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Introduction

Many dynamical processes can be described by partial differential equations, and convection

dominated phenomena as occuring in fluid dynamics are often modeled by hyperbolic

conservation laws. As an example, the Euler equations of gas dynamics, the shallow water

equations or the Savage-Hutter equations are used to characterize different forms of inviscid

fluid flow. Since the structure of hyperbolic conservation laws is different from that of elliptic

or parabolic equations, there is a need for specially designed numerical methods that take

into account characteristics of the solutions, like discontinuities or the transport direction.

Classically, partial differential equations are handled using Finite Element Methods (FEM),

Finite Difference Methods (FDM) or Finite Volume Methods (FVM) on structured or

unstructured meshes [BS02], [CL91], [GR96], [EGH00], [Krö97], [LeV92], [LeV02]. In these

methods, a mesh is a covering of the computational domain consisting of pairwise disjoint

polygons – the cells – which have to satisfy several geometrical and conformity constraints

in order to ensure a good approximation of the solution. A main drawback of these methods

when applied to problems with complicated or even time-dependent computational domains

is the time consuming construction of such a mesh.

Therefore, meshless or particle schemes like the Smoothed Particle Hydrodynamics [GM77],

[Mon94], [MK94], [Mon05], the Finite Pointset Method [Kuh99] or the Finite Volume

Particle Method [HSS00], [Tel00], [Tel05], [TS08] have been designed to overcome these

difficulties. These methods have in common that they use particles for the discretization of

the equations instead of a mesh. These particles carry the information of interest and are

usually allowed to move, i.e. they transport the information throughout the computational

domain. Especially for time-dependent domains [TS08], fluid-structure interaction problems

[TAH+07] or crack-propagation [MTM05], these methods seem to be promising. In this

thesis, we will study the Finite Volume Particle Method (FVPM), a meshless method, that

was constructed to combine the advantages of Finite Volume Methods and meshless particle

schemes.

In FVPM, the particles are sufficiently smooth, compactly supported functions that cover

the computational domain. Moreover, they have to build a partition of unity such that their

supports have to overlap. The exchange of information between the particles is managed

via this overlap: if the supports of two particles overlap, the particles are interpreted as

neighbours and may interact. Moreover, the interaction is modelled using a numerical flux

function. Because of the meshless character, the FVPM is very flexible and thus can be

applied for example to problems on moving domains where conventional mesh generation
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2 Introduction

would be too complicated or not efficient. The general structure of a FVM provides an

interpretation of the FVPM as a generalization of these classical mesh-based schemes and

prevents the need of artificial viscosity due to the use of numerical flux functions. As will

be shown, the coefficients of the FVPM can be seen as generalized surface areas and normal

vectors. These geometrical coefficients have to satisfy certain conditions in order to get some

of the classical results of FVM like stability, monotonicity, discrete entropy estimates or a

Lax-Wendroff type consistency result.

The thesis is organized as follows: In Chapter 1, we start with some basics on conservation

laws and their numerical treatment by FVM. In addition, we will give a brief review on the

convergence analysis for FVM. In preparation for the numerical examples concerning the

Savage-Hutter equations and because of their close relation to meshless methods, the idea of

kinetic schemes will be mentioned at the end of the first chapter.

In Chapter 2, we will derive the FVPM and mention the main properties of the scheme in

general and of the geometrical coefficients in particular. We will describe an adjustment

of the scheme such that constant states will be preserved in the case of moving particles.

Furthermore, we will give L∞- and L1-stability results as well as a weak BV-stability result

and show a discrete entropy inequality. In Chapter 3, we provide a modification of the FVPM

in one spatial dimension using B-splines. This new scheme has the advantage that geometrical

coefficients can be computed exactly in a very short time. Especially for problems on moving

domains, the coupling of the FVPM with B-splines represents an efficient alternative to the

original FVPM. Chapter 4 deals with a kinetic FVM for the Savage-Hutter equations. In

Section 4.3, the applicability of the FVPM to the kinetic framework will be shown. Numerical

results will be presented in Chapter 5. Beyond the classical Riemann problem for the Euler

equations, a linearized piston problem on a moving domain and the Savage-Hutter equations

are considered. The thesis closes with a short conclusion, reviewing the main results and

sketching some ideas how to further improve the method.



Chapter 1

Preliminaries

The following chapter gives an overview on hyperbolic conservation laws. In Section 1.1, we

give a short introduction to the notion of adequate solutions of hyperbolic conservation laws,

including the concept of weak solutions. The main results concerning existence and unique-

ness of solutions will be mentioned together with a short overview on the relevant literature.

Especially for scalar conservation laws, we will define entropy and entropy process solutions

and give a short insight into the existing theory.

In Section 1.2, Finite Volume Methods (FVM) for hyperbolic conservation laws will be de-

rived. As the existence of an entropy solution is often shown with the help of a convergent

numerical scheme, the important result concerning existence, uniqueness and the convergence

of a FVM will be presented in this section. Since we will adopt some of the results that ensure

convergence of the FVM to the Finite Volume Particle Method (FVPM) in Chapter 2, the

main steps of the proof of the convergence result are formulated at the end of Section 1.2.

In Section 1.3, our focus will be on kinetic schemes for hyperbolic conservation laws. This

paragraph serves as an introduction to Chapter 4, where the FVPM will be coupled with a

kinetic scheme that was developed to solve a system of balance equations for granular flow,

namely the Savage-Hutter equations.

1.1 Hyperbolic conservation laws

In this section, we describe the main properties of hyperbolic conservation laws and their

solutions. We begin with the definition of conservation laws. More details can be found in

[Krö97], [MNRR96], [EGH00], [GR96], [Bre05], [LeV92] or [LeV02].

Definition 1.1.1 (Conservation laws). A system of partial differential equations of the form

∂tu+∇ · F (u) = 0 ∀x ∈ Rd, t > 0

u(x, 0) = u0(x) ∀x ∈ Rd,
(1.1)

where u : Rd × R+ → Rm, F = (f1, . . . ,fd) : Rm → Rm×d, u0 ∈ L∞(Rd) and ∇ · F :=∑d
j=1 ∂xjf j(u) is called a system of conservation laws in d space dimensions.
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4 1. Preliminaries

Many equations of practical interest are of hyperbolic type, e.g. the Euler equations of gas

dynamics or the equations of magneto-hydrodynamics. Those systems are defined as follows.

Definition 1.1.2 (Hyperbolic systems of conservation laws). A system of conservation laws

(1.1) is called (strictly) hyperbolic if for any u ∈ Rm and any n = (n1, . . . , nd)
T ∈ Rd, n 6= 0,

the matrix

A(u,n) =
d∑
j=1

njDf j(u) (1.2)

has only real (and distinct) eigenvalues λ1, . . . , λm and m linearly independent right eigen-

vectors r1, . . . , rm.

Hyperbolic systems can be characterized by the eigenvalues and corresponding eigenvectors of

the Jacobian flux matrices A(u,n) as information travels with a speed given by the eigenval-

ues. As an example of a hyperbolic system we consider the Euler equations of gas dynamics

for compressible flow.

Example 1.1.3 (Euler equations of gas dynamics). The Euler equations of gas dynamics are

a system of hyperbolic conservation laws that describe the motion of compressible fluids. In

two dimensions, the Euler equations read

∂tu+∇ · F (u) = 0, (1.3)

where the vector of conserved quantities u and the flux F are given by

u =


ρ

ρ u

ρ v

ρE

 , f1 =


ρ u

ρ u2 + p

ρ uv

u (ρE + p)

 , f2 =


ρ v

ρ uv

ρ v2 + p

v (ρE + p)

 , F = (f1,f2),

and ρ, u, v, E and p denote the density, the velocity in x- and y-direction, the specific

total energy and the pressure of the fluid, respectively. To obtain a closed system, the Euler

equations (1.3) are endowed with an equation of state and, of course, suitable initial and

boundary conditions. For an ideal polytropic gas the equation of state reads

p = (γ − 1) ρ
(
E − u2 + v2

2

)
where γ is the ratio of specific heat capacities at constant pressure cp and at constant volume

cv. The eigenvalues of the matrix A(u,n) for the Euler equations are given by

λ1 = un− c, λ2 = un, λ3 = un+ c

and c denotes the speed of sound defined by

c =

√
γ p

ρ
.
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In contrast to solutions of elliptic or parabolic problems, solutions of hyperbolic equations may

become discontinuous in finite time, even for arbitrarily smooth initial data. For that reason,

the notion of a weak solution is introduced, which allows the solution to be discontinuous.

Definition 1.1.4 (Weak solution). A function u ∈ L∞(Rd×R+,Rm) is called a weak solution

of the hyperbolic system (1.1) if∫
Rd×R+

(
uϕt + F (u)∇ϕ

)
dtdx+

∫
Rd

u0(x)ϕ(x, 0) dx = 0 (1.4)

holds for all test functions ϕ ∈ C1
0 (Rd × R+,R).

Of course, smooth weak solutions u ∈ (C1 ∩ L∞)(Rd × R+,Rm) are classical solutions.

The existence and uniqueness of weak solutions of general two- or multi-dimensional systems

of hyperbolic conservation laws is still an open problem.

In the one-dimensional case, the existence of a weak solution of strictly hyperbolic systems

of conservation laws with each characteristic field being either genuinely nonlinear or linearly

degenerate was shown by Glimm in 1965 [Gli65] under the assumption that u0 ∈ (L∞loc ∩
BV )(R,Rm). Here, the space BV (Rd,Rm) denotes the space of all functions in L1

loc with

bounded total variation:

BV (Rd,Rm) = BV (Rd,R)m = {u ∈ L1
loc(Rd,R) |TV (u) <∞}m

with

TV (u) = sup{
∫
Rd

u(x) divϕ(x) dx |ϕ ∈ C∞0 (Rd,Rd), ||ϕ||∞ ≤ 1}.

In 1995, Bressan was able to show uniqueness of that weak solution for one-dimensional

systems in the class of BV solutions using the semigroup technique, compare [Bre05].

In the nonlinear scalar case, one can show that there exists at least one weak solution. Un-

fortunately, this weak solution is not unique in general. For that reason, so-called entropy

solutions are considered to ensure the weak solution to be the physically correct one. This

can be done with the help of the concept of vanishing viscosity, which was introduced by Lax

in 1954 [Lax54]. The idea of this approach is to introduce a small diffusive term ε∆u in

the conservation law. The resulting parabolic equation is known to admit a unique smooth

solution. Then, the physically correct solution to the conservation law should coincide with

the limit of the parabolic solution for ε → 0. Although the concept of entropies exists also

for systems of conservation laws [GR96], we will concentrate on scalar conservation laws in

the following. We begin with the notion of entropy solutions.

Definition 1.1.5 (Entropy weak solution). A function u ∈ L∞(Rd × R+,R) is called an

entropy weak solution of the hyperbolic conservation law (1.1) for m = 1 if∫
Rd×R+

(
η(u)ϕt + Φ(u)∇ϕ

)
dt dx+

∫
Rd

η(u0(x))ϕ(x, 0) dx ≥ 0, (1.5)
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holds for all test functions ϕ ∈ C1
0 (Rd × R+,R), all convex functions η ∈ C1(R,R) and for

all Φ ∈ C1(R,Rd) such that ∇ ·Φ = η′∇ · F . The functions η and Φ are called entropy and

entropy flux, respectively.

By a suitable choice of the entropy function η in Definition 1.1.5, it can be shown that every

entropy solution is a weak solution.

The existence of a unique entropy solution in the multi-dimensional nonlinear scalar case was

first shown by Vol’pert in [Vol67] assuming u0 ∈ BV (Rd,R) and F ∈ C1(R,Rd). This was

generalized by Kruzkov [Kru70] to the case F = F (x, t, u(x, t)) and u0 ∈ L∞(Rd,R) under

the stronger assumption F ∈ C3(Rd × R+ × R,Rd). In fact, this result extends to scalar

balance equations with a source term. Moreover, it was shown that the class of entropies

and corresponding entropy fluxes can be restricted to |u − κ| and sgn(u − κ)
[
F (x, t, u) −

F (x, t, κ)
]
∀κ ∈ R, respectively. Therefore, we give the following equivalent definition of an

entropy solution.

Definition 1.1.6 (Entropy weak solution due to Kruzkov). A function u ∈ L∞(Rd ×R+,R)

is called an entropy weak solution of the hyperbolic conservation law (1.1) for m = 1 if∫
Rd×R+

|u(x, t)− κ|ϕt +
(
F (u(x, t)>κ)− F (u(x, t)⊥κ)

)
∇ϕdt dx

+

∫
Rd

|u0(x)− κ|ϕ(x, 0) dx ≥ 0

(1.6)

holds for all test functions ϕ ∈ C1
0 (Rd × R+,R+) and for all κ ∈ R. Here, for a, b ∈ R

a>b = max(a, b) and a⊥b = min(a, b).

Remark 1.1.7. Although there are many results concerning the existence and uniqueness

of solutions and the convergence of suitable numerical schemes for more general fluxes

F (x, t, u(x, t)), we will give definitions like the one above only for fluxes F (u(x, t)) as we

are interested in solutions to (1.1).

Remark 1.1.8. Note that for u ∈ R, x ∈ Rd and t ∈ R+, there holds

sgn(u(x, t)− κ)
[
F (u(x, t))− F (κ)

]
= F (u(x, t)>κ)− F (u(x, t)⊥κ) ∀κ ∈ R.

In [EGH95], Eymard, Gallouët and Herbin showed existence and uniqueness of the entropy

solution for F (x, t, u(x, t)) = v(x, t) f(u(x, t)) with v ∈ (L∞ ∩ C1)(Rd × R+,Rd) and f ∈
C1(R,R) under the additional condition divx v(x, t) = 0. This result was generalized by

Chainais-Hillairet in [Cha99] for fluxes F = F (x, t, u(x, t)) with F ∈ C1(Rd × R+,R,Rd)
with divx F (x, t, u) =

∑d
i=1 ∂Fi(x, t, u)/∂xi = 0. For the proof, the authors in [EGH95]

introduced the notion of entropy process solutions, which generalizes the concept of entropy

solutions. The idea of entropy process solutions is closely related to the concept of measure

valued solutions introduced by DiPerna [DiP85].
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Definition 1.1.9 (Entropy process solution). A function u ∈ L∞(Rd × R+ × (0, 1),R) is

called an entropy process solution of the hyperbolic conservation law (1.1) for m = 1 if∫
Rd×R+×(0,1)

|u(x, t, α)− κ|ϕt +
(
F (u(x, t, α)>κ)− F (u(x, t, α)⊥κ)

)
∇ϕdα dtdx

+

∫
Rd

|u0(x)− κ|ϕ(x, 0) dx ≥ 0,

(1.7)

holds for all test functions ϕ ∈ C1
0 (Rd × R+,R+) and for all κ ∈ R.

After the existence of such an entropy process solution could be shown, the authors in

[EGH95] were able to proof that the solution does not depend on the additional parameter

α and thus is an entropy solution. Since the proof of existence and uniqueness of such a

solution relies on the convergence proof of suitable numerical schemes, we will give the main

idea of the proof in the next section, where we will discuss the concept of Finite Volume

Methods.

1.2 Finite Volume Methods

In this section, we will introduce Finite Volume Methods as it is done in [Krö97]. We consider

the conservation law

∂tu+∇ · F (u) = 0 ∀x ∈ Rd, t > 0

u(x, 0) = u0(x) ∀x ∈ Rd,
(1.8)

where u : Rd × R+ → Rm, F : Rm → Rm×d and u0 ∈ L∞(Rd). For simplicity, we assume

d = 2 for the moment.

Definition 1.2.1 (Unstructured grid). Let Ω ⊂ R2, I ⊂ N an index set and k ∈ N. Moreover,

let a k-polygon be a closed polygon with k vertices. The set

Th := {Ti | Ti ⊆ Ω, Ti is a k-polygon for i ∈ I}

is called an unstructured grid of Ω if

1. Ω = ∪i∈ITi

2. for i 6= j, we have Ti ∩ Tj = ∅ or Ti ∩ Tj is a common vertex of Ti and Tj or Ti ∩ Tj is

a common edge of Ti and Tj.

The elements Ti ∈ Th are called cells, the common edge between the cells Ti and Tj will be

denoted by σij. If the cells Ti and Tj have a common edge, Tj is called a neighbouring cell of

Ti. The index set of all neighbouring cells of Ti will be denoted by N(i), i.e.

N(i) := {j ∈ I | Tj is a neighbouring cell of Ti}.
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1

Figure 1.1: Typical grids using triangles (left) and rectangles (right) as cells.

The parameter h is defined as

h := sup
i∈I

diam(Ti)

and corresponds to the resolution of the grid.

Usually, a suitable grid has to satisfy some regularity conditions. For details see [Krö97],

[Cha99] or [EGH00]. Typical grids for k = 3 and k = 4, respectively, are shown in Figure 1.1.

The idea of FVM consists in approximating the solution u(·, t) of (1.8) on each cell Ti ∈ Th
by the mean value of u(·, t) over that cell:

u(x, t) ≈ ui(t) :=
1

|Ti|

∫
Ti

u(x, t) dx for x ∈ Ti,

where |Ti| denotes the volume of cell Ti. If we now integrate Equation (1.8) over cell Ti, we

get

0 =
d

dt

∫
Ti

u(x, t) dx+

∫
∂Ti

F (u(s, t))ni ds

≈ |Ti|
dui(t)

dt
+
∑

j∈N (i)

∫
σij

F (u(s, t))nij ds

≈ |Ti|
dui(t)

dt
+
∑

j∈N (i)

|σij | g(ui(t),uj(t),nij)

where σij denotes the edge between the i-th and j-th k-polygon, |σij | describes its length

and nij denotes the outer normal vector to σij . The function g is a numerical flux function

approximating the flux on the boundary σij . Thus, we have the following system of ordinary

differential equations for the time-dependent functions ui(t):

dui(t)

dt
= − 1

|Ti|
∑

j∈N (i)

|σij | g(ui(t),uj(t),nij) (1.9)
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together with the initial condition

ui(0) =
1

|Ti|

∫
Ti

u(x, 0) dx. (1.10)

Equations (1.9)–(1.10) can be discretized in time using a simple forward Euler discretization

with tn := n∆t and time steps ∆t leading to the fully discretized explicit FVM

un+1
i = uni −

∆t

|Ti|
∑

j∈N (i)

|σij | g(ui,uj ,nij),

u0
i =

1

|Ti|

∫
Ti

u(x, 0) dx.

(1.11)

The numerical solution uh(x, t) is then given by a suitable reconstruction formula. Here, we

assumed a piecewise constant solution, so we simply set

uh(x, t) := uni for (x, t) ∈ Ti × [tn, tn+1), (1.12)

but of course other reconstruction techniques are possible, e.g. [Son97].

In order to ensure that the numerical solution uh satisfies properties that hold for the exact

solution, several conditions on the numerical flux function g, the time step ∆t and the data

are to be set. The most important conditions are the following.

• Conservativity: Equations (1.8) describe the evolution of conserved quantities, i.e.

mass is neither produced nor destroyed. To ensure the conservation numerically, the

numerical flux function has to guarantee that the amount of material moving from cell

Ti to cell Tj is exactly the same as the amount arriving in cell Tj coming from cell Ti,

thus it should hold

g(ui,uj ,nij) = −g(uj ,ui,−nij).

• Consistency: To ensure the preservation of constant states, the numerical flux should

satisfy

g(u,u,n) = F (u)n

as can be seen immediately from the approximation∫
σij

F (u(s, t))nij ds ≈ |σij | g(ui(t),uj(t),nij).

• CFL condition: Usually, the scheme (1.11) is only stable in some suitable sense, if

the time step size ∆t is sufficiently small and the upper bound depends on the mesh

parameter h. Such a condition is called CFL condition, named after Courant, Friedrichs

and Lewy.



10 1. Preliminaries

As stated in the last section, existence and uniqueness of the entropy solution and a con-

vergence result for a suitable Finite Volume Method are in general closely related. We will

now give the main ideas for the proof of existence and uniqueness of the entropy solution

as well as the convergence of a Finite Volume Method towards this entropy solution in the

multi-dimensional scalar case as it was done in [EGH95] and [Cha99]. We begin with the

main result in [Cha99].

Theorem 1.2.2. Consider the scalar case u : R×R+ → R and assume that u0 ∈ L∞(Rd,R),

F ∈ C1(Rd × R+ × R,Rd), ∂uF being locally Lipschitz continuous and
∑d

i=1
∂fi
∂xi

(x, t, u) = 0.

Assume further that for all compact sets K ⊂ R, there exists a constant CK < ∞ such that

|∂uF (x, t, u)| ≤ CK for almost every (x, t, u) ∈ Rd × R+ ×K. Then the scalar equation

∂tu+∇ · F (x, t, u) = 0 ∀x ∈ Rd, t > 0

u(x, 0) = u0(x) ∀x ∈ Rd

admits a unique entropy solution. Consider moreover the numerical scheme (1.11) with a

consistent, conservative, Lipschitz continuous and monotone numerical flux function and a

suitable CFL condition on a sufficiently regular grid, see [Cha99]. Then the approximate

solution constructed by (1.11)-(1.12) converges towards the entropy solution in Lploc(R
d ×

R+,R) for 1 ≤ p <∞.

An important tool in the proof is the notion of the nonlinear weak-* convergence introduced

in [EGH95].

Definition 1.2.3 (Nonlinear weak-* convergence). Let Ω be an open set in Rd and (un)n∈N
be a sequence in L∞(Ω). The sequence (un)n∈N is said to converge in a nonlinear weak-*

sense, if there exists a function u ∈ L∞(Ω× (0, 1)) such that∫
Ω
h(un(x))φ(x) dx→

∫
Ω

∫ 1

0
h(u(x, α))φ(x) dα dx (1.13)

for all φ ∈ L1(Ω), and h ∈ C(R,R). We will use the abbreviation un
n.w∗−→ u.

Note that the nonlinear weak-* convergence is equivalent to the weak-* convergence of h(un)

towards a function Uh with

Uh(x) :=

∫ 1

0
h(u(x, α)) dα.

The following result for bounded sequences in L∞(Rd × R+,R) of Eymard, Gallouët and

Herbin in [EGH95] gives rise to the notion of the entropy process solution.

Proposition 1.2.4. Let (un)n∈N be a bounded sequence in L∞(Rd×R+,R). Then there exists

a subsequence (unk
)k∈N and a function u ∈ L∞(Rd × R+ × (0, 1),R) such that unk

n.w∗−→ u.

If additionally, u does not depend on the parameter α, then (unk
)k∈N converges strongly in

Lploc(R
d × R+,R) for all 1 ≤ p <∞.
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The main steps in the proof of Theorem 1.2.2 are the following: First, it is shown that the

numerical solution is stable in L∞ and in some weak BV sense, meaning that estimates

on the discrete time and space derivatives of the approximate solution are of order h−1/2.

Subsequently, one can derive a discrete entropy inequality for the coefficients uni and an

entropy inequality for the reconstructed solution. Then, the nonlinear weak-* convergence,

which follows from the L∞-stability, allows to pass to the limit in the entropy inequality

for the approximate solution. The occuring error terms in the entropy inequality for the

reconstruction can be controlled with the help of the weak BV-stability result. Thus, the

nonlinear weak-* limit of the subsequence (unk
)k∈N is an entropy process solution. After-

wards, the authors in [EGH95] and [Cha99] proved the uniqueness and the independence of

α of the entropy process solution, i.e. the entropy process solution coincides with the unique

entropy solution. Applying the above proposition, strong convergence in Lploc(R
d × R+)

follows immediately.

At the end of Chapter 2, we will adopt some of the results used in the above mentioned

convergence theory in [EGH95] and [Cha99]. In fact, we will show stability in L∞ and in a

weak BV-sense for the FVPM as well as in L1 at least for special cases. Moreover, we will

proof a discrete entropy inequality that can be seen as a generalization of the well-known

discrete entropy inequality for FVM.

In the next section, we give an introduction to kinetic schemes. Shortly speaking, kinetic

schemes are FVM or FDM whose numerical flux function is the moment of a numerical

flux function for a microscopic version of the equation under consideration. The idea and

the principle of the construction of kinetic schemes are important for Chapter 4, where we

combine the FVPM with a kinetic scheme for the Savage-Hutter equations.

1.3 Kinetic schemes

When considering a dilute gas, the mean free path can no longer be neglected. Instead of

the equations for continuum mechanics, one has to regard the kinetic theory of gases. In this

section, we will give a very brief review on the fundamental principles of the kinetic theory

of dilute gases and the resulting numerical schemes. Since we want to apply the FVPM to

an existing kinetic scheme for the Savage-Hutter equations (see Chapter 4), these basics will

be important for our further proceeding. For details on the kinetic theory of dilute gases

and kinetic numerical schemes see for example [Cer90], [Cer94], [Per02], [LPT94], [KNS96]

or [Jun00].

We begin with a system that contains N atoms or particles of a monatomic gas. The atoms

are assumed to be hard balls that collide elastically. For the description of the whole system,

we consider the phase space that consists of the positions xi ∈ Ω ⊂ R3 and the velocities

ξi ∈ R3, i = 1, . . . , N, of all N particles. Thus, the phase space O has dimension 6N and

N usually will be of order 1020 [Cer90]. Since we have to assume that the dynamics of the
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atoms are coupled, we will end up with a very large system of differential equations for the

appropriate description of the dynamics of the original system. Therefore, the introduction

of a probability density f : O × R+ → R+ for the description of the whole system seems to

be reasonable. The corresponding equation one ends up with is the Liouville equation

∂f

∂t
+

N∑
i=1

ξi
∂f

∂xi
+

N∑
i=1

Xi
∂f

∂ξi
= 0 (1.14)

where Xi denotes the force acting on particle i. If we consider an ideal gas, we can neglect the

intermolecular forces between the atoms unless their distance is smaller than a characteristic

distance, the so-called molecular diameter σ. Thus, outside this region, Equation (1.14) holds

with Xi = 0, i = 1, . . . , N, and the collision terms are treated as suitable boundary terms.

If we consider the density f1(x, ξ, t) for just one particle in a set of N particles, we will end

up with the Boltzmann equation

∂fε1
∂t

+ ξ∇xf ε1 =
Q(f ε1 , f

ε
1 )

ε
, (1.15)

where Q is the so-called collision operator and ε denotes the Knudsen number which measures

the mean free path of the particles between their collision with other particles. The collision

operator takes the form

Q(f, g) := α

∫
R3

∫
S+

(f ′ g′∗ + g′ f ′∗ − f g∗ − g f∗) |(ξ − ξ∗)n|dξ∗dn,

where

f ′ := f(x, ξ′, t), f∗ := f(x, ξ∗, t), f
′
∗ := f(x, ξ′∗, t),

ξ′ denotes the velocity of the particle after the collision, the star is used to distinguish the

two colliding particles and α is a constant. If we consider the collision operator, we will

automatically ask for functions f for which Q(f, f) = 0 holds. It can be shown that

Q(f, f) = 0 (1.16)

⇔ f(x, ξ, t) = exp(a(x, t) + b(x, t) ξ + c(x, t) |ξ|2) (1.17)

with a, c : R3 × R+ → R and b : R3 × R+ → R3. Density functions of the form (1.17) are

called Maxwell distributions or Maxwellians and because of (1.16) equilibrium distributions.

Usually, the Maxwell distribution is given in the form

fMax(x, ξ, t) = A exp(−α (ξ − v)2)

where A,α and v are constant in ξ. This form is much more descriptive, because the constant

v is in fact the macroscopic velocity in the Euler equations. In the limit ε → 0, it can be

shown that the collision operator satisfies Q(f, f) = 0 in the lowest order. Thus, f can be

assumed to be a Maxwellian.

To link the microscopic approach to the macroscopic one, we define the macroscopic values

as the moments of the kinetic distribution function f :

ρ :=

∫
R3

f dξ, ρv :=

∫
R3

ξ f dξ, ρE :=

∫
R3

|ξ|2

2
f dξ. (1.18)
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Let us now assume that the kinetic density f is the Maxwellian

M(ρ,v, T ;x, ξ, t) :=
ρ

(2πT )
2
3

exp

(
−|ξ − v|

2

2T

)
where the temperature T is related to the energy by T = 2/3(E − |v|2/2). Multiplying the

Boltzmann equation with the collision invariants 1, ξ and |ξ|2/2 and integrating over ξ, we

will end up with the Euler equations (1.3). Thus, we have found a new formulation for the

Euler equations:
∂f

∂t
+ ξ∇xf = Q̄, f =M, (1.19)

with Q(f, f)/ε→ Q̄ for ε→ 0. In the following, we will call (1.19) the kinetic formulation of

the Euler equations. Note that the advantage of the kinetic formulation lies in the linearity

of the scalar operator (∂/∂t+ξ∇x). The nonlinearity of Equation (1.3) is completely shifted

to the right hand side and the additional constraint f = M to ensure that the resulting

f is always a Maxwellian. Note also that spatial homogeneous solutions of the Boltzmann

equation imply stationary solutions of the corresponding macroscopic equations, because the

divergence terms vanish.

