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ABSTRACT

The southeastern Mediterranean Sea and the northern section of Egypt constitutes one of
the most complex tectonic areas in the Mediterranean. This study is an attempt to achieve a bet-
ter understanding of tectonics, and geodynamical processes along a complex tectonization re-
gion. These include crustal structure, thickness of sediments, transition between oceanic and
continental crust and regional integrated model of the gravity field observed. A wide range of
field work from the geophysical data has been acquired and used in this study with respect to
the gravity and magnetic data as well as the results of deep seismic soundings. A comparison
between the marine gravity data and the gravity data derived from satellite altimetry was made
to ensure that the marine gravity data compiled from different marine surveys were compatible.
Furthermore, a successful attempt was made to understand the behaviour of the tectonic activity
and regional stress pattern distribution within the areainvestigated by using the seismicity data.

4 The geographic setting and geology of the study area show that the Eastern Mediterra-
nean region includes a short segment of the convergence boundary between Africaand Eurasia
Subduction in this segment isalong two very small Arcs, the Hellenic and Cyprean Arcs. More-
over, the study area has remarkably prominent morphogeologic features such as East Mediter-
ranean Ridge, Herodotus Abyssal Plain, Levantine Basin, Eratosthenes Seamount, Nile Delta
and Sinai Peninsula. At the base of the continental slope off Egyptain coast and eastern Libya,
the shape and size of bathymetric depressions strongly suggested that they originated from an
active eastern Mediterranean transcurrent fault system (EMTYS). Additionally, thereisafew ma-
jor fault systems trending NE-SW and NW-SE, i.e. the Suez rift and faults from Arabian plate,
extend into southeastern Mediterranean Sea. It reflects activation of the Dead Sea faults (DSF)
and the Levant-Agaba transform plate boundary.

¢ A qualitative interpretation of the observed potential anomalies revealed that the Free-
Air anomalies are generally negative.The Bouguer anomalies are predominantly positive as
might be expected for an oceanic area. A series of high magnetic anomalies around the Cyprean
Arc, runs from the Antalya Basin across Cyprus to the coast of Arabian plate. It coincides with
alarge positive Bouguer gravity anomaly suggesting that the ophiolitesin Cyprus, in southern
Turkey and northwest Arabian plate have a common base, and that ophiolites probably exist
around the whole Cyprean Arc.

Theregional gravity anomaly field valuesin the study areagenerally decrease towardsthe
E-W and SE directions. This behaviour trends reflect the effect of the transition from oceanic

crust to the continental crust of the Eastern Mediterranean towards the Arabian plate.The re-
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gional magnetic anomaly field in the study area on the other hand is dominant in NW- SE trends
and increases towards the north, which may reflect the shallow depth of the basement rocksin
this direction. The residual gravity and magnetic anomalies reflect the effect of the difference
in density between the crystalline or igneous crust and the sediments, the variation of the base-
ment geometry and also the effect of the bathymetric and topographic features.

The orientation of the Free-Air anomalies in the study area indicated that the isostatic
equilibrium is far from being achieved. The absence of a large Bouguer anomaly associated
with the extremerelief indicates that the areaiis, as could be expected, not isostatically compen-
sated by local variationsin the crustal or mantle structure.

The satellite data shows only minor deviations in some partial regions of the areainves-
tigated such as at Levant basin and nearest Rhodes basin, and differences between the satellite
and the shipboard data are also small in some regions. These occurred mostly near to land. Fur-
thermore, some strong deviations in some regions are spatialy correlated with bathymetric
depth and geological structures can be also obvious.

+ Seismic profile resultsindicated that the thickness and velocity values of the crystalline
unit under the Levant Basin are similar to the values determined for anormal oceanic crust. The
seismic results of the Western Desert of Egypt showed that the Egyptian coast is underlain by
acontinental crust covered by 4-6 km thick sedimentary layer. The crust is about 26 km thick
below the Mediterranean Sea.

+ A quantitative interpretation of the Free-Air gravity field was undertaken by developing
two and three-dimensional gravity modelling. The results show that the measured gravity field
of thetwo and three-dimensional gravity models can be satisfied when using the structural layer
boundaries of the given seismic studies. The transition of the oceanic-continental crust occurs
near the coast of Israel, the Moho lies at adepth of about 32 km beneath Cyprus, and at a depth
of about 27 km at the coast of Israel. The deep parts of the Levantine Basin is covered by about
13 km of thick sediments. The Moho depth varies from about 26 km beneath the Eratosthenes
Seamount to about 23 km under the Levant Basin. The depth to the basement lies at about 6 km
beneath the Egyptian coast. However, the thickness of the sedimentary layer increases towards
the East M editerranean Ridge. The basement depth variesfrom about 9 km at the Egyptian coast
to about 13 km in the Herodotus Abyssal Plain and beneath the East Mediterranean Ridge.

The continental African plate extends to nearly 40 to100 km offshore the Egyptain coast
and has an abrupt transition to an oceanic crust. It seems that the proposed extends reflects the

effect of an active EMTS and the main tectonic elements in this area, which are occurring on
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the boundary between continental and oceanic crust units. Moreover, the crustal structure of the
Levant Basin is significantly different from that of the adjacent land. The gravity modelling re-
sults identify the continental-oceanic crust transition at Levant Basin.

The average thickness of the mantle layer of the gravity model is27 km towardsthe Egyp-
tian coast. Moreover, there are strong lateral undulations in the average thickness of the mantle
layer ranging from about 10 to 22 km towards Cretan Island Arc. This may reflect the effect of
the main driving force for the opening of the Cretan Sea.

+ The seismicity study of the area under investigation shows that most of the active seis-
micity is concentrated along and around the main tectonic and geological structural of the in-
vestigated area such asthe Hellenic and Cyprean Arcs. There are also some activity areas along
the trends of the Gulf of Agaba- Dead Sea-L evant transform, and the Gulf of Suez-Cairo-Alex-
andria !l northern Egypt Il. Additionally, the average P-axes orientations are in good agreement
with plate tectonic framework and are broadly consistent with the absol ute plate motion of Af-

rican and its collision with Eurasian plates.



. INTRODUCTION 1

| . INTRODUCTION

I.1. Location of the study area and brief introduction

The area under investigation covers the northeastern margin of the African plate between
Latitudes 29°:3(Y-37°: 00/ N and Longitudes 23°:3(Y-36°:00/ E (Figure 1.1).

The southeastern Mediterranean Sea and the northern section of Egypt is a tectonically
complicated area due to its location within the contact zone between the African and the Eura-
sian plates. Sincetheinitiation of the plate tectonic theory, many geophysical and tectonic stud-
ies of the Eastern Mediterranean have been conducted in recent years (e.g. Allan and Mordlli,
1971; Lort, 1971; Giermann, 1969, 1971; Ryan et al., 1971, 1982; Finetti and Morelli, 1973;
Woodside, 1977; Makris et al., 1983; Makris and Stobbe, 1984; Ben-Avraham et al., 1987;
Ben-Avraham, 1989; Kahle et al., 1988; Kastens, 1991; Rybakov et al., 2000). In particular,
several parts of the region have been studied through anumber of deep seismic sounding (DSS)
and wide anglereflection/refraction seismic (WARRS) experiments and expanding spread pro-
files (ESP) in order to delineate the deep structures (e.g. Morelli, 1975; Makris et al., 1983;
Makris, 1985; Makris et a., 1988; Hartung,1987; De Voogd et a., 1992; Bohnhoff, 2000;
Bohnhoff et al., 2001; El-Kelani et a., 2000; Ilinski et a., 2000; Vidal, 2000; Helms, 2001,
Planert, 2001; Bronner, 2003). Additional seismicity studies (e.g. Mckenzie, 1972; Ben-Mena-
hem et a.,1976; Maamoun et al., 1980; Le Pichon et al., 1982 a; Le Pichon and Gaulier, 1988;
Kebeasy, 1990; Kovachev et a., 1992; Delibasis et al., 1999; Rihm et al., 1999; Badawy and
Horvath, 1999 a, and b, Papazachos and Papaioannou, 1999; Badawy and Abdel Fattah, 2001,
Rische et a., 2003; Mahmoud, 2003), showed that the area investigated to be a tectonically
very active region. It has the highest seismicity of the whole Mediterranean basin. Thisisalso
confirmed by seismicity studies all over Egypt which shows that most earthquakes took place
at one of the main seismic trendsin northern Egypt. These namely the Eastern Mediterranean-
Cairo-Fayum Pelusiac trend, the northern Red Sea-Gulf of Suez-Cairo-Alexandria Clysmic
trend, and the Levant-Agaba trend. Some small events were also observed in the Nile Delta as
suggested by Kebeasy (1990).

|.2. Scope of the study

The southeastern Mediterranean Sea and the northern section of Egypt is characterized
by high seismicity and a complex tectonization which is not yet fully understood. It has been

the subject of extensive geophysical and geological studiesinrecent years. The southeastern
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Mediterranean Sea includes a short segment of the convergence boundary between the African
and the Eurasian plates. To date, the subduction processes along these segment, the crustal
structure below acomplex tectonization area and the deep structure of the north African passive
continental margin remain poorly understood. However, there is only limited knowledge con-
cerning tectonic and geodynamical processes along a complex tectonization region such as
crustal structure, thickness of sediments, transition between oceanic and continental crust and
regional integrated models of the potential field observed of the area investigated. This is not
because of data deficiency, but rather due to problems in data interpretation. These problems
are exacerbated by the apparent complexity of the geology and the interaction of tectonic ef-
fects. Additionally, a number of questions are still open, in particular:

- Few details are known about the morphotectonic situation, e.g. what is the absol ute depth var-
iation in the most elevated parts of the area investigated?

- Littleisstill known about the gravity and magnetic anomalies, e.g. what isthe state of isostatic
compensation on this tectonically complicated area?

- There is a variety of the tectonic activity interpretations concerning the boundaries between
the various lithospheric plates-how do they fit together?

- Furthermore the question concerning crustal structures and geodynamical processes of the

southeastern Mediterranean Searemain controversially discussed.

|.3. Geophysical data sets

In order to investigate and provide some answers for the questions mentioned above and
contribute to a better understanding of tectonics, complex structure, geodynamic features and
tectonic activity within the areainvestigated, awide range of field work from the marine poten-

tial field geophysical data (Figure 1.2) has been acquired and used in this study:

Gravity data

The focus of the study areawill be on the gravity field. The main set of gravity data used
in this study was acquired from the Meteor 25/4 expedition during July-August, 1993 and Me-
teor 40/1 expedition during November 1997. This data was combined with the available data
obtained from the GEODAS data base (GEOphysical DAta System, provided by NOAA and
NGDC). In addition, several gravity profileswere obtained from B. G. |. (Bureau Gravimétrique
International). Furthermore, gravity anomaly data were obtained from the gravity map of a sur-
vey on Crete Island during 1997-1998 (Lange, 2000). All of these data were used in this study
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to construct the new Bouguer and Free-Air gravity anomaly maps needed to carry out aquali-
tative and quantitative interpretation of the area investigated. Furthermore, the shipboard grav-
ity data were compared with the gravity data derived from two most recent satellite altimetry
sources. Sandwell’ sversion 10.1 global grid (Sandwell et al., 1997); and KM S99, KM S02 (An-
dersen and Knudsen, 1998).

In general, from studying a qualitative interpretation of potential anomaliesit is possible
to trace conclusions about the state of i sostatic compensation even on atectonically complicated
arealikethe oneinvestigated. A quantitative interpretation of the potential field dataa one does
not provide adefinite model geometry of geological structures. In addition to the potential field
data, the results of reflection seismic, bathymetric and topographic data, geological investiga-
tions, and seismological data play amajor rolein generating the geometry of the structural mod-
els. Gravity modelling will assert whether the layer geometries and densities, required to

reproduce the observed anomalies in most part favourably with the seismic velocity models.

Magnetic data

The available magnetic data used in this study were obtained from GEODAS data base.
These data have been combined with data collected from the M eteor 25/4 expedition mentioned
above. A new total magnetic intensity anomaly map was produced to carry out aqualitative in-

terpretation of the area investigated.

Bathymetric and topographic data

In an attempt to learn more about the geographic setting of the areainvestigated and in-
crease the knowledge of the relief of morphotectonic area, several profiles were acquired from
Meteor 25/4 expedition and Meteor 40/1 expedition mentioned above, B.G.1., and GEODAS
data base. Grid points representing topographic data were obtained from the topographic map
of the survey mentioned above on Crete Island that was conducted during 1997-1998 (Lange,
2000). These datawere combined with the available Etopo data (Eastern Topographics) to con-
struct the Bathymetric and topographic map of the areainvestigated.

Seismic data
To estimate atectonic model for the region, results from recent deep seismic sounding ex-
perimentsin the Eastern Mediterranean Seawere obtained. These experiments were undertaken

by the Institute of Geophysics, University of Hamburg, and the Department of Geophysics and
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Planetary Sciences, Tel Aviv University. In addition, some results from recent deep seismic
sounding experimentsin the Cyprean region were obtained. These experimentswere carried out
by the Geological Survey Authorities of Cyprus to complement the information of deep sedi-

mentary and crustal structuresin the Eastern Mediterranean Sea.

Seismicity data

In order to gain an understanding of the tectonics of an area and to evaluate seismicity, it
isimportant to extend our historical knowledge of earthquakes and the time of their occurrence.
Based on historical records and documents of eyewitnesses on one the hand and instrumental
records on the other hand, it is known that the southeastern Mediterranean Sea and north Egypt
have been seismically active for a period of more than 2000 years.

The seismicity distribution in the whole southeastern M editerranean Sea and the northern
section of Egypt during the period of 1904-2002 has been obtained asrevea ed from the Nation-
al Earthquake Information Center (NEIC) and the International Seismological Centre (I1SC).

|.4. Objectives

The specific objective of this study isto achieve a better understanding of tectonics, and
geodynamical processes along a complex tectonization region such as crustal structure, thick-
ness of sediments, transition between oceanic and continental crust and regional integrated
model of the potential field observed in the areainvestigated. In addition, a successful attempt
was made to understanding of the behaviour of the tectonic activity within the areainvestigated
by using the available geophysical data has been aso achieved. In this study, a generalized re-
view and interpretation of all the available geological and geophysical studies of the areainves-
tigated was made. This was performed by combining gravity and magnetic results to make a

conjunctive geophysical study with particular emphasis on the following objectives:

¢ To construct gravity and magnetic anomaly maps of the region from recent marine gravity
and magnetic data and existing land data to conclude on the state of isostatic compensation of

the tectonically complicated area.

¢ To perform two and three-dimensional gravity tectonic models of the region within the re-
gional tectonic concepts constrained by the seismic data and based on the results from the stud-

ies above.



. INTRODUCTION 7

+ Shed light on the geographic setting of the areainvestigated to improve the knowledge of the

absolute relief of morphotectonic areain the most elevated parts of the region.

+ To achieve abetter understanding of the tectonic activity and regional stress pattern distribu-

tion within the areainvestigated.

| .5. Dissertation outline

In chapter 11 the bathymetry and topography of the areainvestigated isshown. Theregion-
al geological features, regional tectonic framework, tectonic and structural setting, and crustal
structure of the southeastern Mediterranean Sea are introduced. Furthermore, a brief account of
the geological history of the Mediterranean Sea is presented.

Chapter 111 isdevoted to the processing and compilation of the gravity and magnetic field
data. A qualitative interpretation of gravity and magnetic anomaly maps as well as regional-re-
sidual gravity and magnetic anomaly maps are portrayed and presented. In addition, to ensure
that the marine gravity data compiled from different marine surveys are compatible, a compar-
ison between the marine gravity data and the gravity data derived from satellite altimetry was
made.

A description of the main results from available recent seismic experiments in the area
under investigation is described in chapter 1V. The seismic results are used to constrain layer
geometry and thickness. They provideinitial estimates of the layers densities along four seismic
profiles crossing the main tectonic elementsin the investigation areawhich are used to estimate
atectonic model for this region.

Chapter V deals with a detailed description of a quantitative interpretation of the gravity
field data. In this chapter two and three-dimensional gravity modelling methods will be de-
scribed. The main results (e.g. variability in crustal structure, density and layer thickness) of
these density models are presented and discussed.

The behaviour of the tectonic activity and regional stress pattern distribution within the
areainvestigated are discussed in chapter V1. Finally, discussion and conclusionsrevealed from

the geophysical data of the area investigated is given in chapter VII.
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|| . GEOGRAPHIC SETTING AND GEOLOGY

The geographic setting of the southeastern M editerranean Sea and the northern section of
Egypt are discussed below. In addition, geology and the geological history are also summa-
rized.

[1.1. Geographic setting of the area investigated

The areainvestigated extends from Latitudes 29°:30/-37°: 00’ N and L ongitudes 23°:30/
-36°:00' E and coversthe northeastern margin of the African plate. Figure 2.1 shows the bathy-
metric and topographic features of this region. This map and the other maps in this study were
created by using the GMT software (Generic Mapping Tools, Wessel and Smith, 2001). The
main bathymetric and topographic features such as Island arcs, bathymetric ridges, subduction

trenches, basins or major Seamounts are briefly described below.

Cretan Sea and Cretan Island Arc

The Cretan Sea and the Island Arc lies in a prominent position in southern part of the
Aegean Seg, the forearc of the Crete and the Hellenic Arc. The Cretan Sea is concave to the
north and centred around 25° E and 36°N. It has a depth generally between 1000 and 2000 m,
with amaximum of nearly 2500 m. Furthermore, the Cretan Island Arc isasubmerged zonein
the southern part of the Aegean Sea. It is associated also with a zone of inferred fault blocks

submerged to different depths.

Hellenic and Cyprean Arcs

The Hellenic Arc is characterized by multiple, parallel ocean depths which follow the
Arc. In addition, numerous short depths which are perpendicular to thetrend of the Arc areaso
present. Several depths could probably qualify as subduction trenches. The Hellenic Arc con-
sists of a number of rises and trenches, with the most prominent being the Ptolemy Trench and
the Pliny Trench, both deeper than 4000 m, and the Strabo Trench, which cuts into the ridge
province. The Cyprean Arc consists of the Anaximander Seamounts, the Florence Rise and the
Island of Cyprusitself.

East Mediterranean Ridge
The East Mediterranean Ridge is the largest morphologically feature unit of the Eastern

Mediterranean Sea which lies to the south of the trenches of the Hellenic Arc. Moreover, it is
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an elongated bathymetric high in the Eastern Mediterranean Sea. It runs from lonian Basin to
the west, passing between Crete and Libya and curving sinuously northeastward to Cyprus to
the east. It is about 150 km wide south of Crete, but narrows to about 110 km farther east with
averages depth between 2000-2500m. In addition, the ridge is an accretionary complex that is
largely composed of sediments that have been accreted from the African plate, which is sub-
ducted northeastwards beneath the Aegean. It is about a more than 1500 km |long tectono-sedi-
mentary-accretionary prism and characterized by numerous low hills, depressions and
deformed sediments paralleling the plate margin between Africa and the Aegean as suggested
by Ryan, et a. (1971) and Le Pichon et al. (1995) and (2002).

Herodotus Abyssal Plain

The Herodotus Abyssal Plain marks the southern boundary of the Mediterranean Ridge.
It has very little topographic expression and emerges asanarrow Abyssal Plain to the northwest
of the Nile Delta. It extends in a NE-SW direction and has a rather smooth bathymetry with a
maximum water depth of about 3500 m.

The Levant Basin
The Levant Basin islocated in the southeastern corner of the Eastern Mediterranean Sea.
The seafloor slopes down gently in NE direction towards the Nile Delta. Its depth ranges from

about 500 m to a maximum of about 2000 m southern of the Cyprean Arc.

Northeastern L evant

Most of the Northeastern Levant Seais considerably shallower than therest of the Eastern
Mediterranean. The portion that lies between Cyprus and Turkey, the CilicaBasin, has adepth
of about 1000 m. Southern of the Cyprus Arc, there are two submerged mountain complexes
namely: The Hecataeus Seamount, which isasubmerged part of the sland, and the Eratosthenes
Seamount.

Eratosthenes Seamount

The Eratosthenes Seamount is one of the most prominent physiographic features of the
southeastern Mediterranean Sea, situated southern of Cyprus between the Levant Basin, to the
East, and the Herodotus Abyssal Plain, to the west. The Seamount has a massive rise with an
oval shape, whose major axis is oriented to the NE-SW. The depth of the top of the Seamount
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is about 500 m.

Several other physiographic observations of the southeastern Mediterranean Sea and the
northern section of Egypt areinteresting: the deep Finike and Rhodes Basins, Libyan and Egyp-
tian coastlines, Nile Delta, Qattara Depression, and Sinai Peninsula.

Finike and Rhodes Basins

The Finike Basin, adjacent to the Antalya Basin trending E-W and is as deep as the Med-
iterranean abyssal plane. The Rhodes Basin is a deep basin, even deeper than the abyssal plane,
which lies adjacent to the Antalya Basin.

Libyan and Egyptian coastlines

The gradient of the coastal line of the Libyan and Egyptian coastlines is very steep and
the water depth falls rapidly to 2500 m. This continental margin is oriented ESE-WNW and
seemsto betectonically controlled by afault system which crosses Egypt near Cairo and termi-
nates at the Gulf of Suez.

Nile Delta
Thefloor of the southern Levant Seais dominated by the Nile Cone. The thick deltaic de-
positsexhibit only very gentlerelief and an area of abyssal hillswithin the Rosettaand Damietta

fans.

Qattara Depression

The Qattara Depression extends to about 15 square kilometres. It lies in the Western
Desert in Egypt, and is largely below sealevel. The lowest point of the Qattara Depression is
133 metersbelow sealevel (Said, 1962). Badlands, salt marshes, and salt |akes cover the sparse-
ly inhabited Qattara Depression. The Qattara Depression al so contains some subsurface geol og-
ical basins, like the Abu Gharadig Basin.

Sinai Peninsula

This area of triangular geometry lies in the northeastern part of Egypt. The elevation of
Sinal’ s southern rimis more than1000 meters. Moving northward, the elevation of the Sinal Pe-
ninsula decreases. The northern third of Sinai isaflat sandy coastal plain that extends from the
Gulf of Suez and the Suez Canal into Israel (Said, 1962).
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11.2. Geology

The southeastern Mediterranean Sea and the northern section of Egypt is attracting con-
siderable attention due to the complexities of its tectonic setting. Interpretation of the regional
geological features, regional tectonic framework, tectonic and structural setting, and crustal
structure allows a better understanding of the tectonic and geological evolution of this region.
In the following section, an updated summary of the regional geological features and a brief re-
view of the regional tectonic framework will be presented. The tectonic and structural setting,

and the crustal structure of the areainvestigated are a'so summarized.

I1.2.1. Regional geological features

In general, the southeastern Mediterranean Sea and surrounding regions comprise two
distinct tectonic domains that were juxtaposed by subduction and plate collision: thefirst isthe
Alpine orogenic belt in the north and the second is the extra-orogenic domain south of it, on
which this section focuses. Thisincludesthe part of the southeastern Mediterranean basin south
of the Cyprus Arc and the bordering continental areas (Figure 2.2). Eastward from Cyprus the
suture between these domains is marked by ophiolotic and related nappes that were emplaced
in the late Cretaceous-the peri-Arabian ophiolite crescent (Ricou, 1971). Farther west, the su-
ture continues beneath the seafloor, joining the Hellenic trenches. The currently active plate
boundary approximately follows this suture, but details of the present plate configuration were
established only in mid-Cenozoic times. Within the orogenic zone, much of Anatolia became
an independent micro-plate that is extruded westward (Sengor et al., 1985). Now its junction
with the African plate forms the active plate boundary along the southeastern Mediterranean
Sea. In addition, mid-Cenozoic continental breakup separated the Arabian plate and the Sinai
sub-plate from the African plate (e.g. Freund et al., 1970; Joffe and Garfunkel, 1987; Le Pichon
and Gaulier, 1988).

