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Introduction.

This thesis can be regarded as a sequel to [15], [16] and [17], which together establish a

paradigm studying mirror symmetry via logarithmic algebraic geometry. This approach can

be viewed as an algebro-geometric version of the Strominger-Yau-Zaslow (SYZ) program [35].

This thesis concentrates nevertheless mainly on constructions on one side of mirror symmetry.

In [15], the construction begins with a compact integral affine manifold B without bound-

ary containing singularities ∆ of codimension ≥ 2. By means of the discrete Legendre trans-

form of B (see [15, §1.4]), one gets another affine manifold B̌ with singularities ∆̌. Concen-

trating on one side, say B, one then looks at a polyhedral decomposition P of B. With

the decomposition P, we are able to build a space X0 := X0(B,P) from pieces of algebraic

varieties, denoted by Xτ . Such pieces of varieties Xτ are called toric strata. They are ac-

quired via methods in toric geometry, where every single Xτ is in fact a toric variety. The

algebraic space X0 is thus obtained by gluing together different Xτ torically, whereby toric

prime divisors of Xτ are identified.

A log structure is then put on X0 to get a log Calabi-Yau space X†0, which is treated

as a central fibre of a degeneration. The log structure is important as it carries algebraic

information about the degeneration and the central fibre. With the help of log geometry, it is

described in [17, Thm. 1.29] that, under certain assumptions, there exists a toric degeneration

π : X → T with X0 and Xη as the central fibre and the generic fibre respectively. Here T is

the spectrum of a discrete valuation k-algebra with closed point O ∈ T and X0 := π−1(O)

(see Definition 1.3).

Xη
� � //

��

X

��

X0
? _oo

��
{η} � � // T {O}? _oo

Given a smooth Calabi-Yau variety Xη, mirror symmetry studies the properties of Xη

and its mirror X̌η (which is also a Calabi-Yau variety), and how these properties are related.

The notion “mirror symmetry” originated from the study of string theory in physics. It

led to exploration and investigation of many interesting mathematical phenomena. Among

them, the phenomenon most related to this thesis is the exchange and computation of Hodge

numbers (see [3, 4, 12]). More precisely, one has h1,1(Xη) = h1,2(X̌η) and h1,2(Xη) = h1,1(X̌η)

for a mirror pair Xη and X̌η of Calabi-Yau varieties with dimXη = dim X̌η = 3.

In the above described framework, the mirror varieties Xη and X̌η are taken to be the

generic fibres of degenerations π : X → T and π̌ : X̌ → Ť respectively. It is illustrated in

[16, Thm. 3.23] and in the proof of [16, Cor. 3.24] that the exchange of Hodge numbers

can be viewed more elementarily due to the discrete Legendre transform between B and B̌.
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Therefore, mirror symmetry can be investigated by looking at the data exchange between

B and B̌ providing the degenerations exist. On each side of the mirror, we then also look

at mathematical properties between B and X0, as well as between X0 and Xη, eventually

establishing correspondence of properties between Calabi-Yau varieties Xη and X̌η.

In [16], as a continuation of [15], various consequences of the above construction were

further investigated, including the computation of the Hodge theory of the log Calabi-Yau

space X†0 on each side and a base change theorem for the smoothings of the log Calabi-Yau

spaces. In particular, the Hodge theory of the degeneration can be controlled by the data of

(B,P) under some technical assumptions.

Let k denote an algebraically closed field of characteristic zero. Let Z be the singular set

of the log structure; it is a closed subset of X0 of codimension ≥ 2. Denote the inclusion of

the complement by j : X0 \ Z ↪→ X0. Let ∆ be the set of singularities of the affine structure

on B and denote the inclusion of the complement by i : B \∆ ↪→ B. The exchange of Hodge

numbers in mirror symmetry is obtained via formulae relating the log Dolbeault cohomology

groups Hp(X0, j∗Ω
q

X†0/k†
) and the affine Hodge groups Hp(B, i∗

∧q Λ̌B ⊗Z k). Here Λ̌B is the

local system on B \∆ of flat integral cotangent vectors.

The Hodge theory of Xη is eventually expressed in terms of the affine Hodge groups by

applying the base change theorem (see [16, Thm. 4.2]). In particular, the Hodge numbers of

Xη can be computed from B:

hp,q(Xη) = hq
(
B, i∗

∧p Λ̌B ⊗Z k
)
,

provided that a smoothing of X0 exists. The proof is in two steps:

1. Equate the affine Hodge groups with the logarithmic Dolbeault groups Hq(X0, j∗Ω
p

X†0/k†
).

(see [16, Cor. 3.24])

2. Show that the Dolbeault cohomology groups of a toric degeneration X→ T fit together

into a vector bundle over the base space T . (see [16, Thm. 4.2])

The mirror phenomenon between Calabi-Yau varieties is generalized, for example by [9,

10, 13, 19, 23, 24], to Fano varieties and Landau-Ginzburg models (LG models). Striving for

a unified framework, the concept of a log Calabi-Yau pair (log CY-pair), denoted by (X†0, D),

is introduced in [17].

On the “Fano side”, the generic fibre is a Calabi-Yau pair (Xη, Dη), where Xη is a variety

with an effective anticanonical divisor Dη ⊂ Xη. In most cases we are interested, Xη is a

Fano variety.

(Xη, Dη)
� � //

��

(X,D)

��

(X0, D)? _oo

��
{η} � � // T {O}? _oo
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On the other hand, the LG model is a variety X̌η with a regular function W : X̌η → A1
k(η),

where k(η) denotes the residue field of a point η in a scheme. The pair (X̌η,W ) is taken to

be the mirror of Xη.

This thesis aims to apply the methods and results in [16] in order to investigate the coho-

mological consequences concerning log CY-pairs and their smoothings. We shall concentrate

mainly on the Fano side.

A log CY-pair (X†0, D) is also determined by the data (B,P), with the same gluing process

as for X†0 in [15, 16]. The greatest difference is that B is now non-compact without boundary.

The new term D =
⋃
Dν is a union of toric prime divisors in X0. These toric divisors

correspond to unbounded 1-cells in the decomposition P of B. In the toric degeneration,

the effective divisor Dη has to be the smoothing of D.

On the central fibre, there are two log spaces X†0 and X̆†0 to be considered in this thesis.

The log structure on X†0 is determined by open gluing data analogously as in [15, Def. 2.25].

Let D denote a divisor on X such that Dη = D∩Xη := Dη is a smooth irreducible divisor on

the generic fibre Xη and D0 := D is a collection of toric boundary (prime) divisors in X0. In

the perspective of toric degeneration π : X→ T , the log structure on X†0 can be acquired by

restriction of the log structure on X given byM(X,D∪X0) to X0. HereM(X,D∪X0) denotes the

sheaf of regular functions on X with zeros contained in D ∪X0 (cf. [15, Ex. 3.2]). This log

structure on X†0 is the divisorial log structure induced by the toric boundary divisor during

the toric construction of étale neighbourhoods of points of X0 in X.

On the other hand, we have another log structure on X given by M(X,X0), the sheaf of

regular functions on X with zeros contained in X0. One then restricts this log structure to

X0 to get the log structure on X̆†0. In order to obtain the ordinary Dolbeault cohomology

groups Hq(Xη,Ω
p
Xη

) of the generic fibre Xη, this log structure has to be considered. This

log structure has the advantage that the allowed log poles of differential forms on X are not

located on the generic fibre Xη while it is not the case for the log structure on X†0.

In the situation of a variety with an effective anticanonical divisor (Xη, Dη), there are

two natural classes of cohomology groups of Dolbeault type, the ordinary Dolbeault group

Hq
(
Xη,Ω

p
Xη/k(η)

)
and the one with logarithmic poles along Dη, that is, the logarithmic Dol-

beault group Hq
(
Xη,Ω

p
Xη/k(η)(logDη)

)
. Note that we have an abuse of notation here (see

Remarks 3.10 and 3.12). The first main result of this thesis is the following generalization of

the results [16, Thm. 3.21 and 4.2].

Theorem 0.1. Let (X†0, D) be a log Calabi-Yau pair associated to an integral affine manifold

with singularities (B,P). Assume that (B,P) is positive and simple (see [15, §1.5]) and

that the monodromy around every cell τ ∈P in B is unimodular. Suppose that a smoothing

of X†0 → Speck† in a toric degeneration (see Definition 1.3) exists. Then the following holds:

dimk(η)H
q
(
Xη,Ω

p
Xη/k(η)(logDη)

)
= dimkH

q(B, i∗(

p∧
Λ̌B ⊗Z k)).
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This is acquired by a base change result of the hypercohomology groups Hk(X,Ω•X) with

respect to the log structure X†0. It can be regarded as an affine cohomological control of the

log Dolbeault groups of the generic fibre Xη. Same to the situation in [16], the above result

relies on the technical assumption that the monodromy polytope Conv(
⋃q
i=1 ∆̌i × {ei}) is a

standard simplex for every cell τ ∈ P (see [15, Def. 1.60] and [16, Thm. 3.21]), which we

call the monodromy is unimodular around the cell τ in the above theorem. The relaxation

of this assumption for Calabi-Yau varieties Xη is handled in [32].

To get a similar cohomological control for the log structure X̆†0, we first notice that there

is also a base change result for the hypercohomology groups Hk(X, Ω̆•X) with respect to the

log structure on X̆†0. Then we introduce the notions Λ and Λ0 of local systems of flat integral

vector fields on the cone picture B̌, so as to get an (integral) affine analogue of the Poincaré

residue map in complex algebraic geometry. After establishing an affine control of the log

Dolbeault groups Hq
(
Xη,Ω

p
Xη/k(η)(logDη)

)
from the cone picture (the above theorem is an

affine control from the fan picture), we are able to express the affine cohomological control

of the ordinary Dolbeault groups of Xη as

dimk(η)H
q
(
Xη,Ω

p
Xη/k(η)

)
= dimkH

q(B̌, i∗(

p∧
ΛB̌0 ⊗Z k))

provided that Dη is irreducible in Xη. This fact is obtained by writing down cohomology

long exact sequences of B̌ and Xη and the consequent identification of cohomology groups.

The above two affine cohomological controls establish links between the Dolbeault coho-

mology theories on Xη induced by Kähler geometry and the cohomology theories on B under

toric degeneration. Given an Xη, provided that it is the generic fibre of a toric degeneration

and its ordinary Dolbeault and log Dolbeault cohomology groups are known, it is possible to

recover the corresponding singularities on the affine manifold B by Čech cohomology calcula-

tions on B. These will be illustrated by the calculations of examples of low dimensions in §4.1.

Besides, a relation between the birational geometry on Xη and singularities on B is expected

in higher dimensions, which is inspired by the calculation in dimension 2 because blowing up

a point in Xη is equivalent to adding a singularity on B. A more detailed discussion will be

conducted in §4.2 (2).

Another immediate observation of these considerations is the simultaneous degeneration

of the spectral sequences of the four complexes of sheaves Ω•Xη(logDη), Ω•Xη , i∗
∧• ΛB̌ ⊗

C and i∗
∧• ΛB̌0 ⊗ C at E1 level (with respect to the trivial filtrations). It illustrates a

good correspondence between the cohomology theory of affine geometry on B̌ (equivalent

to the affine geometry of B via the discrete Legendre transform) and that of the “induced”

Kähler geometry on Xη under the setting of toric degeneration. The degeneration result of

Ω•Xη(logDη) at E1 is especially impressing; we recover a classical result of Deligne [8] on the

closed smooth fibres Xs with k(s) = C provided that an algebraic family with central fibre

X0 (as an algebraic space over k = C) exists.

This thesis is organized as follows. §1 is an introductory section. §1.1 reviews the settings
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and some definitions in [15, 16, 17] and gives an overview of the main results of this thesis.

§1.2 discusses possible singular behaviour of a toric degeneration in higher dimensions and

the impact of coherency of log structures on cohomology theories. §1.3 and §1.4 are actually

the CY-pair version of Construction 2.1 and Theorem 2.6 in [16].

§2 is the most technical part of this thesis. This section follows the lines of §1, §3.1 and

§3.2 of [16], applying the arguments of which and stating results in the setting of CY-pair

with respect to the two log structures considered.

The important results of this thesis are written down in §3. In §3.1, we are able to get

isomorphisms between log Dolbeault groups on X0 and the affine Hodge groups on B with

the help of the log structure on X†0, which is our first affine cohomological control. Besides,

we also have the Hodge decomposition for the hypercohomology with respect to X†0. §3.2

contains the base change result for the hypercohomology groups of both log structures. §3.3

will review the discrete Legendre transform of an affine integral manifold B and introduce

the notions Λ and Λ0 and consequently obtain an affine analogue of the Poincaré residue map

and the second affine cohomological control. §3.4 will analyse the spectral sequences of the

complexes of sheaves on Xη and B.

In §4.1, we calculate some examples in dimension 1 and dimension 2. We will discuss

some undeveloped aspects of this thesis and possible outcomes of the results in §4.2.

§5 is the appendix. It proves some statements relating the log spaces X†0 and X̆†0, com-

plementing the local description Theorem 1.12.
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Chapter 1

Toric Degenerations and their Local

Descriptions

This first section serves to provide a review of the notion of toric degeneration and a panoramic

view of the main results in this thesis. It mentions in particular how the results in cohomology

theories in the generic fibre of a toric degeneration and the related affine manifold B (or B̌)

are going to appear.

1.1 An overview

Let k always be an algebraically closed field of characteristic zero. Following the notations

of [15, §3.1] and [16, §1], consider a morphism of logarithmic spaces π : X† = (X,MX) →
S† = (S,MS). Here MX is a sheaf of monoids on X and the dagger is always used to

denote a logarithmic space. In particular, the notion k denotes the trivial log point and k†

denotes the standard log point (see [15, Ex. 3.5]). Recall related definitions concerning toric

degenerations (see [17, Def. 1.6 – 1.9]).

Definition 1.1. A totally degenerate CY-pair is a reduced variety X0 together with a reduced

divisor D ⊆ X0 fulfilling the following conditions: Let ν : X̃0 → X0 be the normalization

and C ⊆ X̃0 its conductor locus. Then X̃0 is a disjoint union of algebraically convex toric

varieties, and C is a reduced divisor such that C + ν∗D is the sum of all toric prime divisors,

ν|C : C → ν(C) is unramified and generically two-to-one, and the square

C −−−−→ X̃0y yν
ν(C) −−−−→ X0

is cartesian and cocartesian.

A central concept in log geometry is (log) smoothness, which runs analogously to for-

mal smoothness for schemes. In the following, we use the characterization of log smooth

morphisms due to Kato (cf. [20, Thm. 3.5]) as in [15, Def. 3.8] and [17, Def. 1.7].

Definition 1.2. Let T be the spectrum of a discrete valuation k-algebra R with closed point

O and uniformizing parameter t ∈ O(T ). Let X be a k-scheme and D, X ⊆ X reduced

9
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divisors. A log smooth morphism π : (X, X;D) → (T,O) is a morphism π : (X, X) → (T,O)

of pairs of k-schemes with the following properties: For any x ∈ X there exists an étale

neighbourhood U → X of x such that π|U fits into a commutative diagram of the following

form.

U
Φ−−−−→ Speck[P ]

π|U
y yG
T

Ψ−−−−→ Speck[N]

Here P is a toric monoid, Ψ andG are defined respectively by mapping the generator z1 ∈ k[N]

to t and to a non-constant monomial zρ ∈ k[P ], and Φ is étale with preimage of the toric

boundary divisor equal to the pull-back to U of X ∪D.

Although the log structures do not seem to be involved in this definition at first glance,

this definition is indeed a modified version of [15, Def. 3.8] for the setup of toric degeneration.

Definition 1.3. Let T be the spectrum of a discrete valuation k-algebra R with closed point

O ∈ T and uniformizing parameter t ∈ O(T ). A toric degeneration of CY-pairs over T

is a flat morphism π : X → T together with a reduced divisor D ⊆ X, with the following

properties:

(i) X is normal.

(ii) The central fibre X0 := π−1(O) together with D = D ∩ X0 is a totally degenerate

CY-pair.

(iii) Away from a closed subset Z ⊆ X of relative codimension ≥ 2 not containing any toric

stratum of X0, the map π : (X, X0;D)→ (T,O) is log smooth.

The above definitions are taken from [17] for a CY-pair. In fact, these are generalizations

of [15, Def. 4.1] and [15, Def. 4.3].

In [16], we have Figure 1.1 provided that a smoothing of a log Calabi-Yau space X†0 exists.

In the sense of above definitions, this log Calabi-Yau space is indeed a log CY-pair (X†0, D)

with D = ∅. The generic fibre Xη is a Calabi-Yau variety of dimension n and hence in this

thesis this type of degeneration is called the Calabi-Yau case.

In this thesis, we consider the situation of Figure 1.2 in which the generic fibre Xη has

an effective anticanonical divisor −KXη . Now Xη is the smoothing of a log Calabi-Yau pair

(X†0, D). We call this the Fano case since Xη is a Fano variety in most cases. We have an

extra divisor D ⊂ X such that D ∩Xη = Dη is an effective divisor in Xη and D ∩X0 = D.

In each of the above cases, a log space X†0 is taken as the central fibre. In contrast to the

Calabi-Yau case, we view however the central fibre as two log spaces X†0 and X̆†0 with the

same underlying scheme X0. The log space X̆†0 is constructed locally using a relative chart

P̆ ′ of the chart P ′, where P ′ is a local chart for X†0 (see Remark 1.13 (2)).

10



§ 1.1. An overview

O

XηX0

T
η

X

Figure 1.1: Calabi-Yau case

To calculate cohomology groups on X0 and eventually on Xη, we note that there is a

notion of fine log structure in logarithmic geometry (see [28]). The log structures we consider

now have a nonempty locus Z on X0 (eventually Z on X) where the log structures fail to be

fine. As seen in [16, Ex. 1.11], the sheaf of log differentials behaves poorly at points where the

log structure is not fine. We will hence use the push-forward of the sheaf of log differentials

in the log smooth part of X by j : X \ Z ↪→ X (similarly j : X \ Z ↪→ X).

Definition 1.4. A log derivation on X† over S† with values in an OX -modules E is a pair

(D,Dlog), where D : OX → E is an ordinary derivation of X/S and Dlog : Mgp
X → E is a

homomorphism of abelian sheaves with Dlog ◦π# = 0; these fulfill the following compatibility

condition

D
(
αX(m)

)
= αX(m) ·Dlog(m), (1.1)

for all m ∈MX , where αX :MX → OX is the log structure.

Denote the sheaf of log derivations of X† over S† with values in OX by ΘX†/S† .

Lemma 1.5 (Lem. 1.9 in [16]). Given a morphism π : X† → S† of log schemes, let

Ω1
X†/S† =

(
Ω1
X/S ⊕ (OX ⊗ZMgp

X )
)/
K,

with K the OX-module generated by

(dαX(m),−αX(m)⊗m), and (0, 1⊗ π∗(n)),

for m ∈MX , n ∈MS. Then the pair (d, dlog) of natural maps

d : OX
d−→ Ω1

X/S −→ Ω1
X†/S† , dlog :Mgp

X
1⊗ ·−→ OX ⊗Mgp

X −→ Ω1
X†/S† ,

is a universal log derivation.

11
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O

XηX0

T
η

X

D

Dη
D

Figure 1.2: Fano case

The OX -module Ω1
X†/S†

is the module of log differentials. If π is log smooth then Ω1
X†/S†

is locally free (see [20, Prop. 3.10]). Use the convention Ω0
X†/S†

= OX and denote

Ωr
X†/S† =

∧r
Ω1
X†/S† .

In the perspective of degeneration, the log structure on X†0 is actually the restriction of

the log structure given by M(X,X0∪D) in X to X0, where M(X,X0∪D) denotes the sheaf of

regular functions on X with zeros contained in X0 ∪D (cf. [15, Ex. 3.2]). This log structure

on X†0 is the divisorial log structure induced by the toric boundary divisor during the toric

construction of étale neighbourhoods of points on X0 in X (cf. Remark 2.25).

On the other hand, we have another log structure on X given by M(X,X0). The log

structure on the space X̆†0 is indeed the restriction of this log structure on X to X0. Under

toric degeneration, this log structure on the space X̆†0 is also considered under the framework

of toric degeneration with the following insight.

Speaking locally on X with the use of a system of local coordinates (z1, . . . , zn+1) such

that D = {z1 = 0}, the sheaf of monoidsM(X,X0∪D) will lead to the differential dlog z1 = dz1
z1

while the sheaf M(X,X0) will not. Since Dη = D ∩ Xη, the differential dlog z1 is restricted

to an element of Ω1
Xη/k(η)(logDη) and this element has poles along Dη. On the other hand,

it is easy to see that the allowed log poles of differential forms on X are not located on the

generic fibre Xη by using the log structure on X̆†0.

The essence of [16] is to compute the ordinary Dolbeault groups on Xη with the help

of the log structure on X†0 under toric degeneration, which cannot be achieved by con-

sidering X†0 in the Fano case. More precisely, one only recovers the cohomology group

Hq(Xη,Ω
p
Xη/k(η)(logDη)) from Hq(X0, j∗Ω

p

X†0/k†
) using the log structure on X†0 via base

12



§ 1.1. An overview

change by Theorem 3.9, which is not the usual Dolbeault group in Kähler geometry. However,

we do get the Dolbeault group Hq(Xη,Ω
p
Xη/k(η)) with the consideration of the log structure

on X̆†0.

In both the Calabi-Yau and Fano case, the central fibre X†0 is first constructed by toric

geometry from an integral affine manifold B with singularities ∆ and a polyhedral decompo-

sition P. The correspondence is summarized in the following table:

Fano variety LG model Calabi-Yau variety

Fan Picture B non-compact B compact B compact

(Dual Intersection Complex) ∂B = ∅ ∂B 6= ∅ ∂B = ∅
Cone Picture B̌ compact B̌ non-compact B̌ compact

(Intersection Complex) ∂B̌ 6= ∅ ∂B̌ = ∅ ∂B̌ = ∅

We briefly recall the construction of fan picture and cone picture here.

Given a polyhedral decomposition P of B in the fan picture, a fan structure is always

specified at each vertex v ∈ P. More explicitly, a complete rational polyhedral fan Σv is

defined at v. We then get a toric variety Xv := X(Σv) from this fan, which is an irreducible

component Xv of X0. Similarly, this construction is performed for faces τ in P of arbitrary

dimensions (cf. [15, Def. 2.7]).

The cone picture B̌ is related to B by the discrete Legendre transform. Given (B̌, P̌)

and a cell τ ∈ P̌, we can define

X̌τ := Proj k[P̌τ ],

where P̌τ := C(τ)∩ (Λτ ⊕Z) and C(τ) := {(rm, r)|r ≥ 0,m ∈ τ} (cf. [15, Def. 2.1]). Suppose

that dimB = n. In the fan picture, dimXτ = n− p if dim τ = p. In the cone picture, on the

other hand, dim X̌τ = p if dim τ = p.

We use the fan picture until §3.1 in this thesis because the cone picture provides the

additional data of an ample line bundle, which are inessential for the Hodge-theoretical

results here. Following the methods and arguments in [16], the first isomorphisms

Hq
(
X0, j∗Ω

p

X†0/k†
) ∼= Hq(B, i∗(

p∧
Λ̌B ⊗Z k)),

are obtained firstly in terms of the fan picture after

1. construction of an acyclic resolution C •(Ωp) of the sheaf Ωp on X0 in §2.4,

2. proving related cohomology vanishing theorems (Lemma 3.1 and Lemma 3.4),

3. identification of global sections on open covers of X0 and B (Lemma 3.4),

which are summarized in Theorem 3.5. An application of base change (Theorem 3.9) yields

Hq
(
Xη,Ω

p
Xη/k(η)(logDη)

) ∼= Hq
(
X0, j∗Ω

p

X†0/k†
)
⊗k k(η).

13
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So we get the first type of isomorphisms

Hq
(
Xη,Ω

p
Xη/k(η)(logDη)

) ∼= Hq(B, i∗(

p∧
Λ̌B ⊗Z k(η))). (1.2)

We call this type of isomorphisms (1.2) the first affine cohomological control. This is one of

the main results of this thesis. In terms of the data in the cone picture, this first control can

be written as

Hq
(
Xη,Ω

p
Xη/k(η)(logDη)

) ∼= Hq(B̌, i∗(

p∧
ΛB̌ ⊗Z k(η))). (1.3)

With the consideration of the Poincaré residue map

0→ Ωp
Xη
→ Ωp

Xη
(logDη)→ Ωp−1

Dη
→ 0

and some new definitions Λ and Λ0 in the cone picture B̌ (see Construction 3.14), we are

able to get an (integral) affine analogue of the Poincaré residue map

0→
p∧

ΛB̌0 →
p∧

ΛB̌ →
p−1∧

Λ∂B̌ → 0.

By the comparison of the cohomology long exact sequences induced by the above two short

exact sequences, we are able to get the second type of isomorphisms

Hq
(
Xη,Ω

p
Xη/k(η)

) ∼= Hq(B̌, i∗(

p∧
ΛB̌0 ⊗Z k(η))). (1.4)

This is another main result of this thesis. We shall call this type of isomorphisms the second

affine cohomological control.

We call (1.3) (which is equivalent to (1.2)) and (1.4) the affine cohomological controls

because the logarithmic and the ordinary Dolbeault cohomology groups on the variety Xη

are controlled by the cohomology groups on B̌ (and vice versa) in the framework of toric

degeneration.