Let us now consider Equation (1.1). Following [Jun00], we will call the following system a

kinetic formulation of system (1.1):(
∂

∂t
+ ξ∇x

)
f = Q, f(x, t, ξ) = µ(u(x, t), ξ),

∫
Rd

Qdξ = 0 (1.20)

for a constraint function µ : Rm × Rd → Rm that satisfies∫
Rd

µ(u, ξ) dξ = u,

∫
Rd

ξj µ(u, ξ) dξ = f j(u), j = 1, . . . , d . (1.21)

In this formulation, µ with its constraints (1.21) describes a class of so-called equilibrium

densities. For the two-dimensional Euler equations, we have

u =

 ρ

ρv

ρE

 , µ(u, ξ) =

 1

ξ
1
2 |ξ|

2

M(ρ, u, v, T ; ξ), Q =

 1

ξ
1
2 |ξ|

2

 Q̄.

Note that in the kinetic formulation (1.20), (1.21), the unknown f and the collision operator

are no longer scalar functions. Of course, for a given system of conservation laws, we can

bring (1.20), (1.21) in a scalar form. For example, for a 2×2 system in one spatial dimension,

we have

∂f

∂t
+ ξ ∂xf = Q̄,

∫
R
Q̄dξ =

∫
R
ξ Q̄dξ = 0,

u1 =

∫
R
fdξ, u2 =

∫
R
ξ fdξ, u = (u1, u2)T .

To get a numerical method for the original equations, we can now formulate a numerical

scheme for the kinetic formulation, multiply it with 1, ξ and |ξ|2/2 and integrate over ξ. A
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numerical scheme that originates in a numerical method of the kinetic formulation will be

referred to as a kinetic scheme in the following.

We will now sketch the construction of a semi-discrete kinetic scheme. Note that if we neglect

the collision operator in (1.20), we have a simple linear advection equation for f :

∂f

∂t
+ ξ∇xf = 0. (1.22)

A fundamental idea in the construction of kinetic schemes is to enforce the constraint

f(x, t, ξ) = µ(u(x, t), ξ) only at the discrete points tn = n∆t, where ∆t denotes the

time step size and n = 1, . . . , NT for some NT ∈ N. Given un(x), we start with

f(x, tn, ξ) = µ(un(x), ξ) and compute an update of f according to the advection Equa-

tion (1.22) for tn ≤ t ≤ tn+1:

f(x, t, ξ) = µ(un(x− (t− tn)ξ), ξ)

But, by neglecting the collision operator, we will leave the class of equilibrium densities in

general. Therefore, we set

un+1(x) :=

∫
Rd

µ(un(x−∆t ξ), ξ) dξ

and get automatically an equilibrium density f(x, tn+1, ξ) := µ(un+1(x), ξ).

In practice, the solution of the advection equation can be realized by a suitable discretization,

e.g. by a FDM, a FVM or a FEM. Then, the discrete evolution for the linear advection

equation is integrated over ξ to get a scheme for the original nonlinear equation. In the case

of a FVM, the discretization of the advection part is managed by a numerical flux function.

Thus, after integration, the kinetic Ansatz yields a FVM for the nonlinear macroscopic

equations where the numerical flux function is nothing but the integral of the microscopic

flux function.

In Chapter 4, we will describe a kinetic numerical scheme for the Savage-Hutter (SH) equations

in one space dimension. The SH equations are a system of two equations for the height and

the velocity of a granular mass and contain a source term. Concerning the SH equations, a

main difficulty relies in the preservation of nontrivial constant states that exists due to the

source term. In [KS08], a kinetic scheme was developed that is able to describe the complete

dynamics of a granular mass and that preserves granular masses at rest. In Chapter 4, we

will combine this scheme with the FVPM.



Chapter 2

The Finite Volume Particle Method

Classical methods like the FEM or the FVM discussed in the last section are not always ap-

plicable to complex problems like extrusion and molding processes, fluid structure interaction

problems or propagation of cracks, where the computational domain and thus the mesh de-

forms significantly. The need for expensive mesh generation or remeshing procedures makes

conventional schemes time-consuming and thus ineffective.

To overcome these difficulties, so-called meshless methods or particle methods grew up.

Instead of using a mesh, these methods employ positive and compactly supported functions,

whose supports cover the computational domain. These functions are called particles and

carry all the information that is usually provided by a mesh.

Well-known representatives in the class of meshless methods are the Smoothed Particle Hydro-

dynamics (SPH), the Finite Pointset Method (FPM) and the Finite Volume Particle Method

(FVPM). Before we go into detail about the FVPM, we will give a short survey on SPH and

FPM. A general overview on meshless methods as well as further examples can be found in

[DO95], [BKO+96], [KNS96], [Str97], [FM04], [GS05], [LL07] and [GS07].

SPH was originally developed for applications to astrophysical problems and was first men-

tioned in 1977 by Lucy [Luc77] and independently by Gingold and Monaghan [GM77]. The

scheme is a Lagrangian particle method in which a material, e.g. a fluid, is supposed to

consist of small particles which move with the fluid velocity. These particles build a set of

interpolation points in reconstruction formulas. Several improvements and extensions of the

method followed and turned the method into a powerful and inspiring instrument for the

CFD community, e.g. [Mon94] and [Mon05].

In FPM, approximations of spatial derivatives of a smooth and scalar valued function f are

based on the least squares method. For this purpose, Taylor series expansions of f are made

in the positions of the particles and interpreted as linear systems for the derivatives. For

details see for example [Kuh99], [TAH+07] or [GS07]. An extension of the FPM for the

incompressible Navier-Stokes equations can be found in [TAH+07].

In this chapter, we begin with the derivation of the FVPM, as it has been done for example

in [JS01] or [Tel05]. Section 2.2 deals with general and mostly well-known properties of the

scheme. At the beginning of that section, we are concerned with the approximation quality of

the particle cell averages. Next, we describe some properties of the geometrical coefficients,

15



16 2. The Finite Volume Particle Method

which are of prime importance for the FVPM, as they ensure for example conservativity. As

a new result, we show how to implement the velocity of the particles into the numerical flux

function such that the scheme preserves constant states. At the end of Section 2.2, we describe

two well-established correction procedures and show how conservativity of the scheme, which

will be destroyed by one of the correction methods, can be regained using a special particle

movement.

In Section 2.3, we show some of our central results, namely L∞-stability and the positivity of

the scheme. For non-moving particles, we give a result which we denote as weak BV-estimates

and show L1-stability under suitable assumptions. At the end, we are able to prove a discrete

in-cell entropy inequality. All results in Section 2.3 are essential tools in the convergence

analysis for FVM. To our knowledge, they have not been shown yet in this form and thus can

be seen as first steps of a convergence proof of the FVPM.

2.1 Derivation of the FVPM

We consider the problem

∂tu+∇ · F (u) = 0 ∀x ∈ Ω(t) ⊂ Rd, t > 0

u(x, 0) = u0(x) ∀x ∈ Ω(0)
(2.1)

together with some appropriate boundary conditions. Here, u(x, t) ∈ Rm denotes the vector

of unkowns of the conservation law (2.1). The computational domain Ω(t) is bounded and

varies in time, i.e. the temporal variation of Ω(t) can be described with the help of a function

denoting the velocity of the boundary Γ(t) of Ω(t):

Γ(t) = {x(t) : x(t) = x0 +

∫ t

0
v(x(s), s) ds, x0 ∈ Γ0}

with a given continuous velocity field v.

Instead of introducing a grid structure on the spatial domain Ω(t), we consider N functions

ψi : Rd × R+ → R+, i = 1, . . . N, associated with positions xi(t) ∈ Rd. The functions ψi will

be called particles, the positions xi the corresponding particle positions. The particles have

to satisfy 0 ≤ ψi(x, t) ≤ 1 and build a partition of unity, that is

N∑
i=1

ψi(x, t) = 1, ∀x ∈ Ω(t), t ≥ 0.

For the construction of such a partition of unity, we start with a Lipschitz continuous and

compactly supported function W : Rd → R+, e.g.

W (x, h) =


(−‖x‖2 + h2

2 ), ‖x‖ < h
2

(‖x‖ − h)2, ‖x‖ ∈ [h2 , h)

0, otherwise.

(2.2)

The value h is the so-called smoothing length and || · || denotes the Euclidean norm in Rd.
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According to Shepard’s renormalization method [She68], the family {ψi, i = 1, ..., N}, where

ψi(x, t) :=
Wi(x, t)

σ(x, t)
,

Wi(x, t) := W (x− xi(t), h)

and

σ(x, t) :=

N∑
i=1

Wi(x, t),

constitutes a partition of unity.

Now, we want to test Equation (2.1) against the test functions ψi. With∫
Ω(t)

(
∂tu+∇ · F (u)

)
ψi dx = 0, i = 1, ..., N

and integration by parts, we obtain

d

dt

∫
Ω(t)

uψi dx =

∫
Ω(t)

∂t(uψi) dx+

∫
∂Ω(t)

((uψi) · v)nds

=

∫
Ω(t)

(
∂tu
)
ψi dx+

∫
Ω(t)

u
(
∂tψi

)
dx+

∫
∂Ω(t)

((uψi) · v)nds

= −
∫

Ω(t)

(
∇ · F (u)

)
ψi dx+

∫
Ω(t)

u
(
∂tψi

)
dx+

∫
∂Ω(t)

((uψi) · v)nds

=

∫
Ω(t)

(
F (u)∇ψi + u ∂tψi

)
dx−

∫
∂Ω(t)

ψi
(
F (u)− u · v

)
nds.

Note that, here and in the following, the product · denotes the outer product that maps from

Rm × Rd to Rm×d.
Some easy calculations (for the proof see [JS01]) verify the following

Proposition 2.1.1.

∂tψi(x, t) =

N∑
j=1

(
ẋjψi(x, t)

∇Wj(x, t)

σ(x, t)
− ẋiψj(x, t)

∇Wi(x, t)

σ(x, t)

)
, (2.3)

∇ψi(x, t) =
N∑
j=1

(
ψj(x, t)

∇Wi(x, t)

σ(x, t)
− ψi(x, t)

∇Wj(x, t)

σ(x, t)

)
. (2.4)

In the next step, we define local averages ui(t) of the function u(x, t) as

ui(t) :=
1

Vi(t)

∫
Ω(t)

u(x, t)ψi(x, t) dx, (2.5)

where

Vi(t) :=

∫
Ω(t)

ψi(x, t) dx. (2.6)
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With

Γij(x, t) :=
ψi(x, t)

σ(x, t)
∇Wj(x, t), (2.7)

we can now write

∂tψi(x, t) = −
N∑
j=1

(
ẋiΓji(x, t)− ẋjΓij(x, t)

)
, (2.8)

∇ψi(x, t) =
N∑
j=1

(
Γji(x, t)− Γij(x, t)

)
. (2.9)

Remark 2.1.2. Because of

supp(Γij) = supp

(
ψi(x, t)

σ(x, t)
∇Wj(x, t)

)
,

the functions Γij are located in the intersections of the supports of ψi and ψj.

Remark 2.1.3. The particles ψi satisfy the transport equation

∂tψi + ẋi∇ψi =
N∑
j=1

(ẋj − ẋi) Γij ,

where the left hand side describes the movement and the right hand side the deformations of

the particles caused by the relative movement: whenever the relative particle positions change,

the particles itself have to change, too, in order to satisfy the partition of unity property.

With the above definitions and calculations, we get the following system of ODEs

d

dt
(Viui) =

N∑
j=1

∫
Ω(t)

F (u)(Γji − Γij)− u(ẋi Γji − ẋj Γij ) dx−
∫
∂Ω(t)

ψi
(
F (u)− u · v

)
nds

=

N∑
j=1

∫
Ω(t)

[(
F (u)− u · ẋi

)
Γji −

(
F (u)− u · ẋj

)
Γij

]
dx−Bi, (2.10)

where

Bi =

∫
∂Ω(t)

ψi
(
F (u)− u · v

)
nds. (2.11)

Under the assumption that the smoothing length h is not too large in comparison to the

distance of the particles, i.e. the particles do not overlap too much, and using the assumption

that the unknown u can be approximated by some ūij on supp(ψi) ∩ supp(ψj), we conclude

d

dt
(Viui) ≈ −

N∑
j=1

(
F (ūij)− ūij · ¯̇xij

) ∫
Ω(t)

(
Γij − Γji

)
dx−Bi,

where ¯̇xij is some constant value being close to both ẋi and ẋj . We will show in Theorem

2.2.10 how to choose an appropriate approximation, such that constant states are preserved

even in the case when particles move.
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Next, we define geometrical coefficients

γij(t) :=

∫
Ω(t)

Γij(x, t) dx, (2.12)

βij(t) := γij(t)− γji(t), (2.13)

and nij = βij/||βij ||. We introduce a numerical flux function gij := g(ui, ẋi,uj , ẋj ,nij) that

is consistent not with F but with the modified flux
(
F (u)− u · ẋ

)
, meaning that

g(u, ẋi,u, ẋj ,nij) =
(
F (u)− u · ¯̇xij

)
nij . (2.14)

Thus, we can formulate a semi-discrete form of the FVPM

d

dt
(Viui) = −

N∑
j=1

||βij ||gij −Bi (2.15)

with initial condition

ui(0) =
1

Vi(0)

∫
Ω(0)

u0(x)ψi(x) dx. (2.16)

Note that, because we are interested in the unknowns ui, we need an additional equation for

the volumes Vi. The most simple choice seems to be Definition (2.6) for the volumes

Vi(t) =

∫
Ω(t)

ψi(x, t) dx. (2.17)

Alternatively, we can differentiate Equation (2.6). Using (2.8), we end up with

V̇i(t) =

N∑
j=1

(
γij ẋj − γji ẋi

)
+

∫
∂Ω(t)

ψi v nds. (2.18)

All in all, the semi-discrete form of the FVPM reads

d

dt
(Viui) = −

N∑
j=1

||βij || gij −Bi (2.19a)

V̇i =
N∑
j=1

(
γij ẋj − γji ẋi

)
+

∫
∂Ω(t)

ψi v nds (2.19b)

ui(0) =
1

Vi(0)

∫
Ω(0)

u0(x)ψi(x, 0) dx (2.19c)

Vi(0) =

∫
Ω(0)

ψi(x, 0) dx (2.19d)
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together with a prescribed velocity field for the motion of the particles. As a reconstruction,

the following formula is reasonable for the semi-discrete scheme:

uh(x, t) =
N∑
i=1

ui(t)ψi(x, t). (2.20)

Originally, in [HSS00], the terms related with the particle movement in (2.10) have been

discretized seperately instead of treating them as part of a numerical flux function. The

semi-discrete version for this approach then reads

d

dt
(Viui) = −

N∑
j=1

[
||βij ||f ij −

(
γij ẋj ui − γji ẋi uj

)]
−Bi (2.21a)

V̇i =

N∑
j=1

(
γij ẋj − γji ẋi

)
+

∫
∂Ω(t)

ψi v nds (2.21b)

ui(0) =
1

Vi(0)

∫
Ω(0)

u0(x)ψi(x, 0) dx (2.21c)

Vi(0) =

∫
Ω(0)

ψi(x, 0) dx, (2.21d)

again with given particle movement and the reconstruction formula (2.20). Here, f ij :=

f(ui,uj ,nij) denotes a numerical flux function that is consistent with the original flux F

from (2.1).

Remark 2.1.4. The approach (2.21a)–(2.21d) has the drawback of suffering from instabilities

in some situations and for special particle movement, compare [Kec02] or [Tel05]. Although

we will use mainly scheme (2.19a)–(2.19d) and (2.20) in what follows, we mention (2.21a)–

(2.21d) because it preserves constant states even for moving particles by construction (see

Theorem 2.2.8). In order to construct a stable scheme that preserves constant states, this

property will be adopted for scheme (2.19a)–(2.19d) in Theorem 2.2.10 by a special way of

embedding the particle movement in the numerical flux function.

In the following chapters, we will use a simple Euler discretization of (2.19a)–(2.19d) to get a

fully discretized scheme, although higher order methods are possible. The Euler discretized
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scheme with appropriate initial conditions reads

V n+1
i un+1

i = V n
i u

n
i −∆t

( ∑
j∈N (i)

||βnij ||gnij +Bn
i

)
(2.22a)

V n+1
i = V n

i + ∆t
N∑
j=1

(
γnij ẋ

n
j − γnji ẋni

)
+ Cni (2.22b)

u0
i =

1

V 0
i

∫
Ω
u0(x)ψi(x, 0) dx (2.22c)

V 0
i =

∫
Ω
ψi(x, 0) dx, (2.22d)

where Bn
i and Cni are suitable discretizations of the term Bi in (2.11) and Ci :=

∫
∂Ω ψi v nds,

respectively, gnij := g(uni , ẋ
n
i ,u

n
j , ẋ

n
j ,n

n
ij), γ

n
ij := γij(t

n) and ẋni := ẋi(t
n). In what follows,

we will often use the abbreviations

gij(u,v) := g(u, ẋi,v, ẋj ,nij)

and

gnij := g(uni , ẋ
n
i ,u

n
j , ẋ

n
j ,n

n
ij).

As a reconstruction formula for the fully discretized scheme one may choose for example

uh(x, t) =

NT∑
n=0

N∑
i=1

uni ψi(x, t)1[tn,tn+1)(t). (2.23)

We will see in the next section that this choice of reconstruction is conservative (see Theorem

2.2.6 and Remark 2.2.7).

2.2 The geometrical coefficients and properties of the scheme

In this section, we describe the geometrical coefficients and some important properties of the

FVPM that are closely related to those coefficients. We start with well-known approximation

results for the generalized cell averages and the reconstruction formula (see Lemma 2.2.1,

Theorem 2.2.2),followed by some crucial properties of the coefficients (see Proposition 2.2.4).

These properties imply for example the conservativity of the scheme (see Theorem 2.2.6).

Subsequently, we show that the FVPM preserves constant states. This has already been

shown for non-moving particles, but was still an open question for the moving case. In

Theorem 2.2.10, we propose an average particle velocity in order to implement the particle

movement in the numerical flux function. With this average particle velocity, the FVPM

preserves constant states even when the particles are moving. Some important properties of

this particle velocity are figured out in Proposition 2.2.13.

During this section, we always assume that the computational domain Ω is an open subset

of Rd and that the family of functions ψi form a partition of unity on Ω as long as we do not
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make other assumptions.

We begin this part by showing that the order of the approximation with the help of cell aver-

ages is best in the barycenters. For the FVM and the corresponding cell averages, this result

can be found in [Son95] and [AS09]. In [Kec02], the result was adopted for the generalized

cell averages (2.5).

Lemma 2.2.1 (Approximation property). Let u ∈ C2(Ω × R+) and the barycenters of the

cells Ωi = supp(ψi) be defined as

bi(t) :=
1

Vi(t)

∫
Ω
xψi(x, t) dx.

Then the approximation ui of u is of second order, i.e.

ui(t) = u(bi, t) +O(h2),

where h is the smoothing length.

Proof. The proof can be found in [Son95] and [AS09] and is given here for completeness. For

simplicity, we will drop the second argument t in the following. We use the Taylor series

expansion

u(x) = u(bi) + u
′
(bi)(x− bi) +O(h2)

and get

ui − u(bi) =
1

Vi

∫
Ω

(
u− u(bi)

)
ψi dx

=
1

Vi

∫
Ω
u
′
(bi)

(
x− bi

)
ψi dx+O(h2)

= u
′
(bi)

(
1

Vi

∫
Ω
xψi dx− bi

)
+O(h2)

= O(h2).

With the help of Lemma 2.2.1, we can directly deduce the following approximation property

for the reconstruction formula (2.20) as stated in [Kec02].

Theorem 2.2.2 (Approximation property). For the reconstruction (2.20) we have for all

(x, t) ∈ Ω× [0, T ]

uh(x, t) = u(x, t) +O(h). (2.24)

Moreover, it was shown in [Tel05] that for u(·, t) ∈ H1(Ω,R) and Ω being an open subset of

R2, the reconstruction (2.20) satisfies the estimate

||uh(·, t)− u(·, t)||L2(Ω,R) ≤ C h ||∇u(·, t)||L2(Ω,R)
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where C is a constant independent of h. The proof uses the condition of a maximal overlap

of the partition of unity according to (2.41) and ||ψi(·, t)||L∞(Ω,R) ≤ C∞ for all particles.

We state now that the partition of unity satisfies the following properties. For the proof see

[Kec02].

Proposition 2.2.3. For a multiindex α and Wi ∈ C |α|, with |α| :=
∑d

j=1 αj, the functions

ψi satisfy

|Dαψi(x, t)| ≤
Cα

h|α|

|
∫

Ω
g(x)ψi(x, t) dx| ≤ Chd+q if g(x) = O(hq),

where Cα and C are h-independent constants.

Besides these results, it is easy to show some crucial characteristics of the geometrical coeffi-

cients and the generalized volumes.

Proposition 2.2.4 (Properties of the geometrical coefficients). The geometrical coefficients

defined in (2.13) satisfy

βij = −βji ∀ i, j = 1, . . . , N, (2.25a)

βii = 0 ∀ i = 1, . . . , N, (2.25b)

βij = 0, if supp(ψi) ∩ supp(ψj) = ∅, (2.25c)

βij = 2

∫
Ω
ψi∇ψj dx−

∫
∂Ω
ψiψjnds, (2.25d)

∑
j

βij = −
∫
∂Ω
ψinds ∀ i = 1, . . . , N, (2.25e)

||βij || = O(hd−1), (2.25f)

Vi = O(hd). (2.25g)

In the one-dimensional case, we have for every x̄ ∈ R

N∑
xi≥x̄

N∑
xj≥x̄

βij = 1. (2.26)

Proof. The proofs of the above properties can be found in [JS01], [Tel05] or [Kec02] and

are given here for completeness. (2.25a), (2.25b) and (2.25c) follow directly from Definition

(2.13). For (2.25d), we use the construction of the partition of unity and get

∇ψi =
∇Wi

σ
− ψi

∇σ
σ
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and

∇Wi = σ∇ψi + ψi∇σ

and therefore

βij =

∫
Ω

(
Γij − Γji

)
dx =

∫
Ω

(ψi
σ
∇Wj −

ψj
σ
∇Wi

)
dx

=

∫
Ω

(
ψi∇ψj − ψj∇ψi

)
dx = 2

∫
Ω

(
ψi∇ψj

)
dx−

∫
∂Ω
ψiψjnds.

Now this and the partition of unity property can be used to show (2.25e):

∑
j

βij = 2
∑
j

∫
Ω
ψi∇ψj dx−

∑
j

∫
∂Ω
ψiψjnds

= 2

∫
Ω
ψi ∇

∑
j

ψj︸ ︷︷ ︸
=0

dx−
∫
∂Ω
ψi
∑
j

ψjnds = −
∫
∂Ω
ψinds.

The properties (2.25f) and (2.25g) can be deduced directly from Proposition (2.2.3). For

(2.26), we define the function σ̃x̄(x, t) :=
∑

xi≥x̄ ψi(x, t) and obtain

N∑
xi≥x̄

N∑
xj≥x̄

βij = 2

∫
Ω
σ̃x̄∂xσ̃x̄ dx = 2

∫
Ω

(
∂xσ̃x̄

)2
dx

= lim
x→∞

σ̃2
x̄ − lim

x→−∞
σ̃2
x̄ = 1.

Remark 2.2.5. Note that in the one-dimensional case and for Ω = [a, b] ⊂ R, property

(2.25e) reads ∑
j

βij = −
∫
∂Ω
ψi n ds = ψi(a)− ψi(b).

Theorem 2.2.6 (Conservativity). Under the condition that the numerical flux function is

conservative, i.e.

gij(u,v) = −gji(v,u), (2.27)

the FVPM (2.19a)–(2.19d) is conservative in the sense that

d

dt

( N∑
i=1

Viui

)
= −

∫
∂Ω

(
F (u)− u · v

)
nds. (2.28)
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Proof. The proof can be found in [HSS00], [JS01] or [Tel05] and is given here for completeness.

Because of the conservation property of the numerical flux function (2.27) and the skew-

symmetry condition of the geometrical coefficients (2.25a), we can write

d

dt

( N∑
i=1

Viui

)
= −

N∑
i,j=1

||βij || gij −
N∑
i=1

Bi

= −
N∑
i=1

∫
∂Ω
ψi

(
F (u)− u · v

)
nds

= −
∫
∂Ω

(
F (u)− u · v

)
nds.

Remark 2.2.7. Note that this result ensures a conservation property of the reconstruction

(2.20), because we have

d

dt

(∫
Ω
uh dx

)
=

d

dt

(∑
i

ui

∫
Ω
ψi dx

)
=

d

dt

(∑
i

uiVi

)

= −
∫
∂Ω

(
F (u)− u · v

)
nds. (2.29)

Next, we will formulate in which way the different discretizations of the FVPM preserve

constant states under the assumption of a non-moving computational domain.

Theorem 2.2.8 (Preservation of constant states). Consider the semi-discrete scheme

(2.21a)–(2.21d) and a non-moving spatial domain Ω. Let us further assume a conservative

and consistent numerical flux function

f(ui,uj ,nij) = −f(uj ,ui,−nij)

and an arbitrary particle motion ẋi, i = 0, . . . , N . If for t ∈ R+

uj(t) = ui(t) ∀ j ∈ N (i),

scheme (2.21a)–(2.21d) preserves constant states in the sense that

d

dt
ui(t) = 0.

Proof. For non-moving particles, this has already been done and can be found for example in

[Tel05]. For the case of moving particles, we refer to [Kad].

Remark 2.2.9. Note that the fully discretized scheme, obtained by an explicit forward Euler

method in time in the semi-discrete version (2.21a)–(2.21d), guarantees the preservation of

constant states in the sense that the coefficients satisfy

un+1
i = uni ∀n ∈ N,∀ i = 0, . . . , N,

if u0
i = u = const for all i = 0, . . . , N .
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We will now show that for a special approximation of the velocities ẋi and ẋj of neighbouring

particles ψi and ψj in the numerical flux function, scheme (2.19a)–(2.19d) preserves constant

states, too. In Proposition 2.2.13, we will show why (2.30) should be considered as a good

approximation of the particle velocities ẋi and ẋj .

Theorem 2.2.10 (Preservation of constant states). Assume again an arbitrary particle mo-

tion and a conservative numerical flux function gij that satisfies the consistency condition

(2.14) with the following approximation of the movement of the particles

(
¯̇xij
)
k

:=

(
γij
)
k

(
ẋj
)
k
−
(
γji
)
k

(
ẋi
)
k(

βij
)
k

, for k = 1, . . . , d, (2.30)

where the index k denotes the k−th component. Provided that the spatial domain Ω is non-

moving and for t ∈ R+, we have

uj(t) = ui(t) ∀ j ∈ N (i),

the semi-discrete scheme (2.19a)–(2.19d) preserves constant states in the sense that

d

dt
ui(t) = 0.

Proof. The proof in case of fixed particles and the fully discretized scheme may be found in

[Tel05]. Let us now assume that the particles are moving according to the prescribed velocity

field ẋi, i = 0, . . . , N . Then, we have

d

dt
(Viui) = −

N∑
j=1

||βij ||gij −Bi = −
N∑
j=1

(F (ui)− ui · ¯̇xij)βij −Bi

=
N∑
j=1

(ui · ¯̇xij)βij = ui

N∑
j=1

¯̇xij βij

= ui

N∑
j=1

d∑
k=1

(
γij
)
k

(ẋj)k −
(
γji
)
k

(ẋi)k(
βij
)
k

(
βij
)
k

= ui

N∑
j=1

(
γij ẋj − γji ẋi

)
= ui V̇i.

The proposition follows directly.

Remark 2.2.11. Again, the property of preserving constant states holds for the fully dis-

cretized FVPM (2.22a)–(2.22d), too.

Remark 2.2.12. Note that Theorems 2.2.8 and 2.2.10 ensure the preservation of constant

states in the reconstruction (2.20), since ui(t) ≡ ū = const implies

d

dt
uh(x, t) =

d

dt

∑
i

ui(t)ψi(x, t) = ū
d

dt

∑
i

ψi(x, t)︸ ︷︷ ︸
≡1

= 0.
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The following Proposition states some important properties of the approximation (2.30).

Proposition 2.2.13. The approximate particle velocity (2.30) satisfies the following.

i) For neighbouring particles ψi and ψj, (2.30) fulfills the symmetry condition

¯̇xij = ¯̇xji. (2.31)

In particular, (2.30) ensures ¯̇xij = ẋ if ẋi = ẋj = ẋ.

ii) In the one-dimensional case, (2.30) can be written as

¯̇xij = λ ẋj + (1− λ) ẋi. (2.32)

If the function σ =
∑N

i=1Wi(x, t) varies not too much spatially, meaning that ∂xσ

satisfies the estimate

∣∣∣∣∣∣∣∣
∫

Ω
ψiψj(σ

−1)∂xσ dx∫
Ω
ψi∂xψj dx

∣∣∣∣∣∣∣∣ ≤ 1, (2.33)

¯̇xij is a convex combination of ẋi and ẋi.

