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Abstract

In multi-agent-based simulation (MABS) the behavior of individual actors is modelled in large
detail. The analysis and validation of such models is rated as di�cult in the literature and
requires support by innovative methods, techniques, and tools. Problems include the complexity
of the models, the amount and often qualitative representation of the simulation results, and
the typical dichotomy between microscopic modeling and macroscopic observation perspectives.

In recent years, the application of data mining techniques has been increasingly propagated
in this context. Data mining might, to some degree, bear the potential to integrate aspects
of automated, formal validation on the one hand and explorative, qualitative analysis on the
other hand. A promising approach is found in the �eld of process mining. Due to its rooting
in business process analysis, process mining shares several process- and organization-oriented
analysis perspectives and use cases with agent-based modeling.

On the basis of detailed literature research and practical experiences from case studies, this
thesis proposes a conceptual framework for the systematic application of process mining to
the analysis and validation of MABS. As a foundation, agent-oriented analysis perspectives
and simulation-speci�c use cases are identi�ed and embellished with methods, techniques, and
further results from the literature.

Additionally, a partial formalization of the identi�ed analysis perspectives is sketched by uti-
lizing the concept of process dimensions by Rembert and Ellis as well as the MAS architecture
Mulan by Rölke. With a view to future tool support the use cases are broadly related to
concepts of scienti�c work�ow and data �ow modeling. Furthermore, simulation-speci�c re-
quirements and limitations for the application of process mining techniques are identi�ed as
guidelines.

Beyond the conceptual work, process mining is practically applied in two case studies re-
lated to di�erent modeling and simulation approaches. The �rst case study integrates process
mining into the model-driven approach of Petri net-based agent-oriented software engineering
(PAOSE). On the one hand, process mining techniques are practically applied to the analysis of
agent interactions. On the other hand, more general implications of combining process mining
with reference net-based agent modeling are sketched.

The second case study starts from a more code-centric MABS for the quantitative analysis of
di�erent logistic strategies for city courier services. In this context, the practical utility and
applicability of di�erent process mining techniques within a large simulation study is evaluated.
Focus is put on exploratory validation and the reconstruction of modularized agent behavior.
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Kurzfassung

In der agentenbasierten Simulation wird das Verhalten individueller Akteure detailliert im Mod-
ell abgebildet. Die Analyse und Validierung dieser Modelle gilt in der Literatur als schwierig und
bedarf der Unterstützung durch innovative Methoden, Techniken und Werkzeuge. Probleme
liegen in der Komplexität der Modelle, im Umfang und der oft qualitativen Darstellungsform
der Ergebnisse sowie in der typischen Dichotomie zwischen mikroskopischer Modellierungs- und
makroskopischer Beobachtungssicht begründet.

In den letzten Jahren wurde in diesem Zusammenhang zunehmend der Einsatz von Techniken
aus dem Data Mining propagiert. Diese bergen in gewisser Weise das Potenzial, Aspekte der
automatisierten, formalen Validierung mit denen der explorativen, qualitativen Analyse zu vere-
inen. Einen vielversprechenden Ansatz bietet das sogenannte Process Mining, welches aufgrund
seiner Nähe zur Geschäftsprozessmodellierung mit der agentenbasierten Modellierung vergleich-
bare prozess- und organisationsorientierte Modellsichten (Perspektiven) und Anwendungsfälle
aufweist.

Ziel der vorliegenden Arbeit ist es, auf Basis umfangreicher Literaturrecherche und in Fallstu-
dien gesammelter Erfahrungen ein konzeptionelles Rahmenwerk für den systematischen Ein-
satz von Process Mining zur Analyse und Validierung agentenbasierter Simulationsmodelle
vorzuschlagen. Als Grundlage werden agentenspezi�sche Analyseperspektiven und simulation-
sspezi�sche Anwendungsfälle identi�ziert und durch Methoden, Techniken und weitere Ergeb-
nisse aus der Literatur ausgestaltet.

Darüber hinaus wird ansatzweise eine Teilformalisierung der Analyseperspektiven unter Ver-
wendung des Prozessdimensionen-Konzepts nach Rembert und Ellis sowie der auf Referen-
znetzen basierenden Architektur Mulan nach Rölke angestrebt. Die Anwendungsfälle wer-
den mit Blick auf eine mögliche Werkzeugunterstützung mit Konzepten der wissenschaftlichen
Work�ow- und Daten�ussmodellierung in Beziehung gesetzt und durch die Identi�kation sim-
ulationsspezi�scher Anwendungsrichtlinien für das Process Mining ergänzt.

Neben der konzeptionellen Arbeit wird der Einsatz von Process Mining praktisch in unter-
schiedlichen Modellierungs- und Simulationsansätzen erprobt. Die erste Fallstudie integriert
Process Mining konzeptionell und technisch in den modellgetriebenen Ansatz der Petrinetz-
basierten agentenorientierten Softwareentwicklung (PAOSE). Dabei wird einerseits der praktis-
che Einsatz von Process Mining-Techniken zur Interaktionsanalyse von Agenten beschrieben.
Andererseits zeigt die Studie generelle Implikationen der Kombination von Process Mining und
Referenznetz-basierter Agentenmodellierung auf.

Ausgangspunkt der zweiten Fallstudie ist eine eher Code-zentrierte agentenbasierte Simulation
zur quantitativen Analyse verschiedener Logistikstrategien für Stadtkurierdienste. Im Rahmen
dieser Fallstudie werden Process Mining-Techniken im Hinblick auf Anwendbarkeit und Nutzen
für eine groÿen Simulationsstudie untersucht. Dabei steht die explorative Validierung und die
Rekonstruktion modularisierten Agentenverhaltens im Vordergrund.
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1. Introduction

Multi-agent systems (MAS) are a promising theoretical concept to approach practical challenges
related to the �exibility, adaptivity, and distribution of computer systems. The agent metaphor
combines an object-oriented encapsulation of program state and control �ow with ideas on the
�mechanics of [...] decision making� (Davis et al., 1989) rooted in arti�cial intelligence, sociology,
and economics.1 One common example of MAS are teams of real or simulated robots competing
in the robot soccer league Robo Cup2 (see e.g. Nair et al., 2004).

Accordingly, agent-based abstractions are used in �several sub�elds of computer science; e.g. soft-
ware engineering, distributed systems, and robotics.� (Page and Kreutzer, 2005, pp. 339). Inde-
pendent from the application context, a major problem is posed by the need to analyze and
understand the behavior of agent-based systems, and in particular to assess their validity. This
term, which will be de�ned precisely later, means in short that a system ful�lls its intended
functions in an appropriate way.

An agent-based simulation model should, for instance, represent the microscopic agent-level as
well as the macroscopic system-level of the corresponding original system in detail to allow for
reliable conclusions about reality. The increasing application of agent technology in domains
with high safety or real-time requirements (e.g. manufacturing control) calls for particularly
powerful validation techniques. The call for appropriate methods and tools to support the
analysis and validation of agent-based systems has been uttered in early publications on agent-
based software engineering already (e.g. Gasser and Huhns, 1989) and apparently not been
answered su�ciently (see e.g. Guessoum et al., 2004, pp. 440). Therefore, the aim of this thesis
is to shed light on innovative techniques to validate agent-based models.

1.1. Motivation

For a number of reasons, the analysis and validation of MAS poses severe problems that are
inherent to the approach. �The distributed system state and high sensitivity of ABS [agent-based
simulations] often results in an unmanageable and unpredictable global behaviour.� (Knaak, 2007,
p. 29, see also Klügl, 2008, Sec. 2.2). Minor deviations in the system's initial conditions might
give rise to strong deviations in behavioral trajectories (Rand et al., 2003, p. 2)3. �Due to
the microscopic modelling perspective, global [system] properties are not in�uenced directly� (Knaak,
2007, pp. 29-30), but only by specifying the behavior of individual agents. Since relations be-
tween microscopic causes and macroscopic e�ects are generally hard to determine in distributed

1A paragraph with similar content also forms the introduction to our pre-publication (Cabac et al., 2006c).
2http://robocup.org, last visit 2012-11-17
3page numbers relate to the version of the article downloadable at http://masi.cscs.lsa.umich.edu/

sluce/publications/sluce-abs.pdf (last visit 2012-10-06)
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systems, this situation often complicates tasks like calibration and optimization (Klügl, 2000,
p. 205).

