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Abstract

We investigate the production of J/ψ from both the color singlet and color octet states of
the intermediate cc̄ pairs, using the rigorous factorization scheme of NRQCD. We present
the transverse momentum and rapidity distributions for the associated production of
J/ψ with an open cc̄ pair at DELPHI, H1, CDF and ATLAS, considering all the direct,
single- and double-resolved subprocesses involved. We emphasize on the importance
of considering this process as a part of the NLO studies for J/ψ production. We also
calculate the NLO production of J/ψ in electron-positron annihilation, considering both
the color singlet and color octet contributions.

Zusammenfassung

Wir untersuchen die Produktion von J/ψ Mesonen aus intermediaeren Farbsingulett und
Farboktett Charm-Anticharm-Paaren, wobei wir das rigorose NRQCD Faktorisierungss-
chema verwenden. Wir berechnen Verteilungen im transversalen Impuls und in der
Rapiditaet fuer die assozierte Produktion von J/ψ mit einem offenen Charm-Anticharm-
Paar bei DELPHI, H1, CDF und ATLAS, wobei wir alle beteiligten direkten, einfach
und zweifach aufgeloesten Unterprozesse beruecksichtigen. Wir unterstreichen die Be-
deutung dieser Prozesse als ein Teil der Studien der J/ψ Produktion in der naechst-
fuehrenden Ordnung der Stroeungstheorie. Wir berechnen weiterhin die Produktion
von J/ψ Mesonen in Elektron-Positron-Paarvernichtung in naechstfuehrender Ordnung
der Stroeungstheorie, wobei wir wieder sowohl die Farbsingulett als auch die Farboktett-
Beitraege beruecksichtigen.
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1 Introduction

The discovery of a new resonance, at Stanford Linear Accelerator Center (SLAC) and
Brookhaven National Laboratory (BNL), was announced simultaneously on 11 Nov,
1974. This not only confirmed the existence of already conjectured charm quark of the
Standard Model, but also opened the exciting world of flavor neutral mesons. The small
width of the observed resonance indicated an unexpected long life time (0.8x10−20sec)
of the particle discovered, named later J/ψ. This vector meson was interpreted as a
bound state of a charm-anticharm pair with a mass much higher than the previously
known light quarks (u, d and s). The importance of J/ψ observation is highlighted by
the fact that the subsequent rapid experimental developments and the series of changes
in theoretical high-energy physics at the time, triggered by this discovery, have become
collectively known as the “November Revolution”. J/ψ production generated further
interest through its leptonic decays, which provided clean experimental signature. Soon
after, some other charm-quark resonances, D0 and D+ were discovered in 1976 and then,
to enrich further the elementary particle physics picture, the first bottom-antibottom
bound state was observed in 1977. Ever since, bound states of a heavy quark with its
antiquark, called Quarkonia (QQ̄), have constantly drawn a lot of attention as an active
field of research both from experimental and theoretical communities.1

In the past years, many experiments have been dedicated to quarkonium studies. As a
result, many new exotic hadronic states such as tetraquarks and meson molecules (whose
interpretation is still unclear) have been discovered even recently, in addition to some
predicted quarkonium states. The interest on heavy flavors, nowadays, has enhanced
further by all these exciting discoveries. Therefore, with a wealth of new and accurate
data coming from diverse sources [2] like:

• Quarkonium formation from BES at BEPC, the old E835 at Fermilab, KEDR
(upgraded) at VEPP-4M, and CLEO-III at CESR;

• Clean samples of charmonia produced in B-decays, in photon-photon fusion and
in initial state radiation, from the B-factories, BaBar at SLAC and Belle at KEK;

• Heavy quarkonia production ,measured at CDF and D∅ experiments of Fermilab,
from gluon-gluon fusion in pp̄ annihilations at 2TeV ;

• Charmonia production study by ZEUS and H1, at DESY, in photon-gluon fusion;

1The top quark cannot form a bound state because of its very short lifetime, less than 1
1024 s.
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• Charmonia production and suppression, in heavy-ion collisions, studied by PHENIX
and STAR, at RHIC, and NA60, at CERN;

the field of heavy quarkonia is still undergoing a rapid expansion in experiments. Even
larger data samples are expected from the CLEO-c and BES-III upgraded experiments
in the near future. Besides that, B-factories and the Fermilab Tevatron will continue
supplying valuable data for several years. Later on, expected are many other challenges
and fantastic opportunities offered by new facilities when LHC at CERN, Panda at GSI,
much higher luminosity B factory at KEK, a Linear Collider, etc. will become opera-
tional. This in turn demands to improve our understanding of the crucially important
theory which governs the system of these quarkonium states.

On the theoretical side, in close analogy with positronium or even with a hydrogen
atom, quarkonia are treated as a simple two body system, and were expected to con-
tain a spectrum of resonances corresponding to various excitations of the corresponding
heavy quark pair. But unlike its analogs governed mainly by the electrostatic Coulomb
potential, the properties of quarkonium are however determined by the SU(3) gauge
theory of strong interactions, called Quantum Chromodynamics (QCD). In this thesis,
charmonium (cc̄) states will be focused for further discussion. Given the large mass of
charm quark, the heavy cc̄ pair acts non-relativistically, with a small relative velocity
(vrel ≈ 0.5) as compared to a similar system of lighter quarks (with vrel ≈ 0.8). The
strong binding potential V (r) between the heavy quark pair, considering their charge
and color quantum numbers, is of the form:

V (r) ≈ −α(r)

r
+ κ2r (1.1)

where r is the distance between the quarks, α(r) is the coupling constant of coulomb like
first term in the potential (for strong interactions α(r) ' αs(1/r)) and κ is the string
tension coefficient (empirically κ ' 450MeV ). Since κ is independent of M , it must be
proportional to ΛQCD.

QCD requires the phenomena of confinement and asymptotic freedom to be obeyed.
The confinement presumably results from the fact that the potential energy of the two
quarks increases with increasing r, as in the above equation. The quarks in the bound
state can, therefore, not be separated apart until enough energy is reached to create a new
quark-antiquark pair. As a result of this confinement, no free quarks are ever observed.
On the other hand, this system looks similar to electrodynamic case, when the first term
dominates for small r, but behaves differently from the simple Quantum Electrodynamics
(QED) models. In quantum field theory, an electron can emit a virtual photon which
then creates an electron-positron pair. Therefore, an electron spontaneously becomes
surrounded by a cloud of virtual e+e pairs. This cloud of charged particles gets polarized,
when positrons are attracted by the charge on the original electron. Therefore, a probe
far away sees the actual charge of the electron, whereas a closer probe finds a larger
charge due to the polarized cloud. A similar, but opposite, effect occurs in the strong
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interaction, where a probe close to the colour charge will see a lower colour charge than
a probe far away. In the limit of zero separation ( r → 0), the charge appears to be zero.
This is known as asymptotic freedom, which in short implies that at very high energies
and momenta, quarks and gluons interact only weakly and act as quasifree particles.
The spectrum of charmonium states, with specific radial excitation, spin and orbital
angular momentum, can then be well derived by the solution of a Schrödinger equation
that incorporates this asymptotic behavior of QCD [3]. The relevant quantum numbers
for these states in the conventional spectroscopic notation (like for positronium) are:

n2S+1LJ , n = 1, 2, 3, .... (1.2)

where n is principle quantum number,S spin and L is the orbital angular momentum
with total angular momentum J = L + Sz. Being fermions of spin 1/2, the cc̄ pair can
have either their spins anti-aligned to form the spin singlet state (S = 0) or aligned to
form a spin triplet state (S = 1). These states can be further characterized by their
parity P = (−1)L+1 and charge conjugation number C = (−1)L+S. Keeping the same
analogous to hydrogen atom, the different spin states in quarkonia have different energy
levels, and therefore given different names. Some members of the charmonium spectrum
are listed in Table[1].

n 2S+1LJ Charmonium JPC Mass(MeV )

1 1S0 ηc 0−+ 2980
1 3S1 J/ψ 1−− 3097

1 3P0 χc0 0++ 3415
1 3P1 χc1 1++ 3511
1 1P1 hc 1+− 3526
1 3P2 χc2 2++ 3556

2 1S0 ηc
′ 0−+ 3637

2 3S1 ψ ′ 1−− 3686

As the simplest strongly bound states with rich internal structure, charmonia were
hoped to provide the same testing ground for understanding hadronic dynamics or QCD,
as the one provided by hydrogen atom in understanding the atomic physics. In a way,
this has indeed been the case and the development of many methods in QCD is di-
rectly related to analyses of the properties of charmonium and of its heavier sibling
bottomonium.

Factorization Scales

Even considering our simple analogy of positronium in QED, the description of the sys-
tem of quarkonium containing two heavy quarks becomes rather challenging in QCD,
due to confinement (which makes it hard to apply perturbative QCD here). But there
still are some instrumental parameters/scales involved to rescue. On one hand, the large
mass M of heavy quark suggests an advantageous non-relativistic treatment of heavy
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quarkonium. Whereas on the other hand, the relativistic velocity v of the quarks in
bound state also provides a small parameter in which the dynamical scales may be hier-
archically ordered and the QCD amplitudes systematically expanded. The nonrelativis-
tic potential models then need to include different scales to accommodate all properties
of QCD. Therefore, a heavy quarkonium bound state, with radius r, is characterized by
three intrinsic scales:

• mass of the heavy quark,M (hard scale),

• relative momentum of the heavy quark-antiquark pair in center of mass frame,
|p| ∼Mv (∼ 1

r
), for v << 1 (soft scale),

• kinetic energy of the heavy quark in the bound state, E ∼Mv2 (ultrasoft scale).

If we integrate out the hard scale from QCD, a non-relativistic effective theory is ob-
tained. Another important energy scale in quarkonium physics is the scale of nonpertur-
bative effects involving gluons and light quarks, ΛQCD [4]. The hierarchy of the energy
scales thus becomes;

M � ΛQCD �Mv,Mv2. (1.3)

For the study of charmonium physics, the important observables are their production
or decays rates. This dissertation will discuss the production side. The above hierarchy
of energy scales, for this purpose, provides the ground to construct a self consistent
effective field theory, factorized into two steps:

• a heavy quark pair production during the first phase of a hard collision

• formation of a charmonium bound state out of this heavy quark-antiquark pair

The first step takes place with sufficiently high momentum transfers to create such high
mass of the heavy quarks, and is thereby treated perturbation. The mass Mc then sets
the scale for point like production of the cc̄ pair, at small range. Due to this high charm
mass and small relative velocity of the cc̄ pair in the bound state of charmonia, the
second step is described using the non perturbative or low energy/momentum scales,
Mv2 or Mv, at long distance compared to r.
This factorization of scales remains reliable only when v � 1 to widely separate the dy-
namics of short distance and long distance. The long distance part, accounting for QCD
confinement, then is not influenced significantly by the short distance one. Therefore,
once phenomenologically extracted from one special process, the long distance matrix el-
ements (LDMEs) should remain valid for any other process. This implies the universality
of LDMEs, which in turn enhances the predictive power of the factorization approach.
Charmonia, with v2 ≈ 0.2, are the lightest system in heavy quarkonia, to which this ap-
proach apply. Based on the separation of different energy scales involved, a few models
have been developed over the years to study the production cross sections and decay
rates of different quarkonium states. Most commonly applied of them are the Color
Evaporation Model (CEM), Color Singlet Model (CSM) and Nonrelativistic Quantum
Chromodynamics (NRQCD), which will be briefly discussed in the next chapter.
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Being the most robust theoretically and the most successful phenomenologically so
far, NRQCD factorization is selected for the investigation of J/ψ production in this dis-
sertation. With the inclusion of color octet mechanism, NRQCD was able to resolve the
issue of infrared divergences which appeared during the calculations of the P-wave char-
monium production in CSM. It also could reconcile the discrepancies between the J/ψ
hadroproduction data at Tevatron and the theoretical predictions of the CSM. Despite
these undeniable successes, there still remain number of discrepancies between NRQCD
predictions and the observed data at different experiments. For example, in contrast
to CEM, NRQCD expected J/ψ to be transversely polarized at large pT , but the CDF
data at

√
s = 1.96TeV revealed it to be unpolarized [6]. The experimental data for

charmonium photoproduction at HERA [9] invites for an even deeper theoretical insight
into different channels involved in the production. Also, further phenomenological in-
vestigations are required to establish the universality of experimental LDMEs. Another
open challenge to NRQCD was recently posed by the experimental data at Belle [7],
where J/ψ+ cc̄ associated production is much larger than the NRQCD expectations. A
similar large discrepancy was seen earlier in the cross section of exclusive double charmo-
nium production at B-factories [8]. These unexpected measurements motivates further
to investigate this process at other colliders, and for photo- and hadro-productions as
well, where it also plays an important contribution at the next-to-leading order (NLO)
corrections. There have already been some theoretical discussion on the importance of
this process at B-factories[10], at LEP [11], and at Tevatron and LHC [12] using different
classical approaches. Being equally important at different collider energies and having
incomplete theoretical information so far, the process in which J/ψ is produced with an
open cc̄ pair is one of the main works of this dissertation.

The large contributions of the Next to Leading Order (NLO) calculations found re-
cently in several studies performed for the inclusive and exclusive charmonium pro-
duction could reduce the conflict between the CSM predictions and the experimental
results. It thus implies to study the CO mechanism more carefully in order to investi-
gate its contribution in the charmonium production. A list of these studies in indicated
in the reference [15], and the references therein. The study of charmonium production
in the annihilation of electro-positron at B-factories can not only test the NRQCD but
also investigate the importance of CO contributions. The recent experimental results
by the Belle Collaboration [7] of the full cross-sections (rather than Born) for the pro-
cesses e+e− → J/ψ + X, e+e− → J/ψ + cc̄ and e+e− → J/ψ + Xnon−cc̄, indicate the
inconsistencies with the already existing theoretical predictions. We therefore get the
motivation to perform a NLO calculation for J/ψ production at B-factories.

The thesis is organized as follows:
The second chapter gives a brief summary of classical approaches to study charmonia
like Color Evaporation Model and Color Singlet Model along with the review on non
relativistic QCD based on the concepts of effective field theory.
A short application formalism of NRQCD framework is described in chapter three. Some
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important details used in our calculations are also discussed in this chapter. In the fourth
chapter, NRQCD tools are applied to study associated production of J/ψ with a cc̄ pair.
This process will be considered as part of the next to leading order contributions to J/ψ
production at DELPHI, H1, CDF and LHC. A comparison of the results with inclusive
J/ψ production in [13] is presented.
Since higher-order corrections are expected to play an important role to understand the
process of charmonium production, the fifth chapter for this reason deals with NLO J/ψ
production at B-factories.
The last chapter summarizes the work done and presents conclusions, with an outlook.
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2 Theoretical Framework

In the following decade of the discovery of first charmonium states, many new reso-
nances were observed above and below the DD̄-threshold, where D is the lowest mass
meson containing the charm quark. The plethora of new quarkonia unleashed a flood of
extensive theoretical investigations over the last three decades [16]. After two decades
of almost a ’dry spell’ in charmonium experiments, some new exotic charmonium like
states have been observed very recently at BABAR, Belle, BES, CLEO-c etc. Due to
these exciting discoveries, the modern era is often referred to as the new Renaissance
in excited charmonium spectroscopy. This has offered further intriguing puzzles to the
theory of charmonium physics which has regained a great renewed interest [5]. To make
precise and solid theoretical predictions in different regimes, need for a rigorous and
sophisticated theory for charmonium production is highly felt.

From the earlier discussion, it is known that a colour neutral charmonium bound state
is formed from two charm quarks. But, in principle, these two heavy quarks are not nec-
essarily carriers of one colour and the corresponding anti-colour. In SU(3) symmetry
group of QCD, there are three colour triplet e.g. R, G, and B and their corresponding
descriptors R̄, Ḡ and B̄. Out of these, 3 ⊕ 3 = 8 ⊕ 1 combinations are formed, which
contain both the octet (colored) and the singlet (color-neutral) states. So the combina-
tion in the initially produced cc̄ pair might be coloured. Thus charmonium production is
needed to be studied under variety of conditions. For this purpose, different models were
proposed/developed. Most extensively used of those are Color Evaporation Model, Color
Singlet Model and NRQCD. As discussed in the previous chapter, the multiscale system
of charmonium exhibits both perturbative and non-perturbative behavior. All theses
models, therefore, are based on the factorization of QCD scales into high energy/short
distance and low energy/long distance. But the roles played in the production process
by the colors and spins of the initial cc̄ pair are assumed to be very different in theses
models.These three models are discussed here briefly, in their historical order.

