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1.1 Motivation

THE EXPECTED RETURN AND RISK of an investment is considered to be a key factor

of the decision-making process in investment practice. Risk-adjusted performance

measures such as the Sharpe ratio (Sharpe (1966)), the Omega measure (Shadwick

and Keating (2002)), and the Sortino ratio (Sortino and Price (1994)) help to derive

reasonable investment decisions by setting both factors in an appropriate relation to

each other. The major objective of any institutional investor is to optimize the risk-

adjusted performance of the invested capital within the given regulatory framework.

Once the capital has been delegated to a portfolio manager, it can be managed either

actively or passively. While Hendricks et al. (1993), Wermers (2000), Avramov and

Wermers (2006), Kosowski et al. (2006), Cremers and Petajisto (2009), and Fama and

French (2010) all document that some active managers are in fact able to outperform

their benchmark on a regular basis, the empirical analyses of Carhart (1997), French

(2008), Barras et al. (2010), and Busse et al. (2010) instead provide evidence that

actively managed funds produce alphas which are on average either close to zero or

even negative. Based on the market’s equilibrium, Sharpe (1991) supports this empirical

outcome by pointing out that – before costs – actively and passively managed funds

must exhibit the same return on average. In a nutshell, the market cannot outperform

itself. This theoretical argument further implies that, on average, passively managed

funds must earn higher net returns, which can be ascribed to the higher compensation

fee of active management. Although this reasoning does not contradict the empirical

findings in favor of active management, it clearly states that active managers can only

win at the expense of other active managers. Thus, unless the capital to be invested

cannot be allocated to the best actively managed funds, it seems well-grounded to

adopt a cost-efficient, rule-based investment strategy that best reflects an investor’s risk

and return preference as well as his regulatory environment.

This doctoral thesis analyzes rebalancing as well as portfolio insurance strategies

as cost-efficient, rule-based investment strategies by reporting statistical significance.

Moreover, as risk constitutes an integral factor of the investment decision making-

process, the time-varying risk of the shipping market is investigated by way of example

as it represents one of the riskiest industries worldwide.

1.2 Value Added of Rebalancing

The first article “Testing Rebalancing Strategies for Stock-Bond Portfolios: Where Is

the Value Added of Rebalancing?” focuses on the question whether rebalancing is

able to generate a value added for institutional investors. Although this issue is of
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considerable importance to investment practice, it cannot be answered without further

ado. On the one hand, a regular reallocation to the predefined target weights seems

to be reasonable in order to satisfy the institutional investor’s initially evaluated risk

and return preference. On the other hand, it must not be ignored that all rebalancing

strategies require the selling of a fraction of the better-performing assets and investing

the proceeds in the less-performing assets. Thus, rebalancing constitutes a contrarian

investment strategy.

Starting point is a two-asset class portfolio with an initial asset allocation of 60%

stocks and 40% government bonds. Representing one of the world’s largest institu-

tional investors by the end of 2011, the Norway’s Government Pension Fund Global

(GPFG) can be cited as a prominent example of having pursued rebalancing with a

60/40 asset allocation in the past (Chambers et al. (2012)). Ranging from January

1980 to December 2011, the sample period covers 30 years with 360 monthly return

observations. In contrast to all other rebalancing studies, this article does not only focus

on institutional investors of the United States, but also on those of the United Kingdom

and of Germany in order to examine whether country-specific characteristics could

have an impact on the performance of rebalancing. Moreover, the analysis comprises

investment horizons of 5, 7, and 10 years, thereby quoting realistic transaction costs of

15 bps per round-trip.

Overall, ten rebalancing strategies are under investigation which can be categorized

in four distinctive rebalancing classes: (i) buy-and-hold, (ii) periodic rebalancing, (iii)

threshold rebalancing, and (iv) range rebalancing. Once the capital is invested, a

buy-and-hold investor holds all positions until divestment. Regardless of any market

movements, no transactions take place during the investment period. In contrast,

periodic rebalancing is characterized by a reallocation to the original target weights

at the end of each predetermined period. In this study, the rebalancing occurs on

either a yearly, a quarterly, or on a monthly basis. In addition, the construction of a

no-trade interval around the target weights helps to reduce portfolio turnover and save

transaction costs as an immediate consequence. While threshold rebalancing requires

a reallocation to the target weights if the stocks’ portfolio weight exceeds the no-trade

region at the end of the period, the portfolio manager has to rebalance the assets back

to the nearest edge of the no-trade region in case of range rebalancing. In line with the

GPFG, a symmetric no-trade region of ±3% is implemented around the target weights.

The methodological approach builds on the stationary bootstrap of Politis and Ro-

mano (1994), which is applicable to weakly dependent, stationary data. This history-

based simulation set-up helps to model realistic market conditions which are necessary

in order to derive reasonable recommendations to investment practice. Most important,

by drawing blocks of different lengths with replacement, time series characteristics

such as short-term momentum, fat tails, and left-skewed return distributions can be
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preserved to the greatest possible extent. For each simulated return path, the per-

formance measure of interest is calculated. The construction of the corresponding

confidence intervals is based on Efron and Tibshirani (1998).

The analysis starts by comparing the returns of rebalancing with those of a buy-and-

hold strategy and proceeds with analyzing the risk of these strategies. Taking both

the return and the corresponding risk of each strategy into account, the risk-adjusted

performance is evaluated with the help of the Sharpe ratio (Sharpe (1966)), the Omega

measure (Shadwick and Keating (2002)), and the Sortino ratio (Sortino and Price (1994))

in a final step.

Overall, this study makes two important contributions to the academic literature.

The main contribution refers to the history-based simulation set-up which allows a

statistical comparison between buy-and-hold and rebalancing by reporting statisti-

cal significance levels. Secondly, while prior literature lacks a focus on institutional

investors outside the United States, this article also sheds light on the issue whether

country-specific characteristics affect the performance of rebalancing by extending the

analysis to the financial markets of the United Kingdom and of Germany, respectively.

This study provides strong evidence that rebalancing outperforms buy-and-hold on

a risk-adjusted basis. Without any exception, this finding is valid at the 1% level for all

three countries under investigation (United States, United Kingdom, and Germany), all

three risk-adjusted performance measures (Sharpe ratio, Sortino ratio, and Omega mea-

sure), all investment horizons (5, 7, and 10 years), and all rebalancing strategies under

investigation (periodic, threshold, and range rebalancing with yearly, quarterly, and

monthly trading frequencies). Moreover, while no statistical differences in returns can

be detected between rebalancing and buy-and-hold, this outperformance is attributable

to a reduction of portfolio risk as a consequence of the regular reallocation to the

predefined target weights. In conclusion, this paper strongly supports the hypothesis

that it is a risk management argument which justifies the widespread use of rebalancing

in investment practice.

1.3 Optimal Rebalancing

Once rebalancing has been derived from the investor’s risk and return preferences as

well as his regulatory environment as an appropriate investment strategy, the resulting

question of interest is which particular rebalancing strategy should be adopted. The

article “Testing Rebalancing Strategies for Stock-Bond Portfolios: What Is the Optimal

Rebalancing Strategy?” sheds light on this issue.

For example, with over 550 billion assets under management (AuM) by the end of

December 2011 and over 19 billion AuM by the end of June 2012, respectively, both
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the GPFG and the Yale Endowment conduct rebalancing as a cost-efficient, rule-based

investment strategy (Norwegian Ministry of Finance (2012), The Yale Endowment

(2012)). With regard to these portfolio volumes, even marginal differences in risk-

adjusted portfolio performance could be crucial, thereby illustrating its importance to

investment practice.

Using the same set-up as before, the empirical results provide strong evidence that

both excessive rebalancing (monthly periodic rebalancing) as well as overly infrequent

rebalancing (yearly range rebalancing) lead to an inferior risk-adjusted portfolio perfor-

mance. Although statistical significance is less pronounced for comparisons between

rebalancing strategies with a similar trading interval (yearly, quarterly, or monthly) or

a similar rebalancing algorithm (periodic, threshold, or range rebalancing), the results

suggest that quarterly periodic rebalancing seems to provide the highest risk-adjusted

portfolio performance. Moreover, time series characteristics – especially short-term

momentum – tend to be the predominant driving force contributing to explain the

optimal trading pattern.

1.4 Rebalancing Across Different Asset Allocations

So far, a fixed asset allocation of 60% stocks and 40% government bonds has been

analyzed in order to make the results comparable with academic research as well as

the investment practice. A still open question is whether a portfolio’s asset allocation

has an impact on the statistical significance between comparisons of rebalancing and

buy-and-hold. In other words, does rebalancing provide a value added to institutional

investors regardless of the asset allocation mix?

Applying the same set-up as described before, the study “Testing Rebalancing Strate-

gies for Stock-Bond Portfolios Across Different Asset Allocations” makes two contribu-

tions to the academic literature and the investment practice. First of all, depending

on the underlying country characteristics, rebalancing provides a value added if the

stocks’ portfolio weight exceeds a certain threshold which is approximately 30% with

respect to the financial markets of the United States and the United Kingdom and about

20% regarding the financial market of Germany. However, the optimal asset allocation

strongly depends on the country as well as on the period under investigation.

1.5 Portfolio Insurance

Although rebalancing leads to a significant reduction of risk, many institutional in-

vestors are not able to adopt a rebalancing strategy due to regulatory requirements. In

particular, insurance companies, pension funds, and endowments have a substantial
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interest in preserving the invested capital. In contrast, rebalancing requires buying

(selling) stocks when stocks have decreased (increased) and hence represents the sale

of portfolio insurance. For this reason, the study “A Bootstrap-Based Comparison of

Portfolio Insurance Strategies” analyzes different portfolio insurance strategies on a

statistical basis.

The primary objective of portfolio insurance is the reduction of a portfolio’s downside

risk while simultaneously keeping most of its upside potential. If portfolio insurance

constitutes an appropriate investment strategy that satisfies an investor’s requirement,

the question of which specific portfolio insurance strategy should be implemented

arises. Although prior research evaluates portfolio insurance in terms of downside

protection and return potential, recommendations to portfolio management differ with

respect to the applied methodology, period under investigation, and market environ-

ment. For example, while the applied Monte Carlo simulation of Benninga (1990)

provides evidence that a simple stop-loss rule outperforms both the constant propor-

tion portfolio insurance strategy (CPPI) and the synthetic put strategy in terms of

their terminal wealth and Sharpe ratio, the simulation results of Cesari and Cremonini

(2003) indicate that CPPI and option-based portfolio insurance strategies tend to lead

to superior results if information about the state of the market is neglected.

This article expands earlier studies with a focus on portfolio insurance by making

two contributions to academic literature: Firstly, the bootstrap analysis proposed by

Politis and Romano (1994) allows a systematic comparison between different pairs of

portfolio insurance strategies by reporting statistical significance levels. In particular,

the stop-loss strategy, the synthetic put strategy, the CPPI strategy, the time invariant

portfolio protection strategy, and the VaR-based protection strategy are investigated

by comparing the following distinguishing characteristics: (i) static versus dynamic

protection; (ii) initial wealth versus accumulated wealth protection; (iii) model-based

versus model-free protection; and (iv) strong floor compliance versus probabilistic

floor compliance. Secondly and in contrast to Jiang et al. (2009), estimation risk is

fully incorporated into the analysis as both the synthetic put strategy and the dynamic

VaR-strategy require parameter forecasts of the return and its corresponding volatility.

In line with Bertrand and Prigent (2011), the Omega measure is used as an appropriate

risk-adjusted performance measure in order to evaluate portfolio insurance.

The simulation results document an inverse relationship between the protection

quality and the return potential of the different portfolio insurance strategies. The

better the downside protection is, the lower the upside potential will be. Evaluating

portfolio insurance with the help of the Omega ratio, the superiority seems to be subject

from the investor’s required rate of return: The higher the threshold return, the more

attractive insurance strategies with a higher upside potential become. In comparison to

the remaining portfolio insurance strategies, the CPPI strategy exhibits a superior ratio
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of realized gains to losses in most instances. Finally, the superiority of the dynamic

VaR-strategy strongly depends on the forecasting quality of the equity risk premium

and the corresponding stock market volatility. If estimation risk is taken into account,

our findings contradict those of Jiang et al. (2009) by showing no value added of the

dynamic VaR-strategy.

1.6 Time-Varying Risk of Global Shipping Markets

Risk constitutes an integral component of the decision-making process in investment

practice. The more pronounced an industry’s risk, the higher the demand for quantify-

ing and modeling the relevant risk sources. By way of example, the article “Dynamics

of Time-Varying Volatility in the Dry Bulk and Tanker Freight Markets” concentrates on

time-varying risk of the global shipping market, which has to be considered as one of

the riskiest industries worldwide. For instance, featuring an annual standard deviation

of almost 40% from March 1999 to October 2011, the annual volatility of changes of

the Baltic Capesize Index was more than twice as high as the volatility of the MSCI

World Stock Market Index. The Baltic Panamax Index even fell by more than 95% from

11,425 to 440 index points between May 2008 and December 2008. Therefore, it is

of utmost importance for ship owners, operators, and shipping banks alike to have

a thorough understanding of the properties of freight rate volatility in order to infer

value-enhancing investment and risk management decisions.

As Kavussanos (1996a, 1996b, 1997, 2003), Glen and Martin (1998), Alizadeh and

Kavussanos (2002), Chen and Wang (2004), Hui et al. (2008), Alizadeh, Nomikos, and

Dellen (2011), Alizadeh and Nomikos (2009, 2011), and Roumpis and Syriopoulos

(2009) all have shown that GARCH models are suitable for capturing the observed

volatility clustering of freight rates, this study focuses on volatility estimates based

on the class of GARCH models. While Kavussanos (1996a, 1997) as well as Alizadeh

and Nomikos (2011) provide strong evidence that macroeconomic factors exhibit a

significant impact on time-varying freight rates risk, Chen and Wang (2004) as well as

Hui et al. (2008) further document that asymmetric effects also must not be ignored.

The resulting question of interest is whether (i) shocks from macroeconomic factors

or (ii) asymmetric effects are better suited for modeling the conditional volatility (or

volatility clustering) of freight rates; or (iii) whether both effects should be considered

simultaneously. The more appropriate the volatility estimates are, the better freight

rate risk can be managed. In order to improve freight rate risk management, it is the

primary objective to find the most suitable specification that is able to capture the

time-variation in the volatility of freight rates.

Focusing on the volatility structure of freight rates in the dry bulk as well as in the

tanker freight markets, this analysis makes two important contributions: First of all,
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the impact of macroeconomic shocks and asymmetric effects on the conditional (or

instantaneous) volatility of freight rates is analyzed both separately and simultaneously.

Secondly and in contrast to all other studies, not only normally distributed but also

t-distributed error terms are used in order to better account for fat tails.

Three important conclusions can be derived from this analysis: (i) All model spec-

ifications indicate that the assumption of a t-distribution of the error term is better

suited to explain the conditional volatility (or volatility clustering) than a normal dis-

tribution. Assuming a normal distribution (as prior studies have done), some models

are even misspecified. (ii) The analysis suggests that macroeconomic factors should be

included in the conditional variance equation, not in the conditional mean equation.

Furthermore, the number of macroeconomic factors that exhibit explanatory power

decreases under a t-distribution. While the TED spread is highly significant when

included in the conditional variance equation of the Baltic Dirty Tanker Index, the yield

curve seems to have some explanatory power for the volatility of the Baltic Panamax

Index, Baltic Capesize Index, and the Baltic Clean Tanker Index. (iii) In contrast to

prior studies, asymmetric volatility effects cannot be detected in the dry bulk freight

market. However, these effects are strongly pronounced in the tanker freight market.

Overall, the empirical findings have important implications for freight rate risk

management. By using EGARCH-X models, a ’point-in-time measure’ can be derived

that accurately reflects the current risk perception of the shipping market. Both the

extremely high significance levels and the values of the Akaike Information Criterion

indicate that the application of the EGARCH-X model with t-distributed error terms

will in all likelihood help to explain the conditional volatility of freight rates more

accurately and, as a consequence, help to manage freight rate risk more efficiently.
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Abstract

We apply a stationary bootstrap approach that enables us to test the value added of

rebalancing for stock-bond portfolios using historical data from the United States, the

United Kingdom, and Germany. Analyzing the Sharpe ratio, the Omega measure, and

the Sortino ratio as simple measures of value added, our history-based simulation

results provide strong evidence that all rebalancing strategies significantly outperform

a buy-and-hold strategy. This outperformance is attributable to reduced risk, while

there are no statistical differences in returns between rebalancing and buy-and-hold.

Therefore, it is a risk management argument which justifies the widespread use of

rebalancing in investment practice.

2.1 Introduction

The active-passive debate has occupied both academics and practitioners for years.

The central questions of interest are whether active managers can outperform their

benchmark and – if so – whether this outperformance is persistent. Hendricks et al.

(1993), Wermers (2000), Avramov and Wermers (2006), Kosowski et al. (2006), Cremers

and Petajisto (2009), and Fama and French (2010) all provide evidence that some active

managers are indeed able to generate a steady outperformance net of fees. In contrast,

Carhart (1997), French (2008), Barras et al. (2010), and Busse et al. (2010) report that,

on average, alphas of actively managed funds are either close to zero or even negative.

Sharpe (1991) contributes to explain this empirical finding by referring to the market’s

equilibrium: Before costs, actively and passively managed funds must exhibit the same

return, on average, as the market cannot outperform itself. However, because actively

managed funds demand a higher compensation fee for their operations, it also follows

that passively managed funds earn higher net returns, on average. This explanation

does not contradict the empirical findings of Hendricks et al. (1993), Wermers (2000),

Avramov and Wermers (2006), Kosowski et al. (2006), Cremers and Petajisto (2009),

and Fama and French (2010), but it clearly demonstrates that active managers can only

win at the expense of other active managers.1 Therefore, unless the money cannot

be allocated to the best actively managed funds, one should invest the money as cost-

efficiently as possible by tracking an index or an investment portfolio.

Having identified an investor’s risk and return preference as well as his regulatory

environment, the simplest passive investment strategy a portfolio manager could im-

plement would be buy-and-hold. However, as different assets generate different rates of

1 For example, Cremers and Petajisto (2009) show that truly active funds can also outperform at the
expense of closet index funds.
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returns, a portfolio’s relative asset composition will deviate from the target weights over

time. In order to remain consistent with the institutional investor’s initially evaluated

risk and return preferences, the portfolio manager needs to rebalance the assets back to

their target weights, as defined by the strategic asset allocation (Campbell and Viceira

(2002)).2 Most important, as rebalancing strategies are contrarian strategies, whereby

a fraction of the better performing assets is sold and the proceeds are invested in the

weaker performing assets, it is a highly challenging question whether rebalancing

generates a value added for institutional investors and – if so – what the sources of this

value added are.

Due to its high importance for institutional portfolio management, several aspects

of rebalancing and its practical implications have been analyzed in previous studies.

In order to stay focused on our own analysis of the value added of rebalancing, the

following discussion concentrates on the primary research objectives and main results

of rebalancing studies that are closely related to our investigation. Our empirical

analysis is based on the theoretical foundations of Perold and Sharpe (1988), who

discuss various portfolio strategies under different market scenarios. Focusing on a

two-asset portfolio consisting of stocks and bills, they document that a buy-and-hold

strategy offers a downside protection that is proportional to the amount allocated into

bills, while the upside potential is proportional to the amount allocated into stocks.

In contrast to buy-and-hold, rebalancing strategies exhibit less downside protection.

As rebalancing requires buying stocks and selling bonds when stocks have decreased

(relative to bonds), this portfolio strategy represents the sale of portfolio insurance.

Moreover, facing a persistent market upswing, a frequent reallocation to the weaker

performing asset also leads to a lower upside potential.3 In contrast, rebalancing

strategies perform best in relatively trendless but volatile markets, gaining advantage

of the much more pronounced mean-reversion in this environment.4 These reversals

2 Sharpe (2010) emphasizes that, in equilibrium, not all investors can be contrarians and follow a
rebalancing strategy. Rebalancing policies are adopted to reflect an investor’s preferences at the time
when the policy is initiated. However, over time and with changing market values of asset classes,
the original asset allocation may no longer be appropriate even if an investor’s characteristics are
unchanged. Therefore, Sharpe (2010) proposes an adaptive asset allocation policy, where the policy
proportions are adjusted over time as market values change. This strategy is macro-consistent in the
sense that all investors can follow it.

3 Leading to a concave payoff structure as shown by Perold and Sharpe (1988), Ingersoll et al. (2007)
conjecture that concave payoff strategies have by construction higher Sharpe ratios and Sortino ratios
than benchmark or buy-and-hold investments. However, our analysis also provides evidence that
rebalancing outperforms buy-and-hold in terms of Omega ratios that incorporate all moments by
considering the entire return distribution.

4 As a result, Sharpe (2010) argues that the performance of rebalancing relative to buy-and-hold can
be highly period-dependent. Irrespective of having superior knowledge about the return-generating
process, investors should follow a rebalancing strategy only if they are less concerned than the average
investor is about inferior returns in very bad or very good markets. Following an adaptive asset
allocation policy, investors should routinely compare their asset allocations with current market
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could improve portfolio returns while simultaneously reducing the risk of rebalancing

strategies.

Providing empirical evidence that rebalancing strategies are indeed able to generate

a value added for institutional investors, Arnott and Lovell (1993) investigate a 24-year

sample period from 1968 to 1991. They infer from their analysis that rebalancing

offers enhanced returns without increasing risk and recommend a monthly rebalancing

strategy to investors with a long investment horizon. Examining the period from 1995

to 2004, Harjoto and Jones (2006) report that a rebalancing strategy with an incorpo-

rated no-trade interval of ±15% leads to both the highest average return and the lowest

standard deviation, which in turn also results in the highest Sharpe ratio. Taken as a

whole, they conclude that investors should readjust their portfolio structure, although

not too frequently. Tokat and Wicas (2007) conduct Monte Carlo simulations in order

to provide evidence that rebalancing is a powerful instrument for controlling risk.5

Investigating the impact of both different market scenarios and of several rebalancing

strategies, they argue that rebalancing helps to minimize risk relative to a predefined

asset allocation in all market environments. This result is in line with the findings of

Jaconetti et al. (2010).

Despite many similarities, our analysis of the value added of portfolio rebalancing

differs from the studies presented above. In particular, we make two major contri-

butions to the literature. Our first and paramount contribution refers to the applied

methodology, which builds on the stationary bootstrap of Politis and Romano (1994).

In contrast to all previous studies, we are able to conduct a systematic analysis of the

value added of rebalancing by reporting statistical significance levels for the different

rebalancing strategies’ performance measures. We are further in the position of being

able to investigate whether the value added of rebalancing arises due to a return effect,

a risk effect, or both.

Our second contribution relates to the observation that prior rebalancing studies

mostly focus on the US market. While Buetow et al. (2002), Masters (2003) as well as

McLellan et al. (2009) consider international equities in a multi-asset class portfolio,

proportions in order to make sure that any differences are consistent with differences between their
own circumstances and those of the average investor. Kimball et al. (2011) develop an overlapping
generations model in order to illustrate how optimizing agents rebalance in equilibrium. The aggregate
risk tolerance effect is a driving force in their model. Shocks to the valuation of risky assets affect
investors’ wealth differently, depending on their initial asset allocation. As a result, such shifts affect
the distribution of wealth and change aggregate risk tolerance (violating the simple Merton (1971)
model market-clearing behavior) as well as the demand for risky assets (departing from the standard
model’s rebalancing advice).

5 The calibration of the mean, the volatility, and the cross-correlation parameters is based on a historical
sample of the US bond and stock market from 1960 to 2003. In order to model the return-generating
process of both the bond and the stock market, Tokat and Wicas (2007) assume a normal return
distribution. However, Mandelbrot (1963), Fama (1965), and Clark (1973) all provide strong evidence
that at least stock market returns are non-normally distributed.
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Plaxco and Arnott (2002) analyze an internationally balanced portfolio consisting of

bonds and stocks from 11 countries. Nevertheless, despite the fact that country-specific

characteristics potentially have an impact on the implementation of the optimal rebal-

ancing strategy, there are no studies that explicitly investigate rebalancing strategies

with a focus on institutional investors outside the US. Therefore, we analyze the value

added of rebalancing strategies by considering the different stock and bond market

characteristics of the United States, the United Kingdom, and Germany. Overall, these

two contributions – deriving statistical inference and using an international data set –

constitute the novel path that our analysis takes and which separates it from previous

rebalancing studies.

Our findings have immediate practical implications. First of all, despite the strong

performance of stocks relative to bonds during the 30-year long sample period, our

simulation results do not uncover statistical evidence that the average return of a buy-

and-hold strategy is, on average, higher than that of different rebalancing strategies.

Secondly, the average risk of rebalancing is significantly reduced when compared with

buy-and-hold. Thirdly, all rebalancing strategies significantly outperform buy-and-

hold in terms of average risk-adjusted performance measured by the Sharpe ratio, the

Omega measure, and the Sortino ratio. Our empirical findings are robust for all three

countries under investigation, for all analyzed trading frequencies, and for all invest-

ment horizons, thus contributing to the explanation as to why rebalancing strategies

are popular in investment practice.

The remainder of this paper is structured as follows: Section 2.2 briefly describes the

data and provides descriptive statistics, while Section 2.3 classifies the implemented

rebalancing strategies. The test design of the stationary bootstrap approach is outlined

in Section 2.4. Section 2.5 presents and discusses the results of our history-based simu-

lation analysis. Section 2.6 reports on various robustness checks. The paper concludes

in Section 2.7, where implications for portfolio management and institutional investors

are pointed out.

2.2 Data Description

2.2.1 Dataset

As country-specific characteristics could have an impact on rebalancing, we not only

concentrate on domestic institutional investors in the United States, but also on those

in the United Kingdom and Germany. We use monthly return data of well-diversified

stock and government bond market total return indices as well as money market rates

for each country from Thomson Datastream. The sample period ranges from January

1982 to December 2011. This long 30-year period is necessary in order to implement a
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statistical test, but government bond time series of this length are only available for the

financial markets of the United States, the United Kingdom, and Germany. Exhibiting

maturities of 5, 7, and 10 years, these government bond time series also determine

the length of the respective investment horizons to be analyzed. We use Treasury bills

(United States), LIBOR (United Kingdom), and FIBOR (Germany) as proxies for the

risk-free rates with 3-month maturities.

2.2.2 Descriptive Statistics

The implementation of the stationary bootstrap approach is motivated by two reasons.

First of all, given the country-specific characteristics of the different financial markets,

one cannot assume that particular relationships which hold in one country are also

observable in any other country. Panel A of Table I illustrates these cross-sectional

differences between the stock, government bond, and money markets of the United

States, the United Kingdom, and Germany over the period from January 1982 to

December 2011. For example, the German stock market exhibits the highest annualized

volatility of all three countries featuring a value of 22.06%, whereas the German

government bond market simultaneously has the lowest annualized volatility with a

value of 5.53%. Thus, an analysis of the three financial markets in our sample helps to

corroborate whether our empirical findings are robust in the cross-section of countries.

Secondly, prior research has already shown that the time series properties themselves

can change over time, making it almost impossible to appropriately calibrate the

parameters for a Monte Carlo simulation.6 However, by using historical data, all times

series information is fully incorporated into our simulation analysis. In order to get a

detailed insight into the time variation of the underlying time series characteristics,

we divide the entire 30-year sample period into two disjunctive 15-year subsamples.

Although the time series characteristics of the United Kingdom and Germany are

different than those of the United States, all three countries exhibit qualitatively similar

patterns in terms of business cycles. Panel B of Table I, by way of example, shows

the descriptive statistics of the US stock, government bond, and money market over

the full sample period as well as the two corresponding 15-year subsamples. Clearly,

substantial variation is exhibited by the distributional characteristics over time. For

example, the US stock market features an average annualized return of 15.59% over

the period from January 1982 to December 1996, which drops to only 5.31% over the

period from January 1997 to December 2011.

6 Cf. Gibbons and Ferson (1985), Ferson et al. (1987), Ferson and Harvey (1991), and Ferson and Harvey
(1993) for studies related to time-varying risk premia; Engle (1982), Engle et al. (1987), Ng (1991), and
Dumas and Solnik (1995) for research on time-varying risk, as well as Erb et al. (1994), Ball and Torous
(2000), Longin and Solnik (2001), and Buraschi et al. (2010) for studies with a focus on time-varying
asset class correlations.
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Table I – Descriptive Statistics
Panel A presents the cross-sectional descriptive statistics of the stock, government bond, and money
markets of the United States, the United Kingdom, and Germany over the entire 30-year sample period
from January 1982 to December 2011. Panel B shows the descriptive statistics of the United States over
the entire 30-year sample period as well as the two corresponding disjunctive 15-year subsamples. Bonds
denote government bonds with a maturity of 10 years. Cash represents 3-month money market rates.
All statistics are calculated on a monthly basis using continuous compounded returns. Mean, Volatility,
Skewness, and Kurtosis denote the annualized mean return, volatility, skewness, and kurtosis. Minimum
and Maximum are the monthly minimum and maximum returns.

Panel A: Cross-Sectional Descriptive Statistics

Asset Statistics United States United Kingdom Germany

Stocks Mean (%) 10.45 10.84 8.75
Volatility (%) 15.77 16.14 22.06
Skewness −0.91 −1.15 −0.92
Kurtosis 6.07 8.05 5.60
Minimum (%) −23.85 −30.02 −28.67
Maximum (%) 12.47 13.72 19.02

Bonds Mean (%) 8.57 10.19 7.34
Volatility (%) 7.91 8.01 5.53
Skewness 0.05 −0.06 −0.29
Kurtosis 3.66 4.45 3.26
Minimum (%) −7.36 −8.16 −5.69
Maximum (%) 9.40 8.17 5.37

Cash (level) Mean (%) 4.46 6.91 4.43
Volatility (%) 0.77 1.01 0.65
Skewness 0.16 0.23 0.55
Kurtosis 2.70 2.39 2.62
Minimum (%) 0.00 0.00 0.00
Maximum (%) 0.01 0.01 0.01

Panel B: Descriptive Statistics of the United States for Subsamples

Asset Statistics Full Sample 1st Half 2nd Half
Jan-82 - Dec-11 Jan-82 - Dec-96 Jan-97 - Dec-11

Stocks Mean (%) 10.45 15.59 5.31
Volatility (%) 15.77 14.47 16.89
Skewness −0.91 −1.12 −0.71
Kurtosis 6.07 9.79 3.94
Minimum (%) −23.85 −23.85 −18.76
Maximum (%) 12.47 12.47 10.42

Bonds Mean (%) 8.57 10.66 6.48
Volatility (%) 7.91 8.10 7.68
Skewness 0.05 0.08 −0.01
Kurtosis 3.66 2.85 4.63
Minimum (%) −7.36 −4.50 −7.36
Maximum (%) 9.40 7.30 9.40

Cash (level) Mean (%) 4.46 6.21 2.71
Volatility (%) 0.77 0.60 0.57
Skewness 0.16 0.45 −0.01
Kurtosis 2.70 3.07 1.44
Minimum (%) 0.00 0.00 0.00
Maximum (%) 0.01 0.01 0.01
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2.3 Implemented Rebalancing Strategies

The academic literature as well as institutional portfolio managers differentiate between

periodic and interval rebalancing strategies. Advising a periodic rebalancing mandate,

a portfolio manager has to rebalance the assets to their initial target weights at the

end of each predetermined period (e.g., yearly, quarterly, or monthly). In contrast,

an interval rebalancing mandate requires the portfolio manager to adjust the asset

allocation whenever an asset moves beyond a prespecified threshold (e.g., ±3%, ±5%,

or ±10%). Our study focuses on a mixture of both methodologies: periodic rebalancing

with the additional option to incorporate a symmetric no-trade interval around the

target weights.

Furthermore, it is necessary to distinguish between the two resulting approaches with

regard to the implementation of the symmetric no-trade interval. In particular, when an

asset exceeds the predetermined interval boundaries, either a strict adjustment to the

target weights (Buetow et al. (2002), Harjoto and Jones (2006)) or a rebalancing to the

corresponding interval boundaries (Leland (1999)) must be implemented. Following

the argument of Perold and Sharpe (1988), who emphasize that different strategies

can produce remarkable differences in risk and return characteristics, we implement

the most common rebalancing strategies: (i) buy-and-hold, (ii) periodic rebalancing,

(iii) periodic interval rebalancing with a strict adjustment to the initial target weights

(threshold rebalancing), and (iv) periodic interval rebalancing with a reallocation to

the nearest edge of the corresponding thresholds (range rebalancing). With respect to

these strategies, we look at yearly, quarterly, and monthly trading frequencies. Table II

presents the resulting classification of all implemented rebalancing strategies.

Table II – Classification of Implemented Rebalancing Strategies
This table presents all rebalancing strategies under investigation. The periodic rebalancing strategies
2, 3, and 4 are characterized by a regular reallocation to the predetermined target weights at the end
of each period. Strategies 5, 6, and 7 represent threshold rebalancing, which is classified as periodic
interval rebalancing with a strict adjustment to the target weights. In contrast, the range rebalancing
strategies 8, 9, and 10 require a reallocation to the nearest edge of the predefined interval boundaries. A
threshold of ±3% is applied to both threshold rebalancing and range rebalancing.

Rebalancing Strategy Frequency Threshold Reallocation Classification No.

Buy-and-Hold No Adjustments No Threshold No Reallocation Buy-and-Hold 1

Yearly Periodic Rebalancing Yearly No Threshold Target Weights Periodic 2
Quarterly Periodic Rebalancing Quarterly No Threshold Target Weights Periodic 3
Monthly Periodic Rebalancing Monthly No Threshold Target Weights Periodic 4

Yearly Threshold Rebalancing Yearly Threshold Target Weights Threshold 5
Quarterly Threshold Rebalancing Quarterly Threshold Target Weights Threshold 6
Monthly Threshold Rebalancing Monthly Threshold Target Weights Threshold 7

Yearly Range Rebalancing Yearly Threshold Interval Boundaries Range 8
Quarterly Range Rebalancing Quarterly Threshold Interval Boundaries Range 9
Monthly Range Rebalancing Monthly Threshold Interval Boundaries Range 10
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A simple example demonstrates how our periodic interval rebalancing methodology

works. Assume a 60% stocks and 40% bonds asset allocation with a quarterly rebalanc-

ing frequency and a threshold of ±3% around the target weights. The portfolio strategy

‘3% quarterly threshold rebalancing’ implies a strict adjustment to the original stock

allocation of 60% whenever the stock allocation exceeds the threshold of ±3% at the

end of each quarter. In contrast, the portfolio strategy ‘3% quarterly range rebalancing’

requires the asset manager to check whether the weight of stocks exceeds 63% or falls

below 57% of the portfolio’s current market capitalization at the end of each quarter.

In the first case, the manager must rebalance stocks to the upper threshold of 63%,

whereas in the second case an adjustment of stocks to the lower threshold of 57% is

required. In all other cases, no transactions are necessary because the stocks’ target

weight falls within the predetermined no-trade interval [57%;63%]. According to

Leland (1999), this approach reduces transaction costs and may potentially lead to

superior portfolio performance. If no thresholds are specified, both threshold and

range rebalancing are reduced to the more general periodic approach. In addition, if

no trading intervals are determined, periodic rebalancing is reduced to buy-and-hold

as the most general rebalancing strategy, which implies no rebalancing at all.

We concentrate on a two-asset-class portfolio with an initial asset allocation of 60%

stocks and 40% government bonds.7 On the one hand, this approach adequately reflects

common investment behavior in practice (Chambers et al. (2012)). On the other hand,

it allows the comparison of our empirical findings with related rebalancing studies.

Despite our focus on only two asset classes for the purpose of simplification, one should

consider that each index constitutes a well-diversified representative of an entire asset

class of the corresponding country. In addition, we also model realistic transaction

costs of 15 bps per round-trip in all our simulations. Particularly, we quote 10 bps for

buying/selling stocks and 5 bps for selling/buying bonds.8

7 In order to conduct a comprehensive analysis of whether rebalancing is able to generate a value
added for institutional investors, we vary the parameters country (United States, United Kingdom,
and Germany), the implemented rebalancing strategies (buy-and-hold as well as periodic, threshold,
and range rebalancing), the trading frequencies (yearly, quarterly, and monthly), the performance
measures (return, volatility, semi-volatility, Sharpe ratio, Omega measure, and Sortino ratio), and the
investment horizons (5, 7, and 10 years). As all these determinants are linked by multiplication, we
have to keep the initial asset allocation constant in order to stay focused on the main contribution of
our study. However, being one of the world’s largest institutional investors, Norway’s Government
Pension Fund Global (GPFG) is a prominent example of having pursued a 60% stocks and 40% bonds
asset allocation in the past (Chambers et al. (2012)). In consideration of the GPFG’s long-term strategy,
these portfolio weights have been slightly modified to 60% stocks, 35% bonds, and 5% real estate.
Moreover, it is worth noting that the GPFG does not follow an adaptive asset allocation (Sharpe (2010)),
but instead a 3% quarterly threshold rebalancing strategy (Norwegian Ministry of Finance (2012)).

8 The transaction costs of 15 bps per round-trip solely relate to the assets’ reallocation, which in turn
depends on the underlying rebalancing algorithm. Additional costs do incur with respect to the
administration and the management of the portfolio. Exchange traded funds (ETFs) represent a
cost-effective method to implement rule-based portfolio strategies such as rebalancing. According to
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2.4 Statistical Inference

Previous research based on historical analyses remains incomplete as it merely inves-

tigates a single realization or a fairly small number of realizations of stock and bond

returns. This issue is reinforced by the fact that the performance of rebalancing is

highly path-dependent because it constitutes a dynamic portfolio strategy. For example,

Arnott and Lovell (1993) show that rebalancing offers enhanced returns without in-

creasing risk, whereas Jaconetti et al. (2010) provide evidence that the primary objective

of rebalancing is the reduction of risk. The only systematic finding of most rebalancing

studies is that a buy-and-hold strategy seems to underperform rebalancing strategies

when both the return and the risk of these strategies are taken into account. But even

in this case, a major concern is whether these findings are statistically significant. It is

possible that the return observations are more influenced by specific characteristics of

the underlying sample period rather than by the properties of the rebalancing strategy

under investigation. As the danger of data snooping described can be severe (Brock

et al. (1992)), the empirical results of these studies do not allow reliable interpretations.

Dividing the sample period into disjunctive subsamples, e.g., up- and downswings of

the stock market (Harjoto and Jones (2006)), does not solve this fundamental inference

problem either, as this procedure cannot generate enough observations to conduct a

statistical test.

Accordingly, many prior studies apply Monte Carlo simulations for evaluating rebal-

ancing strategies (Jones and Stine (2010), Sun et al. (2006), Donohue and Yip (2003),

Buetow et al. (2002)). Changing stock, bond, and money market characteristics and

their impact on rebalancing strategies can be examined in more detail because Monte

Carlo simulations allow for deriving the entire return distribution under different

economic scenarios. However, this simulation technique generally suffers from the

shortcoming that it is not based on real-world data. If time series characteristics of

assets as well as those of entire financial markets are neither correctly nor completely

incorporated, simulation results could be biased. Most important, Monte Carlo simula-

tions often assume normally distributed stock returns even though stock market returns

generally violate a normality assumption by exhibiting fat tails and heteroscedasticity

as well as by tending to be left-skewed (Annaert et al. (2009)). Therefore, Eraker (2004)

suggests a stochastic volatility process with jumps in asset values. This process has the

geometric Brownian motion as a special case, but allows for heavier tails in the return

the market leaders iShares, Lyxor Asset Management, and db X-trackers, the total expense ratio (TER)
of the most liquid ETFs ranges between 15 and 20 bps for government bonds and between 15 and 52
bps for equities. These costs are independent of the rebalancing frequency and are charged regardless
of the applied portfolio strategy. Therefore, we exclude the TER from our analysis as it does not affect
the issue whether rebalancing provides a value added to institutional investors.
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distribution. Moreover, De Bondt and Thaler (1985), Poterba and Summers (1988), as

well as Brennan et al. (2005) all provide evidence that stock returns exhibit positive

autocorrelation in the short-run and mean reversion in the long-run. Finally, asset

class correlations tend to increase during recession periods (Longin and Solnik (2001)).