Proof. The symmetry (2.31) can be computed directly for each component. In the one-

dimensional case, we can write ¯̇xij = λ ẋj + µ ẋi with λ =
γij
βij

and µ = −γji
βij

which satisfy

λ+ µ =
γij
βij
− γji
βij

= 1

and therefore (2.32) holds. Under condition (2.33), we obtain

λ =
γij
βij

=

∫
ψiσ

−1∂xWj dx

2

∫
ψi∂xψj dx

=

∫ (
ψi∂xψj + ψiψjσ

−1∂xσ
)

dx

2

∫
ψi∂xψj dx

=
1

2
+

1

2

∫
ψiψjσ

−1∂xσ dx∫
ψi∂xψj dx

,

and therefore 0 ≤ λ ≤ 1.
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Remark 2.2.14. Note that the symmetry (2.31) is important for the conservativity of the

numerical flux gij in case of moving particles, because

gij(u,u) = g(u, ẋi,u, ẋj ,nij) = (F (u)− u · ¯̇xij)nij = −(F (u)− u · ¯̇xji)nji = −gji(u,u).

Remark 2.2.15. In higher dimensions, (2.30) builds a convex combination in each coordi-

nate, as long as (2.33) is valid in each coordinate. A convex combination in general cannot

be guaranteed.

We will now give some examples where ∇σ ≡ 0 and thus, (2.33) is satisfied.

Example 2.2.16.

• (one-dimensional hat functions) Consider a one-dimensional setting where each particle

has only two neighbours: ∆xi
2 ≤ h ≤ ∆xi, where ∆xi := xi+1 − xi. For the partition of

unity, we use the piecewise linear polynomials

Wi(x, t) =


x− xi + h

h
, x ∈ [xi − h, xi)

x− xi + h
h

, x ∈ [xi, xi + h)

0, else.

Then, some easy computations lead to

γi,j =


1
2 , j = i+ 1

−1
2 , j = i− 1

0, else

and

βi,j =


1, j = i+ 1

−1, j = i− 1

0, else.

In that case, we end up with

¯̇xij =
ẋi + ẋj

2
.

• (one-dimensional quadratic kernel) Consider again a one-dimensional setting. The par-

tition of unity is now computed using piecewise quadratic polynomials

Wi(x, t) =


(x− xi + h)2, x ∈ [xi − h, xi − h

2 )

−(x− xi)2 + h2

2 , x ∈ [xi − h
2 , xi + h

2 )

(x− xi − h)2, x ∈ [xi + h
2 , xi + h)

0, else.



2.2. The geometrical coefficients and properties of the scheme 29

The particles are assumed to be distributed equidistantly with six neighbours each and

a smoothing length of h = 2 ∆x. In this case, the function σ satisfies σ ≡ h2 = const

[Tel05], such that the integral in (2.33) vanishes. Thus, we end up as before with

¯̇xij =
ẋi + ẋj

2
.

• (two-dimensional quadratic kernel) Condition (2.33) is naturally satisfied if the func-

tions Wi already form a partition of unity, because then σ =
∑

iWi ≡ 1 and ∇σ ≡ 0.

This is, for example, the case for the two-dimensional hat functions based on

W (x, y) =



−x+h
h , x ∈ [0, h), y ∈ [x− h, 0)

−x+y+h
h , x ∈ [0, h), y ∈ [0, x)

x−y+h
h , x ∈ [0, h), y ∈ [x, h)

x+h
h , x ∈ [−h, 0), y ∈ [0, x+ h)
−y+h
h , x ∈ [−h, 0), y ∈ [x, 0)

y+h
h , x ∈ [−h, 0), y ∈ [−h, x)

0, else

and equidistantly distributed particles with a smoothing length of h = ∆x = ∆y.

• (B-splines) B-splines naturally build a partition of unity by construction and can there-

fore be used in the FVPM as can be seen in Chapter 3.

In [Tel05] and [Tel00], it was shown for a scalar conservation law in one space dimension

that the FVPM (2.22a)–(2.22d) is monotone under suitable assumptions. In particular, the

numerical flux function gnij(u, v) is assumed to be in C1 and monotone nondecreasing in u

and nonincreasing in v. Furthermore, the time step ∆t has to satisfy the CFL-like condition

∆t ≤ mini V
n
i

L maxi
∑

j |βij |
, (2.34)

where L is the Lipschitz constant of gij . In Section 2.3, we will show monotonicity of the

FVPM (2.22a)–(2.22d) in several space dimensions under a slightly different CFL condition

and weaker conditions on the smoothness of gij , see Lemma 2.3.6. We will need the

monotonicity to show a discrete entropy inequality, compare Lemma 2.3.8.

In [JS01], the authors showed a Lax-Wendroff result for the semi-discrete formulation of the

FVPM in the case of a scalar conservation law in one spatial dimension: Under suitable

conditions on the partition of unity and under the condition that the coefficients ui(t) are

bounded and converge in some sense towards u, then u is a weak solution of the Cauchy

problem. In addition, it can be shown that the reconstruction
∑

i uiψi converges towards u

in L1
loc(R+, L1

loc(R,R)). The proof makes use of property (2.26).
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We end this section with an overview on procedures that ensure the important properties of

the coefficients formulated in Proposition 2.2.4 by correcting them numerically.

Correction procedures

We have seen that the properties of the geometrical coefficients βij are important for the

resulting method: they ensure, for example, conservativity and the preservation of constant

states. Therefore, it is of great interest to ensure these properties numerically. Since in the

computation of the coefficients βij we have to integrate numerically in each time step, and

motivated by the fact that numerical quadrature is cost expensive, it is best to compute the

coefficients by a coarse integration technique and then to correct them, so that the desired

properties are fulfilled. Obviously, it is easy to guarantee conditions (2.25a)–(2.25c) in contrast

to condition (2.25e).

The following fast and efficient correction procedure, where the error with respect to condition

(2.25e) is shifted from one particle to the “next” neighbour, was given by Keck in [Kec02]

and [HK03]. If the boundary integrals in (2.25e) can be computed exactly, it is easy to verify

that (2.25a)–(2.25c) and (2.25e) are satisfied.

• Compute approximations to the coefficients β̃ij =: β̃
(0)
ij satisfying (2.25a)–(2.25c) by

using a coarse and fast integration technique.

• Define the errors

β̃
(0)
ii =

∑
j

βij −
∑
j

β̃
(0)
ij = −

∫
∂Ω
ψinds−

∑
j

β̃
(0)
ij

and save them on the main diagonal of the matrix (β̃)ij = β̃ij .

• For i = 1, . . . , N − 1: choose an index j such that Ωi ∩ Ωj 6= ∅ and j > i and set

β̃
(i)
ij = β̃

(i−1)
ij + β̃

(i−1)
ii

β̃
(i)
ji = β̃

(i−1)
ji − β̃(i−1)

ii

β̃
(i)
ii = β̃

(i−1)
ii − β̃(i−1)

ii = 0

β̃
(i)
jj = β̃

(i−1)
jj + β̃

(i−1)
ii .

For all other elements set β̃
(i)
kl = β̃

(i−1)
kl .

Then, βij := β̃
(N−1)
ij satisfies (2.25a)–(2.25c) and (2.25e) by construction. For the exact

computation of the integrals in (2.25e) in the one-dimensional case, see Remark (2.2.5).

The next idea of correcting the coefficients can be found in [Tel05] and [TS08]. This procedure

is very simple to handle, but has the fundamental drawback that it destroys the conservativity

of the scheme. As before, in each time step, we compute the coefficients β̃
n
ij by a fast and
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coarse numerical integration technique. Then, for all interior particles i, we add the error

term −∆tG(uni ) β̃
n
ii, where β̃

n
ii =

∑
j∈N (i) β̃

n
ij , so the scheme writes

V n+1
i un+1

i = V n
i u

n
i −∆t

∑
j∈N (i)

‖β̃nij‖gnij −∆tG(uni ) β̃
n
ii (2.35)

withG(u) := F (u)−u·ẋi. In general, this scheme is not conservative any more, although the

error is only of order O(hd−1+q) if q is the order of the numerical integration. Nevertheless, we

will construct a possible movement of the particles such that conservativity can be guaranteed

at least in some special cases and under appropriate conditions for this correction method.

To maintain the conservativity of the scheme, we are interested in getting

∑
i

G(uni )β̃
n
ii = 0

⇔
∑
i

(F (uni )− uni · ani )β̃
n
ii = 0

⇔
∑
i

(
uni · β̃

n
ii

)
ani =

∑
i

F (uni )β̃
n
ii, (2.36)

where uni = (uni,1, . . . , u
n
i,m)T ∈ Rm, ani = (ani,1, . . . , a

n
i,d)

T ∈ Rd and β̃
n
ii ∈ Rd are the cell aver-

ages, the velocity of the particles in the particle positions xi at time tn and the accumulated

error term of the geometrical coefficients, respectively, and the product · is the outer product

that maps from Rm × Rd into Rm×d, i.e.

uni · β̃
n
ii = (β̃nii1 u

n
i , . . . , β̃

n
iid
uni ) =


β̃nii1 u

n
i,1 β̃nii2 u

n
i,1 . . . β̃niid u

n
i,1

β̃nii1 u
n
i,2 β̃nii2 u

n
i,2 . . . β̃niid u

n
i,2

...

β̃nii1 u
n
i,m β̃nii2 u

n
i,m . . . β̃niid u

n
i,m

 .

Conclusively, (2.36) reads∑
i

F (uni )β̃
n
ii =

∑
i

(
uni · β̃

n
ii

)
ani =

(
un1 · β̃

n
11, . . . ,u

n
N · β̃

n
NN

)
︸ ︷︷ ︸

=:M

An (2.37)

where An :=
(
an1,1, . . . , a

n
1,d︸ ︷︷ ︸

an
1

, an2,1, . . . , a
n
N,d

)T ∈ RdN . Usually, the number of particles N will

be much greater than m, so we have to deal with a highly underdetermined linear system,

which can only be solved if∑
i

F (uni )β̃
n
ii ∈ span{M j , j = 1, . . . , dN},

where M j denotes the jth column of M . So, if we have

rank(M) = rank

(
M |

∑
i

F (uni )β̃
n
ii

)
,
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Equation (2.37) can be solved using the pseudoinverse, for example. The solution of the

above system in combination with the correction procedure in (2.35) leads to a conservative

scheme in which the geometric coefficients have all the desired properties.

Unfortunately, solving a pseudoinverse in every time step can be very time consuming.

As an alternative, we show in Chapter 3 how to compute the geometrical coefficients exactly

in an efficient way using B-splines. In our numerical computations, we mainly use the

correction procedure due to Keck or B-splines.

2.3 Stability and entropy results

In this section, we will adopt some of the results for FVM stated in [Cha99] and [EGH95] for

the FVPM, namely a L∞-stability result (see Lemma 2.3.1), a monotonicity and a discrete

entropy inequality (see Lemmas 2.3.6 and 2.3.8) and, under suitable assumptions on the

partition of unity, a weak discrete BV-stability result and L1-stability (see Lemmas 2.3.5 and

2.3.3) for the scalar multi-dimensional case. Crucial for the proof of the L∞-stability is the

fact that un+1
i is a convex combination of unj for all j ∈ N (i). This has the direct consequence

that the FVPM preserves positive states (see Lemma 2.3.2).

The results mentioned above are essential elements in a Finite Volume convergence analysis

for scalar equations. Therefore, they are first steps in a convergence analysis for the FVPM.

Note that a L∞-stability result and monotonicity have already been shown in [Tel00], but only

for the one-dimensional scalar case. In this section, all results apply to scalar conservation

laws in arbitrary space dimensions. Moreover, the upper bound in Lemma 2.3.1 is clearly

optimal.

Let us consider the scalar conservation law in several spatial dimensions

∂tu(x, t) +∇ · F (u(x, t)) = 0, (x, t) ∈ Rd × R+

u(x, 0) = u0(x), x ∈ Rd
(2.38)

and the following scheme:

V n+1
i un+1

i = V n
i u

n
i −∆t

∑
j∈N (i)

||βnij || gnij(uni , unj )

V n+1
i = V n

i + ∆t
∑

j∈N (i)

(γnij ẋ
n
j − γnji ẋni )

u0
i =

1

V 0
i

∫
Ω
u0(x)ψi(x, 0) dx

V 0
i =

∫
Ω
ψ(x, 0) dx,

(2.39)

with the associated reconstruction formula

uh(x, t) =
∑
n∈N

∑
i∈T

uni ψi(x, t)1[tn,tn+1)(t), (2.40)
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where we denote the index set of all particles by T . As before, we define

Ωi(t) := supp(ψi(·, t))

and its discrete variant

Ωn
i := supp(ψi(·, tn)).

For simplicity, we will write for the numerical flux function gnij(u, v) or simply gnij instead

of g(u, ẋi, v, ẋj , n
n
ij). In the case of non-moving particles, we will omit the index n in the

numerical flux function, too. Furthermore, we make the following assumptions on the partition

of unity, the numerical flux function, the time step size as well as the data.

1. There exists a maximal and a minimal number of overlapping particles

∃µ,M ∈ R : ∀ (x, t) ∈ Rd × R+ 1 ≤ µ ≤ |{i ∈ T : x ∈ Ωi(t)}| ≤M. (2.41)

The geometrical coefficients and the volumes are of order d − 1 and d, respectively.

Moreover, the diameters of the patches are bounded. In particular, we assume

||βnij || ≤
hd−1

α
, V n

i ≥ αhd, (2.42)

δ(Ωn
i ) ≤ 2h. (2.43)

Further on, (2.25a)–(2.25e) have to be satisfied.

2. The numerical flux function gnij(u, v) satisfies:

· gnij(u, v) is Lipschitz continuous in both argumentsu and v

with Lipschitz constantL,

· gnij(u, v) has to be monotone nondecreasing inu and monotone

nonincreasing in v,

· gnij(u, v) = −gnji(v, u),

· In addition, gnij(u, v) has to satisfy the consistency condition (2.14).


(2.44)

3. The time step size ∆t has to satisfy the CFL condition

∆t ≤ (1− ξ)α2 h

2LCN
(2.45)

with some ξ ∈ (0, 1).

4. The assumptions on the initial data u0 and on the flux function F are:

u0 ∈ L∞(Rd,R) with ||u0||L∞(Rd,R) ≤ B for some B ∈ R,

F ∈ C1(R,Rd) and
dF

ds
is locally Lipschitz continuous.

(2.46)

Note that under conditions (2.41)–(2.43), it is easy to show that every particle has only a finite

number of neighbours. Conversely, it can be shown that a finite number of neighbours per

particle implies that every point in the computational domain is covered by at most finitely

many particles. The proof of this can be found in the Appendix.
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L∞-stability

In the one-dimensional case and for scalar conservation laws, an L∞-stability analysis was

made in [Tel00] and [Tel05] with a result of the form

||uh(·, t)||L∞(R,R) ≤ eCT ||u0||L∞(R,R) ∀ t < T

with C, T ∈ R. In this paragraph, we will give an improved L∞-stability result for the scalar

multi-dimensional case.

Lemma 2.3.1 (L∞-stability). Under the assumptions (2.41)–(2.46) and (2.25a)–(2.25e), the

scheme (2.39) with the reconstruction (2.40) is stable in the sense that

||uh(·, t)||L∞(Rd,R) ≤ ||u0||L∞(Rd,R) ∀ t > 0. (2.47)

Proof. The first part of the proof is very close to the proof in [Cha99]. The second part relies

on the partition of unity property of the family of functions ψi, i ∈ T .

First, we will show that un+1
i is a convex combination of uni and unj , j ∈ N (i), i.e.

un+1
i =

∑
j∈N (i)∪{i}

λj u
n
j ,

where 0 ≤ λj ≤ 1, j ∈ N (i) ∪ {i} and
∑

j λj = 1. For this purpose, we write the scheme as

un+1
i =

V n
i

V n+1
i

uni −
∆t

V n+1
i

∑
j∈N (i)

||βnij || gnij(uni , unj )

= uni −
V n+1
i − V n

i

V n+1
i

uni −
∆t

V n+1
i

∑
j∈N (i)

||βnij || gnij(uni , unj )

= uni −
∆t

V n+1
i

 ∑
j∈N (i)

||βnij || gnij(uni , unj ) + uni
∑

j∈N (i)

(γnij ẋ
n
j − γnji ẋni )


= uni −

∆t

V n+1
i

 ∑
j∈N (i)

||βnij || gnij(uni , unj ) + uni
∑

j∈N (i)

βnij ¯̇xnij


= uni −

∆t

V n+1
i

 ∑
j∈N (i)

||βnij || gnij(uni , unj )−
∑

j∈N (i)

||βnij ||
(
F (uni )− uni ¯̇xnij

)
nnij


= uni −

∆t

V n+1
i

∑
j∈N (i)

||βnij ||
(
gnij(u

n
i , u

n
j )− gnij(uni , uni )

)
= uni −

∆t

V n+1
i

∑
j ∈ N (i),

unj 6= uni

||βnij ||
(
gnij(u

n
i , u

n
j )− gnij(uni , uni )

uni − unj

)
(uni − unj ) .
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Obviously, with

λi = 1− ∆t
V n+1
i

∑
j ∈ N (i),

unj 6= uni

||βnij ||
(
gnij(u

n
i , u

n
j )− gnij(uni , uni )

uni − unj

)
,

λj = ∆t
V n+1
i

||βnij ||
(
gnij(u

n
i , u

n
j )− gnij(uni , uni )
uni − unj

)
, j ∈ N (i), unj 6= uni

we have
∑

j λj = 1.

Because of the monotonicity properties and the Lipschitz continuity of gnij , we have

0 ≤
gnij(u

n
i , u

n
j )− gnij(uni , uni )

uni − unj
≤ L,

and this implies, thanks to the CFL condition and the assumptions made on Vi and βij , that

∆t

V n+1
i

∑
j ∈ N (i),

unj 6= uni

||βnij ||
(
gnij(u

n
i , u

n
j )− gnij(uni , uni )

uni − unj

)
≤ (1− ξ)α2 h

2LCN

1

αhd
LCN

hd−1

α
=

(1− ξ)
2

.

Thus, we have

0 ≤ λj ≤ 1,

meaning that un+1
i is a convex combination of unj , j ∈ N (i). This leads us to

sup
i∈T
|un+1
i | ≤ sup

i∈T
|uni |.

Now, using the partition of unity property of the family (ψi)i∈T , we obtain for t ∈ [tn, tn+1)

||uh(·, t)||L∞ = ess sup
x∈Rd

|
∑
i∈T

uni ψi(x, t))| ≤ sup
i∈T
|uni |

≤ sup
i∈T
|un−1
i | ≤ · · · ≤ sup

i∈T
|u0
i | ≤ ||u0||L∞ .

The last inequality follows from the fact that for A,B ∈ R, we have

A ≤ 1

V 0
i

∫
Rd

u0(x)ψi(x, 0) dx ≤ B (2.48)

if A ≤ u0(x) ≤ B for all x ∈ Rd.

Note that we can set ξ = 0 in the proof above, but not for the weak BV-stability.

Positivity and L1-estimates

The first lemma in this paragraph concerns the preservation of positive states, as this is often

desired in the numerical treatment of problems which are known to have a positive solution.

This lemma follows directly from the results of the last paragraph.
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Lemma 2.3.2 (Positivity). Under the assumptions of Lemma 2.3.1, the FVPM (2.39)–(2.40)

preserves positivity, i.e. uni ≥ 0 for all i ∈ Z implies un+1
i ≥ 0 for all i ∈ Z. If, in particular,

u0(x) ≥ 0 for all x ∈ Rd, the same is true for the coefficients uni for all i ∈ Z, n ∈ N.

Proof. In the proof of Lemma 2.3.1, we have shown that un+1
i is a convex combination of

unj , j ∈ N (i) and the assertion follows immediately from (2.48).

Now we can show that the FVPM is L1-diminishing under the condition that u0(x) has the

same sign for all x ∈ Rd.

Lemma 2.3.3 (L1-estimates). Consider the scheme (2.39)–(2.40) and assume u0 ∈ L1(Rd,R)

and u0(x) ≥ 0 for all x ∈ Rd or u0(x) ≤ 0 for all x ∈ Rd. Suppose further that the

assumptions of Lemma 2.3.2 hold. Then we have the following L1-estimate:

||uh(·, tn)||L1(Rd,R) ≤ ||u0||L1(Rd,R)

for all n ∈ N.

Proof. Because of Lemma 2.3.2, the coefficients uni will have the same sign for all i ∈ Z and

all n ∈ N. Thus, due to the conservativity we have

||uh(·, tn)||L1(Rd,R) = ||uh(·, tn−1)||L1(Rd,R) = · · · = ||uh(·, 0)||L1(Rd,R) .

It remains to show ||uh(·, 0)||L1(Rd,R) ≤ ||u0||L1(Rd,R). We have

||uh(·, 0)||L1(Rd,R) =

∫
Rd

∣∣∑
i∈Z

u0
iψi(x)

∣∣dx ≤∑
i∈Z
|u0
i |
∫
Rd

ψi(x) dx

=
∑
i∈Z

∣∣∣∣ ∫
Rd

u0(y)ψi(y) dy

∣∣∣∣
Vi

∫
Rd

ψi(x) dx =
∑
i∈Z

∣∣∣∣ ∫
Rd

u0(y)ψi(y) dy

∣∣∣∣
≤
∑
i∈Z

∫
Rd

|u0(y)|ψi(y) dy = ||u0||L1(Rd,R) .

In the next part, we will show so-called weak BV-estimates for non-moving particles. The

proof follows [Cha99] and [EGH00] closely, where the authors formulated the weak BV-

stability for the Finite Volume setting on unstructured grids.

Weak BV-estimates

Before we show the weak BV-stability, we state a helpful lemma that can be found in

[EGGH98].

Lemma 2.3.4. Let g : R → R be a monotone, Lipschitz continuous function with Lipschitz

constant G > 0. Then g satisfies

|
∫ b

a

(
g(x)− g(a)

)
dx| ≥ 1

2G

(
g(b)− g(a)

)2 ∀a, b ∈ R .
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Proof. See [EGGH98].

Furthermore, we define

NT := max{n ∈ N : n ≤ T

∆t
− 1}

TR := {i ∈ T : Ωi ⊂ B(0, R)}
EnR := {(i, j) ∈ T 2 : i ∈ TR or j ∈ TR, j ∈ N (i), uni > unj }
σij := Ωi ∩ Ωj

S := {σij : σij ⊂ B(0, R)\B(0, R− 2h)}.

where T > 0 denotes a fixed time and R > 0. With the assumptions (2.41)–(2.43) made

above, one can ensure that there exist constants C1, C2, C3, such that

|EnR| ≤ C1 h
−d,

|TR| ≤ C2 h
−d,

|S| ≤ C3 h
1−d.

Details on these conclusions can be found in the Appendix in Proposition 5.4.4.

Now we will show an estimate that is often called weak BV-stability, see for example [Cha99],

[EGH95] and [EGGH98], because it provides estimates of order h−1/2 on the discrete deriva-

tives of the numerical solution in space and time.

Lemma 2.3.5 (Weak BV-stability). Assume non-moving particles. Under the conditions

(2.41)–(2.46), (2.25a)–(2.25e) and for R > 0, T > 0, there exists a constant Cbv ∈ R
depending only on F, u0, L, CN , α, ξ, R and T such that

NT∑
n=0

∆t
∑

(i,j)∈En
R

||βij ||
[

max
unj ≤c≤d≤uni

(gij(d, c)− gij(d, d))

+ max
unj ≤c≤d≤uni

(gij(d, c)− gij(c, c))
]
≤ Cbv√

h

(2.49)

and
NT∑
n=0

∑
i∈TR

Vi |un+1
i − uni | ≤

Cbv√
h
∀h < R . (2.50)

Proof. We write the scheme as

Vi (un+1
i − uni ) + ∆t

∑
j∈N (i)

||βij ||
(
gij(u

n
i , u

n
j )− gij(uni , uni )

)
= 0,

multiply it by uni and sum over n and i ∈ TR. Defining

B1 :=

NT∑
n=0

∑
i∈TR

Vi u
n
i (un+1

i − uni )



38 2. The Finite Volume Particle Method

and

B2 :=

NT∑
n=0

∑
i∈TR

∆t
∑

j∈N (i)

uni ||βij ||
(
gij(u

n
i , u

n
j )− gij(uni , uni )

)
yields B1 +B2 = 0. Now we rewrite the term B2 and get

B2 =

NT∑
n=0

∑
(i,j)∈En

R

∆t
[
uni ||βij ||

(
gij(u

n
i , u

n
j )− gij(uni , uni )

)
+ unj ||βji||

(
gji(u

n
j , u

n
i )− gji(unj , unj )

) ]
−

NT∑
n=0

∑
i∈TR

∑
j ∈ N (i)
j /∈ TR

∆t unj ||βji||
(
gji(u

n
j , u

n
i )− gji(unj , unj )

)
.

By defining

B3 :=

NT∑
n=0

∑
(i,j)∈En

R

∆t
[
uni ||βij ||

(
gij(u

n
i , u

n
j )− gij(uni , uni )

)
+ unj ||βji||

(
gji(u

n
j , u

n
i )− gji(unj , unj )

) ]
,

we can easily estimate

|B3 −B2| =
∣∣∣∣ NT∑
n=0

∑
i∈TR

∑
j ∈ N (i),
j /∈ TR

∆t unj ||βij ||
(
gij(u

n
i , u

n
j )− gij(unj , unj )

) ∣∣∣∣
≤

NT∑
n=0

∆t
∑
i∈TR

∑
j ∈ N (i),
j /∈ TR

|unj |︸︷︷︸
≤B

||βij ||︸ ︷︷ ︸
≤hd−1α−1

∣∣(gij(uni , unj )− gij(unj , unj )
)∣∣︸ ︷︷ ︸

≤2LB

≤ 2

NT∑
n=0

∆t
∑
i∈TR

∑
j ∈ N (i),
j /∈ TR

B2 L
hd−1

α

≤ 2T B2 L

α
hd−1 |S|︸︷︷︸

≤C3 h1−d

≤ C̃2,

where

C̃2 :=
2T B2 L

α
C3 .

By introducing the function

zij(x) :=

∫ x

0
||βij || s

(
∂gij
∂u

(s, s) +
∂gij
∂v

(s, s)

)
ds

=

∫ x

0
||βij || s

d

ds
gij(s, s) ds

= ||βij ||
[
x gij(x, x)−

∫ x

0
gij(s, s) ds

]
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and using

zij(b)− zij(a) = ||βij ||
[
b (gij(b, b)− gij(a, b))− a (gij(a, a)− gij(a, b))

−
∫ b

a
(gij(s, s)− gij(a, b)) ds

]
,

we can write B3 as

B3 = B4 +B5,

where

B4 :=

NT∑
n=0

∑
(i,j)∈En

R

∆t
[
zij(u

n
j )− zij(uni )

]
and

B5 :=

NT∑
n=0

∑
(i,j)∈En

R

∆t ||βij ||
∫ unj

uni

(
gij(s, s)− gij(uni , unj )

)
ds.

Because of the consistency of the numerical flux gij and the assumptions made on the geo-

metrical coefficients βij , we have

∑
j∈N (i)

zij(x) =
∑

j∈N (i)

||βij ||
(
x gij(x, x)−

∫ x

0
gij(s, s) ds

)
= 0,

and therefore

B4 = −
NT∑
n=0

∑
(i,j)∈En

R

∆t
[
zij(u

n
i )− zij(u

n
j )︸ ︷︷ ︸

=−zji(unj )

]

= −
NT∑
n=0

∑
(i,j)∈En

R

∆t
[
zij(u

n
i ) + zji(u

n
j )
]

= −
NT∑
n=0

∆t
[ ∑
i∈TR

∑
j∈N (i)

zij(u
n
i )

︸ ︷︷ ︸
=0

+
∑
i∈TR

∑
j ∈ N (i)
j /∈ TR

zji(u
n
j )
]

=

NT∑
n=0

∆t
∑
i∈TR

∑
j ∈ N (i)
j /∈ TR

zij(u
n
j )

=

NT∑
n=0

∆t
∑
i∈TR

∑
j ∈ N (i)
j /∈ TR

∫ unj

0
||βij || s

d

ds
gij(s, s) ds.
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This implies

|B4| ≤ T LB2 h
d−1

α
|S|︸︷︷︸

≤C3 h1−d

≤ T L B
2

α
C3 =: C̃4.

For the estimate of B5, we use the monotonicity of the numerical flux and Lemma 2.3.4 to

get:

B5 ≥
1

4L

NT∑
n=0

∆t
∑

(i,j)∈En
R

[
||βij || max

unj ≤c≤d≤uni
(gij(d, c)− gij(d, d))2

+||βij || max
unj ≤c≤d≤uni

(gij(d, c)− gij(c, c))2

]
.