2.1 Color Evaporation Model:

Soon after the discovery of J/ψ, the Color Evaporation Model (CEM) was proposed in
1977 to apply QCD on charmonium hadroproduction [17]. This model allows pertur-
bative creation of a cc̄ pair in all possible color and spin states, with an invariant mass
M between twice the charm quark mass 2mc (a threshold for a charmonium state) and
twice the D meson mass 2mD (a threshold for producing an open-flavor heavy meson).
This takes into account the color octet production also. The cc̄ pair is presumed to
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neutralize any surplus color via different processes like interaction with collision-induced
color field and exchange/emission of soft gluons. This cc̄ pair with small relative mo-
mentum can then evolve nonperturbatively into a specific charmonium state, without
any constraints on its color and spin 1. It is assumed that the probability of forming
this final charmonium state is almost completely independent of the color and, in some
other versions, independent also of the spin of the initial states in which the cc̄ pair is
produced [18]. It can be safely said that the initial color and spin states of the cc̄ pair
’evaporates’ later, and have no effects on its hadronization into a charmonium state.
Therefore, in CEM, the production cross section of a charmonium state H is given by
[16]:

dσCEM(H +X) = fH

∫ 2mD

2mc

dMcc̄
dσ̂(cc̄+X)

dMcc̄

(2.1)

where σ̂(cc̄ + X) is partonic cross-section for producing a cc̄ pair with invariant mass
below DD̄ threshold, and summed over all the color and spin states of cc̄ pair. The
universal long distance factor fH is a phenomenological parameter of inclusive cc̄ pro-
duction cross section (below the DD̄ threshold) used to designate the constant fraction
of this mass region which evolves into a particular cc̄ state. For the model to have any
predictive power, fH must be constant.

CEM enjoyed considerable phenomenological successes initially, by predicting the con-
stant production ratios for any two quarkonium states, independent of the process and
kinematic/energy region e.g.

σ(h)

σ(J/ψ)
=

fH
fJ/ψ

; (2.2)

which was consistent with hadroproduction data at Fermilab [19]. But there were some
serious challenges presented to the model, when some conflicts with experimental obser-
vations were observed in these ratios (e.g. different hadroproduction and photoproduc-
tion cross-section ratios for χc and J/ψ). Also, no attempts were made by CEM to relate
these production cross-sections to annihilation decays. As is obvious from eq.(2.1), that
there is an upper limit on the mass of cc̄ pair production cross section but there is no
imposition of any constraints on color or spin of the final charmonium state. This is why
CEM suffers from a crucial lack i.e. a distinction of different quarkonium states varying
in their spin and orbital angular momentum structure is not allowed. This issue is solved
in Color Singlet Model. The large number of processes involved in color evaporation re-
sults in a relatively large number of unknown parameters, those have to be extracted
by comparison to existing experimental data. This large number of the undetermined
parameters also limits the predictive power of the CEM. Furthermore, any polarization
of the charmonium state would be washed out by the same soft processes those were

1Or some other heavy hadrons/charmed mesons are produced when either of the c or c̄ combine with
light quark q, for invariant mass between 2mc and 2m[cq]
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responsible for the evaporation of color from color octet states, and hence no predictions
for polarization in the J/ψ production. Due to the limitations of CEM, another model
entered into the study circles of charmonium physics.

2.2 Color Singlet Model:

The Color Singlet Model (CSM) is considered as the most effective classical approach to
study charmonium physics, based on factorization. This model assumes that a cc̄ pair
that is produced during the short distance/high energy interactions will evolve later
to form a particular charmonium state only if the initial cc̄ pair is in the color singlet
Fock state, with the spin (S) and angular momentum quantum number (L), that match
exactly those of the bound state. This physical charmonium state with total angular
momentum J is then denoted as 2S+1LJ , retaining the quantum numbers of the initial cc̄
pair (which now has an almost vanishing relative momentum, compared to mc, inside the
bound state). For example, for a J/ψ formation, the cc̄ pair must initially be produced in
a color-singlet 3S1 state. While this part is treated perturbatively, all the long distance
effects of the transition of this |cc̄〉 Fock state into the physical charmonium bound state
are factorized into a non- perturbative parameter, provided by the bound state radial
wave function, R(r). The inclusive differential cross section for J/ψ production, in the
CSM is expressed in the form [21];

dσCSM(J/ψ +X) = dσ̂(cc̄(3S1,1) +X)|RJ/ψ(0)|2, (2.3)

and for P-wave χcJ as;

dσCSM(χcJ +X) = dσ̂(cc̄(3PJ ,1) +X)(2J + 1)|R′χcJ (0)|2, (2.4)

where |R(0)|2 and |R′(0)|2 are the universal non-perturbative factors at origin, for S-
wave and for P-wave respectively. A similar factorization applies to charmonium decay
rates, where this universal factor gives the probability of the cc̄ pair in the charmonium
bound state, being close enough to annihilate. These are the only factors in this model
which need to be extracted from experimental measurements. Charmonium production
at relatively low energies had been successfully calculated with this model [22] .

Unlike CEM, the CSM predicts variations in the ratios of cross sections of different
charmonium states from process to process, due to angular momentum selection rules.
It also gives nontrivial predictions about the dependence of the cross section on the
polarization of charmonium state.The model was taken seriously until around 1995, when
CDF collaboration measured the cross sections for prompt charmonium production2

from pp̄ collision at Tevatron [23] . The experimental results showed that CSM under-
predicted the cross section by about a factor of 30, for J/psi hadroproduction at large
transverse momentum. As is obvious from the name, the CSM rejects all color octet

2Prompt means production of charmonium states via direct QCD interaction instead of weak decays
of B-mesons.
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states of initial cc̄ pair and also ignores relativistic corrections which relate to the non-
zero relative velocity of the cc̄ pair, it was inferred to consider them as well in order to
solve the discrepancy that appeared in Tevatron data. The color-octet cc̄ pair was then
assumed to evolve through a nonperturbative transition to an observable color-singlet
state by radiating a soft gluon. While calculating these radiative corrections at next
to leading order (NLO), it was found that the short-distance production cross section
of the P -wave charmonia contained logarithmic infrared divergences that could not be
factored into |R′(0)|2. This was assimilated, to some extent, in the phenomenological
applications of the CSM by introducing an infrared cutoff, identified with one of the
low-energy scales present in non-relativistic bound states of charmonia i.e. the binding
energy of the cc̄ pair. However, the presence of infrared divergences in the production
cross sections of the P -wave charmonia made evident the theoretical inconsistencies in
the model, which thus implied the CSM to be incomplete.

2.3 Non-Relativistic QCD:

After the failure of the CSM to explain experimental data of charmonium hadroproduc-
tion, it was strongly felt that a new rigorous framework is needed to study charmonium
production in QCD. The solutions to some of the problems listed above was proposed by
Bodwin, Braaten and Lepage (BBL) [26] in 1995. Considering a relativistic treatment
of the cc̄ pair in QCD, they provided a new framework for the study of charmonium
production, called non-relativistic QCD (NRQCD).

In their theory, the roles of the quantum numbers of the initially produced cc̄ pair is
somewhat a combination of those in the CEM and CSM. In addition to the color singlet
state, the color octet states (in different angular momentum configurations) are equally
important in the production of the initial cc̄ pair. These initial color octet states then
evolve into a charmonium bound state, by neutralizing its color through a mechanism
provided by the long distance dynamics e.g. soft gluon emission. The hadronization of
the initial cc̄ pair into a charmonium bound state is encoded in the long distance matrix
elements of NRQCD. Additionally, the angular momentum of the physical charmonium
state depends on that of pre-resonant cc̄ state.

Different energy scales involved in this production of charmonia are disentangled via
factorization, as discussed already in chapter 1. Now the explicit roles played by these
energy scales of eq.(1.3) are:

• mc, sets the scale for the mass of charmonium bound state,

• mcv, is the scale for size of this bound state,

• mcv
2, governs the scale for splitting between radial excitations and between orbital

angular momentum excitations,
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• ΛQCD, is the scale associated with non-perturbative effects of light quarks and
gluons.

All the effects of the scale mc are contained in the short distance coefficients, which
describe the initial production of the on-shell cc̄ pair. The existence of the scales mcv
and mcv

2 owe to the smallness of the relativistic velocity v of the cc̄ pair inside the bound
state, where for charmonia v2 ≈ 0.2. This makes the bound state dynamics insensitive
to the creation details of the initial cc̄ pair, thus fully exploiting the role of factorization.
One crucial feature of this factorization phenomena is that in NRQCD, a charmonium
state is not solely regarded as a single state of the cc̄ pair, but is rather taken as a
superposition of color singlet and color octet states, with different quantum numbers.
The Fock state expansion of a charmonium state, e.g. J/ψ, in powers of v is then:

|J/ψ〉 = |(cc̄(3S1,1)〉+O(v)|cc̄(3PJ ,8)g〉+O(v2)|cc̄(1S0,8)g〉+O(v2)|cc̄(3S1,8)gg〉+O(v4),

(2.5)

where g represents a soft gluon, 2S+1LJ is the angular momentum of the cc̄ in each Fock
state, and 1/8 represents its color configuration. This shows that BBL approach not
only handles soft gluons properly but also incorporates the relativistic corrections in a
systematic manner (where v serves as an expansion parameter). Therefore, NRQCD is
considered to be the effective field theory of heavy quarkonia, which provides a convenient
recipe to separate different energy scales involved [25]. It is derived from QCD by
integrating out the energy scales of order mc or higher. The arbitrary factorization scale
of this theory, Λ ∼ mc, is identified with the ultra-violet (UV) cutoff in the NRQCD
effective Lagrangian, in the matrix elements at short distance. This dependence on
Λ gets canceled by that in NRQCD matrix elements at long distance. Therefore, the
physical results are independent of Λ. The general expression of the cross section for
the production of a charmonium state H is of the form:

dσ(a+ b→ H +X) =
∑
n

dσ̂(a+ b→ cc̄[n] +X)OH [n] , (2.6)

where the short distance part comprises of the cross section σ̂(a+ b→ cc̄[n]+X) for the
production of a cc̄ pair in a specific Fock state of a particular color, spin and angular
momentum, labeled by [n] = 2S+1L

(i)
J with S, L, J representing the spin, orbit, and total

angular momentum quantum numbers of the cc̄ respectively and i = 1(8) indicating that
the cc̄ pair is produced in a color-singlet (-octet) state. These short distance coefficients
are calculable order by order as a perturbative series in which QCD coupling constant
αs(mc) is treated as an expansion parameter. The other part OH [n] represents the long
distance matrix elements which encode the nonperturbative effects and are proportional
to the probability for a point like cc̄ pair in the state [n], to eventually form a physical
charmonium bound state H. These long distance matrix elements (LDMEs) are then
scaled by an expansion in v, within effective Lagrangian of NRQCD. With no reliable
theoretical calculations at hand, these LDMEs are extracted from experiments by fitting
to the data, as phenomenological parameters.
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The NRQCD factorization in the above eq. (2.6) therefore projects a double expansion
i.e. in αs(mc) and v, and contains infinitely many terms, [n]. The velocity scaling rules
of NRQCD [24] then compare the relative contributions of various terms, and allow the
truncation of the series (at any desired order of accuracy) in eq. (2.6), thus enabling to
project out the pre-dominant state, which for example is the color singlet S-wave state
for J/ψ. NRQCD description of S-wave charmonium production at the lowest order in
v, then reduces to the colour-singlet model. The velocity scaling rules for the production
of J/ψ are listed in Table[2].

scaling v3 v7 v11

n 3S
[1]
1

1S
[8]
0 , 3S

[8]
1 , 3P

[8]
J . . .

In case of the P-wave charmonia, color octet contributions from the S-wave states of
the initial cc̄ pair are of the same order in v, as the leading color singlet contributions
from the P-wave states of the initial cc̄ pair. Therefore, both of these contributions must
be included in a consistent theoretical analysis in NRQCD. The infrared divergences
appearing in the short distance cross section of the colour singlet P-wave states of the
cc̄ pair at next-to-leading order are canceled by a matching infrared singularity from
the radiative corrections to the long distance matrix element of the colour-octet S-wave
state [26]. This inclusion of the colour octet S-wave states of the cc̄ pair is crucial
for the removal of the infrared divergence from the production cross section, ensuring
a consistent and well defined overall description of P-wave charmonia in NRQCD. A
more comprehensive and detailed treatment of these infrared divergences for P-wave
charmonium production can be found in references [27].

The effect of these color octet contributions can even be more important phenomeno-
logically in case of S-wave charmonium states like J/ψ. Predicted by the power counting
rules [26], the effects of these color octet matrix element for the production of S-wave
charmonia are suppressed by powers of v as compared to the leading order colour-
singlet contribution. But at lower order of αs, colour-octet contributions can become
significant, if the corresponding short distance coefficients (for producing a cc̄ pair in
a colour-octet state) is enhanced [28]. This approach celebrated several successful im-
plications. The inclusion of these color octet processes, alongwith the observation that
the dominant contributions to their short distance coefficients at large pt is provided
by gluon fragmentation, gave the very first phenomenological success for NRQCD; by
providing a satisfactory explanation of the Tevatron data [29], for the cross section of
J/ψ hadroproduction. Making use of its self consistence, NRQCD could thus resolve
most of the confronting issues of CEM and CSM. Although the dependence on [n] of
OH [n] extends the summation in eq. (2.6) to all possible configurations, requiring an in-
finite number of phenomenological parameters as input, but thanks to their well defined
velocity scaling behavior that only few leading ones of theses LDMEs are left behind for
practical applications. This preserves the predictive power of the NRQCD. But not all
predictions of this theory have proved to be true. It also suffers from some discrepancies
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between its predictions and the experimental data. There still exist some uncertain-
ties in the LDMEs, one of the vital foundations for the predictive power of NRQCD.
This demands further investigations into the universality of these nonperturbative pa-
rameters. The predicted dependence of the charmonium production cross-section on its
polarization at large pt has also not been verified. With all its elegance and practical
applicability, NRQCD needs even more theoretical work and experimental information
to be established firmly as THE THEORY for charmonium production.
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3 Charmonium Production Formalism

The physical bound states of the cc̄ pair incorporate all the energy regimes of QCD, from
the hard region at high energies, where an expansion in the coupling constant is possible,
to the low-energy region, where nonperturbative effects dominate. Charmonia are thus
an ideal system to probe nonperturbative QCD and its interplay with perturbative
QCD within a controlled manner. As discussed in the previous chapters, the formalism
to study charmonium production will be based on the factorization of cross section in
this dissertation. A diagramatic representation of the factorization formulas at work is
provided by fig.[3.1]. This figure depicts the production process of the initial cc̄ pair by
interaction of two on shell photons which may be radiated off the incoming electron-
positron (e+e−) pair, or by interactions of the partonic contents of these initial photons
via single- and double-resolved partonic subprocesses, stemming respectively from one
or both photons resolved. This pre-resonant cc̄ pair then evolves to form a physical
charmonium bound state.
The differential cross section for the photoproduction of J/ψ at e+e− colliders is generally
expressed by the formula,

dσ(e+e− → e+e− + J/ψ +X) =

∫
dx1fγ/e+(x1)dx2fγ/e−(x2)×∑

i,j

∫
dxifi/γ(xi)dxjfj/γ(xj)× dσ(i+ j → J/ψ +X), (3.1)

where:

• the labels i and j denote the partonic contents of photons, such as gluons or light
quarks (u, d, s) or antiquarks (ū, d̄, s̄);

• fγ/e(x): is the spectrum of the initial bremsstrahlung photon distribution, de-
scribed by the Weizsacker-Williams approximation (WWA) as [30]

fγ/e(x) =
α

2π

(
2m2

e(
1

Q2
max

− 1

Q2
min

)x+
(1 + (1− x)2)

x
log(

Q2
max

Q2
min

)

)
, (3.2)

with x = Eγ/Ee, α is the fine structure constant and me is the electron mass,
while Q2

max and Q2
min are defined as:

Q2
min =

m2
ex

2

1− x
, (3.3)

Q2
max = (

√
sθ

2
)2(1− x) +Q2

min, (3.4)
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Figure 3.1: Diagramatic representations of the factorization formula 3.1.

with θ being the angle between the initial photon momentum and the direction of
the electron beam. In case J/ψ is produced via direct interaction of two photons,
the distribution function fγ/γ(x) = δ(1− x);

• fi/γ(x): is the probability for a parton i to be found in a photon, called a Parton
Distribution Function (PDF) of the photon, where x is the energy fraction of i
to γ. In the case of hadro-production, these PDFs are replaced with those of the
proton;

• σ(i+ j → J/ψ+X) : is the cross section for partonic subprocess i+ j → J/ψ+X.