Certain uses of the agent metaphor even prohibit an a-priori speci�cation of the system's
behavior as in traditional software engineering: Innovative �elds such as social simulation,
swarm intelligence (Kennedy, 2001) or the engineering of self-organizing systems (Potgieter,
2004) explicitly strive to investigate or bene�t from self-organizing or emergent e�ects observed
in certain MAS (David et al., 2002, p. 91). For the analysis and validation of MAS several
approaches reaching from formal to simulation-based techniques have been proposed.

Formal veri�cation is based on representations using formalisms such as Petri nets or modal
logic. Due to their conciseness, formal methods are increasingly applied in agent-oriented
software-engineering. However, as noted in (Cabac et al., 2006b, Sec. 1) only �simple and often
practically irrelevant classes of MAS (Edmonds and Bryson, 2004)� can be analyzed with formal
methods alone.

The simulation-based approach relies on the empirical observation of operational MAS and
an a-posteriori analysis of the observed behavior. The empirical analysis of MAS and agent
behavior is an important means for validation, often outperforming the application of formal
methods (see e.g. Cohen, 1995 and Guessoum et al., 2004). According to Uhrmacher (2000,
p. 39) �the development of software agents is [...] mainly an experimental process�4. However,
as cited in (Cabac et al., 2006b, Sec. 1) �the observation of even simple multi-agent systems might
produce large and complex amounts of data (Sanchez and Lucas, 2002)�, the interpretation of which
requires complex, computer-supported analysis techniques.

The literature provides complementary approaches for analyzing and validating MAS based
on empirical observations: While con�rmatory techniques such as statistical hypothesis tests
or model-based trace-analysis (e.g. Howard et al., 2003) allow for the falsi�cation of a-priori
speci�cations or hypotheses, exploratory techniques serve to investigate and better understand
previously unknown aspects of MAS behavior (e.g. Botía et al., 2004).

Due to the experimental character of MAS development (Uhrmacher, 2000, p. 39), exploratory
analysis techniques seem well-suited to foster analysis and validation tasks. Several MAS
development tools support exploratory analysis by means of powerful visualization techniques
(e.g. Ndumu and Nwana, 1999). To overcome inherent drawbacks of visualization (e.g. in
handling large amounts of high-dimensional data) the additional use of data mining (DM) in
MAS analysis and validation has increasingly been proposed in the last years (e.g. Remondino
and Correndo, 2005).5

The notion of data mining will be introduced later in detail. For the moment it is used as an
umbrella term for computer supported methods from machine learning and exploratory statis-
tics that automatically generate models from large amounts of data. In MAS analysis, data
mining is in particular suited to �nd implicit interaction patterns and relations between pro-
cesses at multiple levels of a system. Such patterns can serve as meaningful high-level system
descriptions supporting data-intensive analysis tasks such as validation (see also Remondino
and Correndo, 2005). This has some tradition in simulation analysis where simulation out-
put is aggregated to more abstract meta models used in result interpretation, validation, and
optimization (e.g. Barton and Szczerbicka, 2000).

4All literal citations from German sources were translated by the author of this thesis.
5see also Cabac et al. (2006b, Sec. 1)
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�Since processes are an important aspect and event logs an important data source in ABS, a
class of highly appropriate techniques is found in a DM sub�eld called process mining (PM)
(Aalst and Weijters, 2004). These techniques are typically applied in work�ow management
and serve to reconstruct process models from work�ow execution logs.

Similar to ABS, PM research considers multiple system views with a focus on concurrent
control �ow and organisational models. Despite these similarities, relations between both
�elds have not been considered in the literature often. There are only few explicit entries
(e.g. Hiel, 2005) and [...] recent [...] case example[s] ([e.g.] Dongen et al., 2006b).� (Knaak,
2007, p. 30)

However, process mining has been applied in 'MAS-like' domains, such as inter-organizatio-
nal work�ows (e.g. Aalst, 2004), computer-supported cooperative work (Aalst, 2005a), or web
services (e.g. Gombotz et al., 2005). Related techniques such as grammar inference have been
applied to the analysis of MAS as well (e.g. Mounier et al., 2003).

Summarizing � as will be substantiated later � the 'research landscape' in this �eld has evolved
rapidly within the last years on the one hand (see also Dongen et al., 2006b). On the other
hand, the approaches appear heterogeneous and sometimes far from being applicable to real
world scenarios in MAS and simulations.

1.2. Objectives and Contributions of the Thesis

Though the spectrum of topics and applications discussed in this thesis is quite broad, the
presented work is positioned in the �eld of multi-agent-based simulation (MABS). More speci�c,
the main objective is to evaluate and methodologically enhance the applicability of process mining
and related techniques to the analysis and validation of MABS.

This restriction seems sensible for several reasons: Firstly, the motivation for this work origi-
nates from the lack of appropriate validation techniques in agent-based simulation that became
apparent to the author during a research project on courier service logistics (Bachmann et al.,
2004; Deecke et al., 2004; Knaak et al., 2003). Secondly, analyzing and validating simulation
output is a restricted problem characterized by good data quality and a need for semi- (instead
of fully) automated techniques. Considering the current state of process mining techniques, this
problem seems manageable, and developments from this context can be extended in the future
towards more complex tasks such as autonomous learning. Thirdly, the presented approach can
straightforwardly be transfered to the more general but closely related �eld of agent-oriented
software engineering (AOSE).

1.2.1. Research Questions

To re�ne the general objective stated above, the following research questions will be discussed
in the thesis:

1. Q1 - State-of-the-art : In which way have process mining and related techniques already
been applied to MABS and similar domains? What aspects of the systems have been
analyzed and which analysis tasks (such as validation or calibration) have been supported?
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2. Q2 - Conceptual foundations: What is an appropriate conceptual foundation for the
integration of process mining, simulation, and MAS? What are the general possibilities
and limitations of this integration and in what way does it contribute to the respective
�elds?

3. Q3 - Techniques for interaction mining : How can process mining algorithms and re-
lated techniques be combined and extended to foster the complex task of analyzing and
validating simulated agents' interactions?

4. Q4 - Tool integration: How can process mining techniques and tools be embedded into
software environments for simulation studies?

5. Q5 - Practical bene�t : What is the practical value of process mining in model-driven and
code-centric simulation approaches?

6. Q6 - Level-encompassing validation: How can process mining be combined with advanced
techniques from simulation (e.g. simulation-based optimization) in order to support the
task of analyzing and validating processes at multiple levels of a (simulated) MAS?6

Note that the scope of the research questions Q2 to Q4 covers most constituents of an approach
(i.e. �tools, applications, techniques, and methods�, Cabac, 2010, p. 23) according to the de�nition
by Moldt (1996, p. 30, cited in Cabac, 2010, p. 23).

1.2.2. Conceptual Framework

The �rst question is tackled by means of a literature review, where the objective is to evaluate
the current state-of-the-art in analysis and validation of MA(B)S7. Due to the broad applica-
bility of the agent metaphor, this review has to take into account several neighboring �elds
such as distributed systems, software reverse engineering, and social network analysis.

In order to answer the second question, a conceptual framework for the integration of process
mining and MABS will be derived from the literature review. The framework includes comple-
mentary dimensions of analysis perspectives (i.e. what aspects of MAS can be analyzed), use
cases (i.e. when and how automated analysis techniques can be applied in the di�erent phases
of a simulation study), techniques (i.e. what mining, representation, and support techniques
can be applied, and how they can be combined), as well as simulation-speci�c requirements and
limitations.

