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Abstract

Optimization is an important step in the analysis of physical problems to search for
the optimal state. The goal is to find the best values of the variables that optimize the
objective. It can be further increasing the accuracy of the Common Reflection Surface
(CRS) wavefield attributes. The fastest optimization algorithms usually only seek a lo-
cal minima, a point at which the objective function is smaller than at all other feasible
points in its vicinity. They do not always find the best solution of all such minima, that
is, the global minimum. Global solutions are highly desirable in some applications,
but they are usually difficult to identify and even more difficult to locate.
I propose a new strategy for the optimization method of the simultaneous estimation
of the CRS stack attributes, which allows to improve the image of pre-stack seismic
reflection data. The method is based on the conjugate direction method with its well-
known convergence properties and the Powell search method. The algorithm is robust
and easy to implement. The main advantage of this approach is the use of the conju-
gate direction method leads to a highly efficient iterative search method to speed up
the convergence rate while no derivatives of the objective function need to be calcu-
lated. The specific features of the Powell search method for the control of the search
direction prevents the premature convergence into local minima.
Previous research has shown that Nelder Mead optimization method applied to esti-
mate of the CRS stack attributes requires more iterations and is very time-consuming.
An application to the complex Sigsbee 2A synthetic data and a field data example
shows that the new method provides solutions with higher stability and faster conver-
gence. The new method also has a substantial computational advantage against the
Nelder Mead method currently used in the CRS attribute search. A factor of 2 in com-
puting time was observed for the simultaneous search of the parameters in the 2-D
CRS stack using the Powell conjugate direction approach for the field data example.
The application of the global optimization of the simultaneous estimation of the CRS
stack method on the Sigsbee 2A synthetic data set and field data set shows that the
new method provides very good solutions and can avoids being trapped into wrong
solutions which can not be achieved by the Nelder Mead optimization method.
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Chapter 1

Introduction

The aim of this thesis is the implementation of the optimization method for simulta-
neous estimation of the Common Reflection Surface (CRS) stack attributes, which
allows to improve the image of pre-stack seismic reflection data. Optimization is an
important step in the analysis of physical problems to search for the optimal state. The
goal is to find the best values of the variables that optimize the objective. The objective
depends on certain characteristics of the system, called variables or unknowns. The
fastest optimization algorithms usually seek only a local minima, a point at which the
objective function is smaller than at all other feasible points in its vicinity. They do not
always find the best solution of all such minima, that is, the global minimum. Global
solutions are highly desirable in some applications, but they are usually difficult
to identify and even more difficult to locate. Optimization theory or optimization
problem is the study of the extremal values of a function: its minimum and maximum.
Topics in this theory range from conditions for the existence of a unique extremal
value to methods, analytic and numeric for finding the extremal values and for what
values of the independent variables the function attains its extremes.

Optimization procedure can be further increasing the accuracy of the CRS wavefield
attributes. I try to devise a strategy for the optimization of the simultaneous estimation
of the CRS stack attributes, which allows to improve the image of pre-stack seismic
reflection data. The method comprises conjugate direction approach based on Powell
search method. Previous research has shown the pragmatic approach of the CRS
stack, which subdivides the 3-D global search in the full pre-stack data volume into
three 1-D searches in data sub-volumes, and the simultaneous optimization using
Nelder Mead (NM) method applied to estimate Common Reflection Surface (CRS)
stack attributes. In this thesis, I introduced the new globally optimization method for
simultaneous estimation of the Common Reflection Surface (CRS) stack attributes
which prevents the premature convergence into local minima, without the needed of
computing the gradient. The method is based on the conjugate direction method with
its well-known convergence properties and Powell search method for the control of
the search direction. The algorithm is robust and easy to implement. The use of the
conjugate direction method leads to a highly efficient iterative search method to speed
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CHAPTER 1. INTRODUCTION

up the convergence rate while using Hessian is avoided, also no matrix inversion and
no storage of a sparse matrix required. The iterative Powell search method for the
control of the search direction prevents the premature convergence into local minima,
without the need of computing the gradient.

One of the most commonly used geophysical methods for oil and gas explo-
ration is the reflection seismic method to generate a structural image of the subsurface.
The reflection events in the recorded pre-stack data time domain has to be transformed
into the reflectors of the medium properties in the depth domain. A crucial problem
of the imaging task is the fact that many conventional imaging methods require a
sufficiently accurate macro velocity model to yield correct results. The simulation of a
zero-offset (ZO) stack section from multi coverage seismic reflection data is a widely
used seismic reflection time domain imaging method that reduces the amount of data
and enhances the signal-to-noise (S/N) ratio.

The Common Reflection Surface (CRS) stack is a model independent seismic
imaging method without any ray tracing and macro velocity model estimation. Only
the knowledge of the near-surface velocity is required. Application of the Common
Reflection Surface (CRS) stack technique improves the signal-to-noise (S/N) ratio
and the quality of reflection seismic images. Since, a multiparameter formula allows
to sum up more traces during the stack compared to the Common Mid Point (CMP)
stack and involves information about the shape of seismic reflectors, i.e., dip and
curvature, into processing. In contrast to the conventional CMP stacking that does
not use the full potential of the data set, the CRS stacked directly makes use of the
inherent redundancy in the pre-stack data and parameterizes the reflection events in the
time domain to improve the signal-to-noise (S/N) ratio and the quality of reflection’s
seismic images. Reflection events in the CRS stack sections appear clearer and more
continuous compared to conventional CMP stack sections. The CRS stack is not only
to provide a well-simulated zero-offset stack section but also to determine certain
attributes of hypothetical wave fronts at the surface useful for a subsequent inversion.
The 2-D CRS description of the reflection response is specified by three kinematic
wave field attributes, namely the emergence angle α of the normal ray, the radius of
curvature RNIP and RN of the NIP wave and the normal wave, respectively. Since
for each new values of {α,RNIP , RN} the estimation of the semblance has a high
computational cost in term of floating-point operations and data movement, the search
process, if not correctly designed, might be very time-consuming. This lead to the
introduction of the pragmatic approach which subdivides the 3-D global search in the
full pre-stack data volume into three 1-D searches in data sub-volumes.

In the first part of this thesis, the processing of optimization method used the
initial values from the result of the pragmatic approach, which subdivides the 3-D
global search in the full pre-stack data volume into three 1-D searches in data
sub-volumes. We have to split the three-parameters optimization problem into
separate one-parameter searches. Furthermore, there is no guarantee that the resulting
attributes may be wrong or linked to a local minimum. The second part of this thesis
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1.1. THESIS STRUCTURES

global optimization methods may overcome some of these deficiencies and problems.
The processing of the optimization procedure used the arbitrary guess based on a
priori information from the geological structure, best guess or local slopes without
any special treatment of the initial values.

1.1 Thesis structures

The thesis is structured as follows:

In Chapter 1, I briefly introduce and review the basic aim of this thesis. The
optimization problem is described and applications on the simultaneous estimation
of Common Reflection Surface (CRS) stacked attributes to improve the quality of
pre-stack seismic reflection imaging is presented.

In Chapter 2, reviews the conventional and new seismic imaging techniques
used in this work. In particularly, it introduces the CMP and CRS stack methods for
time imaging, the pragmatic approach to define the initial values of the optimization
and the global optimization problem.

In Chapter 3, discusses the optimization problem in detail. The fastest opti-
mization algorithms usually seek only a local minima, a point at which the objective
function is smaller than at all other feasible points in its vicinity. They do not always
find the best solution of all such minima, that is, the global minimum. Global solutions
are highly desirable in some applications, but they are usually difficult to identify and
even more difficult to locate. A simplex method for finding a local minimum of a
function of several variables is the Nelder Mead optimization method and compare
with the conjugate direction approach using Powell search method. Demonstrate the
numerical example of both method.

In Chapter 4, presents the results of the simultaneous optimized CRS stack at-
tributtes using synthetic data. I apply the optimization procedure on Sigsbee 2A
synthetic data which were generated designed in 2001 by the Subsalt Multiples
Attenuation and Reduction Technologies (SMAART) JV consortium. The Sigsbee 2A
data set was simulates for a marine 2-D model that represents a situation as observed
in the Gulf of Mexico: a stratified background model associated with a relatively
smooth macro-velocity model contains a salt body with a quite complicated geometry.

In Chapter 5, presents results of the simultaneous optimization for CRS stacked
on field data set. The data set is marine data set from the North Sea close to the
German coast line. Salt structures and complex fault systems characterize this region.
The application of the new method has a substantial computational advantage against
the Nelder Mead method currently used in the CRS attributes search. A factor of 2 in
computing time was observed for the simultaneous search of the parameters in the 2-D
CRS stacked using the conjugate direction approach for field data example. Whereas
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CHAPTER 1. INTRODUCTION

we do not see specific differences in the stack or attributes sections for the Powell
conjugate direction or Nelder Mead approach.

In Chapter 6, presents the results of the application of the global optimization
CRS stack used an arbitrary initial values. I investigated the optimization results based
on the choice of the initial values to demonstrate the advantages of this method finding
the solution. In this implementation we still using the pragmatic approach results
for the RNIP and RN as an initial values, and the arbitrary value for the angle. To
show the advantages this method I apply the optimization procedure on Sigsbee 2A
synthetic data set and field data set. The application of the simultaneous optimization
of the CRS stack method on the Sigsbee 2A synthetic data set and field data set shows
that the new method provides very good solutions and can avoids being trapped into
wrong solutions which can not be achieved by the Nelder Mead optimization method.
The results show that the new method can find the right solution in comparison with
the Nelder Mead method without any special treatment of the initial values.

In Chapter 7, I conclude the experiences and summarize the results of the thesis
and give an outlook on various future extensions and generalizations of the CRS stack
approach.

4



Chapter 2

Theoretical review

Seismic method is one of the most commonly used techniques for geophysical inves-
tigations for the petroleum exploration, ground water searches, or civil engineering.
The method allows to image of the Earth’s interior using indirect measurements
carried out at the Earth’s surface. The detail image of subsurface structures is the goal
of geophysical investigation to provide data are used to analyze potential petroleum
reservoirs and mineral deposits, locate groundwater, and assess sites for environmental
remediation.

2.1 Reflection seismic method

Seismic reflection is one branch of geophysics which utilizes the concept of wave
propagation. The reflection seismic method is the most important method in the
hydrocarbon exploration industry, due to high accuracy, high resolution and deep
penetration. The reflection seismic method based on the generation and measurement
of elastic waves at the earth’s surface. The purpose of this method is to get an image
of the subsurface from the traveltimes and amplitudes of the elastic waves measured at
the earth’s surface. This method allows the investigation of the subsurface structures
for possible oil and natural gas deposit. Explosive or vibrator sources are used to
generate the elastic waves, which propagate through the subsurface and are reflected
as well as refracted at seismic interface (show in Figure 2.1(a)). These interfaces are
boundaries between geological formations, where the velocity or density distribution
in the earth changes. A series of receivers spread on the surface capture the returning
energy at the earth’s surface, recording the traveltime and amplitude of the elastic
wave.

The simplest type of acquisition would be to use a single coincident source and
receiver pair and profile the earth along a line as shown in the adjacent figure. Such an
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CHAPTER 2. THEORETICAL REVIEW

experiment would be called a zero-offset (ZO) experiment because there is no offset
distance between source and receiver (both marked as a yellow dot on the Figure
2.1(b)). The resulting seismic data will be single-fold because there will be only a
single trace per sub-surface position. The zero-offset (ZO) concept is an important
one and the method might be used in practise if noise could be ignored. In order to
overcome the noise problem and additionally to estimate earth velocity, the method of
acquisition most commonly used is the Common Mid Point (CMP) method.

(a) (b)

Figure 2.1: Propagation of seismic wave (a) and zero-offset geometry acquisition (b).

2.2 Conventional CMP stack

In a typical 2-D seismic data acquisition experiment sources and receivers are dis-
tributed along a straight line (Sheriff and Geldart, 1995; Yilmas, 2001). Seismic en-
ergy travels into the subsurface from the source location (xs, 0). Seismic trace resulting
from the reflected and diffracted portions of this released energy are recorded at the re-
ceiver location (xg, 0). In the field, seismic data are acquired as Common Source (CS)
gathers and then sorted into Common Mid Point (CMP) gathers. CMP location (xm)
is defined as the midpoint between a source and a receiver. The location xm on the
seismic line can be calculated from the source location xs and the receiver location xg.
The distance between source and receiver is called offset. Source and receiver pairs
with the same CMP location are gathered into a CMP gather. Thus the lateral position
of each trace in the prestack data is transformed according to:

xm =
xs + xg

2
, h =

xg − xs

2
, (2.1)

xm is the horizontal location of the CMP and h is half the distance between source
and receiver, respectively.

6



2.2. CONVENTIONAL CMP STACK

In the 2-D survey, source and the receiver together are moved along the line of
acquisition (Figure 2.2(a)). Thereby, each subsurface point is repeatedly illuminated
under varying angles. This so-called multi coverage seismic recording provides
redundant information of the illumminated subsurface point. This repeated gathering
of information from the same element with different offset is called redundancy.
Since in field data is usually acquired in a redundant way, many traces contain
information about the same region in the subsurface. A CMP gather includes all rays
that illuminate the same point on a reflector with different offsets (Figure 2.2(b)).
Thereby the same element of the subsurface is involved in several records with
different source and receiver pair coordinates xs and xg. Thus, a CMP gather contains
redundant information about the surface. This redundancy results in rapidly increasing
storage demands and can efficiently be lowered by the technique of stacking. This
is the basic idea for the CMP stack method (Mayne, 1962). Not only does this
technique allow to considerably lower the demanded storage capacity, since the
trace from different offsets contain information for a common point on a horizontal
reflector, the redundant information can be summed up constructively to increases
the signal-to-noise (S/N) ratio. The signal-to-noise ratio is improved by constructive
summation of the reflection events and destructive summation of incoherent noise.