At the end, we get an estimate of B1 using the technique of summation by parts:

B1 =

NT∑
n=0

∑
i∈TR

Vi u
n
i (un+1

i − uni )

≥ αhd
(

1

2

NT∑
n=0

∑
i∈TR

uni (un+1
i − uni ) +

1

2

NT∑
n=0

∑
i∈TR

uni (un+1
i − uni )

)

= αhd
(

1

2

NT∑
n=0

∑
i∈TR

uni (un+1
i − uni )− 1

2

NT∑
n=0

∑
i∈TR

un+1
i (un+1

i − uni )

− 1

2

∑
i∈TR

(u0
i )

2

︸ ︷︷ ︸
≤B2

2
C2 h−d

+
1

2

∑
i∈TR

(uNT +1
i )2

︸ ︷︷ ︸
≥0

)

≥ −αhd 1

2

NT∑
n=0

∑
i∈TR

(un+1
i − uni )2 − C̃5,

where

C̃5 :=
αB2C2

2
.

Applying the Cauchy-Schwarz inequality to the scheme (2.39) yields

(un+1
i − uni )2 =

∆t2

V 2
i

( ∑
j∈N (i)

||βij ||
(
gij(u

n
i , u

n
j )− gij(uni , uni )

))2

≤ h−2d

α2

(1− ξ)α2 h

2LCN

hd−1

α

∑
j∈N (i)

∆t ||βij ||
(
gij(u

n
i , u

n
j )− gij(uni , uni )

)2 ∑
l∈N (i)︸ ︷︷ ︸
≤CN

1

≤ (1− ξ)
2αL

h−d
∑

j∈N (i)

∆t ||βij ||
(
gij(u

n
i , u

n
j )− gij(uni , uni )

)2
,
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and therefore

B1 ≥− αhd
1

2

(1− ξ)
2αL

h−d
NT∑
n=0

∑
i∈TR

∑
j∈N (i)

∆t ||βij ||
(
gij(u

n
i , u

n
j )− gij(uni , uni )

)2 − C̃5

=− (1− ξ)
4L

NT∑
n=0

∑
i∈TR

∑
j∈N (i)

∆t ||βij ||
(
gij(u

n
i , u

n
j )− gij(uni , uni )

)2 − C̃5

=− (1− ξ)
4L

NT∑
n=0

[ ∑
(i,j)∈En

R

∆t ||βij ||
( (
gij(u

n
i , u

n
j )− gij(uni , uni )

)2
+
(
gji(u

n
j , u

n
i )− gji(unj , unj )

)2 )−∑
i∈TR

∑
j ∈ N (i)
j /∈ TR

∆t ||βij ||
(
gji(u

n
j , u

n
i )− gji(unj , unj )

)2 ]

− C̃5

≥− (1− ξ)
4L

NT∑
n=0

∑
(i,j)∈En

R

∆t ||βij ||
( (
gij(u

n
i , u

n
j )− gij(uni , uni )

)2
+
(
gij(u

n
i , u

n
j )− gij(unj , unj )

)2 )− C̃5

≥− (1− ξ)
4L

NT∑
n=0

∑
(i,j)∈En

R

∆t ||βij ||
(

max
unj ≤c≤d≤uni

(gij(d, c)− gij(d, d))2

+ max
unj ≤c≤d≤uni

(gij(d, c)− gij(c, c))2
)
− C̃5.

Defining

A1 :=

NT∑
n=0

∑
(i,j)∈En

R

∆t ||βij ||
(

max
unj ≤c≤d≤uni

(gij(d, c)− gij(d, d))2

+ max
unj ≤c≤d≤uni

(gij(d, c)− gij(c, c))2

)
,

we now have B1 + B2 = 0, |B3 − B2| ≤ C̃2, B3 = B4 + B5, |B4| ≤ C̃4, B5 ≥ A1
4L and

B1 ≥ −
(1− ξ)

4L A1 − C̃5 and thus

A1 ≤ 4LB5 = 4L (B3 −B4) = 4L (B3 −B2 −B1 −B4)

≤ 4L

(
|B3 −B2|+ |B4|+ C̃5 +

(1− ξ)
4L

A1

)
≤ 4L

(
C̃2 + C̃4 + C̃5 +

(1− ξ)
4L

A1

)
.

It follows
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A1 ≤
4L

ξ

(
C̃2 + C̃4 + C̃5

)
=: C̃6.

Next, we apply the Cauchy-Schwarz inequality two times to each term of the left hand side

of (2.49) and get

NT∑
n=0

∆t
∑

(i,j)∈En
R

||βij || max
unj ≤c≤d≤uni

(
gij(d, c)− gij(d, d)

)

≤
NT∑
n=0

∆t

( ∑
(i,j)∈En

R

||βij ||2 max
unj ≤c≤d≤uni

(
gij(d, c)− gij(d, d)

)2)1/2 ( ∑
(i,j)∈En

R

1

)1/2

︸ ︷︷ ︸
≤(C1 h−d)1/2

≤ C
1/2
1 h−d/2

( NT∑
n=0

∆t2
)1/2( NT∑

n=0

∑
(i,j)∈En

R

||βij ||2 max
unj ≤c≤d≤uni

(
gij(d, c)− gij(d, d)

)2)1/2

= C
1/2
1 h−d/2

( NT∑
n=0

∆t

)1/2( NT∑
n=0

∑
(i,j)∈En

R

∆t ||βij ||2 max
unj ≤c≤d≤uni

(
gij(d, c)− gij(d, d)

)2)1/2

≤ C
1/2
1 h−d/2 T 1/2 h

(d−1)/2

√
α

C̃
1/2
6

≤ C̃7 h
−1/2,

where

C̃7 :=

(
T C1 C̃6

α

)1/2

.

To get the estimate (2.50), we state that

Vi |un+1
i − uni | ≤ ∆t

∑
j∈N (i)

||βij || |gij(uni , unj )− gij(uni , uni )|

and thus

NT∑
n=0

∑
i∈TR

Vi |un+1
i − uni | ≤

NT∑
n=0

∑
i∈TR

∑
j∈N (i)

∆t ||βij || |gij(uni , unj )− gij(uni , uni )|

=

NT∑
n=0

∑
(i,j)∈En

R

∆t
[
||βij || |gij(uni , unj )− gij(uni , uni )|+ ||βji|| |gji(unj , uni )− gji(unj , unj )|

]

−
NT∑
n=0

∑
i∈TR

∑
j ∈ N (i)

j /∈ TR

∆t ||βji|| |gji(unj , uni )− gji(unj , unj )|

≤ 2

(
C̃7 h

−1/2 +
T LB C3

α

)
≤ C̃8 h

−1/2,
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where

C̃8 := 2

(
C̃7 +

T LB C3

α
R1/2

)
.

The assertion follows by setting Cbv := C̃8.

Discrete entropy inequality

Next, we will show a discrete entropy inequality for scheme (2.39) using Kruzkov’s entropy

from Definition 1.1.6. In order to do this, we need that the scheme is monotone in the classical

sense, meaning that the function

G(uni , uj , j ∈ N (i)) :=
V n
i

V n+1
i

uni −
∆t

V n+1
i

∑
j∈N (i)

||βnij || gnij(uni , unj ) (2.51)

is monotonically nondecreasing in each argument. In [Tel05] and [Tel00], the FVPM was

shown to be monotone for scalar conservation laws in one spatial dimension for a differentiable

numerical flux function and under the assumption of a slightly different CFL condition (see

(2.34)). With the techniques used in the proof of the L∞-stability, it is easy to show the

monotonicity without these restrictions.

Lemma 2.3.6 (Monotonicity). Under the assumptions (2.41)–(2.46), the FVPM (2.39) is

monotone.

Proof. Since the numerical flux function gij(u, v) is monotonically nonincreasing in v, the

function G is monotonically nondecreasing in unj for all j ∈ N (i) and j 6= i. To show the

monotonicity of G in the first argument, let us assume ũni < uni . With the same arguments

as in the proof of Lemma 2.3.1, we conclude that

V n+1
i

V n
i

(
G(ũni , uj , j ∈ N (i))−G(uni , uj , j ∈ N (i))

)

=

1− ∆t

V n
i

∑
j∈N (i)

||βnij ||
gij(ũ

n
i , u

n
j )− gij(uni , unj )

ũni − uni

 (ũni − uni ) ≤ 0

under the CFL condition

∆t ≤ α2 h

LCN
. (2.52)

Thus, a time step size ∆t satisfying (2.52) is enough to ensure monotonicity of the scheme.

Note that condition (2.45) is more restrictive and hence monotonicity follows.

Remark 2.3.7. Note that we need the more restricitve CFL condition (2.45) only for the weak

BV-stability result. For the monotonicity as well as L∞-stability, it is sufficient to assume

(2.52).

Now, we can formulate a discrete entropy inequality. It is the discrete analogue to Definition

1.1.6.
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Lemma 2.3.8 (Discrete entropy inequality). Under the assumptions (2.41)–(2.46), for all

c ∈ R, i ∈ T and n ∈ N we have the following discrete entropy inequality for the scheme

(2.39).

|un+1
i − c|V n+1

i − |uni − c|V n
i

∆t
+
∑

j∈N (i)

||βnij ||
[
gnij(u

n
i >c, unj>c)−gnij(uni ⊥c, unj⊥c)

]
≤ 0. (2.53)

Proof. If we write the scheme as

un+1
i = Gnij(u

n
i , u

n
j , j ∈ N (i))

with G from (2.51), we have a monotonically nondecreasing function (under the CFL condi-

tion) which satisfies G(c, . . . , c) = c ∀c ∈ R and

Gnij(u
n
i >c, unj>c, j ∈ N (i)) ≥ un+1

i >c,
Gnij(u

n
i ⊥c, unj⊥c, j ∈ N (i)) ≤ un+1

i ⊥c.

Subtracting the second inequality from the first one, we get (2.53).

Remark 2.3.9. Note that in the case of non-moving particles, (2.53) is equivalent to the

well-known discrete entropy inequality for Kruzkov’s entropy-entropy-flux pair for a standard

FVM

|un+1
i − c| − |uni − c|

∆t
+

1

Vi

∑
j∈N (i)

||Γij ||
[
gij(u

n
i >c, unj>c)− gij(uni ⊥c, unj⊥c)

]
≤ 0,

where Γij denotes the area of the surface between two neighbouring cells i and j, see [Kru70],

[Cha99] and [EGH00].

In this section, we have shown L∞-stability, positivity, a generalized monotonicity result and

a discrete entropy inequality for the FVPM applied to scalar conservation laws in arbitrary

space dimensions. Thus, according to Proposition 1.2.4, we have shown the convergence

of a subsequence in the nonlinear weak-* sense. Moreover, we proved a weak BV-stability

and L1-stability under suitable assumptions. All these results are important tools in a

convergence analysis for the FVPM.

It remains to show an entropy inequality for the reconstructed solution that naturally

includes some error terms. These error terms can be controlled with the help of the weak

BV-stability, see [Cha99] and [EGH00]. Passing to the limit in this entropy inequality

together with the notion of nonlinear weak-* convergence yields that the nonlinear weak-*

limit of uh is an entropy process solution (see Definition 1.1.9). It is well known that the

entropy process solution of problem (2.38) coincides with the unique entropy solution. In

particular, it does not depend on the additional parameter α, thus strong convergence in

Lploc(R
d × R+,R) follows, compare e.g. [Cha99] and [EGH00].



Chapter 3

The FVPM with B-splines

Up to now, we have computed the coefficients numerically and corrected them afterwards or

added a correction term directly to the right hand side of the scheme to force the scheme to

be conservative without losing other important properties like the preservation of constant

states. In the last section, we have seen that this can lead to the disadvantage that we cannot

choose an arbitrary particle motion any more. Of course, the best way to ensure the desired

properties of the scheme is still an exact evaluation of the respective integrals.

Using Shepard’s method of constructing a partition of unity, as described in Section (2.1),

leads to piecewise rational functions whose exact integration can be done efficiently in some

cases, but is too expensive in general. A possibility to compute the geometrical coefficients

exactly is shown in [QN11], where the authors take piecewise constant and overlapping shape

functions. In this way, the computational effort is reduced considerably, but the drawback is

clearly the restriction to piecewise constant particles.

In this section, we will use B-splines, which are given as piecewise polynomials and already

form a partition of unity, to compute the geometrical coefficients exactly.

B-Splines are a standard approximation tool and are therefore used in many numerical meth-

ods such as FEM or meshless methods, see for example [Höl03], [ZP13] or [WA10]. But, to

the author’s knowledge, there exists no meshless method where moving B-splines are used

as particles without any renormalization technique. In our scheme, B-splines are used as

test and Ansatz functions. Since B-splines already build a partition of unity, the integrands

in (2.12) are piecewise polynomials and thus, the geometrical coefficients can be computed

exactly. Because the B-splines are allowed to move, we have to take into account additional

terms. But, as we will see later, these terms can be computed exactly, too.

3.1 Introduction

We begin with the definition of B-splines and their main properties. For details as well as for

further applications of B-splines, we refer to [DeB01] or [SW05].

Definition 3.1.1 (B-splines in one spatial dimension over R). Consider a knot sequence

{xi}i∈Z with xi ≤ xi+1 which builds a partition of R, i.e.
⋃
i∈Z[xi, xi+1) = R, and the

45
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functions

wmi (x) =


x− xi

xi+m − xi , if xi < xi+m

0, else
(3.1)

with i ∈ Z and m ∈ N. The functions Bm
i defined by

B0
i (x) =

{
1, if x ∈ [xi, xi+1)

0, else
(3.2)

and

Bm
i (x) = wmi (x)Bm−1

i (x) + (1− wmi+1(x))Bm−1
i+1 (x) (3.3)

with i ∈ Z and m ∈ N are called B-splines of degree m associated with the knot sequence

{xi}i∈Z.

Thus, B0
i are the characteristic functions over the intervals [xi, xi+1) and B1

i are the piecewise

linear hat functions.

Originally, Curry and Schoenberg introduced B-splines using divided differences [CS66] and

a different normalization ending up with

Mm
i (x) := (m+ 1) [xi, . . . , xi+m+1](· − x)m+ , x ∈ R, (3.4)

where

[xi, . . . , xi+n]f

denotes the n-th divided difference of a function f : R → R which is defined as the

leading coefficient of the interpolation polynomial of degree n that interpolates the data

(xi, f(xi)), . . . , (xi+n, f(xi+n)). Further on, (·)n+ : R→ R+ is defined as

x0
+ :=

{
1, x > 0

0, else

for n = 0 and

xn+ := (max(0, x))n for n ≥ 1.

One can show that

Mm
i (x) =

m+ 1

xi+m+1 − xi
Bm
i (x). (3.5)

See [DeB01] for details.

Remark 3.1.2. Note that Definition 3.1.1 does not exclude that knots may occure more than

once in the knot sequence.

Proposition 3.1.3 (Properties of B-splines). Assume xi < xi+m+1 for all i ∈ Z. Then, the

function Bm
i defined in 3.1.1 consists of at most m+ 1 nontrivial polynomial pieces of degree

at most m, has local support and is positive on (xi, xi+m+1). Especially, the B-spline Bm
i

satisfies
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supp(Bm
i ) =

{
(xi, xi+m+1), if xi < xi+m

[xi, xi+m+1), if xi = xi+1 = · · · = xi+m,

Bm
i (xi) =

{
0, if xi < xi+m

1, if xi = xi+1 = · · · = xi+m.

Moreover, the functions Bm
i always build a partition of unity if the knot sequence forms a

partition of R: ∑
i∈Z

Bm
i (x) = 1 ∀x ∈ R. (3.6)

The first statements can be verified directly by Definition 3.1.1. The proof of (3.6) can be

found for example in [DeB01] or [SW05].

Definition 3.1.4 (B-splines on intervals). Consider an interval [a, b] ⊂ R and a knot vec-

tor X = (x0, . . . , xn) with a = x0 < x1 ≤ · · · ≤ xn−1 < xn = b and the extended vector

Xm = (x−m = · · · = x0 < x1 ≤ x2 ≤ · · · ≤ xn−1 < xn = · · · = xn+m). Let the func-

tions Bm
0 , . . . , B

m
n+m−1 be as defined in 3.1.1, but with Bm

n+m−1(b) := 1. Then the functions

Bm
0 , . . . , B

m
n+m−1 are called B-splines of degree m on the interval [a, b].

Remark 3.1.5. Note that the change in the last B-spline Bm
n+m−1(b) = 1 is strictly required,

when the B-splines shall build a partition of unity on the closed interval [a, b]. Without

this change, Definition 3.1.1 directly yields Bm
i (b) = 0 for all i = 0, 1, . . . , n + m − 1 and

consequently
∑n+m−1

i=0 Bm
i (b) = 0.

Figure 3.1 shows the B-splines Bm
i for m = 1, m = 2 and m = 5 on the interval [a, b] = [0, 7]

for the knotvectors X1 = (0, 0, 1, 2.5, 3, 5, 6.2, 7, 7), X2 = (0, 0, 0, 1, 2.5, 3, 5, 6.2, 7, 7, 7) and

X5 = (0, 0, 0, 0, 0, 0, 1, 2.5, 3, 5, 6.2, 7, 7, 7, 7, 7, 7).

The following lemma will allow to simplify the formulation of the FVPM with B-splines

considerably. The proof can be found in [DeB01] and is given here for completeness.

Lemma 3.1.6. For m ≥ 0, we have∫
R
Bm
i (x) dx =

xi+m+1 − xi
(m+ 1)

. (3.7)

Proof. We consider the Taylor expansion for f ∈ Cm+1 and assume x, xi, . . . , xi+m+1 ∈ [a, b]

for some a, b ∈ R:

f(x) =
∑
r≤m

Drf(a)
(x− a)r

r!
+

∫ x

a
(x− s)mDm+1f(s)

m!
ds

=
∑
r≤m

Drf(a)
(x− a)r

r!
+

∫ b

a
(x− s)m+

Dm+1f(s)

m!
ds.
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(a) B-splines of degree m = 1 (b) B-splines of degree m = 2

(c) B-splines of degree m = 5

Figure 3.1: B-splines on the interval [0, 7].

If we now apply the divided difference [xi, . . . , xi+m+1] to both sides, we get

[xi, . . . , xi+m+1]f =

∫ b

a
[xi, . . . , xi+m+1](· − s)m+

Dm+1f(s)

m!
ds.

Choosing f(x) = xm+1 leads to

1 =

∫ b

a
Mm
i (s)ds =

∫
R
Mm
i (s)ds

with Mm
i defined in (3.4). Using (3.5), we get∫

R
Bm
i (x)dx =

xi+m+1 − xi
m+ 1

.
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3.2 The FVPM with B-splines in one spatial dimension

As we have seen in the last paragraph, B-splines are piecewise polynomial and already build

a partition of unity. Thus, we are able to evaluate the integrals in (2.12) and (2.13) exactly

without much effort instead of using expensive numerical integration techniques. In return,

we have to take into account additional terms appearing in the scheme for B-splines of

degree m > 1. Further on, we will see that one loses the freedom of choosing arbitrary many

neighbours for each particle.

In the following, we will derive the FVPM for the problem (2.1) in one spatial dimension

using B-splines as particles. We begin with the case of B-splines of degree m = 1, because

in this case the scheme can be written in a very simple way by using a slightly different

discretization than will be used in the general case.

First Ansatz: B-splines of degree m = 1

Consider an interval [a, b] ⊂ R, points a = x−1 = x0 ≤ x1 ≤ · · · ≤ xN = xN+1 = b and

B-splines of degree m = 1 that form a partition of unity over the interval [a, b] as defined in

3.1.4. The points x0, . . . , xN will be denoted as particle positions which are allowed to move,

thus having xi = xi(t) for i = 0, . . . , N .

The corresponding B-splines B1
i are denoted as particles. Of course, the auxiliary points

x−1 and xN+1 should move with the same velocities as the points x0 and xN , respectively,

such that we have x−1(t) = x0(t) and xN (t) = xN+1(t) ∀ t ≥ 0 and a partition of unity

according to Definition 3.1.4 is always guaranteed. Further on, we restrict the movement of

the points such that we have xi(t) ≤ xi+1(t) ∀t ≥ 0, meaning that particles are not allowed to

overtake each other. Obviously, the B-spline Bm
i defined in 3.1.1 only depends on the points

xi(t), . . . , xi+m+1(t). After renumbering and introducing quantities

hi(t) = xi+1(t)− xi(t),

the B-splines of degree m = 1 can be written at each time t ≥ 0 as

B1
i (x, t) = W (x− xi(t), hi−1(t), hi(t)), i = 0, . . . , N

with the function

W (x, h1, h2) =


1 + x

h1
for − h1 ≤ x ≤ 0

1− x
h2

for 0 ≤ x ≤ h2

0 else.

These B-splines will now be taken as particles, meaning that we set

ψi(x, t) = B1
i (x, t),

compare Figure 3.2. Note that in general, the position xi(t) of particle ψi at time t is no

longer the center of the support of that particle.
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Figure 3.2: Sketch of a particle ψi.

Using

∂tψi(x, t) = −ẋi(t)∇xψi(x, t) + ḣi−1(t) ∂h1W (x− xi(t), hi−1(t), hi(t))

+ḣi(t) ∂h2W (x− xi(t), hi−1(t), hi(t)),

we can write for a non-moving domain Ω = [a, b] ⊂ R with the outer normal vector n

d

dt

∫
Ω
uψi dx =

∫
Ω

[(
− ẋi∇xψi + ḣi−1 ∂h1W (x− xi, hi−1, hi)

+ḣi ∂h2W (x− xi, hi−1, hi)
)
u+ F (u)∇xψi

]
dx−

∫
∂Ω
F (u)ψi n ds

=

∫
Ω

(
F (u)− ẋi · u

)
∇xψi dx+ ḣi−1

∫
Ω
∂h1W (x− xi, hi−1, hi)udx

+ḣi

∫
Ω
∂h2W (x− xi, hi−1, hi)u dx−

∫
∂Ω
F (u)ψi n ds.

As in Chapter 2, we define local averages as

ui(t) =
1

Vi(t)

∫
Ω
u(x, t)ψi(x, t) dx,

where

Vi(t) =

∫
Ω
ψi(x, t) dx =

1

2

(
xi+1(t)− xi−1(t)

)
=

1

2

(
hi(t) + hi−1(t)

)
.

Assuming now that u can be approximated by ūi,i−1 and ūi,i+1 on (xi−1, xi) and (xi, xi+1),

respectively, and using

∂h1W (x− xi, hi−1, hi)|(xi,xi+1) = 0

∂h2W (x− xi, hi−1, hi)|(xi−1,xi) = 0

as well as ∫ xi

xi−1

∂h1W (x− xi, hi−1, hi)dx =

∫ xi+1

xi

∂h2W (x− xi, hi−1, hi)dx =
1

2
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and ∫ xi

xi−1

∇xψidx = −
∫ xi+1

xi

∇xψidx = 1,

we can write

d

dt
(Viui) ≈ (F (ūi,i−1)− ūi,i−1 ẋi)− (F (ūi,i+1)− ūi,i+1 ẋi)

+
1

2
ḣi−1 ūi,i−1 +

1

2
ḣi ūi,i+1 − B̃i

=

(
F (ūi,i−1)− ūi,i−1

ẋi + ẋi−1

2

)
−
(
F (ūi,i+1)− ūi,i+1

ẋi + ẋi+1

2

)
− B̃i

where

B̃i =

∫
∂Ω
F (u)ψi n ds .

Introducing a numerical flux function gij := g(ui, ẋi,uj , ẋj) consistent with
(
F (u)− u ẋ

)
in

the sense that

g(u, ẋi,u, ẋj) =
(
F (u)− u ẋi + ẋj

2

)
,

we can approximately write

d

dt

(
Viui

)
= −

(
gi,i+1 + gi,i−1

)
− B̃i. (3.8)

For the volumes it follows immediately from the shape of the B-splines of degree m = 1 or by

Lemma 3.1.6 that

Vi(t) =

∫
Ω
ψi(x, t) dx =

xi+1(t)− xi−1(t)

2

and therefore

V̇i =
ẋi+1 − ẋi−1

2
. (3.9)

Together with the initial values

Vi(0) =

∫
Ω
ψi(x, 0) dx =

xi+1(0)− xi−1(0)

2
, (3.10)

ui(0) =

∫
Ω
u(x, 0)ψi(x, 0) dx (3.11)

and the reconstruction formula

uh(x, t) =
N∑
i=0

ui(t)ψi(x, t),

we have a semi-discrete version of the FVPM with B-splines of degree m = 1 in one spatial

dimension. It follows immediately that this scheme is conservative and preserves constant

states. In fact, the only difference to scheme (2.19a)–(2.19d) for the case of two neighbours

per particle and piecewise linear shape functions described in Chapter 2 lies in the initial

values and the reconstruction formula.
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FVPM with B-splines of higher degree

We will now derive the FVPM with B-splines of higher degree in one spatial dimension.

Unfortunately, in the general case, the scheme will contain additional terms resulting from

the more complicated dependence of the B-splines on the particle positions. As an advantage,

these terms and all other occuring integrals can be computed exactly.

By construction, for every t ≥ 0, the B-spline Bm
i defined in 3.1.1 can be written as a function

Wm depending only on x − xi and the distances between the knots xi+1 and xi, xi+2 and

xi+1,..., xi+m+1 and xi+m, i.e. we set

ψmi (x, t) = Wm(x− xi(t), hi(t), . . . , hi+m(t)) (3.12)

for Wm : R× Rm+1
>0 → R and hi(t) := xi+1(t)− xi(t). As before, the particles will be moved

according to the movement of the knots xi(t). Note that, in constrast to our first Ansatz,

xi(t) cannot be assigned to the unique maximum of the particle ψmi any longer, except for

degree m = 1 and after renumbering, see Figure 3.3. For this reason, we will get two different

numerical schemes in the case m = 1: scheme (3.8)–(3.11) based on our first Ansatz and

scheme (3.26)–(3.29) based on the general Ansatz to be introduced now.

Figure 3.3: Sketch of particles ψ1
i (left) and ψ2

i (right).

To simplify notation, we set

Wm
i (x, t, hi(t), . . . , hi+m(t)) := Wm(x− xi(t), hi(t), . . . , hi+m(t)).

Moreover, we will often neglect the arguments and write Wm
i instead of

Wm
i (x, t, hi(t), . . . , hi+m(t)).

Proposition 3.2.1. The time derivative of particle i can be written as

∂tψ
m
i (x, t) =

N∑
j=1

(
ẋj ψ

m
i ∇xψmj − ẋi ψmj ∇xψmi

)
+

N∑
j=1

m∑
k=0

(
ḣi+k (∂hi+k

Wm
i )ψmj − ḣj+k (∂hj+k

Wm
j )ψmi

)
.

(3.13)
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Proof. First, we state

∂tψ
m
i (x, t) = −ẋi∇xψmi +

m∑
k=0

ḣi+k ∂hi+k
Wm
i . (3.14)

Using
∑

j ψ
m
j ≡ 1 , we get

∂tψ
m
i (x, t) =

N∑
j=1

ψmj ∂tψ
m
i − ψmi

d

dt

N∑
j=1

ψmj

=

N∑
j=1

(
ẋj ψ

m
i ∇xψmj − ẋi ψmj ∇xψmi

)
+

N∑
j=1

m∑
k=0

(
ḣi+k (∂hi+k

Wm
i )ψmj − ḣj+k (∂hj+k

Wm
j )ψmi

)
.

Remark 3.2.2. Using (3.14), we see that the particles satisfy the transport equation

∂tψ
m
i + ẋi∇xψmi =

m∑
k=0

ḣi+k ∂hi+k
Wm
i .

As before, the spatial derivative can be represented in the symmetric form

∇xψmi =
N∑
j=1

(
ψmj ∇xψmi − ψmi ∇xψmj

)
. (3.15)

In analogy to Section 2.1, we define geometrical coefficients

γij =

∫
Ω

Γij dx,

βij = γij − γji,

δkji =

∫
Ω

(
∂hi+k

Wm
i

)
ψmj dx

and the boundary term

B̃i =

∫
∂Ω
F (u)ψmi n ds

to get

d

dt

(
Viui

)
=

d

dt

∫
Ω
uψmi dx =

N∑
j=1

∫
Ω

(
ẋj ψ

m
i ∇xψmj − ẋi ψmj ∇xψmi

)
udx

+

N∑
j=1

m∑
k=0

∫
Ω

(
ḣi+k (∂hi+k

Wm
i )ψmj − ḣj+k (∂hj+k

Wm
j )ψmi

)
u dx

+
N∑
j=1

∫
Ω
F (u)

(
ψmj ∇xψmi − ψmi ∇xψmj

)
dx− B̃i .
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As before, we take a numerical flux function gij := g(ui, ẋi,uj , ẋj , nij) that is conservative

and consistent with (F (u) − u · ¯̇xij) with the approximated particle velocity (2.30) and end

up with the following ODE

d

dt

(
Viui

)
= −

N∑
j=1

|βij | gij +

N∑
j=1

m∑
k=0

(
ḣi+k δ

k
ji uj − ḣj+k δkij ui

)
− B̃i . (3.16)

Note that the approximated particle velocity (2.30) forms a convex combination of the particle

velocities ẋi and ẋj as condition (2.33) is always satisfied.