Here, we can also distinguish between different classes of subprocesses involved in
a particular interaction of initial state particles. In the above reaction, when both the
initial photons directly couple to the charm quarks in the final state, it is called a ‘direct’
process. When one of the photons fluctuates to any of its partonic contents and collides
with the other photon, this is a ‘single-resolved’ process. Similarly, production of final
state particles from only partons, originating from both of the initial state photons is
called a ‘double-resolved’ process.

As discussed in the previous chapter, the above partonic cross section is factorized
into short distance (perturbative) and long distance (non-perturbative) parts, on the
basis of NRQCD factorization theorem (following the notation used in [31]), as;

dσ(i+ j → J/ψ +X) =
∑
n

dσ̂(i+ j → cc̄[n] +X)
〈OJ/ψ[n]〉

Ncol(n)Npol(n)
. (3.5)
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where σ̂(i + j → cc̄[n] + X) is the production cross section for the intermediate cc̄[n]
state, for [n] = 2S+1LJ

[1,8]. 〈OJ/ψ[n]〉 is proportional to the transition probability of the
this perturbatively produced intermediate state into a physical J/ψ, at long distance.
Ncol(n)Npol(n) represent the color and polarization degrees of freedom of the intermediate
cc̄[n] state respectively as;

Ncol(n) =

{
1, for color singlet state n

2CACF , for color octet state n
(3.6)

where CA = Nc and CF = N2
c−1

2Nc
for Nc = 3 within QCD calculations. The short distance

partonic cross section for the production of a particular state cc̄[n] is then calculated by
the general formula

dσ̂(i+ j → cc̄[n] +X) =
1

2s
dPS

1

Ncol,inNpol,in

∑
col,pol

|M(i+ j → cc̄[n] +X)|2 (3.7)

where the flux factor 1
2s

contains the partonic center of mass energy squared s ≡ (ki+kj)
2,

the matrix elements squared |M(i + j → cc̄[n] + X)|2 is averaged over the degrees of
freedom Ncol,inNpol,in of the initial state particles and summed over those of the final state
particles cc̄[n]. The Lorentz invariant differential phase space, denoted by dPS, depends
on the number of final state particles. In order to calculate these matrix elements for the
creation of a cc̄ pair in a particular Fock state [n], a set of certain covariant projectors
is applied onto the amplitudes of perturbative QCD states. From now on, we will be
strictly following the notations used in [34], with the normalization of [26] for the
projectors [32] [33] discussed below.

3.1 Covariant Projectors

In this dissertation, only S- and P -wave states of charmonium will be considered. As
per our earlier discussion, the cc̄ pair binding together to form these charmonium states
can either be in a color singlet or in a color octet state. So the decomposition of the
color structure of production amplitude is carried out using the operators

C1 =
1√
2CA

for the singlet state (3.8)

Cc8 =
√

2T c for the octet state, (3.9)

which project out the colour singlet or color octet content respectively of the given state.
T c here represents a color matrix, with c being an open color index. To disentangle the
spin singlet and spin triplet contributions in the production amplitude, the projectors

Π0 =
1√

8mc
3

(
6 P
2
− 6 q −mc

)
γ5

(
6 P
2

+ 6 q +mc

)
, (3.10)

Πα
1 =

1√
8mc

3

(
6 P
2
− 6 q −mc

)
γα
(
6 P
2

+ 6 q +mc

)
(3.11)
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are used, where P/2 + q and P/2− q identify respectively the momenta for the outgoing
c and c̄ quarks, each of them having mass mc. Therefore, total momentum of their
bound state is P , with 2q being the relative momentum between the cc̄ pair inside the
charmonium bound state (which is J/ψ in our case). If A is taken to be the standard
perturbative QCD amplitude for the production of open cc̄ pair, with amputated charm
quark spinors, the matrix elements for the states with orbital angular momentum L = 0
or L = 1 are defined as:

M
cc̄[1S

[8]
0 ]

= Tr [Cc8 Π0Acc̄[n]] |q=0 (3.12)

M
cc̄[3S

[1]
1 ]

= EαTr [C1Π
α
1 Acc̄[n]] |q=0 (3.13)

M
cc̄[3S

[8]
1 ]

= EαTr [Cc8 Πα
1 Acc̄[n]] |q=0 (3.14)

M
cc̄[3P

[8]
J ]

= E (J)
αβ

d

dqβ
Tr [Cc8 Πα

1Acc̄[n]] |q=0 (J = 0, 1, 2) (3.15)

with the insertion of color projectors C and spin projectors Π into the open cc̄ chain. In
the above notation, Eα and E (J)

αβ are the polarization vectors of the cc̄ state and the trace
is to be taken over the cc̄ chain both in the Dirac space and in the color space. Any state
with orbital angular momentum L is projected out by differentiating L times its already
spin-color projected amplitude with respect to q, at the point q = 0. These expressions
are then squared to be used in eq. (3.7), alongwith the summation performed on the
polarization vectors of cc̄ for the selection of total angular momentum.

In order to apply this set of projectors for next to leading order calculations where all
the divergences appearing are handled through dimensional regularization, their gener-
alized character will be considered in D = 4 − 2ε dimensions of space-time. Therefore,
for S- and P -wave states, the sums over the polarizations in D dimensions are:∑

pol

EαE∗α′ = Παα′ (3.16)

∑
pol

E (0)
αβ E

(0)∗
α′β′ =

1

D − 1
ΠαβΠα′β′ (3.17)

∑
pol

E (1)
αβ E

(1)∗
α′β′ =

1

2
[Παα′Πββ′ − Παβ′Πα′β] (3.18)

∑
pol

E (2)
αβ E

(2)∗
α′β′ =

1

2
[Παα′Πββ′ + Παβ′Πα′β]− 1

D − 1
ΠαβΠα′β′ , (3.19)

of the nature of a vector, a scalar, an antisymmetric tensor and a symmetric traceless
tensor, respectively corresponding to the states 3S1 and 3PJ for J = 0, 1, 2. The symbol
Παβ used in the above equations is an abbreviation of the expression:

Παβ ≡ −gαβ +
PαPβ
4m2

c

. (3.20)
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The number of polarization degrees of freedom of the intermediate state [n] appearing in
eq. (3.5) are calculated by the total contraction of these polarization tensors. Therefore,
for the 3S1 state, it becomes

Npol(
3S1) =

∑
pol EαE∗α

= Παα

= D − 1,

and for the 3PJ states is

Npol(
3PJ) =

∑
pol E

(J)
αβ E

(J)∗
αβ =


1, for J = 0

1

2
(D − 1)(D − 2), for J = 1

1

2
(D + 1)(D − 2), for J = 2

(3.21)

while dealing in D = 4− 2ε dimensions. In case of four dimensions, we get

Npol(n) = 2J + 1, (3.22)

with J being the total angular momentum of the intermediate state n. Another fre-
quently used symbol in our dimensional regularization for the next to leading order
calculations in D = 4− 2ε dimensions, consistent with [34] is

Cε ≡ (
4πµ2

m2
c

e−γE)ε (3.23)

where µ represents the renormalization scale and γE denotes the Euler’s gamma.

3.2 Gluon Polarization

In QED, summation over the external photon polarization comes as a direct consequence
of Ward identity. So in the Feynman gauge, one can simply replace∑

pol

εµε∗ν = −gµν , (3.24)

for any number of photons in the initial or final states. While in QCD, this is not
valid for processes involving more than one gluon, due to the presence of three gluon
vertices. These vertices then allow propagation of longitudinal degrees of freedom which
are non-physical. Hence, the physical or transverse polarization sum is expressed as∑

pol

εµε∗ν = −gµν +
kµpν + kνpµ

k · p
− p2kµ kν

(k · p)2
, (3.25)

where k is the gluon momentum and p is an arbitrary light-like four vector (or momentum
of the other initial gluon appearing in the calculations) with property k·p 6= 0. In order to
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speed up the calculations, we want to use eq.(3.24). So the non-physical or longitudinal
contributions need to be compensated. This is done by considering additional gluon
ghosts/antighosts, which replace external gluons appearing in the Feynman diagrams.
So having subtracted these ghost/antighost contributions from the corresponding gluon
processes, one can safely make use of the eq.(3.24) even for gluons.

3.3 Dealing with γ5

Another important point to note is the occurrence of γ5 in our calculation, while working
on D-dimensional amplitudes at next to leading order. During our evaluation of the pure
QCD diagrams, a γ5 appears while applying the projector in eq. (3.10), which then gets
included into the evaluation of spin traces with other γ matrices. In order to define
it in arbitrary dimensions, there have been some efforts starting from defining γ5 in 4
dimensions. One of them, called naive dimensional regularization scheme, depends on
the anti-commutation property,

{γ5, γ
µ} = 0 (3.26)

(for µ = 0, 2, · · · , D − 1) and the trace,

Tr [γ5γαγβγγγδ] = 4iεαβγδ (3.27)

satisfying the identity

(γ5)2 = 1. (3.28)

The equations (3.26) and (3.27) are incompatible in D dimensional regularization and
give ambiguous results. Therefore, to remain consistent with the approach used in [34],
a unique and well defined construction of γ5 is considered, called the t’Hooft-Veltman
dimensional regularization scheme, which defines

γ 5 :=
i

4!
εµνρσ γ

µγνγργσ, (3.29)

with γ’s being D-dimensional, but ε being 4-dimensional Levi-Civita tensor. While cal-
culating the square of short distance matrix elements, these ε tensors are left untouched,
and at the end treated separately in terms of 4 dimensional metric tensors g̃µν , satisfying
contraction properties g̃µνg

νρ = g̃ ρ
µ , g̃µνp

ν = p̃µ, g̃µµ = 4, with D dimensional gνρ.
This definition of γ5 turns out to be self-consistent and in compliance with, for example,
Ward identities.

3.4 Divergences at NLO

For calculating square of the short distance matrix elements perturbatively at next to
leading order in QCD, alongwith born level diagrams, we need to consider one loop dia-
grams for virtual corrections and also the diagrams for real emissions, in D-dimensions.
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The one loop diagrams for virtual corrections may contain singularities in their loop
integrals, appearing in different regions of the loop momenta. One need to distinguish
between the singularities coming from high momentum limit of the loop integral called
ultraviolet (UV) divergences and those from zero momentum limit called infrared (IR)
singularities. Absorption of the ultraviolet singularities into various parameters appear-
ing in the Lagrangian of the theory in use is a well established fact. This is done by
calculating counterterms via dimensional regularization (in D = 4− 2ε, as 1

ε
terms) and

making an appropriate choice of the Z-factors to be multiplied with these parameters of
the Lagrangian (renormalization of the parameters). For infrared divergences, the can-
cellations take place through wave function/field renormalization constants (as 1

ε
terms)

and divergences appearing in real corrections (both as 1
ε

and 1
ε2

terms).

In our QCD calculations, the parameters needed to be renormalized are the charm
quark mass mc, charm quark field ψ and gluon field A, and the strong coupling constant
gs =

√
4παs from their definitions;

m0
c = Zmmc,

ψ0 =
√
Zψψ,

A0
µ =

√
ZAAµ,

g0
s = Zggs, (3.30)

where the superscripts 0 indicate the bare quantities and Zi = 1 + δZi for i = m,ψ,A, g
are the renormalization constants containing counterterms δZi, as:

δZOS
m = − 3g2

s

16π2
CFCε

[
1

εUV

+
4

3

]
+O(α2

s),

δZOS
ψ = − g2

s

16π2
CFCε

[
1

εUV

+
2

εIR
+ 4

]
+O(α2

s),

δZOS
A =

g2
s

48π2
(5CA − 2nlf )Cε

[
1

εUV

− 1

εIR

]
+O(α2

s),

δZMS
g =

g2
s

16π2

(
−11

6
CA +

1

3
nlf

)
Cε

[
1

εUV

+ ln
µ2

m2
c

]
+O(α2

s), (3.31)

with superscripts indicating the scheme chosen for renormalization as On-Mass-Shell
(OS) or modified minimal subtraction (MS), number of light quark flavors included
nlf , the renormalization constant µ, and the symbol Cε defined in eq. (3.23). The
counterterms δZm and δZg are taken care of by including the charm mass counterterm
diagrams and the strong vertex counter term diagrams respectively, at O(αs). It is
important to note that we do not encounter any Coulomb singularities, as argued in [34].
Other details of our calculations will be discussed in the following chapters.
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4 J/ψ production with a cc̄ pair

The huge amount of data collection at different colliders in recent years supplies a very
important opportunity to the physicists for performing a systematic study on J/ψ pro-
duction, both theoretically and experimentally. Although many dedicated investigations
contributed to large improvements achieved in theoretical predictions so far, the exper-
imental data still remain to be fully understood. Alongwith some other production
channels as discussed in chapter one, the study of the associated production of J/ψ
with a cc̄ pair is hoped to provide some missing links between the theory and different
experiments. It is, therefore, the main topic of the contents following.
In this chapter, we will investigate all the subprocesses involved in the production of
J/ψ + cc̄ within NRQCD at DELPHI, HERA-H1, CDF and ATLAS, to present a com-
plete picture of this process at different collider energies. We start with the partonic level
calculations for short distance matrix elements with two incoming and three outgoing
particles, as:

a(k1) + b(k2)→ cc̄[n](P ) + c(k3) + c̄(k4), (4.1)

where a, b represent γ, g, q/q̄ (for q = u, d, s) or gluon-ghosts/-antighosts as interacting
particles at the initial state, with ki and P being the corresponding four-momenta of the
particles involved in the process above. Based on the conservation of energy-momentum
k1 + k2 = P + k3 + k4, we’ll now introduce the useful Mandelstam invariants of the
process while following closely the notations used in [34].

4.1 Kinematics

Considering the light flavored quarks/antiquarks (q = u, ū, d, d̄, s, s̄) to be massless i.e.
k2

1 = 0 = k2
2, compared to much heavier mass of cc̄[n] state as P 2 = 4m2

c , and k2
3 = m2

c =
k2

4, we define:

s ≡ (k1 + k2)2 = 2k1 · k2 (4.2)

s4 ≡ (P + k4)2 − 5m2
c = 2P · k4 (4.3)

s5 ≡ (P + k3)2 − 5m2
c = 2P · k3 (4.4)

s3 ≡ (k3 + k4)2 = 2k3 · k4 + 2m2
c (4.5)

t1 ≡ (P − k1)2 − 4m2
c = −2P · k1 (4.6)

u1 ≡ (P − k2)2 − 4m2
c = −2P · k2 (4.7)

t6 ≡ (k2 − k3)2 −m2
c = −2k2 · k3 (4.8)
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u6 ≡ (k1 − k3)2 −m2
c = −2k1 · k3 (4.9)

t′ ≡ (k1 − k4)2 −m2
c = −2k1 · k4 (4.10)

u′ ≡ (k2 − k4)2 −m2
c = −2k2 · k4, (4.11)

with charm quark having mass mc. Here s, t1, and u1 can be used to additionally define:

s1 ≡ s− 4m2
c (4.12)

t ≡ t1 + 4m2
c (4.13)

u ≡ u1 + 4m2
c , (4.14)

for the completion of the set of Mandelstam variables. For the process (4.1) with three
particles in the final state, only five of the invariants are linearly independent, out of
all the invariants defined above. All the quantities appearing in our calculations will be
expressed in terms of these variables. With only tree level Feynman diagrams, and only
heavy (massive) particles in the final state, we do not have to deal with any singularities
appearing. Therefore, in this section, we can perform our further calculations in four
dimensions.

4.2 Partonic Differential Cross Section

In order to reach the formula (3.1) through (3.5), we work systematically according
to the formalism described in the previous chapter. We, therefore, have to start from
the calculation of the partonic cross section (3.7), which needs perturbatively calculated
short distance matrix elements. For this purpose, we consider the following subprocesses:

γ + γ → cc̄[n] + c+ c̄, (4.15)

γ + g → cc̄[n] + c+ c̄, (4.16)

g + g → cc̄[n] + c+ c̄, (4.17)

q + q̄ → cc̄[n] + c+ c̄, (4.18)

with particles having momenta as per eq.(4.1) with q = u, d, s, q̄ = ū, d̄, s̄. Remember
that all the incoming particles are taken to be on mass shell. These subprocesses involve
40, 48, 72 and 14 Feynman diagrams, respectively. For making use of eq.(3.24) for
gluons, the process with gluon-ghost and gluon-antighost in the initial state has also
to be considered, and its contribution later subtracted from (4.17). The number of
Feynman diagrams is 14 for this subprocess. Figures 4.1-4.4 show typical diagrams for
these subprocesses.

