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Abstract

In-hand manipulation, as a behavior mastered by human, primates and a few kinds of other an-
imals, involves a hand and objects. Transfering these manipulation skills to service-robots is an
open and important research topic in the field of robotics. Driven by the hand movements the
objects are moved. The hand movements are considered as actions, and we expect the objects to
be moved to their destinated states. Therefore, we use “state-action” to model an in-hand manip-
ulation process. For modeling the hand movements, a direct way is to memorize the joint angle
variation. However, there are different-sized hands in the world, repeating finger joint angles
can produce different manipulation results. Because of that, we propose to use a small number
of patterns to summarize the finger motions. In this way we generate the essential information
on the actions, and in order to distinguish this idea we name it in-hand manipulation action gist.
Correspondingly, with sensors we can capture criteria in terms of the hand, the objects, and the
entire environment in the manipulation process, so we use the specific criteria to describe the
achievement of the hand movements. Since the criteria are also essential information, we call
them state gist.

In the state-action based in-hand manipulation learning framework, everybody can success-
fully teach the robot. At the beginning of the robot learning, we need persons demonstrating
in-hand manipulation movements to the robot. With the state-action gist extracted from multiple
devices, e.g., data-gloves, cameras, and tactile sensors, the robot starts to learn the skill itself.
Through motor babbling the robot finally masters the in-hand manipulation skill.

In detail, this thesis applies the Gaussian Markov Random Field to extract the action gist
from a data-glove. The applied method does not only work for the simple movements such as
grasping, but also works for complicated movements such as finger gaiting. Concerning the state
gist, this thesis mainly discusses its relationship to the sensors, and gives examples with respect
to several typical sensors and several simple state gists. Afterwards, according to the scenarios
with multiple demonstrations and the scenarios with periodic hand movements (like screwing),
this thesis offers corresponding solutions. Furthermore, regarding the self-learning, this thesis
applies the Particle Swarm Optimization and the Line Search with Re-Start to babbling learn the
parameters guided by the corresponding state-action gist. Because babbling learning requires
many trials, simulations are taken before the real robot execution. In case the simulated solution
is not proper for a real humanoid hand, this thesis proposes a human-interactive mechanism to
enhance the real robot learning. In the process of human-robot interaction, the feedbacks are in
the form of “compared with the previous trial, this trial is better/worse/equal”. With this kind of
feedbacks, the robot finds a better solution for the real scenario.
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Kurzfassung

In-Hand-Manipulation bezeichnet das zielgerichtete und kontrollierte Greifen und Bewegen von
Objekten mit einer Hand. Neben Menschen verfügen nur Primaten und wenige andere Tiere über
diese Fähigkeit, und die Übertragung auf Service-Roboter ist eines der zentralen offenen Prob-
leme der Robotik. Dabei können die Bewegungen der Finger als Aktionen angesehen werden,
mit denen ein Zielzustand der manipulierten Objekte angestrebt wird. Es liegt daher nahe, den
gesamten Vorgang als Zustands-Aktions-Beziehung zu modellieren. Natürlich kann jede Bewe-
gung der Hand über den zeitlichen Ablauf der Fingerstellungen beschrieben werden, aber es gibt
kleine und grosse Hände, die Bewegungen verlaufen nicht immer gleich, usw. Zur Vereinfachung
und Abstraktion wird in dieser Arbeit daher zunächst das Konzept der Meta-Bewegungen (meta-
motions) eingeführt. Auf diese Weise wird die essentielle Information des Bewegungsablaufs der
Finger repräsentiert, also der Kern einer Aktion (action-gist). Eine ähnlich kompakte Darstel-
lung ist auch für viele Sensordaten möglich, mit denen der Zustand von Hand und Objekt und
ggf. der Umgebung während der Bewegung aufgezeichnet wird. Diese Kriterien ergeben die
wesentlichen Zustandsänderungen (state-gist).

Aktuelle antropomorphe (fünf-Finger) Roboterhände sind rein mechanisch in der Lage, alle
Bewegungen der menschlichen Hand nachzubilden. Bisher allerdings basieren fast alle erfolg-
reichen Anwendungen für Robotermanipulation immer noch auf detaillierter Modellierung und
zeitaufwendiger Programmierung durch Experten. In dieser Arbeit wird deshalb ein Framework
entwickelt, mit dem der Roboter die wesentlichen Zustands-Aktions-Beziehungen aus Demon-
strationen lernen kann. Damit gilt ”Jedermann ist ein Lehrer”, denn nicht nur Experten können
die Manipulationsaufgaben für den Roboter demonstrieren. Die Bewegungen der Testpersonen
werden mit verschiedenen Geräten aufgezeichnet, zum Beispiel Datenhandschuh, taktile Sen-
soren, und Kameras. Daraus werden die wesentlichen Zustands-Aktions-Beziehungen abgeleitet
und dienen als Start für den Lernprozess des Systems. Durch Motor-Babbling (ein Lernprozess
mit zufälligen Bewegungen, angelehnt an das Lernen und Brabbeln von Babies) verfeinert der
Roboter dann seinen Bewegungsablauf, bis die Manipulationsaufgabe gelöst wird.

Im ersten Teil dieser Arbeit wird ein Gaussian Markov Random Field eingeführt, um die
Aktions-Beziehungen (action-gist) aus Datenhandschuh-Sensordaten zu extrahieren. Dann wer-
den die Zustands-Beziehungen (state-gist) beschrieben und mit Beispielen für verschiedene Sen-
soren erläutert. Für verschiedene Szenarien werden die zugehörigen Lösungen präsentiert, unter
anderem für periodische Handbewegungen wie das Aufschrauben einer Flasche. Zum Lernen
des Roboters werden die beiden Lernverfahren Particle Swarm Optimization und Line Search
with Re-Start ausgewählt und analysiert. Da das Lernen mittels Motor-Babbling viele Versuche
benötigt, kommt eine Simulation der Hand zum Einsatz, bevor die Bewegungen auf dem echten
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Roboter getestet werden. Schließlich wird in dieser Arbeit ein neuartiges Verfahren vorgeschla-
gen (simple human reward), bei dem der Mensch als Kritiker die zufälligen Bewegungen des
Roboters während der Babbling-Phasen bewertet, um den Lernvorgang in die richtige Richtung
zu lenken und zu beschleunigen.
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Symbols

A few symbols are used with two different meanings in the thesis. Fortunately, these symbols
only stay in a small scope. If the symbol is not specified for any chapter, we can understand it
with the general concept as listed follows.

d Distance General variables
i, j, k, t Indexes General variables
N , Nidx, L, Lidx Length General variables
P (X), P (X = x) Probability General variables
S Score General variables
x, y, z, r, v, p, q, s, t Variables General variables
w Weight General variables
X , X ′, Y , Y ′ Events General variables
Z The sum of all probabilities General variables
a, aidx, α, θ, ∆θ Angle General variables
ρ, ∆ρ Distance General variables
f , fi Functions General functions
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A Joint angle variations Chapter 6
BioTacij BioTac sensor contact feedback Chapter 7
C(·) The condition of becoming meta motions Chapter 3
dm The dimension of control parameters Chapter 6, 7
dsw The size of the sliding window Chapter 3
f Focus length Section 4.2

Fg
A set consisting of finger joint indexes,
corresponding to finger g Chapter 3

G(·) Gaussian distribution function Chapter 3, 5
Ha,r,l The element of the meta motion occurrence histogram Chapter 5
Iji The single meta motion similarity Chapter 3
Jidx A joint angle Chapter 6
Li The lower boundary of the searching space Chapter 7

M
multiple action gists (meta motion sequences), or
a long but periodic meta motion sequence Chapter 5

m meta motion sequence Chapter 5, 6
m meta motion Chapter 5, 6

Nframe
the number of frames to communicate with
the robotic hand Chapter 6

Neigh(·) A set consisting of a node and its neighbor Chapter 3
P j
i The influence from other nodes of the MRF model Chapter 3
Ri Reward for simple human feedback learning Chapter 7
Score(ms) The popularity of the meta motion sequence Chapter 5
Sa achievement score of a manipulation trial Chapter 6
Sb basic score of a manipulation trial Chapter 6
Sc The score from the tactile sensors Chapter 7
St overall score of a manipulation trial Chapter 6
Tj Tactile segmentation solution Chapter 5
Ui The upper boundary of the searching space Chapter 7
v a set consisting of data-glvoe value variations Chapter 3
vki data-glove value variation Chapter 3
w Image width Section 4.2
W Real world width with camera Section 4.2
Z action gist segmentation solution Chapter 5
ι Temporal variable Chapter 5
σ The variance of a Gaussian distribution Chapter 3
τbegin(·),
τend(·), ...

Fetching the corresponding information
from the meta motion Chapter 5, 6

ω, ϕp, ϕc parameters of Particle Swarm Optimization Chapter 6
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Chapter 1

Introduction
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1.1 Overview of robot hands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 In-hand manipulation using a robot hand . . . . . . . . . . . . . . . . . . . 6

1.3 In-hand manipulation learning from human demonstration . . . . . . . . . 9

1.4 Motivation and contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Human beings pass not only biological instincts, but also culture and knowledge to their
offspring. Therefore, as a highly intelligent creature, human beings become more and more
powerful, to compete and survive in the evolution on the earth. As we all know, knowledge is not
born when a life begins. Children have little knowledge foundation, but congenitally have the
ability to win the skill and grow up, by means of the multiple sensory organs and the complex
neural cognition. It is difficult to imagine how a brain works to process and memorize so much
information from the channels of seeing, hearing, smelling, tasting and touching over the entire
life. However, we believe that the brain compresses the sensing information, and only necessary,
or say key, important information remains in mind (Olofson, 2008). In order to abbreviate the
expression of “key/important information” and specify our idea in the thesis, we employ the
word “gist” throughout this dissertation.

NOTE: in the Oxford dictionary, “gist” has two meanings: 1. the substance or general meaning
of a speech or text; 2. (Law) the real point of an action. Even though this word is not originally
designed for the in-hand manipulation description, substance or general meaning and the real
point exactly hit our desire. In order to distinguish our work, we keep using this word.

This world is very fascinating because of the diversities of the creatures. It endows humans
very dexterous bodies, especially the hand for each one, which consists of flexible fingers and
holds about 20% bones of a human skeleton. Consequently, there is no doubt that the hand is the
most dexterous part of the human body. With the hands more skillful than other animals (Marzke
and Marzke, 2000), we manipulate every kind of object, solve many kinds of tasks, and build
this world.
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1.1. OVERVIEW OF ROBOT HANDS

The skill of manipulation is a kind of knowledge depending on the property of object, the
performance of the manipulator (hand), and the target of the application. Generally, a skill is
improving along with age (Crast et al., 2009), and some complicated skills have to be passed
from the olders to the youngers. As a kind of knowledge, we should find a way to represent
the manipulation process. Besides, as a kind of skill, we should find a way to coordinate the
knowledge and the implementation.

In the current information age, we can set the manual analysis free but extract the gist with
various sensors, and meanwhile we also aim at integrating the hand manipulation skill with robot.
This chapter gives an overview of robot hands and take snapshots of what they can do for the
manipulation scenarios. Afterwards the main target of this thesis is pointed out: it concentrates
on in-hand manipulation learning from demonstration. Then the main contributions are listed.
Finally the entire structure of this dissertation is introduced.

1.1 Overview of robot hands
The definition of robot hand is difficult to determine. However, we are certain at least about sev-
eral facts: firstly, a robot hand is articulated; secondly, each link is more or less rigid even though
it may have soft skin; thirdly, it is commonly used for object operation. From the literatures, we
can find the described robot hands have from two to five fingers. Two fingered hands are usually
discussed in the earlier years, and they are currently used to study some complicated dynamic
problems. Three fingered hands can fulfill the requirements of most applications. The hands
with more than four fingers are installed on the humanoid robots, or applied for the imitation of
human behaviors.

We can list several typical robot hands as Fig. 1.1 to have a straightforward impression. Nev-
ertheless, nowadays there are too many robot hands to show, e.g., Karlsruhe Dextrous Hand II
from IPR (Osswald and Woern, 2001), and RoboCasa Hand (Zecca et al., 2006). Besides the
fact that some robot hands are born for the market competition, some robot hands are designed
and studied because of the specific mechanisms, e.g., single-motor-driven actuation (Chen and
Xie, 1999), the underactuated hand (Odhner and Dollar, 2011) and the concentration on compli-
ance (Biagiotti et al., 2003). Therefore, for more information, we can refer to (Mattar, 2013),
(Mindtrans, 2013) and other survey resources, or the corresponding specifications.

Furthermore, when we apply a robot hand for manipulation task, besides the basic properties
of the hand, e.g., size, weight and the number of the links, we consider the following points:

• Joint angle range. This feature determines the available working space of the hand. High
values indicate the flexibility of a hand, but according to a humanoid hand, the joint angle
ranges should be similar to those human hands.

• Joint reaction speed. Usually it is a set of configurable parameters with respect to the
hand joints. Quick response promises the expected action is executed on time. Meanwhile
low speed but stable movement is required when we just attempt some trials.

• Torque capability. To protect the hand joints not being broken, this is a very important
factor. With a high torque, we can apply the manipulator to handle a heavier object, or
move the finger quicker even if we estimate it will meet a collision.

2



1.1. OVERVIEW OF ROBOT HANDS

• Control accuracy. For the dexterous manipulation, especially for the in-hand gaiting
manipulation, it is no doubt that we have to pursue for the high accuracy in the world
coordinate. This world coordinate is for the object, but we configure the angle value in
the joint space to achieve the interaction between the hand and the object. Besides the
emphasis on the resolution, accuracy is a concept related to the stability, i.e., we set the
joint angle to a specific value, the actual error should be limited at a fixed range.

• Skin design. Skin is in charge of the contact with object. On the one hand the material
should not be so soft, because in this case it is difficult to estimate the exact position of
the object in the hand; But on the other hand it should not be so hard, because in this case
it is difficult to integrate the hand with contact sensors. Besides, we should pay attention
on the texture of the skin (e.g., finger print, palm print), because this is related to the
friction. Generally, the texture should have resistance to abrasion, so as to keep the same
operating result with repeatedly performing a set of hand movement. When the friction is
not satisfied, the hand can wear specific glove to compensate.

• Sensors. Human hand has touch feeling via the nervous system. Specifically, we can
consider that there are countless arrays of touch sensors mounted on the hand, so we can
feel strong or subtle contact anywhere around it. However, installing countless, tiny-sized
and reliable contact sensors on a robot hand is a promising but on-going topic. Thus, when
we are comparing the contact capabilities between two robot hands, we have many factors
to evaluate their performance, such as the contact array size, the scale of a sensing unit, the
sensing range, the sensing sensitivity, the sensor life and so on. Besides touch sensor, some
robot hand mount other sensors as torque sensors (Liu et al., 2008) and absolute position
sensors (Lovchik and Diftler, 1999).

• Communication speed. With the increasing number of the hand joints and sensors, the re-
quirement of transmitting the joint commands and sensor feedback becomes an important
target of robot hand design. In-time information guarantees that we have more chances
to control the robot hand to perform proper reactions. Contrarily, with the delay of infor-
mation transmission, we have to spend extra work on recovering the real situation. For
example, we hold an object and now release it, but the transmitted contact state remains in
five seconds ago; in this case the robot may make a wrong plan.

Corresponding to the robot hands we have illustrated, Tab. 1.1 provides us with quick notes
on the given performance. From the table we can see that every robot hand has its own char-
acteristic. Besides, we want to emphasize that while the joint angle resolutions of most robot
hands are lower than 1 degree, there are some uncertainties for the joint control. According to
our experience, the control error of the robot hands (Shadow hands) in our lab cannot be limited
below 1 degree. Therefore, on the one hand we can learn the basic functions from the documents,
on the other hand we should have the real test on the robot. By this way, we will be clear about
what kind of applications can be focused on.

3



1.1. OVERVIEW OF ROBOT HANDS

Figure 1.1: Typical robot hands. From the top to the bottom, as well as the left to the right,
they are Barrett hand (Barrett, 2013), robot hand from the Ishikawa Lab in the Tokyo University
(Ishikawa, 2013), Delft hand (Delft, 2013), NAIST hand I (Ueda et al., 2010), DLR/HIT Hand
I (Gao et al., 2003b; Stone et al., 2007), Utah/MIT hand (Narasimhan et al., 1989; Fuentes and
Nelson, 1996, 1998), Gifu hand (Kawasaki et al., 2001; Mouri et al., 2011), Robot hand for
robo-astronaut (Lovchik and Diftler, 1999) and Shadow hand (ShadowRobot, 2013). So far we
can find many robot hands available in the world, from three fingers to five fingers. We do not
count two finger grippers here. Principally, three finger hand qualify for most manipulation tasks
as long as each finger joint is actuated as human hand joint. However, according to the fact
that a normal human has five fingers, humanoid hands have the same number of fingers with
respect to the natural evolution. On the way of the humanoid hand development, some products
consist of four fingers in order to save the data transmission workload; besides, another reason
is because human seldom subjectively and actively use little finger. However, the new versions,
e.g., NAIST Hand II and DLR/HIT Hand II, have five fingers. Because of the page limit, they
are not illustrated in this figure.
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1.2. IN-HAND MANIPULATION USING A ROBOT HAND

Figure 1.2: Some applications of robot in-hand manipulation. From the top to the bottom and
the left to the right, they are: towel folding by PR2 Gripper (Maitin-Shepard et al., 2010); test
tube manipulation by a BioTac hand (Uni-Hamburg, 2013); tweezers type tool manipulation
by a high-speed three fingered hand (Mizusawa et al., 2008); ball swapping by a Gifu hand
(Citecbielefeld, 2010; Moore and Oztop, 2012).

1.2 In-hand manipulation using a robot hand
Once we have a robot hand, we can replay human behavior on the platform. So far there are many
scenarios manipulating objects with robot hands. From simple grasping, adjusting the grasping
pose meanwhile the object remains in hand (Hasegawa et al., 2003; Sauser et al., 2012), and
more interesting applications in Fig. 1.2.

Regarding to the robot hand manipulation, a typical example is the Ishikawa Lab from Tokyo
University. They concentrates on their fast-speed three fingered hand design, and through over
ten years devotion, they receive fruitful return (Namiki et al., 2000; Ogawa et al., 2002; Namiki
et al., 2003; Shimojo et al., 2004; Ogawa et al., 2006; Senoo et al., 2008, 2009; Shimojo et al.,
2010). Once they make the dynamical model for a specific manipulation application, they can
offer the job to their robot hand and announce their result to the world. So far they have realized
Dynamic Catching (Imai et al., 2004), Batting (Senoo et al., 2004, 2006), Dribbling (Shiokata
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1.2. IN-HAND MANIPULATION USING A ROBOT HAND

et al., 2005), Regrasping (Furukawa et al., 2006), Pen Spinning (Ishihara et al., 2006), Tweezers
type tool manipulation (Mizusawa et al., 2008), Rope knotting (Yamakawa et al., 2007, 2008)
and Poker distributing (Yamakawa et al., 2012). From their success, we can find fast sensing
and fast reacting are two important factors for in-hand manipulation.

“In-hand manipulation” is a quite big topic, there are many research branches such as follows:
• Grasp point: where to (not) touch. (Bell and Balkcom, 2010) enhanced the classical

grasping points theorem in the field of clothes grasping, which is based on the linear pro-
gramming on convex vertices. Furthermore, (Sahari et al., 2010; Maitin-Shepard et al.,
2010) also had interest in how to manipulate the cloth by precise calculation; (Krainin
et al., 2010) supposed a way of modeling the manipulated object with Iterative Closest
Point to determine where to grasp; (Matsuo et al., 2008) classified different grasp types
according to the specific contact regions, as a result, they arranged the positions of tactile
sensors to save the resource. For an object with complex appearance, we can use bounding
box to simplify the searching space (Huebner et al., 2008). Additionally, we note that the
grasp point accept error, that means for some cases the finger has 0.1 mm does not harm
anything, such as the Inescapable Configuration Space (ICS) in (Sudsang et al., 2000). Be-
sides determining the grasp points from the 3D information, we can also predict them for
2D image, (Saxena et al., 2008).

• Grasp quality: which hand states make the manipulation better. In this field, (Borst
et al., 2004) suggested to use task wrench space. Later, (Fu and Pollard, 2006) outlined a
linear programming approach for computing a grasp quality metric. The metric includes
tendon force constraints and contact constraints and can handle any task described as a
polytope in wrench space. Furthermore, (Baier and Zhang, 2006; Baier, 2008) discussed
the criterion for grasp evaluation based on reusability. The point is, some hand actions may
be possible in mechanical operation, but not similar as the way of what human operate in
the daily life. Therefore, their research concentrate on the proper grasping context learning.

• Force balance: how to make the object stable in hand. Several researchers are inter-
ested in this topic, such as (Woehlke, 1994; Yeap and Trinkle, 1995; Nguyen et al., 2004;
Prattichizzo and Trinkle, 2008), proposed how to make a force closed-loop. Besides, other
researches such as (Pollard, 2004) concerned about this stability question from observation
but not depending on force sensor. (Haschke et al., 2005) proposed the grasping evaluation
related to maximal applicable contact force. (Ozawa et al., 2005) discussed a parallel plane
condition to maintain a stable grasping. Furthermore, when the object size is similar to the
fingertip, the shape of fingertips becomes an inevitable factor to consider. (Arimoto et al.,
2010) modeled for 2D grasp and manipulation from Riemannian-geometric standpoint, the
curves of fingertip contour are taken into consideration in detail.

• Synergies: how to use fewer parameters to govern the movement of the multiple
joints. We note that not all researchers like to use the word “synergy”, but their target
is the same. For example, (Lin et al., 2000) reduced the configuration space of the hand
manipulation so as to lower the searching space. Besides, (Vinjamuri et al., 2010) concen-
trated on determining the morphology of kinematic synergies in rapid hand movements.
Furthermore, (Catalano et al., 2012) designed a multi-fingered hand, and the mechanical
structure of the hand is directly based on the synergies.

7



1.2. IN-HAND MANIPULATION USING A ROBOT HAND

• Grasping and manipulation mechanism: the natural and theoretical views regarding
to the topics. For example, (Jau, 1995) designed a compliance mechanism for robot hand;
(Mason et al., 2011) think there are chances from complex hand structure to simple hand
structure, as long as the finger grasping is stable.

• Motion planning: how to move the fingers. The general planning techniques are Hi-
erarchical Tasks Networks (HTN) and Markov Decision Process (MDP) (Ghallab, 2004).
Besides, considering in-hand manipulation scenarios, moving finger joints will generate
trajectories. Therefore, many researchers make contributions corresponding to above key
words, such as: (Vass, 2005) proposed a kind of hand-finger trajectory planning algo-
rithm based on simulated annealing and A* search; (Hourtash, 2006) suggested to use the
hand configuration space (C-space) and the generalized relative hand-payload pose space
to generalize the grasping movement. (Berenson et al., 2008) planned moving trajectory
by Rapidly-Exploring Random Trees (RRTs) for grasping manipulation; (Bae et al., 2006)
optimized the continuous trajectories planning into a fewer point set planning, the points
are key in the manipulator motion control; (Petroff and Goodwine, 2010) applied fuzzy
control to a four-fingered manipulator; (Melchior and Simmons, 2010) proposed an idea
of trajectory reduction, the work extends Isomap by introducing a neighbor-finding tech-
nique suitable for time-series data; As the growing of the skill knowledge, (Yamane et al.,
2011) proposed to create a motion database for motion recognition, object state estimation
and prediction, and robot motion planning; Last but not least, (Xue et al., 2008) proposed
a method to plan the multi-fingered dexterous manipulation. Firstly it computes the con-
tact point trajectories for each finger separately. Afterwards a task-orientated manipulation
quality measurement was defined considering the stability during the manipulation on the
plane perpendicular to the rotational axis. The manipulation quality is maximized to move
the fingers synchronously with same angular velocity.

• Preshaping: how to move the fingers before we start to handle an object. This is a
key process before grasping, and for the work we can refer to (Smeets and Brenner, 1999;
Prats et al., 2007). Different from the previous item Motion planning, this process has not
interaction between the hand and the object. Therefore, the researchers feel more relaxed
on the planning algorithm, but have to consider more challenging objects and scenarios.

• Inverse kinematics and dynamics: How is the hand pose based on the contact points.
Besides trajectory planning, we can connect the contact points with the hand pose by the
inverse calculation. With the pre-determined manipulatior structure, the corresponding
manipulator posture can be easily obtained. A reference just like (Han et al., 2000) who
emphasized the importance of IK in dexterous manipulation planning and control. Further-
more, manipulation also involves inverse dynamics, such as (Nguyen-Tuong and Peters,
2010).

Additionally, there is another branch, what we are concentrating on: learning.

8



1.3. IN-HAND MANIPULATION LEARNING FROM HUMAN DEMONSTRATION

1.3 In-hand manipulation learning from human demonstra-
tion

From the previous section we know that robot hands have been applied to many applications,
and the corresponding topics are hotly discussed. However, we notice that usually we have to
do modeling and teach the robot how to operate the objects with professional mathematical and
physical knowledge. In this case, if we pass the modeling process to the robot, it turns to be a
fact that we can set ourselves free. As a result, the robot starts to learn, as from an innocent baby
to an experienced adult. We can imagine a following scenario from the future:

A user feels unsatisfied with his humanoid servant because it knows nothing about how to
open a bottle of wine. Even though the user knows nothing about how to program the robot, he
just has to demonstrate his servant several times the process of opening the bottle. Afterwards,
the servant gets the idea, practices itself and finally masters the skill.

Therefore, in order to kick off this topic, we compare this learning process with children
learning hand skill from their parents. Firstly, babies use motor babbling to coordinate (or say
calibrate) their bodies with the world (Walker and Bass-Ringdahl, 2008; Aronov et al., 2008).
Afterwards, as (Poulin-Dubois and Chow, 2009), children create their behavior decision based
on their observation beliefs. However, the manipulation behavior performing by the children is
not complete reproduction. (Dingwell et al., 2001) designed the experiments for determining if
humans adopt model-dependent control strategies when learning a novel motor-skill task. The
conclusion is that the observed behavior could not be reproduced by a controller that relied on
modulating hand impedance alone with no inverse model. Actually, we will have a concise model
in memory and find the explicit movement during the trial. As (Garner et al., 2012) implies, brain
encodes sensory input as patterns and stores them for future usage. Thus, we suggest to use a
set of patterns to present the manipulation process, instead of to memorize every value trajectory
in the demonstrations. Generally, if we insist learning from human demonstration, there are two
steps: learning from others and self-learning.

Inspired from the investigation of (Goldstein and Schwade, 2008), we can see the effective-
ness of bringing several teachers into the learning process. The teachers absolutely promote the
skills of the robot hands to faster the in-hand manipulation learning. Here the “teachers” is not
equal to “programmers”, on the specific application they offer the manipulation tips to the robot
but spend much less time than the programmers. However, from the view of (Perani et al., 2001),
only perception of hand actions in reality maps onto existing action representations, whereas
virtual-reality conditions do not access the full motor knowledge available to the central nervous
system. Therefore, only relying on a human oral teaching or programming for complex hand
movement is not enough, we may miss some key details in the process. The robot should ob-
serve what the teachers show, and then learn and practice itself to master the manipulation skill.
From fail to success, the robot is experiencing the process called “babbling” (Sjoelander, 2000;
Wallace and Whishaw, 2003). In the babbling stage, we are unsure about whether the actions
the robot takes will work, but we are certain about the robot is earning necessary information.
We can also consider this stage as a kind of reinforcement learning. However, just because the
dynamic robot learning process is quite similar to a baby learning, we select the word “babbling”
to represent the idea.
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Human hand owns a characteristic anatomy (Taylor and Schwarz, 1955). Thus in the initial
learning section, we model the hand movement as the correspondent degrees of freedom. From
a general to a detailed view, the hand movement can be described as the motions of the whole
hand, the fingers and the joints. Besides, (Ansuini et al., 2006) took the reach-to-grasp research,
and concluded that the finger joint preshapes and movements are only similar when we deal with
the same end-goal object. In this case, in order to perfectly analyze the hand movement, we
should straightly focus on the finger level, and extract the necessary information to guide the
robot hand movement.

Besides considering the hand, another role in the in-hand manipulation scenario is the object.
A property of the object is called affordance. This is a concept involving how people treat an
object. For example, a door is usually operated as door opening and door closing, a football is
usually kicked, a screwdriver is always for screwing. Dealing with different objects, we need a
corresponding manipulating strategy. That is why we are using learning.

Additionally, we need tools to perceive the interaction between the hand and the object. In
Chapter 2 we will see various sensing channels on information acquisition. As we have the
sensors like the conventional cameras, RGB+D cameras, data-gloves, or tactile sensors, we can
extract the posture, the position, the contact and many kinds of state information; Besides, we
can extract the hand action information, e.g., from which to which time slot, which finger moves
how many degrees. In the field of in-hand manipulation learning, it is necessary to generate a
model such as a State-Action Model, so as to guide the manipulation execution.

We note that “state-action” can be understood as “perception-action” or “sensorimotor”, but
in the area of learning from demonstration, we prefer to use “state-action”.

1.4 Motivation and contribution
This thesis mainly aims at proposing a novel but universal solution to fill the State-Action Model.
The reason is that so far many researches discuss grasping and hand manipulation consisting of
only a few movements. Regarding the complicated in-hand manipulation on the finger-gaiting
level, there are few works. Especially, considering the current state of humanoid five-fingered
hands, it is time to propose a suitable action model to present the finger movement.