To complete the modified FVPM, we need an additional equation for the volumes Vi. From

Lemma 3.1.6 we can conclude directly

V̇i =
d

dt

∫
Ω
ψmi dx =

ẋi+m+1 − ẋi
m+ 1

. (3.17)

Thus, we can now formulate a semi-discrete version of the FVPM with B-splines consisting

of (3.16), (3.17), the initial conditions

ui(0) =
1

Vi(0)

∫
Ω
u0(x)ψmi (x, 0) dx (3.18)

Vi(0) =

∫
Ω
ψmi (x, 0) dx =

xi+m+1(0)− xi(0)

m+ 1
(3.19)

and the reconstruction formula

uh(x, t) =

N∑
i=1

ui(t)ψ
m
i (x, t). (3.20)

Remark 3.2.3. For the evolution of the volumes Vi, we can write equivalently

V̇i =

∫
Ω
∂tψ

m
i dx =

N∑
j=1

[(
γij ẋj − γji ẋi

)
+

m∑
k=0

(
ḣi+k δ

k
ji − ḣj+k δkij

)]
. (3.21)

Again, we can show that the FVPM with B-splines is conservative and preserves constant

states if a conservative numerical flux function that is consistent with the averaged particle

velocity (2.30) is used.

Theorem 3.2.4 (Conservativity). Consider a non-moving domain Ω ⊂ R and assume that

the numerical flux function gij is conservative and consistent with the modified flux function

(F (u)−u · ¯̇xij) with the averaged particle velocity (2.30). Then, the method (3.16)–(3.19) is

conservative in the sense that

d

dt

N∑
i=1

(Viui) = −
∫
∂Ω
F (u)n ds. (3.22)

The proof is similar to that in Chapter 2.



3.2. The FVPM with B-splines in one spatial dimension 55

Theorem 3.2.5 (Preservation of constant states). Under the assumptions of Theorem 3.2.4

scheme (3.16)–(3.19) preserves constant states in the sense that

uj(t) = ui(t) ∀j ∈ N (i)

implies
d

dt
ui(t) = 0.

Proof. We use (3.21) to see that

d

dt
(Viui) = −

N∑
j=1

(F (ui)− ui · ¯̇xij)βij +
N∑
j=1

m∑
k=0

(ḣi+k δ
k
ji − ḣj+k δkij)ui − B̃i

=

N∑
j=1

[
(γij ẋj − γjiẋi) +

m∑
k=0

(ḣi+kδ
k
ji − ḣj+kδkij)

]
ui

= V̇i ui.

Remark 3.2.6. Again, the conservativity and the property of preservation of constant states

can be naturally transferred to a fully discretized version of the FVPM using for example an

explicit forward Euler method in time which we will use in our numerical computations in

Chapter 5.

We end this section with the derivation of some helpful properties of the coefficients and the

boundary term, which can be deduced directly from the properties of B-splines.

Proposition 3.2.7. Consider the domain Ω = [a, b] ⊂ R and N particles ψmi (x, t) over the

extended knot vector (x1, x2, . . . , xN+1, . . . , xN+m+1) with x1 = · · · = xm+1 and xN+1 = · · · =
xN+m+1 (see Definition 3.1.4). Under the assumption xm+1 < xm+2 < · · · < xN+1, the

coefficients and the boundary term of the FVPM with B-splines satisfy

βij = 2 γij , (3.23)

¯̇xij =
ẋi + ẋj

2
, (3.24)

B̃i(t) =


−F (u(a, t)), for i = 1

F (u(b, t)), for i = N

0, else.

(3.25)

Proof. For the coefficients γij , we have

γij =

∫
Ω
ψmi ∂xψ

m
j dx =

∫ b

a
ψmi ∂xψ

m
j dx =

[
ψmi ψ

m
j

]b
a
−
∫ b

a
ψmj ∂xψ

m
i dx.
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By Definition 3.1.4 and Proposition 3.1.3, the particles satisfy

ψi(a) =

{
1, for i = 1

0, else,
ψi(b) =

{
1, for i = N

0, else.

Thus

γij = −γji

and

βij = γij − γji = 2 γij .

This yields

¯̇xij =
γij ẋi − γji ẋj

βij
=
ẋi + ẋj

2
.

Alternatively, (3.24) follows by Proposition 2.2.13 (ii) in Chapter 2.

For the boundary term, we get directly

B̃i(t) =

∫
∂Ω
F (u)ψmi n ds = [F (u)ψmi ]ba =


−F (u(a, t)), for i = 1

F (u(b, t)), for i = N

0, else.

In the next section, we will present two special cases of the FVPM with B-splines, namely

the cases for B-splines of degree m = 1 and m = 2 in one spatial dimension.

3.3 Special cases

We begin with B-splines of degree m = 1 for the scheme (3.16)–(3.19).

For m = 1, we get for the coefficients

βij =


1 for j = i+ 1

−1 for j = i− 1

0 else,

γij =


1
2 for j = i+ 1

−1
2 for j = i− 1

0 else,

δ0
ji =


1
2 for j = i+ 1

−1
6 for j = i− 1

0 else,

δ1
ji =

{
1
3 for j = i+ 1

0 else.
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Using a forward Euler method in time for Equation (3.16), we obtain

V n+1
i un+1

i = V n
i u

n
i −∆t

[
gni,i+1(uni ,u

n
i+1) + gni,i−1(uni ,u

n
i−1)

]
+∆t

(
ḣni δ

0
i+1,i u

n
i+1 − ḣni+1 δ

0
i,i+1 u

n
i + ḣni+1 δ

1
i+1,i u

n
i+1 − ḣni+2 δ

1
i,i+1 u

n
i

+ḣni δ
0
i−1,i u

n
i−1 − ḣni−1 δ

0
i,i−1 u

n
i + ḣni+1 δ

1
i−1,i u

n
i−1 − ḣni δ1

i,i−1 u
n
i

)
−∆t B̃

n
i

= V n
i u

n
i −∆t

[
gni,i+1(uni ,u

n
i+1) + gni,i−1(uni ,u

n
i−1)

]
+∆t

(1

2
ḣni ui+1 +

1

6
ḣni+1 ui +

1

3
ḣni+1 ui+1 (3.26)

−1

6
ḣni ui−1 −

1

2
ḣni−1 ui −

1

3
ḣni ui

)
−∆t B̃

n
i ,

where B̃
n
i is a suitable discretization of the boundary term B̃i in (3.16) and V n

i = Vi(n∆t),

uni = ui(n∆t), ḣni = ḣi(n∆t) and gnij(u,v) = gij(u, ẋ
n
i ,v, ẋ

n
j , n

n
ij) with ẋni = ẋi(n∆t) and

nnij = nij(n∆t). The initial values and the volume updates are given by

u0
i =

2

xi+2(0)− xi(0)

∫ xi+2(0)

xi(0)
u0(x)ψ1

i (x, 0) dx, (3.27)

V 0
i =

xi+2(0)− xi(0)

2
, (3.28)

V n+1
i = V n

i +
ẋni+2 − ẋni

2
, (3.29)

where

ψ1
i (x, t) =


x− xi(t)
hi(t)

, x ∈
[
xi(t), xi(t) + hi(t)

)
1− x− xi(t)− hi(t)

hi+1(t)
, x ∈

[
xi(t) + hi(t), xi(t) + hi(t) + hi+1(t)

)
0, else.

Obviously, scheme (3.26)–(3.29) is more complicated than scheme (3.8)–(3.11). In Section

5.2, we implemented both schemes for the problem of a moving piston in a one-dimensional

domain. Both schemes behave well and provide similar convergence rates. Therefore, scheme

(3.8)–(3.11) is the preferred one in the case m = 1.

Next, we consider the scheme (3.16)–(3.19) with B-splines of degree m = 2. In this case, we

have four neighbours for every particle located sufficiently far away from the boundaries:

N (i) = {i− 2, i− 1, i+ 1, i+ 2}, i = 3, 4, . . . , N − 2. (3.30)
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An Euler discretization of (3.16)–(3.19) yields

V n+1
i un+1

i = V n
i u

n
i −∆t

∑
j∈N (i)

|βnij | gnij(uni ,unj )

+
∑

j∈N (i)

2∑
k=0

(
ḣni+k

(
δkji

)n
unj − ḣnj+k

(
δkij

)n
uni

)
−∆t B̃i (3.31)

V n+1
i = V n

i +
ẋni+3 − ẋni

3
(3.32)

u0
i =

1

V 0
i

∫
Ω
u0(x)ψ2

i (x, 0) dx (3.33)

V 0
i =

xi+3(0)− xi(0)

3
(3.34)

with

ψ2
i (x, t) = W 2(x− xi(t), hi(t), hi+1(t), hi+2(t))

=



(x− xi)2

hi (hi + hi+1)
, x ∈ [xi, xi + hi)

(x− xi)
(
hi + hi+1 − (x− xi)

)
hi+1 (hi + hi+1)

+

(
(x− xi)− hi

) (
hi + hi+1 + hi+2 − (x− xi)

)
hi+1 (hi+1 + hi+2)

,

x ∈ [xi + hi,

xi + hi + hi+1)

(
hi + hi+1 + hi+2 − (x− xi)

)2
hi+2 (hi+1 + hi+2)

,
x ∈ [xi + hi + hi+1,

xi + hi + hi+1 + hi+2)

0, else,

where we omitted the argument t in the last term to simplify notation. Note that the upper

index in the function ψ2
i denotes the degree of the B-spline. Note further that we used

xi, hi, hi+1 and hi+2 as the only arguments of ψ2
i in the above representation. Since we have

to compute the partial derivatives ∂hiWi, ∂hi+1
Wi and ∂hi+2

Wi, this notation is much more

advisable.

The geometrical coefficients βij can be computed exactly and are given by

βi,i+1 =
1

3

[
hi+1 (2hi + hi+1)

(hi + hi+1) (hi+1 + hi+2)
−

h2
i+1

(hi+1 + hi+2) (hi+2 + hi+3)
+
hi+1 + 3hi+2

(hi+1 + hi+2)

]
=− βi+1,i, i = 3, . . . , N − 2



3.3. Special cases 59

and

βi,i+2 =
h2
i+2

3 (hi+1 + hi+2) (hi+2 + hi+3)
= −βi+2,i, i = 2, . . . , N − 2.

For particles near the boundary, the coefficients βij have to be computed separately. For

the computation of the additional coefficients δkji, the functions ∂hiWi, ∂hi+1
Wi and ∂hi+2

Wi

are needed. These are given by (3.35)–(3.37). To compute the coefficients δkji, we have to

determine the integrals

δkji =

∫
Ω

(
∂hi+k

Wm
i

)
ψmj dx, j ∈ N (i), k = 0, 1, 2.

If we write

δki−2,i =

∫ xi+1

xi

(∂hi+kWi) ψi−2 dx,

δki−1,i =

∫ xi+1

xi

(∂hi+kWi) ψi−1 dx+

∫ xi+2

xi+1

(∂hi+kWi) ψi−1 dx,

δki+1,i =

∫ xi+2

xi+1

(∂hi+kWi) ψi+1 dx+

∫ xi+3

xi+2

(∂hi+kWi) ψi+1 dx,

δki+2,i =

∫ xi+3

xi+2

(∂hi+kWi) ψi+2 dx,

for k = 0, 1, 2, every integrand is a polynomial of degree 4 at most and can be computed

exactly with Gaussian integration using 3 integration points. Alternatively, the above

formulas can be computed symbolically. In our numerical problem tested in Section 5.2, we

decided to compute the integrals symbolically using the MATLAB Symbolic Math Toolbox

and evaluate the results in every time step, because this method is much faster in MATLAB.

Remark 3.3.1. A first idea to construct a scheme like the modified FVPM with B-splines

in the last sections in a two-dimensional setting Ω ⊆ R2, is to build B-splines by a tensor

product structure

ψm(ij)(x, y, t) = ψmi (x, t)ψmj (y, t),

where ψmi (x, t) and ψmj (y, t) are one-dimensional B-splines constructed as in Section 3.1 and

3.2 [DeB01].

In the next chapter, we show how the FVPM can be applied to balance equations like the

Savage-Hutter equations. For this purpose, we couple the FVPM with an existing kinetic

scheme for the Savage-Hutter equations.



60 3. The FVPM with B-splines

∂
h
i W

i
= 

−
(x
−
x
i )

2
(2
h
i
+
h
i+

1 )

(h
i (h

i
+
h
i+

1 ))
2

,
x
∈

(x
i ,x

i
+
h
i )

(x
−
x
i )

2

h
i+

1
(h
i
+
h
i+

1 )
2

+
2

(x
−
x
i )−

2
h
i −

h
i+

1 −
h
i+

2

h
i+

1
(h
i+

1
+
h
i+

2 )
,
x
∈

(x
i
+
h
i ,x

i
+
h
i
+
h
i+

1 )

2
h
i
+
h
i+

1
+
h
i+

2 −
(x
−
x
i )

h
i+

2
(h
i+

1
+
h
i+

2 )
,

x
∈

(x
i
+
h
i
+
h
i+

1 ,x
i
+
h
i
+
h
i+

1
+
h
i+

2 )

0,
else,

(3.35)

∂
h
i+

1 W
i

= 

−
(x
−
x
i )

2

h
i (h

i
+
h
i+

1 )
2
,

x
∈

(x
i ,x

i
+
h
i )

(x
−
x
i )

2
(h
i
+

2
h
i+

1 )
(h

i+
1

(h
i
+
h
i+

1 ) )
2
−

(x
−
x
i )

h
2i+

1

+
(x
−
x
i −

h
i )

2
(h
i+

2
+

2
h
i+

1 )
(h

i+
1

(h
i+

1
+
h
i+

2 ) )
2

−
(x
−
x
i −

h
i )

h
2i+

1

,
x
∈

(x
i
+
h
i ,x

i
+
h
i
+
h
i+

1 )

2
(h
i
+
h
i+

1
+
h
i+

2 −
(x
−
x
i ))

h
i+

2
(h
i+

1
+
h
i+

2 )
−

(h
i
+
h
i+

1
+
h
i+

2 −
(x
−
x
i ))

2

h
i+

2
(h
i+

1
+
h
i+

2 )
2

,
x
∈

(x
i
+
h
i
+
h
i+

1 ,

x
i
+
h
i
+
h
i+

1
+
x
i
+
h
i
+
h
i+

2 )

(3.36)

∂
h
i+

2 W
i

=  ((x
−
x
i )−

h
i )

2

h
i+

1
(h
i+

1
+
h
i+

2 )
2
,

x
∈

(x
i
+
h
i ,x

i
+
h
i
+
h
i+

1 )

2 (h
i
+
h
i+

1
+
h
i+

2 −
(x
−
x
i ) )

h
i+

1
(h
i+

1
+
h
i+

2 )
− (h

i
+
h
i+

1
+
h
i+

2 −
(x
−
x
i ) )

2
(h
i+

1
+

2
h
i+

2 )
(h

i+
1

(h
i+

1
+
h
i+

2 ) )
2

,
x
∈

(x
i
+
h
i
+
h
i+

1 ,

x
i
+
h
i
+
h
i+

1
+
h
i+

2 )

0,
else

(3.37)



Chapter 4

The FVPM for granular flows

Dense snow avalanches and landslides regularly entail enormous damage. Therefore it would

be extremely helpful if one could predict the dynamic behaviour of such granular masses, par-

ticularly to predict the place where the mass comes to rest. Furthermore, industrial problems

dealing with the dynamic behaviour of granular material like the modeling of grain in silos

are of great interest.

This chapter deals with the dynamics of granular flow problems that can be described by

the Savage-Hutter (SH) equations. In Section 4.1, we will give a short introduction to the

SH equations and describe the main difficulties that arise when dealing with the dynamics of

granular masses.

Section 4.2 is concerned with a (semi-)kinetic representation of the SH equations and a re-

sulting Finite Volume Method. This so-called kinetic scheme is able to describe the whole

dynamic of a granular mass from starting to stopping. Moreover, it can be shown that it

preserves the steady states of granular masses of rest. For the construction of the kinetic

formulation, we use an Ansatz of Perthame and Simeoni presented in [PS01]. The contents

and results of Sections 4.1 and 4.2 can be found in [KS08] and are given here only for the

sake of completeness. In Section 4.3, we apply the FVPM to the SH equations by adopting

the kinetic fluxes. This provides an example where the FVPM can be used successfully to

solve hyperbolic conservation laws with a source term.

4.1 The Savage-Hutter equations

In [SH89], Savage and Hutter deduced a model based on the incompressible Euler equations to

describe the dynamics of granular masses moving on a bottom or ground topography, which

is constant in time and spatially only slowly varying. Under the additional assumption that

the internal friction angle equals the dynamic one, the SH equations in one spatial dimension

read

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + b
h2

2
) = gh,

(4.1)

61
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where

b = ε k cos ζ

and

g = g(u) = sin ζ − sgn (u) cos ζ tan δ for u 6= 0,

in the unknowns h, hu : R × (0,∞) → R. Here, h and u denote the height of the granular

material and its average velocity, respectively. Moreover ζ is referred to as the inclination

angle of the bottom topography against the horizontal, δ denotes the dynamic friction angle,

ε the ratio of characteristic height to characteristic length of the mass under consideration

and k is an earth pressure coefficient. The system is hyperbolic as long as the height stays

nonnegative . In [SH91], this model is extended to smoothly varying bottom topographies,

which results in an additional x-dependence in the flux function. The effect of friction is

modelled in both equations using a simple Coulomb model. Other friction models that are

not subject of this paper are discussed in [MVB+03].

The source term gh on the right hand side of the second equation of (4.1) causes non-constant

steady states, which actually do make physical sense. But in contrast to other models for

fluid dynamical processes like the shallow water equations, there are infinitely many steady

states, which are described by

∂th = 0, u = 0. (4.2)

If we insert (4.2) into the SH equations (4.1), we get the following relation between the spatial

derivative of h and the source term

b ∂xh = g.

Since we are interested in granular masses at rest, we have to consider static friction, which

is bounded by the dynamic friction due to the Coulomb model. Therefore, the source term

and hence the steady states are not uniquely defined for u = 0. But we can give a simple

criterion on ∂xh to decide whether the mass is in equilibrium or not. Height profiles h which

satisfy that condition will be named admissible profiles in the following. An exact definition

of admissible profiles is given in Section 4.2.

4.2 A kinetic FVM for the SH equations

In this section, we present a (semi-)kinetic representation of the SH equations with constant

inclination angle such that b = const and a numerical scheme based on that formulation.

A (semi-)kinetic representation of the general SH equations for smoothly varying chutes

can be found easily and is given in [KS08]. The construction of the kinetic representation

relies on an Ansatz of Perthame and Simeoni presented in [PS01]. The numerical scheme

will be shown to be conservative and consistent and has the desired property of preserving

nontrivial steady states. Moreover, we can apply a stability result from [PS01] which ensures

nonnegativity of the height under some weak conditions.

Other numerical approaches to the SH equations can be found in [TNGH02], where the

authors present a combination of a shock-capturing non-oscillatory central difference
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scheme (NOC) and a front-tracking method. This scheme produces very satisfactory results,

particularly for an avalanche moving down an incline and coming to rest at a flat runout zone.

Consider a constant inclination angle ζ = const and thus b = const. Similar to the kinetic

formulation of the Euler equations or the shallow water equations in [Cer94], [Str95], [PS01]

and [Per02], we are looking for a density of particles M(x, ξ, t) = M(h, ξ − u) satisfying

 h

hu

hu2 + 1
2bh

2

 =

∫
R

 1

ξ

ξ2

M(h, ξ − u) dξ. (4.3)

In the following, we proceed as Perthame and Simeoni in [PS01] for the shallow water equa-

tions and define M by making the Ansatz

M(h, ξ − u) =
√
h χ
(ξ − u√

h

)
(4.4)

with a nonnegative function χ : R→ R satisfying

χ(ω) = χ(−ω),∫
R
χ(ω) dω = 1,∫

R
ω2 χ(ω) dω =

b

2
.

(4.5)

It is easy to see that every functionM of the form (4.4) satisfies (4.3): because of the properties

(4.5), we obtain for the moments of M

∫
R
M(h, ξ − u) dξ =

∫
R

√
h χ
(ξ − u√

h

)
dξ

=

∫
R

√
h χ(ω)

√
h dω

= h,∫
R
ξ M(h, ξ − u) dξ =

∫
R
ξ
√
h χ
(ξ − u√

h

)
dξ

=

∫
R

(
√
hω + u)

√
h χ(ω)

√
h dω

= h3/2

∫
R
ω χ(ω) dω + hu

∫
R
χ(ω) dω

= hu,
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∫
R
ξ2M(h, ξ − u) dξ =

∫
R
ξ2
√
h χ
(ξ − u√

h

)
dξ

=

∫
R

(
√
h ω + u)2

√
h χ(ω)

√
h dω

= h2

∫
R
ω2 χ(ω) dω + 2 h3/2u

∫
R
ω χ(ω) dω + hu2

∫
R
χ(ω) dω

= hu2 +
1

2
bh2.

These relations lead to the following theorem, the same theorem as Perthame and Simeoni

formulate in [PS01] for the shallow water equations. For the proof see [KS08].

Theorem 4.2.1. The pair (h, hu) is a strong solution of the Equation (4.1) if and only if

M(h, ξ − u) of the form (4.4) solves the (semi-)kinetic equation

∂tM(h, ξ − u) + ξ ∂xM(h, ξ − u) + g(u) ∂ξM(h, ξ − u) = Q(t, x, ξ) (4.6)

with Q(t, x, ξ) satisfying ∫
R
Qdξ = 0 and

∫
R
ξ Qdξ = 0. (4.7)

Remark 4.2.2. Note that there are still macroscopic values in the kinetic Equation (4.6).

Therefore, we call the Vlasov type Equation (4.6) (semi-)kinetic.

Remark 4.2.3. The only nonlinearity of Equation (4.6) is caused by the collision operator

Q. Therefore, (4.6) is a lot easier to handle than the original system.

Now we have to choose the function χ. In contrast to the shallow water equations, where

friction is neglected and the only physical steady states are those of a ”lake at rest”, the SH

equations admit infinitely many steady states of granular masses at rest. It is clear that the

height profile of such a granular mass is not uniquely defined. Moreover, the gradient of the

profile has to be somehow bounded to avoid the moving of the material. If one inserts the

criterion ∂th = 0 and u = 0 for a mass at rest into the SH equations, one finds the following

relation between the height h and the function g

b ∂xh = g. (4.8)

Note that g is not yet defined for u = 0, as described in Section 4.1. Nevertheless, for u = 0

the values of g do not exceed certain bounds, because g is defined as the sum of a gravitational

force term

g1 := sin ζ

and a second term, which expresses the Coulomb friction:

g2 := − u

|u|
cos ζ tan δ for u 6= 0.

In a simple Coulomb friction model, static friction does not exceed dynamic friction and

therefore

− cos ζ tan δ ≤ g2 ≤ cos ζ tan δ for u = 0.

These considerations lead us directly to the definition of an admissible profile.
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Definition 4.2.4 (Admissible profile). A mass profile h is said to be admissible if its spatial

derivative ∂xh satisfies

min [sin ζ +R, max (b ∂xh, sin ζ −R)] = b ∂xh, (4.9)

where ±R denotes the force term resulting from friction:

R = cos ζ tan δ.

Moreover, we demand the collision operator Q to vanish in equilibrium. This condition does

make sense in analogy to classical gas dynamics. Up to now, the only constraint on Q is the

vanishing of the first two moments.

Therefore, for steady states of the form ∂th = 0 and u = 0, Equation (4.6) becomes

ξ ∂xM(h, ξ) + g ∂ξM(h, ξ) = 0. (4.10)

As described in [PS01], one can convert this equation into an ordinary differential equation for

χ using (4.8) and the substitution ω = ξ/
√
h. In particular, for admissible profiles ∂xh 6= 0,

we get

∂xh
2

[
ξ√
h
χ
(
ξ√
h

)
− ξ2

h
χ
′
(
ξ√
h

)]
+ g χ

′
(

ξ√
h

)
= 0

⇔ ∂xh
2

[
ωχ(ω)− ω2χ

′
(ω) + 2bχ

′
(ω)
]

= 0

⇔
[
ωχ(ω) + (2b− ω2)χ

′
(ω)
]

= 0. (4.11)

Under the conditions (4.5), Equation (4.11) admits the unique solution

χ(ω) = C
√(

2b− ω2
)

+
, where C =

1

πb
. (4.12)

Finally, the microscopic equilibrium density for a constant inclination angle is specified by

M(h, ξ − u) =
√
h χ

(
ξ − u√
h

)
=

√
2h

π
√
b

√(
1− (ξ − u)2

2bh

)
+
. (4.13)

To preserve the steady states numerically, the discretization of the kinetic equation and, in

particular, that of the source term is extremely important. In [PS01] the authors construct

a scheme with reflections following the concept of upwinding the sources at interfaces as

described in [KPS03] and [PS03]. Here, we do not follow this concept since internal friction

is a volumic force rather than an interface force and the interpretation as a surface effect is

not evident. But away from physical meaning, there are ideas to treat friction as a bottom

topography [MVB+02].

We will now present a Finite Volume scheme in one spatial dimension for the SH equations

(4.1) based on the (semi-)kinetic representation, i.e. a numerical method that preserves the

steady states of a granular mass at rest. Furthermore, it can be shown easily that the scheme
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preserves the nonnegativity of the materials’ height at least in regions of large deformations.

The numerical scheme is constructed by integrating a discretization of the kinetic Equation

(4.6). The details of this approach can be found in [KS08]. Here, we will only present the

main ideas and the resulting Finite Volume scheme for the SH equations.

For the construction of the scheme we proceed as follows: First, we discretize the kinetic

Equation (4.6) directly in the density M . Integration of the method leads to a consistent

macroscopic FVM, which is conservative and in some sense stable in the first component.

Since this method is not able to preserve steady states, we introduce a modified microscopic

numerical flux and a particular discretization of the source term. At the end, we choose a

combination of the two approaches and use the the second one for the starting and stopping

process and the first one otherwise.

We consider an equidistant mesh of R×(0,∞) with points (xi, tn) = (i∆x, n∆t), i ∈ Z, n ∈ N
and cells Ci = [xi−1/2, xi+1/2] with xi+1/2 = (xi+xi+1)/2. Based on that mesh, we define cell

averages

hni :=
1

|Ci|

∫
Ci

h(x, t) dx,

qni := (hu)ni :=
1

|Ci|

∫
Ci

h(x, t)u(x, t) dx,

and uni := (hu)ni /h
n
i .

With these quantities, we define the discrete density of particles Mn
i (ξ) by

Mn
i (ξ) := M(hni , ξ − uni ).

In order to discretize Equation (4.6), we firstly neglect the collision operator Q and get

fn+1
i (ξ)−Mn

i (ξ) + λξ
(
Mn
i+1/2(ξ)−Mn

i−1/2(ξ)
)

+ ∆t gni (Mξ)
n
i (ξ) = 0, (4.14)

where λ := ∆t/∆x and the microscopic fluxes Mn
i+1/2 are defined by the Upwind formula

Mn
i+1/2 =

{
Mn
i (ξ), if ξ ≥ 0,

Mn
i+1(ξ), if ξ < 0.

(4.15)

Since we neglect the collision operator, the density fn+1
i (ξ) is no longer an equilibrium density,

i.e. it no longer satisfies the conditions (4.3). Therefore, the resulting density is denoted by

fn+1
i (ξ) instead of Mn+1

i , but can be projected back to the class of equilibrium densities via

the moments

Un+1
i :=

(
hn+1
i

qn+1
i

)
:=

∫
R

(
1

ξ

)
fn+1
i (ξ) dξ. (4.16)

As described in Section 1.3, this procedure is common practice in constructing kinetic schemes

[Str95], [PS01], [Per02]. The microscopic density Mn+1
i (ξ) is obtained from the data at time

level tn as follows:
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1. receive fn+1
i (ξ) from Equation (4.14),

2. compute the macroscopic quantity Un+1
i =

(
hn+1
i , qn+1

i

)T
via Equation (4.16),

3. the density Mn+1
i (ξ) = M(hn+1

i , ξ−un+1
i ) is an equilibrium density again, i.e. it satisfies

(4.3).

To discretize the source term, we simply choose gni = g(uni ) for uni 6= 0 and a discretized form

of (4.9) for admissible profiles. If the profile is not in equilibrium, we know that static friction

is bounded by dynamic friction. These facts motivate the following definition of gni :

gni :=

{
g̃ni , if uni = 0

g(uni ), otherwise,

where

g̃ni = min
[

sin ζ +R, max
(
β
(
(hni+1 − hni−1)/2∆x

)
, sin ζ −R

)]
.

A macroscopic scheme can be obtained by building the first two moments of the microscopic

scheme.

Instead of Equation (4.14), we will use the microscopic scheme

fn+1
i (ξ + ∆tgni )−Mn

i (ξ) + λ ξ
(
Mn
i+1/2(ξ)−Mn

i−1/2(ξ)
)

= 0 (4.17)

in further considerations (see Remark (4.2.5)).