The extra-orogenic southeastern Mediterranean Sea comprises several distinct geologic
and morphologic units (Biju-Du val et a., 1978). The main regional geological features are out-
lined in Figure 2.2.

Most prominent is the division of the southeastern Mediterranean Sea into a shallower
part east of about 32°E and a deeper region farther west. Most of the eastern part is occupied by
the Levant Basin, up to 2 km deep. On its western side is the Eratosthenes Seamount whose top
rises to about 0.8 km below the sea level (Figure 2.1). The transition to the deeper area farther

west is obscured by the sediment pile of the Nile Deltaand by a zone of diapirism and slumping
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(Mascleet al., 2000 a). The deeper western part of the southeastern Mediterranean Sea compris-
esthe Herodotus Basin, much of which is occupied by an about 3 km deep abyssal plain. North
of it is the shallower East Mediterranean Ridge whose complex small-scale topography con-
trasts significantly with the smooth abyssal plain. On the northwest, the ridge is delineated by
the Aegean trenches (Figure 2.2).

The southeastern Mediterranean Sea outside the orogenic domain has a thick sediment
fill, but only its younger part is known in some details. The Pliocene to Recent sediments con-
sistsmostly of fine clastics carried by the River Nile. They are up to about 4 km thick under the
Nile Delta, but thin to lower than one kilometre thin under the deeper parts of the basin (Ross
and Uchupi, 1977). The Messinian evaporate-bearing series underlies much of the basin, being
more than 2 km thick under a considerable area, but it thins and wedges out towards the basin
margins and over high standing features such as the Eratosthenes block (Said, 1981).

In most of the study area, the fill islittle deformed. However, in alarge area Pliocene to
Recent sediments are affected by considerable thin-skinned deformation asaresult of instability
and flow of the Messinian Series. Most conspicuous are large lumps and diapirs along the mar-
ginsof the Levant Basin, south and west of the Eratosthenes block, and under parts of the Hero-
dotus abyssal plain (Garfunkel, 1984; Robertson et al., 1995). The East Mediterranean Ridge
consists of basinal sediments that were detached from their base as a result of compression in
front of the Aegean subduction zone. They are being incorporated into the zone of Alpine de-
formation (e.g. Spakman et a.,1988; Chaumillon et a., 1996). Thisridge was interpreted as an
accretionary ridge or complex, because it is an elongated body of sediments deformed under
compression, located above a subducting plate, and lying parallel to the oceanic trench associ-
ated with the subduction (Lallemant et al., 1994).

Despiteits depth and thick sediment fill, the extra-orogenic part of the southeastern Med-
iterranean Sea is characterized by a strong positive Bouguer gravity anomaly that reaches 70-
90 mGal in the Levant Basin and 150-190 mGal in the Herodotus abyssal plain (Chapter 111
gives more detailed description about this).

In view of the southeastern Mediterranean Sea depth and thick low-density sedimentary
fill, this indicates the presence of thin crust under the southeastern Mediterranean Sea, which
was confirmed by seismic studies (e.g. DeVoogd et al., 1992). The crust under the adjacent part
of Egypt istypicaly continental and more than 30 km thick (Makris et a., 1988). Detailed in-

formation from seismic studies in the southeastern Mediterranean Seais given in Chapter V.
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I1.2.2. Regional tectonic framework

Figure 2.2 isan outline of the regional tectonic map of the study area and adjacent regions
compiled by Mckenzie (1972), Barka (1992), Jackson and Mckenzie (1984), Senogr et al.
(1985), Ben-Avraham et al. (1976, 1987), Saroglu et al. (1987), Jarriage et al. (1990), Reuther
et a (1993), Anastasakis and Kelling (1991), Hancock and Atiya (1979), Taymaz et al. (1991),
Kempler and Garfunkel (1991), Barka(1992), Wong et a. (1995), Ten Veen and Meijer (1998),
Cagatay et al. (1998), Peter et a. (1998), Glover and Robertson (1998),Y altirak et al. (1998),
Garfunkel (1998), Okay et a. (2000), Mascle et al. (2000 b), McClusky et al. (2000), and Piper
and Perissoratis (2003). The area investigated and the adjacent areas are considered, world
wide, an unique natural laboratory for studying the occurrence of extensional tectonicsin a
framework of continental convergence (e.g. Sengor and Yilmaz, 1981; Plag et al., 1998). This
Is because of the wide variety of tectonic processes encompasses, including various stages of
continental collision (Zagros/ Black sea), subduction of oceanic lithosphere and associated back
Arc spreading (Cyprean/ Hellenic Arcsand Aegean Sea), convergence between the seafl oor and
the Arc (Mediterranean Ridge), continental extension (e.g. Maramara Sea), major continental
strike-dlip faults (North and East Anatolian and Dead Sea faults) and a variety of smaller-scale
processes associated with African-Arabian-Eurasian plate interactions (Figure 2.2). All of these
processes are contained within the study area with distinct morphogeol ogical features. Theim-
age of these prominent morphogeologic features in the bathymetric and topographic features
map are shown in Figure 2.1 (e.g. Levantine Basin, Herodotus Abyssal Plain, Eratosthenes
Seamount, and Nile Delta). Furthermore, the southeastern Mediterranean Sea and the northern
section of Egypt has aremarkably long historical record of maor earthquakes (e.g. Mckenzie,
1970; Udias, 1982; Kebeasy, 1990; Ambraseyes and Jackson, 1990) and has been the focus of
intense geological and tectonical investigations (e.g. Ben-Avraham et al. 1976, 1988, and 1995;
Perincek, 1991; Muller and Kahle, 1993; Kempler and Garfunkel, 1994; Le Pichon et a., 1995;
Erwan et al., 1998; Kahle et al., 1998; Mantovani et al., 1997; Guiraud and Bosworth, 1999;
Mascle et al., 2000 a; McClusky et al., 2000 and 2003; Huguen et al., 20001; Hiibscher et al.,
2002).

Theregional tectonic framework of the study areais dominated by the collision of Arabi-
an and the African plates with Eurasia (Mckenzie, 1970; Jackson and Mckenzie, 1984, 1988,
Reuther, 1990; Reuther et al., 1993; Adam et al., 2000). Plate tectonic models (e.g. DeMets et
al., 1990; Jestin et a ., 1994; McClusky et al., 2000) based on analysis of global seafloor spread-
ing, global positioning system (GPS), fault systems, and earthquake dlip vectors indicate that
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the Arabian plate is moving in anorth-northwest direction relative to Eurasia at arate of about
18-25mm/yr (Figure 2.2). Differential motion between Africa and Arabia (~ 10-15 mm/yr) is
considered to be taken up predominantly by |eft-lateral motion along the Dead Sea Fault (DSF).
Thisnorthward motion resultsin continental collision along the eastward extrusion of the Ana-
tolian plate (Mckenzie, 1970; Noomen et al., 1996; Kahle et al., 1998).

Theleading edge of the African plate is being subducted along the Hellenic Arc at ahigh-
er rate than the relative northward motion of the African plate itself, provided that the Arc
moves southward relative to Eurasia (e.g. Royden, 1993). Subduction of the African plate is
also thought to occur along the Cyprean Arc and/or the Florence Rise south of Turkey, although
it islesswell defined in these regions than along the Hellenic Arc (Figure 2.2).

A significant improvement to the simplethree-plate model of the study arearesulted from
analysis of seismicity, global positioning system (GPS), tectonic and geologic information. Us-
ing such data, Mckenzie (1970), Jackson and Mckenzie (1984, 1988), Jackson (1992); Mc-
Clusky et al. (2000) developed a regiona tectonic framework, for understanding the
deformation in the study area and examined the principles of controlling continental tectonics
in the region. They suggested that continental lithosphere tends to move laterally away from
zones of compression, presumably to minimize topographic relief and to avoid subduction of
buoyant continental material. They further suggested that the Anatolian plate moves westward
from the zone on intense convergence in eastern Turkey. They derive an Euler vector (i.e. ro-
tation pole and rate) for Anatolia-Eurasia based on earthquake dlip vectors along the North
Anatolian fault (NAFZ). A few fault systems, the Suez rift and faults from Arabian plate, ex-
tend into southeastern Mediterranean Sea (Figure 2.2). These faults reflect activation of the
Dead Seafaults and the L evant-Agaba transform plate boundary. An active eastern Mediterra-
nean transcurrent fault system (EMTY) runs through the lonian Sea, the base of the continental
margin of Eastern Libya and Western Egypt, into the land area through the apex of the Nile
Deltaand eventually into the Gulf of Suez (Ben-Avraham et al., 1987).

The regional geological features of the area investigated and adjacent areas, when inte-
grated with the regional tectonic framework, provide much information about the geological
history of the Mediterranean Sea.
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11.2.3. Tectonic and structural setting

The specific area of thisinvestigation liesin the contact zone between the African and the
Eurasian plates. Along this zone, the Mediterranean lithosphere (African plate) underthruststhe
Eurasian lithosphere (Eurasian plate) in an almost south-north direction. The convergence be-
tween the Eurasian and African lithospheric plates occurs in a north-south direction along the
southern boundary of the Aegean area, along the arcuate zone of the Hellenic Arc, the Cyprean
Arc, and its continental extension (Robertson, 1998).

Generally, the area under study lies on the northern margin of the African plate. Thisarea
is being actively subducted since the late Cretaceous along the destructive compressional plate
boundary of Crete and Cyprus (Abdel Aal et a., 2000). Satellite Laser Ranging (SLR) has re-
vead ed that the kinematic field of the Eastern Mediterranean region is characterized by the west-
ward motion of Anatoliaand a southwest motion of the Aegean Sea area (Halsey and Grandner,
1975; Smith et a., 1994; Noomen et a., 1996).

The study area has aways been acomplicated puzzle for the geodynamic reconstructions.
The main geodynamic factor controlling tectonics of the study area has usually been considered
to be arelative motion of Africaand Europe as a consequence of different spreading ratesalong
the Atlantic oceanic ridge (Erwan et a., 1998). The main tectonic elements in the area under
investigation as well as the surrounding areas and their geodynamic relation are presented in
Figure 2.3 according to Peter et al (1998). V arious geodynamic frameworks have been proposed
in the past to understand the tectonical and geological evolution of this region (e.g. Mckenzie,
1970, 1972; Ben-Avraham and Nur, 1976; Le Pichon and Angelier, 1979).

Mckenzie (1972) proposed convergence between the northward moving African and Ara-
bian plates, which are separated by the Dead Seatransform fault system. The westward moving
Turkish Anatolian subplate and the south westward moving the Aegean subplate (Figure 2.4).
The Hellenic and Cyprean Arcs are formed where the African oceanic lithosphere is being con-
sumed.

Papazachos (1973) and Rabinowitz and Ryan (1970), stated that the Eastern Mediterrane-
an Seaisasmall ocean basin known for its unusual tectonic complexity. The Eastern Mediter-
ranean Seaincludes a short segment of the convergence boundary between Africaand Eurasia.
Subduction in this segment is present along two very small Arcs, the Hellenic and Cyprean
Arcs. Both subduction Arcs have been documented using variations in bathymetry and magni-

tude of the earthquakes.
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On the basis of these variations of the southeastern Mediterranean, the region is roughly

subdivided into two parts. The Hellenic and Cyprean Arcs, and the Levant Basin.

[1.2.3.1. The Hellenic and Cyprean Arcs

The southeastern Mediterranean Seais characterized by subduction zones, the largest be-
ing the Hellenic and Cyprean Arcs (Figure 2.4). These subduction zones are the key areas of the
seismotectonic activity which is caused by the collision of the African and Eurasian plates. The
Hellenic Arcisassociated with backarc basin and volcanism, while the Cyprean Arcisnot. The
Hellenic Arc is subjected to one of the largest tectonic motions in Europe (Peter et al., 1998).

The boundary between the plates and the relation between the Hellenic and Cyprean Arcs
has been subject to avariety of tectonic interpretation (e.g. Gass and Masson-Smith, 1963; V ogt
and Higgs, 1969; Mckenzie, 1970, 1972; Nur and Ben-Avraham, 1978).

Nur and Ben-Avraham (1978) proposed that the Hellenic and Cyprean Arcs are connected
through acusp. The Cyprean Arc formsacontinuous plate boundary with the Hellenic Arc (Fig-
ure 2.5), but the plate boundary does not continue far East of Cyprus, where according to the
model, the Arc is truncated by NNW trending faults.

LePichonet al. (1982 b) and Mercier (1981) stated that the Cyprean Arc is not continuous
withthe Hellenic Arc (Figure 2.6). Instead they are separated by azone of external Alpine orog-
eny. However, the Cyprean Arc continues east of Cyprus into a zone of thrusting in Syria and
Turkey.

Lortetal. (1974), Biju-Duvadl et a. (1978), Le Pichon and Angelier (1979), Dercour et a.
(1986), Kempler and Ben-Avraham (1987) and Peter et al. (1998) considered a double boundary
existing along the Cyprean Arc: the first branch crosses north Cyprus and the second passes
south of the Island (Figure 2.6).

Another model was proposed by Woodside et a. (1992), who suggested that the south
boundary of the Turkish subplate being a series of at least three or four extensive and curved
shear belts (Figure 2.7).

An entirely different model was proposed by Dewey et a. (1973), who suggested that
there is no single boundary between Africa and Europe, but rather a complex interacting set of

microplates.
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[1.2.3.2. TheLevant Basin

The tectonic evolution of the Levant continental margin is governed by the evolution of
the Levant Basin, and by the interaction of the Sinai plate with adjacent plates-mainly the Turk-
ish plate. Several models have been proposed to explain the tectonic evol ution of the Levant Ba-
sin. Some agreed that it was opened as a marginal basin (Freund et al., 1975), while others
suggested that it was a small “Atlantic-type” ocean basin associated with a subduction zone
(Dercourt et al., 1986).

Ben-Avraham et al. (2002) studied the crustal structure of the Levant Basin, eastern Med-
iterranean by a seismic refraction / wide-angle reflection experiment. Who showed that the ba-
sin isunderlined by an oceanic crust. Its crustal structureis similar to other small ocean basins
(Menard, 1967) and is characterized by an intermediate thick ness. The crustal structure of the
Levant Basin is significantly different from that of the adjacent land.

In addition, Ben-Avraham (1978) studied the continental slope and rise of a segment of
the Levant continental margin by using seismic profiling. Who suggested that the Levant Basin
was formed during the process in which the African lithospheric plate moved northward to-
wardsthe Eurasian plate. The evolution of the basin passed through several phasesfrom the ear-

ly Mesozoic to the early Tertiary.

[1.2.4. Crustal structure of the southeastern M editerranean Sea

In general, the crustal structure of the southeastern Mediterranean Sea has been the sub-
ject of intensive discussions and has had variousinterpretations. Some authors have shown that
the crust of the Eastern Mediterranean Sea is of continental character (e.g. Allan and Morelli,
1971; Woodside, 1977; and Morelli, 1978), while others suggested that the crust is character-
ized by an ancient oceanic crust (Rotstein and Ben-Avraham, 1985). Another model has shown
that the crust consists of both oceanic and continental segments (Ryan et al., 1971).

Nur and Ben-Avraham (1978) suggested that an oceanic crust probably occursonly inthe
deep basin of the Eastern Mediterranean Sea, and is separated by crustal units of continental
composition. Makriset a. (1983) and Makris and Stobbe (1984) showed that the crust under the
Levent Basin is floored by oceanic crust, whereas the crustal type of the Cyprus and Erato-
sthenes Seamount are continental.

Papazachos (1969) suggested that the crustal structure of the Eastern Mediterranean Sea
changes gradually from oceanic in the west to continental in the east. In southern Crete the crust

is of more continental character with the depth to the mantle being about 21 km, whereasin the
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L evantine Sea, the depth to the mantle is even greater 25 -27 km (Lort et al., 1974; Finetti and
Morelli, 1973). The eastern most portion of the Levantine continental margin and the Levant
Basin is characterized by the thickest crust, where along the Dead Sea transform the depth to
the mantle is 35 km (Ben-Avraham et al., 1976).

A detailed description of the crustal structure and geodynamic relation between the vari-
ous lithospheric plates of the investigated area, and its relation to the adjacent region, undertak-

en by developing two and three-dimensional density models are presented in Chapter V.

11.3. Brief account of the geological history of the Mediterranean Sea

To understand the geological history of the Mediterranean Sea, a knowledge of its geo-
logical evolution is essential. Several geological studies have been carried out extensively in
and around the areainvestigated (e.g. Mckenzie, 1970; Ryan et al., 1971; Lort, 1971; Schembri,
1996). Inthefollowing, abrief summary of the geological history of the Mediterranean Seaelu-
cidated by Schembri (1996) will be presented.

The origins of the present day Mediterranean can be traced to the Triassic (Ca.200 Ma,

Ma= Millionyear ago ). Thefirst ancestor of the Mediterranean wasthe Tethys Sea consisting
of an open shallow water basin in the supercontinent Panda.

Typical shallow water sediments of that age are still present in places around the Medi-
terranean Sea. In the Jurassic (Ca. 150 Ma) there was a period of intense ocean rifting in East-
West direction along the Tethys, that produced the first outlines of Europe and Africa. Later in
the Jurassic (Ca. 135 Ma) the initiation of rifting between Africa and south America produced
the first south Atlantic Sea floor, and started the anticlockwise rotation of Africatowards Eu-
rope. This reversed the rifting process and converted the Palaeo-M editerranean into a subduc-
tion zone. The original Tethys ocean floor gradually began to be consumed as it was subducted
under the Eurasian plate. Much volcanism was produced and most of today’ s volcanic activity
in the Mediterranean is associated with this subduction process.

By the Cretaceous (Ca. 65 Ma) tectonic movements progressively pushed the African
landmass towards the Eurasian landmass until ailmost all the Tethys ocean crust had been con-
sumed. A pocket of water was gradually pinched off. The forerunner of the Mediterranean, or
Paleo Mediterranean became azone of continent collision. The* collisionfront” between Africa
and Europe followed roughly aline passing through the present north Africa coast, north Sicily,
the Apennines, down through the Dinaric Alps, and the Hellenic Chain.

This callision initiated the main phase of Alpine orogeny (Mountain building) around the
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Mediterranean, with great fold mountains composed of marine sediments and parts of African
and European crust. The collision process continues to the present day and probably involves
complex mechanisms of continent-continent interaction. Subduction of the African plate, under
the European plate in the Eastern M editerranean produced the Greek Volcanic Arc and the thin-
ning of the crust on the European side and probably thisled to subsidence of the Aegean plate,
forming today’ s shallow Aegean Sea

In the late Oligocene and Early to Middle Miocene (Ca. 28-10 Ma), there was a devel op-
ment of a new oceanic type basin in the Western Mediterranean-the Balearic and Tyrrhenian
Basins. The opening of the Tyrrhenian Basin produced the anticlockwise rotation of the Italian
Peninsulato its present position. Deposition of sediments, making up the Maltese Islands took
place during this period. The Islands were uplifted above Sealevel during Quaternary times co-
incidently with the opening of the Pantelleria Rift.

During the late Miocene (Ca. 6-7 Ma), closure of the western portion of the Mediterra-
nean basin led to an almost compl ete evaporation of the water in the Mediterranean basin (Mes-
sinian Salinity Event). This precipitated a layer of evaporitic sediments that is found at about
100 m below the surface of today’s sediments. The increased salinity led to the extinction of
marine biotain the Mediterranean at river mouths due to increased velocity of the river waters
falling over the steep sides of the dry basin.

In the Pliocene (Ca. 5.5 Ma) are-opening of the Straits of Gibraltar caused the re-floo-
ding of the Mediterranean. A new population of marine biotafrom the Atlantic wasintroduced.
Thus, the pre-evaporitic fossils (including Maltese fossilis) are different from the post-evapori-
tic ones.

During the Pleistocene (Ca. 1.6 Mato 10, 000y ago) the sea-level in the Mediterranean
was affected by European glacial/ interglacial cycles. Glacials corresponded to lowering of the
sealevel (regression) probably resulting in the establishment of the connections between Malta

and Sicily.
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[ I].GRAVITY AND MAGNETIC INVESTIGATIONSAND QUAL ITA-
TIVE INTERPRETATION

Over the last twenty years, many geophysical studies were carried out in and around the
investigated area (e.g. Egeran,1948; Harrison, 1955; Allan and Morelli, 1971; Finetti and
Morelli, 1973; Woodside 1977; Makris and Stobbe, 1984; Peters and Huson, 1985; Tealeb,
1989; Makris and Wang, 1994; Makris et a., 1994; Wang, 1995). In this chapter, gravity and
magnetic field data and their evaluation processing and transformation into new potential
anomaly maps are discussed. A qualitative interpretation of these anomalies, which are related
to major bathymetric and tectonic features are given. In addition, regional-residual separation

processing of the potential field datais performed.

[11.1. Gravity investigations

Gravity isan important geophysical tool in subsurface investigation to determine the dif-
ferences in the existing earth’s gravitational field at various locations and help to understand
the structure of the earth’s crust and mantle. In addition, the state of isostatic equilibrium can
be determined by employing the gravity data.

Gravity field data in marine surveys must be collected in agrid or along a profile at sta-
tionswith suitable spacing. Thefirst step isto remove all predictable components of the earth’s
gravitational field in the acquired data set. The earth’s gravitational field measured at the
earth’ ssurface is affected by topographic changes, the earth’ s shape and rotation. Thesefactors
must be removed beforeinterpreting gravity datafor subsurfacefeatures. The processed gravity
data are known as Free-Air and Bouguer gravity anomalies, measured in mGal (milligal)™!

The gravity field data can enhance geological mapping, locating boundaries between
units of varying density. Large features (e.g. ridges, subduction trenches, and seafl oor-spred-
ing) produce anomalies, which are smooth over considerable distances. Theselargefeaturesare
referred to asregional trends. The effect of these regional trends can be subtracted from the data
to leave the small-scale variations or residual anomalies.

The location of the main set of gravity field data profiles used in this study are displayed
and marked in different colors as shown in Figure 3.1. The gravity data used in this study were
acquired from two marine surveys. Meteor 25/4 expedition, Meteor 40/1 expedition (Dehghani,
1994 and 1999) and combined with all the available gravity data from the GEODASS data base.

" 1A milligal unit of measurement of the gravity field. A milligal (mGal) is 103 Gals. The Gal is the basic unit
in gravity, equals1cms™? =102 ms? and is named after Galileo Galilei .i.e. 1 mGal =10° ms? .
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In addition, several gravity profiles were obtained from B. G. 1., and grid points representing
gravity data obtained from the gravity map from a survey on Crete Island during 1997-1998
(Lange, 2000).

The marine gravity field data, which were obtained from GEODAS Data base, include the
following parameters: latitude, longitude, water depth, observed gravity, and Free-Air anomaly.
The marine gravity field data, which were obtained from B.G.1., include | atitude, longitude, wa-
ter depth (onshore), elevation (offshore), observed gravity, and Free-Air anomaly.

