9.3. Network-Bound Workload

In experiment XS-0S a small matrix and a high number of iterations is chosen to assess network-bound
behavior; time is measured for a configuration with between 1 and 10 processes and nodes. Observed
and estimated wall-clock time is shown in Figure 7.61a. The critical time which is needed to perform the
communication and the final output is given in see Figure 7.61b. This experiment will also demonstrate
several timing aspects not mentioned so far.

Observations and interpretation

a) The total run-time decreases from 4 s down to 1 s (look at Figure 7.61a). Measured times vary by up
to 0.5 s. In many cases, estimated wall-clock time and the measured timing are alike. The critical
time of the configuration takes much less time – it is between 0.1 s and 1 s.

b) The critical time increases from one to three processes (look at Figure 7.61b). This is due to the
exchange of halo rows, one process does not have to exchange any halo rows, with two processes
one exchange happens, and with more processes processes in the middle exchange data with both
neighbors. With more than three processes, the trend of the communication time stays on the same
level around 0.45 s. There are several longer running configurations, such as for 3, 5 and 9 processes;
time is spent inside the communication. For those configurations the simulator estimates a shorter
runtime. Therefore, these configurations must be assessed in detail.

368

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

c) Time lost due to synchronization is roughly 0.05 s, which is just a fraction of the total time lost by
communication (look at the results of SyncVirtually in Figure 7.61b). Therefore, the impact of late
senders or a late receivers can be ignored. The computation load is well balanced and load-imbalance
is not the reason for pending communications.

Further, the variance of the critical time of these configurations is much higher than for the other
configurations. The measured results vary very much, but simulated time shows little deviation.
Thus, in principle computation time of the three runs are alike and they should behave similar. Since
the simulator uses a fixed time for the communication and mimics computation time, the additional
variability of the measurement must be rooted in the communication or I/O path.

d) A detailed assessment is possible by comparing measured behavior with simulated behavior. In
Figure 7.63 and Figure 7.62 screenshots of the runs are provided for 5 clients and 7 clients, respec-
tively. The run for seven clients is well estimated (the critical time of the simulation matches in
Figure 7.61b).

Profile and excerpts of the timeline for one run and its replay with PIOsimHD are provided to give
evidence to this conclusion: The simulated profile matches the behavior of the measured profile well.
Communication is just slightly slower than on the real run (compare Figure 7.62a and Figure 7.62b).

In Figure 7.62e the startup phase of the run is given. This figure also shows the communication
pattern of the PDE. It can be seen that the first few MPI_Sendrecv() calls take a long time, this is due
to the fact that the processes are not started at the same global time by MPICH2 – Rank 6 starts 24 ms
later than Rank 1. The simulator starts all processes at the identical time. Although the startup time
is treated slightly different, the offset of 24 ms does not have much impact (look at the profiles).

Excerpts of the emerging communication patterns are given in Figure 7.62c and in Figure 7.62d. Not
only does a similar communication pattern emerge in the simulation, this pattern also mimics appli-
cation behavior surprisingly accurately.

e) With five processes the estimated time is much faster, a trace is visualized in Figure 7.6332. In the
observation the MPI_Init() of Rank 0 happens 0.5 s later than for Rank 1 (see Figure 7.63a). Since
the whole run takes only about 2.65 s, the late start of 0.5 s is significant; the simulator starts all
processes at the same time (see Figure 7.63b). Consequently, that late initialization explains a large
part of the offset seen in Figure 7.63a.

Several other operations take much more time than expected: The Sendrecv operation on the late
starter (Rank 0) takes about 0.25 s. It can be also seen that the final output, which are 81 double
values of the matrix that are converted to ASCII and written to a file and to standard-out, takes about
0.5 s (look at IO_fopen() and IO_fclose() at the end of Figure 7.63a). POSIX-I/O is not simulated,
but the time of these calls is converted to a regular compute job. Therefore, simulation time of the
POSIX I/O matches perfectly.

The final barrier takes also at least 0.25 s (look at the MPI_Barrier() on the right of Figure 7.63a,
Rank 0 is the last process joining the barrier). In the simulation the barrier is not even visible at
that zoom level. It seems that network communication of the measurement is somehow slow during
startup and finish phase, but the reason is unknown. Without this slowdown, the intermediate com-
munication and computation is well simulated, the main part of the program is estimated to take
about 1.2 s.

This example already shows that simulation results are valuable to estimate runtime. Even observed com-
munication patterns and emerging behavior can match very well. However, due to variability of network
and I/O, simulated patterns can also differ from the measured pattern. With visual inspection, the dis-
crepancy between simulation and observation can be identified and the cause of the behavior can be un-
derstood.

32The visualized run is not part of the diagrams in Figure 7.61, to assess the variance further three additional runs have been
made. Those runs showed a similar behavior and thus validate the correctness of the presented runs.

369

EVALUATION 7.9

(a) Measured profile.

(b) Simulation profile.

(c) Measured timeline – excerpt.

(d) Simulated timeline – excerpt.

(e) Measured timeline – startup phase.

Figure 7.62.: Visualization of a PDE run for experiment XS-0S – 7 clients. MPI_Sendrecv() calls are colored
in red for the observation and green for the simulation results.

370

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

(a) Measured overview.

(b) Simulated overview.

Figure 7.63.: Visualization of a PDE run for experiment XS-0S – 5 clients.

Although the lazy startup of MPI processes is not modeled, the behavior of these short-running experi-
ments is simulated well. To reduce the impact of the startup phase, the experiments could be designed to
run longer. So, while the simulator is capable to assess short runs, further experiments are designed to run
several 10s of seconds.

7.9.4. Critical Path Analysis

In this little experiment, the capability to analyze the critical path of an MPI application is discussed.
Analysis is done for the XS-0S configuration and the run with seven clients (original traces are visualized
in Figure 7.62).

To analyze the critical path, the implementations are chosen from the SyncVirtually configuration: An
infinite fast network and I/O subsystem allows immediate completion of communication, but enforces
restrictions of data dependency. For example, the last process joining a collective operation triggers all
other processes to continue immediately. Basically it simulated execution as if operations on the critical
path are executed immediately (since all data dependencies are met) and shows the waiting times of all
processes under this assumption.

In Figure 7.64 the timeline and profile windows are provided. Communication still need at least one CPU
cycle in the simulation, with the cluster model that corresponds to a processing time of 4 ns33. With the
help of Sunshot all events that do not depend on another event, that means they need 4 ns, are removed by
applying a filter. The filtered output is given in Figure 7.64c. Additionally, a zoom into selected iterations
of the PDE is shown in Figure 7.65.

Observations and interpretation

a) The profile in Figure 7.64a reveals how much time would have been spend in stalled communication,
if the network were infinitely fast. All times shown are caused by data dependencies – the commu-

33The processors are configured to process instructions effectively at 250 MHz, which is an efficiency of 10% for a 2.5 GHz pro-
cessor.

371

EVALUATION 7.9

(a) Profile.

(b) Timeline.

(c) Timeline showing critical activity – non-critical operations are filtered.

Figure 7.64.: Analyzing the critical path and caused waiting times for the experiment XS-0S with seven
clients. The original traces and simulation results are provided in Figure 7.62.

nication partners do not reach the MPI calls at the exact same time. Therefore, a slight imbalance
must exist in computation time. The total time lost by inaccurate synchronization due to OS jitter or
load-imbalance of the processes is 0.14 s for Rank 6. Theoretically, the last process could have used
this amount of time for computing the solution. The total amount of computation time wasted is the
sum of the time for all processes. It can be seen that waiting times are not evenly distributed among
the processes – Rank 6 spends 60 ms more time in communication than Rank 5, waiting twice as long
for its communication partner on overage (which is Rank 5 for the main part of the program).

b) The complete timeline by itself does not look very interesting, besides the long execution time of the
barrier the other calls complete quickly. By applying a filter in Sunshot, immediately completing
operation become visible – those might be on the critical path. Almost all events from the first
and the last timeline vanish but the ones of the intermediate processes observe waiting times (see
Figure 7.64c).

c) To understand the behavior better, zooms of the timelines are inspected (see Figure 7.65). In these
screenshots, immediately completing activities are not filtered. Communication of a single iteration
results in several types of patterns. In Figure 7.65a the first process waits for Rank 1 which computes
for a longer time. Therefore, as long as Rank 1 does not initiate the communication, Rank 0 must wait.

372

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

(a) Iteration type A.

(b) Iteration type B.

(c) Multiple iterations at application start.

Figure 7.65.: Analyzing the critical path for the experiment XS-0S with seven clients by zooming into the
traces. The original traces and simulation results are provided in Figure 7.62.

Then Rank 1 exchanges the halo row with Rank 2, here the latter rank is late34. Any of the events
which complete immediately may be on the critical path (these can be found for Rank 1, Rank 5 and
one of Rank 2 and Rank 3). The further execution determines which are on the critical path.

Due to the domain decomposition, the first and the last rank exchange data with just one neighbor,
while the other processes exchange halo rows with the previous and the next rank. Between the
data exchange of the two rows is a short computation time which varies slightly and thus one of the
inner processes synchronizes late. That leads to the pattern observed in Figure 7.64c – intermediate
processes are almost always on the critical path.

Another pattern is provided in Figure 7.65b. Here a “staircase” pattern emerges due to a late synchro-
nization of three processes. Also, three processes participate in the critical path of the left iteration,
longer computation on one of the three processes increases the wait time for all other processes. The
events of Rank 3 participate in the critical path of the right iteration.

Due to OS noise, computation time varies slightly and thus the pattern changes over time. For
partdiff-par the critical path wanders between processes and interesting patterns emerge (see Fig-
ure 7.65c).

34Note that the selected implementation for MPI_Sendrecv() uses the eager protocol for the small amount of data to transfer.

373

EVALUATION 7.9

(a) Wall-clock time. (b) Critical time due to communication.

Figure 7.66.: Times of the computation-bound experiment XL-0S-5CN – a variable number of processes
hosted on 5 nodes.

With the help of the filter function, the tolerance level to noise can be adjusted – the amount of waiting
time that is tolerable. Those areas are candidates for optimization since more work could be done. As the
domain decomposition is rather simple for the PDE solver and the fluctuations are mainly caused by OS
noise, there is not much room for improvement of the PDE.

7.9.5. Computation-bound Workload

This section discusses the results obtained for computation-bound workloads – no I/O is performed, yet.
Two similar scenarios are discussed: in the XL-0S-5CN experiment, the behavior of increasing the number
of processes on a fixed number of nodes is evaluated – up to 100 processes are placed on just 5 nodes. In this
discussing a way of pretending a “false” accuracy is described, which can be achieved by just comparing
the total runtime with the estimated time. In the second XL-0S scenario, a variable number of processes
is measured in which every process is placed on a dedicated node. The measured times are given in
Figure 7.66 and Figure 7.67.

Observations and interpretation

a) The measured wall-clock time and simulated time match very well. As mentioned before, with the
current model, simulation of computing time is accurate. Consequently, a computation-bound ex-
periment is expected to be well approximated. For this reason a comparison of total runtime can be
used to achieve an arbitrary simulation accuracy and thus fool readers and users.

Using critical time, results can be assessed much better. The critical time reveals that at most 7 s
of the total run-time are inflicted by communication overhead (see Figure 7.66b and Figure 7.67b).
Therefore, even ignoring communication time would lead to a similar total run-time.

Simulated critical time and observed critical time differ – especially for smaller process numbers the
simulator predicts a faster communication, between 1 to 3 s is expected to be spent in communication.

b) For 10 processes both experiments behave similar (compare the wall-clock time and the critical time).
Almost linear scaling is achieved for experiment XL-0S, the runtime decreases from 155 s to 85 s by
doubling the processes (see Figure 7.67). Scalability of the XL-0S-5CN scenario is limited – perfor-
mance does not improve further by using more than 25 processes.

c) Since the critical time is low for both experiments most time is spent inside the computation and
thus the experiments are compute-bound. Similar effects can be seen for both scenarios. Therefore,
in the following the focus is put on experiment XL-0S-5C. By analyzing this experiment the critical
time of the other experiment is discussed, too.

374

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

(a) Wall-clock time. (b) Critical time.

Figure 7.67.: Times of computation-bound experiment XL-0S – a variable number of processes each hosted
on its own node.

d) In the XL-0S-5CN scenario wall-clock time does not improve further when using more than 25 pro-
cesses (see Figure 7.66a). A node has 12 processing elements (on two processors), thus a performance
increase up to 60 processes is expected.

There are several potential reasons, of which a few can be investigated directly by inspecting the sim-
ulation results. One theory could be that network overhead increases with the number of processes.
However, by inspecting the critical time of 45 and 50 processes, it can be seen that it stays on the
similar level while the wall-clock time increases. Consequently, the time for computation must have
increased. This could be caused, for example, by a suboptimal usage of the memory hierarchy or
utilization of the memory controllers.

Theoretically, another reason could be that processes perform additional computation, which is not
true due to the domain decomposition. However, each process executes certain identical parts of
code (some parts of the initialization and finalization, for example); thus, according to Amdahl’s law
speedup is limited by this sequential fraction.

Also, for larger processes number, the physical cores do not suffice to permit exclusive dispatching
of a process to a core. Since 60 physical cores are available, the processor must be multiplexed for
larger configurations. The observed “additional” computation is inherent to the way computation
time is currently determined: HDTrace generates timestamps from the wall-clock timer. Thus, a
potential multiplexing of the processor is hidden – computation time is added even if a process is not
dispatched. This blends with algorithm specific effects, such as an increase in computation time due
to replicated computation and memory utilization.

Probably, the amount of required compute time is virtually increased: Spin-locks inside MPICH2
contribute to the overall amount of recorded “compute” time as follows: When more than 60 pro-
cesses are scheduled they might “compute”, i.e., wait for communication of a neighbor which is
currently not dispatched by the Linux process scheduler. Since the scheduler is not aware that a pro-
cess waits for another, a process that is currently stuck in MPI_Recv() waits for a process that issues
the matching MPI_Send(). If the communication partner is currently not dispatched on any of the
CPUs, the process burns cycles in the Spin-lock – this processing time is just wasted.

The impact of the reduced performance due to multiplexing the physical cores among the logical
processes can be seen by comparing the critical time between 25 and 100 processes; the maximum
network overhead increases only by 3 seconds while the wall-clock time stays on the same level. If
the algorithm and system would scale, then the wall-clock time for 100 processes would have been
approximately one forth of the time for 25 processes and thus about 10 s.

However, since wall-clock time does not improve by increasing process counts from 25 to 45 pro-
cesses additional computation time must also be spent inside the program – either due to redundant
computation – which is unlikely, or by a fully utilized memory controller.

375

EVALUATION 7.9

(a) Measured profile.

(b) Simulated profile.

Figure 7.68.: Visualization of a PDE run for experiment XL-0S(-5CN) – profile for 5 client processes.

e) By looking at SyncVirtually, the load imbalance between the processes can be assessed. While lower
process numbers lead to a small additional waiting time on the critical path, for 60 processes imbal-
ance slows down execution by 1 s. Consequently, one second of runtime is wasted due to synchro-
nization costs, which is only a small fraction of the overall runtime of 30-40 seconds.

f) The loss due to communication can be derived by subtracting critical time of SyncVirtually from
Validation. It can be seen that at the beginning less than 1 s is needed for communication. Due to the
shared memory subsystem that time increases slightly with the number of processes.

g) For several process numbers, the measured runs deviate more than the Validation configuration (see
the critical time diagram). Deviation of the Validation configuration is due to variance in the compu-
tation times – this increases when the process count exceeds the number of available cores, because
the processor must be multiplexed among all processes. Remember, the communication time and
synchronization behavior is identical for simulation and measurement. Consequently, it can be con-
cluded that the difference between the variance of simulation and observed critical time must be
caused by fluctuations in the network communication speed. Still, the absolute difference between
critical time of simulation and observation must be explained.

h) To understand the divergence between simulation and observation better, profiles are given in Fig-
ure 7.68. These diagrams show data for 5 clients, thus they belong to both experiments. It can be seen
that on the real system most communication time is spent in MPI_Sendrecv(), some time is spent
in MPI_Recv() and MPI_Send(). The latter two point-to-point communication calls are only used to
collect the 9 lines of matrix output.

On average simulated calls complete in 20% of the time. Either the simulation model is wrong, or
there is an issue on our cluster (or the PDE application) which degrades performance. This calls for
more in-depth investigation.

i) Screenshots of a communication phase are provided in Figure 7.69. In the upper two figures, the
data exchange of the halo rows is shown for a single iteration. The observed and simulated pattern is
different and the time for the data exchange is very different – the simulator predicts about 0.02 s but
the measurement takes about 0.2 s. If 40 iterations of this configuration are multiplied by 0.2 s, then
it results in the 8 s as shown in the profile. Other instances of MPI_Sendrecv() can be found in the

376

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

(a) Measured timeline – single data exchange.

(b) Simulated timeline – single data exchange.

(c) Measured timeline – matrix output phase.

(d) Simulated timeline – matrix output phase.

Figure 7.69.: Visualization of a PDE run for experiment XL-0S(-5CN) – timeline for 5 client processes.

377

EVALUATION 7.9

(a) Wall-clock time. (b) Critical time.

Figure 7.70.: Times of the experiment S-2S-tmpfs – a variable number of processes each hosted on its own
node, two dedicated servers store data on tmpfs .

trace in which the receive part takes also 0.2 s after the sender is ready. A row has a size of 400 KiB,
consequently on the real system a performance of roughly 2 MiB/s is observable. This is much less
than expected, although with this size the rendezvous protocol is active.

The mentioned behavior is also visible during the end phase in which the 9 rows are gathered (see
Figure 7.69c). In this case, the simulation and the observation differs to a large extent as well. While
a single send operation can take up to 0.2 s in the traced run, the simulation processes them much
faster (see Figure 7.69d). In the observation it can also be seen that the sends from Rank 1 proceed
quickly, others from Rank 2 and Rank 3 do not. By inspecting the trace it can be checked that all sends
are of equal size, and thus the message transfer should require a similar amount of time because all
processes are on disjoint nodes – this is also the result of the simulation. However, matching receives
of the later rows are already posted by Rank 0 when the sender becomes ready; thus the later transfers
of Rank 2 and Rank 3 are expected to be done as fast as the first two receives. Since the other processes
are computing there shouldn’t be network collisions that degrade performance. The exact reason is
unknown.

The degraded performance on the real system explains the difference in the critical time diagram.
Although, the critical time diagrams do not match, the simulation results seem to be correct for a
healthy system: A few data exchanges such as the one between Rank 1 and Rank 0 in Figure 7.69c
happen in 0.01 s which matches the time predicted by the simulation – this time corresponds to an
observable network throughput of about 40 MiB/s.

7.9.6. In-memory I/O

To assess the general simulated I/O behavior, servers store data on tmpfs in this experiments, and thus no
overhead due to the block device are experienced. In experiment S-2S-tmpfs, the number of processes and
nodes is varied while the number of servers is fixed to 2 – results are provided in Figure 7.70. The critical
time for various simulated I/O variants is also given.

Observations and interpretation

a) The measured critical time is at most 12 s, which is just a fraction of total run-time (look at the
measured data). Critical time varies only slightly between the configurations, this means the com-
munication and I/O overhead is independent of the number of participating processes.

b) Time of the validation replay underestimates the measured critical time by about 2 s. However, there
is little noticeable fluctuation in the simulation, while the measurement varies by 3 s. Overall the
load is well balanced (SyncVirtually is low in Figure 7.70b). The time loss due to communication
(delta between No-IO and SyncVirtually) is (obviously) zero for a single process, 2 s for 2 processes

378

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

(a) Measured profile.

(b) Simulated profile.

(c) Measured timeline – writing out visualization output.

(d) Simulated timeline – writing out visualization output.

Figure 7.71.: Visualization of a PDE run for experiment S-2S-tmpfs – three clients.