The two charm quarks and two anticharm quarks generated in the final state of these
Feynman diagrams can utilize different permutations to bind together as cc̄[n] both
in color-singlet and color-octet states, and the left over come out as an open charm-
anticharm pair.

For the evaluation of the squared matrix elements analytically, we have used the same
format of programming codes as by [34], also partly using some of the modified sections
of their scripts. We first generate the Feynman diagrams for all the partonic subprocesses
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Figure 4.1: Half of the Feynman diagrams for subprocesses q + q̄ → cc̄[n] + c + c̄ and
ug+ ūg → cc̄[n]+c+ c̄ where ug represents gluon-ghost and q/q̄ denote u, d, s
quarks and the corresponding antiquarks. The other half can be obtained
by reversing the fermion lines.

using FeynArts [35]. A Mathematica based script then reads the amplitude files created
by FeynArts, separates out color structure for each of the diagram and then applies color
and spin projectors on these separated parts of the various cc̄[n] states’ amplitudes, as
described in the covariant projectors section of the previous chapter. The FeynCalc [36]
is used in this script to calculate all the color traces, categorizing different cc̄[n] states
into color singlet and color octet ones, separating also the S− and P−wave contributions.
A FORM [37] script then calculates the amplitude squares by multiplying the separated
non-color part with its complex conjugate, taking care of the polarization summation
and fermion traces, and recombining the outcome for every combination of diagrams
with the separately calculated corresponding color factors. Further simplification of
these results is done using another Mathematica script. The results are expressed in
terms of the Mandelstam variables defined above. At this stage, we could compare our
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Figure 4.2: Half of the Feynman diagrams for subprocess γ + γ → cc̄[n] + c+ c̄.

analytical results with MadOnia [38] and check the validity of our codes. Mathematica is
used again to finally convert these results as FORTRAN routines, to perform numerical
analysis using VEGAS for phase space integrations.

4.2.1 Phase Space Integration

Another important quantity left to be calculated in (3.7) is the phase space. We have
to deal with 2→ 3 particle phase space, for all of the final state particles being heavily
massive. To start with the general formula for f final state particles [39]:

dPSi+j→
∑
f =

∏
f

d3kf
(2π)3

1

2Ef
(2π)4δ(4)(ki + kj −

∑
kf ), (4.19)

the explicit expression for our differential phase space is:

dPS2→3 =
d3P

(2π)32EJ/ψ

d3kc
(2π)32Ec

d3kc̄
(2π)32Ec̄

(2π)4δ(4)(ki + kj − P − kc − kc̄). (4.20)
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Figure 4.3: Half of the Feynman diagrams for subprocess γ + g → cc̄[n] + c+ c̄.

For kcc̄ := kc + kc̄ and k2
cc̄ = s3, we can insert the identity [40];

1 = δ(k2
cc̄ − s3)ds3 × δ(4)(kcc̄ − kc − kc̄)d4kcc̄ (4.21)

into eq.(4.20) and replacing;

d3k

2Ek
→ d4kδ(k2 −m2

k) (4.22)

eq.(4.20) can then be factorized as:

dPS2→3 =
1

(2π)5
× dPS∗2→2 × dPS

′

1→2 × ds3, (4.23)

where

dPS∗2→2 ≡
d3P

2EJ/ψ

d3kcc̄
2Ecc̄

δ(4)(ki + kj − P − kcc̄) (4.24)
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Figure 4.4: Half of the Feynman diagrams for subprocess g + g → cc̄[n] + c+ c̄.
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dPS
′

1→2 ≡
d3kc
2Ec

d3kc̄
2Ec̄

δ(4)(kcc̄ − kc − kc̄). (4.25)

So that this simpler expression for the 2 → 3 body phase space makes it easier for
evaluation. In order to calculate dPS∗2→2 in the center-of-mass system of the incoming
particles, we parametrize the momenta as:

ki =

√
s

2
(1, 0, 0, 1) ,

kj =

√
s

2
(1, 0, 0,−1) ,

P =
(
EJ/ψ, 0, pJ/ψsin θ, pJ/ψcos θ

)
(4.26)

where in terms of the Mandelstam variables:

EJ/ψ =
t+ u− 8m2

c

−2
√
s

,

pJ/ψ =
√
E2
J/ψ − 4m2

c ,

cos θ =
t− u

2
√
spJ/ψ

. (4.27)

We then change the integration variables (pJ/ψ, cos θ) also into Mandelstam variables
(t, u) making use of the Jacobian, and integrate over one of the delta functions, to get:

dPS∗2→2 =
1

2EJ/ψ
p2
J/ψdpJ/ψd(cos θ)dϕδ(s+ t+ u− 4m2

c − s3)

=
1

4s
dtdudϕδ(s+ t+ u− 4m2

c − s3) (4.28)

Since the cross section does not depend on azimuthal angle of J/ψ, we therefore integrate
over dϕ in the limit 0→ 2π. Integrating also over delta function for one of the variables,
we get:

dPS∗2→2 =
π

2s
dt, (4.29)

with s + t + u = 4m2
c + s3. Now for the calculation of dPS

′
1→2, we parametrize the

particle momenta in the rest frame of the open c and c̄ quarks, as

k
′

i = E
′

i(1, 0, sin θ
′

1, cos θ
′

1)

k
′

j = (E
′

j, 0,−E
′

isin θ
′

1, p
′

J/ψ − E
′

icos θ
′

1)

P
′

= (E
′

J/ψ, 0, 0, p
′

J/ψ)

k
′

cc̄ = (
√
s3, 0, 0, 0)

k
′

c = (E
′

c, |~k
′

c|sin θ
′
sin ϕ

′
, |~k′c|sin θ

′
cos ϕ

′
, |~k′c|cos θ

′
)

k
′

c̄ = (E
′

c̄, |~k
′

c̄|sin θ
′
sin ϕ

′
, |~k′c̄|sin θ

′
cos ϕ

′
, |~k′c̄|cos θ

′
), (4.30)
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for |~k′c/c̄| = E
′

c/c̄−m2
c with E

′
c = E

′
c̄, |~k

′
c| = −|~k

′
c̄| and making use of Mandelstam variables

again

E
′

i =
s+ t1
2
√
s3

,

E
′

j =
s3 − t
2
√
s3

,

E
′

J/ψ =
s− s3 − 4m2

c

2
√
s3

, (4.31)

where the other variables also expressed in terms of the already defined Mandelstam
variables as:

p
′

J/ψ =
√
E
′2
J/ψ − 4m2

c ,

cos θ
′

1 =
1

p
′
J/ψ

(
E
′

J/ψ +
t1

2E
′
i

)
,

cos θ
′

=
1

p
′
J/ψ

(
s4 −

√
s3E

′

J/ψ√
s3 − 4m2

c

)
,

cos ϕ
′

=
1

sin θ
′
1sin θ′

(
u6

E
′
i

+
√
s3 −

√
s3 − 4m2

ccos θ
′

1cos θ
′
)
. (4.32)

Now using the relation
∫

d4k
2Ek
→
∫
d3kδ(k2 −m2

k)θ(k0) in eq.(4.25) and integrating over

δ4(kcc̄ − kc − kc̄) for kc̄ = kcc̄ − kc, we get;

dPS
′

1→2 =
d3k

′
c

2Ec′
δ
(

(k
′

cc̄ − k
′

c)
2 −m2

c

)
=

1

2
|~k′c|δ(s3 − 2

√
s3E

′

c)dE
′

cd(cos θ
′
)dϕ

′

=
1

4
√
s3

√
E ′2c −m2

c δ(E
′

c −
√
s3

2
)dE

′

cd(cos θ
′
)dϕ

′

=

√
s3 − 4m2

c

8
√
s3

d(cos θ
′
)dϕ

′
, (4.33)

with E
′
c =

√
s3
2

= E
′
c̄.

The 2→ 3 particles phase space in eq.(4.23) then becomes,

dPS2→3 =
1

(2π)5
× π

2s
dt×

√
s3 − 4m2

c

8
√
s3

d(cos θ
′
)dϕ

′ × ds3 (4.34)

that we can use in eq.(3.7) alongwith the calculated matrix elements squares as pre-
scribed above to calculate the partonic cross section, as:

dσ̂(i+ j → cc̄[n] + c+ c̄) =
1

2s
dPS2→3

1

Ncol,inNpol,in

∑
col,pol

|M(i+ j → cc̄[n] + c+ c̄)|2 ,
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dσ̂(i+ j → cc̄[n] + c+ c̄) =
π
√

1− 4m2
c/s3

(2π)532s2
dtds3d(cos θ

′
)dϕ

′ ×

1

Ncol,inNpol,in

∑
col,pol

|M(i+ j → cc̄[n] + c+ c̄)|2. (4.35)

The integration limits over the variables involved in the phase space formula are [40]:

2mc <
√
s3 <

√
s− 2mc, −1 < cos θ

′
< 1, 0 < ϕ

′
< 2π. (4.36)

Now we have all our expressions in terms of Mandelstam invariants, and can implement
these for the calculation of hadronic cross section for each of the subprocesses involved,
dependent on the integration variables.

4.3 Hadronic Differential Cross-Section

In order to compare our results with the experimentally available quantities, we calculate
the hadronic cross section with respect to different variables, using eq.(3.1). To inves-
tigate a general kinematical situation in the center of mass of the incoming particles,
we consider the interaction process depicted in the figure 4.5. The incoming particles
radiate two bremsstrahlung photons, one off e+ and the other off e−, with momenta
k1 = xg1ke+ and k2 = xg2ke− . Each of these photons then emits a parton of momentum
ka = xak1 and kb = xbk2 respectively, which interact on the partonic level to produce
J/ψ with an associated cc̄ pair. This picture actually represents the so called ‘double-
resolved’ subprocess, which we have discussed previously. The momenta of the particles
involved in the reaction are parametrized as:

ke+ =

√
SH
2

(1, 0, 0, 1)

ke− =

√
SH
2

(1, 0, 0,−1)

k1 = xg1

√
SH
2

(1, 0, 0, 1)

k2 = xg2

√
SH
2

(1, 0, 0,−1)

ka = xaxg1

√
SH
2

(1, 0, 0, 1)

kb = xbxg1

√
SH
2

(1, 0, 0,−1)

P = (mtcoshy, ptcosφ, ptsinφ ,mtsinhy) (4.37)

where SH is the hadronic center of mass energy, pt and mt ≡
√
p2
t + 4m2

c the transverse
momentum and transverse mass of the J/ψ, and y being its rapidity. Since we have
expressed all our calculations in terms of the Mandelstam variables, so here we need to
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Figure 4.5: Diagramatic representation of the kinematics involved in hadronic cross
section

define them as:

s = (ka + kb)
2 = xaxbxg1xg2SH (4.38)

t = (P − ka)2 = 4m2
c − xaxg1

√
SHmte

−y (4.39)

u = (P − kb)2 = 4m2
c − xbxg2

√
SHmte

+y. (4.40)

Using the relation s + t + u = 4m2
c + s3 for 2 → 3 processes, as derived during phase

space calculations, we can rearrange the equations describing t and u as:

xg1xa =
xbxg2mt

√
SHe

+y − 4m2
c + s3

xbxg2SH −mt

√
SHe−y

, (4.41)

and analogously:

xg2xb =
xaxg1mt

√
SHe

−y − 4m2
c + s3

xaxg1SH −mt

√
SHe+y

. (4.42)

These equations are used to change the integration variables and set the corresponding
integration limits, as per the conditions governing the interaction process. The general
form of hadronic cross sections is then as presented in eq.(3.1), for a double-resolved
subprocess at e+e− colliders. We’ll now discuss different subprocesses at various detec-
tors to for associated J/ψ production with a cc̄ pair, and will present the kinematical
relations and the limits on them calculated analytically, for the experiments to be con-
sidered later in this chapter.
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Photoproduction at e+e−/γγ Colliders:
Three classes of subprocesses are involved there in γ+ γ → J/ψ+ c+ c̄+X for example
at DELPHI. These are direct, single- and double-resolved processes. For a thorough
investigation of the process considered, the subprocesses needed to be included in are:

γ + γ → J/ψ + c+ c̄, (4.43)

γ + g → J/ψ + c+ c̄, (4.44)

g + g → J/ψ + c+ c̄, (4.45)

q + q̄ → J/ψ + c+ c̄, (4.46)

with gluon-ghost contributions to be subtracted from the g + g interaction. So the
general expression for the differential cross section (via double-resolved process), after
change of variables from (t, xg2) to (y, p2

t ) is given by:

dσ

dp2
tdy

=

∫ 1

xa,min

dxa

∫ 1

xb,min

dxb

∫ 1

xg1,min

dxg1
dσ

dp2
tdydxadxbdxg1

(4.47)

with integration limits as:

xb,min =
xaxg1mte

−y

xaxg1
√
SH −mte+y

(4.48)

xa,min =
mte

+y

xg1(
√
SH −mte−y)

(4.49)

xg1,min =
mte

+y

√
SH −mte−y

. (4.50)

Integrating further over one of the variables y or p2
t can give a differential cross-section

as a function of only one variable. For dσ
dp2t

we integrate over y under the limits:

−cosh−1

(√
SH

2mt

)
≤ y ≤ +cosh−1

(√
SH

2mt

)
(4.51)

pt ≤
√
SH
4
− 4m2

c (4.52)

or for dσ
dy

, the integration limits become:

pt ≤

√
SH

4cosh2y
− 4m2

c (4.53)

−cosh−1

(√
SH

4mc

)
≤ y ≤ +cosh−1

(√
SH

4mc

)
. (4.54)

The additional three integrations over s3, cosθ
′

and ϕ
′

are contained through the inte-
gration ranges:

4m2
c ≤ s3 ≤ 4m2

c + xb(xaxg1SH −
√
SHmte

+y)− xaxg1
√
SHmte

−y, (4.55)

−1 < cos θ
′
< 1, 0 < ϕ

′
< 2π. (4.56)
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For the other subprocesses involved, we can use the same expressions with little modifi-
cations. In case of a single-resolved process, we have either xa = 1 or xb = 1. So we have
one less integration in the eq.(4.47), and the limits change accordingly. For direct pho-
toproduction, both xa = 1 = xb, reducing two integrals in the eq.(4.47) with appropriate
bounds. The role played by these integration limits is to encompass the parameter space
which is kinematically accessible. While performing the actual integrations numerically,
additional cuts are applied from the experimental measurements to compare both the
results.

Photoproduction at ep Colliders:
The classes of direct and resolved subprocesses at partonic level considered for these
situations are:

γ + g → J/ψ + c+ c̄, (4.57)

g + g → J/ψ + c+ c̄, (4.58)

q + q̄ → J/ψ + c+ c̄, (4.59)

where the gluon in γ + g interaction stems from proton, thus indicating a proton PDF
also involved in the process, alongwith the photon PDF for resolved process. Subtraction
of gluon-ghost contributions from the g + g interaction is mandatory in our approach.
In this case, we define two additional parameters,i.e. the photon-proton invariant mass,
and the fraction of the photon energy transferred further to the J/ψ particle in the
proton rest frame, respectively as:

W 2 ≡ (k1 + kproton)2 = xg1SH , (4.60)

z ≡ P · kproton
k1 · kproton

=
mte

y

xg1SH
. (4.61)

Making a shift of integration variables from (xg1 , xg2 , t) to (W, z, p2
t ), the formula (3.1)

for resolved process then gets the form in terms of these new variables as:

dσ

dWdzdp2
T

=

∫ 1

xa,min

dxa

∫ 1

xb,min

dxb
dσ

dWdzdp2
Tdxadxb

(4.62)

, where we can further integrate over any two of the variables and get the differential
cross-section with respect to one of the variables W, z or pt left. The limits of integration
involved are then listed as:

xb,min =
xg1xa

√
SHmte

−y − 4m2
c + s3

xg1xaSH −mt

√
SHe+y

xa,min =
mte

+y

xg1(
√
SH −mte−y)

Wmin =

√
m2
t

z(1− z)

zmin =
1

2SH
(SH −

√
S2
H − 4SHm2

t )
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zmax =
1

2SH
(SH +

√
S2
H − 4SHm2

t )

z
′

min =
1

2W 2
(W 2 −

√
W 4 − 4W 2m2

t )

z
′

max =
1

2W 2
(W 2 +

√
W 4 − 4W 2m2

t )

p2
t,max = z(1− z)SH − 4m2

c

p2′

t,max =
W 2 − 16m2

c

4
. (4.63)

As per our earlier discussion, we also need to utilize the range of some other variables
during our calculations like,

m2
t

SHz(1− z)
≤ xg1 ≤ 1 ,

4m2
c ≤ s3 ≤ xg1SH(xa − z)− xam

2
t

z
+ 4m2

c . (4.64)

Again the argument stands for use of all the above relations and integration limits in
case of direct photoproduction (when the photon originating from electron itself inter-
acts with the parton stemming from the proton). It is achieved by putting xa = 1, and
leaving out integration over it. Additional experimental limits are implemented during
numerical evaluation of these expressions.