Computing the first two moments of Equation (4.17), leads us to

Un+1
i = Un

i − λ
(
F n
i+1/2 − F

n
i−1/2

)
+ ∆tSni (4.18)

with

Sni :=

(
0

gni h
n+1
i

)
and the macroscopic numerical fluxes

F n
i+1/2 = F (Un

i ,U
n
i+1) :=

∫
ξ≥0

ξ

(
1

ξ

)
Mn
i (ξ) dξ +

∫
ξ<0

ξ

(
1

ξ

)
Mn
i+1(ξ) dξ.

For the components of F n
i+1/2 =

(
(Fni+1/2)1, (Fni+1/2)2

)T
, we get

(Fni+1/2)1 =

∫
ξ≥0

ξ Mn
i (ξ) dξ︸ ︷︷ ︸

=:In1,i

+

∫
ξ<0

ξ Mn
i+1(ξ) dξ︸ ︷︷ ︸

=:In2,i+1

,

and

(Fni+1/2)2 =

∫
ξ≥0

ξ2Mn
i (ξ) dξ︸ ︷︷ ︸

=:In3,i

+

∫
ξ<0

ξ2Mn
i+1(ξ) dξ︸ ︷︷ ︸

=:In4,i+1

,
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where In1,i = I1(hni , u
n
i ), In2,i = I2(hni , u

n
i ), In3,i = I3(hni , u

n
i ) and In4,i = I4(hni , u

n
i ) and the

functions I1, . . . , I4 are given by

I1(h, u) :=



hu, if a ≤ −1

2
3π

√
2b h3/2 cos3(arcsin(a))

+ 2
π hu

(
π
4 −

1
2 arcsin(a)− 1

4 sin(2 arcsin(a))
)
, if − 1 < a < 1

0, if a ≥ 1,

(4.19)

I2(h, u) :=



0, if a ≤ −1

− 2
3π

√
2b h3/2 cos3(arcsin(a))

+ 2
π hu

(
π
4 + 1

2 arcsin(a) + 1
4 sin(2 arcsin(a))

)
, if − 1 < a < 1

hu, if a ≥ 1,

(4.20)

I3(h, u) :=



hu2 + 1
2bh

2, if a ≤ −1

4
π bh

2
(
π
16 −

1
8 arcsin(a) + 1

32 sin(a)
)

− 4
3π

√
2b h3/2u cos3(arcsin(a))

+ 2
π hu

2
(
π
4 −

1
2 arcsin(a)− 1

4 sin(2 arcsin(a))
)
, if − 1 < a < 1

0, if a ≥ 1,

(4.21)

I4(h, u) :=



0, if a ≤ −1

4
π b h

2
(

1
8 arcsin(a) + π

16 −
1
32 sin(4 arcsin(a))

)
− 4

3π

√
2b h3/2u cos3(arcsin(a))

+ 2
π hu

2
(
π
4 + 1

2 arcsin(a) + 1
4 sin(2 arcsin(a))

)
, if − 1 < a < 1

hu2 + 1
2bh

2, if a ≥ 1,

(4.22)

with a := a(h, u) := −u/
√

2bh.

Remark 4.2.5. The only difference between the resulting macroscopic schemes relying on

(4.14) and (4.17) is the term ∆t gni h
n
i . Using (4.17), one ends up with ∆t gni h

n+1
i instead.

In [KS08] it is figured out why this scheme can not preserve admissible profiles in general.
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Therefore, we propose the following modifications in the microscopic numerical flux function

and the discretized source term.

As new microscopic fluxes, we choose

M̃n
i+1/2 =


M

(
hni + hni+1

2 , ξ − uni
)
, if ξ ≥ 0

M

(
hni + hni+1

2 , ξ − uni+1

)
, if ξ < 0.

(4.23)

This means that the actual upwinding takes place only in the velocity u and no longer in the

height h. With (4.23), the new macroscopic fluxes F̃
n
i+1/2 =

(
(F̃ni+1/2)1, (F̃ni+1/2)2

)T
read

(F̃ni+1/2)1 =

∫
ξ≥0

ξ M

(
hni + hni+1

2
, ξ − uni

)
dξ︸ ︷︷ ︸

=:Ĩn1,i,i+1

+

∫
ξ<0

ξ M

(
hni + hni+1

2
, ξ − uni+1

)
dξ︸ ︷︷ ︸

=:Ĩn2,i,i+1

and

(F̃ni+1/2)2 =

∫
ξ≥0

ξ2M

(
hni + hni+1

2
, ξ − uni

)
dξ︸ ︷︷ ︸

=:Ĩn3,i,i+1

+

∫
ξ<0

ξ2M

(
hni + hni+1

2
, ξ − uni+1

)
dξ︸ ︷︷ ︸

=:Ĩn4,i,i+1

with

Ĩn1,i,j = I1

(
hni + hnj

2
, uni

)
, Ĩn2,i,j = I2

(
hni + hnj

2
, unj

)
,

Ĩn3,i,j = I3

(
hni + hnj

2
, uni

)
, Ĩn4,i,j = I4

(
hni + hnj

2
, unj

)
and I1, . . . , I4 given by (4.19)–(4.22).

Additionally, we change the source term for slowly moving or non-moving masses, i.e. masses

that satisfy 0 < |qni | ≤ |∆t g(uni )hn+1
i | or uni = 0: for admissible profiles, we replace hn+1

i in

the source term by
(
(hni+1 + 2hni + hni−1)/4

)
resulting in the modified source term

S̃
n
i :=

 0

g̃ni

(
hni+1 + 2hni + hni−1

4

) .

For fast moving masses, we still take Sni and for slowly moving masses, we use a combination

of Sni and S̃
n
i with the coefficients

µ :=

{
−qni /∆t g (qni ) hn+1

i , if qni 6= 0

0, else
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and

(1− µ) =

{(
1 + qni /∆t g(qni )hn+1

i

)
, if qni 6= 0

1, else.

Here, we assumed that the height hni is always positive such that we have sgn(qni ) = sgn(uni )

and qni = 0 iff uni = 0. In Theorem 4.2.8, we give a justification of that assumption.

All together, we end up with the macroscopic scheme

Un+1
i =

U
n
i − λ

(
F̃
n
i+1/2 − F̃

n
i−1/2

)
+ ∆t

(
µSni + (1− µ) S̃

n
i

)
, if |µ| ≤ 1

Un
i − λ

(
F̃
n
i+1/2 − F̃

n
i−1/2

)
+ ∆tSni , else.

(4.24)

Remark 4.2.6. Note that the coefficient µ does not always result in a convex combination of

the different discretizations of the source terms Sni and S̃
n
i . Assume for example qni , h

n
i > 0

for some i ∈ Z and n ∈ N. Moreover, let ζ, δ ∈ (0, π/2) with ζ > δ. Then, we get

g(qni ) = sin ζ − cos ζ tan δ > 0

and thus µ < 0 in case of hn+1
i > 0. But, under the assumption that the heights hni and hn+1

i

are positive and qni < 0 or qni > 0 and ζ < δ, we always get µ > 0.

It is easy to see that scheme (4.24) is able to preserve admissible states and can handle

the starting and stopping of inadmissible profiles. For details see [KS08]. But, in the case

of strongly inadmissible profiles, scheme (4.24) causes small oscillations. To get rid of this

drawback, we decided to couple the two schemes (4.18) and (4.24) by using the first one for

rapid flows and the second one for the simulation of starting and stopping processes as well

as for masses in equilibrium.

The resulting coupled scheme thus reads

Un+1
i =

U
n
i − λ

(
F̃
n
i+1/2 − F̃

n
i−1/2

)
+ ∆t

(
µSni + (1− µ) S̃

n
i

)
, if |µ| ≤ 1

Un
i − λ

(
F n
i+1/2 − F

n
i−1/2

)
+ ∆tSni , else .

(4.25)

Written in the components hni and qni , the method (4.25) can be written as

Scheme 4.2.7.

hn+1
i = hni − λ

(
(F̃ni+1/2)1 − (F̃ni−1/2)1

)
qn+1
i = −λ

(
(F̃ni+1/2)2 − (F̃ni−1/2)2

)
+ (1− µ) ∆t g̃ni

(
(hni+1 + 2hni + hni−1)/4

)


if |µ| ≤ 1

hn+1
i = hni − λ

(
(Fni+1/2)1 − (Fni−1/2)1

)
qn+1
i = qni − λ

(
(Fni+1/2)2 − (Fni−1/2)2

)
+ ∆t g(qni )hn+1

i

 else
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where

Fni+1/2 =
(
(Fni+1/2)1, (Fni+1/2)2

)T
=
(
In1,i + In2,i+1, I

n
3,i + In4,i+1

)T
,

F̃ni+1/2 =
(
(F̃ni+1/2)1, (F̃ni+1/2)2

)T
=
(
Ĩn1,i,i+1 + Ĩn2,i,i+1, Ĩ

n
3,i,i+1 + Ĩn4,i,i+1

)T
and g̃ni and µ are given above.

In [PS01], the authors formulate a theorem for their kinetic method solving the shallow

water equations with a source which ensures nonnegativity of the height h. Because part of

the method was constructed following the Ansatz made in [PS01], we can easily apply that

theorem to the scheme (4.2.7) in the case of rapidly moving granular masses.

Theorem 4.2.8. Under the CFL condition

max
i∈Z

(
|uni |+

√
2bhni

)
≤ ∆x

∆t
=

1

λ
and |qni | ≥ |∆t g(qni )hn+1

i | ∀ i ∈ Z,

the height h in scheme 4.2.7 remains nonnegative, i.e. we have hni ≥ 0 for all i ∈ Z and

n ∈ N, if h0
i ≥ 0 for all i ∈ Z.

Proof. The proof of Theorem 4.2.8 is similar to that in [PS01] and uses that

fn+1
i (ξ + ∆t g(uni )) ≥ 0 for all ξ ∈ R and i ∈ Z as it is a convex combination of nonnegative

quantities. The proposition follows directly from

hn+1
i =

∫
R
fn+1
i (ξ + ∆t g(uni )) dξ.

In the case |qni | < |∆t g(qni )hn+1
i |, the considered mass is only moving very slowly or not at

all, so we can expect that the height is kept nonnegative, too.

It is easy to see that the method is conservative in the first component and consistent in the

sense that

F (U ,U) = F̃ (U ,U) =

(
hu

hu2 + 1
2bh

2

)
.

Several numerical tests of the method can be found in [KS08].

In the next section, we will show how this scheme can be managed within the particle frame-

work of the FVPM. In Chapter 5, we will repeat some of the numerical examples in [KS08]

computed with the FVPM with kinetic fluxes.

4.3 The FVPM with kinetic fluxes

As in Section 4.2, we begin with the (semi-)kinetic representation of the SH equations:

∂tM + ξ ∂xM +G(u) ∂ξM = Q (4.26)
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where

G(u) :=

{
g(u), if u 6= 0

min ((sin ζ +R),max (b ∂xh, (sin ζ −R))) , if u = 0
(4.27)

and ∫
R

(
1

ξ

)
Qdξ = 0. (4.28)

Now we define the generalized cell averages according to the FVPM:

hi(t) :=
1

Vi(t)

∫
Ω
h(x, t)ψi(x, t) dx,

(hu)i(t) = qi(t) :=
1

Vi(t)

∫
Ω
h(x, t)u(x, t)ψi(x, t) dx,

ui(t) :=
qi(t)

hi(t)

and

Mi(t, ξ) :=
1

Vi(t)

∫
Ω
M(h(x, t), ξ − u(x, t))ψi(x, t) dx.

Remember from Chapter 2 that we have

∂tψi(x, t) = −
∑

j∈N (i)

(ẋi(t) Γji(x, t)− ẋj(t) Γij(x, t)) ,

∂xψi(x, t) =
∑

j∈N (i)

(Γji(x, t)− Γij(x, t)) .

By defining

Y := G(u) ∂ξM(h, ξ − u),

Yi :=
1

Vi(t)

∫
Ω
Y ψi dx,

Qi :=
1

Vi(t)

∫
Ω
Qψi dx

and integrating by parts, we thus get

d

dt
(ViMi) =

d

dt

∫
Ω
M ψi dx =

∫
Ω

(∂tM ψi +M ∂tψi) dx

= −ξ
∫

Ω
∂xM ψi dx+

∫
Ω
M ∂tψi dx−

∫
Ω
G(u) ∂ξM ψi dx+

∫
Ω
Qψi dx

= ξ
∑

j∈N (i)

∫
Ω
M (Γji − Γij) dx−

∑
j∈N (i)

∫
Ω
M (ẋi Γji − ẋj Γij) dx

−Vi Yi + ViQi .

In analogy to Section 4.2, we approximate M in the first integral on the right hand side by

the upwind formula
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Mij =

{
M(hi, ξ − ui)nij , if ξ nij ≥ 0

M(hj , ξ − uj)nij , if ξ nij < 0
(4.29)

and get

d

dt
(ViMi) = −ξ

∑
j∈N (i)

|βij |Mij −
∑

j∈N (i)

∫
Ω
M (ẋi Γji − ẋj Γij) dx− Vi Yi + ViQi . (4.30)

To get a macroscopic scheme, we build the moments of Equation (4.30). With

U i := (hi, (hu)i)
T = (hi, qi)

T and because of

∫
R

(
1

ξ

)
d

dt
(ViMi) dξ =

d

dt

∫
R

(
1

ξ

)∫
Ω
M(h, ξ − u)ψi dx dξ

=
d

dt

∫
Ω

∫
R

(
1

ξ

)
M(h, ξ − u) dξ ψi dx

=
d

dt

∫
Ω

(
h

hu

)
ψi =

d

dt
(ViU i) ,

we obtain

d

dt
(ViU i) = −

∑
j∈N (i)

|βij |
∫
R

(
1

ξ

)
ξ Mij dξ −

∑
j∈N (i)

∫
Ω

∫
R

(
1

ξ

)
M dξ (ẋi Γji − ẋj Γij) dx

−Vi
∫
R

(
1

ξ

)
Yi dξ + Vi

∫
R

(
1

ξ

)
Qi dξ. (4.31)

To simplify the comparability to Scheme 4.2.7, let us assume fixed particles for the moment.

In analogy to Section 4.2, the macroscopic numerical fluxes F ij are defined as the moments

of the microscopic numerical fluxes Mij :

F ij = F (U i,U j , nij) =
(
(Fij)

1, (Fij)
2
)T

:=

∫
R

(
1

ξ

)
ξ Mij dξ

=

(∫
ξ nij≥0

(
1

ξ

)
ξ M(hi, ξ − ui) dξ +

∫
ξ nij<0

(
1

ξ

)
ξ M(hj , ξ − uj) dξ

)
nij .
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For the first component, we compute

(Fij)
1 =


∫
ξ≥0

ξ M(hi, ξ − ui) dξ +

∫
ξ<0

ξ M(hj , ξ − uj) dξ , if nij = 1

−
(∫

ξ≥0
ξ M(hj , ξ − uj) dξ +

∫
ξ<0

ξ M(hi, ξ − ui) dξ

)
, if nij = −1

=

I1,i + I2,j , if nij = 1

−(I1,j + I2,i), if nij = −1

where I1,i = I1(hi, ui) and I2,i = I2(hi, ui) with I1 and I2 given by (4.19) and (4.20),

respectively.

In the same manner, we obtain for the second component

(Fij)
2 =


∫
ξ≥0

ξ2M(hi, ξ − ui) dξ +

∫
ξ<0

ξ2M(hj , ξ − uj) dξ , if nij = 1

−
(∫

ξ≥0
ξ2M(hj , ξ − uj) dξ +

∫
ξ<0

ξ2M(hi, ξ − ui) dξ

)
, if nij = −1

=

I3,i + I4,j , if nij = 1

−(I3,j + I4,i), if nij = −1.

Again, we have I3,i = I3(hi, ui) and I4,i = I4(hi, ui) with I3 and I4 given in (4.21) and (4.22),

respectively.

With ∫
R

(
1

ξ

)
M dξ =

(
h

hu

)
,

∫
R

(
1

ξ

)
∂ξM dξ = −

(
0

h

)
and ∫

R

(
1

ξ

)
Qdξ = 0,

we get

d

dt
U i = − 1

Vi

∑
j∈N (i)

|βij |F ij −
1

Vi

∫
Ω
G(u)

∫
R

(
1

ξ

)
∂ξM dξ ψi dx+

1

Vi

∫
Ω

∫
R

(
1

ξ

)
Qdξ ψi dx

= − 1

Vi

∑
j∈N (i)

|βij |F ij +
1

Vi

∫
Ω
G(u)

(
0

h

)
ψi dx.

For the second component of the last term on the right hand side, we write
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1

Vi

∫
Ω
G(u)hψi dx ≈


1

Vi

∫
Ω
g(u)hψi dx, if ui 6= 0

1

Vi

∫
Ω

min ((sin ζ +R),max (b ∂xh, (sin ζ −R))) hψi dx, if ui = 0

and approximate

1

Vi

∫
Ω
g(u)hψi dx = (g(u)h)i ≈ g(ui)hi

in the case ui 6= 0. For ui = 0, we write

1

Vi

∫
Ω
b ∂xhhψi dx =

b

2Vi

∫
Ω
∂x(h2)ψi dx

= − b

2Vi

∫
Ω
h2 ∂xψi dx+

b

2Vi

∫
∂Ω
h2ψi n ds

= − b

2Vi

∑
j∈N (i)

∫
Ω
h2 (Γji − Γij) dx+

b

2Vi

∫
∂Ω
h2ψi n ds

≈ b

2Vi

∑
j∈N (i)

βij

(
hi + hj

2

)2

+Di

with a suitable approximation of the boundary term

Di ≈
b

2Vi

∫
∂Ω
h2ψi n ds.

All in all, we get the following discretization of the source term:

1

Vi

∫
Ω
G(u)hψi dx ≈



g(ui)hi, if ui 6= 0

min

(
(sin ζ +R)hi,

max

(
b

2Vi

∑
j∈N (i)

βij

(
hi + hj

2

)2

, (sin ζ −R)hi

))
, if ui = 0

(4.32)

Similar to (4.29), we define the modified numerical fluxes where the upwinding takes place

only in the variable uni :

M̃ij :=


M

(
hi + hj

2
, ξ − ui

)
nij , if ξ nij ≥ 0

M

(
hi + hj

2
, ξ − uj

)
nij , if ξ nij < 0
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and

F̃ ij = F̃ (U i,U j , nij) =
(

(F̃ij)
1, (F̃ij)

2
)T

:=

∫
R

(
1

ξ

)
ξ M̃ij dξ

=

(∫
ξ nij≥0

(
1

ξ

)
ξ M

(
hi + hj

2
, ξ − ui

)
dξ

+

∫
ξ nij<0

(
1

ξ

)
ξ M

(
hi + hj

2
, ξ − uj

)
dξ

)
nij .

For the components (F̃ij)
1 and (F̃ij)

2, we compute

(F̃ij)
1 =



∫
ξ≥0

ξ M

(
hi + hj

2
, ξ − ui

)
dξ

+

∫
ξ<0

ξ M

(
hi + hj

2
, ξ − uj

)
dξ ,

if nij = 1

−
(∫

ξ≥0
ξ M

(
hi + hj

2
, ξ − uj

)
dξ

+

∫
ξ<0

ξ M

(
hi + hj

2
, ξ − ui

)
dξ

)
,

if nij = −1

=

Ĩ1,i,j + Ĩ2,i,j , if nij = 1

−(Ĩ1,j,i + Ĩ2,j,i) , if nij = −1

and

(F̃ij)
2 =



∫
ξ≥0

ξ2M

(
hi + hj

2
, ξ − ui

)
dξ

+

∫
ξ<0

ξ2M

(
hi + hj

2
, ξ − uj

)
dξ ,

if nij = 1

−
(∫

ξ≥0
ξ2M

(
hi + hj

2
, ξ − uj

)
dξ

+

∫
ξ<0

ξ2M

(
hi + hj

2
, ξ − ui

)
dξ

)
,

if nij = −1

=

Ĩ3,i,j + Ĩ4,i,j , if nij = 1

−(Ĩ3,j,i + Ĩ4,j,i) , if nij = −1
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where

Ĩ1,i,j = I1

(
hi + hj

2
, ui

)
, Ĩ2,i,j = I2

(
hi + hj

2
, uj

)
,

Ĩ3,i,j = I3

(
hi + hj

2
, ui

)
, Ĩ4,i,j = I4

(
hi + hj

2
, uj

)
and I1, . . . , I4 given by (4.19)–(4.22).

Now, we proceed as in Section 4.2 and use a combination of the discretizations of the source

term given in (4.32) for slowly moving masses. In analogy to Scheme 4.2.7, we define the fully

discretized FVPM with fixed particles and kinetic fluxes for the SH equations:

Scheme 4.3.1.

hn+1
i = hni −

∆t

Vi

∑
j∈N (i)

|βnij | (F̃nij)1

qn+1
i = −∆t

Vi

∑
j∈N (i)

|βnij | (F̃nij)2 + (1− µ) ∆t g̃ni

 if |µ| ≤ 1

hn+1
i = hni −

∆t

Vi

∑
j∈N (i)

|βnij | (Fnij)1

qn+1
i = qni −

∆t

Vi

∑
j∈N (i)

|βnij | (Fnij)2 + ∆t g(qni )hn+1
i

 else

with

g̃ni = min

(sin ζ +R)hni ,max

 b

2Vi

∑
j∈N (i)

βnij

(
hni + hnj

2

)2

, (sin ζ −R)hni

 ,

µ =


− qni

∆t g(qni )hn+1
i

, if uni 6= 0

0, else

and

F n
ij = ((Fnij)

1, (Fnij)
2)T , F̃

n
ij = ((F̃nij)

1, (F̃nij)
2)T .

It can be seen easily that Scheme 4.3.1 preserves the desired steady states of admissible

granular profiles at rest.

Theorem 4.3.2 (Preservation of granular masses at rest). Scheme 4.3.1 preserves admissible

profiles of granular masses at rest which are characterized by

uni = 0 ∀ i ∈ Z, (4.33)

min

(
(sin ζ +R)hni , max

(
b

2Vi

∑
j∈N (i)

βnij

(
hni + hnj

2

)2

, (sin ζ −R)hni

))

=
b

2Vi

∑
j∈N (i)

βnij

(
hni + hnj

2

)2

∀ i ∈ Z. (4.34)
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Proof. Inserting (4.33) and (4.34) in the equation for qn+1
i of Scheme 4.3.1 yields

qn+1
i = −∆t

Vi

∑
j∈N (i)

|βnij | (F̃nij)2 + ∆t
b

2Vi

∑
j∈N (i)

βnij

(
hni + hnj

2

)2

= 0,

as can be seen easily by evaluating the terms Ĩn3,i,j and Ĩn4,i,j . Thus, we have un+1
i = 0 for all

i ∈ Z. Moreover, we get

hn+1
i = hni ∀ i ∈ Z

by inserting uni = 0 into Ĩn1,i,j and Ĩn2,i,j .

In Chapter 5, we apply Scheme 4.3.1 to some of the examples given in [KS08]. As we will see,

Scheme 4.3.1 can manage the starting and stopping of inadmissible profiles and preserves the

desired steady states of granular masses at rest.

Although we use only fixed particles in our numerical examples for the SH equations, we will

now give an idea how a particle movement can be incorporated in the FVPM for the SH

equations. We start by noting that non-constant steady states will not be preserved by the

particle averaging with a general particle movement. Assume some steady state u(x, t) = u(x)

of a general conservation law. Then, moving particles will cause

d

dt
ui(t) = − V̇i(t)

V 2
i (t)

∫
Ω
u(x)ψi(x, t) dx+

1

Vi(t)

∫
Ω
u(x) ∂tψi(x, t) dx.

For the reconstruction

uh(x, t) =
∑
i∈Z

ui(t)ψi(x, t),

we thus get

d

dt
uh(x, t) =

∑
i∈Z

[(
− V̇i(t)
V 2
i (t)

∫
Ω
u(x)ψi(x, t) dx+

1

Vi(t)

∫
Ω
u(x) ∂tψi(x, t) dx

)
ψi(x, t)

+ ui(t) ∂tψi(x, t)

]
6= 0

(4.35)

in general. Even if we had a scheme that ensures

d

dt
ui(t) = 0 ∀ i ∈ Z,

we still get for the time derivative of the reconstruction

d

dt
uh(x, t) =

∑
i∈Z

ui(t) ∂tψi(x, t) =
∑
i,j∈Z

ui (ẋj Γij − ẋi Γji) 6= 0

usually.

Therefore, particles should be non-moving if the granular mass is in equilibrium. Although a

Lagrangian movement of the particles is not recommended in cases of discontinuous velocities
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[Tel05], it could be an adequate choice for the SH equations.

To incorporate the particle velocity in the numerical scheme, we start with Equation (4.31)

again:

d

dt
(ViU i) = −

∑
j∈N (i)

|βij |
∫
R

(
1

ξ

)
ξ Mij dξ −

∑
j∈N (i)

∫
Ω

∫
R

(
1

ξ

)
M dξ (ẋi Γji − ẋj Γij) dx

−Vi
∫
R

(
1

ξ

)
Yi dξ + Vi

∫
R

(
1

ξ

)
Qi dξ.

For the second term on the right hand side, we write

∑
j∈N (i)

∫
Ω

∫
R

(
1

ξ

)
M dξ (ẋi Γji − ẋj Γij) dx ≈

∑
j∈N (i)

∫
Ω

∫
R

(
1

ξ

)
M dξ (Γji − Γij) dx ¯̇xij

≈
∑

j∈N (i)

|βij |
∫
R

(
1

ξ

)
Mij dξ ¯̇xij

and define

Kij = K(U i,U j , nij) =
(
(Kij)

1, (Kij)
2
)T

:=

∫
R

(
1

ξ

)
Mij dξ

=

(∫
ξ nij≥0

(
1

ξ

)
M(hi, ξ − ui) dξ +

∫
ξ nij<0

(
1

ξ

)
M(hj , ξ − uj) dξ

)
nij .

Note that because of (Kij)
2 = (Fij)

1, we just have to compute the first component of Kij :

K1
ij =

∫
R
Mij(ξ) dξ

=



∫
ξ≥0

M(hi, ξ − ui) dξ︸ ︷︷ ︸
=:J1,i

+

∫
ξ<0

M(hj , ξ − uj) dξ︸ ︷︷ ︸
=:J2,j

, if nij = 1

−
(∫

ξ≤0
M(hi, ξ − ui) dξ +

∫
ξ>0

M(hj , ξ − uj) dξ

)
, if nij = −1

=

{
J1,i + J2,j , if nij = 1

− (J2,i + J1,j) , if nij = −1.

For the integrals, we get J1,i = J1(hi, ui) and J2,i = J2(hi, ui) with J1 and J2 given by
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J1(h, u) =


h, if a ≤ −1

h

[
1

2
− 1

π
(a cos(arcsin(a)) + arcsin(a))

]
, if − 1 < a < −1

0, if a ≥ 1,

(4.36)

J2(h, u) =


0, if a ≤ −1

h

π

[
a cos(arcsin(a)) + arcsin(a) +

π

2

]
, if − 1 < a < −1

h, if a ≥ 1

(4.37)

with a := a(h, u) := −u/
√

2bh.

In the same manner, we proceed with the modified flux M̃ij and get

K̃ij = K̃(U i,U j , nij) =
(

(K̃ij)
1, (K̃ij)

2
)T

:=

∫
R

(
1

ξ

)
M̃ij dξ

=

(∫
ξ nij≥0

(
1

ξ

)
M(hi, ξ − ui) dξ +

∫
ξ nij<0

(
1

ξ

)
M(hj , ξ − uj) dξ

)
nij .

Again, the second component of K̃ij is already known as K̃2
ij = F̃ 1

ij and we only have to

compute K̃1
ij :

K̃1
ij =

∫
R
Mij(ξ) dξ

=



∫
ξ≥0

M

(
hi + hj

2
, ξ − ui

)
dξ︸ ︷︷ ︸

=:J̃1,i,j

+

∫
ξ<0

M

(
hi + hj

2
, ξ − uj

)
dξ︸ ︷︷ ︸

=:J̃2,i,j

, if nij = 1

−
(∫

ξ≤0
M

(
hi + hj

2
, ξ − ui

)
dξ +

∫
ξ>0

M

(
hi + hj

2
, ξ − uj

)
dξ

)
, if nij = −1

=

J̃1,i,j + J̃2,i,j , if nij = 1

−
(
J̃2,j,i + J̃1,j,i

)
, if nij = −1.

The integrals can be computed as

J̃1,i,j = J1

(
hi + hj

2
, ui

)
, J̃2,i,j = J2

(
hi + hj

2
, ui

)
,

with J1 and J2 defined in (4.36) and (4.37), respectively.

Thus, we end up with the macroscopic numerical flux functions

Gij(U i,U j) := G(U i, ẋi,U j , ẋj , nij) := F ij −Kij · ¯̇xij
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and

G̃ij(U i,U j) := G̃(U i, ẋi,U j , ẋj , nij) := F̃ ij − K̃ij · ¯̇xij

where ¯̇xij is the averaged particle velocity given in (2.30).