The marine gravity survey measurements were acquired from the: Meteor 25/4 and Me-
teor 40/1 expedition and recorded using the KSS 30 gyro-stabilized gravimeter system, no.15
and the GPS navigation of the Institute of Geophysics, University of Hamburg. The gravity val-
ues, together with the navigation data, were recorded continuously every ten seconds. Pre-
processing of these data was done on the ship and the bathymetric data were measured contin-
uously with HydroSweep (Dehghani, 1994 and 1999). The acquired data from two Meteor ex-
peditions were combined with all available gravity data as mentioned above after applying the
necessary reduction (see below). In general the data processing consists of the following steps:
The data set is checked for erroneous values. After considering the frequency spectrum the re-
corded data are processed with a Gaussian, weighted average filter. Speed, heading and course
arefiltered before calculating the gravity anomalies, where with marine gravity surveys strong
disturbing accelerations occur due to the sea state. These are short-periodic and can be eimi-
nated by filtering (Dehghani, 1994 and 1999). A brief description of the processing and trans-

formation of the gravity field datainto Free-Air and Bouguer anomalies are presented below.

[11.1.1. Evaluation processing of the Free-Air and Bouguer gravity field data

The gravity field data were processed and evaluated into Free-Air anomaly Aggp, using

the following formula:

A9ra =9- Yo *O0rr + 89 1(L,s) + OUEqy  [MGA]
where g istheobserved gravity value, Yo isthetheoretical gravity value according to
theinternational Gravity Formulaof 1967 (Telford et al., 1990), dJg, isthe Free-Air reduction,
Sg T(L,S) isthetide effect (see Liebe, 1986), and 59 Eoty 18 the E6tvds correction.
The Free-Air reduction dgg, depends on the altitude of the measured point and is zero
in marine surveys and equal +0.3086 h mGal/m at the situation of land observation, where his

land elevation at the measured point (Dobrin, 1976). The Free-Air reduction concerns the fact
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that gravity is decreasing with increasing distance to the reference height. As marine gravity
measurements are carried out at the reference level, no extra height correction factor has to be
applied.

The E6tvs correction is the most important reduction for marine gravity measurements.
The Eo6tvos effect describes the vertical component of the Coriolis acceleration that occurs
when the ship ismoving. At sea, the main error in gravity investigations results from incorrect
navigation data. The determination of the velocity over ground is most difficult. Consequently
the accuracy of gravity measurements at sea is dependent on the correct determination of the
Eotvos correction. Eotvos effect is described by the following equation (see Dehlinger, 1978):

80 Eory =20V Cososina +v2/ R [mGal]

where ® angular velocity dueto earth'srotation, v isthevelocity in [knots], ¢ isthe geograph-
iclatitudein [°] and a is the ships course with respect to north in [°] and Risthe earth's radius.
The course o and the vel ocity Vv of the ship were determined from the GPS datarecorded during
the survey. 8¢ Eoty E0tvos reduction is zero if the survey is terrestrial from a non-moving plat-
form.

The Bouguer anomaly AQgp Was obtained by substracting the Free-Air reduction 30,
the Bouguer reduction 8gg, and the theoretical gravity value g from the observed gravity
value g.

Ada =9 - 9F - 89Br - Yo [mGal]
When the Bouguer reduction is applied to marine gravity measurements, the water body is sub-
stituted with a homogeneous material possessing the average crustal density. Accordingly, the

Bouguer reductionis:

Og;= 2nGph= 0.04191p h [MmGal]
with G being the gravitational constant, p = density, and h = depth of the ocean floor (Note: h
= depth of ocean positive downward from the surface). In this study, the Bouguer reduction den-
sity of 2.67 g/em® was used and the water density assumed as 1.03 g/cm?® (Dobrin, 1976).

In this study, the Free-Air and Bouguer anomaly data were gridded and smoothed using
the inverse-distance method to contour the raw potential field data. In general, the inverse dis-
tance method is the simplest interpolation method of scatter points. This method based on the
assumption that the interpolating surface should be influenced most by the nearby points and

less by the more distant points. The interpolating surface is a weighted average of the scatter
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points and the weight assigned to each scatter point diminishes as the distance from the inter-
polation point to the scatter point increases (see Shepard, 1968). By interpolation of the original
gravity data, aregular grid was obtained. The gravity data were gridded at a spacing of 0.005°
or 0.555 km, using GMT software. Based on these grids contour maps were constructed. Ac-
cording to the accuracy of the gravity data, a contour interval of 10 mGal was still allowed. The
compiled data were interpolated and plotted with contour intervals of 30, 20 and 10 mGal, re-
spectively by using the GMT software. In order to do a more detailed qualitative analysis and
also to obtain a clear image of the Free-Air and Bouguer anomalies a contour interval of 10
mGal is chosen as shown in Figures 3.1 and 3.2 respectively.

The image of the anomaliesis only considered real where they are attached by shipboard
profiles. Along a specific contour line, the distance between two pointsisirregular. The point
density along a contour is usually low for straight lines and get higher as curvature of the con-
tour increases. There are some mask specified areas around the boundaries of the area investi-
gated which create overlay. These areas are not covered by gravity data, asshownin Figure 3.1,
and in other maps in this study.

[11.2. Magnetic investigations

Thetotal intensity of the marine magnetic data are acquired from the GEODASS data base,
including the following parameters: latitude, longitude, and total intensity of the magnetic field.
These data refer to different decades valid for the different magnetic surveys. In addition, sev-
eral profiles of the marine total intensity magnetic field measurements were acquired from Me-
teor 25/4 expedition. These data were recorded on profiles along the gravity lines in the area
under study (Figure 3.3), and carried out with a proton precession magnetometer type ELSEC
7704 of the Institute of Geophysics, University of Hamburg. The analogue data by Meteor 25/
4, 1993 have been digitized continuously and merged with the navigation data (Dehghani,
1994).

In order to produce a uniform total intensity magnetic anomaly map of the area investi-
gated, all availabletotal intensity magnetic field data have been compiled, and then plotted us-
ing the GMT software. The datafrom the GEODA S data base are displayed in red lines, and the
data recovered during the Meteor 25/4 expedition are outlined in yellow (Figure 3.3).
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I11.3. A qualitative inter pretation of the gravity and magnetic data

A qualitative interpretation is very important for interpreting gravity and magnetic anom-
alies data. Itsfirst stage of an interpretation involving recognition of source bodies and struc-
tures. This interpretation depends on a number of variables involve identifying linear features
formed by anomaly shapes, gradients, and inferring structures anal ogous to important structures
mapped from other data (Romberg, 1958).

In order to discuss the correlation of the gravity and magnetic field with geological struc-
tures, the Free-Air and Bouguer gravity, and thetotal intensity magnetic field anomaly mapsare
presented together with main tectonic features of the study areaas shownin Figures 3.1, 3.2 and

3.3 respectively.

[11.3.1. A qualitative inter pretation of the Free-Air gravity data

Figure 3.1 shows the Free-Air anomaly map of the study area. The Free-Air anomalies
cover the range from -230 to +150 mGal. A qualitative analysis of the Free-Air anomalies re-
veals the following features:

Free-Air anomaliesin the Eastern Mediterranean Sea are generally negative. Positive val-
ues are found only over the Nile cone. The minimum and maximum values are located in the
Rhodes Basin (less than -220 mGal) and on the region north of the Cretan Island Arc with up to
+120 mGal. The negative Free-Air anomaly values are located in the Rhodes Basin between 28°
N and 29° N and the southern Hellenic Arc between 27°S and 28° S and can probably berelated
to adeep crustal structure.

The Free-Air anomaly map contains information on tectonic features at regional and local
scale, which may reflect the effect of the bathymetric and topographic featuresin avery general
way. Thereisan almost continuous concave anomaly pattern extending from the south of Crete
to the northeast of the Rhodes Basin and Turkey and in the south of Cyprus between Cyprus and
the Eratosthenes Seamount.

A major discontinuity in the negative anomaly occurs south of Cyprus over the Anaxi-
mander Seamounts, where the Free-Air anomaly exhibits a relative maximum of -60 mGal. A
seriesof local negative Free-Air anomalies point to the northern flank of the East M editerranean
Ridge, the Pliny, Strabo Trenches and Rhodes Basin. These mostly lie over the -120 mGal
boundary contour line.

Theregion of long linear features pointing at the Herodotus Abyssal Plain and Nile cone,

corresponds to increasingly less negative Free-Air anomalies, with the only major positive
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anomaly in the marine areas situated over the mouth of the Nile, owing to the load of the deltaic
sediments. A comparison between the bathymetric and topographic features pattern map (Fig-
ure 2. 1) and the Free-Air anomaly map reveals many similarities. i.e. gradients of the Free-Air
anomaliesarelargein thevicinity of Cyprus. These anomalies range from more than +20 mGal
along the coastline of Cyprusto less than -80 south of Cyprus. They rise again to more than -20
over Eratosthenes Seamount.

The Free-Air anomaly describesthe state of isostatic equilibrium of alarge-scale structure
like a geological basin. It isvery small if aregion istotally compensated. The structure has to
be at least ten times than the compensation depth. The Free-Air anomaly is positiveif the struc-
ture is only partially compensated or not compensated at all. It is negative if the structure is
over-compensated. By observed the orientation of the Free-Air anomaliesin the study area, in-

dicated that the isostatic equilibrium is far from being achieved.

[11.3.2. A qualitative inter pretation of the Bouguer gravity data

Figure 3.2 shows the Bouguer gravity anomaly map of the study area. The qualitative
analysis of the Bouguer anomalies reveals the following features:

Theanomaliesfield liesin theareawith valuesranging from-130 to +200 mGal. Bouguer
anomaliesin the Eastern Mediterranean Sea are predominantly positive, asit might be expected
for an oceanic area. Elongated and longer shape anomalies are present. The long linear anoma-
lies in the map are clear and well defined, being narrow and high gradient anomalies. Most of
the broad changes in the Bouguer anomalies can be related to changes in crustal thickness.

The Bouguer anomaliesin the Eastern M editerranean Sea are dominated by an elongated
NE-SW trending positive Bouguer anomaly, with a maximum of about +200 mGal coinciding
with the elongated anomaly of the Herodotus Abyssal Plain.

The Bouguer anomaly values, in the southeast corner of the area investigated generally
decrease towards the east and southeast due to transition from the oceanic crust of the Eastern
Mediterranean to the continental crust of the Arabian plate.

To the northwest of the East Mediterranean Ridge there is a broad, relatively elongated
high Bouguer anomaly. A negative Bouguer anomaly occurs near the East Mediterranean Ridge
between 27° N and 28° N, as indicated by the bathymetric features and crustal thickening.

The Bouguer anomalies of Cyprean Arc and the eastern part of the Hellenic Arc coincide
with bathymetric features. The area south of the Rhodes Basin has adepth of about -3000 meters

and a Bouguer anomaly of nearly +120 mGal. On the other hand, the Anaximander Seamounts
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are marked by arelative low Bouguer anomaly of only +60 mGal.

To the north of the Cretan I1sland Arc, the Bouguer anomalies strike nearly E-W with an
oval shape, following the bathymetric and morphol ogical features. The maximum reachesaval-
ue of +170 mGal, its position coinciding with aminimum Mohorocivic (Moho) 2 discontinuity
depth of 17 km (see Chapter V).

There is a concave northward positive gravity anomaly with a maximum of nearly +190
mGal near the NW extremity of Cypruswhich isexpected to berelated to Cretaceous ophilolites
overlying the continental crust of Cyprus. The maximum part of this positive anomaly is asso-
ciated with the ophilolite.

A broad Bouguer anomaly more than +60 mGal covers most north east of the Nile Delta
front and the south west of the Eratosthenes Seamount. The Bouguer anomaly reaches +120
mGal, which is expected to be caused by the rapid decrease of low density sediments and inci-
dence of high density crystalline or igneous rocks.

There are negative Bouguer anomalies located over the Dead Sea and the Northwestern
East Mediterranean Ridge that are caused by thickening of the crust. Negative Bouguer anom-
aliesare aso located in the NE CilicaBasin, in southern Turkey, and in the NW Rhodes Basin,
and can also probably be related to crustal thickening.

In the Nile valley and Delta, where the bathymetry varies from 0 to 500 m, the negative
Bouguer anomaly value ranges only from -10 to -30 mGal. This corresponds to the thickness of
the Nile Quaternary sediment. A strong negative Bouguer anomaly is observed in the Gulf of
Suez which is caused by thick sedimentsin thisregion.

The Bouguer anomaly is negative for atotally or partially compensated structure, an ex-
cess of less dense material beneath the measurement station. It is zero for a noncompensated
structure. The Bouguer anomaly is positive when an excess of especialy dense materia is
present. The absence of a large Bouguer anomaly associated with the extreme relief indicates
that the area is, as could be expected, not isostatically compensated by local variations in the
crustal or mantle structure. If the areais not completely isostatically compensated by local var-
iations in the crust or mantle an additional dynamic compenstation mechanism must be consid-
ered.

[11.3.3. A qualitative inter pretation of thetotal intensity magnetic data
The total intensity magnetic anomaly map with a contour interval of 100 nT (nanoTes-

Ia)*3 isgivenin Figure. 3.3. A qualitative analysis of thetotal intensity magnetic anomaliesre-

*2 Mohorocivic discontinuity isthe boundary surface or sharp seismic - velocity discontinuity that separated the Earth’s crust from
the subjacent mantle. It is named in honor of its discoverer, Andrija Mohorovivic (1857-1936), Croatian seismologist. Syn Moho; M-
discontinuity.

*3 nano Teslas unit of measurement of the magnetic field. (A nano Teslais 107 Teslas).



1. GRAVITY AND MAGNETIC INVESTIGATIONS AND QUALITATIVE INTERPRETATION 35

vedls the following features. The total intensity magnetic anomalies in the area range from
+42200 to +45600 nT. Smaller and longer shape features anomalies are present.

The total intensity magnetic anomalies are generaly oriented from NW to the SE trend
and correlated strongly with bathymetric and topographic features. For example, the complex
bathymetric structure of the Cyprean Arc is characterized by a series of magnetic anomaliesthat
are produced by the ophiolites located within the sedimentary sequence, or overthrust the con-
tinent.

Thereisan arcuate magnetic high value over Cyprus and the Cyprus structure that is con-
nected to the Turkish mainland in the northwest. The low value in anomaliesin the Levant Ba-
sin, the Eratosthenes Seamount, and at the Egyptian coast are related to thick sedimentsin these
areas. A seriesof high magnetic anomalies around the Cyprean Arc run from the AntalyaBasin
across Cyprusto the coast of the Arabian plate. They coincide with acomparatively strong pos-
itive Bouguer gravity anomaly, which isrelated to the presence of the ophiolite over Cyprus, in

southern Turkey, and on the northwest Cyprean Arc as mentioned above.

111.4. Separation of the gravity and magnetic data

Geophysical maps usually contain a number of features (anomalies, structures, ect.)
which are superposed on each other. For instance, agravity map may be composed of regional,
local, and micro-anomalies. The aim of an interpretation of such mapsisto extract as much use-
ful information as possible from the data. Since one type of anomaly often masks another, the
need arisesto separate the various features from each other. In addition, the objective of the sep-
aration of gravity and magnetic datais to extract any deep seated anomaly features that are be-
yond the limits of the local disturbances. The removal of the regional field from the observed
field produces a residual. These residuas are very important in deducing shallow anomalous
features which are usually of primary interest in geophysical prospecting.

To isolate the gravity and magnetic field caused by the earth’ s crustal sources, aregional
- residual gravity and magnetic anomaly maps were produced (see Figures 3.4, 3.5, 3.6, and 3.7)
respectively. In general, the regional-residual separation of the gravity and magnetic data is
non-unique and not all the regional trends may be excluded and not all the local anhomalies are
retained in the residua fields. Therefore, these maps may only be used for a qualitative inter-
pretation.
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[11.4.1. Separation acquisition and methods

There are some classical methods proposed for the separation of the gravity and magnetic
data (e.g. Nettleton, 1954, Abdelrahman et a., 1985). The ssimplest is the graphical method in
which aregional trend is drawn manually for profile data. Determination of the trend is based
upon the interpreter’ s understanding of the geology and related field distribution. Thisis a sub-
jective approach and also becomes increasingly difficult with large 2-D data sets. In the second
approach, the regional field is estimated by least-squares fitting a low-order of the observed
field (Abdelrahman et al., 1991). This reduces subjectively, but still needs to specify the order
of the polynomial and to select the data pointsto be fit. The third approach applies a digital fil-
ter. In this study, one of the 2-D data sets processing techniques was applied. This method
namely the polynomial trend surface and wavel ength filtering method, and was used in separat-
ing the residual from the regional fields provided by using GMT software (Wessel and Smith,
2001).

Generally, wavelength filtering hel psin determining the depth of the different anomalous
bodies. Wavelength filtering assumes that long wavel engths are due to regional but short wave-
lengths are due to local anomalies. High pass filtering will reveal the shallow local anomalies.
In thefollowing, abrief account of theoretical concepts of the polynomial trend surface method
IS presented:

The polynomial trend surface method is widely used by geologists, particularly in petro-
leum expl oration, as ameans of separating amapped variableinto two components, the regional
and residual trends. The trend corresponds to the concept of regional features while residuals
represent local features. This method is based on the assumption that the spatial distribution of
aparticular phenomenon can be represented by some form of continuous surface, usually ade-
fined geometric function. It is assumed that an observed spatial pattern can be regarded as the
summation of such asurface and aregional or residual term. The surfaceisafunction of thetwo

orthogonal coordinate axes, mathematically, this can be represented by (see Davis, 1973):

Z=f(x,y)+¢€
inwhich the variate Z at the point (X,y) isafunction of the coordinate axes, plusthe error term
€. Thisexpression isthe generalised form of the general linear model, which is the basis of the
most common trend methods. The function f (X,y) is expanded (approximated) with various
terms to generate polynomial equations.

As acommon example, consider fitting a trend surface as a polynomial regression using
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(x,y) coordinates as the predictor variable. In the case of athird order polynomial (cubic), the
fit takes the form:

Z (x,y) =m+ mX + mgY+ my XY + m5X2+n16Y2 + m7X3 + m8X2Y + mgXY2 + m10Y3

In general, the polynomial trend surfaceis considered as afiltering operation, where asur-
face fitted by polynomial regression emphasizes the coarse-scale pattern in the data while es-
sentially ignoring and thus removing any finer scale pattern.This is easy to visualize by
considering the range of variability that can be captured by polynomials of increasing order, i.e.
afirst order (linear) regression can capture only strictly increasing or decreasing trends, a sec-
ond order (quadratic) regression can capture a single extrema (a minimum or a maximum, cor-
responding to a concave or convex surface), a third-order polynomial (cubic) can capture two
extrema, and so on. Any finer scale pattern is lost as residual variation. Thus, hypothetically,
the polynomial trend surface method partitions the original data into two components. the
coarse-scale pattern captured by the regional trend at a resolution dictated by the order of the
polynomial, and the finer-scale variability that is relegated to the residuals. Furthermore, the
polynomial trend surface represent match the regional by a polynomial surface of low orders.
Therest is assumed to be residual anomalies.

In this study, the regional trend was applied as either afirst, a second or third order poly-
nomial surface in order to assess which order number was most specify and significantly the
order number of polynomial surface. A polynomial surface processing to the order of athird
provides the best approximation to the observable gravity and magnetic field. The data were
gridded and smoothed using the inverse distance method. In general, the polynomial surface
trend was fitted to the two-dimensional gridded data by a weighted |east-squares method pro-
vided by GMT software. The program will iteratively reweight the data based on arobust scale
estimate, in order to converge to a solution insensitive to outliers. Thus, the planer trend of the

regional field is separated from the observed gravity field.

[11.4.2. Interpretation of theregional and residual gravity anomalies
In Figures 3.4 and 3.5 respectively, the regiona and residual gravity anomaly maps are
displayed and plotted with a contour interval of 5 mGal and 10 mGal to show more detail.
Generally, theregional field in the areaunder study is characterized by an oval shape and
revealsthat the orientation is mainly to ENE-WSW direction (Figure 3.4). It isconsidered to be
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mainly influenced by the density contrast between the crust and upper mantle, and the undulat-
ing Moho discontinuity.

Theregional anomaly field values generally decrease towardsthe E-W direction. Thisbe-
haviour trends reflect the effect of the transition from oceanic crust to the continental crust of
the Eastern Mediterranean towards the Arabian plate.

In the northern part of Egypt, the regional anomaly shows an increase from -10 to +60
mGal. Thisindicates that the crustal thickness decreases towards the Mediterranean Sea.

Figure 3.5 shows the residual gravity anomaly map with the alternatively high and low
gravity anomalies of different orientation, gradients and shapes. This reflects the effect of the
difference in density between the crystalline or igneous crust and the sediments, the variation
of the basement geometry, and the effect of the bathymetric and topographic features.

In the south east of Crete, the negative residual gravity anomalies with a minimum value
of -120 mGal are associated with the thick sedimentary sequences below the Eastern Mediter-
ranean Ridge, as well as the negative anomalies of -40 mGal around southern Cyprus. Thisis
related to the structures of the sedimentary sequences and the basement geometry.

Theresidual gravity anomaliesin the Herodotus Abyssal Plain are dominated by an
elongated NE-SW trend with a maximum value of about +100 mGal, which coincides with the
elongated bathymetric and topographic features of the Herodotus Abyssal Plain.

Thereisaremarkable minimum in the residua gravity anomaly in the Gulf of Suez. This
isdueto the effect of sedimentary cover, which hasathickness of 6 km (Said, 1962). In the Nile
Deltaarea, the negativeresidual gravity anomaly is-60 mGal, dueto thick sedimentsin the Del-
ta. A number of local residual gravity anomaly lows and highs are also apparent.

In general, the features of the gravity field such as the gradients and elongated anomalies,
can be divided into three groups according to their trends: The first group, oriented in ENE-
WSW and influenced by the density contrast between the crust and upper mantle. The second
group, oriented in NE-SW direction parallel to the coastal line, reflects mainly the thicknessvar-
tions of the Tertiary sediments. The third group, oriented NW-SE, may be related to the young

tectonic dislocations.

[11.4.3. Interpretation of theregional and residual magnetic anomalies
Thetotal intensity magnetic anomaly map of the areaunder study isalso resolved into its
regional and residual components using a polynomial trend surface and wavelength filtering

method. The regional and residual magnetic anomaly maps are shown in Figures 3.6 and 3.7
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Figure 3.4: Regional Bouguer gravity anomaly map of the southeastern Mediterranean Sea and the northern section of Egypt.
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respectively. Generally, the regional magnetic anomalies are dominant in NW-SE trends and
the regional magnetic anomalies increases in northward direction, which may reflect the shal-
low depth of the basement rocks in this direction. The regional magnetic anomalies may reflect
the global regional magnetic field trends over the region as also suggested by Woodside and
Bowin (1970). The close inspection of the distribution of the residual magnetic anomalies ex-
hibits avery complex pattern with different polarities and magnitudes values.

Correlation of the residual magnetic anomaly with the observed bathymetric and topo-
graphic features of the area investigated reveals a very good match between the various mag-
netic anomalies, the bathymetric and topographic features, and the main tectonic elements.

The residual magnetic anomalies are characterized by broad anomalies covering large ar-
eas in the different natural positive and negative anomalies. In the south east Crete region, the
residual anomaly trend reflectstheregional trends. Thisindicatesrelatively shallower basement
rocksin thiszone. The negative magnetic anomaly in the Levant Basin, and the offshore Egypt,
could be caused by the combined effects of athick sediment layer and the reversed remanent

magnetization of the old oceanic crust.
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111.5. Satellite Gravity

The Earths surface has been monitored for nearly 20 years from satellites altimeters. Glo-
bal mapping of the Earth gravity fields from different data sources has previously been present-
ed by. e.g. Haxby (1987); Balmino et al. (1987); Sandwell and Smith (1997a); Andersen and
Knudsen (1995), and thefirst gravity field from the full ERS-1 geodetic mission were presented
by Andersen et al. (1995).