(a) (b)

Figure 2.2: Reflection seismic geometry: shot configuration (a) and CMP configura-
tion (b). In homogeneous and horizontally-layered model, all rays in a CMP gather
reflect from the same depth point under varying angles. The CMP gather contains ex-
actly the same information about one point in depth, the Common Depth Point (CDP).

2.2.1 Normal move out and velocity analysis.

In general a CMP gather consist of traces with different half-offsets to the CMP, the
coherent energy recorded in the data is now summed constructively, as one desires.
The delay of reflection arrival times with offset is called Normal Move Out (NMO).
The traveltime curve defines the increase in traveltime t with offset x (Figure 2.3). The
time 4tNMO is the difference between the traveltime t(h) for a specific offset and the
zero-offset traveltime t0. It is the additional propagation time 4tNMO(x) = t(x)− t0
that a seismic wave requires if source and receivers are not coincident and an offset

7



CHAPTER 2. THEORETICAL REVIEW

remains, compared to the traveltime for coincident source-receiver location. Summa-
tion or stacking of the gathered traces to zero-offset requires the NMO correction of
each trace to the same level t0 at zero-offset.

To overcome this problem, the variation of traveltime with offset has to be es-
timated. Conventional CMP stacking involves summing the primary reflection
along the calculated moveout curves which best approximate the actual reflection
traveltimes curves. For the simplest case of small offset a planar horizontal reflector,
constant velocity layer over a homogeneous half-space, the traveltime curves can be
approximated according Pythagorean theorem described by a hyperbola formula:

t2(h) = t20 +

(
4h2

v2

)
, (2.2)

with h is the half-offset between source and receiver, v is the medium velocity and t0 is
the zero-offset traveltime (traveltime that measured for coincident source and receiver,
h = 0). This equation describes a hyperbola whose curvature is characterized by the
moveout velocity parameter.

Figure 2.3: NMO correction: increase in traveltime t with offset x.

The removed of the effects of offset on traveltime is called normal moveout correction,
which implies mapping of traveltime t(h) to zero-offset traveltime t0 by:

4 tNMO(h) = t(h)− t0 = t0


(
1 +

(
2h

vt0

)2
)1/2

− 1

 , (2.3)

The square of the traveltime (equation 2.2) is allow for vertical inhomogeneity in the
overburden can be expanded into its Taylor series (Hubral and Krey, 1980):

t2(h) ≈ t20 +

(
4h2

v2RMS

)
, (2.4)
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where the root mean square velocity is given by v2RMS

v2RMS =
1

t(0)

n∑
i=1

v2i 4 ti(0), (2.5)

with 4ti(0) being the vertical two-way traveltime through the ith layer, vi is the veloc-
ity in the ith layer and t(0) =

∑n
i=1 4ti.

2.3 Common Reflection Surface (CRS) stack

The simulation of a zero-offset stack section from multicoverage seismic reflection
data is a widely used seismic reflection imaging method that significantly reduces
the amount of data and increases the signal-to-noise ratio (S/N). But a sufficiently
accurate stacking velocity model is required to yield correct result. Common reflection
surface (CRS) stack is a new zero-offset simulation method in seismic processing
(Müller, 1999), new model independent in seismic imaging method. There are
no need macro velocity model, consequently without velocity analysis, just near
surface velocity. Common reflection surface stack is the use of analytical formulae
that describe the kinematic reflection moveout response for inhomogeneous media
with curved interface and the kinematic multicoverage response for inhomogeneous
media. The aim of the common reflection surface stack is not only to provide a
well-simulated zero-offset stack section but also to determine certain parameters
useful for a subsequent inversion. Use coherency analysis (Taner and Koehler, 1969)
to determined stack operator: reflection segmen location, curvature, and orientation.

The CRS stacking surface (Figure 2.4) can be calculated using the approxima-
tion of the true subsurface reflector by a reflector element that locally has the same
curvature as the true reflector. The hyperbolic second order Taylor expansion formula
derived from paraxial ray theory (Schleicher et al., 1993; Tygel et al., 1997) given by

t2(xm, h) =

(
t0 + 2

sinα

v0
(xm − x0)

)2

+ 2
t0cos

2α

v0

(
(xm − x0)

2

RN

+
h2

RNIP

)
, (2.6)

with t0 is the zero-offset traveltime, α is the angle of emergence of the ZO ray,
v0 is the near surface velocity, xm and h midpoint and half-offset coordinate,
respectively, RN and RNIP are radius of curvature of the normal (N) wave and
normal incident point (NIP) wave, respectively. Half offset h and midpoint xm can
be calculated from the source location xs and the receiver location xg is given by
equation 2.1.
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CHAPTER 2. THEORETICAL REVIEW

Figure 2.4: CRS stacking surface: illustration of the common reflection surface in a
midpoint-offset-time (m,h, t) domain. Reflector curvature and dip can better be taken
into account and a higher signal to noise ratio achieved. Due the summation not only
takes place in offset but also to the extend in midpoint direction (Müller, 1999).

The three kinematic wavefield attributes α, RN , and RNIP were introduced by (Hubral,
1983). The N-wave is a wave generated by an exploding reflector model, where dense
point sources cover the common reflector surface (CRS) around the NIP and explode
simultaneously. The NIP-wave can be considered as a wave that propagates from a
point source at the NIP for a specific reflector. RN is the distance from the reflector
element and local reflector curvature to the surface (Figure 2.5(a)), and RNIP is the
distance from the reflector element to the observation surface (Figure 2.5(b)).

(a) (b)

Figure 2.5: Illustration of physical interpretation of the kinematic CRS wavefield at-
tributes. The radius of curvature of the N-wave (a) is the distance from the CRS cur-
vature to the observation surface, and the radius of curvature NIP-wave (b) is measure
from the NIP. The angle of emergence, α, defines the angular orientation of the CRS.
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The respective sample of the zero-offset trace to be simulated is defined by (t0, x0).
The remaining parameters are the angle of emergence α of the zero-offset ray, the cur-
vature of the NIP-wave RNIP , and the curvature of the N-wave RN (Höcht, 1998). For
each sample (t0, x0) in the stack section, we have to determine the stacking parameter
triple (α, RNIP , RN ) that yields the stacking operator that fits best to an event in the
multicoverage data set. This is done by means of coherency analysis of the stacking
operator with the measured data. It is given by (Taner and Koehler, 1969):

S =
1

N

∑
t

(∑N
i=1 fi,t(i)

)2
∑

t

∑N
i=1 f

2
i,t(i)

, (2.7)

where fi,t(i) is the amplitude on the i−th trace at traveltime t(i) and N is the number of
traces.

2.4 CRS processing

To perform the CRS stacking of seismic reflection the CRS parameters must be esti-
mated. CRS processing starts with the search of initial values for the CRS parameters.
Three kinematic wavefield attributes, emergence angle α, radius of curvature of the
NIP wave RNIP , and radius of curvature of the normal wave RN , serve as parameters
for the CRS operator.

2.4.1 Pragmatic approach

A simultaneous three parameters search for CRS parameters (α,RN , RNIP ) would be
computationally very expensive. The most efficient solution of the posed optimization
problem with three parameters can be achieved if it can be decomposed into three
separate optimization problem with one parameter searches (Müller, 1998). Here the
3-D search is subdivided into three subsequences 1-D searches is called the pragmatic
approach. Three parameters α,RN , and RNIP search processes by automatic CMP
stack, angle scan, and RN scan. Starting with the generation of an automatic CMP
stack section, the three CRS parameters are estimated step by step.

Automatic CMP stack

The hyperbolic equation traveltime formula (equation 2.6) depends on three unknown
parameters α,RN , RNIP can be simplified in the CMP configuration (xm = x0). To
split the three-parameter optimization problem into separate one-parameter searches,
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the input data is confined to specific gathers. These yields initial attributes which can
be used as first guess in a final optimization procedure. The hyperbolic approximation
xm = x0 can be expressed by:

t2CMP (h) = t20 + 2
t0cos

2α

v0

h2

RNIP

= t20 + 2
t0h

2q

v0
. (2.8)

With the conventional stacking velocity VNMO equation we obtain:

V 2
NMO =

2v0RNIP

t0cos2α
=

2v0
t0q

, (2.9)

where

q =
cos2α

RNIP

, (2.10)

t2CMP (h) = t20 +
4h2

V 2
NMO

. (2.11)

Angle scan-plane wave search zero-offset

To determine initial values of emergence angle α, we consider the ZO section sim-
ulated in the preceeding step. For traces in the ZO gather the traveltime description
depends only on the two parameters α and RN . In the ZO configuration (h = 0) the
CRS equation reduces to:

t2ZO(xm) =

(
t0 + 2

sinα

v0
(xm − x0)

)2

+ 2
t0cos

2α

v0

(
(xm − x0)

2

RN

)
. (2.12)

In a first order approximation by neglecting second order (for RN = ∞) this equation
can be further simplified to yield a one-parametric equation:

tZO(xm) = t0 + 2
sinα

v0
(xm − x0). (2.13)

Using this equation, an initial angle of emergence α is determined for every ZO time
sample. Using a discrete number of angle of emergence α appliying coherency anal-
ysis. For each test parameter the traveltime is calculated and correlated with ZO data.
The angle of emergence that yields the highest correlation is stored as the initial angle
of emergence α for the initial CRS stack.
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RN scan-hyperbolic search zero-offset

After the values VNMO and α are estimated, the RNIP is defined through equation 2.9
as:

RNIP =
t0cos

2αV 2
NMO

2v0
. (2.14)

In the zero-offset configuration (h = 0) equation 2.12 applies to estimated RN . With
the knowledge of angle of emergence α we can determine initial discrete RN value for
the initial CRS stack.

The simplified flowchart for the pragmatic approach procedure is shown in Fig-
ure 2.6.

Automatic CMP stack

-

coherency section

initial q section

Angle scan

?

coherency section

RNIP section
initial α section

6

RN scan

�

coherency section

initial RN section
CMP Gather

6

6

Prestack Data

-

-

CRS Gather

Initial CRS attribute

α, RNIP , RN

Optional for optimization

Figure 2.6: Flow chart for the pragmatic approach procedure for the CRS stack.

2.4.2 Simultaneous optimization

After the generation of the automatic CMP stack section, the CRS stack performs
a parameter search using the zero-offset approximation and hyperbolic search of
the CRS traveltime formula. The pragmatic approach procedure provides the CRS
parameters α,RN , RNIP for every zero-offset (ZO) time sample in the target zone.
These attributes are used as initial values in the final optimization process.

Current research implementation of the CRS stack used Nelder Mead optimiza-
tion method. For a scalar objective function f(x), where x is a vector with N ≥ 2
components, optimization algorithm propagates a polyhedron with N + 1 vertices
through the N-dimensional parameter space. Starting with a given initial polyhedron,
the method only requires the values of the objective function f at the vertices xi
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and internally calculated new potential vertex locations. Derivatives of the objective
function are not required.

In this thesis, a simple and robust local optimization is used, namely the con-
jugate direction approach using Powell method, compared to the Nelder Mead
optimization procedure currently used as the optimization technique in the determi-
nation of CRS attributes. This method solved quadratic of N variables in N steps
use iterative methods. An iterative method makes an initial guess at a solution to the
system, and then tries to repeatedly improve the guess. Therefore three parameter
CRS stack α,RN , and RNIP will be determined in three iterations. The method is
based on the conjugate direction method with its well-known convergence properties
and Powell search method for the control of the search direction. The algorithm is
robust and easy to implement. The use of the conjugate direction method leads to a
highly efficient iterative search method to speed up the convergence rate while using
Hessian is avoided. The iterative Powell search method for the control of the search
direction prevents the premature convergence into local minima, without the needed
of computing the gradient. The simplified flowchart for the simultaneous optimization
procedure is shown in Figure 2.7.

Pragmatic approach results

α, RNIP , RN- Initial CRS attribute

?

Nelder Mead Method

Search for objective function

Powell CD Method

Search direction and steplength

? ?

α(i)
RN(i)
RNIP (i)
coherency section

Optimized CRS stack
CRS stack section
α section

RNIP section
RN section

Figure 2.7: Flow chart for simultaneous optimization CRS stack procedure.

14



2.4. CRS PROCESSING

2.4.3 Global optimization

The main purpose of the optimization procedure is to find the best solution to minimize
or maximize the function from all feasible solutions of the function. In many nonlinear
optimization problems, the objective function has a large number of local minima and
maxima, a point at which the objective function is smaller or larger than at all other
feasible points in its vicinity (see Figure 2.8). Finding an arbitrary local optimum is
relatively straightforward by using classical local optimization methods. Finding the
global minimum or maximum of a function is far more difficult, where the largest or
smallest value that the function takes at a point either within a given neighborhood
(local or relative extremum) or on the function domain in its entirety (global or
absolute extremum).

Figure 2.8: Local-global solution.

The objective of global optimization is to find the globally best solution of possibly
nonlinear models, in the possible or known presence of multiple local optima.
Formally, global optimization seeks global solutions of a constrained optimization
model. Global optimization is the task of finding the absolutely best set of parameters
to optimize an objective function. The task of global optimization is to find a solution
in the solution set for which the objective function obtained its smallest value, the
global minimum. Global optimization thus aims at determining not just "a local
minimum" but "the smallest local minimum" with respect to the solution set. In
general, the classical optimization techniques have difficulties in dealing with global
optimization problems. One of the main reasons of their failure is that they can easily
be entrapped in local minima.

