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Abstract

In this thesis, we study charge and spin dynamics in nanostructures such as quantum

dots and small ferromagnetic clusters. These systems are brought out of equilibrium

by an external perturbation like the coupling to electron baths or an abrupt change of

electric fields.

To investigate the interactions and mechanisms defining the time scales of the dynam-

ics in quantum dots and small magnetic clusters, we use model systems and the master

equation approach. As a further method of choice, we implement the quantum Monte

Carlo method for non-equilibrium systems.

First, the charging dynamics of quantum dots that are tunnel coupled to a two-

dimensional electron gas are investigated after abruptly changing the gate potential.

We show that the charging dynamics of the quantum dots are defined by the degeneracy

of states and by the interplay between Coulomb correlations and relaxation processes.

We discuss how to disentangle the influence of each contribution in the spectra obtained

by time-resolved spectroscopy of the electron gas conductivity.

The second part of the thesis is concerned with spin dynamics of a small ferromagnetic

cluster that consists of five iron atoms deposited on a non-magnetic, conducting sub-

strate. A current flowing between a scanning tunnel microscope tip and the substrate

inelastically excites the spin. We find that in the regime of weak coupling between the

tip and the cluster, the current gives rise to spin noise, originating from a bi-stability of

the system. We show that the spin noise can be measured in the current noise, which

can be used to probe the cluster dynamics governed by inelastic spin excitation and

anisotropy-induced magnetization tunneling.

Both model systems were analyzed with the master equation approach, which has

proven to adequately describe the dynamics of systems that are weakly coupled to an

electron bath. Finally, we implement the quantum Monte Carlo (QMC) approach for

non-equilibrium situations. This numerical method is capable of describing the time

evolution of systems with arbitrary interactions and couplings. We concentrate on two

particular implementations of non-equilibrium QMC: one based on the expansion in

the tunnel coupling, the other on the expansion in the Coulomb interaction. Both
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approaches are applied to a single-level quantum dot that is tunnel coupled to electron

reservoirs. We discuss their applicability and limitations due to the dynamical sign

problem with regard to the time dependence after initiating the tunnel coupling. We

show that the implementation of the tunnel coupling expansion is independent of the

interaction strength. It is, however, limited in the simulated time. The expansion in the

Coulomb interaction, on the other hand, allows for slightly longer simulation times that,

then again, strongly depend on the interaction strength.

In a further step, we analyze the single-level quantum dot with an embedded impurity

by extending the tunnel coupling expansion approach accordingly. This reduced model

for dilute magnetic quantum dots exhibits different regimes depending on the exchange

interaction strength between electron and impurity. We find that weak exchange inter-

action resembles an effective magnetic field, while strong exchange interaction increases

the relevance of coherent spin-flip processes.



Kurzfassung

In dieser Arbeit untersuchen wir Ladungs- und Spin-Dynamik in Nanostrukturen wie

Quantenpunkten und kleinen ferromagnetischen Clustern. Diese Systeme werden durch

eine externe Störung, wie etwa die Kopplung an ein Elektronenreservoir oder die abrupte

Änderung äußerer elektrischer Felder, aus dem Gleichgewicht gebracht.

Um die Wechselwirkungen und Mechanismen zu untersuchen, welche die dynamis-

chen Zeitskalen in Quantenpunkten und kleinen magnetischen Clustern bestimmen, ver-

wenden wir Modellsysteme zusammen mit der Master-Gleichung. Des Weiteren stellen

wir die Implementierung der Quanten-Monte-Carlo-Methode für Nicht-Gleichgewichts-

Systeme vor.

Zuerst untersuchen wir die Ladungsdynamik von Quantenpunkten, die an ein zweidi-

mensionales Elektronengas gekoppelt sind, nachdem die Gate-Spannung abrupt geändert

wurde. Wir zeigen, dass die Ladungsdynamik der Quantenpunkte durch die Entartung

der Zustände sowie durch das Wechselspiel zwischen Coulomb-Korrelationen und Relax-

ationsprozessen festgelegt ist. Wir erörtern dann, wie sich die verschiedenen Einflüsse in

zeitaufgelösten Spektren der experimentell bestimmten Leitfähigkeit des Elektronengases

widerspiegeln.

Der zweite Teil der Arbeit beschäftigt sich mit der Spindynamik eines kleinen ferro-

magnetischen Clusters bestehend aus fünf Eisenatomen, die auf einem nicht-magnetischen,

leitenden Substrat aufgebracht sind. Ein Strom, der zwischen der Spitze eines Rastertun-

nelmikroskops und dem Substrat fließt, führt zu inelastischen Spinanregungen des Clus-

ters. Hier zeigt sich, dass im Regime schwacher Kopplung zwischen der Spitze und dem

Cluster der Strom ein Spinrauschen erzeugt, welches von einer Bistabilität des Systems

herrührt. Wir zeigen, dass sich das Spinrauschen im Rauschen des Stroms widerspiegelt.

Die Messung dieses Stromrauschens kann dann verwendet werden, um die Cluster-

Dynamik zu bestimmen, welche durch inelastische Spinanregung und Anisotropie-indu-

zierte Magnetisierung charakterisiert ist.

Diese beiden Modellsysteme wurden zunächst mit Hilfe einer Master-Gleichung un-

tersucht, welche die Dynamik von Systemen mit schwacher Kopplung an ein Elektro-

nenreservoir beschreiben kann. Diese Betrachtung wird schließlich erweitert, indem wir
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eine Quanten-Monte-Carlo (QMC) Methode für Nicht-Gleichgewichts-Systeme imple-

mentieren. Dieses numerische Verfahren ermöglicht die Beschreibung der zeitlichen En-

twicklung von Systemen mit beliebiger Wechselwirkungs- und Kopplungsstärke.

Wir konzentrieren uns auf zwei Implementierungen der Nicht-Gleichgewichts-QMC:

eine basierend auf der Entwicklung in der Tunnelkopplung, die andere basierend auf der

Entwicklung in der Coulomb-Wechselwirkungsstärke. Beide Ansätze werden angewendet

auf einen Quantenpunkt mit einem einzigen elektronischen Niveau, der an ein Elektro-

nenreservoir gekoppelt ist. Wir diskutieren Anwendbarkeit und Einschränkungen der

Methoden im Zusammenhang mit dem dynamischen Vorzeichenproblem für die Zeiten-

twicklung nach Einschalten der Tunnelkopplung. Hier zeigen wir, dass Berechnungen

basierend auf der Entwicklung in der Tunnelkopplung zwar unabhängig von der Stärke

der Wechselwirkung sind, jedoch die simulierbare Zeit beschränkt ist. Die Entwicklung

in der Coulomb-Wechselwirkungsstärke auf der anderen Seite, ermöglicht die Simulation

längerer Zeiten, deren Dauer allerdings stark von der Wechselwirkungsstärke abhängig

ist.

In einem weiteren Schritt analysieren wir einen Quantenpunkt, in den zusätzlich eine

magnetische Störstelle eingebracht wurde, indem wir den Tunnelkopplungsansatz er-

weitern. Dieses System dient als reduziertes Modell für magnetische Quantenpunkte

und zeigt unterschiedliche Regime in Abhängigkeit der Austauschwechselwirkungsstärke

zwischen Elektronen und Störstelle. Eine schwache Austauschwechselwirkung wirkt wie

ein effektives Magnetfeld, während für starke Austauschwechselwirkungen kohärente

Spin-Flip-Prozesse an Relevanz für die Dynamik des gekoppelten Systems gewinnen.
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1 Dynamics in Nanostructures

1.1 Introduction

Condensed matter physics deals with the states of matter in which the spatial prox-

imity between individual atoms is sufficient to form a condensed state due to mutual

interactions. The involved states range from hard matter – crystalline solids, glasses,

metals, insulators, and semiconductors – to soft matter, including e.g. liquids, polymers,

granular materials, but also a number of biological materials.

The physical description of such systems takes place at the crossroads of quantum

mechanics, electromagnetism and statistical mechanics. In this sense, condensed matter

physics provides the quantum-mechanical foundation for the classical physics of me-

chanics, electronics or thermodynamics. Despite its fundamental aspects, condensed

matter science plays an extraordinary role in technological advancements and has been

the source of technologies like the transistor, semiconductor chips and solid-state lasers.

Hence, condensed matter physics has a profound impact on our daily lives and the way

we communicate and compute.

In this context, the branch of condensed matter physics dealing with nanometer-sized

structures has taken a special role. The typical scales of these so-called nanostructures

are large compared to microscopic (atomic) scales, but small compared to the macro-

scopic (classical) scales. Such systems typically consist of a large number of atoms,

but their behavior is considerably influenced by quantum interference effects. Particular

prominent examples of quantum nanostructures are quantum dots that are manufactured

in such a way that a small number of electrons can be confined in all spatial dimension

producing an effectively zero-dimensional system. Quantum dots can be experimentally

realized in processed semiconductors, carbon nanotubes or single molecules. Sophisti-

cated experimental approaches allow to connect quantum dots to electric wires in order

to probe and characterize their electronic properties. Most notable observations are

signatures of single-electron tunneling and the Coulomb blockade effect [1, 2], and the

detection of the Kondo effect [3,4], which is the analog to the interaction of conduction

electrons with magnetic impurities in metals [5]. The high degree of experimental con-

trol as well as the model character of quantum dots have also resulted in an increasing
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1 Dynamics in Nanostructures

interest in their dynamical characteristics, not at least pursuing the goal of constructing

new devices for quantum computation and solid-state storage [6, 7].

With the advance of high-resolution measurement techniques, access to time-resolved

transport experiments on nanostructures has become available. In the spirit of optical

pump-probe experiments [8], nanostructures are being brought out of equilibrium and

their approach to e.g. a steady state is recorded. Examples are experiments conducted

by Marquardt et al. [9] on quantum dot ensembles in contact with a two-dimensional

electron gas (2DEG). A gate voltage pulse (pump) creates a non-equilibrium condition

between the system that leads to electron hopping. The time-resolved charge transfer

can be monitored by measuring the response of the 2DEG (probe). Another example are

scanning tunneling microscopy (STM) experiments conducted on small nanostructures

that are created by assembling atom by atom [10–12]. Recently, it has been possible to

measure the time-resolved spin relaxation of a magnetic atom [13] and spin switching in

ferromagnetic and anti-ferromagnetic clusters composed of only a few iron atoms [14,15].

The utilized STM tip can act both as a pump exciting the spin of atoms as well as the

probe recording the spin relaxation or switching.

Understanding the dynamics in these systems is also important for feasibility con-

siderations in quantum information, for example, concerning the time span for which

a (quantum) bit of information is preserved or write and read out durations. How-

ever, studying dynamics can also provide answers to fundamental questions regarding

processes that define the time evolution of nanodevices. Examples are the role of coher-

ences and correlations as well as the interplay of interaction types in the systems. In the

present thesis, we develop model systems that are able to describe experimental situa-

tions and we extract the physical effects defining the charge and spin dynamics. For this

purpose, master equations have proven to adequately describe many physical situations

and, at the same time, offer an intuitive explanation of physics involved. At the same

time, they allow for analytical solutions or require only moderate computational power.

In the absence of a small expansion parameter, on the other hand, the master equation

approach is inappropriate due to its perturbative nature. This regime has lately become

a thriving research field in developing theoretical approaches that can describe non-

equilibrium physics in the strongly correlated regime. While an universal approach is not

available up to date, a number of analytical and numerical methods have been proposed,

which go beyond ordinary perturbation theory. Many of them can be categorized in

two classes depending on their starting point. One class starts from the expansion in

the tunnel coupling and systematically includes higher order expansion terms. This

approach follows e.g. renormalization group (RG) theory [16–18] or the influence path
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1.2 Scope and contributions of this thesis

integral technique (INFPI) [19, 20]. The second class of approaches is based on the

perturbative expansion in the Coulomb interaction. In the iterative summation of path

integrals (ISPI) method [21,22], for example, the Hubbard-Stratonovich transformation

is employed to decouple the quartic field operators in the Coulomb interaction term.

The expansion in orders of the resulting auxiliary field is then iteratively implemented

including a finite time history of the system. Although these methods go beyond ordinary

perturbation theory, they are restricted to a sufficiently large bias or temperature regime,

resulting from their perturbative foundation.

A special part in the zoo of non-equilibrium methods takes the diagrammatic quantum

Monte Carlo (QMC) approach. It is based on the path-integral expansion of the density

matrix and has recently been adapted to non-equilibrium situations. QMC comes in

two versions: either based on an expansion in the tunnel coupling or in the Coulomb

interaction.

Each of these methods has been applied to the Anderson impurity model that often

serves as a drosophila for the theoretical description of equilibrium and transport ef-

fects. Originally developed to describe resonances between conduction electrons in a

metal interacting with embedded magnetic impurities [23], today it serves as a model

for a variety of quantum systems ranging from atoms and molecules to quantum dots.

Its particular appeal arises from its, at first glance, simple structure: A single, spin-

degenerate electronic level with Coulomb interaction is tunnel coupled to a macroscopic

electron reservoir. Despite its idealized model character, the impurity model shows rich

dynamics, while allowing to (qualitatively) describe features of larger systems.

1.2 Scope and contributions of this thesis

This thesis is devoted to the analysis of non-equilibrium dynamics of nanostructures.

In the subsequent section, we introduce the non-interacting Anderson impurity model

and study its non-equilibrium dynamics. The Anderson impurity model in the limit of

vanishing Coulomb interaction resembles the resonant level model. Its analytical solution

will be derived and the transient dynamics in this system are discussed. Following up, the

master equation approach is introduced defining the equation of motion of the density

matrix for systems in the weak tunnel coupling regime. The master equation approach

as well as the discussion of the resonant level model will provide the foundation for the

following chapters.

In chapter 2, the master equation approach is applied to determine the charging

dynamics of a quantum dot coupled to an electron reservoir with the intention to better
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1 Dynamics in Nanostructures

understand the role of Coulomb interaction and relaxation processes in the system and in

particular the time-dependent occupation probabilities observed in recent experiments [9,

24,25]. To incorporate many-body effects, the eigenstates of a finite number of correlated

electrons in the quantum dot obtained by the exact diagonalization method are taken

into account. The electrons in the quantum dot can interact with phonons and nuclear

spins, which leads to two types of relaxation processes: 1. orbital relaxation in the dot,

which is instantaneous compared to the tunneling dynamics and 2. spin relaxation with

a time scale that can be in the order of the tunneling times. A detailed analysis of

the time dependence reveals the complex interplay between Coulomb correlations and

different spin-relaxation mechanisms.

Chapter 3 deals with the spin dynamics in a small ferromagnetic cluster on a non-

magnetic substrate. Few-atom systems have revealed magnetic bi-stability at low tem-

peratures, which manifests in a measured telegraph (flicker) signal [14,15,26–29]. Mag-

netic bi-stabilities are not only of interest as a potential implementation of information

storage, but also because they shed light on the role of the interaction between sub-

strate and tip in the dynamics of an atomic-scale magnet. We show how the dynamic

time scales can be extracted from noise measurements and reveal that the switching is

governed by the interplay of inelastic spin excitations and magnetization tunneling.

Chapters 2 and 3 both have an experimental motivation and the experimental pa-

rameters allowed for an perturbative treatment in the framework of the master equation

approach. In chapter 4, we depart from the weak tunnel coupling regime and deal with

the non-Markovian dynamics of quantum dots without small parameters. The method

of choice is the recently developed non-equilibrium Monte Carlo approach [30–32]. We

will introduce the weak tunnel coupling flavor of QMC and develop a particular version

for the strong tunnel coupling regime. The testbed for the comparison of the two meth-

ods will be the Anderson impurity model. In strong tunnel coupling QMC, auxiliary

parameters will be introduced, which has been shown to compensate the sign problem

in equilibrium. We will investigate the role of these parameters in non-equilibrium and

their potential in managing the sign problem. The weak tunnel coupling version of

QMC is extended to treat a wider class of systems by implementing the magnetic An-

derson impurity model. In the magnetic impurity model, a localized magnetic impurity

is embedded into the quantum dot, which then interacts with electrons by exchange in-

teraction. The understanding of the dynamics in this system is important in the context

of time-dependent transport experiments in systems with strong hyperfine interaction

and diluted magnetic semiconductor quantum dots [33–36]. The latter is regarded as

one of the potential implementations of a quantum storage device.
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1.3 Exact solution of the non-interacting Anderson impurity model

1.3 Exact solution of the non-interacting Anderson

impurity model

In this section, we discuss the analytical solution for the time-dependent charge dynamics

in the so-called resonant level model. The resonant level model resembles the non-

interacting Anderson impurity model (AIM) which comprises a single, spin-degenerate

level connected to two metallic leads. The single level, denoted as quantum dot in the

following, can be occupied by one spin-up electron and one spin-down electron. Coulomb

interaction between the particles is neglected, resulting in the quantum dot Hamiltonian

Hdot = εd ∑
σ=↑,↓

d†
σdσ, (1.1)

with the single-particle energy εd and quantum dot creation and annihilation operators

d
(†)
σ for spin σ =↑, ↓. The quantum dot is connected to two leads that are treated as

electron reservoirs with different chemical potentials created by applying a bias voltage.

The Hamiltonian of the left lead (L) and right lead (R) is given by non-interacting

electrons

Hlead = ∑
α∈L,R

∑
k

εα,kc
†
α,kcα,k, (1.2)

with the energy εα,k of an electron in lead α and with momentum k, and corresponding

creation and annihilation operators c
(†)
α,k. Electrons can hop from the leads into the

quantum dot and back into the leads. These processes can be described by a Bardeen-

type transfer Hamiltonian [37]

Htunnel = ∑
α,k,σ

[tα,k(t)c
†
α,k,σdσ +H.c.], (1.3)

which transforms quantum dot electrons into lead electron and vice versa [38]. The

tunnel coupling, tα,k, is determined by the overlap of single-electron wavefunctions be-

tween the subsystems. Here, we treat the tunnel coupling as a phenomenological, time-

dependent coefficient that will be specified later.

The Hamiltonian operator H = Hdot + Hlead + Htunnel is quadratic in the fermionic

operators, which allows for the analytical treatment of the system’s time evolution for

any selected parameter. In the following, we discuss this solution by means of the

non-equilibrium Green’s function (GF) formalism. For technical details on the Green’s

function technique we refer to the literature, e.g. [39,40]. The non-equilibrium approach,

also known as Kadanoff-Baym-Keldysh technique, is an extension of the equilibrium GF
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1 Dynamics in Nanostructures

t0

t

time

+

�

t0�1

Figure 1.1: The Schwinger-Keldysh contour consists of two branches, an upper branch
running from t = −∞ to time t = t0 and a lower branch returning from t = t0
to t = −∞. Calculation of quantities of interest like the occupation or current
at time t = t0 involve Green’s functions whose two time arguments, t and t′,
are propagated along both branches of the Keldysh contour.

formalism. However, while the equilibrium theory relies on the property of the system to

return to its equilibrium state at t→∞, irreversible effects break the symmetry between

t → −∞ and t = ∞ in the non-equilibrium situation. This problem can be circumvented

by propagating the system from t = −∞ to the time of measurement t = t0 and then

back to t = −∞ [41, 42]. The procedure allows to calculate expectation values of time-

dependent operators. This, however, comes at the price of extending the GF formalism

to two time branches. The equilibrium Green’s function which depends on two times,

t and t′, is replaced by the 2 × 2 non-equilibrium Green’s function matrix with times

located on the two branches of the Schwinger-Keldysh time contour (Fig. 1.1).

In the follwing, the Keldysh formalism is applied to the non-interacting AIM in order

to determine the time-dependent occupation n(t) of the single-level quantum dot. The

time-dependence is introduced by assuming that the leads and the quantum dot are

decoupled in the remote past. Each part of the system is in thermal equilibrium before

the coupling between quantum dot and leads is established at a point t = 0 in time. The

coupling, however, is included as perturbation, for which perturbation theory can be

performed analytically in all orders as demonstrated in [43,44].

We begin by introducing the Green’s function matrices for the two parts of the system,

quantum dot and leads, assuming they are initially decoupled. The treatment of the

quantum dot is particularly easy since, in the absence of Coulomb interaction, spin-up

and spin-down particles can be independently considered. In the following, we regard

only one spin species and drop the spin index. The Keldysh Green’s function comprises

four components, the lesser and greater Green’s functions, G<
0(t, t′) and G>

0(t, t′), and

the time-ordered and anti-time-ordered Greens’s functions, G0(t, t′) and G̃0(t, t′), which

6



1.3 Exact solution of the non-interacting Anderson impurity model

can be condensed into

G0(τ, τ ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G<
0(t, t′) ≡ i⟨d†(t′)d(t)⟩ if τ ∈ C+, τ ′ ∈ C−,

G>
0(t, t′) ≡ −i⟨d(t)d†(t′)⟩ if τ ∈ C−, τ ′ ∈ C+,

G0(t, t′) ≡ −i⟨T [d(t)d†(t′)]⟩ if τ, τ ′ ∈ C+,

G̃0(t, t′) ≡ −i⟨T̃ [d(t)d†(t′)]⟩ if τ, τ ′ ∈ C−,

(1.4)

with times τ, τ ′ living on the two branches C+ and C− of the Keldysh contour (cf. Fig.

1.1) and t, t′ being the associated real times. The operators T and T̃ are time-ordering

and anti-time ordering operators [39, 40]. The expectation values ⟨. . .⟩ are given with

respect to the density matrix of the system.

Two initial conditions for the quantum dot can be considered: The quantum dot level

is either unoccupied at t = 0, ninit = 0 or occupied by one electron, ninit = 1. Together

with the free time evolution of the quantum dot operators, d(t) = d(0) exp(−iεdt), the

Green’s function matrix for the quantum dot is

G0(t) =
⎡⎢⎢⎢⎢⎣

G0(t) G<
0(t)

G>
0(t) G̃0(t)

⎤⎥⎥⎥⎥⎦
(1.5)

=
⎡⎢⎢⎢⎢⎣

Θ(t)(ninit − 1) +Θ(−t)ninit ninit

ninit − 1 Θ(t)ninit +Θ(−t)(ninit − 1)]

⎤⎥⎥⎥⎥⎦
× i exp(−iεdt), (1.6)

with the Heaviside step function Θ(t). Furthermore, the retarded and advanced compo-

nents are

GR0 (t) = G0(t) −G<
0(t) = −iΘ(t)e−iεdt, (1.7)

GA0 (t) = G<
0(t) − G̃0(t) = iΘ(−t)e−iεdt. (1.8)

Similarly, the Green’s function matrix can be obtain for the lead electrons. The leads

are assumed to form a non-interacting electron gas in equilibrium at temperature T .

The corresponding Green’s functions of the uncoupled leads are

g<α,k(t, t
′) = i⟨c†α,k(t

′)cα,k(t)⟩ = ifα(εα,k) exp [−iεα,k(t − t′)] , (1.9)

g>α,k(t, t
′) = −i⟨cα,k(t)c†α,k(t

′)⟩ = −i(1 − fα(εα,k)) exp [−iεα,k(t − t′)] , (1.10)

g
R/A
α,k (t, t′) = ∓iΘ(±t ∓ t′)⟨{cα,k(t)c†α,k(t

′)}⟩ = ∓Θ(±t ∓ t′) exp [−iεα,k(t − t′)] , (1.11)

7



1 Dynamics in Nanostructures

with the Fermi function fα = [exp[(E − µα)/kBT ] + 1]−1 and the chemical potential µα

in lead α.