While Monte Carlo simulations are unable to capture all of these return characteristics

appropriately, a statistical test that is based on historical data is more suitable for

incorporating all different time series properties.

Due to these shortcomings of both historical analyses and Monte Carlo simulations,

we perform simulations that are based on real-world data by implementing the sta-

tionary bootstrap of Politis and Romano (1994). This history-based simulation clearly

separates our investigation of the value added of rebalancing both from historical

analyses and Monte Carlo simulations. Analyzing the value added of rebalancing, we

test whether the mean of a difference time series is equal to zero:

H0 : ∆PM = 0 versus H1 : ∆PM , 0, (1)

where PM denotes the performance measure of interest, which is either the return, the

volatility, the semi-volatility, the Sharpe ratio, the Sortino ratio, or the Omega measure.

The difference between the two performance measures is given by:

∆PM = PMA − PMB, (2)

where A and B constitute rebalancing strategies. An appropriate point estimator of (2),

which is defined as the arithmetic mean, is given by:

∆̂PM = P̂MA − P̂MB. (3)

In order to remain focused on our main contribution – the statistical comparison of

rebalancing and buy-and-hold – we investigate the difference time series of a predeter-

mined performance measure between any rebalancing strategy and buy-and-hold. As

classified in Table II, this could either be periodic rebalancing, threshold rebalancing,

or range rebalancing. Overall, we end up with three comparisons for each rebalancing

class, each country, and each investment horizon:

Monthly rebalancing - buy-and-hold (M-BAH), (4.1)

Quarterly rebalancing - buy-and-hold (Q-BAH), (4.2)

Yearly rebalancing - buy-and-hold (Y-BAH). (4.3)

By bootstrapping return paths that could have been realized in the past, we are
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able to efficiently evaluate the available information of the underlying sample period.

Although bootstrap techniques destroy the original path as there can be only one single

realization, drawing random blocks of different lengths with replacement from our 30-

year sample period allows us to preserve time series’ properties and financial markets’

dependencies (such as positive autocorrelation in the short-run, heteroscedasticity,

fat tails, left-skewed return distributions, and asset class correlations) to the greatest

possible extent. In particular, we implement the stationary bootstrap of Politis and

Romano (1994), which is applicable to stationary, weakly dependent data.9 The only

parameter left to be specified is the probability P for resampling the return observations.

As P follows a geometric distribution, we take advantage of the resulting inverse

relationship between P and the average block size. Thus, it is sufficient to determine

the average block size to be drawn as it constitutes the expected reciprocal value of P .

Even though Ledoit and Wolf (2008) report that the stationary bootstrap of Politis and

Romano (1994) is quite insensitive to the choice of the average block size, we ascertain

the optimal average block length by applying the automatic block-length selection for

the dependent bootstrap of Politis and White (2004) as well as the corrections made

by Patton et al. (2009). Overall, an average block length of 2 is suggested for both

the stock market and the government bond time series of all three countries under

investigation.10 Therefore, we are able to compare our empirical findings despite the

cross-sectional differences between the stock and government bond markets of the

United States, the United Kingdom, and Germany as shown in Table I.

In a first step, we resample 100 return paths of stocks, government bonds, and risk-

free rates.11 In order to retain the cross-sectional dependency structure, we conduct a

pairwise resampling. The length of these return paths is determined by the investment

horizon of either 5, 7, or 10 years. That is, we resample investment horizons of 5, 7, and

10 years from the original 30-year sample period.12 Although the investment horizons

to be examined do not match our 30-year sample period, this procedure allows us

to analyze the impact of different investment horizons which would not be possible

otherwise (when exploiting the information of the full data set). Having determined

9 The implementation of the stationary bootstrap exactly follows the algorithm in Politis and Romano
(1994).

10 As a robustness check, we also test an average block size of b ∈ 4,6,8 in Section 2.6.3. The empirical
results are qualitatively the same.

11 In general, bootstrap methodologies such as the applied stationary bootstrap of Politis and Romano
(1994) require stationary processes. Representing highly non-stationary processes, none of the applied
money market rates fulfills this necessary requirement. By using a bootstrap approach, an investigation
of the cash market’s volatility would induce a volatility that could be attributed to the non-stationary
characteristics of the cash market. Nevertheless, as the average money market rates are only included
in the calculations of the Sharpe ratio, these difficulties do not emerge in our analysis.

12 In contrast, Ledoit and Wolf (2008, 2011) investigate a 10-year investment horizon by resampling
from a 10-year sample period.
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both the rebalancing class and the performance measure of interest, we calculate the

mean for each of the three possible difference time series according to (4.1)− (4.3). In a

second step, we repeat this procedure B times in order to construct two-sided percentile

intervals as described by Efron and Tibshirani (1998), where13:

∆̂∗PM[1] ≤ ∆̂∗PM[2] ≤ . . . ≤ ∆̂∗PM[B−1] ≤ ∆̂∗PM[B] (5)

denotes the ordered difference series of the performance measure of interest. Based on

this difference series, a confidence interval can be constructed as follows:

CI =
[
∆̂∗
PM[α2 ·B], ∆̂

∗
PM[(1−α2 )·B]

]
. (6)

The null hypothesis H0 is rejected at the significance level α if 0 < CI . The nominal

levels to be considered are 0.01, 0.05, and 0.10. Following Ledoit and Wolf (2008), we

conduct B = 1,000 simulations. Repeated simulations reveal that our results (in terms

of statistical significance) are stable in capturing the underlying patterns in our sample.

2.5 Empirical Simulation Results

This section presents the main results of our simulation analyses. We start our discus-

sion by comparing the returns of a buy-and-hold strategy and periodic rebalancing

with yearly, quarterly, and monthly trading intervals. We proceed by analyzing the risk

of these strategies. Taking both the return and the corresponding risk of each strategy

into account, we finally evaluate the risk-adjusted performance.

2.5.1 Returns

Any rebalancing strategy requires the selling of a fraction of the better performing

assets and investing the proceeds in the weaker performing assets. Focusing on the

portfolio return as the measure of interest, it seems reasonable to assume that buy-and-

13 Focusing on small sample sizes, Romano and Wolf (2006) show that the studentized block bootstrap
leads to an improved coverage accuracy compared with normal theory intervals as well as the basic
bootstrap. Ledoit and Wolf (2008, 2011) also recommend a studentized time series bootstrap for
calculating p-values, if small to moderate sample sizes are to be investigated. However, as our sample
includes 360 monthly observations, it can be considered as rather large, thereby supporting the
construction of percentile intervals. Besides our primary objective to compare rebalancing strategies
on a statistical basis, this procedure is also straightforward to implement. Most important, with
respect to the analyzed risk-adjusted performance measures Sharpe ratio, Sortino ratio, and Omega
measure, our main empirical results are all significant at the 1% level. Repeated simulations show that
these findings are robust. Therefore, we assume that our conclusions will not change by constructing
confidence intervals with a potentially better asymptotic coverage.
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hold strategies outperform rebalancing strategies with increasing investment horizons.

Provided that one asset outperforms the other in every single period, this notion is

always correct given the mechanics of rebalancing. However, this conclusion cannot be

drawn if real-world data is to be considered.

Table III – Development of Net Asset Values: United States
Classified by investment horizon, this table illustrates the development of a $100 investment over the
sample period from January 1982 to December 2011. The total amount is invested in the US market as
a lump-sum payment in January 1982. All strategies are based on a 60% stocks and 40% bonds asset
allocation with a threshold of 0%. Transaction costs are quoted at 15 bps per round-trip.

Investment Period Stocks Bonds BAH Yearly Quarterly Monthly
Horizon Rebalancing Rebalancing Rebalancing

5 01/82-12/86 246.6 242.6 244.9 246.1 246.6 247.2
10 01/82-12/91 501.4 364.0 446.4 445.8 455.6 454.4
15 01/82-12/96 1,036.0 494.7 819.5 785.4 799.0 796.9
20 01/82-12/01 1,710.0 677.4 1,296.9 1,237.4 1,264.8 1,247.2
25 01/82-12/06 2,303.3 853.8 1,723.5 1,669.1 1,699.6 1,664.3
30 01/82-12/11 2,298.3 1,306.8 1,901.7 2,117.2 2,121.7 2,034.6

As an example, Table III illustrates the development of a $100 investment over the

sample period from January 1982 to December 2011. Although buy-and-hold exhibits

the highest NAV after 15, 20, and 25 years, it is clearly dominated by all other periodic

rebalancing strategies after 30 years. Thus, despite the strong performance of stocks

relative to bonds during the entire sample period, one cannot necessarily conclude that

buy-and-hold performs better than rebalancing. As rebalancing is a dynamic portfolio

strategy, its performance is path-dependent.

Analyzing the path dependency in more detail, Panel A in Figure I presents, by way

of example, the different developments of a $100 investment of both an underlying

quarterly periodic rebalancing and a buy-and-hold strategy. In order to illustrate

the impact of different market scenarios on the resulting performances of these two

strategies, the period under investigation covers the last recession from December 2007

to June 2009 as well as the subsequent market trends until December 2011 (National

Bureau of Economic Research (2012)). Panel B depicts the corresponding relative

market capitalization of stocks of both strategies at the beginning of each month

after the rebalancing event has taken place. As shown in Panel A, quarterly periodic

rebalancing performs worse compared with buy-and-hold during the prolonged stock

market meltdown in 2008, which caused a decline of the US stock market capitalization

by almost 50%. This observation is explained by the regular reallocation at the end of

each quarter to the initial 60/40 asset allocation. In a trending market environment with

falling stock prices, frequent rebalancing leads to inferior NAVs. Panel A further reveals

that during the subsequent market upswing, quarterly rebalancing outperforms the

buy-and-hold strategy. This finding can be traced back to the fact that the performance
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Figure I – Performance of a $100-Investment and its Portfolio Weights of Stocks

Panel A of Figure I presents the performance of a $100-investment of both buy-and-hold
(BAH) as well as quarterly periodic rebalancing (Q). Panel B plots the corresponding
stock portfolio weights at the beginning of each month. In the case of quarterly periodic
rebalancing, the portfolio weights of each third month are shown after the rebalancing
event has taken place. Both strategies are based on a 60% stocks and 40% bonds asset
allocation with a threshold of 0%. Transaction costs are quoted at 15 bps per round-trip.
In order to better illustrate the mechanics of rebalancing, the subsample period starts
at the beginning of the last contraction period in December 2007, as determined by the
National Bureau of Economic Research (2012).

(A) Performance of a $100-Investment

(B) Portfolio Weights of Stocks

of an investment strategy not only depends on the return of the underlying assets,

but also on their corresponding portfolio weights. In particular, during the following

recovery, quarterly periodic rebalancing produces higher NAVs compared with buy-

and-hold because of its initial 60/40 stock-bond allocation at the start of the recovery
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and the immediate readjustment at the end of each quarter. In contrast, buy-and-hold

is disadvantaged by the decrease to a much lower stock allocation when the recovery

starts. The initial stock-bond allocation at the lower turning point is roughly 40/60

(rather than 60/40) because of the poor stock performance during the prior market

crash. As illustrated in Panel B, the stock allocation cannot recover from this market

crash within the remaining investment period. Due to its lower average stock allocation

in the subsequent upside market, buy-and-hold is outperformed by quarterly periodic

rebalancing. This observation supports Perold and Sharpe’s (1988) conjecture that

rebalancing strategies perform best in volatile sideway markets, whereas buy-and-hold

leads to superior results in strongly pronounced market upswings and downswings,

respectively.

A resulting consequence of the rebalancing strategies’ path dependency is that all

empirical findings of rebalancing analyses are highly dependent on the period under

investigation, a fact that is illustrated in Table III as well as in Figure I. Therefore,

rebalancing studies that consider only one single realization are potentially exposed to

the problem of data snooping, which could lead to non-optimal recommendations to

portfolio management and institutional investors. Accordingly, our analysis focuses

on the average performance in terms of returns, risk, and risk-adjusted performance

measures. By using a 30-year historical data sample, our analysis takes changing stock,

government bond, and money market conditions as well as resulting cross-sectional

dependencies appropriately into account in order to derive reliable recommendations

for investment practice.

Table IV – Average Annualized Returns of Periodic Rebalancing
Classified by investment horizon, this table shows the average annualized returns of buy-and-hold
as well as periodic rebalancing with yearly, quarterly, and monthly trading intervals over the sample
period from January 1982 to December 2011. All strategies are based on a 60% stocks and 40% bonds
asset allocation with a threshold of 0%. Transaction costs are quoted at 15 bps per round-trip. 1,000
simulations with an average block length of 2 are performed. Repeated simulations reveal that the
results are stable.

Period Rebalancing Strategy United States United Kingdom Germany

5 Buy-and-Hold 9.80 10.27 8.64
5 Yearly Rebalancing 9.78 10.25 8.64
5 Quarterly Rebalancing 9.76 10.24 8.60
5 Monthly Rebalancing 9.72 10.23 8.54

7 Buy-and-Hold 10.13 10.82 8.96
7 Yearly Rebalancing 10.12 10.82 8.97
7 Quarterly Rebalancing 10.10 10.81 8.93
7 Monthly Rebalancing 10.06 10.80 8.87

10 Buy-and-Hold 10.13 10.92 8.88
10 Yearly Rebalancing 10.11 10.92 8.90
10 Quarterly Rebalancing 10.09 10.91 8.87
10 Monthly Rebalancing 10.06 10.90 8.80
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Classified by investment horizon and country, Table IV illustrates the average annu-

alized returns of buy-and-hold and periodic rebalancing with yearly, quarterly, and

monthly trading intervals. The results are mixed and imply that the return differences

tend to be of rather marginal economic importance.

Table V – CIs: Average Annualized Returns of Periodic Rebalancing
Classified by investment horizon, this table shows the confidence intervals of the difference time series
of the average annualized returns between periodic rebalancing and buy-and-hold. The sample period
ranges from January 1982 to December 2011. All strategies are based on a 60% stocks and 40% bonds
asset allocation with a threshold of 0%. Transaction costs are quoted at 15 bps per round-trip. BAH
denotes buy-and-hold, Y yearly periodic rebalancing, Q quarterly periodic rebalancing, and M monthly
periodic rebalancing. For example, M-BAH denotes the difference time series of ‘Monthly periodic
rebalancing minus buy-and-hold’. For each two strategies that are compared, the lower and upper
boundary of the confidence interval is calculated. 1,000 simulations with an average block length
of 2 are performed. Repeated simulations reveal that the results are stable. ∗, ∗∗, and ∗∗∗ represent
statistical significance at the 10%, 5%, and 1% level, respectively. If there is no statistical significance,
the corresponding 10% quantiles are reported.

Period Strategy United States United Kingdom Germany

5 M-BAH −0.0017 0.0000 −0.0012 0.0002 −0.0026 0.0005
5 Q-BAH −0.0014 0.0003 −0.0010 0.0004 −0.0020 0.0010
5 Y-BAH −0.0011 0.0005 −0.0009 0.0005 −0.0014 0.0013

7 M-BAH −0.0016 0.0001 −0.0010 0.0005 −0.0026 0.0006
7 Q-BAH −0.0012 0.0005 −0.0008 0.0007 −0.0019 0.0012
7 Y-BAH −0.0010 0.0007 −0.0007 0.0007 −0.0015 0.0016

10 M-BAH −0.0017 0.0001 −0.0010 0.0005 −0.0024 0.0007
10 Q-BAH −0.0014 0.0004 −0.0008 0.0007 −0.0017 0.0013
10 Y-BAH −0.0011 0.0006 −0.0008 0.0008 −0.0013 0.0016

Table V reports whether these return differences are statistically significant or

whether they can simply be attributed to specific characteristics of the underlying sam-

ple period. If both boundaries are positive (negative), rebalancing boasts a significantly

higher (lower) average annualized return compared with buy-and-hold. Otherwise, the

confidence interval includes zero, implying that the difference is lost in estimation error

and that no statistical inferences can be drawn. Substantiating the findings of Table IV,

our analysis documents that there are no statistically significant differences in returns

between buy-and-hold and periodic rebalancing. In contrast, Perold and Sharpe (1988)

report that reversals in stock markets could improve portfolio returns when applying

a rebalancing strategy. However, as they conduct their analysis for volatile sideway

markets, our empirical results do not contradict this argument. Instead, there are two

effects that work in opposite directions. As illustrated in Table III by way of example,

stock markets substantially outperformed government bond markets during our entire

sample period. While a high market volatility advantages rebalancing compared with

buy-and-hold, buy-and-hold benefits from a well-pronounced positive market trend,

which is induced by the better average performance of stocks relative to government
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bonds. As a result, there is no statistical significance in returns because both effects

outweigh each other on average.

2.5.2 Risk

So far, our investigation has pointed out that there are no differences in average returns

between buy-and-hold and periodic rebalancing. Frequent rebalancing must thus offer

other key benefits that explain its importance for institutional investors. By showing

that dynamic portfolio strategies, such as rebalancing, produce different risk and return

characteristics, Perold and Sharpe (1988) emphasize that the choice of an appropriate

strategy is subject to the investor’s risk preference. Therefore, not only the return of a

strategy itself, but also its risk must be carefully taken into account.

2.5.2.1 Volatility

In order to further analyze the value added of rebalancing, Table VI presents both the

average annualized volatility and the average annualized semi-volatility classified by

strategy, investment horizon, and country. As buy-and-hold boasts the highest average

annualized volatility for all investment horizons and all countries, the empirical results

in Panel A of Table VI indicate that rebalancing may consistently lead to a lower

volatility.

Table VI – Average Annualized Risk of Periodic Rebalancing
Classified by investment horizon, this table shows both the average annualized volatilities and the average
annualized semi-volatilities of buy-and-hold as well as periodic rebalancing with yearly, quarterly, and
monthly trading intervals. The sample period ranges from January 1982 to December 2011. All strategies
are based on a 60% stocks and 40% bonds asset allocation with a threshold of 0%. Transaction costs are
quoted at 15 bps per round-trip. 1,000 simulations with an average block length of 2 are performed.
Repeated simulations reveal that the results are stable.

Period Rebalancing Strategy United States United Kingdom Germany

Panel A: Average Annualized Volatility

5 Buy-and-Hold 9.73 10.31 13.04
5 Yearly Rebalancing 9.54 10.15 12.81
5 Quarterly Rebalancing 9.51 10.13 12.78
5 Monthly Rebalancing 9.53 10.13 12.82

7 Buy-and-Hold 9.96 10.37 13.11
7 Yearly Rebalancing 9.76 10.26 12.89
7 Quarterly Rebalancing 9.74 10.25 12.87
7 Monthly Rebalancing 9.76 10.26 12.91

10 Buy-and-Hold 10.24 10.73 13.37
10 Yearly Rebalancing 9.95 10.60 13.01
10 Quarterly Rebalancing 9.94 10.60 13.00
10 Monthly Rebalancing 9.96 10.61 13.04

continued
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Table VI – Continued

Panel A: Average Annualized Semi-Volatility

5 Buy-and-Hold 10.50 11.44 14.87
5 Yearly Rebalancing 10.21 11.17 14.39
5 Quarterly Rebalancing 10.17 11.12 14.33
5 Monthly Rebalancing 10.19 11.13 14.37

7 Buy-and-Hold 10.77 11.44 14.92
7 Yearly Rebalancing 10.48 11.23 14.44
7 Quarterly Rebalancing 10.46 11.20 14.40
7 Monthly Rebalancing 10.48 11.21 14.46

10 Buy-and-Hold 11.08 11.90 15.22
10 Yearly Rebalancing 10.68 11.71 14.58
10 Quarterly Rebalancing 10.66 11.69 14.55
10 Monthly Rebalancing 10.68 11.70 14.60

Despite the findings in Panel A of Table VI, our simulation results in Panel A of Table

VII provide mixed statistical evidence that buy-and-hold exhibits a higher volatility

compared with rebalancing. Only if the US markets are to be considered do we observe

statistical significance at least at the 10% level. The results for the financial markets

of the United Kingdom and Germany are only weakly pronounced. However, even

if no significance can be detected in many cases, the positions of the 10% quantiles

reported in Panel A of Table VII indicate that buy-and-hold tends to exhibit a higher

average annualized volatility in all cases. An explanation is that buy-and-hold involves

an increasing relative proportion of stocks, which constitute the riskier asset class

compared with bonds. With an increasing time horizon, the higher volatility of stocks

more and more affects the volatility of the buy-and-hold portfolio. In contrast, a

periodic reallocation back to the original target weights prevents an extreme shift to

riskier stocks.

2.5.2.2 Semi-Volatility

Volatility as a risk measure considers both positive and negative deviations from the

sample mean. However, as positive deviations constitute an additional opportunity to

generate an extra return, only the negative deviations from the mean should be eco-

nomically relevant for measuring risk. Ignoring positive deviations from the mean, the

semi-volatility represents a more intuitive and appropriate risk measure. Supporting

our conjecture that rebalancing leads to a reduction of risk, Panel B of Table VI fur-

ther reveals that buy-and-hold exhibits the highest average annualized semi-volatility

for all investment horizons and all countries. Providing statistical significance for

all investment horizons and all countries at least at the 10% level, Panel B of Table

VII statistically substantiates the expectation that rebalancing reduces, on average,
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portfolio risk compared with buy-and-hold. A frequent reallocation to the predeter-

mined portfolio weights maintains investors’ initial risk-return preferences, leading to

a diversification effect, and thus inducing a reduction of portfolio risk.

Table VII – CIs: Average Annualized Risk of Periodic Rebalancing
Classified by investment horizon, this table shows the confidence intervals of the difference time series
between periodic rebalancing and buy-and-hold of both the average annualized volatility (Panel A)
and the average annualized semi-volatility (Panel B). The sample period ranges from January 1982
to December 2011. All strategies are based on a 60% stocks and 40% bonds asset allocation with a
threshold of 0%. Transaction costs are quoted at 15 bps per round-trip. BAH denotes buy-and-hold,
Y yearly periodic rebalancing, Q quarterly periodic rebalancing, and M monthly periodic rebalancing.
For example, M-BAH denotes the difference time series of ‘Monthly periodic rebalancing minus buy-
and-hold’. For each two strategies that are compared, the lower and upper boundary of the confidence
interval is calculated. 1,000 simulations with an average block length of 2 are performed. Repeated
simulations reveal that the results are stable. ∗, ∗∗, and ∗∗∗ represent statistical significance at the 10%,
5%, and 1% level, respectively. If there is no statistical significance, the corresponding 10% quantiles are
reported.

Period Strategy United States United Kingdom Germany

Panel A: Average Annualized Volatility

5 M-BAH −0.0031 −0.0001∗∗∗ −0.0029 −0.0001∗∗∗ −0.0048 0.0003
5 Q-BAH −0.0039 −0.0003∗∗∗ −0.0036 −0.0002∗∗∗ −0.0050 −0.0001∗

5 Y-BAH −0.0035 −0.0002∗∗∗ −0.0032 −0.0002∗∗∗ −0.0045 −0.0001∗

7 M-BAH −0.0035 −0.0003∗∗ −0.0024 0.0001 −0.0050 0.0011
7 Q-BAH −0.0040 −0.0001∗∗∗ −0.0025 −0.0000∗ −0.0054 0.0007
7 Y-BAH −0.0037 −0.0001∗∗∗ −0.0023 0.0000 −0.0050 0.0005

10 M-BAH −0.0044 −0.0014∗ −0.0026 0.0001 −0.0067 0.0001
10 Q-BAH −0.0054 −0.0007∗∗∗ −0.0027 0.0000 −0.0071 −0.0003∗

10 Y-BAH −0.0051 −0.0007∗∗∗ −0.0025 −0.0000∗ −0.0068 −0.0004∗

Panel B: Average Annualized Semi-Volatility

5 M-BAH −0.0054 −0.0006∗∗∗ −0.0054 −0.0011∗∗∗ −0.0085 −0.0013∗∗

5 Q-BAH −0.0056 −0.0008∗∗∗ −0.0054 −0.0011∗∗∗ −0.0097 −0.0005∗∗∗

5 Y-BAH −0.0051 −0.0008∗∗∗ −0.0048 −0.0008∗∗∗ −0.0086 −0.0004∗∗∗

7 M-BAH −0.0055 −0.0003∗∗∗ −0.0042 −0.0003∗∗ −0.0089 −0.0001∗∗

7 Q-BAH −0.0057 −0.0006∗∗∗ −0.0042 −0.0005∗∗ −0.0093 −0.0008∗∗

7 Y-BAH −0.0051 −0.0006∗∗∗ −0.0039 −0.0004∗∗ −0.0086 −0.0009∗∗

10 M-BAH −0.0067 −0.0009∗∗∗ −0.0040 −0.0001∗ −0.0112 −0.0010∗∗

10 Q-BAH −0.0069 −0.0011∗∗∗ −0.0041 −0.0002∗ −0.0116 −0.0018∗∗

10 Y-BAH −0.0065 −0.0012∗∗∗ −0.0037 −0.0002∗ −0.0121 −0.0001∗∗∗

Although our results are robust in the cross-section of countries, Panel B of Table VII

shows that country-specific characteristics exert a different impact on the statistical

significance levels. Moreover, we observe that an increasing investment horizon leads

to higher significance levels in almost all cases. Provided that statistical significance

can be detected, one can infer that the calculated confidence intervals feature a higher

distance to zero with increasing investment horizons. Overall, our empirical results do

not confirm the findings of Arnott and Lovell (1993), who conclude from their analysis

that rebalancing offers enhanced returns without increasing risk. Donohue and Yip
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(2003) also report that optimal rebalancing can provide both higher returns and lower

risk than other common rebalancing heuristics. Instead, we provide statistical evidence

that, on average, rebalancing induces a risk reduction without sacrificing returns.

2.5.3 Risk-Adjusted Performance Measures

Both the return and the risk of a portfolio strategy are of fundamental importance to

institutional investors. Therefore, we now concentrate on risk-adjusted performance

measures in order to appropriately evaluate portfolio performance. In particular, our

measures of interest are the Sharpe ratio, the Omega measure, and the Sortino ratio.

2.5.3.1 Sharpe Ratio

In a first step, we analyze the Sharpe ratio (Sharpe (1966)), which is the most commonly

used performance measure in investment practice. Observing that there are no statis-

tical differences between average returns, but that rebalancing leads to a significant

reduction in risk, one would expect that this diversification effect also has an impact

on the corresponding Sharpe ratio. Table VIII reports the average annualized Sharpe

ratios of periodic rebalancing classified by strategy, investment horizon, and country.

As expected, buy-and-hold leads in all cases to inferior Sharpe ratios compared with

yearly, quarterly, and monthly periodic rebalancing. For example, the average Sharpe

ratio of a buy-and-hold strategy using US data and assuming a 10-year investment

horizon is 0.552, whereas a monthly periodic rebalancing strategy leads to an average

Sharpe ratio of 0.575. With respect to quarterly and yearly periodic rebalancing, the

Sharpe ratio increases to 0.579 on average.

As shown in Panel A of Table IX, these patterns are also reflected in the statistical

significance levels for differences between periodic rebalancing and buy-and-hold of

average annualized Sharpe ratios. In all cases, buy-and-hold is significantly outper-

formed by periodic rebalancing at the 1% level both for all investment horizons and

for all countries under investigation. The results shown in Table VIII also illustrate

the economic relevance of rebalancing for investment practice. As an example, in

dependence of the country and the investment horizon under investigation, the average

Sharpe ratio of a quarterly periodic rebalancing strategy increases by at least 4.28%

up to 13.97% when compared to buy-and-hold. Given that rebalancing is a rule-based

investment strategy, this finding is of particular importance for very large funds. Such

funds are restricted by their investment decisions because the portfolio volume is too

large to pursue any active management strategies. Being one of the world’s largest

institutional investors, Norway’s Government Pension Fund Global provides a good

example of conducting rebalancing as a rule-based investment strategy.
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Table VIII – Average Annualized Sharpe Ratios
Classified by investment horizon, this shows the average annualized Sharpe ratios of buy-and-hold
as well as periodic rebalancing with yearly, quarterly, and monthly trading intervals over the sample
period from January 1982 to December 2011. All strategies are based on a 60% stocks and 40% bonds
asset allocation with a threshold of 0%. Transaction costs are quoted at 15 bps per round-trip. 1,000
simulations with an average block length of 2 are performed. Repeated simulations reveal that the
results are stable.

Period Rebalancing Strategy United States United Kingdom Germany

5 Buy-and-Hold 0.554 0.336 0.315
5 Yearly Rebalancing 0.580 0.354 0.354
5 Quarterly Rebalancing 0.583 0.356 0.359
5 Monthly Rebalancing 0.580 0.355 0.356

7 Buy-and-Hold 0.571 0.379 0.330
7 Yearly Rebalancing 0.597 0.398 0.369
7 Quarterly Rebalancing 0.598 0.399 0.372
7 Monthly Rebalancing 0.594 0.398 0.368

10 Buy-and-Hold 0.552 0.374 0.314
10 Yearly Rebalancing 0.579 0.389 0.355
10 Quarterly Rebalancing 0.579 0.390 0.356
10 Monthly Rebalancing 0.575 0.389 0.351

In order to substantiate our hypothesis that rebalancing generates a value added for

institutional investors, we additionally test threshold and range rebalancing strategies

by implementing a symmetric no-trade region around the target weights. Once a

rebalancing threshold is introduced, there are two cases that need to be distinguished

with regard to the practical implementation. For the first alternative strategy, a strict

adjustment to the target weights (Buetow et al. (2002), Harjoto and Jones (2006))

is required when an asset exceeds the predetermined interval boundaries within a

given interval. Threshold rebalancing is captured by strategies (5)-(7) in Table II. In

contrast, the second alternative rebalancing strategy requires a rebalancing back to the

nearest edge of the given threshold rather than to the initial portfolio weights (Leland

(1999)). Range rebalancing refers to strategies (8)-(10) in Table II. Referring to Norway’s

Government Pension Fund Global, we assume a symmetric no-trade interval of ±3%

(Norwegian Ministry of Finance (2012)). Panel B and Panel C of Table IX show the

confidence intervals for these two alternative rebalancing strategies. Confirming our

previous results for the simpler periodic rebalancing strategy, a buy-and-hold strategy

is significantly dominated by both threshold rebalancing and range rebalancing in

terms of average Sharpe ratios at all rebalancing frequencies. Without any exception,

the difference is always significant at the 1% level. In results not shown, this finding is

even robust when the threshold is changed to ±10%. Accordingly, we conclude from our

investigation of the Sharpe ratio that the dominance of rebalancing over buy-and-hold

is independent of the choice of a specific rebalancing strategy.
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Table IX – CIs: Average Annualized Sharpe Ratio
Classified by investment horizon, this table shows the confidence intervals of the difference time series
of the average Sharpe ratio of periodic rebalancing (Panel A), threshold rebalancing (Panel B), and range
rebalancing (Panel C). The sample period ranges from January 1982 to December 2011. All strategies are
based on a 60% stocks and 40% bonds asset allocation with a threshold of 3% (if applicable). Transaction
costs are quoted at 15 bps per round-trip. BAH denotes buy-and-hold, Y yearly rebalancing, Q quarterly
rebalancing, and M monthly rebalancing. For example, M-BAH denotes the difference time series of
‘Monthly rebalancing minus buy-and-hold’. For each two strategies that are compared, the lower and
upper boundary of the confidence interval is calculated. 1,000 simulations with an average block length
of 2 are performed. Repeated simulations reveal that the results are stable. ∗, ∗∗, and ∗∗∗ represent
statistical significance at the 10%, 5%, and 1% level, respectively. If there is no statistical significance,
the corresponding 10% quantiles are reported.

Period Strategy United States United Kingdom Germany

Panel A: Average Annualized Sharpe Ratio of Periodic Rebalancing

5 M-BAH 0.0151 0.0366∗∗∗ 0.0111 0.0263∗∗∗ 0.0301 0.0522∗∗∗

5 Q-BAH 0.0181 0.0390∗∗∗ 0.0122 0.0276∗∗∗ 0.0332 0.0552∗∗∗

5 Y-BAH 0.0139 0.0367∗∗∗ 0.0101 0.0253∗∗∗ 0.0268 0.0518∗∗∗

7 M-BAH 0.0112 0.0347∗∗∗ 0.0090 0.0272∗∗∗ 0.0243 0.0512∗∗∗

7 Q-BAH 0.0153 0.0387∗∗∗ 0.0099 0.0289∗∗∗ 0.0285 0.0553∗∗∗

7 Y-BAH 0.0145 0.0382∗∗∗ 0.0086 0.0274∗∗∗ 0.0267 0.0533∗∗∗

10 M-BAH 0.0072 0.0368∗∗∗ 0.0020 0.0246∗∗∗ 0.0216 0.0513∗∗∗

10 Q-BAH 0.0121 0.0405∗∗∗ 0.0038 0.0259∗∗∗ 0.0267 0.0562∗∗∗

10 Y-BAH 0.0132 0.0416∗∗∗ 0.0041 0.0252∗∗∗ 0.0252 0.0565∗∗∗

Panel B: Average Annualized Sharpe Ratio of Threshold Rebalancing

5 M-BAH 0.0156 0.0366∗∗∗ 0.0115 0.0261∗∗∗ 0.0297 0.0522∗∗∗

5 Q-BAH 0.0162 0.0382∗∗∗ 0.0115 0.0268∗∗∗ 0.0315 0.0544∗∗∗

5 Y-BAH 0.0131 0.0356∗∗∗ 0.0093 0.0245∗∗∗ 0.0256 0.0511∗∗∗

7 M-BAH 0.0129 0.0364∗∗∗ 0.0083 0.0276∗∗∗ 0.0255 0.0515∗∗∗

7 Q-BAH 0.0143 0.0378∗∗∗ 0.0090 0.0283∗∗∗ 0.0278 0.0542∗∗∗

7 Y-BAH 0.0136 0.0369∗∗∗ 0.0076 0.0269∗∗∗ 0.0257 0.0524∗∗∗

10 M-BAH 0.0089 0.0380∗∗∗ 0.0023 0.0245∗∗∗ 0.0229 0.0519∗∗∗

10 Q-BAH 0.0131 0.0398∗∗∗ 0.0034 0.0255∗∗∗ 0.0267 0.0557∗∗∗

10 Y-BAH 0.0120 0.0413∗∗∗ 0.0046 0.0246∗∗∗ 0.0250 0.0558∗∗∗

Panel C: Average Annualized Sharpe Ratio of Threshold Rebalancing

5 M-BAH 0.0128 0.0334∗∗∗ 0.0093 0.0233∗∗∗ 0.0284 0.0498∗∗∗

5 Q-BAH 0.0124 0.0323∗∗∗ 0.0089 0.0225∗∗∗ 0.0267 0.0484∗∗∗

5 Y-BAH 0.0089 0.0260∗∗∗ 0.0060 0.0180∗∗∗ 0.0186 0.0412∗∗∗

7 M-BAH 0.0114 0.0344∗∗∗ 0.0074 0.0250∗∗∗ 0.0249 0.0507∗∗∗

7 Q-BAH 0.0118 0.0340∗∗∗ 0.0070 0.0244∗∗∗ 0.0239 0.0501∗∗∗

7 Y-BAH 0.0091 0.0294∗∗∗ 0.0052 0.0209∗∗∗ 0.0195 0.0441∗∗∗

10 M-BAH 0.0102 0.0380∗∗∗ 0.0027 0.0233∗∗∗ 0.0245 0.0531∗∗∗

10 Q-BAH 0.0113 0.0377∗∗∗ 0.0035 0.0231∗∗∗ 0.0244 0.0531∗∗∗

10 Y-BAH 0.0096 0.0351∗∗∗ 0.0029 0.0207∗∗∗ 0.0206 0.0492∗∗∗

As Table I shows, the stock markets of the United States, the United Kingdom, and

Germany all exhibit a negative skewness, implying a higher probability of large losses

compared with symmetric return distributions. Furthermore, in results not shown, buy-
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Table X – Skewness and Kurtosis of Rebalancing Strategies
Classified by rebalancing strategy and country under investigation, this table presents the skewness and
the kurtosis over the entire sample period from January 1982 to December 2011. All strategies are based
on a 60% stocks and 40% bonds asset allocation with a threshold of 0%. Transaction costs are quoted at
15 bps per round-trip. The skewness and kurtosis are calculated as the third and fourth normalized
centered moments.

Panel A: Skewness

Rebalancing Strategy United States United Kingdom Germany

Buy-and-Hold -0.75 -0.86 -0.87
Yearly Rebalancing -0.62 -0.68 -0.56
Quarterly Rebalancing -0.50 -0.51 -0.59
Monthly Rebalancing -0.50 -0.52 -0.66

Panel B: Kurtosis

Rebalancing Strategy United States United Kingdom Germany

Buy-and-Hold 5.09 6.44 5.19
Yearly Rebalancing 5.52 5.96 4.44
Quarterly Rebalancing 4.82 4.71 4.55
Monthly Rebalancing 4.80 4.69 4.81

and-hold exhibits a higher average stock allocation compared with rebalancing. This

finding is again robust for all countries, all investment horizons, and all rebalancing

strategies. Accordingly, one would expect that buy-and-hold resembles this higher

negative skewness due to the higher relative proportion of the riskier asset class stocks.

For the same reason, we also hypothesize a higher kurtosis for buy-and-hold as extreme

returns should be much more pronounced. Applying buy-and-hold as well as periodic

rebalancing to the entire 30-year sample period, Table X confirms these expectations

concerning the skewness. With the exception of yearly periodic rebalancing, we observe

a similar pattern for the kurtosis. Despite the widespread use in investment practice, the

Sharpe ratio suffers from the shortcoming of assuming investors that are characterized

by mean-variance preferences.14 Given the distributional characteristics of the different

strategies, we thus consider the Omega measure and the Sortino ratio as downside

risk-adjusted performance measures.

2.5.3.2 Omega Measure

The Omega measure (Shadwick and Keating (2002)) represents a special case of the

more general performance measure Kappa (Kaplan and Knowles (2004)). It is charac-

terized by the ratio of gains to losses relative to a predefined target return required by

14 Adcock et al. (2012) show that even if returns are not normally distributed, the rank correlation of the
Sharpe ratio and other performance measures is one or very close to it.
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the investor:

Ωi(τ) =

∫∞
τ

(1−F(ri))dri∫ τ
−∞F(ri)dri

, (7)

where τ denotes the investor’s required rate of return and F(ri) is the cumulative

distribution function of the monthly return r of strategy i. For simplicity, we set the

target return to zero, which allows us to distinguish between realized gains and losses.

In contrast to the Sharpe ratio, the Omega measure makes no assumptions about the

shape of the distribution. Furthermore, by considering the entire return distribution,

all moments are taken into account. Panel A of Table XI reconfirms the empirical

results in Panel A of Table IX (Sharpe ratio). Buy-and-hold is outperformed by all

periodic rebalancing strategies in terms of average Omega measures at the 1% level.