Therefore, what we suggest is a “State-Action Gist based” solution. As the name implies,
we need to figure out the gist — key information from the raw sensory input to describe the
interaction between the hand and the object. For the state gist, it consists of the corresponding
perceptional information such as position, posture and contact variation. For the action gist, it
consists of the finger moving directions. All of them are not complicated patterns or values, but
they effectively present the in-hand manipulation (see Fig. 1.3).

The overall schedule is shown as Fig. 1.4. It indicates that the core of this thesis is how to
generate a state-action gist model and how to apply the model to the five-fingered humanoid hand
in-hand manipulation. From our point of view, the contribution of this thesis are:

• For the action modeling, we propose a set of qualitative patterns extracted from a
data-glove to present the finger moving direction. We name this kind of sequential
patterns “action gist”. A piece of action gist reflects the key finger movement in a demon-
stration. Besides applying this technique to record/present each demonstration of in-hand
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manipulation, we can also employ it for multiple demonstrations or a very long demonstra-
tion, to analyze human hand behavior or automatically segment the periodic natural hand
movement.

• Corresponding to the action gist, we propose the concept “state gist” to present the
variation of the hand, the object and the hand-object interaction. We apply some
available sensors to record the key information of in-hand manipulation, which involves
the immediate and continuous sensory feedback. Paired with action gist, we can describe
any in-hand manipulation process as a script. Because there are countless state information
in the real world, we enumerate and analyze the popular state features.

• Based on the State-Action model, we propose an “incremental motor babbling learn-
ing” solution to interactively refine the robot hand manipulation skill. When a hu-
manoid hand carries out an in-hand manipulation task, a concise State-Action model is
not enough, i.e., robot hand is driven by explicit joint angle values. Therefore, we design
parameter exploring methods based on the state-action gist script.

• Beyond the simulation of babbling learning, we propose a simple human-robot-
interactive mechanism for the real robot in-hand manipulation learning. The error
between the simulation and practice always exists. In this case, we can have the same con-
trol method to command the robot hand, but in order to take less time on the real robot we
consider bringing in human interaction for learning. However, the attention of a human is
limited, the interaction should be simple enough to keep our discretion. As a result, when
the robot refers to our feedback, we just need to answer them: compared with last trial,
this time is “better”, “worse”, “equal”.

Additionally, we can refer to the in-hand manipulation classification (Elliott and Connolly,
1984; Bullock and Dollar, 2011) to check our achievement in this field. According to a latest
in-hand manipulation classification by (Bullock and Dollar, 2011), we test the proposed methods
with a robot hand in terms of the scenarios shown in Fig. 1.5. Generally, there are two movements
of an object: translation and rotation. (Bullock and Dollar, 2011) considered the contact points
and the axis components, so they have such kind of classification. Since the “no motion at
contact” cases are indistinctively dependent on finger gaiting movement, the action gist cannot
fully play its characteristics, i.e., we just need a few finger motions to move the object to the final
state. Therefore, we are interested in the “motion at contact” cases. So far the rotation and the
translation along the z-axis are tested.

11
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Figure 1.3: Specific research points of the thesis. A robot hand is usually controlled by sending
joint values according to the sensory feedback such as positional and tactile information. Even
though we have a huge number of values, straightly copying the recorded values to the robot
hardly makes the manipulation successful. Therefore, we should learn and plan how to deal
with the manipulation task. Nowadays many methods of robot hand manipulation learning are
directly concentrating on the value level. When we try Direct Learning (green dashes bounded),
the joint values are modeled separately. If we apply State-action gist based learning (red dashes
bounded), we can use fewer memory to remember the in-hand manipulation skill. Besides, action
gist reduces the searching space for joint value exploration in the process of Iterative learning
(blue dashes bounded). In this thesis, how to model the state-action gist and how to make the
state-action gist work for in-hand manipulation are discussed.
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Figure 1.4: Overall framework of this thesis. The core of in-hand manipulation is State-Action
Model, so we should know “If we do this action, what state we will get” or “If we observe this
state, what action we should take”. In other words, we should have a schedule of the in-hand
manipulation. What we propose is called “State-Action Gist”. This is a concept consisting of
key finger moving directions corresponding to the proceeding hand-object interaction. To under-
stand the entire process, we should have sensors, e.g., cameras, data-glove, and tactile sensor,
to perceive the relative information of the hand, the object and the contact. By the proposed
solution, we get the State-Action Gist Model. Afterwards, we apply the model to robot hand
manipulation. Because we are studying learning, the explicit robot hand control commands are
also learned iteratively. We can have have simulation environment and real humanoid hands, so
we consider the learning solutions for both.

13



1.4. MOTIVATION AND CONTRIBUTION

Figure 1.5: A classification of in-hand manipulation proposed by (Bullock and Dollar, 2011).
They classified the in-hand manipulation scenarios by contact points, movement directions, and
object moving form (translation or rotation). Because the “no motion at contact” cases are in-
distinctively dependent on finger gaiting movement, we are interested in the “motion at contact”
branch. This thesis has proved that state-action gist guided learning at least works for rotation
and the translation along the z-axis (as shown in the top-right coordinate).
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1.5 Structure
The thesis is organized as follows: Chapter 2 introduces the relevant techniques on the sensory
data processing and information generalization, the entire skeleton of learning from demonstra-
tion, and the current state and action modeling methods. In Chapter 3, Chapter 4 and Chapter 5,
we will see how to model and make use of the action and state gist. Here we model action earlier
than state, because we believe that “the action is related to a hand but the state is the world”. Thus,
We start with solving an easier issue for action gist modeling and then apply similar methods to
the state gist modeling. Later in Chapter 6, we propose a incremental reinforcement learning
framework based on the state-action model. Especially for the real humanoid hand, we give a
learning solution in Chapter 7. Finally Chapter 8 concludes the entire thesis.
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Robot learning is quite a hot topic nowadays, and we can find many successful cases in
recent researches. A typical example is from Raibert et al. (2008), they brought the great success
of “Big Dog” locomotion learning. The reinforcement learning had been applied to robot dog
self-learning to develop the skill of both the low level (joints) and the high level (behaviors).

So far many researches are related to hand manipulation learning. However, our scope is
limited to in-hand manipulation and learning from human demonstration. Many research
groups pay attention in this field, with groundbreaking work at institutes such as MIT Artificial
Intelligence Laboratory (Matsuoka, 1995; Torres-Jara et al., 2006), DARPA (DARPA, 2010), the
Robotics Institute in CMU (Pollard, 1994; Pollard and Hodgins, 2002; Pollard, 2004; Chang,
2010; Koonjul et al., 2011), the Centre for Autonomous Systems in KTH (Preisig and Kragic,
2006; Romero et al., 2009b).

We organize this chapter into following sections: Section 2.1 first describes the sensors.
Afterwards we take a glance at the entire situation of learning from demonstration in Section 2.2.
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2.1. SENSORY INPUT FOR IN-HAND MANIPULATION AND LEARNING

The rest parts are Section 2.3 for the state-action modeling and Section 2.4 with respects to our
opinions on the related work.

2.1 Sensory input for in-hand manipulation and learning
Humans usually need visual and tactile sensing to complete a manipulation task (Talati et al.,
2005). For the skill learning, we can find many kinds of sensors to capture every moment of
manipulation demonstration and implementation. Each sensor is a kind of channel, we can use
only one, but can also use many sensors as long as we can afford to record the manipulation
process. Afterwards, according to the characteristics of the sensor, we should find a proper
method to translate the perception into knowledge. In this section, we will go through the related
work regarding the sensor types. However, in this chapter we do little comment on them but
leave our opinions to the later chapters.

2.1.1 Visual perception
Vision is the most important input of humans. Adding the fact that a digital camera is the most
easily available hardware among various sensors, there are much more relevant researches con-
sidering cameras rather than other sensors. Once we have a camera, we can localize the object
(Weigl and Seitz, 1994), find the grasping position (Hirano et al., 2005), monitor the hand-object
interaction (Gavrila, 1999) and execute many other tasks.

Perception from image is a hierachical understanding progress. The image consists of pixels
which are not directly oriented to human cognition. A human (and designed computer program)
can parse the object from the features, which holds some invariant properties for the same class of
objects and gathers the pixels from a specific region in the image. For example, (Ballester, 2003)
completed a 2D object recognition tracking and grasp cycle based on the grasp points manipula-
tion. Commonly, a basic technique is image segmentation, to obtain the hand and the object from
the background. If we know the color information or other known features, we can employ the
features to find what we want in the image (P. Trindade, 2012). Otherwise, we can use attention
(or saliency) based methods to actively find the typical foreground to continue our analysis (Bur
et al., 2007; Bogdanova et al., 2008; Zhuang et al., 2009). Furthermore, we can actively add
features on the sensing target to enhance the perception (Chen et al., 2008). Instead of previous
automatic solutions, we can also apply interactive method to extract the key information from
an image. For example, (Bai and Sapiro, 2009) implemented a user-guided image segmentation
application that can tell the foreground after the user indicates the foreground textures.

Even though we can find several overviews on the vision and in-hand manipulation, such
as (Metta and Fitzpatrick, 2003), the researches on visual processing never stop. Therefore, we
provide a detailed overview in several sections.

Before we start, we claim that in-hand manipulation is a dynamic process, different from
a single image of gesture recognition (e.g., (Jiang et al., 2006)). Gesture recognition was a hot
branch in computer vision several years ago, it offers little help to in-hand manipulation learning.
According to our investigation, most researches related to the key word “gesture recognition”
assume no object and no occlusion; this point contradicts with “hand-object interaction”. Hence,
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even though the latest works achieve higher precision and more complicated environments, we
will skip most of them and only be interested in the relevant publications.

Perception from multiple visual sensors

To perceive the real world, we should get help from multiple visual sensors. Just as each human
has two eyes, stereo vision has been widely applied. Examples are outdoor navigation (Agrawal
et al., 2007), surface segmentation (Bleyer et al., 2010), human activity monitoring (Fiore et al.,
2008), and nearly all fields.

Besides, in order to achieve the optimal observation, the placement of visual sensors is im-
portant. According to the specific tasks, we should carefully design the placement to have the
best view of objects and motions, and try to avoid the occlusion, e.g., (Bodor et al., 2007).

When we can separate the color of the hand and background, (Donoser and Bischof, 2008)
have achieved the real-time 2D hand position tracking based on Maximally Stable Extremal
Region (MSER) tracking framework. However, the fact is that to directly detect the hand joints
is difficult. It turns to another solution: installing markers to enhance the recognition. We can
install the makers on the fingertips and the palm like (Duca et al., 2007) so as to have a real-time
hand tracking. Beside that, we can also do like (Ekvall and Kragic, 2005b) to put three prominent
markers on our fingertips so as to identify the particular grasping movement. However, by this
way we will face another bottleneck: Our hand movement is restricted, we cannot perform very
complex manipulation skills.

Multiple visual sensors can be used for grasping point detection. (Saxena et al., 2008) applied
vision into grasping point recognition after the supervised learning on synthetic images. The
probable grasping points are identified according to the synthetic features generalized from the
images.

Additionally, we can also find the applications of grasping posture mapping. (Do and Jain,
2009; Do et al., 2009) applied visual mapping to hand posture memory. As a result, the robot
can learn how humans grasp the object. Moreover, for the specific object, the robot will perform
the same grasping strategy.

Last but not least, multiple visual sensors can be used in hand-object interaction analysis
(Utsumi et al., 1995; Utsumi and Ohya, 1998; Utsumi et al., 2004).

To employ multiple visual sensors brings several issues, they are related to resource, time
synchronization and different illumination. Once we select to use multiple cameras, we have to
carefully deal with them.

Model-based multiple component tracking

In the discrete view, a trajectory is a set of sequential points. In our scenarios, there are at least
two components: the object and the hand. However, the hand is a kind of articulated object.
Considering that we are doing in-hand level recording and learning, the component dimension is
inevitably increased to more than ten or twenty.

The common framework are Joint Probabilistic Data Association (JPDA) (Hong, 1994; Ab-
bott and Williams, 2009) and Multiple Hypothesis (Bojilov et al., 2002; Chenouard et al., 2009).
Nevertheless, the popular algorithm applied to this field is Unscented Kalman Filter (UKF)
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(Stenger, 2001; Stenger et al., 2001b,a), Bayesian Filter (Stenger, 2004; Stenger et al., 2006)
and Particle Filter (PF) (Hue et al., 2001; Khan et al., 2003; Bray et al., 2004, 2007). However,
they focus only on the entire hand, but not the hand components (joints). After tracking, we have
to continue the job of component segmentation.

Fortunately, we realize that the topology of human hand is fixed. In another words, we know
the model (e.g., generally, a hand model can be treated as a graphical model (Sudderth, 2006,
2008) or a vector model (Chik et al., 2008)). Benefiting from this fact, the tracking results be-
come better (Heap and Hogg, 1996; Herda et al., 2001; Peursum et al., 2010). Similarly, using
the object structure also increase the tracking precision (Al-Shaher and Hancock, 2004). Once
the hand touches the object, we can infer the position with the help of the know topological
information. Moreover, another advantage is to use the known model to conquer the occlusion
problem. For example, (Papadourakis and Argyros, 2010) combined object movements and fore-
ground blobs to automatically and dynamically detect the actual object representation; (Grabner
et al., 2010) paired the target object with a support object, once the coupled support object is
detected, the position of the target object can be identified regardless of it being occluded. The
second example is similar to have a set of assistant markers. Actually, textured marker detection
and tracking is model-based. Therefore, the general idea is: if we know several key points in
noncoplanar positions, and we know their real structural relations, we can estimate the spatial
position of the attached object in the real world. Furthermore, Pose from Orthography and
Scaling with ITerations (POSIT) is such a classical algorithm (DeMenthon and Davis, 1995).
For more details, we can refer to Perspective N Point (PnP) problem (Gao and Tang, 2006; Mer-
ckel and Nishida, 2007; Faugere et al., 2008; Lepetit et al., 2009). Besides, we note that PnP is
the core method for camera calibration (Schweighofer and Pinz, 2006; Bujnak et al., 2008).

Therefore, to complete the hand tracking task, a solution is to employ external features (mark-
ers). (Dorner, 1994) used color-coded glove to track the 3D hand joints information. This is an
early attempt, but the idea keeps inspiring later researches. (Guskov et al., 2003) used quad color
combination to characterize each finger. In this condition, the finger component is traceable. (Li
et al., 2004) assigned the markers on the fingertips to track the scenario of hand gripping. Be-
sides this kind of marker, (Grossman et al., 2005) applied several color-ball rings to indicate the
finger joint, so as to track the finger movements. In (Maycock et al., 2011), they put 26 markers
on the hand joints to advance the hand posture tracking. Instead of “markers for joints”, another
branch of employing markers is “texture covers the entire hand”. (Scholz et al., 2005) designed a
series color-coded pattern to enable the 3D shape reconstruction. Later, (Wang, 2008; Wang and
Popovic, 2009) applied a special-coded color glove to track the hand movement. The method
applies only one camera, and then retrieves the corresponding standardized pose through their
hand pose database, and finally via inverse kinematics to improves the matching accuracy.

Even though adding markers is common and effective for tracking, many researchers are
pursuing bare hand tracking. The reason is that we will feel strange when we wear a glove or
a set of markers in the manipulation process. In this field, (Davis and Shah, 1994) combined
finger feature with optical flow to track the hand, and this method can receive a initial result to
perceive the 3D hand motion information. Additionally, (Rehg, 1995; Rehg and Kanade, 1995;
Shimada et al., 1998; Guan et al., 1999; Wu and Huang, 1999) combined a hand model and
inverse kinematics. When the fingertips are detected, the 3D hand posture will be recovered.
Nevertheless, without finger detection, IK could not recover the posture. Instead, in (Gumpp
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et al., 2006), they used depth information to find the edge of a hand. Afterwards, they parsed the
structure of the hand, and track the hand movement with Particle Filter. This drawback of this
job is that their scope is mainly for 2D gesture application, not for in-hand manipulation.

(Cui and Sun, 2004) kept the hand skeleton, and applied GA-based particle filter to track the
hand pixels in order to track the hand. We note that we extract every link information because it
is on our demand, otherwise we just need to obtain the necessary information. Therefore, instead
of the explicit hand structure, (Stefanov et al., 2005) just extracted the fingertips and the palm
because they more concerned about behavior study. (Ionescu et al., 2005) employed a different
hand skeleton, which is generated from image. The main aim of this method is used to gesture
recognition. Another example is from (Kerdvibulvech and Saito, 2009); They integrated hand
model, chamfer distance, adaptive color learning and particle filter to track the guitar playing
fingers.

With the development of the techniques, nowadays researches cover more factors. (Gorce
et al., 2008) integrated texture (scene + object), shading, lighting to model and track the hand,
and meanwhile considered possible occlusions. (Hamer et al., 2009, 2010) did not only consider
the hand model, but also the object model. Along with 2.5 dimentional depth information and
pairwise Random Markov Model, each segment can be tracked. Another idea roots from (Kjell-
stroem et al., 2010), they considered human links as cylinders, then applied annealed particle
filter with a linear temporal update model and a background difference likelihood. Furthermore,
they also applied inferred hand-object contact points to impose kinematic constraints of the hu-
man model.

Remarks

We take many paragraphs on our investigation of “vision in in-hand manipulation”. One reason
mentioned in the beginning is that there are many researchers working on computer vision. An-
other reason is because we think other sensory processing may more or less borrow the ideas from
visual sensors. To introduce visual processing earlier and more detailedly reduces the length of
the coming sections concerning other sensors.

A camera can be used of some distance from hand and object, so we are able to freely perform
manipulation as long as no external set-up is installed on the hand. Moreover, we are facing many
challenges because a camera offers only two dimensional and general information corresponding
to the entire environment. If we select to employ this kind of sensor, we should prepare a set of
procedures to solve the corresponding problems.

2.1.2 Perception of RGB+D sensors
Compared with the 2D and color information provided by conventional cameras, if possible we
may prefer three dimensional information directly acquired by specific sensors. Besides laser
range finders, a kind of sensors that integrates both color and depth information has attracted lots
of researchers. In recent years it has been given several names: depth camera, ranging camera,
flash lidar, time-of-flight (ToF) camera, and RGB-D camera. The popular commercial products
are Microsoft Kinect, Asus Xtion, Leap Motion, Swiss Ranger and PMD CamCube. For more
specifications and evaluations, we can refer to their official websites and (Litomisky, 2012).
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The sensor names depend on their mechanisms. For example, the Swiss Ranger and the
PMD CamCube are time-of-flight cameras but the Kinect and the Xtion are not. ToF camera
transmits invisible near-infrared light and measures its “time of flight” after it reflects off the
objects. This mechanism is similar to sonar. As long as we know the time of the emitted light go
and return, we can calculate the distance of the object in front of. The Kinect and the Xtion apply
another mechanism, they project some invisible patterns and use their infrared camera to read the
projected patterns. By the deformation of the coding patterns, they calculate the distance.

Because of the different measuring mechanisms, they achieve different performance. Gen-
erally speaking, ToF cameras achieve higher accuracy, but they are more expensive. Kinect and
Xtion are usually used with a distance condition. For very close depth tracking, we have to select
Leap Motion.

So far this kind of sensors are applied to the field of object modeling (Foix et al., 2010),
SLAM (Sturm et al., 2012), and motion analysis (Zhang et al., 2012; Herbst et al., 2013). We
can also find several attempts on the hand manipulation scenarios, such as hand pose estimation
(Yao and Fu, 2012) and hand motion tracking (Zhao et al., 2012; Du et al., 2012). Since the
resolution of this kind of sensors is lower than conventional cameras, we have not found the
applications completely fitting in-hand object manipulation. Moreover, fingertip tracking plus
inverse kinematics are the common methods to analyze the hand movement. The solutions are
as same as mentioned above in the visual section, the only difference is that the depth points are
calculated from several cameras, another set of points are directly from the RGB+D sensors.

2.1.3 Perception of data-glove
A data-glove is a wearable device to capture the bending of fingers. The advantage is that it
can sense the entire hand posture from the finger joint angles, and never has occlusion problem
(which is a critical issue when we use cameras). Besides designing a data glove ourselves for
the specific task (Folgheraiter et al., 2004), a shortcut is to use a commercial product such as
Cyber-glove (CybergloveSystems, 2013).

Before usage, usually a calibration step is required for the data-glove (Huenerfauth and Lu,
2009; Sciuto, 2011). This process requires that the user wears the data-glove and performing a set
of typical hand postures, so as to create a set of mapping relations between the raw and the cal-
ibrated data-glove values. Besides, (Chou et al., 2008) offered their contributions by connecting
the calibration with visual data. They put several different color patches on the data-glove joints,
and adjusted the joint position with human interaction. In that paper the 3D position accuracy
from vision was still a issue, but this idea should be a branch of the data-glove calibration.

For in-hand manipulation learning, data-glove is a convenient tool to capture the hand move-
ment. Some researches prefer to analyze the manipulation process by frames of gestures. For
example, (Dimuro and Costa, 2007) applied an interval fuzzy rule-based method for the hand
gesture recognition by fuzzily considering the finger joint angles. Other researches are related to
the continuous movement learning. For example, (Ekvall and Kragic, 2005a) used a glove-like
sensing method to analyze the grasp movement with Hidden Markov Model. In their work, they
assumed several preliminary grasping types and applied several specific features to classify the
hand movement.
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2.1.4 Perception from biological signals
“Learning from human demonstration” indicates that a robot is trying to acquire whatever a
human teacher produces for the manipulation purpose. Besides the appearance of the human
hand movement perceived by cameras or data-gloves, we can also try to learn what is in the
mind of the operator. For this purpose, we need a biological cue named myoelectric signal. This
signal is a technical term in electromyography (EMG) and widely studied for prosthesis control
(prosthetic devices like artificial limbs). As long as several electrodes are placed on the skin, we
can capture the body voltage and analyze it with some classical machine learning algorithms.

Therefore, we can employ this device to monitor the commands transmitted from the brain
to the hand and proceed for our aim. According to our investigation, most related works are still
on gesture recognition (Zhang et al., 2009) and grasping (Bitzer and Smagt, 2006). For these
purposes, we need to arrange the probes around the lower arm, as shown in (Honda et al., 2007).
For the in-hand manipulation scale, we have to pay more attention on the finger movement. In
this case, we should arrange the electrodes around the hand. For example, (Atzori et al., 2012;
Kuzborskij et al., 2012; Atzori et al., 2013) described such recording methods and learn the
dexterous hand control with the acquired myoelectric signals. In the future, we will see a bi-
directional communication with this kind of sensing channel, i.e., tactile information will also be
captured (Kwok, 2013).

Besides the sensing technique of mounting probes on the arm or the hand, we can also read
our mind by putting the probes on our head. (Hochberg et al., 2012) realized a system that can
mind-control the robotic hand approaching and grasping. First of all, they install a 4 mm by
4 mm, 96-channel microelectrode array on the participant. And then the signals from the brain
will be captured and decoded to the control command. As a result, the connected DLR robot
hand moves.

Generally speaking, currently this sensing channel is approaching to the level in-hand move-
ment. We will probably find some new progress in coming years.

2.1.5 Tactile sensing
Tactile feedback is an important feedback for manipulation. On the one hand it tells whether
the hand contacts the object (Howe and Cutkosky, 1990), on the other hand it indicates that
whether the contact is too much or not enough in order to stabilize the manipulation (Rameon
et al., 2013). While integrating tactile sensors with the robot hand, we should also have a process
to calibrate the sensors. However, since different people have different sensing, (Sauser et al.,
2012) investigated the tactile state by human correction for object grasping. In their study, many
participants grasp the same object, so we can have a statistical benchmark on how much force
should be applied to keep the object in hand. Besides applying tactile sensors to manipulation
control, tactile sensors are also applied to object recognition (Klatzky and Lederman, 2008) in
order to increase the interaction between the hand and the object. A better recognition of the
target object improves the manipulation quality.

Recently, (Tegin and Wikander, 2005) and (Yousef et al., 2011) made reviews of tactile sens-
ing in robot manipulation and especially in dexterous in-hand manipulation. Their investigations
are still up-to-date so far. Thus, we are not going to repeat the state-of-the-art in this section
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Figure 2.1: Four kinds of LfD approaches. We simplify the comprehensive but complicated
expression in (Argall et al., 2009). Generally, four approaches are classified according to the
sensors position and knowledge source. As a result, in Teleoperation, the human operates the
robot platform via the sensors on the human, and the robot records its own behavior and learns; In
Shadowing, we can understand this approach as “a robot learns from another robot”; In Sensors
on teacher, the sensors located on the human are used to record the teacher execution, and then
the robot can learn the skill from the teacher; In External observation, the sensors external to
the executing body are used to record the execution, so that the robot can learn from the teacher.

in detail. Generally, depending on the transduction method, the tactile sensors are classified as
resistive sensors (Xu et al., 2003), capacitive sensors (Lee et al., 2008), piezoelectric sensors
(Steinem and Janshoff, 2007), optical sensors (Hsiao et al., 2009) and organic field-effect tran-
sistors (OFETs) as sensors (Darlinski et al., 2005). We can classify the tactile sensors as extrinsic
and intrinsic ones. Usually extrinsic sensors adapt many robot hands once it is installed on the
hand components. By comparison, intrinsic sensors are fixed in the robot hand, they are not
easily updated but more robust for sensing.

2.2 Learning from demonstration
This concept is inherited from Programming by Demonstration (Halbert, 1984). Later, (Argall
et al., 2009) gave an abundant and comprehensive overview on Learning from Demonstration
(LfD). Generally speaking, in order to realize this mechanism, robot and teachers are the key
roles. They transmit the knowledge information in a proper form. Each identity is a system
carrying out the plan for the same aim, with the help of a mapping function. The mapping
function transfers the knowledge from the teacher to the robot. According to this survey and our
further investigation, so far there are four kinds of approaches working for LfD (as Fig. 2.1):
Teleoperation (Pook and Ballard, 1993; Bitzer and Smagt, 2006), Shadowing (Ogino et al.,
2005), Sensors on Teacher (Calinon and Billard, 2007; Howard et al., 2009a) and External
Observation (Schaal et al., 2003b; Chang et al., 2008, 2010; Chang, 2010).

Furthermore, with some viewpoints from the in-hand manipulation learning (Turner, 2001),
we can find that three approaches are all popular except Shadowing. Anyway, whatever sensors
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are used or wherever they are installed, the manipulation skill should be finally well presented
in an way that a robot understands. As the knowledge involves the sensory feedback and the
hand movement, and in the field of learning from demonstration we always name this form as
State-Action Model. Here, the State comprehensively describes the sensory results and the
corresponding analysis of the results, meanwhile the Action presents the hand movement. The
model correlates the states and the actions, and then we know that at the moment that state s is
reached, we can start to execute action a, or if we do action a at this moment, we can get state s
(Flanagan et al., 2006).

For manipulation learning, we can try to learn the manipulation trajectory as (Hueser et al.,
2006), the contact area as (Baier, 2008), the object-motion map as (Katz et al., 2008), or task
order as (Pardowitz and Dillmann, 2007; Pardowitz et al., 2007), but beforehand we should be
clear about what model we are applying. Therefore, we introduce the related models in the next
section.

2.3 State-action modeling for in-hand manipulation learning
Either state modeling or action modeling consists of many research issues, so each can be a stan-
dalone topic. Many researches focus on just one aspect. In this case, we are going to introduce
them separately.

2.3.1 State modeling
State consists of many facts along with hand movements. In the modeling process, we need at
least select one sensory channel to extract the necessary information.

From the visual channel, we can refer to (Huang et al., 1995). In their opinion, object geome-
try and hand geometry are the major factors to deal with the grasping problems. For some precise
manipulation task, e.g., surgery, the visual criteria should be accurate enough. In this case we
need some reliable marker as (Kwartowitz et al., 2009). (Romero et al., 2008a,b, 2009b,a, 2010)
clustered human hand grasp appearance, so for the specific object manipulated by robot will be
assign as a correct grasp strategy.

If we can learn the entire hand posture with a data-glove, we can also define a series of state
transition. (Steffen et al., 2008b,a) considered the dexterous manipulation as a sequence of hand
poses. (Vinjamuri et al., 2010) paid their attention on posture decomposition, so as to investigate
the hand movement frame by frame on the posture synergies.

From the tactile channel, (Pollard and Hodgins, 2002) supposed that different objects have
the same contact area, so they sampled the object surface to find suitable contact regions, and
then translated the task from human to robot with another sized object. (Folgheraiter et al.,
2004) only considered contact points, but they connect this factor with the grasping types so as
to generalize the typical contact strategies. (Saut et al., 2006; Sahbani et al., 2007) proceed the
object manipulation based on “from a stable contact state to another stable contact state”, the
contact point variations are built as a graph. Later in the movement execution, the contact point
will tell the robot how to put the fingers, so the stable-grasp (contact point) positions should be
very accurate. Similarly, (Kondo et al., 2008; Li et al., 2012) considered manipulation is a flow
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of touching state transition. In order to figure out which grasping gestures are considered in the
manipulation process, (Martins et al., 2010) used the Tekscan tactile sensor for state recognition.
Through different contact combinations, the grasping hand configuration is identified. Since
many researches just focus on “when-what should be touched”, (Corcoran and Platt, 2010) took
a step in “when-what should not be touched”. This is similar to the idea “collision avoidance”
but the area is in the sense of touch.