The analytical solution for the time evolution of system containing the quantum dot

that is coupled to the leads can be found for arbitrary time dependencies of the coupling

tα,k(t) [43, 45]. Here, we concentrate on the case where the coupling between quantum

dot and leads is switched on at t = 0, i.e. tα(t) = Θ(t) tα. The Dyson equation defines

the time evolution of the Green’s function for the quantum dot coupled to the leads and

is given by

G(t, t′) = G0(t − t′) + ∫
∞

0
dt1∫

∞

0
dt2G0(t − t1)Σ(t1 − t2)G(t2, t′), (1.12)

with the self-energy

Σ(t − t′) = ∑
α,k

t∗α gα,k(t − t′) tα. (1.13)

This matrix equation is simplified if one is interested only in a specific component, e.g.

the retarded Green’s function for times t, t′ ≥ 0,

GR(t, t′) = GR0 (t − t′) + ∫
∞

0
dt1∫

∞

0
dt2G

R
0 (t − t1)ΣR(t1 − t2)GR(t2, t′). (1.14)

Then, the solution for the retarded and advanced Green’s functions can be obtained by

iteration [43,45] and are given by

GR/A(t − t′) = ∓iΘ(±t ∓ t′)e−iεd(t−t
′)e∓Γ(t−t′). (1.15)

At first sight, G<(t, t′) has a more complicated structure that reads

G<(t, t′) = (1 +GRΣR)G<
0(1 +GAΣA) +GRΣ<GA, (1.16)

where the time convolution is implicitly assumed. The expression, however, can be

simplified considerably if an initially unoccupied quantum dot with n0 = 0 is considered,

8



1.3 Exact solution of the non-interacting Anderson impurity model

resulting in G<
0 = 0. In this case, the analytical expression for G<(t, t′) is

G<(t, t′) = GRΣ<GA,

= i∫
∞

0
dt1∫

∞

0
dt2G

R(t, t1)
⎡⎢⎢⎢⎢⎣
∑

α=L,R
∫

dω

2π
e−iω(t1−t2)Γαfα(ω)

⎤⎥⎥⎥⎥⎦
GA(t2, t′)

= i Γ

2π
∫ dω[fL(ω) + fR(ω)]∫

∞

0
dt1∫

∞

0
dt2Θ(t − t1)Θ(t′ − t2)

× e−iω(t1−t2)e−iεd(t−t1)e−Γ(t−t1)e−iεd(t2−t
′)eΓ(t2−t′)

= i Γ

2π
∫ dω

fL(ω) + fR(ω)
Γ2 + (εd − ω)2

× [e−iω(t−t
′) + e−Γ(t+t′)e−iεd(t−t

′) [1 − e(Γ+i(εd−ω))t − e(Γ−i(εd−ω))t
′

]] (1.17)

Here, a constant density of states ρ0 in each metallic lead is assumed (wide flat band

limit), which allows to define the effective single-particle tunneling rate Γα = π ∣tα∣2 ρ0

and Γ = ΓL + ΓR.

The last component of the Keldysh Green’s function can be obtained by the relation

GR(t, t′) −GA(t, t′) = G>(t, t′) −G<(t, t′). (1.18)

The same procedure can be applied if one assumes an initially occupied quantum dot

with n0 = 1. Again, an expression for G>(t, t′) can be simplified due to G>
0(t, t′) = 0.

The knowledge of the different components of the Keldysh Green’s function allows us

to calculate different time-dependent observables like the occupation of the quantum dot

or the current through the system. The quantum dot occupation n(t) = ⟨d†(t)d(t)⟩ at

time t depends only on one component of the Keldysh Green’s function,

n(t) = −iG<(t, t). (1.19)

Using the expressions derived above, the analytical results for the time-dependent quan-

tum dot occupation reads

n(t) = Γ

2π
∫ dω

fR(ω) + fL(ω)
Γ2 + (εd − ω)2

[1 + exp(−2Γt) − 2 exp(−Γt) cos((εd − ω) t)] . (1.20)

9



1 Dynamics in Nanostructures

The occupation as a function of time can be rewritten as

n(t) = (1 + e−2Γt)nstat − e−Γt ntrans, (1.21)

which distinguishes between the stationary occupation of the quantum dot, nstat, and

a transient part ntrans. The stationary occupation is asymptotically approached on a

time scale given by Γ and reads

nstat ≡ lim
t→∞

n(t) = Γ

2π
∫ dω

fR(ω) + fL(ω)
Γ2 + (εd − ω)2

, (1.22)

with µL = −µR = V /2. The integration can be performed analytically and yields the

following expressions at zero and finite temperature. The stationary occupation at finite

temperature is

nstat =
1

2
+ 1

2π
∑

α=L,R
ImΨ(1

2
+ iµα − εd + iΓ

2π kBT
) , (1.23)

with the Digamma function Ψ [46]. In the zero-temperature limit, the stationary occu-

pation is given by

nstat =
1

2
+ 1

2π
∑

α=L,R
arctan(µα − εd

Γ/2
) . (1.24)

Important properties of the stationary solution can be inferred from these equations.

The filling of the quantum dot depends on the available states in the leads defined by

the Fermi function and by the energy of the level in the quantum dot. The density

of states in the dot are not δ-distributed, but adopt a Lorentzian line shape with a

resonance at the single-electron energy and a width of 2Γ due to the tunnel coupling to

the leads (Fig. 1.2a).

The Lorentzian broadening is reflected in the stationary occupation nstat when apply-

ing a bias at low temperatures kBT ≲ Γ (Fig. 1.2b). At high temperatures kBT ≫ Γ,

the tunneling-induced broadening is covered by a temperature broadening. The time-

dependent occupation also reveals that the stationary occupation is reached at a time

scale given by Γ. Before the stationary state is reached, the transient part

ntrans(t) =
Γ

π
∫ dω

fR(ω) + fL(ω)
Γ2 + (εd − ω)2

cos[(εd − ω) t] (1.25)

contributes to the time-dependent occupation. The transient term decays on a time-

scale given by Γ and its integrand shows oscillatory behavior, which is induced by the

coherent tunneling of electrons.
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quantum dotlead lead

2Γ

�15 �10 �5 0 5 10 15
0

1
2

chemical potential

nstat

dnstat

dµL

µL/�

T

a) b)

Figure 1.2: a) Schematic depiction of the density of states in the quantum dot and the
leads. The distribution function in the leads is given by the Fermi function.
The tunnel coupling of the quantum dot to the leads induces a Lorentzian
broadening of the quantum dot level of width 2Γ. b) The stationary occu-
pation nstat and its derivative with respect to the change of the chemical
potential µL in the left lead. The other parameters are µR = εd = 0. The
occupation versus the chemical potential is shown for different temperatures
kBT = 0 (blue), 2Γ (orange), 5Γ (red). The tunneling-induced Lorentzian
broadening of width Γ is clearly observable in dn/dµL (5× magnification) for
low temperatures (kBT ≪ Γ).

In Fig. 1.3, we show the time evolution of the occupation n(t) for different quantum

dot energies ε0 and for bias voltage V = 0. If the quantum dot energy is well below the

Fermi edge of the leads, the occupation monotonically approaches the steady state given

by an occupied quantum dot nstat = 1. For εd = µL = µR, a half filling of the quantum

dot is obtained in steady state. Up to this point, the approach of the steady state is

dominated by a exponential filling of the quantum dot. For quantum dot energies that lie

above the Fermi energies of the leads, however, an overshooting is observed, accompanied

by small oscillations. These oscillations arise from the transient part and have a period

of (εd − µleads)−1, which corresponds to the energetic distance of the quantum dot level

from the Fermi edge in the leads.

Further observations can be made when considering the bias dependence of the quan-

tum dot occupation. We assume a symmetrically applied bias voltage, V , that shifts

the chemical potentials in the leads, µL = −µR = V /2, and a quantum dot level located

at εd = 0. For these parameters, the stationary occupation given by nstat = 1/2 is bias

independent. If the bias is sufficiently high, eV ≫ Γ, the time-dependent occupation

n(t) = (1 − e−Γt)nstat, (1.26)
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Figure 1.3: Exact time-dependent occupation probability versus the position of the level
energy ε0 for a non-interacting quantum dot coupled to two leads. For a
bias voltage V = 0, the time-dependent occupation for a quantum dot level
below the Fermi energy of the leads exponentially increases in first order. For
a quantum dot level above the Fermi energy, small, (ε0 − µleads)−1-periodic
oscillations are noticeable.

reduces to an exponential law that can also be obtained by a second-order perturbation

expansion in the tunneling coupling shown in the next section. In fact, a master equation

approach in second order of the tunneling coupling is only valid in the regime of large

bias and high temperatures, eV ;kBT ≫ Γ. For bias voltages and temperatures in the

order of the tunnel coupling or smaller, expansions in the tunneling coupling are invalid.

1.4 Quantum master equation approach

In the regime of weak tunnel coupling between the quantum dot and the leads, elec-

trons in the two subsystems are efficiently decoupled by the tunnel barrier. Interactions

between electrons in the subsystems other than long-range Coulomb interactions are

negligible and collective effects like the Kondo effect are of minor importance. In this

regime, the dynamics are mainly determined by the spectral properties of the quantum

dot and a master equation approach is applicable. The master equation is an equation

of motion for the reduced density operator of a subsystem. Here, the subsystem is given

by the quantum dot. However, the approach can also be conducted for a subsystem

given by the leads [47, 48]. The starting point of the derivation of the master equation
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is the von Neumann equation
d

dt
ρ = −i [H,ρ], (1.27)

for the full system described by the Hamiltonian H =Hdot +Hleads +Htunnel. Typically,

however, one is only interested in the dynamics of the reduced density operator for the

quantum dot

ρdot(t) = Trleads [ρ(t)], (1.28)

with the trace performed over the many-electron states of the leads. The quantum

master equation approach represents the dynamics of the reduced density operator of

the quantum dot under the assumption that Htunnel can be treated perturbatively.

In a first step, the operators are transformed into the interaction picture subject to

the time evolution of the uncoupled system

O(t) = exp [i(Hdot +Hleads)t] O exp [−i(Hdot +Hleads)t] . (1.29)

In the interaction picture, the equation of motion for the density operator reads

d

dt
ρ(t) = −i [Htunnel(t), ρ(t)]. (1.30)

Formally integrating the equation of motion gives

ρ(t) = ρ(t0) − i∫
t

0
dt′ [Htunnel(t′), ρ(t′)], (1.31)

and by reinserting this result into the equation of motion (Eq. 1.30) we obtain

d

dt
ρ(t) = −i [Htunnel(t), ρ(0)] − ∫

t

0
dt′ [Htunnel(t), [Htunnel(t′), ρ(t′)]]. (1.32)

Higher orders can be included by continuing the iterations [49].

The initial condition for the density operator is defined as

ρ(t = 0) = ρdot(t = 0) ⊗ ρleads(t = 0), (1.33)

where the leads are in thermal equilibrium, ρleads(t = 0) = exp(−Hleads/kBT ), with

temperature T in the leads. The quantum dot and leads are decoupled for t < 0 and

the interaction Htunnel is switched on at time t = 0. Since Htunnel changes the particle
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number in the quantum dot and the leads, the first term in Eq. (1.32) vanishes,

Trleads [Htunnel(t)ρ(0)] = 0. (1.34)

Then, the time evolution of the reduced density matrix of the quantum dot is given by

d

dt
ρdot(t) = −∫

t

0
dt′ Trleads [Htunnel(t), [Htunnel(t′), ρ(t′)]]. (1.35)

Up to this point, only the assumption of weak tunnel coupling has been made. Further

simplifications can be achieved by assuming that the tunneling has a negligible effect on

the leads represented by large electron reservoirs. The leads will stay in equilibrium at

all times, which gives ρleads(t) ≡ ρleads(0) ≡ ρleads and ρ(t) = ρdot(t) ⊗ ρleads.
With this assumption, the master equation in the non-local time version reads

d

dt
ρdot(t) = −∫

t

0
dt′ Trleads [Htunnel(t), [Htunnel(t′), ρdot(t′) ⊗ ρleads]]. (1.36)

The solution of the non-local master equation demands for propagating the density

matrix and its full history. If the lead correlation functions, however, rapidly decay on

the time scale of the dynamics in the quantum dot, they can be replaced by δ-functions

in time which allows to substitute ρdot(t′) by ρdot(t). This replacement means that

the change of the density matrix at time t only depends on its value at time t and

not on the history of the density matrix. This approximation is also known as Markov

approximation. The Markov assumption, furthermore, allows to shift the initial time to

t = −∞ if t is large compared to the correlation time in the leads.

With the shift of the initial time, the time-local master equation in the Schrödinger

picture is

d

dt
ρdot(t) = −i [Hdot, ρdot(t)] − ∫

∞

0
dt′

×Trleads[Htunnel, [ei(Hdot+Hleads)t
′

Htunnele
i(Hdot+Hleads)t′ , ρdot(t) ⊗ ρleads]].

(1.37)

The first term describes the free time evolution of the quantum dot and the second

term incorporates the coupling to the leads in second order. Restricting to the second

order in tunnel coupling corresponds to the sequential tunneling approximation in which

tunneling events through the left barrier are independent of tunneling events through the

right barrier. Thus, the effect of an electron coherently tunneling through both barriers

is neglected. As a result, the sequential tunneling approximation fails to describe the

14



1.4 Quantum master equation approach

finite conductance in the Coulomb blockade regime [50]. In fact, the approach is only

appropriate if the temperature broadening in the leads is larger than the tunneling-

induced level broadening, i.e. kBT ≫ Γ, or if a large bias voltage is applied eV ≫ Γ [51].

The local master equation (Eq. 1.37) derived above is an equation of motion for

the reduced density operator of the quantum dot. However, strong interactions of the

quantum dot electrons with the environment can lead to a short decoherence time T2.

In this regime, the off-diagonal elements of ρdot decay exponentially with 1/T2 and thus

can be neglected. When the off-diagonal elements rapidly decay, the system can be

described only by the probabilities to occupy the quantum dot many-electron states

∣n⟩ given by the diagonal elements Pn ≡ ⟨n∣ρdot∣n⟩. The equation of motion for the

occupation probabilities is given by the Markovian master equation for the diagonal

density matrix elements,

d

dt
Pn = 2π∑

i,j
∑
m

∣⟨i∣⟨m∣Htunnel∣m⟩∣j⟩∣2 (Wj Pm −Wi Pn) δ(Em −En − εi + εj), (1.38)

with the quantum dot energies En of the many-electron state ∣n⟩, the lead density ma-

trix elements Wi = ⟨i∣ρleads∣i⟩ for lead states ∣i⟩ and their associated energies εi. By

rearranging Eq. (1.38), we obtain the well-known rate equation

d

dt
Pn = ∑

m

(Wm→nPm −Wn→mPn) (1.39)

with the transition rates

Wm→n = 2π∑
ij

Wj ∣⟨i∣⟨n∣Htunnel∣m⟩∣j⟩∣2δ(Em −En − εi + εj). (1.40)

The rate equation consists of two parts describing transitions from states ∣m⟩ to ∣n⟩ and

transitions out of state ∣n⟩. Furthermore, the conservation of probability is ensured by

the structure of the rate equation, i.e. ∑n Pn(t) = 1 for all times if ∑n Pn(t = 0) = 1.

Expressions for the tunneling rates can be derived by explicitly inserting Htunnel:

Wm→n = 2π∑
ij

∑
α,β,k,k′,σ,σ′

t∗α,ktβ,k′ ⟨i∣cα,k,σ ∣j⟩⟨j∣c
†
β,k′,σ′ ∣i⟩ × ⟨n∣d†

σ ∣m⟩⟨m∣dσ′ ∣n⟩ (1.41)

× δ(Em −En − εi + εj). (1.42)

The leads are given by non-interacting electron baths in equilibrium with the lead elec-
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tron correlation functions

2π ∑
α,β,k,k′,σ,σ′

t∗α,ktβ,k′⟨i∣cα,k,σ ∣j⟩⟨j∣c
†
β,k′,σ′ ∣i⟩ = Γ f(εi − εj) δσ,σ′ . (1.43)

By inserting this expression into Eq. (1.44), rates are obtained that resemble Fermi’s

Golden Rule

Wm→n = Γ∑
ij
∑
σ

⟨n∣d†
σ ∣m⟩⟨m∣dσ ∣n⟩ f(εi − εj) δ(Em −En − εi + εj). (1.44)

The δ-function ensures energy conservation during the transition from the initial to the

final state. If an electron initially located in the leads tunnels into the quantum dot,

a transition between lead states i → j and quantum dot states m → n can be induced.

Energy conservation requires

εi − εj = Em −En = εmn, (1.45)

with the quasi single-particle level εmn in the quantum dot that is associated with the

transition from an N -state state to an (N + 1)-electron state. The energy εmn defines

the resonance energy for transport and generally does not correspond to any single-

electron orbital. In the previous section, the regime of strong tunnel coupling revealed

tunneling-induced broadening of the quasi levels. In contrast, the present weak tunnel

coupling allows tunneling into the quantum dot only at discrete energies. Each available

transition gives rise to a transport channel at energy εmn. Transport can only take place

if a lead electron with sufficient energy is available, expressed by the Pauli blocking

factor f(Em −En) (Fig. 1.4). Finally, summation over the lead states yields the rates

in sequential tunneling approximation

W +
m→n = Γ∑

σ

∣⟨n∣d†
σ ∣m⟩∣2 f(Em −En), (1.46)

W −
n→m = Γ∑

σ

∣⟨n∣dσ ∣m⟩∣2 (1 − f(Em −En)), (1.47)

and Wn→m = W +
n→m + W −

n→m. The current in the weak tunnel coupling approximation

can be obtained with the knowledge of the probabilities

I = −e ∑
n≠m

(PmW +
m→n − PnW −

n→m). (1.48)

In this Golden Rule approximation, only transitions between quantum dot states are
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quantum dotlead lead
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Figure 1.4: In the master equation approach, the distribution function of leads is given
by the Fermi function. Transport can take place whenever states in the leads
are available at the quasi single-particle levels εmn. The quasi single-particle
levels are given by the energy difference between N to N ±1-particle changes.

considered that differ by a single electron. Furthermore, it is only applicable for energies

and temperatures larger than the tunnel coupling, ∣Em −En∣; ∣eV ∣; kBT ≫ Γ.

Finally, we summarize the assumption that result in the present form of the master

equation:

• Systems are separated, ρ(t = 0) = ρdot(t = 0) ⊗ ρleads(t = 0), for times t < 0

• Electron reservoirs are in equilibrium for all times, ρ(t) = ρdot(t) ⊗ ρleads

• Time-local (Markov) approximation, ρdot(t′) → ρdot(t)

• Fast decoherence leads to rapidly decaying off-diagonal elements of the dot density

matrix, Pn ≡ ⟨n∣ρdot∣n⟩

Although many assumptions are involved deriving the master equation it has been

proven to adequately describe many experimental situations and, at the same time, it

offers an intuitive explanation of involved processes. In the next chapter, we employ

the master equation approach for the analysis of the dynamics in a quantum dot weakly

tunnel coupled to a two-dimensional electron gas.
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2 Charging and Relaxation in Open
Quantum Dots

2.1 Experimental motivation

Semiconductor quantum dots (QDs) are nanoscale objects that incorporate charge car-

riers confined in all three spatial dimensions. QDs exhibit a wide range of physical

phenomena connected to their atom-like electronic structure. Furthermore, QDs are

regarded as promising building blocks for quantum or classical information. The ap-

plication of these structures as future information devices, however, requires controlled

preparation and read out of electronic states with charge and spin degrees of freedom.

In this respect, distinct advantages have been made by using optical methods for exci-

tation and detection of self-assembled QDs [52–54]. While optical experiments allow for

comprehensive probing of the electronic structure of quantum dots, the implementation

in highly integrated devices may be difficult. An all-electrical approach is preferable

in order to prepare and detect electronic states in QDs and has been demonstrated on

lithographically defined QDs [55–58] at milli-Kelvin temperature. Recent experimental

advantages made it possible to probe self-assembled InAs QDs at liquid helium temper-

ature (∼ 4.2 Kelvin). In the following, we discuss two experimental approaches to the

time-dependent characterization of quantum dot states.

The minimal setup to electrically prepare and probe (excited) many-particle states in

a quantum dot consists of the following parts:

• a reservoir providing electrons,

• a high-sensitivity detector to read out the time-dependent state of the QDs,

• an adjustable tunnel coupling between reservoir and detector.

One example of such an experimentally realized setup is a lithographically defined

system consisting of three parts [57, 59]: a single, electrostatically defined quantum

dot coupled to electron reservoirs and a quantum point contact (schematically depicted

in Fig 2.1a). The zero dimensional quantum dot is created by a laterally modulated

two-dimensional electron gas (2DEG). The quantum dot is tunnel coupled to electron

reservoirs, and the tunnel coupling can be electrically adjusted to control the electron
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flow into and out of the QD. In this setup, the time-dependent detection of single-

electron transfers, which induces tiny currents of the order of 10−19 A, poses a major

challenge to the experiment due to the limited resolution available. However, the electron

flow through the quantum dot can be indirectly measured by capacitively coupling the

quantum dot to a quantum point contact (QPC) that acts as a highly sensitive charge

detector. When the quantum dot is charged with electrons, the potential of the QPC is

changed, which decreases the width of the 1D channel and can be sensed by the change

in the current through the QPC [55,59].

Recently, a different time-resolved spectroscopic method has been realized using epi-

taxially grown quantum dots [9]. This approach is schematically depicted in Fig. 2.1b.

In contrast to lithographically defined quantum dots, epitaxially grown quantum dots

have distinct advantages for their potential application. Their smaller size leads to a

stronger confinement, which can create an energy spacing between single-particle levels

of up to 80 meV in the quantum dots [60, 61]. The large energy spacing allows for an

application at room temperature. Furthermore, epitaxially grown quantum dots can be

produced without the need of time consuming lithography.

This chapter deals with the theoretical treatment of the experiments on epitaxially

grown quantum dots [9]. To set the scene, a short overview with some details on the

experimental techniques is given. The two main components of the experimental setup

are an ensemble of epitaxially grown quantum dots and a 2DEG that are vertically

QD QD

QPC QPC

reservoir reservoirreservoir reservoir

QD QD

2DEG
2DEG

gate gateb)a)

Figure 2.1: Two different setups to prepare and probe many-particle states in a quantum
dot. In (a), an electrostatically defined quantum dot (QD) is coupled through
adjustable tunnel barriers to electron reservoirs. The current through a nearby
quantum point contact (QPC), capacitively coupled to the quantum dot, can
be measured to detect the charge state of the quantum dot. In (b), electrons
can tunnel from a two-dimensional electron gas (2DEG) to the quantum dot
(QD). The change in the current through the 2DEG is used to determine the
charging of the QD. The potential in the QD can be adjusted by a capacitively
coupled gate electrode.
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2.1 Experimental motivation

tunnel coupled. Measuring the time-dependent conductance of the 2DEG will provide

information about tunnel dynamics between the two systems.

The experiment is performed in two steps: the initialization and the probing (Fig. 2.2).

In a first step, the potential in the quantum dots is shifted by applying a voltage between

the gate electrode and the 2DEG. By shifting the energy levels in the quantum dots

compared to the Fermi level in the 2DEG, a defined equilibrium many-electron state can

be prepared in the quantum dots. If the Fermi energy in the 2DEG is selected to be

below all energy states in the QDs, then the electrons in the QDs are depleted resulting

in a neutral charge state. The step in which the equilibrium configuration of electrons

in the QDs is prepared represents the initialization for times t < 0.

At time t = 0, the gate voltage is abruptly changed, i.e. the time needed to change

the gate voltage is shorter than the tunneling time of electrons between the 2DEG and

the QDs. The actual tunneling time in the experiments by Marquardt et. al [9] is in the

order of milliseconds. The change of the gate voltage by ∆VG creates a non-equilibrium

between the chemical potentials in the 2DEG and the QDs. If the gate potential shifts

the energies in the QDs below the Fermi energy in the 2DEG, electrons can tunnel from

the 2DEG into (excited) states in the QDs. This step represents the probing of the

quantum dot states as will be explained below.

In this setup, the 2DEG acts as an electron source as well as a highly sensitive,

time-resolved detector. The charging of the quantum dots can be controlled by the

t = 0initialization probing
time

Charging

2DEG GateQD

Unloading

2DEG GateQD

Figure 2.2: Schematic depiction of the conduction band profile of the experimental setup
consisting of an ensemble of quantum dots (QD) and a two-dimensional elec-
tron gas (2DEG) separated by a tunnel barrier. During initialization, the
applied gate voltage shifts the energies in the QD above the Fermi energy in
the 2DEG and electrons flow from the QDs into the 2DEG (arrows point into
the direction of the electron flow). At time t = 0, the applied gate voltage
shifts the QD energy levels below the 2DEG Fermi energy (probing step).
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2 Charging and Relaxation in Open Quantum Dots

gate electrode, which enables or blocks the electron transfer from the 2DEG into the

QDs. Concurrently, the time-resolved carrier concentration in the 2DEG, n2d(t), can be

gathered by recording the current through the 2DEG

I2d(t) ∝ n2d(t)µ2d(t), (2.1)

with µ2d(t) being the electron mobility. After the initialization step, the QDs and 2DEG

relax to equilibrium, and the measured current is defined by the carrier density n2d in

the 2DEG and their mobility µ2d. When the gate voltage is abruptly changed at t = 0,

electrons start to tunnel from the 2DEG into the ensemble of quantum dots and the

time-dependent current I2d(t) decreases considerably. Two sources for the decay of the

current can be identified [24]. The electrons tunneling into the QDs deplete the 2DEG

and are no longer available for transport, thus, reducing the current (cf. Eq. 2.1). The

proportionality of the change of charge carriers in the QDs, nQD, and in the 2DEG, n2d,

can be estimated by the lever arm law [62,63]

∆nQD ∝ (1 − 1

λ
)∆n2d, (2.2)

where λ is the lever arm. Additionally, the electrons in the quantum dots act as Coulomb

scatterers and have an impact on the mobility µ2d in the 2DEG. Marquardt et. al [24]

have shown that in the actual experimental measurements the change in the number

of carriers and the change in the electron mobility result in contributions of the same

order.