We need to switch to the cone picture since the second affine cohomological control (1.4)

is more natural to be expressed in the latter one. For the proof of the second cohomological

control, we make use of

Hq
(
Dη,Ω

p
Dη/k(η)

) ∼= Hq(∂B̌, i∗(

p∧
Λ∂B̌ ⊗Z k(η)))

which is the result in [16], together with the fact that the affine manifold ∂B̌ is compact

without boundary and is flat with respect to the affine structure. Indeed, the divisor Dη

is then a Calabi-Yau variety and corresponds to ∂B̌. We lack however a good description

in the fan picture, partly due to the fact that the affine manifold B is unbounded without

boundary so that there is no corresponding analogue for the sheaf ΛB̌0 (defined on the cone

picture B̌) in the fan picture B, which provides the necessary (integral) affine analogue of

Poincaré residue map in the fan picture.

14
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1.2 Issue of singularities and coherence of log structures

The toric degenerations do not necessarily always behave very nicely. In fact, singularities

may occur on Xη, but we have the following Proposition 1.6 to classify them in terms of the

local toric data.

These toric data are given by toric monoids P . A toric monoid is a finitely generated,

saturated and integral monoid. Such a monoid P is precisely of the form σ∨ ∩Zn for σ ⊆ Rn

a strictly convex, rational polyhedral cone. As we shall see later in detail in §1.4, each

toric monoid P encodes the information about Xτ étale locally for a cell τ ∈ P (e.g. its

codimension q in B) as well as the monodromy behaviour of the affine structure around τ

in terms of Newton polytopes ∆i for 1 ≤ i ≤ q, provided that (B,P) is positive and simple

([15, Def. 1.54 and Def. 1.60]).

Given these monoids P , we can consider a collection of schemes Speck[P ], which then

constitutes an open cover of the total space X of the degeneration. In particular, every closed

geometric point x̄ ∈ Z (Z is where the log structure on X†0 fails to be fine) is covered by such

an étale neighbourhood Spec k[P ].

Proposition 1.6. Let P be a toric monoid as mentioned above (see Construction 1.8), which

is determined by τ ∈ P and Newton polytopes ∆1, . . . ,∆q capturing the local monodromy

behaviour around τ . Then the generic fibre of f : Spec k[P ]→ Speck[N] induced by ρ = e∗0 is

non-singular if and only if

Conv

( q⋃
i=1

∆i × {ei}
)

is a standard simplex.

If

Conv

( q⋃
i=1

∆i × {ei}
)

is an elementary simplex (i.e. its only integral points are its vertices) then the generic fibre

of f has codimension at least four Gorenstein quotient singularities.

Proof. The proof is the same as [16, Prop. 2.2], since the generic fibre of f is defined by the

cone

K ∩ ρ⊥ = Cone

( q⋃
i=1

∆i × {ei}
)
.

The only difference between the Calabi-Yau case and Fano case is that we allow ∆0 := τ to

be unbounded. In particular, the cone K ∩ ρ⊥ behaves the same as in [16, Prop. 2.2].

Remark 1.7. Assuming that the simplex

Conv

( q⋃
i=1

∆i × {ei}
)

15
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satisfies corresponding properties for every toric monoid P associated to τ ∈ P, then we

obtain the desired properties of generic fibre of a toric degeneration accordingly. We thus see

that the properties of generic fibre depend on the local monodromy around every cell τ ∈P.

In [31, §3.3], there is a calculation of a 4-dimensional Fermat Calabi-Yau hypersurface X.

The corresponding simplex is elementary and thisX has four terminal Gorenstein singularities

so that it is a case where the general fibre of a toric degeneration fails to be smooth.

An intermediate consequence of the above proposition is that, the generic fibre of π only

has singularities with codimension ≥ 4. Thus, the generic fibre Xη is always smooth for

dimXη ≤ 3.

On the other hand, the log singular locus Z also prevents us to get the isomorphisms

between Hq(Xη,Ω
p
Xη

(logDη)) and Hq(X0, j∗Ω
p

X†0/k†
) as well as between Hq(Xη,Ω

p
Xη

) and

Hq(X0, j∗Ω
p

X̆†0/k†
) because a priori we only get Hq(Xη, (j∗Ω

p
X†/R†

)η) and Hq(Xη, (j∗Ω
p

X̆†/R†
)η)

by base change. The locus Z ⊆ X where the log structures fail to be fine is of relative

codimension ≥ 2 by the definition of toric degeneration. However, Zη = Z ∩Xη is empty as

long as the generic fibre Xη is smooth.

Otherwise Zη is of codimension at least 4 in Xη (when there are singularities on Xη). In

this case, there is no difference between the Čech cohomology groups Ȟq(Xη,Ω
p
Xη

(logDη))

and Ȟq(Xη, (j∗Ω
p
X†/R†

)η). When the sheaf j∗Ω
p
X†/R†

is locally free, both Čech cohomology

computations are the same because a regular function on Xη \ Zη extends uniquely to a

regular function on Xη. Similarly, the situation is also the same for the groups Ȟq(Xη,Ω
p
Xη

)

and Ȟq(Xη, (j∗Ω
p

X̆†/R†
)η).

1.3 The setting for a Calabi-Yau pair

Let B be an integral affine manifold with singularities, which is non-compact and without

boundary (cf. [17, §1.1]). It carries a toric polyhedral decomposition P, and we suppose

(B,P) is positive and simple, which is a condition on the local affine monodromy around

∆ ⊆ B. Then a choice of open gluing data s = (se)e∈Hom P (cf. [17, Def. 1.17]) determines

a CY-pair (X0, D). We require the CY-pair (X0, D) with D =
⋃
Dµ to fulfill the following

condition:

Dµ ⊂ X0 are toric (n− 1)-strata in X0 satisfying Dµ * (X0)sing, (1.5)

where (X0)sing is the union of all toric (n−1)-strata besides all Dµ. Equivalently, D∪(X0)sing

contains all toric (n− 1)-strata in X0. The log schemes X0 are S2 as in [16]; this is a result

of the construction of X0.

At the same time, the open gluing data s mentioned above determine a log structure X†0
on (X0, D) (cf. [17, §1.2]), so that a log Calabi-Yau pair (X†0, D) = X0(B,P, s)† is obtained

16
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(cf. [15, Def. 4.3] and [17, Def. 1.22]). It is equipped with two log structures, along with two

morphisms of log schemes

X†0 → Speck†

and

X̆†0 → Speck†,

which are log smooth off of a codimension two set Z. The latter log structure is locally given

by a natural relative chart P̆ ′ of the chart P ′ for the log structure on X†0 in the standard

étale covering of X0 (see Remark 1.13 (2) and Lemma 5.3). We will fix (B,P, s) now and

write (X†0, D) instead of X0(B,P, s)†.

1.4 Local description

Consider a closed geometric point x̄ in an irreducible component Xv of X0, where v ∈P is

a vertex in fan picture B with polyhedral decomposition P.

With reference to Definition 1.3, if π is log smooth at x̄, then π is étale locally described

by a usual toric degeneration in the sense of [18, §1.2], in which σ̃ there corresponds to the

toric monoid P later in this section, yet without local monodromy data. Note further that

the construction in [18] is done primarily using the cone picture, where codimension one faces

correspond to the toric prime divisors (see comments before [18, Ex. 1.2]) while we are using

the fan picture for the construction in this section.

As remarked in §1.2, the collection of schemes Spec k[P ] forms an open cover for the total

space X of the degeneration and it enables us to study global cohomology objects based on

local computations on X0 and its local models.

Construction 1.8 (cf. Constr. 2.1 in [16]). Let M ′ be a lattice, N ′ the dual lattice, and set

M = M ′⊕Zq+1, N the dual lattice of M . We write e0, . . . , eq for the standard basis of Zq+1,

and we identify these with (0, e0), . . . , (0, eq) in M . Thus we can write a general element of

M as m+
∑
aiei for m ∈M ′. Similarly, we write e∗0, . . . , e

∗
q for the dual basis, which we view

as elements of N .

Fix a convex lattice polytope τ ⊆M ′R where dim τ = dimM ′R, with normal fan Σ̌τ living

in N ′R (see [15, Def. 1.38] for the convention concerning the normal fan). We obtain a cone

C ′(τ) ⊆ M ′R ⊕ R, C ′(τ) = {(rm, r)|r ≥ 0,m ∈ τ}, and a monoid P ′ = C ′(τ)∨ ∩ (N ′ ⊕ Z).

Define ρ′ ∈ P ′ to be given by the projection M ′ ⊕ Z→ Z. We set

V ′(τ) = Spec k[P ′]/(zρ
′
) = Spec k[∂P ′]

(cf. [15, Def. 2.13]). Here ∂P ′ is the monoid consisting of elements of the boundary of P ′

and ∞, with p+ p′ defined to be p+ p′ if p+ p′ lies in the boundary of P ′ and ∞ otherwise.

As in [15], we identify ∂P ′ as a set with N ′ ∪ {∞} via projection to N ′. We always use the

convention that z∞ = 0.

17
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Let ψ̌1, . . . , ψ̌q be integral piecewise linear functions on Σ̌τ whose Newton polytopes are

∆1, . . . ,∆q ⊆M ′R, i.e.

ψ̌i(n) = − inf{〈n,m〉|m ∈ ∆i}.

Similarly, let ψ̌0 have Newton polytope τ , i.e.

ψ̌0(n) = − inf{〈n,m〉|m ∈ τ}.

Here, the function ψ̌0 is allowed to take the value ∞, which is the case whenever τ is un-

bounded. For convenience of notation, we set ∆0 := τ .

Given these data, we can define a monoid P ⊆ N given by

P =

{
n+

q∑
i=0

aie
∗
i

∣∣∣∣n ∈ N ′ such that ψ̌0(n) 6=∞ and ai ≥ ψ̌i(n) for 0 ≤ i ≤ q
}

=
{

(n, a0, a1, . . . , aq)
∣∣ψ̌0(n) 6=∞ and ai ≥ ψ̌i(n), 0 ≤ i ≤ q

}
.

Set Y = Speck[P ]. Note that P = K∨ ∩N where K is the cone in MR generated by

q⋃
i=0

(∆i × {ei}).

In particular, we see Y is Gorenstein because ρK =
∑q

i=0 e
∗
i takes the value 1 on each primitive

integral generator of an extremal ray of K. Letting X = Spec k[P ]/(zρ) as usual with ρ := e∗0,

we describe X explicitly by defining

Q =

{
n+

q∑
i=0

aie
∗
i ∈ P

∣∣∣∣ a0 = ψ̌0(n)

}
∪ {∞}

=
{

(n, ψ̌0(n), a1, . . . , aq) ∈ P
∣∣ai ≥ ψ̌i(n), 1 ≤ i ≤ q

}
∪ {∞}

with addition on Q defined by

q1 + q2 =

q1 + q2 if q1 + q2 ∈ Q

∞ otherwise.

Then Q \ {∞} is, as a set, P \ (ρ + P ), so it is clear that X = Speck[Q]. Note that

Q ∼= ∂P ′ ⊕ Nq, via

(n, a0, . . . , aq) 7→ (n, 0, a1 − ψ̌1(n), . . . , aq − ψ̌q(n)).

Thus X ∼= V ′(τ)× Aq.
We define subschemes Zi of X by their ideals, for 1 ≤ i ≤ q, with IZi/X generated by the

set of monomials

{ze∗i } ∪
{
zp
∣∣∣∣p = n+

∑
aje
∗
j such that there exists a unique

vertex w of ∆i such that 〈n,w〉 = −ψ̌i(n)

}
.
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The effect of the right-hand set is to select those irreducible components of the singular

locus of X corresponding to edges of ∆i, and ze
∗
i defines a closed subscheme of this set of

components. Set

Z =

q⋃
i=1

Zi.

This will be the locus where the log structure on X fails to be coherent. Let

ui := ze
∗
i

for 1 ≤ i ≤ q. For any vertex v of τ , denote by Verti(v) the vertex of ∆i which represents

the function −ψ̌i restricted to the maximal cone v̌ of Σ̌τ corresponding to v. For every edge

ω ⊆ τ , choose a primitive generator dω of the tangent space of ω, and let v±ω be the two

vertices of ω, labelled so that dω points from v+
ω to v−ω as in [15, §1.5]. Set

Ωi = {ω ⊆ τ |dimω = 1 and Verti(v
+
ω ) 6= Verti(v

−
ω )}.

(This notation is compatible with that in the definition of simplicity, cf. [15, Def. 1.60].) It

is then easy to see that

Zi = {ui = 0} ∩
⋃
ω∈Ωi

Vω.

Here for ω ⊆ τ any face, we define Vω ⊆ X to be the closed toric stratum of Y defined by

the face of K generated by ω × {e0}.
Similarly we define V ′ω, for any face ω ⊆ τ , to be the closed stratum of V ′(τ) corresponding

to C ′(ω) ⊆ C ′(τ).

Remark 1.9 (Rem. 2.5 in [16]). We shall always assume (B,P) is positive and simple in this

thesis (see [15, Def. 1.60]). Thus for a cell τ ∈P with 0 < dim τ < dimB, we always obtain

associated to τ the data Ω1, . . . ,Ωp, R1, . . . , Rp, ∆1, . . . ,∆p and ∆̌1, . . . , ∆̌p, with ∆i ⊆ Λτ,R

and ∆̌i ⊆ Λ⊥τ,R elementary simplices (Λτ,R is the tangent space to τ in B: see [15, Def. 1.31]).

We call these data simplicity data for τ .

Recall now the definition of strict étale morphism in order to consider certain sorts of

étale neighbourhoods of log schemes:

Definition 1.10 (Def. 2.3 in [16]). A morphism φ : X† → Y † is strict étale if it is étale as a

morphism of schemes and is strict, i.e. the log structure on X† is the same as the pull-back

of the log structure on Y †.

Remark 1.11 (Rem. 2.4 in [16]). Strict étale morphisms have the following standard property

of étale morphisms: If Y † is a log scheme, and Y †0 is a closed subscheme of Y † defined by a

nilpotent sheaf of ideals with the induced log structure on Y0, then there is an equivalence

between the categories of strict étale Y †-schemes and strict étale Y †0 -schemes. Indeed, X 7→
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X0 = X ×Y Y0 gives an equivalence of categories between étale Y -schemes and étale Y0-

schemes (cf. [26, Chap. I, Thm. 3.23]), and to obtain the log structures on X or X0, one

just pulls back the log structure on Y or Y0.

In particular, if we have a strict étale morphism X†0 → Y †0 and a thickening Y † of Y †0 , we

can talk about pulling back this thickening to X†0 giving X†. Note also that if f : X† → Y †

is a strict étale morphism over Speck†, then ΘX†/k = f∗ΘY †/k and ΘX†/k† = f∗ΘY †/k† , as is

easily checked.

Similar to the situation in [16, Thm. 2.6], we wish to describe the local models X for X0

at points of Z. The singularities of the log structure will be well-behaved due to simplicity

of (B,P).

Theorem 1.12 (cf. Thm. 2.6 in [16]). Given (B,P) positive and simple and s lifted open

gluing data and suppose that a CY-pair (X†0, D) = X0(B,P, s)† determined by these data

exists. Let x̄ → Z ⊆ X0 be a closed geometric point. Then there exists data τ , ψ̌1, . . . , ψ̌q

as in Construction 1.8 defining a monoid P , and an element ρ ∈ P , hence log spaces Y †,

X† → Speck† as in §1.1, such that there is a diagram over Speck†

(V †, D′)

yysssssssss
φ

&&NNNNNNNNNNN

(X†0, D) (X†, D̃ ∩X)

(1.6)

with both maps strict étale and V † an étale neighbourhood of x̄.

Proof. The proof is basically the same as that of [16, Thm. 2.6], in which one relates different

information in a toric stratum of X0 to that of a toric monoid étale locally.

As in [16, notational summary], for every τ ∈P there is an inclusion map

qτ : Xτ → X0, (1.7)

where every toric stratum Xτ is defined by Xτ := X(Στ ) ([15, Def. 2.7]), in which the

boundedness assumption of τ is not involved. This is the normalization of the stratum of X0

corresponding to τ (see also Definition 1.1 and the remark after [15, Def. 4.1]). Consequently,

the arguments of [15, Cor. 5.8] apply also for each unbounded cell τ (with open gluing data

s for (B,P)), so that q−1
τ (Z) = Zτ1 ∪ · · · ∪ Zτq ∪ Z ′ where Z ′ ⊆ Dτ is of codimension at least

two in Xτ and Zτi is a hypersurface in Xτ with Newton polytope ∆̌i.

Therefore, there exists a unique τ ∈ P with x̄ ∈ qτ (Xτ \ ∂Xτ ) (see (1.7)) for a given

x̄ ∈ Z, such that 0 < dim τ < dimB since x̄ ∈ Z (where Z is of codimension 2 in X0, see

§1.3). By [15, Cor. 5.8], we thus obtain simplicity data associated to τ as in Remark 1.9 and

also other data in Construction 1.8. According to Construction 1.8, we are able to obtain X.

The term D̃ (see Construction 2.1) occurs in Y whenever the face τ ∈P is unbounded.
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Then pick some g : τ → σ ∈ Pmax so that we obtain an open set V (τ) ⊆ V (σ) (cf. [17,

Constr. 1.16], note that this thesis uses the fan picture mainly). If σ is bounded, it is just

the case considered in [16].

Hence, consider σ unbounded. By [17, §1.2] and careful examination, the boundedness

assumption of τ and σ is not needed in the proof of [16, Thm. 2.6]. Therefore we can apply

the result of [16, Thm. 2.6] to obtain first the diagram (1.6) without D′, D and D̃ ∩X.

Consider now the correspondence between D′, D and D̃∩X. In fact, D̃∩X is constructed

from D via the underlying affine geometry in (B,P). Recall in §1.3, we have D =
⋃
Dµ such

that each Dµ is a toric (n− 1)-stratum in X0.

In other words, each component Dµ of D corresponds to a toric stratum Xτ ′ , where τ ′

is an unbounded 1-cell. By Definition 1.3, we have D ⊂ X0, then for a cell τ ∈ P, either

the components of D have a nonempty intersection with qτ (Xτ ) in X0 or they do not. A

component Dµ of D intersects qτ (Xτ ) if and only if there exists a cell τ0 containing τ and an

unbounded 1-cell τ ′. There are two cases.

Case 1: If the cell τ is bounded, then D̃ and D′ are absent by Construction 2.1. In

this case, diagram (1.6) is still true because the the local model X and eventually the étale

neighbourhood V of x̄ do not “see” the divisor D in X0 in this case.

Case 2: If the cell τ is unbounded, then the divisor D̃ will be present in the local model

X of X0 via construction (see Construction 2.1). The étale neighbourhood V of x̄ then has

the corresponding divisor D′.

Moreover, qτ0(Xτ0) is contained in qτ (Xτ ) and qτ ′(Xτ ′) since the cell τ0 contains τ and

τ ′. Such a cell τ0 is of course unbounded as τ ′ is unbounded and actually we have

qτ0(Xτ0) ⊆ Dµ = qτ ′(Xτ ′).

Therefore, we also have the correspondence of D′, D and D̃ ∩X étale locally.

Remark 1.13. 1. The Calabi-Yau pair (X†0, D) with a new term D generalizes the setting

in [16]. Whenever the divisor D is trivial, we recover the situation in [16]. From

the perspective of the geometry of (B,P), the term D corresponds to the unbounded

rays in the polyhedral decomposition P. The affine manifold B is now non-compact,

unbounded and without boundary, while B is compact without boundary in [16].

For the sake of brevity of this section, we postpone the construction details of D̃ in the

local model to Construction 2.1. The term D̃ occurs in Y whenever the face τ ∈P is

unbounded. It is worth noting that we get agreeing log structures MY̆ := M(Y,X) =

M(Y,X∪D̃) :=MY when D̃ = 0.

2. In the above theorem, only the correspondence between the log spaces X† and X†0
(induced by M(Y,X∪D̃) and M(X,D∪X0) respectively) is handled. The correspondence
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between X̆† (on Y̆ †) and X̆†0 (induced byM(Y,X) andM(X,X0) respectively) follows also

from the arguments similarly.

Indeed, both log spaces have the same underlying topological space X0; the difference

is the charts for the log structures. We use the chart P ′ for the log structure on X†0.

For X̆†0, one uses a subset P̆ ′ of P ′ for the local chart. For g : τ → σ ∈ Pmax, where

σ is unbounded, one has a natural inclusion P ′ in Pσ (see [15, Def. 2.12]). The chart

P̆ ′ is obtained simply by restricting the chart P̆σ ⊆ Pσ onto P ′ via the above natural

inclusion. A more explicit description of P̆σ will be given in the proof of Lemma 5.3.
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Chapter 2

Cohomology of log Calabi-Yau pairs

The goal of this section is to prepare for the calculation of the logarithmic cohomology theories

on X0. We first find out the global sections of log differentials on open subsets of X0. Then

we lift the local descriptions on X† to the global situation on X†0 (and do not handle the

global situation for X̆†0 for the time being) in order to consider resolutions of the sheaves of

log differentials Ωr on X†0 and investigate the properties of such resolutions.

In §2.1 and §2.2, we examine the étale neighbourhoods X of X0 and use the methods and

arguments in [16, §1] and formulate the results concerning log derivations and log differentials

with respect to the log spaces X† and X̆† in our new setting. In §2.3, we will calculate global

sections of the sheaves of log differentials in X and look at some examples. In §2.4, we lift

the local descriptions to the global situation of the log space X†0 and give an account for the

resolutions C •(Ωr).

2.1 Derivations

Below is the simplified version of Construction 1.8, in the sense that the simplicity data

related to a cell τ are not used explicitly in the construction. This construction follows [16,

§1], which emphasizes the correspondence between toric divisors of Y and extremal rays of the

toric monoid P . The results about log derivations and log differentials are readily expressed

in terms of the data by this construction.

Construction 2.1 (cf. §1 in [16]). Let M ′ = Zn, M ′R = M ′ ⊗Z R, N ′ = HomZ(M ′,Z) and

N ′R = N ′⊗ZR. Fix convex lattice polytopes ∆0, . . . ,∆q ⊆M ′R with dim ∆0 = dimM ′R, where

∆1, . . . ,∆q are bounded but ∆0 can be either bounded or unbounded. Set M = M ′ ⊕ Zq+1

and N the dual lattice of M . From these, we obtain a strictly convex rational polyhedral

cone σ ⊆M ′R ⊕ Rq+1 = MR where σ is of the form

cl

(
R≥0 ·

q⋃
i=0

(∆i × {ei})

)
= cl

(
q∑
i=0

R≥0 · (∆i × {ei})

)
,

in which cl denotes the set-theoretical closure. Then we define the toric monoid P to be

P = σ∨ ∩ (N ′ ⊕ Zq+1) = σ∨ ∩N .

Set Y = Spec k[P ]. Let ρ = e∗0 and let P1, . . . , Ps be the facets of P not containing ρ.
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Further let X := Y \ U , thus we have

X = Y \ U =

s⋃
i=1

Xi =

s⋃
i=1

Speck[Pi],

where the Xi’s are the toric divisors of Y contained in X corresponding to Pi’s. As a subset

of X of codimension one, we denote

Xsing =
⋃

i 6=j,1≤i,j≤s
(Xi ∩Xj).

We are going to define the divisors

D̃ =
r⋃
j=1

D̃j

and

E =

t⋃
j=1

Ej ,

where D̃ ∪E is the union of toric divisors of Y not contained in X (The divisors E1, · · · , Et
are actually the divisors D1, · · · , Dt in [16, §1]). The divisors D̃1, . . . , D̃r exist only if the cell

∆0 is unbounded.

Let v1, . . . , vs+r+t be the primitive generators of the extremal rays of σ, where v1, . . . , vs

correspond to X1, . . . , Xs; vs+1, . . . , vs+r correspond to D̃1, . . . , D̃r and vs+r+1, . . . , vs+r+t

correspond to E1, . . . , Et. More precisely, v1, . . . , vs are taken to be the vertices of ∆0 and

vs+r+1, . . . , vs+r+t are taken to be the vertices of ∆j for j ≥ 1 (repetition of vertices among

different ∆j ’s is allowed).

The extremal rays generated by vs+1, . . . , vs+r exist when ∆0 is unbounded. These ex-

tremal rays lies actually inside the subspace (M ′R, 0, . . . , 0). In other words, these extremal

rays are “horizontal” in the sense that they are not pointing in the Zq+1 direction. Moreover,

we can express them in terms of the data from ∆0.

Each of these extremal rays is of the form R≥0 · (v̂s+j − vkj ) for 1 ≤ j ≤ r, where vkj is

the vertex of an unbounded edge and v̂s+j is the integral point (thus an element of M ′) on

the unbounded edge of ∆0 nearest to vkj . These rays R≥0 · (v̂s+j − vkj ) are a priori elements

of (M ′R, 1, 0, . . . , 0); however, we can vertically translate these rays to (M ′R, 0, 0, . . . , 0) and

identify vkj with the origin of MR by a horizontal translation afterwards. Therefore, we have

vs+j = v̂s+j − vkj (as an element in M) and every R≥0 · (v̂s+j − vkj ) represents an actual

extremal ray (not necessarily uniquely) of P of this type.