15



CHAPTER 2. THEORETICAL REVIEW

16



Chapter 3

Optimization

Optimization is an important step in the analysis of physical problems to search for
the optimal state. The goal is to find the best values of the variables that optimize the
objective. To use it, we must first identify some objective, a quantitative measure of
the performance of the system under study. This objective could be efficiency, time,
accuracy, energy, or any certain quantity that can be represented by a single number.
The objective depends on certain characteristics of the system, called variables or un-
knowns. Often the variables are restricted as can be constrained by a priori information.
The process of identifying objective, variables, and constraints for a given problem is
known as modeling. The construction of an appropriate model is the most important
step in the optimization problem. If the model is too simplistic, it will not give useful
insights into the practical problem, but if it is too complex, it may become too difficult
to solve.

3.1 Optimization problem

Optimization theory or optimization problem is the study of the extremal values of a
function: its minimum and maximum. Topic in this theory range from conditions for
the existence of a unique extremal value to methods, analytic and numeric for finding
the extremal values and for what values of the independent variables the function
attains its extremes (Sun and xiang Yuan, 2006).

The simplest optimization problem is to find the minimum of a scalar-valued
function of a scalar variable f(x) the so-called objective function and where minimum
is located. Assuming the function is differentiable, the well-known conditions for
finding the minimum local and global are:

d

dx
f(x) = 0, (3.1)
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d2

dx2
f(x) > 0. (3.2)

All values of the independent variable x satisfying these relations are locations of
local minimum. Without the second condition, solution to the first could be either
minimum, maximum or inflection points. Solution to the first equation are termed
stationary points of the objective function. To find the global minimum where the
function achieves its smallest value, each determined extremum must be tested, the
objective function must be evaluated at each stationary point and the smallest selected.

The optimization problem can then be written as (Nocedal and Wright, 1999):

min
x∈<n f(x), (3.3)

x is the vector of variables, also called unknowns or parameters. f is the objective
function, a function of x that we want to maximize or minimize.

The fastest optimization algorithms usually seek only a local minima (equa-
tion 3.4), a point at which the objective function is smaller than at all other feasible
points in its vicinity (see Figure 2.8). They do not always find the best solution of all
such minima, i. e., the global minimum (equation 3.5). Global solutions are highly
desirable in some applications, but they are usually difficult to identify and even more
difficult to locate (Weise, 2009). Optimization algorithms are iterative. They begin
with an initial guess of the optimal values of the variables and generate a sequence of
improved estimates until they reach a solution.

x̂1 ∈ X, f : X → <, f(x̂1) ≤ f(x), ∀x ∈ X, | x− x̂1 |< ε, (3.4)

x̌1 ∈ X, f : X → <, f(x̌1) ≤ f(x), ∀x ∈ X. (3.5)

In this thesis, I present a new optimization method for simultaneous estimation of the
CRS stack attributes, which allows to improve the image of pre-stack seismic reflection
data. The method is based on a hybrid optimization, which comprises the conjugate
direction method with its well-known convergence properties and an iterative consider-
ing the Powell search method for the control of the search direction. A specific feature
of the Powell search method is its ability to avoid being trapped in local minima. The
algorithm is robust and easy to implement. The use of the conjugate direction method
leads to a highly efficient iterative search method to speed up the convergence rate
while using Hessian is avoided. The iterative Powell search method for the control of
the search direction prevents the premature convergence into local minima, without the
need of computing the gradient.
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3.2. NELDER MEAD METHOD

3.2 Nelder Mead method

Before the Powell conjugate direction method is discussed I describe the Nelder
Mead method which is currently use in the optimization. The Nelder Mead method
or downhill simplex method or amoeba method is a commonly used nonlinear
optimization technique. A simplex method for finding a local minimum of a function
of several variables has been devised by (Nelder and Mead, 1965). It single-objective
optimization approach for searching the N-dimensional space. The method uses the
concept of a simplex, which is a special polytipe of N+1 vertices in N-dimensions
using only function value information (Brent, 1973), where N is the number of
variables that we are searching. For two variables, a simplex is a triangle, and the
method is a pattern search that compares function values at the three vertices of a
triangle. The worst vertex, where f(x, y) is largest, is rejected and replaced with a new
vertex. A new triangle is formed and the search is continued. The process generates a
sequence of triangles which might have different shapes and the function value at the
vertices get smaller and smaller. The goal is to replace the best vertex of the simplex
with an even better one or ascertain that it is a candidate for the solution. The size of
triangles is reduced and the coordinates of the minimum point are found.

The Nelder Mead algorithm starts with a simplex in a domain of the function to
be minimized, then modifies the simplex five different ways until the simplex are very
flat (function value is almost the same at all the vertices), at which point the minimum
is the vertex with the smallest function value. Usually when the minimum is found the
simplex is very small. The algorithm is stated using the term simplex (a generalized
triangle in N dimension) and will find the minimum of function of N variables. It is
effective and computationally compact. However, like hill climbing approaches, the
downhill simplex may not converge to the global minimum and can get stuck at a local
minimum. Random restarts, i. e., using different initial simplex can be helpful in this
case (Lagarias et al., 1998).

3.2.1 Initial triangle BGW

Let f(x, y) be the function that is to be minimized. To start, we are given three vertices
of a triangle : Vk = (xk, yk), k = 1, 2, 3. The function f(x, y) is then evaluated at each
of the three points : zk = f(xk, yk) for k = 1, 2, 3. The subscripts are then reordered
so that z1 ≤ z2 ≤ z3.
We use the notation :
~B = (x1, y1), ~G = (x2, y2), ~W = (x3, y3).

with ~B is the best vertex, ~G is good (next to best), and ~W is worst vertex.

19



CHAPTER 3. OPTIMIZATION

B

GW

Figure 3.1: Initial triangle 4BGW for the Nelder Mead method.

3.2.2 Midpoint of the good side

The contruction process uses the midpoint of the line segment joining ~B and ~G. It is
found by averaging the coordinates and the midpoint gives us the search direction.

~M =
~B + ~G

2
= (

x1 + x2

2
,
y1 + y2

2
). (3.6)

B

GW

M
d

Figure 3.2: Midpoint the triangle.

3.2.3 Reflection using the point R

The function decreased as we move along the side of the triangle from ~W to ~B, and
it decreases as we move along side from ~W to ~G. Hence it is feasible that f(x, y)
takes on smaller values at a point that lie away from ~B on the opposite side of the line
between ~B and ~G. We choose a test point ~R that is obtained by “reflecting” the triangle
through the side BG. Then draw the line segment from ~W to ~M and call its length d.
This last segment is extended a distance d through ~M to locate the point ~R. The vector
formula for ~R is:

~R = ~M + ( ~M − ~W) = 2 ~M − ~W. (3.7)
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B

GW

M

R

d

d

(a)

B

GW

R

d

d

M

(b)

Figure 3.3: The reflection point for the Nelder Mead method.

3.2.4 Expansion using the point E

If the function value at ~R is smaller than the function value at ~W, then we have moved
in the correct direction toward to the minimum. Perhaps the minimum is just a bit
farther than the point ~R. So we extend the line segment through ~M and ~R to the point
~E. This forms an expanded triangle 4BGE. The point ~E is found by moving an
additional distance d along the line joining ~M and ~R. If the function value at ~E is less
than the function value at ~R, then we have found a better vertex than ~R. The vector
formula for ~E is:

~E = ~R + (~R − ~M) = 2~R − ~M. (3.8)

B

GW

M

R

E

d

d

d

(a)

B

GW

E

d

R
d

d

M

(b)

Figure 3.4: The expansion point for the Nelder Mead method.

3.2.5 Contraction using the point C

If the function value at ~R and ~W are the same, another point must be tested. Perhaps
the function is smaller at ~M, but we cannot replace ~W with ~M because we must have
a triangle. Consider the two midpoints ~C1 and ~C2 of the line segments WM and MR,
respectively. The point with the smaller function value is called ~C, and the new triangle
is 4BGC.
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(a) (b) (c)

Figure 3.5: The contraction point C1 and C2 for the Nelder Mead method.

Note, the choice between C1 and C2 might seem inappropriate for the-two-dimensional
case, but it is important in higher dimensions.

3.2.6 Shrink toward B

If the function value at ~C is not less than the value at ~W, the point G and W must
be shrunk toward ~B. Replace all vertices, except the best point, by the point halfway
between each vertices and best point. The point ~G is replaced with ~M, and ~W is
replaced with ~S, which is the midpoint of the line segment joining ~B with ~W.

B

GW

M
S

Figure 3.6: Shrinking the triangle toward B.

Nelder Mead algorithm

1. Order according to the value at the vertices:
f(x1) ≤ f(x2) ≤ ...... ≤ f(xn+1).

2. Calculate the midpoint xM , the center of gravity off all points except xn+1.

3. Reflection
Compute reflected point xR = x0 + α(x0 − xn+1).
With α is the reflection coefficient. Standart values is α = 1.
If the reflected point is better than the second worst, but not better than the best:
f(x1) ≤ f(xR) < f(xn),
the obtain a new simplex by replacing the worst point xn+1 with the reflected
point xR, and go to step 1.
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4. Expansion
If the reflected point is the best point so far, f(xR) < f(x1),
then compute the expanded point xE = x0 + γ(x0 − xn+1).
With γ is the expansion coefficient and standart values is γ = 2.
If the expanded point is better than the reflected point, f(xE) < f(xR),
then obtain a new simplex by replacing the worst point xn+1 with the expanded
point xE , and go to step 1. Else obtain a new simplex by replacing the worst
point xn+1, with the reflected point xR, and go to step 1. Else (reflected point is
worse than second worst) continue at step 5.

5. Contraction
Here, it is certain that f(xR) ≥ f(xn).
Compute contracted point xC = xn+1 + ρ(x0 − xn+1)
With ρ is the contraction coefficient and standart values is ρ = 1/2.
If the contracted point is better than the worst point, f(xC) ≤ f(xn+1),
then obtain a new simplex by replacing the worst point xn+1 with the contracted
point xC , and go to step 1. Else go to step 6.

6. Reduction
For all but the best point, replace the point with
xi = x1 + σ(xi − x1) for all i ∈ 2, ...., n+ 1.
With σ is the shrink coefficient. Standart values is σ = 1/2. Then go to step 1.

The simplified logical decisions for the Nelder Mead algorithm procedure is shown in
Figure 3.7.

IF f(R) < f(G), THEN Perform Case (i) either reflect or extend
ELSE Perform Case (ii) either contract or shrink

BEGIN Case (i)
IF f(B) < f(R) THEN

replace W with R
ELSE

Compute E and f(E)
IF f(E) < f(B), THEN

replace W with E
ELSE

replace W with R
ENDIF

ENDIF
END Case(i)

BEGIN Case (ii)
IF f(R) < f(W ) THEN

replace W with R
Compute C = (W +M)/2
or C = (M +R)/2 and f(C)
IF f(C) < f(W ), THEN

replace W with C
ELSE

Compute S and f(S)
replace W with S
replace G with M

ENDIF
END Case(ii)

Figure 3.7: Logical decisions for the Nelder Mead algorithm.
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3.3 Conjugate direction method

Solving linear systems with direct methods are very difficult to adapt for distributed
memory systems when the coefficient matrix is sparse. So most of the sparse linear
system solvers for distributed memory system use iterative methods. An iterative
method makes an initial guess at a solution to the system, and then tries to repeatedly
improve the guess.

The conjugate direction method is a highly efficient iterative search technique
because it allows to speed up the convergence rate of the steepest descent while
using Hessian matrix evaluation is avoided (Stewart, 1973). This method solved
quadratic of N variables in N steps. There are no Hessian matrix evaluation, also no
inversion matrix and no storage of n x n matrix is required. The iterations converge
quadratically, starting from any initial guess and then trying to repeatedly improve the
values.

Each iteration computes a search direction di and then decides how far to move
along that direction. The old value is replaced by the new one with a special choice
of direction and step length. In every iteration a direction, di, and step length, αi,
are calculated to determine the next approximation of a new value in the line search
method.

xk+1 = xk + αkdk. (3.9)

The success of this search method depends on effective choices of both the direction
di and step length αi.

Iterative methods like the conjugate direction are suited for use with sparse ma-
trices. Conjugate direction method is the most popular iterative method for solving
large systems of linear equations. The conjugate direction is effective for systems of
the form

Qx = b, (3.10)

where Q is a known, square, symmetric positive definite matrix, x is an unknown
vector, and b is a known vector. We are concerned with the problem of unconstrained
optimization:

Q = [Qij] =


Q11Q12...Q1n

Q21Q22...Q2n

. . .
Qn1Qn2...Qnn

 , (3.11)

x =


x1

x2

.
xn

 , b =


b1
b2
.
bn

 . (3.12)
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A matrix Q is a symmetric positive definite matrix if for every nonzero vector x,

xTQx > 0, (3.13)

and QT = Q, Qij = Qji for i, j = 1,....,n.