The experimental spectrum of the time-resolved charging of the quantum dots is de-

picted in Fig. 2.3. The surface plot shows the change in current through the 2DEG,

∆I2d(t) = I2d(0) − I2d(t), differentiated with respect to the gate voltage, d∆I2d/dVG, as

a function of time and for different gate voltages. Distinct peaks evolving in time be-

come visible, corresponding to the charging of the quantum dots with different numbers

of electrons. Each additional peak emerging as the gate voltage is increased, indicates

that on average an additional electron is tunneled into each of the quantum dots due to

the relation d∆I2d/dVG ∝ dnQD/dVG.

In Nat. Commun. 2:209 (2011) [9], we have specified the many-body states in the

quantum dots that participate in the measured relaxation dynamics. In the following,

we will show how the charging dynamics can be derived by a master equation and how

intrinsic and extrinsic mechanisms determine this dynamics.

22



2.2 Time evolution in quantum dots

Figure 2.3: Surface plot (a) of the experimentally measured signal d∆I2d/dVG as a func-
tion of time and gate voltage (here denoted as probe bias Vp). The initially
empty quantum dots are charged by changing the gate voltage at t = 0. Dif-
ferent many-electron states can be identified in traces taken at different times
(b–e). At t = 10 ms, an equilibrium has been reached with peaks indicating
the 1 − 6 electron ground states (denoted as s1, s2 and p3 − p6). Taken from
Marquardt et al., Nat. Commun. 2:209 doi: 10.1038/1205 (2011), licensed
under CC BY-NC-SA 3.0 [64].

2.2 Time evolution in quantum dots

Quantum dots are low-dimensional systems in the size of nanometers with a quantum

confinement in all three spatial dimensions. Widely used methods to build QDs are based

on the processing of a semiconductor heterostructure which contains a two-dimensional

electron gas. The movement of the conduction electrons is restricted by either electro-

static gates, by etching or by applying special growing techniques in their fabrication.

While various methods exist to fabricate QDs, their electronic structure can often be

successfully described on the basis of the effective mass approximation. In this approach,

the conduction electrons in the QD are treated as a separate electron system, and ef-

fects of the interaction with valence and core electrons as well as the effect of the lattice

structure are taken into account effectively. The effective, separate system is constructed

by assigning an effective mass m∗ to the electrons and describing their interaction by a

screened Coulomb potential with the static dielectric constant ε of the underlying semi-

conductor. For small momenta and low temperatures, typical values are m∗ = 0.067me

for GaAs and m∗ = 0.026me for InAs [65–67].
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2 Charging and Relaxation in Open Quantum Dots

The Hamiltonian of N interacting electrons in a quantum dot is given by

HQD =
N

∑
i

H
(1)
i +

N

∑
i<j

e2

ε∣r⃗i − r⃗j ∣
, (2.3)

where the electron motion is assumed to be confined in the (x, y) plane and ε denotes

the dielectric constant of the bulk material. Usually, the precise form of the lateral

confinement potential in quantum dots is not known. However, the model of an isotropic

parabolic potential given by

H
(1)
i = ∣p⃗i∣2

2m∗ +
m∗ω2

0 ∣r⃗i∣2

2
. (2.4)

has been very successfully applied to describe the low-energy spectrum of quantum

dots [68]. The strength of the confinement potential is characterized by h̵ω0 and the

effective mass is given by m∗. Position and momentum of the particles in the (x, y)
plane are denoted by r⃗i and p⃗i. The energy spectrum and the few-electron eigenstates

of the Hamiltonian HQD in Eq. (2.3) are determined by exact diagonalization including

correlation effects.

In order to calculate the charging dynamics of a quantum dot, the time-dependent

probabilities Pβ of occupying the many-electron states ∣β⟩ are determined by a master

equation. The master equation approach is justified by the long tunneling times relevant

for the experiment (milliseconds), meaning that the system is in a weak coupling regime

in which the electrons in the quantum dot efficiently decouple from the electrons in

the 2DEG. Electrons sequentially tunnel between the systems, and the charging times

are mainly determined by the bare single-particle tunneling time as well as spectral

properties of the quantum dot.

The experimental setup is modeled by the transport Hamiltonian

Htrans =HQD +H2d +Htunnel, (2.5)

where Htunnel describes the electron tunneling between the 2DEG (H2d) and the QD

(HQD, cf. Eq. 2.3). The electrons in the reservoir are considered to represent a nearly

free electron gas described by the Hamiltonian

H2d = ∑
k⃗

ε
k⃗
c†
k⃗
c
k⃗
, (2.6)

where c
(†)
k⃗

is the annihilation (creation) operator for an electron with energy εk⃗ in the

24



2.2 Time evolution in quantum dots

2DEG. The treatment of the 2DEG electrons as nearly free is justified by their rela-

tively high density, which leads to an effective screening of the Coulomb interaction

between electrons. The quantum dot Hamiltonian is given by HQD (in Eq. 2.3). The

quantum dot energies, however, are shifted by an electrostatic potential eVG due to an

externally applied gate voltage V
(ext)
G . The relation between the gate bias and the elec-

trostatic potential imposed on the quantum dot can be described by the lever arm model

VG ≈ λ−1V
(ext)
G , with the lever arm λ depending on the experimental geometry [63]. In

the following, we use the effective electrostatic potential, resulting in the following QD

energies

Eα = E0
α −N eVG, (2.7)

where E0
α are the bare quantum dot energies obtained from Eq. (2.4) and N is the

number of electrons in state α. Similarly, an electrostatic coupling to the 2DEG can be

modeled, which is assumed to be constant throughout the calculations.

The quantum dot and the 2DEG are coupled by the tunneling Hamiltonian

Htunnel = ∑
a,b,k⃗

t
k⃗,a
c†
k⃗
da + t∗k⃗,b ck⃗ d

†
a, (2.8)

which transfers electrons between the 2DEG and the QD by creating a quantum dot

electron in the single-particle state ∣a⟩ and simultaneously annihilates an electron in the

2DEG, and vice versa. The tunneling matrix elements tk⃗,a are given by the overlap of

electron wave functions in the quantum dot and in the 2DEG, which depends on the

properties of the tunnel barrier. An exact model of the tunnel barrier is difficult to

obtain since electrons in the 2DEG screen the applied electrostatic potentials, and the

barrier potential is disturbed by impurities. In the following, however, the focus will lie

on the impact of spectral properties of the quantum dot on charging time scales and

thus a phenomenological transmission coefficient will be used.

Following Fermi’s Golden Rule [69], rates can be obtained to describe the charging

dynamics of a quantum dot when coupled to a 2DEG in a master equation approach.

Within the sequential tunneling approximation, the time-dependent probabilities Pβ of

finding the quantum dot in a few-electron eigenstate ∣β⟩ can be obtained for different

times t by solving
d

dt
Pβ = ∑

α≠β
Γα→βPα − Γβ→αPβ, (2.9)

where Pα is the occupation probability of the many-electron state ∣α⟩ in the quantum

dot. Tunneling into and out of the quantum dot changes the occupation probabilities
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2 Charging and Relaxation in Open Quantum Dots

according to

Γα→β = Γ0∑
a

∣⟨β∣d†
a∣α⟩∣2 f(Eβ −Eα − eVG)

+Γ0∑
a

∣⟨β∣da∣α⟩∣2 (1 − f(Eα −Eβ + eVG)), (2.10)

where Γ0 is the bare single-electron tunneling rate given by Γ0 = 2π
h̵ ∑k⃗ t

∗
k⃗
tk⃗δ(ε − εk).

Transitions between quantum dot states are proportional to the Fermi function f in

the 2DEG and to the spectral weights ∣⟨β∣d(†)a ∣α⟩∣2. In the absence of correlations, the

spectral weights result in a factor that is equal to the degeneracy of available eigenstates

at a specific energy. In the present approach, the information on the density of states in

the back contact, the transmission of the barrier, and the overlap between electrons in the

quantum dot and the 2DEG is encoded in the rate Γ0 [70,71]. Because of the multitude

of parameters determining the specific dependence of Γ0 and in order to keep the model

simple, a constant tunneling probability is assumed in the following. Furthermore, the

tunneling rates in the present form do not incorporate the band bottom of the two-

dimensional electron gas. Electrons can only tunnel into quantum dot states that are

energetically located between the band bottom E0 and the Fermi energy EF in the 2DEG,

which is determined by the carrier density n2D = (EF −E0)m∗/(πh̵2) [72]. However, if

the conduction band width is large compared to the available quantum dot energies, the

present transition rates are valid in a first-order approximation.

2.2.1 Time evolution of a single-level quantum dot

Preceding the results for a many-level quantum, a toy model of a quantum dot with

a single electronic level is discussed in order to highlight relationships determining the

charging times. A QD Hamiltonian

HQD = (εd − eV )(n↑ + n↓) +Un↑n↓, (2.11)

describes a spin-degenerate level of energy εd that can be occupied by two electrons at

most, interacting through a Coulomb term with strength U . The eigenstates of this

system are given by an emptry quantum dot ∣0⟩, a single-electron with spin up ∣ ↑⟩ or

spin down ∣ ↓⟩, and a doubly occupied quantum dot ∣ ↑ ↓⟩. The time evolution of the

probabilities Pα of occupying the these states of the dot is given by the rate equation
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2.2 Time evolution in quantum dots

Ṗ =WP with the rates

W = Γ0

⎛
⎜⎜⎜⎜⎜
⎝

−2f+(ε) f−(ε) f−(ε) 0

f+(ε) −f−(ε) − f+(ε +U) 0 f−(ε +U)
f+(ε) 0 −f−(ε) − f+(ε +U) f−(ε +U)

0 f+(ε +U) f+(ε +U) −2f−(ε +U)

⎞
⎟⎟⎟⎟⎟
⎠

, (2.12)

where ε = εd−eVG is the effective single-particle energy in the presence of a gate potential.

The full time-evolution of the occupation probabilities including the charging rates of

the quantum can be obtained by calculating the eigenspace of the non-Hermitian matrix

W . The formal solution reads

P (t) = ∑
i

exp(γi t) (r⃗i ⊗ l⃗i)P (0), (2.13)

where l⃗i and r⃗i are the left and right eigenvectors of W associated with the eigenvalue

γi. The matrix W is not decomposable and time-independent, which implies that one

eigenvalue is equal to zero and a stationary solution Peq exists for t→∞ [73].

In the following, we are interested in the time scales of the time-dependent charge

n(t) in the quantum dot. Using the solution of the time-dependent occupations P (t),
we find that the time-dependent occupation is given by

n(t) = nin e−γcharget + neq (1 − e−γcharget), (2.14)

with the rate

γcharge = Γ0 [f+(εd − eV ) + f−(εd − eV +U)] . (2.15)

The initial occupation of the quantum dot nin decays, while the equilibrium occupation

neq =
2 f(ε)

1 + f(ε) − f(ε +U)
, (2.16)

emerges on a time scale given by the rate γcharge. In order to make a connection to the

experimentally measured spectra, the change of the time-dependent electron number in

the quantum dots with respect to the gate voltage is obtained from

dn

dVG
(t) = (1 − e−γt)

dneq

dVG
+ t e−γt (neq − nin)

dγ

dVG
. (2.17)

The first part of Eq. (2.17) describes the exponential time evolution toward the equilib-

rium signal
dneq
dVG

, while the second part accounts for the transients relating to the change
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2 Charging and Relaxation in Open Quantum Dots

ε ε + U

Γ

2Γ

εd εd + U

Γ

2Γ

ε ε + Uεd εd + Uε ε + U

(2Γ)−1

Γ−1

εd εd + U

(2Γ)−1

Γ−1

0 1 20 1 2

L−1{nQD}dnQD

dVG

nQD

tu
n
n
el

in
g

ra
te

gate voltage (VG)

ti
m

e
(t

)

Figure 2.4: The time-dependent occupation n(t), dn/dVG and the inverse Laplace trans-
form L−1{n(t)} for a toy model of a single-level quantum dot. Peaks in dn/dVG
show the charging of the quantum dot with one and two electrons at the posi-
tion of their respective charging energies. The inverse Laplace transform L−1
reveals the rates and amplitudes of the exponential charging.

of the tunneling rate γ.

While the toy model exhibits only a single time-scale for the charge, later calculations

will reveal a variety of different decay rates for a more complex quantum dot model.

In order to uncover the time scales in the time-dependent occupation probability n(t),
we introduce the inverse Laplace transform L−1{n(t)} applied to n(t), defined as the

inverse function to the Laplace transform

L{f(t)} = ∫
∞

0
dt e−st f(t). (2.18)

While n(t) is given by a multi-exponential function, L−1{n(t)} returns a delta func-

tion depending on the charging rates (Fig. 2.4). The inverse Laplace transform of the

time-dependent occupation number is a convenient approach to quantitatively compare

experimental measurements with theoretically obtained dynamics [74,75].

2.3 Relaxation mechanisms

The transition rates in the master equation discussed so far induce transitions between

quantum dot states by changing the electron number. In the following, intrinsic and

extrinsic relaxation in the quantum dots due to interactions with the environment are

discussed. While intrinsic relaxation mechanisms are related to phonons or spin-orbit in-
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2.3 Relaxation mechanisms

teraction, extrinsic relaxation mechanisms arise from the coupling to an external electron

reservoir (e.g. an electron gas). Different means of relaxation are exemplarily discussed

to include them as effective rates for orbital and spin relaxation in the master equation.

2.3.1 Intrinsic relaxation due to interaction with phonons

Transitions between non-degenerate quantum dot states can be induced by phonon in-

teraction while keeping the number of electrons constant. Commonly, bulk phonons

are discussed as the main relaxation mechanism. While this approach is not always

accurate because quantum dots are formed at a heterointerface, considering only bulk

phonons has proved to be adequate in explaining experimental observations of phonon

relaxation [76–78]. Generally, two types of phonon interaction are distinguished, de-

pending on the particular way in which electric field fluctuations are generated. The

deformation of the crystal lattice alters the band-gap in space and leads to fluctuations

in the electric field associated with the so-called deformation potential (DP) phonons.

While DP phonons emerge in all semiconductors, so-called piezo-electric (PZ) phonons

occur in polar crystals like GaAs, where strain leads to electric fields.

The interaction of electrons in the dot with phonons can be captured in the following

Hamiltonian

He,ph = ∑
k⃗,q⃗,σ

Mq⃗,λ (−b†q⃗,λ + bq⃗,λ) c
†
k⃗+q⃗,σck⃗,σ, (2.19)

where b†q⃗,λ, bq⃗,λ are phonon creation and annihilation operators, q⃗ is the three-dimensional

phonon wave vector, λ is the phonon’s polarization (one longitudinal and two transver-

sal), and c
(†)
k⃗,σ

create/annihilate electrons with momentum k⃗ and spin σ. The geomet-

rical factors Mq⃗,λ measure the electric field strength and define the dispersion relation

of phonons. Piezo-electric phonons scale as 1/√q, while deformation potential phonons

scale as
√
q. Small phonon energies correspond to long wavelengths associated with the

piezo-electric effect, while higher phonon energies are linked to the deformation potential.

The matrix elements connecting different orbitals depend on the size of the quantum

dot and the phonon wavelength [79]. The electron-phonon interaction is averaged out

for high phonon energies, where the phonon wavelengths are much shorter than the size

of the quantum dot. For very small energies, the electron-phonon coupling decreases

as well, because phonon wavelengths much longer than the quantum dot size just shift

the entire potential of the quantum dot without coupling different orbitals. The most

efficient electron-phonon coupling inducing transitions between quantum dot orbitals

occurs for phonon wavelengths comparable to the quantum dot size.
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2 Charging and Relaxation in Open Quantum Dots

Electrons can dissipate and absorb energy due to phonon interaction. However, the

isolated action of the phonon interaction conserves the total spin and cannot induce

spin transitions in the quantum dots. Therefore, we discriminate between purely orbital

relaxation caused by the dissipation of energy through phonons and spin relaxation.

Spin relaxation in the quantum dots can be affiliated to two principle mechanisms [57].

Hyperfine interaction of the lattice nuclei with the electron spins evokes spin relax-

ation [80–82]. While the nuclei and electrons can exchange momentum, the discrepancy

between energy scales prevents energy exchange. Thus, energy relaxation between differ-

ent spin states occurs due to the combination of hyperfine and phonon coupling. If the

relaxation mechanism is produced by such higher order process, spin relaxation times

can be very long compared to orbital relaxation [76].

An additional spin relaxation mechanism is associated with spin-orbit coupling, which

induces spin-flip transition. Spin-orbit coupling arises in solids due to internal magnetic

fields. For example, the bulk inversion asymmetry in crystals like the zinc-blende struc-

ture of GaAs leads to a contribution to the spin-orbit interaction, denoted as Dresselhaus

effect [83,84]. Furthermore, structural inversion asymmetry due to asymmetric confining

potentials contribute to the spin-orbit coupling, which is known as Rashba term [85,86].

The type and magnitude of relaxation mechanisms present in experiments depends

on various factors like the material of the QDs, temperature, and internal and external

fields [57]. The later analysis, however, does not aim at a quantitative description of

relaxation processes, but will include orbital and spin relaxation as an effective transition

mechanism in the master equation.

2.3.2 Extrinsic spin relaxation due to interaction with an electron bath

In the previous section, two intrinsic mechanisms producing spin relaxation have been

described: spin-orbit interaction and hyperfine interaction with nuclear spins. Spin-

flip times can be as short as a few 10 ns without magnetic fields and up to a few

milliseconds with an applied magnetic field [57]. If the quantum dots are strongly coupled

to an electron reservoir and the intrinsic relaxation times are long compared to the

tunneling time, then extrinsic spin-relaxation mechanisms due to electron tunneling can

be important [87].

In order to illustrate the basic mechanisms involved in extrinsic spin-relaxation, we

consider a spin-degenerate level with energies E↑ = E↓ = E coupled to a single electron

reservoir. The distance between the Fermi energy EF in the reservoir and the energy

levels in the quantum dot is denoted by ∆ = E−EF . The relevant states in the quantum
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2.4 Charge dynamics in multi-level quantum dots

dot are empty (P0) and singly occupied with spin up or down (P↑ and P↓). The sequential

tunneling rates in this simplified model are given by

γ+ = Γ0 f
+(∆), (2.20)

γ− = Γ0 f
−(∆), (2.21)

for processes that involve an electron tunneling into (γ+) and off (γ−) the quantum dot.

Here, f±(∆) = [1+ exp(±∆/kBT )]−1 corresponds to the Fermi function of the lead. The

next order transition rates associated with double exchange of electrons between the

quantum dot and reservoir involve the virtual states ∣ ↑⟩ and ∣ ↓⟩

γ2 =
2π

h̵
∑
k

NF ∣Wk∣4 ∣
1

∆ −Ek + i0
∣
2

f+(Ek) f−(Ek), (2.22)

where Ek is the energy of an electron in the reservoir. The transition rate γ2 is relevant

for energies ∣∆∣ ≫ kBT , when contributions for Ek ≈ ∆ are exponentially suppressed. In

this low temperature regime, the transition rates can be approximated as

γ2 = Γ̃2
0

kBT

∆2
, (2.23)

with Γ̃2
0 = h̵

2πΓ2
0 and Γ0 = 2π

h̵ NF ∣Wk∣2. Solving this model gives two relevant time scales

associated with charge P↑ + P↓ and spin P↑ − P↓. The rates corresponding to charging

(γcharge) and spin relaxation (γspin) are given by

γspin = γ− + 2γ2, (2.24)

γcharge = γ− + 2γ2
+. (2.25)

Both rates receive contributions in the order of the square of the tunneling time. While

extrinsic spin relaxation has been observed in strongly coupled systems [88], this type of

relaxation mechanism is of minor importance in quantum dots for which the tunneling

time is long compared to the instrinsic relaxation time. At a later point in chapter 3,

we will show that extrinsic relaxation can have a strong impact on the spin noise.

2.4 Charge dynamics in multi-level quantum dots

In section 2.2.1, the time scales of the charge dynamics of a single-level quantum dot

are determined by the bare tunneling time Γ0 and the degeneracy of the participating
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2 Charging and Relaxation in Open Quantum Dots

quantum dot states. In the following, we extent the study to a many-orbital quantum dot

in order to examine the effects of orbital correlations and intrinsic relaxation mechanisms

on the charging dynamics.

We start with the discussion of the conditions in the experiment by Marquardt et.

al [9]. The energies in the self-assembled InAs quantum dots correspond to a level spacing

of h̵ω0 = 52 meV and an effective Hartree energy of Ha∗ = Ha m∗/(meε
2) = 7.1 meV.

These parameters have been obtained by fitting h̵ω0 to the energy spacing between the

signals corresponding to the first electron tunneling into the s, p, and d shell, associated

with the degenerate single-electron ground state and excited states. The strength of the

Coulomb interaction can be adjusted by identifying the position of the signal associated

with the two-particle ground state. For these particular parameters, the electrons in the

quantum dots can be regarded as weakly interacting. The exact many-particle states

together with the corresponding energies EiN for N = 1−6 electrons are calculated using

exact diagonalization [89]. Considering the symmetries of the system, a classification of

eigenstates by the angular moment L, the total spin S and by spin projection Sz can be

achieved.

The sequential tunneling of an electron into a quantum dot changes the electron

number N → N + 1 whenever the tunneling condition

∆EN+1 = EiN+1 −E
j
N ≲ eVG. (2.26)

is fulfilled (assuming kBT ≪ ∆EN+1). Relaxation, e.g. through phonons, however,

modifies the tunneling condition if relaxation occurs on time scales that are in the

order of the tunneling time or faster. In a first step, an instantaneous orbital and spin

relaxation is assumed (orders of magnitude faster than the tunneling time), which leads

to the tunneling condition

∆EN+1 = EiN+1 −EGSN ≲ eVG, (2.27)

where EGSN is the energy associated with the N -particle ground state.

In Fig. 2.5, the energy differences ∆EN+1 obtained by exact diagonalzation are shown

together with their degeneracy and total spin of the final (N+1)-state. Using the ob-

tained energies and many-particle states, the transition rates for the master equation

are evaluated. We obtain the charge dynamics for an initially empty quantum dot by

solving the master equation and calculating the inverse Laplace transform of the particle

density depicted in Fig. 2.6.
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2.4 Charge dynamics in multi-level quantum dots

Each line shown in the depiction of the inverse Laplace transform corresponds to a

rate associated with a charge state of the quantum dot. As the gate voltage increases,

additional rates emerge, which can be attributed to intermediate and final charge states.

In the regime of gate voltages between 1.0 − 2.0 h̵ω0, the first two electrons are charged

into the respective ground states. Similar to the previous example of a single-level

quantum dot, the time scale for charging the multi-level quantum dot with electrons

is associated with the degeneracy of states. Moreover, the charging times of electrons

tunneling into p and d orbitals at multiples of h̵ω0 can be identified. They correspond

to the number of all available one-electron states at the specific gate voltage. Similarly,

the many-particle charging rates depend on the degeneracy of many-particle states.

Correlations, however, can reduce their magnitude, which can be seen, for example, in

the charging of two-particle states.

For gate voltages between 2.0 h̵ω0 and 2.5 h̵ω0, excited two-particle states are charged.

The charging time at an energy associated with the lowest two-particle triplet state

cannot be purely described by the degeneracy factor. For example, transition rates

between a single spin-up electron state and two-electron states given by the singlet

ground state and states with S = 1, Sz = {0,1}, and L = ±1, would result in a deceptive

rate of Γ = 5 Γ0.

The exchange correlations of the states with S = 1, Sz = 0 and L = ±1, however,

reduce the total transition rate observed in Fig. 2.6. Similarly, Coulomb correlations

can reduce the transition rates, which are proportional to the Fermi function as well as
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Figure 2.5: Low-lying energy spectrum of the quantum dot with up to 6 electrons with

spin and multiplicity. The energy difference ∆E(N+1) = E
(N+1)
α − E(N)GS is

shown, based on which the required gate voltage for a transition by a tunneling
electron can be inferred according to ∆EN+1 ≲ eVG.
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2 Charging and Relaxation in Open Quantum Dots

to the spectral weight Sαβ = ∑a ∣⟨β∣d
†
a∣α⟩∣2. The effect of Coulomb correlations will be

examined in more detail in the next section.