Note that we have vi ∈M ′ for all i above. For ease of notation, we write

vδj = vs+j for 1 ≤ j ≤ r,

and

wj = vs+r+j for 1 ≤ j ≤ t.
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Let {P δ1 , . . . , P δr } and {Q1, . . . , Qt} be the facets (maximal proper faces) of P corresponding

to {vδ1, . . . , vδr} and {w1, . . . , wt} respectively. And the {P1, . . . , Ps} previously defined are

the facets related to {v1, . . . , vs}. Note that Xi = Speck[Pi] and D̃j = Speck[P δj ]. Since the

Pi’s are the facets of P not containing ρ, we have indeed ρ ∈ P δ1 ∩ . . . ∩ P δr ∩Q1 ∩ . . . ∩Qt.
The various correspondences in above can be summarized by the following table.

Toric Divisors in

Y = Spec k[P ]

Irreducible

Components
Facets in P

Generators of Extremal

Rays of σ

Appearance

in [16]

X0 X1, . . . , Xs P1, . . . , Ps (v1, e0), . . . , (vs, e0) Yes

D̃ D̃1, . . . , D̃r P δ1 , . . . , P
δ
r (vδ1, 0), . . . , (vδr , 0) No

Remaining Toric

Divisors
E1, . . . , Et Q1, . . . , Qt (w1, ek1), . . . , (wt, ekt) Yes

In contrast to [16], we consider now three log structures on Y . The first one is given by

MY̆ =M(Y,X) = j∗(O×U ) ∩ OY .

The second one is given by

MY =M(Y,X∪D̃).

The third one is induced by the chart P → k[P ], which is a fine log structure, and we denote

the log space asMỸ (which means exactly the same as in [16]). There is an obvious inclusion

MY̆ ⊆MY ⊆MỸ . We write Y̆ †, Y † and Ỹ † for the three log structures respectively.

Remark 2.2. If the polytope ∆0 is bounded, we recover the case for σ and P in the construc-

tion before [16, Prop. 1.5] and we also do not have the terms D̃j .

The new term D̃, which does not exist in [16], corresponds étale locally to the term D

in Definition 1.2. Yet the toric boundary divisor now is not only X ∪D, but with the extra

term E. The toric divisor E in this étale local picture depends on the monodromy around

∆0 := τ , which is also the case in [16]. The monodromy around τ could be trivial, then we

have E = ∅. The readers can refer back to Construction 1.8 in order to have more insight

concerning the terms D̃ and E in association with (X0, D).

Recall that we have defined what a log derivation is in Definition 1.4. We now restate

[16, Prop. 1.5], [16, Cor. 1.7] and [16, Prop. 1.8] in the above situation, taking into account

the newly introduced D̃ term and the new log structure MY̆ .

Proposition 2.3 (cf. Prop. 1.5 in [16]). In the above situation, Γ(Y,ΘY †/k) splits into

P gp-homogeneous pieces ⊕
p∈P gp

zp(ΘY †/k)p,
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where

(ΘY †/k)p =



M ⊗Z k if p ∈ P ,

Zvi ⊗Z k if there exists an i, s+ r + 1 ≤ i ≤ s+ r + t,

with 〈vi, p〉 = −1, 〈vj , p〉 ≥ 0 for j 6= i,

0 otherwise.

On the other hand, Γ(Y,ΘY̆ †/k) splits into P gp-homogeneous pieces⊕
p∈P gp

zp(ΘY̆ †/k)p,

where

(ΘY̆ †/k)p =



M ⊗Z k if p ∈ P ,

Zvi ⊗Z k if there exists an i, s+ 1 ≤ i ≤ s+ r + t,

with 〈vi, p〉 = −1, 〈vj , p〉 ≥ 0 for j 6= i,

0 otherwise,

In both cases, an element m ∈ (ΘY̆ †/k)p or m ∈ (ΘY †/k)p is written as ∂m. The term zp∂m

acts on the monomial zq by

zp∂mz
q = 〈m, q〉zp+q.

Proof. Observe that the ideals of X∪D̃ and X are generated by P \(P1∪· · ·∪Ps∪P δ1 ∪· · ·∪P δr )

and P \(P1∪· · ·∪Ps) respectively. Then the proof is essentially the same as that of [16, Prop.

1.5], using the fact that ΘY †/k and ΘY̆ †/k consist of usual derivations of Y which preserve

the ideals of X ∪ D̃ and X respectively.

Corollary 2.4 (cf. Cor. 1.7 in [16]). In the situation of Proposition 2.3, let S = Speck[N]

with the log structure defined by the obvious chart N → k[N]. Then zρ = ze
∗
0 induces the log

morphisms Y † → S† and Y̆ † → S†. Furthermore,

Γ(Y,ΘY †/S†) =
⊕
p∈P gp

zp(ΘY †/S†)p,

where

(ΘY †/S†)p =



ρ⊥ ⊗Z k if p ∈ P ,

Zvi ⊗Z k if there exists an i, s+ r + 1 ≤ i ≤ s+ r + t,

with 〈vi, p〉 = −1, 〈vj , p〉 ≥ 0 for j 6= i,

0 otherwise.

and

Γ(Y,ΘY̆ †/S†) =
⊕
p∈P gp

zp(ΘY̆ †/S†)p,
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where

(ΘY̆ †/S†)p =



ρ⊥ ⊗Z k if p ∈ P ,

Zvi ⊗Z k if there exists an i, s+ 1 ≤ i ≤ s+ r + t,

with 〈vi, p〉 = −1, 〈vj , p〉 ≥ 0 for j 6= i,

0 otherwise,

Proof. Both cases follow by observing that elements of ΘY̆ †/S† and ΘY †/S† must annihilate

zρ.

Proposition 2.5 (cf. Prop. 1.8 in [16]). Let Ak = k[t]/(tk+1), with natural map SpecAk →
S = Speck[N]. Pull back the log structure S† on S, which is defined by the chart N → k[N],

to SpecAk to yield the log scheme SpecA†k. Consider the scheme Xk = Speck[P ]/(z(k+1)ρ).

1. Consider the log scheme X†k with the log structure induced from Y † by the canonical

map k[P ] → k[P ]/(z(k+1)ρ). Then Γ(Xk,ΘX†k/k
) and Γ(Xk,ΘX†k/A

†
k
) split into P gp-

homogeneous pieces ⊕
p∈P gp

zp
(

Θ
X†k/k

)
p

and
⊕
p∈P gp

zp
(

Θ
X†k/A

†
k

)
p

respectively, where (
Θ

X†k/k

)
p

=
(

Θ
X†k/A

†
k

)
p

= 0

if there does not exist an i, 1 ≤ i ≤ s+ r, such that 0 ≤ 〈vi, p〉 ≤ k; otherwise(
Θ

X†k/k

)
p

=
(

ΘY †/k

)
p

and
(

Θ
X†k/A

†
k

)
p

=
(

ΘY †/S†

)
p
.

2. Consider the log scheme X̆†k with the log structure induced from Y̆ † by the canonical

map k[P ] → k[P ]/(z(k+1)ρ). Then Γ(Xk,ΘX̆†k/k
) and Γ(Xk,ΘX̆†k/A

†
k
) split into P gp-

homogeneous pieces ⊕
p∈P gp

zp
(

Θ
X̆†k/k

)
p

and
⊕
p∈P gp

zp
(

Θ
X̆†k/A

†
k

)
p

respectively, where (
Θ

X̆†k/k

)
p

=
(

Θ
X̆†k/A

†
k

)
p

= 0

if there does not exist an i, 1 ≤ i ≤ s, such that 0 ≤ 〈vi, p〉 ≤ k; otherwise(
Θ

X̆†k/k

)
p

=
(

ΘY̆ †/k

)
p

and
(

Θ
X̆†k/A

†
k

)
p

=
(

ΘY̆ †/S†

)
p
.

Proof. Consider the restriction maps ΘY †/k → Θ
X†k/k

and ΘY̆ †/k → Θ
X̆†k/k

and use the ar-

guments in the proof of [16, Prop. 1.8]. Then the results follow with respect to the new

notations and log structures.
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2.2 Differentials

Recall we have defined the notion of log differentials in Lemma 1.5. We now restate [16,

Prop. 1.12] and [16, Cor. 1.13], which describe the various sheaves of log differentials on the

log smooth part of X. The pushforward of the sheaf of log differentials on the log smooth

part of X is considered because the log differentials behave poorly at points where the log

structures are not fine, as demonstrated in [16, Ex. 1.11].

Proposition 2.6 (cf. Prop. 1.12 in [16]). In the situation of Proposition 2.5, let Z :=

E ∩Xsing ⊆ |Xk| = |X| be the locus where the log structures on X fail to be fine. (Here |Xk|
denotes the underlying topological space.) Then

1. Γ(Xk \ Z,Ωr
X†k/k

) is naturally a P -module with a decomposition into P -homogeneous

pieces given as follows:

Γ(Xk \ Z,Ωr
X†k/k

) =
⊕

p∈P\((k+1)ρ+P )

∧r

 ⋂
{j|p∈Qj}

Qgp
j

⊗Z k.
For a ∈ k and ni ∈ P gp, an1 ∧ · · · ∧ nr in the summand of degree p corresponds to the

restriction of azp dlog n1 ∧ · · · ∧ dlog nr ∈ Γ(Y \ Z,Ωr
Y †/k) to Xk.

2. Γ(Xk \ Z,Ωr
X̆†k/k

) is naturally a P -module with a decomposition into P -homogeneous

pieces given as follows:

Γ(Xk \ Z,Ωr
X̆†k/k

) =
⊕

p∈P\((k+1)ρ+P )

∧r

 ⋂
{j|p∈P δj }

(P δj )gp ∩
⋂

{j|p∈Qj}

Qgp
j

⊗Z k.
For a ∈ k and ni ∈ P gp, an1 ∧ · · · ∧ nr in the summand of degree p corresponds to the

restriction of azp dlog n1 ∧ · · · ∧ dlog nr ∈ Γ(Y \ Z,Ωr
Y̆ †/k) to Xk.

Remark 2.7. 1. In the above statement as well as in Proposition 1.12 and in Corollary 1.13

in [16], there is an abuse of notation concerning the sheaf of log differentials. Consider

the inclusion

j : Xk \ Z ↪→ Xk,

where Z = E ∩Xsing in this article while Z = D ∩Xsing in [16]. With reference to the

discussion just before Proposition 2.6, we seek to consider the pushforward of the sheaf

of log differentials on Xk \ Z; it is the log smooth part of Xk. Actually, our purpose is

to compute Γ(Xk, j∗Ω
r
(Xk\Z)†/k) instead of Γ(Xk \ Z,Ωr

X†k/k
), in which we just define

Ωr
X†k/k

:= j∗Ω
r
(Xk\Z)†/k.
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by the fact that Γ(X, j∗F) = Γ(U,F) for j : U ↪→ X and F a sheaf on U .

For sake of convenience and clarity, we will adopt a similar abuse of notation as in [16],

for instance Ωr
X†0/k

instead of j∗Ω
r
(X0\Z)†/k (and similarly for the A†k case) in the rest of

this article.

2. In the above Proposition, suppose that the restriction of zp dlog n1 ∧ . . .∧dlog nr to Xk

is nonzero in Γ(Xk \ Z,Ωr
X†k/k

). Then for p′ ∈ P \ ((k + 1)ρ + P ), the above notation

means that

zp
′ · zp dlog n1 ∧ . . . ∧ dlog nr = zp

′+p dlog n1 ∧ . . . ∧ dlog nr

is nonzero after restriction to an element in Γ(Xk\Z,Ωr
X†k/k

) only if nk ∈
⋂
{j|p′+p∈Qj}Q

gp
j

for all k. This fact also holds similarly for Γ(Xk \ Z,Ωr
X̆†k/k

).

Proof. First note the fact that Ω1
Y̆ †/k|Y \Z ⊆ Ω1

Y †/k|Y \Z ⊆ Ω1
Ỹ †/k|Y \Z . Consequently,

Γ(Xk \ Z,Ωr
X̆†k/k

) ⊆ Γ(Xk \ Z,Ωr
X†k/k

) ⊆ Γ(Xk \ Z,Ωr
X̃†k/k

).

On the other hand, we know that

Γ(Xk \ Z,Ωr
X̃†k/k

) =
⊕

p∈P\((k+1)ρ+P )

zp
(∧r

P gp
)
⊗Z k.

The action of the algebraic torus Spec k[P gp] respects the inclusions X ⊆ Y and D̃ ∪E ⊆ Y ,

X ∪ D̃ ⊆ Y and E ⊆ Y ; so it induces an action on Γ(Y,Ωr
Y̆ †/k) ⊆ Γ(Y,Ωr

Y †/k) ⊆ Γ(Y,Ωr
Ỹ †/k).

Therefore, for each p ∈ P there exist k-vector subspaces V̆ r
p , V

r
p ⊆

∧r P gp ⊗Z k such that

Γ(Xk \ Z,Ωr
X̆†k/k

) =
⊕

p∈P\((k+1)ρ+P )

zpV̆ r
p ,

and Γ(Xk \ Z,Ωr
X†k/k

) =
⊕

p∈P\((k+1)ρ+P )

zpV r
p .

To finish the proof it remains to describe V̆ r
p and V r

p for p ∈ P \ ((k + 1)ρ + P ) because all

monomials in (k + 1)ρ+ P restrict to zero on Xk.

As in the proof of [16, Prop. 1.12], we can compute V r
p by induction on r. For r = 0,

Ωr
X†k/k

= Ωr
X̆†k/k

= OXk and

Γ(Xk \ Z,OXk) =
⊕

p∈P\((k+1)ρ+P )

zp ⊗Z k.

Then we apply the fact that an element of zp(
∧r P gp) is in Γ(Xk \Z,Ωr

X†k/k
) if and only if the

contraction of it with any element of Γ(Xk \ Z,ΘX†k/k
) = Γ(Xk,ΘX†k/k

) is in Γ(Xk \ Z,Ωr−1

X†k/k
)

via similar arguments as in the proof of [16, Prop. 1.12].

The computation of V̆ r
p is similar. We note that the new terms P δj (together with Qj)

now take the role of Qj in the case of V r
p . In the same manner, we also arrive at the result

for Ωr
X̆†k/k

.
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Corollary 2.8. In the situation of Proposition 2.6, Γ(Xk \Z,Ωr
X†k/A

†
k

) and Γ(Xk \Z,Ωr
X̆†k/A

†
k

)

are naturally P -modules with decompositions into P gp-homogeneous pieces as follows:

Γ(Xk \ Z,Ωr
X†k/A

†
k

) =
⊕

p∈P\((k+1)ρ+P )

∧r
( ⋂
{j|p∈Qj}

Qgp
j /Zρ

)
⊗Z k,

Γ(Xk \ Z,Ωr
X̆†k/A

†
k

) =
⊕

p∈P\((k+1)ρ+P )

∧r
( ⋂
{j|p∈P δj }

(P δj )gp/Zρ ∩
⋂

{j|p∈Qj}

Qgp
j /Zρ

)
⊗Z k.

Proof. The corollory is an immediate consequence of Proposition 2.6.

2.3 Local calculations

We have proved Theorem 1.12 in §1.4, which is the analogue of [16, Thm. 2.6]. We now

begin with the calculations for our local models as in [16, §3.1].

Construction 2.9 (cf. the paragraph before Lem. 3.2 in [16]). Suppose we are given data

τ ⊆ M ′R, ∆1, . . . ,∆q as in Construction 1.8, yielding a cone K ⊆ MR, P = K∨ ∩N , ρ ∈ P ,

Y = Spec k[P ], X = Speck[P ]/(zρ), Xk = Spec k[P ]/(z(k+1)ρ), where dimkX = n.

For every face ω of τ , we have a stratum Vω ⊆ X, with Vω = Spec k[Pω] where Pω is the

face of P given by P ∩ (ω + e0)⊥. For every k ≥ 0, consider the monoid ideal

Ikω = {p ∈ P |〈p,m〉 > k for some m ∈ ω + e0}.

This defines a thickening

V k
ω = Spec k[P ]/Ikω.

Note that V k
ω is a closed subscheme of Xk. Let qω : V k

ω → Xk be the embedding.

Let Z =
⋃
i Zi be the subscheme of X defined in Construction 1.8, with j : X \ Z ↪→ X

the inclusion. Set Dω =
⋃
ω(ω′⊆τ Vω′ . This is a subset of the toric boundary of Vω consisting

of proper intersections of the stratum Vω with other strata of X. Let

κω : V k
ω \ (Dω ∩ Z)→ V k

ω

be the inclusion. With reference to Remark 2.7, we utilize the notation for the log structure

X†k with Ωr
k = j∗Ω

r
X†k/k

or Ωr
k = j∗Ω

r
X†k/A

†
k

and let

Ωr
ω,k = κω∗κ

∗
ω(q∗ωΩr

k/Tors).

Meanwhile, for the log structure X̆†k, we denote Ω̆r
k = j∗Ω

r
X̆†k/k

or Ω̆r
k = j∗Ω

r
X̆†k/A

†
k

and let

Ω̆r
ω,k = κω∗κ

∗
ω(q∗ωΩ̆r

k/Tors).
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As in [16, §3], we have the Tors term in the definition of sheaf of log differentials. This term

denotes the submodule of torsion elements, which have supports on proper closed subsets.

We compute now an example to explain the existence of this term.

Example 2.10. Recall from Remark 2.7 that we consider the sheaf j∗Ω
r
(Xk\Z)†/k because

the sheaf of log differentials is not fine at points of Z. In the following, we demonstrate its

relation to Tors in Construction 2.9 and forthcoming Lemma 2.11 ([16, Lem. 3.1]).

It is an elaboration of [17, Ex. 1.12]. Consider τ and σ as in the diagram, where σ is a

maximal cell in the fan picture B and the crosses denote the focus-focus singularities on B

(see [18, §2.2]).

(0, 1)

v′ = (e, 0)

τ

(0, 1, 0)

v v′

τ

σ

∆0 × {e0} ⊂ K

v = (0, 0)

B

(e, 1, 0)

Consider the cell τ on B and use the notations as in Construction 1.8 to compute the

local model near the point x̄ ∈ Xτ , where the log structure fails to be fine. Then we have

M ′ = Z and M = M ′ ⊕ Z2 and for n ∈ N ′R,

ψ̌0(n) =

0 for n ≥ 0

−en for n < 0
and ψ̌1(n) =

0 for n ≥ 0

−n for n < 0

so that ∆0 = τ and ∆1 = [0, 1].

P is generated by {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, e, 1)}, which correspond to variables

{z(1,0,0), z(0,1,0), z(0,0,1), z(−1,e,1)}. Q is generated by {(1, 0, 0), (0, 0, 1), (−1, e, 1)}.

Y = Speck[P ] = Spec k[x, t, w, x−1tew]

= Spec
k[x, t, w, y]

(xy − wte)
,

in which k[x, t, w, x−1tew] is a subring of k[x±, t±, w±] and we write x = z(1,0,0), t = z(0,1,0)

and w = z(0,0,1). As a subscheme of Y ,

X = Speck[P ]/(z(0,1,0)) = Spec
k[x,w, y]

(xy)
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By evaluation of ψ̌1, we conclude that Z = Z1 = V (x, x−1tew,w) = V (x, y, w).

For simplicity, we consider e = 1 in the rest of this example. Firstly, using notations in

Construction 2.9, we have

Vτ = Spec k[Pτ ] = Spec k[P ∩ (τ + e0)⊥] = Spec k[w] ⊂ X ∼= Spec
k[x,w, y]

(xy)
.

As faces of τ , the vertices v and v′ yield

Vv = Spec k[Pv] = Spec k[x,w] = V (y)

and

Vv′ = Speck[w, y] = V (x)

as subschemes of X. Furthermore, Dv = Dv′ = Vτ and Dv ∩ Z = V (x, y, w). So we have the

embedding

qv : Speck[x,w] −→ Spec
k[x,w, y]

(xy)
∼= X.

Consider the sheaf Ωr
0 = j∗Ω

r
X†0/k

† on X = X0. Consequently, q∗vΩ
r
0 and q∗vΩ

r
0/Tors are sheaves

on Vv. We now compute the term Tors in q∗vΩ
r
0 and its relation with Vτ . As a subscheme of

Y ∼= Speck[x, t, w, y]/(xy − wt), observe that the relation

dlog x+ dlog y = dlogw + dlog t

holds on X. Since we are working /k†, i.e. modulo dlog t, this relation is reduced to

dlog x+ dlog y = dlogw. (2.1)

On X, the sheaf Ωr
0 has stalks generated by {dlog x,dlog y,dlogw} (depending on where the

points lie) while q∗vΩ
r
0 on Vv and q∗v′Ω

r
0 on Vv′ have stalks generated by {dlog x, dy,dlogw}

and {dx, dlog y,dlogw} respectively.

Nevertheless, there are some problematic terms on Vv and Vv′ so that we have to use the

sheaves q∗vΩ
r
0/Tors and q∗v′Ω

r
0/Tors. Examine the “mixed term” y dlog x, which is a priori

zero on Vv \ Vτ = {(x, y, w) ∈ X | y = 0 and x 6= 0}. By equation (2.1) and the observation

that the term dy = y dlog y is well-defined on Vv,

y dlog x = y(dlogw − dlog y)

= y dlogw − y dlog y

= y dlogw − dy

= −dy,

which is not a trivial term.

On the other hand, the term y dlog x is well-defined and not zero on Vτ = {(x, y, w) ∈
X | x = y = 0}, which is a proper closed set of Vv. More precisely, we have

dx = y dlog x = −dy 6= 0
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y

w

x

Vv′Vv

because xy = 0 on Vτ so that ydx+ xdy = 0 and consequently

dx+ dy =
y

x
dx+ dy = 0.

Therefore y dlog x is a term with support on a proper closed set on Vv and thus lies in Tors.

In addition, the term yp dlog x = 0 for any p > 1 is not a cause of worry.

Similarly, the above phenomenon also occurs for the “mixed term” x dlog y on Vv′ . Since

these “mixed terms” are ill-behaved, it is natural to take the quotient by the module Tors

to define the sheaf of log differentials. The nonexistence of these “mixed terms” is also the

reason why we can have an obvious Hodge decomposition later in Theorem 3.6 (cf. [16, Thm.

3.26]).

In order to study the sheaves of differentials for our local models in Proposition 2.6 and

Corollary 2.8, we recall a technical lemma here for easy reference.

Lemma 2.11 (Lem. 3.1 in [16]). Let P be a toric monoid, Q ⊆ P a face, Y = Speck[P ],

I ⊆ P a monoid ideal with radical P \Q, X = Speck[P ]/I. Suppose furthermore that p ∈ P ,

q ∈ Q, p+ q ∈ I implies p ∈ I. Consider a k[P ]-module F of the form

F =
⊕
p∈P

zpF〈p〉

where 〈p〉 denotes the minimal face of P containing p, F〈p〉 a k-vector space in N ⊗Z k
containing p, and FP1 ⊆ FP2 whenever P1 ⊆ P2. Then

1.

F ⊗k[P ] k[P ]/I =
⊕
p∈P

zp

 F〈p〉∑
p′∈P,q∈I
p′+q=p

F〈p′〉

 .
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2. If FQ = FP then

FX := (F ⊗k[P ] k[P ]/I)/Tors =
⊕
p∈P\I

zpF〈p〉,

where Tors denotes the submodule of elements of F⊗k[P ]k[P ]/I with support on a proper

closed subset of X.

3. Let J ⊆ P be a monoid ideal such that if Z ⊆ X is the closed subscheme defined by

(I + J)/I ⊆ k[P ]/I, then Z is codimension ≥ 2 in X. Let κ : X \ Z ↪→ X be the

inclusion. If FX is the sheaf on X associated to FX , then

Γ(X,κ∗κ
∗FX) =

⊕
p∈P gp

zp
⋂

q∈J∩Q

⋃
n≥0

p+nq∈P\I

F〈p+nq〉

Using the notations in Construction 2.9, we are ready to calculate the global sections of

the sheaves Ωr
w,k and Ω̆r

w,k, by putting I = Iω, Q = Pω and J = P \ PDω∩Z in the above

Lemma 2.11 (the notation PDω∩Z will appear in the following Lemma). We make several

remarks first before we proceed.

Remark 2.12. 1. Under the new setting, Lemma 2.11 still holds true when both ω and τ

are unbounded, or just τ is unbounded. By careful examinations, one notes that the

unboundedness of τ or ω does not affect the algebraic arguments applied on the toric

monoid P .

2. In the statement of [16, Lem. 3.2], for i > 0 and given ω ⊆ τ , ωi is defined to be the

largest face of ∆i with respect to ω such that

〈n,m〉 = −ψ̌i(n) for any n ∈ ω̌ and m ∈ ωi.

Hence, ωi is associated with ∆i or ψ̌i. In fact, the functions ψ̌i build up a correspondence

between {ωi} ⊆ ∆i and {ω} ⊆ ∆0 = τ as follows.