Satellite altimetry has enhanced our understanding of marine gravity, seafloor bathymetry
and ocean circulation. Two satellites have operated in geodetic mission configurations. GEO-
SAT (1985-1986) where the satellite was operated in a non-repeating orbit, which yielded a
very dense, though not completely homogeneous coverage of observations, and ERS-1 which
covers all oceans between -82° and +82° |atitudes and provides a very dense and homogeneous
coverage. Satellite altimetry GEOSAT and ERS-1 provides the opportunity for geodesists to
make very detailed mapping of the marine gravity field, and to supplement their own data set
(Sandweell and Smith, 1997a).

The concept of determining marine gravity anomalies from satellite radar altimetry are as
follows: Thealtimeter essentially measuresthe distance between the satellite and the sea surface
along the nadir using pulse-limited radar at a series of footprints along the sub-satellite tracks
(Fu and Cazenave, 2001). After modelling tidal effects and applying geophysical corrections,
these measurements are then averaged (stacked) to give the mean shape of the sea surface with
respect to a prescribed reference ellipsoid, knowing the position of the satellite from tracking,
dynamic orbit modelling or both. To afirst coarse approximation, the mean sea surface coin-
cides with the geoid. However, these two surface depart by up to ~ 2 m due to sea surface to-
pography, which is caused by oceanographic effects (Hipkin, 2000). Therefore, techniques to
model and /or mitigate the effects of sea surface topography from the altimeter measurements
form an integral part of estimating marine gravity anomalies from satellite altimetry.

Over the past two decades, marine gravity anomalies have been computed from satellites
atimetry, starting with the work of Haxby et al. (1983) and Brenneke and L elgemann (1983).
There are now several different altimeter-derived gravity anomaly grids available in public
domains, which have been computed by various groups using different data combinations and
different computational philosophies. The data used in this study covers only the most recent
satellite altimeter marine gravity field. A brief overview of thisdatais given below.

- Sandwell’sversion 10.1 satellite altimeter gravity field (Sandwell et al., 1997)
For two decades, Sandwell of Scripps Institute of Oceanography, California, USA, has
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produced global gravity anomalies from multi-mission satellite altimetry. Sandwell’s version
10.1 global grid of marine gravity anomalies is the most recent in this series, with the devel op-
ments leading to the model reported in Sandwell (1992) and Sandwell and Smith (1997a). The
version 10.1 global grid is available on 1 or 2 arc-minute spatial resolution grids from http://
topex.ucsd.edu/marine_grav/mar_grav.html. Only the 2 arc-minute grid is used in this study so

as to be compatible with KM S grids.

- The KM S99, KM S02 satellite altimeter gravity field (Ander sen and K nudsen, 1998)

For nearly a decade, Andersen and Knudsen of Kort-og Matrikstyrelsen (KMS), Copen-
hagen, Denmark, have computed global marine gravity anomalies from multi-mission satellite
atimetry. The progressive developments in their techniques are reported for example in An-
dersen and Knudsen (1998) and Andersen et a. (1999). The KM S02 and KM S99 gravity anom-
ay grids are the most recent in this series and result from refinements in the techniques
described by Andersen and Knudsen, 1998. Both grids are supplied at a 2 arc-minute by 2 arc-
minute spatial resolution, and are available in the public domain via anonymous ftp from
ftp.kms.dk/GRAVITY.

There are several methods to compute gravity anomalies from satellite altimetry such as:
Method 1: Gravity anomalies from point-mass models, Method 2: Gravity anomalies from ge-
oid heights using an inverse Stokes integral; Method 3: Gravity anomalies from vertical deflec-
tionsusing an inverse Vening-Meinsz integral; and Method 4: Gravity anomalies from vertical
deflections via Laplace' s equation (Featherstone, 2001 and Featherstone, et al. 2002).

Also there are some significant differences between marine gravity anomalies computed
by different groups from satellite rader altimetry (e.g. Sandwell’ s version 10.1 global grid and
KMS grids satellite altimetry). These tend to become larger in coastal regions, which is due to
the numerous problems associated with correcting altimeter data in these regions. Therefore,
these data should be used with extreme caution in these regions. Since the altimeter grids are
derived from predominantly the same altimeter data sources (mostly GEOSAT and ERS-1), the
differences are dueto the datatreatment (notably outlier detection, gridding and filtering), mod-
elsof seasurfacetopography and tides, and the computational philosophiestaken by each group
(Andersen and Knudsen, 1995).

In general, Sandwell’ sversion 10.1 global grid is derived from multi-mission satellite al-
timetry from ERS-1, TOPEX, and GEOSAT, and refinements in filtering during gridding and

Fourier transform conversion to procedures set out in Sandwell and Smith (1997a). To summa-
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rise, the along-track gradients (vertical deflection) were computed and gridded iteratively using
splinesthat include Wiener-type filter. The gravity anomalies were computed from this grid us-
ing the Fourier transform implementation of the Laplace-based inversion of the vertical deflec-
tion method (Sandwell and Smith, 1997 a; Method 4 as mentioned above). However, these
KMS grid have been computed using a combination of ERS-1 and GEOSAT satellite altimetry
viageoid (Andersen and Knudsen, 1998, Method 2 as mentioned above).

The marine gravity data derived from satellite altimetry have been used in an evaluation
of the gravity field of the areainvestigated. The following section presents the investigation of
the gravity field data derived from two most recent satellite altimetries of the areainvestigated.
Furthermore, a comparison of the result of the shipboard marine Free-Air gravity datawith the

gravity data derived from satellite altimetry of the study area also is presented.

[11.5.1. Theavailable satellite altimetry marine gravity field of the area investigated

The available marine gravity field data derived from satellite altimetry and used in this
study were obtained from: Sandwell’s version 10.1 global grid (Sandwell et al., 1997); and
KMS99, KMS02 (Andersen and Knudsen, 1998). Figures 3.8, 3.9, and 3.10 show the Free-Air
gravity anomaly map based on satellite data from Sandwell et al., 1997 and KM S99, KM S02
respectively.

The Free-Air gravity anomaly map based on satellite altimetry from Sandwell’ s version
10.1 global grid was carried out relative to the atimetry data reduction to gravity data. The al-
timetry data are separated into ascending and descending profiles for each repeat cycle and dif-
ferentiated in the along-track direction to obtain along-track vertical deflections (geoid slopes).
The vertical deflections for all the repeat cycles are then averaged into a single ascending and
descending profile which are combined to produce grids of the eastern and northern components
of vertical deflection. These grids are used to compute both gravity anomaly and vertical gravity
gradient grids (Sandwell et a., 1997). The marine gravity field derived from satellite altimetry
by Sandwell’ sversion 10.1 global grid showsawavelength of 10 to 15 km (Sandwell and Smith
1997a, 1997b).

The Free-Air gravity anomaly mapping of the KM S99; KM S02 gravity field was carried
out relative to the geoid using the GRAV SOFT software. The processing of dataand conversion
of observationsinto gravity field were carried out in small cells of size 2° latitude by 10° lon-
gitude and sea surface variability (Knudsen and Andersen, 1998). The primary differenceisbe-

tween the longitude. The selection of such small sub-areas was essential to the modelling of
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orbit errors KM S99 and KM S02 grids is a further fine-tuning of the filter characteristics, both
in gridding of geoid height to gravity anomalies.

Observed more closely, the marine gravity anomaly maps of the areainvestigated derived
from satellite altimetry are seen to have alarge gradient asadirect effect of bathymetric changes
closeto the coast. It has avery large gravity signal ranging between -230 and +150 mGal (Fig-
ures 3.8, 3.9, and 3.10). Thismajor gravity signa isrelated to the Hellenic Arc and the Cyprean
arc where steep bathymetric changes occur within afew kilometres. The gravity field isseen to
fall dramatically just south of Cyprus (Figures 3.8, 3.9, and 3.10), where the depth rapidly grows
to more than 2000 meters (see Figure 2.1 in Chapter 11).

[11.5.2. Comparison with the shipboard marine Free-Air gravity and bathymetric data

As an example of estimating, and to show a comparison result of the shipboard gravity
anomaly data of the area investigated and the satellite data, a comparison with the shipboard
gravity anomaly datawas made in two regions along two profiles (e.g. B-Bll and c-Cll). There-
gions belonging to these profiles are chosen to avoid edge-effect of the gravity anomaly near
land in the study area. Also theseregions have very different gravity signatures as shownin Fig-
ures 3.8, 3.9, and 3.10. Furthermore, these profiles cross the main tectonic elementsin the in-
vetsigated area. The location of the profiles are shown in Figure 3.8.

In comparison with the shipboard gravity data, the satellite data show only minor devia-
tionsin some partialy regions of the areainvestigated (Figures 3.11 and 3.12). Also thereare a
significant dip and peak at all the gravity anomalies along the profiles B-Bll and c-Cll.

However, the comparison of processed marine gravity data, and the resolution of satellite
gravity data still seems to be limited. The mgjor limitation of the satellite altimetry datais not
of high precision but a poor data coverage (Sandwell, 1992 and Knudsen and Andersen, 1998).

Also, in comparison with the wavelength gradient of the gravity anomaly, the long wave-
length gradient can be observed and decrease in values towards the E-W direction. This behav-
iour shows the edge-effect at the transition from oceanic to continental crust (Figures 3.8, 3.9,
and 3.10).

Furthermore, a comparison of the measured shipboard bathymetric data with the satellite
data (e.g. from Sandwell et al., 1997) was made along seismic profile D-Dll as shown in Figure
3.13 [A]. This profile corresponds in most part with plane 15 of the three-dimensional model
(see Figures 3.8 and 5.10). The largest difference in depth between the two data sets amountsto
250 m and is located at subduction trenches as shown in Figure 3.13 [B].
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Figure 3.11: [A] : A comparison of the shipborad gravity datawith the satellite gravity data along profile B-Bll
[B] : The differnce between satellite and shipboard gravity data.

The red curve desribe the satellite gravity data were obtained from Sandwell et al., 1997. The and blue
curves mark the and KM S02 satellite gravity data were obtained from Andersen and Knudsen, 1998.
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Figure 3.12: [A] : A comparison of the shipborad gravity data with the satellite gravity data along profile c-cl
[B] : The differnce between satellite and shipboard gravity data.

The red curve desribe the satellite gravity data were obtained from Sandwell et al., 1997. The and blue

curves mark the and KMS02 satellite gravity data were obtained from Andersen and Knudsen 1998.
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[11.5.3. The differences between the satellite and the shipboard gravity anomaly data

Figure 3.14 shows as one exampl e the differences between the satellite and the shipboard
data. This map was created by using the “grdmath” option in GM Tsoftware (Generic Mapping
Tools, Wessel and Smith, 2001) for two grid files of the satellite and the shipboard gravity
anomaly data.

In general, the differences between the satellite and the shipboard data are small in some
regions of the areainvestigated. These occurred mostly near to land. Furthermore, some strong
deviationsin some regions, which are spatially correlated with bathymetric depth and geologi-
cal structures become obvious from Figure 3.14.

There are adso differencesin polarities and gradients of the gravity anomalies. These oc-
cur mostly inregions of steep gravity gradients (i.e. in the northeast of Crete and Cyprean Arc).
This reflects the effect of the structural featuresin the areas.

A series of local maxima and minima of the gravity anomalies in areas near the Libyan
and Egyptian coastlines may be related to young tectonic dislocations (Figure 3.14).

Overal, the shipboard data are important near the coast lines and the regions of strong
bathymetric depths and highs of showed wavelength. However, the precision of the satellite
datais, in the study region, sufficient when large scale features are studied.
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| V. RESULTSOF THE SEISMIC STUDIES

To estimate atectonic model for the study area within the regional tectonic concepts, re-
sults of the available seismic studies were obtained. These results were used to constrain layer
geometry and thickness and to provide initial estimates of the layer densities along some seis-
mic profiles crossing the main tectonic elements in the investigation area.

Various international organizations carried out deep seismic sounding experiments
(DSS), wide-anglereflection/ refraction seismic (WARRS) experiments and expanding spread
profiles (ESP) of atwo-ship refraction survey in the Eastern Mediterranean Sea. The seismic
information directly concerning the tectonic models of the study areais described in detail be-
low. In addition, some results from seismic profiles in several parts of the study area will be

described as shown in Figure 4.1 and also in Figure Appendix [A4].

IV.1. Deep seismic sounding experiments (DSS)
IV.1.1. Seismic profile of Cyprus-lsrael

In October 1978, along seismic refraction profile was recorded between southern Israel
and Cyprusto provide information on the structure of the crust and upper mantle between Cy-
prus and Israel. This was carried out by the Institute of Geophysics, University of Hamburg,
Germany, in cooperation with the following organizations: Oceanographic and Limnologic Re-
search Ltd of Isragl, the Institute of Geophysics of the Free University of Berlin, the Depart-
ment of Geophysicsand Planetary Science, Tel Aviv University, Institut de Physique du Globe,
Université Pierre et Marie Curie, Paris, the Institute of Oceanographic Sciences, Wormly, and
the Geological Survey of Cyprus, Nicosa. This seismic profile is 540 km long and marked by
lineA-Allin Figure4.1. The seismic energy was generated by 33 Sea shots each of 800 kg fired
explosives and were recorded by land stations in Israel and Cyprus and by ocean bottom seis-
mographs (OBS) deployed along the profile. The data was evaluated using two-dimensional
ray-tracing techniques (Makris et a., 1983). The calculated crustal velocity depth model is
shown in Figure 4.2. The following points may be taken from the results:

-The continental crust of southern Israel thins towards the Mediterranean, under anorth-
ward thickening sedimentary cover. Cyprus is underlain by an about 25 km thick continental
crust thinning southwards and extending to Eratosthenes Seamount. The upper crust has a ve-
locity of 6.0 km/s and reaches a maximum thickness of about 20 km beneath Cyprus.

-The Eratosthenes Seamount is a continental fragment with a crustal thickness of about
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Figure 4.2: Sketch diagram shows velocity depth model of the profile Cyprus-Isragl, shown as
line A- Allin Figure 4.1. Compiled from Makris et a. (1983).
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22 km (Makriset a., 1983). Between the Eratosthenes Seamount and the I srael continental shelf
the crystalline crust is composed of high velocity (6.5 km/s) material and is about 8 km thick.
Itiscovered by 12 -14 km of sediments and may represent afossil oceanic crust (Makriset al.,
1983).

-Southern Israel isfloored by acontinental crust. The Moho lies at adepth of about 27 km
beneath the coast of Israel. The sediment thicknessis 5 km beneath the continental shelf of Is-
rael suggesting the existence of atransition zone, where the crystalline crust thinsrapidly, while
the sedimentary cover thickens considerably towards the Levant Basin.

-The upper mantle has anormal P-wave velocity of 8.0 km/s (Makriset al., 1983).

IV.1.2. Seismic profiles of Eratosthenes Seamount-lsrael and Levant Basin-1srael

In December 1989, a wide-angle reflection / refraction seismic experiment extending
from thelevant Basin to the coastal areaof Israel was undertaken by the I nstitute of Geophysics,
University of Hamburg, Germany and the Department of Geophysics and Planetary Science,
Tel Aviv University. Two profiles shown as lines B-Bll and B1-B1!! trending WNW-ESE (Fig-
ure 4. 1) were recorded. The seismic energy was generated by airguns for both profiles. Ocean
bottom seismograph (OBS) stations were deployed offshore to record the shots, while land sta-
tions were used onshore. The data was eval uated by two-point kinematic and dynamic ray-trac-
ing seismic modelling (Trey, 1991). A brief description of the results of these profiles are given
in the following:

-The sedimentary cover over the Eratosthenes Seamount has an average thickness of
about 4 km. The sediment thickness increases rapidly to about 12 km in SE direction of the Er-
atosthenes Seamount and under the Levant Basin (Figure 4.3). The continental crust thinsin SE
direction and is abruptly truncated by an oceanic crust to about 10 km thick in the Levant Basin
(Figure 4.3).

-The continent-ocean transition was identified near the coast by a single onshore record-
ing station. Beneath the coast of Israel, the thickness of the sedimentary sequences are 6 km,
while the depth to the Moho lies at about 24 km (Ginzburg et al., 1994). The P-wave velocity
for the compressional waves travelling along the Moho has normal values of 8.0 km/s (Trey,
1991).

-The seismic results of these profiles conform that the Levant Basin isfloored by oceanic
crust. The sediment is interpreted to be about 10 km thick and is underlain by a 6.5-6.9 km/s
velocity crystalline basement (Trey, 1991). In general, the crustal structure of the Levant Basin
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Is oceanic, while the Eratosthenes Seamount is continental (Makriset a.,1983; Ginzburg et al.,
1993).

V.1.3. Seismic profiles of Egypt-Rhodes and Egypt-Crete-Santorin

These profilesrun from the coast of Egypt, extending in NNW direction, and crossing the
Herodotus Abyssal Plain and the East Mediterranean Ridge. Profile C-C !l (Egypt -Rhodes) is
about 580 km long and terminates about 10 km west of the Island of Rhodes, while profile D-
DIl (Egypt-Crete-Santorin) is about 570 km long and crosses Crete, the Cretan Seaand ends near
the Island of Santorin as shown in Figure 4.1 (Wang, 1995).

Based on the drilling information of the sedimentary sequences at the Egyptian coast
(Said, 1962), and the results of refraction seismic experiments, Malovitskiy et al. (1975) pre-
sented a geological cross-section from the Egyptian coast across the Herodotus Abyssal Plain
to the Hellenic Arc “near the Island of Rhodes’ (Figure 4.4). The location of the offshore part
of this cross-section is shown in Figure 4.1, asline C-C I. The Palaeozoic and Mesozoic sedi-
ments are shown to have a thickness of about 6 km at the Egyptian coast, and thicken towards
the Eastern Mediterranean Sea and reach about 11-12 km below the Herodotus Abyssal Plain
(Figure 4.4).

IV.1.4. Seismic profiles of Sidi Barani-Sidi Abdel Rahman

A refraction seismic profile was surveyed between Sidi Barani-Sidi Abel Rahman along
the Egyptian coast. This profile is 250 km long and divided into sub-profiles as lines SB -sall
in Figure 4.1 (Marzouk, 1988). The crust along this profileis 26 km thick below the Mediterra-
nean Sea and the thicknessincreases towards the east to 30 km (Figure 4.5). The Egyptian coast
is underlain by a continental crust covered by a 4-6 km thick sedimentary layer (Makriset a.,
1988).
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IV.2. Wide-angle reflection / refraction seismic profiles in and around the

Cretan region
Makris and Vees (1977), Makris (1978 a, b), Makris (1985) and Hartung (1987), studied

the crustal thickness and velocity structure by several wide-angle reflection / refraction seismic
(WARRS) experiment profilesin the Cretan region, aslines CR1, CR2, CR3 and CR4 in Figure
4.1. Theresults of these seismic experiments are summarized as follows:

-The sedimentary thickness varies from about 1 km below Crete (Figure 4.6) to about 2-
3 km beneath the Cretan Sea (Figure 4.7). The thin sediment covers are mainly post upper Mi-
ocene sediments, although there are remnants of older nappes, which are mainly confined to the
southern border of the Cretan Sea (Makris, 1978 a).

-The Cretan Seaseabed isastretched continental crust forming to an E-W elongated dome
of the upper mantle striking along the Cretan Trough. The maximum thinning of the crust islo-
cated at the central deep part of the trough, where the minimum depth of Moho isonly about 17
km (Figure 4.7).

-Below Crete and the Cretan Sea, the upper crust has a velocity of 6.0 to 6.2 km/s. The
lower crust is controlled by a gradually increasing velocity from about 6.4 to 6.8 km/s (Figures
4.6 and 4.7). The upper mantle here shows avelocity of 7.7 to 7.9 km/s, which is slightly lower
than the normal value of 8.0 km/s obtained elsewhere in the Eastern M editerranean Sea (Makris
et a., 1983). Below Crete, the crustal thickness increases and the depth of the Moho is 30 - 32
km (Figure 4.6).

In addition, Bohnhoff (2000) studied the crustal investigation of the Cretan region using
wide aperture seismic data consisting of three seismic datalinesPI, PIl, and Pl see Figure4.1.
These seismic lines were carried out at Crete region in order to investigate the crustal structure
of the region. Bohnhoff (2000) developed 2D P-wave velocity-depth models for each of the
three seismic lineswhich reveal strong lateral variationsin crustal and sedimentary thickness as
shownin Figures 4.8, 4.9, and 4.10. A brief account of the results of these seismic experiments
are summarized:

-The crust in the Cretan region wasidentified to be continental with amaximum thickness
of 32.5 km below northern Central Crete, thinning towards the north and south to 15 and 17 km
respectively and thinning also along the strike of the main morphological structures on Crete
(E-W) to 24 km (east) and 26 km (west).
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-The velocity structure shows lateral variations within the upper crust (5.8-6.3 km/s, lo-
cally 6.5 km/s) being larger than those of the lower crust (6.4-6.9 km/s).

- Theintracrustal discontinuity was encountered at most parts of the seismic profileswith
velocity contrasts reaching from 0.15 to 0.6 km/s.

- Below the continental Cretan crust, lies a NNE-ward dipping layer that is decoupled
from the overlying continental crust at approximately central Crete. This layer is presently un-
der subduction as oceanic crust below the Aegean Sea. Thisisindicated by a change of crustal
composition moving along with an increasing thickness of the sediments from some hundreds
of metersto more than 7 km just before the northern slope of the central Mediterranean Ridge.

-The prominent reducation of the Moho depth north of central Creteisinterpreted to rep-
resent the northern end of a microcontinent that was subducted in Oligocene times (Stockhert,

1999).

Furthermore, Helms (2001), Planert (2001), and Bronner (2003) studied the crustal and
velocity structures between Crete and Libyan margin -East Mediterranean Seain WARRS sur-
vey (Crete-Project 99, Distribution of OBS-and land stations). Thelocations of the three seismic
lines between Crete and Libyan margin-East Mediterranean Seaare shown in Figure 4.1 aslines
P#1, P#2, and P#3. Helms (2001), Planert (2001), and Bronner (2003) generated 2 D P-wave
velocity-depth models for each of these seismic lines and identified at least four sedimentary
layers, upper and lower continental crust and oceanic crust as shownin Figures4.11, 4.12, and
4.13. A brief account of the results of these seismic experiments are summarized:

-The crustal structure of the African margin iscomplex and varies|laterally. The complex-
ity and lateral variability of the Mediterranean margin of north Africaare demonstratedinasim-
plified way for the Libyan coastal areas (Figures4.11, 4.12, and 4.13).

-The passive continental margin at seismic line P#2 shows thick and strongly tectonized
units of sediments lying on thin continental crust. The African margin-basement and sediments
aong seismic line P#1 are barely affected by faulting.

-The African passive continental margin extendsto nearly 90 km offshore the coastal line
and has an abrupt transition to an oceanic crust buried under 12 to 14 km of sediments. The con-
tinental crust is 23 km thick and thickens towards the coast to a value of about 28 km (Figure
4.11).

-The continental structure along the seismic line P#2 (Figure 4.12) extends at |east to 160
km off the Libyan coast and is severely tectonized. The crust is 22 to 25 km thick including 6
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to 7 km sediments under 2 to 2.5 km water depth. The oceanic structure has alimited extension
to not more than 50 km wide and is covered by 12 to 13 km of strongly tectonized sediments
(Figure 4.12).

V.3. Other deep seismic refraction profiles in the Eastern Mediterranean

Sea

Based on deep seismic refraction profiles R1, R2 and R6 as shown in Figure 4.1 (Lort,
1973), Morelli (1975) presented a schematic crustal section of the Mediterranean Ridge and
Herodotus Abyssal Plain (Figure 4.14). The result shows the existence of a thick sedimentary
cover along profile R1 (about 10 km) in SW direction of the Crete beneath the Mediterranean
Ridge and along profiles R4 and R6 (about 12 -15 km) beneath the Herodotus Abyssal Plain.