The trace of tunneling rates exhibits distinct features that do not only depend on

the bare tunneling rate, but are also associated with degeneracy and correlations in the

quantum dot. With the knowledge of the time scales in the system, the time-dependent

charging of a quantum dot can be determined and compared to the experiment. For this

purpose, a Laplace transform

n(t) = ∫ dΓL−1 exp(Γt) (2.28)

is applied to the numerically obtained data shown in Fig. 2.6 in order to obtain the charge

density n(t) versus gate voltage. The differential conductance of the 2DEG measured

in experiments depends on the change of the charge state in the quantum dots with

respect to the gate voltage dn(t)/dVG (c.f. sec. 3.1). The signal only indicates a change

in the charge occupation with respect to the gate bias and, thus, can give information

about charging times, but not individual tunneling channels. In the following calculation

of n(t), a Gaussian broadening of width σ = 0.1 h̵ω0 is applied to simulate an ensemble
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Figure 2.6: Upper panel shows the equilibrium occupation neq = limt→∞ n(t) of the quan-
tum dot with up to 4 particles. The inverse Laplace transform (lower panel)
uncovers the rates involved in the time evolution from non-equilibrium to equi-
librium. Examples for the effect of degeneracy and correlations in the quantum
dot are highlighted. The line spread across the Γ axis has been broadened to
ease the readability of the lower plot. The tunneling rate Γ = 12 Γ0 emerging
at eVG = 3.0 h̵ω0 is not shown.
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2.4 Charge dynamics in multi-level quantum dots

broadening and allow for a clearer depiction.

The simulated time-dependent charging depicted in Fig. 2.7 reproduces many features

of the experimental data (Fig. 2.3), despite having approximated the bare tunneling time

as being constant.

For short times, peaks at multiples of the harmonic confinement energy are noticeable

and are associated with the charging of a single electron into the s, p and d shell. The

long-time limit exhibits distinct peaks when an additional electron charges the quantum

dots and induces transitions exclusively between ground states. During the charging

toward the equilibrium state, several transients appear that depend on the charging times

in Fig. 2.6. These transients only indicate a change in the transient charge occupation

(signal ∝ dn(t)/dVG). While different features are reproduced, a quantitative analysis is

limited by undetermined effects like, for example, the energy dependence of the tunnel

barrier. Nevertheless, the present analysis demonstrates the characteristics originating

from the electronic structure of the quantum dots.

tim
e 

(Γ
₀)
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5

1 2 3
gate voltage (ħω₀)

Figure 2.7: Density plot of dn
dVG

(t) as a function of gate voltage VG and time t (blue to

red equals low to high). Different peak structures are recognizable, which
correspond to electrons charging into ground states and excited states. At
short times, three distinct peaks at multiples of h̵ω0 are associated with the
single-particle charging into the quantum dot orbitals. Another transient peak
corresponds to the charging of an excited two-particle state with S = 1. Long
times exhibit peaks for transitions between (n−1) → n particle ground states.
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2 Charging and Relaxation in Open Quantum Dots

2.4.1 Coulomb correlation and spin relaxation

The effects of Coulomb correlation and relaxation on the charging times are unveiled

in Fig. 2.8 for the example of a 2 → 3 particle transition rate. Fig. 2.8 (left) shows the

transition rate between the two-particle ground state and all accessible three-particle

states as a function of gate voltage and for different level spacings in the quantum dot.

A QD with a harmonic confinement strength of h̵ω0 = 50 meV (Fig. 2.8, dark blue)

can be regarded as weakly correlated,1 and the effective transition rates are primarily

associated with the degeneracy of states. For smaller confinement energies, Coulomb

interaction leads to stronger correlated states and the absolute value of the spectral

weight is reduced. Consequently, the steps in transition rates are not only shifted to

higher gate voltages proportional to the strength of Coulomb interaction, but also their

magnitude is reduced by the effect of Coulomb correlations. In strongly correlated

quantum dots, the charging time of many-particle states is prolonged compared to weakly

correlated quantum dots.

Fig. 2.8 (right) shows the impact of a spin relaxation time much larger than the

tunneling time on the effective transition rate between 2 and 3 particle states. When the

relaxation time is long compared to the tunneling time, a finite probability of occupying

excited states exists. In the example of two particle configurations, the ground state

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Vp/h̄!0

0

2

4

6

8

10

12

14

16

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Vp/h̄!0

0

10

20

30

40

50

60

70

50 meV
20 meV
10 meV
 5 meV
 3 meV

�
e
f

f
/
�

0

eVG/~!0 eVG/~!0

~!0

Figure 2.8: Effective rate for changing the electron number in the QD from 2 to 3 for
different single-particle energies h̵ω0 (Ha∗ = 7.1meV from [9]) with fast spin
relaxation rate (left) and slow spin relaxation rate (right). In the left figure,
only transitions between the 2-particle ground state and all available 3-particle
states at a given gate voltage are involved. Large h̵ω0 lead to transition rates
determined by the degeneracy and exchange correlations, while at smaller h̵ω0

Coulomb correlations reduce the transition rates. In the right panel, transi-
tions from the 2-particle ground state (singlet) and first excited spin state
(triplet) to the available 3-particle states give rates that are one magnitude
larger than in the left panel.

1h̵ω0/Ha∗ ≈ 7.3 for self-assembled InAs QDs in [9].
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2.5 The role of the tunneling matrix element

(singlet) and also the first excited states (triplet) are initially available, which results in

a larger number of possible transitions. The effective transition rates shown in Fig. 2.8

(right) become one magnitude larger than in Fig. 2.8 (left).

2.5 The role of the tunneling matrix element

In the previous sections, the single-electron tunneling rate in different quantum dot

orbitals has been considered as a constant rate Γ0. In the following, we discuss conse-

quences of including the effect of the overlap between single-particle wave functions in

the quantum dot and a two dimensional electron gas. The transition rates for tunneling

through the barrier separating QD and 2DEG are proportional to the overlap matrix

elements tk⃗. These matrix elements can be expressed by [37]

tk⃗ = −
h̵2

2m
∬ d2S (Ψ∗

qd

∂Ψ2d

∂z
∣
z=z0

−Ψ2d
∂Ψqd

∂z
∣
z=z0

) . (2.29)

The integration has to be carried out in the plane separating the 2DEG and QD at z = z0.

Neglecting the coupling between x, y and z coordinates, the following wave functions for

the two domains of the barrier can be used

Ψ
(ν)
2d = exp(ikxx) exp(ikyy)χ2d(z), (2DEG) (2.30)

Ψ
(n,m)
qd = Ψ

(n,m)
qd (x, y)χqd(z), (QD) (2.31)

where Ψ
(ν)
2d and Ψ

(n,m)
qd are the single-particle wave functions in the 2DEG and QD,

respectively. The 2DEG wave function can be expressed as plane waves with momentum

k⃗ in the x − y plane and a separated part χ2d in z direction. The QD wave function

is also separated into a part Ψ
(n,m)
qd depending on the quantum numbers n,m and a

z-dependent part χqd. Assuming the 2DEG and QD stacked in z-direction with the

interface at z0, the transfer matrix elements reads

tk⃗ = −
h̵2

2m
(χ∗qd

∂χ2d

∂z
∣
z=z0

− χ2d
∂χqd

∂z
∣
z=z0

) Ψ̃qd(kx, ky), (2.32)

where Ψ̃qd(kx, ky) is the Fourier transform of the quantum dot wave function Ψqd(x, y).
In Fig. 2.9, the single-particle tunneling rates Γ = 2π

h̵ ∑k⃗ t
∗
k⃗
tk⃗ δ(ε − εk) (Eq. 2.10) are

calculated for resonant tunneling into different quantum dot orbitals as a function of the

QD size `QD =
√
h̵/m∗ω0 and the Fermi vector kFermi = ∣k⃗Fermi∣ of the tunneling electron.

The z-dependent part of the transfer matrix elements is assumed to be independent of
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2 Charging and Relaxation in Open Quantum Dots
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Figure 2.9: Single-particle rate Γ for tunneling into different QD orbitals as a function of
QD size `QD and Fermi wave vector in the 2DEG kFermi. The inset schemat-
ically depicts the orbitals in an isotropic harmonic potential. Experimen-
tally determined values are marked by a vertical black line corresponding to
`QD = 8nm and kFermi = 0.2 nm−1 [25]. The tunneling rates are normalized
by Γ0 associated with tunneling into an s-orbital at kFermi ⋅ `QD = 1.6.

the specific QD orbitals and constant. Then, the momentum integral is calculated by

integrating over the Fermi circle.

The tunneling rates for different orbitals strongly dependent on the size of the quantum

dot and the Fermi wave vector kFermi, which itself depends on the carrier density in the

2DEG. For small quantum dots and small wave vectors, tunneling into an s and p orbital

is faster compared to tunneling into the d-shell. The single-particle ground state in the

QD is localized at the center and gives rise to larger contributions for a small wave vector.

For larger quantum dots and larger wave vectors, tunneling into s orbitals becomes the

slowest process. The larger contributions from p and d orbitals together with the high

degeneracy leads to the fast charging times experimentally observed for excited states

and many-electron ground states [9].

2.6 Summary

We have studied the charging times emerging in the time-evolution of a multi-level

quantum dot with full Coulomb interaction coupled to an electron gas, after a sudden

change in the gate potential. Employing exact diagonalization and a master equation

approach revealed various contributing factors determining the charging time scales:

degeneracy of the quantum dot states, exchange and Coulomb correlations, internal

relaxation, and overlap between single-particle wave functions in the quantum dot and
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2.6 Summary

the electron gas.

A toy model of a single-level quantum dot showed that the degeneracy together with

the bare tunneling rate defines the charging rate of electrons into the system. The

analysis have been extended to a multi-level quantum dot where tunneling rates are no

longer uniquely determined by the degeneracy. Exchange correlation prevalent in many-

electron states reduce the magnitude of spectral weights and, as a consequence, extend

transition times between few-particle configurations. In addition, transition rates are

reduced in quantum dots where strong Coulomb interaction leads to correlated states.

Furthermore, the effect of orbital relaxation and spin relaxation on the charging rates

has been studied. While the direct observation of relaxation rates in the time-dependent

occupation of the quantum dot is not possible, internal relaxation affects the number of

available tunneling channels as well as the magnitude of transients in dn(t)/dV . In sys-

tems with long spin relaxation times, a transient occupation of excited states is available

leading to huge charging rates compared to the bare tunneling rate.

The described aspects are related to the internal structure of the quantum dot and

have been obtained using a constant parameter for the tunneling rate. In a final step,

the overlap between single-particle wave functions in the quantum dot and electron gas

shows a strong dependence on the quantum dot size and the carrier concentration in

the electron gas. For designated parameters, a stronger tunneling into ground states or

excited states can be induced.

The analysis has shown that the presented theoretical approach provides a sound

framework for the interpretation of experimental findings and for the disentanglement

of effects observed. Furthermore, the presented theory can be used as a starting point

for the targeted design of further experiments to study the non-equilibrium dynamics of

quantum dots.
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3 Spin Noise in Small Ferromagnetic
Cluster on Surfaces

3.1 Experimental motivation

Controlling and probing the spin of a single magnetic ion and small magnetic cluster

in order to store classical and quantum information has recently attracted scientific

interest. Crucial for the application as storage is the understanding of interactions at the

nanoscale, determining magnetic stability. Scanning tunneling microscopy (STM) offers

a versatile tool to probe and manipulate the spin of atoms deposited on a conducting

surface [90]. An STM setup consists of a sample, e.g. a single atom or atomic cluster,

placed on top of an atomically flat surface, and an atomically sharp tip (schematically

sketched in Fig. 3.1). Two complementary methods have been developed to probe the

spin of a single or few atoms: spin-flip inelastic electron tunneling spectroscopy (IETS)

and spin-polarized scanning tunneling microscopy (SP-STM).

In IETS, the spin excitation energies of the sample are resolved by measuring the

current-voltage characteristics. When a voltage is applied between the STM tip and the

surface, electrons tunnel from the tip to the surface or vice versa. Only an elastic tunnel-

ing current is measured when the applied voltage is smaller than the excitation energy

of the sample. When the bias voltage exceeds the excitation energy associated with a

spin transition in the sample, an additional inelastic tunneling current is measured. This

leads to a change in current I measured versus the voltage V , which is visible as a step

in the conductance dI/dV at voltages associated with spin excitations.

SP-STM, on the other hand, utilizes a spin-polarized current to measure the spin-

dependent magneto-resistance of the sample. This procedure can be used as a spectro-

scopic tool to provide information about the orientation of the spin of the sample relative

to the spin of the conduction electrons in the STM tip. At the same time, it allows to

manipulate the orientation of the spin of the atoms by exerting spin-transfer torque.

Electrons from the STM tip induce inelastic spin flips in the sample that favorably

excite spin states depending on the spin polarization of the current.

IETS and SP-STM probe the spin state of the sample through spin-dependent electron

tunneling. Simultaneously, the tunneling electrons can modify the spin state of the
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3 Spin Noise in Small Ferromagnetic Cluster on Surfaces
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Figure 3.1: Schematic depiction of a scanning tunneling microscopy setup. The sample is
deposited on an atomically flat, conducting surface and probed by an atom-
ically sharp tip. By applying a voltage V between the tip and the surface,
electrons tunnel from the tip to the surface or vice versa.

sample by inelastic excitation. Two distinct time scales are relevant: the average time

between two spin flip events tflip and the spin relaxation time trelax. For tflip ≫ trelax,

the spin of the sample atoms is driven out of equilibrium, leading to bias-dependent spin

states. In the complementary regime tflip ≪ trelax, the spin of the sample atoms is in

equilibrium with the environment while interacting with the tunneling electrons.

In the intermediate regime, few-atom systems have revealed magnetic bistability at

low temperatures, which manifests in a measured telegraph signal [14, 15]. Magnetic

bistabilities are not only of interest as a potential implementation of information storage,

but also because they shed light on the role of the interaction with substrate and tip in

the dynamics of a atomic-scale magnet.

In Science 339, 55 (2013) [15], we have shown that the bistability in a few-atom cluster

originates in the interplay between spin flips, magnetic relaxation and magnetization

tunneling. In this chapter, we show how the spin noise in the cluster can be obtained

by a master equation approach taking into account the interactions with surface and

tip. We discuss the contribution of spin flips, magnetic relaxation and magnetization

tunneling to the dynamics of a small ferromagnetic cluster and analyze the influence of

an applied voltage, temperature and an external magnetic field.
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3.2 Spin Hamiltonian

3.2 Spin Hamiltonian

We start with a brief overview of the spin Hamiltonian approach, while referring to [26]

for more details. A spin Hamiltonian is a common approach to interpret the spectra of

magnetic systems without treating the full microscopic Hamiltonian. In this approach,

orbital degrees of freedom are eliminated and the system is described only by spin co-

ordinates. The spin Hamiltonian represents a good approximation for low-lying energy

states of a magnetic system.

In this approach, a magnetic atom with n unpaired electrons is characterized by a

total spin of S = n/2. External fields and interactions with the surrounding can reduce

the symmetry of the system and split the 2S+1 spin levels. In the following, two different

terms will be introduced in the Hamiltonian: a Zeeman Hamiltonian and a crystal field

Hamiltonian.

The Zeeman Hamiltonian associated with an applied magnetic field can be written as

HZ = g µB BS, (3.1)

where µB is the Bohr magneton, B is the magnetic field and S is the spin vector. Here,

g is a system-specific Landé factor which connects spin and magnetic field.

The crystal field Hamiltonian presents an effective treatment of the interaction with

surrounding atoms, e.g. in the underlying non-magnetic surface. In many cases, a good

approximation is provided by a Hamiltonian that is quadratic in the spin operators [91]

HCF = SDS, (3.2)

where D is a real, symmetric tensor. This Hamiltonian can be recast through unitary

transformation into

HCF =DS2
z +E (S2

x − S2
y), (3.3)

where D and E are the axial and transverse anisotropy, respectively. The transformed

Hamiltonian Eq. (3.3) shows the following advantage if expressed in the basis spanned

by the eigenvectors ∣m⟩ of Sz, with Sz ∣m⟩ = m ∣m⟩ and m = −S, . . . , S − 1, S. The first

term of Eq. (3.3) has only diagonal elements. In contrast, diagonal elements are absent

in the second term of Eq. (3.3). Both terms remove the (2S + 1) degeneracy of the

spin multiplet even in the absence of an external magnetic field which is reflected in the

expression zero-field splitting (ZFS).

In a system with axial symmetry, i.e. E = 0, the crystal field Hamiltonian simplifies to
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Figure 3.2: Energy spectrum of the crystal field Hamiltonian for S = 2 (left) and S = 5/2
(right) versus the transverse anisotropy. Each branch of S = 5/2 is doubly
degenerated.

HCF =DS2
z yielding eigenstates ∣m⟩ and eigenenergies

Em =Dm2. (3.4)

A pair of eigenstates ∣m⟩ and ∣−m⟩ is degenerate. Reducing the symmetry by a non-zero

value of E removes this degeneracy if S is integer. In the case of S being half-integer,

time reversal symmetry is retained and (S + 1/2) pairs of degenerate levels are found,

which are called Kramers doublets [92]. It is common to limit values of E according

to −1/3 ≤ E/D ≤ 1/3. Other values of E/D can be mapped back into the given range by

renaming the reference axes.

Fig. 3.2 exemplarily shows the energy spectrum of the crystal field Hamiltonian for

S = 2 (e.g. Fe [93]) and S = 5/2 (e.g. Mn [13]) and different values of E/D. Finite

transverse anisotropy, E, completely removes the degeneracy in the case of integer spin.

The double degeneracy is, however, retained for half-integer spin and all values of E.

Transverse anisotropy also affects the composition of the eigenstates. For E = 0, the

eigenstates are given by the pure eigenstates ∣m⟩ of Sz. If E is finite, each eigenstate

receives admixtures of different ∣m⟩ states.

3.2.1 Spin Hamiltonian for a cluster

The spin Hamiltonian can be extended to treat a cluster of magnetic atoms. While each

atom is described by a non-interacting Hamiltonian (Eq. 3.2 and Eq. 3.1), a common

approach to add interaction among the atoms is given by a spin-spin Hamiltonian of the
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3.2 Spin Hamiltonian

form [94–96]

HSS = ∑
i<j

Si Jij Sj , (3.5)

where Si are spin vectors and Jij is a matrix describing the interaction between two

spins. It is possible to discriminate between isotropic, anisotropic and antisymmetric

spin-spin contributions by re-expressing Eq. (3.5)

HSS = ∑
i<j

[−Jij Si Sj + SiDij Sj + dij (Si × Sj)] , (3.6)

where the isotropy constant is Jij = −TrJij/3, the anisotropy constant is Dij = (Jij +
JTij)/2 − TrJij/3 and the antisymmetry constant is dij = (Jij − JTij)/2. In the systems

studied in the following, the isotropic interaction

HJ = −∑
i<j

Jij Si Sj , (3.7)

will dominate, i.e. Jij ≫ ∣Dij ∣, ∣dij ∣. In this case, the total spin S = ∑i Si is a good

quantum number and can be used to denote cluster states. In case of a dimer, for

example, the energies are given by

ES = −
J12

2
[S(S + 1) − S1(S1 + 1) − S2(S2 + 1)] , (3.8)

where the total spin, S, satisfies

∣S1 − S2∣ ≤ S ≤ S1 + S2. (3.9)

For ferromagnetic coupling (Jij > 0), the ground state is given by S with maximum

multiplicity, while for anti-ferromagnetic coupling (Jij < 0) the total spin is minimal.

The bilinear form of Eq. (3.7) represents the simplest approximation to the interaction

energies of a cluster. In principle, one could also include anisotropic, antisymmetric or

bi-quadratic terms. These contributions, however, are assumed to be small and, thus,

will be neglected in the following.

The state space rapidly grows with the number of atoms in the cluster. The num-

ber of eigenstates in a cluster with N identical spins is (2S + 1)N . Further simpli-

fications, however, can be made for strongly ferromagnetically coupled spins and if

∣Jij ∣ ≫ ∣Di∣, ∣Dij ∣, ∣dij ∣. In this case, it can be shown that an effective anisotropy ten-
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3 Spin Noise in Small Ferromagnetic Cluster on Surfaces

sor exists [97]:

DS = ∑
i

diDi +∑
i<j
dij Dij , (3.10)

where

di =
2Si − 1

N(2NSi − 1)
, dij =

2Si
N(2NSi − 1)

. (3.11)

Similar formulas can be found for the effective coupling strength between spin and mag-

netic field, gS . Using this argument, we will describe a ferromagnetic atom cluster by a

single, effective spin exposed to a Hamiltonian which includes a crystal field, Eq. (3.2),

and Zeeman interaction, Eq. (3.1).

3.3 Spin current through atoms and coupling to the

surface

In the previous section, we introduced the spin Hamiltonian to model the low-lying

energy spectrum of a magnetic atom and ferromagnetic cluster which represents the

sample in an STM experiment. The magnetism in these systems arises from strongly

interacting electrons in the d orbitals. If the sample is tunnel coupled to an STM tip, a

current can flow through the system. The main conduction channel is assumed to be the

s-channel, which gives rise to a model where d-levels are coupled to a non-interacting

bath of conduction electrons. This can be described by the following Hamiltonian

H = HMS +HB +HMS−B. (3.12)

The magnetic system HMS is coupled by HMS−B to electrons originating from the

surface (S) and STM tip (T ), which are considered non-interacting electron baths

HB = ∑α εαc
†
α cα. The multi-index α = {k, σ, r} combines the momentum k, spin σ

and bath r = S,T of the electrons created (annihilated) by c†α (cα) in the STM tip or

surface.

The magnetic system can be characterized by the number of electrons N in the in-

complete shells of the ion and a set of quantum numbers m defining the multiplet. If the

corresponding energies are denoted by EN,m, the Hamiltonian of the magnetic system

yields

HMS = ∑
N,m

EN,m∣N,m⟩⟨N,m∣. (3.13)

The previously discussed spin Hamiltonian is one possible approximation of HMS for

ferromagnetic systems with fixed N .
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3.3 Spin current through atoms and coupling to the surface

The HamiltonianHMS−B couples d electrons and the conduction electrons and induces

transitions between states ∣N,m⟩ and ∣N ′,m′⟩ for N ′ = N ± 1:

HMS−B = H+ +H− = ∑
α,m,m′

Vm,m′

α ∣N + 1,m′⟩⟨N,m ∣cα +H.c. , (3.14)

where Vm,m′

α are the transition matrix elements. The Hamiltonian H (Eq. 3.12) com-

bining all three parts is also known as ionic model [98] and represents a generalization

of the Anderson model [23]. The number of parameters in this model makes it particu-

larly complex. Therefore, we neglect in a first step the exchange interaction and other

splittings and consider an N -impurity Anderson model for the N orbitals contributing

to an effective spin of S = N/2 of the magnetic system

HUMS =
N

∑
i

ε0ni +Unini, (3.15)

where the number operator ni = ∑σ d
†
iσdiσ counts the electrons occupying the orbital i.

The charge states with N , N −1 and N +1 electrons in the magnetic system are relevant

for transport. In the magnetic systems under study, however, the chemical potentials

for creating an electron E(N) −E(N − 1) or hole E(N + 1) −E(N) are of order eV [99]

and much larger than the temperature kBT or the bias voltage ∣V ∣. This conditions

lead to exponentially suppressed sequential tunneling through the system. In this deep

co-tunneling regime, tunneling is only possible by coherent processes of higher orders

and we will consider the fourth order in the coupling HMS−B.

To obtain the co-tunneling rates, an effective Hamiltonian Heff can be derived by

degenerate perturbation theory which describes the transfer of electrons between the

system in lowest order [100],

Heff = ∑
i,M∓

H±∣M∓⟩⟨M∓∣H∓

EM∓
−E0

, (3.16)

where M+ (M−) are products of states in the magnetic system with N+1 (N−1) electrons

and bath states. Note that the following expressions can also be obtained by using other

approaches like the Schrieffer-Wolff canonical transformation [101].

With the definition of the spin on the i-th impurity Si = 1
2 ∑σσ′ d

†
στσσ′dσ and the

spin density of the conduction electrons sk,k′,r,r′ = 1
2 ∑σσ′ c

†
kσ,rτσσ′ckσr′ (τσσ′ are the Paul

matrices), we obtain three contributions to Heff after some calculations. First, an
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3 Spin Noise in Small Ferromagnetic Cluster on Surfaces

exchange term

Heff,ex = ∑
k,k′,r,r′

Jk,k′,r,r′sk,k′,r,r′∑
i

Si, (3.17)

with a tunneling-induced exchange interaction

Jk,k′,r,r′ = V ∗
k,rVk′,r′ (

1

ε0 +U − εkr
+ 1

ε0 − εk′r′
) . (3.18)

Additionally, a direct, spin-independent interaction term appears

Heff,d = ∑
k,k′,σ,r,r′

Uk,k′,r,r′c
†
kσrck′σr′ , (3.19)

with

Uk,k′,r,r′ = V ∗
k,rVk′,r′∑

i

( 1

ε0 +U − εkr
− 1

ε0 − εk′r′
) . (3.20)

The exchange term Heff,ex can induce spin-flips between the spin of the magnetic system

and the conduction electrons, which can be elastic or inelastic transitions. In contrast,

the direct term Heff,d characterizes spin-independent scattering of the conduction elec-

trons. This term is still of importance as it represents interference between direct and

exchange terms in the co-tunneling rates.