Finally, we can also find many works that involved many sensors. In (Fuentes and Nelson,
1998), they counted position, pose and finger tactile factors. Meanwhile, they used evolution
strategy to learn and train their model. For another example we can refer to (Vinayavekhin et al.,
2011). It involved the states of the hand, the object and the interaction between them to represent
the progress of the manipulation.

No matter what sensors we apply to the manipulation recording, we will finally have a state
transition network. Besides generalization, we can also reason about the states. (Ekvall and
Kragic, 2005a, 2008) contributed their state reasoning methods for the task learning and plan-
ning. In their work, the constraints are identified by the robot itself based on multiple obser-
vations and then considered in the planning phase. Additionally, (Vincze et al., 2009) took a
attempt to a manipulation perception by vision; for understanding, they made a presumption to
the manipulation process, and used reasoning to enhance the process confirmation; for each task
the robot has specific steps to execute its actions, so we can easily understand the progress of the
task implementation.

2.3.2 Action modeling
Compared with state modeling, the research topics around learning for action modeling are not
as widely applied or cited. This is because the actions always connect to the corresponding
manipulators. A kind of manipulator just map such kinds of actions. Therefore, action is a
concept with hierarchical methodologies. If we generalize the actions like “grasp”, “translate”,
and “rotate”, they can be widely applied but we have to do a lot of work on the detailed aspects.
However, if we generalize the actions as “x degrees” or “y degrees”, the model is too specific.
Anyway, we find some related work in terms of this field besides an overview from (Kulic et al.,
2011).

(Fillbrandt et al., 2003) extracted hand posture through pixel-leveled mesh likelihood, and
calculated the translating probabilities of each posture pair. Different from other posture transi-
tion network mentioned in the previous section, by this work we can know what kind of hand
movement is carried out in the manipulation process. Another idea of visual understanding is
(Kjellstroem et al., 2008), who claimed that SIFT feature could not present graspable object;
instead, based on gradient-oriented histogram, they used two CRF models both in single frame
level and image sequence level for action definition. Besides CRF model, Hidden Markov Model
(HMM) or Gaussian Mixture Models (GMM) also work for motion primitives generalization
(Kulie et al., 2009; Khansari-Zadeh and Billard, 2011).

Mathematical tools are breakthroughs of modeling, and meanwhile another path is the sensor.
(Faria et al., 2011b) proposed an approach to represent and recognize a manipulative task from
multiple sensing channels. Moreover, if we have some specific constraints, we can also use the
data from one-shot demonstration to complete the learning task (Wu and Demiris, 2010).
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Above work are around hand level actions. In order to cover most in-hand manipulation
application, this thesis is concentrating on the finger level.

2.3.3 State-action modeling
Several researches consider to model the state and the action together. For example, (Faria
and Dias, 2009) aimed at identifying several grasp and reach-to-grasp movements by Bayes
rule. In their models, the hand trajectories are the actions, the final hand orientation and tactile
information are considered as the states. Another example is (Gupta et al., 2009a). It combined
the processes of scene, object, action, and object reaction recognition, in order to understand
the interaction of human and object. However, the tested scenarios are far away from in-hand
manipulation. Furthermore, their action models are not on the finger level, this issue indicates
that their model cannot extend to the finger gaiting applications.

2.4 Summary
We can consider in-hand manipulation learning as a modeling and refining process. First of all,
we should have a clear view on our state-action model. Based on what we need, we select sensors
as to capture every moment of the hand-object interaction. Depending on the characteristics of
the sensors, we should find specific analysis methods to extract the manipulation features. In
the next step, corresponding to state-action model we extract the necessary information from the
acquired data. Finally it turns to the intrinsic parameters in the model, we can employ proper
algorithms to complete the last step, e.g. Unsupervised Kernel Regression (UKR, a kind of
unsupervised learning technique (Steffen et al., 2008a)), Policy Improvement with Path Integrals
(PI2, a kind of reinforcement learning technique (Theodorou et al., 2010)) and many other proper
methods.

Even though we investigate many popular relevant researches through the entire process of
in-hand manipulation learning, this thesis mainly contributes the state-action modeling part. It
indicates that we may apply several methods from others to the fields of sensory data processing
and parameter learning, as long as the methods do fit the sensors and robot hands we have, but the
state-action framework is different. As the state and the action models mentioned in Section 2.3,
we find the current popular frameworks are:

1. State: Contact points + Action: Inverse kinematics. We need to know the accurate
position of the contact points on the object, so as to plan the hand posture by inverse
kinematics. In this framework, how to continuously and accurately locate the contact
points are the research issues, meanwhile the hand posture planning for finger collision
avoidance is another research topic. If we have no powerful sensors and corresponding
analysis algorithms, this solution is not a good idea.

2. State: Grasp types + Action: Forward kinematics. Several researches worked for clas-
sify the grasping types (Todorov and Ghahramani, 2004; Zheng et al., 2011), because we
believe that a simple manipulation can be parsed into several simple grasping postures.
Once we have found the correct order, we can plan the hand movement with forward kine-
matics to handle the object. For complex hand movement, this solution is not enough.
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Figure 2.2: A typical State-Action network. From the sensory input, we learn the state-action
model as a statistical process. An action results in several ends depending on the uncertainty of
the environment. Therefore, we should count the possibilities and generate the in-hand manip-
ulation state-action database. Even though the scale of the database will increase rapidly along
with the demonstration accumulation, we store the states and the actions sparsely. In this way,
we save the actual memory.

Figure 2.3: A typical State-Action executing process. Even though we model the state-action
model like a network, in the real world we only have one route. The robot hand executes the
actions, meanwhile we use sensors to acquire the states.

3. State: Grasp types + Action: Synergy parameters variation. We can use synergy
technique — fewer parameters to govern the finger movement. This is a current hot topic
for in-hand manipulation. However, for complex manipulation task, to determine the grasp
types is a difficult issue, meanwhile for different manipulation scenarios we should use
different set of parameters. This point results in many other issues.

4. Combination of these or other models.

Furthermore, we can have the classical state-action modeling and executing mechanism as
Fig. 2.2 and Fig. 2.3. Now we are going to propose our ideas to fill the framework.
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Action Gist of In-hand Manipulation
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Different from a hand gesture, the in-hand manipulation action gist is a concept related to the
property of the hand movement. It represents the key hand motions in any given manipulation
task and widely adapts to different hands. The manipulation process is generalized as several
compact meta motions. On the one hand, this makes it easy to remember, on the other hand it
can be translated from one hand to another, just as the knowledge passing from the teacher to the
student.

In the mechanism of the human hand, the motions and forces are governed by the neuromus-
cluar apparatus, refer to (Taylor and Schwarz, 1955). The movement of the hand is continuous,
but according to human cognition, it can be classified as finite types of motions in the brain. For
example, as the muscles tightening up and relaxing, or the fingers closing and opening. Then
in the specific application, the possible solution sequence is recalled and executed. The object
in question is touched and released by the fingers and the palm over time. When the touching
motion is executed, an interacting force is generated between the object and the hand; meanwhile
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the hand neuromuscluar system controls the finger forces in a proper state that not only protect
the hand itself but also hold the object firmly.

Since action gist will be employed by robot hands, we should find an appropriate platform. In
our lab we have a five-finger air muscle hand from the Shadow Robot Company (series C5, see
(ShadowRobot, 2013)), very similar to the human hand and well protected against damage even
when overforce is applied. With a humanoid hand, a robot can implement much more human-
like object manipulation than with a simple gripper. Because of the high degree-of-freedom,
a multi-finger robot hand can perform more dexterous skills rather than grasping, holding, or
translating the object from one place to another. It can rotate, or shift objects and perform
other advanced in-hand movements. These manipulation skills depend on the cooperation of five
fingers and the palm, and in the process of in-hand manipulation, the roles are hand and object.
The hand plays the role of control, and changing the object state is the aim of the manipulation.
Therefore, here the manipulation process is considered as a State-Action Model (Ogawara et al.,
2002; Pastor et al., 2011; Kjellström et al., 2011), meaning that the whole process is divided into
states which are changed through actions. The action is equal to hand movement, and the state
is supposed to be the criterion of how the process proceeds. Hand movement can be considered
as a continuous hand joint angle variation, with countless angle combinations between each joint
pair. The movement leads the manipulation process from one state to another state until the final
target of the application is achieved.

The method can be applied in human behavior analysis and in the control of robots with
humanoid hands. However, it is unrealistic to map the motion exactly from the demonstrator
because of the different hand sizes. It can be imagined that different-sized hands can interact
with the object from different distances, obviously resulting in different gaps with the same
pose. Actually in developing their hand skills, humans have the ability to learn from others and
to practice by themselves. Nobody can memorize the detailed joint angles of their hands, but
they can remember the key motions which are related to the moving tendency of each finger. We
consider this kind of motions as in-hand manipulation action gist.

In this chapter we propose a cognitively feasible in-hand manipulation action gist definition
for a robot with an extremely life-like humanoid hand, to enable it to learn in-hand manipulation
with a small amount of key information. The action gist is expected to be universal for all in-hand
movements regardless of whether it is simple (grasping) or complex (finger-gaiting).

This chapter is organized into several sections: After the following related work, the defini-
tion of meta motion is given, which is an element of the in-hand manipulation action gist. Then
the modeling process is introduced, and experiments are carried out to discuss the performance
of the action gist. The final part is a brief summary.

3.1 Related work
There are multiple ways to generate a manipulation model and represent motions.

One kind of model is to plan the motion in continuous space including the position and
speed of each relative component. The major stream is the dynamic movement primitive (DMP)
framework introduced by (Ijspeert et al., 2002; Schaal et al., 2003a), in which the movement
is recorded and represented with a set of differential equations. The position and speed are
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controlled in terms of the immediate position and speed feedback. (Pastor et al., 2009) expanded
the model into a manipulation control application so that the hand can grasp and place the object
in the destined area. To include obstacle avoidance in this job, an extra item is added in the
system equation, which causes the form of the framework to change with the task. Different
from the separate models to deal with multiple tasks, (Gams and Ude, 2009) applied Locally
Weighted Regression to generate the movement, and the manipulating process is divided into
several steps by the perceptual input. Rather than generalizing a trajectory in Cartesian or joint
angle space, (Gielniak et al., 2010) considered the joint velocity space which enables the robot to
accomplish similar tasks. As a result, this method can produce smoother trajectories than others.

The above frameworks consist of models depending on precise perception of spatial manip-
ulator trajectories. However, for muscle control, it tracks the trajectory related to the moving
tendency, and not the position. Therefore, DMP does not offer any significant advantages to the
target of this paper.

Another stream but a relatively older one is the generalized motor program (GMP), see
(Schmidt, 1975; Schmidt and Lee, 1999) where the overall process is guided by invariant fea-
tures. (Park et al., 2005) extended this model with the symbolic motion structure representation
(SMSR) algorithm. The body movement is tracked and segmented according to the joint an-
gles, and then the values are used to plan for a novel similar application. However, the SMSR
only extracts the body motion into simple joint angle variations such as increasing, decreasing
and stationary. Therefore, it would have difficulties when dealing with the multiple links coop-
eration application because it does not consider this kind of application very much. Different
from simply defining the motion, it is possible to have a related higher semantic model. (Qu and
Nussbaum, 2009) applied Fuzzy-Logic Control to execute the motion sequence, and this idea
was examined in a 2D five-segment body model by simulation. The above methods suppose
that the motion sequence to an application is fixed, but actually humans can have many ways of
completing a specific application. What we need are the most effective or common methods of
the teacher.

(Mah and Mussa-Ivaldi, 2003) indicated that humans learn motion by way of muscle control,
not the position perception. Therefore, to know the posture variation (joint angle) is more impor-
tant than the absolute posture. Thus the motion tendency-oriented model is more feasible than
DMP.

Once the model is decided on, the next problem is how to sense the movement. Many studies
concentrate on sensing from the robot, for example, (Pastor et al., 2009; Gams and Ude, 2009;
Gielniak et al., 2010). However, for fingers, it is not convenient to directly move the robotic
fingers to find the result. Another channel is vision; the components are tracked to complete the
motion behavior model. For example, (Riley and Cheng, 2011) employed color patterns on the
demonstrator to track the human motion. It is promising to use vision to analyze hand motion,
but the visual processing itself is a challenging topic which increases the difficulty of model
generation.

A quick way to know the finger movement is using a data-glove, which can sense every
finger joint relation in each data frame. Based on this kind of sensing channel, our study intends
to generate an action gist model to represent human in-hand manipulation behavior.
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3.2 Meta motion definition
To establish a set of hand motions which represents the hand posture transformation in in-hand
manipulation, we intend to construct the model as follows:

• It covers as many hand movements as possible.
• Each motion has as few overlaps as possible with other motions.
• The motion involves the relative joint angle variation but no absolute position information.

An exception to the above rules is the idle pose. When the motion remains static for a
while, we have to decide whether it is “move, stop and move again” or consider it as moving
continuously. Our strategy is to analyze the movement without static motions first, and in the
second loop to find the static section following certain rules.

Suppose that the hand has the form of five fingers and one palm, the palm stays still, then the
movement is equal to the cooperation of the five fingers. The basic movement of each finger can
be classified as open or close, and in terms of the moving direction at the proximal phalangeal
end related to the palm, every finger has the same motion definition. Specifically, the coordinate
origin of the thumb is different from the other four fingers because of its different position on the
palm.

Shown in Fig. 3.1, we project the finger motion into two-dimensional space because the finger
ends are fixed on the palm. In the X-Y plane, the finger direction is classified as four directions as
the four quadrants in the Cartesian coordinate; altogether with the open, close, and idle motions,
each finger has nine types of meta motions. To ensure a uniform form of the motion model, the
X axis and the Y axis in the moving direction related to the coordinate origin are either parallel
or vertical to the palm plane.

3.3 Action gist from data-glove
Based on the above definition of the meta motions, the action gist is defined as the key meta
motions between two adjacent states. Guided by the action gist, the object is manipulated from
the begin state to the end state.

The data-glove is a direct way to perceive the hand movement, as the data is measured by the
joint angle value. Therefore, the values from the data-glove become the source for analyzing the
hand movement in in-hand manipulation applications.

Corresponding to the degree of freedom, each finger has several joint values from the data-
glove. However, usually the distal-intermediate and proximal-intermediate angles increase in
close movement, decrease in open movement and the varieties of metacarpal-proximal and ab-
ductional angles indicate the moving direction in the X-Y plane of the finger.

Different from the ideal environment, the acquired data-glove value cannot be directly ap-
plied in the analysis. One reason for this is the sensor noise, another one is the issue from the
human operator, e.g., a hand tremor in slight operation, a short but unnecessary movement dur-
ing manipulation, or that at the moment the finger starts to touch the object, the value may be
abnormal. From an example shown in Fig. 3.2, we can see the uncertainties and how we are
going to deal with them.

32



3.3. ACTION GIST FROM DATA-GLOVE

(a) Finger coordinates (b) Motion projection

(c) Motion quadrants

Figure 3.1: Meta motion definition. Five fingers move related to the palm, so we describe their
moving directions in the palm-coordinates. The thumb in the red coordinate is different from the
other four fingers due to its opposed orientation in the hand. In each finger, two (flex or extend)-
joints are modeled as one parameter as open or close, and the abductional angle cooperates with
the metacarpal-proximal angle to form a 2D projected direction (blue arc indicates the directional
range in the quadrant). The idle motion is set apart and labeled as 9.
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Figure 3.2: Typical data-glove values. We laterally rotate a green cube with four fingers. From
the data-glove, we have the joint angle values plotted as the top-right sub-figure and finally
extract the action gist chart as the bottom-right sub-figure. In the action gist chart, action gist
is composed of the meta motions of five fingers, each meta motion is represented by different
color bars with the corresponding type number in Fig. 3.1. The cool colors (blue series) indicate
the “opening” motions, and the warm colors (red series) indicate the “closing” motions. The
x-axis is a time axis indicating the cyber-glove frame (or sample) number. Here we take the joint
values in the ring finger as an example. The joint angles vary over time, we can see some tremors
marked as (a). For this kind of signals, we would like to get rid of them. Another practical issue
is marked as (b), where the joint angles are flat but we should determine a boundary to separate
the different meta motions. Similarly, the angle variation is complex in area (c), but in the end we
should give a clear identification. Because of these uncertainties, this chapter proposes a solution
to automatically extract the action gist using a Gaussian MRF approach.
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Figure 3.3: Node relationship according to Gaussian MRF. Supposing each data-glove value is a
node, then each node is related to other nodes in the neighboring set Neigh(·). With the impact
factor obeying a Gaussian distribution, the line-width indicating the strength of the impact factor,
we can see that the neighboring nodes influence with others by distance.

Consequently, a Gaussian Markov Random Field-based algorithm is proposed to extract the
action gist of each finger. It can effectively decrease the negative impact from the mentioned
issues and provide a concise meta motion sequence.

3.3.1 Gaussian MRF for kinetic meta motion
This algorithm considers each value frame sampled from the data-glove as a node, every node
can influence the other nodes on which meta motion they belong to. The nearer nodes have
the stronger impacts, the criteria are based on the single meta motion similarity and the node
distance, the node relationship according to the assumption is illustrated in Fig. 3.3.

The single meta motion similarity of each node can be represented as:

Iji =


∑
k∈Fg

∣∣vki ∣∣+ ε , Cj
k∈Fg

(vki ) = 1

0 , Cj
k∈Fg

(vki ) = 0

(3.1)

Here Iji is the intensity of node i that is similar to meta motion j, vki is the k th glove value
difference (current value minus previous value) in node i. The k th value from the data-glove
sensor should belong to one finger Fg, ε > 0 promises the value of intensity is always above 0.
This value is not critical but should be a low value, we suggest to fix ε = 0.05 as experience.

Additionally, C(v) is the condition that the finger joint angle difference stay in the range of
the corresponding meta motion j. Assuming that there are always four values v1, v2, v3, v4 ∈ v
standing for the joint angle variation in five fingers, they are mapped correctly with vki . Com-
monly, v1 is for distal-intermediate, v2 is for proximal-intermediate, v3 indicates abduction and
v4 is for the metacarpal-proximal angle difference. Specifically, for the thumb values in the data-
glove, in order to have a uniform expression, the rotation angle is considered as v3. Besides, the
abduction value v4 should be adjusted as an identical increasing direction according to the meta
motion definition, then the conditions C(v) are listed in the right table of Fig. 3.4. v1 has a less
important effect here because when the object is manipulated, it is easy for the finger tips touch-
ing the object to easily create a contra direction with v2, but v2 is relatively stable. Whether the
finger is open or closed depends mainly on the movement between the proximal and intermediate
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meta motion v1 v2 v3 v4

1
×
< 0

< 0
= 0

> 0 > 0

2
×
< 0

< 0
= 0

6 0 > 0

3
×
< 0

< 0
= 0

6 0 6 0

4
×
< 0

< 0
= 0

> 0 6 0

5
×
> 0

> 0
= 0

> 0 > 0

6
×
> 0

> 0
= 0

6 0 > 0

7
×
> 0

> 0
= 0

6 0 6 0

8
×
> 0

> 0
= 0

> 0 6 0

Figure 3.4: An example of the finger joint angle difference in the first finger. v1 is for distal-
intermediate, v2 is for proximal-intermediate, v3 indicates abduction between first finger and
middle finger, v4 is for metacarpal-proximal.

joints. In the table, “×” means v1 can be any value in this condition.
For the data-glove, we have to mention that the abduction angle is not the absolute angle

related to the palm. That means v3 is not working perfectly, but in this study we do not consider
it as a critical problem.

When the single similarities of all nodes are calculated, the influence from other nodes can
be obtained by:

P j
i =

∑
t∈Neigh(i)

IjtG(t, i, σ) (3.2)

where G(t, i, σ) = 1
σ
√
2π
e−

(t−i)2

2σ2 is the typical Gaussian distribution form, Neigh(i) is the node
set near node i (refer to Fig. 3.3). Because the concerned action gist is calculated between each
adjacent state pair, the scope of the neighboring nodes is actually set as the entire glove value
sequence. Besides, σ is a parameter representing the area one node can primarily impact with,
it also means the shortest single motion execution time corresponding to the data-glove sensing
speed. Then the likelihood of meta motion j at each node can be compared to find the best meta
motion segmentation.

3.3.2 Why MRF, not HMM, MEMM or CRF?
Joint angle values from a data-glove are discretely and sequentially represented. Connecting with
current task — identifying meta motion type over the sequences of joint angle values, we easily
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correlate them as a classical issue: sequence labeling.
In the field of sequence labeling we find many solutions, but the basic ideas are playing

around Hidden Markov Model (HMM), Maximum-Entropy Markov Model (MEMM), Condi-
tional Random Field (CRF), and a more general framework presenting these typical models:
Markov Random Field (MRF). They can all be described as graphical models, so we can picture
their transition graphs as shown in Fig. 3.5. Theoretically, we can enter the data-glove values
into every model, and each will return us results as long as we correctly design the correspond-
ing graph model. However, all of these models require the calculation form of the observation
joint density:

P (X = x) =
∏

Cluster∈cl(Group)

φCluster(xCluster) =
1

Z

(∑
k

w>k fk (x {k})

)
(3.3)

Eq. 3.3 is a common form for MRF. In our case, if we want to know the probability of
whether the finger motion should be marked as meta motion x, we should ask a group of data-
glove values xCluster by our design function φCluster(·). Here cl(Group) is a certain set of angle
values in the graph Group, which is the entire data-glove value set in Fig. 3.3. Besides, the latter
part of this equation is a variation of logistic form, the cores are the weights wk and specific
function fk. Actually, when we use HMM, MEMM or CRF to solve problems, we just need to
map φCluster(xCluster) (or wk and fk) with a proper form.

We judge the kinetic finger motion by the joint angle variation; but as mentioned in the Sec-
tion 3.2, the phenomenon “a moment silent in the joint angle variation” frequently happens. In
this case, we should not employ HMM or MEMM or other methods based on directed graph. Be-
sides, we should classify the meta motions of each frame by many joint angle values over a set of
adjacent frames. This process is quite similar to MRF. Moreover, since we cannot offer bench-
mark data-glove values because of the measuring uncertainties mentioned at the beginning of
this section, we prefer to predefine the relation between each node pair as Gaussian distribution.
Therefore, since we are only looking for a good solution to identify the meta motion sequence
over the entire data-glove value set, we simply title our method “Gaussian MRF-based”.

3.3.3 Identification of idle meta motion
In addition to the action gist analysis, the idle motion is processed independently from the eight
kinetic motions mentioned above. Generally speaking, we can determine the idle motion with
many solutions, even the Gaussian MRF-based method can be employed. However, we may get
different results in the way of clustering the continuously steady joint values. Theoretically it
must be an easy task, but the bottleneck is that we should permit small deviations from fixed
values due to the real world sensing.

We suggest several methods, and we can employ them with specific purpose.
The first method is to find a frequent value as high as desired in the sliding window. To realize

it, we should have the single similarities of each node to be similar to Eq. 3.1, but the intensity of
meta motion 9 at node i becomes as I9i = 1 and the condition becomes C(v) = 1 ⇐⇒ v = 0.
Thus the idle sections can be determined by the following condition:
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Figure 3.5: Transition graphs of HMM, MEMM, CRF and MRF. Sequence labeling problems
are always translated to graphical models. The nodes in a graph are divided into two groups:
observations X and random variables (or say states, output variables, labels) Y. In HMM, we
build the relations as transition probabilities P (Y ′|Y ) and observation probabilities P (X|Y ).
However, in MEMM, we concern about conditional probabilities P (Y |X) instead of P (X|Y ).
Thus, HMM and MEMM are directed graphs. When we are not clear about the causalities
relevant to the observations and the labels, we should get help from undirected graphs, e.g., CRF.
Finally, a more general model is MRF. MRF model actually does not require observations, but
for labeling it does have. Since it is a general model, every node in it may have relations with
any other nodes. Restricted by the Markov property, node pairs with longer distance have weaker
impacts.
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3.3. ACTION GIST FROM DATA-GLOVE

(a) Method 1 (b) Method 2

Figure 3.6: Typical defects for the idle motion identification. Assuming that the data-glove values
are one-dimension, for method 1 in sub-figure (a), the algorithm cannot avoid to annotate idle to
the sliding window including a varying interval larger than the threshold. Although we can find a
solution annotating most frames as idle, we have to accept the over-long varying interval. Also,
we can find a special case to point out the disadvantage of method 2 in sub-figure (b). Suppose
that the value is increasing, but in a long term on the latter part it climbs quite slow and acts like
a horizontal line. If we use method 2, it is probably considered as idle motion. However, visually
this result seems strange.

∑
t∈Neigh(i)

I9t > threshold1 · dsw (3.4)

Thus node i stays idle when the sum of single intensities is larger than the threshold. Here,
Neigh(i) is set to be at the range of dsw, which is the size of the sliding window, then dsw nodes
are taken into consideration to find the idle section. In addition, all adjacent idle nodes are merged
as an idle section, but if the length of idle sections is shorter than a single motion execution time
σ, this section should be considered as not idle. Commonly, we find that threshold1 = 0.90 and
dsw = 20 fit most cases when the glove fequency is about 20 fps.

The sliding window moves from the beginning to the end of the glove value frames. This
process has a drawback as shown in Fig. 3.6 (a): when small waves larger than threshold1 · dsw
block the way of a long and straight values, we have to mark them as two separate idle motions
and leave a kinetic meta motion in the middle.

If we expect to have a more tolerant solution, we should consider a second method: assign
the minimal length of the idle frames to Lidle min. For each frame (node), we expand its corre-
sponding neighbors and count the non-idle nodes to make a ratio as:

riidle =

∑
t∈Neigh(i) I

9
t

the length of Neigh(i)
(3.5)

Hence we introduce another threshold2 to determine whether the frame should be idle mo-
tion. According to our test, Lidle min = 15 and threshold2 = 0.1 are suitable for 20 fps data-
glove. However, nothing is perfect, we can also give an example to illustrate its weak point as
shown in Fig. 3.6 (b).

Idle motion indicates when the fingers have a break in the process of in-hand manipulation.
Nevertheless, for an object operation, our main goal is to identify 8 kinetic meta motions to
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Figure 3.7: Rotating a star prism. Thumb, first, middle and ring finger are used to rotate the
block. In the stable moment, four fingers pinch the grooves. For rotation, each finger reaches
the neighbor groove. This process is defined as one trial, and we will see the hand pose at the
beginning state is quite similar to the end state.

describe the features of a manipulation application. We can consider the disqualified kinetic
sections as idle when the corresponding joint angle variations are not significant enough.

Therefore we have the third solution to simply discover some kinetic but actually idle mo-
tions. The principle is: for each interval of the identified kinetic meta motion, check the maxi-
mum and minimum joint values. When their difference is lower than threshold3 (usually lower
than 0.5◦ degree), we rename it as idle motion. This simple principle is also involved in previous
two methods to decrease some misjudgements.

3.4 Experiment
Using the proposed solution from Section 3.3, the action gist can be extracted from the raw data-
glove values. Different kinds of objects are used to examine this method, the hand movement
ranges from clearly moving without object to complex finger gaiting. The corresponding action
gists are extracted from the glove values automatically, and they all agree with our expectation.

3.4.1 Action gist from different parameters
Among the parameters in the algorithm, σ is the only one depending on the application except
from those values determined by experimental experience. As we mentioned in the previous
section, this parameter is relevant to movement speed and data-glove framerate. Higher σ merges
more short terms, but meanwhile we risk losing critical short meta motions (see Fig. 3.7 and
Fig. 3.8). On this point the value selection should be considered carefully. We enumerate all
possible values and compare the extraction results for several typical applications, finally we
find that the configuration of σ is not so strict. For most cases the extraction results are the same,
otherwise the length of meta motion changes slowly with σ variation. Thus it is not necessary to
check every possible value (e.g., from 1 to 20 for 20 trials), instead, we can set σ = 5 to acquire
the details, and then set σ = 10, 20 or even more to get the general context.
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(a) σ = 5
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(b) σ = 10

Figure 3.8: Action gists of star prism rotation corresponding to Fig. 3.7. For different value of
σ, we can find commons and differences between the two action gists. Therefore, when we need
the detailed motions, we should set σ to a lower value. Meanwhile, a higher value for σ may risk
losing tiny but important meta motions.

3.4.2 Action gist from similar objects
In order to make an intuitive example, here we take bottle-screw-cap unscrewing as an example.
There are four different-sized bottle-screw-caps as shown in Fig. 3.9. A participant rotates the
caps by four fingers many times. After several trials we list several typical results through the
proposed method as in Fig. 3.10.

There are countless ways to move the fingers to reconfigure the object achieving to the goal
state, but for the transfer to a robotic hand one solution is enough to guide the manipulation.
Furthermore, by the result of bottle-screw-cap unscrewing we can see: for different-sized caps
unscrewing there exist similar action gists. Therefore, we can demonstrate the scenario-specific
finger-gaiting movement many times and find the popular action gist. In this case, the common
one has stronger adaptability for the robotic hand, which is of different size from the human
hand, to complete the manipulative task. Further solutions can be found in Chapter 5.