These findings apply to all analyzed investment horizons and all countries.

2.5.3.3 Sortino Ratio

Similar to the Omega measure, the Sortino ratio (Sortino and Price (1994)) is also a

special case of Kappa. In contrast to the Sharpe ratio, it penalizes only those returns

that fall below a target return:

Si(τ) =
r̄i − τ√∫ τ

−∞(τ − ri)2f (ri)dri
, (8)

where r̄i denotes the average return of the underlying strategy i, f (ri) the corresponding

probability density function, and τ the required target return of the investor.

As investors should be concerned about negative, but not about positive deviations

relative to a required rate of return, the Sortino ratio may be a more appropriate

concept to measure risk-adjusted returns than the common Sharpe ratio. Setting the

target return again to zero, we obtain qualitatively very similar results compared

with Panel A of Table IX (Sharpe ratio) and Panel A of Table XI (Omega measure).

Therefore, the empirical results of the Sortino ratios in Panel B of Table XI strongly

reconfirm our hypothesis that rebalancing generates a value added for institutional

investors. Moreover, when testing both the Omega measure and the Sortino ratio

for threshold and range rebalancing with a no-trade region of ±3% against buy-and-

hold, we again observe statistical significance at the 1% level (not tabulated) for all

investment horizons and all countries.
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Table XI – CIs: Average Downside Risk-Adjusted Performance of Periodic Rebalancing
Classified by investment horizon, this table shows the confidence intervals of the difference time series
between periodic rebalancing and buy-and hold of both the average Omega measure (Panel A) and the
average annualized Sortino ratio (Panel B). The sample period ranges from January 1982 to December
2011. All strategies are based on a 60% stocks and 40% bonds asset allocation with a threshold of 0%.
Transaction costs are quoted at 15 bps per round-trip. BAH denotes buy-and-hold, Y yearly periodic
rebalancing, Q quarterly periodic rebalancing, and M monthly periodic rebalancing. For example,
M-BAH denotes the difference time series of ‘Monthly periodic rebalancing minus buy-and-hold’. For
each two strategies that are compared, the lower and upper boundary of the confidence interval is
calculated. 1,000 simulations with an average block length of 2 are performed. Repeated simulations
reveal that the results are stable. ∗, ∗∗, and ∗∗∗ represent statistical significance at the 10%, 5%, and 1%
level, respectively. If there is no statistical significance, the corresponding 10% quantiles are reported.

Period Strategy United States United Kingdom Germany

Panel A: Average Omega Measure

5 M-BAH 0.0547 0.1383∗∗∗ 0.0436 0.1145∗∗∗ 0.0509 0.1203∗∗∗

5 Q-BAH 0.0580 0.1383∗∗∗ 0.0451 0.1152∗∗∗ 0.0549 0.1192∗∗∗

5 Y-BAH 0.0468 0.1169∗∗∗ 0.0355 0.0979∗∗∗ 0.0438 0.1023∗∗∗

7 M-BAH 0.0387 0.1141∗∗∗ 0.0254 0.1009∗∗∗ 0.0404 0.1110∗∗∗

7 Q-BAH 0.0444 0.1186∗∗∗ 0.0290 0.1025∗∗∗ 0.0453 0.1154∗∗∗

7 Y-BAH 0.0407 0.1134∗∗∗ 0.0260 0.0943∗∗∗ 0.0414 0.1055∗∗∗

10 M-BAH 0.0326 0.1095∗∗∗ 0.0081 0.0816∗∗∗ 0.0313 0.1038∗∗∗

10 Q-BAH 0.0393 0.1150∗∗∗ 0.0109 0.0854∗∗∗ 0.0377 0.1096∗∗∗

10 Y-BAH 0.0373 0.1148∗∗∗ 0.0105 0.0794∗∗∗ 0.0360 0.1041∗∗∗

Panel B: Average Annualized Sortino Ratio

5 M-BAH 0.0797 0.1873∗∗∗ 0.0623 0.1511∗∗∗ 0.0769 0.1726∗∗∗

5 Q-BAH 0.0843 0.1898∗∗∗ 0.0652 0.1524∗∗∗ 0.0825 0.1741∗∗∗

5 Y-BAH 0.0684 0.1619∗∗∗ 0.0511 0.1301∗∗∗ 0.0681 0.1518∗∗∗

7 M-BAH 0.0661 0.1667∗∗∗ 0.0420 0.1443∗∗∗ 0.0613 0.1618∗∗∗

7 Q-BAH 0.0737 0.1737∗∗∗ 0.0468 0.1454∗∗∗ 0.0703 0.1675∗∗∗

7 Y-BAH 0.0664 0.1649∗∗∗ 0.0408 0.1324∗∗∗ 0.0620 0.1566∗∗∗

10 M-BAH 0.0553 0.1698∗∗∗ 0.0221 0.1231∗∗∗ 0.0512 0.1541∗∗∗

10 Q-BAH 0.0659 0.1759∗∗∗ 0.0258 0.1265∗∗∗ 0.0606 0.1654∗∗∗

10 Y-BAH 0.0610 0.1768∗∗∗ 0.0233 0.1188∗∗∗ 0.0577 0.1576∗∗∗

Overall, our simulation set-up allows us to determine whether a rebalancing strategy

is able to generate a value added in comparison to buy-and-hold and to identify the

source of this value added. Although there are no statistical differences in average

returns between buy-and-hold and rebalancing, we provide statistical evidence that

the reduction of risk is the major source of the value added of rebalancing. Considering

both the return and the risk of a given strategy, we further document that the Sharpe

ratio, the Omega measure, and the Sortino ratio – as simple measures of value added –

of all rebalancing strategies are, on average, significantly higher compared with buy-

and-hold. In conclusion, while the return effect is not responsible for the superiority

of the applied risk-adjusted performance measures, it is a risk management argument

that justifies the widespread use of rebalancing strategies in the asset management

practice.
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2.6 Robustness Checks

2.6.1 Transaction Costs

When evaluating portfolio performance, transaction costs represent a crucial factor

that must not be ignored. Indeed, it is of utmost importance for institutional portfolio

management that realistic transaction costs are considered in order to draw meaningful

economic conclusions. Otherwise, a statistical comparison between rebalancing and

buy-and-hold may lead to biases which result in suboptimal portfolio recommendations.

Although we assume realistic transaction costs of 15 bps per round-trip throughout

our entire analysis (see footnote 7 for a discussion), we also apply unrealistic high

transaction costs of 100 bps in order to show their impact on rebalancing. Even though

these higher transaction costs negatively influence portfolio returns of all rebalancing

strategies, the main empirical findings remain qualitatively almost unchanged (results

not shown). In all but two cases, all rebalancing strategies consistently outperform

buy-and-hold at the 1% level in terms of average risk-adjusted portfolio performance.

With respect to monthly periodic rebalancing, we only observe statistical significance

at the 5% level for the U.S. market and no significance for the U.K. market.

2.6.2 Variation of the No-Trade Interval for Threshold and Range

Rebalancing

Analyzing the value added of rebalancing, a resulting question of interest is how large

the symmetric no-trade region must be in order to loose statistical significance. The

larger the no-trade interval is, the higher the similarity between both threshold and

range rebalancing compared with buy-and-hold will be. Given a symmetric threshold

of ±10% and an investment horizon of 10 years, all threshold and range rebalancing

strategies are highly significant for all countries (not tabulated). In contrast, examining

a symmetric threshold of ±30%, there is no statistical significance at all. Investigating

the German financial market, we observe statistical significance regarding a threshold

of ±20%, whereas no significance of either rebalancing class can be detected for the

U.K. financial market concerning a threshold of about ±15% (for both threshold and

range rebalancing). Analyzing the financial market of the United States, statistical

significance highly depends on both the rebalancing class and the trading frequency

and can be detected for threshold levels between ±15% and ±20%.



2 Value Added of Rebalancing 38

2.6.3 Variation of the Average Block Length

According to Ledoit and Wolf (2008), the stationary bootstrap of Politis and Romano

(1994) is quite insensitive to the choice of the average block length. Nevertheless, we

also apply average block lengths of b ∈ {4,6,8} as a final robustness check. For example,

analyzing an investment horizon of 10 years, Ledoit and Wolf (2008, 2011) estimate

an optimal block size of b = 4 for their mutual funds application and b = 6 for their

hedge fund application.15 Therefore, our selection of the average block size of b = 2 as

well as of b ∈ {4,6,8} should be statistically and economically reasonable. In particular,

longer block lengths lead to confidence intervals with a higher tendency of including

0, which makes it even more difficult to find evidence for statistical significance. In

conclusion, our primary result that rebalancing outperforms buy-and-hold in terms of

average risk-adjusted performance remains qualitatively unchanged (not reported).

2.7 Conclusion

This study makes two important contributions to the academic literature as well as

to investment practice by examining the issue of why institutional investors prefer

rebalancing over buy-and-hold, even though rebalancing strategies require the selling

of a fraction of the better performing assets and investing the proceeds in the weaker

performing assets. First of all, we provide strong empirical evidence that all rebal-

ancing strategies (periodic, threshold, and range rebalancing with yearly, quarterly,

and monthly trading intervals) significantly outperform buy-and-hold for all countries

(United States, United Kingdom, and Germany) and for all investment horizons (5,

7, and 10 years), regardless of whether the Sharpe ratio, the Omega measure, or the

Sortino ratio is considered for evaluating risk-adjusted portfolio performance. Accord-

ingly, we infer from our analysis that the dominance of rebalancing over buy-and-hold

is independent of the choice of a specific rebalancing strategy. Moreover, our results are

also of meaningful economic importance. For example, in comparison to buy-and-hold,

a quarterly periodic rebalancing strategy leads to an increase of the average Sharpe ratio

of about 5% for the financial markets of the United States and the United Kingdom and

almost 13% for the German financial market. Secondly, we document that while there

are no statistical differences in average returns between rebalancing and buy-and-hold,

the superior risk-adjusted performance of rebalancing is attributable to reduced risk.

The regular reallocation to the original asset allocation prevents an extreme drift from

the weaker performing but less risky asset class towards the better performing but

15 However, using a semi-parametric model to fit the observed return data, the algorithm for identifying
the optimal block size is different from the method suggested by Politis and White (2004) as well as by
Patton et al. (2009).
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more risky one. As a result, the portfolio risk is not only significantly reduced, but

the original portfolio diversification is also almost entirely preserved. Overall, we

conclude that it is a risk management argument which justifies the widespread use of

rebalancing in investment practice: The primary objective of any rebalancing strategy

is the reduction of risk with respect to a given asset allocation.
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Abstract

We compare the performance of different rebalancing strategies under realistic market

conditions by reporting statistical significance levels. Our analysis is based on historical

data from the United States, the United Kingdom, as well as Germany and comprises

three different classes of rebalancing (namely periodic, threshold, and range rebalancing).

Despite cross-country differences, we provide evidence that both excessive as well

as too infrequent rebalancing lead to an inferior risk-adjusted portfolio performance.

Specifically, the optimal rebalancing strategy seems to be quarterly periodic rebalancing

for all three countries under investigation.

3.1 Introduction

Once an investor’s risk and return preferences as well as his regulatory environment

have been identified, it is the primary objective of any institutional asset manager to

implement and supervise the most suitable asset allocation for his client. Given this

initial asset allocation, the literature differentiates between three reasons for portfolio

rebalancing: (i) rebalancing due to a shift in an investor’s risk profile and/or modified

regulatory requirements; (ii) rebalancing based on changes in the expectations of future

returns and risks; and (iii) rebalancing due to market movements. As discussed in

Fabozzi et al. (2006) as well as in Leibowitz and Bova (2011), the first two reasons

require the asset manager to construct a new optimal portfolio.

In this study, we focus on the third reason, which legitimates portfolio rebalancing

as a cost-efficient, rule-based investment strategy. As different assets generate different

rates of return, a portfolio’s relative asset composition will deviate from the target

weights over time. In order to remain consistent with the institutional investor’s ini-

tially evaluated risk and return preferences, the portfolio manager needs to rebalance

the assets back to their predefined target weights. The resulting research question is

which rebalancing algorithm and which rebalancing frequency should be adopted. In

short, what is the optimal rebalancing strategy?

This issue is of considerable importance for investment practice as exemplarily doc-

umented by the Norwegian Government Pension Fund Global (GPFG). Being one of

the world’s largest institutional investors with 554.96 billion US$ AuM by the end of

December 2011, the GPFG is a good example of pursuing rebalancing as a cost-efficient,

rule-based investment strategy (Norwegian Ministry of Finance (2012)). In search of

the optimal risk-return reward, even small deviations from the strategic asset allocation

could be economically relevant. In particular, this applies to very large funds which

are restricted by their investment decisions according to their size. With 19.34 billion

US$ AuM by the end of June 2012, the Yale endowment also conducts rebalancing
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with the primary goal of maintaining the original risk profile as well as exploiting

return-generating opportunities caused by excess security price volatility (Swensen

(2009), The Yale Endowment (2012)).

Examining dynamic portfolio strategies that invest only in stocks and bills, Perold

and Sharpe (1988) have laid the theoretical foundations for our empirical analysis.

They point out that the upside potential of a buy-and-hold strategy is proportional to

the amount allocated into stocks, while its downside protection is proportional to the

amount allocated into bills. Analyzing rebalancing strategies, three important conclu-

sions can be drawn from the regular reallocation to the weaker performing asset class.

First of all, rebalancing exhibits a lower upside potential in comparison to buy-and-

hold during a persistent market upswing. Secondly, representing the sale of portfolio

insurance, rebalancing also provides less downside protection in persistent market

downswings. Nevertheless, rebalancing performs best in volatile markets that feature

neither a persistent market downswing nor a persistent market upswing. According to

Perold and Sharpe (1988), these market conditions advantage rebalancing strategies,

which may ultimately result in both improved portfolio returns and a reduction of

portfolio risk.

Investigating the average return, the volatility, and the Treynor ratio of several re-

balancing strategies over the period from 1968 to 1991, Arnott and Lovell (1993)

document that a monthly rebalancing strategy features the highest return while the

corresponding volatility is only slightly higher compared to the strategy with the lowest

volatility. However, using the Treynor ratio as a performance measure that incorporates

both a strategy’s return and its systematic risk, the empirical results are weaker. In

fact, during the underlying 24-year sample period, all Treynor ratios lie very close

together within the interval (0.784;0.794), and thus it is not obvious which strategy

actually performs best. Nevertheless, inferring from their analysis that rebalancing

offers enhanced returns without increasing risk, Arnott and Lovell (1993) recommend

a monthly rebalancing strategy to investors with a long investment horizon.

Evaluating the performance on the basis of the Sharpe ratio over the period from

1986 to 2000 for different risk-profiles, Tsai (2001) shows that a frequent reallocation

back to the target weights seems to provide some value added to institutional investors.

However, as no single strategy is consistently better across portfolios of different risk

profiles, Tsai (2001) argues that it does not matter much which rebalancing strategy is

adopted.

Examining the period from 1995 to 2004, Harjoto and Jones (2006) report that a

rebalancing strategy with an incorporated no-trade interval of 15% leads to both the

highest average return and the lowest standard deviation, which in turn also results in

the highest Sharpe ratio. This empirical finding also remains valid when the sample

period is divided into an economic boom, a bust, and a recovery subsample. Taken as a
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whole, Harjoto and Jones (2006) conclude that investors should readjust their portfolio

structure, though not too frequently. Nevertheless, three potential drawbacks are worth

noting: (i) The analysis is based on one single 10-year period, which intensifies the po-

tential problem of data snooping; (ii) transaction costs should have been incorporated

because they might have a major influence on any reallocation decisions; (iii) the bust

and recovery periods may not represent suitable estimators as they are based on only

27 and 30 observations, respectively.

Analyzing rebalancing strategies over the period from 1926 to 2009, Jaconetti et al.

(2010) show that buy-and-hold exhibits the highest average annualized return with a

value of 9.1% after an investment period of 84 years, but also the highest volatility with

a value of 14.4% due to an average stock allocation of 84.1%. All remaining rebalancing

strategies feature average returns that differ slightly, ranging between 8.5% and 8.8%.

The standard deviations also lie within a narrow band of 11.8% to 12.3%. While it is

evident that most institutional investors cannot apply a buy-and-hold strategy on a

long-term basis, it is not obvious which rebalancing strategy leads to superior results.

Accordingly, Jaconetti et al. (2010) conclude that there is no universally optimal rebal-

ancing strategy.

The mixed results of the studies presented above can be explained by the path de-

pendency of rebalancing, which affects all dynamic portfolio strategies. As capital

markets do not exhibit arbitrage opportunities over prolonged periods of time, this

path dependency further implies that there is no particular rebalancing strategy that

features a better risk-return reward in all market environments in comparison to any

other rebalancing strategy. However, the question that remains to be answered is

whether a specific rebalancing strategy leads to a higher risk-adjusted performance on

average.

Our first contribution to the literature relates to the implemented methodological

approach, which is based on the stationary bootstrap of Politis and Romano (1994) and

enables us to compare different rebalancing strategies with each other on a statistical

basis by reporting statistical significance levels. Secondly, academic literature has so

far remained incomplete by having excluded analyses of rebalancing strategies with a

focus on institutional investors outside the US. For this reason, we do not only examine

the financial markets of the United States, but also those of the United Kingdom and

Germany in order to check whether country-specific characteristics have an impact on

the performance of rebalancing.

Our findings have immediate practical implications. First of all, evaluating risk-

adjusted portfolio performance on the basis of the Sharpe ratio, the Sortino ratio, and

the Omega measure, we provide evidence that both excessive rebalancing (monthly

periodic rebalancing) as well as too infrequent rebalancing (yearly range rebalancing)

provoke inferior results, thus pointing out that there may be an optimal rebalancing
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strategy. Secondly, the optimal trading patterns change with respect to the under-

lying rebalancing algorithm. Within the corresponding rebalancing class, quarterly

periodic, quarterly threshold, and monthly range rebalancing seem to produce the

highest risk-adjusted performance. Thirdly, quarterly periodic rebalancing significantly

outperforms quarterly threshold rebalancing as well as monthly range rebalancing

for all countries and all investment horizons. Overall, our history-based simulation

results provide strong evidence that quarterly periodic rebalancing tends to be the

optimal rebalancing strategy for all three analyzed countries. We further substantiate

this finding by analyzing 10-year investment horizons that all have been realized in

the past with the help of a rolling window. Fourthly, short-term momentum seems

to be the primary source capable of explaining the statistically significant differences

between monthly and quarterly periodic rebalancing.

The remainder of this study is structured as follows: Section 3.2 classifies the imple-

mented rebalancing strategies, while Section 3.3 presents the test design. Section 3.4

reports the results of our history-based simulation analysis and Section 3.5 discusses

potential driving forces that could explain our simulation results. The paper concludes

in Section 3.6 by pointing out possible implications for portfolio management.

3.2 Implemented Rebalancing Strategies

Two different types of rebalancing have to be distinguished in the investment practice:

periodic and interval rebalancing. While periodic rebalancing demands a reallocation

to the predetermined target weights at the end of each period, interval rebalancing

requires the implementation of a no-trade region around those target weights. In this

study, we concentrate on a combination of both strategies: periodic rebalancing with

the additional option of a symmetric no-trade region around the target weights.

Table I presents a classification of all rebalancing strategies under investigation:

periodic, threshold, and range rebalancing with yearly, quarterly, and monthly trading

intervals. In case of interval rebalancing, the portfolio manager must further differen-

tiate between a reallocation to the target weights (threshold rebalancing) and to the

nearest edge of the target weights (range rebalancing). While it is evident that the

implementation of a no-trade region reduces transaction costs as a consequence of a

reduced portfolio turnover, our analysis sheds light on whether the additional utility

of the reduced transaction costs will exceed the utility of a modified risk-return profile.

In order to make our results comparable with the investment practice, we mimic the

long-term strategy of the GPFG by implementing a symmetric no-trade region of ±3%

around the target weights (Norwegian Ministry of Finance (2012)).1

1 Basically, the long-term strategy of the GPFG can be characterized by a quarterly trading frequency, an
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Table I – Classification of Implemented Rebalancing Strategies
This table presents all rebalancing strategies under investigation. The periodic rebalancing strategies
1, 2, and 3 are characterized by a regular reallocation to the predetermined target weights at the end
of each period. Strategies 4, 5, and 6 represent threshold rebalancing, which is classified as periodic
interval rebalancing with a strict adjustment to the target weights. In contrast, the range rebalancing
strategies 7, 8, and 9 require a reallocation to the nearest edge of the predefined interval boundaries. A
threshold of ±3% is applied to both threshold rebalancing and range rebalancing.

Rebalancing Strategy Frequency Threshold Reallocation Classification No.

Yearly Periodic Rebalancing Yearly No Threshold Target Weights Periodic 1
Quarterly Periodic Rebalancing Quarterly No Threshold Target Weights Periodic 2
Monthly Periodic Rebalancing Monthly No Threshold Target Weights Periodic 3

Yearly Threshold Rebalancing Yearly Threshold Target Weights Threshold 4
Quarterly Threshold Rebalancing Quarterly Threshold Target Weights Threshold 5
Monthly Threshold Rebalancing Monthly Threshold Target Weights Threshold 6

Yearly Range Rebalancing Yearly Threshold Interval Boundaries Range 7
Quarterly Range Rebalancing Quarterly Threshold Interval Boundaries Range 8
Monthly Range Rebalancing Monthly Threshold Interval Boundaries Range 9

We explain the exact procedure of the two different classes of interval rebalanc-

ing with the help of an example. Assume an investor of a two-asset class portfolio

with a strategic asset allocation of 60% stocks and 40% government bonds. Further

assume a quarterly rebalancing frequency and a no-trade region of ±3% around the

target weights. Conducting a ‘3% quarterly threshold rebalancing strategy’ requires

a rebalancing back to the target weights of 60% stocks whenever the relative market

capitalization of stocks has moved outside the no-trade region of (57%;63%) at the end

of each quarter. Otherwise, no transactions take place. Supervising a ‘3% quarterly

range rebalancing strategy’, the portfolio manager again has to check at the end of each

quarter whether the relative market capitalization of stocks has fallen under 57% or

has risen above 63%. However, in the first case, a rebalancing to the lower threshold of

57% is necessary, whereas in the second case the relative stock market capitalization

has to be adjusted to the upper threshold of 63% by the portfolio manager. If the stocks

relative market capitalization lies between (57%;63%) at the end of the quarter, again

no transactions will take place.

implemented no-trade region of ±3% around the target weights, and a reallocation back to the target
weights if the relative stock proportion of stocks has fallen outside the no-trade region for one day
during the corresponding quarter (Norwegian Ministry of Finance (2012)). This strategy is comparable
to the implemented ‘3% quarterly threshold rebalancing’ (strategy 5 in Table I).
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3.3 Methodology

3.3.1 Data

In order to conduct a statistical test, a sufficient number of observations is necessary.

Ranging from January 1982 to December 2011, our sample period constitutes a reason-

able trade-off between the availability of the time series and the number of countries to

be included. Based on monthly return data of well-diversified stock and government

bond market total return indices as well as money market rates from Thomson Datas-

tream, our analysis comprises the financial markets of the United States, the United

Kingdom, and Germany. Moreover, to appropriately reflect real-world practice, the ma-

turities of the government bond time series, namely 5, 7, and 10 years, also determine

the corresponding investment horizons to be analyzed. All featuring a maturity of 3

months, we apply Treasury bills (United States), LIBOR (United Kingdom), and FIBOR

(Germany) as proxies for the risk-free rate.

Table II presents the descriptive statistics of our dataset. As shown in Panel A of Table

II, there are substantial differences between the capital markets of the United States,

the United Kingdom, and Germany during the underlying 30-year sample period. For

example, the German stock market exhibits the lowest average return with a value of

8.75%, while it also features the highest volatility with a value 22.06%. In contrast,

the average stock market return for the United Kingdom is 10.84% with a volatility

of 16.14%. Dividing the 30-year sample period of the United States financial markets’

into two disjunctive 15-year sub-periods, Panel B of Table II further illustrates that

the time series characteristics themselves can change over time. In particular, this is

obvious for the average returns of all three asset classes. The stock market return has

decreased from 15.59% in the first 15-year subsample to 5.31% in the second one, while

the government bond market return has decreased from 10.66% to 6.48%, and the cash

market return from 6.21% to 2.71%. As all these time series characteristics will have

an impact on the performance of rebalancing, not only an analysis of each country is

necessary, but also a methodological approach that allows to preserve most of the time

series characteristics and financial market dependencies.

3.3.2 Settings

Evaluating the performance of different rebalancing strategies, we focus on a 60%

stocks and 40% government bonds asset allocation for three different reasons. First of

all, our analysis considers three different countries (United States, United Kingdom,

and Germany), three different classes of rebalancing (periodic, threshold, and range

rebalancing), three different investment horizons (5, 7, and 10 year), and three dif-
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Table II – Descriptive Statistics
Panel A presents the cross-sectional descriptive statistics of the stock, government bond, and money
markets of the United States, the United Kingdom, and Germany over the entire 30-year sample period
from January 1982 to December 2011. Panel B shows the descriptive statistics of the United States over
the entire 30-year sample period as well as the two corresponding disjunctive 15-year subsamples. Bonds
denote government bonds with a maturity of 10 years. Cash represents 3-month money market rates.
All statistics are calculated on a monthly basis using continuous compounded returns. Mean, Volatility,
Skewness, and Kurtosis denote the annualized mean return, volatility, skewness, and kurtosis. Minimum
and Maximum are the monthly minimum and maximum returns.

Panel A: Cross-Sectional Descriptive Statistics

Asset Statistics United States United Kingdom Germany

Stocks Mean (%) 10.45 10.84 8.75
Volatility (%) 15.77 16.14 22.06
Skewness -0.91 -1.15 -0.92
Kurtosis 6.07 8.05 5.60
Minimum (%) -23.85 -30.02 -28.67
Maximum (%) 12.47 13.72 19.02

Bonds Mean (%) 8.57 10.19 7.34
Volatility (%) 7.91 8.01 5.53
Skewness 0.05 -0.06 -0.29
Kurtosis 3.66 4.45 3.26
Minimum (%) -7.36 -8.16 -5.69
Maximum (%) 9.40 8.17 5.37

Cash (level) Mean (%) 4.46 6.91 4.43
Volatility (%) 0.77 1.01 0.65
Skewness 0.16 0.23 0.55
Kurtosis 2.70 2.39 2.62
Minimum (%) 0.00 0.00 0.00
Maximum (%) 0.01 0.01 0.01

Panel B: Descriptive Statistics of the United States for Subsamples

Asset Statistics Full Sample 1st Half 2nd Half
Jan-82 - Dec-11 Jan-82 - Dec-96 Jan-97 - Dec-11

Stocks Mean (%) 10.45 15.59 5.31
Volatility (%) 15.77 14.47 16.89
Skewness -0.91 -1.12 -0.71
Kurtosis 6.07 9.79 3.94
Minimum (%) -23.85 -23.85 -18.76
Maximum (%) 12.47 12.47 10.42

Bonds Mean (%) 8.57 10.66 6.48
Volatility (%) 7.91 8.10 7.68
Skewness 0.05 0.08 -0.01
Kurtosis 3.66 2.85 4.63
Minimum (%) -7.36 -4.50 -7.36
Maximum (%) 9.40 7.30 9.40

Cash (level) Mean (%) 4.46 6.21 2.71
Volatility (%) 0.77 0.60 0.57
Skewness 0.16 0.45 -0.01
Kurtosis 2.70 3.07 1.44
Minimum (%) 0.00 0.00 0.00
Maximum (%) 0.01 0.01 0.01



3 Optimal Rebalancing 52

ferent risk-adjusted performance measures (Sharpe ratio, Sortino ratio, and Omega

measure). As all these parameters are linked by multiplication, we thus fix the initial

asset allocation at 60% stocks and 40% government bonds in order to concentrate

on our primary research question. Secondly, representing one of the world’s largest

institutional investors by the end of 2011, the GPFG is a predominant example of

having pursued a 60% stocks and 40% government bonds asset allocation in the past,

thereby reflecting the high relevance for investment practice (Chambers et al. (2012),

Norwegian Ministry of Finance (2012)). Thirdly, a 60/40 asset allocation also enables

us to compare and discuss our empirical results with the findings of prior rebalancing

studies.

Moreover, we incorporate realistic transaction costs quoted at 15 bps per round-trip.

In particular, applying well-diversified stock market as well as government bond total

return indices, we quote 10 bps for buying/selling stocks and 5 bps for buying/selling

bonds.

3.3.3 Motivation

The primary objective of our analysis is the statistical comparison of the performance of

different rebalancing strategies under realistic market conditions. For this reason, our

simulation approach is based on historical data. The implementation of the stationary

bootstrap of Politis and Romano (1994) further enables us to preserve time series char-

acteristics and financial market dependencies (such as positive autocorrelation in the

short-run, heteroscedasticity, fat tails, left-skewed return distributions, and asset class

correlations) to the greatest possible extent and to derive valuable recommendations

for portfolio management.

So far, Monte Carlo simulations have been a suitable approach to analyze the impact

of different market conditions on the performance of rebalancing strategies (Jones and

Stine (2010), Sun et al. (2006), Donohue and Yip (2003), and Buetow et al. (2002)).

However, the rising frequency of financial crises provides strong evidence that com-

monly used probability distribution functions, such as the normal distribution or the

t-distribution, seem to be no longer appropriate for modeling financial markets. Not

only the descriptive statistics of Table II substantiates this observation, but also Annaert

et al. (2009), among many others, who document that financial return series tend to be

left-skewed and exhibit fat tails as well as heteroscedasticity. Moreover, as illustrated by

Panel B of Table II, time series characteristics must not be necessarily stable over time.

For example, the studies of Ferson et al. (1987) as well as Ferson and Harvey (1991,

1993) all contribute to the explanation of time-varying risk premia. Engle (1982), Engle

et al. (1987), and Dumas and Solnik (1995) provide analyses on time-varying risk, and

Erb et al. (1994), Ball and Torous (2000), Longin and Solnik (2001), and Buraschi et al.
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(2010) examine time-varying asset class correlations. In summary, all these findings

indicate that an appropriate calibration of the parameters for a Monte Carlo simulation

can be extremely difficult.

Analyses based on real world data avoid most of these difficulties. However, re-

balancing studies that conduct simple historical analyses suffer from the drawback

of examining only a single realization or a fairly small number of realizations. For

example, Jaconetti et al. (2010) analyze an 84-year sample period from 1926 to 2009,

Harjoto and Jones (2006) a 10-year sample period from 1995 to 2004, and Tsai (2001)

a 15-year sample period from 1986 to 2000. Overall, Jaconetti et al. (2010) as well as

Tsai (2001) both argue that there is no universally optimal rebalancing strategy. While

Tsai (2001) concludes that it does not matter much which strategy is adopted, Jaconetti

et al. (2010) recommend a semiannual or annual 5% threshold rebalancing strategy.

Moreover, Harjoto and Jones (2006) report that a 15% monthly threshold rebalancing

strategy is superior compared to other rebalancing strategies during all market phases.

This issue of mixed results is reinforced by the fact that the performance of rebalancing

is highly path-dependent because it constitutes a dynamic portfolio strategy. Therefore,

it cannot be ruled out that the empirical results are also driven to a large extent by

distinctive features of the underlying sample period rather than by the rebalancing

strategy under investigation. Brock et al. (1992) report that this danger of data snooping

can be severe, and thus the empirical findings of simple historical analyses do not allow

reliable interpretations.

3.3.4 Test Design

Based on the limitations of both Monte Carlo simulations and historical analyses, we

perform history-based simulations. Representing a reasonable trade-off, this approach

enables us not only to capture most of the time series information, but also to conduct a

statistical test, thereby clearly separating our analysis of the performance of rebalancing

strategies from both Monte Carlo simulations and historical analyses. In particular, we

apply the stationary bootstrap of Politis and Romano (1994) and test whether the mean

of a difference time series is equal to zero:

H0 : ∆PM = 0 versus H1 : ∆PM , 0, (1)

where PM constitutes the risk-adjusted performance measure, which is either the

Sharpe ratio, the Sortino ratio, or the Omega measure. The difference between the two

performance measures is given by:

∆PM = PMA − PMB, (2)
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where A and B denote rebalancing strategies as classified in Table I. The arithmetic

mean is an appropriate point estimator of (2):

∆̂PM = P̂MA − P̂MB. (3)

Before executing our tests, the parameters performance measure, rebalancing class,
trading frequency, country, and investment horizon have to be specified. In a first step,

we compare different rebalancing strategies within a given rebalancing class. As clas-

sified in Table I, this could either be periodic rebalancing, threshold rebalancing, or

range rebalancing. After having determined the risk-adjusted performance measure of

interest, we end up with three comparisons for each rebalancing class, each country,

and each investment horizon:

Monthly rebalancing - buy-and-hold (M-BAH), (4.1)

Quarterly rebalancing - buy-and-hold (Q-BAH), (4.2)

Yearly rebalancing - buy-and-hold (Y-BAH). (4.3)

Having identified the optimal rebalancing strategy within each rebalancing class, we

compare the performance differences between these three rebalancing strategies in a

second step:

Periodic rebalancing - threshold rebalancing, (4.4)

Periodic rebalancing - range rebalancing, (4.5)

Threshold rebalancing - range rebalancing. (4.6)

By construction, all these strategies will be very similar in their performance, as

already reported in Arnott and Lovell (1993) and Tsai (2001). This similarity comes

at the price that it will be difficult to detect any differences in performance measures.

In fact, the more similar the corresponding rebalancing strategies under investigation,

the more difficult it becomes to uncover statistically significant differences. Therefore,

we expect that statistical significance is less pronounced for comparisons of rebalanc-

ing strategies which either belong to the same rebalancing class (periodic, threshold,

or range rebalancing) or exhibit an identical trading frequency (yearly, quarterly, or

monthly). In contrast, we further hypothesize that statistical significance will be more

pronounced when we compare the optimal rebalancing strategy of each rebalancing

class with each other pairwise. Finally, we conjecture that statistical significance should

be most pronounced for comparisons between excessive rebalancing (periodic monthly

rebalancing) and very infrequent rebalancing (yearly range rebalancing).

We implement the stationary bootstrap of Politis and Romano (1994). Being ap-

plicable to stationary, weakly dependent data, the stationary bootstrap allows us to
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efficiently exploit time series information by simulating realistic market conditions. In

order to generate return paths that could have been realized in the past by drawing

blocks of different lengths, we have to ascertain the probability P for resampling the

return observations. Following a geometric distribution, we take advantage of the

resulting inverse relationship between P and the average block size, which is the ex-

pected reciprocal value of P . We determine the optimal average block size by using

the automatic block-length selection for the dependent bootstrap of Politis and White

(2004), and we further incorporate the corrections made by Patton et al. (2009). Taken

as a whole, an average block length of 2 is recommended for all stock and government

bond time series of all three countries under investigation. Although Table II reports

substantial cross-country differences, this finding allows us to compare our empirical

results derived from the different financial markets of the United States, the United

Kingdom, and Germany.

We start our analysis by bootstrapping pairwise 100 return paths of stocks, govern-

ment bonds, and risk-free rates for each country under investigation. The pairwise

resampling is necessary in order to preserve the cross-sectional dependency structure

between stocks, government bonds, and risk-free-rates. The investment horizons to

be analyzed, namely 5, 7, and 10 years, determine the length of the resampled return

paths. In contrast to Ledoit and Wolf (2008, 2011) who examine a 10-year investment

horizon by bootstrapping from a 10-year sample period, we resample investment hori-

zons of 5, 7, and 10 years by drawing blocks of different lengths from the underlying

30-year sample period. This procedure enables us both to exploit the full information

of the underlying sample period and to compare the impact of different investment

horizons on the performance of rebalancing. In order to conduct statistical comparisons

according to (4.1)− (4.6), we ascertain the rebalancing class, the trading frequency, and

the performance measure of interest and calculate the mean for the corresponding

difference time series. In a second step, we repeat this procedure B times in order to

construct two-sided percentile intervals according to Efron and Tibshirani (1998):

∆̂∗PM[1] ≤ ∆̂∗PM[2] ≤ . . . ≤ ∆̂∗PM[B−1] ≤ ∆̂∗PM[B], (5)

where (5) states the ordered difference series of the performance measure of interest. In

this context, Romano and Wolf (2006) document that the studentized block bootstrap

leads to an improved coverage accuracy for small sample sizes in comparison to normal

theory intervals as well as the basic bootstrap. In case of small to moderate sample

sizes, Ledoit and Wolf (2008, 2011) also suggest a studentized time series bootstrap

if p-values need to be calculated. Nevertheless, covering 30 years with 360 monthly

return observations, our sample period can be considered as large, legitimating the
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construction of percentile intervals as described by Efron and Tibshirani (1998):

CI =
[
∆̂∗
PM[α2 ·B], ∆̂

∗
PM[(1−α2 )·B]

]
. (6)

The null hypothesis H0 is rejected at the significance level α if 0 < CI . The nominal

levels of α to be considered are 0.01, 0.05, and 0.10. We conduct B = 1,000 simulations.

Repeated simulations reveal that our results are stable in capturing the underlying

sample patterns.

3.4 Empirical Simulation Results

Taking both the return and the risk of a portfolio strategy into account, we apply

the Sharpe ratio, the Sortino ratio, and the Omega measure in order to appropriately

evaluate portfolio performance. We start our discussion by comparing the risk-adjusted

performance on a statistical basis within each of the three rebalancing classes periodic,

threshold, and range rebalancing. Our analysis proceeds with the statistical comparison

of the risk-adjusted performance of rebalancing between these classes.

3.4.1 Periodic Rebalancing

The Sharpe ratio (Sharpe (1966)) is the most commonly used risk-adjusted performance

measure in investment practice. Panel A of Table III shows the average annualized

Sharpe ratios of periodic rebalancing classified by trading frequency, investment hori-

zon, and country. On average, quarterly periodic rebalancing exhibits higher Sharpe

ratios for all countries and all investment horizons under investigation compared to

both monthly and yearly rebalancing. This finding provides a first hint that both too

frequent as well as too infrequent rebalancing could lead to an inferior risk-adjusted

portfolio performance.

Although we observe a similar pattern for all three countries under investigation,

Table III also clearly illustrates the cross-country differences. Assuming a 10-year

investment horizon and yearly periodic rebalancing by way of example, the average

Sharpe ratio of the United States is 0.579, whereas the average Sharpe ratios of the

United Kingdom and Germany are substantially lower with values of 0.389 and 0.355,

respectively. Again, classified by country and investment horizon, Table IV proves

whether the differences in the average risk-adjusted performance reported in Table

III are statistically significant or whether they can simply be ascribed to a distinctive

feature of the underlying sample period. If both boundaries are positive (negative), the

first rebalancing strategy causes a significantly higher (lower) average risk-adjusted

performance compared to the second one. Otherwise, the confidence interval includes



3 Optimal Rebalancing 57

Table III – Average Risk-Adjusted Performance of Periodic Rebalancing
Classified by country and investment horizon, this table shows the average risk-adjusted performance
of periodic rebalancing with yearly, quarterly, and monthly trading intervals over the sample period
from January 1982 to December 2011. Panel A reports the average annualized Sharpe ratios, Panel B the
average annualized Sortino ratios, and Panel C the average Omega measures. All strategies are based on
a 60% stocks and 40% bonds asset allocation with a threshold of 0%. Transaction costs are quoted at
15 bps per round-trip. 1,000 simulations with an average block length of 2 are performed. Repeated
simulations reveal that the results are stable.