Given ρi ∈ Ri, recall that ∆i is defined to be the convex hull of {mρi
v0v|v ∈ τ} ⊆ Λτ,R

after fixing a vertex v0 ∈ τ as a reference vertex. Moreover, for each vertex v of τ ,

Verti(v) denotes the vertex of ∆i which represents the function −ψ̌i restricted to the

maximal cone v̌ of Σ̌τ . Without loss of generality, we assume v0 = 0 ∈ M ′ and we

have by definition mρi
v0v0 = 0. By positivity of (B,P) and the definition ψ̌i(n) :=

− inf{〈n,m〉|m ∈ ∆i}, we can see that

Verti(v0) = −ψ̌i|Ǩv0 = 0 = v0 ∈ ∆i ⊆M ′

after identification of ∆i ⊆ Λτ,R in M ′R (cf. [15, Rem. 1.56]; using the notation e : τ →
ρi, ∆e(τ) is a face of ∆(ρi) by [15, Def. 1.58]). Consequently, (v0)i = v0.
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Consider dimω = 1 with v0 ⊆ ω ⊆ τ and let v1 be the other vertex of ω. Since ω̌ ⊆ v̌0,

it follows that for m = 0 = (v0)i,

0 = 〈n,m〉 = −ψ̌i(n) for any n ∈ v̌ ⊇ ω̌,

and therefore (v0)i ⊆ ωi. To determine ωi, it suffices to find m ∈ ∆i such that 〈n,m〉 = 0

for any n ∈ ω̌. Hence, ωi can either be of dimension 0 or 1.

Assume dimωi = 0 and thus (v0)i = ωi, then

ψ̌i|Ǩv1 = 0

in the sense of [15, Rem. 1.56]. In other words, Verti(v1) = Verti(v0) and thus we

have (v1)i = (v0)i. This occurs when mρi
v0v1 = 0, exactly when there is no change of

inner monodromy between v0 and v1 across ω. From another viewpoint, the function

ψ̌i remains constant moving from v̌0 to v̌1 across ω̌.

Lemma 2.13 (cf. Lem. 3.2 in [16]). Consider the log space X†k (see Construction 2.9),

which induces a log structure on V k
ω . Given ω ⊆ τ , let ωi ⊆ ∆i be the largest face of ∆i such

that 〈n,m〉 = −ψ̌i(n) for all n ∈ ω̌, m ∈ ωi (Here ω̌ is the cone in the normal fan Σ̌τ of τ

corresponding to ω). Then

Γ(V k
ω ,Ω

r
ω,k) =

⊕
p∈Pω,k

zp

∧r ⋂
{(v,j)|v∈ωj ,p∈(v+ej)⊥}

((v + ej)
⊥ ∩N)⊗Z k


or ⊕

p∈Pω,k

zp

∧r ⋂
{(v,j)|v∈ωj ,p∈(v+ej)⊥}

(((v + ej)
⊥ ∩N)/Zρ)⊗Z k


in the /k or /A†k cases respectively, where v runs over vertices of ωj for any j and

Pω,k :=

p ∈ P gp

∣∣∣∣∣∣∣
〈p, v〉 ≥ 0 for all v ∈ ωi + ei, 1 ≤ i ≤ q
〈p, v〉 ≤ k for all v ∈ ω + e0

〈p, v〉 ≥ 0 for all v ∈ τ + e0

 .

Proof. We will do the /k case; the other case is identical.

With reference to Construction 1.8, let P δ1 , . . . P
δ
r , Q1, . . . , Qt be the maximal proper faces

of P containing ρ. We remark that r can be zero, i.e., there could be no P δi term; and then

we are in the situation of [16, Lem. 3.2]. The collection of all Speck[P δj ] and Spec k[Qj ] is

the collection of all the toric divisors of Y not contained in X. Set, for p ∈ P ,

Ωr
p =

∧r ⋂
{j|p∈Qj}

Qgp
j ⊗Z k, (2.2)
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so that
⊕

p∈P z
pΩr

p defines a sheaf Ωr
Y on Y . Note that Ωr

p only depends on 〈p〉, so set

Ωr
〈p〉 := Ωr

p. One checks easily that Proposition 2.6 implies Ωr
Y †/k|Xk ∼= j∗Ω

r
X†k/k

. Then by

Lemma 2.11, (2) applied with I = Ikω and F〈p〉 = Ωr
〈p〉, we have

Γ(V k
ω , (q

∗
ωj∗Ω

r
X†k/k

)/Tors) =
⊕

p∈P\Ikω

zpΩr
p.

Denote the degree p piece of Γ(V k
ω ,Ω

r
ω,k) by Γ(V k

ω ,Ω
r
ω,k)p. Let

J := P \ PDω∩Z

be the monoid ideal defining Dω ∩ Z.

With reference to Remark 2.12, (1) in our new setting, we apply Lemma 2.11, (3) with

F〈p+nq〉 = Ωr
〈p+nq〉, Q = Pw and thus have the expression

Γ(V k
ω ,Ω

r
ω,k)p =

⋂
q∈J∩Pω

⋃
n≥0

p+nq∈P\Ikω

Ωr
〈p+nq〉. (2.3)

In the same manner as in [16, Lem. 3.2], we investigate the one-to-one inclusion reversing

correspondence between faces P ′ of Pω and cones K ′ with Kω ⊆ K ′ ⊆ K, where Kω =

C(ω + e0), in order to obtain a more explicit form of (2.3).

Now a stratum corresponding to K ′ is in Dω∩Z if it is contained in Dω and Zi for some i.

The stratum is contained in Dω provided C(ω′ + e0) ⊆ K ′ for some ω′ with ω ( ω′ ⊆ τ . On

the other hand, it is contained in Zi if, first, ui = 0 on the stratum, i.e. K ′ ∩C(∆i + ei) 6= 0

(otherwise K ′ ⊆ (e∗i )
⊥); second, the stratum is contained in Vω′′ for some ω′′ ∈ Ωi, this being

equivalent to dimω′i > 0.

Thus, let PDω∩Z be the union of faces of Pω corresponding to cones K ′ satisfying

1. K ′ ∩ C(∆0 + e0) = C(ω′ + e0) for some ω′ ) ω;

2. K ′ ∩ C(∆i + ei) 6= 0 and dimω′i > 0 for some 1 ≤ i ≤ q.

Let q ∈ J ∩ Pω, and we consider the union in the above expression for this q. Then Q :=

〈q〉 ⊆ Pω corresponds to some K ′ with Kω ⊆ K ′ ⊆ K such that K ′ fails to satisfy either

property (1) or property (2) above. We consider similarly three cases as in [16, Lem. 3.2].

After careful examinations, we see that the arguments in [16, Lem. 3.2] still work in the

current situation, independent of the boundedness of ω, ω′ and τ .

Lemma 2.14. Consider the log space X̆†k (see Construction 2.9), which induces a log structure

on V k
ω . Given ω ⊆ τ , let ωi ⊆ ∆i be the largest face of ∆i such that 〈n,m〉 = −ψ̌i(n) for all

n ∈ ω̌, m ∈ ωi. (Here ω̌ is the cone in the normal fan Σ̌τ of τ corresponding to ω). Then the
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set of global sections Γ(V k
ω , Ω̆

r
ω,k) is of the following form

⊕
p∈Pω,k

zp

∧r ⋂
{l|p∈(vδl )⊥}

((vδl )
⊥ ∩N) ∩

⋂
{(v,j)|v∈ωj ,p∈(v+ej)⊥}

((v + ej)
⊥ ∩N)

⊗Z k
or

⊕
p∈Pω,k

zp
∧r

 ⋂
{l|p∈(vδl )⊥}

((vδl )
⊥ ∩N/Zρ) ∩

⋂
{(v,j)|v∈ωj ,p∈(v+ej)⊥}

((v + ej)
⊥ ∩N/Zρ)

⊗Z k
in the /k or /A†k cases respectively, where v runs over vertices of ωj for any j and

Pω,k :=

p ∈ P gp

∣∣∣∣∣∣∣
〈p, v〉 ≥ 0 for all v ∈ ωi + ei, 1 ≤ i ≤ q
〈p, v〉 ≤ k for all v ∈ ω + e0

〈p, v〉 ≥ 0 for all v ∈ τ + e0

 .

Proof. We only take care of the /k case, as the remaining case follows easily. The proof is

similar to that of Lemma 2.13.

Set, for p ∈ P ,

Ω̆r
p =

∧r

 ⋂
{j|p∈P δj }

(P δj )gp ∩
⋂

{j|p∈Qj}

Qgp
j

⊗Z k, (2.4)

so that
⊕

p∈P z
pΩ̆r

p defines a sheaf Ω̆r
Y on Y . Note that Ω̆r

p only depends on 〈p〉, so set

Ω̆r
〈p〉 := Ω̆r

p. One checks that Proposition 2.6 implies Ωr
Y̆ †/k|Xk

∼= j∗Ω
r
X̆†k/k

. Then by Lemma

2.11, (2) applied with I = Ikω and F〈p〉 = Ω̆r
〈p〉,

Γ(V k
ω , (q

∗
ωj∗Ω

r
X̆†k/k

)/Tors) =
⊕

p∈P\Ikω

zpΩ̆r
p.

Denote the degree p piece of Γ(V k
ω , Ω̆

r
ω,k) by Γ(V k

ω , Ω̆
r
ω,k)p.

Let

J := P \ PDω∩Z

be the monoid ideal defining Dω ∩ Z.

With reference to Remark 2.12, (1) in our new setting, we apply Lemma 2.11, (3) and

thus have the expression

Γ(V k
ω , Ω̆

r
ω,k)p =

⋂
q∈J∩Pω

⋃
n≥0

p+nq∈P\Ikω

Ω̆r
〈p+nq〉. (2.5)

The only difference now is only the term Ω̆r
〈p+nq〉, which does not affect the process of

taking intersection and union with respect to p and q in P . By the table at the end of

37



H. M. Tsoi Cohomological Properties of Toric Degenerations of CY-pairs

Construction 2.1, the term P δl corresponds to the term vδl = v̂s+l − vkl ; equivalently, (P δl )gp

corresponds to (vδl )
⊥ in this lemma, hence we can conclude that Γ(V k

ω , Ω̆
r
ω,k) is in the form

as written in the statement.

Example 2.15. Consider an unbounded cell τ of dimension 2 inside a maximal cell σ in B

of dimension 3.

v = (0, 0) v′ = (e, 0)

τ

∆

ω′ ω′′

dim τ = 2, dimσ = 3

dim ∆1 = 1

q = codim τ = 1

ω

v̂ = (0, 1)

Use the notations as in Construction 1.8 to compute the local model near the point

x̄ ∈ Xτ , where the log structure fails to be fine. Thus M ′ = Z2 and M = M ′ ⊕ Z2 and for

n ∈ N ′R,

ψ̌0(n1, n2) =


0 for n1 ≥ 0, n2 ≥ 0

−n1e for n1 < 0, n2 ≥ 0

∞ for n2 < 0

and ψ̌1(n1, n2) =

0 for n1 ≥ 0, n2 ≥ 0

−n1 for n1 < 0, n2 ≥ 0,

with ∆0 = τ and ∆1 = {(m1,m2) | m1 ∈ [0, 1] and m2 = 0}.
The toric monoid P is generated by {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (−1, 0, e, 1)},

which correspond to variables {z(1,0,0,0), z(0,1,0,0), z(0,0,1,0), z(0,0,0,1), z(−1,0,e,1)}. Q is generated

by {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (−1, 0, e, 1)}. Hence,

Y = Speck[P ] = Spec k[x1, x2, t, u, x
−1
1 teu]

= Spec
k[x1, x2, t, u, y]

(x1y − ute)
.

As a subscheme of Y ,

X = Spec
k[x1, x2, u, y]

(x1y)
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Again for simplicity, we consider e = 1 in the rest of this example. By evaluation of ψ̌1,

we conclude that Z = V (u, x1, y) ∼= Speck[x2] ⊂ X. Consequently, we have

Vτ = Spec k[Pτ ] = Spec k[P ∩ (τ + e0)⊥] = Spec k[u] ⊂ X ∼= Spec
k[x1, x2, u, y]

(x1y)
.

As faces of τ , the vertices v and v′ yield

Vv = Spec k[Pv] = Spec k[x1, x2, u] = V (y)

and

Vv′ = Spec k[x2, u, y] = V (x1)

as subschemes of X. For the 1-cells ω and ω′,

Vω = Spec k[x2, u] and Vω′ = Speck[x1, u].

In particular, we have the new term D̃ of the form

D̃ = Spec k[P ∩ (vδ)⊥] = Spec
k[x1, t, u, y]

(x1y − tu)
= V (x2) ⊆ Y,

where vδ = v̂ − v is the generator of the extremal ray of K, which exists as τ is unbounded.

Observe that

1. D̃ * X,

2. D̃ ∩ Vτ = Vτ ,

3. D̃ ∩ Vv = Vω′ ,

4. D̃ ∩X = Spec k[x1, u, y]/(x1y),

where Spec k[x1, u, y]/(x1y) is the fibred coproduct of 2 copies of the scheme Spec k[u]×A1
k.

To proceed, we summarize first the relation between rays of P and variables above:

Variable Ray in P

x1 (1, 0, 0, 0)

x2 (0, 1, 0, 0)

t (0, 0, 1, 0)

u (0, 0, 0, 1)

y (−1, 0, e, 1)

In particular, we expect a priori that dlog x2 ∈ Ω1
v,k while dlog x2 /∈ Ω̆1

v,k due to the

definitions of the log structures and the fact D̃ = V (x2). Actually, we have the following

table, using the notations in Lemma 2.13 and Lemma 2.14:
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Facet of P
Generator of Ray of

K ⊆MR

Related Point(s) in

M ′
Relation with ∆i

P1 = (0, 0, 1, 0)⊥ (0, 0, 1, 0) = v + e0 v = (0, 0) vertex of ∆0 = τ

P2 = (e, 0, 1, 0)⊥ (e, 0, 1, 0) = v′ + e0 v′ = (e, 0) vertex of ∆0 = τ

P δ = (0, 1, 0, 0)⊥ (0, 1, 0, 0) = vδ v̂ = (0, 1), v = (0, 0)
vδ = v̂− v and v̂ are

not vertices of ∆0

Q1 = (0, 0, 0, 1)⊥ (0, 0, 0, 1) = v + e1 v = (0, 0) vertex of ∆1

Q2 = (1, 0, 0, 1)⊥ (1, 0, 0, 1) = v1 + e1 v1 = (1, 0) vertex of ∆1

Consequently, we observe that x2, t ∈ (Q1 ∩Q2) and t ∈ (P δ ∩Q1 ∩Q2). Also,

x1, t ∈ (vδ)⊥ ∩ (v + e1)⊥,

which are the generators {dlog x1,dlog t} for Γ(V 1
v , Ω̆

1
v,1) and

x1, x2, t ∈ (v + e1)⊥,

which are the generators {dlog x1, dlog x2,dlog t} for Γ(V 1
v ,Ω

1
v,1). Note that dlog t is not an

element of Γ(V 0
v ,Ω

1
v,0) nor Γ(V 0

v , Ω̆
1
v,0).

Proposition 2.16 (cf. Prop. 3.3 in [16]). Given faces ω ⊆ ω′ ⊆ τ , we have Ikω ⊆ Ikω′, and

hence a closed embedding V k
ω′ → V k

ω . Then the set of global sections Γ(V k
ω′ ,Ω

r
ω,k|V k

ω′
/Tors) is

Γ(V k
ω′ ,Ω

r
ω,k|V k

ω′
/Tors) =

⊕
p∈Pω,ω′,k

zp

∧r ⋂
{(v,j)|v∈ωj ,p∈(v+ej)⊥}

((v + ej)
⊥ ∩N)⊗Z k


or ⊕

p∈Pω,ω′,k

zp

∧r ⋂
{(v,j)|v∈ωj ,p∈(v+ej)⊥}

(((v + ej)
⊥ ∩N)/Zρ)⊗Z k


and the set of global sections Γ(V k

ω′ , Ω̆
r
ω,k|V k

ω′
/Tors) is

⊕
p∈Pω,ω′,k

zp

∧r ⋂
{l|p∈(vδl )⊥}

((vδl )
⊥ ∩N) ∩

⋂
{(v,j)|v∈ωj ,p∈(v+ej)⊥}

((v + ej)
⊥ ∩N)

⊗Z k
or

⊕
p∈Pω,ω′,k

zp
∧r

 ⋂
{l|p∈(vδl )⊥}

((vδl )
⊥ ∩N/Zρ) ∩

⋂
{(v,j)|v∈ωj ,p∈(v+ej)⊥}

((v + ej)
⊥ ∩N/Zρ)

⊗Z k
in the /k or /A†k cases respectively, where v runs over vertices of ωj and

Pω,ω′,k :=

p ∈ P gp

∣∣∣∣∣∣∣
〈p, v〉 ≥ 0 for all v ∈ ωi + ei, 1 ≤ i ≤ q
〈p, v〉 ≤ k for all v ∈ ω′ + e0

〈p, v〉 ≥ 0 for all v ∈ τ + e0

 .
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Note the only difference between this set and Pω,k defined in Lemma 2.13 is that in the latter,

〈p, v〉 ≤ k for all v ∈ ω + e0 instead of for all v ∈ ω′ + e0.

Proof. We also only consider the /k case as in Lemma 2.13 and Lemma 2.14. Let P̃ be the

monoid

P̃ :=

{
p ∈ P gp

∣∣∣∣ 〈p, v〉 ≥ 0 for all v ∈ ωi + ei, 1 ≤ i ≤ q
〈p, v〉 ≥ 0 for all v ∈ τ + e0

}
with ideals

Ĩkω := {p ∈ P̃ |〈p, v〉 > k for some v ∈ ω + e0}

and

Ĩkω′ := {p ∈ P̃ |〈p, v〉 > k for some v ∈ ω′ + e0}.

Note P ⊆ P̃ , Ikω = P ∩ Ĩkω, Ikω′ = P ∩ Ĩkω′ . Let F and F̆ be the k[P̃ ]-modules defined by

F =
⊕
p∈P̃

zp

∧r ⋂
{(v,j)|v∈ωj ,p∈(v+ej)⊥}

((v + ej)
⊥ ∩N)⊗Z k


and

F̆ =
⊕
p∈P̃

zp

∧r ⋂
{l|p∈(vδl )⊥}

((vδl )
⊥ ∩N) ∩

⋂
{(v,j)|v∈ωj ,p∈(v+ej)⊥}

((v + ej)
⊥ ∩N)

⊗Z k,
then from Lemma 2.11, (2) and Lemma 2.13, we see that

Γ(V k
ω ,Ω

r
ω,k)
∼= (F ⊗k[P̃ ] k[P̃ ]/Ĩkω)/Tors

and

Γ(V k
ω , Ω̆

r
ω,k)
∼= (F̆ ⊗k[P̃ ] k[P̃ ]/Ĩkω)/Tors .

Hence we can arrive at the conclusions that

Γ(V k
ω′ ,Ω

r
ω,k|V k

ω′
/Tors) ∼= (F ⊗k[P̃ ] k[P̃ ]/Ĩkω′)/Tors,

and

Γ(V k
ω′ , Ω̆

r
ω,k|V k

ω′
/Tors) ∼= (F̆ ⊗k[P̃ ] k[P̃ ]/Ĩkω′)/Tors

with the use of Lemma 2.11, (2) again. For both cases, namely 2 = Ωr
ω,k or 2 = Ω̆r

ω,k,

consider

M̃ = (Γ(V k
ω ,2)⊗k[P̃ ]/Ĩkω

k[P̃ ]/Ĩkω′)/Tors

with

M = (Γ(V k
ω ,2)⊗k[P ]/Ikω

k[P ]/Ikω′)/Tors .

The proof for both cases follows the same argument for the isomorphism between M and M̃

in [16, Prop. 3.3].
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Corollary 2.17 (cf. Cor. 3.4 in [16]). 1. Given faces ω1 ⊆ ω2 ⊆ ω3 of τ , we have the

inclusions

(Ωr
ω2,k|V kω3

)/Tors ⊆ (Ωr
ω1,k|V kω3

)/Tors

and

(Ω̆r
ω2,k|V kω3

)/Tors ⊆ (Ω̆r
ω1,k|V kω3

)/Tors .

2. Given ω1 ⊆ ω2 faces of τ ,

(Ωr
ω1,k|V kω2

)/Tors =
⋂
v∈ω1

(Ωr
v,k|V kω2

)/Tors

and

(Ω̆r
ω1,k|V kω2

)/Tors =
⋂
v∈ω1

(Ω̆r
v,k|V kω2

)/Tors,

where v runs over vertices of ω1, and the intersection can be viewed as taking place in

j∗(Ω
r
v,k|V kω2

\Z) and j∗(Ω̆
r
v,k|V kω2

\Z), which is independent of v since Ωr
k and Ω̆r

k are locally

free away from Z.

Proof. These statements follow immediately from the explicit formulae of the previous corol-

lary.

We can now define resolutions of Ωr
k and Ω̆r

k. For Ωr
k, define a barycentric complex by

C p(Ωr
k) =

⊕
ω0(···(ωp⊆τ

(Ωr
ω0,k|V kωp )/Tors

and a differential

dbct : C p(Ωr
k)→ C p+1(Ωr

k)

given by

(dbct(α))ω0(···(ωp+1 =

p∑
i=0

(−1)iαω0(···(ω̂i(···(ωp+1 + (−1)p+1αω0(···(ωp |V kωp+1
. (2.6)

For Ω̆r
k, we similarly define a complex

C p(Ω̆r
k) =

⊕
ω0(···(ωp⊆τ

(Ω̆r
ω0,k|V kωp )/Tors

and a differential

d̆bct : C p(Ω̆r
k)→ C p+1(Ω̆r

k),

which is also in the form as (2.6) above, hence we have

(d̆bct(α))ω0(···(ωp+1 =

p∑
i=0

(−1)iαω0(···(ω̂i(···(ωp+1 + (−1)p+1αω0(···(ωp |V kωp+1
.

In both cases, the differentials are well-defined because the inclusions of Corollary 2.17, (1)

enable us to identify the elements of C p(Ωr
k) and C p(Ω̆r

k) with elements of C p+1(Ωr
k) and

C p+1(Ω̆r
k) respectively.
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§ 2.4. Global calculations

Theorem 2.18 (cf. Thm. 3.5 in [16]). Consider the barycentric complexes C p(Ωr
k) and

C p(Ω̆r
k) with differentials dbct and d̆bct respectively. Then

1. C •(Ωr
k) is a resolution of Ωr

k.

2. C •(Ω̆r
k) is a resolution of Ω̆r

k.

Proof. The arguments for the both claims are the same as that of [16, Thm. 3.5].

Proposition 2.19 (cf. Prop. 3.6 in [16]). Consider the differential d and the log differential

dlog.

1. The differential d : j∗Ω
r
X†k/k

→ j∗Ω
r+1

X†k/k
(or d : j∗Ω

r
X†k/A

†
k

→ j∗Ω
r+1

X†k/A
†
k

) is given on the

degree p piece of Γ(Xk, j∗Ω
r
X†k/k

) by zpn 7→ zp · p∧n. For any pair of faces ω1 ⊆ ω2 ⊆ τ ,

this induces a map d : (Ωr
ω1,k
|V kω2

)/Tors→ (Ωr+1
ω1,k
|V kω2

)/Tors.

2. The differential d : j∗Ω
r
X̆†k/k

→ j∗Ω
r+1

X̆†k/k
(or d : j∗Ω

r
X̆†k/A

†
k

→ j∗Ω
r+1

X̆†k/A
†
k

) is given on the

degree p piece of Γ(Xk, j∗Ω
r
X̆†k/k

) by zpn 7→ zp · p∧n. For any pair of faces ω1 ⊆ ω2 ⊆ τ ,

this induces a map d : (Ω̆r
ω1,k
|V kω2

)/Tors→ (Ω̆r+1
ω1,k
|V kω2

)/Tors.

Proof. The same argument as in [16, Prop. 3.6].

2.4 Global calculations

Let (B,P) be a positive and simple integral affine manifold with singularities and a polyhe-

dral decomposition P. Let s be open gluing data for (B,P), yielding X0 := X0(B,P, s).

This s together with the condition (LC) (see [15, Prop. 4.25]) also determines the log struc-

ture X†0 on X0 over Spec k† with singular set Z ⊆ X0. Take Ωr to be the sheaf on X0 which

is either j∗Ω
r
X†0/k

or j∗Ω
r
X†0/k†

, where j : X0 \ Z → X0 is the inclusion. We refer to these as

the /k and /k† cases respectively. On the other hand, take Ω̆r to be the sheaf on X0 which

is j∗Ω
r
X̆†0/k

and j∗Ω
r
X̆†0/k†

in the /k and /k† cases respectively. We will not handle this latter

sheaf for the time being and leave the descriptions of this sheaf to §5.1.

Our goal is to calculate Hp(X0,Ω
r). This section will be devoted to technical results

which essentially lift the local descriptions of §2.3 to the global situation. The first goal is

to obtain a nice resolution for Ωr by defining a complex C k(Ωr). The local form of this

resolution has been studied in §2.3.

Let qτ : Xτ → X0 be the usual inclusion of strata maps (cf. [15, Lem. 2.29]), Dτ the toric

boundary of Xτ (the complement of the big torus orbit of Xτ ) and let

κτ : Xτ \ (Dτ ∩ q−1
τ (Z))→ Xτ
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be the inclusions. In analogy with the local case in §2.3, we define

Ωr
τ := κτ∗κ

∗
τ (q∗τΩr/Tors),

where Tors denotes the torsion subsheaf of q∗τΩr. In a similar fashion, define the sheaf Ω̆r
τ on

Xτ with respect to the log structure X̆†0.