Finally, a third term Heff,int is produced by Eq. (3.16) which describes inter-orbital

interactions [102],

Heff,int = ∑
k,k′,r,r′

Tk,k′,r,r′ ∑
i<j,σ

(d†
iσdjσ + d

†
jσdiσ) , (3.21)

with

Tk,k′,r,r′ = δkk′δrr′ ∣Vk,r ∣2∑
i

ε0 +U − niU/2
ε0 (ε0 +U)

. (3.22)

The inter-orbital term is related to internal electron fluctuations between orbitals of the

magnetic system. Strong Coulomb interaction leads to single occupancy of each orbital

(ni ≈ 1), and in the limit of the particle-hole symmetry ε0 = −U/2, the inter-orbital

interaction gives only a small contribution. However, in the valence-fluctuation regime

(ε0 → 0), internal noise originating from electrons hopping between the orbitals becomes

important. In the following, we will only consider the case away from the valence-

fluctuation regime and neglect Heff,int. Furthermore, we assume that the temperature

in the system is low and the exchange term of the Coulomb interaction aligns the spins in

the d orbitals. This leads to a ferromagnetic state with total spin S = N/2, and Heff,ex
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3.3 Spin current through atoms and coupling to the surface

is replaced by

Heff,ex = ∑
k,k′,r,r′

Jk,k′,r,r′sk,k′ S, (3.23)

with S = P(∑i Si)P and where P is projecting on the subspace of states with total spin

S = N/2. In the following, the co-tunneling rates will only connect initial and final states

with the same total spin S.

In a next step, the co-tunneling rates in a master equation approach can be obtained

by applying Fermi’s golden rule to Heff . With the spin-dependent density of states ρr,σ,

the rates read [103,104]

W rσr′σ′

M,M ′ = 2π

h̵
∫ dερrσ(ε)ρrσ′(ε +∆M,M ′)f(ε − µr) (1 − f(ε +∆M,M ′ − µ′r))

× ∣⟨M ∣U + J τσ,σ′ S∣M ′⟩∣2, (3.24)

where f(ε) is the Fermi distribution function and ∆MM ′ = EM − EM ′ is the energy

difference between state ∣M⟩ and ∣M ′⟩. Furthermore, we have introduced the parame-

terizations U and J for the contributions of the direct and exchange terms, respectively.

After rearranging the rates, we arrive at the following master equation

dPM
dt

= ∑
M ′

PM ′WM ′,M − PM∑
M ′

WM,M ′ . (3.25)

The transition rates WM,M ′ between states M and M ′ are split into the following parts

WM,M ′ =W (sub−sub)
M,M ′ +W (tip−tip)

M,M ′ +W (tip−sub)
M,M ′ +W (sub−tip)

M,M ′ . (3.26)

The first part describes spin relaxation and thermal excitation of the sample by the

surface electrons

W
(sub−sub)
M,M ′ = ΓS,S (∣SM,M ′

+ ∣2 + ∣SM,M ′

− ∣2 + ∣SM,M ′

z ∣2) ζ(∆M,M ′), (3.27)

with Γr,r′ = π
h̵v

2
rv

2
r′ρrρr′ J

2, r = T ; S and ρr = ρr,↑ + ρr,↓. The energy-dependent factor

ζ(x) = x[1− exp(−βx)]−1 originates from the convolution of two Fermi functions associ-

ated with the creation and annihilation of surface or tip electrons. Furthermore, vT and

vS have been introduced to parameterize the coupling strength of the magnetic system

to the STM tip and substrate, respectively. The factor ζ(∆M,M ′) can be re-expressed by

using the Bose function nB(x) = [exp(−βx)−1]−1 as ζ(∆M,M ′) = ∆M,M ′[1+nB(∆M,M ′)].
The first term of ζ(∆M,M ′) corresponds to spontaneous relaxation, which is proportional
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3 Spin Noise in Small Ferromagnetic Cluster on Surfaces

to the energy-difference between spin states, while the second term describes thermal

spin excitation by surface electrons. The spectral weights for transitions are given by

the matrix elements ∣SM,M ′

α ∣2 = ∣⟨M ∣Sα∣M ′⟩∣2.

In analogy, the interaction of the sample with the tip induces similar processes with

W
(tip−tip)
M,M ′ = ΓT,T (∣SM,M ′

+ ∣2 + ∣SM,M ′

− ∣2 + ∣SM,M ′

z ∣2) ζ(∆M,M ′). (3.28)

The third part of Eq. (3.26) includes electrons tunneling from the STM tip to the

surface and vice versa with

W
(tip−sub)
M,M ′ = ΓT,S (1 − PT

2
∣SM,M ′

+ ∣2 + 1 + PT
2

∣SM,M ′

− ∣2 + ∣SM,M ′

z ∣2) ζ(∆M,M ′ + eV ),

(3.29)

and

W
(sub−tip)
M,M ′ = ΓS,T (1 + PT

2
∣SM,M ′

+ ∣2 + 1 − PT
2

∣SM,M ′

− ∣2 + ∣SM,M ′

z ∣2) ζ(∆M,M ′ − eV ).

(3.30)

Depending on the bias voltage between tip and surface, the spin of the sample is excited

or de-excited. For a bias voltage smaller than the energy of the first spin excitation in

the sample, inelastic co-tunneling (∝ ζ(∆M,M ′ − eV )) is suppressed, while the elastic

current (∝ ζ(eV )) has a linear V -dependence for eV ≫ kBT . A spin-polarized STM

tip creates an asymmetry between the spin-flip processes involving the majority spin or

minority spin given by the polarization PT = ρT,↑−ρT,↓
ρT,↑+ρT,↓ .

When a bias voltage is applied between the STM tip and the surface, the steady-state

current through the sample can be calculated by

I = −e ∑
M,M ′

PM (W tip−sub
M,M ′ −W sub−tip

M,M ′ ) . (3.31)

The current receives contributions associated with elastic and inelastic rates. With the

ratio U/J between direct and exchange contributions, elastic rate (∆M,M ′ = 0) are given

by

W r,r′

M,M ′ = Γr,r′ [(U/J + SM,M ′

z )2 1 − Pt
2

+ (U/J − SM,M ′

z )2 1 + Pt
2

] ζ(µr − µr′), (3.32)
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3.4 Cumulants of current noise and spin noise

and the inelastic rates (∆M,M ′ ≠ 0)

W r,r′

M,M ′ = Γr,r′ [∣SM,M ′

+ ∣2 1 ∓ PT
2

+ ∣SM,M ′

− ∣2 1 ± PT
2

+ ∣SM,M ′

z ∣2] ζ(∆M,M ′ + µr − µr′).

(3.33)

The elastic rates only give contributions to the current and, therefore, are not included

in the rates changing the probabilities PM . The rates contain direct and exchange

contributions as well as interference terms that give rise to tunnel magneto-resistance

(TMR). This effect is the underlying principle of spin-polarized STM when U is large

compared to J [13–15]. In contrast, TMR is absent in inelastic tunneling spectroscopy

(IETS) experiments due to the unpolarized STM tip. The contributions to the inelastic

current are exclusively associated with elastic rates, which increases the current as more

inelastic channels become available. Measurements of the differential conduction are a

common tool to probe the spectra of magnetic atoms. In the following, we will show how

the measurement of current noise can be used to obtain insight into dynamical processes

in the magnetic systems.

3.4 Cumulants of current noise and spin noise

The measurement of shot noise goes back to 1918, when Walter Schottky performed

experiments on electrical tubes. However, shot noise still gains both experimental and

theoretical attention because it provides further insight into dynamical mechanisms in

a system, well beyond mean quantities.

Shot noise denotes temporal fluctuations of electric current that originate from the

discreteness of the charge carriers and depend on the charge of the particles as well as

on their correlations. The current I fluctuates in time around its average value ⟨I⟩,

I(t) = ⟨I⟩ + δI(t), (3.34)

which gives rise to the current correlation function

S
(2)
I (t − t′) = ⟨δI(t)δI(t′)⟩. (3.35)

The current correlation function is translation invariant for systems without time-dependent

external fields and reduces to a function of τ = t − t′. The corresponding spectral corre-
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3 Spin Noise in Small Ferromagnetic Cluster on Surfaces

lation function is defined by

S
(2)
I (ω) = ∫ d(t − t′) e−iω(t−t

′) ⟨δI(t)δI(t′)⟩. (3.36)

At low frequencies ω → 0, it can be discriminate between thermal noise and shot noise.

In the zero-bias limit V → 0, the correlation function S
(2)
I ≡ limω→0 S

(2)
I (ω) indicates

thermal noise

S
(2)
I = 2kBT G, (3.37)

with temperature T and conductivity G of the sample. For finite bias, however, shot

noise is obtained in the low-temperature limit T → 0

S
(2)
I = F2 e ⟨I⟩, (3.38)

where e is the electron charge. The Fano factor F2 is sample specific and defines the ratio

between the zero-frequency noise S
(2)
I and the full Poisson noise e⟨I⟩.1 If successive elec-

tron tunneling events through a system are uncorrelated, then the low-frequency noise

is S
(2)
I = e⟨I⟩, which implies F2 = 1. This case defines Poissonian (uncorrelated) shot

noise. Interactions in the system lead to suppression or enhancement of shot noise with

respect to the Poissonian limit. The system is then characterized by a sub-Poissonian

Fano factor F2 < 1 or by a super-Poissonian Fano factor F2 > 1, respectively.

One example of the emergence of sub-Poissonian noise is transport through a single

level in the Coulomb blockade regime. The Pauli exclusion principle introduces corre-

lations which lead to a sub-Poissonian Fano factor between 1/2 and 1 depending on the

asymmetry between left and right coupling of the level to external leads [105–107]. In

contrast, if several channels with different coupling symmetries contribute to the cur-

rent, then Coulomb correlations can lead to a super-Poissonian Fano factor. This has

been theoretically predicted in single quantum dots with ferromagnetic leads [108–111]

and coupled quantum dots [111–114]. Furthermore, super-Poissonian noise has been

experimentally observed in tunnel barriers and quantum dots [59,115–117].

Super-Poissonian noise has also been theoretically predicted in iron atoms deposited

on a non-magnetic surface subject to an external magnetic field [118]. In the bias regime

below the spin excitation threshold, a current associated with elastic co-tunneling leads

to Poissonian shot noise. As soon as the bias can excite the spin of the atom from the

ground state to the first excited state, super-Poissonian noise sets in.

In the following, we discuss shot noise and spin noise in a ferromagnetic atom cluster

1These expressions can vary by a factor of 2 due to different definitions in literature.

52



3.4 Cumulants of current noise and spin noise

that possesses two degenerate ground states. A strong coupling between the cluster and

the surface can lead to fast decoherence and relaxation into one of its ground states [119].

Approaching the atoms with a tip acts as a perturbation that induces transitions between

the two ground states and gives rise to spin fluctuations in the cluster. These fluctuations

have been observed in terms of random telegraph noise in time-dependent measurements

[14,15]. We will show that in this regime, the spin fluctuations are reflected in the current

noise and give rise to super-Poissonian shot noise.

3.4.1 Counting statistics

We showed in section 3.3 that measuring the current in STM experiments can be used

to probe the spin state of an atom cluster. At the same time, the cluster spin affects

the current through the cluster and it can be expected that spin fluctuations in the

cluster are revealed in the current noise. In order to study the current noise, we are

using an approach developed by Flindt et. al [120, 121] to obtain the shot noise and

higher cumulants of the current correlator for an atom cluster. Their approach is partic-

ularly suitable for systems with large eigenspaces, where analytical expressions become

cumbersome. In order to numerically evaluate the current cumulants, Flindt et al. [120]

derived expressions using Rayleigh-Schrödinger perturbation theory. This method has

been successfully employed to obtain zero-frequency noise of nano-electromechanical sys-

tems [120,122]. Furthermore, the procedure has been extended to treat finite-frequency

noise [123] and non-Markovian systems [124].

We will give a short introduction to the calculation of current noise and the required

notation while referring to the literature for details (e.g. [121,125] and references therein).

In the following, the zero-frequency current cumulants will be denoted by ⟪Im⟫ with the

order m = 1,2, . . . for a consistent notation. We are interested in the first three current

cumulants, given by the current ⟪I1⟫ ≡ ⟨I⟩, the shot noise ⟪I2⟫ ≡ S(2)I and the skewness

of the current distribution ⟪I3⟫ ≡ S(3)I corresponding to the zero-frequency limit of

S
(3)
I (ω1, ω2) = ∫ d(t − t′)d(t′ − t′′) e−iω1(t−t′)−iω2(t′−t′′) ⟨δI(t)δI(t′)δI(t′′)⟩. (3.39)

Using the current cumulants, the Fano factors F2 = ⟪I2⟫/e⟪I1⟫ and F3 = ⟪I3⟫/e⟪I2⟫
can be defined. A common approach to obtain the current cumulants is to apply full

counting statistics to obtain the cumulants of the particle operator ⟪nm⟫.

In order to obtain the counting statistics, we start by introducing an n-resolved Marko-
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3 Spin Noise in Small Ferromagnetic Cluster on Surfaces

vian master equation

ρ̇n(t) = ∑
n′
W(n − n′)ρn′(t), (3.40)

where n gives the number of transferred electrons from an emitter to a collector through

the sample. Then, the density matrix of the system is given by ρ(t) = ∑n ρn. Then, the

n-resolved master equation can be transformed by introducing ρχ = ∑n ρn(t) einχ into

ρ̇χ(t) = Wχ ρχ(t). (3.41)

The relation between the cumulant generating function (CGF) and the n-resolved density

matrix is established by

e−F (χ) = Tr [ρχ(t)] = Tr [∑
n

ρn(t)einχ] , (3.42)

where the trace is performed over the system degrees of freedom. With the knowledge

of the CGF, the zero-frequency cumulants of the current are obtained through

⟪Im⟫ = d

dt
⟪nm⟫(t)∣

t→∞
= d

dt

∂m F (χ, t)
∂(iχ)m

∣
χ→0,t→∞

(3.43)

Flindt et al. [120] derived expressions for these cumulants by expanding Wχ using

Rayleigh-Schrödinger perturbation theory. Here, we summarize their findings and refer

to the literature [120–122] for a detailed derivation. For the present model, Wχ is given

by

Wχ = W0 + (eiχ − 1)I+ + (e−iχ − 1)I−, (3.44)

whereW0 contains rates that do not transfer charge from the tip to the substrate and vice

versa, W sub−sub and W tip−tip (cf. Eq. 3.26). The current operators I± transfers charge

from the emitter to the collector across the junction and vice versa and are associated

with the rates W tip−sub and W sub−tip, respectively. The current flowing through the

sample can be obtained by the net flow I = I+ − I− and we further define the total

current flow according to: J = I+ + I−. Using these expressions, the first three current

cumulants in the long-time limit read

⟪I1⟫ = ⟪0̃∣I∣0⟫, (3.45)

⟪I2⟫ = ⟪0̃∣J ∣0⟫ − 2⟪0̃∣IRI∣0⟫, (3.46)

⟪I3⟫ = ⟪0̃∣I∣0⟫ − 3⟪0̃∣JRI + IRJ ∣0⟫ − 6⟪0̃∣IR(RIP − IR)I∣0⟫. (3.47)
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3.4 Cumulants of current noise and spin noise

Here, the stationary states ∣0⟫ and ⟪0̃∣ are defined by

d

dt
∣0⟫ = W0 ∣0⟫ ≡ 0 and

d

dt
⟪0∣ = ⟪0̃∣W0 = 0, (3.48)

with ⟪0̃∣0⟫ = 1. Note that ⟪0̃∣ is not given by ⟪0∣ becauseW0 is not a Hermitian operator

in a dissipative system. The projectors in Eq. (3.47) are given by P = P2 = ∣0⟫⟪0̃∣
and Q = Q2 = 1 − P. Furthermore, the pseudo-inverse R = QW−1

0 Q is used, which

is well-defined in the subspace corresponding to Q. Using Eq. (3.45) - (3.47), we

can numerically obtain the Fano factors F2 = ⟪I2⟫/e⟪I1⟫ and F3 = ⟪I3⟫/e⟪I2⟫ for the

ferromagnetic cluster.

Spin Noise The current noise is related to the spin noise in the cluster due to magneto-

resistance as well as inelastic current terms. In order to compare current noise and spin

noise, we obtain the spin noise by calculating the Fourier transform

S(2)z (ω) = 2∫ dτ κ(τ) eiωτ (3.49)

of the correlation function

κ(τ) = ⟨Sz(t + τ)Sz(t)⟩ − ⟨Sz⟩⟨Sz⟩. (3.50)

Note that for the autocorrelation function the imaginary part of Eq. (3.49) vanishes.

Similarly to the current noise, the spin noise is obtained through

⟪S2
z⟫ = −2⟪0̃∣SzRSz ∣0⟫. (3.51)

Before we proceed to the discussion of the results for a ferromagnetic cluster, current

noise and spin noise are analyzed based on the example of a two-level system.

3.4.2 Noise in a two-state system

We consider a model system that can switch between two states. The transition proba-

bility from state 1 to state 2 and vice versa during a time interval ∆t is given by Γ1 ∆t

and Γ2 ∆t, respectively. If the transition rate Γ1 or Γ2 vanishes the model system be-

comes stable and noise goes to zero. For finite transition rates and long measurement

times ∆t compared to the switching time τ = (Γ1 + Γ2)−1, however, the system switches

between the two states multiple times. In this regime, the dynamics of the system can be
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described by a Markovian rate equation for the occupation probabilities P = (P1, P2)T

Ṗ = WP, (3.52)

with

W =
⎛
⎝
−Γ1 Γ2

Γ1 −Γ2

⎞
⎠
. (3.53)

Any initial state relaxes with the rate Γ = Γ1 + Γ2 to a stationary state given by the

occupation probabilities P̄1 = Γ2/Γ and P̄2 = Γ1/Γ. Each of the two states is associated

with a current I1 and I2, respectively. The cumulants describing the transport statistics

in this model are given by [126]

⟪I1⟫ = I1P1 + I2P2, (3.54)

⟪I2⟫ = 2(∆I)2Γ1Γ2/Γ3, (3.55)

⟪I3⟫ = 6(∆I)3Γ1Γ2∆Γ/Γ5, (3.56)

with ∆I = I2 − I1 and ∆Γ = Γ2 − Γ1. From Eq. (3.55) and Eq. (3.56) it is obvious that

large values of the cumulants can be expected if the switching between the two states is

slow (Γ → 0). These results can be used to identify telegraph noise in a general system

by checking the first three cumulants. Substituting Eq. (3.54) and Eq. (3.55) in Eq.

(3.56) yields the following necessary condition for a bi-stability [120,127]

⟪I3⟫ = 3⟪I2⟫2 ⟪I1⟫ − (I1 + I2)/2
(⟪I1⟫ − I1)(⟪I1⟫ − I2)

. (3.57)

Similarly, expressions for the spin noise ⟪S2
z⟫ can be obtained by assuming that the

spin fluctuates between the spin projections Sz = ±S,

⟪S2
z⟫ = 4

S2

Γ
. (3.58)

The spin noise and the second cumulant of the current noise decay with the switching

rate. The current noise, however, also depends on the asymmetry between the occupation

probability of the two states.
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3.5 Results for a small ferromagnetic cluster

3.5.1 Random telegraph noise

In this section, we discuss the conditions leading to a slow switching of magnetization

using the example of a five atom cluster. The orientation of the spins in the cluster

are energetically separated by the zero-field splitting. If we assume a fast decoherence

time in the cluster and neglect the transverse anisotropy, the states of the system can be

decomposed into two decoupled subspaces specified by ⟨Sz⟩ > 0 and ⟨Sz⟩ < 0. Interaction

with the surface and the STM tip connects the two subspaces and can induce a switching

between subspaces. If the coupling of the cluster to the tip and surface is of the same

order, an applied polarized current can drive the system between the subspaces [119].

In the limit of vanishingly small coupling to the tip, however, the system stays in one

of its ground states for most of the time, with only a small probability to switch into

the opposite ground state. This is the origin of telegraph noise observed in transport

measurements through atomic clusters [14,15].

Telegraph noise manifests itself in a super-Poissonian Fano factor. We have calculated

the Fano factor F2 and the zero-frequency spin noise ⟪S2
z⟫ for the spin Hamiltonian

(Eq. 3.1, 3.3) to model a 5 Fe-atoms cluster with an effective total spin 15/2. An axial

anisotropy of D = −0.1 meV obtained from the experiment [15] energetically separates

the spin subspaces. Without transverse anisotropy E, the eigenstates of the system can

be labeled by ∣Sz⟩ with Sz = −15/2 . . . 15/2.
With a finite transverse anisotropy E = 0.02 meV measured in experiments, however,

eigenstates become superpositions of ∣Sz⟩ with coefficients shown in Fig. 3.3. The two

ground states, which will be labeled ∣g+⟩ and ∣g−⟩, receive only small contributions from

states ∣Sz ∣ < S, while energetically higher states receive large contributions from different

Sz states.

For these parameters, we obtain a colossal Fano factor F2 when the coupling to the

STM tip becomes small (vT /vS = 0.1; see Fig. 3.4). The large Fano factor suggests

random telegraph noise due to the slow switching between the ground states of the

cluster which resembles an effective two-level system. In this regime, the occupation

probability of excited states is small due to fast spin relaxation. Increasing the bias

voltage or the coupling to the tip reduces the Fano factors, implying that excited states

are increasingly occupied. To check these claims, the Fano factor F3 is compared with

the condition Eq. (3.57) that indicates an effective two-level system (Fig. 3.4 right).

While the results for F3 match the Fano factor of a two-level system for vT /vS = 0.1
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Figure 3.3: The coefficients ∣ci∣2 (left; the darker the color the larger the values) obtained
from the expansion of the eigenstates ∣i⟩ in ∣Sz⟩ states, ∣i⟩ = ∑i ci∣Sz⟩. The
eigenstates, ∣i⟩, are ordered from low to high energy and demonstrate that the
higher states receive contributions from many different ∣Sz⟩. The right figure
shows the eigenstates arranged to resemble the anisotropy barrier together
with transition rates described in the text.

in the range of considered voltages, deviations occur for vT /vS > 0.1 at higher voltages.

The deviations imply that the spin is driven into excited states, and the current noise

in this range does not originate from a bistability of an effective two-level system.

Before we begin with further discussions of results for the noise, we introduce effective

rates contributing to the dynamics of the spin which are derived from the rates in the

master equation Eq. (3.26). In an atom with an odd spin, two ground states exist

according to Kramers theorem, which are separated by an energy barrier resulting from

the zero-field splitting [92]. The energy landscape of the atom resembles a double well and

a transition between each side can occur by coherent tunneling through the barrier or by

driving the system over the barrier. Coherent tunneling in atoms interacting with their

surrounding, however, is suppressed if the tunneling time is larger than the dephasing

time. In this case, the surface acts as a measuring device and destroys coherences [119].

In the present study, we assume fast decoherence due to the strong coupling to the

surface which allows for the use of the master equation for only the diagonal elements

of the density matrix.

We find that the switching between the two ground states of the system is mainly

determined by three rates associated with magnetization tunneling, inelastic excitation

and magnetic relaxation. The interaction with the surface induces magnetization tun-

neling between the two ground states if a finite transverse anisotropy E is present. The
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Figure 3.4: Fano factor F2 (left) for a small ferromagnetic cluster with total spin S = 15/2,
D = −0.1 meV and E = 0.02 meV at T = 0.5 K (U/J = 3). The bias voltage V is
chosen larger than the magnetic excitation energy ∆ when inelastic transitions
set in. The Fano factor F3 (right) is shown for the small cluster (solid lines)
and a two-level system (crosses).

corresponding rate γtunnel for switching between the ground states ∣g±⟩ reads

γ±tunnel = ΓS,S kBT ∣⟨g−∣S−∣g+⟩∣2 + ΓS,T
1 ± PT

2
ζ(∣eV ∣) ∣⟨g−∣S−∣g+⟩∣2. (3.59)

The origin of this kind of magnetization tunneling is the interplay of transverse anisotropy

and exchange interaction with surface and tip electrons. Approximating the magnetiza-

tion tunneling by γ+tunnel + γ
−
tunnel ≈ ΓS,S kBT (E/D)2S−1 reveals that the rate becomes

exponentially small for large spins because ∣E/D∣ < 1/3. Further, a linear temperature

dependence becomes apparent. The asymmetry between these rates, γ+tunnel − γ
−
tunnel ≈

ΓS,T PT (E/D)2S−1 ∣eV ∣, depends on the spin polarization of the current and is linear in

bias V .