379

EVALUATION 7.9

and 4 s for all other configurations. For three processes, the intermediate process must exchange
halos with both processes, which explains the additional costs for configurations with more than two
processes.

c) The amount of time lost by I/O is about 3.5 s for more than one process, but 7 s for a single process
(look at the difference between Validation and No-IO). The simple explanation is that a single client
cannot utilize the available network bandwidth of the two servers. Thus, for a single client I/O
takes roughly twice the time. In the measurement the difference is not so big. This is caused by the
suboptimal performance of writing visualization data – which is explained later.

d) With the variation in the semantics of MPI_File_close(), the critical time does not increase no-
ticeably. Since data is written to a model of tmpfs, the flush should not take much time, which is
observed. The only difference is due to the fact that in the current flush implementation all processes
synchronize with a barrier. Thus, the slowest client determines pace of the collective operation. In
the experiment, all clients have to synchronize at the end of an iteration anyway, therefore, the dif-
ference is marginal.

e) To assess the discrepancy of up to 3 s between simulation and measurement, the runs are evaluated
with Sunshot – generated screenshots are shown in Figure 7.71. The measured and the simulated
profile show a similar behavior (compare the first two figures). However, in the measurement the
MPI_Type_commit() needs a noticeable amount of time (0.3 s for three calls), since it is not simulated
it does not appear in the simulated profile. In the simulation the command is just mapped to a
compute job, thus its synchronizing behavior is lost. A simple simulation could be to invoke an MPI_

Barrier() and thus at least processes would be synchronized in simulation (but this is not done,
yet).

Opening a file takes also a considerable amount of time (0.37 s for two calls). In the simulation,
opening a file takes almost no time because it is simulated by a broadcast operation from the first
process. This latter process is also done by PVFS, but additional metadata operations are involved
in a real system. The simulated profile shows slightly more time for point-to-point communication,
however, file I/O is quicker in the simulation.

f) As it turns out, writing the matrix diagonal takes much longer on the real system than anticipated
(compare Figure 7.71c and Figure 7.71d).

I/O also leads to additional waiting time during halo exchange; while the time spent in I/O is well
balanced among all processes, waiting time for Rank 1 is much higher because its communication
partners are not ready. Since this process synchronizes with both other processes fluctuations in any
of them lead to additional waiting time.

g) To debug the issue with slow I/O further, a run for a single client and server is traced with HDTrace.
Since this issue happens for all configurations, discussion can be reduced to this configuration. The
recorded times for output during the “visualization” phase are visualized in Figure 7.72a. Output of
such a single phase, that means the matrix diagonal, corresponds to 64 KiB of data.

In the figure the server-side activity can be assessed in detail – every layer has events and/or statistics
associated with the activities performed by the layer. The number of concurrent operations of every
particular PVFS layer is given as a statistic – at each point in time the value accurately represents
the number of pending operations. In brief, the figure shows35: BMI – the network activity, FLOW
– the regular I/O operations (very small operations are not included), REQ are the number of out-
standing requests. The SERVER timeline shows the pending statemachines and the processing of
each statemachine. TROVE indicates the number of concurrent I/O operations. Each individual I/O
operation which is issued by Trove is recorded including offset and size.

If we look at the process of writing the diagonal, the statistics timelines for BMI and REQ reveal that
many operations are performed. By inspecting these requests on the Server timeline, each operation

35For further information about the layers of PVFS refer to Section 2.1.3.

380

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

(a) Data exchange.

(b) Data exchange with supplied hints.

Figure 7.72.: Visualization of a PDE run for one client and one server.

turns out to be a small I/O operations. In total, the visualization output is about 64 KiB of data;
writing generates 125 small requests with an aggregated size of 512 bytes and one with 72 bytes.
By checking the executed operations on Trove, a sequential access pattern can be seen. This large
number of small requests is the cause of the degraded performance in the measurement – in the
simulation a single request is started for the whole data, thereby simulation achieves much better
performance.

The reason for the observed pattern is the handling of non-contiguous datatypes by ROMIO. Since
ROMIO does not use an additional buffer to store data, every non-contiguous region in memory is
normally accessed with an individual operation. PVFS allows encapsulating a list of up to 64 non-
contiguous operations with one request, this feature is enabled in the measurement to transfer the
matrix diagonals. Therefore, about 64 · 8 = 512 byte of data is transferred per request which matches
our observation.

h) PVFS is also aware of memory and file datatypes. However, this feature must be explicitly enabled
with undocumented hints like romio_pvfs2_listio_write. When this hint is enabled, only one I/O
request is issued to the server (look at Figure 7.72b). This in turn reduces the time to write out the
matrix diagonal in the configuration for a single client from an average of 69 ms down to 3.4 ms.

If the 20 ms for writing the diagonal collapses to a fraction such as 2 ms, then the executed 100 visu-
alization iterations save roughly 2 s of time. This is approximately the difference between simulation
and measurement. Therefore, the simulator approximates the intended behavior of I/O well.

Furthermore, with the help of the simulator, the performance potential could be identified. By in-
specting traces of PVFS client and server, the reasons could be revealed and, ultimately, this knowl-
edge allowed us to debug this issue and achieve the theoretically possible performance.

7.9.7. I/O-Bound Workload

Three I/O-bound experiments are discussed: XL-5C, XL-O and M-O-s1000M.

381

EVALUATION 7.9

In the first experiment, a fixed number of clients store data on a variable number of servers, the memory is
not limited (the measured times are shown in Figure 7.73). XL-O is a variant in which clients and servers
are placed on the same nodes. Due to the shared memory, the amount of cache increases with the number
of servers.

In the XL experiments a single matrix has a size of 24 GiB, and the matrix diagonal roughly 440 KiB. Two
matrices are kept in memory by the PDE and each node has about 12 GiB of memory, therefore, for the
configuration of 5 clients/servers about 2 GiB of cache is available per server. The matrix is written out 8
times and the diagonal every iteration, but only 16 MiB of data is stored for the matrix diagonal in total.
Times of this experiment are given in Figure 7.74.

In the experiment M-O-s1000M, clients and servers are overlapped as well. However, memory is limited
for all servers to provide in total approximately 1 GiB of cache. Thus, with a matrix size of 1950 MiB about
50% of the matrix can be kept in the aggregated server caches. Results of this experiment are presented in
Figure 7.75.

Observations and interpretation

a) The critical time of all three experiments is in the order of the wall-clock time. Further, if the I/O is
not simulated, then the critical time decreases to a very low value. Consequently, all experiments are
limited by I/O and computation time plays a minor role. The simulation configuration which just
synchronizes (SyncVirtually) is not given in the diagrams, because its critical time is even less than
the results of No-I/O, which is almost 0.

b) Overall, the run-time is well estimated by the simulator. In general, the Validation configuration
achieves a run-time and critical time that is 10-20% lower than measured. A fluctuation is barely
visible in the simulated results (compare the wall-clock times). Since data cannot be cached com-
pletely in those experiments, the implemented caching strategy suffices to represent the real system
– although the strategy differs from the caching behavior on the real system.

c) The implementations selected in CloseWithFlush lead to a higher critical time than the validation
runs. Thus, the costs of flushing the file becomes apparent. Predicted critical time for flushing
is similar to the measured times for experiment XL-5C and higher for experiment XL-O. Due to
the caching behavior of Linux, server-sided I/O could be stalled leading to a synchronous behavior
similar to the one estimate of the CloseWithFlush simulation36.

d) In the experiment with a smaller matrix, the simulator predicts a faster execution than measured
(look at Figure 7.75). Further, the simulation in which data is flushed to disk is faster than the mea-
surement. A single client is an exception, here the simulated flush achieves exactly the runtime of
the observed performance. This discrepancy seems to high, therefore, it must be analyzed.

e) To validate the simulation run, traces are generated and evaluated for experiment XL-O. Screenshots
of the profiles and timelines for a run with 5 clients are given in Figure 7.76.

In the measured profile, the last process takes about 520 s while the other processes need 700 s (see
Figure 7.76a). Since all processes write the same amount of data, the I/O scheduling of the servers
preferred operations from the last process. The simulation predicts 540 s for all processes (look at
Figure 7.76b). This imbalance could lead to the difference in the graph.

f) The timeline in Figure 7.76c shows the processing in detail. Processes start at the same time to write
their checkpoint data, but the last process finishes earlier. This stalls data exchange between Rank 4
and Rank 3, because the latter is not ready to transfer matrix data. The amount of data written per
process is about 4.8 GiB which is larger than the I/O limit of MPICH2 of 2 GiB, therefore, three MPI_
File_write_at() calls are needed.

36This is just true for this experiment, because the checkpoint is closed directly after it has been written.

382

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

(a) Wall-clock time. (b) Critical time.

Figure 7.73.: Times of the I/O-bound experiment XL-5C – a variable number of servers storing data for 5
clients hosted on 5 nodes.

(a) Wall-clock time. (b) Critical time.

Figure 7.74.: Times of the I/O-bound experiment XL-O – a variable number of clients and servers.

(a) Wall-clock time. (b) Critical time.

Figure 7.75.: Times of the I/O-bound experiment M-O-s1000M – a variable number of client and servers,
approximately 1 GiB of cache is available for all servers.

383

EVALUATION 7.9

(a) Measured profile.

(b) Simulated profile.

(c) Measured timeline.

(d) Simulated timeline.

Figure 7.76.: Visualization of a PDE run for experiment XL-O – five clients.

384

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

Over the whole application run the time needed to checkpoint the matrix varies. At the beginning
about 70 s are needed, later up to 110 s can be required. This is probably due to the Linux scheduler
and the way PVFS schedules operations; since the cache does not suffice to hold all data, the requests
of all clients compete for the shared disk resource. This could degrade the sequential access pattern
to a random pattern.

In the simulation this fluctuation is not visible, every checkpoints needs about 68 s. On the one hand,
data can be written back in the computation phases between the checkpointing. On the other hand,
the simulated I/O scheduler works differently and optimizes for throughput. Surprisingly, this leads
to a fair selection of the I/O jobs and almost identical completion times of the individual I/O.

g) To understand the access pattern better, the simulated server processing is visualized for the flush-
on-close experiment (see Figure 7.77). The figure contains timelines for the client requests and the
disk activity; the purple color is used for flush requests. On the timeline for disk activity blue encodes
an average seek and yellow indicates that no seek is required, i.e., the file is written sequentially. In
the overview figure the additional overhead caused by flushing the file to the disk becomes visible
– the lime green activity after the write operations is the collective close operation which enforces a
data flush on all servers.

On every server, one request is processed quickly, this is the request from the client which is located
on the same node. Although the local operation is quicker, this process must wait for completion of
the requests to other servers.

h) An excerpt of a single checkpoint iteration is given in Figure 7.77b. A variability in efficiency of the
disk scheduler becomes visible between the servers – the disk of some servers shows more yellow (no
seeks required) than others. Also, the first two servers finish earlier than the last server.

Every client writes about 4.8 GiB of data. Therefore, the 86 s measured for writing data to disk
corresponds to an average throughput of 57 MiB/s per server. Consequently, with the interleaving of
processes a complex pattern emerged. This complex pattern and the resulting local access pattern
for the servers is probably the reason for suboptimal performance of PVFS. By tracing PVFS client
and server activity, this could be analyzed in detail, but this is out of the scope for this thesis.

7.9.8. Mixed and Synchronization-bound Workload

So far performance of the experiment was limited by a single resource, either by computation, communica-
tion or I/O. With this workload a larger fraction of time is spent in computation, I/O and in load imbalance
between the processes. In the experiment S-2S-1CN-150M up to 26 clients are placed on a single node;
two servers store data.

The matrix has a size of 488 MiB, and one checkpoint and 100 visualizations are written out. Each visual-
ization output has a size of 64 KiB. Server memory is limited to 150 MiB, and thus checkpoint data must
be written to disk. The times are given in Figure 7.78.

Observations and interpretation

a) For individual runs the critical time varies between 12 s and 50 s with an average of about 30 s. Scal-
ing of this small problem is very limited, minimum observed run-time is about 100 s, which is already
reached by 6 processes – 12 cores are available in our dual socket servers. Therefore, starting with 6
processes the critical time increases to about 30% of the total run-time (look at Figure 7.78b). Thus,
run-time is distributed into time for computation, synchronization and I/O (see Figure 7.78c).

b) For a single process, the I/O operations take 12 s which is the critical-time (no communication is
required for a single process). The simulation estimates just 7 s. For other process numbers the
simulated time is below, too.

385

EVALUATION 7.9

(a
)O

ve
rv

ie
w

.

Fi
gu

re
7.

77
.:

Si
m

u
la

te
d

cl
ie

nt
an

d
se

rv
er

ac
ti

vi
ty

fo
r

ex
p

er
im

en
t

X
L-

O
w

it
h

fl
u

sh
-o

n-
cl

os
e

se
m

an
ti

cs
–

fi
ve

cl
ie

nt
s.

386

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

(b
)E

xc
er

p
t

of
on

e
it

er
at

io
n.

Fi
gu

re
7.

77
.:

Si
m

u
la

te
d

cl
ie

nt
an

d
se

rv
er

ac
ti

vi
ty

fo
r

ex
p

er
im

en
t

X
L-

O
w

it
h

fl
u

sh
-o

n-
cl

os
e

se
m

an
ti

cs
–

fi
ve

cl
ie

nt
s.

387

EVALUATION 7.9

(a) Wall-clock time.

(b) Critical time.

(c) Critical time – comparison of several simulator configurations.

Figure 7.78.: Times of experiment S-2S-1CN-150M – a variable number of processes hosted on one node.

388

7.9 SIMULATING BEHAVIOR OF SCIENTIFIC APPLICATIONS

The time for the I/O is determined by looking at the trace files: For a single process, the check-
pointing needs about 5.5 s and writing the data for the visualization takes 6.2 s for all 100 iterations.
In the simulated results, 6.8 s and 0.2 s are needed for checkpointing and visualization, respectively.
Thus, on average, writing the matrix diagonal on the real system is about 62 ms which is much longer
than estimated by the simulator. The discrepancy is caused by the large number of requests created
in the real system as reported in Section 7.9.6. Therefore, simulated results for a single process are
close together. In fact the slow visualization steps reduce observable performance for all number of
processes.

c) In Figure 7.78c the critical time for the other simulator configurations is provided which allows as-
sessing these experiments. PIOsimHD estimates that the amount of time spend in I/O is invariant
with the number of processes (subtract the duration of No-IO from Validation). The changed seman-
tics of CloseWithFlush implies a small overhead, and with more than two processes it behaves similar
and costs about 1.5 s.

Since the system is shared, the scaling is limited – with larger number of processes, the memory con-
troller is utilized and communication overhead increases due to additional halo exchanges. Addition-
ally, the available 12 cores limit the number of concurrently running processes (see Section 7.9.5 for a
description of the reasons). While this effect is caused by different factors, it cannot be distinguished
from the constant runtime between 6 and 12 processes.

d) The actual communication time is very small, as the low difference between No-IO and SyncVirtually
indicates. This is expected because processes communicate just within a single node. The SyncVirtu-
ally, however, demonstrates an imbalance in the workload. It turns out that up to 20% of the runtime
is spent to wait for synchronization between processes.

e) Up to 16 processes the critical time (and in many cases the run-time) is lower for configurations
in which an even number of processes is placed, than for the configuration with one process less.
Theoretically, the cause could be the communication or the I/O. By eliminating the network and I/O
noise this behavior can still be seen (look at SyncVirtually in Figure 7.78c).

A possible explanation is the nature of the dual-socket system and its memory system which is shared
among all processes of a single socket. With an odd number of processes the workload on the two
memory systems and the L3 cache is not balanced any more.

7.9.9. Summary and Conclusions

To demonstrate the ability of PIOsimHD to mimic existing parallel programs, several configurations of
the working groups Jacobi PDE solver are simulated. This PDE solver iterates over a 2D matrix and up-
dates matrix entries by applying a stencil. The runtime parameters are highly configurable which allows
arbitrary utilization of CPU, network and I/O subsystem.

A relative comparison of measured and simulated runtime is not appropriate, because the perfect replay
of compute jobs execution time would allow achieving an arbitrary accuracy. Therefore, critical time is
defined which is the amount of time spent in communication and I/O – all the aspects that are explic-
itly simulated. However, waiting time as part of the synchronization time is identical in simulation and
observation. But since its quantity is determined, the actual time spent in I/O and communication can
be assessed. The analysis investigates graphs plotting wall-clock time and critical time. With the help
of PIOsimHD alternative hardware configurations are evaluated. This serves to validate the simulation
results, and to analyze the impact of synchronization, communication and I/O quantitatively.

Conducted experiments are grouped into network bound, I/O bound, and mixed workloads. In many
cases, the simulation behaves similar to actual measurements. This is also demonstrated in a comparison
of generated profiles and timelines – in many cases the emerging activity closely mimics observed behavior.
Only the startup time of MPICH2 is not well simulated – on the real system processes start time-delayed
while the simulation starts all at the same time. Sometimes there is a discrepancy between simulation

389

EVALUATION 7.10

and measurements – the simulation estimates a better time than observed. Overall, the simulation proved
to be a valuable tool for identifying bottlenecks because it provides a good estimate for performance: By
comparing trace files of simulation and observations, bottlenecks in the MPI implementation (and PVFS)
are identified. In one communication bound experiment, for example, certain send and receive operation
take much longer than anticipated. Another example is non-contiguous data that should be written – it
leads to inefficient handling in PVFS that degrades performance; this aspect is directly investigated in the
traces that are obtained from PVFS with the HDTrace extensions.

A demonstration during the analysis applies PIOsimHD and Sunshot to critical path analysis. With the
correct setting (very fast network and I/O subsystems) the duration of events corresponds to synchro-
nization time; the filter feature of Sunshot allows analyzing waiting times of an optimal execution and
indicates candidates for the critical path. In the Jacobi PDE, the row-wise domain decomposition and re-
sulting communication pattern causes the critical path to avoid the two outer processes since they only
have one communication partner, the other processes have two and synchronization of them leads to wait-
ing times.

Additionally, an alternative I/O semantic (flush on close) is investigated. While flush-on-close does not
increase run-time for small I/O because data is already written out, it reduces performance for large con-
figurations. Similar to the previous experiments, complex I/O patterns emerge.

7.10. Alternative MPI_Bcast() Implementations

With the help of PIOsimHD, alternative implementations for collective calls can be evaluated and the ben-
efit of a new algorithm can be quantified. To demonstrate the capabilities, alternative broadcast algorithms
are implemented and evaluated.

In the simulated experiment, the setup previously used to validate the collective patterns in Section 7.6 is
used. Performance of various algorithms is simulated for broadcasting 10 KiB, 1 MiB, 10 MiB and 100 MiB.
The measured performance of MPICH2 acts as a reference to assess the following algorithms:

a) P2P-Replay. This is not a real implementation in the simulator. Instead, it is the experiment in which
the extracted communication patterns from the traces are replayed to mimic behavior of MPICH2
(see Section 7.6 for a description).

b) BroadcastScatterGatherall: distributes pieces of the data equally among the processes by invoking
MPI_Scatter(), then it calls MPI_Gatherall() to transfer all chunks to all clients.

c) Direct: The root process directly sends data to all other processes. To do so, it iterates over all ranks
starting with Rank 1 and transfers the complete message.

d) Pipelined: The root process partitions data in chunks of 1 MiB of data and sends it to Rank 1 – once a
chunk is received by another rank it forwards it to the next rank and thus a pipelined data transport
is achieved. This algorithm is described further in Section 6.5.

e) Pipelined-SMP: This implementation makes the Pipelined implementation SMP-aware. The pipeline
is built in a manner which avoids inter-node communication – data is pipelined through all local
processes before it is transferred to the next process.

f) Pipelined-SMP512 is a slightly modified Pipelined-SMP implementation that uses a chunk size of
512 bytes.

g) BinaryTree builds a spanning tree among the processes. The binary nature of the tree is derived from
the fact that the number of processes which have received the data to broadcast doubles in each step.
The processing scheme is illustrated in Figure 7.79. For example, for a communicator with a size
between 4 and 7, three steps are needed. In the first step, the root rank (we assume Rank 0 is the
root) sends data to Rank 4. In the next step, Rank 4 sends data to Rank 6 while Rank 0 sends data

390

7.10 ALTERNATIVE MPI_BCAST() IMPLEMENTATIONS

Figure 7.79.: Processing scheme of the BinaryTree implementation for MPI_Bcast(). The root node of the
graph is the source of the data to broadcast. In each step, a process which has the data,
forwards it to another process (an arrow indicates data transfer between source and target).
Consequently, the number of processes which have received the data doubles in each step.

to Rank 2, and so forth. During the process root rank sends data to Rank 4, Rank 2, and, at last, to
Rank 1.

h) BinaryTreeMultiplexed: This implementation uses the same communication pattern as BinaryTree.
However, in contrast to BinaryTree a process sends data to all its children at the same time, which
effectively multiplexes the available NIC among all receivers.

i) BinaryTreeSimpleBlockwise uses the communication pattern of BinaryTreeMultiplexed. But instead
of transferring all data in a single message, data is partitioned in chunks with a size of 1 MiB. This
allows for a pipelined transfer.