Recall that X0 can be viewed as the direct limit of a gluing functor FS,s defined in [15,

Def. 2.11] and we take S = Speck as the base scheme. Since S and s are given, we shall

write, for τ1 ⊆ τ2,

Fτ1,τ2 : Xτ2 → Xτ1

for

FS,s(τ1 → τ2) : Xτ2 → Xτ1 .

As noted in [17, §1.1], we restrict to the case where (B,P) has no self-intersecting cells since

the treatment of self-intersections is straightforward. Recall that

qτ2 = qτ1 ◦ Fτ1,τ2 .

Adapting the local results of §2.3 to the global situation, we have the following proposition.

Proposition 2.20. If τ1 ⊆ τ2 with τ1, τ2 ∈ P, then the functorial isomorphism on Xτ2 \
q−1
τ2 (Z)

Ωr
τ2 = q∗τ2Ωr ∼=−→F ∗τ1,τ2q

∗
τ1Ωr = F ∗τ1,τ2Ωr

τ1

extends to an inclusion

F ∗τ1,τ2 : Ωr
τ2 → (F ∗τ1,τ2Ωr

τ1)/Tors .

Proof. This can be checked in an étale neighbourhood of a point z ∈ Z. By Theorem 1.12,

this reduces to the case considered in Corollary 2.17, (1).

We are now able to define our explicit resolution of the sheaf Ωr. Define a barycentric

complex

C k(Ωr) =
⊕

σ0(···(σk

qσk∗((F
∗
σ0,σk

Ωr
σ0

)/Tors)

with a differential dbct : C k(Ωr)→ C k+1(Ωr) given by

(dbct(α))σ0,··· ,σk+1
= ασ1,··· ,σk+1

+

k∑
i=1

(−1)iασ0,··· ,σ̌i,··· ,σk+1

+(−1)k+1F ∗σk,σk+1
ασ0,··· ,σk .

Here the term ασ1,··· ,σk+1
∈ (F ∗σ1,σk+1

Ωr
σ1

)/Tors can be viewed, by Proposition 2.20, as an

element of (F ∗σ0,σk+1
Ωr
σ0

)/Tors. Consider only this differential dbct, we have first the following

results:
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Theorem 2.21. C •(Ωr) is a resolution of Ωr.

Proof. This follows immediately from the local version, Theorem 2.18.

Corollary 2.22.

Hp(X0,Ω
r) = Hp(X0,C

•(Ωr)).

Besides, there is the exterior differential d : Ωr → Ωr+1, which is defined on X0 \ Z, and

hence on the pushforward, giving us a complex (Ω•, d), the log de Rham complex of X0. By

Proposition 2.19, d induces the map

d : (F ∗τ1,τ2Ωr
τ1)/Tors→ (F ∗τ1,τ2Ωr+1

τ1 )/Tors

for e : τ1 → τ2. Altogther, we have two maps of complexes

dbct : C k(Ω•)→ C k+1(Ω•)

and

d : C •(Ωr)→ C •(Ωr+1).

The two differentials dbct and d together give us a double complex C •(Ω•). We thus have

the following immediate result:

Corollary 2.23.

Hr(X0,Ω
•) = Hr(X0,Tot(C •(Ω•))),

where Tot denotes the total complex of the double complex.

In order to compute these cohomology groups explicitly, we need a useful global descrip-

tion for the sheaves Ωr
ω. As in [16, §3.2], we first describe Ωr

v for a vertex v of P in the new

setting.

For a vertex v without unbounded rays, D does not intersect Xv, or equivalently Xv does

not contain any irreducible components of D. Then the properties of Ωr
v are the same as

before, which are described in [16, §3.2].

From now on in this section, consider a vertex v always with an unbounded ray. Pull

back the log structure on X†0 via qv to obtain a log structure on Xv \ q−1
v (Z), with sheaf of

monoids Mv.

For a given Xv, it is true that D ∩ Xv is contained in the toric boundary Dv (cf. Con-

struction 2.9 and Example 2.15). By [15, Lem. 5.13], we have a split exact sequence

0→Mgp
(Xv ,Dv) →M

gp
v → Zρ→ 0, (2.7)

where M(Xv ,Dv) is the sheaf of monoids associated to the divisorial log structure given by

Dv ⊆ Xv, and ρ as usual is the image of 1 ∈ N under the map of monoids induced by the log

morphism X†0 → Speck†. Because q−1
v (Z) ⊆ Xv is codimension two, j∗Mv → j∗OXv\q−1

v (Z) =
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OXv determines a log structure on Xv, which we write as X†v . WriteMv also for j∗Mv. Then

the exact sequence (2.7) still holds on Xv. From this exact sequence one sees that Ω1
X†v/k†

coincides with the ordinary sheaf of log derivations for the pair (Xv, Dv), which is canonically

Λ̌v ⊗OXv by [27, Prop. 3.1] while Ω1
X†v/k

is canonically (Λ̌v ⊕ Zρ)⊗OXv .

Lemma 2.24. Let v ∈P be a vertex. Then Ωr
v is naturally isomorphic to Ωr

X†v/k
or Ωr

X†v/k†

in the /k and /k† cases respectively.

Proof. First of all, Ω1
X†v/k†

coincides with the ordinary sheaf of log derivations for the pair

(Xv, Dv). It is true in our new setting as well as in [16].

In [16, Lem. 3.12], the log structure of (V (σ) \ Z) ∩ Xv induced by X†0 is given by the

chart Pe → OXv étale locally, where Pe is the maximal proper face of Pσ corresponding

to Xv ∩ V (σ). Since the construction and consideration of Pe in [16] is unaltered for an

unbounded maximal cell σ, this statement is true by the same argument of [16, Lem. 3.12]

according to the definition of Ω1
v and the log structure on X†0.

Remark 2.25. In the proof of the above lemma, we have the following observation. Let

e : v → σ ∈Pmax, where σ is unbounded. Then Dµ := D∩Xv is nonempty. Since D∪(X0)sing

is required to be the collection of all (n − 1)-strata in X0, so Dµ is contained in the toric

boundary Dv. Hence, the “new term” Dµ is a part of the toric boundary of Xv. Furthermore,

supposeDµ is locally in the formDµ = {z1 = 0} with a choice of local coordinates (z1, · · · , zn).

Then dz1
z1

is a local section of Ω1
X†v/k

and Ω1
X†v/k†

.

In the same way as [16, Lem 3.12], Lemma 2.24 enables us to view Ωr as being obtained

by gluing together trivial vector bundles on the irreducible components of X0 \ Z. Consider

ω ∈ P a bounded cell of dimension one, with vertices e±ω : v±ω → ω arising from a choice of

dω a primitive generator of Λω. On Xω \ q−1
ω (Z), there are the canonical identifications

F ∗
v−ω ,ω

Ωr
v−ω

= F ∗
v−ω ,ω

q∗
v−ω

Ωr = F ∗
v+
ω ,ω

q∗
v+
ω

Ωr = F ∗
v+
ω ,ω

Ωr
v+
ω

On the other hand, using the isomorphism of Lemma 2.24 and on the left and right hand

sides of the above identifications, we get on Xω \ q−1
ω (Z) a map

Γω : F ∗
v−ω ,ω

Ωr
X†
v−ω
/k

∼=−→F ∗
v+
ω ,ω

Ωr
X†
v+
ω
/k (2.8)

(or /k†.) Let’s describe Γω explicitly.

Lemma 2.26 (Lem. 3.13 in [16]). In the above situation, identify Λ̌v+
ω

and Λ̌v−ω via parallel

transport through σ, and identify these with a lattice N . Then on Sing(V (ω)), in the /k case,

Γω is given by, for n ∈
∧•(N ⊕ Zρ),

Γω(dlog n) = −
(
dfσ
fσ

+ lω dlog ρ

)
∧ dlog(ι(dω)n) + dlog n,

where lω is a positive integer such that there is an integral affine isomorphism [0, lω] → ω.

The same formula holds modulo dlog ρ in the /k† case.
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Remark 2.27. The formula only holds for bounded edge ω since unbounded edges do not have

two vertices. In the proof of [16, Lem 3.13], the identification between the lifting of v̌±ω ∩N
and C(ω)∨ ∩ (N ⊕ Z) is concerned, which does not involve the boundedness of σ after fixing

σ ⊇ ω (where σ ∈Pmax).

Next we describe Ωr
τ for τ ∈P arbitrary. Pick a reference vertex v ∈P with a morphism

g : v → τ . We know by Proposition 2.20 that there is an inclusion of Ωr
τ in F ∗v,τΩr

v. We describe

this subsheaf in the next step.

Recall that we assume (B,P) is simple. Therefore, as in [15, Def. 1.60], for every τ ∈P

with dim τ 6= 0, n, we have the following data:

P1(τ) = {ω → τ | dimω = 1}

Pn−1(τ) = {τ → ρ | dim ρ = n− 1}

Simplicity allows us to find disjoint sets

Ω1, . . . ,Ωq ⊆ P1(τ),

R1, . . . , Rq ⊆ Pn−1(τ),

and polytopes

∆1, . . . ,∆q ⊆ Λτ,R,

∆̌1, . . . , ∆̌q ⊆ Λ⊥τ,R.

These have the property that if ω ∈ Ωi, e : ω → τ , then the monodromy polytope ∆̌e(τ) = ∆̌i,

and if ρ ∈ Ri, f : τ → ρ, then ∆f (τ) = ∆i (see [15, Def. 1.58]). The polytopes ∆i are the

Newton polytopes of the functions ψ̌i on Σ̌τ , the normal fan to τ (see [15, Rem. 1.59]; there

is a typo: ϕρ should be ψ̌ρ). For any g′ : v′ → τ , we obtain vertices Verti(g
′) of ∆i as in

Construction 1.8. The reference vertex g : v → τ then gives reference vertices vi := Verti(g) ∈
∆i. The sets Ωi are characterized by ω ∈ Ωi if and only if Verti(v

+
ω ) 6= Verti(v

−
ω ).

In addition, simplicity includes the condition that the convex hulls of⋃q
i=1 ∆i × {ei} and

⋃q
i=1 ∆̌i × {ei}

in Λτ,R × Rq and Λ⊥τ,R × Rq respectively are elementary simplices. In particular, ∆1, . . . ,∆q

and ∆̌1, . . . , ∆̌q are themselves elementary simplices, and their tangent spaces T∆1 , . . . , T∆q

give a direct sum decomposition of
∑q

i=1 T∆i ⊆ Λτ,R and T∆̌1
, . . . , T∆̌q

give a direct sum

decomposition of
∑q

i=1 T∆̌i
⊆ Λ⊥τ,R. Recall [16, Lem. 3.14] about the properties of Newton

polytopes:

Lemma 2.28 (Lem. 3.14 in [16]). If the convex hull of
⋃q
i=1 ∆i × {ei} is an elementary

simplex, then there is a one-to-one correspondence between faces σ of ∆τ := ∆1 + · · · + ∆q
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(Minkowski sum) and q-tuples (σ1, . . . , σq) with σi a face of ∆i, with σ = σ1 + · · · + σq.

Furthermore,

dimσ =

q∑
i=1

dimσi.

Remark 2.29. In [15, §1.5], the authors introduced the monodromy transformation around

a loop and the concept of simplicity for the case where (B,P) is compact and without

boundary. The notion of monodromy transformation can be generalized in a straightforward

way for unbounded cells of P.

In particular, the operator T e1e2ω is trivial for an unbounded 1-cell τ ′ (T e1e2ω is first defined

for the bounded case in the construction before [15, Def. 1.54]) because we now have only a

vertex vτ ′ for the 1-cell τ ′ (in contrast to the case of a bounded 1-cell ω with vertices v±ω ) so

that the intersection ∆ ∩ τ ′ of the 1-cell τ ′ and the discriminant locus ∆ is empty. Then we

can conclude that the monodromy polytope ∆̌(τ ′) = 0 (cf. [15, Def. 1.58]) for the unbounded

1-cell τ ′.

We can then use [15, Def. 1.60] to define simplicity for (B,P) also in the unbounded

case by the observations above.

Furthermore, we have the following proposition about the monodromy polytopes of an

unbounded cell τ .

Proposition 2.30. Let τ ′ be an unbounded 1-cell emerging from a vertex v in B and let τ

be a cell containing τ ′. Denote the monodromy polytopes of τ by ∆i and ∆̌i. Then

q∑
i=1

T∆̌i
⊆ Λ⊥τ,R ∩

⋂
τ ′ 6=ω⊆τ
dimω=1

Λ⊥ω,R.

Besides, the nonzero elements of ∆i cannot occur in Λτ ′,R for any unbounded 1-cell τ ′

contained in τ . In other words,

∆i ∩ Λτ ′,R = 0.

As a result, it follows that

Tσ ∩ Λτ ′,R = 0

for every unbounded 1-cell τ ′ in τ , where Tσ denotes the tangent space to σ in Λτ,R and

σ = σ1 + · · ·+ σq for σi a face of ∆i, which is the Newton polyope of the function ψ̌i on Σ̌τ .

Proof. Let τ ′ be an unbounded 1-cell emerging from a vertex v in B. By Remark 2.29, we

have ∆̌(τ ′) = 0. By simplicity, it also implies that ∆(τ ′) = 0.

Consider now the Newton polytope ∆̌i (which is the monodromy polytope of τ). The

element of any Newton polytope ∆̌i cannot occur in the direction of

Λ⊥τ ′,R \ (
⋃

τ ′ 6=ω⊆τ
dimω=1

Λ⊥ω,R).
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Otherwise ∆̌i would be a face of ∆̌(τ ′) with dim ∆̌i ≥ 1, which is impossible. In other words,

every Newton polytope ∆̌i is a subset of ⋂
τ ′ 6=ω⊆τ
dimω=1

Λ⊥ω,R.

Consequently, we have
q∑
i=1

T∆̌i
⊆ Λ⊥τ,R ∩

⋂
τ ′ 6=ω⊆τ
dimω=1

Λ⊥ω,R.

To prove the second part of the proposition, we look at first the property of a polytope ∆i

with respect to τ ⊇ τ ′. Let ρ be a cell containing τ and τ ′ with dim ρ = n−1 and let f ′ : τ ′ → ρ.

Firstly, we observe that ∆f ′(τ
′) is a face of ∆(ρ) and ∆f ′(τ

′) = Conv{mρ
e◦f,e◦f ′ |f

′ : v′ → τ ′} =

0 because v is the only vertex of τ ′.

Let f : τ → ρ. Suppose there exists m0 ∈ Λτ ′,R such that m0 ∈ ∆i = ∆f (τ). Hence

Conv{m0, 0} ⊆ Λτ ′,R. As Conv{m0, 0} is a face of ∆(ρ), thus by positivity and convexity

of τ , it can only happen that Conv{m0, 0} = ∆f ′(τ
′) or Conv{m0, 0} = ∆f ′′(τ

′′), where

f ′′ : τ ′′ → ρ. In the former case, we arrive at the conclusion that Conv{m0, 0} = ∆f ′(τ
′) = 0

so that m0 = 0. In the latter case, the 1-cell τ ′′ has to be unbounded due to convexity of τ ;

hence this case is reduced to the former case with ∆f ′′(τ
′′) = 0. So the claim is proved.

Therefore, we can conclude that

Tσ ∩ Λτ ′,R = 0

for every unbounded 1-cell τ ′ in τ .

As in [15], every toric stratum Xτ is defined by Xτ := X(Στ ) (see [15, Def. 2.7]), in which

the boundedness assumption of τ is not involved. Consequently, the arguments of [15, Cor.

5.8] apply, so that q−1
τ (Z) = Zτ1 ∪ · · · ∪ Zτq ∪ Z ′ where Z ′ ⊆ Dτ is of codimension at least

two in Xτ and Zτi is a hypersurface in Xτ , with Newton polytope ∆̌i. Furthermore, from the

proof of [15, Cor. 5.8], Zτi = F−1
ω,τ (Zω) for any ω ∈ Ωi, where Zω is the irreducible component

of Z contained in the codimension one stratum Xω of X0.

For an index set I ⊆ {1, . . . , q}, set ZτI :=
⋂
i∈I Z

τ
i . For the log structure on X†v , pull

it back on Xv to Xτ via Fv,τ , and then restrict it further to ZτI , for any I. We write these

structures as X†τ and (ZτI )†, but keep in mind these are not intrinsic and depend on the choice

of vertex g : v → τ . Note that these are all defined over Speck†, by composing the inclusions

into Xv with X†v
qv−→X†0 → Speck†. Viewing ZτI ⊆ Xv via the inclusion Fv,τ : Xτ → Xv, we

have the following lemma.

Lemma 2.31 (cf. Lem. 3.15 in [16]). 1. There are exact sequences

0→
⊕
i∈I
OZτI (−Zτi )→ Ω1

X†v/k
|ZτI → Ω1

(ZτI )†/k → 0
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and

0→
⊕
i∈I
OZτI (−Zτi )→ Ω1

X†v/k†
|ZτI → Ω1

(ZτI )†/k† → 0.

Here OZτI (−Zτi ) denotes the restriction of the line bundle OXτ (−Zτi ) to ZτI . In addition,

Ω1
(ZτI )†/k and Ω1

(ZτI )†/k† are locally free OZτI -modules.

2. If Y ⊆ Xτ is a toric stratum, then Ωr
(ZτI )†/k|Y = Ωr

(ZτI ∩Y )†/k and

Tor
OXτ
j (Ωr

(ZτI )†/k,OY ) = 0

for j > 0. Here the log structure on ZτI ∩ Y is the pull-back of the one on ZτI . The

same holds for the /k† case.

Proof. Choose h : τ → σ ∈Pmax. The log structure X†v is given by the chart Pσ → k[Ph◦g],

where Ph◦g is the maximal proper face of Pσ corresponding to h◦g : v → σ. This consideration

and its consequence in [16, Lem. 3.15] is unaltered for an unbounded maximal cell σ.

Furthermore, ZτI is defined by equations {fi = 0|i ∈ I} in Xτ , in which fi is given by the

Newton polytope ∆̌i. By simplicity, the Newton polytopes ∆̌i are elemetary simplices and

thus are bounded like before. Hence, the arguments of [16, Lem. 3.15] apply also in the new

situation and give the result.

Proposition 2.32 (cf. Prop. 3.17 in [16]). Given v → τ1 → τ2, the image of the inclusion

(F ∗τ1,τ2Ωr
τ1)/Tors in F ∗v,τ2Ωr

v is

ker

(
F ∗v,τ2Ωr

v
δ0−→

⊕
i=1,...,q
wi 6=vi

Ωr−1
(Z
τ2
i )†/k

)

or

ker

(
F ∗v,τ2Ωr

v
δ0−→

⊕
i=1,...,q
wi 6=vi

Ωr−1
(Z
τ2
i )†/k†

)

in the /k and /k† cases respectively, where:

1. The direct sum is over all i and all vertices wi of ∆i, wi 6= vi, and ∆1, . . . ,∆q are parts

of the simplicity data for τ1.

2. Zτ2i = F−1
τ1,τ2(Zτ1i ) where Zτ11 , . . . , Z

τ1
q are as usual the codimension one irreducible com-

ponents of q−1
τ1 (Z) with Newton polytopes ∆̌1, . . . , ∆̌q.

3. For α ∈ F ∗v,τ2Ωr
v, the component of δ0(α) in the direct summand Ωr−1

(Z
τ2
i )†/k or Ωr−1

(Z
τ2
i )†/k†

corresponding to some wi is given by ι(∂wi−vi)α|(Zτ2i )†.

Proof. This proposition is the generalization of [16, Prop. 3.17] to the case where τ1 and τ2

are allowed to be unbounded. This proof actually follows the lines of [16, Prop. 3.17] with

the application of Proposition 2.30.
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Consider the /k case and the /k† case will follow. The first part of the proposition con-

cerning F ∗•,τ2Ωr
• follows by using the characterization of Corollary 2.17, (2) of (F ∗τ1,τ2Ωr

τ1)/Tors

as ⋂
g′ : v′→τ1

F ∗v′,τ2Ωr
v′ ,

using Lemma 2.26 for the explicit identification of this intersection with a subsheaf of F ∗v,τ2Ωr
v.

Let α be a section of F ∗v,τ2Ωr
v. Then for any j and vertex wj 6= vj of ∆j , we can find a

sequence of edges hi : ωi → τ1, i = 1, . . . ,m of τ1, with dωi chosen appropriately, so that

• v−ω1
= v;

• v+
ωi = v−ωi+1

for i < m;

• Vertl(v
+
ωi) = vl for i < m, for all l;

• Vertl(v
+
ωm) =

vl l 6= j,

wj l = j.

Choose a maximal cell σ containing τ2 for reference, and let f1, . . . , fq be the equations

defining Zτ21 , . . . , Z
τ2
q in the affine chart V (σ) ∩Xτ2 . Note that by Proposition 2.30, ∆i has

no element in Λτ ′,R for unbounded 1-cells τ ′ so it is impossible that ωi = τ ′ for i = 1, . . .m,

where τ ′ is an unbounded 1-cell. Using Lemma 2.26, apply Γω1 , . . . ,Γωm successively to α by

the same arguments as in [16, Prop. 3.17] by noting that ωi are bounded for 1 ≤ i ≤ m.

Conversely, if α ∈ ker δ0, let v′ be any vertex of τ1. Then we can find a sequence of edges

ωi → τ1, i = 1, . . . ,m of τ1, with dωi chosen appropriately, so that

• v−ω1
= v;

• v+
ωi = v−ωi+1

for i < m;

• v+
ωm = v′;

• For each 1 ≤ l ≤ q, there is at most one i such that Vertl(v
−
ωi) 6= Vertl(v

+
ωi), and for

this i, Vertl(v
−
ωi) = vl, Vertl(v

+
ωi) = v′l = Vertl(v

′).

Then again using Lemma 2.26 repeatedly along each ωi as in the proof of [16, Prop. 3.17],

we can identify α with a rational section of F ∗v′,τ2Ωr
v′ and argue that the section is actually

regular. Hence α is in
⋂
g′ : v′→τ1 F

∗
v′,τ2

Ωr
v′ .

For e : τ1 → τ2, we will now calculate the cohomology of (F ∗τ1,τ2Ωr
τ1)/Tors by building a

convenient resolution. The first two terms of such a resolution are given by Proposition 2.32;

we need to extend this two-term complex.
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Let V ⊆ Λτ,R be a subspace. We have a subsheaf Ωr
v|Xτ ∩ V ⊥ of Ωr

v|Xτ given by forms α

with ι(∂m)α = 0 for all m ∈ V . We define Ωr
(ZτI )†/k ∩ V

⊥ or Ωr
(ZτI )†/k† ∩ V

⊥ to be the image

of Ωr
v|Xτ ∩ V ⊥ in Ωr

(ZτI )†/k (or /k†).
For m ∈ Λτ , note that

ι(∂m)

(
im

(⊕
i∈I
OZτI (−Zτi )

d−→Ω1
v|ZτI

))
= 0,

as all monomials occuring in the equations for Zτi are in Λ⊥τ . We thus in particular have from

Lemma 2.31 an exact sequence

0→
⊕
i∈I
OZτI (−Zτi )→ Ω1

v|ZτI ∩ V
⊥ → Ω1

(ZτI )†/k ∩ V
⊥ → 0

and a similar exact sequence for the /k† case.

Given g : v → τ1, we can define complexes Fr,•v by

Fr,pv =
⊕

σ⊆∆τ1 :v̄∈σ
dimσ=p

Ωr−p
(Z
τ1
I(σ)

)†/k ∩ T
⊥
σ ,

in the /k case and

Fr,pv =
⊕

σ⊆∆τ1 :v̄∈σ
dimσ=p

Ωr−p
(Z
τ1
I(σ)

)†/k† ∩ T
⊥
σ ,

in the /k† case, where the above sums are over all p-dimensional σ = σ1 + · · ·+ σq, in which

σi is a face of ∆i containing vi and

∆τ1 = ∆1 + · · ·+ ∆q;

v̄ = v1 + . . .+ vq;

Tσ is the tangent space to σ in Λτ,R;

I(σ) = {i|σi 6= {vi}}.

We use the convention that if I(σ) = ∅ then Ωr
(Zτ
I(σ)

)†/k (or /k†) is Ωr
v|Xτ .

We define differentials δp : Fr,pv → Fr,p+1
v by

(δpα)σ′ =
∑

σ⊆σ′:v̄∈σ
dimσ=p

ι(∂wj−vj )ασ|Zτ1
I(σ′)

.

Here σ′ is a face of ∆τ1 of dimension p + 1, and we sum over all faces σ of σ′ of dimension

p containing v. For each such σ′, by Lemma 2.28 there is a unique j such that σ′j 6= σj , and

wj is the unique vertex of σ′j not contained in σj . By Proposition 2.32,

Ωr
τ1 = ker(δ0 : Fr,0v → Fr,1v ).

The following lemma is a continuation of Proposition 2.32. It extends the resolution of the

term (F ∗τ1,τ2Ωr
τ1)/Tors.
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Lemma 2.33 (cf. Lem. 3.18 in [16]). Fix g : v → τ1. For any τ1 ⊆ τ2,

F ∗τ1,τ2F
r,•
v

is a resolution of (F ∗τ1,τ2Ωr
τ1)/Tors.

Proof. It suffices to show this Lemma for τ1 = τ2 = τ because the complex remains a

resolution under pull-back by Lemma 2.31, (2).