Despite the large body of case examples, there are only few general attempts to integrate auto-
mated analysis techniques into AOSE or MABS (e.g. Arroyo et al., 2010; Köster, 2002; Ndumu
and Nwana, 1999; Remondino and Correndo, 2005) that the presented framework combines
and extends. The contribution is therefore twofold: On the one hand, it allows to classify
the heterogeneous work found in the literature in a coherent way and point out directions for
further research. On the other hand, it serves as a guideline for the practical application of
process mining techniques during a simulation study.

6Note that the thesis by Chen (2009), which was published in parallel to the work on the thesis at hand, is
solely dedicated to this question. This work will be cited and related to the presented approach in many
places in the following (e.g. Sections 5.2.2.4 and 6.2.6).

7This notation is used when both multi-agent systems (MAS) and multi-agent-based simulation (MABS) are
addressed.
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�A novel aspect [of the framework] is the use of the Petri net-based Mulan model (MULti Agent Nets,
Rölke, 2004) as a formal foundation� (Knaak, 2007, p. 30) for integrating process mining into
MA(B)S. Mulan is a Petri net-based MAS architecture that builds upon the Reference net
formalism by Kummer (2002). Petri nets are a common means for result representation in
process mining. Mulan provides further structure by distinguishing multiple Petri net-based
views of a MAS. Thereby, it might help to formalize the framework's analysis perspectives in
order to perform more MAS-speci�c analyses. Reference nets can also be used to formalize the
use cases in the style of scienti�c work�ows.

1.2.3. Techniques, Tools, and Case Studies

After de�ning the conceptual frame, the scope of the discussion is narrowed down to the appli-
cation and extension of speci�c process mining techniques and tools for MABS analysis (and
thereby refer to research questions 3, 4, and 5). From the various perspectives discussed be-
fore, the focus is put on agent behavior and interactions. Two complementary modeling and
simulation approaches developed at the University of Hamburg will be chosen as case examples
for an integration of process mining. These will be explained in the following.

1.2.3.1. Process Mining in the PAOSE Approach

The �rst is the model-driven Petri net-based AOSE (Paose, see e.g. Cabac, 2010) approach
developed at the University of Hamburg's theoretical foundations group (TGI). In Paose,
simulation is mainly used to validate the developed applications. Since process mining appears
as a promising support technique due to its strong relation to the Petri net formalism, an
integration is attempted in cooperation with members of this group (mainly Dr. Lawrence
Cabac and Dr. Daniel Moldt).

At the conceptual level, it will be shown that the Mulan model (Rölke, 2004) with its related
development process and tools (Cabac, 2010) is an appropriate basis for realizing the analysis
and validation tasks described in the framework. This is mainly due to the fact, that a com-
mon executable formalism is available to represent the conceptual and computer model, the
meta-models extracted from observed data, and the experimentation and analysis processes
themselves.

At the technical level, an approach towards the reconstruction of agent interaction protocols
from message logs observed during simulation is presented. Agent interaction mining is a
complex task that requires to combine and extend several existing process mining techniques.
While the interaction mining approach is closely related to parallel work from the web service
context (e.g. Gaaloul, 2005; Gombotz et al., 2005), it contains some novel aspects indicated in
the following.

A processing chain will be presented as an extension of work by Schütt (2003) that allows to
reconstruct models of basic interactions between pairs of agents. One central part is a simple
algorithm to mine process models with non-unique activity labels from event-based message
logs. Schütt (2003) proposes a hybrid algorithm consisting of a subsequent grammar inference
and concurrency detection stage. The grammar inference is, however, restricted to cycle-free
models and the concurrency detection is only described conceptually.
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The grammar inference is therefore extended towards cyclic models by using the well-known k-
RI algorithm (Angluin, 1982), the concurrency detection is operationalized, and the algorithm
is compared to related approaches based on log preprocessing (e.g. Gu et al., 2008) and the
theory of regions (e.g. Rubin et al., 2006). Furthermore, a preceding log segmentation and
role mining stage is integrated (based on work from, among others, Dustdar and Gombotz,
2006; Greco et al., 2004; Schütt, 2003; Srinivasa and Spiliopoulou, 2000; Vanderfeesten, 2006)
that clusters similar courses of interaction in the absence of unique conversation and protocol
identi�ers.

The basic interaction mining chain is conceptually expanded towards the reconstruction of
hierarchical and multicast protocols. Multicast protocols are special hierarchical protocols
closely related to the multiple instantiation work�ow pattern, where a variable number of
instances of the same activity (or message) are executed (or sent) in parallel (see e.g. Guabtni
and Charoy, 2004).

While several work�ow patterns can be detected by process mining algorithms (see e.g. Gaaloul
et al., 2004), �rst (and partly rather preliminary) approaches to reconstruct control �ow models
containing multiple instantiation constructs have only been presented recently (e.g. Canbaz,
2011; Kikas, 2011; Kumar et al., 2010; Lou et al., 2010b). In this thesis, an algorithm for
reconstructing multicast protocols and detecting synchronizations between the participating
agents will be sketched and compared to the related approaches.

At the tool level, the plugin-based architecture of the Petri net simulator Renew (Kummer
et al., 2006) and the lightweight component mechanism of net components (Cabac, 2002) are
employed to model analysis and validation processes (called mining chains here) as hierarchical
scienti�c work�ows (see e.g. Guan et al., 2006). At a small example it is shown how validation
and roundtrip engineering can be supported.

1.2.3.2. Process Mining in a Discrete Event Simulation Study

The second case study is conducted on the basis of a research project on the simulation of
sustainable logistics strategies for large city courier services (Deecke et al., 2004). The author
of this thesis started to work on this project during his diploma thesis (Knaak, 2002) and
developed parts of the employed software framework. As a domain for process mining, the
courier service study complements the Paose approach in several respects: (1) The software
development is mainly code-centric, based on the discrete event simulation framework DESMO-
J (Lechler and Page, 1999) and its extension FAMOS for agent-based simulation (Knaak, 2002;
Meyer, 2008). (2) The study employs discrete event simulation to perform a quantitative
analysis of a target system. (3) The number of agents in the model is relatively high, and large
amounts of log data are produced.

The applicability of process mining to this example is investigated in an a�liated bachelor
thesis by Haan (2009). Beyond the results gained from this study, the author of this thesis
presents a �rst, strongly simpli�ed implementation of the complex interaction mining procedure
mentioned above and discusses ways to further continue the integration of MABS with process
mining techniques and tools.

In particular, it is sketched how process mining-based analysis work�ows can be integrated into
a generic simulation environment (Czogalla et al., 2006) that helps users to perform experiments
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with (in principle) arbitrary simulators based on the programming language Java (e.g. Arnold
et al., 2000). The environment is conceptually rooted in experimentation and analysis tools
developed earlier at the University of Hamburg's simulation group (MBS) such as DISMO
(Gehlsen, 2004), CoSim (Bachmann, 2003), and MOBILE (Hilty et al., 1998). The tool is
implemented in the form of plugins for the well-known Eclipse platform8.

A prototypical integration of process mining algorithms implemented in the tool ProM (Don-
gen et al., 2005) is tackled with the aid of the scienti�c work�ow system KNIME (Chair for
Bioinformatics and Information Mining at Konstanz University, 2007) and might in the future
employ Renew as an alternative, possibly more �exible, work�ow engine (Simmendinger, 2007;
Simmendinger et al., 2007). Beyond that, it will be discussed how the environment relates to
recent similar e�orts like the framework WorMS (Work�ows for Modeling and Simulation) by
Rybacki et al. (2011).

1.3. Outline of the Thesis

Due to the relatively broad scope of the thesis, the presentation is grouped into two parts: (1)
foundations and state of the art, (2) concepts and case studies. An overview of the structure of
the thesis is shown in Figure 1.1.9 The �rst part starts with an introduction of concepts from
modeling and simulation in Chapter 2. This chapter introduces basic modeling techniques from
the domains of discrete event simulation (DES), Petri net theory, and work�ow modeling. A
particular way of using the UML 2 notation (e.g. Jeckle et al., 2002) for simulation modeling is
introduced and related to the DES world views10 and the reference net formalism. Beyond that,
the chapter reviews �the later stages of the modeling process� (Edmonds, 2000, p. 23) including
experimentation, analysis, and validation as the main focus of this thesis.