Some Deep seismic sounding experiments (DSS) and Expanding spread profiles in the
Mediterranean Sea (ESP) were performed on several parts of the study area. The results of these
seismic profiles are described in detail in Appendix [A] for example, results of the seismic pro-
filesaround and adjacent Dead Searift, the Cyprean region, the M editerranean Ridge and Hero-
dotus Abyssal Plain.
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Figure 4.14: Schematic crustal sectionsin the Eastern Mediterranean Sea, based on deep seismic
refraction profiles. Compiled from Morelli (1975).
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V. TWO AND THREE-DIMENSIONAL GRAVITY MODELLING

Two and three-dimensional gravity modelling has become increasingly important in ap-
plied geophysics and geophysical research. In order to contribute to a better understanding of
the crustal structure of the study area and its relation to the adjacent areas, a quantitative inter-
pretation of the Free-Air gravity field was undertaken by devel oping two and three-dimension-
a gravity modelling.

Since there is no unique solution to agravity effect, because it is more complex, geolog-
ical, seismic, and any other available information are used to constrain the density models. To
calculate the gravity anomalies produced by the subsurface structures, crustal models are as-
sumed. If the calculated gravity values of the density models are in agreement with the meas-
ured ones, then these models should represent a good evaluation to the prevailing conditions,

In the present work, the two-dimensiona gravity modelling was calculated along four
seismic profiles, which cross the main tectonic elements of the area investigated (Figure 5.1).
A two-dimensional gravity model was created using the software TWGRAV (Tawani two-di-
mensional gravity modelling) by applying the technique developed by Talwani et al. (1959).
The quantitative interpretation of gravity data provided only two-dimensional gravity model-
ling images of the crustal structure along the profiles. In order to get a better understanding of
the main tectonic featuresin the study area, three-dimensional gravity models were created us-
ing the IGMAS software (Interactive Gravity and Magnetic Application System) developed by
Gotze et al., 2000. The modelling parameter is constrained by the seismic profile results pre-
sented in the previous chapter.

For the two and three-dimensional gravity modelling, the Free-Air gravity datawas used,
since the Bouguer gravity anomalies may contain additional errors. For the calculation of the
Bouguer gravity field the water depth is substantial. As the bathymetry along the modelling
profile and the model areas, is not satisfactory enough, the Bouguer gravity field may contain
inaccuracies. In the following section, a brief description of the modelling procedures are pre-

sented and the main results of these gravity models are discussed.

V.1. Two-dimensional gravity modelling

Many geological structures are approximately linear, and the problems connected with
them can be solved with two-dimensional forms of analysis. Various methods exist for the

computation of the gravitational attraction caused by irregularly shaped two-dimensional bod-
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ies (e.g. Talwani et al., 1959; 1965; and Parker, 1972). These methods describe a two-dimen-
sional system operation on ageological cross section in which the bodiesfor gravity effectsare
calculated and defined by apolygon. In the following the theory of two-dimensional calculation
according to Talwani et al. (1959) is presented.

V.1.1. Theory of two-dimensional calculation according to Talwani et al., 1959

A two-dimensional body is divided into several small bodies of different size but regular
shapes. In this way a two-dimensional body is approximated by a polygon with a sufficiently
large number of sides. Both the vertical and the horizontal components of the gravitational at-
traction due to this polygon can be computed at any given point. Figure 5.2 is an arbitrary pol-
ygon ABCDEF with n sides.

X
P = >
R(x,2
C (XI+1  Z |+l)
\J
Z

Figure 5.2: Geometrical elements involved in the gravitational attraction of an n - sided poly-
gon.

Let P be the point at which the attraction has to be determined. Imagine P being the
origin of an xz system of coordinates, where the polygon also lieswithin the xz plane. Let
positive z be defined downwards (vertical) and let 6 be measured from the positive x axis

towards the positive z axisasshownin Figure 5.2.

The vertical and horizontal components (V and H respectively) of gravitational attraction

due to such atwo-dimensional body are calculated at the origin as follows:
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V=2Gp § zd®
H:2Gp§ xde (5.2)

Where G is the universal constant of gravitation, and p is the density of the body.
To evaluate the two integrals § zd® and § xd 8 for the polygon above, the
contribution to § z d 8 from the side BC of the polygon can be first computed. Produce CB

to meet the x axis at Qatanangle ¢; . Let PQ =a; . Now
Zz=Xt{an 0O (5.3
For any arbitrary point R on the line BC. Also
z= (X -a;)tan ¢ (5.4)

The z from equations (5.3) and (5.4) can be calculated using the following formula:

a; tan O tan ¢

tan ¢; - tan O
The following formula is based on a substituting of z in the equations (5.3) and (5.4) followed

by an integration:

a; tan O tan O,
J‘BC Zde=J.CB ' : de =Zi (56)

tan ¢; - tan 0

a; tan ¢

48 =X (5.7)

jBC xdg= LC;

tan ¢; _ tan O

The vertical and horizontal components of gravitational attraction due the whole polygon

are then given respectively by

3

5.8
V=2Gp Z; (>-8)

n

and

(5.9)

I M:
kol

H=2G?P
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The summations are made over n  sides of the polygon. It now remains to solve the integrals

involved in the expressions for Z; and X;

In the most general case it can be shown that

Zi= a; sin ¢;cos ¢ ( 0;— B +tan¢; +log

cos 6; (tan 0; - tan ¢y) } (5.10)

B .CCISQH_] { tan 8i+l - tan q)])

cos 8 (tan ei_ - tan ¢;) ) {(3.11)

X;= ajsin ¢;cos ¢; (tandy (65 — 0y + log

where
Z;
B! = tan.- 1 — —_ »
X;
i Zis1 Z;
¢ =tan
i+ - Xi
Z.
ei+l = tan'1 7”’1 R
Xi+1
and
Xis1 X;
4 = Ximt 4
Zi - Ziy

B, , 941 .9 and a; are all expressed simply in terms of  Z;

Vand H

cos,; (tan 8y - tan ¢;)

,and X, to calculate both



V. TWO AND THREE-DIMENSIONAL GRAVITY MODELLING 81

By applying this theoretical concept based on afull grid approach, Talwani et a. (1959)
developed an algorithm for the calculation of potential fields which was later modified by De-
hghani and Kaminski (pers. communication). They calculated multi layer models of the subsur-
face geology.

Thedensities of thetwo and three gravity model ling were constrained by the Vp velocities
by means of the Nafe and Darke (1963) and Birch empirical functions (Birch, 1960; 1961). Nafe
and Darke (1963) developed an empirical relationship between seismic velocities and densities.
Thisrelationship was originally based on marine shelf and deep sea sediments but was extended
to awider range of rocks with higher velocities. The Nafe, Darke and Birch relation was used
to convert the Vp velocity into the density p. This yielded the following density values which

were applied in the calculations.

p =2.3525 g/cm3 for the sediments with Vp=1.5-4.5 km/sec.
p =2.82g/lcm® for the upper crust with VVp=6.0 km/sec.

p =29 g/cm3 for the lower crust with Vp=6.5 km/sec.

p =295 g/lcm® for the oceanic crust with Vp=7.0 km/sec.

p =310 g/cm3 for the upper mantle with Vp=7.5 km/sec.

p =3.30 g/lcm® for the Moho with Vp=8.0 km/sec.

V.1.2. Results of thetwo -dimensional gravity models of the profil&eA-A”, B-Bll, c-clland
D-DIl

Two-dimensional gravity models were calculated along the four lines A-aAl B-Bll c-cl
and D-D Il of the gravity profiles shown in Figure 5.1. These profiles are coincident with the
seismic profiles presented in Figure 4.1 This means that the seismic results can be directly used
to constrain afirst density model. From Figure 5.1 Free-Air anomaly values were sampled every
0.5 km along the lines in order to obtain a smooth model.

The two-dimensional gravity modelling processes on the four profiles are shown in Fig-
ures 5.3, 5.4, 5.5 and 5.6. For a better comprehension of the results of the models and also to
make a comparative and a quantitative analysis between the gravity anomalies of the areain-
vestigated and its geological sources, the main results of the two-dimensional gravity modelling
(e.g. variability in crustal structure, density and layer thickness) for these profiles are described
below.
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V.1.2.1. Two-dimensional gravity model along profiIeA-A|| (Cyprus-lsrad)

Thelocation of thisprofileisshown aslineA-Allin Figure5.1. Theprofileis540 kmlong,
extendsfrom north to south, and runsfrom Cyprus, Eratosthenes Seamount to the Levant Basin.
Density gravity modelling along this profile was constrained by the result from the seismic pro-
file Cyprus-lsrael A-All (Figure4.1).

Two-dimensional gravity modelling along profi leA-Allisshownin part [C] of Figure5.3.
For comparison, the bathymetry of this profile is also presented in part [A]. The gravity data
calculated from the density model and from the observed field are shown in part [ B] of the same
Figure. Generally, the observed gravity field was satisfied by the layer modelling thickness and
the densities are indicative for the high reliability of the results obtained.

Along the profile, gravity values display lateral variations. e.g. South of Cyprus, alarge
negative anomaly of about -90 mGal coincides with the thickening of the sedimentary layers
with a density of approximately 2.00 g/cm3. in the south of Cyprus. A thick sedimentary layer
beneath the sea bed was identified by a recent seismic survey of the Geological Survey of Cy-
prus (Figure Appendix A2). This sedimentary basin separates the Island of Cyprusfrom the Er-
atosthenes Seamount.

The positive gravity field over north Cyprus coincides with the ophiolite overlays on Cy-
prus. It hasahigh density with alateral variation from 2.95 to 3.00 g/cm3. It extends both to the
south and to the north down to a depth of 4 km and is underlain by a 2 km thick sedimentary
layer with a density of 2.60 g/cm®. In general, the ophiolite, known as the Troodos Massif are
pieces of oceanic crust that have been thrusted (obducted) onto the edge of continental crust.
Such an ophiolite is also identified in southern Turkey and northwest Syria, i.e. the Troodos
Massif is obducted onto theTaurus-Anatolian plateform and Arabian plate by the end of the
Mesozoic due to the closing of the Tethyan oceans during the Cretaceous period as suggested
by Gillis and Robinson (1990). Furthermore, Robinson et al. (1983) and Robertson and Xeno-
phontos (1993) showed that the Troodos ophiolite to have formed at several spreading axesin
a supra-subduction zone environment resulting from the collision of the African and Eurasian
plates in the Late Cretaceous.

The lower crust lies at a depth of about 22 km and the Moho lies at a depth of about 32
km beneath Cyprus. The upper crust was modelled with a density of 2.82 g/cm? and the lower
crust with a density of 2.90 g/ cm?®.

Thetop of the crystalline or igneous basement lies at a depth of about 6.0 km beneath the

Eratosthenes Seamount. According to the seismic results from profiles through and across the
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Figure 5.3: The final results of two-dimensional gravity modelling along profiIeA-A|| (Cyprus-lsragl).



V. TWO AND THREE-DIMENSIONAL GRAVITY MODELLING 84

Seamount (Figures 4.3 and Appendix A2) athin layer is situated above the crystalline crust. It
was modelled with a density of 2.60 g/cm3. Also from the seismic surveys, the upper crust be-
neath this thin layer has arelative low velocity of about 5.7-6.2 km/s and was modelled with a
density of 2.75 g/cm?®. The lower crust was modelled with a density of 2.90 g/cm?,

South of the Levant Basin, the basement dips steeply to a depth of about 13 km. A thick
sedimentary layer with an average density of 2.43 g/cm® lies beneath the Plio-Quaternary sed-
iment with adensity of 2.00 g/cm3. The oceanic crust beneath the sediments was modelled with
adensity of 2.92 g/cm3. The Moho lies at adepth of about 25 km.

Near the coast of Israel, the transition of oceanic-continental crust occurs. The same den-
sity values of the crust beneath Cyprus were used for modelling the continental crust according
to the seismic results obtained by Makris et a. (1983). The Moho depth is about 27 km at the
coast of Israel. The upper mantle has adensity of 3.30 g/cm3.

V.1.2.2. Two-dimensional gravity model along profile B-Bll (Er atosthenes Seamount-I sra-
el)

The two-dimensional gravity model along profile B-Bllis shown in part [C] of Figure 5.4.
Itisconstrained by thelsrael seismic profile B-Bllshownin Figure4.1. Itismainly 240 kmlong,
trending WNW-ESE and extends from the Eratosthenes Seamount across Levant Basinto I srael
coast. In part [B] of the Figure 5.4, the gravity calculated from the density model and the ob-
served field are shown. The bathymetry of this profile is presented in part [A] of the same Fig-
ure. In the following the main features of the two-dimensional gravity modelling along profile
B-Bll are given.

In genera, the Free-Air anomaly along profile B-Bll has negative values varying from -
0.5 to -60 mGal, and shows a rapid decrease at the edges of the profile. Thisis reflected in a
sharp drop of the basement and in an increase of the sedimentary cover, such that in the Levant
Basin athick sedimentary cover lies beneath the Plio-Quaternary sediment. The densitiesin the
sedimentary cover are between 2.0to0 2.5 g/cm3 and the oceanic crust has a density of 2.92 g/
cm®.

At the left edge of the profile, the densities of the continental crust are between 2.75 and
2.90¢g/ cm3for the upper and lower parts respectively. The thin layer lies above the crystalline
crust. It was modelled with a density of 2.60 g/cm3 . However, at the right side of the profile,
thetransition between the oceanic and continental crust occursat adistance of about 60 km from

the Israel coast based on the seismic result of the profile B-Bll (see Figure 4.3). The densities
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of the continental crust beneath the Israel coast are 2.82 and 2.90 g/cm3 for the upper and lower
part respectively.

The depth of the crystalline or igneous basement changes from about 4 km at the left side
of the profile beneath the Eratosthenes Seamount to about 13 km in the Levant Basin and de-
creases to about 6 km at the right side of the profile.

The Moho depth varies from about 26 km at the | eft side of the profile beneath the Erato-
sthenes Seamount to about 23 km under the levant Basin, and to about 24 km at the right side
of the profile, which is constrained by the Israel seismic profile B-Bll. The upper mantle has a

density of 3.30 g/cm?.

V.1.2.3. Two-dimensional gravity models along profile C-C I (Egypt -Rhodes) and D-D I
(Egypt-Crete-Santorin)

Two-dimensional gravity modelling along the profiles C-C I (Egypt-Rhodes) and D-D I
(Egypt-Crete-Santorin) was constrained by the results of the deep seismic refraction profilesin
the Eastern Mediterranean Sea and wide-angle reflection/ refraction seismic profiles (Figure
4.1) in and around Cretan region (e.g. Morelli, 1975, Makrisand Vees, 1977, Makris, 1978 & b
and 1985, Hartung, 1987, Bohnhoff, 2000, Helms, 2001, Planert, 2001, and Bronner, 2003).

Figures 5.5 and 5.6 show respectively the final results of the two-dimensional gravity
modelling along the profiles C-C landD-D Il They cross the Herodotus Abyssal Plain and the
East Mediterranean Ridge, and start from the Egyptian coast and extend in a NNW direction
(Figure. 5.1). The main features of the two-dimensional gravity modelling aong these two pro-

files are described below.

V.1.2.3.1. Two-dimensional gravity model along profile C-C | (Egypt-Rhodes)

The two-dimensional gravity modelling along profile C-C I (Egypt-Rhodes) is displayed
in Figure 5.5 and ismainly 530 km long. Along this profile, the Free-Air anomaly has negative
values starting with -2 mGal, increasing to -140 mGal and at the end reaching values of -50
mGal. There are local gravity lows also at the East Mediterranean Ridge.

The two-dimensional gravity modelling along profile c-Cll isshownin part [C] of Figure
5.5. For comparison, the bathymetric value of thisprofileisalso presented in part [A]. The grav-
ity anomaly computed by the density model, which was derived from the seismic model, is
shown in part [B]. At theleft and right edges of the profile, the densities of the continental crust
are between 2.82 and 2.90 g/ cm?® for the upper and lower parts respectively.
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Figure 5.5: The final results of two-dimensional gravity modelling along profile c-cl (Egypt-Rhodes).
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The Moho depth values correlate considerably with the variations of gravity value along
this profile. Here the Moho lies at a depth of about 27 km at the Egyptian coast, and then rises
to aminimum depth of about 19 km beneath the Herodotus Abyssal Plain. The Moho depth in-
creases again from about 26 km below the East Mediterranean Ridge to about 30 km below the
Hellenic Arc. At the East Mediterranean Ridge, the increase in the negative gravity anhomaly
corresponds with the relatively large thickness of the sedimentary layer.

The transition from continental to oceanic crust within the African plate was modelled at
adistance of about 100 km from the Egyptian coast constrained by the results of the Expanding
spread profile 18 as shown in Figure Appendix [A4] in the Herodotus Abyssal Plain (De Voogd
et al. (1992). The African oceanic crust is subducted beneath the Hellenic Arc with degree angle
of approximately 110 as assumed by Le Pichon and Angelier (1979). Hence it is not only the
Aegean continental crust but also the subducted crust that contributes to the Free-Air low asso-
ciated with the Hellenic Arc.

The basement lies at about 6 km beneath the Egyptian coast coinciding with the Borehole
results (Said, 1962 and Malovitskiy et a., 1975). However, the thickness of the sedimentary lay-
er increases towards the East Mediterranean Ridge. In the Herodotus Abyssal Plain the depth
lies between about 10 to 13 km and increases up to 14.5 km beneath the East Mediterranean
Ridge. The sedimentary layer thins rapidly at the Hellenic Arc towards the west flank of
Rhodes.

V.1.2.3.2. Two-dimensional gravity model along profile D-D I (Egypt-Crete-Santorin)

Thetwo-dimensional gravity modelling along profile D-D !l (Egypt-Crete-Santorin) is dis-
played in part [C] (Figure 5.6). It is about 545 km long and shows similaritiesto profileC - C I
. For comparison, the bathymetric value of thisprofileisalso presented in part [A] of the Figure.
The Free-Air gravity anomaly calculated from the density model and the observed anomaly are
shown in part [B] of Figure 5.6. Generally, the observed anomaly isin agreement with the mod-
elled seismic layers. The densities and layer thickness indicate the good reliability of the two-
dimensiona gravity model.

Along the profile, gravity values display intense lateral variations, especially along the
left edge of the profile to about 300 km. A negative gravity anomaly coincides with the thick-
ening of the sedimentary layers. The gravity values decrease abruptly towards the Pliny Trench
region due to significant crustal thickening and the bathymetric slope.

The basement depth varies from about 9 km at the Egyptian coast to about 13 km in the
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Herodotus Abyssal Plain and beneath the East Mediterranean Ridge. A thin layer of sediment
with athickness of about 5-7 km overlays the Aegean continental crust. The Moho depth at the
Egyptian coast is about 23 km. However in the Herodotus Abyssal Plain and beneath the East
Mediterranean Ridge, the depth ranges between about 20 and 24 km, while the Moho depth is
about 31 km beneath Crete. These results coincide with the seismic results obtained by Makris
(1978 a), Hartung (1987), and Bohnhoff (2000).

The transition from the continental to oceanic crusts within the African plate is modelled
to extend offshore to a distance of about 40 km from the Egyptian coast (Figure 5.6) according
to the drilling information of the sedimentary sequences at the Egyptian coast (Said, 1962), and
the results of refraction seismic experiments by Malovitskiy et a. (1975). The African oceanic
crust has been subducted beneath the Island of Crete with degree angle of approximately 110
according to the main driving force for the opening of the Cretan Sea as assumed by Le Pichon
and Angelier (1979). Furthermore, the subduction occurs at uniform speed along the Hellenic
Arc and that it was started because of the movement to the west of the Anatolian plate would
have pushed in a SW direction the hypothetical Aegean plate as hypothesised by McKenzie
(21972). Inthishypothesis, to define it asamicroplate, the Aegean zone should show arelatively
rigid behaviour whileit is clear that the Aegean Seais actually a very deformed zone.

The East Mediterranean Ridge has been interpreted as an accretionary complex built up
by off scrapping and piling of sediments deposited on top of the downgoing African plate as
suggested by (Biju-Duval et a., 1978; Le Pichon et al., 1982 a; b and Truffert et al., 1993). The
result of the two-dimensional gravity modelling along the profilesC-C" and D-D!I confirm that
the thickness of the accretionary complex isup to about 12 km at the East M editerranean Ridge.
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V.2. Three-dimensional gravity modelling

To get abetter understanding of the crustal structure and the complicated geological struc-
ture of the investigated area and their relation to the adjacent areas, three-dimensional gravity
modelling within the entire investigated area was performed using the software IGMAS. This
program uses a polyhedral approach which makesit avery efficient tool for forward modelling
in three dimensions. But the polyhedral approach aggravates a geometric inversion. The geo-
metric layout is fixed and the inversion can only be calculated with respect to densities of the
polyhedral in the model. In the following, a short summary is given of the methodical aspects
of the three-dimensional gravity modelling equations and the cal culation of the gravitational ef-
fect of a three- dimensional body as used in the program IGMAS (Gotze, 1984; Gotze and Lah-
meyer, 1988).

V.2.1. Methodical aspects of the three-dimensional gravity modelling equations

The three-dimensional models consist of different bodies which are created as polyhe-
drons. The geometric layout of apolyhedron and the involved components are displayed in Fig-
ure 5.7. The polyhedrons are constructed of numerous vertices which are triangulated to form a

triangle net.

.
A
I
I

0

Figure 5.7: Geometric layout of a polyhedron (after Gotze, 1984).
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The analytical representation of the gravity effect of polyhedral bodics has been re-
searched by many investigators (e.g. Paul (1974), Barnett (1976), and Gétze and Lahmeyer,
1988). Most derivations consist of the same steps but result in different analytical expressions.
The gravity effect g at an observation point caused by a homogenous polyhedron is repre-

sented as a volume integral:

oo [ £ (e
Vol

with r the distance between the computatiofi point and the volume d¢#. This volume integral

is then transformed into a surface integral by application of Gauss’ s divergence theorem:

9= fp § cosin, z)%d.s @

For a polyhedron the surface integral can be expressed as a sum of the contributions of each pla-
nar polygonal face \§; where the cosine term in formula (2) represents the outward normal, N;

of the element with respect to the z-axis.

g = fpg:l [cos(n,-,z)/ji %ds] (3)

with facets S,- from i=1l........ m, (m = total number of facets in the polyhedron). The next
step is to transform into a new cartesian coordinate x! . yi, Zt } system where the outward nor-
mal of facet $; is concordant with new zl direction (see Figure 5.8). The final step is to convert
the surface integral formula (3) into a line integral of a polygon limiting the facet S; The nu-
merical result is conceived by inserting the limits of integration, which are the coordinates of
the vertices of the polygon.

Gotze and Lahmeyer (1988) and Gotze (1384) developed a numerical solution for formula (1}.
An impression of the applied equations is provided in the following.