A quadratic form is simply a scalar, quadratic function of a vector with the
form

f(x) =
1

2
xTQx− bTx. (3.14)

If Q is symmetric positive definite, f(x) is minimized by the solution to Qx = b.
Conjugate direction definition: two vectors d1 and d2, are Q-orthogonal (or conjugate
with respect to Q) if dT1 Q d2 = 0. The gradient of a quadratic form is defined to be

f
′
(x) =


∂

∂x1
f(x)

∂
∂x2

f(x)

...
∂

∂xn
f(x)

 . (3.15)

One can minimize f(x) by setting f
′
(x) equal to zero. And apply equation 3.14 to

equation 3.15, and derive

f
′
(x) :=

1

2
QTx+

1

2
Qx− b. (3.16)

If Q is symmetric, equation 3.16 reduces to

f
′
(x) = Qx− b. (3.17)

Then with the initialization x0 ∈ Rn, g0 = ∇f(x0), d0 = −g0, for any x0 the
sequence xk generated by

xk+1 = xk + αkdk, (3.18)

with

αk = − gTk dk
dTkQdk

, (3.19)

dk+1 = −gk+1 + βkdk, (3.20)

βk =
gTk+1Qdk

dTkQdk
. (3.21)
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3.3.1 Powell method

The essence of Powell’s method is to add two steps to the process described in the
preceding paragraph. The vector Pn − P0 represents, in some sense, the average
direction moved over the n intermediate steps P0, P1, P2, ..., Pn in an iteration. Thus
the point x1 is determined to be the point at which the minimum of the function f
occurs along the vector Pn − P0.

As before, f is a function of one variable along this vector and the minimiza-
tion could be accomplished with an application of the iterative line search method.
Finally, since the vector Pn − P0 was such a good direction, it replaces one of the
direction vectors for the next iteration. The iteration is then repeated using the new
set of direction vectors to generate a sequence of points {xk}∞k=0. In one step of the
iteration instead of a zig-zag path the iteration follows a "dog-leg" path. The process
is outlined below.
Let x0 be an initial guess at the location of the minimum of the function

z = f(x) = f(x1, x2, ..., xn). (3.22)

Powell conjugate direction algorithm
1. Initialiaties: set x0 = p0 and choose d1, d2, ....., dn linearly independent
2. FOR 1 ≤ i ≤ n DO

Line search: find αLB ≤ αi ≤ αUB minimizing f(pi + αi.di)
Define the new point: pi+1 = pi + αi.di

3. Find an integer 1 ≤ k ≤ n , so that δ = f(pk+1)− f(pk) is maximum
4. Compute: f3 = f(2pn − p0) and f1 = f(p0), f2 = f(pn)
5. IF f3 < f1 AND (f1 − 2f2 + f3)(f1 − f2 − δ)2 < 1

2
δ(f1 − f3)

2 THEN
Define the new direction : dk = pn − p0
Line search: find αLB ≤ αk ≤ αUB minimizing f(pn + αk.dk)
Define the new point: xi+1 = xi + αk.dk
ELSE
Keep all directions d1, d2, ....., dn for the next iteration and set p0 = pn

6. Repeat step 2 through 5 until convergence is achieved

If the conditions in step (5) are satisfied, then the set of direction vectors is left
unchanged. The first inequality in step (5) indicates that there is no further decrease in
the value of f in the average direction Pn − P0. The second inequality indicates that
the decrease in the function f in the direction of greatest decrease Ur was not a major
part of the total decrease in f in step (2).

If the conditions in step (5) are not satisfied, then the direction of greatest de-
crease Ur is replaced with the average direction from step (2); Pn − P0. The
function is minimized in this direction. Stopping criteria are based on the magnitudes
‖ xi − xi−1 ‖ or ‖ f(xi) ‖.
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3.3.2 Line search method

The line search, also called one-dimensional search, is a basic part of the optimization
methods. This method refers to an optimization procedure for univariable functions. It
is the base of multivariable optimization. As stated before, in multivariable optimiza-
tion algorithms, for given xk, the iterative scheme is:

xk+1 = xk + αkdk. (3.23)

The key is to find the direction dk and a suitable step length αk:

h(α) = f(xk + αdk). (3.24)

So, the problem that departs from xk and finds a step length in the direction dk such
that:

h(α) < h(0), (3.25)

is just a line search about α.
If we find αk such that the objective function in the direction dk is minimized, i.e.,

f(xk + αkdk) =
min
α>0 f(xk + αdk), (3.26)

h(αk) =
min
α>0 h(α), (3.27)

such a line search is called exact line search, and αk is called optimal step length. If
we choose αk such that the objective function has acceptable descent amount, i.e.,
such that the descent f(xk) − f(xk + αkdk) > 0 is acceptable by users, such a line
search is called inexact line search.

The basic idea of line search is determine the initial search interval which con-
tains the minimizer. And then reduce the interval iteratively by evaluate the functions
until the length of the interval is reduced to some desired degree. The minimizing
a function over the interval is iteratively reducing the interval of uncertainty by
comparing the function values of the observations. When the length of the interval of
uncertainty is reduced less than some given tolerance, the points on the interval can be
regarded as approximations of the minimizer.
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The simplified flowchart for the Powell conjugate direction method algorithm proce-
dure is shown in Figure 3.10.

Xi = P0

Set i=0

?

For k=1,2...n
Pk+1 = Pk + γkUk

?

?

Find the value γk that
minimize Pk+1 = Pk + γkUk

?

f(2Pk − P0) ≥ f(P0) and
2(f(P0)− 2f(Pn) + f(2Pn − P0)).(f(P0)− f(Pn)− r)2 ≥

r(f(P0)− f(2Pn)− P0))
2

- Xi = Pn

�

?

Ur = Pn − P0

?

Xi = P0 + γUr

?

Find the value γk that
minimize Pk+1 = Pk + γkUk

?

i=i+1
?

line search method

line search method

�

�

Figure 3.8: Powell conjugate direction method algorithm.
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3.4 Numerical examples

We investigated the optimization procedure on an analytical example represents
a simple mathematically function with 2 variables searches to see the behavior
of two different optimization method with same initial values. To described the
sensitivity of the initial values and the accuracy of the final solutions. For this
purpose we consider the function f(x1, x2) = x2

1 + 2x2
2 − 4x1 − 2x1x2 and

f(x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2.

Figure 3.9 shows behavior of two different optimization method with same ini-
tial values for the first function: the Nelder Mead method with 10 iterations (a),
20 iterations (b), 27 iterations (c) and Powell conjugate direction method (d). And
Figure 3.10 shows behavior of two different optimization method with same initial
values for the second function: the Nelder Mead method with 10 iterations (a), 15
iterations (b), 23 iterations (c) and Powell conjugate direction method (d). Nelder
Mead optimization method get final solutions better than Powell conjugate direction
method when we use quite good initial values and more iterations.

To see the advantages this method to avoids being trapped into local minima,
we test the optimization procedure on an analytical example represents a simple
mathematically function with 2 variables and more than one local minima. And
than compare it to the Nelder Mead optimization procedure currently used as the
optimization technique in the determination of CRS attributes. We are particularly
interested in its behavior in the presence of a local minima. For this purpose we
consider the function f(x1, x2) =

1
4
x1 + 5x2

1 + x4
1 − 9x2

1x2 + 3x2
2 + 2x4

2.

Figure 3.11 shows two different optimization methods with two different initial
values. The Nelder Mead method (Figure 3.11(a)) and (Figure 3.11(c)) gets trapped
into local minima for both initial values and also needs considerably more iterations.
The Powell conjugate direction method (Figure 3.11(b)) and (Figure 3.11(d)) avoids
the premature convergence and gets fairly close to the global minimum at (-2.1817,
1.6069).

Figure 3.12 shows how both optimization methods reached the solution. The
first initial condition (Figure 3.12(a)) was chosen close to the first local minimum
(2.1482, 1.5875) and the second initial condition (Figure 3.12(b)) was chosen close
to the second local minimum (-0.0250, 0.0009). In the conjugate direction approach
the number of iterations corresponds to the number of variables of the function to
optimize, i.e., 2 for the analytical example above, 3 for the 2-D ZO CRS operator and
accordingly for the 3-D and offset operators.
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Figure 3.9: Behavior of two different optimization methods with same initial values
for function-1: the Nelder Mead method with 10 iterations (a), 20 iterations (b), 27
iterations (c) and Powell conjugate direction method (d).
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Figure 3.10: Behavior of two different optimization methods with same initial values
for function-2: the Nelder Mead method with 10 iterations (a), 15 iterations (b), 23
iterations (c) and Powell conjugate direction method (d).
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Figure 3.11: Two different optimization methods with two different initial values: the
Nelder-Mead method (a) and (c) gets trapped in local minima.The Powell conjugate
direction method (b) and (d) avoids the premature convergence into local minima and
gets close to the global minimum at (-2.1817, 1.6069).
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Figure 3.12: Path both method to reach the solution: the firstinitial condition was cho-
sen close to the first local minimum (2.1482, 1.5875) (a) and the second initial condi-
tion were chosen close to the second local minimum (-0.0250,0.0009) (b). The Nelder
Mead method get trapped in local minima. The Powell conjugate direction method
avoids the premature convergence into local minima and getsclose to the global min-
ima.
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Chapter 4

Synthetic data example

This chapter shows the application of the pragmatic approach and the simultaneous
optimization of the CRS stack method on the Sigsbee 2A synthetic data set. To demon-
strate the advantages of the simultaneous optimization using the new method compared
to the current implementation of the CRS stack are presented. The simultaneous opti-
mization of CRS processing the data set started with the search of initial values for the
CRS parameters. The automatic search for CRS parameters was applied to the prepro-
cessed CMP gathers. I used the pragmatic approach based on the three one-parameter
searches as described in (Müller, 1999), (Jäger et al., 2001) and (Mann, 2002). The
initial values of the simultaneous optimization search were taken from the results of
the pragmatic approach. The simulated ZO sections of the CRS stack result from the
pragmatic approach are compared to the conventional CMP stack section and also the
simultaneous optimization of the CRS stack used Nelder Mead method are compared
to the new method.

4.1 Model and simulated pre-stack data

In order to test the simultaneous optimization of the CRS stack method and to show
its advantages, I test the optimization procedure on the Sigsbee 2A synthetic data set.
The Sigsbee 2A data set simulates a marine 2-D model that represents a situation
observed, e.g., in the Gulf of Mexico: a stratified background model associated with a
relatively smooth macro-velocity model contains a salt body with a quite complicated
geometry. The Sigsbee 2A data set is a constant density acoustic synthetic data set
designed in 2001 by the Subsalt Multiples Attenuation and Reduction Technologies
(SMAART) JV consortium. All layers of the Sigsbee 2A model are assumed to be
isotropic.

The sea surface was not considered as a free surface, therefore water column
related multiples were not simulated. A number of normal and thrust faults and
diffractor points are present in the data. Sources and receivers are located 7.62 m
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below the sea surface, the measured quantity is pressure. The data set consist of 500
shot gathers with an average shot spacing of 45.72 m with 348 channels per shot and
the receiver group spacing was 22.86 m. The line consisting of 2053 CMP gathers,
where the CMP interval is 6.25 m and the maximum CMP fold is 87. The data are
sampled every 8 ms with total recording time of 12 s, traveltimes range from 2 s to
11 s. All results obtained from these data refer to the datum given by the source and
receiver locations. The CMP aperture is defined from 1829 m at 2.3 s to 7620 m at 11
s. The ZO aperture is defined from 518 m at 2 s to 1777 m at 11 s. Table 4.1 and Table
4.2 summarizes all relevant acquisition parameters of the pre-stack data set and the
basic processing parameters used for the ZO simulation of CRS stack, respectively.

Context Processing parameter Setting
Number of shot 500

Shot and Shot interval 45.72 m
receiver geometry Number of receivers 348

Receiver interval 22.86 m
Recording Recording time 12 s
parameters Sampling interval 8 ms

Number of CMP bins 2053
Midpoint and Maximum CMP fold 87

offset geometry CMP bin interval 11.43 m
Offset range 0...7932.42 m

Frequency Dominant frequency 20 Hz
content Maximum frequency 40 Hz

Table 4.1: Sigsbee 2A data: acquisition parameters of the pre-stack data set.

4.2 Application of CRS stack

4.2.1 Pragmatic approach

The input data is confined to specific data volumes to split the three-parameter
optimization problem into separate one-parameter searches. The first data volume
to be investigated is the CMP gather (4x = 0) following the pragmatic approach
(Müller, 1998) using equation 2.8. To determine initial values of the emergence angle
α, we consider the ZO section simulated in the preceding step with h = 0 using
equation 2.13. With the knowledge of α, the ZO data can now be considered using
equation 2.14. This yields initial attributes which can be used as first guess in the
simultaneous optimization of the CRS procedure.
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Context Processing parameter Setting
Dominant frequency 20 Hz

General Coherence measure Semblance
parameters Data used for coherence analysis Original traces

Temporal width of coherence band 56 ms
Velocity and Near surface velocity 1500 m/s
constraints Tested stacking velocity 1300...6000 m/s

Simulated ZO traveltimes 2...11 s
Target Simulated temporal sampling interval 8 ms
zone Number of simulated ZO traces 2053

Spacing of simulated ZO traces 11.43 m
Minimum ZO aperture 518 m @ 2 s

Aperture Maximum ZO aperture 1777 m @ 11 s
and Minimum CMP aperture 1829 m @ 2.3 s

taper Maximum CMP aperture 7620 m @ 11 s
Relative taper size 30 %

Automatic Initial moveout increament for largest offset 16 ms
CMP stack Number of refinement iterations 3

Linear Tested emergence angles -60...60°
ZO Initial emergence angles increment 1°

stack Number of refinement iterations 3
Hyperbolic Initial moveout increment for largest ZO distance 8 ms
ZO stack Number of refinement iterations 3

Conflicting Maximum number of dips 1
dip Absolute coherence threshold for global maximum 0.5

handling Relative coherence threshold for local maximum 0.25
Coherence threshold for smallest traveltime 0.05
Coherence threshold for largest traveltime 0.02
Maximum number of iterations 100

Local Maximum relative deviation to stop 10−4

optimization Initial variation of emergence angles 6°
Initial variation of RNIP 5 %
Initial variation of transformed RN 6°
Transformation radius for RN 106 m

Table 4.2: Sigsbee 2A data: processing parameters used for the ZO simulation by
means of the CRS stack.
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The ZO CMP stacked section is depicted in Figure 4.1, the associated coherence
section in Figure 4.2. The ZO CMP stacked section presented in Figure 4.1 displays
a lower quality in the areas of fault structures and steep dipping layers. The bow-tie
structures and diffraction pattern stemming from the top of salt are clearly visible.