Chapter 3 reviews basic concepts from multi-agent systems and agent-based simulation, cov-
ers modeling and implementation techniques from MABS and AOSE, and �nally focuses on
the problem of analysis and validation (i.e. ultimately understanding) of agent-based models.
With respect to the techniques used in the thesis, the focus is put on UML 2 and the refer-
ence net-based Mulan architecture. Besides providing the reader with the thesis' conceptual
foundations, a main objective of the chapter is to motivate the need for advanced analysis and
validation techniques.

Chapter 4 completes the foundations by presenting data mining and especially process mining
as promising candidate methods. After introducing foundations concerning the validation of
agent-based simulations in general, Chapter 5 brings together both �elds by presenting an
extensive review of related work on MABS analysis and validation with the aid of data mining,
process mining, or similar techniques.

The second part of the thesis elaborates on the author's contributions described in Section 1.2.
Based on the literature review, Chapter 6 presents the conceptual framework for integrating
process mining and MABS. It closes by classifying (small parts of) the previously reviewed

8http://www.eclipse.org, last visit 2012-11-17
9It is no surprise that several theses on topics related to modeling use precedence graphs to display dependencies
between chapters (e.g. Klügl, 2000, p. 5; Medeiros, 2006, p. 12). This thesis is no exception.

10based on pre-publications like Page and Kreutzer (2005, Sec. 4) and Knaak (2006)
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Figure 1.1.: Overview of the chapters of this thesis in the form of a precedence graph. A
directed edge in the graph indicates that a chapter largely builds upon the results
of a previous chapter.

work along the framework's dimensions in order to present a coherent view on the 'research
landscape' and identify promising directions for the development of new techniques.

Chapter 7 reports the �rst case study in the Paose approach with a focus on agent interaction
mining techniques as well as architectural integration into Mulan. Chapter 8 reviews the
procedure and results of the second case study in the DESMO-J context with a focus on
evaluating the practical value of process mining in a large simulation project. Chapter 9
concludes the thesis by deriving implications from the two case studies, critically discussing
their results and pointing out directions for further research.

As a �nal remark it should be emphasized that the work presented in this thesis (like most
similar projects) was neither developed 'in isolation', nor written down 'in one go'. Therefore,
several parts were developed in cooperation with colleagues, and some of the texts were previ-
ously published as part of conference and journal papers as well as a textbook on simulation.
Though these pre-publications were partly written together with other authors, this monograph
naturally focuses on those parts that the author of this thesis contributed to most.

In particular, parts of the Chapters 2 and 3 are based on Chapters 4 (UML modeling), 8 (model
validation) and 11 (multi-agent-based simulation) of the Java Simulation Handbook (Page and
Kreutzer, 2005), as well as on articles about simulation modeling with UML 2 by (Knaak and
Page, 2005, 2006). The practical application of UML 2 to discrete event simulation modeling
was investigated together with Thomas Sandu.
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As already mentioned, much of the research presented in Chapters 6 and 7 was conducted
together with Dr. Daniel Moldt and Dr. Lawrence Cabac from the Department of Informatics'
theoretical foundations group (TGI). The monitoring tool presented in Chapter 7 was imple-
mented by Frank Heitmann and Florian Plähn. Intermediate results were pre-published as
conference papers and technical reports (Cabac et al., 2006a,b,c, 2008a; Knaak, 2006, 2007).

Several parts of the second case study from Chapter 8 were conducted as part of the bachelor
thesis by Johannes Haan (2009) and the study project by Sven Kruse (2005). The simula-
tion system described in the latter Sections of this chapter was developed together with Rainer
Czogalla and several (former) students including Felix Simmendinger and Philip Joschko. Inter-
mediate results were pre-published in conference papers by Czogalla et al. (2006), Simmendinger
et al. (2007), and the diploma thesis by Simmendinger (2007).

To emphasize this embedding of an individual dissertation project into a larger community
(including you as a reader), the �rst person plural narrative mode11 ('we') will often be preferred
in the following.12

11http://en.wikipedia.org/wiki/First-person_narrative, last visit 2012-11-17
12for a similar discussion see Eagleman (2011, p. 266)
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2. Modeling and Simulation

This chapter reviews relevant foundations from system theory and simulation and brings out
their connotations in the context of this thesis. After an introduction to fundamental terms, we
focus �on the later stages of the modelling process� (Edmonds, 2000, p. 23) including experimen-
tation, output analysis, and validation, as the thesis' main topics. The presentation is largely
based on the simulation handbook by Page and Kreutzer (2005, Chs. 1, 2, 4, 5, 7, 8, and 9).
Chapters 4 and 8 of that book were co-written by the author of this thesis.

2.1. Basic System Theory

According to Page and Kreutzer (2005, p. 4) a system is �a subset of reality which we study to
answer a question; i.e. its boundary to the environment in which it is embedded will be determined by
the question we wish to ask.� Important points of this de�nition are that (a) the term is generic,
i.e. anything can be regarded as a system, and that (b) system identi�cation is a constructive
act, since systems are always considered in relation to an observer and an observation goal.

Further following Page and Kreutzer (2005, p. 5), �a system must have a number of distinct and
clearly identi�able components which may themselves be considered as systems at a �lower� level.�
Systems are decomposed hierarchically to perform a complexity reduction (Kouvastos, 1976,
p. 1081). We distinguish between elementary components with basic properties (such as position
or velocity, see also Page and Kreutzer, 2005, p. 25) and non-elementary sub-systems whose
properties emerge from the interplay of their components. The set of all properties observed at
a certain instant is called system state (Page and Kreutzer, 2005, p. 5).

The system theoretical stance is characterized by a �duality of structure and behaviour� (London,
2004, p. 166). Structure refers to the statical aspects of a system, i.e. the network of relations
between the existing elements and their roles within this network (see e.g. Wikipedia, 2007).
System behavior is described in terms of one or more processes, where a process is understood
as a chronological sequence of state variable vectors (Page and Kreutzer, 2005, p. 5).

System structure and behavior are closely linked and mutually dependent (Wikipedia, 2007).
Whereas the system structure sets up boundary conditions for the processes running within
it, the processes can modify the structure, thus giving rise to new boundary conditions for
future behavior. Due to such complicated interrelations, system behavior often appears �counter
intuitive and hard to predict� (Page and Kreutzer, 2005, p. 5).

2.1.1. Complexity and Emergence

Auyang (1998, p. 13) notes that �there is no precise de�nition of complexity and degree of com-
plexity in the natural sciences�, and continues by identifying two di�erent meanings of the term.
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On the one hand, it is applied in an intuitive way �to describe self-organized systems that have
many components and many characteristic aspects, exhibit many structures in various scales, undergo
many processes in various rates, and have the capability to change abruptly and adapt to external
environments� (Auyang, 1998, p. 13). In the same manner, Page and Kreutzer (2005, p. 5) state
that �system complexity depends on the number of state variables (properties) and the density of their
connections.�

On the other hand, formal approaches from computer science de�ne the term more concisely.
A well-known measure is the computational complexity of a problem, i.e. the number of steps
(computation time complexity) and the amount of memory (computation space complexity)
needed to algorithmically solve the problem in relation to the size of its encoding (see e.g.
Auyang, 1998, p. 13 or Gruska, 1997, Ch. 5).

Another formal measure is the information content complexity1 of a character sequence de�ned
as �the length in bits of the smallest program capable of specifying it completely to a computer�
(Auyang, 1998, p. 13). This measure assigns the lowest complexity to very regular sequences,
and the highest complexity to purely random sequences without any patterns (Auyang, 1998,
p. 13). While the former seems plausible, the latter might appear counter-intuitive, since
complexity is not commonly understood as a complete lack of structure.