Hadroproduction at pp/pp̄ Colliders:
In case of the hadroproduction of charmonium, the most dominant process is the gluon-
gluon interaction. But for the sake of completeness, all the possible initial state particles
will be considered. The subprocesses studied, therefore, are:

g + g → J/ψ + c+ c̄, (4.65)

q + q̄ → J/ψ + c+ c̄, (4.66)

and obviously the gluon- ghost-antighost contribution to be subtracted. Here the initial
partons in both of these processes are emitted from the each of the proton/antiproton. So
that the set of PDF used is that of proton. We are mainly interested in the calculation
of differential cross section with respect to the transverse momentum of J/ψ. The
analytical expressions involved can be obtained from the double-resolved process of the
photoproduction section at the e+e−/γγ colliders (eq.4.49-4.58). The main difference is
that we have to take xa = 1 = xb, while xg1/xg2 in this case represent the fraction of the
parton momenta to that of the proton. The number of integrals involved also reduces
accordingly, and so do the integration limits on the variables considered.
In the following section, we shall discuss the input parameters taken including the long
distance matrix elements and shall present the numerical results of the integrations
performed.
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Figure 4.6: Verification of existing literature-1.

4.4 Numerical Analysis

We use a FORTRAN code to perform the phase space integrations numerically. This is
done by implementing the integration routine VEGAS[41], based on importance sam-
pling, into our FORTRAN code. During the computation process, the most time con-
suming of the subprocesses were those with more number of gluons involved. Here we
start with the specification of the input parameters used generally in our analysis.
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Figure 4.7: Verification of existing literature-2.

General Parameters: We want to compare our results with the inclusive J/ψ pro-
duction cross section without considering the J/ψ+ c+ c̄ contribution, presented in MB
[13]. Therefore, we shall be using mainly the same values for input parameters as in
that paper. From the particle data group [1], values for the following parameters are
extracted:
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The electromagnetic fine structure constant with elementary charge e,

α =
e2

4π
=

1

137.036
; (4.67)

mass of the electron,

me = 0.51100keV; (4.68)

mass of the charm quark defined as mc ≡ MJ/ψ
2

, having value

mc =
3.0969

2
GeV. (4.69)

For the set of photon PDFs, we use AFG04[42] while for proton PDFs, CTEQ6M[43] is
used for proton PDFs. Since the cross section is already of O(αs), the running coupling
constant αs(µ

2
r) is taken to be with two loop formula, as:

αs(µ
2
r) =

4π

β0

[
1

log( µ
2
r

Λ2 )
− β1

β2
0

log log( µ
2
r

Λ2 )

( log(µ2r)
Λ2 )2

]
, (4.70)

for QCD beta β0 = 11 − 2
3
nf and the two-loop coefficient of the QCD beta function as

β1 = 51− 19
3
nf for nf = 4, Λ

(4)
QCD = 0.326GeV.

Long Distance Matrix Elements: For the LDMEs, we shall again be using the
values given by the global fit in [13] for color octet contributions, with feed down contri-
butions from the higher charmonium states. The table below shows the list of operators
used with their corresponding values.

CO LDME with feed− downs

〈OJ/ψ[1S
[8]
0 ]〉 4.97 ×10−2 GeV3

〈OJ/ψ[3S
[8]
1 ]〉 2.24 ×10−3 GeV3

〈OJ/ψ[3P
[8]
0 ]〉 -1.61 ×10−3 GeV5

These values alongwith the value for CS LDME i.e. 〈OJ/ψ[3S
[1]
1 ]〉 = 1.32GeV3, will be

used in all of our calculations. The other parameters used for different experiments are
mentioned in their respective sections below.

4.4.1 LEPII-DELPHI:

For comparison with DELPHI data, we first chose the input parameters according to
the second paper in ref. [11] i.e. 〈OJ/ψ[3S

[1]
1 ]〉 = 1.4GeV3, α = 1

137
, mc = 1.5GeV,

me = 0.511GeV, with similar photon PDFs from GRS99 and αs running evaluated
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using the LO formula of GRV98. mt =
√
p2
t + 4m2

c taken to fix the renormalization
and factorization scales, and the results multiplied with a factor of 1.278 to include
the feed-down contributions from ψ

′
. Our color singlet (CS) contributions match their

Figure 4.8: The differential cross section of J/ψ + c+ c̄ production at DELPHI, against
J/ψ transverse momentum p2

t and rapidity y, compared with the inclusive
J/ψ production cross section without J/ψ+ c+ c̄ contribution, in figure 1(q)
of MB [13].
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results for each of the subprocess considered. Using our code, we reproduce here figures
4-6 of their paper at pages 5 and 6. As suggested by R. Li and K. T. Chao in that
paper, we also consider the color octet (CO) contributions taking part in all of these
interactions. For this, we take the input parameters from MB [13] used for the global fits
of color octet LDMEs. With some general parameters as defined in the previous section,
we take experimental conditions related to LEPII for our theoretical predictions. We
choose

√
SH = 197GeV, θmax < 32mrad for WWA photons, the rapidity cut |y| < 2

and the constraint on center-of-mass energy of the two photons as W < 35GeV. We
plot our results for p2

t distribution of the cross sections against fig. 1q of MB, and
present it also with some other plots in fig. 4.8. The shaded bands on top left are
constructed by variation in charm quark mass from 1.4GeV to 1.55GeV and include
CS and CO contributions, and those on top right are constructed by variation of the
renormalization and factorization scales µr/f from 0.5µ0 to 2µ0.
The middle plots in the same figure show the decomposition of the top curves into

Figure 4.9: J/ψ + c + c̄ differential cross section at HERA-H1, against J/ψ transverse
momentum p2

t , with the bands representing varied mass (top left) and var-
ied renormalization and factorization scales (top right) to compare with fig-
ure 1(u) of MB [13] for the inclusive J/ψ production without J/ψ + c + c̄
contribution.
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the direct, single- and double-resolved photon contributions (left) and the contributions
from each of the intermediate cc̄ states (right), which can be compared respectively with
figures 3a and 2b of MB [13]. Similarly, the bottom plots show the cross section against
J/ψ rapidity distribution. The middle and the bottom plots are the short distance cross
sections already multiplied with the corresponding LDMEs. It is important to note
that the blue line in the middle right represents the negative values, since the positive
contribution of the 3P

[8]
J intermediate state to differential cross section is multiplied with

the negative value of the LDME for the same state. Therefore, the CO contributions are
much smaller than the CS contributions due to the cancellation between the 1S

[8]
0 and

3P
[8]
J states. Furthermore, it can be seen that the J/ψ+ c+ c̄ contributions only amount

to about 10% of the other contributions to J/ψ+X production cross section, as can be
seen in the upper right figure. Additionally, the mass uncertainties seem to be of the
similar order of magnitude as the scale uncertainties, as can be seen from comparing the
two upper graphs of fig.4.8. Also, we observe that the direct contributions dominate,
while the resolved processes are only contributing about 1%.

4.4.2 HERA-H1:

Our results for HERA-H1 experiment are compared with figure 1(u,v,w) of MB [13],
for cross sections against transverse momentum p2

t , photon-proton invariant mass W
and the inelasticity parameter z distributions as described in the previous section, and
shown in figures 4.9,4.10 and 4.11. The values chosen for the parameters accordingly
are:

√
SH = 314GeV, 0.3 < z < 0.9 and the limits on center-of-mass energy of the two

photons as 60GeV < W < 240GeV. The negative sign must be taken into consideration
for the blue lines in the decomposition graph of the intermediate cc̄ states.

Figure 4.10: Similar to top two plots of figure 4.9, the differential cross-section of J/ψ+
c + c̄ production at HERA plotted against photon-proton invariant mass
W , figure 1(v) of MB [13].

Like in the case of DELPHI above, here we also plotted the graph where the cross section
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Figure 4.11: J/ψ + c + c̄ production cross section at HERA against the inelasticity pa-
rameter z, similar to figure 4.9 and 4.10, and compared with figure 1(w) of
MB [13]. In case of photoproduction, z is the fraction of the photon energy
taken over by J/ψ, in the proton rest frame.

is decomposed into different subprocesses. For the sake of consistency, we take the same
values for other input parameters like LDMEs, PDFs for photon/proton, charm quark
mass, the strong coupling constant etc, as discussed in the previous section. All these
plots provide us with a complete picture of J/ψ + c + c̄ production process at HERA.
As we can see here, the mass dependence is much lesser than the scale dependence.
Unlike J/ψ + X,the J/ψ + c + c̄ process does not show a rise with increasing z value,
but enhances it at lower z. This is due to the fact that can be seen in the lower plot
fig. 4.11, which shows that like in the J/ψ + X case only the CO contributions show
this rise, and not the CS ones. But since CS contributions dominate over the CO, so
the overall z dependence is flat.
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4.4.3 TEVATRON-CDF:

In case of Tevatron, we consider CDF Run2 experiment, to compare our results with
MB [13]. We take the same experimental parameters for input, as in figure 1(c) of MB
[13]. The values for

√
SH is taken to be 1.96TeV and for the rapidity of the J/ψ is

|y| < 0.6. One can easily note well separated charm-mass variation bands (top left) for
CS and CS+CO states at larger pt values, contrary to the same plots for DELPHI and
HERA where one could not see them separated even at higher values of pt. Here only
direct hadronic subprocesses with gg and quark-antiquark in the initial state take place,
in Fig.4.12 we therefore have not plotted the corresponding graph with decomposed
differential cross section into subprocesses involved. We plot instead another interesting
graph to check the dependence of the differential cross section on the renormalization
and factorization scales (bottom left of figure 4.12, fixing the J/ψ transverse momentum
pt at three different values. We could also still plot the contributions of individual
intermediate cc̄ states (bottom right) with negative value of the blue line, as discussed
in case of DELPHI and HERA above. At large pt values, the separation between the
CS and CS+CO states is obvious again in the graph on bottom right of figure 4.12. As
we can see that the 3S

[8]
1 channel has a significantly flatter slope compared to all the

other contributions, therefore it would dominate the cross sections at high pt values.
This stems from the Feynman diagrams where the J/ψ bound state is formed by the
cc̄ pair which is produced by a direct splitting of a gluon into this cc̄ (called the gluon
fragmentation process). Due to these contributions, the J/ψ + c + c̄ contribution will
eventually dominate the color-singlet contribution of J/ψ+X production cross section at
high pt values, as can bee seen very clearly in top right plot of the figure 4.12. Therefore,
J/ψ + c+ c̄ can not be neglected for large momentum values.

4.4.4 LHC-ATLAS:

With the announcement of very exciting new discoveries from CERN recently, it is
impossible not to include LHC experiment in our analysis of this very important process.
We therefore consider the experimental parameters for ATLAS, so that we could also
compare our results with figure 4 of MB [13]. The initial values are taken to be

√
SH =

7TeV and |y| < 0.75, with the same values for other general parameters and LDMEs as
discussed in the previous section. Similar to the case of Tevatron, even widely separated
charm-mass and renormalization/factorization scale bands can be noticed (top left/right)

in figure 4.13. Interestingly, despite the (almost) cancellation of the states 1S
[8]
0 and 3P

[8]
0

(negative blue line), the contribution of CO states looks promising at high pt values for
ATLAS, as can be seen in the bottom plot of figure 4.13. This indicates the importance
of CO contributions which can be tested further on higher energy scales when LHC will
be able to reach its expected energy range of 14TeV.
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Figure 4.12: Differential cross section for J/ψ+c+c̄ at Tevatron-CDF, against J/ψ trans-
verse momentum pt, with the bands again representing varied mass (top
left) and varied renormalization/factorization scales (top right) to compare
with the inclusive J/ψ production without J/ψ + c+ c̄ contribution, figure
1(c) of MB [13].

4.5 Conclusions:

The very first conclusion of the above analysis at various colliders with different energy
ranges is that the J/ψ+ c+ c̄ process is not of any less importance for the study of J/ψ
production at NLO and also for the production of J/ψ with at least one meson containing
a charm quark with a light quark. For all of the colliders, this process is either of the same
order of magnitude, or only an order (or two) of magnitude less than the NLO production
of J/ψ, when compared with the results presented in MB [13]. Our analytical results
agreed to the numerical results by MadOnia [38], separately for each of the subprocesses
considered. This provided a check on the working of our codes. We could also successfully
reproduce the results of the second paper in ref. [11] for the CS contributions to J/ψ+c+c̄
production at LEPII, with WWA photons. We note that this process contributes only
to about 10% of the other contributions to the inclusive J/psi + X production, due to
the dominance of the direct subprocess while the resolved ones contribute about 1%.
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Figure 4.13: Differential cross section with respect J/ψ transverse momentum pt for the
production of J/ψ + c + c̄ at LHC-ATLAS, similar to the previous figures
4.8, 4.9 and 4.12. This is compared to figure 4 of MB [13] for the inclusive
J/ψ production (without J/ψ + c+ c̄ contribution).

We reproduced all the results presented in ref. [11], even for future photon colliders
at 500GeV and 1TeV, both with WWA and LBS photon distributions. We also could
generate results presented in references 5 (considering their QCD contributions) and
6 of [12], which in turn also verify results presented in the references 1-4, considering

the change of variables. With the consideration of negative value for LDMEs of 3P
[8]
0

intermediate states, the contribution is almost canceled by the contribution from 1S
[8]
0

intermediate state. Also, the value of 3S
[8]
1 intermediate state is lower as compared

to the the CS and other two CO intermediate states. Therefore, the contributions of
both the sum of CS+CO states and that of the CS 3S

[1]
1 intermediate state, lie within

the uncertainty bands of charm-mass and of renormalization/factorization scale at low
energy scales of pt distribution at DELPHI and pt/W/z distributions at HERA-H1. But
for high pt values at CDF and ATLAS, this behavior changes to well separated bands
despite the cancellation of states 1S

[8]
0 and 3P

[8]
0 intermediate states. This fact indicates

the importance of 3S
[8]
1 intermediate state for hadroproduction of J/ψ + c + c̄ at these
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high energy colliders, arising from the gluon-fragmentation diagrams. The contribution
of 3S

[8]
1 intermediate state for z−distribution at HERA must also be not neglected, where

the CS+CO contribution starts to get larger than that of the only CS intermediate states,
at higher values of z. So that the overall z dependence gets dominated by the behavior of
the CS states. At DELPHI, the direct photon-photon subprocess contributes the largest
part and is more than a factor of magnitude larger than that of the single resolved
one, and more than three orders in magnitude larger than the sum of double resolved
subprocesses gg and quark-antiquark, for both the pt and y distributions. Similar is
the case at HERA where the direct photoproduction process is more than two orders of
magnitude higher than the resolved one, at the largest value of pt.
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5 J/ψ production at NLO in e+e−

annihilation

As discussed in chapter 1, the NLO studies calculations indicate a reduction in the
difference between the theoretical predictions and the experimental measurements. Ad-
ditionally, NRQCD expects the CO states to contribute an effective part in charmonium
production. It is thus very important to consider the NLO contributions of both the CS
and CO states of the intermediate cc̄ pair, for the study of heavy charmonia. In this
chapter, we therefore investigate the QCD corrections to J/ψ production at B-factories.

The inclusive production of J/ψ in the direct interaction of electron-positron e+e− →
J/ψ + X involves both 2 → 2 and 2 → 3 subprocesses for NLO calculations. At the
partonic level, we consider the subprocesses:

e+(k1) + e−(k2) → cc̄[n](P ) + g(k3) (5.1)

e+(k1) + e−(k2) → cc̄[n](P ) + g(k3) + g(k4) (5.2)

e+(k1) + e−(k2) → cc̄[n](P ) + q(k3) + q̄(k4), (5.3)

where cc̄[n] represents the intermediate charm-anticharm pair in the state [n] = 2S+1LJ
[1,8]

which evolves to form a physical J/ψ bound state and q = u, d, s denotes light quarks
and q̄ represents the partner light antiquarks. The subprocess in the eq. 5.1 represents
the leading order (LO) contribution. At the next to leading order, we need to consider
not only the virtual corrections to this subprocess, arising from the loop diagrams, but
also include the real corrections due to radiation of a real gluon (eq.5.2) or a gluon
splitting into a light quark-antiquark pair (eq.5.3). One must not forget the subtraction
of gluon-ghost/-antighost subprocess from eq.(5.2) for considering only the physical po-
larizations of the gluon.The NLO differential cross section at O(αs) can then be written
as:

dσNLO = dσBorn + dσV irtual + dσReal, (5.4)

where the superscripts indicate the part of the partonic cross section involved. Now we
discuss these parts one by one.