The measured time and the simulated estimates are shown in Figure 7.80 and in Figure 7.81, for a payload
of 10 KiB and 100 MiB, respectively. Performance of the other sizes is between the these extremes, and,
therefore, omitted.

Observations and interpretation

a) For local communication, all simulated results are close together (see Figure 7.80a and 7.80c). This
is expected because the characteristics of the components of the internal topology are close together.
A slight performance difference is caused by the fact that intra-socket communication is modeled
with a higher throughput. Another difference is the amount of data which must be transferred for
the broadcast; all pipelined versions need more messages which increases the overhead of packet
headers. The results for transferring 100 MiB of data are alike and, therefore, the intra-node times
are not provided.

b) In intra-node communication of 10 KiB of data, the BinaryTreeMultiplexed implementation is
slightly faster than the other algorithms. This effect is caused by the fact that intra-socket communi-
cation and intra-socket communication can be slightly overlapped by multiplexing data access (intra-
socket communication is a bit faster in the model). The performance of all simulated algorithms are
close together because the characteristics of intra-node communication is similar and cache effects
are not modeled. In practice the question is, whether cache reuse makes the algorithm superior to
the sequential processing – simulation cannot answer this question.

c) In inter-node communication of 10 KiB messages, the Pipelined implementation is slower then Direct
(Figure 7.80b) – this is caused by the high Ethernet latency. The Pipelined-SMP algorithm behaves
monotonically increasing. It matches the performance of Pipelined if only a single process is placed
per node – this is the expected behavior. For the small payload the pipeline does not work, because
data is chunked in fragments of 1 MiB.

The communication pattern of MPICH2 is faster than most other algorithms – it uses an SMP-aware

391

EVALUATION 7.10

(a) Local communication algorithms (1). (b) Inter-node communication algorithms (1).

(c) Local communication algorithms (2). (d) Inter-node communication algorithms (2).

Figure 7.80.: Performance comparison of several MPI_Bcast() algorithms to transfer 10 KiB of data.

(a) Inter-node communication algorithms (1).

(b) Inter-node communication algorithms (2).

Figure 7.81.: Performance comparison of several MPI_Bcast() algorithms to transfer 100 MiB of data.

392

7.10 ALTERNATIVE MPI_BCAST() IMPLEMENTATIONS

binary tree. However, the performance of the Pipelined-SMP512 implementation is slightly better
for all configurations, except for two nodes (see Figure 7.80d). There is still room for improvement
in the Pipelined-SMP version: This algorithm is not aware of the processor topology inside a node.
Therefore, in this case all local processes transfer data between the sockets, which is suboptimal.
Thus, overall performance could be improved slightly by knowing the node-internal topology. Also,
the implementation could transfer data in a pipeline across all nodes – only one process per node
participates, once all data is available on a node data is pipelined through the local processes.

d) In case every process is a dedicated node, the BinaryTree implementation matches the time for the
replayed communication patterns well, because MPICH2 uses this algorithm for broadcasting small
amounts of data (see Figure 7.80d). However, unlike MPICH2, the implemented algorithm in the
simulator is not SMP-aware. All the other tree algorithms behave worse than the simple algorithm.
Especially, the multiplexed version is much slower, because performance of the NIC is shared among
all receivers which in turn increases the time until the next process can forward the data.

e) For large payloads and starting with eight processes, MPICH2 uses the BroadcastScatterGatherall
algorithm. Therefore, the time of the simulation matches the replayed pattern (look at Figure 7.81a).
For, for the configurations between 4 to 7 nodes the BroadcastScatterGatherall would also be better.
The SMP-awareness does not work for the configurations 2–9 and 2–11; here the measured time is
similar to the one of several simulated implementations.

f) The pipelined implementation is estimated to need about 1.5 s which is at least two times faster than
the current default implementation (look at Figure 7.81b). For the large amount of data, a slight
overhead of transferring 512 bytes messages becomes visible (up to 5 processes).

Summary and Conclusions

The evaluation of a variety of MPI_Bcast() implementations demonstrates how the simulator can be used
to investigate performance of alternative MPI algorithms. In this evaluation, a good match between origi-
nal measurement and replayed point-to-point communication is demonstrated for small amounts of data,
thus validating the appropriateness of the implemented algorithm. This experiment also illustrates the
importance of selecting appropriate communication algorithms – a wrong choice significantly increases
runtime. No single algorithm achieves best performance for all payload sizes.

For example, it turns out that for intermediate node counts with BroadcastScatterGatherall, one of the
already implemented algorithms in MPICH2, performance could be improved compared to the actually
executed algorithm (a binary tree implementation). In general, on our system binary tree implementa-
tions achieve a lower performance. With a pipelined implementation larger amounts of data are split into
smaller messages that are transferred individually between the processes – based on the simulation re-
sults, an implementation of this algorithm in MPICH2 could improve performance significantly. During
the investigation, the importance of SMP-awareness becomes also visible. About half the performance is
lost in an SMP-unaware pipelined implementation; and MPICH2 is not SMP aware for configurations 2-9
and 2-11.

Consequently, a dynamic selection of the algorithm that is based on the network topology, the process
placement and parameters is required. To achieve maximum performance, it seems also natural to be
aware of node-local processor topology and the caching.

393

EVALUATION 7.11

7.11. Chapter Summary

In this chapter, the software created for this thesis is evaluated by demonstrating its usefulness for predicting
system behavior and by validating its applicability. Due to the length of the conducted evaluation, each section is
wrapped up by a short summary by itself.

The systematic evaluation is divided into several stages: First, the overhead of HDTrace is quantified which
provides insight into the correctness of times in trace files. Also, the performance and scalability of the sequential
simulator is assessed.

Then, a cluster model is developed and parameterized. This model is used for all subsequent experiments. With
the qualification process, a theoretical analysis is performed by comparing mathematical models and simulation
results. Several basic experiments are conducted to verify the accuracy of network and I/O model before performing
a detailed validation of collective operations. For this, the MPI-internal point-to-point communication is recorded
and replayed by the simulator. Also, the parallel I/O performance for different levels of access is validated.

After that, collective algorithms implemented in the simulator are briefly described and the behavior of a scientific
application is analyzed. The execution of our partial differential equation solver is recorded and replayed by the
simulator for many configurations. Finally, alternative MPI_Bcast() algorithms are evaluated to demonstrate
the potential of the simulator to help analyzing novel algorithms.

In the following chapter, the thesis is summarized and concluded.

394

Bibliography

[HSL10] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. LogGOPSim: Simulating Large-
Scale Applications in the LogGOPS Model. In Proceedings of the 19th ACM International Sympo-
sium on High Performance Distributed Computing, HPDC, pages 597–604, New York, NY, USA,
2010. ACM.

[Int09] Intel. Intel® 5520 Chipset and Intel® 5500 Chipset Datasheet. Online: http://www.intel.
com/content/www/us/en/chipsets/server-chipsets/server-chipset-5500.html, March
2009.

[KL08] Julian Kunkel and Thomas Ludwig. Bottleneck Detection in Parallel File Systems with Trace-
Based Performance Monitoring. In Euro-Par ’08: Proceedings of the 14th international Euro-Par
conference on Parallel Processing, pages 212–221, Berlin, Heidelberg, 2008. University of Las
Palmas de Gran Canaria, Springer-Verlag.

[KTML09] Julian Kunkel, Yuichi Tsujita, Olga Mordvinova, and Thomas Ludwig. Tracing Internal Com-
munication in MPI and MPI-I/O. In International Conference on Parallel and Distributed Com-
puting, Applications and Technologies, PDCAT, pages 280–286, Washington, DC, USA, 12 2009.
Hiroshima University, IEEE Computer Society.

[Kuh09] Michael Kuhn. Simulation-Aided Performance Evaluation of Input/Output Optimizations for
Distributed Systems. Master’s thesis, Ruprecht-Karls-Universität Heidelberg, 09 2009.

[Kun07] Julian Martin Kunkel. Towards Automatic Load Balancing of a Parallel File System with Subfile
Based Migration. Master’s thesis, Ruprecht-Karls-Universität Heidelberg, 08 2007.

[MRKL10] Olga Mordvinova, Dennis Runz, Julian Kunkel, and Thomas Ludwig. I/O Performance Evalua-
tion with Parabench – Programmable I/O Benchmark. Procedia Computer Science, pages 2119–
2128, 2010.

[Sch05] Martin Schulz. Extracting Critical Path Graphs from MPI Applications. In CLUSTER’05, pages
1–10, 2005.

[Sea10] Seagate. Product Manual – Barracuda 7200.12 Serial ATA. Online: http://www.seagate.com/
staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369h.pdf,
2010.

[Thi12] Artur Thiessen. Simulation von MPI-Collectives in PIOsimHD. Technical report, Universität
Hamburg, 04 2012.

[Tie09] Tien Duc Tien. Tracing Internal Behavior in PVFS. Bachelor’s thesis, Ruprecht-Karls-
Universität Heidelberg, 10 2009.

395

http://www.intel.com/content/www/us/en/chipsets/server-chipsets/server-chipset-5500.html
http://www.intel.com/content/www/us/en/chipsets/server-chipsets/server-chipset-5500.html
http://www.seagate.com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369h.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369h.pdf

Summary & Conclusions

Chapter 8 VIII

This chapter provides a summary of the thesis, starting with a brief overview for the contents of each chapter in
Section 8.1. Section 8.2 presents a full executive summary of the work, selected resulted and conclusions.

8.1. Summary

This thesis develops and presents tools for an in-depth analysis of parallel applications and the system
that runs them in order to simplify the evaluation of cluster systems. Because cluster systems are so
difficult to analyze, it is necessary to extend and improve both the tracing processes for MPI and file system
internals, and the simulation of parallel programs on system and application levels. This thesis introduces
a systematic methodology for increasing insight into complex HPC systems: First some background on
relevant topics is given, followed by an exemplary characterization of a cluster system. Then with HDTrace,
a comprehensive tracing environment is developed that offers novel capabilities for increasing insight into
I/O activity. With PIOsimHD, a tool for simulating parallel programs on application and system level is
designed. Using the estimates provided by simulation, it is possible to identify bottlenecks and to gain a
deeper understanding of system behavior. A careful validation of PIOsimHD demonstrates an astonishing
accuracy of the developed models and further experiments demonstrate the suitability of the environment
to design alternative algorithms.

Background and Related Work This section introduces important concepts with respect to parallel file
systems, discusses a number of different file system types and describes the suitability of the abstraction
level for parallel I/O in the simulator. Further, a discussion of the rich diversity of performance aspects
in system and application is provided. Because the complex interactions of hardware characteristics with
optimizations implemented on the different layers make application performance hard to predict, it is
necessary to develop tools that assist in analyzing and understanding the impact of individual features on
overall behavior. The terminology for performance analysis is introduced to provide an overview of this
field. Additionally, several existing tools for sequential and parallel execution are briefly discussed using
the working group’s Jacobi PDE solver as an example with which to distinguish novel features from existing
concepts. Also, MPI concepts are introduced that are covered by the simulation model. Since PIOsimHD
aims to assist in evaluating optimization potential, existing optimizations for MPI are described. This
chapter also introduces the concept of discrete-event simulation, which is the foundation of the developed
simulator.

Characterizing the Experimental System In Chapter 3, the hardware of the working group’s cluster sys-
tem is characterized, i.e., the behavior of memory, network and I/O subsystem is assessed. As the behavior
is analyzed for a rich variety of configurations, several performance characteristics are determined, a brief
introduction to the mathematical background is given and general considerations for characterizing sys-
tem behavior are discussed. On the one hand, this chapter puts the performance aspects mentioned in the
previous chapter into perspective. On the other hand, the obtained characteristics are used as parameters
for the model and during later validation experiments. In many experiments, performance fluctuations
are visible, for example, independent runs of even long-running benchmarks lead to slightly different
performance results. Even more interestingly, although identical hardware is used, memory performance
depends on the node on which the benchmark is run.

Many configuration parameters can be set for MPI and the Linux kernel that influence behavior. This
chapter further shows that the complex interplay of hardware components cannot easily be captured in a
model. To allow an accurate simulation of individual operations, all contributing factors must be known
and parameterizable, which is difficult at best. As a consequence, an exact simulation of all hardware and
software factors is not feasible.

396

8.2 SUMMARY

HDTrace & PIOsimHD With HDTrace, an environment and tool set is developed that allows enhanced
recording of MPI-IO behavior including all parameters needed for simulation. This environment also
offers novel visualization techniques that ease the analysis of parallel applications and enables comparisons
between observations and simulation results.

By replaying recorded traces, the discrete-event simulator PIOsimHD allows simulation of parallel pro-
grams on application and system level. Software models for MPI library, and parallel I/O are executed
on hardware models for cluster components. While details concerning the models currently being imple-
mented for simulating application and hardware behavior are provided, illustrative examples explain the
internal processing. The hardware models provide a level of detail that can be understood, still they rely on
the most important characteristics for cluster systems. With the modular implementation of PIOsimHD,
alternative models can be provided as well.

Together with PIOsimHD, HDTrace allows replaying application behavior on arbitrary virtual cluster en-
vironments and thus serves as an in silico laboratory for investigating the interactions between system,
applications and communication library.

Evaluation The capabilities and accuracy of PIOsimHD are demonstrated in Chapter 7. To verify the cor-
rectness of the traced timings, the overhead of HDTrace is measured and the performance of PIOsimHD
is assessed, showing that it is feasible to simulate clusters with 1,000 processors. To validate the hard-
ware and software models, observations are compared with simulation results. It is necessary to determine
the required characteristics of the hardware models, and as an example, a model for our cluster system
is developed and parameterized with the characteristics measured in Chapter 3. In the qualification pro-
cess, measured performance is compared with the basic mathematical models being implemented in the
simulator. During verification, the performance of the mathematical network and the HDD model is com-
pared with the simulation results. On the one hand, this indicates that the code implements the expected
model. On the other hand, the influence of several run-time parameters, such as the network granularity,
is investigated.

Additionally, performance of a variety of complex access patterns based on point-to-point communication
and collective communication is evaluated and the simulation results are validated. To show the capa-
bilities of PIOsimHD to mimic existing parallel programs, several configurations of the working group’s
Jacobi PDE solver are analyzed. Also, a rich set of access patterns for parallel I/O is evaluated.

The series of validation experiments tests the correctness of the models; a large performance difference
indicates that the models insufficiently describe the real system. This means that either the relevant hard-
ware aspects are not modeled, the system is described incorrectly, or interactions between software and
hardware lead to an unexpected and undesired slowdown. Throughout the validation process, the de-
veloped visualization features are used to in order to assess the discrepancy between observation and
simulation. With this approach, several bottlenecks within MPI and MPI-IO are localized and the appro-
priateness of the chosen hardware and software models is determined. Finally, the simulation of MPI calls
with PIOsimHD and its ability to evaluate alternative MPI algorithms is demonstrated.

Conclusion The developed software meets the initial design goals as outlined in the following: HDTrace
offers an environment which allows tracing and simulating the internal behavior of MPI-IO programs and
the parallel file system on a cluster. Observations can be compared with simulation results to analyze
the behavior of the existing system and suggest areas for improvement. With these features, inefficiencies
can be localized: Many examples illustrate how the developed environment assists in revealing internal
behavior and spotting bottlenecks in the existing system. Visual inspection of the traces allows users to
quickly isolate areas that behave differently. Further, the infrastructure is useful for teaching performance
aspects of cluster systems: Not only it is possible to analyze the behavior of an existing system, the vir-
tual simulation laboratory facilitates the investigation of library-internal behavior and the evaluation of
proposed optimizations. While the simplicity of the developed models and implementation makes them
easy to understand, the models are powerful enough to reveal complex patterns that are observable on
existing cluster systems. In contrast to a real system, PIOsimHD allows accessing internal behavior and

397

SUMMARY & CONCLUSIONS 8.2

manipulating it at will. Thus, it is a powerful tool to conduct research on new MPI-IO algorithms and to
evaluate behavior on future systems.

8.2. Executive Summary

The executive summary highlights details about the contents of each chapter and elaborates on selected
results.

8.2.1. Background and Related Work

Parallel file systems File systems are the software that enables applications to store a large data volume
for a longer time period. A parallel file system allows processes of a parallel application to concurrently
access a file at a high performance level. Due to the large number of components in a high-performance
cluster, scalability and fault-tolerance are important characteristics of parallel file systems. With Panasas
ActiveStor and Isilon’s S-Series, two enterprise storage systems are described that permit efficient and par-
allel access. PVFS, as a representative parallel file system in HPC and its layered architecture, is described
in more detail. To illustrate the data flow between client and server, the client-server communication pro-
tocol and the involved buffering are described. While all the file systems rely on different concepts and
metadata schemes, all of them distribute data among multiple servers and clients must communicate data
with the involved servers during an I/O operation.

Performance of parallel applications There is a multitude of hardware and software factors that influence
performance of parallel applications. An excerpt of these factors is discussed in this section including
optimization strategies that try to mitigate negative characteristics of hardware devices.

Several layers of software are involved in the execution of the application and contribute to observed
computation, communication and I/O performance. Of all these, I/O behavior is by far the most complex
to understand because I/O requires some computation and communicates data, and not only depends on
hardware characteristics but also on the sequence of I/O operations that is performed by an application –
the so-called access pattern.

I/O optimization strategies attempt to provide the highest amount of performance for all access patterns,
and include caching algorithms for read-ahead and write-behind, aggregation and scheduling of opera-
tions, and RAID schemes. With parallel file systems, even more aspects become performance-relevant:
Metadata handling, data distribution among servers, data replication, high availability, and synchroniza-
tion requirements.

The Message Passing Interface The semantical aspects of several collective calls are discussed because
they have performance implications, some of which could be potentially mitigated by relaxing the se-
mantics in future standards. By giving programmers a chance to orchestrate parallel I/O, MPI-IO offers
capabilities beyond the POSIX standard. A file view with an MPI datatype provides an approach for
accessing multiple data regions with a single MPI call. With the sequential consistency data model of
MPI-IO, the strict consistency model of POSIX is relaxed. In contrast to POSIX, this data model permits
truly parallel access. Performance of an MPI application not only depends on the hardware and software
capabilities, but also on the mapping of logical processes to physical resources, which determines the ef-
ficiency of inter-process communication. For a collective operation, the communication algorithms that
realize it within MPI have a major impact on performance because they define the communication pat-
tern. Depending on hardware, process placement, memory datatype, participating processes, amount of
data communicated and state of the program, a different algorithmic implementation might lead to better
performance. The rich diversity of the parameter space makes it difficult to utilize a system optimally.

Several optimizations of the MPI library are described: Alternative algorithms for a collective call, auto-
matically choosing the best algorithm from the existing ones, tuning MPI parameters, process placement

398

8.2 EXECUTIVE SUMMARY

and topology awareness. Many of these continue to be the focus of current research and there is no solution
that leads to full system utilization in all cases. There is a tremendous number of imaginable optimiza-
tions for parallel I/O, and in contrast to local I/O, data can be cached, aggregated and scheduled over a
hierarchy of components, even within the clients. In several cases, these optimizations are stacked on top
of existing solutions to mitigate the restrictions of the layers below. Unfortunately, there is no self-aware
library for communication and I/O that takes hardware characteristics directly into account.