Formal de�nitions of complexity seem less useful in the context of this thesis due to their limited
scope: Computational complexity is a di�erent concept than complexity in system theory.
Information content complexity might be interpreted to that e�ect that a more complex system
(program) is able to generate more variable patterns of behavior (character sequences). A purely
random sequence contains so many variations that it cannot be described more compactly than
by stating the sequence itself (Auyang, 1998, p. 13). In system theory, we are often interested in
phenomena with a medium information content complexity, i.e. systems that exhibit behavioral
variety, but still allow for the recognition of patterns.2 The possibility to aggregate system
behavior to a more compact description is of great importance for the applicability of data
mining techniques described below.

A related quality of complex systems is emergence. This concept is based on the observation
that systems include multiple levels with at least a macroscopic level of the system as a whole
and a microscopic level of the basic components. According to Jones (2003, p. 418), �the term is
applied to the appearance of novel, coherent objects [at the macroscopic level] that are not predictable
from the system's [microscopic] parts.�

The notion of emergence is used quite ambiguously, since for some authors, it denotes �an
invocation of something mystical� (Jones, 2003, p. 418), while others use it as a �shorthand ex-
planation� for multi-level phenomena within a reductionist world view (Jones, 2003, p. 421).
Cariani (1991, p. 771)3, for instance, subsumes the fact that �complex global forms can arise from
local computations� under the notion of computational emergence. This includes deterministic
phenomena like swarm formation in arti�cial life simulations or the appearance of identi�able
shapes in cellular automata.

In this thesis, we use the term complexity in the intuitive way for systems that

1which is also called Kolmogorov complexity, see e.g. Gruska (1997, p. 398)
2See also the discussion on �pattern-formation� by Gribbin (2005, p. 135), who uses the term �edge of chaos�.
3cited in Jones (2003, p. 418)
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• consist of a large number of components, where each component itself exhibits a certain
behavioral variability and �exibility (i.e. complex micro-level processes),

• contain a large number of relations and interactions between the components (includ-
ing feedback) and possibly a variable structure (i.e. complex macro-level structures and
processes),

• can be viewed at multiple levels, where relations between the levels are often obscured due
to distributed and sensitive cause-e�ect dependencies (i.e. complex inter-level relations).

We will avoid using the term emergence due to its non-scienti�c connotations. However, we will
regard multi-agent systems that exhibit computational emergence where macroscopic patterns
emerge from microscopic interactions through deterministic computations. Data mining will
be applied to expose such patterns and the rules that generated them from observed data.

2.1.2. Models

The term model describes a simpli�ed image of a system. As a main bene�t, a model allows to
conduct controlled experiments that might be inconvenient or impossible with the real system
(see Niemeyer, 1977, p. 57 cited in Page and Kreutzer, 2005, p. 5).

The complexity of the system under analysis is reduced by considering only the most relevant
parts in the model and by putting them in a simpli�ed form (see e.g. Heinrich, 2002, p. 1046).
This �abstraction and idealization� (Page and Kreutzer, 2005, p. 6) needs to preserve structural
similarity between the model and the real system (Heinrich, 2002, p. 1046) with regard to a
�certain purpose or set of questions [... the model] can answer� (Page and Kreutzer, 2005, p. 5).
Given this similarity, the model is considered as valid and its analysis allows to draw conclusions
on the real system.

The notion of models is also central to statistics and data mining. In this context, Hand et al.
(2001, p. 9) de�ne a model (structure) as �a global summary of a data set�. According to Han and
Kamber (2000, p. 24), one main purpose of data mining is ��nding models [...] that describe and
distinguish data classes or concepts [...] The derived model is based on the analysis of a set of training
data [...]�.

Large data sets are thus algorithmically aggregated to abstract models that describe the data
more compactly. This is somehow similar to modeling in simulation with the exception that
the abstraction is performed automatically. One important property of models in statistics and
machine learning is generalization. To be useful for prediction and classi�cation tasks (see Han
and Kamber, 2000, p. 24), a model should not only describe the speci�c training data set that
it has been derived from, but a possibly large range of data that the underlying system might
be able to generate. We will continue this discussion in Section 4.1.2.

2.2. Computer Simulation

To understand complex systems we analyze abstract models and draw conclusions on the origi-
nal. The analysis of formal models can be performed either with analytical methods that allow
to compute a closed-form solution 'in one go', or by using simulation, where the model state is
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advanced step by step in order to emulate the temporal development of the real system (Page
and Kreutzer, 2005, p. 10).

Simulation can thus be de�ned as �the process of describing a real system and using this model
for experimentation with the goal of understanding the system's behaviour or to explore alternative
strategies for its operation� (Shannon, 1975, cited in Page and Kreutzer, 2005, p. 9). This general
de�nition �ts many activities in computer science such as the stepwise execution of a computer
program for the purpose of debugging or the token-game in Petri nets (see Section 2.3.2.1).

Though this general meaning is sometimes referred to here, we mostly draw to the more speci�c
de�nition of Page and Kreutzer (2005, p. 9), who use the term to denote the �eld of computer
simulation as well as the execution of a computer simulation study. In this context, �the model

building process is explicitly mentioned�, and simulation is characterized as �the modelling of dynamic
processes in real systems, based on real data and seeking predictions for a real system's behaviour
[. . . where] models are represented by (simulation) programs, and simulation experiments (�runs�) are
performed by a models's execution for a speci�c data set.� (Page and Kreutzer, 2005, p. 9)

This de�nition emphasizes the embedding of the actual 'simulations' into a scienti�c or indus-
trial research study, where activities like data acquisition, model validation, experimentation,
result analysis, and presentation are of equal importance than the modeling and simulation
itself.

2.2.1. Classi�cation of Simulation Models

Typical dimensions for the classi�cation of models in simulation, which may also apply to other
�elds, are shown in Figure 2.1 (e.g. form of analysis, purpose, etc.). From these dimensions,
Page and Kreutzer (2005, pp. 6) emphasize the purpose, the representation medium, and the
type of state changes occurring in the model.4

2.2.1.1. Purpose of Models

Models are used to better explain and understand the represented system, to predict its fu-
ture behavior, to support the design of a planned system or to optimize the operation of an
existing one (Page and Kreutzer, 2005, p. 7): The purpose of a model strongly in�uences its
properties. Explanatory models should represent the system's structure and behavior in an
appropriate and interpretable way to allow for an understanding of the observed phenomena.
For predictive models it might be su�cient to mimic the system's behavior closely enough for
successful predictions, even if the model's behavior is generated by unrealistic or not explicitly
understandable structures. We will take up this point in Section 4.1.2.

2.2.1.2. Representation Forms

Models are represented in di�erent forms ranging from physical and verbal models to graphical
and mathematical models (Page and Kreutzer, 2005, p. 6). One might additionally consider the
explicitness and conciseness of model representation (Page and Kreutzer, 2005, p. 6): Mental

4Brade (2003, Sec. 1.2) focuses on the latter two dimensions as well.
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models only exist in the modeller's mind while external models are represented in some other
medium for means of communication. Formal models are described in a language with a concise
formal semantics which permits their operationalization. In this thesis we further di�erentiate
between explicit formal models represented in a modeling language such as UML or Petri nets,
and implicit formal models 'hidden' in programming language code. While this criterion is
somewhat fuzzy, explicit models are deemed more understandable and veri�able than implicit
models.

Figure 2.1.: Common dimensions for the classi�cation of models. Compiled with modi�cations
from Brade (2003); Klügl (2001); Lechler and Page (1999); Page and Kreutzer
(2005). Model types treated in this thesis are shaded in grey.

2.2.1.3. Types of State Changes

An important criterion to characterize dynamic simulation models is the type of state changes,
which might occur continuously or instantaneously at discrete points in time. The next model
state can be determined by its predecessor in a deterministic or stochastic fashion (Page, 1991,
p. 6). Concerning discrete simulation models we distinguish two kinds of simulation time
advance (Page et al., 2000, p. 6): In time-driven models, the clock proceeds in equidistant
intervals and the model state is permanently re-computed. In event-driven models, time advance
is triggered by a sequence of events that occur in arbitrary intervals. Since the model state
is only updated 'when something has happened', event-driven models often exhibit a lower
computational complexity (Page et al., 2000, p. 6).
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2.2.1.4. Modeling Point of View

A complementary dimension for simulation model classi�cation is the modeling point of view.
According to Klügl (2000, p. 42) a macroscopic model �represents the whole system as a single
object, describes its state by means of variables and relates them to each other with respect to certain
parameters�, while a microscopic model consists of multiple components whose interactions
generate the model's overall behavior. A multi-level model is composed of �multiple micro models
at di�erent levels of aggregation� (Klügl, 2000, p. 44).