3.4.3 Action gist from reverse movement
Since we have the experience with the bottle-screw-cap screwing, we are now wondering whether
the clockwise and the anticlockwise movement have completely opposed action gists. Therefore,
we make a try as shown in Fig. 3.11. Commonly, from Fig.3.1, the reverse meta motion pairs are
“1 ↔ 7”, “2 ↔ 8”, “3 ↔ 5” and “4 ↔ 6”. For the reverse movement, we should theoretically
find a sequence of reverse meta motions. However, the fact is that there are many ways to
manipulate an object, we may see the expected result, or many similar results.

3.4.4 Action gist from the same manipulation skill
We have experienced objects with the same shapes but with different sizes. Now we have interest
with the skill itself, e.g., rotation. We have pair of action gist extractions over different shaped
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Figure 3.9: Unscrewing different-sized bottle-screw-caps. The thumb, first, middle, and ring
finger participate in this scenario. Each screw cap is rotated as around 90◦ anticlockwise, and
this process is defined as a trial.
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Figure 3.10: Action gists of bottle-screw-cap unscrewing. We believe that there are not many
finger motions, so we take idle motion into consideration (we use method 2 to maximally identify
the idle motions). As a result, we find that the action gists from 4 trials look similar. The common
meta motions are motion 7 in the thumb, 5 in the first finger, 2 in the middle finger, and 1 in the
ring finger.
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(c) Clockwise

Figure 3.11: Bottle screw cap unscrewing clockwise / anticlockwise with three fingers. The
thumb, first and middle finger join in the movement. We take many times of screwing separately,
and find the best matched results. The movement of the thumb finger match quite well (1↔ 7).
For the first and middle finger, the meta motions are corresponded but they are not perfect.
According to the happening order, “5, 6” should correspond to “4, 3”. Because of this we check
the raw data, and find there are several subtle joint value variations disturbing the extraction. We
should not get rid of them because they are produced by the demonstrator. Anyway this result
does already make sense for a fact: the meta motions in an action correspond to the reverse
action.
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(a) Prism Rotation
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(b) Rectangular prism
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(c) Hexagonal prism

Figure 3.12: Rotation skill for rectangular and hexagonal prisms. We use the thumb, first, middle,
and ring fingers to rotate the prisms anticlockwise and extract the correspondent action gists from
multiple demonstrations. Among the results we find the most similar action gist as illustrated.
Consequently, we can generally believe that the fingers obey some similar rules to rotate an
object in the size shown in the photos.

objects as shown in Fig. 3.12. Since we can find similar action gists when we are applying the
same manipulation skill on the similar sized objects, we believe that we can use the action gist
techniques to explore more interesting result with human hand behaviors.

3.5 Summary
This chapter concentrates on action gist extraction from the demonstration of in-hand manipu-
lation recorded by a data-glove. Different from the manipulator trajectory planning, this model
works in a fuzzy way to represent the finger movement. It gives the manipulator a related loosely
explored space to implement the task, and from the view of human in-hand manipulation, it is
more similar to the mechanism of the human hand.

A discussion is triggered by the number of meta motions. Depending on the partition, it is
possible have more angle intervals to more explicitly present the finger moving range. In this
case, we may have 16 meta motions, 48 meta motions, etc. However, based on the joint angle
variation, we only concern the direction is positive or negative. In this way, 8 meta motions is
the exact number. Compared with only “open” and “close”, 8 meta motions offer more criteria to
describe the manipulation process. Besides, they are easily identified or memorized by human,
so we can interfere and improve the extraction result. Therefore, currently we use such kind of
definition.

The model currently is built from the value of a data-glove. One disadvantage is that the
human demonstrator wearing the data-glove has a different feeling, executes the movement un-
naturally and difficult manipulation applications are hardly handled. Hence to fuse the result
from other sensors, such as visual sensing, is another direction for developing the model fur-
ther. Another drawback is related to the four abduction angles in the data-glove, which are
angles between two fingers, not the absolute angle related to the palm. From this point, we do
not guarantee that the finger movement perception is always correct. However, according to our
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long-term experience with the proposed method, the extracted results are reliable. For most cases
we compare the extracted action gists and the manual annotations, the meta motion sequences
are the same.

In the later chapters, the action gist model is being examined by simulation and real robot
tests. When the action gist is mapped back to robotic hand control, it is supposed to work as
guidelines because it provides the meta motions of each finger in order. Different-sized hands
apply different joint angles to execute the manipulation, but the corresponding meta motions re-
main the same to indicate the finger moving directions. In every trial we give the robot quantized
parameters according to a fixed meta motion sequence, and through iterations the parameters are
refined to ensure the correct state transition.
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State Gist of In-hand Manipulation
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Similar to the “gist” of in-hand manipulation actions, the “gist” of states is the key informa-
tion extracted from raw sensor data. State gist concisely describe a sequence of “what happens”
accompanying with action gist. As our plan, we pair the state and action gist for an in-hand
manipulation task.

Since state gist is the essential information accompanied with the hand movement, we have
two concerned issues: How to collect the information and how to abstract them. For the col-
lection we need sensors, for the modeling we need a concrete model and some mathematical
techniques. We have introduced the related work in Chapter. 2. Thus we only refer to our ideas
in this chapter.

Generally we concentrate on answering following questions:
• What elements can be considered into state gist?
• How can we acquire the element of state gist by sensors?
• How can we visualize state gist in reality?

Above questions correspond to the coming sections. Hence, we will see “the definition of
the element of state gist”, “the relations among the sensors, algorithms and state gist”, “some
experimental results on state gist extraction”, and finally a brief summary.
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4.1 Meta criterion
In order to make an independent name, we would not like to entitle the basic element of state
gist “meta state”. Since we use state to check whether the actions work correctly, we think the
word “criterion” can properly express our idea. As a result, an in-hand manipulation action gist
consists of meta motions, meanwhile its corresponding state gist consists of meta criteria.

Since every manipulation involves a target, i.e., we do have some purpose to move the object,
there must be criteria in this physical world. The criteria could be relevant to the position and
position of the hand and the object, the interactive contact, or the appearance of the object.
Furthermore, we notice that there are more complicated manipulation not counted yet, which
depend on other factors away from previous criteria. For example, in the scenario of writing,
we manipulate a pen and see characters generally appear on the paper; in the scenario of guitar
playing, we hit the chords and hear the sound; in the scenario of keyboard typing, we press
the button and find the words on the screen. From these cases we can feel that a manipulation
always involves more than one object because of its specific target. We use a pen filled with ink,
so when the pen sweeps over a paper we can see the corresponding calligraphy. If the aim of
the manipulation is “write my name on the paper with a pen”, the criteria should be involved
with whether the letters are “my name”, whether the letters appear on the paper, and whether the
letters are produced by the pen held in the hand. Once all of the criteria meet the target of the
manipulation, we can conclude that the trial is successful.

Generally speaking, the criteria of a manipulation task can be any sentence in the form of
“subject is . . . ”. Here subject is an involved object. The entire sentence makes no difference
with normal natural language but we will finally enter the description into the robot. We suggest
to separately describe each object and parametrically express its current state. For the criteria
assignment we prefer comparative relations (e.g., larger, higher) to absolute values (e.g., 23 de-
grees, 15 cm) unless they must be the final achievement. This is because our job at the moment is
extracting the knowledge, and later we will apply the knowledge to a slight different environment
with another (robot) hand; An implicit value reduces unnecessary robot control.

For an manipulation task, we merge and organize the meta criteria and meta motions into
a schedule as the form similar to the classical state-action model as Fig. 2.3 in Chapter 2. Be-
sides, we are certain about that there are two kinds of meta criteria sampled through the in-hand
manipulation process: instantaneous and continuous criteria. The instantaneous criteria record
the necessary state at every sampled moment in the current stage, e.g., touched or not, around
a certain position, the shape remains the same. Furthermore, the continuous criteria imply the
continuous transition of the corresponding state from the previous stage to the current stage, e.g.,
moving from the left to the right side, clockwise rotating, liquid becomes fewer inside. In or-
der to explain the connection of meta motions and meta criteria better, we give an example as
Fig. 4.1. The state-action gist of this example is generated by specific sensors. When we have
another set of devices, we may have different discovery.

For an manipulation task, moreover, we suggest to design the meta criteria as simple as
possible. The intuitive factor is that simple criteria are time saving, but further we have another
two reasons. One reason is related to that we have two steps learning. In each step we sample
real-time information and translate them to criteria. Simple but robust criteria promise that we
can faster match them and make a correct evaluation on the task. For the complex criteria, we
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Figure 4.1: An example of state-action gist. Suppose that we are now trying to open the tab
of a can with the thumb, first and middle fingers. After extraction, we have such form of meta
motions and meta criteria. We should claim that there are countless methods to open a can, this
example is just a case of this in-hand manipulation skill. Depending on the trigger time of the
motions, we have four stages, and meanwhile we collect the meta criteria from available sensors.
For the meta motions, having the start time is enough. This is because we extract meta motions
sequentially; the moment that a motion starts at a finger, indicates the previous motion stops
at that finger. For the meta criteria, we mark them at the moment that the next meta motion is
triggered (or the end of this manipulation). In this case, the instantaneous and continuous criteria
step-by-step present the necessary achievements in the manipulation task. Specifically for this
example, we keep the thumb and the middle finger fixing on the can, so the contact states of
these two fingers keep “in touched” in all stages. Besides, we use the first finger to open the tab
on the can, so we see the first finger approaches to the can in stage 1. Last but not least, for this
scenario, our aim is to open the can by moving its tab, so in the stage 3 and stage 4 we find the
tab is moved.
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Figure 4.2: Ideal framework of state gist perception. This thesis concentrate on the bounded
framework. Different meta criteria require different sensors and analyzing algorithms. Therefore,
beforehand we should prepare a looking-up table. Depending on the specific criteria we refer to
the sensors and analyzers.

have to spend extra time on designing how to match the corresponding features. The worse is, the
complex criteria extracted from the demonstration cannot perfectly match whatever we extract
from the practice, so we lose confidence on the manipulation evaluation. We take SIFT feature
for an example. For this kind of image features, it has requirement on illumination even though it
describes object appearance quite well. Once the illumination quality is quite different between
the demonstration and the practice, we cannot use SIFT features for criteria. The other reason
is related to robot reaction. As we know, in-hand manipulation is applied to the objects in this
dynamic world. For each step, we have a certain time slot to execute the hand motions. When
the criteria extraction consume too much time, we will miss the chance to give reaction and have
to make another trial. Therefore, unless we have specific target, we prefer simple criteria. So far
for the solid object manipulation, we consider position (related position, e.g., near the center of
the viewpoint, move from the left to the right side), posture variation (e.g., no change, clockwise
rotated along the long axis), and fingertip contact (e.g., touched or not touched) as criteria.

Meta criterion cannot leave perception. Thus in the next section we discuss how to bridge the
sensors and state gist extraction.

4.2 Relationships between sensors and state gist
In our ideal plan, we can use our natural language to describe any state gist of a manipulation
task. By a parser we informationize the description and combine them with action gist. However,
natural language processing is a big research branch in interdisciplinary research fields, so this
thesis has not enough concentration on it. Instead, we picture the complete framework as Fig. 4.2
to have an overview and use it to guide our future work. Since gist needs perception but different
criteria require different sensors and corresponding extracting algorithms, we should be clear
about their details in advance.

Nowadays we can find many sensors but talking about their performance is out of the scope
of this thesis. Besides the performance of the sensors, we care about the relations between
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Table 4.1: Perception feasibilities of sensors for typical meta criteria

Sensors Conventional
Camera

RGB+D
Camera

Tactile
Sensor

Positioning
Sensor

Inertial Measure-
ment Unit

Data
Glove

Bio-signal
Sensor

Object
Position yes yes no yes no no no

Object
Orientation yes yes no possible yes no no

Object
Shape yes yes no possible no no no

Object
Color yes yes no no no no no

Hand
Position yes yes no yes no no no

Hand
Posture possible possible no yes yes yes possible

Contact possible possible yes possible no no yes

sensors and criteria. Therefore we make a table as Tab. 4.1 to list the feasibilities of several
kinds of sensors for the typical criteria. There are still many sensors or criteria not listed on
the table, such as microphone for sound, thermometer for temperature, since the content of the
word “in-hand manipulation” widely involves most interactive scenarios in our daily life. As
a result, we have to simplify this topic and make some explanation for the given table. We
mark “yes” or “no” to indicate whether the corresponding sensor supports the specific criterion
extraction. When we mark “possible”, it indicates that originally the sensor is not designed for
such kind of criterion perception but by special processing it does fully (or partly) work. For
example, even though positioning sensor only offers (x, y, z), if we assign an extra positioning
sensor at another fixed area, it is possible to get the object orientation; for the hand posture,
because of occlusions we cannot discover all finger links in every case, but we can employ inverse
kinematics to recover the entire pose; the contact information is not the job of cameras, but thanks
to inference techniques, when we have the spatial information of the hand and the objects we can
estimate their relations. From the table we can see that some sensors are able to deal with many
criteria perceptions, but meanwhile some dedicate to the specific criteria. Usually, the special-
purpose sensors perform better than the all-purpose ones, e.g., straightforward sensing, easier to
code processing algorithms, higher precision.

When we apply multiple sensors to in-hand manipulation perception, the belief of criteria
becomes an issue. For example, if we know from stereo cameras that the object is moved 4 cm off
meanwhile our Kinect tells us the distance is 6 cm, which result shall we trust? The results root
from many factors, including sensor performance, processing algorithms, etc. Our solution is to
keep both values and label the criterion with its corresponding sensor. Moreover, we suggest to
only use one kind of sensor for one criterion, except that the sensor is used as a bridge to connect
other dedicated but more accurate sensors. When the result from “bridge sensor” conflicts with
the result from “dedicated sensor”, we prefer to trust the result from “dedicated sensor”.

There is no ideal sensor, so the performance of a sensor is a critical factor of meta criterion
perception. Firstly, we concern about their precisions.

In-hand manipulation can be considered as typical spatial hand-object interactions. There-

51



4.2. RELATIONSHIPS BETWEEN SENSORS AND STATE GIST

Figure 4.3: A two-dimensional example of typical hand-object interaction. We try to move the
object with one finger. Theoretically, the finger has three links, as long as L1, L2 and L3, where
the joint angle could be defined as a1, a2, and a3. With the simplest mathematical form, we can
imagine that the fingertip is a point in the planar coordinate.

fore, when we decompose everything into particles (e.g., to divide an object into molecules, and
then atoms), most criteria are caused by particle deviations, i.e., distance variation. In the in-
hand level, the object has to be controlled in the available space where the hand components can
reach. Normal hand is about 20 cm, so the sensors should be sensitive enough within this scope.
In order to make a better explanation, we prepare a 2D example of typical hand-object interaction
as Fig. 4.3. From the figure, we can see that the object is solid, as well as the finger link lengths
are fixed. In this case, when we want to move the object, we should vary the finger joints. Since a
normal human hand has fixed size, we can parameterize the joint angles to see how the fingertip
changes its position. The finger is considered as a three-links chain, so the fingertip displacement
obeys the transformation from the base link to the end link. Because we are not studying the error
propagation of each joint angle, we can simplify this system into a minimal case: moving a joint,
and the fingertip position is moved. Suppose that the current distance between the base and the
tip is ρ, and after ∆θ turning it varies ∆ρ. Now as the law of cosines, the moving distance from
the original to the current fingertip position is:

d =
√
ρ2 + (ρ+ ∆ρ)2 − 2ρ(ρ+ ∆ρ) cos ∆θ (4.1)

If we are using a data-glove, the error could be joint angle value. Depending on the joint
position, ρ has multiple assigned values. We select several typical values for ρ and analyze the
distance error caused by joint angle error as Fig. 4.4. Particularly, when we use a byte to store a
value ranging from 0 to 90 degrees, the angle resolution can be calculated as 90 ÷ 256 ≈ 0.35.
In this case, we inevitably has 0.35 degree error when the data-glove is inaccurate. Fortunately,
when 0.35 degree error happens, retrieved from Fig. 4.4 we find that the error is always less than
0.05 cm. Thus, the presumed angle resolution is acceptable. Besides, We also notice a warning
threshold from Fig. 4.4. Since we are dealing with in-hand level application, we would better
select a sensor with an angle error in 2 degrees.

Another kind of error disturbing in-hand manipulation criteria is related to the positions in-
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Figure 4.4: Distance error caused by joint angle error. As Eq. 4.1, we calculate the distance error
as assigning ∆θ from 0 to 10 degrees. For an in-hand manipulation task, we would better keep
the distance error in 1 mm. Therefore, the angle error would better keep in 2◦. This figure also
provides with another kind of hints: the moving distance with respect to the joint angle variation.
For example, the blue (lowest) curve indicates the distance from the fingertip to the end, i.e., in
Eq. 4.1 ρ = 2.5 cm. When it turns 10◦ the fingertip moves about 0.4 cm.

ferred by conventional or RGB+D cameras. As Fig. 4.5, the three-dimensional world is imaged
in a planar chip. Even though we have not yet stepped into multiple cameras or depth sensors to
get the third dimensional information, there are already two dimensions of information involved
position error. Additionally, if we take the solution of multiple cameras, position error will also
interfere depth calculation.

The position error is resulted in the error of image processing algorithms. Usually we count
image features starting from pixels. By the color or the illumination of the pixels, processing
algorithms group the interested pixels. Because the grouping rules rely on the color values, it
is possible that similar-valued and adjacent pixels are collected together but actually they are
wrong. As a result, we have to analyze how the position error does matter. A simple method is
comparing the imaging chip resolution and the size of the view plane. For example, when we
have a camera with a width at w = 1024 pixels and concern the manipulation scenario happening
as wide as W = 50 cm as Fig. 4.5, a pixel error will be W/w = 50/1024 ≈ 0.0488 cm position
error. For a normal in-hand scale error 1 mm, the algorithm error should better be kept in 3
pixels.

There are many sensor errors we have not discussed yet. When the root is spatial issue, we
can analyze the specific case similar to above processes: find the relation between the sensor error
and spatial error, so as to estimate which sensor error is allowed. For another error species such
as color and contact intensity, our solution can be establishing a statistical model and evaluate
its stability according to specific benchmarks. For example, we can let the object sit quietly and
apply Gaussian model to learn the object color, when the color noise is not acceptable we should
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Figure 4.5: Typical camera imaging. By camera lens, the three-dimensional world is scaled down
into an planar imaging chip of a camera. We can turn the imaging process into a form of two-
dimension, what we concern are the imaging size w, the size of the real view W , the lens focus
f , the distance between the view planar and camera D. Obviously, w/f = D/W . Furthermore,
w is in pixels, so the image in w pixels wide corresponds the view in W cm.

employ another camera; for the tactile sensor, we can put 10 gram, 20 gram, and other standard
weights on the sensor skin to decide whether we will use this sensor.

Because sensor error always exists, we prefer to use variation tendencies as features. They
are generated from multiple samples, statistically they should be more stable than single sample.

Besides sensor precision, as long as we employ multiple sensors, another point we concern is
synchronization. In practice, computing resource is assigned to control sensors, and it is possible
to use multiple computers to govern sensors. When the sensor data stream into the computers,
usually we will attach timestamps in order to align the data from different channels. As a result,
after we extract the corresponding meta criteria or meta motions from the data, we can clearly
sort them. On one hand, we should have time synchronization for the applied computing units.
This point is a public research topic, so for further reading we can refer to the literatures such
as (Sundararaman et al., 2005; PalChaudhuri et al., 2004). On the other hand, we have an issue
with respect to sensor frequencies. Generally, a sensor captures corresponding data as a certain
frequency. The frequency is adjustable, but commonly it has minimum and maximum, or several
optional values. As Fig. 4.6 tells us, different sample rates of the sensors leave uncertainties to
align the meta motions and meta criteria. For this issue, we have three solutions. The first one is
to trust the nearest sample, and this solution does work when the criteria sensor has higher sample
rate than our data-glove. According to the Nyquist–Shannon sampling theorem, a better situation
is that the criteria has more than twice sample rate of the data-glove. The second solution is to
assume the sample rate of our data-glove is the lowest one, and employ the criteria sensors only
if they can achieve an integral number of the lowest sample rate. The third solution is to resample
all of the value sequences into new sequences as a standard size. For example, originally a data-
glove sensor offers 50 samples and a tactile unit provides with 400 samples, now we interpolate
the sequences so as to have 100 data-glove samples and 100 aligned tactile samples. Even tough
interpolation or smoothing algorithms may destroy the originality of the data, for the sake of
more selection on the sensors, we choose the third solution. Additionally, we sample action gist
in the stage of demonstration, so we concern data-glove sample rate. When we are in the stage
of practice, a data-glove is unnecessary. At this moment we update the meta criteria with latest
sensory information.
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Figure 4.6: Different sensors have different sample rates. Suppose that currently we have three
sensors containing a data-glove, and their sample rate is different. As a result, we have 9 samples
for Sensor 1 (data-glove), 6 samples for Sensor 2, and 9 samples for Sensor 3. Even though
we have a clear boundary of the meta motions and the meta criteria, we are not certain about
when a meta motion ends what the meta criteria are because we do not have any sensory sample
at the corresponding moment. Therefore, our solution is to determine a standard scale, all data
sequence will be remapped to a new sequence as the standard length.

Most content in this section are relevant to technical details. However, we have not yet
seen how to extract the state gist from any specific sensor. Therefore, in next section we will
demonstrate how to do it.

4.3 Practical results
Since there are multiple sensors taking part in the in-hand manipulation demonstration, we give
an overview of them and then extract corresponding state gists. By the way, we have to emphasize
again, that state gist could be involved with countless kinds of criteria. What we show in this
section are the ones we have experience with.

4.3.1 Experimental configuration
Before we start, we count the involved sensors: webcam (monocular camera), stereo camera,
Polhemus sensor (6DOF motion tracking, including three-dimensional position and orientation),
data-glove, and Tekscan sensor (external tactile arrays). We can mount them all on the hand
as shown in Fig. 4.7. However, according to applications, we usually select several necessary
sensors mounted on the hand. This is because too many sensors are burdens for hand movement.

Based on the current setup, we have four scenarios recorded. They are shown as Fig. 4.8.
Generally, they are all belong to rotation movement. However, the grasp points are obviously
different so the fingers must follow different trajectories to handle the objects.

There are many details about how to process the sensory data but we will skip them and only
introduce how to get the state gist.
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Figure 4.7: A possible experimental setup with multiple sensors. Firstly we wear a Cyberglove,
and then we attach Polhemus trackers on the back sides of our fingertips and Tekscan arrays on
the front side. Polhemus sensors perceive their positions and orientations by referring the Polhe-
mus source at a certain distance. According to our arrangement as the photos, we are capturing
the movement from the hand and the object. In another respect, we note that the photo illustrat-
ing the Tekscan layout is borrowed from HANDLE Deliverable 6 (Handle-project, 2009b), but
we adopt this layout in the experiments so as to widely capture the contact information on the
hand area. Besides, on the lateral side we apply a monocular camera, meanwhile we put a stereo
camera opposite the demonstrator. Obviously we find the photo colors are quite different but this
phenomenon always happens when we use multiple cameras. In this case, we should try to avoid
using color information, or only extract the meta criteria from one camera. Any way, there is
a major usage of the cameras that no other sensors can work instead: they provide us with the
straightforward impression on the manipulation trial. In this case, we can properly trim the un-
necessary data based on the synchronized photos. From the photos we also notice that the entire
hand is occupied by the sensors from the fingertips to the wrist. The reality is: when we wear too
many sensors on the hand, it is unnatural to perform many kinds manipulation movements with
a hand. Therefore, we employ the sensors according to our application. On the other hand, with
the technical development, we will have fewer and better sensors.
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Figure 4.8: Recorded scenarios corresponding to the experimental setup. We have recorded
four scenarios, all of them are rotation movement but finger gaitings are different. Specifically,
screwing movement does not employ Polhemus sensors.

4.3.2 State gist extraction
Meta criteria from Polhemus sensors

Due to the mechanical reason, we have to analyze the Polhemus data only from the scenario of
bottle rotation. In this scenario, five Polhemus sensors are attached on the fingertips and one is
fixed near the wrist, as well as one is attached on the bottle. Besides, the frame rate of Polhemus
is set to 14 Hz.

From the Polhemus, we “roughly” know the positions and orientations of the fingertips, the
wrist and the object. We use the word “roughly”, because from the spatial view the Polhemus
sensors do not stay exactly where the tracking targets stay. However, they have topological
relation and we are probably able to translate their positions.

Based on our “as simple as possible” rule, we extract the related positions information as
Fig. 4.9. From the figure we can manually infer a meta criterion related to the position variation:
the object keeps a certain distance with the wrist. This criterion can be detected automatically,
as long as we input a condition to the analysis program:∑

i

|di − di+1| < threshold (4.2)

where di is the distance we concern about.
From Fig. 4.9 we notice that the wrist-bottle differences of x,y and z-axis are varying. Be-

cause they are just rough estimations between the hand wrist and the object center, the varying
direction of the differences can be considered as meta criteria. Similar to the action gist extrac-
tion in Chapter 3, we also employ Gaussian Markov Random Field to extract the corresponding
criteria. For a better visualization, we take a segmental result as Fig. 4.10.

Because Polhemus sensors also provide us with orientation information, we can explore
whether we can find some criteria related to the bottle rotation. Fig. 4.11(a) gives us an cri-
terion that the pitching angle of the sensor located on the bottle is relatively stable (Eq. 4.2 also
works here), so the bottle may rotate along its long axis (in Polhemus system it acts as z-axis). If
the bottle is rotated along its long axis, we can refer to the variation in the x-axis and the y-axis
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Figure 4.9: The distance between the wrist and the object sensed by Polhemus. Since the wrist
and the object are bound with a Polhemus sensors, we know their three-dimensional information
and make subtractions in three axes. We can calculate the Euclidean distance between the wrist
and the object. The differences in x and y axes look not stable, but we find the z axis and the
wrist-object distance are relatively kept with a stable value. Therefore, from the analysis we can
generate at least a criterion: in this bottle rotating scenario, the bottle keeps a certain distance
with the wrist.
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Figure 4.10: The state-action gist of bottle rotation (position criteria from Polhemus sensors).
This is a segmental result of Fig. 4.9 because original sequence is too long to show on this page,
where the segment starts from 4.79 sec and ends at 15.91 sec. We use pattern “1” indicating that
the difference is decreasing meanwhile pattern “2” indicates that the difference is increasing. The
data is already synchronized, so we can retrieve the corresponding criteria for the meta motions.
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(a) The yaw-pitch-roll angles of the manipulated bottle
from the Polhemus sensors. Even though the sensor is
not located at the center of the bottle, it keeps a fixed
relation with the bottle center. Based on the sensor lo-
cation, sensor pointing direction and the related stable
variation of the pitch angle in this figure, we infer the
bottle is somehow rotated along its long axis. Actu-
ally, our purpose is to rotate the bottle clockwise, but
because the bottle is not on the table, the real trajectory
is not smooth.
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(b) The accumulated rotation directions of the bottle.
From the directional diversion of each frame we can
sum up the angles and plot this figure. The variation
tendency is trying to tell us it is decreasing, i.e., the
bottle is rotated clockwise. However, because the bot-
tle is not rotated on the table, the actual curve is away
from the ideal trajectory.

Figure 4.11: Polhemus rotation analysis.

from the Polhemus data. Suppose that the Polhemus sensor positions is represented as (xi, yi, zi),
and then position variations will be (∆xi,∆yi,∆zi) = (xi+1− xi, yi+1− yi, zi+1− zi). Now we
are concerning the rotation, i.e., angle variation, we can estimate the rotation direction θrot by
this way:

θrot = atan2 (∆xi∆yi+1 −∆yi∆xi+1,∆xi∆xi+1 + ∆yi∆yi+1) (4.3)

where atan2 is an antitangent function, and it can output the angle in (−π, π) according to the
two-dimensional input. As a result, we accumulate the rotated angles as Fig. 4.11(b). In the
figure we find the bottle is somehow rotated clockwise as our plan. We can also apply patterns
“1” and “2” as Fig.4.10 to extract the corresponding gist, but we skip showing the result because
it is a duplicated example.

Meta criteria from cameras

From Tab. 4.1 we find that cameras work for any criteria. However, meanwhile we should have
good enough cameras and own good enough algorithms. For example, in the previous sub-
section we introduced the criteria brought from Polhemus sensors, and the criteria are possible
to extracted from cameras as well; but the point is: except RGB+D camera, conventional planar
imaging cameras wait for a process to convert two-dimensional information to three-dimensional
information. The error occured in the two-dimensional information processing inevitably spreads
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Figure 4.12: Rectangular prism tracking by CAMShift. We mark the tracking result by a red
rectangular bounding box. Moreover, we are going to analyze the box center variation in the
normalized coordinate.

to the three-dimensional criteria extraction. Therefore, we should seriously consider error diffu-
sion.

Instead of driving further into above research topic, we suggest to extract planar criteria
from cameras. Regarding to the difficulties of object detection and tracking in the proposed four
scenarios, we take examples based on “rectangular prism rotation”. In the scenario, because
monocular camera on the lateral side only has slight information with respect to the prism, we
are going to analyze the data from the stereo camera. The resolution of the stereo camera is set
to 640x480, and the framerate is set to 5 fps. Because we just need planar information, we can
refer to the left images. With manually object region assigning, we apply CAMShift algorithm
(available in both Matlab and openCV) to track the prism movement. However, we should note
that there are many tracking algorithms better than CAMShift, as long as we master them we
can update the processing algorithm to get more accurate results. For this example, CAMShift is
competent enough.