Period Rebalancing Strategy United States United Kingdom Germany

Panel A: Average Annualized Sharpe Ratios

5 Yearly Rebalancing 0.580 0.354 0.354
5 Quarterly Rebalancing 0.583 0.356 0.359
5 Monthly Rebalancing 0.580 0.355 0.356

7 Yearly Rebalancing 0.597 0.398 0.369
7 Quarterly Rebalancing 0.598 0.399 0.372
7 Monthly Rebalancing 0.594 0.398 0.368

10 Yearly Rebalancing 0.579 0.389 0.355
10 Quarterly Rebalancing 0.579 0.390 0.356
10 Monthly Rebalancing 0.575 0.389 0.351

Panel B: Average Annualized Sortino Ratios

5 Yearly Rebalancing 2.008 1.927 1.227
5 Quarterly Rebalancing 2.027 1.942 1.246
5 Monthly Rebalancing 2.022 1.941 1.242

7 Yearly Rebalancing 1.945 1.939 1.191
7 Quarterly Rebalancing 1.956 1.949 1.201
7 Monthly Rebalancing 1.949 1.946 1.193

10 Yearly Rebalancing 1.831 1.816 1.116
10 Quarterly Rebalancing 1.836 1.821 1.122
10 Monthly Rebalancing 1.828 1.817 1.112

Panel C: Average Omega Measures

5 Yearly Rebalancing 1.380 1.328 0.843
5 Quarterly Rebalancing 1.393 1.340 0.856
5 Monthly Rebalancing 1.390 1.339 0.853

7 Yearly Rebalancing 1.334 1.331 0.815
7 Quarterly Rebalancing 1.340 1.338 0.822
7 Monthly Rebalancing 1.334 1.336 0.817

10 Yearly Rebalancing 1.240 1.234 0.760
10 Quarterly Rebalancing 1.243 1.237 0.764
10 Monthly Rebalancing 1.237 1.234 0.758

zero, implying that the difference is lost in estimation error and that no statistical

inferences can be drawn. In eight out of nine cases, monthly periodic rebalancing

leads to a significantly lower Sharpe ratio compared to quarterly periodic rebalancing.

Although we cannot uncover statistical significance for the financial market of the

United Kingdom with an underlying 5-year investment horizon, the position of the 10%

quantile (indicated by the magnitude of the lower and upper boundary) suggests that
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quarterly periodic rebalancing seems to produce a superior risk-adjusted performance

in terms of average Sharpe ratios in comparison to monthly periodic rebalancing as well.

Even if – in most cases – no significance can be detected, the magnitude of the lower

and the upper boundary of the underlying 10% quantiles in Panel A of Table IV further

reveals that yearly periodic rebalancing also tends to produce inferior risk-adjusted

average Sharpe ratios in comparison to quarterly periodic rebalancing.

From an economic perspective, positive deviations from the target return are not

expected to be perceived as risk by investors, but rather as an opportunity to generate

an extra return on the invested capital. Therefore, in addition to the Sharpe ratio, we

also apply the Sortino ratio, which only takes negative deviations from the expected

return into account (Sortino and Price (1994)):

Si(τ) =
r̄i − τ√∫ τ

−∞(τ − ri)2f (ri)dri
, (7)

where r̄i is the average return of the underlying rebalancing strategy i, f (ri) the corre-

sponding probability density function, and τ the target return required by the investor.

We set the target return to zero, which allows us to differentiate between realized gains

and losses.

Table IV – CIs: Average Risk-Adjusted Performance of Periodic Rebalancing
Classified by country and investment horizon, this table shows the confidence intervals of the difference
time series of periodic rebalancing of the average Sharpe ratio (Panel A), of the average Omega measure
(Panel B), and of the average Sortino ratio (Panel C). The sample period ranges from January 1982 to
December 2011. All strategies are based on a 60% stocks and 40% bonds asset allocation with a threshold
of 0%. Transaction costs are quoted at 15 bps per round-trip. Y denotes yearly periodic rebalancing, Q
quarterly periodic rebalancing, and M monthly periodic rebalancing. For example, M-Q denotes the
difference time series of ‘Monthly periodic rebalancing minus quarterly periodic rebalancing’. For each
two strategies that are compared, the lower and upper boundary of the confidence interval is calculated.
1,000 simulations with an average block length of 2 are performed. Repeated simulations reveal that the
results are stable. ∗, ∗∗, and ∗∗∗ represent statistical significance at the 10%, 5%, and 1% level, respectively.
If there is no statistical significance, the corresponding 10% quantiles are reported.

Period Strategies United States United Kingdom Germany

Panel A: Average Annualized Sharpe Ratio of Periodic Rebalancing

5 M-Q −0.0059 −0.0004∗∗∗ −0.0025 0.0002 −0.0058 0.0000∗∗

5 M-Y −0.0042 0.0038 −0.0016 0.0044 −0.0024 0.0074
5 Q-Y −0.0005 0.0065 0.0000 0.0053∗ 0.0010 0.0101∗

7 M-Q −0.0065 −0.0015∗∗∗ −0.0028 −0.0001∗ −0.0078 −0.0010∗∗∗

7 M-Y −0.0062 0.0011 −0.0027 0.0030 −0.0060 0.0032
7 Q-Y −0.0019 0.0044 −0.0009 0.0042 −0.0013 0.0071

10 M-Q −0.0066 −0.0020∗∗∗ −0.0029 −0.0003∗∗ −0.0081 −0.0022∗∗∗

10 M-Y −0.0072 −0.0005∗ −0.0035 0.0015 −0.0077 0.0003
10 Q-Y −0.0028 0.0032 −0.0016 0.0028 −0.0026 0.0049

continued
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Table IV – Continued

Panel B: Average Annualized Sortino Ratio of Periodic Rebalancing

5 M-Q −0.0100 0.0008 −0.0060 0.0028 −0.0102 0.0014
5 M-Y −0.0000 0.0278 0.0018 0.0271∗∗ 0.0015 0.0285∗

5 Q-Y 0.0003 0.0389∗∗∗ 0.0011 0.0316∗∗∗ 0.0042 0.0338∗∗

7 M-Q −0.0126 −0.0014∗∗ −0.0073 0.0009 −0.0141 0.0020∗∗

7 M-Y −0.0086 0.0144 −0.0031 0.0168 −0.0086 0.0147
7 Q-Y −0.0000 0.0206 0.0010 0.0186∗ 0.0004 0.0221∗

10 M-Q −0.0149 −0.0015∗∗∗ −0.0068 −0.0003∗ −0.0169 0.0034∗∗∗

10 M-Y −0.0120 0.0076 −0.0067 0.0094 −0.0137 0.0055
10 Q-Y −0.0031 0.0152 −0.0022 0.0124 −0.0032 0.0148

Panel C: Average Omega Measure of Periodic Rebalancing

5 M-Q −0.0068 0.0194 −0.0037 0.0164 −0.0057 0.0205
5 M-Y 0.0006 0.0194∗ 0.0022 0.0201∗∗ 0.0006 0.0215∗∗

5 Q-Y 0.0012 0.0274∗∗∗ 0.0013 0.0224∗∗∗ 0.0004 0.0253∗∗∗

7 M-Q −0.0108 −0.0011∗∗∗ −0.0047 0.0008 −0.0085 −0.0010∗∗

7 M-Y −0.0070 0.0079 −0.0016 0.0114 −0.0048 0.0100
7 Q-Y −0.0002 0.0130 0.0012 0.0126∗ 0.0007 0.0142∗

10 M-Q −0.0110 −0.0027∗∗∗ −0.0055 −0.0004∗∗ −0.0103 −0.0021∗∗∗

10 M-Y −0.0095 0.0029 −0.0052 0.0050 −0.0082 0.0040
10 Q-Y −0.0025 0.0086 −0.0018 0.0074 −0.0018 0.0097

Although the economic impact seems to be small, Panel B of Table III substantiates

the observation that there may be an optimal trading frequency. Again, quarterly

periodic rebalancing produces the highest risk-adjusted portfolio performance for all

countries and all investment horizons compared to both monthly and yearly periodic

rebalancing. All in all, Panel B of Table IV reconfirms our findings in Panel A of Table

IV. In five out of nine cases, quarterly periodic rebalancing leads to significantly higher

average Sortino ratios compared to both monthly and yearly periodic rebalancing. With

regard to the remaining cases, the positions of the 10% quantile also indicate without

any exception that quarterly periodic rebalancing tends to exhibit a higher risk-adjusted

portfolio performance in terms of average Sortino ratios.

As neither the Sharpe ratio nor the Sortino ratio account for higher moments, such

as the skewness of a return distribution or its kurtosis, portfolio recommendations

derived on the basis of these risk-adjusted performance measures could be biased. By

way of example, since the turn of the millennium, the dot.com bubble burst of 2000,

the destabilization effects of 9/11, the subprime mortgage crisis of 2007, and – most

recently – the European sovereign debt crisis of 2010 all have impressively shown

that fat tails must not be ignored. For this reason, we additionally use the Omega

measure, which considers the entire return distribution (Shadwick and Keating (2002)).

Representing a special case of the more general performance measure Kappa (Kaplan
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and Knowles (2004)), it is defined as the ratio of gains to losses relative to a predefined

target return:

Ωi(τ) =

∫∞
τ

(1−F(ri))dri∫ τ
−∞F(ri)dri

, (8)

where F(ri) denotes the cumulative distribution function of the monthly return r of

rebalancing strategy i, and τ is the investor’s required rate of return, which we again set

to zero. The results in Panel C of Table III and in Panel C of Table IV are qualitatively

similar to those in Panel B of Table III and in Panel B of Table IV, thereby substantiating

the empirical finding that quarterly periodic rebalancing tends to exhibit a superior

risk-adjusted performance compared to both monthly and yearly periodic rebalancing.

Taken as a whole, we conclude that both too frequent as well as too infrequent

rebalancing results in a suboptimal portfolio performance. Following Ledoit and Wolf

(2011), we also modify the average block length to six instead of two as a further robust-

ness check. The results (not reported) are even stronger in this case. In fact, we even

observe that monthly periodic rebalancing is significantly outperformed in comparison

to quarterly periodic rebalancing for all three countries, all three investment horizons,

and all three risk-adjusted performance measures under investigation. Therefore, our

results contradict the recommendation of Arnott and Lovell (1993), who suggest that

investors with a long investment horizon should rebalance on a monthly basis.

3.4.2 Interval Rebalancing

Searching for an optimal rebalancing strategy, we additionally test threshold and range

rebalancing strategies by implementing a symmetric no-trade region around the target

weights. Once a rebalancing threshold is introduced, there are two cases that need to be

distinguished with regard to the practical implementation. If a rebalancing is necessary

at the end of the predetermined period, the portfolio weights can be reallocated either

to the original target weights (Buetow et al. (2002), Harjoto and Jones (2006)) or to the

nearest edge of the original target weights (Leland (1999)). As explained above, thresh-

old rebalancing refers to strategies (4)− (6) whereas range rebalancing corresponds to

strategies (7)− (9) in Table I.

Table V provides only weak statistical evidence that quarterly threshold rebalancing

leads to a better risk-adjusted performance compared to both monthly and yearly

threshold rebalancing. However, the positions of the 10% quantile again indicate that

quarterly threshold rebalancing seems to produce the highest average risk-adjusted

performance for all countries under investigation. This pattern changes with respect

to range rebalancing. Table VI documents that yearly range rebalancing is signifi-
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Table V – CIs: Average Risk-Adjusted Performance of Threshold Rebalancing
Classified by country and investment horizon, this table shows the confidence intervals of the difference
time series of threshold rebalancing of the average Sharpe ratio (Panel A), of the average Omega measure
(Panel B), and of the average Sortino ratio (Panel C). The sample period ranges from January 1982 to
December 2011. All strategies are based on a 60% stocks and 40% bonds asset allocation with a threshold
of 3%. Transaction costs are quoted at 15 bps per round-trip. Y denotes yearly threshold rebalancing,
Q quarterly threshold rebalancing, and M monthly threshold rebalancing. For example, M-Q denotes
the difference time series of ‘Monthly threshold rebalancing minus quarterly threshold rebalancing’.
For each two strategies that are compared, the lower and upper boundary of the confidence interval is
calculated. 1,000 simulations with an average block length of 2 are performed. Repeated simulations
reveal that the results are stable. ∗, ∗∗, and ∗∗∗ represent statistical significance at the 10%, 5%, and 1%
level, respectively. If there is no statistical significance, the corresponding 10% quantiles are reported.

Period Strategies United States United Kingdom Germany

Panel A: Average Annualized Sharpe Ratio of Periodic Rebalancing

5 M-Q −0.0032 0.0014 −0.0021 0.0015 −0.0043 0.0012
5 M-Y −0.0022 0.0058 −0.0007 0.0051 −0.0013 0.0083
5 Q-Y −0.0011 0.0065 −0.0002 0.0053 0.0000 0.0107∗∗

7 M-Q −0.0036 0.0006 −0.0024 0.0012 −0.0049 −0.0002∗

7 M-Y −0.0038 0.0034 −0.0021 0.0038 −0.0045 0.0046
7 Q-Y −0.0021 0.0045 −0.0011 0.0041 −0.0016 0.0069

10 M-Q −0.0038 0.0000∗ −0.0025 0.0005 −0.0066 −0.0003∗∗∗

10 M-Y −0.0049 0.0018 −0.0028 0.0024 −0.0061 0.0018
10 Q-Y −0.0027 0.0035 −0.0018 0.0031 −0.0026 0.0050

Panel B: Average Annualized Sortino Ratio of Threshold Rebalancing

5 M-Q −0.0075 0.0083 −0.0055 0.0071 −0.0092 0.0053
5 M-Y 0.0004 0.0286∗ 0.0006 0.0254∗∗ 0.0011 0.0279∗

5 Q-Y 0.0010 0.0277∗ 0.0002 0.0248∗∗ 0.0016 0.0313∗∗

7 M-Q −0.0083 0.0055 −0.0070 0.0052 −0.0106 0.0017
7 M-Y −0.0054 0.0180 −0.0049 0.0161 −0.0076 0.0167
7 Q-Y −0.0030 0.0192 −0.0022 0.0163 −0.0021 0.0202

10 M-Q −0.0093 0.0029 −0.0079 −0.0008∗∗ −0.0118 0.0029
10 M-Y −0.0089 0.0112 −0.0073 0.0096 −0.0120 0.0075
10 Q-Y −0.0056 0.0138 −0.0053 0.0115 −0.0049 0.0135

Panel C: Average Omega Measure of Threshold Rebalancing

5 M-Q −0.0053 0.0053 −0.0036 0.0051 −0.0053 0.0033
5 M-Y 0.0002 0.0187∗ 0.0003 0.0180∗∗ 0.0007 0.0187∗

5 Q-Y 0.0009 0.0183∗ 0.0005 0.0172∗∗ 0.0017 0.0201∗∗

7 M-Q −0.0063 0.0028 −0.0047 0.0033 −0.0065 0.0009
7 M-Y −0.0048 0.0102 −0.0033 0.0105 −0.0049 0.0106
7 Q-Y −0.0027 0.0117 −0.0016 0.0107 −0.0013 0.0126

10 M-Q −0.0064 0.0010 −0.0047 0.0014 −0.0078 −0.0006∗∗

10 M-Y −0.0069 0.0058 −0.0055 0.0053 −0.0076 0.0048
10 Q-Y −0.0039 0.0079 −0.0036 0.0067 −0.0031 0.0083

cantly outperformed by both quarterly and monthly range rebalancing in almost all

cases. Moreover, monthly range rebalancing also tends to feature a better risk-adjusted

performance compared to quarterly range rebalancing.
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Table VI – CIs: Average Risk-Adjusted Performance of Range Rebalancing
Classified by investment horizon, this table shows the confidence intervals of the difference time series
of range rebalancing of the average Sharpe ratio (Panel A), of the average Omega measure (Panel B),
and of the average Sortino ratio (Panel C). The sample period ranges from January 1982 to December
2011. All strategies are based on a 60% stocks and 40% bonds asset allocation with a threshold of 3%.
Transaction costs are quoted at 15 bps per round-trip. Y denotes yearly range rebalancing, Q quarterly
range rebalancing, and M monthly range rebalancing. For example, M-Q denotes the difference time
series of ‘Monthly range rebalancing minus quarterly range rebalancing’. For each two strategies that
are compared, the lower and upper boundary of the confidence interval is calculated. 1,000 simulations
with an average block length of 2 are performed. Repeated simulations reveal that the results are stable.
∗, ∗∗, and ∗∗∗ represent statistical significance at the 10%, 5%, and 1% level, respectively. If there is no
statistical significance, the corresponding 10% quantiles are reported.

Period Strategies United States United Kingdom Germany

Panel A: Average Annualized Sharpe Ratio of Range Rebalancing

5 M-Q −0.0002 0.0021 0.0000 0.0018∗ 0.0002 0.0034∗

5 M-Y 0.0018 0.0099∗∗∗ 0.0014 0.0076∗∗∗ 0.0038 0.0159∗∗∗

5 Q-Y 0.0017 0.0084∗∗∗ 0.0009 0.0065∗∗∗ 0.0026 0.0133∗∗∗

7 M-Q −0.0008 0.0013 −0.0004 0.0013 −0.0007 0.0022
7 M-Y 0.0007 0.0071∗∗ 0.0005 0.0056∗∗ 0.0006 0.0125∗∗∗

7 Q-Y 0.0000 0.0069∗∗∗ 0.0000 0.0059∗∗∗ 0.0005 0.0110∗∗∗

10 M-Q −0.0012 0.0008 −0.0008 0.0007 −0.0012 0.0013
10 M-Y −0.0001 0.0049 −0.0004 0.0036 0.0001 0.0081∗∗

10 Q-Y 0.0001 0.0051∗∗ 0.0000 0.0034∗ 0.0005 0.0076∗∗

Panel B: Average Annualized Sortino Ratio of Range Rebalancing

5 M-Q 0.0013 0.0105∗∗ 0.0010 0.0099∗∗∗ 0.0012 0.0111∗∗

5 M-Y 0.0139 0.0444∗∗∗ 0.0092 0.0359∗∗∗ 0.0135 0.0472∗∗∗

5 Q-Y 0.0102 0.0380∗∗∗ 0.0062 0.0287∗∗∗ 0.0091 0.0375∗∗∗

7 M-Q −0.0001 0.0068 0.0000 0.0061∗ −0.0006 0.0070
7 M-Y 0.0058 0.0358∗∗∗ 0.0024 0.0297∗∗∗ 0.0041 0.0369∗∗∗

7 Q-Y 0.0054 0.0296∗∗∗ 0.0021 0.0243∗∗∗ 0.0037 0.0303∗∗∗

10 M-Q −0.0014 0.0045 −0.0015 0.0034 −0.0022 0.0041
10 M-Y 0.0016 0.0264∗∗∗ 0.0007 0.0170∗∗ 0.0002 0.0264∗∗∗

10 Q-Y 0.0025 0.0232∗∗∗ 0.0010 0.0148∗∗ 0.0014 0.0251∗∗∗

Panel C: Average Omega Measure of Range Rebalancing

5 M-Q 0.0007 0.0070∗∗ 0.0006 0.0071∗∗∗ 0.0010 0.0073∗∗

5 M-Y 0.0090 0.0323∗∗∗ 0.0065 0.0257∗∗∗ 0.0083 0.0317∗∗∗

5 Q-Y 0.0071 0.0268∗∗∗ 0.0046 0.0200∗∗∗ 0.0060 0.0252∗∗∗

7 M-Q −0.0007 0.0040 −0.0001 0.0042 −0.0003 0.0045
7 M-Y 0.0033 0.0218∗∗∗ 0.0010 0.0205∗∗∗ 0.0024 0.0235∗∗∗

7 Q-Y 0.0033 0.0194∗∗∗ 0.0009 0.0164∗∗∗ 0.0025 0.0205∗∗∗

10 M-Q −0.0011 0.0027 −0.0013 0.0020 −0.0013 0.0026
10 M-Y 0.0008 0.0169∗∗∗ 0.0004 0.0096∗ 0.0001 0.0172∗∗∗

10 Q-Y 0.0012 0.0146∗∗∗ 0.0003 0.0086∗ 0.0009 0.0157∗∗∗

Overall, our results provide strong evidence that both excessive rebalancing (monthly

periodic rebalancing) as well as too infrequent rebalancing (yearly range rebalancing)

leads on average to inferior Sharpe ratios, Sortino ratios, and Omega measures. As a
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consequence, our empirical findings indicate that there may be an optimal rebalancing

strategy. However, this result contradicts the reasoning of Jaconetti et al. (2010) as well

as that of Tsai (2001), who all conclude from their analyses that there is no universally

optimal rebalancing strategy. In contrast, we show that the optimal trading patterns

change with respect to the underlying rebalancing strategy (periodic, threshold or

range rebalancing). While a quarterly trading frequency seems optimal for periodic

and threshold rebalancing, it is a monthly trading frequency that tends to produce the

best results for range rebalancing.

3.4.3 Optimal Rebalancing

Having analyzed the trading patterns within a given rebalancing class, the question

of interest that now arises is which of these rebalancing strategies performs best.

Therefore, we compare the average risk-adjusted performance of quarterly periodic

rebalancing, quarterly threshold rebalancing, and monthly range rebalancing with each

other. Table VII documents that monthly range rebalancing leads to a significantly

lower risk-adjusted performance in terms of Sharpe ratios, Sortino ratios, and Omega

measures at least at the 5% level compared with both quarterly periodic rebalancing

and quarterly threshold rebalancing. Although we cannot detect statistical significance

with regard to average Sharpe ratios, Panel B as well as Panel C of Table VII document

that, on average, quarterly periodic rebalancing offers significantly higher Sortino

ratios and Omega measures for all three countries and all investment horizons under

investigation compared to quarterly threshold rebalancing.

As expected, statistical significance is more pronounced for pairwise comparisons

between the optimal rebalancing strategies of each rebalancing class in contrast to pair-

wise comparisons within a particular rebalancing class. Although we do not present

all possible pairwise comparisons of rebalancing strategies for the sake of brevity, we

observe statistical significance at least at the 5% level in terms of the Omega measure

for all comparisons between quarterly periodic rebalancing and quarterly threshold

rebalancing. As statistical significance is less pronounced for pairwise comparisons

within a specific rebalancing class, as shown by Tables IV, V, and VI, respectively, we

note that the rebalancing algorithm itself will have a higher impact on the performance

of rebalancing compared to the trading frequency.

In conclusion, if an investor identifies rebalancing as an appropriate portfolio strat-

egy subject to the underlying risk and return preferences as well as the regulatory

environment, our empirical simulation analysis supports a quarterly periodic rebalanc-

ing strategy. This finding is in line with the long-term strategy of the GPFG, which also

adopts a quarterly trading frequency (Chambers et al. (2012), Norwegian Ministry of

Finance (2012)). However, we further show that the benefit from reduced transaction
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Table VII – CIs: Average Risk-Adjusted Performance of Optimal Rebalancing
Classified by investment horizon, this table shows the confidence intervals of the difference time series
of the average annualized Sharpe ratio between quarterly periodic rebalancing, quarterly threshold
rebalancing, and monthly range rebalancing. The sample period ranges from January 1982 to December
2011. All strategies are based on a 60% stocks and 40% bonds asset allocation. The no-trade region
comprises ±3% around the target weights. Transaction costs are quoted at 15 bps per round-trip. For
example, Periodic-Range denotes the difference time series of ‘Quarterly periodic rebalancing minus
monthly range rebalancing’. For each two strategies that are compared, the lower and upper boundary of
the confidence interval is calculated. 1,000 simulations with an average block length of 2 are performed.
Repeated simulations reveal that the results are stable. ∗, ∗∗, and ∗∗∗ represent statistical significance at
the 10%, 5%, and 1% level, respectively. If there is no statistical significance, the corresponding 10%
quantiles are reported.

Period Strategies United States United Kingdom Germany

Panel A: Average Annualized Sharpe Ratio

5 Periodic-Threshold −0.0004 0.0036 −0.0006 0.0025 −0.0007 0.0029
5 Periodic-Range 0.0024 0.0102∗∗∗ 0.0010 0.0069∗∗∗ 0.0010 0.0088∗∗∗

5 Threshold-Range 0.0007 0.0079∗∗∗ 0.0001 0.0058∗∗∗ 0.0003 0.0079∗∗∗

7 Periodic-Threshold −0.0007 0.0029 −0.0005 0.0024 −0.0008 0.0024
7 Periodic-Range 0.0010 0.0082∗∗∗ 0.0008 0.0068∗∗∗ 0.0005 0.0076∗∗∗

7 Threshold-Range 0.0002 0.0065∗∗∗ 0.0006 0.0047∗∗ 0.0003 0.0059∗∗

10 Periodic-Threshold −0.0008 0.0021 −0.0007 0.0018 −0.0008 0.0019
10 Periodic-Range 0.0000 0.0063∗∗∗ 0.0004 0.0045∗∗ 0.0006 0.0053∗∗

10 Threshold-Range 0.0003 0.0048∗∗ 0.0001 0.0037∗∗ 0.0002 0.0047∗∗

Panel B: Average Annualized Sortino Ratio

5 Periodic-Threshold 0.0026 0.0197∗∗ 0.0014 0.0191∗∗∗ 0.0008 0.0109∗

5 Periodic-Range 0.0179 0.0472∗∗∗ 0.0166 0.0414∗∗∗ 0.0088 0.0303∗∗∗

5 Threshold-Range 0.0078 0.0349∗∗∗ 0.0071 0.0292∗∗∗ 0.0035 0.0240∗∗∗

7 Periodic-Threshold 0.0010 0.0154∗∗ 0.0000 0.0174∗∗∗ 0.0003 0.0090∗

7 Periodic-Range 0.0019 0.0360∗∗∗ 0.0113 0.0338∗∗∗ 0.0058 0.0253∗∗∗

7 Threshold-Range 0.0049 0.0268∗∗∗ 0.0051 0.0240∗∗∗ 0.0018 0.0211∗∗∗

10 Periodic-Threshold 0.0004 0.0114∗∗ 0.0006 0.0113∗∗ 0.0002 0.0070∗

10 Periodic-Range 0.0077 0.0263∗∗∗ 0.0062 0.0252∗∗∗ 0.0042 0.0192∗∗∗

10 Threshold-Range 0.0029 0.0211∗∗∗ 0.0019 0.0177∗∗∗ 0.0008 0.0162∗∗∗

Panel C: Average Omega Measure

5 Periodic-Threshold 0.0010 0.0159∗∗∗ 0.0020 0.0146∗∗∗ 0.0005 0.0080∗∗

5 Periodic-Range 0.0127 0.0346∗∗∗ 0.0127 0.0315∗∗∗ 0.0067 0.0208∗∗∗

5 Threshold-Range 0.0055 0.0249∗∗∗ 0.0057 0.0213∗∗∗ 0.0033 0.0160∗∗∗

7 Periodic-Threshold 0.0012 0.0101∗∗ 0.0012 0.0122∗∗∗ 0.0005 0.0065∗∗

7 Periodic-Range 0.0088 0.0244∗∗∗ 0.0096 0.0250∗∗∗ 0.0051 0.0174∗∗∗

7 Threshold-Range 0.0036 0.0181∗∗∗ 0.0046 0.0172∗∗∗ 0.0021 0.0142∗∗∗

10 Periodic-Threshold 0.0004 0.0072∗∗ 0.0003 0.0085∗∗∗ 0.0003 0.0051∗∗

10 Periodic-Range 0.0051 0.0171∗∗∗ 0.0056 0.0177∗∗∗ 0.0037 0.0136∗∗∗

10 Threshold-Range 0.0022 0.0138∗∗∗ 0.0021 0.0122∗∗∗ 0.0014 0.0109∗∗∗

costs due to the implemented no-trade region around the target weights does not

outweigh a lower value added resulting from altered risk and return characteristics.

With respect to the GPFG, two additional arguments are worth noting that advantage
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quarterly periodic rebalancing in comparison to quarterly threshold rebalancing. First

of all, transaction costs of the GPFG are expected to be lower than 15 bps per round-trip

due to its bargaining power. Secondly, our analysis is based on lump-sum payments

taking place at the beginning of the underlying investment horizon, whereas the GPFG

receives a steady cash inflow from selling a part of Norway’s petroleum resources.

Reducing the need for reallocating the portfolio weights, this partial rebalancing also

contributes to saving transaction costs.

Although the economic impact seems to be small at a first glance, it is an important

finding for investment practice that our primary results are statistically significant and

robust across countries. Even small differences are expected to be economically relevant

if AuM are of considerable size. With over 550 billion US$ AuM by the end of 2011, the

GPFG is a good example for a large institutional investor who conducts rebalancing as

a cost-efficient rule-based investment strategy. In order to illustrate and compare the

return potential between monthly and quarterly periodic rebalancing, we construct a

hypothetical example similar to the GPFG. Obtaining the input parameters from the

financial market of the United States, we assume an average Sharpe ratio of 0.575 for

monthly periodic rebalancing and 0.579 for quarterly periodic rebalancing, respectively.

We further keep the underlying volatility constant at 10% p.a.2 The resulting implicit

annual excess return would be 5.75% for monthly periodic rebalancing and 5.79% for

quarterly periodic rebalancing. Therefore, given that both strategies exhibit the same

risk potential, the overall excess return potential would amount to 220 million US$.

Taking the closest investor perspective possible, we further substantiate our history-

based simulation findings by illustrating the risk-adjusted performance of both quar-

terly and monthly periodic rebalancing of past investment periods. In particular, we

apply a rolling window approach, which enables us to calculate the corresponding

Sharpe ratios of overlapping 10-year investment horizons realized in the past. In order

to completely capture the impact of the 2007 subprime mortgage crisis, we start our

analysis in January 1998, as December 2007 officially represents the beginning of the

resulting economic downturn according to the National Bureau of Economic Research

(2012). Therefore, the last observation of the first 10-year investment horizon of our

rolling window approach is December 2007.

Illustrating the resulting Sharpe ratios of both quarterly and monthly periodic rebal-

ancing by way of example, Panel A of Figure I confirms our history-based simulation

results. Two observations are particularly noteworthy. Firstly, the historical Sharpe

ratios of both strategies are very close to each other, thus confirming our simulation

2 In results not shown, monthly periodic rebalancing exhibits – on average – a marginally lower annual
return as well as a marginally higher annual risk in terms of volatility and semi-volatility for all
countries and all investment horizons compared to quarterly periodic rebalancing, leading to inferior
average Sharpe ratios.
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Figure I – Sharpe Ratios of a 10-Year Rolling Window

(A) 15 bps Transaction Costs

(B) 100 bps Transaction Costs
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findings where the differences in performance measures are marginal. This similarity

of different rebalancing strategies is also documented in Arnott and Lovell (1993) as

well as Tsai (2001). Secondly, quarterly periodic rebalancing again clearly outperforms

monthly periodic rebalancing. This effect even increases with higher transaction costs.

In order to stay focused on our main contribution – the statistical comparison of differ-

ent rebalancing strategies’ risk-adjusted performance – this study focuses on developed

stock and governments bond markets with a high trading volume. Therefore, quoting

transaction costs at 15 bps per round-trip can be seen as rather conservative. However,

many institutional investors also invest in less liquid markets, which causes higher

transaction costs. Therefore, Panel B of Figure I quotes transaction costs at 100 bps per

round-trip (Pesaran and Timmermann (1994)) in order to show the impact of higher

transaction costs on the risk-adjusted performance of rebalancing. Transaction costs

have a negative impact on the level of risk-adjusted performance of both quarterly and

monthly periodic rebalancing. However, it is apparent that this effect is only of minor

importance. Moreover, the higher the trading frequency, the more pronounced the

negative impact of higher transaction costs will be. As expected, Panel B of Figure I

shows that the outperformance of quarterly periodic rebalancing compared to monthly

periodic rebalancing is stronger with higher transaction costs – even though this effect

is marginal.

Overall, the rolling window approach represents actual investor performance and

confirms the results of our history-based simulation approach. As quarterly and

monthly periodic rebalancing differ only in the trading intervals, the difference in

risk-adjusted performance is very close in most instances. However, although transac-

tion costs are quoted at only 15 bps per round-trip, both our history-based simulation

and our rolling window approach provide strong evidence that, on average, quarterly

periodic rebalancing outperforms monthly periodic rebalancing.

3.4.4 Impact of Time Series Characteristics on Portfolio

Performance

A still open question is which driving force is responsible for the observation that, on

average, monthly periodic rebalancing exhibits a lower risk-adjusted performance com-

pared to quarterly periodic rebalancing. This result remains valid even if transaction

costs are excluded from our analysis (not reported). Possible sources could be time

series characteristics, such as short-term momentum and long-term mean-reversion,

the cross-correlation between stocks and bonds, and distributional characteristics of

the return generating process. In order to shed light on this issue, we conduct a simple

Monte Carlo simulation, assuming a geometric Brownian motion with normally dis-
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tributed stock and government bond markets returns as well as a correlation of zero

in a first step. We further calibrate the parameters ‘mean’ and ‘volatility’ by applying

the average values of the US financial markets over the entire 30-year sample period.

Based on Table II, we use 10.45% (8.57%) as the average annual sample mean for stocks

(government bonds) and 15.77% (7.91%) as the corresponding average annual volatility.

Furthermore, we keep the risk-free rate constant at the long-term average of 4.46%.

Our simulations (results not tabulated) do not detect any differences in risk-adjusted

performance measures between monthly and quarterly periodic rebalancing.

In a second step, we completely break down the time series structure of our real-

world data by using a fixed block length of 1 in the stationary bootstrap. This procedure

deletes short-term momentum, but preserves both the distributional characteristics as

well as the correlation structure between stocks and bonds. Again, we do not detect

any statistical differences in risk-adjusted performance measures between monthly

and quarterly periodic rebalancing (results not tabulated). As statistical significance

completely disappears if the time series structure is destroyed, we conclude that time

series characteristics – especially short-term momentum – are the primary sources

capable of explaining the statistically significant differences in average Sharpe ratios

between monthly and quarterly periodic rebalancing. While we do not have a simple

explanation at hand, we suspect that the interrelations between returns, risk, and – in

particular – portfolio weights are responsible for this finding.

3.5 Conclusion

This study compares the risk-adjusted performance of different rebalancing strategies

under realistic market conditions by reporting statistical significance levels. First of all,

we document that monthly periodic rebalancing features a lower average risk-adjusted

performance for all three countries and for all investment horizons under investigation

in comparison to quarterly periodic rebalancing. Moreover, as yearly range rebalancing

also leads to inferior Sharpe ratios, Sortino ratios, and Omega measures, our results

imply that there is an optimal rebalancing strategy with both excessive rebalancing

(monthly periodic rebalancing) as well as too infrequent rebalancing (yearly range

rebalancing) provoking a suboptimal risk-adjusted performance. Secondly, the optimal

trading frequency is subject to the underlying rebalancing algorithm. Within the

corresponding rebalancing class, quarterly periodic, quarterly threshold, and monthly

range rebalancing seem to produce the highest risk-adjusted performance. Thirdly, as

quarterly periodic rebalancing leads to significantly higher average Sortino ratios and

Omega ratios in comparison to quarterly threshold and monthly range rebalancing,

our history-based simulation promotes a quarterly periodic rebalancing strategy as it
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delivers the highest average risk-adjusted performance for all three countries under

investigation. As a robustness test, our rolling window approach underpins this finding.

Investigating realized 10-year investment horizons, quarterly periodic rebalancing

outperforms monthly periodic rebalancing by way of example. Lastly, short-term

momentum seems to be the primary source capable of explaining the statistically

significant differences between monthly and quarterly periodic rebalancing.
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Abstract

We compare the risk-adjusted performance of stock-bond portfolios between rebal-

ancing and buy-and-hold across different asset allocations by reporting statistical

significance levels. Our investigation is based on a 30-year dataset and incorporates

the financial markets of the United States, the United Kingdom, and Germany. In

order to draw reasonable recommendations to portfolio management, we conduct a

history-based simulation approach which enables us to simulate realistic market condi-

tions. Our empirical results show that a frequent rebalancing significantly enhances

risk-adjusted portfolio performance for all stock-bond portfolios if the stocks’ portfolio

weight exceeds a certain threshold, depending on the country and on the risk-adjusted

performance measure under investigation.

4.1 Introduction

Strategic asset allocation constitutes an integral component of portfolio performance.

Analyzing the impact of strategic asset allocation on portfolio performance without

removing the effects of market movements, Brinson et al. (1986), Brinson et al. (1991),

as well as Ibbotson and Kaplan (2000) all provide evidence that 100% of the return

level and about 90% of the variation of a fund’s returns over time is explained by

its investment policy. While the first result states an identity in aggregate market

conditions derived from the fact that active management must be a zero sum game

by definition, the second result does not differentiate between the effect of overall

market movements and the impact of strategic asset allocation on the variation of a

fund’s return. Accounting for the impact of market movements, Xiong et al. (2010)

document that strategic asset allocation and active management are equally important

for explaining return differences on aggregate. Although strategic asset allocation

is less important than predicted by prior studies, the findings of Xiong et al. (2010)

reconfirm the rationale that the investment policy is of considerable importance to

investment practice.

Therefore, building on the fundamentals of modern portfolio theory by Markowitz

(1952), many optimization routines have been developed by both academic researchers

and practitioners. The primary objective is the construction of reasonable portfolios

that meet investors’ different requirements. Developments based on the mean-variance

portfolio optimization of Markowitz (1952) are still the best known and most widely

used portfolio optimization approaches in practice. However, the implementation

of mean-variance optimizers also raises several problems. Michaud (1989) as well

as Kritzman (2006) report that mean-variance optimization routines tend to under-

and overweight assets or even entire asset classes with the highest input errors, often
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resulting in a non-optimal risk-adjusted performance. Moreover, if assets are close

substitutes for one another, small errors of the input parameters could result in signifi-

cant misallocations of the portfolio. For these reasons, other more robust optimization

routines have been developed for practice.1 Instead of focusing on these portfolio

optimization techniques, this paper analyzes the risk-adjusted performance of stock-

bond portfolios by systematically changing the underlying portfolio weights. Moreover,

given this initial asset allocation, we further investigate whether a frequent rebalancing

contributes to significantly enhancing risk-adjusted portfolio performance.

Although this question is of utmost importance for investment practice, only Tsai

(2001) examines the impact of rebalancing on portfolio performance with a focus on

different risk profiles. In particular, she investigates the Sharpe ratio of five different

stock-bond portfolios over the sample period from January 1986 to December 2000.

Considering seven asset classes, the equity portfolio weight varies between 20%, 40%,

60%, 80%, and 98%, respectively. While it is not obvious which specific rebalanc-

ing algorithm should be adopted, all four rebalancing strategies under investigation

produce a higher Sharpe ratio for all five portfolios in comparison to buy-and-hold.

However, it must not be ignored that this analysis is based on one single 15-year period,

which intensifies the potential problem of data snooping. It could be the case that the

empirical results are substantially driven by specific characteristics of the underlying

sample period while the investment strategy under investigation could have only a

minor impact on the risk-adjusted portfolio performance (Brock et al. (1992)).

In order to shed light on this issue, we compare the risk-adjusted performance of

a given asset allocation between buy-and-hold and rebalancing strategies on a statis-

tical basis. In particular, we apply the stationary bootstrap of Politis and Romano

(1994). Preserving most of the time series characteristics, this history-based simulation

approach enables us to report statistical significance levels under realistic market

conditions.