While macroscopic models are mostly formulated in terms of di�erential equations (Klügl, 2000,
p. 42), microscopic modeling styles are more diverse, ranging from cellular automata to discrete
event as well as individual- and agent-based models.5 By comparison, microscopic modeling
allows for a more detailed and straightforward representation of real systems consisting of
multiple components, and is better suited for the explanation of their behavior (Klügl, 2000,
p. 72). Problems are the models' high computational complexity and the di�culty to �nd an
appropriate level of detail (Klügl, 2000, pp. 73).6

This thesis is, on the one hand, concerned with agent-based simulation models, i.e. microscopic
discrete event models whose overall behavior is encoded by an (often implicit) algorithmic
description of the components. On the other hand, explicit formal and graphical models at
di�erent levels are reconstructed from observations of the models' behavior to aid analysis and
validation.

2.2.2. World Views of Discrete Event Simulation

The traditional world views in discrete event simulation (DES) are event-, process-, activity-,
and transaction-orientation (see e.g. Page and Kreutzer, 2005, Ch. 5). These are characterized
by di�erent, but closely akin concepts for relating model state and simulation time (Page and
Kreutzer, 2005, pp. 24) depicted in Figure 2.2.

The basic unit in discrete modeling is the event. Events describe instantaneous system state
changes at discrete but arbitrary points in (simulation) time. At the next level of aggregation,
we consider time-consuming activities, where each activity consists of a start and end event.
Multiple related activities can be aggregated to a process describing an entity's life-cycle.

Each concept builds the foundation for one or more modeling styles. In event-orientation
(see e.g. Page and Kreutzer, 2005, Ch. 5.2.2), we identify relevant entities and events of the
system. In the model, each event is represented by an event class with an event routine
that algorithmically describes the caused state changes. This modeling style often (but not
necessarily) takes in a top-down view in that each event describes �the set of all transformations
of all relevant entities at speci�ed points in time� (Page and Kreutzer, 2005, p. 108).

In contrast, the process-oriented world view takes in a bottom-up view where all state changes
concerning an entity are aggregated into a single algorithmic description, i.e. the entities lifecycle
executed as a simulation process (Page and Kreutzer, 2005, p. 98). During simulation, a

5For an overview see e.g. Klügl (2000, Ch. 3.2)
6In fact, this author discusses agent-based versus macroscopic models, but many arguments apply to micro-
scopic models in general.
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Figure 2.2.: Relations between events, activities, and processes with a possible interpretation
in a DES model (adopted with modi�cations from Page, 1991, p. 27).

process undergoes alternating phases of computational activity and passiveness. Active phases
correspond to events where the process instantaneously modi�es its own or other entities' states.
Simulation time only passes during the passive phases. These either represent conceptually
active states, where the process executes an activity after which it re-activates itself, or passive
states, where the process waits for re-activation by another process (Page and Kreutzer, 2005,
p. 100). Process interaction is often limited to untyped activation signals, but might also include
typed signals to represent interrupt conditions (Page and Kreutzer, 2005, p. 105).

Activity-oriented models (Page and Kreutzer, 2005, pp. 131) are described in terms of time
consuming activities together with preconditions for their invocation (see the level 'activities'
in Figure 2.2). Their execution somehow resembles rule-based systems: A scheduler chooses
the next activity whose preconditions hold and executes it by advancing the simulation clock to
its end time and performing the assigned state changes. Transaction-oriented models consist of
a net of permanent resources (blocks) that transient entities (transactions) �ow through (Page
and Kreutzer, 2005, p. 129). Page and Kreutzer (2005, p. 129 and p. 132) show how both
modeling styles can be mapped to process-oriented models.

2.3. Modeling Techniques

Executable simulation models are often stated implicitly in the form of program code while
conceptual models are speci�ed using explicit graphical notations. To narrow this semantic
gap (see e.g. Klügl, 2000, p. 76) several formal and semi-formal notations are applied. In the
following, we introduce the Uni�ed Modeling Language (UML) and reference nets as notations
used to explicitly represent simulation models in this thesis.
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2.3.1. UML 2

As noted in (Knaak and Page, 2006, p. 33), UML is quite commonly used as a simulation
modeling language today. Several applications (see e.g. De Wet and Kritzinger, 2004) and
extensions (see e.g. Oechslein et al., 2001) are reported in the literature (Knaak and Page,
2006, p. 33). Page and Kreutzer (2005, Ch. 4) as well as Knaak and Page (2006) present our
way of applying and extending UML 2 for discrete event simulation that is brie�y reviewed
below.

2.3.1.1. The Uni�ed Modeling Language

In (Page and Kreutzer, 2005, p. 60)7 we have introduced the Uni�ed Modeling Language by
determining

�what UML is and � of equal importance � what it is not. According to the UML reference

manual, it is "a general-purpose visual modeling language that is used to specify, visualise,
construct, and document the artifacts of a software system". As Jeckle et al. (2002, p. 10)
point out, UML is not "complete, not a programming language, not a formal language, not
specialized to an application area and [...] �rst of all not a method or software process".�

Further following the shorter presentation in (Knaak and Page, 2006, pp. 34-35):

�UML 2.0 contains a total of 13 diagram types to visualise di�erent aspects of object-
oriented modelling (Jeckle et al., 2002, p. 15). According to Jeckle et al. (2002, p. 16) these
diagrams can be broadly divided into three classes [mirroring the dualism of structure and
behavior mentioned in Section 2.1]:

• Structural diagrams model the static structure of a system. Among them are class
diagrams, object diagrams, package diagrams, component diagrams, composition struc-
ture diagrams and deployment diagrams.

• Behaviour diagrams serve to display the [...] behaviour of objects or components
at di�erent levels of detail. This [...] includes use case diagrams, activity diagrams,
statechart diagrams and several interaction diagram types.

• Interaction diagrams are special behaviour diagrams that focus on the interactions
going on between [...] objects in a system. [... They] can be divided into sequence
diagrams and timing diagrams that emphasise the temporal order of interaction events
on the one hand and communication diagrams that highlight the general structure of
the cooperation between partners in an interaction on the other hand (Jeckle et al.,
2002, p. 391). [...] interaction overview [...] diagrams represent a mixture between
activity diagrams and interaction diagrams showing the causal and temporal interplay
among di�erent interaction scenarios (Jeckle et al., 2002, p. 419).

[...] the concepts and notations of the UML are [...] de�ned in [a so-called meta] model that
is [itself] expressed in terms of the UML (Born et al., 2004, p. 12). This object-oriented
language de�nition makes extensions of the UML quite easy. [...] Such extensions are either
stated as extensions of the metamodel itself, or by using a lightweight extension mechanism
called stereotyping (Born et al., 2004, p. 245). According to Jeckle et al. (2002, p. 95) a

7and similarly in (Knaak and Page, 2006)
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stereotype is a "a class in the metamodel that is able to further specify other classes [...]
by extension".

[... As an example, we might] represent entity types in DES models [by extending] the
meta class Class [...] with a stereotype �entity�. [...] Now entity types in class diagrams
are marked by attaching the term �entity� in angle brackets to the respective model
elements.�

2.3.1.2. UML in Simulation

A main feature that makes UML suitable �for the DES domain [... is] the event-based communication
model underlying all behaviour diagrams (see Jeckle et al., 2002, pp. 172)� (Knaak and Page, 2006,
p. 36). Similar to DES, an event in UML is a �relevant occurrence� such as sending a message
or invoking an operation (Jeckle et al., 2002, p. 173). Di�erent from DES, a UML event has
a lifecycle consisting of creation, distribution and consumption, and its occurrence in a real
system might consume time (Jeckle et al., 2002, p. 173). We can, however, abstract from these
aspects and regard UML events in DES models as instantaneous.