The coherence section presented in Figure 4.2 helps to identify the detected
events and to estimate where the given aperture is appropriate to fit a hyperbolic op-
erator: the events above and left to the salt are associated with high coherence values,
as well as the complicated events stemming from the top of salt. With increasing
complexity of the overburden, the coherence reduces, indicating the non-hyperbolic
moveout of the events.

Finally, conflicting dip situations are not yet resolved in the ZO CMP stacked
section. In these case, the event asssociated with the higer coherence is selected,
whereas the other event is not considered.

The CRS stacked section obtained with the initial attributes from the result of
the pragmatic approach is depicted in Figure 4.3. Compared to the conventional ZO
CMP stack (Figure 4.1), the pragmatic approach CRS stacked section presented in
Figure 4.3 shows better continuity of horizons at all time levels and produced a better
image in reflections and diffractions. The reflections are more continuous and appear
clearer.

The coherence section for the pragmatic approach CRS stack depicted in Figure
4.4 displays the reflection events clearly defined correspond with high coherence
values and associated with the reflector. Most reflections better defined compared to
the coherence section of the CMP stack shown in Figure 4.2.

The CPU times strongly depend on the used hardware, but in general, not dif-
ferences in computational time was observed for the simultaneous search of the
parameters in the 2-D CRS stack on the Sigsbee 2A data using the Powell conjugate
direction approach and the Nelder Mead method currently used in the CRS attribute
search (Table 4.3).

Processing step NM method Powell CD method
Automatic CMP stack 00:08:29 00:08:29
Zero-offset stacks 01:54:43 01:54:43
Initial stack 00:57:21 00:57:21
Optimized 18:42:10 17:52:50
Total 21:42:43 20:53:23

Table 4.3: Sigsbee 2A data: CPU times required for processing steps.
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Figure 4.1: Sigsbee 2A data: result of CMP stack.
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Figure 4.2: Sigsbee 2A data: coherence section associated with the CMP stacked sec-
tion shown in Figure 4.1.
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Figure 4.3: Sigsbee 2A data: result of the pragmatic approach CRS stack.
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Figure 4.4: Sigsbee 2A data: coherence section associated with the pragmatic approach
CRS stacked section shown in Figure 4.3
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4.2.2 Simultaneous optimization of the CRS stack

Figure 4.5 to 4.16 display the resulting simultaneous optimized CRS stacked section.
The CRS stacked section obtained with the initial attributes from the result of
pragmatic approach in Figure 4.3 already has a sufficiently high quality. Optimization
of the spatial CRS stacking operator with all three wavefield attributes can be further
increasing the accuracy of the wavefield attributes. However, the optimization
procedure is very time consuming.

For Sigsbee 2A synthetic data set, the initial wavefield attributes determined
with pragmatic approach shown in Figure 4.3. We use the zero-offset CMP stacked
section result as an input for the determination of the wavefield attributes. Associated
with the near-surface velocity v0, the wavefield attributes α, angle of emergence is
directly related to the slopes. And the wavefiled RN , radius of curvature of the normal
wave is directly related to the curvatures of the events in the ZO section. Firstly, the
slopes of the events are determined by means of a linear stacking operator within a
relatively small aperture. Secondly, the curvatures of the events are determined with
a hyperbolic operator separately for each detected slope. The coherence thresholds
are applied again to reject events with too small lateral extension that are most likely
artifacts. The wavefield RNIP , radius of curvature of the NIP wave is calculated
from the angle of emergence section of the dominant events and the stacking velocity
section obtained from the automatic CMP stack.

We choose the pragmatic approach to define the initial wavefield attributes, since
the initial wavefield attributes are very crucial in the optimization procedure. The
optimization CRS stack result depends the choice of the initial wavefield attributes.
If we choose wrong parameters for the initial wavefield attributes, e.g., near the local
solutions, it will definitely lead to a wrong result.

Nelder Mead optimization method

The CRS stacked section obtained with the Nelder Mead optimized method is
displayed in Figure 4.5. It shows better continuity of horizons at all time levels and
produced a better image of conflicting dip areas. Compared to the CMP stacked
section (Figure 4.1) and the pragmatic approach CRS stacked section (Figure 4.3),
the CRS stacked section increase the lateral resolution in the areas with significant
variation of the event curvature. The reflections are more continuous and appear
clearer.

The coherence section for the dominant events associated with the Nelder Mead
optimized CRS stack is shown in Figure 4.6. The events associated with the highest
coherence at each particular ZO location allow to identify the detected events and
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to estimate the reliability of the image as well of its associated wavefield attributes.
The high coherence values are associated with the top salt and the events left to the salt.

The optimized emergence angle sections for the dominant events are shown in
Figure 4.7. The improvement of the emergence angle section can readily be observed,
due to the simple relation between the emergence angle and the slopes of the ZO
events.

The optimized radius of curvature of the normal wave section for the dominant
events are depicted in Figure 4.8. The same condition as above applies to this section.

And the optimized radius of curvature of the NIP wave for the dominant events
are shown in Figure 4.9. For the stratified areas above and left to the salt, the values
of RNIP continously increases with increasing traveltime. Below the salt, the section
is dominated by the tails of bow-tie structures and diffraction patterns stemming from
the top and possibly also the botttom of the salt body.

The improvement of the coherence section can readily be observed at the co-
herence section associated with the Nelder Mead optimized section. The differences
coherence between the pragmatic approach initial CRS stacked (Figure 4.4) and the
Nelder Mead optimized CRS stack (Figure 4.6) is shown in Figure 4.10.

Powell conjugate direction optimization method

The CRS stacked section obtained with the Powell conjugate direction optimized
method is displayed in Figure 4.11. It shows better continuity of horizons at all time
levels and produced a better image of conflicting dip areas. We do not see specific
differences in the stack or attribute sections for the Powell conjugate direction or the
Nelder Mead approach. No differences in computational time was observed for the
simultaneous search of the parameters in the 2-D CRS stack on the Sigsbee 2A data
using the Powell conjugate direction approach and the Nelder Mead method currently
used in the CRS attribute search. For multi-parameter stacking approaches with more
than 3 attributes (offset formulas, converted waves, 3-D) its possible of computing
time can be reduced.

The coherence section for the dominant events associated with the Powell con-
jugate direction optimized CRS stack is shown in Figure 4.12. The coherence section
of the Powell conjugate direction method displays a little bit more scatter than the
coherence section of the Nelder Mead method (Figure 4.6), but both sections are very
similar and it does not appear that the difference in coherence has a major effect on
the attributes. The events associated with the highest coherence at each particular ZO
location, allows to identify the detected events and to estimate the reliability of the
image as well of its associated wavefield attributes.
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Figure 4.5: Sigsbee 2A data: CRS stack result of the Nelder Mead optimization.
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Figure 4.6: Sigsbee 2A data: coherence section associated with the Nelder Mead op-
timized CRS stacked section shown in Figure 4.5 smoother than coherence section of
the pragmatic approach shown in Figure 4.4.
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Figure 4.7: Sigsbee 2A data: angle of emergence associated with the Nelder Mead op-
timized CRS stacked section shown in Figure 4.5. These attributes are directly related
to the slopes of the events.
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Figure 4.8: Sigsbee 2A data: radius of curvature of the normal wave associated with
the Nelder Mead optimized CRS stacked section shown in Figure 4.5. These attributes
are directly related to the curvatures of the events in the ZO section.
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Figure 4.9: Sigsbee 2A data: radius of curvature of the NIP wave associated with the
Nelder Mead optimized CRS stacked section shown in Figure 4.5. These section is
calculated from the emergence angle section of the dominant events in Figure 4.6 and
the stacking velocity section obtained from automatic CMP stack.
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Figure 4.10: Sigsbee 2A data: difference in coherence between the pragmatic approach
CRS stacked section (Figure 4.4) and the Nelder Mead optimized CRS stacked section
(Figure 4.6).
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The optimized emergence angle sections for the dominant events are shown in Figure
4.13. This image look similar to the optimized emergence angle section of the
Nelder Mead method (Figure 4.7) and no specific differences can be observed. The
consistency of the optimized emergence angle section can readily be observed, due to
the simple relation between the emergence angle and the slopes of the ZO events.

The optimized radius of curvature of the normal wave section for the dominant
events are depicted in Figure 4.14. This section looks similar to the Nelder Mead
method (Figure 4.8) and no specific differences can be observed. The same applies to
the section that is related to the curvature of the ZO events.

The optimized radius of curvature of the NIP wave for the dominant events are
shown in Figure 4.15. For the stratified areas above and left to the salt, the values of
RNIP continously increases with increasing traveltime. Below the salt, the section is
dominated by the tails of bow-tie structures and diffraction patterns stemming from
the top and possibly also the botttom of the salt body.

The difference in coherence between the pragmatic approach initial CRS stacked
(Figure 4.4) and the Powell conjugate direction optimized CRS stack (Figure 4.12) is
shown in Figure 4.16. The minor improvement of the coherence section can readily
be observed at the coherence section associated with the Powell conjugate direction
optimized section compared to the Nelder Mead optimized section.
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Figure 4.11: Sigsbee 2A data: CRS stack result of the Powell CD optimization.

50



4.2. APPLICATION OF CRS STACK

Figure 4.12: Sigsbee 2A data: coherence section associated with the Powell CD op-
timized CRS stacked section shown in Figure 4.9 smoother than coherence section of
the pragmatic approach shown in Figure 4.4.
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Figure 4.13: Sigsbee 2A data: angle of emergence associated with the Powell CD op-
timized CRS stacked section shown in Figure 4.9. These attributes are directly related
to the slopes of the events.
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Figure 4.14: Sigsbee 2A data: radius of curvature of the normal wave associated with
the Powell CD optimized CRS stacked section shown in Figure 4.9. These attributes
are directly related to the curvatures of the events in the ZO section.
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Figure 4.15: Sigsbee 2A data: radius of curvature of the NIP wave associated with
the Powell CD optimized CRS stacked section shown in Figure 4.9. These section is
calculated from the emergence angle section of the dominant events in Figure 4.11 and
the stacking velocity section obtained from automatic CMP stack.
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Figure 4.16: Sigsbee 2A data: difference in coherence between the pragmatic approach
CRS stacked section (Figure 4.4) and the Powell conjugate direction optimized CRS
stacked section (Figure 4.12).
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Figure 4.17 shows enlarged images of the simultaneous optimized CRS stacked
sections for the Nelder Mead optimization method and the Powell conjugate direction
method. Both images look very similar between the Nelder Mead stacked section
(Figure 4.17a) and the Powell conjugate direction stacked section (Figure 4.17b). And
no differences can be observed from both images.

Figure 4.18 shows enlarged images of the coherence CRS stacked sections for
the Nelder Mead optimization method and the Powell conjugate direction method.
The Powell conjugate direction stacked section Figure 4.18b has a little bit scatter
compared to the Nelder Mead stacked section Figure 4.18a. But both images look
similar and it does not appear that the differences in coherence sections has a major
effect on the atributes (shows in Figure 4.19, Figure 4.20, and Figure 4.21).

Figure 4.19 shows enlarged images of the emergence angle sections, α, for the
Nelder Mead optimization method and the Powell conjugate direction method. Both
sections are very similar and no differences can be observed.

Figure 4.20 and Figure 4.21 show enlarged images of the radius of curvature
normal wave section, RN , and the radius of curvature NIP wave section, RNIP , for the
Nelder Mead optimization method and the Powell conjugate direction method. Both
sections are very similar and no differences can be observed.
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Figure 4.17: ZO CRS stacked sections: comparison between the Nelder Mead opti-
mization method and Powell conjugate direction optimization method with the same
initial values from the pragmatic approach.
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(a) (b)

Figure 4.18: Coherence section: comparison between the Nelder Mead optimization
method (a) and Powell conjugate direction optimization method (b). The stacks of
both method look similar and it does not appear that the differences in coherence has
a major effect on the attributes.

(a) (b)

Figure 4.19: Results of the automatic CRS parameter searches: α. Angle of emergence
section for Nelder Mead optimization method (a) and angle of emergence section for
Powell conjugate direction optimization method (b). Both section are very similar and
no specific differences can be observed.

57



CHAPTER 4. SYNTHETIC DATA EXAMPLE

(a) (b)

Figure 4.20: Results of the automatic CRS parameter searches: RN . Radius of cur-
vature of the N wave section for Nelder Mead optimization method (a) and radius of
curvature of the N wave section for Powell conjugate direction optimization method
(b). Both section are very similar and no specific differences can be observed.