It is easy to see that both flux functions are consistent in the sense that

Gij(U ,U) = G̃ij(U ,U) =

[(
hu

hu2 + 1
2bh

2

)
−U · ¯̇xij

]
nij .

Altogether, the fully discretized FVPM for the SH equations and moving particles reads

Scheme 4.3.3.

V n+1
i hn+1

i = V n
i h

n
i −∆t

∑
j∈N (i)

|βnij |
(
G̃nij

)1

V n+1
i qn+1

i = −∆t
∑

j∈N (i)

|βnij |
(
G̃nij

)2
+ (1− µ) ∆t g̃ni

 if |µ| < 1

V n+1
i hn+1

i = V n
i h

n
i −∆t

∑
j∈N (i)

|βnij |
(
Gnij
)1

V n+1
i qn+1

i = V n
i q

n
i −∆t

∑
j∈N (i)

|βnij |
(
Gnij
)2

+ ∆t g(qni )V n+1
i hn+1

i

 else

with

g̃ni = min

(sin ζ +R)V n
i h

n
i ,max

 b

2

∑
j∈N (i)

βnij

(
hni + hnj

2

)2

, (sin ζ −R)V n
i h

n
i

 ,

µ =


− V n

i q
n
i

∆t g(qni )V n+1
i hn+1

i

, if uni 6= 0

0, else

and

Gn
ij = ((Gnij)

1, (Gnij)
2)T , G̃

n
ij = ((G̃nij)

1, (G̃nij)
2)T .

As noted above, the velocity of the particles should be zero for admissible profiles. Under

that assumption, it is easy to see that Scheme 4.3.3 preserves the steady states of granular

masses at rest because in that case Scheme 4.3.3 coincides with Scheme 4.3.1.





Chapter 5

Numerical results

In this chapter, we will test the FVPM on several examples. We begin with a simple Riemann

Problem for the one-dimensional Euler equations in Section 5.1. For this problem, we use

fixed particles and give a numerical convergence analysis for different kernels and smoothing

lengths, corresponding to a different number of neighbours per particle. The results differ

only slightly from the results presented in [Tel05] for a similar problem.

In Section 5.2, we apply the FVPM to a problem with time-varying computational domain,

namely the linearized piston problem in one spatial dimension. For this problem, we use

moving particles. On the boundary, the particles move exactly with the boundary and

in the interior of the computational domain, the velocities of the particles are linearly

interpolated. In our numerical computations, we use both the FVPM described in Chapter

2 and the FVPM with B-splines developed in Chapter 3. For the original FVPM with a

simple piecewise linear kernel and different boundary conditions, this problem has already

been studied in [Lam01].

The SH equations, as introduced in Chapter 4, are considered in Section 5.3. Our numerical

results obtained with the FVPM agree very well with the results obtained with the kinetic

scheme described in [KS08] and Section 4.2. In Section 5.4, we apply the FVPM to a

two-dimensional solid body rotation problem.

Since we are operating on bounded computational domains, we need boundary conditions,

i.e. a suitable discretization of the boundary term (2.11)

Bi =

∫
∂Ω
ψi
(
F (u)− u · v

)
nds. (5.1)

As described in [Tel05], we simply use (2.25e) for inflow or outflow boundary conditions to

get

Bi ≈ (F (u∗i )− u∗i · v∗i )
∫
∂Ω
ψinds = (u∗i · v∗i − F (u∗i ))

∑
j∈N (i)

βij (5.2)

where u∗i and v∗i denote approximations of u and v on the boundary Ωi ∩ ∂Ω, respectively.

If we assume, that particle i with Ωi ∩ ∂Ω 6= ∅ moves exactly with the same velocity as the

83
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domain, we get

Bi ≈ (u∗i · ẋi − F (u∗i ))
∑

j∈N (i)

βij .

In the case of inflow boundary conditions, we will set u∗i on the prescibed inflow value for u.

For outflow boundary conditions, we will use the reconstruction and set u∗i (x, t) = uh(xi, t).

The treatment of solid wall boundary conditions is also described in [Tel05] and figured out

for the two-dimensional Euler equations. As the normal velocity of the flux through the

boundary vanishes, we will end up with

F (u)n =


0

p n1

p n2

0


and thus ∫

∂Ω(t)
ψi F (u) ds ≈

 0

−pi
∑

j∈N (i) βij
0

 .

Alternatively, one may handle inflow or outflow boundary conditions directly, at least for

non-moving domains Ω. For inflow boundary conditions, this can be done by prescribing

the values for uni if Ωi ∩ ∂Ωin 6= ∅, where ∂Ωin denotes the part of the boundary ∂Ω where

inflow conditions are considered. In this case, we set uni = 1
V n
i

∫
Ω u(x, tn)ψi(x, t

n) dx for all

n = 0, . . . , NT . Outflow boundary conditions can be implemented by simply extrapolating

the values from inner particles. Then, the update (2.22a) is made only for inner particles. In

this approach, the boundary particles are also called ghost particles.

In some of the following examples, we compute the experimental order of convergence (EOC)

according to

EOC1 :=
log(|u1 − u1

h|1)− log(|u2 − u2
h|1)

log(N2)− log(N1)
(5.3)

where | · |1 denotes the discrete L1-norm, uih denotes the numerical solution computed with

Ni particles and ui denotes the exact solution, both evaluated at the particle positions

x1, . . . ,xNi , i = 1, 2. The EOC for the discrete L2-norm is constructed analogously.

5.1 The 1D Euler equations

We begin this chapter with some results for a standard Riemann problem for the one-

dimensional Euler equations

∂tu+∇ · F (u) = 0 for (x, t) ∈ [0, 1]× R+

with

u =

 ρ

ρ u

ρE

 , F =

 ρ u

ρ u2 + p

u (ρE + p)

 .
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As already mentioned in Section 1.1, the system is completed with the equation of state

p = (γ − 1) ρ
(
E − u2

2

)
where γ = 1.4. The initial data are given by

ρ(x, 0) =

{
4, x ≤ 0.5

1, x > 0.5,
u(x, 0) = 0, p(x, 0) =

{
1.6, x ≤ 0.5

0.4, x > 0.5.

The exact solution consists of a rarefaction wave, a contact discontinuity and a shock wave.

As a first example, we compute approximate solutions with fixed equidistant parti-

cles. As boundary conditions, we use inflow boundary conditions on the left boundary

u(0, t) = u(0, 0) = (ρ(x, 0), u(x, 0), p(x, 0))T ∀ t ≤ T ∗, where T ∗ denotes a sufficiently small

time such that the evolving waves do not meet the boundary. On the right boundary, we use

outflow boundary conditions. The boundary conditions are implemented using formula (5.2).

In the first example, we choose the smoothing length to be h = 5/6 ∆x meaning that every

inner particle has exactly two neighbours. Note that this implies that the geometrical coeffi-

cients always satisfy βij ∈ {−1, 1}, see Chapter 2. In Figure 5.1, we can see the convergence

for N = 100, 300 and 500 particles. The exact and the approximate solutions are evaluated

at time t = 0.3.

Figure 5.1: Euler equations: density (upper left), velocity (upper right), pressure (lower

left) and energy (lower right) computed with equidistant particles and a smoothing length

h = 5/6 ∆x at time t = 0.3.



86 5. Numerical results

As a second example, we use irregular distributed particles. For that purpose, we take equidis-

tant particles and disturb the particle positions xi by adding a small random number. The

smoothing length is h = 2 ∆x. For equidistant particles, this would result in six neighbours

for each inner particle. We compute the geometrical coefficients using a precise numerical

integration method. Again, the particles do not move, so we have to compute the coeffi-

cients only once at the beginning of the computation. For the computation, we use again

N = 100, 300 and 500 particles and evaluate the exact and the approximate solutions at time

t = 0.3. In Figure 5.2, we can clearly see that the solution is smeared out in nonsmooth

regions compared to the example above.

Figure 5.2: Euler equations: density (upper left), velocity (upper right), pressure (lower left)

and energy (lower right) computed with irregular particles at time t = 0.3.

At the end of this section, we compute the numerical convergence rates in the discrete L1-

and L2-norm for the density ρ, the velocity u, the pressure p and the energy e at time t = 0.3.

We use equidistant particles and a smoothing length h = 2 ∆x, meaning that each particle

being sufficiently in the interior of the computational domain has exactly six neighbours. In

this case, the geometrical coefficients βij can be computed exactly as

βij =


± 7

16 , j = i± 1

±1
4 , j = i± 2

± 1
48 , j = i± 3

0, else,

see [Tel05] for details. The results for N = 25, 50, 100, 200, 400 and 800 particles can be
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seen in Table 5.1. where we used Formula (5.3) for the computation of EOCL1 and EOCL2 .

The observed convergence rate for the density in L1 resembles that in [Tel05] for a similar

problem. The worse convergence rates for the density and the energy may be caused by the

additional discontinuities occuring in these solutions compared with velocity and pressure.

In [Krö97] and for the same problem in two space dimensions, the author gets similar L1

convergence rates of EOCL1 ≈ 0.62 and EOCL1 ≈ 0.59 on different grids for the density. As

a numerical scheme, a first order FVM with a numerical flux function of Steger and Warming

has been used. For more details see [Krö97].

N |ρ− ρh|1 EOCL1 |ρ− ρh|2 EOCL2

25 1.836237e− 01 2.291921e− 01

50 1.304578e− 01 0.4932 1.752139e− 01 0.3874

100 8.966017e− 02 0.5410 1.359276e− 01 0.3663

200 5.910732e− 02 0.6011 1.029453e− 01 0.4010

400 3.811848e− 02 0.6328 7.784011e− 02 0.4033

800 2.435570e− 02 0.6462 5.984039e− 02 0.3794

N |u− uh|1 EOCL1 |u− uh|2 EOCL2

25 5.317025e− 02 6.919373e− 02

50 3.565628e− 02 0.5765 5.608921e− 02 0.3029

100 2.222067e− 02 0.6823 4.232139e− 02 0.4063

200 1.345759e− 02 0.7235 3.130398e− 02 0.4350

400 7.899747e− 03 0.7685 2.263215e− 02 0.4680

800 4.543966e− 03 0.7979 1.627234e− 02 0.4760

N |p− ph|1 EOCL1 |p− ph|2 EOCL2

25 8.427131e− 02 1.079944e− 01

50 5.601806e− 02 0.5891 8.278192e− 02 0.3836

100 3.545578e− 02 0.6599 6.079546e− 02 0.4454

200 2.196382e− 02 0.6909 4.371940e− 02 0.4757

400 1.326389e− 02 0.7276 3.066004e− 02 0.5119

800 7.850071e− 03 0.7567 2.114738e− 02 0.5359

N |e− eh|1 EOCL1 |e− eh|2 EOCL2

25 5.669022e− 02 7.747364e− 02

50 3.805264e− 02 0.5751 5.936258e− 02 0.3842

100 2.522890e− 02 0.5929 4.753148e− 02 0.3207

200 1.676008e− 02 0.5900 3.903484e− 02 0.2841

400 1.100486e− 02 0.6069 3.210244e− 02 0.2821

800 7.134643e− 03 0.6252 2.605069e− 02 0.3014

Table 5.1: Error and convergence rates for the Euler equations with equidistant particles and

h = 2 ∆x at time t = 0.3.
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5.2 A linearized piston problem with moving boundary

In this section, we consider a linear one-dimensional system of conservation laws that can be

used to model the behaviour of a gas in a tube that is compressed by a piston moving back

and forth. The linear system is derived from the isentropic Euler equations of gas dynamics.

As a detailed description of this example can be found in [Lam01], we only sketch the

main steps in the governing of the equations. Also in [Lam01], the FVPM was successfully

applied to this problem, but only for a piecewise linear kernel and with different boundary

conditions. We use this example to show that the FVPM with B-splines, as described in

Chapter 3, works well. For this purpose, we use B-splines of different order and give a

numerical convergence analysis. Moreover, the computation times of the different methods

are compared. The algorithms were implemented in MATLAB and all computations were

done on a 2.3 GHz Intel Core i5 machine.

Let us consider a one-dimensional tube of length L given by the interval I := [0, L] and filled

with a compressible gas. Assume that the right boundary is fixed and the left one is moving

back and forth with a given velocity. Moreover, we consider the compressible and isentropic

Euler equations

∂t

(
ρ

ρ v

)
+ ∂x

(
ρ v

ρ v2 + p

)
= 0, (5.4)

where p denotes the pressure and v the velocity of the gas. The system is endowed with the

additional state equation p = c ργ . In the following, we consider small perturbations around

the equilibrium state (
p0

v0

)
=

(
1

0

)
.

If we now linearize system (5.4) around this equilibrium state, we end up with two equations

for the linearized pressure p̃ and the linearized velocity ṽ of the gas:

∂tũ+ Ã ∂xũ = 0,

where

ũ =

(
p̃

ṽ

)
and

Ã =

(
0 γ p0

p0
c
−1/γ

0

)
.

In order to get dimensionless variables, we introduce t̄ = t̃/T, x̄ = x̃/L, p = p̃/(γ p0) and

v = T ṽ/L where T and L denote a characteristic time and the length of the tube, respectively.

Then, the dimensionless system reads

∂t̄u+A ∂x̄u = 0 (5.5)
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with u = (p, v)T and

A =

(
0 1

1 0

)
.

System (5.5) is completed with the initial and boundary values

p(x, 0) = 1

v(x, 0) = 0

v(1, t) = 0

v(a(t), t) = va(t).

Again, the boundary conditions are implemented using Formula (5.2).

The eigenvalues and eigenvectors of system (5.5) are given by

λ1 = −1, λ2 = 1, w1 =

(
1

1

)
, w2 =

(
1

−1

)

and the exact solution can be easily computed using the method of characteristics. For a

piston moving back and forth with piecewise constant velocity

va(t) =

{
ṽa, 0 ≤ t ≤ t1
−ṽa, t1 < t ≤ 2 t1,

ṽa ≤ λ2, the exact solution for t ≤ t1 is given by

p(x, t) =

{
1 + ṽa, ṽa t ≤ x ≤ λ2 t

1, t < x ≤ 1,

v(x, t) =

{
ṽa, ṽa t ≤ x ≤ λ2 t

0, t < x ≤ 1.

For t1 < t ≤ 2 t1, the exact solution reads

p(x, t) =


1− ṽa, ṽa (1− t) ≤ x ≤ λ2 t+ (ṽa − 1) t1

1 + ṽa, λ2 t+ (ṽa − 1) t1 < x ≤ λ2 t

1, λ2 t < x ≤ 1,

v(x, t) =


−ṽa, ṽa (1− t) ≤ x ≤ λ2 t+ (ṽa − 1) t1

ṽa, λ2 t+ (ṽa − 1) t1 < x ≤ λ2 t

0, λ2 t < x ≤ 1.

In this problem, particles which intersect the boundary are moved exactly with the velocity of

the boundary. The velocity of inner particles is computed as an interpolation of the velocities

of the two boundaries.
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For our computations, we set va = 0.25. The piston is assumed to compress the gas until

t = 0.5, such that it will be back in its initial position at t = 1.

In the following, we compare the FVPM using piecewise linear shape functions and piecewise

quadratic shape functions with the FVPM with B-splines of degree m = 1 and m = 2

regarding the accuracy, the rate of convergence and the computation time. In all examples, we

consider particles which are equidistant initially and then moved according to the movement

of the piston.

We first use piecewise linear functions Wi(x, t) and a smoothing length h = 2/3 ∆x0, such that

we have only two neighbours for each inner particle and thus βij ∈ {−1, 1} for all i, j ∈ N (i).

Here, ∆x0 denotes the distance between the initial particle positions. The smoothing length of

the particles and the movement of the piston are sufficiently small such that the configuration

of neighbours does not change during computation. Thus, the coefficients βij stay constant.

In contrast to this, the volumes Vi will change in time and have to be computed in every

time step. However, as stated before, it is very easy to realize an exact integration in the

case of piecewise linear functions Wi(x, t). The errors in discrete L1- and L2-norms and the

corresponding convergence rates for the FVPM with piecewise linear shape functions Wi(x, t)

can be seen in Table 5.2.

Next, we compare these results with the errors and convergence rates for the FVPM with

B-splines of degree m = 1. For that purpose, we implemented both methods (3.8)–(3.11),

where we used a forward Euler discretization in time, and (3.26)–(3.29). In Tables 5.3 and

5.4, it can be seen that both methods provide adequate convergence rates compared with the

results presented in Table 5.2. The computation times for the three methods are presented

in the upper part of Table 5.7. Since the problem can be solved by each of these three

methods without much effort, the computation times do not differ significantly. In the case

of the FVPM with piecewise linear shape functions and a more complex overlapping of the

particles, the computation time would surely increase. But even in that situation, there exists

an efficient way to compute the geometrical coefficients [Lam01].

After that, we have a look at the FVPM with piecewise quadratic shape functions Wi(x, t) and

smoothing lengths of h = 1.1 ∆x0, h = 1.25 ∆x0 and h = 1.5 ∆x0 resulting in four neighbours

for each inner particle initially. In this example, we have to compute the coefficients βij and

Vi in every time step. For that purpose, we use Gaussian numerical integration and Keck’s

correction method. For the volumes

Vi =

∫ xi+h

xi−h
ψi dx =

∫ xi+h

xi−h

Wi

σ
dx,

we get best results if we divide the domain [xi−h, xi+h] into three parts, Wi being polynomial

of degree 2 on each part:

Vi =

∫ xi−h/2

xi−h

Wi

σ
dx+

∫ xi+h/2

xi−h/2

Wi

σ
dx+

∫ xi+h

xi+h/2

Wi

σ
dx.

For each subinterval, we use 3 integration points. For the computation of the coefficients βij ,
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Figure 5.3: The piston problem: pressure and velocity of the gas. Red: exact solution,

blue: numerical solution computed with the FVPM with B-splines of degree m = 2 and 100

(dotted), 300 (dashed) and 1600 particles.

we split the integral into two integrals:

βij = 2

∫ (xi+xj)/2

max(xi,xj)−h
ψi ∂xψj dx+ 2

∫ min(xi,xj)−h

(xi+xj)/2
ψi ∂xψj dx

and use 3 integration points on each domain. The errors and the convergence of the method

can be seen in Table 5.5. These results are compared with that from the FVPM with B-splines

of degree m = 2, whose errors and rates of convergence are shown in Table 5.6. Both methods

show similar convergence rates in the discrete L1- and L2-norm.

The computation times in seconds of both methods can be found in the lower part of Table

5.7. Obviously, the modified FVPM with B-splines is much faster than the original FVPM.

This is primarily due to the computation of the coefficients by numerical integration. Note

that the computation times and the discrepancies between them may vary significantly in

other languages than MATLAB. Therefore, the comparison of absolute computation times

makes only limited sense.
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N |p− ph|1 EOCL1 |p− ph|2 EOCL2

25 5.586147e− 02 8.613473e− 02

50 3.970762e− 02 0.4924 6.976309e− 02 0.3041

100 2.818071e− 02 0.4947 5.638197e− 02 0.3072

200 2.030610e− 02 0.4728 4.846928e− 02 0.2182

400 1.429303e− 02 0.5066 4.006131e− 02 0.2749

800 1.013196e− 02 0.4964 3.387245e− 02 0.2421

1600 7.144707e− 03 0.5040 2.835968e− 02 0.2563

N |v − vh|1 EOCL1 |v − vh|2 EOCL2

25 5.529669e− 02 8.606280e− 02

50 3.945640e− 02 0.4869 6.997673e− 02 0.2985

100 2.786748e− 02 0.5017 5.638907e− 02 0.3115

200 2.008645e− 02 0.4724 4.849070e− 02 0.2177

400 1.415388e− 02 0.5050 4.006193e− 02 0.2755

800 1.005208e− 02 0.4937 3.387435e− 02 0.2420

1600 7.100593e− 03 0.5015 2.835974e− 02 0.2563

Table 5.2: Error and convergence rates for the FVPM with piecewise linear shape functions

at time t = 0.75 and with h = 2/3 ∆x0.

N |p− ph|1 EOCL1 |p− ph|2 EOCL2

25 5.385102e− 02 7.805576e− 02

50 3.934070e− 02 0.4530 6.692482e− 02 0.2220

100 2.805524e− 02 0.4878 5.643740e− 02 0.2459

200 1.998551e− 02 0.4893 4.760950e− 02 0.2454

400 1.416659e− 02 0.4965 4.006953e− 02 0.2487

800 1.003384e− 02 0.4976 3.370726e− 02 0.2494

1600 7.100074e− 03 0.4990 2.834803e− 02 0.2498

N |v − vh|1 EOCL1 |v − vh|2 EOCL2

25 5.324860e− 02 7.791734e− 02

50 3.929769e− 02 0.4383 6.692305e− 02 0.2194

100 2.805477e− 02 0.4862 5.643740e− 02 0.2459

200 1.998551e− 02 0.4893 4.760950e− 02 0.2454

400 1.416659e− 02 0.4965 4.006953e− 02 0.2487

800 1.003384e− 02 0.4976 3.370726e− 02 0.2494

1600 7.100074e− 03 0.4990 2.834803e− 02 0.2498

Table 5.3: Error and convergence rates for the FVPM with B-splines of degree m = 1 (scheme

(3.8)–(3.11)) at time t = 0.75.
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N |p− ph|1 EOCL1 |p− ph|2 EOCL2

25 5.378349e− 02 7.888601e− 02

50 3.885186e− 02 0.4692 6.584225e− 02 0.2608

100 2.798613e− 02 0.4733 5.646677e− 02 0.2216

200 1.991220e− 02 0.4911 4.743282e− 02 0.2515

400 1.415722e− 02 0.4921 4.007760e− 02 0.2431

800 1.002499e− 02 0.4979 3.368940e− 02 0.2505

1600 7.098213e− 03 0.4981 2.836257e− 02 0.2483

N |v − vh|1 EOCL1 |v − vh|2 EOCL2

25 5.297022e− 02 7.873064e− 02

50 3.879630e− 02 0.4493 6.584033e− 02 0.2580

100 2.798556e− 02 0.4712 5.646677e− 02 0.2216

200 1.991220e− 02 0.4910 4.743282e− 02 0.2515

400 1.415722e− 02 0.4921 4.007760e− 02 0.2431

800 1.002499e− 02 0.4979 3.368940e− 02 0.2505

1600 7.098213e− 03 0.4981 2.836257e− 02 0.2483

Table 5.4: Error and convergence rates for the FVPM with B-splines of degree m = 1 (scheme

(3.26)–(3.29)) at time t = 0.75.

h = 1.1∆x0

N |p− ph|1 EOCL1 |p− ph|2 EOCL2

25 5.717630e− 02 8.783970e− 02

50 4.055706e− 02 0.4955 7.134051e− 02 0.3002

100 2.876460e− 02 0.4957 5.763901e− 02 0.3077

200 2.118084e− 02 0.4415 4.995715e− 02 0.2064

400 1.538061e− 02 0.4616 4.120906e− 02 0.2777

800 1.144423e− 02 0.4265 3.529777e− 02 0.2234

1600 8.575832e− 03 0.4163 2.977336e− 02 0.2456

h = 1.1∆x0

N |v − vh|1 EOCL1 |v − vh|2 EOCL2

25 5.637238e− 02 8.771490e− 02

50 4.043996e− 02 0.4792 7.144753e− 02 0.2959

100 2.867055e− 02 0.4962 5.763104e− 02 0.3100

200 2.076068e− 02 0.4657 4.990703e− 02 0.2076

400 1.465274e− 02 0.5027 4.118900e− 02 0.2770

800 1.049790e− 02 0.4811 3.525405e− 02 0.2245

1600 7.492939e− 03 0.4865 2.974303e− 02 0.2452

to be continued on next page
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h = 1.25∆x0

N |p− ph|1 EOCL1 |p− ph|2 EOCL2

25 6.067745e− 02 9.037867e− 02

50 4.339368e− 02 0.4837 7.350599e− 02 0.2981

100 3.114745e− 02 0.4784 5.984847e− 02 0.2965

200 2.267578e− 02 0.4580 5.176039e− 02 0.2095

400 1.614304e− 02 0.4902 4.287385e− 02 0.2718

800 1.166733e− 02 0.4684 3.674861e− 02 0.2224

1600 8.436395e− 03 0.4678 3.111323e− 02 0.2402

h = 1.25∆x0

N |v − vh|1 EOCL1 |v − vh|2 EOCL2

25 5.991149e− 02 9.026237e− 02

50 4.325466e− 02 0.4700 7.373853e− 02 0.2917

100 3.078546e− 02 0.4906 5.986074e− 02 0.3008

200 2.228819e− 02 0.4660 5.179544e− 02 0.2088

400 1.575288e− 02 0.5007 4.287258e− 02 0.2728

800 1.129054e− 02 0.4805 3.675292e− 02 0.2222

1600 8.064306e− 03 0.4855 3.110896e− 02 0.2405

h = 1.5∆x0

N |p− ph|1 EOCL1 |p− ph|2 EOCL2

25 6.957848e− 02 9.633679e− 02

50 4.955719e− 02 0.4895 7.821947e− 02 0.3006

100 3.543613e− 02 0.4839 6.395492e− 02 0.2905

200 2.596215e− 02 0.4488 5.503163e− 02 0.2168

400 1.893909e− 02 0.4550 4.566847e− 02 0.2691

800 1.412734e− 02 0.4229 3.895068e− 02 0.2296

1600 1.065109e− 02 0.4075 3.287157e− 02 0.2448

h = 1.5∆x0

N |v − vh|1 EOCL1 |v − vh|2 EOCL2

25 6.797417e− 02 9.578145e− 02

50 4.920334e− 02 0.4662 7.819990e− 02 0.2926

100 3.517455e− 02 0.4842 6.391164e− 02 0.2911

200 2.541279e− 02 0.4690 5.494849e− 02 0.2180

400 1.801065e− 02 0.4967 4.563017e− 02 0.2681

800 1.291017e− 02 0.4803 3.888240e− 02 0.2309

1600 9.247077e− 03 0.4814 3.281835e− 02 0.2446

Table 5.5: Error and convergence rates for the FVPM with piecewise quadratic shape func-

tions at time t = 0.75 and with smoothing lengths h = 1.1 ∆x0, h = 1.25 ∆x0 and h = 1.5 ∆x0.

The coefficients are computed using Gaussian numerical integration.



5.2. A linearized piston problem with moving boundary 95

N |p− ph|1 EOCL1 |p− ph|2 EOCL2

25 7.802649e− 02 9.764169e− 02

50 5.297692e− 02 0.5586 7.676638e− 02 0.3470

100 3.598215e− 02 0.5581 6.214926e− 02 0.3047

200 2.477685e− 02 0.5383 5.147634e− 02 0.2718

400 1.715379e− 02 0.5305 4.297345e− 02 0.2605

800 1.193744e− 02 0.5230 3.601821e− 02 0.2547

1600 8.334053e− 03 0.5184 3.024013e− 02 0.2523

N |v − vh|1 EOCL1 |v − vh|2 EOCL2

25 5.542434e− 02 8.194314e− 02

50 4.204249e− 02 0.3987 6.999622e− 02 0.2273

100 3.165262e− 02 0.4095 5.959725e− 02 0.2320

200 2.312872e− 02 0.4526 5.050249e− 02 0.2389

400 1.652668e− 02 0.4849 4.258699e− 02 0.2459

800 1.169947e− 02 0.4984 3.587279e− 02 0.2475

1600 8.243379e− 03 0.5051 3.017864e− 02 0.2494

Table 5.6: Error and convergence rates for the FVPM with B-splines of degree m = 2 at time

t = 0.75.

N B-splines, m = 1

(3.8)–(3.11)

B-splines, m = 1

(3.26)-(3.29)

piecew. lin. shape

function

25 0.0861 0.0851 0.0862

50 0.1864 0.1795 0.1911

100 0.7048 0.6936 0.7147

200 2.7572 2.8064 2.8248

400 10.9403 11.0227 12.3276

N B-Splines, m = 2 piecew. quadr. shape function,

h = 1.1∆x

factor

25 0.2333 2.9697 ≈ 12.7

50 0.4062 11.8122 ≈ 29.1

100 1.5611 49.6814 ≈ 31.8

200 6.2568 223.4927 ≈ 35.7

400 26.2550 2066.5929 ≈ 78.7

Table 5.7: Computation times in seconds for solving the piston problem up to time t = 0.75.
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5.3 The SH equations

In this section, we consider the SH equations in one spatial dimension with Riemann initial

data in a first example and parabolic initial data in a second one. For all examples, we use a

piecewise quadratic kernel and the time step size is ∆t = ∆x/3.