5.1 Born Cross Section:

For the process

e+(k1) + e−(k2)→ cc̄[n](P ) + g(k3), (5.5)
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Figure 5.1: The 2→ 2 tree level diagrams for the process e+e− → cc̄[n] + g.

at tree level, the typical Feynman diagrams (shown in the fig.5.1) and the correspond-
ing matrix elements for these diagrams are generated using FeynArts[35]. The further
calculations of color and spin projected matrix elements square involved the same set
of steps, using FeynCalc[36] and FORM[37] as discussed in chapter 3 and chapter 4, in
D = 4− 2ε. The partonic cross section in accordance with eq.(3.7) can then be written
as:

dσ̂Born(e+e− → cc̄[n] + g) =
1

4

1

2s
dPS2→2

∑
col,pol

|MTree(e
+e− → cc̄[n] + g)|2 ,

=
1

4

1

16πs2

∑
col,pol

|MTree(e
+e− → cc̄[n] + g)|2dt , (5.6)

where 1
2s

is the flux factor, the factor 1
4

denotes the average over the spins of initial state
particles,MTree is the tree level matrix elements, and we take the value for phase space
integration (in the center-of-mass frame of the incoming particles),

dPS2→2 =
1

(2π)2

π

2s
dt, (5.7)

from eq.(4.29). The kinematically allowed region for this phase space is contained in the
limits: 4m2

c < s and −s1 < t < 0. Here the Mandelstam variables for this process are
defined using k2

1 = 0 = k2
2 = k2

3 and conservation of energy-momentum k1 +k2 = P +k3,
compared to eqs. (4.2, 4.6, 4.7, 4.13, 4.14, 4.15) as:

s ≡ (k1 + k2)2 = 2k1 · k2 (5.8)

t ≡ (P − k1)2 = −2k2 · k3 (5.9)

u ≡ (P − k2)2 = −2k1 · k3 (5.10)

s1 ≡ s− 4m2
c = 2P · k3 (5.11)

t1 ≡ t− 4m2
c = −2P · k1 (5.12)

u1 ≡ u− 4m2
c = −2P · k2. (5.13)
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Analogous to eq.(3.5), the born part of partonic cross section for J/ψ production can
be obtained from 5.6, as:

dσBorn(e+e− → J/ψ + g) =
∑
n

dσ̂Born(e+e− → cc̄[n] + g)
〈OJ/ψ[n]〉

Ncol(n)Npol(n)
, (5.14)

where the the definitions for the long distance matrix elements 〈OJ/ψ[n]〉 andNcol(n)Npol(n)
remain the same as in chapter 3 and 4.

Figure 5.2: Feynman diagrams for the virtual corrections to the process e+e− → cc̄[n]+g,
where the cross on the charm quark line is an insertion of the charm mass
counter-term, and a cross on quark-gluon vertex represents the insertion of
corresponding vertex correction counter-term.
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5.2 Virtual Cross Section:

At NLO in αs, we need to consider the loop diagrams as shown in fig.5.2. There appear
ultraviolet (UV) and infrared (IR) singularities during the calculations of loop integrals,
in the regions of high and low loop momenta, respectively. These two types of singu-
larities are isolated with the help of Dimensional Regularization as discussed already
in chapter 3. The UV divergences arising from the self-energy and triangle diagrams
get canceled by the introduction of the renormalization. We adopt here the renormal-
ization scheme followed by [44]. The counter-term diagrams considered to take care of
the renormalization of the theory are shown in fig.5.2, and the renormalized quantities
are defined in the set of equations (3.31). We then perturbatively expand the matrix
elements in αs, for the subprocess (5.1) as:

M =MTree +Mvirtual , (5.15)

and the square as:

|M|2 = M∗M
= |MTree|2 + 2Re(M∗

TreeMvirtual) +O(α2
s) , (5.16)

where Mvirtual denotes the virtual corrections at O(αs). For the next to leading order
process e+e− → cc̄[n] + g, the Mvirtual accounts for the external leg insertions defined
by LSZ-reduction [39], as:

Mvirtual(e
+e− → cc̄[n]+g) =Mloop(e

+e− → cc̄[n]+g)+(δZψ+
1

2
δZA)MTree , (5.17)

where Mloop denotes the loop diagram amplitudes and the counter terms δZψ and δZA
are again referred to the set of equations (3.31). Therefore, the squared matrix elements
for the process e+e− → cc̄[n] + g at O(αs):∑

col,pol

|M(e+e− → cc̄[n] + g)|2 =
∑
col,pol∗

|MTree(e
+e− → cc̄[n] + g)|2

+2Re
∑
col,pol∗

(M∗
Tree(e

+e− → cc̄[n] + g)Mloop(e
+e− → cc̄[n] + g))

+2
∑
col,pol∗

(δZψ +
1

2
δZA)|MTree(e

+e− → cc̄[n] + g)|2, (5.18)

are UV finite but still contain IR singularities. For the calculation of loop integrals in
D = 4 − 2ε, we apply the procedures outlined in [34], to reduce the appearing loop
integrals into a set of five master integrals, listed in Appendix A. We could explicitly
show the cancellation of UV divergences appearing in the calculations. Therefore, in
analogy with the equations (5.6) and (5.14), using the same set of kinematical variables
for 2→ 2 process, we have the virtual cross section expressed as:

dσV irtual(e+e− → J/ψ + g) =
1

4

1

16πs2

∑
n

∑
col,pol

|M(e+e− → cc̄[n] + g)|2dt

× 〈OJ/ψ[n]〉
Ncol(n)Npol(n)

, (5.19)
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with |M(e+e− → cc̄[n] + g)|2 defined above in equation (5.18). For the infrared singu-
larities still left there, we move on to the real correction processes in the next section.

5.3 Real Cross Section:

The processes in equations (5.2) and eq.(5.3) are involved in the real corrections, of the
process e+e− → cc̄[n] + g. The Feynman diagrams for these two processes are shown in
fig.5.3. The square of the matrix elements for these processes is conveniently calculated
using the scheme already presented in the last chapter. When we integrate over the
phase space of these 2→ 3 processes, IR singularities are generated in the regions when
a soft gluon is emitted (called soft singularities, like in the process 5.2) or when two

Figure 5.3: Tree level 2 → 3 Feynman diagrams for the processes e+e− → cc̄[n] + g +
g,e+e− → cc̄[n] + q + q̄ and e+e− → cc̄[n] + ug + ūg, where ug represent the
gluon-ghost, and other final state light quark contributions can be obtained
by replacing d with u and s.
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external light partons become collinear to each other (called collinear singularities, like
in the process 5.3). In order to extract the IR poles, the analytical integration over
phase space is performed in D = 4 − 2ε dimensions and the soft/collinear singularities
are isolated by dividing the phase space into different regions. We here follow the two-
cut-off phase space slicing method [45] in order to decompose the phase space into three
parts, by introducing two small slicing parameters, δs and δc. The real differential cross
section is then:

dσReal = dσsoft + dσhard−collinear + dσhard−noncollinear (5.20)

where the superscripts indicate the region of the phase space integration. Though the
integration results for these three regions depend on the unphysical slicing parameters,
δs and δc, but their sum must be independent of the specific choice of these slicing
parameters. The general kinematical Mandelstam variables for 2→ 3 real processes, in
analogy with the set of equations (4.2-4.14) and k2

3 = 0 = k2
4, are defined as:

s ≡ (k1 + k2)2 = 2k1 · k2 (5.21)

s4 ≡ (P + k4)2 − 4m2
c = 2P · k4 (5.22)

s5 ≡ (P + k3)2 − 4m2
c = 2P · k3 (5.23)

s3 ≡ (k3 + k4)2 = 2k3 · k4 (5.24)

t1 ≡ (P − k1)2 − 4m2
c = −2P · k1 (5.25)

u1 ≡ (P − k2)2 − 4m2
c = −2P · k2 (5.26)

t6 ≡ (k2 − k3)2 = −2k2 · k3 (5.27)

u6 ≡ (k1 − k3)2 = −2k1 · k3 (5.28)

t′ ≡ (k1 − k4)2 = −2k1 · k4 (5.29)

u′ ≡ (k2 − k4)2 = −2k2 · k4 (5.30)

s1 ≡ s− 4m2
c (5.31)

t ≡ t1 + 4m2
c (5.32)

u ≡ u1 + 4m2
c . (5.33)

We shall now discuss the three parts of dσReal below.

Soft Region:

This is the region where one of the outgoing gluons is soft. Here, the contributing
Feynman diagrams are the ones where the soft gluon is attached to another external
gluon or a quark line. In our case, 5.2 is thus the only real correction process containing
soft singularities. Extending the techniques discussed in [46] to QCD, the amplitude
of the diagram with soft gluon factorizes into the Born amplitude without that soft
gluon and an eikonal factor, as displayed in the diagram below 5.4, where we follow the
notations used in [34], dotted lines representing an external parton line i of momentum
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Figure 5.4: Diagramatic representations of the soft gluon emission from a parton.

p, and the color operator Ti, defined by acting on the Born amplitude |A〉, takes the
value Tc (−Tc) if the emitting parton i is an outgoing quark (antiquark) or ifbca for the
emitting parton i being a gluon, inserted into the corresponding place of the amplitude
A. Additionally, another short notation for the amplitudes is defined as:

〈A|TxTy|B〉 ≡ (Tx|A〉)∗(Ty|B〉), (5.34)

not to be confused with bras and kets notations of the quantum mechanical states.
Now, for the case when gluon with momentum k4 is soft, we define here the kinematics
for the phase space integration in the region k4 → 0. In the center of mass of the
incoming particles (which is here same as that of J/ψ and the parton with momentum
k3), the particle momenta are parametrized as:

k1 = E2(1, 0,−sinθ, cosθ)

k2 = E2(1, 0, sinθ, cosθ)

k3 = E3(1, 0, 0, 1)

k4 = E4(1, sinθ1sinθ2, sinθ1cosθ2, cosθ1)

P = (EJ/ψ, 0, 0,−E3), (5.35)

with the Mandelstam variables defined in the set of equations 5.8-5.13, for 2→ 2 process,
and the soft region of the phase space is defined as,0 ≤ E4 ≤ δs

√
s

2
for the values;

E2 =

√
s

2
, E3 =

s1

2
√
s
, EJ/ψ =

s+ 4m2
c

2
√
s

, cosθ =
t− u
s1

. (5.36)

Since we are considering the soft gluon with momentum k4 attached to an outgoing
parton (gluon or a charm quark line), the amplitude |k4 soft〉 in terms of of the color
connected born amplitude |Born〉 as shown in fig.5.5, using the above relation is evaluated
as:

|k4 soft〉 = gs

(
(P

2
+ q).ε

∗
(k4)

(P
2

+ q) · k4

Tc +
(P

2
− q) · ε∗(k4)

(P
2
− q) · k4

Tc̄ +
k3 · ε

∗
(k4)

k3 · k4

T3

)
|Born〉. (5.37)
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Figure 5.5: Diagramatic representation of the case when gluon with momentum k4 is
soft.

In the soft region of real corrections, we use eq.(3.25) for the summation over the soft
gluon polarization in the axial gauge, so that P · ε∗(k4) = 0. The projectors defined in
section 3.1 are then applied using:

|k4 soft〉|q=0 = gs
k3 · ε∗(k4)

k3 · k4

Ti|Born〉|q=o (5.38)

and the derivative with respect to the momentum transfer q,

∂

∂qβ
|k4 soft〉|q=0 = gs

2ε∗β(k4)

P · k4

(Tc −Tc̄)|Born〉|q=0

+gs
k3 · ε∗(k4)

k3 · k4

Ti
∂

∂qβ
|Born〉|q=o, (5.39)

to give the squared matrix elements of the real corrections, in the region where gluon
with momentum k4 is soft, as:

|Mk4 soft(n)|2 = S
(1)
k4 soft(n) + S

(2)
k4 soft(n) + S

(3)
k4 soft(n), (5.40)

where the terms S
(1)/(2)/(3)
k4 soft (n) for the intermediate cc̄ pair in the state [n], are defined

as:

S
(1)
k4 soft(n) = gs

k3 · ε(k4)k3 · ε
∗
(k4)

(k3 · k4)2
〈n,Born|TiTj|n,Born〉 ,(5.41)

S
(2)
k4 soft(

3P
[8]
J ) = 4g2

s

k3 · ε(k4)ε∗(k4)

k3 · k4P · k4

ε
(J)
αβ

×〈3P [8]
J ,Born |Ti(Tc −Tc̄)Tr[C8Πα

1 |Born〉]|q=0 , (5.42)
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S
(3)
k4 soft(

3P
[8]
J ) = 4gs

ε
β′

(k4)ε
∗β

(k4)ε
(J)∗
α′β′

ε
(J)
αβ

(P.k4)2

×Tr[〈Born|Π∗α
′

1 C8]|q=0(Tc −Tc̄)(Tc −Tc̄)Tr[C8Πα
1 |Born〉]|q=0, (5.43)

while S
(2)/(3)
k4 soft (n) = 0 for n = 1S

[8]
0 , 3S

[1/8]
1 . The detailed calculation of these soft terms is

presented in Appendix B.
The differential cross section for the soft contributions in the real corrections, using the
matrix elements square (5.40) is then

dσsoft =
1

4

1

16πs2

∫ soft−region
dPSk4 soft

∑
n

∑
col,pol

|Mk4 soft(n)|2dt× 〈OJ/ψ[n]〉
Ncol(n)Npol(n)

(5.44)

where the factor
∫ soft−region

dPSk4 soft is defined in D = 4− 2ε as:∫ soft−region
dPSk4 soft ≡

∫
soft

µ4−DdD−1k4

2(2π)D−1E4

=
(πµ2)εΓ(1− ε)
(2π3)Γ(1− 2ε)

∫ δs
√
s

2

0

E1−2ε
4 dE4

∫ π

0

sin1−2εθ1dθ1

∫ π

0

sin−2εθ2dθ2.

(5.45)

In our case when the gluon with momentum k4 is soft, we will need the results for

the integrals
∫ soft−region dPSk4 soft

(P ·k4)2
and

∫ soft−region dPSk4 soft

k3·k4P ·k4 , which are again listed

in Appendix B. For our case, S
(2)
k4 soft(

3P
[8]
J ) explicitly vanishes, and since the soft term

S
(3)
k4 soft(

3P
[8]
J ) is expressed in terms of the squared matrix elements of the states 1S

[8]
0 and

3S
[1]
1 , which are actually zero, so that the soft term S

(3)
k4 soft(

3P
[8]
J ) also does not contribute.