With reference to the proof of [16, Lem. 3.18], consider faces v ∈ ω ⊆ ω′ ⊆ ∆τ , and

consider the complex F•ω,ω′ defined by

Fpω,ω′ =
⊕

ω⊆σ⊆ω′
dimσ=p

Ωr−p
(Zτ
I(σ)

)†/k ∩ T
⊥
σ ,

with differential δp. Recall that in the proof of [16, Lem. 3.18], it is proven that H i(F•ω,ω′) = 0

for i > dimω by an induction on dimω′ − dimω.

By Proposition 2.30, ∆τ ∩ Λτ ′,R = 0 so that ω ∩ Λτ ′,R = ω′ ∩ Λτ ′,R = σ ∩ Λτ ′,R = 0 for

unbounded 1-cell τ ′, by setting the vertex v = 0 in Λτ,R. In other words, the faces ω, ω′ and

σ remain bounded.

Consequently, we note that the arguments used in the proof of [16, Lem. 3.18] are

independent of the boundedness of τ . Hence, the result follows.
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Chapter 3

Cohomology of smoothings and affine

cohomological controls

After the lengthy preparations in the previous sections, we finally arrive at many results in

this section.

In §3.1 and §3.2, we follow the lines and methods of [16] to have the first affine cohomo-

logical control, the decomposition of the log Dolbeault groups and the base change theorem.

Then in §3.3, we obtain an affine analogue of the Poincaré residue map in complex alge-

braic geometry and the second affine cohomological control with some new definitions in the

cone picture B̌. In §3.4, we will look into some immediate consequences in various spectral

sequences along our construction in toric degenerations.

3.1 The first affine cohomological control and a Hodge decom-

position

We continue with the notations of the previous section §2.4 and proceed in a similar way

as in [16, §3.3] with some new definitions (Definition 3.2) in the fan picture B. Under the

“standard simplex” hypothesis on the polytopes describing the outer monodromy of the cells

τ ∈ P 1, the cohomology groups of F ∗τ1,τ2Ωr
τ1/Tors vanish in degree ≥ 1, and the global

sections of these sheaves are easily expressed in terms of data on B. The investigation of the

various phenomena with the “standard simplex” assumption lessened (see [32]) will not be

performed in this thesis but we will have a related discussion in §4.2 (5).

Lemma 3.1 (cf. Lem. 3.19 in [16]). Suppose that for the cell τ ∈ P, the polytope

Conv(
⋃q
i=1 ∆̌i × {ei}) is a standard simplex. Then

1. For σ ⊆ ∆τ a face,

Γ(Xτ ,Ω
r
(ZτI )†/k† ∩ T

⊥
σ ) =

∧rT⊥σ
Top(I)r

⊗ k,

for T⊥σ ⊆ Λ̌v,R, Top(I)r the degree r part of the ideal in the exterior algebra of T⊥σ
generated by ⋃

i∈I

∧top
T∆̌i

.

1Or equivalently, the monodromy is unimodular around τ (see Theorem 0.1 and the remarks after it).
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2. Hj(Xτ ,Ω
r
(ZτI )†/k† ∩ T

⊥
σ ) = 0 for j > 0.

Proof. Let W be a complementary subspace to
∑

i∈I T∆̌i
⊆ T⊥σ . Then we can split Ω1

v|Xτ ∩T⊥σ
as (OXτ⊗W )⊕

⊕
i∈I(OXτ⊗T∆̌i

), and in addition d(O(−Zτi )) ⊆ OXτ⊗T∆̌i
, as the polynomial

defining Zτi only involves monomials in ∆̌i. Let di = dim ∆̌i. Then we obtain a splitting of

the exact sequence of Lemma 2.31

0→
⊕
i∈I
OZτI (−Zτi )→ Ω1

v|ZτI ∩ T
⊥
σ → Ω1

(ZτI )†/k† ∩ T
⊥
σ → 0

into exact sequences, for i ∈ I,

0→ OZτI (−Zτi )→ OZτI ⊗ T∆̌i
→ Ω1

i → 0, (3.1)

where each of these sequences defines a locally free sheaf Ω1
i of rank di − 1. In addition, we

have one remaining direct summand of the original exact sequence,

0→ 0→ OZτI ⊗W → OZτI ⊗W → 0.

If we show that for j > 0

Hj

(
ZτI ,

(⊗
i∈I

Ωri
i

)(
−
∑
i∈I

aiZ
τ
i

))
= 0 (3.2)

for 0 ≤ ai ≤ di− 1− ri, then (2) of the Lemma follows. To prove (1), it suffices to show that

H0(ZτI , (
⊗
i∈I

Ωri
i )(−

∑
i∈I

aiZ
τ
i )) = 0 (3.3)

for 0 ≤ ai ≤ di − 1− ri if at least one ai > 0, and

H0(ZτI ,
⊗
i∈I

Ωri
i ) =

⊗
i∈I

∧ri
T∆̌i

. (3.4)

Since the toric stratum Xτ is defined by means of Xτ := X(Στ ) (cf. [15, Def. 2.7]), it

is independent of the boundedness of τ . Similarly, the object Qτ,R (cf. [15, Def. 1.33]) and

the application of [27, §2.2] are also independent of boundedness. The proof now proceeds

in the same way as in [16, Lem. 3.19], so that Hj(Xτ ,OXτ (−
∑

i∈I aiZ
τ
i )) = 0 for j > 0,

0 ≤ ai ≤ di.
Tensoring the Koszul complex (3.5) in [16] with OXτ (−

∑
i∈I aiZ

τ
i ) for 0 ≤ ai ≤ di − 1

and employing the algebraic properties of the above exact sequences to perform an induction

as in [16, Lem. 3.19], we obtain the above vanishings (3.2) and (3.3). Finally, the cohomology

in (3.4) follows by the same argument as in the proof of [16, Lem. 3.19].

In [15, Def. 1.25 and Def. 2.9], notions Wτi , W and We ⊆ B for e : τ1 → τ2 are defined for

bounded cells τ1 and τ2. They are not yet defined for unbounded cells in unbounded affine

manifold (B,P). Thus, we have the following definition.
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Definition 3.2. Let B be an unbounded affine manifold with a polyhedral decomposition

P.

1. For an unbounded 1-cell τ ′ emerging from a vertex v, fix aτ ′ ∈ Λτ ′,R such that v+aτ ′ ∈
Int(τ ′). Take v + aτ ′ to be Bar(τ ′). For higher dimensional unbounded cells τ , define

Bar(τ) by taking Bar(τ) as the average of vertices of τ and Bar(τ ′) of all unbounded

1-cells τ ′ bounding τ . Therefore, one also obtains Bar(P) for B. Then take Wτ as

defined in [15, Def. 1.25] and set W = {Wτ |τ ∈P}.

2. With the above definition, we can then define We for B unbounded following [15, Lem.

2.9]. Consequently, the conclusions thereof still hold. Note that We is a bounded set

and it makes sense to consider loops whose interiors are in We later. In particular, all

loops in B can be identified with loops inside W .

Remark 3.3. Note that W does not cover B completely. But it covers the “bounded part” of

B (i.e. W covers a neighbourhood of the bounded cells in the polyhedral decomposition P

of B). Let B[ = {b ∈Wσ for some σ ∈P} ⊆ B. By definition, this set B[ is covered by W .

In particular, B[ is compact and is a deformation retract of B.

Moreover, B[ provides a natural retraction B →
⋃
τ∈P Wτ that respects the local system

Λ̌, so that the cohomology Hq(B, i∗
∧p Λ̌⊗ k) can be computed using the cover

⋃
Wτ .

Lemma 3.4 (cf. Lem. 3.20 in [16]). With the same hypotheses as in Lemma 3.1, in the /k†

case, we have for any morphism e : τ1 → τ2, We ⊆ B the open subset defined in Definition

3.2 (cf. [15, Lem. 2.9]),

Γ(We, i∗
∧r

Λ̌⊗ k) ∼= H0(Xτ2 , (F
∗
τ1,τ2Ωr

τ1)/Tors)

and

Hj(Xτ2 , (Fτ1,τ2)∗Ωr
τ1)/Tors) = 0

for j > 0.

Proof. The proof is essentially the same as that of [16, Lem. 3.20]. Pick a vertex g : v → τ1.

Then

Hj(Xτ2 , (F
∗
τ1,τ2Ωr

τ1)/Tors) ∼= Hj(Xτ2 , F
∗
τ1,τ2F

r,•
v )

= Hj(Γ(Xτ2 , F
∗
τ1,τ2F

r,•
v ))

by Lemma 2.33 and Lemma 3.1, (2). Besides, by Lemma 3.1 (1), the complex Γ(Xτ2 , F
∗
τ1,τ2F

r,•
v )

coincides with the complex of k-vector spaces F •, where F • is defined by, if Ωi, Ri,∆i, ∆̌i are

the simplicity data for τ1,

F s =
⊕

σ⊆∆τ1 :v̄∈σ
dimσ=s

(∧r−s
T⊥σ

)
/Top(e, I(σ))r−s,
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where σ = σ1 + · · · + σq, I(σ) = {i|σi 6= {vi}} as before, and Top(e, I(σ))r−s is the degree

r − s part of the ideal of the exterior algebra of T⊥σ generated by⋃
i∈I(σ)

∧top
(T∆̌i

∩ Λ⊥τ2).

Furthermore, the differential δs : F s → F s+1 is defined by

(δsα)σ′ =
∑

σ⊆σ′:v̄∈σ
dimσ=s

ι(∂wj−vj )ασ.

We can then show Hj(F •) = 0 for j > 0 by repeating the arguments of [16, Lem. 3.18] and

[16, Lem. 3.20], defining analogous complexes F •ω,ω′ and proceeding by induction.

Hence, we now calculate H0(F •), and compare this with Γ(We, i∗
∧r Λ̌ ⊗Z k). We iden-

tify this with monodromy invariant elements of i∗
∧r Λ̌v ⊗Z k for loops based at v whose

interior is in We. The monodromy action is then generated by transformations of the form

T ρfeg,feg′ : Λv → Λv, (cf. [15, §1.5]) where we have f : τ2 → ρ with ρ codimension one, and

g′ : v′ → τ1 a vertex. Then one has the action on
∧r Λ̌v ⊗Z k in the form

T ρfeg,feg′(n) = n+ ďρ ∧ ι(mρ
feg,feg′)n.

Thus n ∈
∧r Λ̌v ⊗Z k is invariant under all such monodromy operations if and only if

ďρ ∧ ι(mρ
feg,feg′)n = 0 for all choices of f and g′. Note that as f ◦ e runs through el-

ements of Ri which factor through e, ďρ runs through a generating set for T∆̌i
∩ Λ⊥τ2 ,

and for any given f with f ◦ e ∈ Ri, as g′ varies over all vertices of τ1, mρ
feg,feg′ runs

over {v′i − vi|v′i := Verti(g
′) a vertex of ∆i}. From this description, it is then clear that

ďρ ∧ ι(mρ
feg,feg′)n = 0 for all f, g′ if and only if n ∈ H0(F •).

We can now prove the main theorem of this section: the identification of the logarithmic

Dolbeault groups with the cohomology groups on B, which is the first type of the affine

cohomological controls.

Theorem 3.5 (cf. Thm. 3.21 in [16]). Let B be an integral affine manifold with singulari-

ties, with polyhedral decomposition P, and suppose (B,P) is positive and simple. Assume

furthermore that for all τ ∈P, Conv(
⋃q
i=1 ∆̌i×{ei}) is a standard simplex (equivalently, the

monodromy is unimodular around every cell τ ∈P, see Theorem 0.1). Let s be lifted gluing

data, with X0 = X0(B,P, s). Then there is a canonical isomorphism

Hp(X0, j∗Ω
r
X†0/k†

) ∼= Hp(B, i∗
∧r

Λ̌⊗ k).

Proof. Firstly, we have by Corollary 2.22

Hp(X0, j∗Ω
r
X†0/k†

) = Hp(X0,C
•(Ωr)).
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Besides, we have the vanishings Hj(Xτ2 , (Fτ1,τ2)∗Ωr
τ1)/Tors) = 0 for j > 0 and τ1 ⊆ τ2 by

Lemma 3.4 with the assumption of standard monodromy simplices. Thus C •(Ωr) is an acyclic

resolution. In other words,

Hp(X0,C
•(Ωr)) ∼= Hp(Γ(X0,C

•(Ωr))).

Moreover,

Γ(X0,C
p(Ωr)) =

⊕
σ0(···(σp

Γ(Wσ0→σp , i∗
∧r

Λ̌⊗ k)

by Lemma 3.4. However, Γ(Wσ0→σp , i∗
∧r Λ̌ ⊗ k) = Γ(Wσ0→···→σp , i∗

∧r Λ̌ ⊗ k) (where

Wσ0→···→σp is the connected component of Wσ0 ∩ · · · ∩ Wσp indexed by σ0 → · · · → σp;

if P has no self-intersecting cells, then Wσ0 ∩ · · · ∩Wσp only has one connected component

anyway) because the relevant monodromy operators, as considered in the proof of Lemma

3.4, only depend on σ0 → σp. Under this identification, the complex Γ(X0,C •(Ωr)) with

differential dbct then agrees with the Čech complex for i∗
∧r Λ̌⊗ k with respect to the open

covering W = {Wσ|σ ∈P}. More explicitly,

Γ(X0,C
p(Ωr)) ∼= C p(W , i∗

∧r
Λ̌⊗ k)

Consider the set B[ = {b ∈ Wσ for some σ ∈ P} ⊆ B (see Remark 3.3). Now W covers B[

and B[ is the deformation retract of B. As a result,

Hp(W , i∗
∧r

Λ̌⊗ k) = Hp(B[, i∗
∧r

Λ̌⊗ k) ∼= Hp(B, i∗
∧r

Λ̌⊗ k).

This proves the theorem.

We now obtain the Hodge decomposition:

Theorem 3.6 (cf. Thm. 3.26 in [16]). With the hypotheses of Theorem 3.5, there is a

canonical isomorphism

Hr(X0, j∗Ω
•
X†0/k†

) ∼=
⊕
p+q=r

Hp(X0, j∗Ω
q

X†0/k†
).

Proof. By Corollary 2.23 and Lemma 3.4,

Hr(X0,Ω
•) = Hr(Γ(X0,Tot(C •(Ω•)))).

But as Γ(X0, (F
∗
τ,σΩ•τ )/Tors) consists entirely of differentials of the form dlog n, d is in fact

zero in Γ(X0,C •(Ω•)), and thus the global sections of the total complex split as a direct sum⊕
q Γ(X0,C •(Ωq)[−q]), hence the result.
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3.2 Base change

To relate the (log-)Dolbeault cohomology groups of the central fibre and that of the smoothing

in a toric degeneration, it is necessary to have corresponding base change theorems for the

(hyper)cohomology groups of both log spaces.

The first result of this section, Theorem 3.9, does not depend on the constructions in

§2.3 and §2.4. Indeed, we only need Proposition 2.6 to derive the base change result for the

cohomology theories on the total spaces X† and X̆†. Assuming the existence of a smoothing,

we immediately have several corollaries about the cohomology groups on a generic fibre Xη.

Definition 3.7 (Def. 2.7 in [16]). Let X†k be a toric log Calabi-Yau space over Speck†, with

positive and simple dual intersection complex (B,P), and let A ∈ Ob(CR), where Ob(CR)

denotes the category of Artin local R-algebras with residue field k and R = k[N] with log

structure of SpecR† induced by N→ R, n 7→ tn. Then a divisorial log deformation of X†k over

SpecA† is data fA : X†A → SpecA† together with an isomorphism X†A ×SpecA† Speck† ∼= X†k
over Spec k† such that

1. fA is flat as a morphism of schemes, and fA|XA\Z is log smooth.

2. For every closed geometric point x̄ ∈ Z, let P , Y and X be the data of Theorem 1.12

giving a diagram (1.6) over Speck†. Let X†A = Y †×Spec k[N]† SpecA†. Then there exists

a diagram over SpecA†

V†A

����
��

��
�

φ′

��?
??

??
??

X†A X†A

(3.5)

with both maps strict étale.

Remark 3.8. By [16, Cor. 2.18], the existence of a smoothing of a log Calabi-Yau pair

Xk = (X†0, D) in a toric degeneration implies the existence of a divisorial log deformation of

X†0 over SpecA†. In fact, X†A is the fibre over the thickened point SpecA†.

Theorem 3.9 (cf. Thm. 4.1 in [16]). Let A be a local Artinian k[t]-algebra with residue class

field k and SpecA† the scheme SpecA with log structure induced by N→ A, 1 7→ t. Assume

that

π : X† = (X,MX) −→ SpecA†

and

π : X̆† = (X,M̆X) −→ SpecA†

are divisorial deformations of positive and simple toric log Calabi-Yau spaces X†0 → Speck†

and X̆†0 → Speck† respectively. Denote by Z ⊆ X the singular set of the log structure

X† of relative codimension two, j : X \ Z → X the inclusion of the complement and write
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Ω•X := j∗Ω
•
X†/A†

and Ω̆•X := j∗Ω
•
X̆†/A†

. Then Hp(X,Ω•X) and Hp(X, Ω̆•X) are free A-modules and

both commute with base change.

Proof. Similar to the proof of [16, Thm. 4.1], we follow [22, 34]. By the cohomology and

base change theorem, it suffices to prove the surjectivity of the restriction maps

Hp(X,Ω•X) −→ Hp(X0,Ω
•
X0

).

and

Hp(X, Ω̆•X) −→ Hp(X0, Ω̆
•
X0

).

Here Ω•X0
= j∗Ω

•
X†0/k†

and Ω̆•X0
= j∗Ω

•
X̆†0/k†

. Following [22, p.404], it suffices to prove these

for A = k[t]/(tk+1) with the obvious k[t]-algebra structure. For structural clarity we keep the

notation A for the base ring.

Consider the complexes of OX-modules

L• = j∗Ω
•
X†/k[u] =

∞⊕
s=0

j∗Ω
•
X†/k · u

s

and

L̆• = j∗Ω
•
X̆†/k[u] =

∞⊕
s=0

j∗Ω
•
X̆†/k · u

s,

both equipped with the same differential d as in [16, Thm. 4.1] of the form

d
( N∑
s=0

αsu
s
)

=

N∑
s=0

dαs · us + s dlog ρ ∧ αs · us−1 (3.6)

= dαN · uN +

N−1∑
s=0

(dαs + (s+ 1) dlog ρ ∧ αs+1) · us,

where ρ ∈ Γ(MX) is the pull-back of the section of MA induced by t. Note that these are

differentials relative Spec k rather than relative SpecA†, so dlog ρ 6= 0 unlike in ΩX. In these

complexes, the dummy variable u formally behaves like log t, and the use of considering these

complexes is to trade powers of dlog ρ with powers of u.

Now the projection
∑
αsu

s 7→ α0 defines maps

L• −→ Ω•X.

and

L̆• −→ Ω̆•X.

To finish the proof, it suffices to show that the compositions

ϕ• : L• −→ Ω•X −→ Ω•X0
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and

ϕ̆• : L̆• −→ Ω̆•X −→ Ω̆•X0

are quasi-isomorphisms, that is, they induce isomorphisms of cohomology sheaves Hp(L•)→
Hp(Ω•X0

) and Hp(L̆•) → Hp(Ω̆•X0
), respectively. Consequently, the induced composed maps

of hypercohomology groups

Hp(L•) −→ Hp(Ω•X) −→ Hp(Ω•X0
)

and

Hp(L̆•) −→ Hp(Ω̆•X) −→ Hp(Ω̆•X0
)

are isomorphisms, hence the surjectivity of the second maps as needed.

By this argument and since X† → SpecA† and X̆† → SpecA† are divisorial deformations

of X0
† → Speck† and X̆†0 → Speck† respectively, for the rest of the proof we consider the

following local situation. For every étale neighbourhood X of X0, there is a toric variety

Y = Speck[P ] containing X as a toric Cartier divisor V (zρ) such that the deformations

X† → SpecA† and X̆† → SpecA† are given by

π : Speck[P ]/(z(k+1)·ρ) −→ Speck[t]/(tk+1), π∗(t) = zρ.

Since ϕr : Lr → Ωr
X0

is surjective for any r we obtain a short exact sequence

0 −→ K• −→ L• ϕ•−→ Ω•X0
−→ 0

of complexes by defining K• = kerϕ•. Now ϕ• is a quasi-isomorphism if and only if K• is

acyclic, and this is what we are going to show.

For an explicit description of Kr let
∑N

s=0 αsu
s ∈ Lr, that is, αs ∈ j∗Ωr

X†/k for all s. Then∑N
s=0 αsu

s ∈ kerϕr if and only if α0|X0 = 0. On the other hand, the closedness equation

d(
∑
αsu

s) = 0 is equivalent to the system of equations

dαN = 0

dαs + (s+ 1) dlog ρ ∧ αs+1 = 0, s < N.
(3.7)

It is easy to solve these equations after decomposing the coefficients αs according to weights,

that is, according to the P -grading. First, Proposition 2.6 gives a decomposition of Γ(X, j∗Ω
r
X†/k)

into homogeneous pieces

Γ(X, j∗Ω
r
X†/k) =

⊕
p∈P\((k+1)ρ+P )

zp ·
∧r( ⋂

{j | p∈Qj}

Qgp
j

)
⊗Z k.

as well as a similar decomposition for Γ(Xk, j∗Ω
r
X̆†k/k

)

Γ(Xk, j∗Ω
r
X̆†k/k

) =
⊕

p∈P\((k+1)ρ+P )

zp ·
∧r

 ⋂
{j|p∈P δj }

(P δj )gp ∩
⋂

{j|p∈Qj}

Qgp
j

⊗Z k.
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Thus we obtain P -gradings on L• and L̆• by imposing the P -grading on each direct summand

j∗Ω
r
X†/k · u

s ⊂ L• and j∗Ω
r
X̆†/k
· us ⊂ L̆• respectively. In particular, we may then assume that

the αs in (3.6) are of the form

αs = zp dlogωs, s = 0, · · · , N, (3.8)

with ωs ∈
∧r Vp ⊗Z k or ωs ∈

∧r V̆p ⊗Z k where

Vp :=
⋂

{j|p∈Qj}

Qgp
j

and

V̆p :=
⋂

{j|p∈P δj }

(P δj )gp ∩
⋂

{j|p∈Qj}

Qgp
j .

On each Ω•X0
and Ω̆•X0

, the P -grading is obtained by plugging k = 0 into the formula above

and dividing by Zρ. Second, the differentials on L•, L̆• and on Ω•X0
, Ω̆•X0

commute with the

respective P -gradings, and so do ϕ• and ϕ̆•. Third, all sheaves involved are pull-backs under

the morphism Et: Xet → XZar relating the Zariski site on X to the étale site.

The proof now proceeds with the same argument for [16, Thm 4.1] to solve the above

system of equations (3.7).

Remark 3.10. Provided that a smoothing of (X†0, D) exists, we want to deduce the cohomology

groups Hq(Xη,Ω
p
Xη/k(η)(logDη)) and Hq(Xη,Ω

p
Xη/k(η)) from data of the central fibre X0 and

eventually from data of B.

Assume that the generic fibre Xη is smooth over η so that it makes sense to talk about

the above two types of cohomology groups (see §1.2). Thus, we concentrate on the situation

when dimXη ≤ 3 or the generic fibre Xη is in addition smooth for dimXη ≥ 4 (if and only

if the monodromy around every cell of B is unimodular, see §1.2).

In the rest of this thesis, we write Hq(Xη,Ω
p
Xη

(logDη)) and Hq(Xη,Ω
p
Xη

) instead of

Hq(Xη, (j∗Ω
p
X†/R†

)η) and Hq(Xη, (j∗Ω
p

X̆†/R†
)η).

Corollary 3.11 (cf. Thm. 4.2 in [16]). Consider an integral affine manifold (B,P) satisfying

the hypotheses of Theorem 3.5. Suppose a smoothing Xη of the Calabi-Yau pair (X†0, D) =

X0(B,P, s)† in a toric degeneration X → T = SpecR exists, where the log space T † is

equipped with log structure induced by N→ R, 1 7→ t.

Then Hq(X, j∗Ω
p
X†/R†

) is a locally free R-module, and it commutes with base change. In

particular,

dimk(η)H
q(Xη,Ω

p
Xη

(logDη)) = dimkH
q(X0, j∗Ω

p

X†0/k†
).

Proof. This follows from Theorem 3.6 and Theorem 3.9 in a standard way, see [7, §5]. See

also [16, Rem. 3.25 and 4.3].
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Remark 3.12. The generic fibres Xη in our setting are indeed varieties over the field k(η). It

is quite often that one is interested in varieties over the field k (especially the case k = C)

instead of over k(η).

This ambiguity about the underlying field can be resolved if we restrict our attention

only to those degenerations whose generic fibres Xη are projective. Nevertheless, we need

to impose some extra assumptions on the cohomology of X0 (e.g. h2,0 = 0) so that every

deformation of X0 is projective; and then we can actually talk about a general fibre Xs that

is a variety over k.