(a) (b)

Figure 4.21: Results of the automatic CRS parameter searches: RNIP . Radius of cur-
vature of the NIP wave section for Nelder Mead optimization method (a) and radius of
curvature of the NIP wave section for Powell conjugate direction optimization method
(b). Both section look similar and no specific differences can be observed.
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4.3 Conclusions

We have introduced an alternative strategy for the optimization of the CRS attributes.
The method is based on a hybrid optimization, which comprises the conjugate direc-
tion approach based on a Powell search method. The application of the simultaneous
optimization of the CRS stack method on the Sigsbee 2A synthetic data set shows that
the new method provides very good solutions. The results shows a better S/N ratio,
improved continuity of reflections events and also a better image for the reflector
compared to the CMP stacked section and the pragmatic approach CRS stacked
section. This quality improvement is observed at the top of salt the bow-tie structures
and diffraction patterns stemming are well simulated. Most horizons have continuous
structures and can be easily identified. Application to a complex synthetic data
example using this method provides the same result with the Nelder Mead method
currently used in the CRS attribute search, overall no differences can be observed from
both method. No differences in computational time was observed for the simultaneous
search of the parameters in the 2-D CRS stack on the Sigsbee 2A data using the
Powell conjugate direction approach and the Nelder Mead method currently used in
the CRS attribute search.
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Chapter 5

Field data example

This chapter shows the application of the pragmatic approach and the simultaneous
optimization of the CRS stack method on the field data set from Northern Germany
with a complex geology. The data set was kindly provided by RWE Dea AG (Ham-
burg). The automatic search for CRS parameters was applied to the preprocessed CMP
gathers. CRS processing of the data set started with the pragmatic approach to search
for the CRS parameters as initial values for the simultaneous optimization procedure.
After the CMP stacked section was obtained, the automatic CRS parameter searches
were carried out and the CRS stacked section was generated. The main targets of the
optimization CRS processing of these data is the improvement of the image of seismic
time-stacked sections. The pragmatic approach of the CRS stack section are compared
to the conventional CMP stack section and also the simultaneous optimization of the
CRS stack used Nelder Mead method are compared to the new method.

5.1 Acquisition geometry

The region of study area is located in the North Sea close to the German coast line
(Figure 5.1). The area is characterised by salt structures and complex fault system.
The area is a part of the intracratonic Southern Permian Basin formed at the end of the
Variscan orogeny (Ziegler, 1990).

The data set consist of 1055 shot gathers recorded to 7 s time with 2 ms sam-
pling rate. Airguns were used with an average shot spacing of 25 m with 240 channels
per shot and the receiver group spacing was 12.5 m. Sources and receivers are located
6 m below the sea surface. With a total line length of ~26.5 km, consisting of 4243
CMP gathers ranging from CMP bin number 6757 to 11000. The CMP interval is
6.25 m and the maximum CMP fold is 60. The CMP aperture is defined from 400 m
at 0.2 s to 3200 m at 2.3 s. I compiled all relevant acquisition parameters and the basic
processing parameters used for the ZO simulation of CRS stack in Table 5.1 and Table
5.2, respectively.
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Figure 5.1: The region of study area is located approximately 30 km north of the
German coast line in the southern part of the North Sea (Kindly provided by RWE Dea
AG, Hamburg).

Context Processing parameter Setting
Number of shot 1055

Shot and Shot interval 25 m
receiver geometry Number of receivers 240

Receiver interval 12.5 m
Recording Recording time 7 s
parameters Sampling interval 2 ms

Number of CMP bins 4243
Midpoint and Maximum CMP fold 60

offset geometry CMP bin interval 6.25 m
Offset range -250...-3238 m

Frequency Dominant frequency 50 Hz
content Maximum frequency 80 Hz

Table 5.1: Field data: acquisition parameters of the pre-stack data set.
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Context Processing parameter Setting
Dominant frequency 50 Hz

General Coherence measure Semblance
parameters Data used for coherence analysis Original traces

Temporal width of coherence band 56 ms
Velocity and Near surface velocity 1500 m/s
constraints Tested stacking velocity 1500...5000 m/s

Simulated ZO traveltimes 0...7 s
Target Simulated temporal sampling interval 2 ms
zone Number of simulated ZO traces 4243

Spacing of simulated ZO traces 6.25 m
Minimum ZO aperture 500 m @ 0.2 s

Aperture Maximum ZO aperture 500 m @ 2.3 s
and Minimum CMP aperture 400 m @ 0.2 s

taper Maximum CMP aperture 3200 m @ 2.3 s
Relative taper size 30 %

Automatic Initial moveout increament for largest offset 16 ms
CMP stack Number of refinement iterations 3

Linear Tested emergence angles -60...60°
ZO Initial emergence angles increment 1°

stack Number of refinement iterations 3
Hyperbolic Initial moveout increment for largest ZO distance 2 ms
ZO stack Number of refinement iterations 3

Conflicting Maximum number of dips 1
dip Absolute coherence threshold for global maximum 0.4

handling Relative coherence threshold for local maximum 0.5
Coherence threshold for smallest traveltime 0.05
Coherence threshold for largest traveltime 0.05
Maximum number of iterations 100

Local Maximum relative deviation to stop 10−4

optimization Initial variation of emergence angles 6°
Initial variation of RNIP 5 %
Initial variation of transformed RN 6°
Transformation radius for RN 106 m

Table 5.2: Field data: processing parameters used for the ZO simulation by means of
the CRS stack.
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5.2 Application of CRS stack

5.2.1 Pragmatic approach

In order to generate a CMP stacked section, the automatic search estimates the
best-fit stacking velocities for the preprocessed CMP gathers. CMP stacking of the
preprocessed CMP gathers with the obtained velocity model provided the zero-offset
(ZO) time section. The zero-offset (ZO) CMP stacked section is depicted in Figure
5.2. It displays steep dipping layers at 0-0.5 s traveltime. These section have a good
quality at 0-2 s traveltime.

Structurally, the study area can be subdivided into three major part: Tertiary,
Upper Cretaceous, and Zechstein. Horizontal reflections at 0.5 s and 1 s traveltime
have continous structure corresponding to the Tertiary. These horizons can be easily
identified and correlated due to strong impedance contrasts. The base of Tertiary at 1
s traveltime and the base of Upper Cretaceous at 1.5 s traveltime has cleary identified.
These boundaries show a pull-up crossed by a set of faults at CMP 1500-1700.

In the areas of CMP 1450-1850 the base of Upper Cretaceous at 1.5 s travel-
time was deformed during the salt movements. The same case for the areas of CMP
3100-3400. The presence of salt involved the complicated for the interpretation of salt
boundaries and reflections below in the areas of the section at 1.5-2.5 s traveltime.

The image of the bottom part of the section below 2.5 s traveltime displays re-
flections with relatively low of the signal-to-noise (S/N) ratio and is poorly imaged.
The base of Zechstein is well defined at about 2.5 s traveltime and is only interrupted
below the salt bodies.

The coherence section (Figure 5.3) helps to identify the detected events and to
estimate where the given aperture is appropriate to fit a hyperbolic operator. The
reflection events are clearly defined for times 0-2.5 s traveltime and are linked with
high coherence values of the reflections. Due of the lower signal-to-noise (S/N) ratio
and geometrical spreading loss the coherence decreases with increasing recording
time. And the image of seismic events below 2.5 s traveltime have a lower coherence
values correspond with the salt plug areas.

Finally, conflicting dips situations are not yet resolved in the zero-offset (ZO)
CMP stacked section. Due to dipping layers salt domes appear wider in this section
than they are in reality. Moreover, a lot of conflicting dip situations are present at the
salt-sediment boundaries.
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Figure 5.2: Field data: result of CMP stack.
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Figure 5.3: Field data: coherence section associated with the CMP stacked section
shown in Figure 5.2
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After the generation of he CMP stacked section, the automatic searches provided the
CRS stacking parameters for the generation of the CRS stacked section. This yields
initial attributes which can be used as first guess in a final optimization procedure.
The pragmatic approach CRS stack result relies on a sufficiently high quality of the
CMP stacked section generated in the first processing step.

Compared to the conventional zero-offset (ZO) CMP stack (Figure 5.2), the
pragmatic approach CRS stacked section in Figure 5.4 shows better continuity of
horizons at all time levels and produced a better image in reflections and diffractions.
The reflections are more continuous and appear clearer. Then now we used these
results to perform stack and coherence analysis along the entire spatial CRS stacking
operators using the simultaneous optimization procedure.

The coherence section for the pragmatic approach CRS stack is shown in Fig-
ure 5.5. Most reflections better defined compared to the coherence section of the CMP
stack shown in Figure 5.3 and the reflection events a clearly defined correspond with
high coherence values and associated with the reflector.

The computational effort required for the sucessive processing steps is presented in
Table 5.3. The CPU times strongly depend on the used hardware, but in general, the
Powell conjugate direction method has a substantial computational advantage against
the Nelder Mead method currently used in the CRS attribute search. A factor of 2 in
computing time was observed for the simultaneous search of the parameters in the
2-D CRS stack using the Powell conjugate direction approach.

Processing step NM method Powell CD method
Automatic CMP stack 00:29:19 00:29:19
Zero-offset stacks 03:52:12 03:52:12
Initial stack 01:34:18 01:34:18
Optimized 32:54:52 15:02:59
Total 38:50:40 20:58:48

Table 5.3: Field data: CPU times required for processing steps.
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Figure 5.4: Field data: result of pragmatic approach CRS stack.
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Figure 5.5: Field data: coherence section associated with the pragmatic approach CRS
stacked section shown in Figure 5.4
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5.2.2 Simultaneous optimization of the CRS stack

Optimization of the spatial CRS stacking operator with all three wavefield attributes
can further increase the accuracy of the wavefield atributes. However, the optimization
procedure is very time consuming.

For the field data I used the same approach as for the Sigsbee synthetic data,
the CRS stack using initial wavefield attributes determined with pragmatic approach
is shown in Figure 5.4. We use the zero-offset (ZO) CMP stacked section result as an
input for the determination of the wavefield attributes. The optimization CRS stack
results it depends the choice of the initial wavefied attributes. If we choose wrong
parameters for the initial wavefield attributes, e.g., near the local solution, it will
definitely lead to a wrong result.

Figure 5.6 to 5.17 display the resulting simultaneous optimized CRS stacked
section. The CRS stacked section obtained with the initial attributes from the result
of pragmatic approach in Figure 5.4 already has a high quality. The optimization
procedure can further increase the accuracy of the wavefield attributes. Attributes after
simultaneous are smoother can be important for model building.

Nelder Mead optimization method

The CRS stacked section obtained with the Nelder Mead method is displayed in
Figure 5.6. It shows better continuity of horizons at all time levels and produced a
better image of conflicting dip areas. The CRS stacked section increase the lateral
resolution in the areas with significant variation of the event curvature. The reflections
are more continuous and appear clearer. The continuity of reflection events in the
CRS stacked section increased greatly and the signal-to-noise (S/N) ratio improved
compared to the CMP stacked sections (Figure 5.2) and pragmatic approach CRS
stacked section (Figure 5.4).

The coherence section for the dominant events associated with the Nelder Mead
optimized CRS stack is shown in Figure 5.7. The events associated with the highest
coherence at each particular zero-offset (ZO) location allow to identify the detected
events and to estimate the reliability of the image as well of its associated wavefield
attributes. In the coherence section most reflections can be identified while are visible
in the CMP stack and CRS stack. The reflection events are clearly defined for times
0-2.5 s traveltime correspond with high coherence values and associated with the
reflector. Due of the lower signal-to-noise (S/N) ratio and geometrical spreading
loss the coherence decreases with increasing recording time. And the image of
seismic events below 2.5 s traveltime have lower coherence values. These events are
influenced by the salt plug areas.
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The optimized emergence angle sections, α, for the dominant events are shown
in Figure 5.8. The improvement of the emergence angle section can readily be
observed, due to the simple relation between the emergence angle and the slopes of
the zero-offset (ZO) events. Angle of emergence around 0° correspond to almost
horizontal reflections. And higher values of emergence angle at 3 s traveltime indicate
diffractions in this section.

The optimized radius of curvature of the normal wave, RN section for the dom-
inant events are depicted in Figure 5.9. The same condition as above applies to this
section. The upper part of this section has very large values of RN associated with
reflections almost flat. Plane reflectors are associated by large values of RN .

And the optimized radius of curvature of the NIP wave, RNIP section for the
dominant events are shown in Figure 5.10. For the stratified areas, the values of
RNIP continously increases smoothly with increasing traveltime indicating that
this parameter is associated with the reflector depth. The difference in coherence
between the pragmatic approach initial CRS stacked (Figure 5.5) and the Nelder Mead
optimized CRS stack (Figure 5.7) is shown in Figure 5.11. The improvement of the
coherence section can readily be observed at the coherence section associated with the
Nelder Mead optimized section.

Powel conjugate direction optimization method

The CRS stacked section obtained with the Powell conjugate direction optimized
method is displayed in Figure 5.12. It shows better continuity of horizons at all time
levels and produced a better image of conflicting dip areas compared to the CRS
stack of the pragmatic approach in Figure 5.4. We do not see specific differences
in the sections for the Powell conjugate direction or the Nelder Mead approach.
Moreover, the Powell conjugate direction method has a substantial computational
advantage against the Nelder Mead method currently used in the CRS attribute search.
A factor of 2 in computing time was observed for the simultaneous search of the
parameters in the 2-D CRS stack using the Powell conjugate direction approach.
For multi-parameter stacking approaches its possible of the CPU time is used in the
CRS method can be reduced. Compared to the CMP stacked section (Figure 5.2)
and pragmatic approach CRS stacked section (Figure 5.4), the CRS stacked section
increase the lateral resolution in the areas with significant variation of the events
curvature. The reflections are more continuous and appear clearer.
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Figure 5.6: Field data: CRS stack result of the Nelder Mead optimization.
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Figure 5.7: Field data: coherence section associated with the Nelder Mead optimized
CRS stacked section shown in Figure 5.6 smoother than coherence section of the prag-
matic approach shown in Figure 5.5.
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Figure 5.8: Field data: angle of emergence associated with the Nelder Mead optimized
CRS stacked section shown in Figure 5.6.
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Figure 5.9: Field data: radius of curvature of the normal wave associated with the
Nelder Mead optimized CRS stacked section shown in Figure 5.6.
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Figure 5.10: Field data: radius of curvature of the NIP wave associated with the Nelder
Mead optimized CRS stacked section shown in Figure 5.6.
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Figure 5.11: Field data: difference in coherence between the pragmatic approach CRS
stacked section (Figure 5.5) and the Nelder Mead optimized CRS stacked section (Fig-
ure 5.7).
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The coherence section for the dominant events associated with the Powell conjugate
direction optimized CRS stack is shown in Figure 5.13. The coherence section of the
Powell conjugate direction method displays a little bit more scatter than the coherence
section of the Nelder Mead method (Figure 5.7), but both sections are very similar and
it does not appear that the difference in coherence has a major effect on the attributes.