Therefore, our final partonic result of the process e+e− → cc̄[n] + g + g for this part of
the real cross-section becomes:

dσ̂soft =
1

4

1

16πs2

∫ soft−region
dPSk4 soft

∑
n

∑
col,pol

S
(1)
k4 soft(n)dt

=
g2
sCA
8π2

Cεdσ̂
Born(e+e− → cc̄[n] + g)[

1

ε2
+

1

ε

(
1− ln(

δ2
ss

2

4m4
c

)

)
− ln(

δ2
ss

m2
c

)

+
1

2
ln2(

δ2
ss

2

4m4
c

) +
s+ 4m2

c

s1

ln(
s

4m2
c

) + 2Li2(− s1

4m2
c

− π2

4
)] ,(5.46)

where CA = 3, and dσ̂Born(e+e− → cc̄[n] + g) is defined in the eq.(5.6), so that the
differential cross-section for the soft part becomes:

dσsoft = dσ̂soft(e+e− → cc̄[n] + g + g)× 〈OJ/ψ[n]〉
Ncol(n)Npol(n)

. (5.47)

We now move on to calculate the remaining two parts of the real corrections.
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Hard Collinear Region:

When all the outgoing gluons are hard, but any two of the external light particles
become collinear to each other, the phase space encounters collinear singularities in
this region. These singularities appear in the Feynman diagrams where one massless
gluon/light-quark line splits into two external massless gluon/light-quark lines. Follow-
ing the procedures of [45], the hard-collinear region of the phase space is limited by the
condition when any of the invariants s3, t6, u6, t

′, u′ becomes smaller in magnitude than
δcs, for the slicing parameter δc. Since in our case, we have partons only in the final
state, the collinear divergences appear in the phase space region where light particle with
momentum k3 becomes collinear to the other final state light particle with momentum
k4, as shown in fig.5.6, where parton say 3′ splits into the two outgoing partons 3 and 4.
The momenta of the final state partons, with the relation k3′ = k3 +k4, are parametrized
as:

k3 = (zP +
p2
⊥

2zP
, 0, p⊥, zP ), (5.48)

k4 = ((1− z)P +
p2
⊥

2(1− z)P
, 0,−p⊥, (1− z)P ), (5.49)

where z is the splitting parameter, defining the fraction of the parton 3 momentum taken
away by the final state parton 3′, the small transverse momentum p⊥ is still allowed to
the partons 3 and 4 despite their collinearity. This region of phase space is defined by
the limits 0 ≤ s3 ≤ δcs, where at the leading order in p⊥,

s3 = 2k3.k4 =
p2
⊥

z(1− z)
(5.50)

Figure 5.6: The final state parton with momentum k3 collinear to another final state
parton with momentum k4. For our real processes e+e− → cc̄[n] + g+ g and
e+e− → cc̄[n] + q + q̄, we only have a gluon splitting into two gluons or a
light quark-antiquark pair.
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In D = 4− 2ε, the phase space factorizes as

dPS2→3 =
µ2εdD−1P

2(2π)D−1EJ/ψ

µ2εdD−1k3

2(2π)D−1E3

µ2εdD−1k4

2(2π)D−1E4

× (2π)Dδ(D)(k1 + k2 − P − k3 − k4)

= dPSh.c.2→2 × dPSh.c.k4

where the factors with superscript (h.c), representing the hard-collinear region of phase
space, are defined as:

dPSh.c.2→2 ≡
µ2εdD−1P

2(2π)D−1EJ/ψ

µ2εdD−1k3′

2(2π)D−1k3′,0
(2π)Dδ(D)(k1 + k2 − P − k3′)

dPSh.c.k4
≡ µ2εdD−1

2(2π)D−1

k4

E4

k3′,0

E3

. (5.51)

With the change of variables from k3′ → k3 + k4, the term dPSh.c.k4
in the collinear limit

k3 ‖ k4, making use of the equations (5.48-5.50), is evaluated to be

dPSh.c.k4
=

(4πµ2)ε

16π2Γ(1− ε)
(z(1− z)s3)−εdzds3, (5.52)

The squared matrix elements for the process e+e− → cc̄[n] + 3 + 4 factorize according
to the relation:∑

col,pol

∣∣M3′→34(e+e− → cc̄[n] + 3 + 4)
∣∣2 =

2g2
s

s3

(P ′33′(z) + εP33′(z))

×
∑
col,pol

∣∣MBorn(e+e− → cc̄[n] + 3′)
∣∣2 , (5.53)

where the squared matrix elements for the Born level process e+e− → cc̄[n] + 3 also
depends on z. The functions P33′(z) and P ′33′(z) are the Altarelli-Parisi splitting functions
[47] in D-dimensions, and the set of those required for our process are:

Pgg′(z) = 2CA

(
z

1− z
+

1− z
z

+ z(1− z)

)
(5.54)

P ′gg′(z) = 0 (5.55)

Pqg′(z) =
1

2

(
z2 + (1− z)2

)
(5.56)

P ′qg′(z) = −z(1− z), (5.57)

where g′ stands for the intermediate gluon which splits into two quarks or two gluons,
g is the final state gluon and q the light quark. The general partonic hard collinear
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cross-section can then be written as:

dσ̂h.c.(e+e− → cc̄[n] + 3 + 4) =
1

4

1

2s

∫ h.c.

dPSh.c.2→2dPSh.c.k4
×∑

n

∑
col,pol

∣∣M3′→34(e+e− → cc̄[n] + 3 + 4)
∣∣2 dt

= (1− δ3,4

2
)dσ̂Born(e+e− → cc̄[n] + 3′)

g2
s

8π2

(4πµ2)ε)

Γ(1− ε)

∫ δcs

0

ds3s
−1−ε
3

×
∫ zmax

zmin

dz(z(1− z))−ε(P33′(z) + εP ′33′(z))

where the factor (1− δ3,4
2

) comes in to take care of the additional factor 1
2
, which is there

for the case of two external gluons in the final state. In the case of two external gluons,
we are have to consider exclusion of the soft region from the hard collinear integration.
The integration limits on z thus also depend on the nature of the final state partons 3
and 4. Therefore,

dσ̂h.c.(e+e− → cc̄[n] + 3 + 4) = (1− δ3,4

2
)dσ̂Born(e+e− → cc̄[n] + 3′)

g2
s

8π2
(
4πµ2

δcs
)(ε)

× 1

Γ(1− ε)
(−1

ε
)

∫ zmax

zmin

dz(z(1− z))−ε(P33′(z) + εP ′33′(z)) (5.58)

where 0 ≤ z ≤ 1 for partons 3 and 4 being quarks/antiquarks and δss
s1
≤ z ≤ 1− δss

s1
for partons 3 and 4 being gluons.
The final partonic cross-section in the hard collinear region for the two cases when both
the final state partons 3 and 4 are gluons or a light quark-antiquark pair, are obtained by
integrating over z in the above equation. So that, when a gluon splits into two gluons,
then

dσ̂hard−collinear(e+e− → cc̄[n] + g + g) =
g2
sCA
8π2

Cεdσ̂
Born(e+e− → cc̄[n] + g)[

1

ε
(2 ln(

δss

s1

)

+
11

6
)− (2 ln(

δss

s1

) +
11

6
) ln(

δcs

m2
c

)− ln2(
δss

s1

) +
67

18
− π2

3
] ,(5.59)

or when the gluon 3′ splits into a light quark-antiquark pair:

dσ̂hard−collinear(e+e− → cc̄[n] + q + q̄) =
g2
s

8π2

nf
3
Cεdσ̂

Born(e+e− → cc̄[n] + g)

×
[
−1

ε
+ ln(

δcs

m2
c

)− 5

3

]
(5.60)

where CA = 3, nf is the number of light quark flavors considered, dσ̂Born(e+e− →
cc̄[n] + g) defined in eq.(5.6). So analogous to the previous parts, the differential cross-
section for the hard collinear part is:

dσhard−collinear = dσ̂hard−collinear(e+e− → cc̄[n] + gg/qq̄)× 〈OJ/ψ[n]〉
Ncol(n)Npol(n)

. (5.61)
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After the calculation of these soft and hard-collinear singularities, we could explicitly
show the cancellation of the left over IR singularities from the virtual corrections. So
now, the remaining matrix elements are finite.

Hard Non-Collinear Region:

The 2 → 3 processes contributing to this part are 5.2 and 5.3. This is the IR finite
region of phase space, so that the it can be computed numerically in four dimensions
using standard techniques for Monte-Carlo integration. This part is very much similar
to the calculations presented in sections 4.2.1 for 2 → 3 process γ + γ → cc̄[n] + c + c̄,
while replacing the heavy open cc̄ pair with a massless pair of light final state partons
gg/qq̄, with no initially interacting particles being resolved to a photon or a parton. So

that eq.(4.29) remains the same with s+ t+u = 4m2
c but the factor

√
s3−4m2

c

2
√
s3

disappears

in eq.(4.33), with only the expressions for cos θ
′

and cos ϕ
′

changed to:

cos θ
′

=
1

p
′
J/ψ

(
s4√
s3

− E ′J/ψ
)
,

cos ϕ
′

=
1

sin θ
′
1sin θ′

(
1 +

u6√
s3E

′
1

− cos θ
′

1cos θ
′
)
. (5.62)

by the change in parametrization of the two final state momenta of massless particles:

k
′

3 =

√
s3

2
(1, sin θ

′
sin ϕ

′
, sin θ

′
cos ϕ

′
, cos θ

′
)

k
′

4 =

√
s3

2
(1,−sin θ

′
sin ϕ

′
,−sin θ

′
cos ϕ

′
,−cos θ

′
), (5.63)

so that the partonic cross-section becomes:

dσ̂hard−noncollinear(e+e− → cc̄[n] + gg/qq̄) =
1

4

1

2s
× π

8s(2π)5
dtds3d(cos θ

′
)dϕ

′ ×
(

1− δ3,4

2

)
×
∑
n

∑
col,pol

|M(e+e− → cc̄[n] + gg/qq̄)|2.

where the tree level matrix elements for the 2 → 3 process involved are calculated
applying the projectors as in chapter 3 and then expressed in terms of the Mandelstam

invariants. The factor
(

1− δ3,4
2

)
takes care of two identical particles (gluons in our

case) in the final state. For the case of two final state gluons, we also have to subtract
the corresponding ghost contributions in order to use eq.(3.24) for the sum of gluon
polarizations. The integration limits over the variables also vary as:

0 <
√
s3 <

√
s− 2mc, −1 < cos θ

′
< 1, 0 < ϕ

′
< 2π. (5.64)
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Then the differential cross-section analogous to the other parts for this regions is:

dσhard−noncollinear = dσ̂hard−noncollinear(e+e− → cc̄[n]+gg/qq̄)× 〈OJ/ψ[n]〉
Ncol(n)Npol(n)

. (5.65)

With all the parts of eq.(5.4) calculated analytically now and having dσNLO

dt
at hand, we

can move on further to the calculations of the numerical results and compare them with
the experimental observables.

5.4 Numerical Analysis:

In order to define the general Mandelstam invariants in the set of equations (5.8-5.13),
we parametrize the momenta as:

ke+ =

√
SH
2

(1, 0, 0, 1)

ke− =

√
SH
2

(1, 0, 0,−1)

P = (EJ/ψ, 0, PJ/ψsinθ , PJ/ψcosθ) (5.66)

for the center of mass energy SH , the J/ψ 3-momentum PJ/ψ and the J/ψ production
angle θ. Therefore,

s = (ke+ + ke−)2 = SH (5.67)

t = (P − ke+)2 = 4m2
c −

√
SH(EJ/ψ − PJ/ψcosθ) (5.68)

u = (P − ke−)2 = 4m2
c −

√
SH(EJ/ψ + PJ/ψcosθ). (5.69)

Since all the contributions to the cross section are 2→ 2 processes except for the hard-
noncollinear region which is a 2→ 3, the expressions for EJ/ψ and cos θ vary according
to the relation s+ t+ u = 4m2

c + s3, as:

EJ/ψ =
s+ 4m2

c − s3

2
√
SH

,

PJ/ψ =
√
E2
J/ψ − 4m2

c ,

cos θ =
s+ 2t− 4m2

c − s3

2
√
SHPJ/ψ

, (5.70)

where s3 = 0 for 2→ 2 processes. The general form of the differential cross section then
is given by:

dσNLO = dσ2→2 + dσ2→3,

∝ dt+ dt ds3 d(cos θ
′
)dϕ

′
, (5.71)
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Figure 5.7: Renormalization Scale dependence of the LO short distance cross section.

which after the change of variables from t(or (t, s3)) to PJ/(ψ (or (PJ/ψ, cosθ)) for 2→ 2(or
2→ 3) processes, becomes:

dσNLO ∝
√
sPJ/ψ d(cos θ) + 2s

P 2
J/ψ

EJ/ψ
dPJ/ψ d(cos θ) d(cos θ

′
)dϕ

′
. (5.72)

From here we can calculate dσNLO

d(cos θ)
or dσNLO

dPJ/ψ
. It is important to note that for the 2→ 2

processes, PJ/ψ has a constant value, namely PJ/ψ ≈ 4.88GeV for
√
s = 10.6GeV and

Mc = 1.5GeV . Thus these do not contribute to dσNLO

dPJ/ψ
distribution at other PJ/ψ values.

The numerical analysis is performed following the same steps as discussed in section
4.4, using VEGAS[39]. We could reproduce the results of [48] for the renormalization
constant and J/ψ momentum distribution, respectively, in the case of color singlet states
(that is for the LO process of the reference [48]). Also, the results of [49] by the same au-
thors were verified, for the differential cross section with respect to the production angle
of J/ψ, using the input parameters as described in the respective references. The results
for the renormalization scale dependence for the short distance cross section (without
multiplying with the LDMEs) are presented in fig 5.7 and 5.8. The leading order results
are in good agreement with those presented in [15], while we get larger corrections at
NLO for this process. These NLO results for the short distance cross section distribution
against renormalization constant are even larger than those in [15]. Such large correc-
tions are very much possible since at LO, almost everything drops out. The reason for
the disagreement with [15] can be the extra diagrams considered in our NLO calculations.
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For the plots of our calculations presented here, the same values for the input param-
eters are taken as discussed earlier in section 4.4, whereas the renormalization constant

µr = mt for mt =
√

(s+t−s3)×(4m2
c−t)

s
. We could verify the independence of the NLO cross

section on the unphysical slicing parameters, as shown in 5.9. We also show the distri-
bution of the differential cross section with respect to the production angle of J/ψ and
also the 3 momentum of J/ψ, in figure 5.10 and 5.12. The results for the color singlet
states are in agreement with those presented in [48]. As can be seen from figure 5.12,
the momentum distribution for the states 1S8

0 and 3P 8
0 at NLO are not reliable. The

reason is obvious from fig.5.4 and eq.(5.72). The terms containing soft singularities are
expressed in terms of the Born level matrix elements multiplied with an eikonal factor,
as discussed earlier. Since the contribution of Born level matrix elements for the states
1S8

0 and 3P 8
0 is non-zero, unlike the states 3S1

1 and 3S8
1 , their eikonal factor contains

a soft singularity in the form of a factor ∼ 1
k23
∼ 1

(PJ/ψ−PJ/ψ,max)2
, whereas the point

PJ/ψ → PJ/ψ,max ' 4.88GeV is exactly the limit where the external gluon in the process
e+e− → J/ψ+g gets soft. Therefore, cross section will be proportional to 1

k2
, where k is

the momentum of the external gluon. As can be seen from eq.(5.72), dσNLO

dPJ/ψ
distribution

does not include the 2 → 2 processes, so we integrate over the whole phase space for
our 2→ 3 process instead of making use of phase space slicing method. Therefore, the
states 1S8

0 and 3P 8
0 actually contain the singular behaviors of the external gluon in dσNLO

dPJ/ψ
,

which was supposed to be canceled by the corresponding 2→ 2 soft contribution. This
uncanceled singularity then emerges as the exploding behavior for 1S8

0 and 3P 8
0 states at

Figure 5.8: Renormalization Scale dependence of the NLO short distance cross section.
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Figure 5.9: Verification of the independence on phase space slicing parameter, where
δc = δs/100.

Figure 5.10: Differential cross section distribution at NLO with respect to production
angle of J/ψ, where the line representing 3P 8

0 intermediate state is negative.
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high momentum values. The theoretical calculations of the momentum distribution for
these states are therefore not reliable. This is why, we expressed our actual results for
3S1

1 and 3S8
1 states in fig.5.14. If we would integrate in D−dimensions over the whole

range of momentum, and add the 2 → 2 kinematics contribution at PJ/ψ ' 4.88GeV ,
we would arrive at a finite total cross section. The results varying the renormalization
constant are presented in fig.5.13, where the known fact that the momentum distribution
can well be reproduced by the color singlet model alone is recovered. It can also be seen
that the CS+CO contributions give a good description up to about 3.5GeV.

5.5 Conclusions:

We present our next to leading order results for dσ
d(cos θ)

and dσ
dPJ/ψ

for the J/ψ production

at B-factories, considering both the color singlet and color octet intermediate states.
We could reproduce some of the results available in the literature for color singlet con-
tributions and found our results (using different input parameters) in close agreement
with them too. We can see that the inclusion of color octet states contributes well to
the behavior of dσ

d(cos θ)
, which for the color singlet state only, was unable to describe the

experimental data presented in a recent paper by the Belle collaboration [7]. But for the
momentum distribution, we are unable to draw some concrete results about the contri-
bution of these color octet states, due to the exploding behavior of 1S8

0 and 3P 8
0 states at

high momentum values, which arises as we integrate over the whole phase space for the

Figure 5.11: The error bands here are plotted varying the renormalization scale µR from
mt/2 to 2mt, and the mean value is taken at µR = mt.
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2 → 3 process. Therefore, the results for dσ
dPJ/ψ

should not be relied upon for these two

states with an exploding behavior. We also could integrate the distribution with respect
to the production angle of J/ψ to get the total cross section, which at LO is 0 for CS
states but is 0.21pb for the contributing CO states. At NLO, we could reproduce the
values of total cross-section for CS states and for the sum of all the CS and CO states
pesented in fig.1p of [13]. Considering the theoretical and experimental uncertainties
and the fact of non-establishment of the universality of LDMEs, these results seem to
be comparable with the Belle measurements, giving a value 0.43± 0.13pb, for the data
with J/ψ + cc̄ subtracted. The explanations presented in [13] for the differences with
the experimental data are valid here too.