Performance analysis and tuning One consequence of the complex system behavior is the difficulty of
analyzing and improving the performance of parallel applications. This section introduces several ap-
proaches that try to integrate performance as a non-functional requirement during the software develop-
ment phase. These approaches use hardware models to predict (or simulate) behavior before an application
is run on a supercomputer. Unfortunately, however, they are not used in practice. Instead of employing
such an integrated approach, developers simply tune their existing program: Performance of the real ap-
plication is measured, the behavior is analyzed in order to identify bottlenecks of relevant code paths, and
then the code is adjusted to hopefully improve performance. This activity is repeated until a satisfactorily
speed is achieved, or until it is too time-consuming to proceed with code modification. One drawback of
this approach is that it is usually done without knowing the potential speed of the operations; thus it is
hard to estimate the potential gains of code modifications. With the concept of co-design, application de-
velopment and system design is interwoven to embed time-intense aspects of the parallel program directly
into the hardware. Therefore, this concept integrates performance as a non-functional requirement into
the application development.

This section also introduces the terminology of performance analysis tools. Additionally, several existing
tools for sequential and parallel execution are briefly demonstrated by the working group’s Jacobi PDE
solver in order to distinguish novel features from existing concepts. For tuning an application, these
tools measure and visualize the behavior of the parallel application. With most tools, the developer must
assess the observations by him/herself, because the systems are not aware of hardware characteristics.
However, by recording hardware counters at least the usage of the CPU can be assessed, and thus the
efficiency of compute intense code can be estimated. In addition, Scalasca offers an automatic analysis for
typical reasons behind MPI-bottlenecks, such as synchronization issues. A section outlining trace formats
complements the tools section by mentioning design considerations and introducing an archetype, the
Open Trace Format and API.

Discrete event simulation A model is a representation of a specific system and its behavior. In the mod-
eling phase, a conceptual model is developed that covers processes and characteristics of the system well
enough to answer specific scientific questions. The meta model that describes many similar systems is
referred to as the domain model; models for specific systems are developed by parameterizing the domain
model accordingly. This thesis seeks to create a domain model for parallel applications that describes their
execution on a cluster computer. Since every model simplifies the system under investigation, the applica-
bility of a model must be shown. The literature describes several approaches to demonstrate the accuracy
of a model: In the qualification process, applicability of the conceptual (or domain) model is investigated
directly. In regards to validation, the results of a program that implements a model can be compared di-
rectly with the observations. The results of the implementation can also be compared with the conceptual
model, which is called verification.

A simulator is a program that describes and executes a model. In discrete-event simulation the state of
the system is only changed by events; an event is executed at a specific model time. The simulator keeps a
list of future events and processes them sequentially: First, the event with the earliest start time is chosen,
then the event is executed. An event is able to change the system state or characteristics, and it might
generate new events. An overview of existing simulation engines and simulators for parallel applications
is provided. Although there are already several simulations for clusters available, none of them offer
the capability to simulate MPI-IO applications on application and system level on the same degree as
PIOsimHD.

399

SUMMARY & CONCLUSIONS 8.2

8.2.2. Characterizing the Experimental System

Characterizing system behavior This section describes the general difficulty of characterizing system
behavior. A performance metric is a quantitative measure for the system state, and benchmarks are de-
signed in such a manner that they reveal the relevant performance metrics, usually indicating the best
case characteristics. Code that implements a particular use case, i.e., that stresses the system in a specific
way, is called a kernel. Measurement of the system behavior is subject to observational error, thus a single
measurement is not enough to determine the true value of a performance metric.

The measurement results can be displayed with histograms, which is especially useful for large numbers
of data points.

Background activity skews the results of a measurement: While short-term activity resembles a random
error of the observation, long-term activity looks like a systematic error. Therefore, exclusive use of a
resource and repeated runs of a benchmark are important. In this thesis, multiple benchmarks are run to
characterize the hardware and their results are compared; this reduces the chance of potential systematic
errors. All the experiments are conducted on the working group’s 10 node cluster, which offers 20 Intel
Westmere processors with a total of 120 physical cores. The hardware specification of components serves as
a reference to estimate performance, and by comparing the measurements with the hardware specification,
the measurements can be validated.

Memory behavior

With the memory benchmark, the sensitivity of the system to the specific memory access pattern becomes
visible: Due to the access granularity of full cache lines, random access is much slower than sequential
access, for example. Also, the impact of the 64 KiB level 1, 256 KiB L2 and 12 MiB L3 cache becomes
apparent: 128 bit accesses achieve a throughput of up to 40 GiB/s, 25 GiB/s, 20 GiB/s and 12 GiB/s for L1,
L2, L3 and memory. The memory-bandwidth benchmark achieves a lower performance of about 8 GiB/s
for read and write accesses. However, it measures memory access for accessing small memory chunks.
With this benchmark, the variability and noise of memory access is investigated. In the initial results, all
nodes behave comparably: The distribution of the timings in the plotted histograms look similar. In most
cases, the histograms revealed a non-common probability distribution, and spikes are presumably caused
by system noise and by hardware factors. The experiment is repeated with the aging system: The obtained
behavior of the individual nodes of the write kernel is now different: Most histograms show additional
spikes with lower throughput than before, and hence a variation of the hardware that is otherwise expected
to be identical now becomes visible. This experiment also demonstrates that repeated runs lead to slightly
different behavior: Although each kernel runs for about 120 s, in many cases the resulting histograms show
one additional spike with lower performance. While these effects cannot be explained, they are related to
the aging of our cluster. The observed effects make an accurate modeling and prediction of performance
for memory access difficult. Since all communication and I/O requires memory access, memory access
variability generate additional noise to these processes and especially to node-local communication.

Inter-process communication To characterize inter-process communication, benchmarking results for
the performance of MPI are provided for intra-socket, inter-socket and inter-node communication. In
this process, the characteristics for latency and throughput are determined, and the overall behavior is
assessed.

A throughput test shows that inter-node communication is far below the expectation for Gigabit Ethernet.
A tuning of the TCP/IP configurations and kernel modifications improves performance only slightly from
67 MiB/s to 72 MiB/s. The reasons for the degraded performance cannot be identified, but it once again
illustrates the complexity of the interplay between hardware and software factors, and the tuning. In
intra-node communication, the bi-directional data transfer achieves slightly higher performance; intra-
socket performance is slightly higher than inter-socket communication – about 3,400 MiB/s are achieved
for the uni-directional kernel running on two sockets and about 4,600 MiB/s for the bi-directional intra-
socket communication. The quartiles for measured inter-node latency show a high fluctuation – already
50% of the measured data points vary by 10%, and the maximum value is about twice the average value.

400

8.2 EXECUTIVE SUMMARY

In intra-node communication the variability is much lower. However, the maximum value is still much
higher than the mean. Further, the observed inter-node latency differs from run to run; one execution of
the benchmark even observes a higher minimal latency than the third-quartile of all other runs.

To assess this behavior, an MPI benchmark is executed that measures communication times for a vari-
able amount of transfered data; its results are illustrated in several plots. It turns out that the CPU cache
has a large impact on the observable intra-node performance: It improves performance significantly for
medium-sized messages that fit into the cache. The characteristics of bi-directional and uni-directional
performance are different, and a high fluctuation between independent measurements is observable. In
a comparison between Open MPI and MPICH2, these implementations exhibit slightly different perfor-
mance characteristics.

To assess the variability further, the spread of data points within a single benchmark run is briefly eval-
uated. Histograms show that timings of a single run are clustered together, i.e., behavior is similar over
time; yet, several clusters with similar values can usually be identified. In most cases, they are divided by
rather sharp borders. While exact causes are not identified, potential influences are discussed. For exam-
ple, packet fragmentation of messages, store-and-forward transfer, and the variability of memory accesses
add to the observed noise. In timelines, variability that is caused by background activity, i.e., the utiliza-
tion of a resource, can be distinguished from the random-like effects of hardware and software because it
delays a sequence of data points to a certain extent. In addition to the variability within a single run, the
average values of independent executions of the benchmark fluctuate by several percentage points.

I/O behavior The behavior of an I/O subsystem is more complex than that of any other hardware device.
Besides the hardware technology, the scheduling policy and caching inside the block device, file system
and operating system are involved in the I/O path, and they contribute heavily to performance. After
these aspects are briefly described, the average performance of cached I/O is analyzed with IOZone. Even
for cached accesses the observed performance depends on file size and access granularity. Without an in-
depth detailed analysis of the observations for individual operations, understanding the I/O subsystem is
impossible.

Similar to the memory and communication benchmarks, a newly written benchmark measures perfor-
mance of individual operations: Execution times are measured for operations that bypass the Linux cache
(O_DIRECT), for synchronous operations, and for regular cached I/O. The performance variation of in-
dividual operations is very high: For direct I/O it varies between 10 MiB/s and about 120 MiB/s. When
using cached I/O, the fluctuation is even higher, up to 5,000 MiB/s and 2,000 MiB/s for read and write
operations are observed, respectively, if data is cached. Multiple horizontal clusters of values can be iden-
tified in the created timelines which correspond to hardware and software factors. For example, whenever
a metadata block of the file system is updated, performance of the currently executed operation is slower –
this becomes visible by looking at the synchronous operations. Sequential I/O is usually much faster than
random I/O. However, for synchronous operations, metadata of the file system must be updated before
the write call completes. Therefore, the actuator has to move the heads of the disk to the position of the
metadata, resulting in random-like behavior. A re-write of already written blocks is usually faster because
no additional block allocation is necessary. Similarly, for a cacheable operation, data can already be avail-
able in the operating system cache or the disk internal cache. The influence of memory performance and
system noise on I/O performance becomes visible by looking at the average results, and at the individual
measurements from accessing data on the in-memory file system tmpfs. Overall, by looking at the time-
lines, many interesting and unexpected patterns are observable. One example is the performance increase
with the number of operations when reading data from tmpfs. Another example is the periodic bursts
when writing data to the HDD in a random pattern.

HDTrace Environment The tracing library of HDTrace records MPI activities of parallel programs in XML-
based trace files. Internal activity of PVFS and MPICH2 are recordable, and with the relation concept, the
cause-and-effect chain between parallel program and the triggered activity inside the parallel file system
can be assessed. Statistic files record metrics of the operating system such as measured network and block
device throughput, but they have also been used to analyze energy consumption of a program. Trace format

401

SUMMARY & CONCLUSIONS 8.2

and API have been designed with high flexibility and simplicity in mind. Using a simple project file, traces
of independent event sources can be linked together and displayed in the trace viewer Sunshot.

Sunshot is a major rewrite of the existing Jumpshot viewer to support many new features. It offers many
views and features of which several are novel for trace-based tools:

• Many features support assessing statistics: In the timeline display, the scaling of the values can be
adjusted to quickly find global or local outliers. Histograms can be plotted to grasp the distribution
of the values over the currently zoomed timelines. With derived metrics, a mathematical expression
can be applied to aggregate multiple statistics into a single metric.

• It assists analysis by highlighting relevant information: Users can define filters for the events that are
shown in timelines and use color-coding of events. These features evaluate the attributes of the ac-
tivities. Similar to this approach, activities can be colored depending on the value of a mathematical
expression.

• Common MPI datatypes are visualized. The hierarchical design of the memory datatypes is displayed
to highlight the composition of datatypes. Also, the visualization allows seeing how a datatype is
mapped and unrolled to the file offsets, which ultimately shows which bytes of the logical file are
addressed. This visualization eases the understanding of user-composed datatypes, while still pre-
serving the nested character of the datatypes to simplify the analysis. With the gained insight into an
application’s spatial access pattern and its datatype layout, it is possible to localize inefficient access
patterns and the communication of wrong data.

• Multiple project files can be loaded at the same time. This allows rendering of parallel application
and file system activity in one display.

8.2.3. PIOsimHD – the MPI-IO Simulator

Chapter 5 introduces PIOsimHD, the MPI-IO simulator for application and system level. Also, details of
the currently implemented models for simulating application and hardware behavior are provided. The
appropriate level of detail for the model is discussed. A detailed model has the disadvantages of being
complex and performance-hungry, it may pretend a false accuracy, and it is hard to interpret. The latter
aspects have also been observed during the characterization of the system: Interaction between hardware
and software is complex, and influenced by the initial state of the system. Consequently, it is difficult to
determine all the required parameters and characteristics for simulating the real behavior perfectly.

Hardware model PIOsimHD contains models for cluster nodes, network infrastructure, MPI processes,
I/O servers, block devices and a server-side cache layer. For each component, a model can be chosen in-
dependently. The implemented models for network communication, parallel I/O and block devices are
much simpler than the real hardware behavior; they are just based on a handful of hardware characteris-
tics. However, the chosen level of abstraction describes many aspects of a real compute node’s behavior.
While the simulator is based on discrete-event processing, network and block devices use higher level
concepts; they process one operation, called ’job’, after another. The amount of simulated work per job is
limited. By dividing complex operations into smaller jobs, it is possible to interleave them. Processing of
computation is an exception; with time-sharing, all compute jobs are executed concurrently by multiplex-
ing the available processing capabilities.

A node hosts all kinds of processes: MPI processes, I/O servers and forwarders. It offers a number of CPUs
with a given processing speed and memory resources that are shared among all hosted processes. Compute
jobs require a certain number of instructions; each CPU processes a defined number of instructions per
seconds. Memory is used by the server’s cache layer for buffering I/O. There are two models for a block
device, the SimpleDisk model and the RefinedDiskModel. The former relies on average access time and
the maximum throughput. The latter model incorporates RPM, track-to-track seek time and a short seek
distance for which the track-to-track seek time applies. Consequently, it remembers the last access location
and it computes the latency of a job based on the position to access, and the previous position. If the offsets

402

8.2 EXECUTIVE SUMMARY

differ more than the short seek distance, an average seek is performed; otherwise a small seek is performed,
and if the data is accessed sequentially, no seek is necessary at all. A mapping from files to physical
blocks is not performed. Files are assumed to be stored sequentially on disk. The implementation of the
RefinedDiskModel contains a scheduler for I/O jobs. Similar to NCQ, pending requests are reordered to
improve performance, but to use this feature, the cache layer must submit multiple operations.

Network model The network topology is modeled by a graph of nodes and directed edges. By default, mes-
sages are fragmented into packets that are transferred with store-and-forward switching between source
and target. A routing algorithm determines the path throughout the network. Currently, network nodes
and edges are modeled with latency and throughput. The throughput determines the time for processing
the packet on the component, i.e., the component is busy during the processing. Latency is added to the
arrival time on the target node. To simulate memory access, which is especially important to predict intra-
node communication, a memory node adds local throughput as another characteristic that is applied for
data transfer between directly connected nodes. Every process is connected to the network topology with
its own (virtual) NIC. An NIC fragments the message into packets with a size of at most network granularity.
There is also an analytical NIC model that computes the arrival time on the target node directly. While this
alternative model reduces simulation time, it cannot simulate congestion of the intermediate network.

Inter-process communication Data transfer and congestion are simulated with the developed network
flow model. In this model, every pair of source and target is assigned to a virtual network channel (a
stream), and the data of each stream is transferred independently. Packets of a stream are pushed from
source to sink until a congestion occurs. In the model, congestion occurs when more packets of a stream
are currently in-flight to the next component than the bandwidth-delay product of the connection to this
component allows. A component that encounters a congestion stops data transfer of this stream, until it is
notified by the components downstream that it might continue – whenever a component starts to process
a packet, it notifies the sender that the packet is now processed and thus received. Streams whose data is
available are processed in round-robin which results in a prioritization of streams that are connected with
a slower performance. This scheme is illustrated with two scenarios: One scenario shows a bottleneck next
to a source and another one shows a bottleneck close to a sink. These scenarios show the performance of
the steady state and demonstrate that the flow model is able to utilize network resources while providing
a realistic data transfer of larger messages.

Applications Parallel applications are modeled as a sequence of commands; these can be MPI operations,
compute jobs or other operations. The simulator provides an implementation for each command; imple-
mentations are built on the concept of state machines. Each state defines the next state to execute and it
may initiate message exchange or start another command as a nested operation. In this concept, computa-
tion is simulated by starting a compute job before the operations of a state are executed. Once the initiated
operations are finished, i.e., required messages are sent and received, and all nested operations complete,
the state machine proceeds to the specified state. Receives match transferred messages with a semantics
similar to MPI communication; the matching rules also ensure that nesting of commands works properly.
The concept is illustrated by implementing an algorithm for MPI_Allreduce().

Parallel I/O The model for parallel I/O consists of a client-server communication protocol and I/O for-
warding. It is implemented in the MPI-IO calls and the I/O servers. Currently, the model covers the I/O
path and no metadata operations. A function partitions data among the available data servers – by de-
fault, it is distributed in round-robin. While they differ in their metadata handling, the data path of file
systems must at least follow this elementary pattern: In the write path, a client sends data to all servers
concurrently, then it waits for an acknowledgement; in the read path, data is requested from all servers
at the same time. Each client-side I/O operation results in exactly one request per server of which data is
accessed. Collective MPI calls mimic the behavior of the Two-Phase protocol, and therefore cause multiple
I/O requests and exchange data between clients.

A server pipelines block I/O and network transfer by fragmenting data into pieces that are transferred
between network and cache layer. Data on the block device is accessed in chunks of a size less than I/O
granularity, while network packets are fragmented into packets with a size of network granularity. The

403

SUMMARY & CONCLUSIONS 8.2

interaction between server cache and block device is sophisticated and ensures that enough memory is
available to store received (and read) data. The detailed execution path is complex since it involves mea-
sures to control network transfer and available cache.

Currently, there are four implementations for the cache layer available. The NoCache implementation
processes one operation after another and does not offer a cache. The SimpleWriteBehindCache executes
operations with the FCFS strategy but stores incoming data in a cache to permit write-behind. With the
AggregationCache, the currently scheduled operation is extended by other pending operations iff these
operations overlap with the extent (and file) of the current operation. The AggregationReorderCache in-
creases the capabilities of the AggregationCache by allowing it to pick the next I/O operation – it prefers
large operations and executes the operations using an elevator algorithm. All cache layers try to process
an operation as soon as one is pending.

A brief comparison of the model parameters with the implementation of PVFS and the Linux kernel shows
that similar concepts are covered in many cases: Write-behind, pipelining and the aggregation of opera-
tions are implemented; read-ahead or read caching are not yet modeled. However, the current cache layers
are much easier to understand than the behavior of a Linux system, which also depends on many tunable
run-time parameters. Especially read caches and read-ahead are unpredictable for concurrent access of a
large number of clients. Since the introduced model describes the basic operations on the data path, it is
applicable to a multitude of parallel file systems.

Workflow To conduct an experiment with PIOsimHD, a hardware and software model is created that is
fed into PIOsimHD for simulation. Then the results can be assessed post-mortem. Creation of the model
requires the definition of the hardware characteristics of all components, the definition of the process
command sequences and the mapping of the available processes to the hardware. The application and
system model can be either defined in XML files or created by a Java program. When an application has
been traced with HDTrace, these files can be directly loaded by the simulator. To execute PIOsimHD,
run-time parameters, such as tracing options, must be set; then the mapping of model components to
implementations is performed and the simulation is run. Once the simulation completes, statistics for
each component are output, and traces are created (if desired). These traces can be loaded into Sunshot for
a post-mortem analysis of behavior. By inspecting trace files, the observed behavior can be compared with
the simulated behavior. As opposed to application traces, PIOsimHD supports introspection into internal
activity. Thus, individual packet transfer and operations conducted on a block device can be recorded.

8.2.4. Simulator Implementation

Chapter 6 provides more insight about selected implementation details. Characteristics of all hardware
and software models are stored in classes of the separate PIOsimHD-Model package. To support automatic
conversion between Java classes and XML, the member variables are annotated. The simulator implements
a hardware model by accessing the model class with its characteristics. The implementation of a hard-
ware component by the simulation engine is demonstrated based on the SimpleDisk model. The example
illustrates the sequential processing of pending jobs and actions when a job is started and completed.