Finally, we discuss two contributions accounting for the excitation and de-excitation

of the atoms. A spin-polarized current drives the spin out of equilibrium and induces

transitions from the ground state ∣g±⟩ to the first excited state ∣e±⟩ with the rate

γ±inel = ΓS,T
1 ± PT

2
ζ(∆ − eV ) ∣⟨e±∣S∓∣g±⟩∣2. (3.60)

The pumping into excited states is exponentially suppressed for bias voltages smaller

than the spin excitation energy. If the bias is increased, inelastic driving of the spin sets

in and γ±inel becomes linear in bias V . The atoms can dissipate energy by interacting
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3 Spin Noise in Small Ferromagnetic Cluster on Surfaces

with electrons in the tip and surface

γrelax = (ΓS,S + ΓT,T ) ζ(∣∆∣) ∣⟨g+∣S+∣e+⟩∣2. (3.61)

It has been found that a strong hybridization of the cluster with the surface can lead to

relaxation times in the order of picoseconds [27].

The transitions induced by the different rates are schematically shown for a spin S =
15/2 in Fig. 3.3. If the coupling of the STM tip to the atoms is weak, the cluster switches

between the two ground states and develops characteristics of a two-level fluctuator

[15, 126]. The following simplified model will be used to interpret the results of the

current noise and spin noise. Switching between the two ground states ∣g±⟩ occurs by

either magnetization tunneling γtunnel or by inelastic excitation γinel to an intermediate

level ∣e⟩. Any transient occupation of ∣e⟩ relaxes into one of the two ground states with

the large rate γrelax. The rate for the switching between ∣g+⟩ and ∣g−⟩ is given by

Γ = γ+inel + γ
−
inel + γ

+
tunnel + γ

−
tunnel + 2γrelax (3.62)

−
√

(γ+inel − γ
−
inel + γ

−
tunnel − γ

+
tunnel)

2 + 4 (γrelax − γ+tunnel) (γrelax − γ−tunnel)

If the asymmetry between rates γ+−γ−
γ++γ− is negligible because the spin polarization PT of

the current and the anisotropy ∣E/D∣ are small, the rates simplify to

Γ = γ+inel + γ
−
inel + γ

+
tunnel + γ

−
tunnel. (3.63)

In the limit of large U/J , the shot noise is associated with the spin noise because

the main contribution to the current originates from the magneto-resistance. The time-

dependent current I is proportion to the spin of the atoms: I ∝ ⟨Sz⟩+O(J2/U2). Then,

the spin dynamics are reflected in the current dynamics ⟨I(t)I(t′)⟩ ∝ ⟨Sz(t)Sz(t′)⟩⟨Iz(t)Iz(t′)⟩
[128].

In Fig. 3.5 we compare the spin noise for different transverse anisotropy values. Two

regimes become apparent when the bias voltage is below and above the spin excitation

energy ∆, respectively. For a bias voltage e∣V ∣ below the energy ∆, inelastic excitation of

the spin is exponentially suppressed. However, switching is possible due to the interplay

between electrons and transverse anisotropy that leads to a small rate of magnetization

tunneling. The switching rate can be approximated by

Γ ≈ γ+tunnel + γ
−
tunnel ∝ kBT, (3.64)
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Figure 3.5: The zero-frequency spin noise ⟪S2
z⟫ develops a plateau for bias voltage V below

the spin excitation energy ∆ due to a finite transition probability γtunnel. At
V > ∆, inelastic excitation of the cluster sets in and the spin noise decays
with ∣V ∣−1.

which is only weakly bias dependent due to the polarization PT = 0.1.

For a bias voltage near the excitation energy, inelastic excitation of the atoms sets in

and the switching rate increases proportional to the bias voltage

Γ ≈ γ+inel + γ
−
inel ∝ eV, (3.65)

and spin noise decays with ∣V ∣−1 for a large bias ∣V ∣ ≫ ∆. Inelastic tunneling leads to

excitation of the cluster and a higher switching rate between the ground state.

Transverse anisotropy E induces magnetization tunneling not only between ground

states but also between each degenerate level. A larger E decreases the overall magnitude

of spin noise in the regime ∣V ∣ > ∆ by enhancing the switching rate (Fig. 3.5). In the

regime ∣V ∣ < ∆, the transverse anisotropy limits the stability of the atom as it induces

transitions between the states on the time scale (γ+tunnel + γ
−
tunnel)

−1.

The current noise in the large U/J case reflects the spin noise as the elastic current

gives the main contribution to the current. In the opposite limit U → 0, the inelastic rates

define the current. The Fano factor F2 for ∣E/D∣ = 0.2 in Fig. 3.6 shows for intermediate

values of U/J several distinctions from the spin noise. For a bias voltage above the spin

excitation energy, the Fano factor decays in a way that is similar to the decay of the spin

noise, whereas F2 is not symmetrical under bias reversal. The interference between direct

and exchange terms in the tunneling leads to odd and even terms in the current which

results in the asymmetry in the Fano factor. In the bias regime below ∆, the asymmetry
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Figure 3.6: Left: Fano factor F2 for different ratios U/J between direct and exchange
tunneling rate exhibits an asymmetry under bias reversal. Right: voltage-
dependent occupation Pg± of the two ground states g+ and g− for different
anisotropy values.

is absent because inelastic current is suppressed and the current noise originates only

from the direct tunneling terms. However, the plateau seen in the spin noise for V < ∆

is not reflected in the Fano factor. While the spin noise is proportional to the switching

time, the Fano factor also incorporates the occupation probabilities of the ground state.

The occupation probabilities in Fig. 3.6 show an asymmetry for V < ∆ due to the rate

γ+tunnel − γ
−
tunnel ∝ eV , which lead to the shape of F2.

The findings show that the spin noise is reflected in the noise of the current through

the ferromagnetic cluster. In distinct parameter regimes, the noise indicates a bistable

system originating in the slow switching between the ground states of the cluster gov-

erned by inelastic excitation and magnetization tunneling. In particular, magnetization

tunneling turned out to be a limiting factor for the stability of the cluster for bias voltages

below the magnetic excitation energy.

3.5.2 Magnetization tunneling

A common approach to describe switching in experiments on larger magnetic systems,

like nanoislands containing few 100 iron atoms, is the Néel-Brown theory which describes

the switching by an Arrhenius law [129–131]. The magnetic system is reduced to two

states in a double well which represent the two stable orientations of the magnetic mo-

ment due to the magnetic anisotropy. The rate Γ to overcome the barrier exponentially

depends on the barrier’s energy Eb and temperature T according to

Γ = Γ0 exp(− Eb
kBT

) , (3.66)
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Figure 3.7: The Fano factor F2 shows the transition between magnetization tunneling
and Arrhenius-type switching behavior for different temperature T . The inset
depicts the data for E = 0.02 meV and D = −0.1 meV using a linear scale.

with the attempt rate Γ0. In this framework, the spin-polarized current can be in-

troduced by modifying the parameters. The exerted spin-transfer torque leads to an

effective barrier energy Eb ± ∆E [29]. The parameters ∆T and ∆E depend on the

current and can be determined by measuring the telegraph noise [14,29].

In the following, we will show that in small magnetic clusters the switching at low

temperatures significantly deviates from Néel-Brown theory. Remarkably, the low-

temperature behavior indicates the presence of electron-mediated magnetization tun-

neling of the spin through the anisotropy barrier.

Fig. 3.7 shows the temperature dependence of the shot noise for V = 5 meV and

different ratios of the anisotropy ∣E/D∣. The Fano factor F2 exhibits a linear dependence

in the low-temperature range, T < 2 K, and strongly decays for larger temperatures. The

exponential tail for temperatures T > 2 K indicates Arrhenius behavior and originates

from the influence of the electrons in the surface. The cluster cannot only dissipate

energy through the interaction with the surface atoms, but can also be thermally excited.

The corresponding rates (Eq. 3.27) depend on the spin excitation energy ∆ and are

proportional to ζ(−∣∆∣) ∝ nB(∣∆∣), with nB being the Bose distribution function. At

high temperatures, these rates are proportional to exp(−∣∆∣/kBT ) and are responsible

for Arrhenius behavior.

The low-temperature behavior of F2 can be attributed to the interplay between tun-

neling electrons and anisotropy. Inelastic excitation is not responsible for the linear

dependence because the rate γinel ∝ ζ(eV −∆) ≈ eV −∆ is independent of temperature
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Figure 3.8: Temperature dependence of the Fano factor F2, dashed lines indicate the spin-
excitation energy ∆. The overall magnitude of the Fano factor decreases with
temperature due to an enhancement of the switching rate.

for large bias eV > ∆. However, the interaction of the atoms with surface electrons leads

to a transfer of the spin through the anisotropy barrier with the rate

γtunnel ∝ kBT (E/D)2S−1, (3.67)

which reduces the time between switching events and explains the low-temperature be-

havior. This result is remarkably different from coherent quantum tunneling of magne-

tization (QTM), which is temperature independent [14,132].

The bias dependence of the Fano factor (Fig. 3.8) illustrates that the temperature

reduces the overall current noise by increasing the switching frequency. Temperature

also blurs the crossover between the regimes in which magnetization tunneling dominates

the switching behavior and the regime of inelastic excitation of the spin. Temperature-

assisted inelastic excitation already sets in at bias voltages of ∣eV ∣ < ∆.

These results demonstrate the importance of the electron-mediated magnetization

tunneling through the anisotropy barrier for the description of spin switching at low

temperatures.

3.5.3 Interplay between spin-transfer torque and magnetic fields

In a next step, we discuss the effect of an external magnetic field B that modifies the

system. A magnetic field along the easy axis of the cluster shifts the energies of the

system by the Zeeman term (Eq. 3.1). Specifically, the Zeeman energy lifts the two-fold
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Figure 3.9: The maximum of the Fano factor F2 (left) shows a dependence on the bias
polarity (D = −0.1 meV, E = 0.02 meV and g = 2). Compared to the case of
PT = 0.1 (solid lines), the maxima shift to larger values of ∣B∣ for PT = 0.2
(dashed lines; scaled by 1/3). The right figure shows the occupation probabil-
ities of the two lowest energy states ∣g−⟩ and ∣g+⟩ for the same bias values as
in the left figure.

degeneracy of the states in the cluster and leads to a single, non-degenerate ground state.

If the magnetic field has a transversal component, the eigenstates receive admixtures of

different Sz states similar to the effect of the transverse anisotropy. In this case, quantum

tunneling of magnetization (QTM) can occur in systems with an even spin [132]. In the

cluster with an odd spin, however, QTM is forbidden and therefore we will assume only

a longitudinal component of the magnetic field.

Fig. 3.9 shows the magnetic field dependence of the shot noise with a constant bias

voltage V = 5 mV. A maximum of the shot noise develops for a finite magnetic field that

shifts under bias reversal. The shot noise is governed by two competing mechanisms.

On the one hand, the magnetic field induces a polarization of the cluster. On the other

hand, the spin-polarized current drives the system between the two ground states and

creates an asymmetry between the states due to the polarization PT of the tip electrons.

The maximum of the shot noise occurs at a B-field value where the effect of the

magnetic field is compensated by the spin-polarized current flow. The effective rate for

switching is given by

Γ ≈ γ+inel(B) + γ−inel(B). (3.68)

The value Bcomp, for which the two mechanisms compensate each other, can be approx-

imated through γ+inel(Bcomp) = γ
−
inel(Bcomp), yielding

g µB Bcomp ≈ ±PT
∣∆∣ − eV
2S − 1

, (3.69)
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where the sign depends on the direction of the current flow, and any transverse anisotropy

E is neglected. The switching time drops with ∣B∣−1 when the absolute value of the

magnetic field is increased towards ±0.8 T. One of the two former ground states ∣g±⟩
becomes the only ground state of the cluster and the probability to switch into other

states is small (Fig. 3.9 right).

For a magnetic field Bcomp, the probabilities of occupying the two lowest energy states

∣g+⟩ and ∣g−⟩ are equal (Fig. 3.9 right). Furthermore, the probability of occupying ∣g+⟩
or ∣g−⟩ exhibits a different shape when reversing the bias. The separation between the

probabilities for V = +5 meV and V = −5 meV can be measured in experiments [15] and

serves as evidence for spin-transfer torque exerted by the spin-polarized current.

3.6 Summary

We have studied the spin noise in a ferromagnetic cluster coupled to a spin-polarized tip

and a conducting substrate. Using a spin Hamiltonian and a master equation approach

revealed that the dynamics of the spin fluctuations in the cluster are determined by the

interplay of spin flips due to a spin-polarized current, magnetic relaxation and substrate-

mediated magnetization tunneling.

We have shown that the bias-dependent current noise in the regime of weak cou-

pling between cluster and tip originates from the dynamical switching between the two

ground states of the system. The current cumulants resemble the statistics of an ef-

fective two-level system. Furthermore, the spin noise is reflected in the current noise

when the current is mainly determined by elastic cotunneling. We find that the bias-

dependent Fano factor decays for bias voltages above the magnetic excitation energy due

to current-induced spin flips in the cluster and the resulting strong spin fluctuations. The

occurrence of a threshold bias demonstrates the quantized nature of the spin in the sys-

tem under study. For bias voltages below the magnetic excitation energy, the excitation

of the cluster is suppressed at low temperatures. However, spin fluctuations can still be

persistent in clusters of finite transverse anisotropy E due to substrate-electron assisted

magnetization tunneling through the anisotropy barrier.

Subsequently, we studied the temperature dependence of spin fluctuations. For tem-

peratures above the spin excitation energy, the cluster is thermally excited and the spin

fluctuation corresponds to an Arrhenius-type spin switching. At low temperatures, how-

ever, thermal excitations are suppressed and we find that spin fluctuations are caused

by the interplay of substrate electrons and transverse magnetic anisotropy which leads

to magnetization tunneling. In this regime, spin fluctuations linearly dependent on the
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temperature, which can serve as an experimental indicator for magnetization tunneling.

Furthermore, the introduction of a magnetic field reveals the effect of spin-transfer

torque due to a spin-polarized current on the spin dynamics in the cluster. The polar-

ization of the tip introduces an imbalance between current-induced spin-flips associated

with the increasing and decreasing of the cluster spin, respectively. This effect of the

spin-polarized current on the dynamics of the cluster spin is related to the influence of

an effective magnetic field. We find that the competition between current-induced spin-

transfer torque and an external magnetic field determines the occupation of two lowest

energy states of the cluster. At a particular value of the magnetic field strength Bcomp

the interactions are balanced, which leads to two equally occupied lowest energy states

and a maximal Fano factor. This value of the magnetic field depends on the polarization

of the tip, the cluster spin, the magnetic excitation energy and applied voltage, and can

serve as a tool to determine unknowns in the experiment.
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4 Non-equilibrium Quantum Monte
Carlo

In the preceding chapters, we dealt with the dynamics of small nanostructures by em-

ploying the master equation approach, which was adequate for the experimental pa-

rameter regime. This perturbative method relies on the Markovian approximation and

weak tunnel coupling [16,49,133]. Recently, the theoretical treatment of non-equilibrium

transport through strongly correlated systems gained great attention for cases in which

no small parameter is present [30–32, 134–138]. In this deep quantum regime, meth-

ods are necessary that go beyond a purely perturbative treatment of the problem and

which are crucial for the description of advanced experiments ranging from transport

and pump-probe spectroscopy on nanostructures and bulk systems to the spectroscopy

of cold atoms in optical lattices [13,139–142].

Several numerical approaches have been developed to treat coherent non-equilibrium

dynamics and are often applied to the quantum (Anderson) impurity model serving as a

reduced representation of quantum dots, single molecules or adatoms on surfaces. The

impurity model consists of a finite-dimensional system exhibiting a single bound level

tunnel coupled to an infinite system of two non-interacting electron baths. Numerical

renormalization-group (RG) techniques have proven to provide an accurate treatment

of non-equilibrium dynamics of the impurity model and to capture essential features

[143–146]. However, the representation of the bath by a finite lattice can lead to the

occurrence of finite size effects, which limit the propagation time and the energy scales

that can be accessed.

Another class of approaches is based on the path integral sampling technique, origi-

nally introduced in the context of quantum chemistry [147]. In the iterative summation

of path integrals (ISPI) [21, 22, 148], the path integral expansion is performed in terms

of the quantum dot Coulomb interaction while the influence path integral technique

(INFPI) relies on the expansion in the tunnel coupling [20, 149]. In both versions, the

property of a finite ‘memory time’ in the leads is exploited in which electronic correla-

tions exponentially decay on a time scale defined by the temperature and bias voltage.

Therefore, these methods are restricted in their parameter regime and, in particular, do

not allow to approach the zero bias and temperature regime.
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In this chapter, we will give an introduction to the real-time quantum Monte Carlo

(QMC) approach, which is based on the stochastic sampling of the diagrammatic path

integral expansion for the Keldysh partition function [30, 31, 134]. Originally developed

for the computation of equilibrium properties, QMC has been shown to be versatile

in accessing a wide range of parameters and very flexible for the treatment of various

systems [32, 150–152]. We are going to discuss two flavors of QMC that depend on the

expansion of the Keldysh partition function either in the Coulomb interaction (weak

coupling) or in the coupling of the quantum dot to the bath (strong coupling). The

naming, weak-coupling and strong-coupling QMC, has historically developed and refers

to interaction of the electrons on the quantum dot [152].

The weak-coupling QMC method for non-equilibrium has recently been applied by

Werner et al. [32, 151] to study the dynamics of the impurity model when initially pre-

pared in a non-equilibrium but non-interacting state and switching on the interaction

at t = 0 [153]. This so-called interaction quench can be applied to model time-resolved

experiments on ultracold atoms in (periodically) driven optical lattices [154, 155]. Fur-

thermore, it has been successfully used to investigate dynamics of the impurity model

after a voltage quench and for coupling to superconducting leads [32,137,138].

The strong-coupling QMC approach has been implemented by Mühlbacher et al. [30]

and Schiro et al. [134,135] for non-interacting quantum dots in non-equilibrium coupled

to electron and phonon reservoirs. The method has also been applied to dynamics of an

initially isolated quantum dot after the coupling to electron baths was switched on at

time t = 0 [31,32,136].

With both methods, numerically exact results can be obtained for a wide range of pa-

rameter regimes, even at zero temperature and zero bias. However, these approaches are

restricted to finite time simulations due to the dynamical sign problem. The contribu-

tions to the estimates of expectation values in real-time QMC are oscillatory due to the

dynamical phase acquired during the propagation of the simulated system in time and

can partially cancel each other. In order obtain reliable results and a satisfactory signal-

to-noise ratio, the stochastic error has to be minimized. This task becomes exponentially

difficult for long simulated times.

In the following methodological introduction, we compare the dynamical sign problem

in the implementations of strong-coupling and weak-coupling QMC. In contrast to the

weak-coupling approach previously applied to non-equilibrium [32, 151], which relies on

the expansions of a Hubbard-Stratonovich field, we adopt the real-time version of the

expansion in the Coulomb interaction term orginally developed by Rubtsov et al. for

equilibrium [150]. The implementation of weak-coupling QMC relies on the introduction

70



4.1 Quantum Monte Carlo for non-equilibrium transport

of auxiliary parameters that can be exploited to reduce the sign problem. Furthermore,

we implement the weak-coupling approach for an initially prepared quantum dot for

which the tunnel coupling to electron baths is switched on at t = 0. This permits us to

directly compare the advantages and limitations of strong-coupling and weak-coupling

QMC for the same system and parameters.

4.1 Quantum Monte Carlo for non-equilibrium transport

We introduce the two versions of the real-time quantum Monte Carlo approach for the

example of transport through a single-level quantum dot (impurity model). The spin-

degenerate quantum dot is tunnel coupled to two electron baths (leads) and the entire

system is described by the Hamiltonian

H =Hdot +Hbath +Htunnel. (4.1)

The single-level quantum dot with Coulomb interaction can be occupied by up to two

electrons and is given by

Hdot = εd (n↑ + n↓) +U n↑n↓, (4.2)

with the single-particle energy εd, the Coulomb energy U and the particle operator nσ

for an electron with spin σ = {↑, ↓}. The leads are described by free electron baths

Hbath = ∑
α,k,σ

(εα,k,σ − µα) c†α,k,σcα,k,σ, (4.3)

with the operators c
(†)
α,k,σ that annihilate (create) an electron with momentum k and spin

σ in the left (right) leads α = L(R). Quantum dot and leads are coupled by the tunnel

Hamiltonian

Htunnel = ∑
α,k,σ

tα,kc
†
α,k,σdσ +H.c., (4.4)

with operators d
(†)
σ annihilating (creating) a spin-σ electron in the quantum dot. In

the following, we assume an infinite number of electrons in the leads. Furthermore,

we require the leads to be initially in equilibrium, resulting in the following correlation

function of the bath operators

⟨a†
α,k,σaα,k,σ⟩ = f(εα,k,σ − µα) δα,β δk,k′ δσ,σ′ , (4.5)
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with the Fermi function f(x) = [exp(x/kBT ) + 1]−1 and temperature T . A bias voltage

V can be applied between the leads, which defines the chemical potentials µL = V /2 for

the left lead and µR = −V /2 for the right lead. The level broadening Γ = ΓR + ΓL with

Γα = π∑
k

∣tα,k∣2 δ(ω − εα,k) (4.6)

and the Coulomb interaction strength U define the transport regime. A distinction

is made between the strong-coupling regime (U ≳ πΓ) and the weak-coupling regime

(U ≲ πΓ).

The aim of real-time quantum Monte Carlo is to compute the expectation value ⟨O(t)⟩
of an operator O at time t given by

⟨O(t)⟩ = Tr [exp(i∫
t

0
dt′H(t′)) O exp(−i∫

t

0
dt′H(t′)) ρ0] , (4.7)

with ρ0 being the density matrix of the system at time t = 0. If we assume that the

quantum dot and the leads are separated at t = 0, the density matrix splits into

ρ0 = ρbath ⊗ ρdot(t = 0), (4.8)

with the quantum dot initially in a state given by ρdot(t = 0) and the electron bath in

equilibrium, ρbath = exp(−Hbath/kBT ). In the present study, the system is brought out

of equilibrium by switching on the tunnel coupling at t = 0. The methods presented in

this chapter, however, can be straightforwardly generalized to treat other situations like

time-dependence of the system Hamiltonian. The general approach is to split the system

Hamiltonian into two terms, H0 and H1, where the time evolution of H0 can be treated

exactly. The time evolution of the full system is then obtained by a formal perturbation

expansion in H1. In case of the partition function, this results in

Z = Tr [∑
m

im∫
t

0
dt̃1 . . .∫

t

t̃m−1

dt̃mH1(t̃1) . . .H1(t̃m)

× ∑
n

(−i)n∫
t

0
dt1 . . .∫

t

tn−1
dtnH1(tn) . . .H1(t1)ρ0] , (4.9)

with H1(t) given in the interaction picture with respect to H0. In order to evaluate

this multi-dimensional time integral, the Monte Carlo (MC) algorithm is employed. In

a nutshell, the Monte Carlo method is a stochastic algorithm capable of numerically

evaluating (multi-dimensional) integrals. In the following, we give a rough overview over
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4.1 Quantum Monte Carlo for non-equilibrium transport

the ordinary Monte Carlo algorithm while referring to the literature for details [156–159].

The approach, also denoted as Monte Carlo integration, evaluates (multi-dimensional)

integrals by randomly sampling elements of a configuration space (or integration do-

main). A multi-dimensional definite integral can be approximation by

1

V
∫
V
f(x̄)dx̄ ≈ lim

N

1

N

N

∑
i=1

f(x̄i), (4.10)

with randomly chosen elements x̄i of a configuration space C with volume V . In the

case of real-time quantum MC, the algorithm samples the partition function and other

time-dependent observables by generating configurations given by different orders in H1

(cf. Eq. 4.9) and associated times, i.e. different configurations on the Keldysh contour.

Subsequently, the contribution of each configuration to the integral is summed up. With

this approach, QMC performs a summation over all expansion orders in Eq. (4.9) as

well as the time integration over the contour. The efficiency of MC lies in the partic-

ular strategy to stochastically generate different configurations called importance sam-

pling [156, 157]. The expectation value over a configuration space, for example, can be

expressed by

⟨O⟩ = 1

Z
∫ O(x̄)ρ(x̄)dx̄ = ∫

O(x̄)ρ(x̄)dx̄
∫ ρ(x̄)dx̄

. (4.11)

To each configuration, weights

w = ρ(x̄)
∫ ρ(x̄)dx̄

, (4.12)

can be assigned. The importance sampling algorithm generates configurations based on

the probability distribution given by the weights w. The Metropolis-Hastings algorithm

is an implementation that incorporates the importance sampling by generating a Markov

chain of configurations distributed according to a given probability function [157, 160].

In each step of the random walk, a configuration is generated and accepted or rejected

with a probability given by the change of the weights (Eq. 4.12) associated with the

move. Thus, the random walk samples the important regions of the configuration space,

i.e. the dominant contributions to the integral. During the random walk through the

configuration space, the value of the observable O for the particular configuration x̄ is

accumulated.