Our results provide evidence that rebalancing significantly outperforms buy-and-

hold if the portfolio weight of stocks exceeds a certain threshold. Depending on the

country under investigation and on the risk-adjusted performance measure, this thresh-

old ranges between 0% and 30%. We further document that the optimal asset allocation

is subject to both the country and the period under investigation.

The remainder of this article is structured as follows: While Section 4.2 briefly

describes the data and provides descriptive statistics, Section 4.3 classifies the imple-

mented rebalancing strategies. We proceed by presenting the analyzed asset allocations

in Section 4.4 and explaining the applied simulation set-up in Section 4.5. Section 4.6

discusses the empirical results and Section 4.7 concludes the article.

1 See: Black and Litterman (1992), Fabozzi et al. (2007), DeMiguel, Garlappi, and Uppal (2009b), and
DeMiguel, Garlappi, Nogales, and Uppal (2009a).
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4.2 Data and Descriptive Statistics

In order to test whether the empirical findings are robust across countries, our analysis

not only comprises the financial market of the United States, but also those of the

United Kingdom and of Germany. The monthly data covers the sample period from

January 1982 to December 2011. We obtain well-diversified stock and government

bond total return indices as well as Treasury bills (United States), LIBOR (United

Kingdom), and FIBOR (Germany) from Thomson Reuters Datastream. As the Treasury

bills, the LIBOR, and the FIBOR represent liquid instruments featuring a high trading

volume on the secondary market, they serve as proxies for the risk-free rates which are

necessary to calculate the Sharpe ratio. They all exhibit a maturity of three months.

Table I – Descriptive Statistics
This table presents the cross-sectional descriptive statistics of the stock, government bond, and money
markets of the United States, the United Kingdom, and Germany over the entire 30-year sample period
from January 1982 to December 2011. Bonds denote government bonds with a maturity of 10 years.
Cash represents the corresponding 3-month money market rates. All statistics are calculated on a
monthly basis using continuous compounded returns. Mean, Volatility, Skewness, and Kurtosis denote
the annualized mean return, volatility, skewness, and kurtosis. Skewness and Kurtosis are calculated as
the third and fourth normalized centered moments. Minimum and Maximum are the monthly minimum
and maximum returns.

Asset Statistics United States United Kingdom Germany

Stocks Mean (%) 10.45 10.84 8.75
Volatility (%) 15.77 16.14 22.06
Skewness -0.91 -1.15 -0.92
Kurtosis 6.07 8.05 5.60
Minimum (%) -23.85 -30.02 -28.67
Maximum (%) 12.47 13.72 19.02

Bonds Mean (%) 8.57 10.19 7.34
Volatility (%) 7.91 8.01 5.53
Skewness 0.05 -0.06 -0.29
Kurtosis 3.66 4.45 3.26
Minimum (%) -7.36 -8.16 -5.69
Maximum (%) 9.40 8.17 5.37

Cash (level) Mean (%) 4.46 6.91 4.43
Volatility (%) 0.77 1.01 0.65
Skewness 0.16 0.23 0.55
Kurtosis 2.70 2.39 2.62
Minimum (%) 0.00 0.00 0.00
Maximum (%) 0.01 0.01 0.01

The descriptive statistics in Table I show substantial cross-country differences,

thereby legitimating the expansion of our analysis to the financial markets of the

United Kingdom and of Germany. On the one hand, for example, the German stock

market exhibits the lowest average annualized return while simultaneously featuring

the highest annualized volatility of all three countries. As a result, both the stock mar-



4 Rebalancing Across Asset Allocations 77

ket of the United States as well as that of the United Kingdom offer a better risk-return

ratio in comparison to Germany during the underlying 30-year sample period. On the

other hand, the German government bond market exhibits the lowest volatility of all

three countries under investigation. Thus, we expect that the optimal asset allocation

of a German stock-bond portfolio exhibits a higher proportion of government bonds

in comparison to optimal stock-bond portfolios of the United States and of the United

Kingdom. Furthermore, the low correlation between stocks and government bonds pro-

vides a first hint that a pronounced diversification effect will be found. Overall, these

cross-country differences stress the need to shed light on the issue whether rebalancing

leads to a significantly better risk-adjusted performance compared to buy-and-hold

across all three countries under investigation or not.

4.3 Implemented Rebalancing Strategies

As shown in Table II, we focus on ten different rebalancing strategies which are cat-

egorized by the underlying rebalancing algorithm into four distinctive rebalancing

classes: (i) buy-and-hold, (ii) periodic rebalancing, (iii) threshold rebalancing, and

(iv) range rebalancing. If no rebalancing period is defined, rebalancing reduces to

buy-and-hold. That is, no transactions take place during the entire investment period

until divestment. In contrast, periodic rebalancing is characterized by a reallocation

to the initial portfolio weights at the end of each predetermined period. We consider

yearly, quarterly, and monthly trading frequencies. In this context, transaction costs are

quoted at 15 bps per round-trip throughout the entire analysis. They can be composed

in 10 bps for buying/selling stocks and 5 bps for buying/selling government bonds.

In order to reduce portfolio turnover and hence, save transaction costs, a no-trade

region around the target weights can be implemented as well. In line with Norway’s

Government Pension Fund Global, this study focuses on a 3% symmetric no-trade

interval around the target weights (Norwegian Ministry of Finance (2012)). Given

the strategic decision to conduct interval rebalancing, two different approaches must

be distinguished. While threshold rebalancing requires a readjustment to the target

weights at the end of each predetermined period, range rebalancing further reduces

portfolio turnover by rebalancing the assets back only to the nearest edge of the no-

trade interval at the end of each pre-assigned period (Leland (1999)). However, the

increased utility of saved transaction costs must be opposed to the modified risk-return

characteristics in order to draw valuable recommendations to portfolio management.

Our history-based simulation takes both aspects into account.

The exact rebalancing procedure is explained with the help of an example: Consider

a portfolio consisting of 60% stocks and 40% government bonds as well as a yearly
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Table II – Classification of Implemented Rebalancing Strategies
This table presents all rebalancing strategies under investigation. The periodic rebalancing strategies
2, 3, and 4 are characterized by a regular reallocation to the predetermined target weights at the end
of each period. Strategies 5, 6, and 7 represent threshold rebalancing, which is classified as periodic
interval rebalancing with a strict adjustment to the target weights. In contrast, the range rebalancing
strategies 8, 9, and 10 require a reallocation to the nearest edge of the predefined interval boundaries. A
threshold of ±3% is applied to both threshold rebalancing and range rebalancing.

Rebalancing Strategy Frequency Threshold Reallocation Classification No.

Buy-and-Hold No Adjustments No Threshold No Reallocation Buy-and-Hold 1

Yearly Periodic Rebalancing Yearly No Threshold Target Weights Periodic 2
Quarterly Periodic Rebalancing Quarterly No Threshold Target Weights Periodic 3
Monthly Periodic Rebalancing Monthly No Threshold Target Weights Periodic 4

Yearly Threshold Rebalancing Yearly Threshold Target Weights Threshold 5
Quarterly Threshold Rebalancing Quarterly Threshold Target Weights Threshold 6
Monthly Threshold Rebalancing Monthly Threshold Target Weights Threshold 7

Yearly Range Rebalancing Yearly Threshold Interval Boundaries Range 8
Quarterly Range Rebalancing Quarterly Threshold Interval Boundaries Range 9
Monthly Range Rebalancing Monthly Threshold Interval Boundaries Range 10

trading frequency. A ’3% yearly threshold rebalancing strategy’ requires rebalancing

the assets back to the initial 60/40 asset allocation whenever the stocks’ portfolio weight

exceeds the no-trade interval [57%,63%] at the end of each year. In contrast, a ’3%

yearly range rebalancing strategy’ postulates a readjustment at the end of the year to

57% if the relative proportion of stocks has fallen below 57%, or to 63% if the stocks’

portfolio weight exceeds 63%. Otherwise, the stocks’ portfolio weight lies within the

no-trade region, implying that no transactions are required.

4.4 Analyzed Asset Allocations

Prior research provides evidence that rebalancing generates a value added for institu-

tional investors. Examining a 50/50 stock-bond portfolio over the period from 1968 to

1991, Arnott and Lovell (1993) show that almost all analyzed rebalancing strategies

exhibit a higher Treynor ratio compared to buy-and-hold. Despite the highest portfo-

lio turnover, they recommend a monthly rebalancing strategy to long-term investors

as this strategy features the highest return while its corresponding volatility is only

slightly higher compared to those of buy-and-hold. In contrast, the analysis of Har-

joto and Jones (2006) is based on a 60/40 stock-bond portfolio and covers the period

from 1995 to 2004. During the underlying sample period, buy-and-hold exhibits the

lowest Sharpe ratio in comparison to all remaining rebalancing strategies. Although

Harjoto and Jones (2006) show the need to rebalance the portfolio, they recommend

not to readjust the portfolio weights too frequently. Focusing on a 60/40 stock-bond

asset allocation again, Tokat and Wicas (2007) investigate the period from 1960 to

2003. Comparing several rebalancing strategies with buy-and-hold in different market
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environments, they document that the frequent reallocation to the target weight helps

to control risk in all market environments. Jaconetti et al. (2010) reconfirm this finding.

Based on a 60% stocks and 40% bonds asset allocation, they investigate the period from

1926 to 2009. During this 84-years sample period, the stocks’ portfolio weight of a

buy-and-hold strategy is as high as 99% at maximum and as low as 36% at minimum.

Hence, Jaconetti et al. (2010) conclude that the primary objective of rebalancing is the

reduction of risk relative to a given asset allocation.

However, prior research on rebalancing lacks a focus on investigating different asset

allocations. While Arnott and Lovell (1993) consider a 50/50 asset allocation, Harjoto

and Jones (2006), Tokat and Wicas (2007) as well as Jaconetti et al. (2010) all concentrate

on a 60/40 stock-bond portfolio. Only Tsai (2001) examines the impact of rebalancing

on the risk-adjusted performance across different asset allocations. Covering the sample

period from 1986 to 2000, she investigates five different risk profiles with an equity

proportion of 20%, 40%, 60%, 80%, and 98%, respectively. While it is not clear which

specific rebalancing strategy should be adopted, all four strategies under investigation

outperform buy-and-hold in terms of Sharpe ratios for all five different risk profiles.

Nevertheless, the explanatory power of her analysis is weakened by the fact that it is

based on one single 15-year period.

With regard to the portfolio mix, the contribution of our rebalancing study is twofold

to academic research and practitioners. First of all, we conduct a systematic analysis of

the risk-adjusted performance of all rebalancing strategies shown in Table II across dif-

ferent asset allocations. Focusing on a two-asset class portfolio consisting of stocks and

government bonds, we systematically change the relative proportion of stocks in 10%

steps from 0% to 100%. Overall, we analyze the risk-adjusted performance of eleven

different asset allocations for each country under investigation. Secondly, for each of

these eleven different portfolio mixes, we further test whether rebalancing is able to

significantly enhance risk-adjusted portfolio performance compared to buy-and-hold.

4.5 Simulation Set-Up

The primary objective of this study is the statistical comparison of the impact be-

tween rebalancing and buy-and-hold on the risk-adjusted performance of stock-bond

portfolios across different asset allocations.

4.5.1 Resampling Procedure

In order to draw valuable recommendations to investment practice, we conduct a

history-based simulation approach. As this procedure is based on historical data, we
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use the stationary bootstrap of Politis and Romano (1994), which is applicable to sta-

tionary, weakly dependent data. In particular, we randomly draw blocks of different

lengths with replacement from the entire 30-year sample period.

We illustrate the exact resampling procedure for one single 10-year investment hori-

zon with the help of an example. Imagine two boxes. Representing the monthly return

data of the original 30-year sample period, the first box includes 360 numbered balls

from 1 to 360. Without any exception, all return observations are randomly drawn with

replacement from the first box. The 120 spots-of the simulated 10-year return path

are consecutively filled according to the selection process. A distinctive feature of the

applied stationary bootstrap of Politis and Romano (1994) constitutes the selection of

blocks with different lengths, which allows preserving most of the original time series

properties. In order to generate blocks of different length, a second box is necessary. By

way of example, it contains one red ball and four green balls.

In a first step, we randomly sample with replacement one single return observation

from the first box. Accordingly, the probability of being selected is 1/360 for each

single return observation. Let’s say, we have randomly drawn ball no. 237. Thus, ball

no. 237 is the first return observation of our simulated 10-year return path. In a second

step, we now sample one ball with replacement from the second box. If we draw a red

ball, we will again start with the first step. However, if we sample a green ball, we will

fill the second spot of the 10-year investment horizon with ball no. 238 from the first

box. In this case, we proceed by again drawing a ball from the second box. If we receive

a red ball, we will again start with the first step, but if we draw a green ball again,

we will fill the third spot with ball no. 239 from the first box, and so on. Overall, we

randomly sample with replacement from the second box and successively fill the spots

of the underlying 10-year investment horizon with consecutive return observations

until we have drawn a red ball. In this case, we begin with the first step as described

above. We repeat this procedure until all 120 spots have been filled successively. Draw-

ing either a red or green ball from the second box in our example corresponds to a

geometrical distribution with an underlying success probability of p = 20%, where the

red ball denotes a ’success’ and the green ball ’no success’, respectively. Finally, we

have simulated a single 10-year return path that could have been realized in the past as

it is based on historical return data. Not only are the return paths of stocks simulated

for all three countries under investigation at identical points in time. Simultaneously,

we apply the same procedure to government bonds and risk-free rates. This procedure

as a whole preserves the correlation across the three different asset classes and further

enables us to compare our results across countries.

Overall, the only parameter left to be determined of the described resampling proce-

dure is the probability P , which constitutes the relevant factor of the different block

lengths to be drawn. The higher P is, the shorter the expected block length will be.
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However, instead of assigning an appropriate probability to P , we exploit the reciprocal

relation between the average block length and the probability P resulting from the

geometric distribution. In particular, the expected value of a geometrically distributed

random variable is its reciprocal value 1/p. In order to determine an appropriate

average block length, we apply the automatic block-length selection for the dependent

bootstrap of Politis and White (2004) as well as the corrections made by Patton et al.

(2009). Overall, an average block length of 2 is recommended to both the stock and the

government bond market for all three countries under investigation.2

4.5.2 Construction of Confidence Intervals

We address the investment practice by constructing confidence intervals that are easy

to understand and straightforward to implement. Therefore, we follow the description

of Efron and Tibshirani (1998) which lays the foundation of our analysis whether

rebalancing leads on average to a higher risk-adjusted performance compared to buy-

and-hold. In particular, we test whether the mean of a difference time series is equal to

zero:

H0 : ∆PM = 0 versus H1 : ∆PM , 0, (1)

where PM denotes the risk-adjusted performance measure. In this study, we focus

on the Sharpe ratio, the Sortino ratio, and the Omega measure as appropriate risk-

adjusted performance measures in order to stay focused on our primary contribution.3

Furthermore, the rebalancing strategies as well as the country under investigation need

to be specified in order to calculate the resulting difference between the risk-adjusted

performances of both strategies:

∆PM = PMA − PMB, (2)

where A and B constitute rebalancing strategies as shown in Table II. The arithmetic

2 The implementation of the stationary bootstrap exactly follows the algorithm as decribed by Politis
and Romano (1994). This procedure also implies that the data, once the last observation is reached,
wraps around to a circle to the starting observation in order to avoid a trapezoidal weithing of the
observations at the beginning and at the end of the sample period. For example, consider a resampled
block with four consecutive return observations starting at 259. Hence, this block consists of the
return observations 259, 360, 1, and 2.

3 Academic research as well as investment practice analyze a variety of risk-adjusted performance
measures. Nevertheless, Eling (2008) finds out that the selection of the performance measure is not
critical to performance evaluation. Adcock et al. (2012) further provides evidence that even if returns
are not normally distributed, the rank correlation of the Sharpe ratio and other performance measures
is one or very close to it.
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mean is an appropriate point estimator of (2):

∆̂PM = P̂MA − P̂MB. (3)

Again, an example best illustrates the exact implementation of the confidence inter-

val. As described below, we compare the average risk-adjusted performance between

quarterly periodic rebalancing and buy-and-hold for the financial market of the United

States by employing the Sharpe ratio.

In a first step, we apply both strategies to the simulated 10-year return path and

calculate the two corresponding Sharpe ratios. In order to test whether quarterly

periodic rebalancing outperforms buy-and-hold on average, we repeat this procedure

100 times in second step and calculate the average Sharpe ratio for both quarterly

periodic rebalancing and buy-and-hold. Accordingly, we receive one average Sharpe

ratio for each strategy. In a third step, we calculate the difference between these two

averages by subtracting the average Sharpe ratio of the buy-and-hold strategy from

the average Sharpe ratio of the quarterly periodic rebalancing strategy. However, if

this difference is positive, we still do not know whether quarterly periodic rebalancing

outperforms buy-and-hold on average. There also is the chance that the true value is

negative. Therefore, we derive a distribution of equation (3) by repeating the steps one

to three 1,000 times:

∆̂∗PM[1] ≤ ∆̂∗PM[2] ≤ . . . ≤ ∆̂∗PM[999] ≤ ∆̂∗PM[1,000], (4)

where (4) states the ordered difference series of the performance measure of interest.

In a last step, we construct percentile intervals as described by Efron and Tibshirani

(1998):4

CI =
[
∆̂∗
PM[α2 ·1,000], ∆̂

∗
PM[(1−α2 )·1,000]

]
. (5)

The nominal level of α to be considered is 0.10. The null hypothesis H0 is rejected at

the 10% level if 0 < CI :

CI =
[
∆̂∗PM[50], ∆̂

∗
PM[950]

]
. (6)

4 Our analysis focuses on a straightforward implementation of confidence intervals. As our sample
period covers 360 monthly return observations and thus can be considered a rather large sample,
the construction of percentile intervals according to Efron and Tibshirani (1998) is legitimated.
Nevertheless, Romano and Wolf (2006) provide evidence that the studentized block bootstrap leads to
an improved coverage accuracy for small sample sizes, whereas Ledoit and Wolf (2008, 2011) suggest
a studentized time series bootstrap in case of small to moderate sample sizes.



4 Rebalancing Across Asset Allocations 83

This analysis is based on 100,000 return paths of stocks, government bonds, and

risk-free rates. Although these return paths are simulated, we use the same paths for

the entire investigation in order to be able to compare our simulation results across

different performance measures and countries, as well as a changing asset allocation.

Overall, this history-based simulation approach enables us to preserve most of the

time series properties as well as to conduct a systematic comparison by reporting

statistical significance levels. Repeated simulations reveal that our results are stable in

capturing the underlying sample patterns.

4.6 Empirical Results

Although several studies do report that rebalancing seems to provide a value added to

institutional investors, three questions remain unanswered. First of all, there are no

studies on rebalancing with a focus on institutional investors outside the United States.

However, according to Table I, there are substantial differences in time series charac-

teristics between the United States, the United Kingdom, and Germany. It is not clear

whether these cross-country differences have a different impact on the risk-adjusted

performance of rebalancing.

Secondly, little research has been done on rebalancing across different asset allo-

cations. While Arnott and Lovell (1993) examine a 50/50 stock-bond portfolio, the

analyses of Harjoto and Jones (2006), Tokat and Wicas (2007), and of Jaconetti et al.

(2010) all focus on a 60/40 stock-bond portfolio. Only Tsai (2001) investigates the

risk-adjusted performance of rebalancing across different asset allocations. However,

her analysis only provides a snapshot of the particular state of the market because it is

merely based on a single 15-year sample period.

Thirdly, most studies presented above are based on historical analyses. However,

as rebalancing constitutes a dynamic trading strategy, its performance is highly path-

dependent. Thus, it is possible that the empirical results of those studies are more

influenced by specifics of the underlying sample period rather than by the correspond-

ing rebalancing algorithm under investigation. According to Brock et al. (1992), this

danger of data snooping could be serious. For example, consider a market environment

with a very low volatility and a well-pronounced market trend. Perold and Sharpe

(1988) show on a theoretical basis that buy-and-hold must outperform any rebalanc-

ing strategy in this particular state of the market because the rebalancing algorithm

requires buying past losers and investing the proceeds in past winners. More precisely,

the regular reallocation to the worse performing asset not only reduces the upside

potential in prolonged upswing markets, but also increases the downside potential

in persistent cyclical downturns. This example illustrates that the resulting question
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of interest must be whether, on average, rebalancing leads to a higher risk-adjusted

performance in comparison to buy-and-hold.

By simulating 100,000 different return paths that could have been realized in the

past, our history-based simulation approach avoids this potential problem of data

snooping. Instead, we are able to conduct a systematic analysis of the risk-adjusted

performance of stock-bond portfolios between rebalancing and buy-and-hold by report-

ing statistical significance levels. In particular, we do not only apply the Sharpe ratio,

but also the Sortino ratio and the Omega measure in order to appropriately measure

risk-adjusted portfolio performance.

4.6.1 Sharpe Ratio

Focusing on the financial market of the United States by way of example, Panel A

of Table III presents the average Sharpe ratios not only of all eleven different asset

allocations, but also of all ten rebalancing strategies under investigation. As expected

by the low correlation between stocks and government bonds shown in Table I, the

diversification effect is well-pronounced.

Table III – Average Sharpe Ratios Across Different Asset Allocations
Panel A presents the average Sharpe ratios of all rebalancing strategies under investigation across
different asset allocations for the financial market of the United States. Panel B shows the increase
(decrease) of the average Sharpe ratio of the corresponding rebalancing strategy in comparison to
the average Sharpe ratio of a buy-and-hold strategy. The sample period ranges from January 1982 to
December 2011. Transaction costs are quoted at 15 bps per round-trip. 1,000 simulations with an
average block length of 2 are performed. Repeated simulations reveal that the results are stable.

Strategies Proportion of Stocks

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Panel A: Average Sharpe Ratios

BAH 0.523 0.617 0.668 0.671 0.642 0.598 0.552 0.507 0.468 0.435 0.406

Periodic Rebalancing
Yearly 0.523 0.610 0.669 0.687 0.668 0.627 0.579 0.530 0.484 0.443 0.406
Quarterly 0.523 0.608 0.667 0.686 0.667 0.627 0.579 0.530 0.484 0.443 0.406
Monthly 0.523 0.607 0.664 0.681 0.663 0.623 0.575 0.527 0.482 0.442 0.406

Threshold Rebalancing
Yearly 0.523 0.610 0.669 0.687 0.668 0.627 0.578 0.529 0.483 0.441 0.406
Quarterly 0.523 0.610 0.669 0.687 0.668 0.627 0.578 0.529 0.483 0.441 0.406
Monthly 0.523 0.609 0.668 0.685 0.666 0.625 0.526 0.528 0.482 0.441 0.406

Range Rebalancing
Yearly 0.523 0.612 0.670 0.686 0.665 0.623 0.573 0.524 0.479 0.438 0.406
Quarterly 0.523 0.611 0.670 0.687 0.667 0.625 0.576 0.527 0.480 0.438 0.406
Monthly 0.523 0.611 0.670 0.686 0.666 0.625 0.576 0.527 0.480 0.438 0.406

continued
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Table III – Continued

Panel B: Average Increase in Sharpe Ratios in %

Periodic Rebalancing
Yearly 0.0 −1.2 0.2 2.4 4.0 4.8 4.9 4.4 3.4 1.9 0.0
Quarterly 0.0 −1.4 0.0 2.2 3.9 4.8 5.0 4.5 3.4 1.9 0.0
Monthly 0.0 −1.6 −0.5 1.6 3.2 4.0 4.2 3.8 3.0 1.7 0.0

Threshold Rebalancing
Yearly 0.0 −1.1 0.3 2.4 4.0 4.7 4.8 4.2 3.1 1.4 0.0
Quarterly 0.0 −1.2 0.2 2.4 4.0 4.8 4.8 4.3 3.2 1.4 0.0
Monthly 0.0 −1.2 0.1 2.1 3.7 4.4 4.5 4.0 3.0 1.4 0.0

Range Rebalancing
Yearly 0.0 −0.7 0.4 2.2 3.5 4.1 4.0 3.3 2.2 0.7 0.0
Quarterly 0.0 −0.9 0.4 2.4 3.8 4.5 4.4 3.8 2.5 0.8 0.0
Monthly 0.0 −1.0 0.3 2.3 3.8 4.4 4.4 3.8 2.6 0.8 0.0

For example, while buy-and-hold leads to an average Sharpe ratio of 0.67 for a 30/70

stock-bond portfolio, the average Sharpe of a 100/0 and a 0/100 stock-bond portfolio

accounts only to 0.52 and 0.41, respectively. With regard to the underlying 30-year

sample period, an allocation of 30% stocks and 70% government bonds leads to the

highest average risk-adjusted portfolio performance for all ten rebalancing strategies.

However, in results not reported, the optimal asset allocation strongly depends on the

period under investigation.

If the relative proportion of stocks accounts for at least 20%, buy-and-hold is outper-

formed in terms of Sharpe ratios by all nine rebalancing strategies. Panel B of Table

III substantiates this observation by pointing out the average increase in risk-adjusted

performance of the respective strategy compared to buy-and-hold. As all three classes

(periodic, threshold, and range) and all three trading frequencies (yearly, quarterly,

monthly) lead to a higher risk-adjusted performance on average, rebalancing seems

to consistently provide a value added to institutional investors across different asset

alloctions (if the stock allocation exceeds a certain threshold). However, the question

whether these differences are also statistically significant still remains unanswered.

Therefore, Panel A of Figure I shows the average Sharpe ratios of both quarterly

periodic rebalancing and buy-and-hold across different asset allocations for the fi-

nancial market of the United States. Panel B of Figure I presents the corresponding

10%-quantiles. If both boundaries are positive (negative), statistical significance is

observed at the 10% level. As all parameters are linked by multiplication, we only

illustrate the risk-adjusted performance and the corresponding confidence intervals for

buy-and-hold as well as periodic quarterly rebalancing. Given an initial asset allocation

of 60% stocks and 40% government bonds, Dichtl et al. (2013) document that quar-

terly periodic rebalancing provides the highest risk-adjusted performance on average.
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With respect to the remaining rebalancing strategies classified in Table II, the results

differ only slightly. Comparing the risk-adjusted performance between rebalancing

and buy-and-hold, we find a very similar pattern for all rebalancing strategies under

investigation.

Figure I – Sharpe Ratio Across Different Asset Allocations

(A) Average Sharpe Ratio (United States) (B) 10%-Quantiles of the Average Sharpe Ratio

(C) Average Sharpe Ratio (United Kingdom) (D) 10%-Quantiles of the Average Sharpe Ratio

(E) Average Sharpe Ratio (Germany) (F) 10%-Quantiles of the Average Sharpe Ratio

As shown by Panel A of Figure I, quarterly periodic rebalancing leads on average to

higher Sharpe ratios compared to buy-and-hold if the stocks portfolio weight accounts
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for at least 30%. Panel B further proves that this finding is statistically significant

at the 10% level as both interval boundaries are positive. In contrast, if the relative

proportion of stocks falls below 20%, buy-and-hold outperforms quarterly periodic

rebalancing. In results not reported, this pattern disappears with both an increasing

threshold and an increasing trading frequency – hence the more similar rebalancing

becomes to buy-and-hold.

We observe a similar pattern for the financial market of the United Kingdom as shown

in Panel C and Panel D of Figure I. Again, quarterly periodic rebalancing produces

significantly higher Sharpe ratios compared to buy-and-hold if the stocks portfolio

weight accounts for at least 30%. If the relative proportion of stocks falls below 30%, no

statistical inferences can be drawn because the difference between rebalancing and buy-

and-hold is lost in estimation error. In contrast to the United States, the optimal asset

allocation comprises of 20% stocks and 80% government bonds. Moreover, adopting

a buy-and-hold strategy, the average Sharpe ratio of the optimal stock-bond portfolio

with a value of 0,478 is substantially lower compared to the United States.

Panel E of Figure I shows the average Sharpe ratios of both quarterly periodic

rebalancing and buy-and-hold across different asset allocations for the financial market

of Germany, while Panel F of Figure I depicts the corresponding 10%-quantiles. Our

history-based simulation results reconfirm the finding that rebalancing leads to a

better risk-adjusted performance in terms of average Sharpe ratios across different asset

allocations. We even observe statistical significance if the stock allocation exceeds 0%.

Moreover, as hypothesized by the discussion of the descriptive statistics in Table I,

the optimal stock-bond portfolio of the German financial market consists of a higher

proportion of government bonds in comparison to the optimal portfolio mix of the

United States and the United Kingdom.

4.6.2 Sortino Ratio

In contrast to the Sortino ratio, the Sharpe ratio considers all deviations from the

mean return – both negative and positive. However, as positive deviations constitute

an opportunity to generate an additional return on the invested capital, they are not

expected to be perceived as risk by investors. Defined by Sortino and Price (1994),

the Sortino ratio should better reflect investors’ risk perception by representing a

risk-adjusted performance measure that only takes negative deviations into account:

Si(τ) =
r̄i − τ√∫ τ

−∞(τ − ri)2f (ri)dri
, (7)

where r̄i is the average return of strategy i, f (·) the corresponding probability density
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function, and τ the threshold return required by the investor. Illustrating the average

Sortino ratio of quarterly periodic rebalancing and buy-and-hold for the United States,

Panel A and Panel B of Figure II reconfirm our findings of the results stated above.

Figure II – Sortino Ratio and Omega Measure Across Different Asset Allocations

(A) Average Sortino Ratio (United States) (B) 10%-Quantiles of the Average Sortino Ratio

(C) Average Omega Measure (United States) (D) 10%-Quantiles of the Average Omega Measure

4.6.3 Omega Measure

Focusing on a two-asset class portfolio consisting of stocks and government bonds,

portfolio returns are a linear function of stock returns if no transaction takes place

during the investment period. Thus, buy-and-hold represents a linear investment strat-

egy. In contrast, rebalancing constitutes a concave investment strategy as illustrated by

Perold and Sharpe (1988). On the one hand, the frequent reallocation to the weaker

performing asset reduces the upside potential in upswing markets, thereby leading

to an increase of the portfolio return at a declining rate. On the other hand, a regular

readjustment to the target weights also reduces the downside protection in downswing

markets, which causes a decline of the portfolio return at an increasing rate. How-

ever, Ingersoll et al. (2007) document that due to construction, investment strategies
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with a concave payoff lead to higher Sharpe ratios and Sortino ratios in comparison to

buy-and-hold. Although this result does not contradict the finding that rebalancing

outperforms buy-and-hold, it points out that the possibility of portfolio performance

manipulation as stated by Ingersoll et al. (2007) must not be neglected.

For this reason, we further apply the Omega measure as a robustness check. Devel-

oped by Kaplan and Knowles (2004), the Omega measure represents the ratio of gains

to losses relative to a predetermined threshold return:

Ωi(τ) =

∫∞
τ

(1−F(ri))dri∫ τ
−∞F(ri)dri

, (8)

where τ denotes the return of strategy i, F(·) the cumulative density function, and τ

the predetermined threshold return. In contrast to the Sharpe ratio and the Sortino

ratio, the Omega measure considers the entire return distribution of the underlying

investment strategy. As all moments are taken into account, a portfolio performance

manipulation can be considered extremely difficult. Therefore, the Omega measure

contributes to careful evaluation of risk-adjusted portfolio performance.

By way of example, Panel C of Figure II plots the average Omega measures of quar-

terly periodic rebalancing and buy-and-hold against the underlying portfolio mix.

Panel D of Figure II shows the corresponding 10%-quantiles. All in all, Panel C and

Panel D of Figure II substantiate our prior findings that rebalancing significantly boosts

risk-adjusted portfolio performance if stocks’ proportion exceeds a certain threshold.

This proportion is subject to the country, the period under investigation (results not

reported), and the risk-adjusted performance measure. In the case of Omega measures,

it amounts to 20% for the United States and the United Kingdom and 0% for Germany.

In results not reported, we observe qualitatively similar results for the financial markets

of the United Kingdom and Germany.

Overall, our analysis points out that cross-country differences have a substantial

impact on the level of risk-adjusted performance. Moreover, the period under investi-

gation also affects the level as well as the optimal asset allocation (results not reported).

However, provided that the stock allocation exceeds a certain threshold which is subject

to the underlying country, our history-based simulation provides strong evidence that

rebalancing leads to a value added for institutional investors across all countries.

4.7 Conclusion

This paper compares the impact between rebalancing and buy-and-hold on the risk-

adjusted performance of stock-bond portfolios across different asset allocations by
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reporting statistical significance levels. In order to simulate realistic market conditions

and derive valuable recommendations for investment practice, we apply the stationary

bootstrap of Politis and Romano (1994) which enables us to preserve most of the time

series characteristics of financial time series (e.g. short-term momentum, fat tails, and

empirical distribution). Modifying the stocks’ portfolio weight in 10% steps from 0%

to 100% stocks, our analysis comprises eleven different stock-bond portfolios for each

of the three countries under investigation.

Our results provide strong evidence that rebalancing leads to a superior risk-adjusted

performance across almost all asset allocations if the stocks’ portfolio weight exceeds a

certain threshold. However, the exact threshold ranges between 0% and 30% and is

subject to both the country as well as to the applied risk-adjusted performance measure.

Despite substantial cross-country differences, our analysis documents that rebalancing

provides a value added to institutional investors of all three countries across different

asset allocations. However, the optimal asset allocation strongly depends on both the

country and the period under investigation.
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Abstract

This study presents a systematic comparison of portfolio insurance strategies. In order

to test for statistical significance of the differences in Omega ratios between differ-

ent pairs of portfolio insurance strategies, we use a bootstrap-based hypothesis test

proposed by Politis and Romano (1994). Our comparison of the different strategies

considers the following distinguishing characteristics: static vs. dynamic; initial wealth

vs. cumulated wealth protection; model-based vs. model-free; and strong floor com-

pliance vs. probabilistic floor compliance. Overall, the classical portfolio insurance

strategies synthetic put and CPPI provide superior downside protection compared

to a simple stop-loss trading rule, which also results in significantly higher Omega

ratios. Analyzing more recently developed strategies, neither the TIPP strategy (as an

‘improved’ CPPI strategy) nor the dynamic VaR-strategy are able to provide significant

improvements over the classical portfolio insurance strategies. Most importantly, when

parameter estimation risk is incorporated into the analysis, our comparison of the

dynamic VaR-strategy with the CPPI strategy and the synthetic put strategy shows no

value added of this novel approach.

5.1 Introduction

Driven by their risk and return preferences or by regulatory requirements, many in-

vestors are highly interested in preserving their invested capital. Therefore, portfolio

insurance is of utmost importance for the asset management industry. The major

objective of any portfolio insurance strategy is to limit the downside risk of a risky

asset (or a portfolio of risky assets), while simultaneously maintaining most of the

upside return potential. Institutional investors often use portfolio insurance strategies

in tailor-made solutions to protect their portfolios against large losses, whereas many

private investors invest their capital in mutual funds that are endowed with a capital

protection guarantee. The literature offers a number of different methods and strategies

to secure risky assets against large losses, such as the stop-loss strategy, the synthetic

put strategy, or the constant proportion portfolio insurance (CPPI) strategy. Therefore,

once an investor has decided to use a protection strategy within his asset allocation

framework, it may be of critical importance to implement the ‘best’ strategy which fits

the investor’s preferences as good as possible.

The introduction of synthetic put strategies by Rubinstein and Leland (1981) has

laid a foundation for numerous studies that contribute to explain as to why portfolio

insurance is so popular in investment practice. Prior studies investigate the optimality

of portfolio insurance strategies in a standard expected utility maximization set-up

(Leland (1980), Brennan and Solanki (1981), Benninga and Blume (1985), Dybvig
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(1988), Black and Litterman (1992)).1 A consensus in this strand of the literature is that

portfolio insurance strategies are only utility maximizing under very specific assump-

tions with respect to investor preferences. In a more recent strand of the literature,

Annaert et al. (2009) document that portfolio insurance strategies outperform a buy-

and-hold strategy in terms of downside protection, but provide lower excess returns. A

comparison based on stochastic dominance criteria reveals that no dominance relations

can be identified between portfolio insurance strategies and buy-and-hold.2 Given that

their lower return potential is sufficiently compensated by lower risk, Annaert et al.

(2009) conclude that portfolio insurance strategies are valuable alternatives at least for

some investors. Dichtl and Drobetz (2011) analyze portfolio insurance strategies within

the framework of the cumulative prospect theory. Their simulation results indicate that

loss aversion and probability weighting contribute to make most portfolio insurance

strategies a preferred investment strategy for a prospect theory investor. Dierkes et al.

(2010) similarly document that portfolio insurance is attractive for an investor having

preferences described by the cumulative prospect theory.

Given the strategic decision to implement a portfolio insurance strategy, the question

of interest is which particular strategy should be adopted. In fact, several prior studies

evaluate and compare different pairs of portfolio insurance strategies in terms of their

risk and return characteristics. For example, Benninga (1990) compares the stop-loss

rule, the CPPI strategy, and the synthetic put strategy by using a Monte Carlo simu-

lation approach. He reports that the simple stop-loss rule dominates both the CPPI

strategy and the synthetic put strategy in terms of their terminal wealth and Sharpe

ratio.3 Cesari and Cremonini’s (2003) simulation results indicate that the relative

performance of portfolio insurance strategies depends on the market environment. For

example, using different performance measures (including alternative risk measures,

such as the downside deviation and the Sortino ratio), the CPPI strategy dominates all

other strategies in bear and sideway markets.4

Herold et al. (2005) examine a value-at-risk-based (VaR) dynamic investment strategy,

1 Brennan and Schwartz (1989), Basak (1995), and Grossman and Zhou (1996) analyze the equilibrium
implications of portfolio insurance in an expected utility framework.

2 Annaert et al. (2009) implement block-bootstrap simulations from the empirical distributions to
incorporate heavy tails and volatility clustering. Bertrand and Prigent (2005) and Zagst and Kraus
(2011) also evaluate portfolio insurance performance using stochastic dominance. For example,
Zagst and Kraus (2011) derive parameter conditions implying the second- and third-order stochastic
dominance of the CPPI strategy against the protective put strategy. However, they assume that the
underlying risky asset follows a geometric Brownian motion.

3 Do (2002) compares the CPPI strategy and the synthetic put strategy using Australian market data.
While neither strategy can be justified based on a loss minimization or a gain participation point of
view, he nevertheless reports that the CPPI strategy dominates in terms of floor protection and the
costs of insurance.

4 Bookstaber and Langsam (2000) also provide a detailed analysis of the path dependency of portfolio
insurance strategies.
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where the protection floor is maintained with a pre-specified probability (probabilistic

floor compliance). They compare this strategy with the CPPI strategy and document

a higher return of the dynamic VaR-strategy in the context of fixed-income invest-

ments.5 Jiang et al. (2009) also compare a variant of a dynamic VaR-based portfolio

insurance strategy with the CPPI strategy and buy-and-hold. Their results indicate that

the dynamic VaR-based strategy outperforms the CPPI strategy in terms of downside

protection and return potential. A caveat is that Jiang et al. (2009) approximate the

expected return and volatility using their realized values during the insurance period,

and thus their analysis neglects the estimation risk inherent in a dynamic VaR-strategy.

Most recently, Bertrand and Prigent (2011) suggest that the Omega measure is the

most adequate performance measure because it is able to capture the entire empirical

return distribution of portfolio insurance strategies. Using a block-bootstrap simulation

approach, they compare the CPPI strategy with the synthetic put strategy and report a

dominance of the CPPI strategy in terms of the Omega ratio.