We plot an interim result as Fig. 4.12. Considering that different cameras have different
resolutions, we can normalize the two-dimensional position to have a uniform impression. In
this case, when we complete the demonstration, we memorize where the concerning objects
were in a proportional form. When we reproduce the scenario in the real practice, we may have
another camera but the proportional positions offer us reusable criteria.

We can first look at the position variation through histogram to determine whether we should
take further actions. Fig. 4.13 shows us a fact that the rectangular prism does not move so much
in the camera view. We can generate a brief criterion: the object moves at most 5% in the images.
When we reproduce the scenario, we keep the object in a similar position of the camera as in the
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Figure 4.13: Position histograms in normalized axes extracted from camera data. After the
rectangular prism tracking we have a corresponding trajectory of the bounding box center. We
normalize the position information and count the frequencies of the existed positions. As a result
we find the variation ranges are under 5% (e.g., in the left histogram, ((−0.45)− (−0.55)) /2).
In this point we can propose a criterion that the object keeps in a certain position in the camera
view.

demonstration. If the robot hand moves the object far from 5% in the camera view, we can stop
the robot because it fails to meet the criterion.

Another case is that the tracking object is active in the camera view. For this case, we can
analyze the proportional position variation as what we mentioned in the Polhemus section and
generate the result as same as Fig. 4.10.

Meta criteria from Tekscan sensors

The TekScan array sensors can achieve 500 Hz sample rate of tactile sensing. However, because
our data-glove is usually working with 25 Hz sample rate, we have to filter and down sample
the TekScan data. Besides, an important fact is that our robot hand only has tactile sensors on
the fingertips. Even though the Tekscan nearly covers the entire side of a hand (Hendrich et al.,
2010; Handle-project, 2009a) and we have experience with it (Cheng et al., 2012), this time we
just focus on the fingertip sensing.

Since we have used bottle rotation and rectangular prism rotation in previous sections, this
time we try to explore the information from star prism rotation. This manipulation involves many
finger movements. The thumb, first, middle, and ring finger take part in the manipulation. Along
with the finger contacting and releasing, the star is spun in the hand.

The employed preprocessing methods are traditional median filtering and neighboring inter-
polation. After transforming the contact arrays into “contact” or “not contact” by assigning a
threshold, we generate the contact criteria as from Fig. 4.14 to Fig. 4.15. In this section, we keep
our position for simplicity and consider binary contact states as meta criteria. Consequently, we
generate the paired meta motions and meta criteria. An example can refer to Fig. 4.16. Further-
more, we generate complete contact state-action gist for all four scenarios in Appendix A.
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Figure 4.14: Fingertip contact from the TekScan sensors. Each finger link is attached with a
TekScan arrays, and each sensor cell offer us a byte to indicate the contact intensity. We sum up
the cell values over the arrays on the fingertips and plot this figure. Because in the demonstration
the star prism is rotated over 10 indents, we should see 10 peaks in each value channels. However,
only thumb values fit our expectation. Based on this criterion, we mainly concern the results
related to the thumb finger.
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Figure 4.15: Fingertip contact criteria from the TekScan sensors. By several typical filtering
algorithm we generate the binary contact criteria corresponding to Fig. 4.14. In this chart, 1
presents there is an contact on the fingertip along the period, meanwhile 0 means no contact. We
note that in this figure we transfer the time from second into frame. The reason is: as criteria
will be stored as skill knowledge, it is independent to the timing in the demonstrations. Another
phenomenon we should point out is: with filtering methods proceed, we take the risk of losing
necessary contact information. An obvious example is the contact criteria on the first finger,
where only one contact survives. However, if we refuse filtering, we have much more contact
fragments to deal with and we cannot generalize rules from the criteria.
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Figure 4.16: State-action gist of star prism rotation (contact criteria from the TekScan sensors).
This is a segmental result corresponding to Fig. 4.15, where starts from 30th frame (c.a. 1.29 sec)
and ends at 300th frame (c.a. 13.58 sec). Since the contact information of the thumb has 10 peaks
in Fig. 4.14 as same as the star rotation loops, it brings an interesting fact: when the contact state
is “1”, the thumb motions are similar to the form “7-6-4”.

4.4 Summary
In-hand manipulation state gist consists of any criteria companying with finger motions. During
robot hand working, the criteria act as checkpoints to assist robot continue its actions. Generally,
state-action gist is similar to a brief script to command the robot complete in-hand manipula-
tion. Our ideal state gist is formed by natural language, because in this way we can express our
perception freely. However, robots have their own language, whether they understand our idea,
we need the techniques of Natural Language Processing. With the technologies developing, we
believe in the future our dream will come true, and currently we have to describe the criteria in
a way that our robots accept. We prefer simple criteria, because we can easily implant it from
demonstration to real test with higher robustness; another reason is that it saves time for robot
response, which is important for real-time operation.

State gist extraction relies on sensors, we can apply proper sensors for specific tasks. In this
chapter we investigate and summarize the relation between the sensors and criteria. Even though
there are still many technical aspects not referred in this chapter, this chapter proposes several
kinds of typical analyses for the sensor selection, e.g. spatial error and temporal error. Besides,
this chapter discuss the solution of sensor synchronization for meta criteria.

Afterwards, this chapter discusses how to use positioning sensors, cameras and tactile sensors
to extract some simple criteria, e.g., position transition, stable criterion, and contact states. We
see many sensors are installed on the hand, but they are just examples that we can integrate
everything together. Actually we suggest not employ so many sensors on the hand. According
to the feeling of the participant, when the sensor number increases the hand gets more difficulty
to complete the manipulation movement. For example, normally a hand is as thick as 1.5 cm,
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when we wear a data-glove the hand becomes 1.7 cm. Further sensors extend the thickness of
the hand to 2.0 cm, at this moment it seems that we have a new hand with our body. In this case,
we cannot perform the movement as usual. Therefore, sensing the in-hand manipulation away
from the hand is a promising topic. Computer vision greatly help in this field but there are many
jobs waiting for our future work.

The same as action gist, we could only extract one state gist from one trial of manipulation
demonstration. Therefore, in order to find the common operating rule from one manipulation
scenario, we should record various demonstration trials and analyze the corresponding state-
action gists. The necessary techniques corresponding to this topic is coming in the next chapter.
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Chapter 5

Further Techniques of State-Action Gist
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We have had two chapters on action gist and state gist, but remain many technical details
waiting for solutions. This chapter considers two typical applications related to state-action gist.
One is how to find the common gist from multiple demonstrations. The other is how to segment
a long but periodic hand movement into several short segments. Additionally, no matter action
gist or state gist, they have the same style presentation in this thesis. Therefore, we believe that
just showing the processing methodologies related to action gist is enough to present the core
ideas.

The motivation of finding the commonness from a set of demonstrations, originates from a
fact: We record many trials corresponding to a specific in-hand manipulation task demonstrated
by different persons, and the extracted results are not similar. For some cases, the action gists
extracted from the same persons are also different even completely different. We agree that
“there are countless way to manipulate an object”, and we pursue a popular (or say common,
widely adapted) solution for the scenario. Therefore, in the coming section we will propose a
suitable method.

Afterwards, this chapter points to the periodic in-hand movement segmentation. For “pe-
riodic in-hand movement”, we can refer to the experimental figures of this chapter (especially
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Fig. 5.5) in advance. Generally speaking, periodic in-hand movement repeats several finger
motions to operate an object, e.g., rotating a screwdriver or turning pages. The reason of seg-
mentation is that we intend to figure out what finger motions are repeated in one loop. Besides,
the methods we adopted are based on the similarity of each candidate segment, i.e. we need the
techniques from commonness evaluation.

The structure of this chapter is the following: Section 5.1 directs to in-hand manipulation
action gist popularity evaluation in order to find the most popular action gist among multiple
trials of a specific task. Because this part is closely bound with action gist, so the related work is
already introduced in Chapter 3. Afterwards, Section 5.2 presents the related work of movement
segmentation. Then a segmentation algorithm is given in Section 5.3. After that we discuss the
possibility of fusing the segmentation result with tactile information in Section 5.4. Section 5.5
illustrates the practical results of the proposed techniques. As the final part, Section 5.6 gives a
summary.

5.1 Action gist popularity evaluation from a demonstration
set

To manipulate an object, there are countless methods to handle it. This is the reason why action
gist is so-called “essential motions” but we find many solutions corresponding to a specific ap-
plication. Even though this phenomenon happens, it does not mean we cannot find interesting
information through a set of extracted action gists. Now our concerned point is to rank the pop-
ularity of the obtained action gists from multiple demonstrations regarding to the meta motion
types and their appearing order.

Assuming a meta motion sequence is m = {m1,m2,m3, · · · }. Each element mi involves
pieces of information, including finger type, meta motion type, normalized beginning time, nor-
malized end time, and so on. We use τbegin(·) to extract the begin time of the element, and τend(·)
for the end time, then for sequence m the following conditions must be fulfilled:

τbegin(mi) < τend(mi)
τbegin(mi) 6 τbegin(mj)

i < j (5.1)

The ranking of order sequence depends on the frequency of different action gists with respect
to the specific scenario. Thus, our first idea is to employ a simple statistic method, which only
counts the frequency of every kind of action gist. However, this simple solution does not make
full use of an action gist. As we know, an action gist consists of meta motions. If we find a way to
involve every meta motion, that will be a more composite evaluation on the entire demonstration
set.

Every action gist from the demonstration set is feasible. No matter how the durations of meta
motions are changed, once the motion order is fixed, this motion set is able to manipulate the
object to the destined state. For example, no matter we spend 2 seconds or 2 minutes to nip a
ball, we succeed as long as we close the fingers to touch it.

Therefore, a meta motion occurrence histogram is applied to describe the statistic feature of
the motion order from all demonstrated samples. Firstly, the begin time and the end time of each
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Figure 5.1: Calculating meta motion occurrence histogram. We take the input of the thumb
finger for example. As the figure we have a fixed-sized statistical table. Suppose that the first
meta motion sequence consists of three meta motions, we scale them into equal sizes (we can see
the three red dashes are equal) and sum them up to the corresponding positions of the table. Later
the second meta motion sequence comes, and it includes two meta motions. Similarly, we scale it
to the table length and update the corresponding cells. After the inputs from all demonstrations,
we finally get the meta motion occurrence histogram.

meta motion are normalized in the range between 0 and 1. Secondly, we prepare a fixed-sized
statistical table to count the existing meta motions according to their positions. Specifically,
we count them with impact factors obeying Gaussian distribution G(·). After counting, the
fixed-sized statistical table becomes our meta motion occurrence histogram. The process can be
described as Fig. 5.1, and the element of the histogram can be briefly written as a formula as
follows:

Ha,r,l =
∑

η(msi ,a,r,l)=1

G(τpos(m
s
i ), a, σs) (5.2)

where ms
i is the element from the action gist ms in the demonstration set M, η(·) = 1 if and

only if ms
i belongs to finger r, labeled as meta motion l, and near position a. τpos(ms

i ) ∈ [0, 1]
indicates the normalized order position when the meta motion begins. Besides, σs is a parameter
that controls the impact factor reduction, and it is set to the reciprocal to the length of sequence
ms. Considering the discrete numeric processing, the histogram has a resolution. Hence, the
normalized a will finally be scaled as an integer during calculation.

With the meta motion occurrence histogram, the frequent possible meta motion takes a higher
value in the corresponding cells. As a result, even if every action gist is independent, the popular-
ity of the action gist (meta motion sequence ms) can be evaluated as in the following equation:

Score(ms) = max
seg(ms)

∑
j∈seg(msi )

Hj,τfinger(m
s
i ),τlabel(m

s
i )

(5.3)

where seg(ms) can be every kind of segmentation of action gist ms, it reallocates the normalized
begin and end time of the movement as each segment is marked as ms

i ). τfinger indicates the
finger type, and τlabel indicates the meta motion type. In order to better understand this idea, we
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Figure 5.2: Evaluating an action gist by meta motion occurrence histogram. Since we have the
statistical information in occurrence histogram, for an action gist we transform its meta motion
sizes and sum the values up. For each transformation we have a score, the highest score is the
popularity of this action gist.

can refer to Fig. 5.2. Specifically, Eq. 5.3 can be solved by means of Dynamic Programming.
Therefore, it is not necessary to enumerate all kinds of transformed segments.

This kind of behavior evaluation method can describe the local similarities of the meta mo-
tions, and imply the action gist frequency. As a result, the action gist with the higher score is
considered as a more common solution to the specific manipulation task.

5.2 Related work of in-hand movement segmentation
Since the process of in-hand manipulation contains a series of hand movements, it is common
to segment the entire process into several smaller parts. In this way, the manipulation process
becomes easily understandable so that we can concentrate on abstracting the interesting infor-
mation in the segments. One kind of segmentation method depends on the hand gesture, which
is based on the fact that the whole manipulation process can be understood as the translation of
several significant grasping gestures. Several works of research such as (Cobos et al., 2010) have
succeeded in reducing the scale of the realistic human hand gestures using principal components
analysis (PCA) and discriminant functions. In this case, it is possible to use finite key hand poses
to represent the manipulation process and guide the robotic hand in task execution.

It is possible to segment the value sequence according to the joint angle local minima or
maxima, and then concentrate on the local extremes to study the periodicity (Valtazanos et al.,
2010). However, as in-hand manipulation consists of the synergies of many joints, it is difficult
to segment the movement only at this level.

More information can definitely give us more help, such as considering the hand and the
object posture together as (Vinayavekhin et al., 2011) to instruct the regrasping movement. This
work does not concern the whole hand postures but only the area where the object and the hand
interact. Besides taking the object into consideration, another solution is to add sensors and
understanding the manipulation in multiple channels (Hendrich et al., 2010; Faria et al., 2011a,
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2012). Force sensing is also an important criterion of the manipulation state transition (Kondo
et al., 2011). Without a sense of force feedback, humans are unable improve their manipulation
skills. (Matsuo et al., 2009) segment the manipulation process as the contact region and the
measured force on a specifically designed pencil.

When we consider the in-hand manipulation segmentation as a motion segmentation, we can
learn more from similar topics. Basically, motion segmentation methods can be classified as
online or offline. The online method can be like (Kulic et al., 2009), it can yield segmentation
feedback to improve the robot real-time reaction. But here we are interested in analyzing the
human demonstration, so we have enough time to process the acquired data. Thus we are more
interested in the offline ideas.

For a time-series motion segmentation, we can consider it as a kind of clustering. Each seg-
ment is separated as the local relations of the elements. (Barbič et al., 2004) discussed Principle
Component Analysis (PCA), Probabilistic PCA and the Gaussian mixture model in high level
motion segmentation through the body joint angle variation. And then (Zhou et al., 2008) con-
tinued their work, clustered human motions based on k-means (Jain et al., 1999), and refined
the classification by a global minimization algorithm. For the segmentation, key information is
extracted as the criterion to divide the time series. Along with the clustering idea, we even can
apply a general clustering model for time series data as lately proposed by (Rakthanmanon et al.,
2011).

Anyway, we need to define the segmentational feature as the criterion to maintain the segment
quality, such as rotation-invariant features (Keogh et al., 2009). We believe that in our in-hand
manipulation case, we can find more specific semantic features.

For the hand movement recognition, (Ju and Liu, 2010) imported Empirical Copula to ac-
curately detect the scenario. Besides, (Ju and Liu, 2011) imported a Fuzzy Active curve axis
Gaussian Mixture Model (FAcaGMM) to detect the scenario fast. Based on the data-glove value,
these methods can analyze what kind of hand movement is performed even if the training set
includes only a few samples. However, it is not clear whether both methods can automatically
segment the long manipulation process including multiple specific operations.

(Lau et al., 2009) proposed a segmentation method independent from prior knowledge on
motion characteristics, and it is very effective in one-dimensional cases. But because of the
recursive estimation algorithm they applied, the accuracy runs low with increasing number of
joints.

Different from the classical segmentation criteria, our method concentrates mainly on the
hand movement itself. It is a kind of semantic analysis based on the similar motions in the
periodic manipulation segments. We use the data-glove to generalize the in-hand manipulation
action gist with respect to the application, and based on this kind of semantic information we
complete the segmentation.

5.3 Periodic in-hand manipulation movement segmentation
In the real world the paradigms of periodic manipulation can be like rotating a key, turning pages,
or other movements operating repeatedly. In the process of Learning from Demonstration, we
can decompose the entire continuous movement into several parts, with each part being a loop.
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In this way, we only need to show the robot the complete part dozens of times, and the robot
will extract the necessary information for future practice. The problem of this method is that we
have to cut the movement by subjective judgment, as the connective information between adja-
cent movements may be missing. Thus if the demonstrator has the chance to perform periodic
movement without interruption, it is a more natural way to acquire knowledge about the skill.

We intend to make use of the techniques of in-hand manipulation action gist to automatically
segment the entire manipulation process. Because the meta motion semantically reflects the fin-
ger movement, the reduplicative motion patterns can more or less imply the periodic information.

Firstly we give the definition of the segment in a trial of periodic in-hand manipulation move-
ments.

Definition 1 ms is defined as a segment of the periodic in-hand manipulation sequence, and
it fits following conditions: It begins from the meta motion ms

i on the finger τfinger(ms
i ), and

ends before the begin position of ms+1
i on the finger τfinger(ms+1

i ); it must be ms
i = ms+1

i and
τfinger(m

s
i ) = τfinger(m

s+1
i ) except the last segment.

In this case, every segmentation must begin with the meta motion of equal type. That means
we do not need enumerate all possible partition solutions over the long sequence, so we can faster
determine the segment boundaries. The assignment as Def.1 may result in mistakes, but the
majority should share the same sequence head regarding the statistical point of view. Therefore,
as long as we have done enough periodic manipulation demonstration, it is possible to extract
the key information in the periodic movement.

Secondly we give the criterion of a good segmentation.

Definition 2 |ms1
⋂

ms2| represents the quantity of common same-fingered meta motions at sim-
ilar positions in both segments ms1 and ms2 .

For a good segmentation, we expect |ms1
⋂
ms2| to be as high as possible. Here the meta

motion occurrence histogram is able to generalize the segment result and provide us with the
evaluation of the periodicity of the segmentation.

Definition 3 To a 3 dimensional Meta Motion Occurrence Histogram H, the corresponding
Frobenius norm is defined as

‖H‖F =

√∑
a

∑
r

∑
l

|H(a, r, l)|2 (5.4)

Theorem 1 max
∑

s1

∑
s2
|ms1

⋂
ms2| ⇔ max ‖H‖F ,

i.e., pursuing max
∑

s1

∑
s2
|ms1

⋂
ms2| is equal to pursuing max ‖H‖F .

Proof: According to Eq.5.2,
max ‖H‖F

⇔ max
∑

a

∑
r

∑
l

(∑
η G (τpos(m

s
i ), a, σs)

)2
Here we can see that, once ms

i exists, it will contribute to several elements in H. In the
meantime, the constraint η(ms

i , a, r, l) = 1 controls the meta motion number of the contribution.
ms
i ∈ ms, and m ⊂ M. According to Def.1, unless ms

i impacts H(a, r, l) alone, it has to
increase the sum of H(a, r, l) with other meta motions.
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Obviously, when we neglect the specific a, r and l, we will have a general form, e.g.
∑

ιGι,
where ι is the index. Afterwards,(∑

η G (τpos(m
s
i ), a, σs)

)2
.
= (

∑
ιGι)

2

.
=

(∑
iGi +

∑
j Gj

)2
>

(∑
iGi

)2 +
(∑

j Gj

)2
Supposed in this case i meta motions remain a contribution to the specific element of the

Histogram, but j meta motions work alone. The part
(∑

iGi

)2 is considered as the new sums of
the original element. The other part

(∑
j Gj

)2 is the new sums of where the meta motions jump
to. So it means the original form takes a higher sum.

For the cases where i meta motions remain but j motions jump to cooperate with another
element, there is no rule to judge which form is better. Nevertheless, it is not vital that more than
one meta motion fit the constraint η(·) = 1. All of these cases will be taken into the competition.
We will select the winner with the highest sum.

Then we can say the more meta motions join to work together, the higher the total is. On the
other side of the theorem,

max
∑

s1

∑
s2
|ms1

⋂
ms2|

⇔ More ms fits the constraint η(·)
Therefore,

max ‖H‖F
⇔ max

∑
s1

∑
s2
|ms1

⋂
ms2|

So when the segmentation generates a corresponding meta motion sequence set {ms}, we
can justify whether this is the best segmentation by examining the corresponding ‖H‖F . Based
on this theorem, we propose an algorithm to automatically segment the periodic movement in an
in-hand manipulation meta motion sequence as Algorithm 1. The current algorithm is a linear
enumerating method to segment the sequence, where each segment begins with the same-labeled
meta motion. Later it will be improved as an iterative or head-independent algorithm after we
have enough criteria to prove it.

In this way, we can naturally present a repeated in-hand demonstration to the robot. Dur-
ing the process of analysis, the motion sequence is segmented as the proposed algorithm, and
evaluated by Eq.5.3. In practical processing, there is the risk of errors or mistaken movements
being included in the coherent movement. But as long as the positive data is the majority, we can
refer to the evaluation from Eq.5.3 and believe that the segmented movement with a high score
is acceptable. The one having a higher score indicates its popularity in the periodic movement,
so we can use it to reproduce the manipulation.

5.4 Periodic movement segmentation fusion with tactile sen-
sor

Generally speaking, with more sensors the segmentation will become more accurate. The seg-
mentation process is equal to design a goal function and then to optimize it. However, more sen-
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Algorithm 1 Segment the periodic movement of an in-hand manipulation demonstration with
the techniques in action gist
Require: The extracted meta motion sequence M

1: Find the same meta motion l on each finger r, store their starting positions as Pl,r ={
P 1
l,r, P

2
l,r, P

3
l,r, · · ·

}
;

2: Scoremax← 0, segmentation solution Z← {}.
3: for all Pl,r 6= {} do
4: ms← The meta motion sequence ranging at the positions of

[
P s
l,r, P

s+1
l,r − 1

]
.

5: Demonstration set Mtmp ← {ms}.
6: Calculate the Histogram H of Mtmp.
7: if ‖H‖F > Scoremax then
8: Scoremax← ‖H‖F , Z← Pl,r.
9: end if

10: end for
return Z;

sors make the decision complex, we need to weigh and consider balance among many choices.
So far, the common form of the fusion obeys the rule like following equation (Hackett and Shah,
1990; Ishikawa and Sasaki, 2002; Mitsantisuk et al., 2012):

Partitionfusion =

∑
iwiPartitioni∑

iwi
(5.5)

where wi is the weight of the sensory segment component Partitioni. Regarding this equation
we can imagine that the number of components may increase the uncertainty of segmentation.
For example, a sensory channel offers 5 components but meanwhile another sensory channel
offers 8 components, and then it is uncertain that how to match the components between different
channels. Therefore, we only address how to deal with gloved and tactile data without weighting
in this paper.

Because tactile information is an important criterion in hand manipulation, we intend to inte-
grate our segmentation method with tactile perception. Considering Fig. 5.8 from Section 5.5.3
we believe that tactile information also can be refined as periodic criteria. And it is possible to
apply the same method to the tactile state sequence as the techniques of manipulation action gist.
But according to our current experimental experience, the tactile segmentation is not as reliable
as the meta motion segmentation. The reason is related to the different sensitivities of tactile
cells, and the complexity of the tactile sensory structure. And we have to point out, that the meta
motion is the direction of the finger, but the contact always changes as the finger touches / leaves
the object. That means the segments begin and end based on different mechanism, we can not
use interpolation between the boundaries of two kinds of segments.

Therefore, we consider the tactile information as a support to the current segmentation
method. The workflow is as Algorithm 2.

We consider Algorithm 2 as a kind of compromise between both kinds of segmentation plans.
The reason is that the result calculated by action gist techniques based method is always close to
the manual segmentation. We had better to keep the scale and the distances of the segments not
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Algorithm 2 Segment the periodic movement of an in-hand manipulation demonstration with
multiple information
Require: Ranked segmentation solution {Zi}, so ‖Hi‖F > ‖Hk‖F , i < k
Require: Tactile segmentation solution {Tj}

1: Sm ← +∞;
2: for i = 1 do
3: for all Tj do
4: if Zi and Tj have similar number of the segments then
5: Sum up the position difference between the nearest segment pair, one in Zi, and

the other in Tj.
6: if Sm > the calculated sum then
7: pm ← j;
8: end if
9: end if

10: end for
11: if Sm 6= +∞ then
12: goto 16;
13: end if
14: i← i+ 1
15: end for
16: Update Zi by Tpm with the closest segment positions, store it in Znew; return Znew.

far from the original solution.

5.5 Practical applications
In this section, we demonstrate the practical results on popularity evaluation, afterwards the
glove-value segmentation results with manual segmentation results, and then discuss the possi-
bility to fuse the segmentation from data-glove and tactile sensor.

5.5.1 Popularity evaluation
In order to make an intuitive impression, we take a simple example. In daily life we use a ladle
to spoon the soup up (see Fig. 5.4). A subject took part in the task and has nine trials with the
thumb, first and middle finger. The complete nine action gists can be found in Appendix B. With
statistical processing and popularity calculation, we finally have the ranking list in Tab. 5.3. We
can see that the top evaluated action gist is the shortest but the most common one in all trials.

5.5.2 Segmentation for multiple scenarios
We have an integrated system to record the Cyberglove data with synchronized visual data
(Handle-project, 2012). By this tool, we are able to compare the segmentation from our pro-
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Figure 5.3: Action gist ranking of ladle reconfiguration
Action Gist – ms Rank
(First, Motion5), (Middle, Motion6),
(Thumb, Motion5), (Middle, Motion7) 1

(First, Motion5), (Middle, Motion6),
(Middle, Motion7), (Thumb, Motion5) 2

(First, Motion5), (Middle, Motion7),
(Thumb, Motion5), (First, Motion8) 3

Figure 5.4: Action gist popularity evaluation of the ladle manipulation. Thumb, first and middle
finger participate in this scenario. After nine trials, we have a ranking list.

Table 5.1: Performance of data-glove based segmentation
Scenario Repeat Miss Exceed

screwdriver
4 times
4 times
5 times

0 times
0 times
0 times

0 times
0 times
0 times

cover opening 7 times
6 times

0 times
0 times

0 times
0 times

star rotation 6 times
6 times

2 times
0 times

0 times
0 times

page turning
5 times
8 times
8 times

0 times
0 times
0 times

2 times
0 times
0 times

posed algorithm with manual results. We have 4 scenarios shown in Fig. 5.5 to examine the
performance of our method. The demonstrator performs the experiments and repeatedly moves
the corresponding object. Each application is demonstrated many times. After that, through
maximizing the Frobenius norm of each segmentation, we can have the result like Fig. 5.6.

We have recorded synchronized visual data at the frame rate of 30 fps, and the frame rate of
our Cyberglove is set as 15 fps. We spend 10 seconds for each demonstration of performing the
periodic movements, and 20 seconds for the page turnings. By comparing with the timestamps
of the visual sensor and the Cyberglove, we evaluate the performance of the proposed method as
Tab. 5.1 and Fig. 5.7.

In Tab. 5.1, “Repeat” indicates how many times the demonstrator actually performs the mo-
tions. “Miss” indicates the number of the segments that the automatic segmentation fails to find.
Moreover, “Exceed” counts the extra segments that the automatic segmentation finds but which
are not real in the demonstration. In the table, we can see that the automatic segmentation of the
star prism rotation and the page turning have mistakes. These two tasks are more complicated
than the other two, and without training the demonstrator uses different movements to achieve the
manipulation. But regarding that the trial time increases, the demonstrator becomes experienced
and then this case will not easily happen.

Fig. 5.7 indicates the errors of the segmentation positions are mostly under 0.2s. Actually
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Figure 5.5: Four scenarios of periodic movements. The first one is to use a screwdriver to fix
the screw. The second one is to rotate the cover to open the bottle. The third one is to play a
star-like toy. The fourth one is to turn the pages of a book. The red arrows indicate the operating
directions of the corresponding objects.
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Figure 5.6: A segmentation example with the corresponding meta motion sequence from the
screwdriver scenario. The figure shows the meta motions of all five fingers, each type of meta
motion is represented by color rectangles with the corresponding type number. Specifically,
the closing motions employ warm colors but the opening motions apply cool colors at different
saturation levels. The x-axis is a time axis indicating the Cyberglove frame number. The yellow
lines segment the entire sequence into several parts. This example is a segmentation by Meta
Motion 7 in the middle finger.
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Figure 5.7: The errors of the automatic segmentation. Compared with the manual segmentation,
we calculate the related errors measured by second. The blue boxes indicate the main variances of
the errors. The black boundaries indicate the minimal and maximal errors of the demonstration,
and the red lines in the boxes represent the averages. The red crosses indicate the outliers.

to the normal speed manipulations, with human eyes it is difficult to distinguish the movement
difference in this duration level. So we assume the segmentation results are acceptable.

Among the demonstrations mentioned in Tab. 5.1, we have 4 failed segmentations. We inves-
tigate the raw data and find two reasons for the failures. One is because the pause between two
periodic segmentation is too long, meanwhile the fingers look staying idle but actually slightly
move. In this case the meta motion parser finds some unexpected motions which disturb the
segmentation. The other reason is that the demonstrator applies multiple methods to carry out
the manipulation, then the algorithm can not detect the segmentation correctly.

Therefore, it is helpful that more sensors participate in the manipulation analysis.