Figure 5.12: Differential cross section distribution with respect to J/ψ momentum, where
the line representing 3P 8

0 intermediate state is negative.
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Figure 5.13: The error bands here are plotted varying the renormalization scale µR from
mt/2 to 2mt, and the mean value is taken at µR = mt. The LO 2 → 2
processes do not vary with PJ/ψ.

Figure 5.14: Differential cross section distribution with respect to J/ψ momentum, where
the line representing 3P 8

0 intermediate state is negative.
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6 Summary and Outlook

The production and decay of heavy quarkonia are well investigated using the rigorous
factorization theorem provided by nonrelativistic QCD. The inclusion of both the color
singlet (or color neutral) and color octet (or color charged) states is a key feature of
this theory. This could resolve the issue of left over infrared divergences in the case of
P-wave charmonia, and could also explain the transverse momentum, pT , distribution of
hadroproduction of J/ψ at Tevatron. Besides these undeniable successes, the significance
of the color octet mechanism needs to be investigated in other high energy experiments,
and the universality of the long distance matrix elements for these color octet states
need to be established. This in turn will enhance the chances of nonrelativistic QCD to
be considered as the correct theory for heavy quarkonia studies.

We have addressed here one of the open challenges to NRQCD posed by the recent
Belle data [7], with much larger values than expected by NRQCD for J/ψ+cc̄ associated
production. We have investigated this process at other colliders, and for photo- and
hadro-productions as well, like LEP, HERA, Tevatron and LHC, where it also plays an
important contribution at the next-to-leading order (NLO) corrections.
Since several recent studies on the inclusive and exclusive charmonium production were
able to reduce the conflict between the color singlet predictions and the experimental
results, by the inclusion of color octet mechanism, we therefore found it necessary to
investigate the effect of color octet states in charmonium production at B-factories, and
compare our results with the recent experimental data of the Belle Collaboration [7].
For both the above studies, our calculations went through a series of validation checks,
like:

• We could reproduce the already existing results in the literature, for color singlet
states.

• Analytical cancellation of all the ultraviolet and infrared divergences was explicitly
shown.

• We could compare our analytic expressions of the squared matrix elements with
numerical results of MadOnia [38], for the real tree and born processes.

• The independence of our results on the unphysical phase space slicing parameter
was analytically achieved, to test the kinematics used and verify the soft and
collinear limits.
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We could show that J/ψ+ c+ c̄ is a very important process to be considered for J/ψ
production studied at various colliders with different energy ranges. We found that for
all of the colliders, this process is either of the same order of magnitude, or only an
order of magnitude less than the NLO J/ψ production, when compared with the results
presented in MB [13]. We could successfully reproduce the results of [11] for the CS
contributions to J/ψ+ c+ c̄ production at LEPII. The contributions of both the sum of

color-singlet plus color-octet states and that of the CS 3S
[1]
1 intermediate state, was found

to lie within the uncertainty bands of charm-mass and of renormalization/factorization
scale at low energy scales of pt distribution, at DELPHI for example, and pt/W/z distri-
butions, at HERA-H1. But for high pt values like at CDF and ATLAS, these bands are
well separated, despite the cancellation of 1S

[8]
0 and 3P

[8]
0 intermediate states. This in-

dicates the significance of 3S
[8]
1 intermediate state, arising from the gluon-fragmentation

diagrams, for hadroproduction of J/ψ+ c+ c̄ at high energies. At DELPHI and HERA,
the direct photon-photon subprocess and the direct photoproduction process respec-
tively contribute the largest part whereas the gluon-gluon process is the dominant one
at hadron colliders.
We present the contributions of both the color singlet and color octet intermediate states
for next to leading order J/ψ production at B-factories. The inclusion of color octet
states in this process contributes well to the behavior of dσ

d(cos θ)
, when compared with

the recent experimental data by the Belle collaboration [7]. We are unable to draw some
concrete conclusion about the color octet states’ contributions in the momentum distri-
bution, due to the exploding behavior of 1S8

0 and 3P 8
0 states at high momentum values.

This behavior is due to the integration over the whole phase space for the 2→ 3 process.
The total cross-section was calculated to be ∼ 0.7 pb. Our results are somewhat com-
parable with the Belle measurements [7], considering the large uncertainties in LDMEs
and other dependences on input parameters, like charm mass and renormalization scale.

As an outlook for the process J/ψ+ c+ c̄, we can consider where the final state open
cc̄ combines to form another charmonium state, or two other light mesons containing
a charm/anti-charm quark with a light quark/anti-quark. With the set of program-
ming scripts developed for this process, we can analogously calculate the various other
charmonia/bottomonia associated production with the corresponding open heavy quark
pair. Also, the techniques developed can help us to further investigate other charmo-
nia/bottomonia production at next to leading order, not only for the direct processes
at B-factories but also for resolved subprocesses at other colliders with higher energies.
It will also be interesting to carry out the J/ψ polarization studies, including both the
color-singlet and color-octet states for the above mentioned processes, in order to check
the realization of NRQCD factorization mechanism in nature. Further investigations are
emphasized to establish the universality of LDMEs by carrying out studies for quarkonia
production/decay in different processes at various collider scenarios.
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Appendix A: The Master Integrals

Analytical results for the scalar integrals which emerge from the Passarino-Veltman
reduction of the virtual amplitude are expresses in terms of 5 master integrals listed in
this Appendix. Since no imaginary part of the integrals contribute to the final results of
the squared matrix elements, only the real parts are given. The four-momenta are related
by k1 + k2 = P + k3 and all particles are taken to be on-mass-shell, k2

1 = k2
2 = k2

3 = 0
and P 2 = 4m2

c .
− The scalar one-point function for tadpoles is given by

MI1A ≡ (2πµ)4−D

iπ2

∫
dDq

q2 −m2
c

= Cε m
2
c

[
1

ε
+ 1 +

(
1 +

π2

12

)
ε

]
(A-1)

− The scalar two-point function for bubble diagrams appearing in our calculations are
defined by:

MI2A(−k3) ≡
(2πµ)4−D

iπ2

∫
dDq

[q2 −m2
c ][(q + P + k3)2 −m2

c ]

= Cε

[
1

ε
+ 2 + β ln

(
1− β
1 + β

)]
(A-2)

MI2B(−k3) ≡
(2πµ)4−D

iπ2

∫
dDq

[q2][(q + P/2 + k3)2 −m2
c ]

= Cε [
1

ε
+ 2− s1

s1 + 2m2
c

ln

(
s1

2m2
c

)
+
π2

12
ε+

s1

s1 + 2m2
c

ε

(ln2

(
s1

2m2
c

)
− 2 ln

(
s1

2m2
c

)
− ln

(
s1

2m2
c

)
ln

(
1 +

s1

2m2
c

)
−Li2

(
−s1

2m2
c

)
+

8m2
c

s1

− π2 +
π2

6
+ 4)] (A-3)

− The scalar three-point function for triangle diagrams appearing in our process are:

MI3D(−k3) ≡
(2πµ)4−D

iπ2

∫
dDq

[q2] [(q + P/2)2 −m2
c ] [(q + P/2− k1)2 −m2

c ]

= Cε
2

t1

[
−Li2

(
1 +

t1
2m2

c

)
+
π2

6

]
(A-4)
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MI3E(−k3) ≡
(2πµ)4−D

iπ2

∫
dDq

[q2] [(q − P/2)2 −m2
c ] [(q + P/2 + k3)2 −m2

c ]

= Cε
2

s1

[Li2

(
1− s

2m2
c

)
− Li2

(
s1 + s

s1 +
√
ss1

)
− Li2

(
s1 + s

s1 −
√
ss1

)
(A-5)

+Li2

(
−4m2

c

s1 +
√
ss1

)
+ Li2

(
−4m2

c

s1 −
√
ss1

)
+
π2

12
] (A-6)
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Appendix B: Soft Terms

Integrals: The integrals needed for our calculation of different terms in the region where
outgoing gluon with momentum k4 is soft, are:∫ soft−region dPSk4 soft

(P · k4)2
=

1

32π2m2
c

Cε

[
−1

ε
− s+ 4m2

c

s1

ln(
s

4m2
c

) + ln(
δ2
ss

m2
c

)

]
(B-1)

∫ soft−region dPSk4 soft

k3 · k4P · k4

=
1

8π2s1

Cε[
1

ε2
− 1

ε
ln(

s2δ2
s

4m4
c

) +
1

2
ln2(

s2δ2
s

4m4
c

) + 2Li2(
−s1

4m2
c

)− π2

4

(B-2)

S
(1)
k4 soft(n): Using the summation over gluon polarizations as in eq.(3.25), we get the

expression for S
(1)
k4 soft(n) term as:∫ soft−region

dPSk4 soft

∑
col,pol

S
(1)
k4 soft(n) = g2

s

∑
col,pol

〈n,Born|T3T3|n,Born〉

×
∫ soft−region

dPSk4 soft

(
2P · k3

k3 · k4P · k4

+
P 2

(P · k4)2

)
(B-3)

where we calculate the value for the factor∑
col,pol

〈n,Born|T3T3|n,Born〉 = CA
∑
col,pol

|MBorn(n)|2. (B-4)

With the insertion of the results for the integrals above, we get the expression for con-
tribution of the soft term S

(1)
k4 soft(n) into the partonic cross section as:

dσ̂S
(1)
k4 soft(n) =

g2
sCA
8π2

Cεdσ̂
Born(e+e− → cc̄[n] + g)[

1

ε2
+

1

ε

(
1− ln(

δ2
ss

2

4m4
c

)

)
− ln(

δ2
ss

m2
c

)

+
1

2
ln2(

δ2
ss

2

4m4
c

) +
s+ 4m2

c

s1

ln(
s

4m2
c

) + 2Li2(− s1

4m2
c

− π2

4
)] ,(B-5)

S
(2)
k4 soft(n): Again using the polarization summation for gluon in eq.(3.25) and n = 3P

[8]
J

for this term, the integral∫ soft−region
dPSk4 soft

∑
col,pol

S
(2)
k4 soft(n) = 4g2

s

∫ soft−region
dPSk4 soft

∑
col,pol

k3 · ε(k4)k3ε
∗(k4)

k3 · k4P · k4

ε
(J)
αβ

×〈3P [8]
J ,Born |T3(Tc −Tc̄)Tr[C8Πα

1 |Born〉]|q=0 , (B-6)

(B-7)
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= 4g2
s

∫ soft−region
dPSk4 soft

∑
col,pol

×((− kβ3
k3 · k4P · k4

) + (
P β

(P · k4)2
)

+
(P · k3)kβ4

(k3 · k4)(P · k4)2
− P 2kβ4

(P · k4)3
)× ε(J)

αβ 〈
3P

[8]
J ,Born |T3(Tc −Tc̄)Tr[C8Πα

1 |Born〉]|q=0 ,

= 4g2
s(P

β − P 2

P · k3

kβ3 )
∑
col,pol

ε
(J)
αβ 〈

3P
[8]
J ,Born |T3(Tc −Tc̄)Tr[C8Πα

1 |Born〉]|q=0

×
∫ soft−region dPSk4 soft

(P · k4)2
, (B-8)

so that we can use the integral (B-1) to get the partonic contribution of this term, as:

dσ̂S
(2)
k4 soft(

3P
[8]
J ) =

1

4

1

2s

1

8πs

g2
s

8π2m2
c

Cε[−
1

ε
− s+ 4m2

c

s1

ln(
s

4m2
c

) + ln(
δ2
ss

m2
c

)](P β − P 2

P · k3

kβ3 )

×[
∑
col,pol

ε
(J)
αβ 〈

3P
[8]
J ,Born |T3(Tc −Tc̄)Tr[C8Πα

1 |Born〉]|q=0] dt

(B-9)

which can not generally be further factorized in terms of the Born cross-section. For our
process, evaluation of the above factor involving colors results into vanishing contribution
of this term.
S

(3)
k4 soft(n): This term also contributes only for the case when n = 3P

[8]
J . So the integration

over phase space using the expression for summation over gluon polarization can proceed
as:∫ soft−region

dPSk4 soft

∑
col,pol

S
(3)
k4 soft(n) = 4g2

s

∫ soft−region
dPSk4 soft

∑
col,pol

ε
β′

(k4)ε
∗β

(k4)

(P.k4)2

×ε(J)∗
α′β′

ε
(J)
αβ Tr[〈Born|Π∗α

′

1 C8]|q=0(Tc −Tc̄)(Tc −Tc̄)Tr[C8Πα
1 |Born〉]|q=0,

= 4g2
s

∫ soft−region
dPSk4 soft(−

gββ
′

(P · k4)2
+
P βkβ

′

4 + P β′kβ4
(P · k4)3

− P 2kβ4k
β′

4

(P · k4)4
)

×
∑
col,pol

ε
(J)∗
α′β′

ε
(J)
αβ × Tr[〈Born|Π∗α

′

1 C8]|q=0(Tc −Tc̄)(Tc −Tc̄)Tr[C8Πα
1 |Born〉]|q=0,

= 4g2
s

D − 2

D − 1
(−gββ′ + P βP β′

P 2
)

∫ soft−region dPSk4 soft

(P · k4)2

∑
col,pol

ε
(J)∗
α′β′

ε
(J)
αβ

×Tr[〈Born|Π∗α
′

1 C8]|q=0(Tc −Tc̄)(Tc −Tc̄)Tr[C8Πα
1 |Born〉]|q=0,

= 4g2
s

D − 2

(D − 1)2
Npol(

3P
[8]
J )(−gαα′ +

PαPα′

P 2
)

∫ soft−region dPSk4 soft

(P · k4)2

×
∑
col,pol

Tr[〈Born|Π∗α
′

1 C8]|q=0(Tc −Tc̄)(Tc −Tc̄)Tr[C8Πα
1 |Born〉]|q=0,

(B-10)
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where alongwith the simple tensor reduction, we made use of the equations (3.16-3.21)
for the above transformation. Again making use of the equations 3.14 and 3.16, we may
simplify the above expressions as:∫ soft−region

dPSk4 soft

∑
col,pol

S
(3)
k4 soft(n) = 4g2

s

D − 2

(D − 1)2
Npol(

3P
[8]
J )

∫ soft−region dPSk4 soft

(P · k4)2

×
∑
col,pol

〈3S[8]
1 ,Born|(Tc−Tc̄)(Tc−Tc̄)|3S[8]

1 ,Born〉. (B-11)

For our process, we could explicitly express the factor containing amplitudes and colors
as:∑
col,pol

〈3S[8]
1 ,Born|(Tc−Tc̄)(Tc−Tc̄)|3S[8]

1 ,Born〉 =
∑
col,pol

(
C2
A − 4

CA
|MBorn(3S

[8]
1 )|2

+8CACF |MBorn(3S
[1]
1 )|2) (B-12)

so that with the insertion of integral (B-1) we could finally express the contribution of
this term to the partonic cross-section as:

dσ̂S
(3)
k4 soft(

3P
[8]
J ) =

g2
s

36π2m2
c

Npol(
3P

[8]
J )Cε[−

1

ε
− s+ 4m2

c

s1

ln(
s

4m2
c

) + ln(
δ2
ss

m2
c

)− 1

3
]

×(
C2
A − 4

CA
dσ̂Born(e+e− → cc̄[3S

[8]
1 ] + g) + 8CACFdσ̂Born(e+e− → cc̄[3S

[1]
1 ] + g).

(B-13)

In our process, the both of |MBorn(3S
[1]
1 )|2 and |MBorn(3S

[8]
1 )|2 are zero, so we do not

get any contribution from this term. It is important to note that the IR term appearing
in the above expression gets canceled by those appearing in the loop corrections of the
corresponding operators 〈OJ/ψ[n]〉 for the states, 3S

[1]
1 and 3S

[8]
1 . Furthermore, an equal

contribution of all these soft terms must be considered for the case when the gluon with
momentum k3 is soft. However, an additional factor 1

2
comes in for two identical particles

(gluons) in the finals state, balancing the mentioned factor 2 emerging from the addition
of two soft contributions.
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