This study complements and expands these earlier studies which evaluate and com-

pare different portfolio insurance strategies. We not only analyze different pairs of

portfolio insurance strategies in terms of their protection quality and return potential,

but rather, provide a comprehensive statistical analysis of five protection strategies:

the traditional stop-loss strategy, the synthetic put strategy, the CPPI strategy, the time

invariant portfolio protection (TIPP) strategy, and the VaR-based protection strategy. Us-

ing a bootstrap simulation approach based on historical data as well as scenario-based

Monte Carlo simulation, we investigate the choice between the following characteristics

of different portfolio insurance strategies: (1) static versus dynamic protection; (2)

initial wealth versus accumulated wealth protection; (3) model-based versus model-free

protection; and (4) strong floor compliance versus probabilistic floor compliance. In

each case, we compare two adequate portfolio insurance strategies by using Shadwick

and Keating’s (2002) Omega ratio as the appropriate risk-adjusted performance mea-

sure (Bertrand and Prigent (2011)). By implementing a bootstrap-based hypothesis test

suggested by Politis and Romano (1994), which does not require specific assumptions

about the distributional properties of the Omega ratios themselves, we are able to

provide statistical inference. In addition, for those strategies which require parameter

estimates (i.e., the synthetic put strategy and the dynamic VaR-strategy), we incorporate

estimation risk.

Our results indicate that the ‘classical’ portfolio insurance strategies CPPI and syn-

thetic put dominate all other strategies under realistic investment conditions. Both

strategies are superior to the simple stop-loss trading rule in terms of their protec-

tion quality and overall risk-adjusted performance measured by the Omega ratio.

5 Given the comparatively low downside potential of fixed-income portfolios, it may be difficult to
assess the protection quality of the dynamic VaR-strategy in Jiang et al.’s (2009) framework.
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Furthermore, recently developed portfolio insurance strategies also seem to be at a

disadvantage against the more standard variants. Specifically, while the TIPP strategy

(as an ‘improved’ CPPI strategy) exhibits a very limited return potential, the usefulness

of the dynamic VaR-strategy strongly depends on the forecasting quality for both the

equity risk premium and the stock market volatility. The remainder of this paper is

structured as follows: Section 5.2 provides an overview and a brief discussion of the

implemented portfolio insurance strategies. While Section 5.3 describes our historical

simulation methodology and our test design for statistical significance, Section 5.4

presents the historical simulation results. As a robustness test, Section 5.5 documents

the methodology and results of Monte Carlo simulations. Section 5.6 concludes and

emphasizes the implications for the investment practice.

5.2 An Overview of Portfolio Insurance Strategies

A variety of portfolio insurance strategies have been suggested in the prior literature,

such as the stop-loss trading rule, the use of derivatives (e.g., a protective put strategy),

and dynamic trading strategies (e.g., a synthetic put strategy or the CPPI strategy).

In contrast to the stop-loss trading rule and dynamic trading strategies, a protective

put strategy requires a liquid put option with the desired strike price and the desired

time to maturity (Figlewski et al. (1993)). Therefore, we omit option-based portfolio

insurance strategies and focus on the simple stop-loss trading rule and dynamic trading

strategies.6

5.2.1 Stop-Loss Portfolio Insurance Strategy

The simplest way to protect a risky portfolio against losses is the stop-loss portfolio

insurance strategy (Bird et al. (1988)). An investor invests his total wealth (W0) in the

risky asset. This position is maintained as long as the market value of the risky position

(Wt) exceeds the net present value (NPV) of the floor (FT ), which is the minimum

acceptable portfolio value at the end of the investment horizon T :

Wt > NPV (FT ). (1)

If the portfolio value reaches or drops below the discounted floor, i.e., if Wt =

NPV (FT ), all risky portfolio holdings are sold and invested in the risk-free asset. This

position is held until the end of the investment horizon. As long as the interim portfolio

value does not drop below NPV (FT ), an investor’s final wealth will never be lower than

FT . Taken together, the stop-loss portfolio insurance strategy is easy to implement, it

6 The following description of portfolio insurance strategies is based on Dichtl and Drobetz (2011).



5 Portfolio Insurance 98

does not depend on any specific assumptions, and it also does not require estimating

any model parameters. However, the investor no longer participates from any upward

market movement once the portfolio has been shifted in the risk-free asset.

5.2.2 Synthetic Put Portfolio Insurance Strategy

A second portfolio insurance strategy is Rubinstein’s (1981) synthetic put strategy,

which uses the Black and Scholes (1973) option pricing formula to create a continuously

adjusted synthetic European put option on the risky asset. Combining the purchase

of the risky asset with the purchase of a put on this asset (stock) is equivalent to

purchasing a continuously-adjusted portfolio which is a combination of the risky asset

and the risk-free asset (cash). The value of a portfolio that consists of a stock S plus a

put P can be calculated as:

S + P = S − S ·N (−d1) +K · e−rTN (−d2)

= S · [1−N (−d1)] +K · e−rTN (−d2) (2)

= S ·N (d1) +K · e−rN (−d2),

where K is the strike price, r the risk-free rate, and T the time to maturity. N (·) is the

standard normal cumulative distribution function with d1 and d2 defined as:

d1 =
ln(S/K) + (r + 0.5σ2)T

σ
√
T

, (3a)

d2 = d1 − σ
√
T , (3b)

where σ denotes the standard deviation of risky asset returns. In order to calculate the

investment in the risky asset of the replicating portfolio, the delta of the portfolio in

equation (2) is:

∂(S + P )
∂S

=N (d1). (4)

Multiplying the delta with the price of the risky asset S and dividing by the value

of the portfolio in equation (2), the percentage allocations in the risky asset and the

risk-free asset are:

wrisky =
S ·N (d1)

S ·N (d1) +K · e−rTN (−d2)
, (5a)

wrisk−free = 1−wrisky. (5b)
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This strategy requires increasing (decreasing) the proportion of the risky asset in the

portfolio if the price of the risky asset increases (decreases). In order to maintain

a desired protection level, the strike price K must be set such that the following

relationship holds:

K =
FT
W0
· (S + P (K)), (6)

where the ratio FT /W0 is the percentage floor. The solution of equation (6) must be

determined iteratively, because the value of the put option P (K) depends on the strike

price itself. Given that the put itself is costly, the exercise price K of the put will be

higher than the floor.

The portfolio must be readjusted on a continuous basis in order to maintain the

desired protection level. However, transaction costs will incur with each portfolio

adjustment, and thus a higher adjustment frequency leads to higher transaction costs.

In order to incorporate this transaction costs effect, Leland (1985) as well as Boyle

and Vorst (1992) suggest using the synthetic put portfolio insurance strategy with a

modified volatility estimator:

σLeland = σ

√√√
1 +

√
2
Π
· k

σ
√
∆t
, (7a)

σBoyle/Vorst = σ

√
1 + 2 · k

σ
√
∆t
, (7b)

where k captures the round-trip transaction costs, and ∆t denotes the length of the read-

justment period. With these volatility adjustments, both the readjustment frequency

and the corresponding transaction costs are taken into account.

5.2.3 Constant Proportion Portfolio Insurance Strategy

In contrast to a synthetic put strategy, the constant proportion portfolio insurance

strategy (CPPI) is a dynamic protection strategy that is not based on option pricing

theory (Black and Jones (1987)). Starting point is an investor’s risk capital at time t (the

‘cushion’). The current cushion Ct represents the difference between current wealth at

time t, labeled Wt, and the discounted floor NPV (FT ):

Ct =Wt −NPV (FT ). (8)
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The exposure into the risky asset at time t, denoted as et, is calculated by multiplying

the cushion Ct with the multiplier m:

et =m ·Ct. (9)

The multiplier m could be set to any value, but it has a strong economic implication.

Specifically, the inverse of the multiplier (1/m) represents the maximum sudden loss

in the risky asset that may occur such that the cushion is not fully depleted and the

portfolio value does not fall below the discounted floor.7 Although maintenance of

the floor will be controlled on an intraday basis, the risk still exists over night when

the portfolio manager cannot react immediately to extreme market losses (‘overnight

risk’ or ‘gap risk’). In spite of this small (unlikely) residual risk, which can partly

be controlled by choosing a small multiplier m, the CPPI strategy can be classified

as an absolute protection strategy with a strictly lower limit on the portfolio value.

In commercial applications, the CPPI strategy is usually implemented such that the

exposure of the risky asset varies between 0% and 100%. This implies that short sales

and leverage are excluded (Benninga (1990), Do (2002), Annaert et al. (2009)):

et = max[min(m ·Ct,Wt),0]. (10)

The CPPI strategy can be implemented in our simulation analysis as dictated in

equation (10) by shifting between stocks and bills.

5.2.4 Time Invariant Portfolio Protection Strategy

Estep and Kritzman (1988) argue that investors will not only be interested in the

protection of their initial wealth, but also in locking in all interim capital gains. They

suggest a modification of the standard CPPI strategy, which they call the ‘time invariant

portfolio protection’ (TIPP) strategy. While the CPPI strategy operates with a fixed floor

(i.e., the initial wealth multiplied by the percentage floor), the floor of the TIPP strategy

is ratcheted up if the value of the portfolio increases. After choosing the floor and the

multiplier, this strategy requires the following steps (Estep and Kritzman (1988)):

1. Calculation of the actual portfolio value (stock plus cash).

2. Multiplication of this portfolio value by the floor percentage.

7 For example, with a multiplier of m = 5, the risky asset can lose 20% (1/5 = 0.20) without violating
the floor. When a sudden loss of over 20% occurs, the value of the portfolio falls below the promised
minimum value (‘gambler’s ruin’). In commercial applications it is necessary to continuously control
the optimal exposure in the risky asset, and thus portfolio shifts would have to be executed immediately.
In most instances, however, an appropriate trading filter is used.
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3. If the result in step 2 is greater than the previous floor, it becomes the new floor;

otherwise the old floor is kept.

4. Application of the CPPI strategy as dictated by equations (8)-(10).

As in the CPPI strategy, the TIPP strategy transfers all risky asset holdings in an

irreversible manner to the risk-free asset once the floor has been reached. Therefore, the

TIPP strategy cannot participate from subsequent upward market movements. Given

the continuous ‘ratcheting up’ of the floor to the highest portfolio value, the likelihood

that the portfolio value reaches or violates the prevailing floor increases, potentially

implying adverse return effects because the TIPP strategy may more often end up fully

invested in the risk-free asset (Choie and Seff (1989), Dichtl and Drobetz (2011)).

5.2.5 Dynamic Value-at-Risk Portfolio Insurance Strategy

The target of the dynamic VaR-based strategy is to control the exposure of a risky asset

such that a specified value at risk is not violated (Jiang et al. (2009)). The value-at-risk

(VaR) of any portfolio P defines the maximum loss that will not be exceeded based on a

defined confidence level within a given time period:

V aR = T ·µP + τ1−α ·
√
T · σP , (11)

where T is the time horizon and τ1−α the (1 − α)-quantile of the standard normal

distribution. µP and σP denote the expected portfolio return and volatility, respectively.

Consider a risk-free position (with return rf ) and a stock (market) position (with

expected return µS and volatility σS), where x represents the percentage stock market

allocation. Given that the risk-free asset has zero volatility and is uncorrelated with

stock returns, the value-at-risk is derived as follows:

V aR = T · [x · (µS − rf ) + rf ] + τ1−α ·
√
T · x · σS . (12)

Within this VaR-based asset allocation, the question of interest is how to allocate

portfolio wealth between stocks and cash in order to ensure that a given VaR-limit

will not be violated. More specifically, the value-at-risk in equation (12) is set to a

pre-specified value, and the expression is solved for the stock market allocation x:

x =
V aR− T · rf

T · (µS − rf ) + τ1−α ·
√
T · σS

. (13)

Various parameters must be specified in equation (13): the confidence level α, the risk-

free rate rf , the expected stock market volatility σS , and the equity risk premium (µS −
rf ). Both the future stock market volatility and the expected risk premium are ex ante
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unobservable and need to be estimated. Instead of applying equation (13) only once at

the beginning of the insurance period, an investor needs to continuously readjust the

stock-cash allocation. Thus, the VaR-strategy constitutes a dynamic trading strategy

comparable to the CPPI or the synthetic put strategy.8 Commercial applications avoid

leverage and short sales, and thus the percentage stock market allocation x in equation

(13) varies between 0% and 100% in our simulation analysis.

5.2.6 Distinguishing Characteristics of Portfolio Insurance

Strategies

The main properties of the different portfolio insurance strategies discussed in this

section are summarized in Table I. First of all, portfolio insurance strategies can be

classified into static and dynamic strategies. While static strategies maintain their

initial asset allocation or change it only once during the entire insurance period, dy-

namic protection strategies adjust their allocation continuously on the basis of market

movements. Therefore, the stop-loss trading rule is classified as a static strategy, while

all other trading rules are dynamic strategies. A second distinguishing feature is the

protection level. While the TIPP strategy (as a modified CPPI strategy) locks in the

cumulated wealth, all other strategies set their protection target at the initial portfolio

wealth. A third criterion for differentiation is the type of insurance provided. In con-

trast to the strategies stop-loss, synthetic put, CPPI, and TIPP, a dynamic VaR-strategy

maintains the floor only with a pre-specified probability. We refer to this feature as

‘probabilistic floor compliance’ as opposed to ‘strong floor compliance’ of all other

portfolio insurance strategies in Table I. The fourth criterion for differentiation relates

to the model parameters. While some strategies require one or two model parameters

(stop-loss, CPPI, and TIPP), other strategies depend on more model parameters (syn-

thetic put and dynamic VaR-strategy). Furthermore, both the synthetic put and the

dynamic VaR-strategy include forward looking model parameters (Bird et al. (1990),

Zhu and Kavee (1988), Jiang et al. (2009)), and therefore the precision of these pa-

rameter estimates will strongly impact the quality of loss protection (Rendleman and

OBrien (1990)). Finally, the various strategies can be differentiated in terms of their

model assumptions. While stop-loss, CPPI, and TIPP do not depend on any model

assumptions, the synthetic put strategy and the dynamic VaR-strategy are based on

normally distributed returns.

8 It is important to consider cumulated portfolio performance when implementing the dynamic VaR-
strategy. For example, if the target-VaR over a one-year investment horizon is 0% and the portfolio
wealth has increased from 100 to 110 after one month, the VaR-budget is −9.09%, and thus a loss of
up to −9.09% does not violate the original VaR-budget. However, if portfolio wealth has decreased
from 100 to 90, the new VaR-budget becomes +11.11%. The portfolio value must increase by at least
11.11% in order to maintain the original VaR-budget of 0%.
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Taken together, our systematic comparison of the different portfolio insurance strate-

gies is structured along the following distinguishing characteristics:

Static vs. dynamic portfolio insurance: In a first step of our simulation analysis, we

compare the simple stop-loss trading rule with the CPPI strategy (comparison 1). Apart

from the difference between static and dynamic protection, the two strategies are equal

along all other dimensions. Both strategies focus on the protection of initial wealth,

provide strong floor compliance, are free of any model assumptions, and do not require

the estimation of model parameters.

Initial wealth vs. cumulated wealth protection: In a second step, we compare the CPPI

strategy with the related TIPP strategy (comparison 2). The latter TIPP strategy is a

modified CPPI strategy, where the only difference relates to the level of wealth protec-

tion. Both strategies are dynamic, guarantee a strong floor compliance, are independent

from any model assumptions, and do not require the forecast of any model parameters.

Model-based vs. model-free portfolio insurance: In order to assess model-based against

model-free protection strategies, we compare the synthetic put with the CPPI strategy

in a third step (comparison 3). While both strategies are dynamic, their main difference

relates to the model assumptions. In contrast to the CPPI strategy, the synthetic put

strategy is derived from the Black and Scholes (1973) option pricing model and de-

pends on its underlying assumptions. Moreover, the synthetic put trading rule requires

estimating the stock market volatility to be used in the option pricing formula.

Strong floor compliance vs. probabilistic floor compliance: In the final step, we examine

the dynamic VaR-strategy in comparison to the synthetic put strategy (comparison 4a).

Both strategies are dynamic, assume normally distributed stock returns, and require

an estimation of unobservable strategy parameters. Furthermore, we compare the

dynamic VaR-strategy with the CPPI strategy (comparison 4b). While both strategies

are dynamic, the CPPI strategy is independent of any model assumptions and pa-

rameter estimates. Taken together, comparing these two pairs of strategies highlights

the difference between strong floor compliance (synthetic put and CPPI strategy) and

probabilistic floor compliance (dynamic VaR-strategy).

5.3 Historical Simulation Methodology

5.3.1 Data and Design of the Empirical Analysis

Our data consists of daily returns for the German stock market index DAX and money

market rates from the German Bundesbank (average values of the 1-month Frankfurt

interbank rate; middle rate) over the sample period from January 1981 to December

2011. As documented in Poterba and Summers (1988), among others, stock market

returns exhibit short-term autocorrelation and long-term mean reversion. Moreover,
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stock market returns deviate from the normal distribution with constant volatility

(homoscedasticity); they tend to be heteroscedastic and left-skewed, and they exhibit

fat tails (Annaert et al. (2009), Bertrand and Prigent (2011)). As shown in Dichtl and

Drobetz (2011), similar statistical properties are also observable for daily DAX return

series. In order to fully incorporate the time series characteristics, we follow Annaert

et al. (2009) and Bertrand and Prigent (2011) and implement a block-bootstrap by

drawing 250 subsequently following pairs of daily stock and money market returns.9

Selecting N = 5,000 coherent data blocks with replacement and applying the different

portfolio insurance strategies in each draw provides us with 5,000 annual returns for

each strategy.10 These N = 5,000 yearly returns are the basis for our performance

measures (see Section 5.3.2) as well as our hypothesis tests (see Section 5.3.3).

The equity risk premium and the volatility for each one-year simulation path of

the dynamic VaR-strategy are estimated from the prior 250 daily returns. The return

volatility for the synthetic put strategy (again estimated from the prior 250 daily

returns) is modified according to Boyle and Vorst (1992), as shown in equation (7b).11

We implement all strategies without short sales and leverage and take round-trip

transaction costs of 10 basis points into account (Herold et al. (2007)). In order to

avoid portfolio shifts that are triggered by trendless market movements, we implement

the dynamic VaR-strategy, the CPPI strategy, the TIPP strategy, and the synthetic put

strategy with a trading filter. Portfolio shifts are only executed when the stock market

moves by more than 2% (Do and Faff (2004)). Moreover, in the basic model specification,

we implement both the CPPI strategy and the TIPP strategy with a multiplier of m = 5,

which is commonly used in commercial applications (Herold et al. (2007)). The

confidence level in the dynamic VaR-strategy is a = 90%. We implement all strategies

based on a protection level of 100% (i.e., with a full capital guarantee) and compare

their performance with an unprotected buy-and-hold stock market investment.

5.3.2 Performance Measures

In order to compare the different portfolio insurance strategies as described in Section

5.2.1-5, we investigate their protection quality and return potential on the basis of

the N = 5,000 yearly returns. By using downside risk measures, we are able to ap-

propriately quantify the protection quality of any given strategy. In particular, we

9 Benartzi and Thaler (1995) provide evidence that many institutional and private investors use a
one-year investment horizon. Therefore, we focus on this time period in our simulation analysis.

10 As a robustness check, we also implement a circular block-bootstrap in order to avoid an underweight-
ing at the beginning and the end of the original time series. Our results remain qualitatively the
same.

11 We also run the simulations using the original volatility or the Leland (1985) modification in equation
(7a). The simulation results are not sensitive to these changes.
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compute lower partial moments (LPMs), which take only negative deviations from

the pre-specified target return, denoted as τ , into account. As our analysis focuses

on preserving the invested capital, the target return is set equal to zero (τ = 0), and

we penalize negative deviations from this target with an exponent of 0 (LPM0) and 1

(LPM1). LPM0 and LPM1 represent the shortfall probability and the expected shortfall,

respectively (Harlow and Rao (1989), Eling and Schuhmacher (2007)).12 We also report

the empirical VaR (using a confidence level of a = 95%), the skewness, and the mini-

mum annual return as alternative downside risk measures.

Following Bertrand and Prigent (2011), we use the Omega measure (Shadwick and

Keating (2002)) for our systematic comparison of the different portfolio insurance

strategies along the distinguishing characteristics as discussed in Section 5.2.6 (com-

parisons 1-4). The Omega ratio represents a special case of the more general Kappa

measure (Kaplan and Knowles (2004)). It is characterized by the ratio of gains to losses

relative to a predefined target return required by the investor:

Ω(τ) =

∫∞
τ

(1−F(r))dr∫ τ
−∞F(r)dr

, (14)

where F(.) denotes the cumulative distribution function of returns r, and τ represents

the target return (or threshold). The Omega ratio takes account of the entire return

distribution, does not require any parametric assumptions, and it can easily be com-

puted by dividing the higher partial moment of degree 1 (HPM1) by the lower partial

moment of the same degree (LPM1). In order to get a reasonable ratio of gains to losses,

the target return should be lower than the expected portfolio return. In the context of

portfolio insurance strategies, the threshold must also be higher than the protection

level. Following Bertrand and Prigent (2011), we set the threshold for the Omega ratio

to 1%, 2%, 3%, and 4% per year, respectively.

5.3.3 Testing for Statistical Significance

The starting point for our statistical significance tests are theN = 5,000 annual portfolio

returns for each simulated protection strategy (based on the block-bootstrap approach

from the first step). For all comparisons 1-4 formulated in Section 5.2.6, we evaluate

the difference between the Omega ratios of a pair of strategies A and B:

∆Ω = ΩA(τ)−ΩB(τ). (15)

12 In the specific case of a zero target return, the LPM0 measure indicates the loss probability and the
LPM1 measure the expected loss.
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The objective is to test whether there is a significant difference between the Omega

ratios of the two compared strategies. Formally, we test:

H0 : ∆Ω = 0 against H1 : ∆Ω , 0. (16)

Given the N = 5,000 annual returns for each strategy, an appropriate point estimator

for the difference in equation (15) can be calculated:

∆̂Ω = Ω̂A(τ)− Ω̂B(τ). (17)

However, a statistical test requires the distribution of ∆̂Ω. Therefore, we implement

a further bootstrap using the N = 5,000 annual returns from the block-bootstrap in

the first step. Within this second step bootstrap, we again create 5,000 bootstrap

resamples (NB = 5,000), each consisting of 5,000 annual returns. For each of the

NB = 5,000 bootstrap resamples, we compute in the same way as for the point estimator

in equation (17). Furthermore, we define:

∆∗
Ω[1] ≤ ∆∗

Ω[2] ≤ . . . ≤ ∆∗
Ω[NB] (18)

as the ordered series of the Omega differences. Based on this series a confidence

interval:

CI = [ξ∗low;ξ∗high] (19)

can be constructed, where:

ξ∗low = ∆∗
Ω[α2 ·NB]

and (20a)

ξ∗high = ∆∗
Ω[(1−α2 )·NB]

. (20b)

The null hypothesis H0 is rejected at significance level α if 0 < CI . The key benefit of

applying a block-bootstrap procedure for a comparison of portfolio insurance strategies

is that all time-series properties are taken into account. A caveat, however, is that

a selection of blocks of daily returns with replacement leads to overlapping effects,

and thus the N = 5,000 generated annual returns from the first step are not fully

independent. Therefore, the standard bootstrap as proposed by Efron (1979) is not

appropriate.13 We therefore use the stationary bootstrap approach suggested by Politis

13 A potential solution could be the block-bootstrap approach, as proposed by Künsch (1989) and Liu and
Singh (1992). However, a problem is that the resampled time series need not necessarily be stationary
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and Romano (1994), where the block length in the bootstrap is stochastic and obeys

a geometric distribution. Figure I graphically summarizes our methodology, which

consists of a traditional block-bootstrap for the simulation of the annual returns of the

respective portfolio insurance strategy in the first step (Panel A) and the stationary

bootstrap of Politis and Romano (1994) for conducting the hypothesis tests in the

second step (Panel B).

Specifically, let Ri = (RAi ,RBi ) be a pair of the annual returns of strategy A and B in

the second step of our analysis. The starting point are the N pairs of annual returns,

denoted as (R1, . . . ,RN ), where we calculate the point estimator ∆̂Ω = (R1, . . . ,RN ). Sim-

ilarly, we calculate the ∆̂∗
Ω

values as ∆̂∗
Ω

= ∆Ω(R∗1, . . . ,R
∗
N ), where the R∗i values, with

i ∈ {1, . . . ,N }, are results from the stationary bootstrap. Instead of resampling single

elements or blocks of fixed length with replacement from the series (R1, . . . ,RN ), the

stationary bootstrap selects blocks of data with a variable block length: (R∗1, . . . ,R
∗
N ) =

BI1,L1
,BI2,L2

, . . . The first data block, denoted as BI1,L1
, starts at index I1 and has L1

elements. In general, we have:

BIi ,Li = {RIi ,RIi+1, . . . ,RIi+Li−1}. (21)

The starting indices I1, I2, . . . are random variables drawn from a discrete uniform

distribution. The block lengths Li are random variables described by a geometric

distribution:

P (Li =m) = (1− p)m−1 · p for m ∈N. (22)

When building the blocks as described, the index of the next element (j) that has

to be selected could be greater than N (j > N ). In this case, Rj is defined to be Ri ,

where i = (j mod N ) and R0 = RN . Politis and Romano (1994) emphasize that this

‘wrapping the data around in a circle’ (such that R1 follows RN ) is important to achieve

stationarity of the resampled time series. The geometric distribution, as shown in

equation (22), has an expected value of (1/p) which represents the mean length of our

data blocks. Therefore, specifying the probability p allows controlling the mean length

of the selected data blocks at the same time. In our implementation of the stationary

bootstrap, we use the algorithm developed by Politis and White (2004) to determine

the ‘optimal’ mean block length. This algorithm implicitly solves for the optimal p.

Patton et al. (2009) suggest minor error corrections to this algorithm, and we further

incorporate their proposed changes.

The stationary bootstrap test can be implemented in a fairly straightforward manner.

In a first step, generate an integer random number i in the interval {1, . . . ,N } and select

although the original series of elements fulfill this assumption. Politis and Romano’s (1994) stationary
bootstrap technique alleviates this problem.
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Figure I – The Historical Bootstrap Set-Up

(A) Block-Bootstrap Simulation

(B) Stationary Bootstrap Simulation
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the element Ri . This number represents the first element in the first block: R∗1 = RI1 = Ri .

Then generate another real value random number in the interval [0;1[. If this generated

random number is greater than the specified probability p, select the next element Ri+1,

set R∗2 = RI1+1 = Ri+1, and generate a new real value random number in the interval

[0;1[. If the selected index j is greater than N , start again with the first element R1,

and so on (‘wrapping the data around a circle’) until the first selected block has been

built. However, if the generated real value random number is smaller than p, building

up the first block BI1,L1
ends. We then generate a new integer random number i in the

interval {1, . . . ,N }, select an element Ri , and build the next block BI2,L2
. The process

stops once we have N resampled pairs of returns (R∗1, . . . ,R
∗
N ), where we can calculate

∆̂∗
Ω

= ∆Ω(R∗1, . . . ,R
∗
N ). This procedure is repeated NB times until we have NB values of

∆̂∗
Ω

representing the distribution of ∆̂Ω.

5.4 Historical Simulation Results

5.4.1 Main Simulation Results

The results of our bootstrap simulations are presented in Panel A of Table II. As

expected, all portfolio insurance strategies generate positive skewness, which is in

contrast to the negative skewness of the aggregate stock market return series. On

average, the stop-loss strategy provides the highest mean annual return, but also the

highest risk. In terms of average annual returns, both the synthetic put and the dy-

namic VaR-strategy also dominate the CPPI and the TIPP strategy. In contrast, the

CPPI strategy and the TIPP strategy dominate all other strategies in terms of their

risks, as indicated by the LPM0 and the LPM1 measure, the empirical VaR (at the 95%

confidence level), and the minimum annual return (as measures for protection quality).

Therefore, the resulting question of interest is which portfolio insurance strategy leads

to the highest risk-adjusted performance.

In order to implement our systematic strategy comparison, we evaluate the differ-

ent portfolio insurance strategies based on their Omega ratio by reporting statistical

significance levels. The Omega ratios are shown in Panel A of Table II for threshold

returns ranging from 1% to 4%. Most important, a bootstrap-based hypothesis test as

described in Section 5.3.3 is applied to statistically test the differences in the Omega

ratios for each pair of strategies (see Section 5.2.6). An average block length of 3 is

chosen to conduct all hypothesis tests.14 Confidence intervals are evaluated at the 1%,

5%, and 10% level of statistical significance, respectively. Panel B of Table II reports

14 In order to determine the optimal block length of our bootstrap-based hypothesis tests, we apply
Politis and White’s (2004) algorithm and also incorporate the error corrections suggested by Patton
et al. (2009). All calculated values vary around 2, and we choose an average block length of 3 in all
cases in order to get conservative results. A block length of 2 delivers almost the same results.
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the confidence interval with the highest level of significance. If the confidence interval

based on a 10% significance level still contains zero, there are no significant differences

in the Omega ratios for the respective pair of strategies. In contrast, if both reported

interval boundaries are positive (negative), one strategy features a significantly higher

(lower) Omega ratio than the other at the reported level of statistical significance.

Comparing the simple stop-loss trading rule with the CPPI strategy (comparison

1), we observe a clear dominance of the CPPI strategy. However, the difference in the

Omega ratio in Panel B of Table II shrinks with increasing threshold returns, which

can be attributed to the lower return potential of the CPPI strategy in comparison to

the stop-loss strategy. With a threshold return of τ = 4%, the difference in the Omega

ratios is no longer statistically significant. This observation based on historical data

contrasts the findings in Benninga (1990), who reports a dominance of the stop-loss

strategy in terms of risk-adjusted returns. However, he does not use downside risk

measures and conducts Monte Carlo simulations, potentially neglecting the properties

of financial markets data (e.g., heteroscedasticity and fat tails).

In a second step, we compare the CPPI strategy and the TIPP strategy (comparison

2). Panel B of Table II reveals a statistically significant dominance of the TIPP strategy

in terms of the Omega ratio with threshold returns up to 2%. Using a threshold return

of 3%, the difference is no longer statistically significant. However, using a threshold

return of 4%, the CPPI strategy provides a significantly higher Omega ratio compared

to the TIPP strategy. This reversal is explained by the tradeoff between downside

protection and return potential. Although the TIPP strategy exhibits a slightly superior

downside protection (as indicated by the LPM0 and the LPM1 measure), it also provides

a lower return potential. In order to assess whether these properties are specific for

the chosen multiplier of m = 5 in the base-case scenario, we run additional bootstrap

simulations and compare the CPPI strategy and the TIPP strategy with multipliers of

m = 3,m = 7, andm = 9. The results are summarized in Table III; they generally confirm

our earlier findings in Table II. While the TIPP strategy exhibits slightly superior risk

measures, the CPPI strategy dominates in terms of annual mean returns. With high

multipliers of m = 7 and m = 9, the mean return of the TIPP strategy does not increase

notably, and the CPPI strategy generates higher Omega ratios than the TIPP strategy

when using threshold returns of 3% and 4%. The limited return potential of the

TIPP strategy is a result of its property to protect the cumulated wealth. Given the

continuous ratcheting up of the floor to the highest portfolio value, this increased floor

is more often violated, implying a full cash investment until the end of the investment

horizon and lower portfolio returns. It is expected that this effect will reinforce itself

with increasing investment horizons. Overall, these results reconfirm Choie and Seff’s

(1989) general criticism of the TIPP strategy.
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Table II – Historical Simulation Results
This table shows the results of historical simulations using the base-case specifications. The data consists
of daily returns for the German stock market index DAX and money market rates from the German
Bundesbank (average values of the 1-month Frankfurt interbank rate; middle rate) over the sample
period from January 1981 to December 2011. Volatility and risk premium estimates (if necessary) are
taken from the year prior to the implementation of the strategy. In order to capture the time series
characteristics of the return series, we implement a common block-bootstrap approach drawing 250
subsequently following pairs of daily stock and money market returns with replacement. In particular,
selectingN = 5,000 coherent data blocks with replacement and applying the different portfolio insurance
strategies in each draw provides us with 5,000 yearly returns for each strategy. Panel A presents the
return, risk, and performance characteristics of the different portfolio insurance strategies. m = 5 denotes
the multiplier of the CPPI and the TIPP strategy, and α = 0.90 is the confidence level of the dynamic
VaR-strategy. In addition to the mean annual returns, the strategies’ protection quality is captured by
using downside risk measures. Lower partial moments (LPMs) only take negative deviations from the
target return (τ) into account. The target return is set equal to zero (τ = 0), and we penalize negative
deviations from this target with an exponent of 0 (LPM0) and 1 (LPM1). LPM0 and LPM1 represent
the shortfall probability and the expected shortfall, respectively. In addition, the table reports the
empirical VaR (using a confidence level of α = 95%), the skewness, and the minimum annual return as
alternative downside risk measures. The Omega measure, defined as the ratio of gains to losses relative
to a target return, is used for our systematic comparison of the different portfolio insurance strategies
along the distinguishing characteristics as discussed in Section 5.2.6 (comparisons 1-4 in Panel B). The
threshold returns for the Omega ratio are set to 1%, 2%, 3%, and 4% per year, respectively. Panel B
reports the confidence intervals for significance tests of the difference between the Omega ratios of each
pair of strategies. In order to derive the confidence intervals, we implement a stationary bootstrap of
Politis and Romano (1994) using the N = 5,000 annual returns from the common block-bootstrap in
the first step. Within this second step bootstrap, we again create NB = 5,000 bootstrap resamples, each
consisting of 5,000 annual returns (see Figure I). The stationary bootstrap approach suggested by Politis
and Romano (1994) is used for all hypothesis tests in the second step, where the optimal mean block
length is determined as suggested by Patton et al. (2009). The confidence intervals are evaluated at the
1%, 5%, and 10% level of significance, and Panel B reports the confidence interval with the highest level
of significance. If the confidence interval based on a 10% significance level still contains zero, there are
no significant differences in the Omega ratios of the respective pair of strategies. In contrast, if both
reported interval boundaries are positive (negative), one strategy features a significantly higher (lower)
Omega ratio than the other at the reported level of statistical significance. ∗, ∗∗, and ∗∗∗ denotes statistical
significance at the 10%, 5%, and 1% level, respectively.

Panel A: Return, Risk, and Performance of Portfolio Insurance Strategies

Stop-Loss Synthetic CPPI TIPP Dynamic Stock
Put VaR Market

(m = 5) (m = 5) (α = 0.90)

Mean return p.a. 8.97% 8.19% 5.82% 4.88% 7.31% 11.36%
LPM0 (τ = 0%) 68.10% 28.94% 6.98% 3.48% 28.54% 31.84%
LPM1 (τ = 0%) 1.06% 0.55% 0.04% 0.02% 0.40% 5.41%
VaR (95%) −3.73% −3.02% −0.12% 0.24% −2.36% −30.28%
Skewness 1.58 1.78 2.07 0.68 2.32 −0.08
Minimum return −9.80% −8.66% −2.21% −2.21% −9.15% −57.32%
Ω(τ = 1%) 5.57 9.14 25.03 39.85 9.32 2.81
Ω(τ = 2%) 3.87 5.73 8.89 11.27 5.42 2.54
Ω(τ = 3%) 2.92 3.91 4.24 4.33 3.51 2.31
Ω(τ = 4%) 2.31 2.83 2.35 1.91 2.46 2.09

continued
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Table III – Hist. Simulation Results for CPPI and TIPP Strategies with Different Multipliers
With respect to the measures of interest, this table shows the return, risk, and performance values of
historical simulations for the CPPI strategy and TIPP strategy with different choices for the multiplier
m (see equation 9). The data consists of daily returns for the German stock market index DAX and
money market rates from the German Bundesbank (average values of the 1-month Frankfurt interbank
rate; middle rate) over the sample period from January 1981 to December 2011. In order to capture the
time series characteristics of the return series, we implement a common block-bootstrap approach by
drawing 250 subsequently following pairs of daily stock and money market returns with replacement.
In particular, selecting N = 5,000 coherent data blocks with replacement and applying the different
portfolio insurance strategies in each draw provides us with 5,000 yearly returns for each strategy. In
addition to the mean annual returns, the strategies’ protection quality is captured by using downside
risk measures. Lower partial moments (LPMs) only take negative deviations from the target return (τ)
into account. The target return is set equal to zero (τ = 0), and we penalize negative deviations from this
target with an exponent of 0 (LPM0) and 1 (LPM1). LPM0 and LPM1 represent the shortfall probability
and the expected shortfall, respectively. In addition, the table reports the values of the empirical VaR
(using a confidence level of α = 95%), the skewness, and the minimum annual return as alternative
downside risk measures. The Omega measure is defined as the ratio of gains to losses relative to a target
return, where the threshold returns are set to 1%, 2%, 3%, and 4% per year, respectively.

CPPI TIPP CPPI TIPP CPPI TIPP
(m = 3) (m = 3) (m = 7) (m = 7) (m = 9) (m = 9)

Mean return p.a. 5.30% 4.84% 6.61% 4.97% 7.10% 5.05%
LPM0 (τ = 0%) 1.98% 1.40% 15.02% 6.54% 28.06% 10.74%
LPM1 (τ = 0%) 0.01% 0.01% 0.07% 0.04% 0.17% 0.12%
VaR (95%) 0.42% 0.57% 0.44% −0.17% −1.34% −0.68%
Skewness 0.96 0.34 2.08 0.92 2.18 1.03
Minimum return −1.35% −1.34% −2.76% −2.76% −3.85% −3.85%
Ω(τ = 1%) 50.36 70.55 17.57 25.36 11.95 15.09
Ω(τ = 2%) 12.43 15.21 7.19 8.01 5.89 6.12
Ω(τ = 3%) 4.96 5.30 3.94 3.52 3.59 3.09
Ω(τ = 4%) 2.35 2.06 2.48 1.79 2.44 1.73

In a third step, we compare the synthetic put strategy and the CPPI strategy (com-

parison 3). As shown in Panel A of Table II, the synthetic put strategy dominates the

CPPI strategy in terms of mean annual returns. However, the synthetic put strategy

provides worse downside protection, as indicated by the values of the LPM0 and LPM1

measures, the empirical VaR, and the minimum return. Based on the performance of

the Omega ratio, we observe a statistically significant dominance of the CPPI strategy

against the synthetic put strategy for threshold returns up to 3% in Panel B of Table II.

In contrast, using a threshold return of 4%, the synthetic put strategy is superior to the

CPPI strategy in terms of Omega ratios at the 1% significance level. One explanation for

this reversal is the choice of the multiplier. As shown in Table III, the return potential

of the CPPI strategy increases with higher multipliers m. Moreover, the relatively poor

protection quality of the synthetic put strategy may be explained by estimation risk for

stock market volatility. Both issues are addressed in Section 5.4.2.

In a fourth step, we evaluate the dynamic VaR-strategy against both the synthetic

put and the CPPI strategy (comparison 4). The dynamic-VaR strategy shows a lower

return potential than the synthetic put strategy, but it also generates slightly superior
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values for the downside risk measures in Panel A of Table II. Moreover, based on the

Omega ratio, we find a statistically significant dominance of the synthetic put strategy

for threshold returns from 2% to 4%. The results are opposite for comparisons of the

VaR-strategy with the CPPI strategy. While the VaR-strategy provides higher mean

annual returns, the CPPI strategy features superior downside protection properties.

For threshold returns up to 3%, the Omega ratio of the CPPI strategy is significantly

higher than that of the dynamic VaR-strategy.