The attraction of a polyhedron of homogenous density p at a station P is based on the cal-

culation of potential U (P):
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UP) = f / I%dm (4)

Poly.

with dm =p dxdydz and R is the distance between the station P and dm. The vertical
component of the gravity at the station, g, (P), is obtained by taking the derivative of (he po-
tential with respect to the z-cormmponent. This partial derivative can be reformulated into a sur-

face integral:

Py = gu(P) = T f costn,2) S ©

where the integral has to be calculated for the whole polyhedron surface and the cosine term
determines the orientation of the surface element 45 with respect to the cartesian coordinate
system. For any polyhedron surface, §; , cos (my,z) is constant and therefore the gravity effect

of a polyhedron can be expressed via superposition ol the effects of its whole surface:

(6}
g(P) = fpz \:cos(nj, z) jg %dS,}

7=t

Gotze and Lahmeyer then transformed the coordinate system for each surface (sce Figure 5.7)
for the geometry, so that the new x-axis, x' s parallel to V|V, the new z-axis, Z s parallel
to the outward normal of the surface and the transformed y-axis, y' is chosen to be orthogonal

tox andZ (%', yl, 2y ="TM (x, y,zyand (X, v, z) = ™ (%', y', Z):

¥y O 3
™ = |06 B B (7
MY T3

The surface integral now needs to be transformed into a line integral via polygon P; limiting

the surface §; (see Figurce 5.8 for the used syntax):

= h Jrppe > D
glP) = prCOS(nJ,z) b{ ;;—\f(PP; + r2¥dp; + 27 PP 65] 8)
=1



V. TWO AND THREE-DIMENSIONAL GRAVITY MODELLING 94

Figure 5.8: Geometric layout for the line integral (from Gotze, 1984)

0 e /€5
with § = < 1 AP e

using k; as the number of the sides in the current polygon the line in formula (8) can be eval-

uated to:

. ky 7 VPP R+ 82, (9

ds;;
2 2 I
o he, + s34

with k; number of sides of polygon P;,a;; b, . limits of integration. The integral in (9) is of

the general form:

sz_ﬂ\wds (10)

h? + 52

with H > |h| and H? = PPJ-'2 + h%, and s? = s2,. Substituting
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leads to:

u+l} H . s
fh2 H2 u—l)Q 4(1'1 2 4 u :)-du (1)

which can be solved to:

d
1 udu+ 3@4_ du

2\_‘;3_,\_,2_/\._35 {12)
A B C

with z = 1% —2ud + 1 and.X:l-—?E,"l;

using case differentiation the three integrals, A, B, C, in formula {12) can be solved, see Gbtze
(1984) for the case differentiation. Finally the numerical formula for the attraction of a polygon

and the gravity g in point P, caused by a polyhedron can be written as:

i
A

g {Ecos(nu) {th[n iy )]wwlPP*weH 13

with

Tl =1In b————~j'i * P—%'i_l
Qi + PV}'J‘
7'32'.;'«1 + b PV

T2 = arctan -
LPPi'Hh_,,l

+a;; PV,,
Ty = arctan LJ——J}-
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V.2.2. Brief description of the preparation of the model input accordingto IGMAS

IGMAS is an interactive graphical computer system for the interpretation of potential
fields by means of numerical modelling (Gotze,1978; Goétze, 1984; Gotze and Lahmeyer,
1988). In order to assemble the body, a system to name and position the different planes needs
to be developed. The polyhedron is organized using the coordinates of the vertices and by the
assembly of the vertices to form the facets of the polyhedron. Okabe (1979) suggested away in
which all vertices are numbered and the vertex coordinates should be stored by number. Every
facet is defined by the vertex numbers in anti-clockwise order about the outward facet normal.
This approach is very time-consuming. Another complex question is how to fill all the spacein
the model with multiple polyhedron without gaps or overlaps.

Gotze and Lahmeyer (1988) provided a practical approach which is used in their program
IGMAS. The model isdivided into parallel planes. The user definesthe geological structuresin
each planar section and the polyhedral bodies are automatically assembled between the sections
using atriangulation algorithm. Thisis shown in Figure 5.9.

In general, for the input of the structuresto be modelled, anumber of vertical planes suit-
able to represent the geometry were identified. In addition, either all closed unit polygons in-
cluding their density indices on these vertical planes or al open lines including their density
indices right and left were also identified. The necessary definitions are only two-dimensional.
Thefinal construction of the three-dimensional structures (i.e. triangulation between the vertical
planes) was automatically done by IGMAS.

An IGMAS structure requires the use of vertical planes, which are used to define the lo-
cation of the vertex coordinates. These vertical planes are aways parallel to each other, but the
distance between them is variable. In order to achieve the greatest flexibility, these vertical
planes should be defined perpendicular to the dominating strike direction of the structuresto be
modelled. Thevertical planes should have small distanceswhere high variation of the geometry

IS expected.
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Figure 5.9: Polyhedral assembly using triangulation as used in IGMAS (from Gotze, 1984) .
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V.2.3. Thearea of three-dimensional gravity model

The area of three-dimensional gravity model isdisplayed in Figure 5.10. Thisarea covers
the whole subduction area and shows the model geometry of the contact between the African
and Eurasian plate, and is selected as a part containing main tectonic and geological structures
of the investigated area, i.e, Hellenic arc, Cretan Island Arc, East Mediterranean Ridge, Hero-
dotus Abyssal Plain, and subduction trenches. Furthermore, it hasarelatively dense distribution
of seismic profiles, gravity anomalies, and variations of the bathymetric and topographic fea-
tures.

The area of three-dimensional gravity model is located between 31.01° N and 36.49 °N
and was constructed along 18 parallel vertical planes extending from the coast of Egypt in NW
direction. It crosses the main geological structures of the modelled area such as the Herodotus
Abyssal Plain, bathymetric ridges Island arcs, subduction trenches, basins or major Seamounts.
These planes are located at a distance of 50 km from each other. The distance between the dif-
ferent planeis small enough to resolve the existing structures and it is adequately large consid-
ering the immense size of the modelled area. Each vertical plane includes a part of the
southeastern Mediterranean Sea region and the northern section of Egyptian coast.

The location of all the vertical planes and also the seismic profiles which can be directly
used to constrain the modelled areais displayed in Figure 5.10. The vertical planes actually en-
gaged for gravity modelling are displayed by green lines. Thered linesrepresent the distribution
of seismic profiles of the modelled area. The lateral extension along and beyond the vertical
planes are marked by blue lines which are used to avoid edge-effects (see Figure 5.10). In gen-
eral, the amount of lateral extension depends on the thickness of the modelled blocks, the dif-
ference between the mean density of the modelled blocks and the surroundings density, and on
the desired high modelling precision. The reference density is determined in such away, that
the edge-effect is as small as possible. This signifies that the average difference between the
model densities and the reference density is close to zero. If there are no edge-effects an arbi-
trary constant value may be added to all density values, but as a shift value is added, the densi-

ties given are relative values.

V.2.3.1. Accuracy and resolution of the modelled area
In general, the geometry of the modelled area was not changed during three-dimensional
gravity modelling along the existing seismic profiles. It was only changed in some parts, mod-

ifications were required to keep the model smooth. The final geometry of the modelled areais
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generally in agreement with the seismic structural data.

The results of the seismic profilesi.e. C-Cll, D-DII, PI, PII, PI11, P#1, P#2, P#3 as shown
in Figure 5.10 are used to constrain layer geometry and thickness of the three-dimensional grav-
ity model and to provide initial estimates of the layer densities. Firstly, on the basis of seismic
structural data, two-dimensional models were constructed. The profiles which are constrained
by the seismic velocity model were duplicated several times and laterally extrapolated in both
directions. Accordingly were determined sensitive velocity densities, providing the best fit be-
tween calculated and observed gravity anomalies. After the accomplishment, the appropriate
gravity, and bathymetric data were appointed to the different vertical planes. The layer geome-
ters of the profileswhich are constrained by seismic datawere kept fixed and the layer densities
were iteratively adjusted until a satisfactory fit between the observed and the calculated anom-
alies was achieved.

In general, some problems occurred when attempting to integrate the seismic information
into the three-dimensional gravity model. The seismic models were often very detailed and the
different seismic layers may produce similar gravity effects. Such a detailed model which con-
sists of numerous bodies causing almost the same gravity anomalies, is not sensible for gravity
modelling.

The area of three-dimensional gravity model posseses a different resolution in the y-and
in the x- direction. In the y-direction the distance between the vertical planes forming the model
determines the resolution (Figure 5.10). In the modelled area, the defined distance between the
planesis adequate to resolve the observed geologcia structures. In the x-direction, i.e. along the
planes, the data density is approximately one kilometer. The gravity value is extracted from the
data grids presented in Chapter 111.1. In addition, the modelled area parameters are constrained
by the bathymetric and topographic data. Thisis also extracted from the data grids presented in
Chapter 11.1.

Integration of the bathymetric and topographic features and seismic profiles has allowed
for the construction of a perspective sketch of the modelled area as shown in Figure 5.11. Ac-
cording to this sketch the continental crust ismodelled in adifferent way to the upper and lower
continental crust. The modelled area reaches depth of 50 km. On the whole, this sketch of the
modelled area consists of the sediment layer, upper continental crust, lower continental crust,

oceanic crust, hot mantle, and mantle.
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Figure 5.11: Interpretative 3D perspective sketch of the modelled area, based on the bathymetric and

topographic features and seismic profiles.
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V.2.3.2. Results of the area of three-dimensional gravity model

In the following, all the planes of the three-dimensional model area are presented. Planes
1 and 18 are the east-westward extension of the model. These planes prevent the occurrence of
edge-effects. The actual gravity field modelling starts on plane 2. In general, in al the men-
tioned Figures5.12t05.27, the vertical planesthrough the modelled areaare shown in the lower
part of the Figures, where the different densities have different colours. The calculated gravity
curveisshown as adotted black line, and the measured curve is shown asared line in the upper
part of the Figures.

Figures’5.12 and 5.13 show planes 2 and 3 respectively. These planeslie at most of eastern
planes and cross the Nile Delta and the Anaximander Seamounts at the south-eastern and the
north-western parts of the modelled area, respectively (Figure 5.10). As mentioned before, a
shift value is added to the calculated anomalies and therefore the densities are relative values.
The average thickness of the oceanic crust on planes 2 and 3 ranges from 25 to 30 km below
Anaximander Seamounts respectively. The depth to the basement is about 16 km beneath the
Nile Delta, However, the sedimentary layer thins rapidly towards the Anaximander Seamounts.
The calculated and measured gravity curves show values around +70 to -131 mGal. A bathy-
metric high, causing alocal gravity high, islocated around 500 km. Underneath the East Med-
iterranean Ridge, the oceanic crust is markedly thin with athickness of about 7-8 km. The Moho
lies at a depth of about 22 km beneath Nile Delta, the Herodotus Abyssal plain and the East
Mediterranean Ridge.

On planes 4 and 5 the upper and continental crust is significantly thickened at the north-
western part around km 500 as shown in Figures 5.14 and 5.15. The average thickness of the
oceanic crust on planes 4 and 5 is about 22 km below Rhodes Basin. Planes 4 and 5 cross the
Nile Deltaand Egyptain coast and Rhodes Basin at the south-eastern and the north-western parts
of the modelled area, respectively (Figure 5.10).

Observed more closely, planes 4 and 5 show very smooth gravity curves and the gravity
values decrease abruptly towards the Rhodes Basin at 550 km. Negative gravity reaches -208
mGal at Rhodes Basin and can probably be related to significant crustal thickening (see Figure
5.15). There are local gravity lows also at the East Mediterranean Ridge at 400 km on plane 4.
The sedimentary layer shows its normal thickness for the modelled area. Furthermore, the con-
tinental crust layersare amost parallel. The Moho lies at a depth of about 22 km at the Egyptian
coast and then increases to a depth of about 25 km beneath the East M editerranean Ridge.
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On planes 6 and 7 as shown in Figures 5.16 and 5.17, respectively, the calculated and
measured gravity curves show values around +12 to -186 mGal as shown in Figures 5.16 and
5.17, respectively. On plane 6 the sedimentary layer thins rapidly near 500 km towards the west
flank of Rhodes. The Free-Air anomaliesreflect the lateral variation of thicknessin water layer.
I.e. there are local gravity lows at the NW Rhodes Basin on plane 6.

On plane 7 the increase of a negative gravity anomaly at 400 km near the East Mediterra-
nean Ridge corresponds with the relatively large thickness of the sedimentary layer. Plane 7
shows severa undulations of the continental crust between 400 and 620 km.The oceanic crust
is markedly thin underneath the East Mediterranean Ridge.

On plane 6 and 7 the Moho depth values are very considerable and correlate with the var-
lations of gravity value. The Moho lies at adepth of about 25 km at the Egyptian coast, and then
rises to about 19 km beneath the Herodotus Abyssal Plain. The Moho depth increases again to
about 25 km below the East Mediterranean Ridge.

Plane 8 shows the same plateau in the gravity curve as plane 7 (see Figure 5.18). Near
400 km the sedimentary layer increases in thickness and causes alocal gravity low. Above the
continental crust at the south-eastern and the north-western parts on plane 8, the gravity curve
shows only small variations around +55 mGal.

Plane 9 shows a very smooth gravity curve (see Figure 5.19). The calculated and meas-
ured gravity curves show values around +55 to -183 mGal. The depth to the oceanic crust is
significantly increasing, at 350 km just before the oceanic crust starts to subduct with the con-
tinental crust. Along plane 9 there are aternatively high and low gravity curve with different
gradients. This may reflect the effect of the difference in density between the continental crust
and the sediment layer, and the effect of the bathymetric and topographic features. On plane 8
and 9 the Moho depth is about 22 km beneath the Herodotus Abyssal Plain and the East Medi-

terranean Ridge

In general, from planes 2 to 9, at the south-eastern part of the modelled area, the transition
from continental to oceanic crust within the African plate was modelled at a distance between
100 and 150 km from the Egyptian coast. At the north-western part of the modelled area, the
transition between the oceanic and continental crust occurs between 400 to 450 km through

these planes.
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Figures 5.20 and 5.21 show planes 10 and 11 respectively. These planes start from the
Egyptian coast and cross the Herodotus Abyssal Plain, the East Mediterranean Ridge, the sub-
duction trenches, Island arcs, and Cretan Sea (see Figure 5.10). The calculated and measured
gravity curves show values around +70 to -190 mGal. Near 390 km, towards the East Mediter-
ranean Ridge, the sedimentary layer increasesin thickness and causes agravity low. In addition,
thislayer is markedly thin towards the Herodotus Abyssal Plain and subduction trenches.

The gravity curves show high and low values towards the Herodotus Abyssal Plain, and
the Egyptian coast on planes 10 and 11. This may reflect the effect of the variation of the base-
ment geometry, and the effect of the bathymetric and topographic features. The gravity values
decrease abruptly towards the Strabo Trench due to significant crustal thickening. Above the
continental crust at the north-western part on the planes 10 and 11, the gravity curve shows
small variationsaround +70 mGal. The oceanic crust is significantly thickened between 390 and

440 km, towards subduction trenches, and resulting in agravity low.

Figures 5.22 and 5.23 show planes 12 and 13 respectively. These planes start from the
Egyptian coast and cross the main geological structures of the modelled area such as the Hero-
dotus Abyssal plain, the East Mediterranean Ridge, the subduction trenches, I1sland arcs, and
Cretan Sea (Figure 5.10). The calculated and measured gravity curves show values around +85
to-176 mGal. A prominent minimum of -176 mGal islocated at Strabo Trench. The gravity val-
uesriseto +85 mGal at Creteregion and exhibit very sharp edges. At the north-western part, the
continental crust is markedly thickened towards Crete region (see Figures 5.22 and 5.23).

Through planes 10,11 and 12 the transition from continental to oceanic crust within the
African plate was observed more closely and modelled offshore to a distance of about 40 km
from the Egyptian coast. At the north-western part of the modelled area, the transition between

the oceanic and continental crust through these planes occurs between 300 to350 km.

From the Egyptian coast, the transition from continental to oceanic crust within the Afri-
can plate decreases in a distance from 100 km through plane 9 to 40 km on plane 10. However
the transition from continental to oceanic crust within the African plate increases from 40 km

through plane 12 to 100 km on plane 13.
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Planes 14 and 15 as shown in Figures 5.24 and 5.25 respectively, show several undula-
tions of the oceanic crust between 100 and 350 km. Several undulations of the mantle layer be-
tween 100 and 350 km can be also observed. The calculated and measured gravity curves show
values around +86 to -107 mGal. Plane 14 shows the same plateau in the gravity curve as plane
15.

At about 475 km the layers of the continental crust well up and cause ahigh gravity curve.
In addition, the gradient of the gravity values comparatively higher above the continental crust
than over the oceanic crust. Between 330 and 450 km, the subduction trenches such as Pliny and
Ptolemy trenches are visible through the planes 14 and 15. These trenches causes a minimum
of -107 mGal. A thin layer of sediments overlaying the continental crust can be observed to-
wards Crete | sland.

Planes 14 and15 start from the Egyptian coast and cross the Herodotus Abyssal Plain, the
East Mediterranean Ridge, subduction trenches, Island arcs, Crete, and Cretan Sea (Figure
5.10).

Figures 5.26 and 5.27 show planes 16 and 17 respectively. These planes are located at the
most of the western planes and cross the Egyptian coast and the Crete region at the south-eastern
and the north-western parts of the modelled area respectively (Figure 5.10). The calculated and
measured gravity curves show values around +102 to -114 mGal. A negative gravity curve be-
tween 100 and 400 km coincides with athickening of the sedimentary layersthrough the planes.
There are high gravity values above the continental crust towards the Crete region. This may
reflect the effect of the bathymetric and topographic features.

Strong undul ations of the oceanic crust are observed towards the Herodotus Abyssal Plain
and the East Mediterranean Ridge through this planes. In addition, the oceanic crust is substan-
tially thickened near 100 km through the plane 16. The continental slop features a striking ele-
vation of the sediment layer beneath the Herodotus Abyssal Plain and the Crete region. This

causes a high gravity curve.

When considering the advantages and disadvantages of the three-dimensional compared
with the two-dimensional models, the following factors, which are sometimes disregarded,
should be remembered with regard to the fitting and resolution of the models. In general, three-
dimensional models provide moreflexibility but are very hard to build. Some advantages of the
three-dimensional models are shown, for example the image of the subsurface structure can be

more realistic. Moreover, the description of three dimensional model geometry is ssmple and
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flexible enough to cover the wide field of potential field modelling. However, in two-dimen-
sional models the longitudinal extent of a modelled structure should be three or four times its
width. The view of the subsurface structure through the two-dimensional mode! is orthogonal
to the planar cross section and displayed in the same planar cross section. The view of the sub-
surface structure through the three-dimensional model enables any number of planar cross sec-
tion to be displayed.

In general, the two-dimensional model geometry using TWGRAYV software have fixed
pre-calculated view points through all the model areas. However, some capabilities requested
and several functions for display and calculation of potential fields are available in the three-
dimensional model areaby using IGMAS software. In the following section some several func-
tionsis given such as acomparison of the measured and modelled gravity field, differences be-
tween the measured and the modelled anomalies, and the thickness of a single geometry body.

- In Figure 5.28 a comparison of the measured and modelled gravity fields without adap-
tation (i.e. without variability of the layer geometry and layer thickness of the modelling area)
isplotted. ThisFigure showsthat theimages of the gravity anomalies are clearly deviating from
each other in the southeast as well asin the northwest of the modelled area. In Figure 5.29 a
comparison of the measured and modelled gravity fields with adaptation (i.e. with variability of
the layer geometry and layer thickness of the modelling area) is presented. The modelled anom-
alies resemble the measured anomaliesin detail. The black lines represent the different vertical
planes which build up the area of three-dimensional model. In Figures 5.28 and 5.29 the buffer
zone surrounding the three-dimensional model is apparent. This zone surrounds the area docu-
mented by gravity field data to exclude edge-effects. The imaged planes represent the extent of
the model. The gravity data are located only on planes 2 to 17.

- The differences between the measured and the modelled anomalies are displayed in Fig-
ure 5.30. This Figure shows the minimal differences between these gravity anomalies. For the
area of three-dimensional model a standard deviation of 9.61 and a correlation coefficient of
0.99 were achieved.

- At the north-western part of the modelled area, the average thickness of the oceanic crust
near 550 km, below the Anaximander Seamounts on plane 2 is about 30 km. Thisis decreases
to a thickness of about 25 km, near 500 km towards NW Rhodes Basin on planes 6 and 9 as
shown by pointing arrowsin Figure 5.31. However it increases from about 25 km, near 500 km
on plane 9 to about 35 km between 400 to 430 km below the subduction trenches on planes 10

and 11as shown by pointing arrows in the same Figure.
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R@WAS 3-D Gravity and Magnetic Modeling
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Figure 5.28: The modelled and the measured gravity fields without adaptation within the modelling area.
The position of the vertical planesisindicated by black lines and the actual plane is marked by ared line
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R@MA@ 3-D Gravity and Magnetic Modeling
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Figure 5.29: The modelled and the measured gravity fields with adaptation within the modelling area.

The position of the vertical planesisindicated by black lines and the actual plane is marked by ared line
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Figure 5.30: The differences between the modelled and the measured gravity anomalies within the

modelling area.The position of the vertical planesisindicated by black lines and the actua plane

ismarked by ared line.
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R@WAS 3-D Gravity and Magnetic Modeling
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Figure 5.31: Isopach map displays the thickness of the oceanic crust on the modelling area. The position of
the vertical planesisindicated by black lines and the actual plane is marked by ared line. The red arrows

marks the position of the oceanic-continental crust transition zone within the African plate.
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- Figure 5.32 shows several undulations in average thickness of the deepest layer in the
model (mantle layer). In the north-western part of the modelled area, between 350 to 550 km
the average thickness of the mantle layer ranges from about 10 to 22 km through the planes 2
to 17. In the south-eastern part of the modelled area, the average thickness of the mantle layer
Is 27 km towards the Egyptian coast. In the middle part the average thickness of the mantlelayer
isabout 30 km. There are strong lateral undulationsin the average thickness of the mantle layer
at the western part on the modelled areatowards Cretan |sland Arc through planes11to 17. This
may reflect the effect of the main driving force for the opening of the Cretan Sea through these
planes (see Figure 5.32).

- Furthermore, the modelled areareproduces the observed gravity anomalies successfully.
The anomalies are oriented roughly parallel to the bathymetric and topographic features as ob-
served in al the planes of the modelled area. The cal culated and measured gravity have negative
valuesincreasing gradually from -220 to -2 mGal. Local high and low gravity values were ob-
served. For example as shown at Anaximander Seamounts (plane 3, see Figure 5.13), at Rhodes
Basin (plane 5, see Figure 5.15), and at Strabo Trench (plane 13, see Figure 5.23). Thisis due
to significant crustal thickening in these regions.

- Along the Nile Delta region, a prominent positive anomaly can be followed through
planes 2 to 4 (Figures 5.12, 5.13, 5.14, and 5.15) as well as along the Egyptian coast through
planes5to 17 (Figures 5.16 to 5.27). In addition, the gravity values seaward of the subduction
trenches form a complicated pattern.

- There are several undulations of the hot mantle layer between 500 and 627 km through

the planes 2 to 17 at the north-western part of the modelled area.