5.5.3 Segmentation involving tactile sensors
In this part we aim at analyzing the manipulation skill from multiple sensors. Even though the
proposed algorithm in this paper is based on the information processing of the data-glove, we
can have the experiment carried out using several devices including a stereo camera, a magnetic
tracker, Cyberglove, the Tekscan Grip system (for details of the set up please refer to (Handle-
project, 2009a,b), or the applications (Hendrich et al., 2010; Faria et al., 2012, 2011a; Martins
et al., 2010)). Too many devices installed on the hand restrain the natural movement of the
demonstrator, but it provides a chance to compare the segmentation result.

In Chapter 4 we already see the experimental setup enclosing the hand as Fig. 4.7. The
image sequence of the manipulating process, the hand joint angle and the tactile information are
available and synchronized in this set up. Besides, the movement of rotating a star prism is a
typical periodic in-hand manipulation. We are going to study the block rotation movement by
manual, tactile and finger-action-semantic segmentation.

The tactile sensor Tekscan consists of arrays of haptic cells attached to each the finger joint.
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Figure 5.8: A segmentation example based on the tactile information. The scenario is star-like
toy rotation. It is assumed that the contact region of each joint has a threshold value indicating
whether it is touched. We use the 0 to present the non-touched state, and 1 for the touched state.
For each finger we sum up the corresponding joint states, and represent it in decimal digits instead
of binary form. For example, the thumb in digit 1 indicates that the distal joint is touched, but
the proximal joint is non-touched; The first finger in digit 6 indicates that only the corresponding
distal joint is non-touched, but medial and proximal joints are touched. We can count that the
thumb spends 10 periods in state 1. Furthermore, in this demonstration, the demonstrator does
rotate the block 10 times. However, the demonstrator does move the ring finger with touching
and non-touching 10 times, but we can not see that the ring finger has any change in the figure.
Therefore we currently only use tactile information as assistance and consider the contact state
transition as a future research.
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Table 5.2: Star prism rotation performance of fusion based segmentation
Glove-based Fusion-based

Repeat Miss / Exceed Miss / Exceed
10 0 / 1 0 / 0
10 0 / 1 0 / 0
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Figure 5.9: The errors of glove-based method and fusion-based method compared with manual
segmentation. Because of the experimental set up, and for the demonstrator can not naturally
perform the manipulation with wearing too many devices, the errors are higher than Fig. 5.7.
But anyway we can see the fusion-based segmentation is better than the single sensor based
segmentation.

Each cell contains a value presented by an unsigned byte indicating the intensity of the contact
pressure. Basically we can segment the sequence by the different contact area combination.
The state definition is similar to (Martins et al., 2010), but we do not need the palm contact
information. One reason is that the palm does not participate in the rotation, another reason
is that we find too much noise in this application when the parts in and around the palm rub
reciprocally. Meanwhile the tactile information involves many factors, even as (Williams et al.,
2010) indicates, grip force is affected by the hand posture. Therefore, here we only need to
consider whether a force is applied to a specific area.

Therefore, we separate the in-hand manipulation state by the contact force variation with
respect to each finger joint. Through summing up the intensity of corresponding cells, smoothing
the totals, threshold filtering to separate the high and low value, and a series of post processing,
an example of the segmentation is shown in Fig. 5.8. Then we can see as each finger holds a
different transition form, there are many possibilities in the entire process.

Anyway, we can apply the segmentation method via the data-glove to understand the entire
manipulation sequence. And then integrate the tactile segmentation as Algorithm 2. The results
compared with the manual segmentation is shown as Tab. 5.2 and Fig. 5.9. Because the hand
wears too many sensing devices, the demonstrator can not perform the manipulation naturally.
Therefore the average errors are higher than glove-only method.
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Figure 5.10: The possibilities of the start meta motions in 5.5.3. The block intensity indicates
how likely it is for the meta motion according to the finger to become the head of the segment.
After several demonstrations of star prism rotation, the meta motion 8 of the thumb wins the
highest score. It implies that the demonstrator may have this behavior in the rotation scenario of
a similar object.

5.5.4 Popularity of the first meta motion in the segment
To manipulate an object, there are countless finger-gaitings. We can get many meta motion
sequences from action gist extraction, and every one will work in practice. However, for each
particular manipulation task, we would like to find the common action gist. Because we think
if one kind of movement is always performed by humans, it will be more stable than other
movements applied in the specific scenario. For many trials from the star prism rotation in
Section 5.5.3, we intend to find the popular head of the segment. Thus we sum the Frobenius
norm of the Histograms up and evaluate the popularities. The result is shown by Fig. 5.10. The
result indicates that when rotating a block with four fingers, the demonstrator always moves the
thumb first. This criterion can be considered as a hint to the segmentation by tactile information.

In addition, we give the analysis to other experimental scenarios in Fig. 5.11. We hope the
proposed techniques can more or less help us with the behavior understanding.

5.6 Summary
After proposing the popularity evaluation of in-hand manipulation gist, we propose a segmen-
tation method based on maximizing the Frobenius norm of the Meta Motion Occurrence His-
togram. The segmentation is a technique of in-hand manipulation action gist, to find the op-
timized segmentation of periodic hand movements. Different from gesture segmentation, the
segment is sharp at the boundary of movement variation. We believe that the proposed method
does support the process of Learning from Demonstration. Then the robot with a human-like
hand allows the demonstrator to teach naturally instead of decomposing the entire operating
sequence.

The current method is based on counting the meta motion, it belongs to a kind of semantic
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Figure 5.11: The possibilities of the start meta motions in Section 5.5.2. In all scenarios the
demonstrator uses his right hand. We can find that the first motion in the “Screwdriver” scenario
is using the thumb. Considering with the fact that the screwing demonstrations are anticlock-
wise, this result is reasonable. And we notice that for the clockwise movement scenario “Cover
Opening”, the demonstrator likes to move the ring finger first as expected. The “Star Rotation”
result is different from Fig. 5.10 because the demonstrator often uses his middle finger to keep
the block at the beginning. However, we think the “Page Turning” is the most interesting one in
the cases because we find more bright blocks than other scenarios. We preliminarily think that is
because the demonstrator wants to use the thumb to fix the page, or other long fingers to touch
the margins.
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analysis of the in-hand manipulation. The meta motion derives from the joint angles of the fin-
gers; in the process of generation there may be some error. Thus, it is possible to have a more
precise result based on the raw data. Anyway, to display with meta motion is more understand-
able than to display the joint angle values. In this case, humans can more easily interfere in the
learning process to improve the cognition of the robot.
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Current robotic hands have become almost as flexible as human hands (Lovchik and Diftler,
1999; Gao et al., 2003a; Stone et al., 2007; Odhner et al., 2013; Mattar, 2013). This applies
especially to the Shadow hand, where we can access both real and virtual hands to perform the
hand movement supported by the robot operating system ROS. Therefore, in the field of in-hand
manipulation it is possible to exactly mimic the hand behavior of humans.

As introduced in Chapter 1, we find many successful cases in object manipulation based on
building a kinematic or dynamic model for a specific application. Besides that, another approach
to master manipulation skills is to leave the modeling process to the robot itself. In other words,
the robot can learn from what a human demonstrates.

We are not going to repeat the introduction of “learning from human demonstration” and
“state-action modeling”, which are already done in Chapter 2. In this chapter, we aim at applying
the gist based state-action model to the in-hand manipulation self-learning. The state-action gist,
especially action gist, involves the key hand movements consisting of several predefined basic
motions. When the robotic hand performs manipulation tasks, the action gist works as a guideline
to instruct the fingers to move step by step. With this kind of input, the search space of the finger
gaiting decreases. Nevertheless, in practical implementations the robot will convert the abstract
movement (action gist) into explicit joint values, which is where the learning comes into play. In
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Figure 6.1: The control parameters to be learned. Suppose that an object is grasped in our
hand and now we are moving it by the extracted meta motion sequence. Because action gist is
learned from another hand (human demonstration), and the action gist only offers joint varying
directions; in order to correctly perform the in-hand manipulation skill, the control parameters
(when should the motion be triggered, the joint varying angles) are waiting for learning.

each step, the robot fingers move as prescheduled, until the set of control parameters correctly
work on the fingers to move the grasped object into the destinated state. Therefore, the control
parameter exploration is the key purpose in this chapter, and we find the intuitive description of
the control parameters from Fig. 6.1.

The more flexible a robotic hand is, the higher the dimensionality. The Shadow dexterous
hand, for example, has 24-DOF overall, of which 20-DOF are controllable due to the J1/J2
coupling of the fingers. For this research we are interested in the in-hand gaiting movements of
the fingers, ignoring the wrist motion, resulting in a 18-DOF with the number of meta motions in
the specific application. For example, a five-fingered grasping has 18 parameters to learn, and the
star prism rotation in Chapter 3 (Fig. 3.7) has nearly 100 parameters to learn (the corresponding
calculation method will be given later). We are trying to propose a universal framework for our
state-action gist based in-hand manipulation learning, so we consider evolutionary algorithms to
tolerate the dimensionality while approximating the best solution.

Here we employ the ideas of swarm optimization to optimize the searching. Compared
to all other swarm intelligence algorithms, conceptually, Particle Swarm Optimization (PSO,
(Kennedy and Eberhart, 1995; Shi and Eberhart, 1998a)) is the best candidate for finger joint
value exploration. Firstly, PSO covers the concepts of particle velocity and position, so we can
directly combine the PSO parameters with the joint values; and after the evaluation of one loop
of manipulation control using the current parameters, we can adapt the parameters by changing
the particle velocity. Secondly, the amount of the particles renders this algorithm likely to be
resilient to local minima. This point ensures that we can find a good solution after a sufficient
number of iterations. Currently our purpose is to apply state-action gist to directing the finger
movement, so it does not matter whether the selected learning algorithm is the best one. How-
ever, we do our best to seek the start point of our learning process. For example, we intended to
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replace PSO by the Cuckoo search (Yang and Deb, 2009), which also has the concept of particle
flying and is claimed to outperform PSO according to the recent paper (Civicioglu and Besdok,
2011). Besides, on the way of finding suitable algorithms, we discovered Line Search with Re-
Start (LSRS, (Grosan and Abraham, 2009; Grosan et al., 2011)), which operates the searching by
iteratively updating the parameter boundaries. According to our test, within a large but accept-
able number of agents and iterations, none of these large data exploring methods can definitely
converge to the global best solution of a specific manipulation task. However, they all approach
the solutions better than the initial method. In the process of implementing and comparison, we
notice the highlights of these algorithms: PSO adjusts parameters in a reasonable way; LSRS is
good at decreasing the search space for each parameter; Cuckoo search, or other methods similar
to the genetic algorithm, can eliminate the weak candidates. Based on these highlights and our
practice, we finally integrate state-action gist with PSO and LSRS for our motor babbling learn-
ing. The reason of not using those methods which eliminate weak identities, is because after
applying them in practice we have not found them to offer any significant improvement.

We have applied action gist to sort the motion order and limit the joint value variation, and
state gist to evaluate the achievement of each trial. Meanwhile, the parameters needed to learn
involve the joint value variation of each finger as well as the corresponding start time. We treat all
of the joint value variations and start times together by translating the value into the proper form
for the learning model (PSO and LSRS). In each babbling of the hand, we can find corresponding
cost of the learning model; according to the cost new babbling parameters are generated until the
final solution is found.

The purpose of this chapter is to propose an in-hand manipulation motor babbling learning
framework integrated with the state-action gist and the reinforcement learning methods. We
organize it in the following form: the next section introduces the state-of-the-art progress of
motor babbling and learning. Afterwards, Section 6.2 illustrates the basic level of our work on
how to move the hand and how to adaptively keep the fingers attached to (or away from) the
object. Based on low level control, we propose our babbling learning algorithm in Section 6.3.
And then Section 6.4 gives the experimental results. Finally Section 6.5 summarizes this chapter.

6.1 Related work
Learning from demonstration has many methods (Argall et al., 2009). Our methodology has
two steps, one is let the robot learn the compact key knowledge; the other one, which is the
topic of this chapter, is to execute manipulation movement iteratively to convert the short but
key knowledge into its own skill. Some researches rely on the position information to learn the
manipulator trajectories (Howard et al., 2009b; Ratliff et al., 2009), but currently our method
is based on the finger joint angle space. The reason is that, the basic command of robot hand
control is in the joint angle space, and the position space will be finally translated to joint angle
space (e.g., from fingertip positions to a hand posture); according to Chapter 2 and Chapter 4,
position-based methods distract us by sensory information processing; so we start from the joint
angle space to see how far we can go. However, usually the exploration in the joint angle space is
larger than the position space. Therefore, some parametric simplification methods are proposed
in recent years (Vinjamuri et al., 2011; Prieur et al., 2012). We expect our approach adapting to
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as many in-hand manipulation applications as possible, but we are not certain about whether the
simplification can qualify for complex finger-gaiting tasks. Thus, currently we are interested in
how to complete our task with the help of motor babbling.

Motor babbling originates from the concept named “body babbling” proposed by Meltzoff
and Moore (Meltzoff and Moore, 1997). Under the claim that the imitation is a matching-to-
target process, a loop integrated with infant actions, adult actions and proprioceptive feedback
was introduced to match Meltzoff and Moore’s active inter-modal mapping (AIM) hypothesis.
As a key part of the infant action system, body babbling coordinates movements to the organ
end states so as to achieve the goal that the adult aims for. Because an infant needs knowledge
from adults, prior input is allowed to strengthen the exploration of body babbling. Therefore,
the previous framework was extended by (Shon et al., 2007; Demiris and Meltzoff, 2008) to
include robots and considered infant motor acts as motor planning. Besides, it explicitly indicated
that motor planning consists of three models: forward model (world dynamics), prior model
(instructor’s policy) and inverse model (action selection). These three components drive the
robotic individual taking actions according to its own performance and the instructor constraint.
Actually, so far there are two opinions on motor babbling application. One opinion is that motor
babbling is a kind of robotic behavior only consisting of random movement (Ognibene et al.,
2006; Lopes et al., 2010; Rolf et al., 2010; Bodiroza et al., 2011), the evaluation begins after
all trials are done. The other opinion stands for behavior that improves with the iterations of
babbling, and (Billing and Hellström, 2010; Billing et al., 2010; Montesano et al., 2007) position
motor babbling as “Behavior Coordination”. Comparing the above two opinions, we vote for the
second one to embody our learning algorithms. Currently we are aiming at in-hand manipulation
learning, so exploring finger movement is necessary. Besides, since this search process cannot
promise to achieving a better solution everytime, it can be considered as iterated motor babbling
learning.

Before the robot hand starts motor babbling, we should prepare a schema to tell the robot
what, when and how it can do according to the scenario, as in the cases of (Kjellstroem et al.,
2008; Kobayashi and Hosoe, 2009; Gupta et al., 2009b; Kobayashi and Hosoe, 2011). In the pro-
cess of motor babbling, the robot should exploit its own memory to reorganize prior knowledge
to instruct itself (Baxter and Browne, 2011). Even if the robot begins without prior knowledge,
it is possible to use forward and inverse models to generate its knowledge database (Demiris and
Dearden, 2005).

Furthermore, we can refer to some cases related to manipulation babbling learning: (Saegusa
et al., 2008) applied motor babbling in arm posture control combined with visual feedback. (Oz-
top and Arbib, 2001) applied Motor Babbling in 12 DOF robotic hand grasping. It is based on
Hebbian theory (Hebb, 1949); successful grasp parameters are strengthened while the ones that
tend to fail to do so are weakened. Furthermore, the hand is controlled through forward kinemat-
ics and inverse kinematics. (Caligiore et al., 2008) simulated a babbling reaching and grasping
scenario with obstacles, where the control parameters are iteratively updated by a biological
constraint — Hebb learning rules. (Ciancio et al., 2011) applied motor babbling in CPG-driven
hand grasping simulation. Through adjusting the parameters of different CPG models, hands of
varying sizes can learn how to rotate objects.

In this chapter we are realizing five-fingered hand (18 DOF) in-hand manipulation for the
Shadow robot hand. Therefore, the degree of freedom and the finger-gaiting complexity are
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Figure 6.2: Robot hand control by sending joint angle frames. We can send joint angles to the
robot hand to reconfigure its posture. Driven by the motors, the fingers gradually approach to
their target positions. If we continuously send frames, the fingers move continuously. Further-
more, if we predetermine the joint variations and send the slightly moving joint angles quickly
(e.g. 20 Hz), we can see that our robot hand is working smoothly.

much larger than the related work, so we are going to propose a new solution for this new
challenge. Another characteristic from this work is that the learning is guided by state-action
gist. The learning parameter set is specified by the corresponding action gist, and meanwhile
the evaluation process corresponds to state gist. Also, we want to keep the learning time for the
real robot as short as possible, because we should protect the real robot. Therefore, we run the
learning process in the ROS Gazebo simulation until we have a approximately good result, and
then apply the simulated result to the real robot hand to further refine and complete the in-hand
manipulation task.

6.2 Robot hand control
The basic unit of an articulated robot hand is the finger joint. Therefore, in low level control,
we usually reconfigure the hand posture by sending joint angle information (see Fig. 6.2). We
can use the word “frame” to represent the moment of sending one or more joint values to move
the finger. Considering the applications of in-hand manipulation, the joint variations are more
complicated than pure grasping movements. This means the method of learning finger joint
angles frame by frame is not realistic.

Because action gist provides us with the sorted meta motions and each meta motion limits the
range of the joint variation, we can tell the robot to perform the manipulating movement in the
order predetermined by the meta motions. Supposing that the initial hand and object posture are
ready, given the start time, end time, and angle variation corresponding to the finger, it is possible
to calculate the exact hand movement as command sending frame by frame. Here, the initial start
time, end time and angle variation can be easily found from the data-glove value sequence along
with the action gist extraction. Also, we notice that for each finger, the end time of a meta
motion is the start time of the successive meta motion, so the end time of each meta motion is
redundant. Because the joint values are not calibrated and the sizes of the demonstrator’s and
robotic hands are different, we do not expect the initial data to work as soon as it is applied to
the target application. Furthermore, we suppose that the order of the meta motion is reliable; as
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Figure 6.3: BioTac Finger and its internal structure (Fishel et al., 2012). All sensors are pro-
tected inside of the finger. We can get static and dynamic pressure, as well as the temperature
information from this kind of finger.

a result, after iterations of parameter adjustment, we can find the correct values to complete the
manipulation task.

Moreover, the platform is an important factor when we consider in-hand manipulation appli-
cation. Currently we use BioTac hand. BioTac hand1 is invented by the cooperation of Shadow
Robot Company and Syntouch LLC. It is a five fingered motor hand with 20 actuated degrees
of freedoms (DOF). The thumb finger has 5 DOFs, the first, middle and ring finger each has
3 DOFs, and the little finger has 4 DOFs. Specifically, the first two joints of each finger are
flex/ext-joints. Each fingertip is a biometrical tactile sensor system. Providing with arrays of
force and temperature information, it has a rigid core surrounded by an elastic skin filled with a
fluid (Fig. 6.3). This robot hand applies EtherCAT communication protocol, so it is able to keep
streaming the sensing, control and feedback data in a high speed.

We control the BioTac hand by sending frames of finger and wrist joint values. When the
robot hand receive the joint value commands, the corresponding joints will try to move to the
target position as a preconfigured speed. In order to have a smooth hand movement for manipu-
lation, we can keep sending the scheduled sampled joint values with a high frequency.

Hereinafter we describe the details of the mapping between action gist and joint angle frame.
We endow the meta motions m = {mi} with messages including start time and joint angle

variation, and the initial joint angles of the robot hand at that moment. Therefore, the general
control flow is presented as Alg. 3. In the procedure we can see several new variables and
functions. Because the finger joint angle is sent to the robot hand by frame, first of all, we
should normalize the time in order to know whether the working frame is controlled by the meta
motion mi. Therefore we take Tnor(j) = j/Nframe to normalize the frame time, τs time(·) and
τe time(·) to obtain the normalized time of meta motionmi. Second, we should tell the robot hand
to update the corresponding finger joint angles with respect to the joint angle variations A(·).
Considering that the joint variations rely on time and motions, there are many possibilities to
design this function. Currently we only use the simplest form — a linear model to deal with the
joint variation, i.e.,

1http://www.syntouchllc.com/Products/ShadowHandKit.php
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A (mi, Tnor(j)) =
Tnor(j)− τs time(mi)

τe time(mi)− τs time(mi)
× τjo var(mi) (6.1)

where τjo var(mi) involves all relevant joint angle variations of meta motion mi.

Algorithm 3 General control flow according to provided motion control parameters
Require: The action gist m
Require: The number of frames to communicate with the robotic hand Nframe

1: for j := 1 to Nframe do
2: for each mi ∈ {τs time(mi) < Tnor(j) < τe time(mi)} do
3: Update the joint angles τfinger(mi) as joint variation A (mi, Tnor(j))
4: end for
5: end for

In addition, according to the analysis of raw data-glove values, we notice that the linear model
is not enough to exactly describe joint angle variation. This simplification is insufficient for some
complicated applications, e.g. when a finger is required to move with acceleration. Thus, in the
future we will apply higher order or other fitting models to abstract the joint angle variation. Just
for the sake of decreasing the dimension of parameters, we aim at solving simpler cases first by
assuming that each finger moves at a constant speed in a motion slot.

Because there are tactile sensors mounted on the Shadow hand fingertips, during the in-hand
manipulation task we apply a simple technique to correct the improper hand pose in realtime. We
can call the technique “adaptive grasping control”, which controls the finger joints with respect
to the contact states on the fingertips. Firstly, we define several levels for the force intensity, e.g.,
no contact, just touching, medium level touching, high level touching. Secondly, we adjust each
finger as following rules:

• If the destinated contact state is touching but currently the fingertip does not touch the
object, the corresponding joint angles increase. In this way we expect that the finger ap-
proaches the object.

• If the destinated contact state is touching but currently the intensity level is “high level
touching”, the corresponding joint angles decrease. In this way we protect the robot hand
or the object.

• If the destinated contact state is no contact, but currently the fingertip touches the object,
the corresponding joint angles decrease. In this way we expect that the finger leaves the
object.

The module “adaptive grasping control” is standalone, we can enable it whenever we want.
Besides, this module can fail in some cases. For example, for some touching we should extend
our fingers, but this behavior conflicts with the rules we just specify. Anyway, adaptively correct-
ing finger joints helps a lot as we are applying a linear fitting model to the joint angle variation A.
Therefore, for a first attempt of the tasks, we always enable this module for babbling learning.
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Figure 6.4: Main workflow of action gist based babbling learning. Generally, the meta motion
sequence (action gist) consisting of which finger it concerns, when it moves, what the angle
variations of corresponding joints are, and which meta motion it belongs to, is considered. The
values from the entire meta motion form a particle (parameters to learn), specifically, the begin
time and joint angle variation will be slightly changed because there are multiple particles for
the algorithm. Then all particles are put into the shadow hand simulation and the object is
manipulated. For the result we can estimate the manipulation achievement according to the state
gist, and give feedback to the learning module so as to adjust the parameter values. Because
action gist constrains the range of each parameter in the particle, the exploration effectivity is
improved. Finally we will get an acceptable result after several iterations.

6.3 Action gist based motor babbling learning
Based on action gist, we already have a rough idea of when and how the fingers should move.
We now combine the information with PSO / LSRS exploration to refine the control parameters
in the simulation and then later in real robot execution. Fig. 6.4 illustrates the framework of our
work. Using the Gazebo simulator with a physical engine, we have a testbed to babble the hand
movement repeatedly without damaging the real robotic hand. Firstly we should initialize the
hand and object, assuming that the object is already in hand. Then the hand is controlled by the
command frames, each consisting of all joint variations to complete a trial. In order to avoid
useless workload, there are comparisons between several frames to check whether the object is
moved as scheduled. Once a state digresses significantly from our expectation, the hand posture
and the object pose will be reset for another trial. In order to receive a good learning result, we
pay attention to several key issues as detailed in the following subsections.

6.3.1 Joint angle control parameters
As mentioned in Sec.6.2, we apply a set of parameters in relatively compact format indicating
joint angle variation, start time, and the corresponding finger. The robotic hand concentrates on
learning these parameters from the feedback of executing them. Meanwhile we notice that we
should design the parameters in a proper form for the robotic hand, because the prior knowledge
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Figure 6.5: The sensor and joint layouts of the Cyberglove and the Shadow C5/C6 hand. As
the red tags indicate, the Cyberglove sensors cover all visible joints of the human hand and
also support thumb rotation measure. By comparison, we can easily find the difference in the
joint structure of the Shadow hand, e.g. each finger has its own abductional degree of freedom,
the thumb has 5 DOF and the little finger has a Carpometacarpal joint. Finally, the distal and
proximal interphalangeal joints are coupled and can thus be jointly controlled in the Shadow
hand.

is extracted from a data-glove. Additionally, we can compute the scale of the parameters.

Joint mapping from the data-glove to the robotic hand

After human demonstration, action gist is extracted from the data-glove data. In order to pass
this information to the robot hand, we need to map the joint variation from the data-glove to
the corresponding joints on the robot hand. The reasons for this are the following: instead of
randomly initializing the control parameters, we configure them similarly to the raw values from
the data-glove, which are not calibrated initially. Calibrated data-glove values are not strictly
necessary in our case, because action gist is only based on the joint angle variation. However, if
the map values are already close to the final solution, this of course provides a better initialization
for the learning process. As shown in Fig. 6.5, the Cyberglove measures the abductions between
finger pairs, while the abduction angles can be controlled for each finger individually on the
Shadow hand. Several other joint angles of the Shadow hand have no direct correspondence with
the Cyberglove sensors either. Therefore, according to our experience in generating the action
gist, we propose mapping their relations in the following way.

1. For all joints in exactly the same positions on the hand, just keep them.

2. Abductional data-glove joint values are only used to assign the initial value for the robotic
hand, thumb-index for the robotic thumb finger, index-middle for the robotic index finger,
0 for middle, ring-middle for ring, and little-ring for little finger.

3. The thumb-index abductional joint controls both Shadow hand thumb abduction joints.

4. The carpometacarpal joint of the little finger is always set to 0.
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The organization of the control parameters

Since action gist uses start time, joint angle variation, and the corresponding finger to instruct the
in-hand movement, we should arrange them in a proper way and estimate how many parameters
are necessary for a specific application. Firstly, we assume the order of meta motions to be
correct after action gist extraction, so that we have a fixed order of the parameters. Secondly,
depending on the finger, we can determine the number of joints as shown in Fig. 6.6. Therefore,
presuming that we have a meta motion sequence m consisting of Lm motions, and each motion
is paired with a start time, we can simply get the total dimension as follows:

dm =
∑
i

(1 + Ljoint (τfinger (mi))) (6.2)

here τfinger (·) indicates the finger of meta motionmi, and we can get joint number Ljoint(·) from
Fig. 6.6. Obviously, Ljoint(·) = {5, 3, 3, 3, 4} correspond to the thumb, first, middle, ring and
little finger. Now we establish a dm-sized vector to match the latter learning algorithm.

Moreover, we can understand the data structure and the dimension calculation with respect
to an example. Fig. 6.7 uses a set of photos to describe the process of rotating a screw-cap
anticlockwise. Four fingers move the screw-cap, and their joint variations are extracted into meta
motions as Fig. 6.8. In this case, we can calculate the parameter dimension as following process:

See Fig. 6.8, the thumb finger has 2 meta motions, so it should have 2×6 = 12 corresponding
parameters. Similarly the other fingers respectively have 2 × 4 = 8, 2 × 4 = 8, 3 × 4 = 8, and
2× 5 = 10 parameters. Considering that the little finger is not used for rotation, we can say the
total dimension for leaving this motion should be

dm = 12 + 8 + 8 + 12 = 40
Therefore, the parameter organization of this application is in the form illustrated as Fig. 6.8.

Specifically, the idle motion (meta motion 9) only has one parameter “start time” affecting the
manipulation process, other corresponding parameters are dummy and our learning program will
skip them automatically. For the sake of easy calculation, we would like to keep the dummy
parameters in the total dimension dm.

6.3.2 PSO and LSRS model for babbling learning
Like other evolutionary algorithms, PSO and LSRS have the concept of a group involving many
candidates (particles) to approach the goal solution. However, instead of eliminating weak and
then generating new candidates, these two algorithms have other mechanisms to improve their
candidates. In PSO, all candidates update themselves by moving to new solutions as referring
to the current best solution (or the center of a best solution cluster). On the other hand, LSRS
updates the boundaries so the candidates are limited to the new solution domains. According to
our background, the standard procedures of PSO and LSRS are illustrated as Alg. 4 and Alg. 6.
Furthermore, in order to make them work effectively, slightly different versions from the standard
PSO and LSRS are proposed as Alg. 5 and Alg. 7.
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Figure 6.6: The joint map for the corresponding fingers of the Shadow hand. The kinematics
diagram of Shadow hand is from (ShadowRobot, 2013). The distal and middle links (J1 and
J2) from the first to the little finger are coupled, a single value J0 controls both J1 and J2. The
abduction joints are colored in grey, and particularly THJ5 is a rotational joint.
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Figure 6.7: Cylinder rotation learning from screw-cap rotation. A demonstrator wearing a data-
glove rotates the screw-cap of a bottle. The thumb, first, middle and ring finger are involved in
this application. We mark some timestamps for Fig. 6.8.