To foster modularity, implementations can be provided and selected dynamically without recompiling the
simulator core. The mapping is defined in text files and realized with the Java Reflection API: For each
model class, one implementation class is selected that is used during the execution. A single command
can be implemented with multiple algorithms. By default, the last implementation is used. However, an
algorithm can spawn a nested command and select a specific implementation for a command. As a result
of this concept, new and refined models can be incorporated easily.

Example code snippets for defining the application and system model in Java complement the description
of the workflow that replays behavior of traced applications in the simulator. Basically, to describe an
experiment in silico, components are instantiated, characteristics are defined, and the network components
are interconnected. The simulator takes care of loading the corresponding implementations for the selected
models.

404

8.2 EXECUTIVE SUMMARY

The implementation of commands with the state machine concept is illustrated for MPI_Allreduce() and
MPI_Bcast(). A simple algorithm for MPI_Allreduce() invokes MPI_Reduce() and MPI_Bcast(). The
presented implementation for MPI_Bcast() splits the payload into small messages that are transfered in a
pipeline through all processes.

8.2.5. Evaluation

Performance The overhead of HDTrace is assessed by measuring the time for invoking MPI_Barrier()

with a single process. It turns out that the overhead is in the order of one microsecond; therefore, it is
relevant only for intra-node communication of small messages. In this experiment, VampirTrace causes a
similar overhead. Thus, from the performance perspective, HDTrace is on the same level as state-of-the-art
tracing tools.

PIOsimHD demonstrates a processing rate of 1.5 million events per second, which is comparable to other
state-of-the-art simulators such as LogGOPSim, although LogGOPSim is written in C. The scalability of
the simulator is assessed with an MPI_Bcast() call across up to 65536 processes. In the analysis model
creation, model initialization and the simulation time is measured demonstrating that the simulator scales
almost linearly with the number of simulated processes and events. Alternative NIC models, such as
the analytical model, which does not cover congestion, reduce the number of events significantly and
therefore need less processing time. With about 1000 s for simulating 16,384 processes, it is feasible to
mimic real applications for hundreds of processes and to simulate single MPI calls for even larger numbers
of processes.

Parameterization of the model Since the Westmere nodes serve as a testbed for all experiments, a system
model is built for those nodes. A network topology is created that represents our dual socket compute
nodes and the Gigabit Ethernet connection.

In order to represent hardware of our cluster, the model is parameterized. Basic information is queried
from available datasheets for individual components, and according to the measured characteristics in
Chapter 3. While most characteristics are available directly, network characteristics are derived hierarchi-
cally from the measurements.

Qualification of the model In the qualification process, measured performance of point-to-point com-
munication and the I/O subsystem is compared to the mathematical models that are based on latency and
theoretical throughput. While in most cases the communication model matches well (±10%), there is a
discrepancy for the inter-node SendRecv kernel and for medium sized intra-node communication. For
SendRecv these are due to early receives, which is not covered by the timing during the measurements; for
medium sized communication, performance is better because it utilizes the CPU cache. Without explicitly
tracking data and the CPU cache, the location of the data cannot be considered by any model. However,
tracking data is complex and also depends on the computation model because that involves memory activ-
ity, too.

Real I/O highly depends on the access pattern and the system configuration. Although observed perfor-
mance for a variable record size can be fitted into a model with latency and throughput, the actual values
for the characteristics depend on the performed experiment because it determines how well optimizations
can improve performance. Therefore, the mathematical model that is based on average seek time and
maximum sequential throughput underestimates performance. Because the cache layers of the real system
and of the simulator try to reorder and aggregate accesses into sequential blocks, the performance of truly
random I/O is lower in the mathematical model.

Verification The results of the mathematical models are compared with simulated point-to-point com-
munication and a single I/O subsystem. This checks for correctness of the implemented models for these
cases. Additionally, the impact of different network granularities is assessed. Fragmenting messages into
packets reveals a discrepancy between simulation and theory because utilization of the network graph re-

405

SUMMARY & CONCLUSIONS 8.2

quires that the components can process packets concurrently – which is impossible if just a single packet
is sent. This shows the necessity of fragmenting messages into smaller packets in the model.

The RefinedDiskModel model matches theoretical performance perfectly, and, as expected, the Aggrega-
tionReorderCache improves performance of writes with an increasing cache size.

Validation With the verification and qualification process, the most elementary point-to-point and I/O
operations are validated indirectly. Several more involved point-to-point and collective communication
patterns are used for a direct validation of simulation accuracy: An MPI benchmark measures perfor-
mance while tracing of internal point-to-point communication is enabled – these traces are fed into the
simulator to mimic the communication patterns. With this approach, the discrepancy between model and
observation becomes visible. Furthermore, several inefficiencies in MPI are identified: Due to the esti-
mation done by simulation, an algorithmic suboptimality can be clearly distinguished from unexpected
bottlenecks inside library and system. Open MPI performance is included in the comparison showing a
different performance behavior than the measurements of MPICH2 and the simulation. Both implementa-
tions have their strengths and weaknesses – none is optimal, showing the need for tools to systematically
analyze and improve communication performance.

In most cases, PIOsimHD resembles the overall communication behavior well; however, in intra-node com-
munication, it usually underestimates performance – presumably, CPU cache effects improve performance
on the real system. A high variability in observed communication times becomes apparent, especially in
the statistical analysis of small payloads. While node-local communication is typically rather robust, the
deviation of minimum, maximum and the quartiles is much higher for inter-node communication. Taking
this fluctuation into account and since PIOsimHD should anticipate performance, the relative accuracy of
the simulation seems acceptable.

The model of parallel I/O is validated by running a large set of experiments with orthogonal parameters
and comparing them with the simulation. In many cases, the simulator approximates performance well.
In some cases, it overestimates performance, and in a few cases, its estimates are too low. Several instances
in which a discrepancy between simulation and observation occurs are investigated by inspecting traces of
the simulator, the recorded traces of the application and the PVFS internal processing. It turns out that the
parallel I/O system is very sensitive to timing issues – performance is good if requests can be aggregated
into large requests so that sequential access is possible. Bad timing leads to a situation in which blocks
on the disk are accessed in random-like fashion, which seriously degrades performance. This is the main
reason for the degraded performance in PVFS – the improved scheduling of PIOsimHD leads to more
sequential patterns and thus a better utilization of the HDD. Timing effects are assessed by inspecting the
trace files; in many cases, effects that are observable on the real system are visible in the simulation as
well.

Every command that is executed by a parallel program must be explicitly programmed in PIOsimHD. Cur-
rently, the simulator provides at least two alternative implementations for selected collective calls of MPI:
a very simple implementation that communicates all data through the root process of the communication,
and a re-implementation of an MPICH2 algorithm. By visualizing the internal communication of MPICH2
with Sunshot, the correct implementation of the algorithms in PIOsimHD is verified. Thus, it is possible
to simulate applications using similar communication patterns as with MPICH2.

The simulation of the working group’s PDE demonstrates PIOsimHD’s ability to mimic the execution of
existing parallel programs, including the system behavior. A discussion reveals that a relative comparison
of measured and simulated runtime is not appropriate, since the accurate replay of timings for compute
jobs can lead to an arbitrary accuracy when the amount of computation is increased. Therefore, the critical
time metric is defined, which is the amount of time spent in simulated activity – communication and I/O.
In many cases, the simulation behaves similar to actual measurements, which is also demonstrated in a
comparison of generated profiles and timelines.

Similar to the verification of communication and I/O benchmarks, several bottlenecks of the MPI imple-
mentation and PVFS are identified by inspecting trace files. This shows that PIOsimHD and HDTrace are

406

8.2 EXECUTIVE SUMMARY

valuable tools for investigating the behavior of parallel applications on a cluster system.

Experimenting with HDTrace/PIOsimHD During the validation experiments, the features of PIOsimHD
and HDTrace are also applied to further investigate certain aspects of system and application:

With a modification of the hardware characteristics in PIOsimHD, the replayed activity reveals the critical
path of the PDE and the resulting waiting times of individual operations. Sunshot supports this analy-
sis with the filter feature, which eliminates operations to highlight activities with waiting times due to
synchronization dependencies.

An evaluation of a variety of MPI_Bcast() implementations applies the simulator to investigate perfor-
mance of alternative MPI algorithms, which is one design goal for PIOsimHD. In this evaluation, a good
match between original measurement and replayed point-to-point communication is demonstrated for
small amounts of data, thus validating the correctness of the implemented algorithm. With the pipelined
implementation that is introduced in this thesis, performance is expected to improve. The performance
benefit of an SMP-aware implementation becomes visible as well.

The impact of an alternative I/O semantic is investigated with a modification to the regular MPI_File_

close(), where the server is forced to flush the write-behind cache to the block device. This alternative
semantic slows down execution only for a few experiments, but the effects can be quantitatively assessed,
and the emerging complex I/O patterns are also investigated.

In summary, the combination of the enhanced tracing environment and a novel simulator offers unprecedented
insights into interactions between application, communication library, file system and hardware. On the one
hand, several unique features allow quantitative analysis of measurement which helps localizing bottlenecks. On
the other hand, with PIOsimHD applicability for assessing performance of clusters consisting of 1,000 processors,
it serves as virtual laboratory for developing alternative algorithms and studying behavior on arbitrary cluster
environments.

407

Future Works

Chapter 9 IX

In this chapter, features of and extensions to the presented work are described that could not be realized during
this thesis. Besides the introduced optimizations1, extensions to MPI are imaginable that have yet to be researched
thoroughly. A few of those concepts are discussed in Section 9.1. Prior to implementation in a real system, they
could be evaluated with PIOsimHD to assess their potential benefit.

There are three general ideas for extending the presented work:

• Performance evaluation of more cluster environments: The simulator has been applied successfully
to the working group’s cluster system. PIOsimHD could help in analyzing other supercomputers to
identify bottlenecks in the system architecture and it would foster understanding of relevant system
characteristics. For example, the Blizzard supercomputer of the DKRZ could be evaluated with a
similar methodology. At the same time, the system model of the simulator could be extended to
incorporate aspects relevant to this supercomputer, for example it is expected that RDMA has an
impact on communication performance.

• Porting to an existing trace format: With HDTrace, an alternative trace format has been developed;
its development has been guided by the needs for simulation and tracing of client-server activity
that initially could not been recorded with existing trace formats. During this thesis other trace
formats have evolved – now it seems that all the required information for the simulation can be
included in these formats, although that may not be comfortable. While HDTrace still offers several
capabilities beyond other trace formats, it is possible to modify PIOsimHD and Sunshot to rely on
trace formats such as OTF. An advantage of this strategy would be that these tools can be applied
in typical environments without forcing users to link to another trace environment. Also, it would
eliminate the necessity of porting the trace environment to other supercomputers.

• Access pattern repository: A global repository of application behavior might be valuable for the com-
munity. Such a repository could contain trace files for relevant scientific applications and it could be
open for researchers to provide and to use the available traces. In combination with a replay mech-
anism this would allow application specific benchmarking – researchers could evaluate application
performance without the need for running the application. This is especially valuable for developers
of middleware such as communication and I/O libraries. Further, by comparing performance across
supercomputers, the system that is best suited for the communication and I/O pattern can be iden-
tified. With the student projects Parabench and Paraweb, a first attempt towards this goal has been
made.

There are several minor modifications that would improve HDTrace and PIOsimHD:

• Improved build system: The C components mainly rely on the GNU build system (also known as
Autotools). Correct and portable usage of the GNU build system is complicated, also execution of
the configuration process is slow. Additionally, the configuration of the experimental intercepting
library, e.g., for POSIX calls, is not automatized yet. One task for diligent work is to automatize
the whole build process with Waf 2. Waf is much easier to use and maintain, and the configuration
process is much faster. The TraceWriting C Library has already been ported to Waf.

• Improved analysis of MPI-IO datatypes: Sunshot independently visualizes the MPI datatypes Vec-
tor, Contiguous and Struct for every process. More MPI constructors could be supported, also, for
collective operations, a view could illustrate the accessed data for each process. It is envisioned to
extend the solution by aggregating datatypes of collective calls into one view – showing the accessed
file regions of all participants, each encoded with a different color. Thus, the overall activity of the

1See Section 2.3.4 and Section 2.3.5.
2http://code.google.com/p/waf/

408

http://code.google.com/p/waf/

9.1 CONCEIVABLE MPI(-IO) OPTIMIZATIONS

collective operation would become visible. Additionally, the visualization tool could be extracted
from Sunshot to assist scientists in creating and validating file views.

• Scalable visualization: Right now, Sunshot loads all trace information into memory, rendering trac-
ing of large numbers of processes impossible. There are several potential approaches to increase the
applicability of Sunshot. On the one hand, existing strategies could be incorporated: Similar to Vam-
pir, multiple servers could collaborate to overcome this obstacle. On the other hand, due to the open
nature of the file format and flexibility, other approaches might be better suited. For example, im-
porting the data into an SQL database would naturally blend well with the filtering and aggregation
functions of Sunshot.

• Dynamic data fragmentation: Since messages are fragmented into packets that are transferred with
store-and-forward switching between the components of the network topology (see Section 5.2.3),
a larger network granularity reduces the concurrent processing on the simulated devices and larger
messages may delay short messages due to the FCFS scheduling. However, an advantage of increasing
the network granularity is that simulation execution is faster. An adaptive system could be imagined,
in which the packets are split depending on the current message size. Such a scheme must be de-
signed with care, since it can become unfair easily, for example, deferring small messages on their
route due to larger packets. This must be investigated carefully, because such a model would be
unfair because packets of smaller messages would be deferred by the large packets of big messages.

• Compute model: The model of a compute job defines a number of instructions to perform the job;
it corresponds directly to CPU frequency and duration of the compute job. Therefore, the variety
of CPU architectures and their capabilities to process different workloads are not really reflected by
the current compute model – which makes a prediction of a compute phase towards future systems
difficult. With the Likwid extension, CPU counters are recorded that could be used by a new CPU
model for a more differentiated prediction of the compute phase. For example, the instructions per
cycle, Flop/s (single precision and double precision) and the memory bandwidth could be evaluated
in an extended compute model (see also page 197). However, since execution time depends on many
factors, predictability of any stochastic model is limited and, therefore, it must be assessed critically.

• Random characteristics: All presented hardware models use static characteristics, e.g., the latency
of all packets is always identical. While this helps understanding the observations, it is problematic
with the current approach to recreate certain dynamic and timing-dependent behavior. It is rather
easy to provide additional models that add a small variability to the processing of individual oper-
ations – this could even be based on a specified probability distribution. With such an approach,
timing effects of the I/O subsystem could be assessed further, while the existing models still provide
a reference.

9.1. Conceivable MPI(-IO) Optimizations

With the help of simulation, the effectiveness of novel optimization strategies or potential optimizations
could be quantified for arbitrary cluster systems. Further, it would allow assessing all the optimization
strategies mentioned with the same application and hardware settings, thus it would make the research
transparent by making algorithm evaluation reproducible. By identifying potential optimizations, simu-
lation can help to push relevant modifications into future standards.

A small list of aspects that are not researched thoroughly, but could be assessed in the future:

• Semantic specifications in the standards must be obeyed. Therefore, there are two possible ap-
proaches: By relaxing the default MPI semantics, or by offering a choice about the semantics to
the user. With an additional hint parameter for each collective function, this information could be
exploited. An illustrating example of potential benefit for the library and the user is MPI_Reduce().
Semantics require that as long as the identical parameters are given to MPI_Reduce(), it should per-
form internal computations in the same order, independent of process mapping. This implies that

409

FUTURE WORKS 9.1

locality of data cannot be exploited in all cases because floating point arithmetics is not associative,
forcing communication and computation to be independent of the process mapping. With a hint,
a user could accept that operations are performed optimally on the given hardware, or even allow
nondeterministic execution.

• From a programmer’s point of view, an extension to collective calls which permits less data to be re-
ceived than announced, is more flexible and thus might avoid communication of data amount before
the data itself is transferred. An example of how these capabilities can be used in an application
is RAxML3, an program which computes phylogenetic trees by applying optimization heuristics.
While the algorithm proceeds with its optimizations, it is unknown how many better configurations
are found, yet an upper bound exists. Candidates are transferred from a master process to all peers.
In the current version of the algorithm, the full buffer is communicated although it is only partly
filled, transferring irrelevant data. Yet, this is faster than broadcasting the number of elements be-
fore the actual data is communicated. A consequence of such a flexible communication would be
that the executing collective algorithm must be chosen dynamically in an implementation, because
the amount of data transferred would depend on the situation.

• Additional buffering of collective data could be done in all-to-one or one-to-all patterns to reduce the
impact of early and late starters. With buffering, processes could continue processing even though
some may not have invoked the collective function yet. However, careful attention must be paid
to the memory usage because memory might be occupied by the application. Partly, this issue is
addressed by MPI implementations which use regular point-to-point communication calls to imple-
ment collective calls, because these calls use the eager communication protocol if the message is
small.

• Alternative client-side collective I/O optimizations are imaginable that improve the access pattern
depending on the architecture. For example, right now the topology of the system is not taken into
account for collective I/O. A topology-aware MPI implementation that takes multicore aspects into
account could also improve performance of collective calls.

3http://www.exelixis-lab.org/

410

http://www.exelixis-lab.org/

List of Figures

1.1. Schematic view of a cluster computer. A scientist can connect to the frontend and work
interactively. 5

1.2. Network topology of a 2D-Torus. Leftmost nodes (X,0) are interconnected with the rightmost
nodes (X,2). Top nodes (0,X) are connected with the bottom nodes (2,X). 6

1.3. Example hierarchical namespace and mapping of the objects to servers of a parallel file
system. Here, metadata of a single logical object belongs to exactly one server, while file
data is distributed across all servers. 7

1.4. Representative software stack for parallel applications. 7
1.5. Pseudo code for a simple parallel application. 9
1.6. Mapping of the application processes to two nodes of a cluster. 9
1.7. Involved hardware and operations to retrieve 3 MiB of data from a file stored on a parallel

file system. In the example file servers access storage devices attached to a SAN. 10
1.8. Some possible interaction pattern between the four processes of the example application.

The actual observable pattern depends on the hardware and software configuration. In this
example all processes are mapped to disjoint nodes, i.e., the communication between pro-
cesses always takes 1 time unit. 12

2.1. Logical view of network attached storage. Multiple clients can access a central server that
manages the persistent storage. 22

2.2. Panasas ActiveStor system. 22
2.3. Abstract view on an Isilon scale-out solution. 23
2.4. PVFS software architecture. 24
2.5. Exemplary file distribution for 5 datafiles – data is split in 64 KiB chunks and striped over

the datafiles in a round-robin fashion. 25
2.6. Performance factors. Hardware aspects are orthogonal to computation, communication and

I/O performance. 27
2.7. An abstract view of layers and components involved in application execution. 29
2.8. Data transfer scheme of a few collective operations. 44
2.9. Example partitioning of a file by using a file view. The accessible area for each process is

colored, the offsets for accessible etypes are printed for Process 2. 48
2.10. Example of concurrent file operations, two processes write the same file regions. 50
2.11. Closed loop cycle of optimization and tuning. 62
2.12. Screenshot of the LTTV viewer for a trace of the system – event view and control flow view. . 69
2.13. Screenshot of the LTTV viewer for a trace of the system – statistic view and resource view.