With such assumptions, we are able to have an algebraic family over a scheme of finite type

over k with central fibre X0, which is formally versal at the point 0. We have thus three types

of fibres in such a family: the central fibre X0, the generic fibre Xη and one further closed fibre

Xs with k(s) = k (note that then Xs is smooth over s). Finally, we have the equality of the

logarithmic Hodge number dimk(η)H
q(Xη,Ω

p
Xη/k(η)(logDη)) = dimkH

q(Xs,Ω
p
Xs/k(logDs))

by the above base change. The equality of the ordinary Hodge number hp,q(Xη) = hp,q(Xs)

follows from the equality hp,q(Dη) = hp,q(Ds) and the second affine cohomological control

(see §3.3).

Corollary 3.13. Let k = C. Consider an integral affine manifold (B,P) satisfying the

hypotheses of Theorem 3.5. Suppose a smoothing Xη of the Calabi-Yau pair (X†0, D) =

X0(B,P, s)† in a toric degeneration X → T exists. By Remark 3.12, assume Xs exists as

a complex projective variety and assume that Ds is a simple normal crossing divisor in Xs.

Then

Hk(Xs \Ds, k) = Hk(Xs,Ω
•
Xs(logDs)).

In particular,

dimkH
k(Xs \Ds, k) = dimk(η)Hk(Xη,Ω

•
Xη(logDη)) = dimkHk(X0, j∗Ω

•
X†0/k†

).

Proof. It follows from Theorem 3.9 and the standard mixed Hodge theory for the compact

complex manifold Xs (see [8], [30, Thm 4.2] and [36, §8.4.1]).

3.3 Second affine cohomological control

In this section, we consider k = C and concentrate on the generic fibre Xη of the degeneration.

Recall that in [15, §2.1] and [17, Ex. 1.13], the cone picture is defined (we are using the same

notation as in [15, 16] in this thesis). The second affine cohomological control is better

expressed in terms of the notation in the cone picture with affine manifold B̌.
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Construction 3.14. Consider a compact affine manifold B̌ of dimension n with singularities

∆̌ and boundary ∂B̌ such that ∂B̌ is a compact affine manifold of dimension n− 1 without

boundary, possibly with singularities inherited from B̌. Denote B̌0 = B̌ \ ∆̌ and i : B̌0 ↪→ B̌.

Define ΛB̌0 and ΛB̌0
0 to be the local systems of flat integral vector fields on B̌0 (cf. [15,

Def. 1.9]) so that ΛB̌0 behaves at the boundary as if the boundary does not exist while ΛB̌0
0

restricted to the boundary is isomorphic to the usual local system of flat integral vector fields

Λ∂B̌0 on the boundary ∂B̌0. In other words, we have

Λ∂B̌0 ∼= ΛB̌0
0 |∂B̌0

rank ΛB̌0
0 |∂B̌0

= rank Λ
B̌0\∂B̌0

0 − 1 = n− 1

rank ΛB̌0 |∂B̌0
= rank ΛB̌0 |B̌0\∂B̌0

= n

rank ΛB̌0 |B̌0\∂B̌0
= rank ΛB̌0

0 |B̌0\∂B̌0
= n.

For B unbounded without boundary, extend the discrete Legendre transform in [15, §1.4] by

constructing the homeomorphism B → B̌\∂B̌ via piecewise affine identification of barycentric

subdivisons (see [17, Constr. 1.16]). Then we have ∆ = ∆̌ and the isomorphism of the local

systems Λ̌B0 ∼= ΛB̌0 (by the identification of the generization isomorphisms ψvσ and ψ−1
v̌σ̌ ).

Furthermore, it is also true that B̌ ∼= B[ � B (homeomorphically) for B unbounded without

boundary (see Definition 3.2 and proof of Theorem 3.5 for the definition of B[).

To summarize the results in [16] and this thesis so far, we have the following proposition.

Proposition 3.15. Suppose that (Xη, Dη) is the generic fibre of a toric degeneration of a log

Calabi-Yau pair (X†0, D) with the dual intersection complex (B,P) satisfying the hypotheses

of Theorem 3.5 and the divisor Dη is smooth and irreducible on Xη.

Then we have the following (non-canonical) isomorphisms:

Hq(Xη,Ω
p
Xη

(logDη)) ∼= Hq(B̌, i∗

p∧
ΛB̌ ⊗Z k(η)) (3.9)

Hq(Dη,Ω
p
Dη

) ∼= Hq(∂B̌, i∗

p∧
Λ∂B̌ ⊗Z k(η)) (3.10)

The first isomorphism follows from Theorem 3.5, the base change result Corollary 3.11

and the fact ΛB̌0 ∼= Λ̌B0 so that

Hq(B̌, i∗

p∧
ΛB̌ ⊗ C) ∼= Hq(B[, i∗

p∧
Λ̌B ⊗ C) ∼= Hq(B, i∗

p∧
Λ̌B ⊗ C)

(for B[, see Definition 3.2 and proof of Theorem 3.5).

The second isomorphism (3.10) follows actually from the insights of [5, §2]. Observe that

the unbounded 1-cells in B correspond to D =
⋃
µDµ in X0. Assuming that the unbounded

1-cells of the polyhedral decomposition P in the fan picture B are parallel (see [5, Prop.

2.1]), it follows that such a divisor D has a smoothing as an irreducible divisor Dη in the

generic fibre Xη (see [5, Prop. 2.2] and Remark 5.2).
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On the other hand, the unbounded 1-cells also correspond to ∂B̌ via the discrete Legendre

transform. Therefore, ∂B̌ corresponds to the divisor Dη in the generic fibre. Viewing Dη as

a generic fibre of dimension n− 1 of a toric degeneration while regarding ∂B̌ as a real affine

manifold of dimension n − 1 associated to Dη, we thus get the isomorphism by [16, Thm.

3.22] and base change result [16, Thm. 4.2] because ∂B̌ is compact without boundary and

Dη is a Calabi-Yau variety itself.

Remark 3.16. Let ι : ∂B̌0 ↪→ B̌0 denote the embedding of ∂B̌0 into B̌0. Consider ι−1Λ̌B̌0

on ∂B̌0. There exists a global section α ∈ Γ(∂B̌0, ι
−1Λ̌B̌0) such that we have the restriction

α|
Λ̌∂B̌0

= 0 and the contraction α(ξ) = 1 for any (integral) primitive normal vector field ξ of

∂B̌0 with respect to B0. In other words, α generates ker(ι−1Λ̌B̌0 → Λ̌∂B̌0) of the restriction

map ι−1Λ̌B̌0 → Λ̌∂B̌0 , which is dual to the inclusion map Λ∂B̌0 ↪→ ΛB̌0 .

As a result, the contraction of α with γ ∈
∧p ΛB̌0 induces a map

p∧
ΛB̌0 →

p−1∧
Λ∂B̌0

for every p ≥ 1.

Recall that there is a notion of Poincaré residue map in algebraic geometry for a smooth

algebraic variety Xη with a smooth irreducible divisor Dη (see e.g. [30, §4.2]). The above

remark hence suggests an (integral) affine analogue of the Poincaré residue map.

Proposition 3.17. Let (Xη, Dη) be the generic fibre of a toric degeneration of a log Calabi-

Yau pair (X0, D) with fan picture (B,P). Suppose the cone picture (B̌, P̌) is a compact

affine manifold of dimension n with boundary ∂B̌ which is compact without boundary of

dimension n− 1.

Now assume that the divisor Dη is irreducible on Xη. Using the notations in Remark

3.16, we then have a short exact sequence on B̌ such that

0 −→
p∧

ΛB̌0
0 −→

p∧
ΛB̌0 −→

p−1∧
Λ∂B̌0 −→ 0 (3.11)

γ 7−→ α(γ) |∂B̌0
,

for p ≥ 1, where α(γ) denotes the contraction of γ with the 1-form α, the generator of the

kernel of the restriction map ι−1Λ̌B̌0 → Λ̌∂B̌0 (see Remark 3.16).

Proof. The exactness of the sequence follows from the definition of ΛB̌0
0 and ΛB̌0 in Construc-

tion 3.14.
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Theorem 3.18. Consider an integral affine manifold (B,P) satisfying the hypotheses of

Theorem 3.5. Suppose that a smoothing (Xη, Dη) of the Calabi-Yau pair (X†0, D) = X0(B,P, s)†

in a toric degeneration X→ T exists, where the divisor Dη is smooth and irreducible on Xη.

Then we have an isomorphism

Hq(Xη,Ω
p
Xη

) ∼= Hq(B̌, i∗

p∧
ΛB̌0 ⊗ k(η))

for any p, q ≥ 0.

Proof. Since the divisor Dη is irreducible, one has the exact sequence

0→ Ωp
Xη
→ Ωp

Xη
(logDη)→ Ωp−1

Dη
→ 0,

which induces a cohomology long exact sequence (see e.g. [36, (8.8) in §8.4.2]). Together with

the cohomology long exact sequence induced by (3.11) on B̌, we get a commutative diagram

(with K := k(η))

· · · //
Hq−1(∂B̌, i∗

p−1∧
Λ∂B̌ ⊗K)

//

∼=

��

Hq(B̌, i∗

p∧
ΛB̌0 ⊗K)

//

?

��

Hq(B̌, i∗

p∧
ΛB̌ ⊗K)

∼=

��

//
Hq(∂B̌, i∗

p−1∧
Λ∂B̌ ⊗K)

∼=

��

// · · ·

· · · // Hq−1(Dη ,Ω
p−1
Dη

) // Hq(Xη ,Ω
p
Xη

) // Hq(Xη ,Ω
p
Xη

(logDη)) // Hq(Dη ,Ω
p−1
Dη

) // · · ·

with isomorphisms (3.9) and (3.10).

This diagram is indeed a commutative diagram of finite dimensional vector spaces with

linear maps and exact rows:

A
i //

α ∼=
��

B
j //

β ∼=
��

C
k // D

∼=δ
��

l // E

∼=ε

��
A′

i′ // B′
j′ // C ′

k′ // D′
l′ // E′

with the properties that

C ∼= ker l ⊕ coker i

C ′ ∼= ker l′ ⊕ coker i′.

By the commutativity of the diagram, we have then the isomorphism of the 2-term se-

quences (A→ B) ∼= (A′ → B′) so that ker l ∼= ker l′. Similarly, we have also the isomorphism

coker i ∼= coker i′ by the isomorphism of (D → E) ∼= (D′ → E′). As a result, C ∼= C ′ as

vector spaces.

Therefore, the desired homomorphism exists and is an isomorphism. In other words,

Hq(Xη,Ω
p
Xη

) ∼= Hq(B̌, i∗

p∧
ΛB̌0 ⊗ k(η)).
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C n(U,OX) C n(U,Ω1
X(logD)) · · · · · · C n(U,Ωn

X(logD))

...
...

C 1(U,OX) C 1(U,Ω1
X(logD)) · · · C 1(U,Ωn

X(logD))

C 0(U,OX) C 0(U,Ω1
X(logD)) · · · C 0(U,Ωn

X(logD))

Table 3.1: The E0 page of Ω•X(logD)

3.4 Analysis of spectral sequences

In this section, take k = C. By Remark 3.12, we consider the closed fibre Xs of the algebraic

family, which is a variety over C. For simplicity, write (X,D) for the pair (Xs, Ds). We first

investigate some interesting phenomena of the spectral sequences of complexes of sheaves on

both X and B̌, following the settings of previous sections.

Given a smooth closed fibre X of an algebraic family X, consider the spectral sequence

of the complex of sheaves Ω•X(logD) on X. Let U always be a Leray open cover of X

with respect to the sheaves. Let Kp,q
1 = C q(U,Ωp

X(logD)) and consider the double complex

K•,•1 =
⊕

p,q≥0K
p,q
1 with differentials

d : Kp,q
1 → Kp+1,q

1

δ : Kp,q
1 → Kp,q+1

1 ,

where d is the standard De Rham differential (i.e. the exterior derivative) and δ is the

standard Čech differential (i.e. the coboundary operator for the Čech complex). For r ≤ 2,

the terms Ep,qr are

Ep,q0 = C q(U,Ωp
X(logD))

Ep,q1 = Hq(X,Ωp
X(logD))

Ep,q2 = Hp
d (Hq(X,Ω•X(logD))).

In diagrams, the Ep,q0 and Ep,q1 terms for (X,D) are given in Table 3.1 and Table 3.2 respec-

tively.

Note that the differential d on X0 (the exterior differential d before Corollary 2.23) as

well as the differential d on X(= Xs) are induced from the degeneration, which both inherit

the differential d defined on X \ Z (see (3.6) and (3.8) in the proof of Theorem 3.9).

Now we determine when this spectral sequence degenerates. First, by Corollary 3.13 and

Theorem 3.9, we have

Hk(X \D,k) = Hk(X,Ω•X(logD)) ∼= Hk(X0, j∗Ω
•
X†0/k†

).
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Hn(X,OX) Hn(X,Ω1
X(logD)) · · · · · · Hn(X,Ωn

X(logD))

...
...

H1(X,OX) H1(X,Ω1
X(logD)) · · · H1(X,Ωn

X(logD))

H0(X,OX) H0(X,Ω1
X(logD)) · · · H0(X,Ωn

X(logD))

Table 3.2: The E1 page of Ω•X(logD)

Then Theorem 3.6 implies the direct sum decomposition of the cohomology group of the

central fibre

Hk(X0, j∗Ω
•
X†0/k†

) ∼=
⊕
p+q=k

Hq(X0, j∗Ω
p

X†0/k†
).

Applying the (non-canonical) isomorphismHq(X0, j∗Ω
p

X†0/k†
) ∼= Hq(X,Ωp

X(logD)) from Corol-

lary 3.11, we thus have the direct sum decomposition

Hk(X \D,k) ∼=
⊕
p+q=k

Hq(X,Ωp
X(logD)). (3.12)

It turns out that this direct sum decomposition (3.12) implies the degeneration of the

spectral sequence at E1. More explicitly, by the base change property in Corollary 3.11, one

has

dimEp,q1 = dimkH
q(X,Ωp

X(logD)) = dimkH
q(X0, j∗Ω

p

X†0/k†
)

while one has

dimkH
k(X \D,k) = dimkHk(X,Ω•X(logD)) =

∑
p+q=k

dimEp,q∞

by the definition of hypercohomology. Since every Ep,q∞ is a subquotient of Ep,q1 , we can

conclude with the direct sum decomposition property (3.12)∑
p+q=k

dimEp,q∞ = dimkHk(X,Ω•X(logD)) =
∑
p+q=k

dimEp,q1 ≥
∑
p+q=k

dimEp,q∞

and therefore Ep,q1 = Ep,q∞ for any p, q.

Now consider the spectral sequence of the complex of sheaves i∗
∧• ΛB̌ ⊗ C on B̌. Let

Kp,q
aff,1 = C q(Ǔ, i∗

∧p ΛB̌⊗C) (where Ǔ denotes a Leray open cover of B̌). The double complex

K•,•aff,1 is equipped with the Čech differential δ and the differential operator d = 0.

Since Λ̌ is the discrete dual local system of flat sections of the dual connection on TB0

(see [15, Def. 1.9]), the exterior differential d on the fan picture B is in fact a zero map.

Therefore, the corresponding operator d on the cone picture B̌ is also the trivial zero map.

As a result, the spectral sequence degenerates already at E1, where the E1 page is
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Hn(B̌,C) Hn(B̌, i∗
∧1Λ⊗ C) · · · · · · Hn(B̌, i∗

∧nΛ⊗ C)

...
...

H1(B̌,C) H1(B̌, i∗
∧1Λ⊗ C) · · · H1(B̌, i∗

∧nΛ⊗ C)

H0(B̌,C) H0(B̌, i∗
∧1Λ⊗ C) · · · H0(B̌, i∗

∧nΛ⊗ C)

By Theorem 3.5 and Remark 3.12, we know that this E1 page has all terms isomorphic to

that of Table 3.2.

Now we consider the spectral sequence of the complex of sheaves Ω•X on X with Kp,q
2 =

C q(U,Ωp
X). It is the Frölicher spectral sequence, which is well known for its degeneration at

E1 when X is a Kähler manifold, yielding

Hn(X,OX) Hn(X,Ω1
X) · · · · · · Hn(X,Ωn

X)

...
...

H1(X,OX) H1(X,Ω1
X) · · · H1(X,Ωn

X)

H0(X,OX) H0(X,Ω1
X) · · · H0(X,Ωn

X)

which is exactly in the form of the Hodge diamond rotated clockwise by 45 degrees.

Consider the spectral sequence of i∗
∧• Λ̌B̌0 ⊗ C on B̌. The double complex Kp,q

aff,2 =

C q(Ǔ, i∗
∧p Λ̌0⊗C) is also equipped with the differentials δ and d. Similar to the situation of

i∗
∧• Λ̌B̌ ⊗C, the differential d is trivial, so the sequence degenerates at E1. More explicitly,

the E1 page is

Hn(B,C) Hn(B, i∗
∧1Λ̌0 ⊗ C) · · · · · · Hn(B, i∗

∧nΛ̌0 ⊗ C)

...
...

H1(B,C) H1(B, i∗
∧1Λ̌0 ⊗ C) · · · H1(B, i∗

∧nΛ̌0 ⊗ C)

H0(B,C) H0(B, i∗
∧1Λ̌0 ⊗ C) · · · H0(B, i∗

∧nΛ̌0 ⊗ C)

By Theorem 3.18 and Remark 3.12, the above two tables have isomorphic terms.

To conclude, we have the following theorem:
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Theorem 3.19. Let k = C. Consider a toric degeneration X→ T satisfying the hypotheses

of Theorem 3.18. Suppose this toric degeneration can be extended to an algebraic family with

a smooth closed general fibre Xs = X. Then the spectral sequences of the four complexes of

sheaves

Ω•X(logD), Ω•X , i∗

•∧
Λ̌B̌ ⊗ C and i∗

•∧
Λ̌B̌0 ⊗ C

on X and B̌ degenerate simultaneously at E1 level.

This theorem illustrates that the cohomology theory of affine geometry on B̌ (equivalent

to the affine geometry of B via the discrete Legendre transform) is well related with that

of the Kähler geometry on Xs under the setting of toric degeneration with unimodularity

of the monodromy around every cell τ (i.e. the monodromy polytopes satisfy the “standard

simplex” condition, see [16, Thm 3.21], [32, Thm 0.1] and Theorem 0.1 in this thesis).
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Chapter 4

Examples, discussion and outlook

We conclude this article with this section. In §4.1, we look at some examples of toric degener-

ations in low dimensions and see how the affine cohomological controls work independently in

the Kähler manifold Xs (which is the closed fibre in the algebraic family (see Remark 3.12))

and the corresponding affine manifold B̌. Then in §4.2, we will discuss some “undeveloped”

insights of this article and their possible outcomes.

4.1 Examples

In this section, take k = C. We shall concentrate on the closed fibres Xs of the (not unique)

algebraic family, which are varieties over C (see Remark 3.12). For simplicity, we write (X,D)

for the pair (Xs, Ds).

First, consider examples arising from an affine manifold B without singularities. The

general fibres are actually the same as the central fibres in the following examples. In §3.3,

we require the irreducibility of the divisor D in order to prove the second affine cohomological

control. As we will see in the following examples, the group Hq(B, i∗
∧p Λ̌⊗C) is isomorphic

to Hq(X,Ωp
X(logD)) in spite of the reducibility of the divisor D, because the irreducibility

condition is not used in the proof of this isomorphism (see §2 and §3.1).

Example 4.1. Let X = P1 and D = {0,∞}. We know that

H0(P1,OP1) ∼= H0(P1,Ω1
P1(logD)) = C

while

H1(P1,OP1) ∼= H1(P1,Ω1
P1(logD)) = 0

using the fact that Ω1
P1(logD) ∼= O. Therefore E1 of Ω•X(logD) reads

0 0

C C

We also know that the spectral sequence of Ω•X degenerates at E1. In fact, the E1 page in

this case reads

0 C
C 0
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Example 4.2. Let X = P2 and D be the union of the 3 coordinate lines of X. Using the

facts Ω1
P2(logD) ∼= O⊕2 and Ω2

P2(logD) ∼= O, we have

H0(P2,OP2) ∼= H0(P2,Ω2
P2(logD)) = C

and

H0(P2,Ω1
P2(logD)) = C2

and Hq(P2,Ωp
P1(logD)) vanishes for q > 0. Thus E1 of Ω•X(logD) reads

0 0 0

0 0 0

C C2 C

Remark 4.3. The cohomology groups Hq(B, i∗
∧p Λ̌⊗C) ∼= Hq(B̌, i∗

∧p Λ⊗C) in the above

examples can be computed trivially since B possesses no singularities so that B is contractible

as an affine manifold. We see that Hq(B, i∗
∧p Λ̌⊗C) is isomorphic to Hq(X,Ωp

X(logD)) in

above. In Example 4.1, the calculation for Hq(B̌, i∗
∧p Λ0⊗C) is easy (with the consideration

of the boundary) and we see that it is isomorphic to Hq(X,Ωp
X). In Example 4.2, we do not

expect that Hq(B̌, i∗
∧p Λ0⊗C) is isomorphic to Hq(X,Ωp

X) for any p, q since D is not locally

irreducible.

In the following, consider the examples in [5, §6], which are toric degenerations of del

Pezzo surfaces. In each of the examples, the affine manifold B possesses singularities and the

divisor D = Ds on the general fibre is irreducible.

Example 4.4. Let X = P2 and D is a smooth elliptic curve E on X. Consider the long

exact sequence

0 → H0(Ω1
X) → H0(Ω1

X(logD)) → H0(OD)

→ H1(Ω1
X) → H1(Ω1

X(logD)) → H1(OD)

→ H2(Ω1
X) → H2(Ω1

X(logD)) → 0

We know that H0(Ω1
X) ∼= H2(Ω1

X) = 0 and H1(Ω1
X) ∼= C. Besides, H0(OD) ∼= H1(OD) ∼= C.

Note that we have the isomorphisms

Hk(X \D,C) ∼=
⊕
p+q=k

Hq(X,Ωp
X(logD)),

from (3.12). As X \ D is a Stein space ([11, Kap. V, §1, Satz 5]), the cohomology group

Hk(X \ D,C) vanishes for k > 2 ([11, Kap. V, §5, Satz 9]). In this way, we have also the

vanishing of H2(Ω1
X(logD)).

To calculate the remaining cohomology groups, we can make use of the affine geometry

on B. Now the pair (X,D) corresponds to [17, Fig. 1.1] or the affine manifold with three

74



§ 4.1. Examples

singular points in [5, Fig. 6.2] (see also [5, Thm. 6.4]). By performing a Čech cohomology

computation for the sheaf i∗Λ̌⊗ C on B with respect to the number of singular points as in

the proof of [5, Prop. 6.11], we get H1(Ω1
X(logD)) ∼= H1(B, i∗Λ̌ ⊗ C) ∼= C. From the same

proof, we also obtain H0(Ω1
X(logD)) ∼= H2(Ω1

X(logD)) ∼= 0 using the affine geometry (see

Remark 4.7).

Consider now the sheaf cohomology groups of Ω2
X(logD). Using the property of X \D as

a Stein space again, it follows Hq(Ω2(logD)) vanishes for q > 0. Eventually, the cohomology

group H0(Ω2(logD)) can be obtained by a long exact sequence similar to above.

Hence E1 of Ω•X(logD) reads

0 0 0

0 C 0

C 0 C

Moreover, the E1 page of Ω•X is

0 0 C
0 C 0

C 0 0

which is well known.

Example 4.5. Consider the del Pezzo surface X = dPk and divisor D = −KdPk with k ≥ 1,

where D is a smooth irreducible curve in X and k is the number of times of blowing-ups

of P2 to get X. Let l be the number of focus-focus singularities of the corresponding affine

manifold B̌. Then by [5, Thm. 6.4] and [5, Prop. 6.11], we have l = k + 3.

Using the same technique for (X,D) = (P2, E), one also obtains the cohomology groups

from the complex geometry as well as from the affine geometry. Thus E1 of Ω•X(logD) reads

0 0 0

0 Cl−2 0

C 0 C

Moreover, E1 of Ω•X of course reads

0 0 C
0 Cl−2 0

C 0 0
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Proposition 4.6. Consider an affine manifold B̌ of dimension 2 with l focus-focus singu-

larities and a nonempty boundary ∂B̌ as in Construction 3.14. Then the Čech cohomology

groups have the following form

Ȟq(B̌, i∗

p∧
Λ0 ⊗ C) ∼=


Cl−2 for (p, q) = (1, 1),

C for (p, q) = (0, 0) or (2, 2),

0 for (p, q) otherwise.

In particular, the cohomology Ȟ1(B̌, i∗Λ0 ⊗ C) depends on the number of focus-focus singu-

larities on B̌.

Proof. The above statement about Ȟq(B̌, i∗
∧p Λ0 ⊗ C) is trivially true for p = 0 when B̌ is

a disk. The proof is similar to that of [5, Prop. 6.11] but we take a different open cover so

that the cover is a Leray cover with respect to i∗
∧p Λ0 ⊗ C.

In the following, assume that B̌ possesses l focus-focus singularities. Consider open sets

U0, U1, . . . , Ul, V1, . . . , Vl which satisfy following conditions (i) - (v). We use the notations

U = {U0, U1, . . . , Ul, V1, . . . , Vl}, Uij := Ui ∩ Uj and Uijk := Ui ∩ Uj ∩ Uk (similarly also for

Vij).

(i) Each of the open sets U1, U2, . . . , Ul contains exactly one singular point and Ui∩∂B = ∅
for all i.

(ii) The singular points lie on the boundary ∂U0 of the open set U0.