Table IV – Hist. Simulation Results for the Dynamic VaR-Strategy with Diff. Confidence Levels
With respect to the measures of interest, this table shows the return, risk, and performance values of
historical simulations for the dynamic VaR-strategy with different choices for the confidence level α
(equation 13). The data consists of daily returns for the German stock market index DAX and money
market rates from the German Bundesbank (average values of the 1-month Frankfurt interbank rate;
middle rate) over the sample period from January 1981 to December 2011. Volatility and risk premium
estimates are taken from the year prior to the implementation of the strategy. In order to capture the
time series characteristics of the return series, we implement a common block-bootstrap approach by
drawing 250 subsequently following pairs of daily stock and money market returns with replacement.
In particular, selecting N = 5,000 coherent data blocks with replacement and applying the different
portfolio insurance strategies in each draw provides us with 5,000 yearly returns for each strategy. In
addition to the mean annual returns, the strategies’ protection quality is captured by using downside
risk measures. Lower partial moments (LPMs) only take negative deviations from the target return (τ)
into account. The target return is set equal to zero (τ = 0), and we penalize negative deviations from this
target with an exponent of 0 (LPM0) and 1 (LPM1). LPM0 and LPM1 represent the shortfall probability
and the expected shortfall, respectively. In addition, the table reports the values of the empirical VaR
(using a confidence level of α = 95%), the skewness, and the minimum annual return as alternative
downside risk measures. The Omega measure is defined as the ratio of gains to losses relative to a target
return, where the threshold returns are set to 1%, 2%, 3%, and 4% per year, respectively.

Confidence Level α

α = 0.85 α = 0.90 α = 0.95 α = 0.99

Mean return p.a. 7.21% 6.97% 6.80% 6.13%
LPM0 (τ = 0%) 32.22% 28.60% 21.44% 10.44%
LPM1 (τ = 0%) 0.38% 0.39% 0.28% 0.15%
VaR (95%) −2.31% −2.37% −1.80% −0.55%
Skewness 2.37 2.33 2.33 2.24
Minimum return −7.95% −9.15% −8.70% −9.82%
Ω(τ = 1%) 5.10 8.96 11.00 15.39
Ω(τ = 2%) 2.27 5.16 5.90 6.93
Ω(τ = 3%) 3.43 3.32 3.61 3.78
Ω(τ = 4%) 2.40 2.30 2.40 2.31

A caveat is that the dynamic VaR-strategy is implemented by using a fixed confidence

level of α = 90% (see equation 11), and it is not obvious whether this value is the

optimal choice. In order to evaluate the influence of the confidence level, we repeat our

bootstrap simulations for varying values of the parameter α in a dynamic VaR-strategy,

ranging from 0.85 to 0.99. The results are summarized in Table IV. As expected, a

reduction in the level of significance from 0.15 to 0.01 leads to superior downside

protection, but also to a lower return potential. While a dynamic VaR-strategy with

α = 0.85 boasts the highest mean annual return, the corresponding downside protection
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tends to be worse compared to the specifications with higher significance levels. The

dynamic VaR-strategy based on α = 0.95 appears particularly interesting. Comparing

this strategy with the α = 0.99 specification, a higher mean annual return potential

is observable. At the same time, this strategy dominates the α = 0.85 and α = 0.90

specifications in terms of the LPM0 and the LPM1 measure as well as the empirical

VaR. In addition, based on the Omega ratios, a dominance of the α = 0.95 specification

against α = 0.90 is observable for all threshold returns ranging from 1% to 4%.

5.4.2 Robustness Tests

In this section, we conduct a series of robustness tests. Given the results in Tables III and

IV, we start by repeating our bootstrap simulations with alternative parameterizations

of the CPPI strategy and the dynamic VaR-strategy. The confidence level for the

dynamic VaR-strategy is set to α = 0.95, and the CPPI strategy is implemented with a

multiplier of m = 9.15 The results are presented in Table V. With this more aggressive

multiplier (compared to m = 5), the CPPI strategy again strongly dominates the simple

stop-loss trading rule in terms of Omega ratios (comparison 1). The difference is

statistically significant for all threshold returns ranging from 1% to 4% (Panel B of

Table V). The comparison of the CPPI and the TIPP strategy using a multiplier of m = 9

also reconfirms our earlier results (comparison 2). Again, the CPPI strategy generates

significantly higher Omega ratios compared to the TIPP strategy using threshold

returns of 3% and 4%.

Comparing the CPPI strategy with the synthetic put strategy (comparison 3), our

earlier results change. With the higher multiplier of m = 9, the CPPI strategy is

dominated by the synthetic put strategy in terms of Omega ratios even by using

a threshold return of 3%. While the synthetic put strategy provides higher mean

returns than the CPPI strategy, the latter still offers superior downside protection.16 A

comparison of the dynamic VaR-strategy with the synthetic put strategy again confirms

earlier findings (comparison 4). The dynamic VaR-strategy exhibits superior values for

the LPM0 and the LPM1 measure as well as the empirical VaR, but it also shows a lower

return potential compared to the synthetic put strategy. In terms of the Omega ratio, the

VaR-strategy significantly dominates the synthetic put strategy only for low thresholds

15 In order to enable a comparison between the CPPI and the TIPP strategy, we also set the multiplier
for the TIPP strategy to m = 9. The deviations in the entries for both the CPPI and the TIPP strategy
based on m = 9 in Tables III and V are attributable to the path dependency of each portfolio insurance
strategy, respectively. Similar deviations are observable for the stop-loss strategy and the dynamic
VaR-strategy across tables. However, all deviations are very small, indicating that our bootstrap
simulations exhibit sufficiently accurate convergence properties.

16 Our results differ slightly from the findings in Bertrand and Prigent (2011), where the CPPI strategy
dominates the synthetic put strategy under a full capital protection in terms of the Omega measure
for all threshold returns, ranging from 1% to 4%.
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Table V – Robustness Checks for Historical Simulation Results
This table shows the results of historical simulations using alternative strategy specifications. In
particular, in contrast to the base-case specification in Table II, a multiplier of m = 9 (instead of m = 5) is
used for both the CPPI and the TIPP strategy and a confidence level of α = 0.95 (instead of α = 0.90)
for the dynamic VaR-strategy. The data consists of daily returns for the German stock market index
DAX and money market rates from the German Bundesbank (average values of the 1-month Frankfurt
interbank rate; middle rate) over the sample period from January 1981 to December 2011. Volatility
and risk premium estimates (if necessary) are taken from the year prior to the implementation of the
strategy. In order to capture the time series characteristics of the return series, we implement a common
block-bootstrap approach by drawing 250 subsequently following pairs of daily stock and money market
returns with replacement. In particular, selecting N = 5,000 coherent data blocks with replacement and
applying the different portfolio insurance strategies in each draw provides us with 5,000 yearly returns
for each strategy. Panel A presents the return, risk, and performance characteristics of the different
portfolio insurance strategies. In addition to the mean annual returns, the strategies’ protection quality is
captured by using downside risk measures. Lower partial moments (LPMs) only take negative deviations
from the target return (τ) into account. The target return is set equal to zero (τ = 0), and we penalize
negative deviations from this target with an exponent of 0 (LPM0) and 1 (LPM1). LPM0 and LPM1
represent the shortfall probability and the expected shortfall, respectively. In addition, the table reports
the values of the empirical VaR (using a confidence level of α = 95%), the skewness, and the minimum
annual return as alternative downside risk measures. The Omega measure, defined as the ratio of gains to
losses relative to a target return, is used for our systematic comparison of the different portfolio insurance
strategies along the distinguishing characteristics as discussed in section 5.2.6 (comparisons 1-4 in Panel
B). The threshold returns for the Omega ratio are set to 1%, 2%, 3%, and 4% per year, respectively. Panel
B reports the confidence intervals for significance tests of the difference between the Omega ratios of
each pair of strategies. In order to derive the confidence intervals, we implement a stationary bootstrap
of Politis and Romano (1994) using the N = 5,000 annual returns from the common block-bootstrap in
the first step. Within this second step bootstrap, we again create NB = 5,000 bootstrap resamples, each
consisting of 5,000 annual returns (see Figure I). The stationary bootstrap approach suggested by Politis
and Romano (1994) is used for all hypothesis tests in the second step, where the optimal mean block
length is determined as suggested by Patton et al. (2009). The confidence intervals are evaluated at the
1%, 5%, and 10% level of significance, and Panel B reports the confidence interval with the highest level
of significance. If the confidence interval based on a 10% significance level still contains zero, there are
no significant differences in the Omega ratios of the respective pair of strategies. In contrast, if both
reported interval boundaries are positive (negative), one strategy features a significantly higher (lower)
Omega ratio than the other at the reported level of statistical significance. ∗∗∗, ∗∗, and ∗ denotes statistical
significance at the 1%, 5%, and 10% level, respectively.

Panel A: Return, Risk, and Performance of Portfolio Insurance Strategies

Stop-Loss Synthetic CPPI TIPP Dynamic Stock
Put VaR Market

(m = 9) (m = 9) (α = 0.95)

Mean return p.a. 8.78% 8.01% 6.96% 5.03% 6.91% 11.09%
LPM0 (τ = 0%) 68.40% 28.26% 24.42% 10.66% 21.46% 31.50%
LPM1 (τ = 0%) 1.08% 0.53% 0.16% 0.10% 0.27% 5.35%
VaR (95%) −3.97% −2.96% −1.21% −0.67% −1.76% −29.40%
Skewness 1.56 1.76 2.20 1.04 2.36 −0.10
Minimum return −10.62% −8.63% −3.85% −3.77% −9.12% −58.81%
Ω(τ = 1%) 5.42 9.17 12.15 15.85 11.26 2.78
Ω(τ = 2%) 3.77 5.70 5.90 6.30 6.04 2.51
Ω(τ = 3%) 2.84 3.86 3.56 3.12 3.70 2.28
Ω(τ = 4%) 2.25 2.77 2.40 1.72 2.47 2.06

continued
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of 1% and 2%. Comparing the Omega ratios of the dynamic VaR-strategy and the

CPPI strategy, slightly better results are observable for the dynamic VaR-strategy. In

fact, the advantage of the CPPI strategy against the dynamic VaR-strategy seems to be

attributable to its lower risk, and this advantage is more pronounced when a lower

multiplier for the CPPI strategy is chosen.

Table VI – Hist. Simulation Results for the Dynamic VaR-Strategy with Diff. Confidence Levels
With respect to the measures of interest, this table shows return, risk, and performance values of
historical simulations for the dynamic VaR-strategy with different choices for the confidence level α
(equation 13) and the synthetic put strategy assuming that estimation risk is ignored. In contrast to all
previous simulations, where the volatility and risk premium estimates are taken from the year prior
to the implementation of the strategy, the realized volatility and the realized risk premium in a given
year are used. The data consists of daily returns for the German stock market index DAX and money
market rates from the German Bundesbank (average values of the 1-month Frankfurt interbank rate;
middle rate) over the sample period from January 1981 to December 2011. In order to capture the
time series characteristics of the return series, we implement a common block-bootstrap approach by
drawing 250 subsequently following pairs of daily stock and money market returns with replacement.
In particular, selecting N = 5,000 coherent data blocks with replacement and applying the different
portfolio insurance strategies in each draw provides us with 5,000 yearly returns for each strategy. In
addition to the mean annual returns, the strategies’ protection quality is captured by using downside
risk measures. Lower partial moments (LPMs) only take negative deviations from the target return (τ)
into account. The target return is set equal to zero (τ = 0), and we penalize negative deviations from this
target with an exponent of 0 (LPM0) and 1 (LPM1). LPM0 and LPM1 represent the shortfall probability
and the expected shortfall, respectively. Moreover, the table reports the values of the empirical VaR
(using a confidence level of α = 95%), the skewness, and the minimum annual return as alternative
downside risk measures. The Omega measure is defined as the ratio of gains to losses relative to a target
return, where the threshold returns are set to 1%, 2%, 3%, and 4% per year, respectively.

Confidence Level α Synthetic

α = 0.85 α = 0.90 α = 0.95 α = 0.99 Put

Mean return p.a. 4.96% 5.79% 6.86% 7.69 7.89%
LPM0 (τ = 0%) 27.12% 17.42% 8.60% 2.20 21.90%
LPM1 (τ = 0%) 0.27% 0.21% 0.10% 0.01 0.20%
VaR (95%) −1.70% −1.49% −0.53% 0.37 −1.32%
Skewness 2.40 2.18 1.97 2.53 1.68
Minimum return −7.56% −7.17% −6.67% −4.50 −4.12%
Ω(τ = 1%) 6.99 10.63 22.43 84.19 14.35
Ω(τ = 2%) 3.49 5.07 9.47 22.89 7.13
Ω(τ = 3%) 2.09 2.88 4.82 9.24 4.35
Ω(τ = 4%) 1.39 1.85 2.85 4.70 2.96

In contrast to all other strategies, the synthetic put strategy and the dynamic VaR-

strategy are both dependent on the parameter forecasts. Comparing the LPM0 measures

with a given parameter α for all different specifications of the dynamic VaR-strategy in

Tables II, IV, and V, respectively, substantial differences emerge. In all cases, the LPM0

measure of the dynamic VaR-strategy indicates that the protection level is more often

violated than expected given the confidence level α. Furthermore, the synthetic put

strategy exhibits a worse capital protection compared to other forecast-free strategies,

such as the CPPI strategy and the TIPP strategy. While deviations from the assumption

of normally distributed stock market returns may be one plausible explanation, the



5 Portfolio Insurance 120

limited prediction quality of our volatility and risk premium estimators may offer an-

other explanation. In order to shed light on this latter issue, we repeat our simulations

for the dynamic VaR-strategy and the synthetic put strategy. In contrast to our previous

simulations, where the volatility and risk premium estimates are taken from the year

prior to the implementation of the strategy, we use the realized volatility and the

realized risk premium in any given year. The results are shown in Table VI. Comparing

the LPM0 measures of the dynamic VaR-strategy with and without estimation risk in

Table IV and Table VI, respectively, we observe a substantial reduction in the LPM0

value towards the expected value as indicated by the confidence level α. For example,

based on α = 0.99, the value of the LPM0 measure decreases from 10.44% to 2.20%

when estimation risk is fully eliminated. However, the expected value of 1% still cannot

be reached. This effect is observable for all levels of significance.

Another important effect is revealed when the dynamic VaR-strategy is compared for

increasing confidence levels α (ranging from α = 0.85 to α = 0.99). On the one hand,

protection quality is improved when the confidence level is increased. This expected

result is indicated by the values of the LPM0 and LPM1 measures, the empirical VaR,

and the minimum return. On the other hand, we also observe an increase in the mean

annual return with increasing confidence levels (from 4.96% for α = 0.85 to 7.69% for

α = 0.99). A more conservative dynamic VaR-strategy not only reduces risk, but it also

enhances the return potential under ‘perfect’ forecasts.17 These results suggest that

both the protection quality and the return potential of the dynamic VaR-strategy can

be enhanced if a manager possesses superior forecast skills and if a high confidence

level is chosen. Unfortunately, these suggestions are only of limited relevance for

the investment practice. The main reason for the application of portfolio insurance

strategies is to protect a portfolio against negative market developments in every mar-

ket environment, independent of whether market declines can be forecasted or not.

Moreover, if an investor possesses superior forecasting skills, other active (market

timing) strategies may exist which generate higher returns compared to a protected

passive stock market investment. Overall, our analysis contradicts the findings in

Jiang et al. (2009). Based on our results, we conjecture that the main reason for the

superiority of the dynamic VaR-strategy compared to the CPPI strategy in their study

are the perfect quarterly return and volatility forecasts which they use to implement

their strategy. Our simulation analysis suggests that their results are no longer robust

when estimation risk is taken into account.

17 This combined effect, however, is not observable for the synthetic put strategy. While a perfect
volatility forecast also improves the protection quality of the synthetic put strategy, returns cannot be
enhanced (see Tables II and VI).
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5.5 Monte Carlo Simulations

5.5.1 Design of the Analysis

In this section, we check the robustness of our bootstrap results by additionally running

Monte Carlo simulations. This approach allows us to analyze different economic scenar-

ios with different stochastic parameters. The two main parameters that are required for

the simulation of stock market returns are the expected return and its corresponding

volatility. We define four states of nature to analyze the influence of these parameters

on our results in a systematic way. In a first step, we distinguish between a high and a

low equity risk premium state. According to Dimson et al. (2006), the long-run risk

premium for developed stock markets is roughly 7% per year, this value represents

our high risk premium state. They further argue that the equity risk premium might

be lower in the years ahead and estimate the annual expected stock market excess

return to be 4.5%. This conservative estimate represents our low risk premium state.

Following Arnott and Bernstein (2002), we set the risk-free rate (money market rate) to

a fixed value of 4.5% per year. Adding this value for the risk-free rate to the different

equity risk premiums, we specify an expected stock market return of 9% in the low

equity risk premium state and of 11.5% in the high equity risk premium state.

In the second step, we distinguish between a high and a low stock market volatility

scenario. For the low volatility state, we assume a value of 20%, which roughly repre-

sents the average annual stock market volatility (Dimson et al. (2006)). In contrast, we

use a stock market volatility of 30% per year for the high volatility state. Combining

the two different values for the expected return (µ) and the volatility (σ ), we have

four different scenarios in our Monte Carlo simulations: scenario 1 (µ = 9%;σ = 20%),

scenario 2: (µ = 11.5%;σ = 20%), scenario 3: (µ = 9%;σ = 30%), and scenario 4:

(µ = 11.5%;σ = 30%). Based on these four scenarios, we simulate continuously com-

pounded stock market returns on the basis of a geometric Brownian motion (Hull

(2008)). This return-generating process has the main advantage of fulfilling the as-

sumption of normally distributed returns underlying the synthetic put strategy and

the dynamic VaR-strategy.

In order to derive the mean and volatility parameters for the geometric Brownian

motion return-generating process, the expected return and volatility estimates are

transformed into their corresponding continuously compounded counterparts. We sim-

ulate 250 daily stock market returns and implement the portfolio insurance strategies

in the same way as discussed in Section 5.3.1 (i.e., without short sales and without

leverage, 10 basis points round-trip transaction costs, a trading filter of 2%, and a

protection level of 100%). Moreover, we use the scenario-based estimators for the

equity risk premium and the volatility in implementing the dynamic VaR-strategy.
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Given the stochastic character of the geometric Brownian motion, any generated re-

turn path may deviate from these ‘true’ parameters, also implying that we implicitly

incorporate estimation risk. The necessary volatility for the synthetic put strategy is

estimated in the same way. In order to derive the full distribution of the return, risk,

and performance measures, we perform 10,000 simulation runs.

5.5.2 Testing for Statistical Significance

The test procedure for deriving statistical significance is identical to the approach used

in our block-bootstrap simulations (see Section 5.3.3). The only difference relates to

the selection of elements from the return series generated from our block-bootstrap in

the first step up until now. As the elements are now completely independent due to

our Monte Carlo simulation set-up, we do not apply the stationary bootstrap of Politis

and Romano (1994) in the second step, but instead use the standard bootstrap method

suggested by Efron (1979) for all hypothesis tests. In particular, we draw individual

elements rather than drawing blocks of elements. In the first step, N = 10,000 annual

returns are generated by our Monte Carlo simulation. In order to derive confidence

intervals, we then create NB = 5,000 bootstrap resamples in the second step, each

consisting of 10,000 annual returns.

5.5.3 Monte Carlo Simulation Results

In order to validate the bootstrap results presented in Table V, we again use a multiplier

of m = 9 for the CPPI strategy and the TIPP strategy in our Monte Carlo simulations,

and the confidence level in the dynamic VaR-strategy is set to α = 0.95. All Monte Carlo

simulation results are presented in Table VII. In all four simulated market scenarios

in Panel A of Table VII, the CPPI strategy dominates the stop-loss trading rule in

terms of Omega ratios (comparison 1). The differences in Omega ratios are statistically

significant in all scenarios and for all threshold levels (Panel B of Table VII). As in

our bootstrap simulations, the main driver for this result is the superior downside

protection quality of the CPPI strategy. Comparing the CPPI and the TIPP strategy

(comparison 2), the Monte Carlo simulation results are also similar to those of our

bootstrap simulations. While the TIPP strategy exhibits the lowest LPM values of all

simulated protection strategies, its return potential is comparatively low. Moreover,

the TIPP strategy dominates the CPPI strategy in terms of Omega ratios, but only at

the cost of its lower returns. With an increasing threshold level τ , the difference in

the Omega ratios decreases. For example, in the two scenarios with a high annual

stock market return of 11.5%, the difference between the two Omega ratios is no longer

statistically significant based on a threshold level of 4% (see Panel B of Table VII).
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Table VII – Monte-Carlo Simulations
With respect to the measures of interest, this table shows the return, risk, and performance values of
Monte-Carlo simulations as a robustness test. Based on four scenarios (with given return and volatility
assumptions), continuously compounded stock market returns are simulated on the basis of a geometric
Brownian motion. The expected return and volatility estimates are transformed into their continuously
compounded counterparts. m = 9 denotes the multiplier of the CPPI and the TIPP strategy, and α = 0.95
is the confidence level of the dynamic VaR-strategy. We simulate 250 daily stock market returns and
implement the portfolio insurance strategies. The scenario-based estimators for the equity risk premium
and the volatility are used in the implementation of the dynamic VaR-strategy. The required volatility
for the synthetic put strategy is estimated in the same way. In order to derive the full distribution of
the return, risk, and performance measures, we perform 10,000 simulation runs. Panel A presents the
return, risk, and performance characteristics of the different portfolio insurance strategies. In addition to
the mean annual returns, the strategies’ protection quality is captured by using downside risk measures.
Lower partial moments (LPMs) only take negative deviations from the target return (τ) into account.
The target return is set equal to zero (τ = 0), and we penalize negative deviations from this target with
an exponent of 0 (LPM0) and 1 (LPM1). LPM0 and LPM1 represent the shortfall probability and the
expected shortfall, respectively. The Omega measure, defined as the ratio of gains to losses relative to
a target return, is used for our systematic comparison of the different portfolio insurance strategies
along the distinguishing characteristics as discussed in Section 5.2.6 (comparisons 1 − 4 in Panel B).
The threshold returns for the Omega ratio are set to 1%, 2%, 3%, and 4% per year, respectively. Panel
B reports the confidence intervals for significance tests of the difference between the Omega ratios of
each pair of strategies. In order to derive the confidence intervals, we implement a bootstrap using
the N = 10,000 annual returns from the Monte-Carlo simulation in the first step. Within this second
step bootstrap, we create NB = 5,000 bootstrap resamples, each consisting of 10,000 annual returns.
The standard bootstrap method suggested by Efron (1979) is used for all hypothesis tests in the second
step. The confidence intervals in Panel B are evaluated at the 1%, 5%, and 10% level of significance.
The confidence interval with the highest level of significance is reported. If the confidence interval
based on a 10% significance level still contains zero, there are no significant differences in the Omega
ratios of the respective pair of strategies. In contrast, if both reported interval boundaries are positive
(negative), one strategy features a significantly higher (lower) Omega ratio than the other at the reported
level of statistical significance. ∗∗∗, ∗∗, and ∗ denotes statistical significance at the 1%, 5%, and 10% level,
respectively.

Panel A: Return, Risk, and Performance of Portfolio Insurance Strategies

Stop-Loss Synthetic CPPI TIPP Dynamic Stock
Put VaR Market

(m = 9) (m = 9) (α = 0.95)

Scenario 1: Return 9%, Volatility 20%

Mean return p.a. 6.29% 6.29% 6.12% 5.03% 5.35% 9.29%
LPM0 (τ = 0%) 75.19% 31.48% 8.00% 1.36% 5.01% 34.31%
LPM1 (τ = 0%) 0.57% 0.32% 0.05% 0.01% 0.03% 3.75%
Ω(τ = 1%) 5.00 8.35 15.53 57.53 22.64 3.02
Ω(τ = 2%) 3.06 4.47 5.86 14.02 6.99 1.63
Ω(τ = 3%) 2.16 3.81 3.16 4.98 3.26 2.29
Ω(τ = 4%) 1.64 1.94 2.01 2.14 1.84 2.00

Scenario 2: Return 11.5%, Volatility 20%

Mean return p.a. 7.69% 7.41% 7.14% 5.37% 6.21% 11.38%
LPM0 (τ = 0%) 71.06% 28.17% 7.91% 1.33% 5.30% 29.99%
LPM1 (τ = 0%) 0.53% 0.30% 0.06% 0.01% 0.03% 3.12%
Ω(τ = 1%) 6.39 10.74 20.23 74.89 27.24 4.03
Ω(τ = 2%) 3.91 5.81 7.78 18.08 8.81 3.50
Ω(τ = 3%) 2.76 3.67 4.19 6.36 4.25 3.04
Ω(τ = 4%) 2.09 2.54 2.65 2.72 2.45 2.65

continued
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Table VII – Continued

Scenario 3: Return 9%, Volatility 30%

Mean return p.a. 5.37% 5.63% 5.53% 4.75% 4.67% 8.75%
LPM0 (τ = 0%) 84.99% 48.72% 3.10% 0.35% 2.97% 43.27%
LPM1 (τ = 0%) 0.92% 0.32% 0.01% 0.00% 0.01% 7.36%
Ω(τ = 1%) 3.46 6.07 8.82 35.77 17.07 1.99
Ω(τ = 2%) 2.28 3.27 3.69 8.94 4.91 1.82
Ω(τ = 3%) 1.68 2.13 2.21 3.49 2.32 1.66
Ω(τ = 4%) 1.32 2.53 1.53 1.64 1.35 1.52

Scenario 4: Return 11.5%, Volatility 30%

Mean return p.a. 6.69% 6.62% 6.52% 4.98% 5.28% 11.56%
LPM0 (τ = 0%) 82.26% 44.97% 2.82% 0.39% 2.56% 38.78%
LPM1 (τ = 0%) 0.86% 0.30% 0.01% 0.00% 0.01% 6.22%
Ω(τ = 1%) 4.38 7.55 11.45 40.82 21.05 2.60
Ω(τ = 2%) 2.87 4.07 4.71 10.33 6.07 2.36
Ω(τ = 3%) 2.11 2.66 2.79 4.02 2.89 2.15
Ω(τ = 4%) 1.65 1.91 1.92 1.89 1.70 1.96

The Monte Carlo simulation results for the comparison between the CPPI strategy and

the synthetic put strategy deviate from those of the bootstrap simulations (comparison

3). Based on the Omega ratio, there is a dominance of the CPPI strategy. While

the synthetic put strategy shows higher Omega ratios than the CPPI strategy in the

bootstrap simulations for threshold returns of 3% and 4%, this effect no longer shows

up in the Monte Carlo simulations. For the synthetic put strategy, normally distributed

returns lead to lower LPM1 values, but neither to superior LPM0 values nor to higher

returns. In contrast, compared to the bootstrap simulations, the LPM0 and LPM1 values

of the CPPI strategy improve noticeably in a Monte Carlo framework. Therefore, the

CPPI strategy seems to benefit more from all the assumptions underlying the geometric

Brownian motion as the return generating process.

The results for the comparison of the synthetic put strategy and the dynamic VaR-

strategy are similar for both the bootstrap and the Monte Carlo simulation (comparison

4). While the dynamic VaR-strategy dominates in terms of Omega ratios for threshold

levels of 1% and 2% in our bootstrap simulations, the dynamic VaR-strategy also gener-

ates a significantly higher Omega ratio for a 3% threshold return in our Monte Carlo

framework. Comparing the LPM0 and LPM1 values of the dynamic VaR-strategy in

Table V with the corresponding values in Table VII, we observe superior risk properties

for the dynamic VaR-strategy in our Monte Carlo simulations. In all scenarios, the

shortfall probabilities (as measured by the LPM0) are at least as good as or even lower
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than the expected values determined by the confidence level α. From this point of

view, both the assumption of normally distributed returns and the negligence of de-

viating time series feature benefit the dynamic VaR-strategy more than the synthetic

put strategy. The risk reduction effect of the dynamic VaR-strategy based on normally

distributed returns may also provide an explanation why this strategy provides statisti-

cally significant higher Omega ratios than the CPPI strategy for all threshold returns

ranging from 1% to up to 3% (depending on the scenario). This result differs from our

bootstrap simulations, where no statistical significance of the dynamic VaR-strategy is

observable against the CPPI strategy in terms of their Omega ratios for all threshold

levels. Taken as a whole, however, our Monte Carlo simulation results confirm the

bootstrap results for the comparison of the dynamic VaR-strategy with the synthetic

put strategy as well as the CPPI strategy. Most importantly, our systematic compari-

son indicates that normally distributed returns are an important requirement for the

protection quality of the dynamic VaR-strategy.

5.6 Conclusions

This study presents a systematic comparison of portfolio insurance strategies by using

simulation analyses in order to conduct statistical significance tests. In addition to

popular strategies, we also apply more recently developed protection strategies, such

as the dynamic VaR-strategy. Our comparison of the different portfolio insurance

strategies is based on the Omega ratio, which incorporates both the risk and return

properties of a given strategy and does not depend on any distributional assumptions.

In order to test the statistical significance of differences in Omega ratios, we use a

bootstrap-based hypothesis test proposed by Politis and Romano (1994).

Our systematic comparison of different portfolio insurance strategies considers

the following distinguishing characteristics: static vs. dynamic; initial wealth vs.

cumulated wealth protection; model-based vs. model-free; and strong floor compliance

vs. probabilistic floor compliance. Taken together, our findings reveal that the classical

portfolio insurance strategies synthetic put and CPPI provide superior downside

protection compared to the simple stop-loss trading rule, which ultimately results in

significantly higher Omega ratios. Analyzing alternative portfolio insurance strategies,

neither the TIPP strategy (as an ‘improved’ CPPI strategy) nor the dynamic VaR-

strategy (with probabilistic floor compliance) are able to provide improvements over

the classical strategies. A comparison of the dynamic VaR-strategy with the CPPI

strategy and the synthetic put strategy shows no value added of this novel approach

when estimation risk is incorporated into the analysis. While the CPPI strategy offers

better downside protection than the dynamic VaR-strategy, the synthetic put strategy
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dominates the dynamic VaR-strategy in terms of its return potential. Most importantly,

the usefulness of the latter strategy strongly depends on the forecasting quality for

the equity risk premium and the stock market volatility as well as the assumption of

normally distributed stock returns.

Once an investor has decided to use a protection strategy within his asset allocation

strategy, our simulation results indicate an inverse relationship between the protection

quality and the return potential of the different portfolio insurance strategies. As

expected, strategies with a better downside protection (such as the CPPI strategy and

the TIPP strategy with a low multiplier) tend to provide lower returns. Implementing

the portfolio insurance strategy that best meets an investor’s risk and return preferences,

the superiority of a strategy when assessed by the Omega ratio depends on the level of

the threshold return required by the investor. With higher threshold returns, strategies

with a higher return potential become increasingly attractive. In most instances, the

CPPI strategy exhibits a superior ratio of realized gains to losses compared to all other

portfolio insurance strategies.
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Abstract

This study examines whether shocks from macroeconomic variables or asymmetric

effects are more suitable for explaining the time-varying volatility in the dry bulk and

tanker freight markets or whether both effects should be incorporated simultaneously.

Using Baltic Exchange indices during the sample period from March 1999 to October

2011 on a daily basis, we separately analyze the impact of macroeconomic shocks and

asymmetric effects on the conditional volatility of freight rates by using a GARCH-X

model and an EGARCH model, respectively. Furthermore, we simultaneously inves-

tigate both effects by specifying an EGARCH-X model. Assuming not only a normal

distribution but also a t-distribution in order to better capture the fat tails of error

terms, three important conclusions emerge for modeling the conditional volatility of

freight rates: (i) The assumption of a t-distribution is better suited than a normal

distribution is. (ii) Macroeconomic factors should be incorporated into the conditional

variance equation rather than into the conditional mean equation. In addition, the

number of macroeconomic factors that exhibit explanatory power decreases under

a t-distribution. (iii) While there seem to be no asymmetric effects in the dry bulk

freight market, these effects are strongly pronounced in the tanker freight market. Our

empirical findings have important implications for freight rate risk management.

6.1 Introduction

The volatility of freight rates is a driving force for investment and hedging decisions

in the maritime industry. Compared to the volatility of financial assets, freight rate

volatility is very high. For example, featuring an annual standard deviation of almost

40% from March 1999 to October 2011, the annual volatility of changes of the Baltic

Capesize Index (BCI) was more than twice as high as the volatility of the Morgan

Stanley Capital International (MSCI) World Stock Market Index. Moreover, the Baltic

Panamax Index (BPI) fell by more than 95% from 11,425 to 440 index points between

May 2008 and December 2008. Therefore, it is of utmost importance for ship owners,

operators and shipping banks alike to have a thorough understanding of the properties

of freight rate volatility in order to infer value-enhancing investment and risk manage-

ment decisions.

The prior literature discusses three different approaches to derive volatility estimates:

(i) historic volatility, (ii) implied volatility and (iii) volatility based on GARCH models.

As several market upswings and downturns have shown, historic standard deviations

could lead to inappropriate volatility estimates. Based on the assumption that all

observations of the underlying sample period are equally weighted, the calculation of

historic standard deviations implies that the latest developments on financial markets
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are not sufficiently taken into account. While the calculation of higher moments refers

to specific time intervals and not to a particular point in time, investors are rather

interested in a volatility measure that represents the current uncertainty perceived by

the market. In order to derive such a ‘point-in-time measure’, a backward calculation

of option pricing models offers an often-used alternative. Provided that the underlying

model is correctly specified, the implied volatility assesses the markets’ current risk

perception. However, as option pricing models usually assume normally distributed

returns, implied volatilities can be biased due to skewed and fat-tailed return distri-

butions of the underlying asset. As shown in Section 6.4, this problem is especially

severe for freight rates. If freight rate options need to be priced, this procedure cannot

be used, either. Therefore, our study focuses on volatility estimates based on the class

of Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models.

Several earlier studies have already shown that GARCH models are suitable for

capturing the observed volatility clustering of freight rates and vessel prices.1 In order

to better explain the time-varying volatility of freight rates, recent studies concentrate

on two extensions of the GARCH specification originally proposed by Bollerslev (1986):

(i) GARCH-X models that incorporate macroeconomic factors into the conditional

variance equation, and (ii) asymmetric models that enable an analysis of potential

asymmetric effects. For example, investigating the dynamics of the time-varying risk of

monthly changes in second-hand tanker prices, Kavussanos (1996a) extends the stan-

dard GARCH model by using macroeconomic factors both in the conditional mean and

in the conditional variance equation. The empirical results indicate that the oil price

has a major impact on tanker volatility and should be incorporated as a macroeconomic

factor into both the conditional mean and the conditional variance equation. In another

empirical study, Kavussanos (1997) analyzes the dynamics of the conditional volatility

of second-hand prices for dry bulk vessels. His findings reveal a positive relationship

between the conditional volatility of Handysize as well as Panamax prices and interest

rates and between the conditional volatility of Capesize prices and 1-year time charter

rates.

In order to examine whether there is an asymmetric impact of past innovations on

the time-varying volatility of dry bulk freights rates, Chen and Wang (2004) provide

evidence that the impact of comparatively large innovations on the conditional vari-

ance is higher than the impact of smaller innovations. Correcting for this asymmetric

size effect by using the Exponential GARCH (EGARCH) model of Nelson (1991), they

also document that negative changes in freight rates have a higher influence on the

freight rate volatility than positive changes do. A similar analysis of Hui et al. (2008)

1 For example, see Kavussanos (1996a, 1996b, 1997, 2003), Glen and Martin (1998), Alizadeh and
Kavussanos (2002), Chen and Wang (2004), Hui et al. (2008), Alizadeh, Nomikos, and Dellen (2011),
Alizadeh and Nomikos (2009, 2011), and Roumpis and Syriopoulos (2009).
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confirms the evidence for an asymmetric size effect in the dry bulk shipping market.

However, adjusting for the different magnitude of shocks, they report mixed results

with respect to whether there are asymmetric effects and – if so – whether these effects

are positive or negative. Roumpis and Syriopoulos (2009) use alternative dynamic

volatility models to investigate the risk-return characteristics of shipping stocks. Their

results indicate that the average impact of negative returns of shipping stocks on re-

turn volatility is stronger than that of equivalent positive shocks. Methodologically,

the empirical results in Roumpis and Syriopoulos (2009) indicate that the EGARCH

specification provides superior results compared to Ding et al.’s (1993) Asymmetric

Power GARCH (APGARCH); the results of the latter model are not always robust. Most

recently, Alizadeh and Nomikos (2011) examine the relationship between the dynamics

of the term structure of freight rates and the conditional volatility of freight rates in

both the dry bulk and the tanker freight market.2 Estimating an EGARCH-X model

that incorporates both macroeconomic factors and asymmetric effects, they document

that the term structure of freight rates exhibits explanatory power with regard to the

time-varying risk of freight rates. Moreover, they provide evidence for asymmetrical

effects both in the bulker and tanker segment.

Overall, the previous academic literature reports that both macroeconomic factors

and asymmetric effects are able to capture the time-varying risk of freight rates, helping

to improve freight rate risk management. The more appropriate the volatility estimates

are, the better freight rate risks can be managed. Therefore, the question of interest for

our empirical analysis is whether shocks from macroeconomic factors or asymmetric

effects are better suited for modeling the conditional volatility of freight rates. It could

be even the case that both forces are necessary to capture freight rate heteroscedasticity

and hence should be used simultaneously.

In this article, we therefore investigate both issues – a potential asymmetric impact

of shocks and the influence of macroeconomic factors on time-varying volatility – sepa-

rately and simultaneously for the dry bulk and the tanker freight markets. Methodolog-

ically, we work with a GARCH-X model, an EGARCH model as well as an EGARCH-X

model and compare their ability to explain volatility clustering. In contrast to earlier

studies, the daily frequency of our underlying Baltic Exchange indices and the long

sample period from March 1999 to October 2011 provides the large number of obser-

vations that is necessary in order to derive robust volatility estimates. Finally, despite

extensive prior research, error distributions other than the normal distribution have

not been examined for freight rates so far. In order to better capture fat tails of the cor-

responding error distribution, we therefore assume not only a normal distribution but

also a t-distribution. Analyzing potential model specifications for freight rate volatility,

2 The term structure of freight rates is defined as the difference between long- and short-term period
freight rates and is used as a proxy for backwardation and contango.
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our article makes three major contributions: (i) The assumption of a t-distribution

is better suited than a normal distribution is. (ii) Macroeconomic factors should be

included in the conditional variance equation, but not in the conditional mean equation.

Furthermore, the number of macroeconomic factors that exhibit explanatory power

decreases under the t-distribution. (iii) While there seem to be no asymmetric effects in

the dry bulk freight market, these effects are highly pronounced in the tanker freight

market.

The remainder of this article is structured as follows: Section 6.2 discusses the theo-

retical foundations to apply GARCH-X and EGARCH models for freight rates. Section

6.3 provides a brief methodological introduction, while Section 6.4 describes the data

and the descriptive statistics. Section 6.5 discusses our empirical findings. The article

concludes with Section 6.6 and points out possible implications for market participants.

6.2 Theoretical Foundations

In order to detect potential driving forces of freight rate volatility, we concentrate

on macroeconomic factors and on asymmetric effects. The prior literature provides

evidence that both approaches are able to capture the time-variation of freight rate risk.

Therefore, in a first step, we substantiate the questions why and which macroeconomic

factors potentially contribute to explaining the conditional volatility of freight rates. In

a second step, we lay the theoretical foundations for the presence of asymmetric effects

in freight rate volatility.