- Asmentioned before, in the south-eastern part of the modelled area, the transition from
continental to oceanic crust within the African plate decreases abruptly from about 100 km
through plane 9 (see Figure 5.19) to about 40 km through planes 10, 11, and 12 asillustrated in
Figures 5.20, 5.21, and 5.22 respectively (see also Figure 5.31). Then it increases to about 100
km through plane 13 (see Figure 5.23). Thisreflectsavery good match between the bathymetric
and topographic features along the Egyptian coast and the main tectonic elementsin this area
(seeFigure 2.1). Also, it reflects the effect of an active eastern Mediterranean transcurrent fault
system (EMTS) running through the lonian Sea, the continental margin of Eastern Libya and
Western Egypt, into the land area through the Nile Delta and eventually into the Gulf of Suez
(see Figure 2.2) as suggested by Ben-Avraham et al. (1987).
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Figure 5.32: 1sopach map displays the thickness of the mantle layer on the modelling area. The position
of the vertical planesisindicated by black lines and the actual planeis marked by ared line.
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- On the other hand, in the north-western part of the modelled area, the transition between
the oceanic and continental crust at a distance between 400 to 450 km can be followed through
planes 2 to 9 (see Figures 5.12 to 5.19) and also at a distance between 300 to 350 km through
planes 10tol7 (see Figures 5.20t0 5.27). Thismay be related to the African oceanic crust being
subducted beneath the Hellenic Arc. Not only the subduction of the oceanic lithosphere along
the belts of the Aegean continental crust but also the subducted crust contributes to the gravity
low associated with the Hellenic Arc. In addition, the African oceanic crust is subducted be-

neath the Island of Crete, according to the main driving force for the opening of the Cretan Sea.
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V I . TECTONIC ACTIVITY AND REGIONAL STRESSPATTERN

It isgenerally accepted that the seismicity reflects the tectonic activity in the Lithosphere
of any area (Kasahara and Stevens, 1969). Also the study of regional stress pattern distribution
isasignificant step towards understanding the tectonic setting and the direction of relative plate
movement in any area and its adjacent areas (Kawasumi, 1937; Stefansson, 1966). In recent
years, and with the establishment of the plate tectonics theory, many studies have been pub-
lished on the seismicity and tectonics in and around the study area (e.g. Papazachos, 1969; Pa-
pazachos and Comninakis, 1978; Mckenzie et a., 1970; Comninakis and Papazachos, 1972;
Mckenzie, 1972; Halsey and Grandner, 1975, Ben-Menahem et al., 1976; Makris, 1976; Nur
and Ben-Avraham, 1978; Garfunkel and Freund, 1981; Garfunkel and Almagor, 1985; Ben-
Avraham and Nur, 1986; Darkal et a ., 1990; Kebeasy, 1990; Girdler, 1991 and Ben-Menahem,
1991; Rabai et al., 1992; Aboulela, 1994; Salamon, et al., 1996; Barka and Reilinger, 1997;
Mantovani et al., 1997; Ambraseyes and Jackson, 1998; Ylmaztiirk and Burton. 1999; Badawy
and Horvath, 1999 a, and b; Knapmeyer and Harjes, 2000; Harjes, 2001; Pondrelli et al., 2002;
Mahmoud, 2003).

In the following, a distribution of earthquake epicentres obtained during the period of
1904-2002 covering the whole study areais presented (see Figure 6.1). The data was acquired
from two different data base sources, (NEIC and I SC). To understand the regional stress pattern
(i.e. P-axes orientation) currently taking place in the study area, available focal mechanism pa-
rameters data of earthquakes are collected for moderate to large events within the study area.
These parameters are presented in Tables Appendix B1 and B2, which are extracted from the
Harvard Seismology, CMT (Centroid-Moment Tensor database) catalogue search and WSM
(World Stress Map database, Mueller et al., 2000). The epicentral locations and the sterograph-
ic projections of the lower focal hemisphere of some moderate to large earthquakes are plotted

using GMT software as shown in Figure 6.2.

VI.1. Tectonic activity and seismicity pattern

In Figure 6.1 the seismicity of the areainvestigated is illustrated with respect to magni-
tudes and depth in kilometre. The earthquakes with variation body wave magnitude (M) are
marked with different symbols. The focal depth (km) is represented by a color scale. The posi-
tion of the two and three-dimensional gravity modelling areas are indicated by red linesand a
green box respectively (Figure 6.1).

From figure 6.1 it can be observed that the seismicity of the study areais characterized
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by widespread seismic activity in some areas and a scattering of events in others. Most of the
active seismicity is concentrated along and around the main tectonic and geological structural
area such asthe Hellenic and Cyprean Arcs. There are also some activity areas along the trends
of the Gulf of Agaba - Dead Sea - Levant transform, and the Gulf of Suez - Cairo - Alexandria
I'northern Egypt !l (see Figure 2.2). In the following a short description of these individual seis-
mic areas is given, concentrating on several segments of the stronger seismic belts, which sur-
round these regions.

The Hellenic Arc is the most seismically active zone of the investigated area due to the
subduction of the African plate beneath the Aegean area. Most of the moderate events (M <5.9)
with afocal depth of lessthan 100 km are concentrated along the Hellenic Arc, while the strong
events (M > 5.9) with afocal depth of 100 -150 km are concentrated mainly behind the Arc in
the Cretan Island Arc. The Hellenic Arc isasignificantly deep focus earthquake, which extends
eastwards as far as the Rhodes Basin through the Junction between the Hellenic and Cyprean
Arcs (see Figure 2.4). The macrosei smic effects of the earthquakes occurred in the southern part
of the Hellenic Arc and the intermediate depth seismicity in Cretan Island Arc is related to
north-south convergence between the African and European plates as suggested by Delibasis et
a. (1999). Moreover, the mgority of the earthquakes beneath Crete are shallow events with a
depth mainly from 10 to 20 km, which are separated from the subducting slab as suggested by
Harjes (2001).

The strong and moderate earthquakes, including hypocenters as deep as 150 km are con-
centrated in and around the Cyprean Arc (i.e. southwestern and southeastern Cyprus- the Era-
tosthenes) as illustrated in Figure 6.1. Along this Arc, the earthquake distribution reveal s that
convergence takes place along the Western and central parts. Subduction takes place along the
Western side of the Arc, while the processes along the central part are interrupted due to the
collision of the Eratosthenes Seamount with the Cyprean Arc as suggested by Ben-Avraharm
and Nur (1986).

The seismicity gradually decreases from west to east along the Cyprean Arc, and al'so de-
creasing southwards. In addition the seismicity associated with the Cyprean Arcissignificantly
lower than that associated with the Hellenic Arc. Recently, Rihm et al. (1999) studied the seis-
micity of Cyprus and identified numerous active faults concluding that the fault systems in
Western Cyprus and their offshore extensions are activated by a subduction of an oceanic litho-
sphere below Western Cyprus.

The seismicity level along the Gulf of Agaba- Dead Sea-L evant transform trend is quite
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low and the depth of the events increases northward or northeastward of the Cyprus Island,
where the depth of the events in the proximity of the Dead Searift zone and Cyprus Island is
shallower compared to the depth of the activities in the Antalya Basin (Figure 6.1). This region
is comparable with Dead Sea rift zone and the relative motion between the Sinai and Arabian
plates as suggested by Le Pichon and Gaulier (1988).

Thetrend of Gulf of Suez-Cairo-Alexandria Inorthern Egypt Il extends from the Sinai tri-
ple junction to the northwest along the Gulf of Suez towards the Nile Delta and the Mediterra-
nean Sea. The activity in north Egypt spreads out with moderate events (M < 5.5) with afocal
depth of less than 50 km. The trend of the Gulf of Suez-Cairo-Alexandria represents the major
active trend and is characterized by the occurrence of shallow earthquakes activities.

The main earthgquake activity in northern Egypt can be considered as a direct seismotec-
toinc consequence of the Sinai subplate kinematics. The tectonic activity and seismicity of this
trend may be related to the faults trending NW-SE, paralel to the trend of the Gulf of Suez and
also perpendicular to the Gulf of Suez trending NE-SW. These faults may be of the Syrian Arc
deformation trend. Also it reflects the effect of an active eastern Mediterranean transcurrent
fault system (EMTS) asillustrated Figures 6.1 and 6.3. On the whol e, the epicentral distribution
of all earthquakesin northern Egypt is associated with the northward movement of the Arabian
plate, reflecting the great influence of theregional stress affecting the northeastern corner of Af-
rica. The effect of the stressdirection is also reflected from much younger faulting documented
in and around the Gulf of Suez as suggested by Garfunkel and Bartov (1977) and Abdel Aal et
al. (2000).

V1.2. Regional stress pattern

To determine the stress pattern (i.e average P-axes orientations), a selection of the focal
mechanisms of some moderate to large earthquakes are plotted as shown in Figure 6.2. These
shocks occurred in the most seismically active areas of the study area and were separated into
several groups with fault plane parameters data (Tables Appendix B1 and B2). Furthermore,
Figure 6.3 shows the distribution and direction of the P-axes on ahorizontal plane derived from
focal mechanism solutions of moderate to large earthquakes in the study area. A short descrip-
tion of the focal mechanisms concept isgivenin Appendix [C]. In the following section, abrief
description of the regional stress pattern (P-axes orinentations) is presented, which was deter-
mined on the basis of the focal mechanisms of some moderate to large earthquakes as men-

tioned above in this study area.
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In and around the Hellenic Arc, both extension and compression stresses are present re-
sulting in complex fault tectonics characterized by important horizontal and vertical move-
ments. Observed more closely, the P-axes orientations in and around the Hellenic Arc are north
eastward directed at the border of the Arc as shown in Figures 6.2 and 6.3. Moreover, oblique
reverse and normal faulting mechanisms are present along the Hellenic Arc, which may be re-
lated to subduction processes of the Africa plate under Eurasia.

The focal mechanisms of shallow earthquakes (focal depth of 0-50 km) along and around
Cyprean Arc indicated that the P-axes is directed WNW-ESE which is perpendicular to the
northern coast of the Eastern Mediterranean (Figure 6.3). In the region of Cyprus, the situation
looks very complex because the P-axes direction is changing between WNW-ESE and NE-SW.
It can tell which oneisthetruedirection. Thisisin full agreement with the previously suggested
concept by Nur and Ben-Avraham (1978) and Badawy and Horvath (1999 a), which stated that
the shallow seismic activity along this coast is due to the convergence of the African and Eura-
sian plates in NNW-SSE direction. There are strike dlip faults solutions in the western part of
the Cyprean Arc (see Figure 6.2). This may berelated to the difference in the convergence rates
at the Hellenic and Cyprus arcs.

The focal mechanism solutions along the Gulf of Agaba- Dead Sea-Levant transform
trend indicated that the P-axes direction is changing from NW-SE to NNW-SSE (see Figure
6.3), which corresponds to a strike-slip mechanism in agreement with the geological evidence
as suggested by Badawy and Horvath (1999 a). It may be also due to the relative movement be-
tween the Arabian and African plates. North to the main depression of the Dead Sea, the activity
tends to take a north western direction into the Mediterranean Sea towards the Arabian plate to
meet the Cyprean Arc somewhere east of Cyprus.

Thefocal mechanisms of shallow earthquakesin northern Egypt show that the average P-
axes orientation is nearly parallel to the direction of the absolute plate motion of Africa. Along
the Gulf of Suez and north eastern Egypt, the orientation of the P-axesisin a NW-SE direction
(Figure 6.3) and aso in north western Egypt the direction of the P-axesisin a NW-SE parallel
to some young active faults in the Gulf of Suez. This corresponds with the faults active trends
along the Gulf of Suez.

For the overall region, it seemsthat in and around seismic activity zonesin the study area,
the existence of extensional and compresional stress could be clearly seen. It can be observed
that the average P-axes orientations in the study areaisin good agreement with regional stress

pattern within the global plate tectonic framework and it is broadly consistent with the absolute
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Along the Hellenic Arc :

- The average P-axes direction is N25°E -S25°W.

Along the Cyprean Arc :

and N85°W- S85° E.

- The P- axesdirection is changing between N25°E-S25°W
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plate motion of African and itscollision with Eurasian platesasillustrated in plane view by box-
es[I], [II], [I11] and [IV] in Figure 6.3. Furthermore, comparing the seismicity map with results
obtained from two and three-dimensional gravity modelling of the study area, it can be conclud-
ed that:

-The main characteristic of the distribution of earthquakesin the three-dimensional grav-
ity modelling area, and also along two-dimensional gravity models, (e.g. profile c-Clland D-
D”) is the concentration below the northern part of the East Mediterranean Ridge and the Hel-
lenic Arc (see Figure 6.1). Thisis due to the compressional stresses caused by the convergence
between the African plate and the Aegean subplate. The three-dimensional gravity modelling
areaof earthquakeswith anintermediate focal depth more than 20 km at the Egyptian coast dips
northwards to adepth of about 150 km below the Cretan Sea. Thisisattributed to the subduction
of the African plate beneath the Aegean subplate.

-In the three-dimensional gravity modelling area there is a general relationship between
the distribution and focal depth of earthquakes which then further relates to crustal thickness
(see Figure 6.1). i.e. The Moho lies at a depth of about 27 km at the Egyptian coast and then
rises to a minimum depth of about 19 km beneath the Herodotus Abyssal Plain. About 6 km
sedimentary cover is present along the Egyptian coast as mentioned previously in Chapter V.

-The distribution of the earthquakes along and around a two-dimensional gravity model
i.e. profile A-All (Figure 6.1) showsthat both shallow and intermediate focal depth (20-100 km)
earthquakes exist in the central part of the Cyprean arc underneath Cyprus. The intermediate
focal depth earthquakes beneath Cyprus appear to be associated with collisions between Cyprus
and the Eratosthenes Seamount as suggested by Robertson (1990).

-There are some local scattered activities with the intermediate focal depth in both the
southern margin of the Levant Basin and the Eratosthenes Seamount along and around the two-
dimensional gravity model i.e. profile B-Bll (Figure 6.1). This may be attributed to the under-
thrusting of the northern edge of the Eratosthenes Seamount beneath Cyprus as suggested by
Robertson et a. (1995).



VI1I. DISCUSSION AND CONCLUSIONS 138

VI 1I. biscussion AND concLUsIONS

The area under investigation covers the northeastern margin of the African plate between
Latitudes 29°:30/-37°: 00/ N and Longitudes 23°:3(0/-36°:00/ E. It represents a unigque opportu-
nity for studying the beginning of such acollision between the passive margins of amajor plate
(Africa), locally acting asacontinental indenter against the active margin of another plate (Eur-
asia).

In this work, large amount of data was extracted from the geophysical data which were
acquired during field work within the area investigated as mentioned in the beginning of this
study (see Chapter 1). This study is an attempt to achieve a better understanding of tectonics,
and geodynamical processes along a complex tectonization region such as crustal structure,
thickness of sediments, transition between oceanic and continental crust and regional integrat-
ed model of the gravity field observed in the area investigated. In addition, a comparison be-
tween the marine gravity data and the gravity data derived from satellite altimetry was made to
ensure that the marine gravity data compiled from different marine surveys were compatible.
Furthermore, a successful attempt was made to understand the behaviour of the tectonic activ-
ity and regional stress pattern distributions within the areainvestigated using the seismicity da-
ta. Inthefollowing, abrief discussion and conclusions of the main principle resultsin this study

are presented by evaluating all of the geophysical data with regard to the study area.

V11.1. Discussion

Based on the main principle results obtained in this study and combining it with the tec-
tonic models of the study area, a sketch map of the area under investigation and its neighbour-
ing areas showing ssimplified regional tectonic and geodynamic framework was produced and
is presented in Figure 7.1. The sketch is also based on the results of geophysical and tectonic
studies that have been observed within the study area (e.g. Mckenzie, 1972; Nur and Ben-Av-
raham, 1978; Ben-Avraham et al., 1987; Courtillot et a., 1987; Peter et a., 1998; Badawy and
Horvath, 1999 b, and Mcklusky et al., 2000). For the overall area under investigation asillus-
trated in Figure 7.1, it seems that:

- The geographic setting and geology of the study area show that the Eastern Mediterra-
nean region includes ashort segment of the convergence boundary between Africaand Eurasia.
Subduction in this segment is along two very small Arcs, the Hellenic and Cyprean Arcs as
shown in Figure 7.1 part A. In both Arcs subduction has been documented by a large number

of small block areas and subduction trenches (e.g. Cretelsland and Cyprus, Ptolemy, Strabo
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Figure 7.1: Part [A]: Sketch map showing simplified regional tectonics and geodynamic framework in the study
area. Based on Mckenzi e (1972), Nur an d Ben-Avraham (1978); Ben-Avraham et al. (1987); Courtillot et al.
(1987); Peter et al. (1998); Badawy and Horvath (1999 b), Mcklusky et a. (2000) and the principal results of this
study. Part [B]: Structural model for the active EMTS at the base of the continental slope off the Egyptain coast.
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and Pliny Trenches). Moreover, the study area has remarkably prominent morphogeologic fea
tures such as East Mediterranean Ridge, Herodotus Abyssal Plain, Levant Basin, Eratosthenes
Seamount, Nile Delta and Sinai Peninsula (see Chapter 11).

- Geologically, at the base of the continental slope of the Egyptain coast and eastern Lib-
ya, the shape and size of a bathymetric depressions strongly suggested that they originated
from an active eastern Mediterranean transcurrent fault system (EMTS) as shown in Figure 7.1
part A. Thisfault runsthrough the lonian Sea, the base of the continental margin of Eastern Lib-
yaand western Egypt, into the land area through the apex of the Nile Delta and eventually into
the Gulf of Suez as suggested by Ben-Avraham et al., 1987. Assuming the EMTS s continuous
through the above mentioned area, the question is then how does the fault terminate from the
lonian Seato the eastern Egypt? It is proposed that it continues along the same trend southeast
into the land area where a large topographic depression exist along the continental margin of
eastern Libya and western Egypt. From there it cuts through the apex of the Nile Deltaand en-
tersinto the Gulf of Suez (Figure 7.1 part A). Undulation in shape of the bathymetric and top-
ographic features along the Egyptain coast can aso be observed (Figure 2.1). Furthermore,
Malovitsky et al. (1975) suggested that a major fault has been described along the continental
margin of the Egyptain coast and eastern Libya on the basis of seismic refraction data. The ac-
tivity of this area may be related to the faults trending NE-SW and NW-SE as suggested by
many investigators (e.g. Youssef, 1968; Halsey and Grandner, 1975, Kebeasy, 1990; Mah-
moud, 2003). Additionally, there is some moderate to large earthquake occurrences in land of
thisarea (Figure 6.1).

- Thereis afew major fault systems such as the Suez rift and faults from Arabian plate,
which extend into southeastern Mediterranean Sea as shown in Figure 7.1 part A. These faults
are trending NW-SE and parallel to the trend of the Gulf of Suez as suggested by (e.g. Nur and
Ben-Avraham, 1978 and Jarriage et a., 1990). It reflects activation of the Dead Sea Transform
faults (DSF) and the Levant-Aqgaba transform plate boundary as suggested by (e.g. Mckenzie,
1970; Kahleet al., 1998). Thetectonic activity and seismicity along these faults spread out with
moderate events (M < 5.5) and also with afocal depth of lessthan 50 km (see Figure 6.1). How-
ever, most of the active seismicity is concentrated along and around the Hellenic and Cyprean
Arcs (Figure 6.1).

- Generdlly, in the southeast adjacent to the study area, most activity is concentrated at the
southern end of the Gulf of Suez, where the triple junction* (Africa, Arabian, Sinai) is situated
as suggested by (e.g. Courtillot et al., 1987; Badawy and Horvath, 1999 a, El-Dididy, 2001).

* A point that is common to three plate and which must aso be the meeting place of three boundary features, such as

divergence zones, convergence zones, or transform fault.
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Furthermore, in the northeast, the neighbouring zone of the intersection between the Cyprean
Arc, East Anatolian fault zone (EAFZ), and the Dead Sea Fault (DSF) represent a new triple
junction zone along the EAFZ between the Africa, Anatolian and Arabian plates (see Figure 7.1
part A) as proposed by McClusky et al., 2000 and 2003, Best et al., 1993, and Beydoun, 1991.
This zone is characterized by strong and moderate earthquakes decreasing from north to south
(Figure 6.1). Kempler and Garfunkel (1994), Kiratzi and Papazachos (1995) and Jackson and
Mckenzie (1988) stated that the deformation in the triple junction zone along EAFZ display a
comple array of tectonic regimeswith complex local variations and rapid tectonic facies chang-
es from extension to strike-slip and shortening in the context of continental collision.

- The continental African plate extends from approximately 40 to100 km offshore of the
Egyptain coast and has an abrupt transition to an oceanic crust. This transition has been con-
formed and further constrained by three-dimensional gravity modelling of this study. It seems
that the proposed extend reflects the effect of an active EMTS and the main tectonic elements
in this area, which occur on the boundary between continental and oceanic crust units as shown
in Figures 7.1 part B and 5.4).

- Moreover, the crustal structure of the Levant Basinis significantly different from that of
the adjacent land. The gravity modelling resultsidentify the continental -oceanic crust transition

at Levant Basin (see Figures 7.1 part A and 5.4).

VI11.2. Conclusions

In the following, and according to the results of the a qualitative interpretation of the ob-
served gravity and magnetic anomalies, a quantitative interpretation of the Free-Air gravity
field provided by two and three-dimensional gravity modelling, as well asthe results of seismic
deep soundings and tectonic activity and regional stress patterns, the main conclusions can be
drawn.

+ By studying the Free-Air and Bouguer gravity anomaly maps as well asthe total inten-
sity magnetic anomaly map, it can be revealed that:

- Over most of the study area, the Free-Air anomaly range from -230 to +150 mGal and
are generally negative. However, the Bouguer anomalies range from -130 to +200 mGal and are
predominantly positive, as might be expected for an oceanic area.

- The Free-Air and Bouguer anomalies are characterized by the presence of linear and
closed anomalies of different polarities which could be attributed to either structural breaks or

lateral density variations.
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- The broad region of negative Free-Air anomalies, as shown in tectonic models, coincide
with the East M editerranean Ridge and widen to cover the area of the Pliny, Ptolemy and Strabo
Trenches southeast of Crete.

- The positive Bouguer anomalies over the Anaximander Seamounts and Eratosthenes
Seamount are probably an indication of upwelling of the crust or a large dense massrising in
thisregion.

- In the north port of Egypt, at the Nile valley and Delta, the topography varies between 0
and 500 m. The negative Bouguer anomalies values range from -10 to -30 mGal. This corre-
sponds with the thickening of the Nile Quaternary sediment. Negative Bouguer anomalies are
observed in the Gulf of Suez, thisis caused by the thick sedimentsin the Gullf.

- By observing the orientation of the Free-Air anomalies in the study area, it was shown
that the isostatic equilibriumisfar from being achieved. The absence of alarge Bouguer anom-
aly associated with the extreme relief indicates that the area is, as could be expected, not iso-
statically compensated by local variationsin the crustal or mantle structure.

- Thelack of significant magnetic anomalies across the East Mediterranean Ridge putsin
doubt whether this Ridge is constructed of faulted, folded, uplifted and sedimentary strata. A
series of high magnetic anomalies around the Cyprean Arc, runs from the Antalya Basin across
Cyprusto the coast of Arabian plate. It coincideswith alarge positive Bouguer gravity anomaly
suggesting that the ophiolites in Cyprus, in southern Turkey and northwest Arabian plate have
a common base, and that ophiolites probably exist around the whole Cyprean Arc.

- The regional gravity anomaly valuesin the study area decrease generally towards the E-
W and SE directions. The cause of the regional gravity trend isthe transition from oceanic crust
of the Eastern Mediterranean to the continental crust of the Arabian plate. The regional magnet-
ic anomaliesin the study area on the other hand are dominant in NW- SE trends and the regional
magnetic field increases towards the north, which may reflect the shallow depth of the basement
rocksin this direction.

+ Furthermore, based on a comparison between result of the shipboard gravity anomaly
data of the areainvestigated and the satellite data, it can be showed that:

- The satellite data show only minor deviations in some partial regions of the areainvesti-
gated such as at Levant Basin and nearest Rhodes Basin.

- Thelargest differencein depth between the measured shipboard bathymetric dataand the
satellite data (e.g. Sandwell’s version 10.1 global grid from Sandwell et al., 1997) amounts to

250 m and is located at subduction trenches.
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- The differences between the satellite and the shipboard data are small in some regions of
the areainvestigated. These occurred mostly near to land. Furthermore, some strong deviations
in someregions are spatially correlated with bathymetric depth and geological structures can be
also obvious.