(iii) The union of V1, V2, . . . , Vl contains the boundary ∂B of the affine manifold while

each of the sets U1, U2, . . . , Ul does not intersect ∂B.

(iv) Each of the open sets V1, V2, . . . , Vl does not contain any singular point.

(v) The open set Uijk is empty for j, k pairwise different unless i = 0.

U0

U1

U2

V4

V3

Ul

U3

. . .

· · ·

V2

Vl

Vl−1

V1

Ul−1

Figure 4.1: A diagram showing the relations between the open sets in the Leray cover for the general

case.
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First consider i∗Λ0 ⊗ C. It is true that Γ(U0, i∗Λ0 ⊗ C) ∼= C2 since there is no singular

point for the affine structure in U0; for each 1 ≤ r ≤ l, we have Γ(Ur, i∗Λ0 ⊗C) ∼= C because

there is an obstruction to one direction of the global sections of the vector fields due to the

focus-focus singularity (the other direction is not obstructed, see [18, §2.2]); by the definition

of Λ0, one direction of the global sections of the vector fields is obstructed at the boundary

∂B̌, hence Γ(Vr, i∗Λ0 ⊗ C) ∼= C for every 1 ≤ r ≤ l. Therefore, we have

C0(U, i∗Λ0 ⊗ C) ∼= C2+2l.

We see that Uij is nonempty for (i, j) = (0, r) for 1 ≤ r ≤ l and (i, j) = (l, 1) and (r, r+1)

for 1 ≤ r ≤ l − 1 with Γ(Uij , i∗Λ0 ⊗ C) ∼= C2. Similarly, Ur ∩ Vr (1 ≤ r ≤ l), Ur ∩ Vr+1

(1 ≤ r ≤ l−1) and Ul∩V1 are nonempty with Γ(i∗
∧p Λ0⊗C) ∼= C2. Vij is also nonempty for

(i, j) = (l, 1) or (r, r+1) (1 ≤ r ≤ l−1) yet with Γ(i∗
∧p Λ0⊗C) ∼= C (due to the obstruction

from the boundary). Thus, we have

C1(U, i∗Λ0 ⊗ C) ∼= C9l.

Besides, for V = U0,r,r+1, U0,l,1, Ur,r+1 ∩ Vr+1, Ul1 ∩ V1, Ul ∩ Vl1 and Ur ∩ Vr,r+1 (for

1 ≤ r ≤ l − 1), we have Γ(V, i∗
∧p Λ0 ⊗ C) ∼= C2 for these open sets. Hence,

C2(U, i∗Λ0 ⊗ C) ∼= C6l.

It is easy to see that the map C0(U, i∗Λ0⊗C)→ C1(U, i∗Λ0⊗C) is injective while the map

C1(U, i∗Λ0 ⊗ C)→ C2(U, i∗Λ0 ⊗ C) is surjective. Consequently, we have Ȟ1(B̌, i∗Λ0 ⊗ C) ∼=
Cl−2 and Ȟq(B̌, i∗Λ0 ⊗ C) ∼= 0 for q = 0, 2.

V3

U3

U1

U2

U0

V1V2

Figure 4.2: The Leray cover for the case l = 3 and a diagram showing the relations between the open

sets.

Consider now i∗
∧2 Λ0 ⊗ C using the same cover U. Consider the transformation(

x′

y′

)
=

(
1 0

1 1

)(
x

y

)
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due to parallel transport counterclockwise around a focus-focus singularity given in [18, §2.2].

Then we have ∂y′ = ∂y and ∂x′ = ∂x−∂y so that ∂x∧∂y is invariant with respect to the parallel

transport. Consequently one has Γ(Ur, i∗
∧2 Λ0 ⊗ C) ∼= C for 0 ≤ r ≤ l. By the definition

of Λ0, the term ∂x ∧ ∂y does not exist at the boundary, therefore Γ(Vr, i∗
∧2 Λ0 ⊗C) ∼= 0 for

1 ≤ r ≤ l. With such a cover, one is able to get

C0(U, i∗

2∧
Λ0 ⊗ C) ∼= C1+l,

C1(U, i∗

2∧
Λ0 ⊗ C) ∼= C4l,

C2(U, i∗

2∧
Λ0 ⊗ C) ∼= C3l.

The map C0(U, i∗
∧2 Λ0⊗C)→ C1(U, i∗

∧2 Λ0⊗C) is injective. For the map C1(U, i∗
∧2 Λ0⊗

C) → C2(U, i∗
∧2 Λ0 ⊗ C), the kernel is C1+l and the image is C3l−1 so that the map is not

surjective. Therefore, Ȟ2(B̌, i∗
∧2 Λ0 ⊗ C) ∼= C and Ȟq(B̌, i∗

∧2 Λ0 ⊗ C) ∼= 0 for q = 0, 1.

Remark 4.7. Some of the Čech cohomology groups for i∗
∧• ΛB̌ ⊗ C are actually computed

in the fan picture B in [5, Prop. 6.11]. The computations are essentially the same in the

cone picture B̌ by ignoring the boundary ∂B̌ due to the definition of the local system ΛB̌

(see Construction 3.14). Indeed, we can use the open cover Ũ = {U0, U1, . . . , Ul} to compute

Figure 4.3: A Leray cover for computation of Ȟq(B̌, i∗
∧p

Λ⊗ C) for l = 3.

these cohomology groups for B̌, where we extend the open sets U1, U2, . . . , Ul (U0 remains

unchanged) in Proposition 4.6 to cover the boundary ∂B̌. With this observation and using

similar methods as in the above proposition, it is not hard to verify that the Čech cohomology

groups have the following form

Ȟq(B̌, i∗

p∧
Λ⊗ C) ∼=


Cl−2 for (p, q) = (1, 1),

C for (p, q) = (2, 0),

0 for (p, q) otherwise.
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Note that the map δ : C0(U, i∗
∧2 Λ⊗ C)→ C1(U, i∗

∧2 Λ⊗ C) is not injective with

ker δ = {(ω1, ω2, . . . , ωl) | ω1 = · · · = ωl} ∼= C,

where ωi = ∂x ∧ ∂y in the open sets Ui with local affine coordinates x, y.

Similar to the proof of [5, Prop 6.11] for Hq(B, i∗
∧p Λ ⊗ C), the open cover U for the

computation of the cohomology groups Hq(B̌, i∗
∧p Λ0 ⊗ C) is actually analogous to the

acyclic cover W̌ for B̌ in [15, Lem 5.5].

4.2 Discussion and outlook

1. One needs a polyhedral decomposition P on B in order to construct the central fibre

X0 in a toric degeneration. The isomorphisms

Hq(Xη,Ω
p
Xη

) ∼= Hq(B̌, i∗

p∧
Λ0 ⊗ k(η)),

Hq(Xη,Ω
p
Xη

(logD)) ∼= Hq(B̌, i∗

p∧
Λ⊗ k(η))

nonetheless forget the polyhedral decomposition on B. In other words, (B,P) and X†0
serve as a transition to get nice properties betweenB andXη and the isomorphisms seem

to be independent of P. This is of course the philosophy of [15, 16] that the exchange of

Hodge number between Xη and X̌η is independent of the polyhedral decomposition P

on B, although the discrete Legendre transform between B and B̌ and isomorphisms

between the cohomology groups of Xη, X
†
0 and B (and similarly for the mirror X̌η)

depend on (B,P).

2. The isomorphisms in (1) enable us to determine the cohomology of Xs by calculating

the Čech cohomology on B̌. It is expected the computation of the Čech cohomology

on an affine manifold B̌ has deeper applications in higher dimensions (dim ≥ 3) under

the framework of toric degeneration, in which the tropical geometry related to the

singularities ∆ will play a more significant role.

In dimension 3, for example, it would be essential first to search for criteria to sort

out Fano varieties Xs that could be the smooth closed fibres of the algebraic families

induced by toric degenerations. Once this is done, we can study the relation between

the algebraic geometry on Xs and the affine geometry on B. In dimension 2, recall that

blowing up a point on a del Pezzo surface (as a smooth closed fibre of a toric degener-

ation) is equivalent to adding one more focus-focus singularity on B̌. Analogously, in

dimension 3, the change of the singularities ∆̌ in B̌ (in the perspective of [6, Assump.

2.2]) when blowing up a point in a Fano variety could be studied.

Together with the framework of toric degeneration, the investigation of the tropical

geometry (e.g. Mikhalkin and Zharkov considered the curve case in [25]) is expected to
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help with the construction of new Fano varieties in higher dimensions. In particular,

the Hodge numbers of such Fano varieties can be computed via the affine geometry on

B̌.

3. In regard to mirror symmetry, one is interested in finding the mirror (the Landau-

Ginzburg model) of a given Fano variety Xη (or some varieties with weaker conditions

on their anticanonical divisors). The mirror is written as (X̌η,W ), where W : X̌η → C
is a regular function called Landau-Ginzburg potential. The classical consideration of

the relevant cohomology theory on the mirror side (due to an unpublished work of

Barannikov and Kontsevich and eventually [29, 33]) is to consider the twisted de Rham

complex of X̌η

(Ω•
X̌η
, d+ dW∧)

with the help of the potential W (see [14, §2.2.1]).

In this thesis, the degeneration X0 of a Fano variety Xη is seen as two different log

spaces X†0 and X̆†0. Each consideration contributes to the computation of one type of

cohomology groups. Namely, considering X†0 computes the log Dolbeault cohomology

Hq(Xη,Ω
p(logDη)) on Xη while considering X̆†0 computes the usual Dolbeault coho-

mology on Xη.

Under this viewpoint, it is expected that there exists another corresponding cohomology

theory on the mirror side X̌η besides the one expected from the twisted de Rham com-

plex. Moreover, the identification between the log structures and cohomology theories

(if it exists) on X̌η would be the topic for later work.

4. The degeneration of the spectral sequences of the complexes of sheaves Ω•Xη(logDη) on

Xη and Ω•Xs(logDs) on Xs at E1 level is a trivial consequence along the construction

of a toric degeneration (and in the sense of Remark 3.12). In general, when a toric

degeneration does not exist for a compact Kähler manifold Xs, the degeneration of the

spectral sequence is nevertheless true (see [8, Cor. 3.2.13] or [36, Thm. 8.35]). As a

result, the construction of a toric degeneration should have some more fundamental

meaning in homological algebra and the underlying geometry of the closed fibre Xs as

well as the generic fibre Xη. It is believed that further constructions concerning the

limiting mixed Hodge structure as in [21] by Katz and Stapledon of the two types of

cohomology theories on X would be possible.

5. Consider a cell τ ∈P with 1 ≤ dim τ ≤ n− 1. In [15, Def. 1.60], the authors consider

the convex hull of the polytopes

Conv(

q⋃
i=1

∆̌i × {ei})
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and denote it by ∆̌(τ) so as to define when (B,P) is simple. Geometrically, the

Newton polytopes ∆̌i capture the “outer monodromy” of a cell τ (see [16, notational

summary]). In [16] and this article, it is assumed that ∆̌(τ) is a standard simplex for

every cell τ ∈P 1 so that we can obtain the required cohomology vanishing results for

the resolution of Ωr on X0. Eventually, we could generalize the nice results [16, Thm.

3.21] and Theorem 3.5 in this article.

In [32], the author studies how the cohomology theories on X0 behave under weaker

assumptions on ∆̌(τ). In fact, we have the following implications about the assumptions:

standard⇒ elementary⇒
6=

simplicial⇒ general,

where a polytope is elementary if it does not contain any interior integral points and

a polytope is simplicial if all of its proper faces are simplices. In particular, the first

implication is in fact equivalent for dimB ≤ 3. Two classes of central fibre X0, hyper-

surface type and complete intersection type, are defined and investigated; the former

corresponds to ∆̌(τ) being elementary ([32, Thm. 1.13]) and the latter corresponds to

∆̌(τ) being simplicial ([32, Thm. 1.6]). In particular, the results concerning hyper-

surface type are especially beautiful and concise (e.g. Theorem 0.1, 1.13 and 1.15 in

[32]). Also, a relation between the stringy Hodge numbers defined in [1, 2] and ordinary

Hodge numbers is established (see [32, Thm. 1.15]).

It is expected the approach in [32] can be applied under the setting of this article.

Especially, the author is unsure at this moment if there would be any relation between

the cohomology theory H∗st(Xη) (in the sense of [2]) and the cohomology theories in

this article or rather a mix of the theories of this article and that of [32].

1Equivalently, the monodromy is unimodular around every cell τ ∈ P (see Remark 0.1 and the remarks

after it).
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Chapter 5

Appendix

5.1 Statements about the log structure on X̆†0

This appendix serves to prove statements relating the log structures on the log spaces X†0 and

X̆†0. First, it supplies complementary information to §1.4 about the local description about

the log structure on X̆†0. Second, we can also see why the irreducibility assumption of the

divisor Dη on the general fibre of a toric degeneration is a reasonable one.

Analogous to §2.4, it is possible to calculate Hp(X0, Ω̆
r) by constructing an acyclic reso-

lution for Ω̆r and proving related vanishing theorems. It is nevertheless much more lengthy

to calculate Hp(X0, Ω̆
r) than Hp(X0,Ω

r) and so we shall omit this calculation in this article.

Let (B,P) be a positive and simple integral affine manifold with singularities and a poly-

hedral decomposition P. Let s be open gluing data for (B,P), yielding X0 := X0(B,P, s).

This s together with the condition (LC) (see [15, Prop. 4.25]) also determines the log struc-

ture X†0 on X0 over Spec k† with singular set Z ⊆ X0. Take Ω̆r to be the sheaf on X0 which

is j∗Ω
r
X̆†0/k

and j∗Ω
r
X̆†0/k†

in the /k and /k† cases respectively, where j : X0 \ Z → X0 is the

inclusion. This sheaf is described étale locally in Remark 1.13 (2), which will be further

elaborated in this section. Let qτ : Xτ → X0 be the usual inclusion of strata maps, Dτ the

toric boundary of Xτ and let

κτ : Xτ \ (Dτ ∩ q−1
τ (Z))→ Xτ

be the inclusions. We then define

Ω̆r
τ := κτ∗κ

∗
τ (q∗τ Ω̆r/Tors),

where Tors denotes the torsion subsheaf of q∗τ Ω̆r. All these constructions is done in §2.4 for

the sheaf Ωr.

Consider an irreducible component Xv of X0 for a vertex v of P. For a vertex v without

outgoing unbounded rays, D does not intersect Xv, or equivalently Xv does not contain

any irreducible components of D, one sees immediately that Ωr
v = Ω̆r

v in this case and the

properties of Ωr
v are the same as before, which is described in [16, §3.2].

From now on in this section, consider a vertex v always with an outgoing unbounded ray.

Pull back the log structures X†0 and X̆†0 on X0 via qv to obtain log structures on Xv \ q−1
v (Z).

Denote the sheaves of monoids of both by Mv and M̆v respectively.
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Recall that in §2.4 we consider j∗Mv → j∗OXv\q−1
v (Z) = OXv , which determines a log

structure on Xv that is written as X†v .

Now j∗M̆v → j∗OXv\q−1
v (Z) = OXv determines another log structure on Xv, which is

denoted as X̆†v . Write M̆v also for j∗M̆v. In the following, we describe the log differential

Ω1
X̆†v/k

with the help of Ω1
X†v/k

.

Proposition 5.1. Suppose that a toric degeneration of (X†0, D) exists and the divisor Dη is

irreducible in the general fibre Xη. Let v ∈ P be a vertex and Dµ be the unique component

of D contained in the toric stratum Xv. Then we have the following short exact sequence

0 → Ω1
X̆†v/k†

→ Ω1
X†v/k†

→ ODµ → 0 (5.1)

ω 7→ η |Dµ ,

where ω = η ∧ dz1
z1

+ η′ and η′ does not contain dz1 and (z1, . . . , zn) is a choice of local

coordinates with Dµ = {z1 = 0}. Analogously, there is also a short exact sequence for the /k
case

0→ Ω1
X̆†v/k

→ Ω1
X†v/k
→ ODµ → 0 . (5.2)

Proof. Suffice to prove the statement étale locally. Fix e : v → σ ∈ Pmax and we view

V (σ) = Speck[Pσ]/(zρ) as an open subset of X0. (See [15, Def. 2.12] for Pσ.) However, it

can happen that the divisor D does not occur in the neighbourhood Xv ∩ V (σ) (under étale

identification pσ : V (σ) → X0 ⊇ Xv), and the sheaves Ω1
X†v/k†

and Ω1
X̆†v/k†

are isomorphic in

the neighbourhood in this case. The above happens when either σ is bounded or v has no

outgoing unbounded rays in an unbounded maximal cell σ.

Hence we assume now the maximal cell σ is unbounded and there exists at least an

unbounded 1-cell emerging from v. This unbounded 1-cell is then unique as Dη is irreducible

(cf. Remark 5.2). Let Dµ be the unique component of D contained in Xv. Hence, there is

only one unbounded 1-cell τ ′ emerging from v and we denote e′ : τ ′ → σ.

Denote the maximal proper face of Pσ corresponding to Xv∩V (σ) (under étale identifica-

tion) by Pe, i.e. Xv∩V (σ) ∼= Speck[Pe]; similarly denote the proper face of Pσ corresponding

to (Xv ∩ V (σ))∩ Speck[τ̌ ′ ∩ (N ⊕Z)]) by Pe′ (i.e. τ̌ ′ ∩ (N ⊕Z) = Pe′), following [15, Constr.

2.15] by considering τ ′ ⊆ σ.

By the above definition, it is easy to see that Pe′⊗ZQ is one dimension lower than Pe⊗ZQ
and Pe′ is contained in Pe as a proper face. Consequently, we can conclude Pe′ corresponds

to D ∩ (Xv ∩ V (σ)) and OD ∼= ((Pe′ ∩ Pe)⊗OXv |D) étale locally.

Therefore, in the open set Xv ∩V (σ) of Xv, Dµ = D∩Xv can be expressed locally as the

zeros of the monomial z1 with a choice of local coordinates (z1, . . . , zn). Therefore, we have

the exact sequence by consideration of the residue map
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0 → Ω1
X̆†v/k†

→ Ω1
X†v/k†

→ ODµ → 0 (5.3)

ω 7→ η|Dµ ,

where ω = η ∧ dz1
z1

+ η′ and η′ does not contain dz1.

Remark 5.2. 1. According to [5, Prop. 2.1], the unbounded rays τ, τ ′ ⊆ σ of any cell σ

have to be parallel (i.e. Λτ = Λτ ′) so that Dη is irreducible in the general fibre Xη and

the Landau-Ginzburg mirror X̌0 has a proper superpotential W 0 : X̌0 → k. With the

parallel assumption, maximal only one unbounded ray can emerge from a vertex v, and

so we have the above exact sequence (5.1). If this condition is dropped, not only the

open set V (σ) would be nonreduced, but we would have also an exact sequence of the

form

0 → Ωm
X̆†v/k†

→ Ωm
X†v/k†

→ ODI → 0,

where m is number of unbounded rays emerging from the vertex (which is also the

number of components of Dµ in Xv), DI = Di1 ∩ · · · ∩ Dim and Dv = D1 ∪ · · · ∪ DN

is the toric boundary (cf. [30, Def. 4.5]). Note that the above proposition implies in

general

0 → Ω•
X̆†v/k†

→ Ω•
X†v/k†

→ Ω•−1
D → 0

(cf. (8.8) in [36, §8.4.2]). To summarize, we would not have a straightforward relation

between Ω•
X†v/k†

, Ω•
X̆†v/k†

and Ω•−1
D without the irreducibility of Dη.

2. We saw in the above proof that Pe′ corresponds étale locally to D ∩ (Xv ∩ V (σ)).

Consider vδl and vkl = v such that τ ′ is generated by lv := vδl − vkl . This ray lv ⊆ C(σ)

corresponds étale locally to D in X. We can also define Vlv as Spec k[P ∩ l⊥v ], which is

exactly D̃ ⊆ Y .

Lemma 5.3. Let v ∈ P be a vertex. Then Ω̆r
v is naturally isomorphic to Ωr

X̆†v/k
or Ωr

X̆†v/k†

in the /k and /k† cases respectively.

Proof. We’ll do the /k case, the /k† case being similar. Functoriality of log differentials

gives a map q∗v : q∗vΩ̆
1 → Ω1

X̆†v/k
on Xv \ q−1

v (Z). This map is injective since it is generically

injective and q∗vΩ̆
1 is locally free on each affine étale neighbourhood Xv∩V (σ) of Xv \q−1

v (Z)

for σ ∈Pmax. Hence, suffice to prove the surjectivity of the map q∗v .

As observed in the proof of Proposition 5.1, we only need to consider e : v → σ ∈ Pmax

with the maximal cell σ being unbounded. Let Pe be the maximal proper face of Pσ cor-

responding to Xv ∩ V (σ). Let τ ′ be the unbounded 1-cell emerging from v and denote

Pe′ = τ̌ ′ ∩ (N ⊕Z) where e′ : τ ′ → σ (cf. [15, Constr. 2.15]). View V (σ) = Spec k[Pσ]/(zρ) as

an open subset of X0. Consider the neighbourhood Xv ∩ V (σ).
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Different from the proof of [16, Lem. 3.12], the log structure on V (σ) \ Z corresponding

toMX is not given by charts ϕi on an open cover {Ui} of V (σ) \Z, ϕi : Pσ → OUi a monoid

homomorphism.

For 1 ≤ j ≤ k − 1, let ej : τj → σ be the remaining unbounded 1-cells in σ and denote

P̆σ := Pe′∪Pe1∪· · ·∪Pek−1
, which is a fine monoid. Hence, we have a monoid homomorphism

αi : P̆σ → OUi which is induced by restricting ϕi : Pσ → OUi on P̆σ. By [15, Def. 3.4], we

obtain a log structure on open cover {Ui} of V (σ) \ Z associated with the monoid P̆σ. This

log structure possesses charts étale locally, so it is also a fine log structure. It is the log

structure to be considered.

Restricting these charts αi to Ui ∩Xv gives charts αi : P̆σ → OUi∩Xv , which can be easily

shown to be of the form (following the proof of [15, Lem. 5.13])

p 7→

0 p 6∈ Pe′

hpz
p p ∈ Pe′ ,

where Pe′ 3 p 7→ hp ∈ O×Ui∩Xv is a monoid homomorphism. Note that Pe contains Pe′ with a

corank of 1. (cf. charts ϕi : Pσ → OUi∩Xv in the proof of [16, Lem. 3.12])

This chart lifts to a monoid homomorphism αi : P̆σ → M̆Ui , so for p ∈ Pe′ , dlog(αi(p)) ∈
Γ(Ui,Ω

1) pulls back via q∗v to dlog(hpz
p) =

d(hp)
hp

+ dlog(zp) in Ω1
X̆†v/k

. By extending hp to Ui,

we see dhp is in the image of q∗vΩ̆
1 → Ω1

X̆†v/k
, so dlog zp is also for all p ∈ P gp

e′ . On the other

hand, dlog ρ clearly pulls back to dlog ρ ∈ Ω1
X̆†v/k

. Thus q∗v is surjective on each Ui, hence on

Xv \ q−1
v (Z).

Now on Xv \ q−1
v (Z) = Xv \ (Dv ∩ q−1

v (Z)), Ω̆1
v = κv∗κ

∗
v(q
∗
vΩ̆

1/Tors) = κv∗κ
∗
vq
∗
vΩ̆

1, so we

get an isomorphism on Xv

Ω̆1
v = κv∗κ

∗
vq
∗
vΩ̆

1 → κv∗(Ω
1
X̆†v/k

) = Ω1
X̆†v/k

,

the latter equality as Xv is S2 and q−1
v (Z) is of codimension at least two in Xv. Similarly,

we obtain Ω̆r
v
∼= Ωr

X̆†v/k
.
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pages 141–175. Birkhäuser Boston, Boston, MA, 1998.

[10] A. B. Givental. Equivariant Gromov-Witten invariants. Internat. Math. Res. Notices,

(13):613–663, 1996.

[11] H. Grauert and R. Remmert. Theorie der Steinschen Räume, volume 227 of Grundlehren
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H. M. Tsoi Abstract

Zusammenfassung

Gross und Siebert haben ,,torische Entartungen” (toric degenerations) eingeführt,

um ein besseres Verständnis der Spiegelsymmetrie von Calabi-Yau-Varietäten zu gewin-

nen. Eine der Hauptideen ist, die torische Entartung aus Daten der entsprechen-

den unterliegenden affinen Mannigfaltigkeit B aufzubauen. Mithilfe der logarithmis-

chen algebraischen Geometrie war es Gross und Siebert möglich, die Isomorphie der

Dolbeault-Kohomologiegruppen der Glättung und der affinen Hodgegruppen von B

zu beweisen. Diese Dissertation ist der Versuch, die Entartungskonstruktion auch

auf Varietäten mit effektiven antikanonischen Garben (zum Beispiel Fano-Varietäten)

zu erweitern. Es wird bewiesen, dass Isomorphismen zwischen den zwei Typen von

Dolbeault-Kohomologiegruppen der Glättung (gewöhnliche und logarithmische Dol-

beaultgruppen) und den entsprechenden affinen Hodgegruppen vonB unter bestimmten

technischen Voraussetzungen existieren. Unter den gleichen Voraussetzungen entarten

die vier zugehörigen Spektralfolgen gleichzeitig bei E1.
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