Figure 6.8: The parameter organization according to the action gist of screw-cap rotation in
Fig.6.7. Altogether there are 40 parameters for this case. We note that the meta motions are
sorted by their start time.

94



6.3. ACTION GIST BASED MOTOR BABBLING LEARNING

Algorithm 4 Conventional PSO for in-hand
motor babbling learning
Require: Maximum of iteration NIter

Require: Particle number Nparticle

Require: Particle dimension dm
1: for each particle i = 1, . . . , Nparticle do
2: Initialize the particle’s position with a uni-

formly distributed random vector xi ∼
U(Jlo − Jnow, Jup − Jnow). Here Jlo and Jup
are the robot joint limitations, Jnow is the cur-
rent joint angle.

3: Initialize the particle’s best known position to
its initial position: pi ← xi

4: Simulate a trial as xi to get f(pi)
5: if f(pi) < f(g) then
6: update the swarm’s best known position g ←
pi

7: end if
8: Initialize the velocity: vi ∼ U(−|Jup −
Jlo|, |Jup − Jlo|)

9: end for
10: counter ← 1
11: repeat
12: counter ← counter + 1
13: for each particle i = 1, . . . , Nparticle do
14: for each dimension d = 1, . . . , dm do
15: Pick random numbers: rp, rc ∼ U(0, 1)
16: Update the velocity: vi,d ← ωvi,d +

ϕprp(pi,d − xi,d) + ϕcrc(cd − xi,d) . c
is the center of a best solution cluster

17: end for
18: Update the particle’s position: xi ← xi + vi
19: Simulate a trial as xi to get new f(xi)
20: if f(xi) < f(pi) then
21: Update the particle’s best known posi-

tion: pi ← xi
22: if f(pi) < f(g) then
23: Update the swarm’s best known po-

sition: g ← pi
24: end if
25: Reorganize the best solution cluster c
26: end if
27: end for
28: until count >= NIter or f(g) = max
29: Output the best found solution g

Algorithm 5 Incremental PSO for in-hand mo-
tor babbling learning
Require: Maximum of iteration NIter

Require: Particle number Nparticle

Require: Particle dimension dm
Require: Joint variation limitation Alim . 1*
1: for each particle i = 1, . . . , Nparticle do
2: Initialize the particle’s position with a uni-

formly distributed random vector xi ∼
U(blo, bup). Here blo ← 0. Besides, bup ← 1
when xi is a start time parameter, in other cases
bup has a corresponding value from Alim

3: Initialize the particle’s best known position to
its initial position: pi ← xi

4: Simulate a trial as xi to get f(pi) . 3*
5: if f(pi) < f(g) then
6: update the swarm’s best known position g ←
pi

7: end if
8: Initialize the velocity: vi ∼ U(−|bup −
blo|, |bup − blo|)

9: end for
10: counter ← 1
11: repeat
12: counter ← counter + 1
13: for each particle i = 1, . . . , Nparticle do
14: for each dimension d = 1, . . . , f loor(f(pi))

do . 2*
15: Pick random numbers: rp, rc ∼ U(0, 1)
16: Update the velocity: vi,d ← ωvi,d +

ϕprp(pi,d − xi,d) + ϕcrc(cd − xi,d) . c
is the center of a best solution cluster

17: end for
18: Update the particle’s position: xi ← xi + vi
19: Simulate a trial as xi to get new f(xi) . 3*
20: if f(xi) < f(pi) then
21: Update the particle’s best known posi-

tion: pi ← xi
22: if f(pi) < f(g) then
23: Update the swarm’s best known po-

sition: g ← pi
24: end if
25: Reorganize the best solution cluster c
26: end if
27: end for
28: until count >= NIter or f(g) = max
29: Output the best found solution g
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Algorithm 6 Conventional LSRS for in-hand
motor babbling learning
Require: Maximum of iteration NIter

Require: Iteration number of Line Search NIterLS

Require: Candidate number Nparticle

Require: Candidate dimension dm
1: procedure LINE SEARCH
2: for k := 1 To NIterLS do
3: for each particle i = 1, . . . , Nparticle do
4: for each dimension d = 1, . . . , dm do
5: Set a new candidate xtmp ← xi− 20

2k

6: Simulate a trial as xtmp to get new
f(xtmp)

7: if f(xtmp) < f(pi) then
8: xi ← xtmp

9: f(pi)← f(xtmp)
10: end if
11: end for
12: end for
13: end for
14: end procedure
15: procedure RE-START
16: Find the current best solution as well as

the corresponding parameters pb
17: for each dimension d = 1, . . . , dm do
18: Change the d-th component of pb very

slightly, supposing that the original value
is xb,d, now it becomes x′b,d = xb,d − ∆
and x′′b,d = x′′b,d + ∆

19: Simulate two trials as x′, x′′ to get
f(x′), f(x′′)

20: if f(x′) < f(x′′) then
21: Update the d-th component of the upper

limitation as xb,d
22: else if f(x′) > f(x′′) then
23: Update the d-th component of the lower

limitation as xb,d
24: end if
25: end for
26: end procedure
27: Initialize the boundary as Alg. 4
28: for loop := 1 To NIter do
29: Randomize the parameters as current

boundaries as Alg. 4
30: LINE SEARCH
31: RE-START
32: end for

Algorithm 7 Incremental LSRS for in-hand
motor babbling learning
Require: Maximum of iteration NIter

Require: Iteration number of Line Search NIterLS

Require: Candidate number Nparticle

Require: Candidate dimension dm
Require: Joint variation limitation Alim . 1*
1: procedure LINE SEARCH
2: for k := 1 To NIterLS do
3: for each particle i = 1, . . . , Nparticle do
4: for each dimension d =

1, . . . , f loor(f(pi)) do . 2*
5: Set a new candidate xtmp ← xi− 20

2k

6: Simulate a trial as xtmp to get new
f(xtmp) . 3*

7: if f(xtmp) < f(pi) then
8: xi ← xtmp

9: f(pi)← f(xtmp)
10: end if
11: end for
12: end for
13: end for
14: end procedure
15: procedure RE-START
16: Find the current best solution as well as

the corresponding parameters pb
17: for each dimension d = 1, . . . , f loor(f(pb)) do

. 2*
18: Change the d-th component of pb very

slightly, supposing that the original value
is xb,d, now it becomes x′b,d = xb,d − ∆
and x′′b,d = x′′b,d + ∆

19: Simulate two trials as x′, x′′ to get
f(x′), f(x′′) . 3*

20: if f(x′) < f(x′′) then
21: Update the d-th component of the upper

limitation as xb,d
22: else if f(x′) > f(x′′) then
23: Update the d-th component of the lower

limitation as xb,d
24: end if
25: end for
26: end procedure
27: Initialize the boundary as Alg. 5
28: for loop := 1 To NIter do
29: Randomize the parameters as current

boundaries as Alg. 5
30: LINE SEARCH
31: RE-START
32: end for
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Action gist limits the exploration space

Action gist decreases the searching space before we start iteration.
We can refer to Fig. 3.1, and find that meta motions determine the joint varying directions.

Suppose that the joint limits of the robot hand is [Jlo,Jup], and for current hand pose the joint
angles are Jnow. Originally the searching boundaries should be [Jlo − Jnow,Jup − Jnow] like
Alg. 4. Restricted by the meta motion quadrants (Fig. 3.1), now the searching boundaries have
to be [0,Jup − Jnow] or [0,Jnow − Jlo]; so we employ symbol Alim as the upper boundary which
is equal to Jup−Jnow or Jnow−Jlo (NOTE: Jup, Jnow and Jlo are elements of Jup, Jnow and Jlo).
By this way, bi-directional search space is limited to one direction. Considering the dimension of
the joint angle control parameters, we can say action gist considerably helps us with decreasing
the exploration space at the beginning. We mark this point in Alg. 5 and Alg. 7 as 1*. However,
this exploration space is still very large, so we need more techniques for our application.

Incremental parameter adjustment for parameter exploration

In the previous Section 6.3.1 we introduced the control parameters for our learning modules.
As we know, we use the state gist to check the correctness of the motion execution; once the
extracted criteria differ from scheduled, we can stop this trial to save time. Meanwhile, we no-
tice that only the control parameters applied from the start criterion to the current criterion have
influenced the robotic hand action; the correct functioning of the remaining control parameters
cannot be proved. Therefore, even though the original PSO or LSRS will update every parameter
in order to make them converge to a better solution, we should not modify any unproved param-
eters. For example, we have 4 meta motions and 3 meta criteria. Now 3 motions are done, the
corresponding 2 criteria are verified. The remaining meta motion should be proved by the last
criterion. Since the last criterion is not checked yet, we cannot modify the parameters of the last
meta motion.

We mark this point in Alg. 5 and Alg. 7 as 2*, where function floor(r) returns the nearest
integer just below the real number r. The value of f(x) will be explained in the next section
6.3.2. Because the value provides us with the information of how many parameters are involved,
we can avoid updating the unused parameters. Only when the current parameters complete the
state test and proceed to the next state test, the successive parameters are activated to join the
learning iteration. Therefore, the learning progress is considered as an incremental process as
shown in Fig. 6.9.

Evaluation function

The evaluation function gives an overall estimation of the learning success after each simulated
trial. We connect it with state gist, for the details of state gist we can refer to Chapter 4.

So far the criteria that we have applied are the object position information, object rotation
information, and finger tip contact information. For some cases, we just consider the object
position, and assume that the object is correctly moved if the object does not fall until after the
manipulation movement.

Therefore, we have two evaluation functions. The first one only has one check point at the
end of the trial. In this case we just make the evaluation function return how long the object is

97



6.3. ACTION GIST BASED MOTOR BABBLING LEARNING

Figure 6.9: Incremental learning with state-action gist. The control parameters can be updated
only when the meta criteria are checked. For example, at the beginning we can only learn pa-
rameters 1 to 3. When criterion 1 is passed, we start to learn parameters 1 to 6. Once the meta
criterion 2 is checked and it fits the expected result, we are able to update parameters 1 to 9.
When the meta criterion 3 is achieved, the entire in-hand manipulation task is successful.

stable kept in hand. The second evaluation function is required for Alg. 5 and Alg. 7 as 3*, it is an
incremental function with respect to the number of activated parameters. Before the description
of this function, we should declare the mechanism of the score accumulation.

We divide the entire in-hand manipulation process into several parts as the end time of each
meta motion (for this point we can also refer to Fig. 6.9). At the end of each part we use several
criteria to check whether the motions are correct. As long as the finger motions fully passes
the checking of one stage, we can activate the successive control parameters for the next stage.
According to Sec.6.3.2, we will set the basic score Sb as the number of activated parameters.
Here we can employ Fig. 6.9 to explain this point. When stage 1 is passed, Sb = 3, and when
stage 2 is clear, Sb = 6. Finally we achieve stage 3, Sb = 9.

If the hand motions cannot pass a specific stage, we can estimate how well the current motion
has achieved the goals. During the motion execution, we take samples of the properties we are
interested in, e.g., object position, or which finger tips touch the object. Supposing that the
sample record is s, while the benchmark for checking is t. We can sum up and rescale these
values according to the length L, so as to obtain the achievement score Sa:

Sa =
L∑
i=1

qi/L, qi =

{
1 if si = ti

0 if si 6= ti
(6.3)

As a result, we can get an overall score for learning feedback:

St = Sa + Sb (6.4)

Inside PSO, LSRS and beyond

Through Alg. 4 and Alg. 5, we see that the PSO parameters which can be tuned are: the iter-
ation number NIter, the particle number Nparticle, and the velocity control ω, ϕp and ϕc. Even
though we can refer to some literatures on how to set the values (Shi and Eberhart, 1998b; Clerc
and Kennedy, 2002; Helwig and Wanka, 2007; Piperagkas et al., 2012), we should consider
their experience with current situation. We can separate them into two groups and discuss them
individually.
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NIter andNparticle: Because the particle dimension is a variable depending on the complexity
of the manipulation, The iteration number NIter and the particle number Nparticle will go along
with the dimension of the control parameters dm in Eq. 6.2. Higher values increase the possibility
to find a good solution, but meanwhile take more time. Theoretically, if we want to explore
the complete parameter space from the beginning, i.e. for each parameter the algorithm starts
searching from the parameter boundary, Nparticle should be 2dm . Since the value is exponentially
increasing with the dimension of the control parameters, we usually initialize the particles with
random values instead.

ω, ϕp and ϕc: We can find these three PSO parameters in the velocity equation:

vi,d ← ωvi,d + ϕprp(pi,d − xi,d) + ϕcrc(cd − xi,d) (6.5)

where rp and rc take random values in [0, 1]; pi,d, xi,d and cd are respectively the components of
the current best solution, current solution and the group solution center (PSO clusters particles
into several group so the particles will not be limited in local bests). Generally, ω, ϕp and
ϕc control the speed of a particle flying to a better solution. According to the previous listed
literatures, we try different configurations as ω = 0.4, 0.8, 1.0, 1.2; ϕp and ϕc are both set
to 0.4, 0.8 or 1. However, we do not find any configuration outperform others, neither in the
best solutions nor in the convergence time. Currently, we keep them as ω = 0.4, ϕp = 0.4 and
ϕc = 0.4 for all experiments in order to make the particles flying slowly. We compare this case
with people walking: when we walk slowly, we may find surprise on the way. Anyway, this
explanation is fully reasonable. Consequently, how to configure the PSO parameters can be a
future work.

Besides, from Alg. 6 and Alg. 7 we notice that the LSRS algorithm also has a set of parame-
ters. The iteration number NIter, Nparticle and dm are the same as in the PSO algorithms. For the
inner iteration number NIterLS of the Line-Search module, we can set it a number below 6. The
reason is: we can refer to the 5th in Alg. 6 or Alg. 7, where a new candidate xtmp ← xi

20
2k

; since
the joint angle is at most around 90◦, and the manipulation result will not be as sensitive as 0.1◦,
6 is a proper value. Similarly, ∆ can be set to 0.1 for the time variation, but to 1 for joint angle
variation.

So far we introduce two modified algorithms in terms of our in-hand manipulation motor
babbling learning. They are typical algorithms: PSO focuses on parameter variation as regulari-
ties, while LSRS is dedicated to the limiting parameter boundaries. We note that no matter what
a new algorithm becomes available, we only need to integrate it with the parameter initialization
1*, the dimension of parameter updating 2*, and the executing function 3*. Afterwards, the new
method becomes an effective module for babbling learning.

6.4 Experiment
In this section, we present the babbling learning simulation using the ROS2 Shadow stack and
the Gazebo simulator3, as well as the practical results. The visual and physical characteristics

2http://www.ros.org
3http://gazebosim.org/
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Table 6.1: Action gist paired state gist definition to rotate a cylinder
Checking moment Criteria

The ring finger is about to
start meta motion 1

The cylinder does not move more than 5cm
away from the original position,
4 fingers keep contact to the cylinder

The middle finger completes
meta motion 2

The cylinder does not move more than 5cm
away from the original position,
4 fingers keep contact to the cylinder, the
cylinder is rotated by 90 degrees

The thumb and the first finger
complete meta motion 5 and 7

The cylinder does not move more than 5cm
away from the original position,
4 fingers keep contact to the cylinder

of the hand and the object in the gazebo world are close to the real ones, as well as noises.
Therefore, even we use the same configuration, the results are sometimes different. For each
iteration, we initialize the hand in a stable state that grasps and holds the target object by the
fingers. Afterwards, the robot hand starts to try the motion sequence by itself, and we can see the
object being manipulated.

In order to explain the process better, we can refer to some related videos on the website
(Cheng, 2013).

6.4.1 Cylinder rotation
Since action gist contains the patterns reflecting joint angle variation, but without relating to the
manipulated object, we are going to use the demonstration of screw-cap rotation (as Fig. 6.7)
to instruct the rotation of a cylinder. We can find that the thumb, first, middle and ring finger
are used in this application; the four fingers tightly grip the screwcap and move. Therefore,
when the knowledge is translated into a cylinder rotation, we should also see that four fingers are
being used and the cylinder is being rotated in the same direction as the screw-cap in the human
demonstration.

For the knowledge preparation, the action gist is automatically extracted from data-glove
values, and we selected the popular one among the demonstration set as shown in Fig. 6.8.
Meanwhile with state gist we can generate a script to guide the robot learning. Nevertheless,
we did not prepare tactile sensing for the demonstration. In order to save time, based on the
fact “the involved fingers keep contacting the object” we manually define the state gist as shown
in Tab. 6.1. Fortunately, as we suggest to use simple criteria, we can immediately generate the
corresponding criteria as listed. In each learning iteration, we record the hand and the object
variation, as well as the contact information in the Gazebo world. Using the record we can
evaluate the state achievement according to Eq. 6.4.

Besides the particular parameters of both algorithms are set to what has been mentioned in
section 6.3.2, we set the common parameters as NIter = 20, Nparticle = 200. In this case,
suppose that one trial is 1 minutes (including hand posture initialization, object posture ini-
tialization, manipulation, and evaluation), the total time consuming is 20 × 200 = 4000 min-
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Figure 6.10: The learning rates of rotating a cylinder anticlockwise. According to Eq. 6.4 we
have the overall score St as the left figure. For PSO, we can see that the quality of the parameters
is gradually improving with iterations. For LSRS, the exploration is not so successful. The reason
is: all of the parameter boundaries converge to the same values, LSRS learning terminates at the
8th iteration. Besides, according to Eq. 6.3 we have the achievement score Sa as the right figure.
Here we find the LSRS curves have a better beginning but soon decrease. It probably indicates
that LSRS converges to a wrong parameter domain.

utes, i.e., over 2 days. As mentioned in section 6.3.1, we already know the parameter dimen-
sion of this application is dm = 40. Therefore, maxSb = 40, and the value of Eq. 6.4 is
maxSt = maxSa + maxSb = 41. Because the applied algorithm can not always get the best
solution, we can say if a solution is close to 41, it is a good solution.

After many iterations, we achieve a final learning result as in Fig. 6.10(a). Here we note that
LSRS fails for misadjusted boundary control. When all the boundaries are limited, the algorithm
will terminate. Besides, we understand that LSRS can drive the boundary search to a wrong
area, this is an intrinsic issue in the algorithm. Therefore, the common solution for this case is
restarting learning, or varying the dead boundaries for new iterations.

We also have interest with the achievement score as Eq. 6.3, hence we inspect them as shown
in Fig. 6.10(b). The basic score Sb only reflects how many parameters should be concerned in the
next iteration, but achievement score Sa represents the similarity between the current situation
and the criteria. Thus, in this figure we find that the average score of PSO is around 0.7, so it
indicates that the swarm quality does not improve very much with iteration.

According to this application, we can find a best solution as shown in Fig. 6.11, Fig. 6.12,
and Fig. 6.13. From these figures, we assume the babbling learning finds a good result.

Besides this cylinder in this size, we also apply the same action gist to another sized one
illustrated as Fig. 6.14. Here we only use PSO, and the particle number remains at 200, but
the iteration is increased to 40 since we are unsure of the validity. Finally we have the learning
curves as shown in Fig. 6.15(a) and Fig. 6.15(b), We can find the details of the learned best
solution from Fig. 6.16, Fig. 6.17, and Fig. 6.18. Since the thinner cylinder is also rotated, we
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Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10

Figure 6.11: Cylinder rotation final result according to the action gist of screw-cap rotation
anticlockwise. We sample the simulation with equal time intervals, and we can see that a textured
cylinder is manipulated by a shadow hand on a table. We also enable the virtual axes of the
cylinder to confirm whether the cylinder is moved. Based on the texture variation and the axes
rotation, We can say that the object is rotated as a certain degrees.

can say that the PSO learning process finds a good solution.
Furthermore, we want to test our simulated result in our Shadow hand. However, even though

we try to apply the simulation as similar as the real world, the simulated errors still exist. In order
to solve this issue, we can manually tune the best simulated solution, or refer to an interactive
algorithm mentioned in Chapter 7. Since our BioTac hand has tactile feedback, we can apply
adaptive control. As a result, the BioTac hand rotates a tea caddy in the same size of the simulated
cylinder. We can refer to Fig. 6.19 to see the photos, and from Fig. 6.20 we can learn the tactile
feedback on the robot fingertips.

6.4.2 Star prism rotation
In order to see whether our framework is able to solve more finger-gaiting applications, we
test a difficult scenario as shown in Fig. 6.21 (which is the first example in Chapter 3). The
corresponding action gist is illustrated in Fig. 6.22. Because all fingers are used, according to
Eq. 6.4 in Section 6.3.1, the parameter dimension of this scenario is 137. With the increase
of meta motions, the state gist gets longer. In addition to the states that we have applied to
the cylinder rotation, we take the contact transition into consideration for this application. For
example, the criteria can be not only “the finger keeps (not) touching”, but also “the finger is
going to (not) touch”.

The corresponding learning results are shown in Fig. 6.23(a) and Fig. 6.23(b). From the
figure we can see the highest score is only around 44. Below the total dimension 137, this means
the learning has failed to achieve the goal of the manipulation. According to our experience, we
conclude this failure may be caused by the following factors:

1. The number of iterations. In Fig. 6.23(a) we can see there are several better solution
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Figure 6.12: Simulated joint angle variation of cylinder rotation. We sample the contact infor-
mation from the Gazebo world. Because we only concern in-hand movement, 18 finger joints
are shown in this figure. According to the fact that we use linear model to control the hand
(Eq. 6.1), the variations should be straight linesegments. However, meanwhile we use adaptive
control (see Section 6.2), the finger will slowly move to touch/leave the target object depending
on the contact. An typical example is between the 500th frame to the 700th frame, MF0 (in red
color) climbs up gradually and makes a curved trajectory.
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Figure 6.13: Simulated contact information of cylinder rotation. Since our robot only has tactile
sensors on the fingertips, we also capture the fingertip contact information in the Gazebo. We can
see that after the 600th frame the contact of the thumb, first and ring finger become much larger
than the middle finger, meanwhile the little finger does not touch anything as we expect. Theoret-
ically, as long as the contact values are higher than zero, the achievement score Sa (Eq. 6.3) will
count them. Force values above 10N indicate invalid finger-object contacts, and are impossible
on the real robot. This is dangerous for real robot control, so when we redesign the state gist, the
contact criteria in Tab. 6.1 should be both “higher than a value” and “lower than another value”.
From this example, we can understand the importance of “simulation before real execution”. Be-
sides, since the middle fingertip does not have contact over time, we naturally connect this fact
with Fig. 6.10(b), i.e., Sa is close to but not reach 1.
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Figure 6.14: Different sized cylinders for rotation according to the scew-cap rotating action
gist. Compared with the cylinder in the previous experiment, this cylinder is thinner and taller.
Therefore, the initial hand pose is different.
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Figure 6.15: The learning rates of rotating a thinner cylinder. For the left figure, compared with
Fig. 6.10(a), the initial particles gain higher score. As a result, the converge of the particles
gets faster than the previous case. Considering the right figure, as mentioned in Fig. 6.15(a), the
learning has a good start. Therefore, the average scores are higher than 0.7 in Fig. 6.10(b) of the
previous experiment.
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Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10

Figure 6.16: A thinner cylinder rotation according to the action gist of screw-cap rotation anti-
clockwise. Based on the virtual axes variation, we confirm the cylinder is rotated.
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Figure 6.17: Simulated joint angle variation of a thinner cylinder rotation. We can find straight
and curved trajectories in the joint variation. Connecting the fact from the other cylinder rotation
(Fig. 6.12), we summarize: the fingers move as action gist (straight trajectories) and meanwhile
are adaptively controlled with respect to the tactile feedback.
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Figure 6.18: Simulated contact information of a thinner cylinder rotation. Since the value range
is from 0 to 10 and their trajectories twine together, we have to illustrate them separately. The
maximal contact of the thumb, first, middle and ring fingers are lower than 10, and the variations
are more stable than Fig. 6.18. Besides, we can find the values are sometimes 0, this phenomenon
support Fig. 6.15(a) and Fig. 6.15(b) that the current best solution is not perfect. Anyway, the
cylinder is rotated as desired.
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Sample 1 Sample 2 Sample 3 Sample 4

Sample 5 Sample 6 Sample 7 Sample 8

Figure 6.19: The rotation of a tea caddy with a BioTac hand. From the text on the caddy or
the hand posture we can find the caddy is slightly rotated. We use the action gist of a screw-
cap screwing to guide the rotation. We firstly simulate it with ROS and Gazebo as shown in
Fig. 6.11. And then we move the best solution to command the BioTac hand. With the help of
adaptive control (Section 6.2), the rotation result seems better than simulation.
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Figure 6.20: The tactile sensing from BioTac hand with respect to a tea caddy rotation. As
introduced in Section 6.2, instead of raw value we define several levels of contact for the tactile
sensors on the fingertips: from 0 - no contact to 5 - dangerous contact. Besides, each fingers
will take action if its contact level is higher than 3. The value variations are more stable than
simulated result (Fig. 6.13). According to our understanding, one reason is we adaptively control
the fingers by realtime tactile feedback; another reason is that the BioTac hand is elastic, but the
simulated hand is a rigid body.

Figure 6.21: Star prism gaiting learning from human demonstration. In this scenario the demon-
strator uses the thumb, first, middle, and ring fingers to anticlockwise rotate the posture of the
star prism.
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Figure 6.22: Star prism gaiting learning from human demonstration.

standing out from the average. As the characteristic of PSO, later other particles will
fly close to the optimum. We believe the result will improve with more iteration, but
meanwhile we cannot give a certain answer how many iterations are needed in each case.
In this case, we suggest to balance the searching cost (e.g. the number of parameters or
iterations) and our final goal.

2. Linear model of the mapping between the action gist and the finger joint control. Even
though we use adaptive control to correct some wrong actions in realtime, we agree that
this mechanism has a blind area. E.g. from meta motion 1 to 4 of the thumb in Fig. 6.22,
it should decrease the first two joint angles to touch the star while the adaptive control
mechanism does not. Therefore, we have two solutions, one is updating adaptive control
by sensing tactile direction (currently only value), this can be a future work; the other one is
to disable this module for this application. We have tried the latter method, but the learning
curve increases slower while we cannot see a better solution in acceptable iterations.

3. The types of meta criteria. So far we only take some criteria into consideration. As Eq. 6.3
in Section 6.3.2, if the category of the criteria is not sufficient, the evaluation function
cannot give a sensitive feedback to distinguish candidates. Thus, we will later investigate
this issue systematically.

6.5 Summary
We proposed an in-hand manipulation babbling learning framework consisting of a priori knowl-
edge (state action gist) and a self-learning mechanism (Particle Swarm Optimization and Line
Search with Re-start). With the help of action gist, we decrease the angle joint control parameters
as a sequence that includes start time and corresponding finger joint angle variations. The com-
pressed sequence is easy to convert back into joint angle frames, and then we can use simulation
to execute and examine the performance of this set of parameters. In addition, the modified opti-
mization algorithms in terms of our application are employed as the cores of babbling learning,
to refine the joint angle control parameters to achieve our goal of in-hand manipulation. Since
40 parameters experiment (cylinder rotation) is successful but 137 parameters experiment (star
rotation) is failed, we assume that: with current techniques the gist babbling can compete for the
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Figure 6.23: The learning rates of rotating a star prism. In the left figure PSO only keeps the
active parameters at the average of 23. That means for a common iteration in the learning process,
only the first 23 parameters are taken into consideration. However, LSRS wins a maximum
around 44. The problem is, after iterations LSRS cannot achieve a better score. We guess the
reason is LSRS falls into a trap again. From the tendency of PSO (red dashs reach 30 after 17
iterations), we believe that it still has room to promote the score. Regarding the right figure,
we notice that the maxima in this application is very close to 1. That means the finger motions
quite fit the desired states. However, when the learning is going to proceed, the finger is failed
to complete the next task. According to this scenario, the thumb should move around to another
corner of the star prism, but actually it completely fails.

in-hand manipulation task with a parameter scale between 40 and 137.
In our points of view, an important advantage of action gist based babbling learning, is that

we do not need to study the dynamic process inside the hand and the object. Once assigned
the key information of the specific manipulation task, the robot hand can improve itself and we
are free. In this case, any people without professional knowledge can teach the robot how to
manipulate the object.

From the experimental result we can see that we have much room for extending our research
beside the discussion in Section 6.4.2. The first direction is the learning core. So far we have
tested PSO and LSRS, because they are typical algorithms from their concepts. In terms of their
performances, we think PSO still hold its position of “the best candidate”. There are many more
algorithms, if time permits, we will try more of them to make a further decision. The second
direction is to try more application. Currently we concentrate on the cylinder-like object rotation
and the angular object gaiting, as well as the experiments of Chapter 7. However, we have the
foundation of gist extraction and generalization, it is not difficult to record and produce more
state action gist according to other applications. And then we can use the proposed self-learning
algorithm to find a good solution to manipulate the object in hand. Besides the second research
direction, we realize that currently our framework instructed by action gist is not concerned with
contact point scheduling (Saut et al., 2006). Further, we skip using inverse kinematics to plan the
hand posture in spatial space. Without inverse kinematics the babbling learning may take more
time on unnecessary trials, but meanwhile we save time on the research of sensory information
processing in our preliminary attempt with state-action gist. In this case, integrating our current
work with other available methods is also promising.
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Chapter 7

Learning with Simple Human Reward
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In Chapter 6, we have discussed how to babbling learn the in-hand manipulation skill with
the help of state action gist. We notice an issue after simulation: even though we try to use a
simulated environment as similar as the real world, but the gap between the simulation and this
world never disappears. When we replay the learned “best” solution on the real robot hand, the
result may not be the best. Instead of manually adjusting the parameters or circling round the
simulation and real test (Deisenroth et al., 2011), this chapter proposes another solution: get help
from a person, especially the person who was being the demonstrator.