The likely scheduled execution of the program on the CPUs is marked in green. 70
2.14. Screenshot of ParaProf – PDE profile including experimental information. 73
2.15. Screenshot of ParaProf – PDE communication matrix. 73
2.16. Screenshot of ParaProf – user event statistics for Process 0 including MPI-IO statistics. 74
2.17. Screenshot of a Vampir workspace. 75
2.18. Scalasca’s Cube3 browser – the left column shows available metrics, the middle column

assigns the metric’s values to functions of the call-graph, the right column shows the contri-
bution of every process to the function. 77

2.19. Scalasca’s Cube3 browser – identifying the computational overhead in getResiduum(). . . . 78
2.20. Scalasca’s Cube3 – assessing load imbalance and the online help for this metric. 78
2.21. Jumpshot windows. 80
2.22. Modified screenshot of PIOviz visualizing the interaction between 4 clients and 4 servers

with explanations [KTML09]. 81
2.23. Alternatives of passing time within a model. 86
2.24. Process of creating a model for a real system. 87

411

List of Figures 412

2.25. Processing of a discrete-event simulator. 88
2.26. DESMO-J GUI that can start an experiment and assists users to evaluate the outcome. Here

truck arrival and departure at a container terminal is shown (in the left diagram) and the
truck wait times until they were loaded (in the right diagram). 98

2.27. HTML trace file of the container simulation – rendered in the DESMO-J GUI. 98
2.28. Visualized binary tree pattern for four processes as created by Graphviz. 109

3.1. Possible histograms for the vector m = (3,5,4,2,4) with three bins. 124
3.2. Physical view of the working groups’ cluster. 127
3.3. Memory throughput measured with bandwidth. 129
3.4. Read performance – histograms show the timings obtained with memory-bandwidth. 134
3.5. Write performance – histograms show the timings obtained with memory-bandwidth. 135
3.6. RWW performance – histograms show the timings obtained with memory-bandwidth. 135
3.7. Average memory throughput measured with memory-bandwidth – overwriting 1000 times a

memory region of 1000 MB (error bars indicate the minimum and maximum of 15 runs). . . 137
3.8. Scaled histograms for accessing 1 TByte of data – read performance. 137
3.9. Scaled histograms for accessing 1 TByte of data – write performance (1). 138
3.10. Scaled histograms for accessing 1 TByte of data – write performance (2). 139
3.11. Scaled histograms for accessing 1 TByte of data – write performance (3). 140
3.12. Scaled histograms for accessing 1 TByte of data – RWW performance. 141
3.13. Average intra-node throughput to transfer 1,000 MiB of data measured with mpi-network-

behavior (error bars indicate the minimum and maximum). 144
3.14. Communication performance for a variable message size and the three quartiles. 150
3.15. Comparison of Open MPI and MPICH2 point-to-point communication performance for a

variable message size. The green line marks the 100% relative performance of MPICH2. . . 152
3.16. Relative communication time of the first and third quartile to the mean for a variable mes-

sage size. 154
3.17. Behavior of the inter-node communication transferring 2 KiB of data. 155
3.18. Behavior of the inter-node communication transferring 16 KiB of data. 155
3.19. Timelines of the inter-node communication for empty messages. 156
3.20. Timelines of intra-node communication for 8 MiB messages. 156
3.21. Relative performance of the three runs to the average of all runs. 159
3.22. Performance of several access patterns measured with IOzone – 1 GiB of memory is available. 165
3.23. Performance of several access patterns measured with IOzone – 12 GByte of memory is avail-

able. 166
3.24. Performance of several access patterns measured with IOzone – 12 GByte main memory is

available, a remount is performed between two tests. 166
3.25. Performance of direct IO for a variable access granularity using O_DIRECT (and O_SYNC)

measured with posix-io-timing for several access patterns. 169
3.26. Direct I/O performance using O_DIRECT and O_SYNC measured with posix-io-timing

for several access patterns. 171
3.27. Direct I/O performance using O_DIRECT measured with posix-io-timing for several ac-

cess patterns and 16 KiB records. 173
3.28. Performance measured with posix-io-timing on two nodes for random access patterns and

16 KiB records. Results for accessing data on tmpfs and on Ext4 with unlimited memory are
provided. 176

3.29. Performance measured with posix-io-timing on two nodes for several access patterns –
memory is limited to 200 MiB. 177

3.30. Performance measured with posix-io-timing for several access patterns and 16 KiB
records on West1 – all data points. 178

3.31. Performance measured with posix-io-timing for several access patterns and 16 KiB
records – the y-axis is limited to 20 MiB/s. 179

4.1. HDTrace components and dependencies between components. 187

412

413 List of Figures

4.2. An example MPI topology for two nodes and three processes. The labels for the levels are
listed on the left; the instances of the tree nodes are shown on the right. 195

4.3. HDtrace libraries involved in the creation of trace files for MPI-IO applications – all these
libraries are linked into the application. The server side lists the libraries linked into PVFSHD.197

4.4. Workflow to create and to visualize trace files. 198
4.5. Sunshot main windows. 200
4.6. Sunshot profile window showing the aggregated duration for each state. 200
4.7. Sunshot timeline window. 201
4.8. Timeline Window with arrows and the info box window. 201
4.9. Timelines of the first phase of the HPCC-run including energy metrics and client side com-

munication activity. 203
4.10. Energy metric timelines of the HPCC-run. 204
4.11. Energy metric timelines of the HPCC-run – all timelines are scaled with the global minimum

and maximum for each of the metrics (I, P, U). 204
4.12. Excerpt of the first process timelines of I and P to demonstrating how minimum, average

and maximum are visualized in the timelines. 205
4.13. Energy histograms for a node. The pink dashed line is the mean value, gray lines indicate

standard deviation for 1,2 and 3 σ . 205
4.14. User derived statistics are created in Sunshot by aggregating network traffic of the nodes.

This figure extends Figure 4.7. 206
4.15. Timeline window with an applied color-coding based on the size of the communicated data. 207
4.16. Timeline with filtered communicator and type identifier. 208
4.17. Timeline with an filter to show messages which are below a given size but take longer than

1 s to be processed. 209
4.18. Sunshot info box for a MPI_file_set_view() function invocation with a partly expanded

file datatype. 210
4.19. Visualization of the spatial access pattern of a non-contiguous write operation. 210
4.20. Visualization of a fully expanded datatype as a directed acyclic graph. 211
4.21.MPI_Bcast() of 100 MiB of data to 8 processes. 212
4.22. Traced behavior of the 2D-PDE solver and the caused PVFS server activity. The first 10 iter-

ations of the PDE solver are shown. 213
4.23. Traced behavior of the the 2D-PDE solver writing the progress information (the 64 KiB ma-

trix diagonal) and the caused PVFS server activity. One single diagonal leads to 126 small
requests. 213

5.1. Illustration of the modeled hardware components and their interactions. 221
5.2. Nodes and hosted processes that share the resources provided by a node. 222
5.3. Illustration of a node model for concurrent computation on two CPUs. Arrows indicate

submission of compute jobs and the number next to the arrow corresponds to the workload
(in s). The height of a bar indicates the CPU utilization of the job. 223

5.4. Modeled block devices. 224
5.5. Illustrated example for the elevator algorithm of the RefinedDiskModel. For every timestep

the pending operations per file, the operations of the currently dispatched file and the sched-
uled operation is provided. Elements of modified lists are highlighted. 225

5.6. Modeled network components. 227
5.7. Network congestion and prioritization of data streams based on a simple example. One

intermediate node (switch) connects the two sources (A, B) to the destination node (Y). Speed
of the links is 100 MiB/s (thick line) or 20 MiB/s (thin line). In the steady state the effective
throughput is annotated. 230

5.8. Propagation of network congestion. Two intermediate switches connect the sources (A, B, C)
to the destination nodes (Y, Z). Speed of the links is 100 MiB/s (thick line) or 10 MiB/s (thin
line). In the steady state the effective throughput is annotated. 230

413

List of Figures 414

5.9. Propagation of network congestion with the flow concept. Two intermediate switches con-
nect the sources (A, B, C) to the target nodes (Y, Z). Speed of the links is 100 MiB/s (thick
line) or 10 MiB/s (thin line). In the steady state the effective throughput is annotated. 231

5.10. Steady state of the network that is computed with the flow scheme. Buffered packets on the
nodes and on the wires are indicated, colors encode the source node and letters the target.
In case the source node is unknown, the color of the target node is taken. 233

5.11. Steady state of the network – the processing of packets on the edges from and to the nodes
is indicated. Arrows illustrate the transport of individual packets. 234

5.12. Startup phase of a single transmission from node A to node Y. The processing of packets on
nodes and edges is illustrated – latency defers reception on node Y. Arrows demonstrate the
flow of packets. 234

5.13. Interaction for an MPI_Allreduce() implementation in which processes communicate with
the root process – illustrated for three processes. 236

5.14. Simulated client activity for an MPI_Allreduce() implementation that transfers 10 MiB of
data. In this naive implementation all processes transfer their data to the root process which
computes the results and broadcasts it to all other processes. 237

5.15. Illustration of the client-server communication protocol – read path. 241
5.16. Illustration of the client-server communication protocol – write path. 241
5.17. Read path – illustration of the interaction between request processor, cache layer and the

block device. 244
5.18. Write path – illustration of the interaction between request processor, cache layer and the

block device. 244
5.19. Implemented cache layers. 246
5.20. Simulation workflow with required input and generated output. 247
5.21. Analysis workflow for existing applications including relevant components of HDTrace. . . 249
5.22. Visualization of simulated client and network activity. The cluster configuration of the flow

example in Figure 5.8 in which only node A sends data is simulated. 251
5.23. Visualization of simulated client and network activity including relation arrows. The cluster

configuration of the flow example in Figure 5.8 in which only node A sends data is simulated. 252
5.24. Visualization of simulated I/O activity – one client writes 1 MB of data to one server. Due

to the write-behind mechanisms most data is written to disk while the client waits for the
completion of the flush operation. 253

5.25. A zoom into the start phase of Figure 5.24. 253

6.1. Visualization of the pipelined broadcast implementation. 10 MiB of data is broadcasted to
two processes resulting in 10 transfers of 1 MiB each. The upper process is the root pro-
cess sending blocks of data, the center process forwards data to the last process which just
receives data. 274

7.1. Performance of the simulator executing a binary broadcast operation. 281
7.2. Simple model of the cluster’s star topology with a fast node-internal communication and

slower inter-node communication. The number of nodes and processes per node can vary. . 284
7.3. Refined network topology of a node to represents the memory limitations in a dual-socket

system better. The mem nodes limit the actual communication performance by memory
bandwidth and latency. The QPI node represents the I/O-Hub. 284

7.4. Schematic network topology of the cluster model with annotated characteristics. 284
7.5. Inter-node communication performance – comparison of determined mpi-network-behavior

performance of one run with the network model. 292
7.6. Inter-socket communication performance – comparison of determined mpi-network-behavior

performance of one run with the network model. The PingPong kernel is assessed by using
two different characteristics for throughput. 293

7.7. Intra-socket communication performance – comparison of determined mpi-network-behavior

performance of one run with the network model. The PingPong kernel is assessed by using
two different characteristics for throughput. 294

414

415 List of Figures

7.8. Behavior of the disk model with different characteristics. The models incorporate revolutions-
per-minute (RPM), throughput (TP), track-to-track and average seek time. 294

7.9. Comparison of the throughput of the analytical I/O models with the average random per-
formance obtained with IOZone and posix-io-timing. 296

7.10. Relative performance of several parameterizations of disk latency and transfer rate. 298
7.11. Intra-socket communication for the PingPong kernel with protocol overhead per packet. . . 300
7.12. Comparison of the network model with simulated performance of the PingPong kernel. . . . 301
7.13. Comparison of the network model with simulated output for the Sendrecv kernel. 302
7.14. Random I/O performance – comparing simulation with the analytical model. 303
7.15. Performance of MPI_Barrier(). 308
7.16. Performance of MPI_Barrier() without simulating computation. 308
7.17. Paired point-to-point communication and 10 KiB of data. 310
7.18. Ring point-to-point communication and 10 KiB of data. 310
7.19. SendToRoot point-to-point communication and 10 KiB of data. 311
7.20. SendrecvRoot point-to-point communication and 10 KiB of data. 311
7.21.MPI_Bcast() and 10 KiB of data. 313
7.22.MPI_Gather() and 10 KiB of data. 313
7.23.MPI_Allgather() and 10 KiB of data. 314
7.24.MPI_Scatter() and 10 KiB of data. 314
7.25.MPI_Reduce() and 10 KiB of data. 315
7.26.MPI_Allreduce() and 10 KiB of data. 315
7.27. Execution time for local collective communication of 10 KiB of data – without simulating

computation. 316
7.28. Simulated activity of the MPI_Bcast() and 10 KiB of data for local communication. The

screenshots of Sunshot show the activity of the client processes and all modeled hardware
components over time; colors encode the type of the activity – for messages one color is
assigned to each pair of sender and receiver. Empty space on a client represents computation.318

7.29. Paired communication and 1 MiB of data. 319
7.30. Paired communication and 100 MiB of data. 320
7.31. Ring communication and 1 MiB of data. 320
7.32. Ring communication and 100 MiB of data. 321
7.33. SendToRoot communication and 1 MiB of data. 321
7.34. SendToRoot communication and 100 MiB of data. 322
7.35. SendrecvRoot communication and 1 MiB of data. 322
7.36. SendrecvRoot communication and 100 MiB of data. 323
7.37.MPI_Bcast() and 1 MiB of data. 325
7.38.MPI_Bcast() and 10 MiB of data. 326
7.39.MPI_Gather() and 1 MiB of data. 326
7.40.MPI_Gather() and 10 MiB of data. 327
7.41.MPI_Allgather() and 1 MiB of data. 327
7.42.MPI_Allgather() and 10 MiB of data. 328
7.43.MPI_Scatter() and 1 MiB of data. 328
7.44.MPI_Scatter() and 10 MiB of data. 329
7.45.MPI_Reduce() and 1 MiB of data. 329
7.46.MPI_Reduce() and 10 MiB of data. 330
7.47.MPI_Allreduce() and 1 MiB of data. 330
7.48.MPI_Allreduce() and 10 MiB of data. 331
7.49. Performance of accessing data on tmpfs by using 100 MiB records – configuration with a

variable number of disjoint client and server nodes. 336
7.50. Performance of accessing data on tmpfs by using 100 KiB records. 337
7.51. Client-sided trace for three clients accessing data on two servers – data is stored on tmpfs.

The barrier between runs is colored in orange and the MPI_File_set_view() is colored in
blue. 340

415

List of Figures 416

7.51. Client-sided trace for three clients accessing data on two servers – data is stored on tmpfs.
The barrier between runs is colored in orange and the MPI_File_set_view() is colored in
blue. 341

7.52. Simulation of the processing for three clients accessing data on three servers – data is stored
on tmpfs. 342

7.52. Simulation of the processing for three clients accessing data on three servers – data is stored
on tmpfs. 343

7.52. Simulation of the processing for three clients accessing data on three servers – data is stored
on tmpfs. 344

7.53. Performance of accessing data by using 100 MiB records. The amount of available memory
for disk I/O is suffixed in the legend. 346

7.54. Performance of accessing data by using 100 KiB records. The amount of available memory
for disk I/O is suffixed in the legend. 347

7.55. Simulation of reading data from the hard disk drive using a record size of 100 KiB – excerpt. 349
7.56. Performance of accessing 100 MiB records with collective non-contiguous I/O – configura-

tion with 5 nodes hosting a variable number of processes and 5 servers with 1000 MiB cache. 351
7.57. Simulation of 30 clients reading data from the hard disk drive using a record size of 100 MiB

stored on five servers. Green rectangles on the client side indicate I/O requests, the other
(purple) operations are caused by the data exchange. 352

7.57. Simulation of 30 clients reading data from the hard disk drive using a record size of 100 MiB
stored on five servers. Green rectangles on the client side indicate I/O requests, the other
(purple) operations are caused by the data exchange. 353

7.58. Overlapping 8 clients and servers transferring 1 GiB of data per process, 2 GiB main memory
per node. 354

7.59. Simulation of 15 clients and 5 servers, each client writes 10 GiB of data. 357
7.59. Simulation of 15 clients and 5 servers, each client writes 10 GiB of data. 358
7.60. Visualization of measured collective non-contiguous I/O for two clients/servers and tmpfs. 359
7.60. Visualization of simulated collective non-contiguous I/O for two clients/servers using tmpfs. 360
7.61. Times of the network-bound experiment XS-0S – a variable number of processes each hosted

on its own node. 367
7.62. Visualization of a PDE run for experiment XS-0S – 7 clients. MPI_Sendrecv() calls are

colored in red for the observation and green for the simulation results. 369
7.63. Visualization of a PDE run for experiment XS-0S – 5 clients. 370
7.64. Analyzing the critical path and caused waiting times for the experiment XS-0S with seven

clients. The original traces and simulation results are provided in Figure 7.62. 371
7.65. Analyzing the critical path for the experiment XS-0S with seven clients by zooming into the

traces. The original traces and simulation results are provided in Figure 7.62. 372
7.66. Times of the computation-bound experiment XL-0S-5CN – a variable number of processes

hosted on 5 nodes. 373
7.67. Times of computation-bound experiment XL-0S – a variable number of processes each

hosted on its own node. 374
7.68. Visualization of a PDE run for experiment XL-0S(-5CN) – profile for 5 client processes. . . . 375
7.69. Visualization of a PDE run for experiment XL-0S(-5CN) – timeline for 5 client processes. . . 376
7.70. Times of the experiment S-2S-tmpfs – a variable number of processes each hosted on its own

node, two dedicated servers store data on tmpfs . 377
7.71. Visualization of a PDE run for experiment S-2S-tmpfs – three clients. 378
7.72. Visualization of a PDE run for one client and one server. 380
7.73. Times of the I/O-bound experiment XL-5C – a variable number of servers storing data for 5

clients hosted on 5 nodes. 382
7.74. Times of the I/O-bound experiment XL-O – a variable number of clients and servers. 382
7.75. Times of the I/O-bound experiment M-O-s1000M – a variable number of client and servers,

approximately 1 GiB of cache is available for all servers. 382
7.76. Visualization of a PDE run for experiment XL-O – five clients. 383

416

417 List of Figures

7.77. Simulated client and server activity for experiment XL-O with flush-on-close semantics –
five clients. 385

7.77. Simulated client and server activity for experiment XL-O with flush-on-close semantics –
five clients. 386

7.78. Times of experiment S-2S-1CN-150M – a variable number of processes hosted on one node. 387
7.79. Processing scheme of the BinaryTree implementation for MPI_Bcast(). The root node of

the graph is the source of the data to broadcast. In each step, a process which has the data,
forwards it to another process (an arrow indicates data transfer between source and target).
Consequently, the number of processes which have received the data doubles in each step. . 390

7.80. Performance comparison of several MPI_Bcast() algorithms to transfer 10 KiB of data. . . . 391
7.81. Performance comparison of several MPI_Bcast() algorithms to transfer 100 MiB of data. . . 391

A.1. Statistics measured by the NTP clients – time offsets between client and server is provided
showing synchronization accuracy between front-end and the servers of PTB, and between
nodes and the cluster front-end. 424

A.2. MPIMAP main window; the datatype is visualized centered on the top, the interface below
allows interactive specification of new datataypes. Colors encode the underlying primitive
datatype as listed in the legend on the right. 425

417

List of Tables

3.1. Memory throughput in MiB/s achieved with several tools. 131
3.2. Average memory throughput in MiB/s to access 100 GiB of data with memory-bandwidth. . . 132
3.3. Average memory throughput in MiB/s of 15 runs to access 100 GiB of data with memory-

bandwidth. 136
3.4. Throughput to transfer 1,000 MiB of data measured with mpi-communication-test. 147
3.5. Measured network latency with ping. 147
3.6. Round-trip time statistics measured in three independent runs of mpi-network-behavior. . 148
3.7. I/O throughput in MiB/s measured with IOzone for a variable record sizes with 12 GByte

(or 1 GiB) of available main memory. 167
3.8. I/O throughput in MiB/s measured with IOzone for a variable record sizes in the experiment

with 12 GByte available main memory. The file system is re-mounted by IOZone between
measuring two access patterns. 168

3.9. Average throughput in MiB/s of direct I/O by using O_DIRECT (and O_SYNC) to access
1 GiB of data – measured with posix-io-timing for a variable access granularity. 170

3.10. I/O throughput in MiB/s for individual operations as measured by posix-io-timing. The
average value is the throughput overead the whole run. 175

7.1. Time overhead of HDTrace and VampirTrace. 277
7.2. Size of unpacked and packed trace files. 277
7.3. Event processing speed of PIOsimHD. 279
7.4. Parameters for the hardware components in the system model of our Westmere cluster. . . . 288
7.5. Characteristics for the analytical network model. 289
7.6. Relative model accuracy of the analytical network model compared to the minimum mea-

sured duration of the first run with MPICH2. The values marked with * are estimated by
applying the higher bi-directional throughput characteristics 290

7.7. I/O throughput computed with the analytical model (in MiB/s). 295
7.8. Average random I/O throughput measured by IOZone (with 1 GiB of available memory; in

MiB/s). 295
7.9. Average throughput in MiB/s of direct I/O by using O_DIRECT (and O_SYNC) to access

1 GiB of data – measured using posix-io-timing with a variable access granularity. 295
7.10. Experiments conducted with the Jacobi PDE solver – configurations and runtime parame-

ters. A variable number of clients and servers is indicated with N, i.e., these experiments are
run for different N. The name of the experiment encodes the size of the matrix (as defined
by the interlines), whether the configuration is overlapping (O) or disjoint (D) and further
configuration options of interest. 365

418

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers under-
lined refer to the definition; numbers in roman refer to the pages where the entry is used.