+ In general, as the potential field data alone do not provide definite models of the geo-
logical structures, the seismic constraints are necessary. Additionally, the results of geological
studies and other geophysical experiments play a major role in the creation of the models. The
two and three-dimensional gravity modelling performed render very satisfactory results. The
modelling parameters are constrained by the bathymetric models, gravity anomalies and the
seismic results. The following main conclusions can be drawn from interpreting the gravity da-
ta

-Two-dimensional gravity modelling derived along seismic profile A-All (Figure 5.3)
showed that the positive gravity field along and in the north of Cyprus coincides with the ophi-
olite cover over Cyprus, which is obducted over a continental crust. Such an ophiolite is also
identified in southern Turkey and northwest Arabian plate. The transition of the oceanic-conti-
nental crust occurs near the coast of Isragl, the Moho lies at a depth of about 32 km beneath Cy-
prus, and at a depth of about 27 km at the coast of Israel.

- Two-dimensional gravity modelling derived along seismic profile B-Bll (Figure 5.4) re-
vealed that the deep parts of the Levant Basin is covered by about 13 km of sediments. The crust
isoceanic and about 9 to 10 km in thickness, with an abrupt transition to the continental margin
to the east indicating the existence of a shear zone. The Moho depth varies from about 26 km
beneath the Eratosthenes Seamount to about 23 km under the Levant Basin, and to about 24 km
under the Israel coast.

- Two-dimensional gravity modelling derived along seismic profile C-Cll (Figure 5.5)
showed that the depth to the basement lies at about 6 km beneath the Egyptian coast. However,
the thickness of the sedimentary layer increases towards the East Mediterranean Ridge. In the
Herodotus abyssal plain, the depth to the basement varies between about 10 to 13 km and in-
creases up to about14.5 km beneath the East Mediterranean Ridge. The sedimentary layer thins
rapidly at the Hellenic Arc towards the west flank of Rhodes. The Moho lies at a depth of about
27 km at the Egyptian coast and then risesto aminimum depth of about 19 km beneath the Hero-
dotus abyssal plain. The depth to the Moho increases again from about 26 km below the East
Mediterranean Ridge to about 30 km below the Hellenic Arc. Also at the East Mediterranean

Ridge, the increase in negative gravity anomaly corresponds with the relatively large thickness
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of the sedimentary layer. The transition from continental to oceanic crust within the African
plate occurs at a distance of about 100 km from the Egyptian coast.

- Two-dimensional gravity modelling derived along seismic profile D-DIl (Figureb.6) re-
vealed that the basement depth varies between about 9 km at the Egyptian coast and about 13
km at the Herodotus Abyssal Plain and beneath the East Mediterranean Ridge. A thin layer of
sediments covers the Aegean continental crust. The transition of continental to oceanic crust
within the African plate is modelled to extend offshore to a distance of about 40 km from the
Egyptian coast. The African oceanic crust is subducted beneath the Island of Crete, according
to the main driving force for the opening of the Cretan Sea. The thickness of the accretionary
complex is up to about 12 km at the East Mediterranean Ridge. The boundary of the accretion-
ary wedge and the crustal backstop of the outer Hellenic Arcislocated at 100 -130 km seaward
from the coast of Crete within the northern part of the Mediterranean Ridge.

+ Thisstudy presentsthe three-dimensional gravity modelling along an areawhich covers
the whole subduction region in the area of study in order to contribute to a better understanding
of the crustal structure of this region and its relation with the adjacent areas. Furthermore it
shows the model geometry of the contact between the African and Eurasian plate. The area of
three-dimensional gravity modelling was located between 31.01° and 36.49° N and was con-
structed along 18 parallel vertical planes extending from the coast of Egypt in NW direction.
From interpreting the gravity data, the following main conclusions have been reached:

- The modelled area reproduces the observed gravity anomalies successfully. The anoma
lies are oriented roughly parallel to the bathymetric and topographic features as observed in al
the planes of the modelled area.

- The calculated and measured gravity have negative values increasing gradually from -
220 to -2 mGal. Local high and low gravity values were observed. As shown for example at
Anaximander Seamounts (Figure 5.13), at Rhodes Basin (Figure 5.15), and at Strabo Trench
(Figure 5.23). Thisis due to significant crustal thickening in these regions. The gravity values
seaward of the subduction trenches form a complicated pattern.

- In the south-eastern part of the modelled area, the transition from continental to oceanic
crust within the African plate decreases abruptly from about 100 km through plane 9 (Figure
5.19) to about 40 km through planes 10, 11, and 12 asillustrated in Figures 5.20, 5.21, and 5.22
respectively. It increases again to about 100 km through plane 13 (Figure 5.23). Thisreflectsa
very good match between the topographic features along the Egyptian coast and the main tec-

tonic elementsin thisarea (see Figure 2.1). Also, it reflects the effect of an active eastern Med-
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iterranean transcurrent fault system running through the lonian Sea, the continental margin of
Eastern Libya and western Egypt, into the land area through the Nile Delta and eventually into
the Gulf of Suez (Figure 2.2).

- In the north-western part of the modelled area, the horizontal distance of the transition
between the oceanic and continental crust at a distance between 400 to 450 km can be followed
through planes 2 to 9 (Figures 5.12 to 5.19) and also at a distance between 300 to 350 km
through planes 10 to 17 (Figures 5.20 to 5.27). Thismay be related to the African oceanic crust
being subducted beneath the Hellenic Arc. In addition, the African oceanic crust is subducted
beneath the Island of Crete, according to the main driving force for the opening of the Cretan
Sea.

- There are severa undulations in average thickness of the mantle layer of the model. In
the north-western part of the modelled area, between 350 to 550 km the average thickness of the
mantle layer ranges from about 10 to 22 km. In the south-eastern part of the modelled area, the
average thickness of the mantle layer is 27 km towards the Egyptian coast. In the middle part
the average thickness of the mantle layer is about 30 km.

- Strong lateral undulationsin the average thickness of the mantle layer are substantial at
the western part on the modelled area towards Cretan Island Arc through planes 11 to 17. This
may reflect the effect of the main driving force for the opening of the Cretan Sea through these
planes (Figure 5.32).

- At the north-western part of the modelled area, the average thickness of the oceanic crust
near 550 km, below the Anaximander Seamounts on plane 2 is about 30 km. This decreases to
athickness of about 25 km, near 500 km towards NW Rhodes Basin on planes 6 and 9. However
it increases from about 25 km, near 500 km on plane 9 to about 35 km between 400 to 430 km
below the subduction trenches on planes 10 and 11 as shown by the arrows in Figure 5.31.

4 The seismic experiments performed on the investigated area were conducted by various
international organizations. From these investigation, the following may be deduced:

- The main tectonic elements of the study areareflect the geological evolution of the East-
ern Mediterranean Sea. Seismic profile resultsindicate that the thickness and vel ocity values of
the crystalline unit under the Levant Basin are similar to the values determined for anormal oce-
anic crust.

- The crustal structure of the Levant Basin is oceanic, while that of the Eratosthenes
Seamount is continental. The seismic resultsindicated acontinental crust 35 km thick under Cy-

prus and an oceanic crust 8 km thick, in the Levant Basin between the continental margin of
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southern Israel and the Eratosthenes Seamount. The oceanic crust is covered by 12 -14 km of
sediments.

- To the south and southwest of Crete, the continental crust gradually thinsto aminimum
of 17 km and at the southern coast of Crete is about 10 km. The eastern part of Crete shows a
significantly thinner crust of 24 to 26 km. To the North, the crustal thickness decreases to 15
km below the central Cretan Sea. Furthermore, the crustal structure of the African margin is
complex and varies laterally.

- The seismic results of the Western Desert of Egypt showed that the Egyptian coast isun-
derlain by a continental crust covered by 4-6 km thick sedimentary layer. The crust is about 26
km thick below the Mediterranean Sea and the thickness increases towards the east to about 30
km.

- Inthetrench areas, the Ptolemy, Pliny and Strabo Trenches, the thickness of the sedimen-
tary cover below is less than that beneath the Mediterranean Ridge. The formation of these
trenchesis not attributed to the subduction of the African plate but to the strike-slip movements
within the Aegean continental lithosphere.

+ Findly, the study of the seismicity and focal mechanisms in the study areaisin good
agreement with the geodynamic and plate tectonic model (see Figure 7.1 and Chapter VI) de-

rived from this and previous studies.
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Deep seismic sounding experiments (DSS)
- Seismic profiles around and adjacent Dead Sea rift

A deep seismic refraction experiment, covering Sinai, and the adjacent area was per-
formed in 1977 by through a cooperation between the Institute of Geophysics, University of
Hamburg, Germany and Planetary Science, Tel Aviv University. The seismic profiles are
showninFigure4.1laslines[l], [I1] and [I11]. They run across the central and northern Sinai in
various directions. Generally, Ginzburg et al. (1979 a, b and 1981) showed that the upper man-
tle-crust boundary is defined by avelocity of 6.6-6.7 km/s above and 7.7-8.0 km/s below.

The crustal thicknessin the southern area of the Dead Seais about 30 km, but thins south-
wards along the Gulf of Agaba, where the thicknessisreduced to about 22 km. The crust of NE
Sinai and the central Negev is continental and covered by more than 2 km of sediments. To-
wards the Eastern Mediterranean Sea, the crust thins while the overlying sediments thicken
considerably. Within thisregion, which parallels the Levant and Sinai coasts, thereis azone of
depositions change within the sedimentary cover, and of crustal thinning and transition from
continental to oceanic crust. This zone represents a fossil continental margin of the Arabian

platform bordering the Tethys Ocean (Ginzburg, and Folkman, 1980).

In addition, in recent years as part of the DESERT 2000 Group project*, a seismic wide-
angle reflection/refraction experiment covering the Jordan-Dead Searift transform and the ad-
jacent area (Figure Appendix A1) has been conducted to study the crust and upper mantle, the
main shear zones, and the geodynamics of the mentioned above area (e.g. DESERT 2000
Group 2000 & DESERT 2000 Group 2000 b; Mechie et a., 2000; El-Kelani et a., 2000; Mae-
rchklin et a., 2000; and Weber et a; 2000). A brief account of the main results of these seismic
experiments are summarized:

- From an analysis of the P-wave data, the seismic basement occurs at a depth of 3-4 km
beneath the eastern flank of the rift in Jordan, deepens to about 7 km in the rift, and then be-
comes more shallow to about 6 km below the western flank in Israel and deepens westwards
towards the coast (Mechie et al., 2000).

- The boundary between the upper crust (velocity of 6.1-6.4 km/s) and the lower crust
(velocity about 6.7 km/s) occurs at around 20 km depth (Maerchklin et al., 2000).

- The Moho depth increases from 28-29 km in the NW to 37-38 km in the SE. If at all,
only a very small Moho uplift under the eastern part of the rift can be detected. The seismic

image with a deep sedimentary basin, very small Moho uplift and a Pn velocity of 7.8-8.0 km/

*DESERT 2000 Group consists of several coincident geophysical (seismic, magnetotelluric and seismological ) sub-projectsthat are
performed by partnersin Germany, Israel, Jordan and Palestine. The aim of the interdisciplinary and multi-scale Dead Sea Rift Transect
(DESERT) project (DESERT 2000 Group) isto shed light on the question of how large shear zones work. Principal investigators are

Weber, M in Germany, Ben-Avraham, Z in Israel, Abu-Ayyash, K in Jordan, and El-kelani, R in the Palestine territories.
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sin the vicinity of the rift, suggests that the mantle played insignificant role in the extension
process associated with the Jordan-Dead Searift Transform. The tectonic stability of thisregion
wasonly recently (18 Maago) interrupted by the formation of atransform fault with aleft |ateral
motion of about 105 km to date (DESERT 2000 Group 2000 b).

- The Dead Sea Transform (DST) is amgjor plate boundary separating the African and
Arabian plates. It extends over 1000 km from the Red Searift in the south to the Taurus collision
zonein the north (Weber et al; 2000). Moreover, in the area between the Dead Sea and Red Sea
the DST is marked by the Arava fault which may have the potential to produce large earth-
quakes (Mg~ 7) along some of its segments about every 200 years as shown in Figure Appendix
A1l (DESERT 2000 Group 2000 a, Klinger et a., 2000).
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Figure Appendix [A1]: Tectonic setting of the eastern Mediterranean Sea and the Middle East.
The black arrows indicate the | eft-lateral motion along the DST. Compiled from DESERT 2000
Group, and Klinger et al. (2000).
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- Seismic profilesin the Cyprean region

The Geological survey of Cyprus has performed three deep seismic sounding profiles and
numerous geophysical surveysin the Cyprean region as shown in Figure 4.1 by lines, [IV], [V]
and [V1]. Theresults of these profiles are presented in Figures Appendix [A2] and [A3] (Wang
1995). The main features observed are as follows:

- Profile[1V] runs NE-SW crossing the Eratosthenes Seamount and terminates east of Cy-
prus. Below the Eratosthenes Seamount, the depth to the basement lies at about 4-5 km and a
sedimentary layer with avelocity of 5.3-5.5 km/s overlies the crystalline crust. Northeast of the
Seamount, sedimentary sequences exceeding 8 km thickness are identified below the Trench
(Kempler, 1998).

- Profile [V] trends WNW -ESE cross the Island of Cyprus. The velocity-depth model
along this profile, indicates that a layer with a velocity of 6.0-6.7 km/s outcrops on the Island
(Wang, 1995). Thislayer is about 4-5 km thick and must be associated with the Troodos ophi-
olites. A very thick sedimentary sequence isidentified about 60 km west of Cyprus, where the
depth to the basement lies at about 12 km and an oceanic crust with athickness less than 10 km
appears to underlie the thick sediments (Robertson, 1990).

- Profile [VI] is NE-SW oriented and is situated SW of Cyprus. A thick sedimentary se-
guence underlain by about 8 km of oceanic crust is observed below the SW part of the profile
(Figures 1 and 2). In the central part of the profile, there is alayer with a velocity of 6.0 km/s
suggesting a sedimentary limestone layer. The crust below thislimestone, appears to be of oce-
anic type. The structure in the NE part of this profile, suggests the existence of a continental
crust (Figures Appendix [A2] and [A3]).

Expanding spread profilesin the Mediterranean Sea (ESP)

The two-ship refraction and reflection seismic survey profiles were performed in Decem-
ber, 1988, on the Mediterranean Sea (Pasiphae Cruise). Figure Appendix [A4] shows the loca-
tion of the Expanding spread profiles (ESP) on the Mediterranean Sea. Accenting spread
profiles which were shot parallel to major structures to avoid lateral variability, were located
along the lonian Basin, the Mediterranean Ridge and the Herodotus Abyssal Plain (De Voogd
et al., 1992).

DeVoogd et al. (1992) presented asummary of ESP resultsfor the Eastern Mediterranean
Sea from the lonian Basin to the Herodotus Abyssal Plain as shown in Figure Appendix [A5].
They concluded that the thin crust “about 10 km “of the Herodotus Abyssal Plain may be either

oceanic or thinned continental overlained by up to 10 km thick sediments.



APPENDIX [A] 177

(G66T) Buepn se1fe snudAD
jo fonuns [eaibojoes ayy woly pajidwo) “[IA] pue ‘[A] ‘[Al]ss1j0id Jo sppow yidsp Ao A smous welbelp Yowes :[gv] xipueddy ainbiH

. oFE oZ€ 06
It oZE

i
123 .n\x\\\h\\\u\ fule oFt
o] T
i L _
a5
~Lr M v e

M — —— ¢

09t

o0t oPE olt o0¢




APPENDIX [A] 178

"(G66T) Buepn Jo1je snudAD Jo fanins
[e2160]099) ay1 wod} pa|idwod 'snidAD 1o 1semyinos ‘| A a11o4d Jo ppow Yyidep A1100 A SMmoys welbeip yowXs :[v] Xipueddy ainbiH

[wy] HIdga

051 001 0% MS
(U] FONVLSIA

HN




APPENDIX [A] 179

"(266T) " 1 pboo A o wouj pajidwo) ‘paurIgqo Si ppow A1100pA R aeym wol) suiod [ejusd
dS3 Semedlpul S1op Xde|q ‘asintD Jeyd sed ay Bulinp pepiodal (dS3) sa|1joid pea.ds Buipuedx3 ay Jo dew uoi1ed07 :[yv] Xipueddy a.nbi4

8l




APPENDIX [A] 180

IONION HERODOTUS
/\ m km
: : b 6 18 -
]! 0
12 e Al = ERRARAELEE
= 3 — 1.
N — 10
s 7 4 % /
7
6 // %
7 — 20
Il .

— 30

Figure Appendix [A5]: Summary of ESP results from the lonian Basin to the Herodotus Abyssal
Plain.Vertical depth scaleisin km. Complied from De Voogd et al. (1992).

1=water, 2=recent Sea-bottom sediments, 3=evaporite, 4=pre-messsinian sediments,

5=oceanic layer 2a, 6=0ceanic layer 2, 7=oceanic layer 3, 8=oceanic or thinned continental

crust, and M=Moho
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Table Appendix [B1]: Fault plane solutions data of some shocks, which occurred in the most

seismically active zone of theinvestigated area (extracted from Harvard Seismology, CMT cat-

alog search)
Long. (°) | Lat. (°) Fault plane 1 Fault plane 2 Mp| F.D. |Date
Strike Dip dip| Strike Dip dip D/IM/Y

31.69 30.72 197 40 -4 291 87 -130 | 41| 10.0 | 14/12/87
31.89 34.47 62 48 -168 | 323 81 -43 41| 326 | 27/11/96
32.04 30.17 326 40 -7 62 85 -130 | 45| 100 | 22/05/92
32.10 30.18 147 62 4 55 87 152 | 47| 10.0 | 29/03/84
31.60 30.60 326 40 -7 62 85 -130 | 48| 33.0 | 29/04/74
32.03 34.75 147 62 4 55 87 152 | 49| 33.0 |10/10/96
28.24 36.73 275 52 -34 | 28 64 -137 | 49| 33.0 | 05/10/99
25.84 34.02 318 60 150| 63 65 33 49| 21.6 | 07/10/98
35.46 36.97 321 75 171| 53 81 15 | 49| 10.0 | 28/06/98
34.81 32.38 134 56 0 44 90 146 | 5.0 28.0 | 24/08/84
32.22 30.48 147 62 4 55 87 152 | 50| 241 | 02/0187
28.01 36.44 316 54 137| 75 56 44 50| 59.5 | 19/06/87
35.59 30.54 197 40 -4 291 87 -130 | 51| 15.0 | 23/04/79
30.73 36.75 131 41 125 268 58 64 51| 122.6 | 11/03/91
28.12 35.66 10 33 -116 | 220 60 -74 51| 53.7 | 09/03/98
32.68 34.42 303 42 124\ 80 56 63 51| 20.0 | 112/08/99
26.75 35.29 61 35 -40 | 186 68 -119 | 52| 15.0 | 23/07/79
24.49 32.55 326 40 -7 62 85 -130 | 52| 150 | 28/06/87
28.86 35.38 24 32 -152 | 270 76 -61 52| 15.0 | 20/11/88
28.52 35.17 341 73 177 | 72 87 17 53| 33.0 |18/10/91
31.48 36.17 178 30 4 84 88 120 | 54| 63.0 | 26/04/81
28.40 34.16 67 48 -34 | 181 65 -133 | 54| 150 | 22/07/85
26.13 34.60 245 36 -33 |2 71 -122 | 54| 150 | 19/03/91
27.14 36.47 315 44 173 | 50 85 46 54| 1519 | 12/04/96
36.00 36.28 243 39 -15 | 345 81 -128 | 53| 15.0 | 22/01/97
27.70 36.97 312 46 162 | 54 78 46 55| 170.0 | 27/09/83
27.36 31.39 154 44 8 | 335 46 91 | 55| 100 | 28/05/98
27.94 35.18 103 46 24 | 356 73 133| 56| 850 | 28/1177
24.89 34.75 358 39 131| 129 62 62 | 56| 65.0 | 19/03/83
31.48 35.79 132 64 155| 234 67 29 | 57| 586 | 0V/06/77
32.44 35.02 239 21 140| 6 77 73 | 58| 15.0 | 23/02/95
30.63 29.74 136 42 -75 | 297 49 -103| 59| 220 | 12/10/92
24.89 35.02 177 63 22 | 76 70 151| 6.0| 80.0 | 23/05/94
32.09 34.50 48 77 170| 140 80 13 | 64| 23.0 | 09/10/96

Long. (°): longitude in degrees; Lat. (°): latitude in degrees
Mp: Body wave magnitude; F. D.: Focal depth in (kilometers)
D : day; M: month; Y: year
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Table Appendix [B2]: Fault plane solutions data of some shocks, which occurred in the most

seismically active zone of the investigated area (extracted from WSM).

Long. (°) | Lat. (°) Fault plane 1 Fault plane 2 My | F.D. Date
Strike Dip dlip| Strike Dip dlip D/IM/IY

35.63 32.81 147 62 4 55 87 152 | 41| 13 07/05/88*
25.35 34.00 347 34 157 | 96 77 58 4.5 | 33.0 |22/10/2000*
33.55 34.83 147 62 4 55 87 152 | 45| 495 | 07/07/86*
28.04 36.37 12 30 176| 105 88 60 4.6 | 127.7 | 26/04/96*
35.50 31.90 178 30 4 84 88 120 | 47| 31 25/01/85*
32.63 34.89 224 20 132| O 76 76 53| 15.0 | 29/05/95*

Long. (°): longitude in degrees; Lat. (°): latitude in degrees

Mp: Body wave magnitude; F. D.: Focal depth in (kilometers)

D : day; M: month; Y: year
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Focal M echanisms

One of the most common ways of studying the seismotectonics of any particular region
is the plotting of a regional stress pattern map on the basis of focal mechanisms (Kasahara,
1981). Seismologists refer to the direction of dip in an earthquake and the orientation of the
fault on which it occurs as the focal mechanism solutions (e.g. Kasahara and Stevens, 1969).
They use information from seismograms to calcul ate the focal mechanism solutions and typi-
cally display it on maps asa"beach ball" symbol. This symbol isthe projection on a horizontal
plane of the lower half of an imaginary, spherical shell (focal sphere) surrounding the earth-
quake source asillustrated in Figure Appendix C 1 part [A].

In addition, Figure Appendix C 1 part [B] shows typically four examples of the focal
mechanisms solutions (after USGS, 1996). The block diagrams adjacent to each focal mecha-
nism illustrate the two possible types of fault motion that the focal mechanism could represent.
The ambiguity may sometimes be resolved by comparing the two fault-plane orientationsto the
alignment of small earthquakes. Moreover, the stress-field orientation at the time of rupture
governsthe direction of slip on the fault plane, and the beach ball also depictsthis stress orien-
tation. The minimum compressive stressdirection is constrained to the gray quadrant, whilethe
maximum compressive stress lies in the white quadrant. When studying an ensemble of fault
plane solutions, one often assumes that the average orientation of the (T) axis approximates the
minimum compressive stress and the average orientation of the (P) axisthe maximum compres-
sive stress. As illustrated in Figure Appendix C 1 part [B], the first three examples describe
fault motion that is purely horizontal (strike slip) or vertical (normal or reverse), where as the
fourth example describes the oblique-reverse mechanism illustrates that the slip may also have

components of horizontal and vertical motion.
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Figure Appendix [C1]: Schematic diagram of afocal mechanisms solutions. Gray and white portions represent
compression and dilatation quadrants respectively. The gray quadrants contain the tension axis (T), and the white
quadrants contain the pressure axis (P). ( —p.) Arrows indicate block movements. Compiled from USGS, 1996.