We can evaluate each trial in the simulation. Similarly, as long as we have sensors in the
real world, we can collect the sensory data and process them as a basic reward. Once we feel
necessary to interfere the automatic evaluation, we can add our opinion to comprehensively en-
hance the reward. For example, our robot has tactile sensors on the fingertips, but for visual
information we do not have sufficiently powerful cameras; at this moment we can interfere the
robot self-learning to correct the perception of the robot.

Compared with robot, human is a stronger system with profound knowledge, powerful per-
ception and comprehensive analyzing ability. However, we also understand human is not an
accurate system. For example, we can clearly remember what happened 5 seconds ago better
than 5 minutes ago; and we can confirm which one is good but we are not good at detailedly

113



7.1. RELATED WORK

Table 7.1: Features of the related researches on reinforcement learning with human feedback
Research Num Form Calculation Note
(Pilarski et al., 2011) 1 positive / negative constant
(Knox and Stone, 2008, 2009; Knox, 2012) 1 positive / negative linear model
(Vien and Ertel, 2012) 1 positive / negative linear model For continuous state/action space
(Judah et al., 2010) 20 positive / negative logarithmic model
(Goldwasser and Roth, 2011) 10 positive / negative SVM training
(Subramanian et al., 2011) 10 positive / negative linear model For hierarchical reinforcement learning

explaining why it is good. Therefore, we design the human feedback for each trial of real robot
manipulation in a simple way:

1. For each manipulation trial, we can leave the robot to evaluate the reward score alone, or
offer a piece of feedback if we are certain about the evaluation.

2. There are 3 pieces of feedbacks: this trial is “better” / “equal” / “worse” than the previous
one.

3. According to the feedback, the reward score and the parameter domains are automatically
adjusted.

In Chapter 6 we applied Line Search with Re-Start (LSRS) as a learning core algorithm, but
it did not outperform Particle Swarm Optimization. However, inspired by the idea of boundary
restriction from LSRS, this chapter is going to make use of user feedbacks to approximate the
best solution of the real robot.

In order to present our ideas on how to realize this human feedback mechanism, we organize
the coming sections as follows: Firstly we compare the proposed reward form with the related
works in Section 7.1, and then propose a specific reinforcement learning framework with human
reward in Section 7.2. Furthermore, the corresponding experiments are taken as Section 7.3.
Finally Section 7.4 concludes this chapter.

7.1 Related work
We investigate the popular frameworks of reinforcement learning with human feedback. Gener-
ally, this area differs at the number of human trainers (Num), the form of the feedback (Form),
as well as the relation between the human feedback and the entire evaluation (Calculation). We
list the features of the related researches in Tab. 7.1. From the table we can see that there are
some methods apply multiple trainers to give feedbacks. For the proposed method in this chapter,
we employ only one expert at the moment. From the third column we find that most methods
use simple feedback mechanism. Compared with their definition, our definition has an extra
feedback “equal”, this feedback will make the rewards of two trials equal. Since our scope is
“original reward” + “human reward”, we think the extra feedback “equal” is necessary. Finally,
the significant difference of our method is in reward calculation, we will soon refer to this in the
next section.
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Figure 7.1: The framework of simple human reward based in-hand manipulation learning. The
iterative loop is similar to a standard reinforcement learning process. The main difference is the
way of dealing with the parameter variation. Besides stimulating the variation by the reward, the
human feedback will directly control the parameter space. Therefore, everytime we only vary
one parameter to facilitate the human teacher give an intuitive suggestion. In this case, assuming
that the previous parameter is v1, but the current value is v2; When we say the current trial is
better than the previous one, we can trim the parameter domain at the position of v1; Similarly,
we can limit the search area at v2 if we get a “worse” remark. Because the parameter number is
not in a large scale, so the method is applicable.

7.2 Simple human reward for reinforcement learning
We apply reinforcement learning framework to iteratively find a good solution to control the
BioTac hand completing the manipulation task. Generally, we combine the parameter exploration
with some simple human feedbacks. The human remark will not only impact the reward of
evaluation, but also adjust the parameter boundary. In this case, we think one remark is not
able to correspond to the relation of once updating many parameters. Thus, we just adjust one
parameter for one trial. We show the basic idea in Fig. 7.1, and describe the corresponding
modules in the following subsections.

7.2.1 Parameter adjustment
Every time we randomly select one parameter pi for updating as long as this parameter still
has space for searching. For this condition, we need the corresponding boundaries [Li, Ui]; if
Ui − Li is bigger than a certain degrees (e.g. 2 degrees), we can select pi and update it. Instead
of randomly selection, a substitution is to find the parameters significantly higher than the value
average. The reason is a big value always has large room to explore.

Anyway, once we select a parameter pi, we update its value as the corresponding reward Ri:
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p′i = pi + f(Ri) (7.1)

Generally, the parameter is set to a higher value if Ri is positive, or a lower value when Ri is
negative. Hence we employ

f(Ri) =


rnd(Li − pi, 0) Ri < 0
rnd(0, Ui − pi) Ri > 0
0 Ri = 0

(7.2)

where rnd(·) is a randomizing function.

7.2.2 Movement execution
The hand movement control has been described in Chapter 6. For every trial, we manually place
the target object on the BioTac hand to have a similar beginning. Afterwards, the hand executes
the movement as the parameter configuration. The entire process is not fully automatic, we may
find the object initialization is not serious enough. On the technical aspect, we can make some
markers on the object, so in each trial the marked position will be align on the specific region of
the hand.

7.2.3 Human feedback
A person who is very familiar with the corresponding manipulation skill is beside the trials. After
each trial this person can give a piece of feedback such as “better”, “worse”, or “equal” than the
previous trial. The response is not compulsory for every trial, but once the person gives advice,
the learning reward and the corresponding parameter adjusted in this trial will be updated.

7.2.4 Evaluation
We record the BioTac fingertip contact information in the movement executing process, and
store them as an array BioTacij = {0, 5} (where the value higher than 0 indicates contacted).
Supposing that a better trial has longer time that the fingertips are in the contacted state, we
simply mark Sc =

∑
i,j BioTacij as the score from the tactile sensors. This score only reflects

the contacted state, but we are not clear that whether the finger is touching the object, the other
fingers, or other possible objects in the environment. Therefore, we prefer to believe the human
feedback, which is the result consisting of sensory fusion and expert knowledge. Presuming that
the previous overall score is S, and then the current score will be

S ′ =



Sc feedback = “better”, Sc > S
S + ∆ feedback = “better”, Sc ≤ S
Sc feedback = “worse”, Sc < S
S −∆ feedback = “worse”, Sc ≥ S
S feedback = “equal”
Sc no feedback

(7.3)
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In this way, we create the evaluation integrated with the sensory and human feedback. Be-
sides, we have the corresponding reward

Ri = (p′i − pi)(S ′ − S) (7.4)

7.2.5 Parameter domain adjustment
Only one parameter is involved with the updating in each trial, and each parameter just corre-
sponds with one finger in the opening and closing movement. Therefore, the human feedback can
govern the search space adjustment. For the case that the current trial is better than the previous
trial, the new boundary will be

[L′i, U
′
i ] =

{
[pi, Ui] p′i > pi
[Li, pi] p′i < pi

(7.5)

Besides, for the case that the current trial is worse than the previous one, the new boundary
will be

[L′i, U
′
i ] =

{
[p′i, Ui] p′i < pi
[Li, p

′
i] p′i > pi

(7.6)

Generally, we assume that the feedback “better” indicates that the previous parameter config-
uration is the worst case, while the “worse” feedback reflects the current parameter is the worst.
By this way, we eliminate the unnecessary exploration.

Additionally, we can give a rough estimation that how many iterations required. Currently
there are dm parameters, as long as we give human feedback everytime, and the parameter is
always in the center of the search space (e.g. (Li+Ui)/2); We can assume that for each parameter
the initial boundary is [0, 90] degrees, but parameter difference under 1 degree make no different
manipulation result. In this case, each parameter needs ceil(log2 90) = 7 iterations to fix the
search range (e.g. Ui − Li < 1), so in total we at most need 7dm times human feedback.
Specifically, when we are more sure about the searching boundaries, e.g. only 10◦ wide intervals,
and then each parameter needs ceil(log2 10) = 4 iterations. As a result, we just need 4dm times
feedback in total.

7.3 Experiments
Besides the tea caddy rotation in Chapter 6, we also have other practical tests such as a marker
pen spinning in a small range, screwdriver screwing, and triangular prism reorientation. We can
refer to their movement in Fig. 7.2, Fig. 7.3, and Fig. 7.4. Besides, we list the corresponding
action gist as Fig. 7.5.

In order to complete skill refinement, now we come to the final stage. For each simulated
or raw solution, we confirm their validities and directly use them to control the BioTac hand
(adaptive control mechanism is enabled as default). As expected, some manipulation skill such
as marker triangle rotation and pen spin do not require further adjustment. Besides, we find that

117



7.3. EXPERIMENTS

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Figure 7.2: Triangle prism rotation by a BioTac hand. The thumb, first and middle fingers
participate the movement. Three fingertip occupy three surfaces of the prism.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Figure 7.3: Marker pen slightly spin by a BioTac hand. The thumb, first finger participate
the movement. When the two fingers change their spacial positions, the gripped marker pen
is quickly redirected.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Figure 7.4: Screwdriver manipulation with a BioTac hand. The thumb, first and middle fingers
participate the movement. By the finger positions and the screwdriver boundary color, we find
the screwdriver is rotated.

118



7.4. SUMMARY

0 20 40 60

thumb

first

middle

ring

little

Time (frame)

F
in

g
e
r 

A
c
ti
o
n

 

 

77

3 43 9

5 1 39 1 9

5 85 9

6 5 89 5 9

(a) Triangle rotation.
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(b) Marker pen spin.
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(c) Screwing.

Figure 7.5: Action gist of the triangle rotation, the marker pen spin and the screwdriver manipu-
lation. An interesting discovery is related to the screwdriver operation. For other anticlockwise
rotations, the motion, especially the thumb, is usually “7” or in a warm color. However, the
screwdriver has a reverse direction. We guess this is because the demonstrator gets used to an-
ticlockwise rotate a screwdriver for installing a screw inside. In this case, he has to extend his
finger to push the screwdriver ahead.

the screwdriver is not perfect: according to state gist, the thumb, first and middle fingers should
contact the screwdriver, but the fact is the first finger sometimes does not touch the screwdriver.

We illustrate the temporal best solution in Fig 7.6 and Fig. 7.7. Since the first finger does
not touch the screwdriver, we can find a place to test our simple human reward mechanism.
However, because we cannot perfectly prove the converge of this method, we just list a partial
result as Fig. 7.8; from the figure we can understand that the algorithm does learn as what we
describe in Section 7.2. Besides, we should point out that if we do not give any feedback to
the robot, the robot has to be babbling learn the parameters as previous chapter until the assign
iterative loop ends.

7.4 Summary
This chapter proposes a interactive learning method based on simple human feedback. The
major differences of this work compared with other works are: the proposed method is based on
the boundary restriction by human evaluating “better” or “worse”; once a decision is made by
human, the automatically calculated reward will have close relation with the previous reward.

Since there is no experimental comparison with other feedback learning methods, the per-
formance of our method is going to be evaluated. Besides, whether controlling the searching
boundary with human feedback will fall into local optimum, remains an open issue. Anyway, the
creativity of this simple human reward algorithm is: it make use of the short-term-memory from
human. In this case, each experimental trial is not isolated. When the human critics work with
our proposed method, the only requirement is patience.
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Figure 7.6: Joint angle variations of the screwdriver manipulation. We can see that the value
variation is not sharp, this phenomenon corresponds with the video (Fig. 7.4).
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Figure 7.7: BioTac sensor sensing of the screwdriver manipulation. According to the original
plan, we expect to see that the thumb, first and middle fingertips are keeping touched. However,
the fact is first finger does not touch the screwdriver. Therefore, there is space for promoting the
current solution. Moreover, we notice that the screwdriver can be easily rotated by the thumb and
middle fingers. Concessively, when we discuss this issue based on the screwdriver functionality,
this is not a serious problem.
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Figure 7.8: A segment of the achievement score variation for the screwdriver manipulation.
Considering the parameter dimension (Eq. 6.2 in Chapter 6) and the action gist of screwdriver
manipulation (Fig. 7.5(c)), we can have dm = 14. Since all parameters take part in the iteration, it
is unnecessary to show the overall score. Instead, we can understand the simple human feedback
by the achievement score. We mark that the green triangle (up) indicates the user give a “better”
feedback. In this case, the reward must be higher than the previous reward; the red triangle
(down) indicates the user give a “worse” feedback, and then the reward decreases; the blue
circles appear when the user make an “equal” evaluation. In this segment, all rewards are lower
than 0.7 because the first finger has not touched the screwdriver yet. When the iteration ends, the
simple human reward method will return the best solution it finds.
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Conclusion and Future Work
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8.1 Summary
We are the creatures in favor of questioning and answering, and in most cases we hope the
questions and answers easy to follow. The typical form is somehow like “yes or no”, because
there are very limited options and the options are not overlapped. Driven by this “easy to follow”
target, this thesis concentrates on proposing such kind of in-hand manipulation state-action gist
as previous chapters.

The action gist consists of eight kinds of kinetic finger motions and one idle motion. The
kinetic motions are differentiated by the directions of joint angle variation, i.e., “left or right”,
“forward or backward”, and “close or open”. For a 4 DOF finger, theoretically it should have
24 = 16 kinds of motions. However, when we refer to the human hand anatomy, the distal
interphalangeal joint and the proximal interphalangeal joint are coupled for motion execution.
As a result, we use “close or open” to describe the variations of these two joints and finally have
eight meta motion types.

For hand motion capture we employ a data-glove, which is a straightforward tool to access
finger joint angles. Afterwards, for the extraction method we choose Gaussian Markov Random
Field, because its structure well fits our expected model. As a result, we have action gist, as a
kind new features, to describe in-hand movements. Rather than describing joint values, action
gist is similar to describing “yes or no”. Besides, it owns an advantage that value-level feature
be difficult to achieve: when we are unsatisfied with an extracted result, we can move our own
hand to prove the correctness. In this case, every person can teach the robot.

Because we prefer simple, we suggest to apply simple criteria on verifying in-hand manipula-
tion movement. We match the criteria with action gist, so we call them “state gist”; consequently,
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8.1. SUMMARY

the basic element of state gist is meta criterion. However, we aware a fact: a hand can be treated
as an articulated object, but the concerned criteria are not only of one object. The criteria can
be the object being manipulated, can be the object involved in the scenario, e.g., billiards, pen
writing. Besides, we have the same motion, and we may receive different feedbacks as criteria,
e.g., we press a button, we will see a light on, or a doorbell rings. Furthermore, there are many
criteria that we have not considered in this short paragraph. Thus, we cannot summarize all kinds
criteria in a countable pattern set, instead, for each kind of criteria we try to find a countable rep-
resentation. In this thesis the considered criteria are: a fixed position, position varying directions
along a specific axis, rotated angle variations along a specific axis, and binary contact states.
These criteria are far from the rules govern this world, but we try to show the possibilities of
employing countable patterns for presenting the criteria.

The state-action gist can be applied to in-hand manipulation behavior analysis, beside of that
it can be used for instructing a humanoid hand to execute manipulation task. The scope of this
thesis is learning from human demonstration, so we propose a reinforcement learning method
based on the state-action gist. On on hand, a humanoid hand is controlled by sending joint
angles, and the action gist indicates the joint varying direction of each finger. Consequently, the
action gist limits the searching space at the beginning of the parameter exploration. On the other
hand, the state gist provides us with criteria to check the achievement of the trials. Since criteria
checking is an incremental process (each criterion should be validated one by one), we consider
this point and modify the conventional parameter searching algorithms (e.g., the Particle Swarm
Optimization and the Line Search with Re-Start in this thesis) to proceed manipulation learning.
After modification, only the criteria-involved parameters update themselves, in this way we keep
the other parameters safe.

For the sake of protecting the real robot hand, we perform self-learning in the simulation
before the practice. However, when we turn to the real robot, we find that the learned control
parameters may not work in the real case. Instead of manually correcting the parameters slightly,
we obey our scope “learning from human demonstration” and propose a learning mechanism
with human feedback. The feedback is as simple as the other related researches, i.e. with a pos-
itive/negative comment, but a difference is: the human comment is on the comparison between
the current trial and the previous trial. Because we are easy to remember what happened in a
couple minutes, the mechanism makes use of this point to update parameters.

In general, this thesis solves the in-hand manipulation learning based on state action gist. So
far many researches deal with in-hand manipulation problems based on their previous works (e.g.
grasping (Romero et al., 2009b, 2010), contact point schedule (Saut et al., 2006; Sahbani et al.,
2007)), so they mainly discussed the stability of each grasp stage or how to plan the hand posture
transition. However, this thesis directly points to in-hand manipulation and emphasizes hand
motions with action gist. Moreover, it not only has more applications than (Romero et al., 2009b,
2010) but also has lower finger positioning requirement than (Saut et al., 2006; Sahbani et al.,
2007). Furthermore, with respect to in-hand manipulation state-action model other researches
are based on hand level (Gupta et al., 2009a; Faria et al., 2011b; Handle-project, 2011), but this
thesis is based on finger level. Because of this point, we can proceed to analyze complicated
finger-gaiting movements.
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8.2 Limitations
This thesis works with every word of its title. However, when the author recalls the original
intentions and summarize the main ideas in the previous section, he sigh with the time flying that
there are still many gaps relevant to the topics of this thesis. Hereinafter, some significant flaws
are pointed out as follows.

• This thesis discusses several typical in-hand manipulation tasks, but cover not all types.
(Elliott and Connolly, 1984; Todorov and Ghahramani, 2004; Zheng et al., 2011; Bullock
and Dollar, 2011) proposed several classifications for grasping or manipulation, but this
thesis only proceed to the feasibilities of the proposed methods and skip this point.

• This thesis only considers single solid object manipulation. Current researches on the
object manipulation gradually extend to various objects, such as articulated objects, and
deformable objects (Khalil and Payeur, 2010). Theoretically, regarding to these challeng-
ing objects, the action gist is unnecessary for updating, but we should pay more attention
on the state gist definition.

• This thesis does not cover experimental comparison with related work. However, current
humanoid hands are actually all prototypes, and there are significant differences, which
make comparisons very difficult. Even though this thesis is interested in proposing a state-
action gist framework as a universal solution of all in-hand manipulation task, and many
related work are of grasping but not of in-hand level; we can find some research ideas
feasible to some kinds of in-hand manipulation. For example, (Sauser et al., 2012) con-
centrated on adjusting fingertip positions to maintain grasping force, their work can be
applied to object translation in hand. This thesis also considers the experimental scenarios
in (Sauser et al., 2012) and the scenario number is more than (Sauser et al., 2012), but it
has not considered the stability as (Sauser et al., 2012). Therefore, one of our future work
is to study the stability of the babbling learning results.

8.3 Future work
Beside of adding on more content with the current structure of this thesis, there are several new
branches waiting for exploiting.

• More planning and faster learning. There are many techniques of manipulation planning
introduced in Chapter 1 and Chapter 2 we have not tried yet, such as Inverse Kinematics,
Dynamic Movement Primitives, or Policy Improvement using Path Integrals (Pastor et al.,
2011; Kulvicius et al., 2012; Jetchev and Toussaint, 2013). However, these techniques
usually require position information. So far the parameter learning is based on the joint
level, which is the basic level to control the robot. Later when we involve our work with
position information we should have better results. For example, with Inverse Kinematics
we can calculate the fingertip trajectories so as to estimate whether collisions will happen,
and then we can decide whether to protect the robot. Also, we can correspond to the
scheduled contact to plan the finger trajectory.
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• Sensing without disturbing natural manipulation movement. Usually we interact with ob-
jects with bare hands, but when we wear a data-glove or even more sensors it is difficult to
perform the in-hand manipulation movements As a result we get unexpected data, there is
no doubt that the extracted results are different from the ideal state-action gist. Therefore,
we can use some external sensors, e.g. cameras, to track and estimate the interaction be-
tween the hand and the object (Song et al., 2013). Besides, we can install the sensor inside
of the object, or customize an object for demonstration.

• Manipulation behavior recognition. We can extract the action gist from sensor data, and
use Meta Motion Occurrence Histogram to statistically memorize the similar hand move-
ment. The previous work such as (Ogawara et al., 2002; Handle-project, 2011) are relevant
to this topics, but they are not interested with finger-level analysis. With action gist, as long
as we have enough records with respect to different hand movements, it is possible to use
some classification algorithms to identify or cluster the new meta motion sequences.

• Task-state-action research. So far we do not combine our application with any specific
task but consider state-action gist as features. Actually a specific task should have its
own state-action gist features. For examples, for specific tasks we should contact specific
object areas (Baier, 2008; Falco et al., 2011; Aleotti and Caselli, 2012), for specific tasks
we should receive specific manipulated results (Mason et al., 2012). On one hand we can
try behavior recognition to identify the task, on the other hand we can construct a task-
state-action network to find the connection between different tasks.
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Appendix A

Contact state-action gist of the experiments

This appendix corresponds to Chapter 4. We take care of four scenarios in Chapter 4, they are:
rectangular prism rotation, star prism rotation, water bottle rotation and screwing back and forth.
Even though we use multiple sensors and record many trials, the raw data analysis is challenging
and we get many unexpected results. For example, the tactile sensors are not sensitive if we
do not firmly press our fingertips (the tactile sensing arrays) on the object. This fact makes us
difficult to proceed: if we pay attention on pressing the object firmly, we lose the chance to
correctly manipulate the object; if we pay attention on naturally performing the movements, we
lose the expected contact information. Nevertheless, contact information is very important for
robot manipulation. We tried to compromise between the natural movement and the firm contact,
and finally list the nicest extractions among all experimental records we have. Before we looking
at the figures of state action gist, we use Fig. A.1 to explain how to read the contact state action
gist.

Figure A.1: How to read contact state action gist. We show two examples of reading the meta
motions and meta criteria from the gist chart. Usually we read the criteria information at the
boundary of two adjacent motions.
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Figure A.2: Rectangular prism (cuboid) rotation. The thumb, first, middle and ring finger par-
ticipate the manipulation. By releasing and contacting the surfaces of the rectangular prism, it
is being span clockwise. The left photo is taken by a monocular camera, and other photos are
taken by a stereo camera. Even though the resolution of the monocular camera is higher than the
stereo camera, the monocular camera is on the lateral side. Thus, we have to take snapshots with
the stereo camera.
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Figure A.3: State-action gist of rectangular prism rotation. By releasing and contacting the
cuboid surfaces we rotate it gradually. We repeat the releasing and contacting movements for ten
times, but the extraction does not directly reflects this fact. By counting the meta motion 6 of the
ring finger, we find that the motion repeats 11 times (including the very short slot after the 900th

frame). This fact inspires us that we can design an algorithm to segment this periodic movement,
and then we can take deeper analysis. Therefore, Chapter 5 involves how to do the segmentation.
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Figure A.4: Star prism rotation. The thumb, first, middle and ring finger participate the manipu-
lation. By releasing and contacting the indents of the star prism, the star is being span clockwise.
Since the photos from the stereo camera are too blur to find the finger, we suggest to pay atten-
tion to the black dots around the blue star prism. In fact the black dots are Polhemus sensors
attached to the fingertips. Consequently, when we figure out the black dots moving direction, we
will understand how the fingers move.
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Figure A.5: State-action gist of star prism rotation. The demonstrator uses the thumb, first,
middle and ring fingers performing finger gaiting. In this experiment, we touch and release the
prism indents for ten times. We can find that the thumb also contact for ten times, as well as
the meta motion 7 on the thumb (the exact number of meta motion 7 is 11, but two “7” are very
close before the 300th frame). Another fact of this extraction is: the contact of the first fingertip
is insensitive.
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Figure A.6: Snapshots of bottle rotation. The thumb, first, middle and ring finger participate the
manipulation. By releasing and contacting the upper part of the bottle, the bottle is gradually
rotated clockwise for many times. Because the bottle never touches the table, the trajectory of
the bottle center is not similar to a circle.
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Figure A.7: State-action gist of bottle rotation. We can find many repeated meta motions on
each finger. However, the contact states do not match the repeated motions. Here we note a
phenomenon which also happens in Fig. A.3, Fig. A.5, and Fig. A.9: Even tough the object
looks being touched in the visual sensors, the contact states are all 0 (no contact). In this case
the object should fall down on the table, e.g., around the 600th frame there are “all contacts are
zero” frames. Based on the fact that the hand keeps contacts with the object, we find the tactile
sensors are insensitive.
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Figure A.8: Movement of screwing. By rubbing the screwdriver with fingers, the screwdriver is
span back and forth. From this figure, we know it moves clockwise and then anticlockwise.
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Figure A.9: State-action gist of screwing. We notice that there is no contact information on the
thumb, the issue is caused by the contact region between the hand and the screwdriver, i.e., the
lateral side of the thumb touches the screwdriver. Even though the contact information is not
sensitive enough, we still find a fact: from the tactile information we can infer that when the
screwdriver is rotated clockwise, the middle finger is more tight on thee screwdriver; and when
the rotation is anticlockwise, the first finger is more tight.
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Appendix B

Action gists of ladle manipulation

This appendix corresponds to Chapter 5. We manipulate the ladle in the way shown in Fig. B.1.
A participant demonstrates it for nine times. After the extraction from the raw data-glove values,
we have the action gists as Fig. B.2. From the illustrated action gists we can see that the ladle is
manipulated in similar ways.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Figure B.1: Snapshots of the ladle manipulation. The ladle manipulation is involved the thumb,
first and middle fingers. We note that there are countless ways to manipulate the ladle. However,
when we assign the task to a specific person, we always get similar operation sequences.
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Figure B.2: Action gists of ladle manipulation. The thumb, first and middle finger are used to
spoon the ladle up.
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Kulic, Dana; Kragic, Danica, and Krüger, Volker. Learning action primitives. In Visual Analysis
of Humans, pages 333–353. Springer London, 2011. (page 26).

Kulie, Dana; Takano, Wataru, and Nakamura, Yoshihiko. Online segmentation and clustering
from continuous observation of whole body motions. IEEE Transactions on Robotics, 25(5):
1158–1166, October 2009. (page 26).

Kulvicius, T.; Ning, K.; Tamosiunaite, M., and Worgoetter, F. Joining movement sequences:
modified dynamic movement primitives for robotics applications exemplified on handwriting.
IEEE Transactions on Robotics, 28(1):145–157, 2012. (page 125).

Kuzborskij, I.; Gijsberts, A., and Caputo, B. On the challenge of classifying 52 hand move-
ments from surface electromyography. In International Conference of the IEEE Engineering
in Medicine and Biology Society, pages 4931–4937, 2012. (page 23).

Kwartowitz, David Morgan; Miga, Michael I; Herrell, S Duke, and Galloway, Robert L. Towards

147



BIBLIOGRAPHY

image guided robotic surgery: multi-arm tracking through hybrid localization. International
Journal of Computer Assisted Radiology and Surgery, 4(3):281–286, 2009. (page 25).

Kwok, Roberta. Neuroprosthetics: Once more, with feeling. Nature, 497(7448):176–178, May
2013. (page 23).

Lau, Newman; Wong, Ben, and Chow, Daniel. Motion segmentation method for hybrid charac-
teristic on human motion. Journal of Biomechanics, 42(4):436–442, 2009. (page 69).

Lee, H.; Chung, J.; Chang, S., and Yoon, E. Normal and shear force measurement using a flexible
polymer tactile sensor with embedded multiple capacitors. Journal of Microelectromech. Syst.,
17:934–942, 2008. (page 24).

Lepetit, Vincent; Moreno-Noguer, Francesc, and Fua, Pascal. EPnP: An accurate O(n) Solution
to the PnP Problem. International Journal of Computer Vision, 81(2):155–166, February 2009.
(page 20).

Li, Jiting; Su, Wenkui; Zhang, Yuru, and Guo, Weidong. Vision-based grasp planning system
for dexterous hands. In International Conference on Intelligent Manipulation and Grasping,
pages 555–558, July 2004. (page 20).

Li, Qiang; Meier, M.; Haschke, R.; Ritter, H., and Bolder, B. Object dexterous manipulation
in hand based on Finite State Machine. In International Conference on Mechatronics and
Automation, pages 1185–1190, 2012. (page 25).

Lin, John; Wu, Ying, and Huang, Thomas S. Modeling the constraints of human hand motion.
In Workshop on Human Motion, pages 121–126, 2000. gesture recognition. (page 7).

Litomisky, Krystof. Consumer RGB-D cameras and their applications. Technical report, Uni-
versity of California, Riverside, 2012. (page 21).

Liu, H.; Wu, K.; Meusel, P.; Seitz, N.; Hirzinger, G.; Jin, M.H.; Liu, Y.W.; Fan, S.W.; Lan, T.,
and Chen, Z.P. Multisensory five-finger dexterous hand: The DLR/HIT Hand II. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3692–3697, 2008. (page
3).

Lopes, Manuel; Melo, Francisco; Montesano, Luis, and Santos-Victor, José. Abstraction levels
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