A

access pattern 37
activity model 89
aggregation 39
algorithm . 33
analytical model 86
animation . 91
average access time 32

B

bandwidth . 29
benchmark . 62
BigEmulator 102
BigSimulator 102
bisection bandwidth 5, 30
block storage 19
block-level . 19
block-level interface 6, 9, 104

C

cache . 31
call graph . 65
canonical class name 261
CASE . 58
CFQ . 96
Charm++ 94, 102
client . 19, 42
cluster . 4
co-design 4, 59
collective I/O 47
command 188, 235
communication

collective 35
early starter 35
late starter 35, 269, 409

point-to-point 35
late receiver 35
late sender 11, 35

communication middleware 8
communicator 42
compiler . 34
complexity theory 57
consistency semantics 41
core . 2, 4, 31
critical path 363, 366
CSIM 20 . 91
CTF . 68, 81
cycles per instruction 67

D

datafile . 24

DESMO-J . 96
discrete-event simulation 85
DMA . 35
dyninst . 71

E

embarrassingly parallel 36
entity . 85
Epoch . 220
execution-driven simulation 89
external activity 28

F

file-level . 19
flat profile . 65
functional units 4, 31, 57

G

gdb . 68
gprof . 65

H

hardware counters 63
HDF5 . 8
heat map . 74
hierarchical namespace 6, 19
high availability 39
high-level I/O libraries 8
high-performance computing 1
HPC see High-

performance computing
Hypertool . 60

I

I/O aggregator see I/O forwarder, 56
I/O forwarder 39, 240
I/O granularity 243
independent I/O. 47
instrumentation 64
internal information 252

J

JitSim . 109
Jumpshot 71, 77

K

kernel . 62, 123

L

latency . 29
layered queueing network 59
libraries . 28
Likwid 67, 127
LINPACK . 3
ListIO 26, 239, 242 f., 246
locking . 41
LQNS . 95
LTTng . 68

M

MDA . 58
memory architecture 4

distributed 4
non-uniform access 5
shared . 4
uniform access 5

Message Passing Interface . . . see MPI
metadata 7, 19
metric . 63
model time 86
modeling . 85
monitor . 64
MPE . 77
MPI . 41
MPI info object 53
MTU 101, 290, 300

N

N-MAP 60, 109
namespace . 19
NAS . . see network attached storage
NCQ 33, 174, 224
NetCDF . 8
network attached storage 21
network granularity . . 228, 240, 299
network protocol 30
network topology 5, 29

2D-torus . 5
non-contiguous I/O 26,

37, 39, 42, 47 f., 52, 55, 208
NUMA . 5

O

object-based storage 21
OMNet++ . 94
OPARI . 71
operating system 8, 28
OProfile . 66

419

Index 420

OTF . 71, 81, 82
overlapping of computation 34

P

PAPI . 67, 71
parallel file system 6, 18
ParaProf . 72
partdiff-par 58
percentile . 125
PerfExplorer 72
performance analysis 57, 64

offline . 64
online . 64
post-mortem 64

performance engineering 58
performance prophet 110
PIOviz . 79
PMPI 71, 76 f., 104
POSE . 94
predictability 38
process mapping 36, 51
profile . 63
programming language 34
PROTEUS 109
PS . 109
PVFS . 23

BMI layer 24
client-server protocol 25, 239
datafile . 24
distribution function 25
Flow 25, 246
Job layer 24

System interface 24
Trove layer 24

Q

quartile . 125
queueing network model 59

R

RAID . 33, 39
RDMA 33, 36, 52
read-ahead . 38
remote direct memory access 33
replication . 38
RPM . 32
run-time system 28

S

SAN see storage area network
Scalasca 76, 81
scale out . 20
scale up . 20
scheduler 26, 33, 39
seek time . 32
simulation . 87
SLOG2 . 77
standard error of the mean 124
star

network topology 30
statistics . 63
storage area network 21

stream . 231
stripe . 25
switching

cut-through 30
store-and-forward 30

system model 89

T

TAU . 71, 81
throughput 29
tightly coupled applications 36
Top500 . 1
trace . 63
trace-driven simulation 89
tuning . 57

U

UML . 58

V

Vampir . 71, 72
VampirTrace 71, 72
von Neumann architecture 4

W

write-behind 38

Z

zero-copy . 36

420

Appendix

A.1. OTF API

An excerpt of the low-level OTF API is printed as a reference. The quoted API description is taken from
OTF-1.7.0rc1 (2010-03-30). Repeated descriptions of parameters are removed from the API definition. All
functions return an integer which is 1 on a successful invocation and 0 on error.

Listing A.1: OTF Writer Interface – quoted from the documentation shipped with OTF version 1.7.0rc1.
Repeated descriptions of a parameter have been removed in this description.

int OTF_Writer_writeDefinitionComment (OTF_Writer * writer, uint32_t stream, const char * comment)

Write a comment record.

Parameters:

writer Initialized OTF_Writer instance.

stream Target stream identifier with 0 < stream <= number of streams as defined in OTF_Writer_open().

comment Arbitrary comment string.

int OTF_Writer_writeDefProcess(OTF_Writer * writer, uint32_tstream, uint32_t process, const char *
→name, uint32_t parent)

Write a process definition record.

Parameters:

process Arbitrary but unique process identifier > 0.

name Name of the process e.g., "Process�X".
parent Previously declared parent process identifier or 0 if process has no parent.

int OTF_Writer_writeDefProcessGroup(OTF_Writer * writer, uint32_t stream, uint32_t procGroup, const

→char * name, uint32_t numberOfProcs, const uint32_t *procs)

Write a process group definition record. OTF supports groups of processes. Their main objective is to

→classify processes depending on arbitrary characteristics. Processes can reside in multiple groups.

→This record type is optional.

Parameters:

procGroup Arbitrary but unique process group identifier > 0.

name Name of the process group e.g., "Well�Balanced".
numberOfProcs The number of processes in the process group.

procs Vector of process identifiers or previously defined process group identifiers as

→defined with OTF_Writer_writeDefProcess() resp. OTF_Writer_writeDefProcessGroup.

int OTF_Writer_writeDefFunction (OTF_Writer * writer, uint32_t stream, uint32_t func, const char *
→name, uint32_t funcGroup, uint32_t source)

Write a function definition record. Defines a function of the given name. Functions can optionally

→belong to a certain function group to be defined with the OTF_Writer_writeDefFunctionGroup() call. A

→source code reference can be added to the definition as well.

Parameters:

func Arbitrary but unique function identifier > 0.

name Name of the function e.g., "DoSomething".

funcGroup A function group identifier preliminary defined with

→OTF_Writer_writeDefFunctionGroup() or 0 for no function group assignment.

source Reference to the function’s source code location preliminary defined with

→OTF_Writer_writeDefScl() or 0 for no source code location assignment.

int OTF_Writer_writeDefCollectiveOperation(OTF_Writer * writer, uint32_t stream, uint32_t collOp, const

→char * name, uint32_t type)

Write a collective operation definition record.

Parameters:

collOp An arbitrary but unique collective op. identifier > 0.

name Name of the collective operation e.g., "MPI_Bcast".

type One of the five supported collective classes: OTF_COLLECTIVE_TYPE_UNKNOWN (default),

→OTF_COLLECTIVE_TYPE_BARRIER , OTF_COLLECTIVE_TYPE_ONE2ALL , OTF_COLLECTIVE_TYPE_ALL2ONE ,

→OTF_COLLECTIVE_TYPE_ALL2ALL.

int OTF_Writer_writeBeginCollectiveOperation(OTF_Writer * writer, uint64_t time, uint32_t process,

→uint32_t collOp, uint64_t matchingId, uint32_t procGroup, uint32_t rootProc, uint64_t sent, uint64_t

→received, uint32_t scltoken)

Write a begin collective operation member record.

Parameters:

writer Initialized OTF_Writer instance.

time Time when collective operation was entered by member.

421

APPENDIX 422

process Process identifier i.e., collective member.

collOp Collective identifier to be defined with OTF_Writer_writeDefCollectiveOperation().

matchingId Identifier for finding the associated end collective event record. It must be unique

→within this procGroup.

procGroup Group of processes participating in this collective.

rootProc Root process if != 0.

sent Data volume sent by member or 0.

received Data volume received by member or 0.

scltoken Explicit source code location or 0.

int OTF_Writer_writeEnter(OTF_Writer * writer, uint64_t time, uint32_t function, uint32_t process,

→uint32_t source)

Write a function entry record.

Parameters:

time The time when the function entry took place.

function Function to be entered as defined with OTF_Writer_defFunction.

process Process where action took place.

sourceOptional reference to source code.

int OTF_Writer_writeRecvMsg (OTF_Writer * writer, uint64_t time, uint32_t receiver, uint32_t sender,

→uint32_t procGroup, uint32_t tag, uint32_t length, uint32_t source)

Write a message retrieval record.

Parameters:

writer Initialized OTF_Writer instance.

time The time when the message was received.

receiver Identifier of receiving process.

sender Identifier of sending process.

procGroup Optional process-group sender and receiver belong to, ’0’ for no group.

tag Optional message type information.

length Optional message length information.

source Optional reference to source code.

int OTF_Writer_writeCounter(OTF_Writer * writer, uint64_t time, uint32_t process, uint32_t counter,

→uint64_t value)

Write a counter measurement record.

Parameters:

writer Initialized OTF_Writer instance.

time Time when counter was measured.

process Process where counter measurment took place.

counter Counter which was measured.

value Counter value.

int OTF_Writer_writeBeginFileOperation(OTF_Writer * writer, uint64_t time, uint32_t process, uint64_t

→matchingId, uint32_t scltoken)

Write a begin file operation record

Parameters:

time Start time of file operation.

process Process identifier > 0.

matchingId Operation identifier, used for finding the associated end file operation event record.

scltoken Optional reference to source code.

int OTF_Writer_writeEndFileOperation (OTF_Writer * writer, uint64_t time, uint32_t process, uint32_t

→fileid, uint64_t matchingId, uint64_t handleId, uint32_t operation, uint64_t bytes, uint32_t

→scltoken)
Write an end file operation record

Parameters:

time End time of file operation.

process Process identifier > 0.

fileid File identifier > 0.

matchingId Operation identifier, must match a previous start file operation event record.

handleId Unique file open identifier.

operation Type of file operation

int OTF_Writer_writeDefKeyValue(OTF_Writer * writer,

uint32_t stream, uint32_t key, OTF_Type type, const char * name, const char * description)

Write a key value definition record

Parameters:

key Arbitrary, unique identifier for the key value pair.

type Type of the key, e.g., Int32.

name Name of the key value pair.

description Description of the key value pair.

422

423 APPENDIX

A.2. NTP Accuracy

A NTP client requests the current time from a server and updates (synchronizes) its clock with the response
from this reference clock. However, due to communication overhead the received time information is
not accurate. NTP provides an algorithm to predict the remote clock well enough for most purposes. A
simplified version of the algorithm looks like this: A single request is sent to a server which responds with
its current time. The actual time of the client is adjusted to the server’s time plus the latency until the
message is received on the client-side. Round-trip-time can be determined by the client and leads to a
trivial estimation for latency. Thus, the client determines and subtracts this estimated latency from the
time sent by the server.

The author excepts that accuracy of time synchronization is at least in the order of the average round-trip
time1. The reason is that if a client measures the round-trip-time of a request, the bias to the server clock
will be in the same order. By keeping a history of previous probes a client can discard responses that
needed too much time. Since the average round-trip-time is about 0.08 ms on our cluster, it is expected
that observed synchronization accuracy is at least in the order of 0.04 ms.

On the client-side, kernel support is required supporting accurate modification of the clock and reducing
OS jitter. There are kernel modules available, however, these are not widely deployed and not installed on
our cluster.

While this thesis is conducted the front node of our cluster synchronized time with the servers of the
Physikalisch-Technische Bundesanstalt (PTB)2. The nodes synchronize their time only with the front node,
thus the front node is the reference clock for all cluster nodes.

OpenNTPD version 4.2.4p8 is installed on all nodes. A daemon probes the synchronization partner in
intervals and adjusts speed of the kernel clock slightly to compensate the time discrepancy between client
and server. Since compensation is gradually applied by increasing or decreasing the frequency of the
kernel clock slightly, it takes some time until the clocks are synchronized. Upon reboot of a machine, time
is stored and read from the hardware clock. Therefore, after rebooting the clock must be re-synchronized
by NTP, to speed up the process, ntpdate is invoked after a successful restart3.

To validate the synchronization behavior, the NTP peer statistics of the nodes and the master have been
enabled and analyzed. For a period of 200 hours the peer statistics are collected and for each NTP client
the estimated time offset to its reference clock (either cluster front-end or the PTB servers) is plotted over
time4. Obtained statistics are visualized in Figure A.1a. The diagram must be assessed keeping in mind
that relative time offset between client and server of NTP is printed. As the nodes synchronize with the
front-end, all nodes should behave similarly and try to minimize the time offset to the cluster front-end.
It can be seen that in most cases the estimated discrepancy is in the order of the latency or at least the
round-trip-time. However, sometimes the drift changes and the time offset increases to an order of several
milliseconds which is unexpected.

The monitoring of time discrepancy of one node and the time offset from cluster to the PTB servers are
visualized in Figure A.1b. The client (west8) track the time discrepancy to the front-end. In most cases, the
offset of west8 steers in the opposite direction of the cluster front-end; thus, one hardware clock is faster

1The actual NTP algorithm is more sophisticated. For example, to improve the estimation, round-trip-time of multiple packets
can be measured. However, transfer time varies between subsequent executions – the average deviation of the latency is
called jitter. If the jitter is much lower than the round-trip-time, the estimated latency approximates the true latency very
well. Consequently, the deviation of network latency determines quality of time synchronization. By estimating the jitter, the
number of requests and synchronization frequency can be dynamically adapted by NTP. Taking these factors into account, the
time offset can typically be approximated much better than the latency.

2This has been done for testing the accuracy of the protocol. To reduce load of PTB, this should be avoided.
3ntpdate requests the time information by using NTP and sets the time.
4The synchronization frequency is managed by each NTP client independently, thus it fluctuates between the clients. The

peerstats file contains a timestamp (based on the local time) and time offset for each synchronization point. Between two
consecutive synchronization points, each NTP client adjusts the local clock steadily to compensate for the estimated offset.

423

APPENDIX 424

(a) All cluster nodes and the cluster front-end (b) Synchronization one node and cluster front-end

Figure A.1.: Statistics measured by the NTP clients – time offsets between client and server is provided
showing synchronization accuracy between front-end and the servers of PTB, and between
nodes and the cluster front-end.

than the other. However, sometimes the offset is much higher. Interestingly, the time offset of the front-
node to the PTB servers is comparable to the one measured on a compute node, although the front-node
synchronizes over the Internet. Theoretically, the cluster front-end could lose contact to the servers at PTB
or accuracy is expected to suffer due to jitter of the Internet connection.

To correlate network events, a time discrepancy in the order of the network latency is tolerable. However,
sometimes the time discrepancy is much higher. Currently, the reason is unknown. The author tried sev-
eral NTP options and different configurations, and an alternative NTP implementation, but the accuracy
did not improve further. Still, the achieved accuracy is enough for this project. Because, if the time offset
between independent devices is too large, then the XML header of the trace files can be manually ad-
justed. Further, Sunshot offers the capability to automatically adjust offset of individual timelines during
visualization.

A.3. MPIMAP

MPIMAP 5 is a tool which illustrates the creation of MPI datatypes. It focuses on interactive creation of
datatypes and their visualization, existing datatypes are not meant to be loaded by the tool, nor are trace
events visualized with it. MPIMAP is built with TCL/TK and uses MPI to create and decode datatypes.

Upon execution the program creates one window; a screenshot of MPIMAP is shown in Figure A.2. The
window is split into three columns: the buttons on the left permit some interaction with the datatypes, in
the center of the window the datatype is visualized in an unrolled fashion at the top, below new datatypes
can be created by providing all necessary parameters – new datatypes can refer to already created datatypes
and primitive datatypes. User defined datatypes are listed at the bottom, the rightmost column shows the
legend of the primitive datatypes and their size in memory.

The visualization engine for datatypes unrolls datatypes – there is no reference provided which indicates
the parent datatypes. In the example screenshot, a structure with 4 items is shown with the parame-
ters used for its creation. Several datatypes such as vector datatypes are completely unrolled. Multiple
datatypes can be visualized in the drawing area at the same time, this overlapping fosters intercompar-
ison. However, in general the unrolling of datatypes makes it harder for the user to grasp the relevant

5https://computation.llnl.gov/casc/mpimap/UserGuide.html

424

https://computation.llnl.gov/casc/mpimap/UserGuide.html

425 APPENDIX

Figure A.2.: MPIMAP main window; the datatype is visualized centered on the top, the interface below
allows interactive specification of new datataypes. Colors encode the underlying primitive
datatype as listed in the legend on the right.

information – especially for large datatypes. The way datatypes are presented to the user differs from the
hierarchical visualization within Sunshot. Furthermore, non-contiguous I/O accesses can be visualized
with HDTrace as well.

A.4. Limiting the Amount of Free Memory

The Linux kernel caches data extensively, therefore, writing data into the file system PVFS is cached as
well. Since a Westmere node has 12 GByte of main memory, I/O experiments which are designed to hit
the disk must access a lot of data, which is time-consuming. Therefore, a small tool has been developed
which checks and restricts available memory to a well defined value. The code of this mem-eater tool is
printed in Listing A.2. The amount of free memory which should remain is specified as a parameter to the
program. By reserving all memory below this limit, further I/O is restricted to the free memory. It also
forces the kernel to free page cache and buffer space beyond this limitation.

Listing A.2: Code of the mem-eater tool.
/**

* This tool limits the amount of free memory by allocating memory.

*/

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

/*

* Return the current amount of memory for a given type from /proc (e.g., size of the page cache).

* Memory statistics are read from /proc/meminfo, content of the file looks like:

* MemTotal: 3915436 kB

* MemFree: 1257648 kB

* Buffers: 237748 kB

425

APPENDIX 426

* Cached: 1246012 kB

*/

long getMemoryFor(char * what){

char buff[1024];

int fd = open("/proc/meminfo", O_RDONLY);

int ret = read(fd, buff, 1023);

close(fd);

buff[ret>1023 ? 1023: ret] = 0;

// find the particular memory type.

char * line = strstr(buff, what);

if (! line){

printf("Error�%s�not�found�in�%s�\n", what, buff);

exit(1);

}

// Parse the integer after the type.

line += strlen(what) + 1;

while(line[0] == ’�’){
line++;

}

int pos = 0;

while(line[pos] != ’�’){
pos++;

}

line[pos] = 0;

// Convert the string to integer.

return atoi(line);

}

/* Page cache and buffer cache can be considered as free memory. */

long getFreeRamKB(){

return getMemoryFor("\nMemFree:") +getMemoryFor("\nCached:") + getMemoryFor("\nBuffers:");

}

int main(int argc, char ** argv){

if(argc != 2){

printf("Syntax:�[AmountOfRFreeRAM�in�MByte]\n");
exit(1);

}

// Parse command line argument.

long long int maxRAMinKB = atoi(argv[1]) * 1024;

printf("This�app�uses�enough�RAM�until�at�most�%lld�MByte�are�free\n",(long long int) maxRAMinKB

→ / 1024);

long long int currentRAMinKB = getFreeRamKB();

printf ("starting�to�malloc�RAM�currently�\n�%lld�-�%lld\n", currentRAMinKB, maxRAMinKB);

// Reserve additional memory blocks in 500 KiB chunks until the amount of free memory matches.

while(currentRAMinKB > maxRAMinKB){

long long int delta = currentRAMinKB - maxRAMinKB;

long long int toMalloc = (delta < 500 ? delta : 500) * 1024;

char * allocP = malloc(toMalloc);

if(allocP == 0){

printf("could�not�allocate�more�RAM�-�retrying�-�free:%lld�\n", currentRAMinKB);

sleep(5);

}else{

memset(allocP, ’1’, toMalloc);

}

currentRAMinKB = getFreeRamKB();

}

printf ("Finished�now�\n�%lld�-�%lld\n", currentRAMinKB, maxRAMinKB);

while(1){

sleep(60*60);

}

}

426

427 APPENDIX

A.5. Memory Benchmark

The source code of the memory benchmark that is used in Chapter 3 is provided in Listing A.3.