As in any other market, freight rates in the shipping industry are formed by the

interaction of supply and demand for sea transport. Therefore, it is necessary to

analyze whether macroeconomic factors have an impact on the demand and supply for

shipping services. The demand for sea transport arises from the need of exporters and

importers to transport freight to specific destinations around the world.3 This ‘derived’

demand is mainly affected by the global economy and by global trade, supporting the

notion that macroeconomic variables, such as the Gross Domestic Product (GDP), the

industrial production, or steel production, incorporate substantial information about

the demand for shipping services. The better the condition of the global economy is, the

higher global trade and therefore the need for sea transport will be. Moreover, random

shocks based on political events or financial crises as well as cyclical and seasonal

market movements of the commodities transported by sea (such as oil, iron ore, coal,

metal, or wheat) further substantiate that the demand for sea transport depends on

macroeconomic factors. Besides these macroeconomic factors, the distance between

3 The demand for sea transport is measured in terms of tonne-miles which are defined as the tonnage of
freight transported by sea multiplied by the average distance over which the cargo is shipped.
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the places of production and consumption of products as well as transportation costs

constitute other demand determinants.

Turning to the supply side, sea transport is mainly determined by the size of the world

fleet measured in tonne-miles. Other important factors are the fleet productivity, the

shipbuilding production, scrapping and losses, and the level of freight rates. The higher

the freight rates are, the higher the incentive for ship owners will be to extend supply if

at all possible. Taken together, according to Stopford’s (2009) shipping market model,

the key determinants of the demand for sea transport are the global economy, seaborne

commodity trades, random shocks due to political or macroeconomic events, average

haul distance, and transportation costs, whereas the supply for shipping services is

influenced by the world fleet, fleet productivity, shipbuilding production, scrapping

and losses, and freight revenues. Table I summarizes the impact on demand and supply

of an increase of these variables. All in all, as freight rates are determined by the

interaction of supply and demand for sea transport, we expect that macroeconomic

factors will influence both the level of freight rates and their volatility.

Table I – Determinants of the Shipping Market
Based on Stopford (2009), this table presents the determinants of the shipping market. Random shocks
can have a negative or positive impact on the demand for sea transport, depending on whether a shock
is caused by bad or good news.

Demand Supply

1 World Economy + 1 World Fleet +
2 Seaborne Commodity Trades + 2 Fleet Productivity +
3 Average Haul Distance + 3 Shipbuilding Production +
4 Random Shocks −/+ 4 Scrapping and Losses −
5 Transportation Costs + 5 Freight Revenues +

The theoretical foundation for the presence of asymmetric effects of freight rate

changes can also be inferred from a simple demand and supply model. Determined by

the intersection of the supply and demand curves for shipping services, the equilibrium

freight rate ensures that the quantity demanded by charterers is equal to the quantity

supplied by ship owners. Figure I illustrates that the demand curve for shipping

services is characterized by a comparatively sharp downward slope to the right. The

lower the freight rate is, the higher the quantity demanded is. The demand curve is

highly inelastic based on the fact that there is no competing mode of transportation in

terms of costs. This notion is further strengthened by the low value of the freight cost

in relation to the final price of the goods transported by sea. In contrast to the inelastic

demand curve, the supply curve for shipping services is convex. It is highly elastic at

low freight rate levels and becomes almost perfectly inelastic at high freight rate levels.

When the global economy is in recession, freight rates are low. Accordingly, ships at

sea reduce their speed, and some ships are laid up if the freight rate falls below their
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operating costs, which strongly depend on the vessel’s technological state. Old and

inefficient ships may even be driven out of the market for demolition. At this point,

an increase in the demand of sea transport from X1 to X2 in Figure I only leads to a

small increase in freight rates from Y1 to Y2. However, as the global economy recovers,

freight rates increase and vessels start to speed up again. At the same time and in

consideration of their operating costs, more and more ships are taken out of lay and

added to the active fleet. After all ships have been reactivated, a further increase in

demand for sea transport from X3 to X4 leads to a substantially higher increase in

freight rates from Y3 to Y4 as shown in Figure I. This extra demand of sea transport

can be only partially absorbed by operating the ships at maximum speed in order to

carry as much freight as possible.

Figure I – The Shipping Market and Demand Model
Source: Stopford (2009)

Due to the time delay between placement of order and delivery of the ship (‘time-

to-build lag’), the supply curve becomes almost inelastic in the short-run. Only in

the long-run, new ships can be built and added to the existing fleet, shifting the

entire supply curve to the right. Overall, Stopford’s (2009) shipping market supply

and demand model predicts larger shocks in upswing markets and smaller shocks in

recessions. In addition to this asymmetric size effect, the model posits that positive

shocks have a higher impact on the conditional volatility than negative shocks of the

same magnitude do based on the convexity of the supply curve.
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6.3 Empirical Methodology

Engle (1982) introduces the class of Autoregressive Conditional Heteroscedasticity

(ARCH) models, which assumes that the conditional variance is a function of lagged

squared residuals. Bollerslev (1986) extends these types of models to the class of

GARCH models, additionally incorporating lagged terms of the conditional variance.

Being more parsimonious than ARCH models, GARCH models lead to more robust

conditional variance estimates. All classes of GARCH models are characterized by the

following three constituents: (i) the conditional mean equation, (ii) the conditional

variance equation, and (iii) the density function of the innovation process. In our study,

we use an autoregressive model with macroeconomic factors as the conditional mean

equation:

∆f rt = c+
a∑

m=1

γm∆f rt−m +
b∑
n=1

ϕnXn(l) + εt, (1)

where ∆f rt denotes the change of the underlying Baltic Exchange index from period

t−1 to t, a the order of the autoregressive terms, b the number of macroeconomic factors

included, l the time lag of the n-th macroeconomic factor Xn, and εt the corresponding

innovation (error term) at time t. The conditional variance equation in Bollerslev’s

(1986) standard GARCH model is expressed as follows:

σ2
t =ω+

p∑
j=1

βjσ
2
t−j +

q∑
i=1

αiε
2
t−i , (2)

where p specifies the order of past conditional variances (GARCH terms) and q the

order of past squared residuals (ARCH terms). Furthermore, the model must satisfy

the following stationarity and non-negativity restrictions:

q∑
i=1

αi +
p∑
j=1

βj < 1; ω > 0; αi ≥ 0; βj ≥ 0 ∀ i ∈ {1, . . . , q} ∧ j ∈ {1, . . . ,p}. (3)

The first parameter constraint ensures the existence of a finite, time-independent

variance of the innovation process. In order to assure a strictly positive conditional

variance, additional non-negativity constraints are necessary.4 Building on Engle’s

(1982) and Bollerslev’s (1986) analyzes, several extensions of the standard models have

4 These stationarity and non-negativity constraints of univariate GARCH models can be substantially
weakened for p > 2 (Cao and Nelson (1992)).
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been developed. Based on the theoretical foundations in Section 6.2, our study focuses

on two classes of GARCH models: (i) GARCH-X models, which are characterized by

incorporating macroeconomic variables into the conditional variance equation, and (ii)

EGARCH models, which enable investigating possible asymmetric effects.

In a first step, we examine both effects separately. Analyzing the influence of macroe-

conomic factors on the conditional volatility of freight rates, we apply the GARCH-X

model:

σ2
t =ω+

p∑
j=1

βjσ
2
t−j +

q∑
i=1

αiε
2
t−i +

x∑
k=1

θkXk(l), (4)

where Xk(l) denotes the k-th macroeconomic variable with a time lag of the order l. If

macroeconomic variables exhibit information content for explaining the time-varying

conditional variance, the estimated parameter θk should be significant.

Depending on the information content of past innovations, the Exponential GARCH

(EGARCH) model proposed by Nelson (1991) incorporates potential asymmetric effects

of unanticipated shocks into the conditional variance equation:

σ2
t = exp

ω+
p∑
j=1

βjln(σ2
t−j) +

q∑
i=1

δi

∣∣∣∣∣εt−iσt−i

∣∣∣∣∣+
q∑
i=1

αi
εt−i
σt−i

. (5)

In contrast to other asymmetric GARCH models, such as the GJR-GARCH model

(Glosten et al. (1993)) or the Threshold GARCH (TGARCH) model (Zakoian (1994)),

the EGARCH model accounts not only for the sign of shocks but also for potential

differences in the magnitude of asymmetric shocks. Presumably, the impact of large

unanticipated shocks will have a larger effect on the conditional variance than the

impact of small unanticipated shocks. A positive (negative) value of δi indicates a size

effect regarding the asymmetric impact of unanticipated shocks on the conditional

variance of freight rates: the impact of comparatively large (small) innovations on the

conditional variance is higher compared to the impact of comparatively small (large)

innovations. Furthermore, controlling for this asymmetric size effect and based on the

shipping supply and demand model, a positive (negative) value of αi suggests that

positive (negative) innovations exert a stronger impact on the conditional variance than

negative (positive) innovations of the same magnitude do. Based on the exponential

function, estimation problems relating to the non-negativity constraints no longer

emerge. In a second step, we simultaneously analyze both effects, i.e., macroeconomic
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variables and asymmetric shocks, by using the following EGARCH-X model:

σ2
t = exp

ω+
p∑
j=1

βjln(σ2
t−j) +

q∑
i=1

δi

∣∣∣∣∣εt−iσt−i

∣∣∣∣∣+
q∑
i=1

αi
εt−i
σt−i

+
x∑
k=1

θkXk(l)

. (6)

Including both macroeconomic factors and terms that account for asymmetric effects

in the conditional variance equation, this EGARCH-X model allows a simultaneous

analysis of both driving forces. Specifically, it can help to determine whether shocks

from macroeconomic variables or asymmetric effects are better suited for explaining

the time-varying volatility in the dry bulk and tanker freight markets. It could be even

the case that both forces have a significant explanatory power and should therefore be

included in the conditional variance equation in order to derive appropriate volatility

estimates for freight rates. The coefficients in equation (6) follow the same interpre-

tation as in equations (4) and (5). Finally, with regard to the choice of the error term

in (1), εt, we not only assume normally distributed but also model t-distributed error

terms in order to better capture fat tails.

6.4 Data and Descriptive Statistics

Incorporating macroeconomic factors and asymmetric effects into the conditional

variance equation requires a sufficiently high number of observations in order to derive

robust volatility estimates. Being available on a daily basis since 1 March 1999 at the

latest, the Baltic Exchange indices of the dry bulk and the tanker freight market fulfill

this necessary requirement.5 Depending on the underlying vessel type, each of these

freight rate indices is calculated as a weighted average of freight rates on major voyage

and time charter routes and is then converted into an index number that refers to a

pre-specified basis. The freight rate of every single route is derived from the Baltic

Exchange as the weighted arithmetic mean of a panel of independent shipbrokers.

Our empirical work focuses on the dry bulk and the tanker freight market of the

maritime industry, covering a sample period from 1 March 1999 to 18 October 2011. In

particular, we analyze the conditional volatility of daily changes of the following four

Baltic Exchange indices provided by Clarksons Shipping Intelligence Network: the

Baltic Panamax Index (BPI), the Baltic Capesize Index (CPI), the Baltic Clean Tanker

Index (BCTI), and the Baltic Dirty Tanker Index (BDTI).

Economically, our choice of indices is also justified by the fact that Baltic Exchange

indices are used as underlying of freight options contracts. Since volatility is a major

5 The container freight market has to be excluded from our analysis because there is no daily data
available for our period under investigation.
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Figure II – Baltic Panamax Index
Source: Clarksons Shipping Intelligence Network.

parameter for the pricing of freight options, more accurate and transparent volatility

estimates will contribute to the development of the still illiquid freight option market.

Moreover, the maritime industry’s need for a well-functioning risk management is

illustrated in Figure II. As an example, it depicts the BPI over the sample period from 1

March 1999 to 18 October 2011, reflecting the extreme risks in the shipping industry.

Freight rates have achieved levels in height never seen before in the shipping industry

since mid-2003. In particular, this is valid for October to December 2007 and for May

2008. Due to the fact that the demand for shipping services is strongly related to the

global economy, the outbreak of the financial crisis in mid-2008 has led to a sharp

decrease in freight rates. For instance, the BPI dropped by more than 95% within a few

months. Therefore, the maritime industry must be considered as extremely volatile.

This notion is further supported by the descriptive statistics of the indices presented in

Table II. For example, the extremely high standard deviations in all shipping subsectors

and the extreme market movements as high as 38.1% and 25.4% per day characterize

the shipping industry as one of the riskiest industries worldwide. The very low p-values

of the Jarque-Bera (1980) test confirm that Baltic Exchange indices are neither daily

log-normally distributed (results not shown), nor are their daily changes normally

distributed. Most important, the probability of fat tails is much higher than predicted

by a normal distribution.6

6 This finding has important implications regarding the calculation of implicit volatilities. Option
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Table II – Descriptive Statistics of Daily Changes of Baltic Exchange Indices
Provided by Clarksons Shipping Intelligence Network, this table presents Baltic Exchange freight rate
indices, where BPI denotes the Baltic Panamax Index, BCI the Baltic Capesize Index, BDTI the Baltic
Dirty Tanker Index, and BCTI the Baltic Clean Tanker Index. The calculations are based on logarithmic
differences of the indices. Jarque-Bera denotes the p-value of the Bera and Jarque (1980) test for normality.
ARCH (3) describes the p-value of the Lagrange multiplier test for 3rd order autoregressive conditional
heteroscedasticity in the residuals (Engle (1982)).

Statistics BPI BCI BDTI BCTI

Annualized Mean 0.054 0.094 −0.005 0.007
Annualized Volatility 0.349 0.399 0.339 0.225
Skewness −0.526 0.117 −1.555 −1.035
Kurtosis 13.403 10.296 43.226 99.511
Minimum −0.216 −0.192 −0.381 −0.296
Maximum 0.128 0.165 0.230 0.254
Jarque-Bera (p-value) 0.000 0.000 0.000 0.000
ARCH (3) (p-value) 0.000 0.000 0.000 0.000

Not only are freight rates extremely volatile, but their risk is also time-varying. As

daily changes of the BPI exhibit low as well as high volatility cycles, Figure III suggests

that the assumption of homoscedasticity cannot be maintained. Another observation is

that daily changes of the BPI increased over time during the sample period. In order

to confirm our observations statistically, we test for the presence of ARCH effects in

the residuals by applying Engle’s (1982) Lagrange multiplier test. Analyzing several

autoregressive models for all four Baltic Exchange indices, the null hypothesis of no

ARCH effects must be rejected in all cases, regardless of the number of time lags in the

residuals. Reporting a p-value of below 0.01 in all cases, heteroscedasticity seems to be

highly pronounced in all indices.

Our empirical analysis which macroeconomic factors potentially influence the con-

ditional volatility of freight rates builds on Stopford’s (2009) shipping market model,

suggesting that there are ten determinants that affect the supply and demand for sea

transport and hence the level as well as the volatility of freight rates (see Table I).

However, as our examination requires daily data in order to derive robust coefficient

estimates, most of these determinants cannot be included in the conditional variance

equation because they are only available on a monthly basis, if at all. In particular,

these are the average haul distance, the size of the world fleet and its productivity (e.g.,

laid-up tonnage), shipbuilding production, and scrapping and losses. For the same

reason, other macroeconomic variables such as the GDP, the industrial production,

and the inflation rate must be excluded from our analysis as well. The remaining

determinants – the global economy, seaborne commodity trades, random shocks and

pricing formulas that require a normal or a lognormal distribution (for example, Modified Black
(1976), Turnbull-Wakeman approximation (1991), Levy (1997), or Koekebakker et al. (2007)) should
not be applied. Otherwise, estimation biases could occur, clearly showing the need for distributions
that are able to capture fat tails more appropriately.
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Figure III – Daily Changes of the Baltic Panamax Index
Source: Clarksons Shipping Intelligence Network.

transportation costs – all meet the necessary requirement of data availability on a daily

basis although they cannot be measured directly. Therefore, we use the following proxy

variables that are able to capture the information content of these determinants on a

daily basis: the MSCI World Index as a global stock market index, the London Brent

Crude Oil Index, the Kansas Hard Wheat Index as a proxy variable for wheat prices,

the London Metal Exchange Index, the Goldman Sachs Commodity Index (GSCI), the

Treasury-Eurodollar (TED) spread, and the spread of the yield curve.7

Table III presents our hypotheses concerning the magnitude of the impact of these

macroeconomic factors on the conditional volatility of freight rates. As the demand for

sea transport is a derived demand, one would expect a positive relationship between

the global stock market, oil, wheat, and metal prices as well as the GSCI and the

determinants global economy and seaborne commodity trades. Presumably, the higher

(lower) the levels of these proxy variables are, the better (worse) is the state of the

global economy and the higher (lower) are seaborne commodity trades, and vice versa.

Furthermore, we assume that a high volatility of these macroeconomic variables will

also lead to a high volatility of freight rates. Large changes of the MSCI World Index

signal a high uncertainty of the market participants, and hence we also anticipate a high

7 Appendix A provides detailed information about these macroeconomic factors.
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Table III – Impact of Macroeconomic Factors on Freight Rate Volatility
This table illustrates the impact of macroeconomic factors on freight rate volatility. While ++ denotes
the expectation of a very strong impact of the corresponding proxy variable on the conditional volatility
of freight rates, + quantifies a strong effect. If a cell is blank, the respective macroeconomic factor is
assumed to have no or only a limited influence on the conditional volatility of freight rates.

Macroeconomic Global Seaborne Random Transportation
Factor Economy Commodity Trades Shocks Costs

Stock Market + + ++ +
Oil Price + ++ ++ ++
Wheat Price + ++ ++
Metal + ++ ++
Commodity Price + ++ ++ +
TED Spread + + ++
Term Spread ++ + ++

volatility of freight rates. However, we expect that the impact of these proxy variables

on the volatility of freight rates varies in terms of their explanatory power. For example,

as indicated by the number of plus signs in Table III, we assume a highly pronounced

impact of the global stock market index on the global economy and a strong influence

on seaborne commodity trades. With regard to the commodity indices, we expect a

similar pattern. The oil, wheat, and metal indices as well as the GSCI should all have a

very strong impact on the seaborne commodity trades and a strong effect on the global

economy. Another measure for market participants’ uncertainty is the TED spread

(Ferson and Harvey (1994)), which is defined as the difference between the 3-month

money market rate on interbank loans and the yield for 90-day US Treasury Bills. A

higher TED spread is an indicator of lower current investor sentiment and higher credit

risk, i.e. an increasing (decreasing) TED spread indicates higher (lower) overall risk

in the global financial system. Accordingly, a high (low) TED spread should also lead

to a high (low) conditional volatility of freight rates. Being a reliable predictor of the

future real economic activity, we also consider the spread (slope) of the yield curve,

defined as the difference between 10-year US Treasury Notes and 3-month US Treasury

Bills (Estrella and Hardouvelis (1991), Harvey (1991)). A high (low) spread of the

yield curve indicates a good (bad) state of the economy. Competing with the stock

market, long-term interest rates must be high in upswing markets in order to induce

market participants in their intertemporal investment-consumption decision to invest

into government bonds. Given that Stopford’s (2009) shipping market supply and

demand model predicts comparatively small shocks in recessions, but larger shocks

in upswing markets, we expect a positive relationship between the slope of the yield

curve and the conditional volatility of freight rates. In addition, as random shocks can

be caused by political events, wars, or even the weather, we assume that the resulting

market distortions are already captured to a great extent by our suggested proxy

variables. Finally, we anticipate that transportation costs are mainly driven by the oil
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price. Taken together, our expectations are confirmed by the descriptive statistics of

the macroeconomic factors in Table IV. The high kurtosis, the minimum and maximum

changes, and the significant deviation from the normal distribution all indicate that

large changes of each of these macroeconomic variables tend to occur frequently.

Table IV – Descriptive Statistics of Daily Changes of Macroeconomic Variables
Provided by Thomson Reuters Datastream, this table presents the descriptive statistics of daily changes
of macroeconomic variables. In particular, the following indices are used: the MSCI World Index as a
global stock market index, the London Brent Crude Oil Index, the Kansas Hard Wheat Index as a proxy
variable for wheat prices, the London Metal Exchange Index, the Goldman Sachs Commodity Index
(GSCI), the Treasury-Eurodollar (TED) spread, and the spread of the yield curve (term spread). The
calculations of the macroeconomic factors stocks, oil, metal, wheat and GSCI are based on logarithmic
differences. The calculations of the term spread and the TED spread are based on levels. Jarque-Bera
denotes the p-value of the Jarque and Bera (1980) test for normality. ARCH (3) describes the p-value of
the Lagrange multiplier test for 3rd order autoregressive conditional heteroscedasticity in the residuals
(Engle (1982)).

Statistics Stocks Oil Metal Wheat GSCI TED Term
Spread Spread

Annualized Mean (%) 0.30 17.63 9.23 6.75 7.15 1.65 1.89
Annualized Volatility (%) 17.37 29.10 24.37 31.99 24.69 19.91 20.28
Minimum (%) −7.33 −11.35 −9.39 −12.30 −9.17 −0.24 −0.60
Maximum (%) 9.10 9.77 8.23 12.54 7.22 5.72 3.79
Skewness −0.34 −0.43 −0.36 0.05 −0.31 0.67 −0.31
Kurtosis 10.26 5.59 6.33 6.40 5.39 2.62 1.73
Jarque-Bera (p-value) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ARCH (3) (p-value) 0.00 0.01 0.06 0.00 0.65 0.00 0.66

The correlation matrix of the macroeconomic factors as well as the Variance Inflation

Factors (VIFs) are shown in Table V.8 The TED spread and the yield curve exhibit

the highest correlation with a value of 0.44, indicating that these factors could be

driven by the same latent variable. We test whether multi-collinearity is a potential

problem in our volatility specifications by calculating VIF-values. As indicated in

Table V, all values are below 10, suggesting that potential estimation biases due to

multi-collinearity are negligible.

8 The VIF is a measure of how much the variance of the estimated regression coefficient is ‘inflated’
by the existence of correlation among the regressors in the model. If significant multi-collinearity
exist, the VIF will be very large (V IF > 10) for the corresponding variable. Table V shows the results
of uncentered VIFs. The findings for centered VIFs are even better with no value higher than 1.36.
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Table V – Descriptive Statistics of Daily Changes of Macroeconomic Variables
This table reports the correlation matrix of the macroeconomic factors used in this study. All data is
provided by Thomson Reuters Datastream. Correlations are based on logarithmic differences. The last
column shows the corresponding Variance Inflation Factors (VIF).

Stocks Oil Metal Wheat GSCI TED Term VIF
Spread Spread

Stocks 1.00 −0.00 0.40 0.15 0.31 −0.04 −0.01 1.22
Oil 1.00 −0.01 −0.04 −0.01 −0.04 −0.01 1.00
Metal 1.00 0.20 0.42 −0.05 −0.01 1.36
Wheat 1.00 0.28 −0.03 −0.02 1.10
GSCI 1.00 −0.03 −0.01 1.31
TED Spread 1.00 0.44 1.40
Term Spread 1.00 1.97

6.5 Empirical Results

Prior empirical studies and our own preliminary analysis document that freight rates

do not exhibit constant volatility. Based on the theoretical foundations presented in

Section 6.2, we apply the GARCH-X, the EGARCH, and the EGARCH-X model in order

to analyze whether shocks from macroeconomic variables or asymmetric effects are

more suitable for modeling the time-variation of freight rate risk, or whether both

driving forces should be considered simultaneously. Our criterion for model selection

is the Akaike Information Criterion (AIC) proposed by Akaike (1974). Specifically, the

AIC captures the trade-off between the statistical goodness of fit and the complexity of

the model by imposing a penalty for increasing the number of parameters that have to

be estimated:

AIC = −2
LL
n

+
2k
n
, (7)

where LL denotes the maximized log-likelihood of the model, k the number of param-

eters, and n the number of observations. Comparing any two model results, the AIC

recommends the specification with the lower value, implying either an improved model

fit or fewer explanatory variables, or both.

6.5.1 GARCH-X Model

Our empirical analysis of conditional volatility starts by extending the standard

GARCH(p,q) framework to the GARCH-X model. In order to examine whether macroe-

conomic variables capture any substantial information for explaining the conditional

variance, we include them (i) in the conditional mean equation, (ii) in the conditional

variance equation, and (iii) in both the conditional mean and the conditional variance
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equation. Based on the model selection according to the AIC, Table VI reports our

empirical findings.

The conditional mean equation reveals that all daily freight rates exhibit strongly

pronounced autocorrelation, as indicated by the autoregressive terms that are highly

significant up to the order of 3.9 Therefore, a large fraction of today’s changes in freight

rates can be attributed to changes in freight rates of the last two or three trading days,

respectively. Most important, the high coefficient γ1 of the first autoregressive term

accounts for a large portion of the highly pronounced heteroscedasticity of freight

rate changes. This high autocorrelation can be explained by the limited substitution

opportunities for shipping services over time as well as substitution across routes and

vessel types (Alizadeh et al. (2007), Bessler et al. (2008)). In order to ensure the highest

possible degree of capacity utilization, ship owners are interested in immediate follow-

on employments of their vessels, and hence they can neither speculate on increasing

freight rates by delaying the vessel’s loading, nor can they command a more suitable

port as both alternatives are too costly. This absence of arbitrage opportunities in the

short-run contributes to explain the high autocorrelations in freight rates. Our findings

generally confirm the results of Kavussanos (1996a, 1996b, 1997). However, as our

analysis is based on daily rather than monthly data, autocorrelation up to the order of

3 is much more pronounced in our study.

Moreover, all α1 and β1 coefficients are significant at the 1% level, providing statisti-

cal evidence that the GARCH framework is appropriate for modeling the time-varying

volatility of freight rates. In contrast to the dry bulk freight market, which strongly

depends on the conditional variance of the previous day (high values of the β1 coef-

ficients), the tanker freight market is comparatively more exposed to current shocks

(high values of the α1 coefficients). The sum of the α1 and β1 coefficients is close to one,

hence volatility shocks seem to be persistent in the dry bulk freight market.

9 Searching for the most appropriate model specification, the partial autocorrelation function (results
not shown) suggests an order of autoregressive terms to be included of not higher than 3 for all freight
rates.
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The AIC recommends that macroeconomic factors should be incorporated into the

conditional variance equation but not into the conditional mean equation. There-

fore, when modeling the time-variation of freight rate risk, the information content

of macroeconomic factors is highest in the conditional variance equation. We further

experiment with time lags of the macroeconomic factors both in the conditional mean

and in the conditional variance equation, but we do not detect any time-delayed inter-

action, which could potentially provide further insights on causality. Most important

and in strong contrast to the normal distribution, the assumption of a t-distribution

implies that the explanatory power of the macroeconomic factors vanishes almost

completely, except for the slope of the yield curve and the TED spread. Given that

the t-distribution is more appropriate to capture fat tails in freight rate changes, a

possible explanation is that the macroeconomic variables are only significant because

they exhibit substantial information content in terms of fat tails. In fact, the AIC

indicates that the assumption of a t-distribution is considerably better suited to explain

conditional volatility than a normal distribution is for all GARCH-X models. This

observation is further strengthened by the descriptive statistics in Table II, indicating

that it is highly unlikely that freight rates exhibit normally distributed error terms.

Finally, if the GARCH specifications are correctly specified, there should be no ARCH

effects left in the residuals. Applying Engle’s (1982) Lagrange multiplier test, Table VI

suggests that only under a normal distribution must the null hypothesis of no ARCH

effects up to the order of 3 be rejected for the dry bulk freight market. This result

indicates a potential misspecification of the underlying model.

Provided that t-distributed error terms are appropriate to model the time-varying

volatility of freight rates, only two macroeconomic factors exhibit significant explana-

tory power: the slope of the yield curve and the TED spread. Detecting a negative

relationship between the term spread and subsequent changes in economic activity

with a time lag of 2 to 6 months, several studies have already shown that the slope of the

yield curve is a reliable predictor of the future state of the business cycle.10 However,

as we analyze the conditional volatility rather than the level of freight rates, we expect

a positive relationship. This notion can be inferred from the theoretical foundations of

Stopford’s (2009) shipping market supply and demand model: the higher the spread of

the yield curve is (indicating good global macroeconomic conditions), the higher the

conditional volatility of the underlying freight rates will be. Being significant at the 1%

level, the positive coefficient θ1 confirms this expectation for the conditional volatility

of the BPI and the BCI (albeit not for the BCTI). As indicated by the positive coeffi-

cient θ2, the BDTI is more exposed to the TED spread, documenting that the shipping

services for crude oil are mainly driven by the higher contemporaneous uncertainty

10 For example, see Estrella and Hardouvelis (1991), Harvey (1991), Ang et al. (2006) and Aruoba et al.
(2006).
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of market participants. The higher the TED spread is and thus the higher the market

participants’ uncertainty about the current state is, the higher will be the resulting

freight rate volatility of the BDTI.

6.5.2 EGARCH Model

Stopford’s (2009) shipping market supply and demand model constitutes an integral

part of explanations for the behavior of freight rates. With respect to freight rates

volatility, we expect that large unanticipated shocks will exert a higher impact than

small innovations do. Given the convexity of the supply curve, we further anticipate

that positive shocks will lead to a higher increase of the conditional freight rate volatil-

ity compared to negative shocks of the same magnitude. Nelson’s (1991) EGARCH

model allows us to test these two hypotheses; the empirical findings are illustrated in

Table VII.

Analyzing the conditional mean equation of the EGARCH model, we observe quali-

tatively very similar results as in the GARCH-X models. The parameter estimations of

the conditional mean equation are stable across the different model specifications. The

constant of the conditional volatility equation is negative and significant in all cases,

suggesting that it is only of marginal importance due to the exponential function. Rein-

forcing the empirical results of the GARCH-X model, the estimated β1 coefficients again

suggest that the dry bulk freight market is mainly driven by the conditional volatility

of the previous day, while the estimated α1 coefficients indicate that the tanker market

is also highly influenced by contemporaneous shocks. Our first hypothesis that larger

shocks have a higher influence on the conditional volatility compared to smaller shocks

is verified across all EGARCH specifications by the positive δ1 coefficients (significant

at the 1% level). However, with respect to our second hypothesis, we only find mixed

results across the market segments. As predicted by Stopford’s (2009) shipping market

supply and demand model, the results for the tanker market support our hypothesis.

Specifically, the significantly positive α1 coefficients indicate that positive shocks in

the tanker market lead to a higher (asymmetric) increase in conditional freight rate

volatility than do negative shocks of the same magnitude. In contrast, we cannot

confirm this prediction for the dry bulk freight market. More specifically, we do not

find an asymmetric effect for the BCI, but even a negative asymmetric effect for the BPI.

However, these observations do not necessarily invalidate Stopford’s (2009) theoretical

model. Instead, another effect in the opposite direction could be at work that cancels

out the predicted asymmetric effects of shocks in the shipping industry. An explanation

could be deduced from market participants’ uncertainty. Specifically, compared to

good news, the information content of bad news causes a higher increase of investor

uncertainty. The resulting shock outweighs the change that is captured by the supply
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and demand model which, however, does not incorporate investor uncertainty. As a

result, asymmetric effects cannot be detected. In order to further support this notion,

Appendix B analyzes the conditional volatility of the MSCI World Stock Market Index

using an EGARCH model. Negative innovations exert a higher impact on conditional

variance of the stock market than positive innovations do, which strongly supports our

explanation. This rationale is also reinforced by the results of Roumpis and Syriopoulos

(2009), documenting that the average impact of negative returns of shipping stocks on

their return volatility is stronger than that of equivalent positive shocks.

Chen and Wang (2004) and Hui et al. (2008) document similar coefficients, but they

do not apply the more appropriate t-distribution. Most important, documenting that

negative changes in freight rates have a higher influence on the volatility than positive

changes do, the empirical results of Chen and Wang (2004) completely contradict the

predictions of Stopford’s (2009) shipping market supply and demand model. However,

the AIC again indicates that the t-distribution better fits the data across all vessel

classes, presumably leading to superior volatility estimates. Furthermore, there is again

evidence for potential misspecifications under the assumption of a normal distribu-

tion. First of all, in line with the findings by Hui et al. (2008), we also observe ARCH

effects in the residuals of dry bulk freight rates. Secondly, although the β1 coefficients

for tanker freight rates seem to be highly significant, their negative values have no

meaningful economic interpretation.
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6.5.3 EGARCH-X Model

So far, both the GARCH-X model and the EGARCH model provide empirical evidence

for the theoretical foundations presented in Section 6.2. Searching for the model that

is best suited to capture the conditional volatility of both the dry bulk and the tanker

freight market, the remaining question of interest is whether both approaches should be

considered simultaneously, or whether only one of them exhibits explanatory power in

a joint analysis. Specifically, estimating the EGARCH-X model allows us to test for both

the presence of asymmetric effects and for the explanatory power of macroeconomic

factors in the conditional mean and in the conditional variance equation. Table VIII

shows the empirical results.

With respect to the appropriate specification of the conditional mean equation, our

findings remain qualitatively similar. Examining the influence of macroeconomic

variables as well as the impact of asymmetric effects on the conditional volatility of

freight rates simultaneously, we also receive results comparable to the earlier GARCH-X

and EGARCH models. For the sake of brevity, we omit a more detailed discussion of the

estimated coefficients. We detect remaining ARCH effects for the BPI, the BCI, and the

BDTI, indicating potential misspecifications under the normal distribution. Although

the β1 coefficient of the BCTI is significant at the 1% level, the corresponding model

seems to be misspecified, given a negative value of 0.120. Again, for all EGARCH-X

models the AIC indicates that the t-distribution is more appropriate to capture the

time-varying volatility of freight rates than the normal distribution is.

Although Alizadeh and Nomikos (2011) also apply the EGARCH-X model in order

to examine the volatility of freight rates, their empirical results are difficult to compare

with ours. In contrast to our study, their analysis is based on weekly data, which

significantly reduces the number of observations. Moreover, the macroeconomic factor

of interest is the term structure of freight rates rather than the slope of the yield curve

and the TED spread, respectively. Finally, Alizadeh and Nomikos (2011) do not apply

the t-distribution. However, a comparison of the adjusted R-squares indicates that

the explanatory power in our model specifications is substantially higher (with values

between 27.3% and 72.1%).

As indicated by the high significance levels, our empirical results suggest that both

driving forces – macroeconomic variables and asymmetric effects – contribute to explain

the conditional volatility of freight rates. In theory, this result should also be valid for

the dry bulk freight market. However, depending on the degree of market participants’

uncertainty and thus on the underlying observation period, it is possible that there are

positive, negative, or no asymmetric effects in the dry bulk freight market.
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Taken together, the most suitable specification for the heteroscedasticity of freight

rates incorporates both macroeconomic variables as well as asymmetric effects simul-

taneously and applies the t-distribution for the error terms. This main result of our

study is of utmost importance for ship owners, operators and bankers alike. One would

expect that our proposed specification for the instantaneous volatility of freight rates

lays the foundation for better risk management decisions in the maritime industry, e.g.

by deriving a more accurate pricing of freight options.

6.6 Conclusion

This study analyzes the volatility structure of freight rates in the dry bulk and tanker

freight markets. Justified by the findings of earlier theoretical and empirical studies,

we investigate the impact of macroeconomic variables as well as asymmetric effects on

the conditional volatility of freight rates by using a GARCH-X model and an EGARCH

model, respectively. The question of interest is whether both effects should be con-

sidered simultaneously in order to explain the time-varying volatility of freight rates

or not. Using an EGARCH-X model, we simultaneously incorporate macroeconomic

variables and asymmetric effects one after another and test several combinations in

terms of their explanatory power. Moreover, in order to better account for fat tails, we

also model t-distributed error terms in addition to using the normal distribution.

Searching for the most suitable specification that is able to capture the time-variation

in the volatility of freight rates, three important conclusions can be derived from our

analysis. First of all, without any exception, all model specifications indicate that

the assumption of a t-distribution is much better suited to explain the conditional

volatility than a normal distribution is. Secondly, our analysis suggests that macroe-

conomic factors should be included in the conditional variance equation, but not in

the conditional mean equation. Furthermore, the number of macroeconomic factors

that exhibit explanatory power decreases under a t-distribution. We document that the

TED spread is highly significant when included in the conditional variance equation

of the BDTI, whereas the yield curve seems to have some explanatory power for the

volatility of the BPI, BCI, and BCTI. Finally, in contrast to prior studies, we cannot

detect asymmetric effects in the dry bulk freight market. However, these effects are

strongly pronounced in the tanker freight market. Overall, our empirical findings have

important implications for freight rate risk management. Presumably, EGARCH-X

models with t-distributed error terms will deliver superior volatility estimates and

help to derive a more accurate pricing of freight rate options.
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Table A1 – Macroeconomic Variables
Provided by Clarksons Shipping Intelligence Network, this table presents Baltic Exchange freight rate
indices, where BPI denotes the Baltic Panamax Index, BCI the Baltic Capesize Index, BDTI the Baltic
Dirty Tanker Index, and BCTI the Baltic Clean Tanker Index. The calculations are based on logarithmic
differences of the indices. Jarque-Bera denotes the p-value of the Bera and Jarque (1980) test for normality.
ARCH (3) describes the p-value of the Lagrange multiplier test for 3rd order autoregressive conditional
heteroscedasticity in the residuals (Engle (1982)).

Statistics Datastream-code Details

Global stock market MSWRLD$ MSCI WORLD U$-Price Index
Oil LCRINDX London Brent Crude Oil Index U$/BBL - Price Index
Wheat WHEATHD Wheat, No. 2 Hard (Kansas) - cents/bushels
Metal LMEINDX London Metal Exchange Index - Price Index
GSCI GSCITOT S&P GSCI Commodity Total Return - Return Index
Yield curve FRTCW10(IR); FRTBW3M(IR) [US Treasury constant maturities 10 yr - middle rate]

-[US Treasury Bill 2nd market 3 months - middle rate]
TED spread FRTBW3M(IR); BBGBP3M(IO) [UK interbank 3 months (LDN:BBA) - offered rate]

- [US Treasury Bill 2nd market 3 months - middle rate]

Table A2 – Results of Estimated EGARCH Model for the MSCI World Index
Standard errors are in parentheses. ∗, ∗∗, and ∗∗∗ state significance at the 10%, 5%, and 1% level,
respectively. AIC is the Akaike Information Criterion for model selection (Akaike (1974)). LL denotes
the value of the log-likelihood function and DW the Durbin-Watson statistic. ARCH LM denotes the
p-value for the Lagrange multiplier test for autoregressive conditional heteroscedasticity in the residuals
with a time lag of 3 and 10, respectively (Engle (1982)).

Conditional Mean Equation:
rt = γ1 · rt−1 + εt .

Conditional Variance Equation:
ln(σ2

t ) = ω+ β1ln(σ2
t−1) + δ1

∣∣∣ εt−1
σt−1

∣∣∣+α1
εt−1
σt−1

MSCI World Index

Normal distribution t-distribution

Mean
c
γ1 0.138∗∗∗ 0.143∗∗∗

(0.019) (0.018)
Variance
ω -0.230∗∗∗ -0.231∗∗∗

(0.023) (0.028)
β1 0.985∗∗∗ 0.984∗∗∗

(0.002) (0.002)
δ1 0.110∗∗∗ 0.107∗∗∗

(0.013) (0.016)
α1 -0.091∗∗∗ -0.110∗∗∗

(0.006) (0.011)

Diagnostics
Adj. R2 0.014 0.114
AIC -6.648 -6.670
LL 10,958 10,994
DW 2.016 2.026
ARCH LM (3) 0.010 0.016
ARCH LM (10) 0.002 0.049
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