Simulation practitioners �bene�t from UML diagrams as a common and simulation-software inde-
pendent basis for documenting, visualizing and understanding the model structure (Richter and März,
2000, p. 2). The di�erent UML diagrams provide multiple views focusing on [... complementary] aspects
of the model.� (Knaak and Page, 2006, p. 36)

In an industrial or non-computer-science context, the diagrams might be understood more
easily than more abstract formal languages like Petri nets (see Section 2.3.2.1). Nevertheless,
�the quite concise semi-formal semantics of UML 2 behaviour diagrams [...] provide support for the task
of model validation and veri�cation� as well as code generation (Knaak and Page, 2006, p. 36).
Current approaches towards model driven software development apply transformation rules that
map UML models to executable code.8

In the following, we brie�y introduce UML activity and interaction diagrams for modeling
the dynamics of discrete simulations. The presentation is based on Page and Kreutzer (2005,
Ch. 4) and Knaak and Page (2006). Basic concepts of object orientation (such as inheritance)
and their representation in class, object and package diagrams are taken for granted (for an
overview see e.g. Jeckle et al., 2002, Chs. 3, 4, 5).

2.3.1.3. Activity Diagrams

In (Page and Kreutzer, 2005, pp. 77), we introduced activity diagrams with a focus on DES:

�According to Jeckle et al. (2002, p. 199) activity diagrams are [an appropriate] notation [...]
for modelling [...] operations, use cases, and business processes. [... Consequently, they]
are particularly well suited for modelling lifecycles of simulation processes in [... DES].
Since they provide features such as concurrency, object �ow[,] and message passing they
are convenient for showing the synchronization of two or more processes. [...] In UML 2.0,
the statechart-like event-handling semantics of [UML 1.x ...] has been replaced by a Petri
net-like token semantics [see also Section 2.3.2.1].�

8On the application of model driven software development in the simulation context see Sandu (2007).
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In (Knaak and Page, 2005, p. 404) we observed that the synchronization operations of the
process-oriented world view (see Section 2.2.2)

�map quite obviously to send- and receive-signal actions [...] (Jeckle et al., 2002, p. 214). [...]
Generally any time consumption is modelled using receive-signal actions, whereas normal
action nodes correspond to active process phases without passing of simulation time.

Figure 2.3 shows [an example of] two process classes [...] that synchronize via sending and
reception of activation signals.�

Figure 2.3.: �Synchronisation of [... simulation processes in an imaginary] �Gravel Pit� model via
sending and reception of signals.� Figure and caption adopted from Knaak and Page
(2006, p. 38).

The separation by activity regions (Jeckle et al., 2002, pp. 245) makes it possible to display
multiple interacting processes in a single diagram. As carried out in (Knaak and Page, 2006,
p. 38) we denote process activations

�by a send-signal action (Jeckle et al., 2002, p. 214) with the stereotype �activate�. [...]
The passive state is indicated by a receive-signal action (Jeckle et al., 2002, p. 214) with
the stereotype �passive�. [...]

[In compliance with ...] Jeckle et al. (2002, p. 215) [... the hold operation is] modelled using
a time signal reception node depicted by an hour glass symbol [...] with the additional
stereotype �hold� [... that] delays incoming tokens for a speci�ed duration.�

Further following Knaak and Page (2006, p. 39), data �ow is displayed with the aid of

�object nodes depicted by rectangles (Jeckle et al., 2002, pp. 218). When the outgoing
edge of an action node is connected to an object node, execution of the action produces
a so called data token that contains the result object of the execution. The data token is
stored in the object node and might serve as input to another action [... Object nodes can
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be] used as synchronisation constructs in [... process- and transaction-oriented] models [see
Figure 2.3]. We use the stereotype �queue� to indicate that an object node has a queue
semantic.�

A mapping of UML activity diagrams to further DES-speci�c constructs (e.g. interrupts) and
modeling styles (e.g. transaction orientation) is presented by Knaak and Page (2006) and Page
and Kreutzer (2005, Ch. 4 and 5).

2.3.1.4. Interaction Diagrams

Figure 2.4.: An example of using basic sequence diagrams in DES (adopted from Page and
Kreutzer, 2005, p. 89)

In (Page and Kreutzer, 2005, pp. 87-91) we described UML interaction diagrams as follows:

�[While] the main purpose of [... activity] diagrams is the description of individual [...]
behaviour [...] interaction diagrams are often better suited to model the interplay between
multiple entities.

[...] basic [...] sequence diagrams display timely ordered message sequences describing an
interaction scenario [...] Figure 2.4 shows an [...] example [...that] can be regarded as a
possible [re�ned] execution sequence of the activity diagrams shown in Figure 2.3.
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[...] the di�erent [...] roles [...] taking part in an interaction are plotted along the horizontal
axis, while the vertical axis represents time (Jeckle et al., 2002, p. 327). The main diagram
elements are the lifelines of the interaction partners and what messages pass between them.

[...] UML distinguishes several communication modes, each of which is symbolized by a
di�erent arrow-head (Jeckle et al., 2002, p. 346). A �lled black arrowhead indicates a
synchronous message, where the sender waits [...] until the message has been processed by
the receiver. The receiver answers by sending a response message, represented by a dashed
arrow with �lled arrowhead. [...]

Asynchronous messages are symbolized by an open arrowhead. [... Here] the sender con-
tinues its lifecycle without waiting for the message to be processed by the receiver. [We
model method calls as synchronous messages and process interactions including passivation
as asynchronous messages.]

[...] Conditions ensuring the correctness of a scenario [...] can be expressed by [...] state
invariants (Jeckle et al., 2002, p. 356) [...] symbolized by using rounded rectangles [...]

[...] Time constraints can be inserted at any place in the diagram where they are meaningful
(Jeckle et al., 2002, p. 352).

[...] in UML 2 it is also possible to represent alternative, optional, parallel, and repeated
sequences of interaction [using block-structured interaction fragments]. Furthermore, dia-
grams might contain references to other sequence diagrams that contain a re�ned descrip-
tion of particular interaction steps. Due to their derivation from [...] High Level Message
Sequence Charts (Jeckle et al., 2002, p. 332), we will refer to this notation as "high level
sequence diagrams".

Like activity diagrams [...], high level sequence diagrams do not display a single scenario
but rather a class of possible interaction sequences. A drawback of the extended notation
is that such diagrams can become [...] di�cult to understand.� (Page and Kreutzer, 2005,
pp. 87-91)

:Dispatcher :AGV

3[idle]:Accept(transport order)

3[not idle]: Reject(transport order)

:Truck

2:Request(transport order)

1:Arrival

Truck Arrivalsd

Figure 2.5.: A communication diagram displaying an interaction at an imaginary container
terminal.

A more detailed description of UML 2 sequence diagrams including a comparison with the
similar AgentUML interaction diagrams is provided in Section 3.3.2.1. An alternative view
upon communicating entities is provided by communication diagrams as shown in Figure 2.5
(see also Jeckle et al., 2002, pp. 391). The example shows a possible interaction taking place
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at a container terminal.9 On the arrival of a truck, the order dispatcher generates a transport
order to fetch a certain container and dispatches it to an automatic guided vehicle (AGV) that
might accept or reject the order depending on its state.

Note that communication diagrams do not focus on control �ow (Jeckle et al., 2002, p. 392) but
display relations between communication partners similar to a social network Aalst and Song
(see e.g. 2004b). Nevertheless it is possible to indicate the order of messages by consecutive
numbering. While alternatives are expressed using the UML guard notation, other interaction
fragments (e.g. loops) are not supported (Jeckle et al., 2002, pp. 400).

2.3.2. Petri Nets

Despite several attempts to formalize and execute UML models, the UML remains a semi-
formal language without an explicit operational semantic. In contrast, Petri nets (PN) are
formal models to represent concurrent processes. In the following, we will focus on the reference
net formalism by Kummer (2002) and its relations to simulation and UML.