Listing A.3: Code of the memory-bandwidth tool.
#define _GNU_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

/**

* The benchmark measures the time for accessing a given amount of data in an array.

* Several access patterns (kernels) are supported.

*/

void getTime(struct timespec * start){

clock_gettime(CLOCK_MONOTONIC, start);

}

/* Compute a time difference. */

double timeDiffInS(struct timespec *end, struct timespec * start){

long tmp = (end->tv_sec - start->tv_sec) * 1000 * 1000 * 1000+ (end->tv_nsec - start->tv_nsec);

return tmp * 0.001 * 0.001 * 0.001;

}

/* Output all values of the array. */

void printResults(long count, double * time, double size, char const * name){

size = size / 1000 / 1000;

printf("%s�%f�size�timing:", name, size);

printf("%.8f", time[0]);

for(long i=1; i < count; i++){

printf(",%.8f", time[i]);

}

printf("\n");

}

int main (int argc, char *argv[]){

long size = 1000000000;

long repeats = 100;

long numberOfTimingsPerIteration = 1000;

if (argc > 1){

size = atol(argv[1]);

}

if (argc > 2){

repeats = atol(argv[2]);

}

if (argc > 3){

numberOfTimingsPerIteration = atol(argv[3]);

}

printf("size:�%ld�repeats:%ld�numberOfTimingsPerIteration:%ld�\n", size, repeats,

→numberOfTimingsPerIteration);

long * buffer = malloc(size);

struct timespec startTime;

getTime(&startTime);

// memset aggregated throughput and initialization:

for(long r=0 ; r < repeats; r++){

memset(buffer, r, size);

}

struct timespec endTime;

getTime(&endTime);

double e = timeDiffInS(& endTime,& startTime);

printf("Aggregated�time:�size:�%ld�repeats:%ld�time:%fs�MB/s:%f\n", size, repeats, e, repeats * size /

→ 1024 / 1024 / e);

// An array for the timings.

427

APPENDIX 428

double * time = malloc(repeats * sizeof(double) * numberOfTimingsPerIteration);

long bytesPerTiming = (long) size / numberOfTimingsPerIteration;

long maxIterCountPerTiming = bytesPerTiming / sizeof(long);

// Write kernel:

for(long r=0 ; r < repeats; r++){

volatile register long value = 0;

for(int t = 0; t < numberOfTimingsPerIteration; t++){

long * tmp = & buffer[maxIterCountPerTiming * t];

getTime(&startTime);

for(long c = 0; c < maxIterCountPerTiming ; c++){

tmp[c] = value;

}

getTime(&endTime);

e = timeDiffInS(& endTime,& startTime);

time[r*numberOfTimingsPerIteration + t] = e;

}

}

printResults(repeats*numberOfTimingsPerIteration , time, bytesPerTiming, "Write�64�byte");

// Read kernel:

for(long r=0 ; r < repeats; r++){

volatile register long value = 0;

for(int t = 0; t < numberOfTimingsPerIteration; t++){

long * tmp = & buffer[maxIterCountPerTiming * t];

getTime(&startTime);

for(long c = 0; c < maxIterCountPerTiming ; c++){

value = tmp[c];

}

getTime(&endTime);

e = timeDiffInS(& endTime,& startTime);

time[r*numberOfTimingsPerIteration + t] = e;

}

}

printResults(repeats*numberOfTimingsPerIteration , time, bytesPerTiming, "Read�64�byte");

// RWW kernel:

for(long r=0 ; r < repeats; r++){

volatile register long value = 0;

for(int t = 0; t < numberOfTimingsPerIteration; t++){

long * tmp = & buffer[maxIterCountPerTiming * t];

getTime(&startTime);

for(long c = 0; c < maxIterCountPerTiming ; c++){

value = tmp[c];

}

for(long c = 0; c < maxIterCountPerTiming ; c++){

tmp[c] = value;

}

for(long c = 0; c < maxIterCountPerTiming ; c++){

tmp[c] = value;

}

getTime(& endTime);

e = timeDiffInS(& endTime,& startTime);

time[r*numberOfTimingsPerIteration + t] = e;

}

}

printResults(repeats*numberOfTimingsPerIteration , time, bytesPerTiming, "Read�Write�Write�64�byte");
return 0;

}

428

429 APPENDIX

A.6. MPI Configuration

This section gives more information about the configuration of the MPI implementations that have been
used in the experiments. For the instrumented MPICH2 version information is given in Listing A.4 and for
Open MPI in Listing A.5 – information has been gathered directly from the binary versions.

Listing A.4: Output of mpiexec -version.
HYDRA build details:

Version: 1.3.1

Release Date: Wed Nov 17 10:48:28 CST 2010

CC: gcc -I.../cur/src/mpl/include -I.../cur/src/mpl/include -I

→.../cur/src/openpa/src -I.../cur/src/openpa/src -I.../cur/src/mpid/ch3/include -I.../cur/src/mpid

→/ch3/include -I.../cur/src/mpid/common/datatype -I.../cur/src/mpid/common/datatype -I.../cur/src/

→mpid/common/locks -I.../cur/src/mpid/common/locks -I.../cur/src/mpid/ch3/channels/nemesis/include

→ -I.../cur/src/mpid/ch3/channels/nemesis/include -I.../cur/src/mpid/ch3/channels/nemesis/nemesis/

→include -I.../cur/src/mpid/ch3/channels/nemesis/nemesis/include -I.../cur/src/mpid/ch3/channels/

→nemesis/nemesis/utils/monitor -I.../cur/src/mpid/ch3/channels/nemesis/nemesis/utils/monitor -I

→.../cur/src/util/wrappers -I.../cur/src/util/wrappers -O2 -lrt -lpthread

CXX:

F77:

F90:

Configure options: ’--prefix=/opt/hdtrace/1.0/MPICH2-normal’ ’--without-mpe’ ’

→--disable-option-checking’ ’CC=gcc’ ’CFLAGS=�-O2’ ’LDFLAGS=�’ ’LIBS=-lrt�-lpthread�’ ’CPPFLAGS=�-
→I.../cur/src/mpl/include�-I.../cur/src/mpl/include�-I.../cur/src/openpa/src�-I.../cur/src/openpa/
→src�-I.../cur/src/mpid/ch3/include�-I.../cur/src/mpid/ch3/include�-I.../cur/src/mpid/common/
→datatype�-I.../cur/src/mpid/common/datatype�-I.../cur/src/mpid/common/locks�-I.../cur/src/mpid/
→common/locks�-I.../cur/src/mpid/ch3/channels/nemesis/include�-I.../cur/src/mpid/ch3/channels/
→nemesis/include�-I.../cur/src/mpid/ch3/channels/nemesis/nemesis/include�-I.../cur/src/mpid/ch3/
→channels/nemesis/nemesis/include�-I.../cur/src/mpid/ch3/channels/nemesis/nemesis/utils/monitor�-I
→.../cur/src/mpid/ch3/channels/nemesis/nemesis/utils/monitor�-I.../cur/src/util/wrappers�-I.../cur
→/src/util/wrappers’

Process Manager: pmi

Bootstrap servers available: ssh rsh fork slurm ll lsf sge persist

Binding libraries available: hwloc plpa

Resource management kernels available: none pbs

Checkpointing libraries available:

Demux engines available: poll select

Listing A.5: Output of ompi_info (excerpt).
Package: Open MPI root@cluster.wr.informatik.uni-hamburg.de Distribution

Open MPI: 1.5.3

Open MPI SVN revision: r24532

Open MPI release date: Mar 16, 2011

Open RTE: 1.5.3

Open RTE SVN revision: r24532

Open RTE release date: Mar 16, 2011

OPAL: 1.5.3

OPAL SVN revision: r24532

OPAL release date: Mar 16, 2011

Ident string: 1.5.3

Prefix: /opt/openmpi/1.5.3

Configured architecture: x86_64-unknown-linux-gnu

Configure host: cluster.wr.informatik.uni-hamburg.de

Configured by: root

Configured on: Wed May 11 10:13:20 CEST 2011

Configure host: cluster.wr.informatik.uni-hamburg.de

Built by: root

Built on: Mi 11. Mai 10:25:21 CEST 2011

Built host: cluster.wr.informatik.uni-hamburg.de

C bindings: yes

C++ bindings: yes

Fortran77 bindings: yes (all)

Fortran90 bindings: yes

Fortran90 bindings size: small

C compiler: gcc

C compiler absolute: /usr/bin/gcc

C compiler family name: GNU

C compiler version: 4.4.3

C++ compiler: g++

C++ compiler absolute: /usr/bin/g++

Fortran77 compiler: gfortran

429

APPENDIX 430

Fortran77 compiler abs: /usr/bin/gfortran

Fortran90 compiler: gfortran

Fortran90 compiler abs: /usr/bin/gfortran

C profiling: yes

C++ profiling: yes

Fortran77 profiling: yes

Fortran90 profiling: yes

C++ exceptions: no

Thread support: posix (mpi: no, progress: no)

Sparse Groups: no

Internal debug support: no

MPI interface warnings: no

MPI parameter check: runtime

Memory profiling support: no

Memory debugging support: no

libltdl support: yes

Heterogeneous support: no

mpirun default --prefix: no

MPI I/O support: yes

MPI_WTIME support: gettimeofday

Symbol vis. support: yes

MPI extensions: affinity example

FT Checkpoint support: no (checkpoint thread: no)

MPI_MAX_PROCESSOR_NAME: 256

MPI_MAX_ERROR_STRING: 256

MPI_MAX_OBJECT_NAME: 64

MPI_MAX_INFO_KEY: 36

MPI_MAX_INFO_VAL: 256

MPI_MAX_PORT_NAME: 1024

MPI_MAX_DATAREP_STRING: 128

A.7. Software Used to Write this Thesis

Several software tools have been used in order to write this thesis in LaTeX. Every artifact is created under
under Ubuntu. The KDE editor kile assisted me in writing the LaTeX. Several graphics are created with
OpenOffice (LibreOffice), a few diagrams are created with yEd6 and freemind7. Experimental results are
either plotted with gnuplot or with R8. Created screenshots have been edited with Gimp. A few cliparts
that are licensed under a public domain license have been taken from the Open Clipart Library9. Some
OpenOffice shapes are taken from http://www.lautman.net/mark/coo/index.html – these shapes are
covered by LGPLv3 license and designed by Mark Lautman.

Last Words of the Author

While I hoped to evaluate the simulator on larger systems and with more applications, running the pre-
sented experiments on our cluster consumed far more time than expected.

Since most literature has been accessed on-line, the verification of page numbers and book titles of cited
work is hard – often available BibTeX records from the publisher is inconsistent to data offered by other
official sources. I tried to verify this data carefully, however, sometimes the information offered by the
publisher must be trusted.

Writing down work done in the context of this project was the hardest part for me. Therefore, I appreciate
any critics from the reader – feel free to report potential mistakes to me.

6http://www.yworks.com/
7http://freemind.sourceforge.net/wiki/index.php/Main_Page
8http://http://www.r-project.org/
9http://www.openclipart.org/

430

http://www.lautman.net/mark/coo/index.html
http://www.yworks.com/
http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://http://www.r-project.org/
http://www.openclipart.org/

431 APPENDIX

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen
entnommen wurden, wurden als solche kenntlich gemacht.

Diese Versicherung bezieht sich auch auf alle in der Arbeit enthaltenen Grafiken,
Zeichnungen und andere bildliche Darstellungen.

Diese Doktorarbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt.

Ort, Datum Unterschrift

431

	Abstract
	Table of Contents
	1 Introduction
	1.1 High-Performance Computing
	1.1.1 Architecture of Supercomputers
	1.1.2 Software Layers
	1.1.3 Example Application Execution

	1.2 Motivation
	1.3 Goals of this Thesis
	1.4 Outline of the Thesis
	Bibliography

	2 Background and Related Work
	2.1 Parallel File Systems
	2.1.1 Capabilities of Parallel File Systems
	2.1.2 State of the Art
	2.1.3 The Parallel Virtual File System PVFS
	2.1.4 Client-Server Communication

	2.2 Performance of Parallel Applications
	2.2.1 Performance Relevant Hardware Components and Software Layers
	2.2.2 Hardware
	2.2.3 Computation Performance
	2.2.4 Communication Performance
	2.2.5 I/O Performance

	2.3 Message Passing Interface
	2.3.1 Matching Sends to Receives
	2.3.2 Exemplary Collective Operations and Semantics
	2.3.3 Excerpt of MPI-IO Functions and Semantics
	2.3.4 Optimization Potential Within MPI
	2.3.5 State of the Art

	2.4 Performance Analysis and Tuning
	2.4.1 Developing Applications for Performance
	2.4.2 Closed Loop of Performance Tuning
	2.4.3 Available Tools for Analysis of Sequential Programs
	2.4.4 Available Tools for Analysis of Parallel Programs
	2.4.5 Trace Formats

	2.5 Discrete-Event Simulation
	2.5.1 Modeling
	2.5.2 Simulation
	2.5.3 State of the Art

	2.6 Simulation of Computer and Cluster Systems
	2.7 Chapter Summary
	Bibliography

	3 Characterizing the Experimental System
	3.1 Measuring System Behavior
	3.1.1 Mathematical Background
	3.1.2 Measurement Methodology

	3.2 Overview of the Cluster
	3.3 Processor
	3.4 Main Memory
	3.4.1 Memory Behavior
	3.4.2 Throughput
	3.4.3 Analysis of Variability and Noise

	3.5 Inter-Process Communication
	3.5.1 Description of mpi-network-behavior
	3.5.2 Throughput
	3.5.3 Latency
	3.5.4 Performance
	3.5.5 Variability

	3.6 I/O Subsystem
	3.6.1 Theoretic Considerations
	3.6.2 Average Performance
	3.6.3 Timing Uncached Data Access
	3.6.4 Timing Accesses Bypassing the Linux Cache
	3.6.5 Timing Cached Operations

	3.7 Chapter Summary
	Bibliography

	4 HDTrace Environment
	4.1 Component Overview
	4.2 HDTrace Format
	4.2.1 Design Criteria
	4.2.2 On-Disk Format

	4.3 MPI-Wrapper
	4.3.1 Tracing Workflow

	4.4 Sunshot
	4.4.1 Overview
	4.4.2 Analyzing Statistics
	4.4.3 Highlighting Relevant Information
	4.4.4 Visualizing of (I/O) Datatypes
	4.4.5 Analyzing MPI Internals
	4.4.6 Analyzing MPI and PVFS Interplay

	4.5 Research Activities Associated with the HDTrace Environment
	4.6 Chapter Summary
	Bibliography

	5 PIOsimHD – The MPI-IO Simulator
	5.1 Modeling Behavior on Application and System Level
	5.2 Hardware Model
	5.2.1 Node and Hosted Processes
	5.2.2 Block Device
	5.2.3 Network

	5.3 Transport Layer Communication Model
	5.3.1 Packet Routing
	5.3.2 Congestion and Bottlenecks
	5.3.3 Flow Model
	5.3.4 Illustration of Data Flow

	5.4 Software Model
	5.4.1 Execution of Parallel Applications
	5.4.2 Inter-process Communication
	5.4.3 Parallel I/O
	5.4.4 Interaction of Server Cache and Block Device
	5.4.5 Implemented Cache Layers

	5.5 Simulation Workflow
	5.5.1 Model Creation
	5.5.2 Executing PIOsimHD
	5.5.3 Interpretation of Simulation Results

	5.6 Chapter Summary
	Bibliography

	6 Simulator Implementation
	6.1 Model Classes
	6.2 Implementation of a Component
	6.3 Dynamic Selection of Implementations
	6.3.1 Adjusting Model Implementations
	6.3.2 Changing Command Implementations
	6.3.3 Mapping Trace Entries to Command Models

	6.4 Defining an Application and System Model in Java
	6.5 Implementation and Execution of Commands
	6.6 Chapter Summary

	7 Evaluation
	7.1 Overhead of HDTrace
	7.2 Performance of PIOsimHD
	7.2.1 Event processing speed
	7.2.2 Scalability
	7.2.3 Alternative NIC models
	7.2.4 Extrapolation of performance
	7.2.5 Summary and Conclusions

	7.3 Parameterization
	7.3.1 Network Topology
	7.3.2 Network Edges and Nodes
	7.3.3 Compute Performance
	7.3.4 Memory
	7.3.5 Hard Disk Drive
	7.3.6 Overview of the Parameters for the Experimental Cluster Model
	7.3.7 Summary and Conclusions

	7.4 Qualification of the Domain Model
	7.4.1 Network Behavior
	7.4.2 Hard Disk Drive
	7.4.3 Summary and Conclusions

	7.5 Verification of Network Behavior and Hard Disk Model
	7.5.1 Network Behavior
	7.5.2 I/O Subsystem
	7.5.3 Summary and Conclusions

	7.6 Evaluation of the Network Model with Complex Communication Patterns
	7.6.1 The mpi-bench Benchmark
	7.6.2 Methodology
	7.6.3 Assessing MPI_Barrier() and computation time
	7.6.4 Point-to-point Communication of 10KiB of Data
	7.6.5 Collective Communication of 10KiB of Data
	7.6.6 Point-to-point Communication of Large Messages
	7.6.7 Collective Communication of Large Messages
	7.6.8 Summary and Conclusions

	7.7 Evaluation of Parallel I/O
	7.7.1 Methodology
	7.7.2 Accessing Data on tmpfs
	7.7.3 Cached Data
	7.7.4 Hosting Multiple Processes per Node
	7.7.5 Overlapping Client and Servers
	7.7.6 Simulating Server Behavior
	7.7.7 Summary and Conclusions

	7.8 Verification of the Implemented Collective Communication
	7.9 Simulating Behavior of Scientific Applications
	7.9.1 The PDE Solver partdiff-par
	7.9.2 Methodology
	7.9.3 Network-Bound Workload
	7.9.4 Critical Path Analysis
	7.9.5 Computation-bound Workload
	7.9.6 In-memory I/O
	7.9.7 I/O-Bound Workload
	7.9.8 Mixed and Synchronization-bound Workload
	7.9.9 Summary and Conclusions

	7.10 Alternative MPI_Bcast() Implementations
	7.11 Chapter Summary
	Bibliography

	8 Summary & Conclusions
	8.1 Summary
	8.2 Executive Summary
	8.2.1 Background and Related Work
	8.2.2 Characterizing the Experimental System
	8.2.3 PIOsimHD – the MPI-IO Simulator
	8.2.4 Simulator Implementation
	8.2.5 Evaluation

	9 Future Works
	9.1 Conceivable MPI(-IO) Optimizations

	List of Figures
	List of Tables
	Index
	A Appendix
	A.1 OTF API
	A.2 NTP Accuracy
	A.3 MPIMAP
	A.4 Limiting the Amount of Free Memory
	A.5 Memory Benchmark
	A.6 MPI Configuration
	A.7 Software Used to Write this Thesis