Compared to deterministic methods, MC can be more efficient, but is accompanied

by the deficiency of introducing a stochastic error. The error can be reduced by running

the algorithm multiple times, even though the numerical expense increases considerably
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4 Non-equilibrium Quantum Monte Carlo

if the integrand is oscillatory. In this case, the weights are rewritten into

w = ∣ρ(x̄)∣
∫ ∣ρ(x̄)∣dx̄

, (4.13)

in order to represent a probability distribution (see also later discussions and Eqn. 4.24

and 4.39). The expectation value is then given by

⟨O⟩ =
⟨O(x̄) arg(w)⟩∣w∣

⟨arg(w)⟩∣w∣
, (4.14)

where ⟨. . .⟩∣w∣ denotes the MC average over configurations sampled according to the

distribution function ∣w∣ (cf. Eq. 4.10). If the phase of the weight arg(w) is highly

oscillatory, the evaluation of the integrands results in small values that are difficult to

estimate due to the inherent statistical error.

Oscillatory integrands, for example, occur in fermion systems where a permutation

of particle coordinates induces a sign change of the wave function known as fermion

sign problem [157,160]. The integrand can give contributions of the same order in their

absolute value but with opposite sign, which can almost cancel each other leading to

small contributions to the integral. It has been shown that the fermion sign problem

is a NP-hard problem and the numerical effort increases exponentially with particle

number, interactions and decreasing temperature [161]. Only in special cases where the

symmetry of the system can be exploited, a reduction of the sign problem has been

achieved [150,159,162].

In the non-equilibrium version of the quantum Monte Carlo approach, an additional

sign problem occurs due to the dynamical phase acquired in time. This is denoted as

dynamical sign problem. In the present chapter, we will explore in which limits the

real-time quantum Monte Carlo method can give reliable results and introduce certain

options to deal with the dynamical sign problem.

4.1.1 Expansion in the tunnel coupling

Strong-coupling quantum Monte Carlo is based on the diagrammatic expansion of the

system’s partition function in powers of the tunnel coupling. Originally introduced for

equilibrium systems, several implementations for non-equilibrium transport through im-

purity models have been recently developed [30,134,151]. In this approach, the interac-

tion representation with respect to the tunnel coupling is employed and the Hamiltonian

of the decoupled system H0 = Hdot +Hlead gives the time evolution of operators. Then,
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4.1 Quantum Monte Carlo for non-equilibrium transport

the Monte Carlo algorithm samples the expansion of the non-equilibrium partition func-

tion

Z = Tr [(T̃ ei ∫
t
0 dt

′Htunnel(t′)) ei(Hdot+Hlead)t e−i(Hdot+Hlead)t (Te−i ∫
t
0 dt

′Htunnel(t′)) ρ0]
(4.15)

which, by definition, is Z = 1 if the initial density matrix is normalized. The expansion

of the partition function in order of the tunnel Hamiltonian reads

Z = Tr [∑
m

im∫
t

0
dt̃1 . . .∫

t

t̃m−1

dt̃mHtunnel(t̃1) . . .Htunnel(t̃m)

× ∑
n

(−i)n∫
t

0
dt1 . . .∫

t

tn−1
dtnHtunnel(tn) . . .Htunnel(t1)ρ0] . (4.16)

The particle number and spin in the bath are conserved quantities, which implies an

equal number of creation and annihilation operators for the bath. Separating the trace

over bath and quantum dot degrees of freedom gives

Z = ∑
mσ+nσ=m′

σ+n′σ
∏
σ

imσ+m
′
σ(−i)nσ+n

′
σ

× ∫
t

0
dt̃σ1 ..∫

t

t̃σmσ−1

dt̃σmσ ∫
t

0
dt̃′σ1 ..∫

t

t̃′σ
m′
σ−1

dt̃′σm′
σ ∫

t

0
dtσ1 ..∫

t

tσnσ−1

dtσnσ ∫
t

0
dt′σ1 ..∫

t

t′σ
n′σ−1

dt′σn′σ

×Trdot [ T̃ T dσ(t̃σ1)d†
σ(t̃′σ1 )dσ(t̃σ2)d†

σ(t̃′σ2 ) . . . dσ(tσ2)d†
σ(t′σ2 )dσ(tσ1)d†

σ(t′σ1 )ρdot(t = 0)]

×Trbath [ T̃ T c†σ(t̃σ1)cσ(t̃′σ1 )c†σ(t̃σ2)cσ(t̃′σ2 ) . . . c†σ(tσ2)cσ(t′σ2 )c†σ(tσ1)cσ(t′σ1 )ρbath] , (4.17)

with the abbreviation c†σ(t) = ∑α,k tα,k,σc
†
α,k,σ(t). For non-interacting bath electrons,

the trace over bath degrees of freedom can be analytically evaluated by applying Wick’s

theorem, which gives a product of two determinants

Trbath[. . .] = ∏
σ

det(∆σ). (4.18)

The size of the matrix ∆σ is given by the number of quantum dot operators d†
σ and its

matrix elements are [151]

∆(i,j)σ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆<(t′j − ti) if tK,i ≥ tK,j ,

∆>(t′j − ti) if tK,i < tK,j ,
(4.19)

with tK,j being the position of the jth creation operator and tK,i the position of the

ith annihilation operator on the unfolded Keldysh contour. The hybridization function
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4 Non-equilibrium Quantum Monte Carlo

∆</> is given by

∆<(t) = −i ∑
α=L,R

∫
∞

−∞

dω

π
Γα(ω)f(ω − µα) exp(−iωt), (4.20)

∆>(t) = i ∑
α=L,R

∫
∞

−∞

dω

π
Γα(ω) [1 − f(ω − µα)] exp(−iωt). (4.21)

We model Γα(ω) by a flat band with a bandwidth of 2ωc given by

Γα(ω) =
Γα

(1 + eν(ω−ωc))(1 + e−ν(ω+ωc))
, (4.22)

with a smoothing factor ν, which can be defined as ν = 1/kBT . In principle, a metallic

bath with infinite bandwidth can be implemented. However, as we will later see, the

dynamical sign problem aggravates for large bandwidths. Furthermore, it needs to be

noted that in the present definition of Γα(ω), the time-dependent observables depend

on the particular values of ωc. However, for voltages that are small compared to the

bandwidth 2ωc, changes in observables are vanishingly small and decay on a time scale

of the order ω−1
c [31]. Finally, the hybridization function yields

∆</>(t) = ΓkBT
cos(V t/2) − exp(±iωct)

sinh(πkBT t)
. (4.23)

The trace over the quantum dot states in Eq. (4.17) has to be numerically evaluated.

In Refs. [30,151] the segment or kink representation has been employed, which is appli-

cable for quantum dots with density-density interaction. The occupation of the quantum

dot with spin up or spin down particles is uniquely determined by the order of creation

and annihilation operators. In this case, the representation of the quantum dot occupa-

tion as segments for different times1 allows for an efficient algorithm. In the following,

however, the segment representation is not applied in order to be able to incorporate

other interaction types than density-density interactions. Instead, the reduced quantum

dot system will be represented in the eigenbasis of the quantum dot Hamiltonian. In or-

der to speed up the multiplication of matrices associated with creation and annihilation

operators, matrices are stored as sparse data types.

The Monte Carlo algorithm samples orders of operators on the Keldysh contour

1A segment is an interval in time during which the quantum dot is occupied.
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Figure 4.1: A particular diagram on the Keldysh time contour emerging in the expansion
of Eq. (4.17). The blue (red) dots mark quantum dot creation (annihila-
tion) operators on the forward (upper) and backward (lower) branch. Each
pair of creation and annihilation operators of same spin is connected by the
hybridization function (Eq. 4.21).

(Fig. 4.1) according to the weight

w(tK,1, . . . , tK,2n+1) =∏
σ

(i)mσ+m
′
σ(−i)nσ+n

′
σ det ∆σ Trdot[. . .]. (4.24)

The Markov chain of orders is constructed by the following local updates2: (i) insertion

of a quantum dot creation and annihilation operator and (ii) removal of a quantum dot

creation and annihilation operator.

The time-evolution of observables ⟨O(t)⟩ can be computed by summing up all possible

diagrams

⟨O(t)⟩ = Tr [(T̃ ei ∫
t
0 dt

′Hmix(t))O (Te−i ∫
t
0 dt

′Hmix(t))ρ0] =
⟨arg(w)O⟩∣w∣
⟨arg(w)⟩∣w∣

. (4.25)

The current through lead α can be estimated by the following expansion

Iα = −2 Im∑
k,σ

tα,k,σ ⟨c†α,k,σdσ⟩ (4.26)

= −2 Im Tr [(T̃ ei ∫
t
0 dt

′Htunnel(t′)) ei(Hdot+Hlead)t ∑
k,σ

tα,k,σ c
†
α,k,σdσ (4.27)

× e−i(Hdot+Hlead)t (Te−i ∫
t
0 dt

′Htunnel(t′)) ρ0] . (4.28)

For the current estimate, similar diagrams as in the expansion of the partition function

2Local updates change only a small part of a configuration, in that they add or remove a pair of
operators. Additionally, global updates could be implemented, creating completely new sequences of
operators.
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(Eq. 4.17) are obtained. Here, however, one quantum dot operator is fixed at time t,

and a hybridization function is used that only connects the lead α. By sampling the

corresponding diagrams the current is obtained via [151]

Iα = ∑
C

wC , (4.29)

with the configurations C given by all current diagrams for lead α and spin σ. While the

strong-coupling approach represents a perturbation expansion in the tunnel coupling,

it has to be emphasized that the method generates numerically exact solutions only

restricted by computing power and time.

4.1.2 Expansion in the Coulomb interaction

The strong-coupling version of real-time quantum Monte Carlo described in the previous

section has been originally developed for equilibrium calculations and was only recently

adapted to non-equilibrium transport. Besides strong-coupling QMC, a complemen-

tary approach, the weak-coupling QMC, was developed, which relies on an expansion

in powers of the Coulomb interaction U . Weak-coupling QMC comes in two flavors:

One incorporates the sampling of a Hubbard-Stratonovich (HS) field and the other the

direct sampling of the Green’s function expansion in U . Transport calculations using

auxiliary-field QMC were recently conducted by Werner et al. [32,151]. The expansion in

U is obtained by using the Hubbard-Stratonovich transformation to decouple the quartic

Coulomb term, leading to a summation over HS field variables. During the transforma-

tion, Werner et. al introduced an auxiliary parameter that helps reducing the oscillatory

behavior of the integrand and thereby the dynamical sign problem.

In this section, we take the other path and adopt the weak-coupling QMC version

developed by Rubtsov et al. for equilibrium [150] to calculate non-equilibrium transport

by directly sampling the Green’s function expansion in the Coulomb interaction. In

this approach, we use the exact solution of the non-interacting Green’s function (GF)

for a quantum dot tunnel coupled to leads, which we had already derived in section

1.3. The Coulomb interaction is introduced by standard GF perturbation theory around

this non-interacting solution. We introduce two so-called α parameters, similarly to the

equilibrium method by Rubtsov et al., in which these parameters allowed to extinguish

the sign problem [150]. For the first time, we apply this method to transport through

the single-level quantum dot and explore the effect of the α parameters on the dynamical

sign problem. It has to be noted that while auxiliary-field QMC and the direct expansion
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4.1 Quantum Monte Carlo for non-equilibrium transport

both are based on the expansion in U , they only become formally equivalent in the case

of particle-hole symmetry [163].

In order to obtain the weak-coupling version of QMC in non-equilibrium we start by

splitting the single-level quantum dot Hamiltonian into two parts, the single-particle

energy and the Coulomb interaction,

Hdot =H0
dot +H

U
dot = εd (n↑ + n↓) +U n↑n↓. (4.30)

The time evolution of H0 =H0
dot +Hbath +Htunnel is treated exactly while the expansion

in perturbation orders of HU
dot is numerically sampled.

In the spirit of weak-coupling Monte Carlo for equilibrium calculations [150], we intro-

duce the parameter α↑ and α↓ by the transformation nσ → nσ +ασ. This transformation

allows to re-express the interaction part of the Hamiltonian

Hint = U(n↑ − α↑)(n↓ − α↓), (4.31)

and the single-particle term

Hdot = (εd + α↓U)n↑ + (εd + α↑U)n↓ −Uα↑α↓. (4.32)

Note that the constant term Uα↑α↓ is irrelevant as it drops out due to the proper

normalization of the density matrix. The introduction of the auxiliary α parameter

allows us to modify the expansion terms and ideally reduce the expansion order. In

fact, it has been shown in the equilibrium version of weak-coupling QMC that every odd

order in the U expansion vanished for the particle-hole symmetric case and the proper

value of ασ [150].

The quantum dot and leads are disconnected for times t < 0, and the quantum dot is

prepared in an empty state ∣0⟩, while the leads are in equilibrium, resulting in the initial

density matrix,

ρ0 = ∣0⟩⟨0∣ ⊗ e−βHbath . (4.33)

Similar to the strong-coupling version of non-equilibrium QMC, we expand the partition

function of the time-dependent density matrix

Z = Tr [T̃ ei ∫
t
0 dsHint(s)eit(Hdot+Hbath+Htunnel)e−it(Hdot+Hbath+Htunnel)e−i ∫

t
0 dsHint(s) ρ0] ,

(4.34)

which is by construction Z = 1. In a next step, the Coulomb interaction term is expanded
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around the the exact solution for the non-interacting system (cf. section 1.3), giving

Z = Tr[∑
n+

(iU)n+ ∫
t

0
dt̃1 . . .∫

t

t̃n+−1
dt̃n+e

it̃1H0(n↑ − α↑)(n↓ − α↓) . . .

ei(t̃n+−t̃n+−1)H0(n↑ − α↑)(n↓ − α↓)ei(t−t̃n+)H0

∑
n−

(−iU)n− ∫
t

0
dt1 . . .∫

t

tn−−1
dtn−e

−i(t−tn−)H0(n↑ − α↑)(n↓ − α↓) . . .

e−i(t2−t1)H0(n↑ − α↑)(n↓ − α↓)e−it1H0 ρ0] (4.35)

with H0 = Hdot + Hbath + Htunnel. The expansion leads to a product of expectation

values of the particle operator nσ with respect to the non-interacting Hamiltonian H0

and allows for applying Wick’s theorem,

Z = ∑
n+

∑
n−

(i)n+ (−i)n− Un++n− ∫
t

0
dt̃1 . . .∫

t

t̃n+−1
dt̃n+ ∫

t

0
dt1 . . .∫

t

tn−−1
dtn−∏

σ

det iGα0,σ.

(4.36)

The auxiliary Green’s function

iGα0,σ(t′K , t′′K) = iG0,σ(t′K , t′′K) − ασ δt′K ,t′′K , (4.37)

incorporates the α parameter and the Green’s function of the non-interacting system of

a quantum dot tunnel coupled to leads,

G0,σ(t′, t′′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

G<
0,σ(t′K , t′′K), t′K < t′′K

G>
0,σ(t′K , t′′K), t′K ≥ t′′K ,

(4.38)

which has been obtained in chapter 1.3 for the case in which the quantum dot and leads

are decoupled for t < 0 and the tunnel coupling is instantly switched on at t = 0. Finally,

the Monte Carlo algorithm samples the expansion orders in G0,σ (Fig. 4.2) according to

the weight

w(tK1 , tK2 . . . tKn ) = (i)n+ (−i)n− Un++n−∏
σ

detGα0,σ. (4.39)

The different expansion orders are constructed by the following local updates: (i) two

(time) points are randomly selected on the Keldysh time contour and connected by Gα0,σ,

and (ii) a Green’s function Gα0,σ is removed.

In order to obtain the time evolution of the particle expectation value ⟨nσ⟩(t) and the
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4.1 Quantum Monte Carlo for non-equilibrium transport

double occupancy ⟨n↑n↓⟩(t), the full Green’s function Gσ(t′K , t′′K) = ⟨dσ(t′)d†
σ(t′)⟩ of the

interacting quantum dot is required, which can be obtained by sampling the following

quantity [32,150,151]

G̃σ(t′K , t′′K) = w{(tK1 , tK2 . . . tKn );dσ(t′)d†
σ(t′′)}

w(tK1 , tK2 . . . tKn )

= 1

detG0,σ
det

⎡⎢⎢⎢⎢⎣

G0,σ(tK,i, tK,j) iG0,σ(tK,i, t′′K)
−iG0,σ(t′K , tK,j) iG0,σ(t′K , t′′K)

⎤⎥⎥⎥⎥⎦

= G0,σ(t′K , t′′K) − i∑
i,j

G0,σ(t′K , tK,i)G0,σ(tK,i, tK,j)G0,σ(tK,j , t′′K). (4.40)

The full Green’s function is then obtained by evaluating the Monte Carlo expectation

value

Gσ(t′K , t′′K) = ⟨G̃σ(t′K , t′′K)⟩, (4.41)

and sampling the orders of the expansion Eq. (4.36). With knowledge of Gσ(t′K , t′′K),
the time-dependent occupation of the quantum dot

⟨nσ⟩(t) = 1 − i⟨G̃σ(t, t)⟩ (4.42)

and the double occupation

⟨n↑n↓⟩(t) = ⟨[1 − iG̃↑(tK , tK)][1 − iG̃↓(t, t)]⟩ (4.43)

can be obtained.

In the next section, we compare the dynamical sign problem for strong-coupling and

time

0

timett0
G0,�

+

�

t̃1

t2t3t4

G0,�

Figure 4.2: Configurations are constructed by randomly selecting pairs of time on the
two branches of the Keldysh contour. A sequence of non-interacting Green’s
functions connect each pair of times according to Eq. (4.36).
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weak-coupling QMC in the simulation of real-time dynamics of the impurity model. In

both cases, the quantum dot is initially prepared in an empty state and the coupling to

the electron bath is switched on at time t = 0. Furthermore, we investigate the optimal

choice of the α parameters in our implementation of the weak-coupling QMC.

4.2 Dynamical sign problem

Strong-coupling and weak-coupling QMC estimate the expectation values of observ-

ables at time t by sampling the different expansion orders in the hybridization and

non-interacting Green’s function, respectively. The order corresponds to the number of

operator pairs on the Keldysh contour (strong coupling) or the number of Green’s func-

tions (weak coupling), respectively (cf. Eqn. 4.36 and 4.25). The Monte Carlo procedure

samples these different orders according to their contribution (weight) to the estimates.

The sampling probability of the expansion orders n is shown in Fig. 4.3 for simulations

of the single-level impurity model. In both methods, the probability to sample higher

orders grows with the simulated time t. The probability of certain expansion orders

n are distributed around an average order n̄ and decay exponentially for larger orders

n > n̄. This ensures that the QMC simulation converges to the exact result as higher

order contributions become vanishingly small. The maxima in the curves of the expan-

sion order distribution give an estimate of the mean expansion order n̄, which increases

linearly in time.

While the average expansion order grows with the simulation time, it does not define
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Figure 4.3: Distribution of the expansion order n in the strong-coupling (left) and weak-
coupling approach (right) for different simulated times t. Parameters for the
strong-coupling simulation are εd = U = 0, temperature kbT = 0.1 Γ, bandwidth
2ωc = 10. The weak-coupling simulation is conducted for εd = 2U = 3 and
α↑ = α↓ = 0.1.
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the main limiting factor of the simulation. The average sign, which is found to decrease

exponentially with the expansion order, primarily limits the simulation time as well

as the accessible interaction strengths in the model. The complex valued hybridization

function, Green’s function and the free quantum dot propagation contribute to the decay

of the sign. The panels of Fig. 4.4 show the average sign versus the simulation time for

different interaction strengths U .

The average sign in the strong-coupling approach limits the possible simulation times

t to the order of Γ−1. However, it depends only weakly on the selected energy and

interaction strength. For every parameter set, the average sign exponentially decays

(cf. right panel of Fig. 4.5), but the strength of the decay depends on the model param-

eters. In particular, a finite voltage as well as a larger bandwidth of the bath accelerates

the approach to steady state. At the same time, however, the sign decays more rapidly

with bandwidth, demanding a carefully chosen value of ωc that finds a balance between

simulation time and reaching a steady state if possible (right panel Fig. 4.5). Results

presented in the next section are obtained for 2ωc = 10.

In contrast, the average sign in the weak-coupling approach strongly depends on the

strength of the expansion parameter given by the Coulomb interaction U/Γ. Similar

to the equilibrium version of the approach, the expansion order grows linearly with the

interaction strength. This approach can be optimized through the ασ parameters to
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Figure 4.4: Average sign ⟨arg(w)⟩∣w∣ of the Monte Carlo weight w in the strong-coupling
(left) and weak-coupling (right) approach for different interaction strengths
U in the Coulomb blockade regime 2εd + U = 0. While the strong-coupling
approach does not show any dependency of the sign decay on the interaction
strength, the weak-coupling approach considerably depends on U/Γ (shown for
δ = 0.01, see text). The strong dependence of the average sign on the Coulomb
interaction in the weak-coupling approach is due to the fact that for stronger
interactions higher orders in the expansion around the non-interacting system
are needed.
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Figure 4.5: left: Time-dependent occupation of the quantum dot with εd = U = 0, kBT =
0.1Γ and for different bandwidths ωc compared to the analytical solution
(gray). right: decay of the average sign for the same parameters.

reach longer simulated times. In principle, one can choose α↑ and α↓ independently.

Each choice will add a mean-field interaction ασU to the single-electron energy for spin-

up and spin-down. When α↑ ≠ α↓, the spin inversion symmetry of the system is formally

restored through sampling the entire series expansion Eq. (4.36), however, in practice

the Monte Carlo sampling of the expansion around a spin-split, non-interacting system

is challenging [159]. One way to avoid the symmetry breaking is to introduce auxiliary

fields s =↑, ↓ and expanding in

Hint =
U

2
∑
s=↑,↓

(n↑ − αs,↑) (n↓ − αs,↓). (4.44)

For equilibrium, the following choice has been found to be beneficial in actual calculations

[150],

αs,σ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 + δ s = σ,

−δ s ≠ σ,
(4.45)

with a small positive value δ for the half-filling regime where ⟨neqσ ⟩ = 1/2.
In the real-time version of the weak-coupling approach, we also find a favorable sign

decay for the choice δ ≈ 0.01 while avoiding numerical instabilities (Fig. 4.4, right). With

this choice, the probability for each odd expansion order is reduced (Fig. 4.6). In fact,

the power of the αs,σ parameters in tackling the sign problem stems not from reducing

the overall order of the expansion, but from reducing the contribution of every second

order. This behavior has also been recently found in the real-time version of the auxiliary

field QMC in Ref. [32].

With both methods, accurate results for expectation values of observables can be
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Figure 4.6: Distribution of the expansion order n in the weak-coupling approach for 2εd+
U = 0 and different interaction strengths, δ = 0.01 and tΓ = 1. The probability
of odd orders decreases when choosing a small parameter δ.

obtained as long as the magnitude of the average sign is larger than its statistical error,

which is feasible for ⟨sign⟩ ≳ 0.001. However, whether the steady state can be reached

within the accessible simulation time depends on the model and its parameters as well

as on the measured observable.

4.3 Strong-coupling QMC for the dynamics of the

magnetic impurity model

In the following, we study the non-equilibrium dynamics of charge carriers tunneling

through a magnetic quantum dot by applying strong-coupling QMC. The goal of this

section is to give a proof of principle for the implementation of quantum Monte Carlo

method for a wider class of systems.

The underlying model is the Anderson impurity model consisting of a single-level

quantum dot coupled to two electronic reservoirs. Additionally, the electrons on the

dot are exchange coupled to a local spin 1/2 of a magnetic impurity embedded into the

quantum dot. This system serves as a minimal model to study the dynamics in dilute

magnetic semiconductor quantum dots [22, 164–166], but also the influence of nuclear

spins on the electron dynamics [36, 167, 168]. While the magnetic impurity model is

not conceived to provide quantitative results for realistic systems, it serves as a generic

model to understand the mutual interactions of electrons and localized spins as well as

their impact on dephasing and relaxation in nanosystems.

From a methodological perspective, the magnetic impurity model is also an ideal

basis to develop and benchmark numerical methods for the treatment of the dynamics
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in systems subject to electron-impurity interactions. Here, we implement the strong-

coupling QMC method to include exchange interactions between electrons and the local

impurity spin. While we have shown that the weak-coupling approach is preferable for

weak interactions, the strong-coupling approach allows to treat the dynamics for the full

crossover between weak and strong electron-impurity coupling.

The implemented total Hamiltonian is given by the Anderson impurity part Hdot +
Hbath +Htunnel introduced in section 4.1 (Eq. 4.1) and an additional exchange Hamilto-

nian term Hexch describing the coupling between the electron spin S⃗ and the impurity

spin M⃗ by exchange interaction of strength J ,

Hexch = J S⃗ M⃗ = J Mz (d†
↑d↑ − d

†
↓d↓)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H

(long)
exch

+ J
2
(M+d†

↓d↑ +M
−d†
↑d↓)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H

(trans)
exch

, (4.46)

with the spin operators of the impurity given by M⃗ = (Mx, My, Mz) and M± = Mx ±
iMy. The exchange interaction can be divided into a longitudinal part H

(long)
exch and a

transversal part H
(trans)
exch . The longitudinal part merely renormalizes the electron energies

and resembles the impact of an effective magnetic field, while the second part creates

mutual flips of the electron spin and impurity spin. Furthermore, the interaction Hexch is

only present for a single electron in the quantum dot, while vanishing for a two electron

state forming a singlet.