We start with a classical Riemann problem for the SH equations on the computational domain

Ω = [0, 1] without a source, i.e. ζ = δ = 0, and the initial data

h(x, 0) =

{
hl, if x ≤ x0

hr, if x > x0

u(x, 0) = 0,

where hl = 1, hr = 0.5 and x0 = 0.5. The exact solution for this problem is given by

h(x, t) =



hl, if x ≤ λ1
l t+ x0

1

9b

[(
ul + 2

√
b hl
)
−
(
x− x0

t

))]2

, if λ1
l t+ x0 < x ≤ λ1

m t+ x0

hm, if λ1
m t+ x0 < x ≤ s t+ x0

hr, if x > s t+ x0,

u(x, t) =



ul, if x ≤ λ1
l t+ x0

2

3

[(
x− x0

t

)
+
√
b hl −

1

2
ul

]
, if λ1

l t+ x0 < x ≤ λ1
m t+ x0

um, if λ1
m t+ x0 < x ≤ s t+ x0

ur, if x > s t+ x0

and λ1
l , λ

1
m and λ1

r are defined as

λ1
l = λ1(hl, ul), λ1

m = λ1(hm, um), λ1
r = λ1(hr, ur),

where λ1(h, u) = u−
√
b h denotes the first eigenvalue of the SH equations and

s = (hmum − hrur)/(hm − hr) denotes the shock speed. The value hm is given by

(hr − hm)

√
b

2

(
1

hm
+

1

hr

)
+ 2

(√
b hl −

√
b hm

)
= ur − ul.

For t = 0.3, the results computed with Scheme 4.3.1 and a smoothing length h = 2 ∆x are

compared with the exact solution in Figure 5.4. We used both equidistantly distributed as well

as randomly disturbed particle positions. For the latter, we first constructed equidistant par-

ticles and disturbed the particle positions xi by adding a random number r ∈ (−0.25h, 0.25h)

afterwards. No significant difference can be seen between the results in Figure 5.4. But we

have to remark that the solution for the randomly disturbed particle positions sometimes

becomes false, in case of r ∈ (−0.5h, 0.5h) for example. For the equidistantly distributed

particles, the smoothing length h = 2 ∆x results in 6 neighbours for each inner particle. For

the randomly disturbed particles, the minimal and maximal number of neighbours for inner
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particles is 4 and 8, respectively.

The EOCs for the classical Riemann problem for the SH equations can be found in Table 5.8.

We used equidistant particles with smoothing lengths h = 1.25 ∆x and h = 2 ∆x resulting in

4 and 6 neighbours for inner particles, respectively. Moreover, the EOCs for the randomly

disturbed particles and h = 2 ∆x are shown. Although the error for disturbed particles is

slightly larger than for equidistant particles, the convergence rates seem to be a little better.

(a) Equidistant particle positions.

(b) Randomly disturbed particle positions.

Figure 5.4: The SH equations: height (left) and velocity (right) of the granular mass. Red:

exact solution, magenta, green and blue: computational solution with N = 200, 400 and 1600

particles, a smoothing length h = 2 ∆x and equidistant particles (a) as well as randomly

disturbed particle positions (b) .
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h = 1.25∆x

N |h− hh|1 EOCL1 |h− hh|2 EOCL2

25 2.688724e− 02 4.331827e− 02

50 1.775274e− 02 0.5989 3.179321e− 02 0.4463

100 1.154324e− 02 0.6210 2.421813e− 02 0.3926

200 7.241052e− 03 0.6728 1.798139e− 02 0.4296

400 4.342156e− 03 0.7378 1.260675e− 02 0.5123

800 2.577831e− 03 0.7523 9.064102e− 03 0.4760

1600 1.524313e− 03 0.7580 6.553677e− 03 0.4679

h = 1.25∆x

N |u− uh|1 EOCL1 |u− uh|2 EOCL2

25 2.009522e− 02 3.231550e− 02

50 1.292351e− 02 0.6369 2.370580e− 02 0.4470

100 8.364980e− 03 0.6276 1.822500e− 02 0.3793

200 5.224095e− 03 0.6792 1.358851e− 02 0.4235

400 3.148072e− 03 0.7307 9.750044e− 03 0.4789

800 1.855980e− 03 0.7623 6.897379e− 03 0.4994

1600 1.094709e− 03 0.7616 4.972079e− 03 0.4722

h = 2∆x

N |h− hh|1 EOCL1 |h− hh|2 EOCL2

25 3.536548e− 02 5.056982e− 02

50 2.406173e− 02 0.5556 3.814586e− 02 0.4068

100 1.587797e− 02 0.5997 2.936683e− 02 0.3773

200 1.017705e− 02 0.6417 2.208192e− 02 0.4113

400 6.299573e− 03 0.6920 1.618504e− 02 0.4482

800 3.755617e− 03 0.7462 1.148840e− 02 0.4945

1600 2.184898e− 03 0.7815 8.008097e− 03 0.5206

h = 2∆x

N |u− uh|1 EOCL1 |u− uh|2 EOCL2

25 2.731579e− 02 3.822565e− 02

50 1.771638e− 02 0.6247 2.850676e− 02 0.4232

100 1.159073e− 02 0.6121 2.217433e− 02 0.3624

200 7.390988e− 03 0.6491 1.679123e− 02 0.4012

400 4.586912e− 03 0.6882 1.259393e− 02 0.4150

800 2.720151e− 03 0.7538 8.904937e− 03 0.5001

1600 1.581580e− 03 0.7823 6.263809e− 03 0.5076

h = 2∆x,

randomly

disturbed

N |h− hh|1 EOCL1 |h− hh|2 EOCL2

25 3.917843e− 02 5.321011e− 02

50 2.490328e− 02 0.6537 3.946125e− 02 0.4313

100 1.651274e− 02 0.5928 3.081731e− 02 0.3567

200 1.058071e− 02 0.6421 2.249888e− 02 0.4539

400 6.536702e− 03 0.6948 1.663628e− 02 0.4355

800 3.888203e− 03 0.7495 1.179245e− 02 0.4965

1600 2.246328e− 03 0.7915 8.047857e− 03 0.5512

to be continued on next page
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h = 2∆x,

randomly

disturbed

N |u− uh|1 EOCL1 |u− uh|2 EOCL2

25 3.035758e− 02 4.201710e− 02

50 1.833132e− 02 0.7277 2.929060e− 02 0.5205

100 1.206759e− 02 0.6032 2.333436e− 02 0.3280

200 7.759506e− 03 0.6371 1.744616e− 02 0.4195

400 4.766688e− 03 0.7030 1.301106e− 02 0.4232

800 2.815193e− 03 0.7598 9.139008e− 03 0.5096

1600 1.623429e− 03 0.7942 6.287387e− 03 0.5396

Table 5.8: Error and convergence rates for Scheme 4.3.1 at time t = 0.75 and with smoothing

lengths h = 1.25 ∆x and h = 2 ∆x. The coefficients are computed using Gaussian numerical

integration.

In the second example, which can be seen as a one-dimensional breaking grain silo over an

incline, we assume an inclination angle ζ = π
15 and a friction angle δ = π

5 . The computational

domain is Ω = [0, 1] and the initial data are given by

h(x, 0) =


hl, if x ∈ [0, x1]

hm, if x ∈ (x1, x2]

hr, if x ∈ (x2, 1]

u(x, 0) = 0,

where hl = hr = 0.1, hm = 0.2, x1 = 0.25 and x2 = 0.5. Because of the inclination, we expect

the mass to move unsymmetrically. We first use equidistant particles with a smoothing

length h = 2 ∆x resulting in six neighbours for each inner particle and afterwards randomly

disturbed particle positions with the same smoothing length. The construction of the ran-

domly disturbed particle positions is as in the previous example: we start with equidistant

particle positions and change them by adding a random number r ∈ (−0.25h, 0.25h).

The time evolution of the initial profile and the velocity for N = 200 randomly disturbed

particles is shown in Figure 5.5. It can be seen clearly that the mass moves more to the

right than to the left and stops after a while. To make the unsymmetric movement of the

granular mass more evident, the top view of the time evolution of the velocity is shown in Fig-

ure 5.5 (b). The results agree very well with the results for a similar problem treated in [KS08].

Our last example concerning the SH equations is the spreading of a parabolic initial profile,

where we set ζ = 0 and δ = π/15. The initial profile is given by

h(x, 0) = max

(
K

10
,K − l (x− x0)2

)
,

where K = 1, l = 4 and x0 = 2.5. The time evolution of the computational solution for

N = 200 and randomly disturbed particle positions with a smoothing length h = 1.25 ∆x is

shown in Figure 5.6. We can see that the mass starts to move symmetrically and finally stops
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(a) Height for randomly disturbed particle positions.

(b) Velocity for randomly disturbed particle positions.

Figure 5.5: The SH equations: Time evolution of height (a) and velocity (b) for a Riemannian

initial profile over an incline with ζ = π/15, δ = π/5 and N = 200 randomly disturbed particle

positions up to t = 0.5.

due to friction. Again, the results for equidistant and randomly disturbed particle positions

differ only slightly and agree very well with the results in [KS08].
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Figure 5.6: The SH equations: Time evolution of the height for a parabolic initial profile with

ζ = 0, δ = π/15 and N = 200 randomly disturbed particle positions up to t = 6.

5.4 Solid body rotation

In this section, we consider the so-called solid-body rotation. The corresponding equation

and the initial condition in two space dimensions reads

∂tu+ 2 y ∂xu− 2x ∂yu = 0 for (x, y, t) ∈ [−1, 1]2 × R+,

u(x, y, 0) = u0(x, y).
(5.6)

Note that Equation (5.6) is of the form

∂tu+ ∂x(v1(x, y)u) + ∂y(v
2(x, y)u) = 0,

with a divergence-free velocity field v = (v1, v2) = (2 y,−2x). The streamlines of the flow are

level sets of the function f(x, y) = x2 + y2 and hence circles. Therefore, the exact solution of

problem (5.6) describes the clockwise rotation of the initial condition. With the method of

characteristics, it can be easily computed as

u(x, y, t) = u0(x cos(2t)− y sin(2t), x sin(2t) + y cos(2t)).

Thus, a complete rotation of the initial condition will be achieved for t = k π and k = 1, 2, . . . .

For the numerical computation, we use an equidistant particle configuration suggested in

[Tel05]. Suppose that we have N2 particles ΨI with I = (i, j), i, j = 1, . . . , N , thus N

particles in each direction. We use non-moving particles with a piecewise quadratic kernel in

two dimensions that is constructed from a piecewise quadratic kernel in one dimension by

WI(x, y, h) := Wi(x, h)Wj(y, h)
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and thus ΨI(x, y, h) = ψi(x, h)ψj(y, h). Here, WI and ΨI denote the kernel and the par-

ticle functions in two dimensions and Wi and ψi the one-dimensional kernel and particles,

respectively. This construction naturally leads to a square-shaped support of the particles

ΨI . We distribute the particles equidistantly in the domain Ω = [−1, 1]2 with a smoothing

length h = ∆x = ∆y, where ∆x and ∆y denote the distance between two particles in x- and

y-direction. According to (2.2), we set Wi(x, h) = W (x− xi, h) with

W (x, h) =


(x+ h)2, x ∈ [−h,−h

2 )

−x2 + h2

2 , x ∈ [−h
2 ,

h
2 )

(x− h)2, x ∈ [h2 , h)

0, else

and get

ψ(x− xi, h) = ψi(x, h) =


2
(
1 + x−xi

h

)2
, x ∈ [xi − h, xi − h

2 )

1− 2
(
x−xi
h

)2
, x ∈ [xi − h

2 , xi + h
2 )

2
(
1− x−xi

h

)2
, x ∈ [xi + h

2 , xi + h)

0, else.

This configuration leads to VI = h2 and eight neighbours for all inner particles ΨI . The

geometrical coefficients βIJ can be computed exactly to

βIJ =


(± 7

60h,±
7
60h)T , J = (i± 1, j ± 1)

(±23
30h, 0)T , J = (i± 1, j)

(0,±23
30h)T , J = (i, j ± 1)

(0, 0)T , else,

(5.7)

see [Tel05] for details.

The characteristics for this problem are circles and thus dictate an inflow-outflow pattern

on the boundary. In the numerical computation for this example, we use ghost particles as

described at the beginning of this chapter. On the inflow part of the boundary, we set u = u0.

As rotating objects, we choose first a cone and a rectangular solid as an example of a discon-

tinuous initial condition:

u0(x, y) =


1, 0.1 < x < 0.6, −0.25 < y < 0.25

1− r
0.35 , r < 0.35

0, else

(5.8)

with r :=
√

(x+ 0.45)2 + y2.

As a second example, we choose the smooth initial condition

u0(x, y) = Ψ(0.35,0)(x, y, h̃) := ψ(x− 0.35, h̃)ψ(y, h̃) (5.9)
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with a smoothing length of h̃ = 0.5.

Moreover, we use the Enquist-Osher flux function that is defined in the following way [Krö97]:

g(u, v,nij) := c+
ij(u) + c−ij(v),

where

c+
ij(u) := cij(0) +

∫ u

0
max(c′ij(s), 0) ds, (5.10)

c−ij(u) :=

∫ u

0
min(c′ij(s), 0) ds (5.11)

and

cij(u) := f(u)nij .

For the solid body rotation problem, we have f(u) = 2 (y u,−xu).

In Figure 5.7, the isolines of the numerical and the exact solution for N × N = 100 × 100

particles at time t = π/2 are shown. The initial conditions (5.8) and (5.9) and the

corresponding numerical results at time t = π/8, t = π/4 and t = π/2 can be found in Figure

5.8 and 5.9, respectively. In both cases, it can be seen clearly that the solution is smeared

out as time proceeds.

The numerical convergence rates for the numerical solutions in t = π/2 with the discontinuous

initial condition (5.8) and the smooth initial condition (5.9) can be found in Table 5.9 and

5.10, respectively. The results seem to be a little bit better than those in [Tel05] for a much

simpler linear advection problem. Note that for smooth initial data, convergence rates of

almost one are achieved.

N ×N |u− uh|1 EOCL1 |u− uh|2 EOCL2

60× 60 2.913056e− 01 2.959874e− 001

80× 80 2.559090e− 01 0.4503 2.666400e− 01 0.3630

100× 100 2.256024e− 01 0.5649 2.498392e− 01 0.2917

120× 120 2.067484e− 01 0.4787 2.351285e− 01 0.3328

140× 140 1.886838e− 01 0.5931 2.248879e− 01 0.2889

Table 5.9: Convergence rates for the solid body rotation problem with discontinuous initial

data (5.8) and t = π/2.
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(a) discontinuous initial condition

(b) smooth initial condition

Figure 5.7: Solid body rotation: isolines of numerical and exact solution with discontinuous

and smooth initial condition at time t = π
2 . Computed with 100× 100 particles.

N ×N |u− uh|1 EOCL1 |u− uh|2 EOCL2

60× 60 9.893387e− 02 1.089388e− 001

80× 80 7.894127e− 02 0.7847 8.632665e− 02 0.8087

100× 100 6.542729e− 02 0.8415 7.107600e− 02 0.8711

120× 120 5.567490e− 02 0.8853 6.012179e− 02 0.9180

140× 140 4.831997e− 02 0.9191 5.190007e− 02 0.9540

Table 5.10: Convergence rates for the solid body rotation problem with smooth initial data

(5.9) and t = π/2.
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Figure 5.8: Solid body rotation: discontinuous initial condition and numerical solution for

t = π
8 , t = π

4 and t = π
2 . Computed with 100× 100 particles.
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Figure 5.9: Solid body rotation: smooth initial condition and numerical solution for t = π
8 ,

t = π
4 and t = π

2 . Computed with 100× 100 particles.



Conclusions

This work deals with the Finite Volume Particle Method (FVPM), a meshless method con-

structed for the numerical treatment of conservation laws. As this method can be interpreted

as a generalization of the FVM, a first step in a convergence analysis of the FVPM was

made by the proof of some important results that are crucial for the analysis of FVM. For

scalar equations in several space dimensions, we could show an improved L∞-stability result.

As a consequence, we get the convergence of a subsequence in a nonlinear weak-* sense.

Under some assumptions, an L1- and a weak BV-stability result were proven. Moreover, we

were able to prove monotonicity and thus a discrete entropy inequality for general scalar

conservation laws in arbitrary space dimensions.

In another part of this thesis, we modified the FVPM in one spatial dimension by using

B-splines as shape functions. In this approach, the support of the shape functions may

vary in time so that additional terms appear in the scheme. On the other hand, these new

terms and the geometrical coefficients can be computed exactly. Thus, the resulting scheme

is much more efficient for problems where the particles have to move, e.g. because of a

time-dependent computational domain.

After that, we coupled the FVPM with a kinetic Ansatz in order to get a meshfree method

for the SH equations. A crucial requirement on numerical methods for the SH equations

is the preservation of granular masses at rest, i.e. non-homogenous steady states that

make physical sense. For that purpose, we discretized the kinetic representation of the SH

equations with the help of the generalized cell averages ending up with a FVPM with kinetic

fluxes and a special treatment of the source term. As we have already designed a kinetic

FVM for the SH equations earlier, we were able to compare the results of both methods.

In the last part, we tested the FVPM on several numerical examples. First, we implemented

the FVPM for the compressible Euler equations in one spatial dimension and for fixed par-

ticles. For a classical Riemann problem, we chose particles with different smoothing lengths

and compared the EOCs in space with results in [Tel05] for similar test cases. In a second

example, we applied the FVPM to a moving boundary problem, i.e. a one-dimensional piston

problem. In this case, the particles have to move because of the movement of the boundary.

We compared the EOCs and the computation time of the original FVPM with numerically

computed geometrical coefficients with that of the modified FVPM with B-splines. Both

piecewise linear and piecewise quadratic shape functions with different smoothing lengths

were used for the FVPM. For the new scheme, we used first and second order B-splines.

It was shown that the EOCs are similar, while the FVPM with B-splines is much faster
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and thus considerably more effective. Next, we tested the kinetic FVPM developed for the

SH equations on several examples. We started with a classical Riemann problem without

source term. The observed EOCs are similar to that observed for the Riemann problem for

the Euler equations. The second test case is a Riemann problem over an incline and with

simultaneous consideration of friction forces. In this case, we chose the inclination angle to

be smaller than the friction angle. It is seen that the granular mass clearly moves more in

downward direction and stops after a while. In our last example for the SH equations, we

start with a granular mass shaped like a parabolic cap. We take friction into account but

no inclination. The mass moves symmetrically and finally stops. All the results for the SH

equations agree very well with those from the kinetic scheme in [KS08]. At the end, we

implemented the FVPM for a linear solid body rotation problem. We tested the method with

smooth and discontinuous initial data. For smooth initial data, we achieved convergence

rates of almost one.

The next step concerning the convergence analysis of the FVPM for scalar equations is clearly

the construction of an entropy inequality for the reconstructed solution. With the notion of

the entropy process solution and the nonlinear weak-* convergence, it is then possible to go

to the limit in this entropy inequality and get estimates for the error terms with the help

of the weak BV-stability. Thus, it should be possible to show convergence of the numerical

solution obtained with the FVPM towards the entropy process solution. As it is well known

that the entropy process solution is independent of the additional parameter α and coincides

with the unique entropy solution, one gets strong convergence towards the entropy solution

in Lploc according to Proposition 1.2.4.

Concerning the SH equations, an extension to two or three dimensions would be interesting as

well as the implementation of moving particles. As figured out in Chapter 4, in such a particle

movement the particles should stop when the granular mass tends towards an equilibrium.

It would be interesting to see if the kinetic FVPM is able to preserve the granular masses at

rest, although this requirement should not be too difficult to achieve.



Appendix

On partitions of unity

The first proposition provides a bound on the sum of all Lebesgue measures of particle patches

contained in a set X with Lebesgue measure V . With the help of this proposition, we will

show that under the assumptions (2.41), (2.42) and (2.43), each particle has a finite number

of neighbours.

Proposition 5.4.1. Let X ⊆ Rd be a measurable set with Lebesgue measure m(X) =: V .

Moreover, let X := {Xi}i∈I , where the sets Xi are measurable sets with equal Lebesgue measure

m(Xi) =: v and satisfy ⋃
i∈I

Xi ⊆ X

such that no point x ∈ X is contained in more than M elements of X, i.e.

∀x ∈ X : |{i ∈ I : x ∈ Xi}| ≤M. (5.12)

Then

|I| · v ≤M · V.

Proof. We can assume that X =
⋃
i∈I Xi. For j = 1, . . . ,M , let Yj ⊆ X be the set of points

in X that are contained in precisely j elements of X. Since these sets are clearly disjoint, we

have
M∑
j=1

m(Yj) = V.

If the sets Xi are disjoint, we have M = 1 and

|I| · v = V.

In the general case, we count points in Y2 twice, points in Y3 three times etc. Hence, we have

V = |I| · v − 1 ·m(Y2)− 2 ·m(Y3)− · · · − (M − 1) ·m(YM ).

This yields

|I| · v = V +

M∑
j=1

(j − 1) ·m(Yj)
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≤ V + (M − 1)
M∑
j=1

m(Yj)

= V + (M − 1) · V
= M · V.

With this, we can show that every particle has only a finite number of neighbours.

Proposition 5.4.2. Let Ω ⊆ Rd, {ψi}i∈T be a partition of unity on Ω and Ωi := supp(ψi)

for i ∈ T . Under the assumptions (2.41), (2.42) and (2.43), each particle has only a finite

number of neighbours.

Proof. We denote by m(Ωi) the Lebesgue measure of Ωi. Because of (2.42), we have

m(Ωi) =

∫
Ωi

1 dx ≥
∫
Rd

ψi dx = Vi ≥ αhd.

Moreover, let yi ∈ Ωi. Because of (2.43), the ball B(yi, 4h) centered in yi with radius 4h

contains Ωi and Ωj for all j ∈ N (i). Using Proposition 5.4.1, we have

M ·m(B(yi, 4h)) ≥
∑

j∈N (i)∪{i}

m(Ωi) ≥ (CN,i + 1) · αhd

where CN,i := |N (i)|. We denote by Md the Lebesgue measure of the unit ball in Rd and

obtain

CN,i ≤
M ·m(B(yi, 4h))

α · hd
=

4d ·M · Md

α
= const.

For completeness, we will show that a finite number of neighbours for each particle implies

that every point in the considered domain is covered by a finite number of particles. Thus,

the assumptions that each point of a domain is covered by a finite number of particles and

that each particle has a finite number of neighbours are equivalent.

Proposition 5.4.3. We consider a partition of unity {ψi}i∈T defined on a domain Ω ⊆ Rd

and assume that each particle has only a finite number of neighbours:

∃CN ∈ R : |N (i)| ≤ CN ∀ i ∈ T .

Then each point x ∈ Rd is covered by at most M = CN + 1 particles, i.e.

∀x ∈ Rd : |{i ∈ T : x ∈ Ωi}| ≤ CN + 1.

Proof. Assume a particle ψi with CN,i := |N (i)|. We consider the set

A := Ωi ∩

( ⋂
j∈N (i)

Ωj

)
,
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which might be nonempty. In this case, we have

∀x ∈ A : |{k ∈ T : x ∈ Ωk}| ≥ CN,i + 1.

On the other hand, we have

∀x ∈ A : |{k ∈ T : x ∈ Ωk}| ≤ CN,i + .

Indeed, the assumption that there exists another particle ψl with l /∈ N (i) and

A ∩ Ωl 6= ∅

automatically implies that

Ωi ∩ Ωl 6= ∅,

thus the particles ψi and ψl are neighbours, in constrast to the assumption. If the set A is

empty, the set {k ∈ T : x ∈ Ωk} is even smaller for every x ∈ Rd.
The Proposition follows by setting CN := maxi∈T CN,i.

With the above propositions, it is easy to show the bounds stated in Chapter 2.

Proposition 5.4.4. Under the assumptions (2.41), (2.42) and (2.43), the sets

TR := {i ∈ T : Ωi ⊂ B(0, R)}
EnR := {(i, j) ∈ T 2 : i ∈ TR ∨ j ∈ TR, j ∈ N (i), uni > unj }
S := {σij : σij ⊂ B(0, R)\B(0, R− 2h)}

are bounded. More precisely, we have |EnR| ≤ C1 h
−d, |TR| ≤ C2 h

−d and |S| ≤ C3 h
1−d.

Proof. By Proposition 5.4.1, we know that

|TR| ≤ C2 h
−d

with

C2 :=
m(B(0, R)) ·M

α
.

Because of Proposition 5.4.2, each particle has only a finite number of neighbours CN . This

directly yields

|EnR| ≤ CN |TR| = C1 h
−d

with

C1 :=
m(B(0, R)) ·M · CN

α
.

To estimate S, note that we just have to count the particles in the annulus B(0, R)\B(0, R−
4h), multiplied by the maximal number of neighbours per particle CN . Thus, we have

|S| ≤ |{i ∈ T : Ωi ⊂ B(0, R)\B(0, R− 4h)}| · CN

≤ Md · (Rd − (R− 4h)d)

α · hd
·M · CN
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≤ C3 h
1−d

with

C3 :=
Md ·

∑d
k=1

(
d
k

)
·Rd−k · 4k ·M · CN
α

.



Nomenclature

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

FVPM Finite Volume Particle Method

SPH Smoothed Particle Hydrodynamics

CFL condition Condition on the time step size, named after Courant,

Friedrichs and Lewy

EOC Experimental order of convergence

d Spatial dimension

Ω Computational domain

∂Ω Boundary of the computational domain

v Velocity of the boundary of the computational domain

x Spatial coordinate

t Time variable

n Outer unit normal

ρ Density

u, v x- and y-component of the velocity, resp.

p Pressure

E Energy

n.w∗−→ Nonlinear weak-* convergence

m(·) Lebesgue measure

Md Lebesgue measure of the unit ball in Rd

δ(·) Diameter

a⊥b, a>b min(a, b), max(a, b)
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Lp Lebesgue space of p-integrable functions

L∞ Lebesgue space of essentially bounded functions

Lploc Locally p-integrable functions

BV Space of functions in L1
loc with bounded total variation

|| · ||Lp Lp-norm

| · |Lp Discrete Lp-norm

L Lipschitz constant

T Index set of particles

i, j Indices of particles

N Number of particles on bounded domains

N (i) Index set of all neigbours of particle ψi

CN,i Number of neighbours of particle ψi : CN,i := |(N (i))|
CN Upper bound on the number of neighbours per particle:

|(N (i))| ≤ CN ∀ i ∈ T

n Time step

∆t Time step size

ψi, ψ
n
i Particle

Ωi,Ω
n
i Support of particle ψi: Ωi := supp(ψi)

µ,M Minimal and maximal number of overlapping particles:

1 ≤ µ ≤ |{i ∈ T : x ∈ Ωi(t)}| ≤M ∀ (x, t) ∈ Rd × R+

xi,x
n
i Position of particle ψi

ẋi, ẋ
n
i Velocity of particle ψi

¯̇xij Average particle velocity

bi Barycenter of particle ψi

Vi, V
n
i Generalized volume of particle ψi

γij ,γ
n
ij ,βij ,β

n
ij Geometrical coefficients

Bi, B̃i, Ci, Di Boundary terms

h Smoothing length

gij , g
n
ij Numerical flux function

Bm
i B-spline of degree m

hi Distance between particles in the context of B-splines:

hi := xi+1 − xi
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Summary

This thesis is concerned with the Finite Volume Particle Method (FVPM), a meshless numer-

ical method for solving hyperbolic conservation laws. After a general overview on hyperbolic

conservation laws and the idea of the standard Finite Volume Method (FVM), the FVPM

is deduced following the derivation of the FVM. We show L∞-stability, a weak BV-stability

result, positivity, monotonicity and a discrete entropy inequality of the FVPM for scalar equa-

tions in several space dimensions. Subsequently, the FVPM is combined with B-splines in a

one-dimensional setting and coupled with an existing kinetic scheme to handle the dynami-

cal behaviour of granular masses. Numerical results are shown for the one-dimensional Euler

equations, a one-dimensional linear piston problem with moving boundary, the Savage-Hutter

equations and a two-dimensional solid body rotation problem.

Zusammenfassung

Diese Arbeit befasst sich mit der Analyse und Weiterentwicklung der Finite Volumen Par-

tikel Methode (FVPM), einer gitterfreien Methode zur numerischen Berechnung von Lösungen

hyperbolischer Erhaltungsgleichungen. Nach einem kurzen Überblick über hyperbolische Er-

haltungsgleichungen und der Einführung in das Gebiet der Finite Volumen Methoden (FVM)

leiten wir die FVPM her. Als zentrale Ergebnisse zeigen wir L∞-Stabilität, eine schwache BV-

Stabilität, die Positivität des Verfahrens, Monotonie sowie eine diskrete Entropie-Ungleichung

für skalare Erhaltungsgleichungen in mehreren Raumdimensionen. Anschließend formulieren

wir die FVPM mit B-Splines als Ansatz- und Testfunktionen in einer Raumdimension und

ermöglichen damit eine effiziente Berechnung der geometrischen Koeffizienten. Darüber hin-

aus nutzen wir eine bereits erfolgreich umgesetzte kinetische Methode zur Lösung der Savage-

Hutter Gleichungen und erhalten daraus eine Formulierung der FVPM zur Beschreibung von

Strömungen granularer Medien. Schließlich werden numerische Resultate für die eindimen-

sionalen Eulergleichungen, ein eindimensionales Kolben-Problem mit bewegtem Rand, die

Savage-Hutter Gleichungen sowie ein zweidimensionales Rotationsproblem angegeben.
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