The optimized emergence angle sections, α, for the dominant events are shown
in Figure 5.14. The consistency of the optimized emergence angle section can readily
be observed, due to the simple relation between the emergence angle and the slopes
of the zero-offset (ZO) events. Angle of emergence around 0° correspond with
almost horizontal reflections. And higher values of emergence angle at 3 s traveltime
indicates the diffractions in this section.

The optimized radius of curvature of the normal wave, RN , and the section of
radius of curvature of the NIP wave, RNIP sections for the dominant events are
depicted in Figure 5.15 and Figure 5.16, respectively. The differences coherence
between the pragmatic approach initial CRS stacked (Figure 5.5) and the Powell
conjugate direction optimized CRS stack (Figure 5.13) is shown in Figure 5.17.
The improvement of the coherence section can readily be observed at the coherence
section associated with the Powell conjugate direction optimized section compared to
the pragmatic approach section.
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Figure 5.12: Field data: CRS stack result of the Powell CD optimization.
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Figure 5.13: Field data: coherence section associated with the Powell CD optimized
CRS stacked section shown in Figure 5.12 smoother than coherence section of the
pragmatic approach shown in Figure 5.5.
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Figure 5.14: Field data: angle of emergence associated with the Powell CD optimized
CRS stacked section shown in Figure 5.12.
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Figure 5.15: Field data: radius of curvature of the normal wave associated with the
Powell CD optimized CRS stacked section shown in Figure 5.12.
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Figure 5.16: Field data: radius of curvature of the NIP wave associated with the Powell
CD optimized CRS stacked section shown in Figure 5.12.
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Figure 5.17: Field data: difference in coherence between the pragmatic approach CRS
stacked section (Figure 5.5) and the Powell conjugate direction optimized CRS stacked
section (Figure 5.13).
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Figure 5.18 shows enlarged images of the simultaneous optimized CRS stacked sec-
tions for the Nelder Mead optimization method and the Powell conjugate direction
method in the areas of CMP 1100-2200. Overall both images almost look similar and
no differences can be observed between the Nelder Mead stacked section and the Pow-
ell conjugate direction stacked section (Figure 5.18b). Computational time on field
data was 2 times faster than the Nelder Mead stacked section (Figure 5.18a).

(a) (b)

Figure 5.18: ZO CRS stacked sections: comparison between the Nelder Mead opti-
mization method and Powell conjugate direction optimization method with the same
initial values in the areas of CMP 1100-2200. The Powell conjugate direction opti-
mization method (b) is 2 times faster in computational time compared to the Nelder
Mead optimization method (a).

Figure 5.19 shows enlarged images of the coherence CRS stacked sections for the
Nelder Mead optimization method and the Powell conjugate direction method in the
areas of CMP 1100-2200. The Powell conjugate direction stacked section Figure
5.19b has a little bit scatter compared to the Nelder Mead stacked section Figure
5.19a. But both images are look similar and it does not appear that the differences in
coherence sections has a major effect on the attributes (shows in Figure 5.20, Figure
5.21, and Figure 5.22).

Figure 5.20 shows enlarge the angle of emergence sections, α, for the Nelder
mead optimization method and the Powell conjugate direction method in the areas
of CMP 1100-2200. Both sections are very similar and no differences can be observed.

Figure 5.21 and Figure 5.22 show enlarge radius of curvature of the N wave
sections, RN , and radius of curvature of the NIP wave sections, RNIP , for the Nelder
mead optimization method and the Powell conjugate direction method in the areas of
CMP 1100-2200. Both sections are very similar and no differences can be observed.
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(a) (b)

Figure 5.19: Coherence section: comparison between the Nelder Mead optimization
method (a) and Powell conjugate direction optimization method (b) in the areas of
CMP 1100-2200. The stacks of both methods look similar and it does not appear that
the differences in coherence has a major effect on the attributes.

(a) (b)

Figure 5.20: Results of the automatic CRS parameter searches: α. Angle of emergence
section for Nelder Mead optimization method (a) and Powell conjugate direction op-
timization method (b) in the areas of CMP 1100-2200. Both sections are very similar
and no specific differences can be observed.
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(a) (b)

Figure 5.21: Results of the automatic CRS parameter searches: RN . Radius of cur-
vature of the N wave section for Nelder Mead optimization method (a) and Powell
conjugate direction optimization method (b) in the areas of CMP 1100-2200. Both
sections are very similar and no specific differences can be observed.

(a) (b)

Figure 5.22: Results of the automatic CRS parameter searches: RNIP . Radius of
curvature of the NIP wave section for Nelder Mead optimization method (a) and Powell
conjugate direction optimization method (b) in the areas of CMP 1100-2200. Both
sections look similar and no specific differences can be observed.
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5.3 Conclusions

The application of the simultaneous optimization of the CRS stack method on the
field data set shows that the new method has a substantial computational advantage
against the Nelder Mead method currently used in the CRS attribute search. A factor
of 2 in computing time was observed for the simultaneous search of the parameters
in the 2-D CRS stack using the Powell conjugate direction approach. Results of the
automatic three attributes CRS parameter searches obtained with the Powell conjugate
direction method are very similar and no differences can be observed compared to the
Nelder Mead method currently used in the CRS attributes search.

The Powell conjugate direction optimization method increased the continuity of
reflection events most significantly, and also improved the signal-to-noise (S/N) ratio
compared to the CMP stacked section. This quality improvement is observed at the
top of the salt plugs and in deeper section below 2.5 s traveltime. Structurally, the
study area can be subdivided into three major parts: Tertiary, Upper Cretaceous, and
Zechstein. Most horizons have continuous structures and can be easily identified. The
base of Tertiary at 1 s traveltime, the base of Upper Cretaceous at 1.5 s traveltime,
and the base of Zechstein at 2.5 s traveltime are well identified. Such an inversion
algorithm of the attributes, the CRS wavefield attributes provide the information
required to build a depth model. Although the performance of the CRS stack strongly
depends on the local complexity of the recorded wavefield. Nevertheless, all primary
events that can be sufficiently accurately approximated by a hyperboloid given by the
CRS stacking operator are well imaged in the CRS stacked section.

88



Chapter 6

Global optimization method

This chapter shows the application of the global optimization method using an arbi-
trary initial guess to demonstrate the advantages of this method in finding the solution
to avoid being trapped into local solutions. The pragmatic approach based on three
one-parameter search processes to define the CRS parameters as an input for the initial
values for the optimization procedure can be replaced based on a priori information for
the geological structure, best guess or local slopes (Santos et al., 2011). I investigated
the optimization results based on the choice of the initial values to demonstrate the ad-
vantages of this method finding the solution. In this implementation we still using the
pragmatic approach results for the RNIP and RN as an initial values, and the arbitrary
value for the angle.

6.1 Synthetic data example

I used the same acquisition parameters of the pre-stack data and the basic processing
parameters for the zero-offset simulation of the CRS stack for the Sigsbee synthetic
data as compiled in Table 4.1 and Table 4.2, respectively. The optimization of the
CRS processing procedure started with the three parameters which the arbitrary angle
and RNIP and RN from the pragmatic approach results as an initial values. Then
we compared the results of both method between the Powell conjugate direction
optimization method and the Nelder Mead optimization method.

Figure 6.1 shows enlarged images of the coherence CRS stacked sections for
the Nelder Mead optimization method and the Powell conjugate direction method.
The coherence of the Nelder Mead method Figure 6.1a has a little bit scatter compared
to the coherence Powell conjugate direction stacked section Figure 6.1b. This case
shows the advantages of using the new method. This is possible because the strict
procedures in the search of direction to avoid the wrong solutions into local minima.
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(a) (b)

Figure 6.1: Coherence section of CRS stacked: comparison between coherence of NM
optimized CRS stack (a) and coherence of Powell CD optimized CRS stack (b). coher-
ence of Powell CD optimized CRS stack (b) more smooth and better than coherence
of NM optimized CRS stack (a).

(a) (b)

Figure 6.2: Improvement of the coherence section between initial CRS stack and Pow-
ell conjugate direction optimized method (Figure 6.2b) compared to the coherence
section between initial CRS stack and Nelder Mead optimized method (Figure 6.2a).
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(a) (b)

Figure 6.3: Differences in coherence between the NM optimized CRS stack and Powell
CD optimized CRS stack (a) and results of the automatic CRS parameter searches: α,
angle of emergence section Powell CD method (b).

(a) (b)

Figure 6.4: Results of the automatic CRS parameter searches: RN and RNIP , radius
of curvature of N wave section (a) and radius of curvature of NIP wave section (b) for
the Powell conjugate direction method.
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The improvement of the coherence section between the NM optimized method and the
Powell conjugate direction optimized method is shown in Figure 6.2. The coherence
section associated with the Powell conjugate direction optimized method (Figure
6.2b) are smoother and continuous compared to the coherence section associated with
the Nelder Mead optimized method (Figure 6.2a). Specific features of the Powell
conjugate direction method include the strict procedures for the search of direction
which allows better results. The computing time for the global optimization required
10 times slower when comparison which using the pragmatic approach as an initial
values for the optimization procedure.

Figure 6.3a shows enlarged images of the differences of the coherence CRS
stacked sections between the Nelder Mead optimization method and the Powell
conjugate direction method. The superior improvement of the coherence section can
readily be observed at the coherence section associated with the Powell conjugate
direction optimized section compared to the Nelder Mead optimized section. Figure
6.3b, 6.4a and Figure 6.4b show enlarged image results of the automatic CRS
parameter searches emergence angle sections, α, radius of curvature of the N wave
section, RN , and radius of curvature of the NIP wave section, RNIP , for the Powell
conjugate direction method. The three attributes search show similar results and no
spesific differences can be observed with the results in chapter 4 (Figure 4.19b, 4.20b
and Figure 4.21b). Figure 6.5 shows enlarged images of the simultaneous optimized
CRS stacked sections for the Nelder Mead optimization method and the Powell
conjugate direction method. The Powell conjugate direction stacked section (Figure
6.5b) displays the reflection more continues, more clearer and the reflectors are better
defined compared to the Nelder Mead stacked section (Figure 6.5a).

(a) (b)

Figure 6.5: ZO CRS stacked sections: comparison between the Nelder Mead method
(a) and Powell conjugate direction method (b). Powell conjugate direction method
stacked section has more clearer and the reflections better defined.
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The CRS stacked section obtained with the Powell conjugate direction optimized
method displayed in Figure 6.6 shows better continuity of horizons at all time
levels and produced a better image of conflicting dip areas. We do not see specific
differences in the stack sections for the Powell conjugate direction approach using
initial values from the pragmatic approach result shown in Figure 4.11. These results
indicate that the Powell conjugate direction method has advantages in dealing with the
selection of initial value problems in finding a final solution which can not be done by
the NM method currently used in the CRS attributes search. Possibility being trapped
into local solutions to overcome the new method by applying strict procedures in the
search direction.

The coherence section for the dominant events associated with the Powell con-
jugate direction optimized CRS stack is depicted in Figure 6.7. This figure looks
similar to the Powell conjugate direction approach using initial values from the
pragmatic approach result (Figure 4.12). The events associated with the high-
est coherence at each particular ZO location, allows to identify the detected events
and to estimate the reliability of the image as well of its associated wavefield attributes.

Figure 6.8 to 6.10 display three CRS parameter sections. The optimized emer-
gence angle section for the dominant events is shown in Figure 6.8. This image
looks similar to the optimized emergence angle section of the Powell conjugate
direction approach using initial values from the pragmatic approach result (Figure
4.13) and no specific differences can be observed. The consistency of the optimized
emergence angle section can readily be observed, due to the simple relation between
the emergence angle and the slopes of the ZO events.

The optimized radius of curvature of the normal wave section for the dominant
events are depicted in Figure 6.9. This section looks similar to the Powell conjugate
direction approach using initial values from the pragmatic approach result (Figure
4.14). The same applies to the section that is related to the curvature of the ZO events.

The optimized radius of curvature of the NIP wave for the dominant events are
shown in Figure 6.10. This image looks similar to the Powell conjugate direction
approach using initial values from the pragmatic approach result (Figure 4.15). For
the stratified areas above and left to the salt, the values of RNIP continously increases
with increasing traveltime. Below the salt, the section is dominated by the tails of
bow-tie structures and diffraction patterns stemming from the top and possibly also
the botttom of the salt body.