We have implemented strong-coupling QMC to treat the dynamics of the quantum

dot described by full the Hamiltonian H =Hdot +Hbath +Htunnel +Hexch coupled to non-

interacting leads. Initially, the quantum dot is prepared in a given state and decoupled

from the leads. We investigate the dynamics and transport after the coupling is switched

on at t = 0, emphasizing the effects introduced by the transversal exchange interaction

that induces electron-impurity spin flips. In order to distinguish between non-trivial

spin-flip dynamics due to the transversal part and the effects caused by the longitudinal

part of the exchange interaction, we first discuss the consequences of H
(long)
exch on the

dynamics.

If the transversal interaction part is not present, the orientation of the impurity will

be frozen without the possibility of electron-impurity flip-flops. In that case, the longitu-

dinal part of the exchange interaction, acting as an effective magnetic field, only renor-

malizes the energies and rates. In the absence of exchange interactions, the quantum

dot density of states for spin-up and spin-down electrons equals, while the longitudinal

interaction term, on the other hand, shifts the densities for spin-up and spin-down elec-
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quantum dotlead lead

J"0

Figure 4.7: Schematic depiction of the density of states in the quantum dot and lead
while incorporating the longitudinal component of the exchange interaction.
The density of states in the leads is given by the respective Fermi function
and includes temperature broadening. The density of states in the dot is
shifted apart by the exchange interaction J due to the effective exchange field
Bexch = 1/2J SzMz and shows tunnel-induced broadening.

trons apart. This process is proportional to the energy J and depending on the relative

orientation between electron spin and impurity spin (Fig. 4.7). In line with this, the

energies of spin-up and spin-down electrons are renormalized εd → εd + 1/2J⟨Sz⟩⟨Mz⟩.
Including the transversal interaction part, by contrast, induces electron-impurity spin

flips, resulting in the relaxation of an initially polarized impurity spin. For weak exchange

interaction J ≪ Γ, the time scale of the impurity relaxation can be expected to be

long compared to the tunneling time of electrons Γ−1. In this regime, the impurity

primarily acts as an effective magnetic field and can be included by the mean-field

type of interaction described above. In the regime of strong exchange interaction, J ≳
Γ, however, electron-impurity spin flips (flip-flops) are expected to dominate the non-

equilibrium dynamics of the system. In the following, we analyze the transition from

weak exchange interaction J ≲ Γ to strong exchange interaction J ≳ Γ, including both

longitudinal and transversal components. In contrast to perturbative approaches, the

QMC method allows for the calculation of the continuous parameter crossover.

In a first step, the time evolution from non-equilibrium to equilibrium is considered

for an empty quantum dot that is initially decoupled from the bath and for a polarized

impurity spin ⟨Mz⟩ = 1/2. Fig. 4.8 shows the time-dependent occupation and double

occupancy of the quantum dot after the coupling between quantum dot and bath is

switched on at t = 0. The bias voltage between the leads is set to V = 0, and for energies

εd = U = 0 the tunneling of electrons into the quantum dot is studied.

As the quantum dot is charged over time, a splitting of the electron density for spin-
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Figure 4.8: left: Time-dependent, spin-resolved occupation and double occupancy of the
quantum dot for εd = U = 0, zero bias V = 0 and different values of the ex-
change interaction strength J/Γ. Occupancy of spin-up and spin-down elec-
tron splits apart with time for finite J/Γ, while double occupancy is slightly
suppressed. right: Corresponding spin accumulation on the quantum dot
⟨Sacc⟩ = ⟨n↑ −n↓⟩ and expectation value of the impurity spin projection ⟨Mz⟩.
Weak exchange interaction J ≲ Γ results in a negative spin accumulation,
while stronger exchange couplings J > Γ produce a transient positive spin ac-
cumulation. The impurity spin relaxes on time scales larger than the electron
tunneling time Γ−1.

up and spin-down is clearly observable and accompanied by a suppression of the double

occupation for larger values of J . While the splitting of the spin-resolved density can

be expected due to the effect of the longitudinal exchange interaction, the majority spin

type on the quantum dot changes for larger J . This is revealed in the spin accumula-

tion ⟨Sacc⟩ = ⟨n↑ − n↓⟩ shown on the right panel of Fig. 4.8 together with the impurity

orientation ⟨Mz⟩. As for the present initial configuration, a small value J ≲ Γ results

in an effective magnetic field Bexch = J/2 and induces a majority of spin-down electron

density on the quantum dot (negative spin accumulation Sacc < 0). In this regime, the

impurity spin shows evidence of very slow relaxation, implying that electron-impurity

spin flips play a subordinate role. As the exchange interaction is increased, coherent

spin flip-flops between electrons and impurity become more important and result in an

accelerated relaxation of the impurity spin. At the same time, the emergence of a pos-

itive spin accumulation on the quantum dot can be observed. This is a transient effect

stemming from the initial polarization of the impurity, which results in a spin-flip proba-

bility that is skewed towards flip-flops increasing the spin accumulation on the quantum

dot. One can expect, however, that both flip-flop rates become equal as the impurity

spin relaxes.
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Figure 4.9: Average sign versus time for different exchange coupling and parameters as
in Fig. 4.9.

For the present initial state, we are unable to reach equilibrium (due to the dynamic

sign problem, Fig. 4.9) and hence are not able to observe the exponential relaxation of

the impurity spin studied in [22,169]. In fact, a second order diagrammatic perturbation

theory can give an estimate for the impurity relaxation time τrelax for weak exchange

coupling J ≪ Γ [22],

τ−1
relax =

J2 Γ2

16π
∑

σ,σ′=±
∫

∞

−∞
dω

[f+R(ω) + f+L(ω)][f−R(ω) + f−L(ω)]
[(ω − εd − σJ/2)2 + Γ2][(ω − εd − σ′J/2)2 + Γ2]

, (4.47)

which is inaccessible in the present study due to the dynamical sign problem. Therefore,

we shift the discussion towards the time evolution for a quantum dot initially prepared

in the one-electron ground state given by a singlet state

∣S⟩ = 1√
2
(∣ ↑⇓⟩ − ∣ ↓⇑⟩) , (4.48)

with an up (down) spin denoted by ∣ ↑⟩ (∣ ↓⟩) for electrons and by ∣ ⇑⟩ (∣ ⇓⟩) for the

impurity. Other parameters remain unchanged and the zero-bias case is regarded.

Fig. 4.10 shows the time-evolution of the quantum dot with initial occupation ⟨n⟩0 =
⟨n↑⟩0+⟨n↓⟩0 = 1 and ⟨n↑⟩0 = ⟨n↓⟩0 = 1/2, while the initial impurity spin projection is given

by ⟨Mz⟩0 = 0. For numerically accessible times, the spin-resolved occupation ⟨nσ⟩ of the

quantum dot barely show any time dependence for short times (inset Fig. 4.10 left). In-

stead, a time evolution in the double occupancy is noticeable. For J = 0, the equilibrium

expectation value ⟨n↑n↓⟩ ≃ ⟨n↑⟩⟨n↓⟩ = 1/4 for non-interacting electrons is approached. A

finite exchange interaction between electrons and impurity spin suppresses the double

occupation similar to the effect of finite Coulomb interaction (right panel of Fig. 4.10).
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Figure 4.10: Time-dependent double occupation of the quantum dot for different values of
the exchange interaction strength J/Γ between electron and impurity. The
quantum dot is initially prepared in the one-particle ground state and the
approach to equilibrium is computed for V = 0. The non-interacting case
U = εd = 0 (left) and the finite Coulomb interaction case U = −εd/2 = 4
(right) exhibit a reduction of double occupancy for larger values J , while
the occupancy ⟨nσ⟩ barely show any dynamics for short times (inset).

The origin of the reduced double occupancy can be understood through the following

picture. While the expectation value of the impurity spin gives ⟨Mz⟩ ≈ 0, fluctuations

of the impurity shift apart the density of states in the quantum dot (cf. Fig. 4.7). In

contrast to the previous situation, the electron spin orientation is subordinate as the

field created by the impurity averages to zero. For an instance in time, however, each

spin species of electrons can perceive a different effective field. This allows to calculate
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Figure 4.11: Double occupation of the quantum dot at time t = Γ−1 for different inter-
action strengths U with εd = −U/2 and V = 0. Dashed line shows results
obtained by Eq. (4.49). The double occupancy is suppressed for stronger
exchange interaction strength between electron and impurity, which can be
partly attributed to the longitudinal interaction term (for J ≲ 1.5Γ).
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the long-time limit of the double occupancy,

⟨n↑n↓⟩ ≃ ⟨n↑⟩⟨n↓⟩ =
Γ2

4π2 ∫ dω∫ dω′
[f+R(ω) + f+L(ω)][f+R(ω′) + f+L(ω′)]

[(ω − εd − J/2)2 + Γ2][(ω′ − εd + J/2)2 + Γ2]
.

(4.49)

This ansatz is supported by the long-time limit (t = Γ−1) in Fig. 4.11, showing good

agreement between the numerical results at t = Γ−1 and Eq. 4.49 for small exchange

coupling J ≲ 1.5 Γ. For larger values of J , flip-flops become increasingly important

and lead to a stronger suppression of double occupancy and deviations from the above

picture.

4.3.1 Non-equilibrium current in the magnetic impurity model

Furthermore, we studied the current through the magnetic quantum dot for an initially

empty quantum dot and for different bias voltages V (Fig. 4.12). The previous section

has revealed that the relaxation of the magnetic impurity occurs on time scales longer

than the electron tunneling time. The time-dependent current, however, appears to

reach a steady value on the time scale of Γ−1, which is in agreement with results for

small exchange interaction previously obtained by Becker et al. [22, 169]. In contrast,

the displacement current Idisp = (IL + IR)/2 on the right panel of Fig. 4.12 still shows

dynamics for times longer than the electron tunneling time, which reflects the time-

dependent occupation of quantum dots observed in the previous section (cf. Fig. 4.8).

Here, IL (IR) gives the current from the left (right) lead into the quantum dot.

The current through the quantum dot I = IL − IR at t = Γ−1 shows a monotonous
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Figure 4.12: Time-dependent current through the quantum dot I = IL − IR (left) and
displacement current Idisp = (IL + IR)/2 (right) for different bias voltages
V = 1,2, . . .6 from bottom to top. The energies in the quantum dot are
εd = U = 0 and J = 2 Γ.

91



4 Non-equilibrium Quantum Monte Carlo

0 1 2 3 4 5 6

V/Γ

0.0

0.2

0.4

0.6

0.8

1.0

I
/
Γ

J/Γ

0

1

2

3

Figure 4.13: Current through the quantum dot I = IL − IR at time t = Γ−1 for different
values of the electron-impurity interaction strength J/Γ. Small interaction
strengths J ≲ Γ have a weak impact on the voltage-dependent current char-
acteristics, while larger values J > γ reduce the conductivity of the quantum
dot.

dependence on the applied bias (Fig. 4.13). While it cannot be assumed that the

steady state has yet been reached for all values of the exchange interaction strength

J/Γ, the general trend can be deducted. Weak exchange interaction between electron

and impurity J ≲ Γ shows minimal effect on the current for the considered bias regime.

Stronger exchange interaction J > Γ suppresses the current at finite bias and reduces the

conductance of the quantum dot.

4.4 Summary

We have investigated the quantum Monte Carlo approach for transport dynamics that

is based on the stochastic sampling of the Keldysh path integral. Expansions in the

Coulomb interaction strength and in the tunnel-coupling between quantum dot and leads

have been presented. Both approaches suffer from the dynamical sign problem that arises

due to the sampling of complex (oscillatory) phases during the propagation in time. The

limiting factor of the simulations is the average sign that decays exponentially with the

expansion order and renders the simulation of long times prohibitively difficult.

We have transferred the diagrammatic Monte Carlo approach by Rubtsov et al. [150]

to non-equilibrium problems. For weakly interacting quantum dots, this method can be

carried out for longer times compared to the strong-coupling approach that expands in

terms of the tunnel coupling. Its applicability strongly depends on the optimal choice of

auxiliary parameters, which we showed to have a considerably favorable impact on the

capable simulation time. However, as an expansion around the non-interacting system,
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the average expansion order grows with the strength of the Coulomb interaction which

makes it preferable for systems with weak to intermediate interaction strengths.

The expansion in the tunnel coupling shows rather unfavorable convergence properties.

However, the decay of the average sign turns out to be almost independent of the quan-

tum dot energies, making this approach suitable for all interaction strength and for the

study of crossovers between interaction regimes. Choosing different initial states turned

out beneficial for studying the time evolution from non-equilibrium to equilibrium.

The general advantage of both presented versions of quantum Monte Carlo compared

to other non-equilibrium approaches is that the methods are numerically exact within

the given stochastic error bars. There are no approximations like discretization or trun-

cations.

We have also demonstrated that the QMC approach has potential for the simulation of

small systems with additional degrees of freedom based on the example of the magnetic

impurity model. We first discussed the dynamics of a quantum spin 1/2 incorporated into

a single-level quantum dot, which serves as a minimal model for e.g. magnetic impurities

embedded in quantum dots or the interaction between nuclear spins and electrons. QMC

allowed studying the dynamics of the impurity and electrons in the quantum dot after

the coupling to leads is switched on. The evolution from non-equilibrium to equilibrium

has been studied for the parameter crossover from weak to strong exchange interac-

tion. For weak-exchange coupling between impurity and electrons, we find a reasonable

agreement with the mean-field type approach, suggesting that the impurities act as an

effective magnetic field in the dynamics of the electrons. Furthermore, the impurity spin

shows slow relaxation that occurs on time scales much larger than the transient electron

dynamics. A larger exchange-coupling, on the other hand, results in an enhanced impact

of coherent electron-impurity flip-flops and induces transient spin accumulation on the

quantum dot. In this regime, fluctuations of the impurity spin additionally suppress the

quantum dot double occupancy. In the present study, QMC proves to be a potential

tool to investigate the dynamics for the full parameter crossover in the low-temperature

regime and even for zero bias.
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5 Conclusions and Outlook

The aim of this thesis has been to understand charge and spin dynamics in nanostruc-

tures that are brought out of equilibrium. In its three main parts the thesis covers the

interactions and mechanisms defining the time scales of dynamics in quantum dots and

small magnetic clusters. Chapter 2 deals with the charging dynamics of quantum dots

coupled to a two-dimensional electron gas after an abrupt change in the gate potential.

We investigated the dependence of the charging times on Coulomb correlations in the

quantum dot and on spin and charge relaxation processes. In chapter 3, the spin dy-

namics of a small, ferromagnetic cluster are analyzed and its signatures in the current

noise are investigated. Here, the spin switching is defined by the interplay of inelastic

spin excitations and the interaction with the environment. Both model systems have

been treated with the master equation approach, which has proven to adequately de-

scribe the dynamics of systems that are weakly coupled to electron baths. In chapter 4,

we advanced from the weak coupling approximation and showed first results obtained

by non-equilibrium QMC, a numerical method capable to describe the time evolution

of systems with arbitrary interactions and couplings. We implemented strong-coupling

and weak-coupling versions of the non-equilibrium QMC and discussed results for the

magnetic impurity model. In the following, the main findings are discussed in detail.

In chapter 2, we have studied the charging times emerging in the time evolution of a

multi-level quantum dot with full Coulomb interaction coupled to an electron gas, after

a sudden change in the gate potential. Exact diagonalization and the master equation

approach have been employed to reveal various contributing factors that determine the

defining time scales:

• degeneracy of the few-electron states in the quantum dot,

• exchange and Coulomb correlations emerging between electrons,

• internal orbital and spin relaxation,

• wave function overlap between electrons in the quantum dot and electron gas.

The charging times in a toy model of a single-level quantum dot can be directly related

to the degeneracy of the system. We have have extended the analysis to a multi-level
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quantum dot for which the tunneling rates are no longer uniquely determined by the

degeneracy. In particular, charging times of few-electron states are prolonged due to

exchange correlations prevalent in many-electron states that act to reduce the magnitude

of spectral weights. This shows that the inclusion of correlated many-body states is

particularly important in the description of charge dynamics in strongly interacting

quantum dots.

Furthermore, we studied the effect of orbital relaxation and spin relaxation on the

charging rates. While a direct observation of relaxation rates in the time-dependent

occupation of the quantum dot is not possible, internal relaxation affects the number

of available tunneling channels as well as the magnitude of transients in dn(t)/dV . In

systems with long spin relaxation times, a transient occupation of excited states is avail-

able, leading to huge charging rates compared to single-particle tunneling times. The

presented results show that the impact of internal relaxation is only observable in the

transient behavior on time scales of the single-particle tunneling time and can serve as a

reference for future experiments. Moreover, we investigated the effect of the wave func-

tion overlap between quantum dot and electron gas, which shows a strong dependence on

the quantum dot size and the carrier concentration in the electron gas. For designated

parameters, a stronger tunneling into ground states or excited states can be induced.

The analysis has shown that the presented theoretical approach provides a sound

framework for the interpretation of experimental findings and for the disentanglement

of effects observed. As experiments approach smaller ensembles of quantum dots and

ultimately the single quantum dot limit, the presented theory can be used as a starting

point for the targeted design of experiments to study the charging dynamics of quantum

dot systems when brought out of equilibrium.

The analysis conducted in chapter 2 demonstrated the wealth of information about the

quantum dot system that is obtainable from the time scales involved in the dynamics.

In chapter 3, we extended the study to the time-dependent spin switching and noise

in a small ferromagnetic cluster that is deposited on a conducting substrate and tunnel

coupled to a spin-polarized STM tip. By applying the master equation approach and

using a spin Hamiltonian, we revealed that the dynamics of the spin fluctuations in the

cluster are determined by the interplay of

• inelastic spin flips due to a spin-polarized current,

• magnetic relaxation of the cluster spin,

• substrate-mediated magnetization tunneling.

We have investigated the dynamics of a cluster with a degenerate ground state in the
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regime where the tunneling electrons from the tip represent a weak perturbation to the

cluster. In this regime, we could show that the spin fluctuations of the system effectively

resemble the spin noise of a two-level system. The dependence of the effective switching

rate on the external parameters voltage, temperature and magnetic field allowed us to

infer the underlying interplay of inelastic spin flips and anisotropy. This ultimately

allowed for the interpretation of recent experimental results on small iron clusters [15].

In particular, we determined bias-dependent spin switching for voltages above the

magnetic excitation energy that is caused by current-induced spin flips in the cluster.

The occurrence of a threshold bias demonstrates the quantized nature of the spin in the

system under study. For bias voltages below the magnetic excitation energy, the exci-

tation of the cluster in the spin Hamiltonian model is suppressed at low temperatures.

Another crossover has been found in the temperature dependence of spin fluctuations.

For temperatures above the spin excitation energy, the cluster is thermally excited and

the spin fluctuation corresponds to an Arrhenius-type spin switching. At low tempera-

tures, however, thermal excitations are suppressed and we find that spin fluctuations are

caused by the interplay of substrate electrons and transverse magnetic anisotropy, which

leads to magnetization tunneling. In this regime, spin fluctuations linearly dependent

on the temperature, which can serve as an experimental indicator for magnetization

tunneling.

Furthermore, the introduction of a magnetic field revealed the effect of spin-transfer

torque due to a spin-polarized current on the dynamics in the cluster. The polarization

of the tip introduces an imbalance between current-induced spin-flips associated with

an increasing and decreasing cluster spin, respectively. We find that the competition

between current-induced spin-transfer torque and the external magnetic field determines

the occupation of the two lowest energy states in the cluster.

The presented system was described by an effective total spin in the spin Hamilto-

nian framework and under the assumption of fast decoherence of the cluster compared

to the switching dynamics. This gives rise to the question how the behavior of spin

noise changes in the regime where the coherence time is of the order of the switching

time. Furthermore, the presented framework has the potential to be extended in order

to treat multiple weakly coupled atoms or clusters. In these systems, the direct inter-

action is weak. The spins, however, are coupled by means of an indirect interaction

through electrons of the conducting substrate (Ruderman-Kittel-Kasuya-Yosida interac-

tion). These systems show complex collective behavior and the understanding of their

dynamics is of importance in pursuing the goal of implementing logic gates in an atomic

scale device [170].
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5 Conclusions and Outlook

In chapter 4, we have applied the quantum Monte Carlo approach for transport

dynamics that is based on the stochastic sampling of the Keldysh path integral. We

have implemented expansions in

• the Coulomb interaction strength,

• the tunnel-coupling between quantum dot and leads.

Both approaches suffer from the dynamic sign problem, which is the limiting factor of

QMC calculations and makes the simulation of long times prohibitively difficult.

For weakly interacting quantum dots, the presented weak-coupling approach can be

carried out for longer times compared to the strong-coupling approach that expands

in terms of the tunnel coupling. However, as an expansion around the non-interacting

system, the average expansion order grows with the strength of the Coulomb interaction.

This makes it preferable for systems with weak to intermediate interaction strengths.

Unfavorable convergence properties have been determined in the expansion in the

tunnel coupling. Here, however, the decay of the average sign turns out to be almost in-

dependent of the quantum dot energies, making this approach suitable for all interaction

strengths and for the study of crossovers between interaction regimes.

We have also demonstrated that the QMC approach has the potential to be used for

the simulation of small systems with additional degrees of freedom based on the example

of the magnetic impurity model. In particular, we discussed the dynamics of a quantum

spin 1/2 incorporated into a single-level quantum dot, which serves as a minimal model

for, e.g., magnetic impurities embedded in quantum dots or the interaction between

nuclei spins and electrons.

Strong-coupling QMC allowed studying the dynamics of the impurity and electrons

in the quantum dot after the coupling to leads is switched on. The time evolution

from non-equilibrium to equilibrium has been studied for the parameter crossover from

weak to strong exchange interaction. For weak-exchange coupling between impurity and

electrons, we find a reasonable agreement with the mean-field type approach, suggesting

that the impurities act as an effective magnetic field in the dynamics of the electrons.

Furthermore, the impurity spin shows slow relaxation that occurs on time scales much

larger than the transient electron dynamics. A larger exchange-coupling, on the other

hand, results in an enhanced impact of coherent electron-impurity flip-flops and induces

transient spin accumulation on the quantum dot. In this regime, fluctuations of the

impurity spin additionally suppress the quantum dot’s double occupancy.

The study is a first step toward the investigation of the coherent dynamics in more com-

plicated systems like dilute magnetic quantum dots with multiple impurities or atomic
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clusters when brought out of equilibrium.

In the presented study, the non-equilibrium QMC approach proved to be a promising

tool to investigate the dynamics in the crossover between parameter regimes and systems

without small expansion parameters, i.e. the deep quantum regime. Compared to other

non-equilibrium approaches, quantum Monte Carlo has the general advantage to be

numerically exact within the given stochastic error bars. There are no approximations

like discretization or truncations.

Crucial for the general applicability of quantum Monte Carlo is the handling of the

dynamic sign problem with the aim to approach longer simulation times. We demon-

strated that the introduction of auxiliary parameters can be one step toward reaching

this goal and further optimizations seem to be worthwhile.
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[144] J. Paaske, a. Rosch, and P. Wölfle, Physical Review B 69, 155330 (2004).

[145] S. Kehrein, Physical Review Letters 95, 056602 (2005).

[146] F. Anders and A. Schiller, Physical Review B 74, 245113 (2006).

[147] N. Makri, Journal of Mathematical Physics 36, 2430 (1995).

[148] S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Physical Review B 79, 249901

(2009).

[149] S. Bedkihal and D. Segal, Physical Review B 85, 155324 (2012).

[150] A. Rubtsov, V. Savkin, and A. Lichtenstein, Physical Review B 72, 035122 (2005).

[151] P. Werner, T. Oka, and A. Millis, Physical Review B 79, 035320 (2009).

[152] E. Gull et al., Physical Review B 83, 075122 (2011).

[153] N. Tsuji, T. Oka, P. Werner, and H. Aoki, Physical Review Letters 106, 10 (2011).

[154] A. Eckardt, C. Weiss, and M. Holthaus, Physical Review Letters 95, 260404 (2005).

[155] I. Bloch, J. Dalibard, and W. Zwerger, Reviews of Modern Physics 80, 885 (2008).

[156] M. Takahashi and M. Imada, Journal of the Physical Society of . . . 53, 963 (1984).

[157] D. M. Ceperley, in Monte Carlo and Molecular Dynamics of Condensed Matter

Systems, edited by K. Binder and G. Ciccotti (Editrice Compositori, Bologna,

Italy, 1996).
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