Figure 6.11 display difference in coherence between the Nelder Mead optimiza-
tion method and the Powell conjugate direction optimization method. The superior
improvement of the coherence section can readily be observed by using the new
method.
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Figure 6.6: Global optimization Sigsbee data: CRS stack result of the Powell CD
optimization.
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Figure 6.7: Global optimization Sigsbee data: coherence section associated with the
Powell CD optimized CRS stacked section shown in Figure 6.6.
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Figure 6.8: Global optimization Sigsbee data: angle of emergence associated with the
Powell CD optimized CRS stacked section shown in Figure 6.6. These attributes are
directly related to the slopes of the events.
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Figure 6.9: Global optimization Sigsbee data: radius of curvature of the normal wave
associated with the Powell CD optimized CRS stacked section shown in Figure 6.6.
These attributes are directly related to the curvatures of the events in the ZO section.
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Figure 6.10: Global optimization Sigsbee data: radius of curvature of the NIP wave
associated with the Powell CD optimized CRS stacked section shown in Figure 6.5.
These section is calculated from the emergence angle section of the dominant events
in Figure 6.8 and the stacking velocity section obtained from automatic CMP stack.
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Figure 6.11: Global optimization Sigsbee data: difference in coherence between the
Nelder Mead optimized method and the Powell conjugate direction optimized method.
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6.2 Field data example

I used the same acquisition parameters and the basic processing parameters for the
zero-offset simulation of CRS stack for the field data as compiled in Table 5.1 and
Table 5.2, respectively.

Figure 6.12 shows enlarged images of the coherence CRS stacked sections for
the Nelder Mead optimization method and the Powell conjugate direction optimiza-
tion method. The coherence section of the Powell conjugate direction method Figure
6.12b appear more smooth and improved compared to the coherence section of the
Nelder Mead method Figure 6.12a.

The improvement coherence section between initial CRS stack and the Nelder
Mead optimized method compared to the coherence section between initial CRS stack
and the Powell conjugate direction optimized method is shown in Figure 6.13. Coher-
ence section associated with the Powell conjugate direction optimized method (Figure
6.13b) more smooth and continue compared to the coherence section associated with
the Nelder Mead optimized method (Figure 6.13a). Specific features of the Powell
conjugate direction method in the strict procedures the search of direction which
allow better result. The computing time for the global optimization required 20 times
slower when comparison which using the pragmatic approach as an initial values for
the optimization procedure.

The superior improvement of the coherence section can readily be observed at
the coherence section associated with the Powell conjugate direction optimized
section. Figure 6.14a shows enlarged images the differences of the coherence CRS
stacked sections between the Nelder Mead optimization method and the Powell
conjugate direction method.

Figure 6.14b, 6.15a and Figure 6.15b show enlarged images of the automatic
CRS parameter searches for the emergence angle sections, α, radius of curvature for
the N wave section, RN , and radius of curvature for the NIP wave section, RNIP , for
the Powell conjugate direction method. The three attributes search shows the similar
results and no spesific differences can be observed with the results in chapter 5 (Figure
5.20b, 5.21b and Figure 5.22b).

Figure 6.16 shows enlarged images of the simultaneous optimized CRS stacked
sections for the Nelder Mead optimization method and the Powell conjugate direction
method. The Powell conjugate direction stacked section (Figure 6.16b) displays the
reflection more continues, more clearer and the reflectors are better defined compared
to the Nelder Mead stacked section (Figure 6.16a).
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(a) (b)

Figure 6.12: Coherence section of CRS stacked: comparison between coherence of
NM optimized CRS stack (a) and coherence of Powell CD optimized CRS stack (b).
coherence of Powell CD optimized CRS stack (b) more smooth and better than coher-
ence of NM optimized CRS stack (a).

(a) (b)

Figure 6.13: Improvement of the coherence section between initial CRS stack and the
Powell conjugate direction optimized method (Figure 6.15b) compared to the coher-
ence section between initial CRS stack and the Nelder Mead optimized method (Figure
6.15a).
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(a) (b)

Figure 6.14: Differences in coherence between the NM optimized CRS stack and Pow-
ell CD optimized CRS stack (a) and results of the automatic CRS parameter searches:
α, angle of emergence section Powell CD method (b).

(a) (b)

Figure 6.15: Results of the automatic CRS parameter searches: RN and RNIP , radius
of curvature of N wave section (a) and radius of curvature of NIP wave section (b) for
the Powell conjugate direction method.
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(a) (b)

Figure 6.16: ZO CRS stacked sections: comparison between the Nelder Mead op-
timization method (a) and Powell conjugate direction optimization method (b) in the
areas of CMP 1100-2000. Powell conjugate direction method stacked section has more
clearer and the reflections better defined.

The CRS stacked section obtained with the Powell conjugate direction optimized
method is displayed in Figure 6.17. We do not see specific differences in the stack
sections for the Powell conjugate direction approach using initial values from the
pragmatic approach result shown in Figure 5.12. The possibility being trapped into
local solutions to overcome the Powell conjugate direction method by applying strict
procedures in the search direction. These results indicate that the new method has
advantages in dealing with the selection of initial value problems in finding a final
solution.

The coherence section for the dominant events associated with the Powell con-
jugate direction optimized CRS stack is shown in Figure 6.18. This figure looks
similar to the Powell conjugate direction approach using initial values from the
pragmatic approach result (Figure 5.13). In the coherence section most reflections can
be identified which are visible in the CMP stack and CRS stack.

The reflection events are clearly defined for times 0-2.5 s traveltime correspond
with high coherence values and associated with the reflector. The base of Tertiary at 1
s traveltime and the base of Upper Cretaceous at 1.5 s traveltime has cleary and can be
easily identified. And the image of seismic events below 2.5 s traveltime have a lower
coherence values which correspond to the salt plug areas. The events associated with
the highest coherence at each particular zero-offset (ZO) location, allows to identify
the detected events and to estimate the reliability of the image as well of its associated
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wavefield attributes.

Figure 6.19 to 6.21 displays the sections of the CRS attributes obtained by au-
tomatic search with the Powell CD method. The optimized emergence angle sections
for the dominant events are shown in Figure 6.19. This image looks similar to
the optimized emergence angle section of the Powell conjugate direction approach
using initial values from the pragmatic approach result (Figure 5.14) and no specific
differences can be observed. Angle of emergence around 0° correspond to almost
horizontal reflections. And higher values of emergence angle at 3 s traveltime indicates
the diffractions in this section. The consistency of the optimized emergence angle
section can readily be observed, due to the simple relation between the emergence
angle and the slopes of the ZO events.

The optimized radius of curvature for the normal wave section for the dominant
events are depicted in Figure 6.20. This section looks similar to the Powell conjugate
direction approach using initial values from the pragmatic approach result (Figure
5.15). The upper part of this section has very large values of RN associated to almost
flat reflections. Plane reflector is characterized by the large values of RN . The same
applies to the section which is related to the curvature of the ZO events.

The optimized radius of curvature for the NIP wave for the dominant events are
displayed in Figure 6.21. This image looks similar to the Powell conjugate direction
approach using initial values from the pragmatic approach result (Figure 5.16). For the
stratified areas, the values of RNIP continously increases with increasing traveltime
since this attributes associated to the reflector depth in a constant velocity medium.
Overall, no differences can be observed from the result of the automatic three CRS
parameter searches using global optimization when compared to the Powell conjugate
direction approach using initial values from the pragmatic approach. The superior
improvement of the coherence section can readily be observed by using the new
method. The differences of coherence comparison between Nelder Mead optimization
method and Powell conjugate direction optimization method is shown in Figure 6.22.
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Figure 6.17: Global optimization field data: CRS stack result of the Powell CD opti-
mization.
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Figure 6.18: Global optimization field data: coherence section associated with the
Powell CD optimized CRS stacked section shown in Figure 6.16.
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Figure 6.19: Global optimization field data: angle of emergence associated with the
Powell CD optimized CRS stacked section shown in Figure 6.16. These attributes are
directly related to the slopes of the events.
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Figure 6.20: Global optimization field data: radius of curvature for the normal wave
associated with the Powell CD optimized CRS stacked section shown in Figure 6.16.
These attributes are directly related to the curvatures of the events in the ZO section.
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Figure 6.21: Global optimization field data: radius of curvature for the NIP wave
associated with the Powell CD optimized CRS stacked section shown in Figure 6.14.
These section is calculated from the emergence angle section of the dominant events
in Figure 6.17 and the stacking velocity section obtained from automatic CMP stack.
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Figure 6.22: Global optimization field data: difference in coherence between the
Nelder Mead optimized method and the Powell conjugate direction optimized method.
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6.3 Conclusions

The optimization CRS stack result depends the choice of the initial wavefield
attributes. The results of the global optimization of the CRS stacked section obtained
with the Nelder Mead optimization method show more blur and scatter occurs when
compared to the CRS stacked section obtained with the Powell conjugate direction
optimization method. This scatter may be a results of getting trapped in a local
minima. The best solution may also not be achieved in case the maximum number of
iterations is exceeded. However, a specific feature of the Powell conjugate direction
approach is its ability to avoid being trapped in local minima. Strict procedures in the
search direction allows this method to find the right solution.

Overall one can conclude, that the application of the new method leads to com-
parable especially when we use arbitrary initial values. Result of the global
optimization of the CRS stacked section obtained with the Powell conjugate direction
optimization method provides very good quality. The application of the simultaneous
optimization of the CRS stack method on the Sigsbee 2A synthetic data set and field
data set shows that the new method provides very good solutions and can avoids being
trapped into wrong solutions that can not be done by the Nelder Mead optimization
method. The results shows appear smoother and improved when compared to the
Nelder Mead results. Result of the automatic three CRS parameter searches sections
displays similarity to the Powell conjugate direction approach using initial values
from the pragmatic approach.
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Chapter 7

Conclusion and Outlook

We have proposed a new strategy for the optimization of the simultaneous estimation
of the CRS stack attributes, which allows to improve the image of pre-stack seismic
reflection data. The method comprises the conjugate direction approach based on
the Powell search method. The strategy is based on the conjugate direction method
with its well known convergence properties and iterative Powell search method. The
algorithm is robust and easy to implement. The use of the conjugate direction method
leads to a highly efficient iterative search method to speed up the convergence rate
while no derivatives need to be calculated. The iterative Powell search method for the
control of the search direction prevents the premature convergence into local minima.

The 2-D CRS stack application using Powell conjugate direction optimization
method have shown significant improvements in simulating zero-offset (ZO) sections
compared to the conventional CMP stacked section and the pragmatic approach CRS
stacked section. This optimization algorithm can be further increasing the accuracy
of the Common Reflection Surface (CRS) wavefield attributes. Reflections are more
continuous and the reflectors are better defined in the CRS stacked section. I have
presented the application to the Sigsbee 2A synthetic data example and a field data
example from Northern Germany. The quality improvement is observed on the Sigs-
bee 2A synthetic data example at the top of salt the bow-tie structures and diffraction
patterns stemming are well simulated. As well as, for field data example the quality
improvement is observed at the top of the salt plugs and in deeper section below
2.5 s traveltime. Most horizons have continuous structures and can be easily identified.

The improvement of coherence section between the pragmatic approach initial
CRS stack and the Powell conjugate direction optimization method display more blur
when compared to the CRS stacked section obtained with Nelder Mead optimization
method. But it does not appear that the differences in coherence sections has a major
effect on the three attributes. No specific differences can be observed from the CRS
stacked sections and three kinematic wavefield attributes of both method.

The application to the complex Sigsbee 2A synthetic data example and a field
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data example show that the new method provides solutions with higher stability and
faster convergence. Moreover, this method has a substantial computational advantage
against the Nelder Mead method currently used in the CRS attribute search. Examples
show that the new method reduces the requirements in computational time by 55% (2
times faster) was observed for the simultaneous search of the parameters in the 2-D
CRS stack using this method on the field data example.

The other advantage of this method turned out to be its globality. The applica-
tion of the global optimization of the simultaneous estimation of the CRS stack
method on the Sigsbee 2A synthetic data set and field data set shows that the new
method provides very good solutions and can avoids being trapped into wrong
solutions which can not be achieved by the Nelder Mead optimization method. The
superior improvement result of the coherence section can readily be observed and
significantly better described by the new method. Overall one can conclude, that
the application of the new method leads to comparable results, even for the case of
arbitrary starting values in a global application.

In this thesis, optimization of the simultaneous estimation of the CRS stack
method was implemented for the 2-D case only. The application of the CRS stack for
2-D is also applicable for 3-D models. The concepts of the CRS stack approach have
been shown by (Höcht, 2002) and transferred to the 3-D case provides a consistent
subset of the 3-D zero-offset volume. The 3-D implementation of the pragmatic
search strategy have already been implemented by (Müler, 2003). One possible topic
of future research could be to extend the method for 3-D implementation of the CRS
stack strategy and also for new other operators applicable to all coherence based
optimization, i.e., i-CRS.

Another major issue for the future research could be the extension of the method
to implementation of inexact line search. The line search is a basic part of the
optimization method. Commonly, the exact line search is expensive especially when
an iterate is far from the solution of the problem. Implementation inexact line search
remains as future task to reduce the computing efforts. Moreover, the implementation
of the initial values for the optimization based on a priori information from geological
structure, best guess or local slope would be remains as challenge task for the future
research topics.
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In the course of this thesis several computers running the free GNU/Linux operation

system were used.

The optimized CRS stack method developed during this work was written in C++. The

program is based on the 2-D ZO CRS stack code as implemented byMann (2002).

For simple processing and visualisation of the data, the free Seismic Un*x (SU) pack-

age was used. Additional figures were generated using gnuplot, inkscape, gimp and

dia diagram editor.

The thesis it self was written on a PC with the free operating system Debian

GNU/Linux with the type setting system LATEX.
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