2.3.2.1. Petri Nets

Rölke (2004, p. 251) informally introduces a PN as �a directed graph with two di�erent node types:
places and transitions. A place [drawn as a circle] is a passive element corresponding to a storage [. . . ]
while a transition [drawn as a rectangle] represents an action or processing step. Arcs can only connect
a place with a transition or vice versa.�

The PN formalism was proposed by Petri (1962) to model distributed system states and con-
currency (Rölke, 2004, p. 253). A set of events or actions are concurrent if they are not
causally interrelated and might therefore be executed in an arbitrary order or even simultane-
ously (Rölke, 2004, p. 253). The state of a PN is indicated by a marking of its places with
tokens (Rölke, 2004, p. 251), where each place can contain a number of tokens up to a certain
(possibly unlimited) capacity.

The behavior of a PN is realized by the �ring of transitions. A transition's ability to �re depends
on its local environment, i.e. the input places connected via incoming arcs and the output places
connected via outgoing arcs (Rölke, 2004, pp. 251). The transition is activated if all input
places contain enough tokens (with respect to the incoming arcs' weights) and the �ring of
the transition does not exceed any output place's capacity (with respect to the outgoing arcs'
weights) (Jessen and Valk, 1987, p. 39). The �ring removes tokens from the input places and
puts tokens into the output places (Rölke, 2004, p. 252).

Figure 2.6 exempli�es a PN representing a 'gravel pit' model with two loading docks.10 Since
places and arcs do not contain numerical inscriptions, each place capacity is unlimited and each
arc weight is 1 by default.

In the following, we review further aspects of PNs that will be relevant later in this thesis.
As usual (see e.g. Baumgarten, 1996 or Bause and Kritzinger, 1996) we distinguish between
structural and dynamic properties.

9On the simulation of container terminal logistics, see e.g. the diploma thesis by Planeth and Willig (2004)
10The 'gravel pit' example is adopted from Page and Kreutzer (2005, p. 32).
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Figure 2.6.: A very abstract PN model of a 'gravel pit' with two loading docks. Note that this
model neglects simulation time consumption and queueing strategies.

2.3.2.2. Structural Patterns and Properties

Structural properties are based on the net graph N = (P, T, F ), where P is the set of places, T
the set of transitions and F the set of arcs or �ow relation. To handle the potential complexity
of general net graphs, we can identify common structural patterns (see e.g. Rölke, 2004, pp. 254)
on the one hand and consider simpli�ed net classes on the other hand.

Figure 2.7.: Basic structural patterns commonly found in Petri nets (adopted with modi�cations
from Rölke, 2004, p. 255 and Baumgarten, 1996, p. 53, 72)

Common structural patterns are displayed in Figure 2.7. The de�nition of sequences and cycles
(Baumgarten, 1996, p. 72) is straightforward. Cycles of length 1 are called loops (Baumgarten,
1996, p. 53). A con�ict corresponds to a decision node in an activity diagram (see Section
2.3.1.3. The concurrent pattern splits and re-joins the control �ow into parallel threads similar
to fork and join nodes in activity diagrams.
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Restricted sub classes of net graphs considered in this thesis are work�ow, free-choice, and
causal nets. According to Aalst and Hee (2002, p. 271) a work�ow-net (WF net) serves to
model the control �ow of work�ow instances (cases).11 Its transitions are interpreted as the
basic activities (tasks) occurring in the work�ow, while arcs and places represent the causal
relations and states of the work�ow (Aalst and Hee, 2002, p. 271).
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No further
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Workflow-net Causal-net

Figure 2.8.: Left: A WF net representing a simple ticket reservation work�ow. The grey section
mixes an alternative split and a parallel join but nevertheless has the free-choice
property. Right: A causal net representing a single ticket reservation case without
cycles and con�icts. Example model adopted with modi�cations from Page (1991,
pp. 46).

A WF net comprises a single input place i (i.e. a place without input transitions) and a single
output place o (i.e. a place without output transitions) to indicate a well-de�ned begin and end
of the represented work�ow (Aalst and Hee, 2002, p. 272). As a further condition, all places
and transitions of a WF net must be on a path from the input to the output place to prevent
the modeling of unused tasks and states (Aalst and Hee, 2002, p. 272). An example is shown
in Figure 2.8.

A WF net strongly resembles an activity diagram with an initial and �nal node. However, Aalst
and Hee (2002, p. 277) note that most control �ow notations (including activity diagrams) do
not model conditions as explicit places but as an implicit part of the decision nodes. Therefore,
it is not possible to include a routing construct like the grey area of Figure 2.8. It is nevertheless
possible to build an equivalent structure composed from decision and fork/join nodes.

11on work�ow modeling see Dumas et al. (2005) and Section 2.3.3
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A net composed from elementary parallel and decision blocks has the free-choice property
(Aalst and Hee, 2002, p. 277) characterized by the fact that �output transitions of places branched
in forward direction are not branched in backward direction� (Baumgarten, 1996, p. 74). In work-
�ow modeling, free choice nets are preferred due to their compatibility with common modeling
languages and their better understandability and analyzability (Aalst and Hee, 2002, p. 279).
Furthermore non-free-choice nets might exhibit a behavior where the decision of con�icts de-
pends on the order of previously executed tasks (Aalst and Hee, 2002, p. 278).

Further net classes with structural restrictions are (generalized) state machines, (generalized)
synchronisation graphs, and causal nets (Baumgarten, 1996, p. 72): In a (generalized) state
machine, every transition has exactly (or at most in the generalized form) one input and one
output place (i.e. no concurrency). In a (generalized) synchronisation graph, each place has
exactly (or at most in the generalized form) one input and one output transition, i.e. there are
no con�icts. Cycle-free generalized synchronisation graphs are called causal nets (see Figure
2.8). These are used for the formal de�nition of processes on Place/Transition-nets.

2.3.2.3. Representing the Dynamics of Place/Transition Nets

Place/Transition-nets (P/T-nets) are used to model the dynamics of processes. They consist
of a net graph N = (P, T, F ), an initial marking M0, a capacity function C for the places, and
a weighting function W for the arcs (see e.g. Baumgarten, 1996, p. 79).

Starting from the initial marking, the behavior of a P/T-net develops according to the �ring
rule described informally above. This behavior can be illustrated by di�erent representations
that depend on the purpose of the analysis. A state-based representation is the reachability
graph, which nodes represent reachable markings of the PN; connected according to the possible
�ring of transitions (Bause and Kritzinger, 1996, pp. 110).

A �ring sequence is an event-based representation of a certain process running on a PN. It
consists of an ordered 'recording' of �ring transitions' names (see e.g. Bause and Kritzinger,
1996, p. 103). The set of all possible �ring sequences of a PN N represents a formal language
LN . This language can be further restricted, e.g. by considering only those �ring sequences
leading to a certain goal marking or those leading to a deadlock (Baumgarten, 1996, p. 154).

Baumgarten (1996, p. 108) notes that in a �ring sequence all con�icts and concurrencies of
the underlying net are resolved, which corresponds to the interleaving semantics of PNs. An
alternative representation that resolves con�icts but preserves concurrency is the net process
corresponding to the partial order semantics of PNs (Baumgarten, 1996, p. 110). A net process
is an unfolding of the original net into a causal net (Baumgarten, 1996, pp. 108). A constructive
de�nition of net processes is stated in (Jessen and Valk, 1987, p. 46). The re-construction of
the original net from the net process can be considered as a folding, i.e. a mapping of nodes
with the same type onto a single node (Baumgarten, 1996, p. 67).

2.3.2.4. Extended Net Classes

This section reviews common extensions to the basic PN formalism considered in simulation
and process mining.
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Labelled Petri Nets In practical modeling tasks we can label PN elements in order to provide
them with a domain-speci�c meaning. A labelled P/T-net is a P/T-net extended by a labeling
function h that assigns a label from an arbitrary alphabet to every transition (Baumgarten,
1996, p. 152). Similar to the '�ring sequence language' described above a 'label language' is
de�ned by mapping each �ring sequence to a label sequence according to the homomorphism
generated by h (Baumgarten, 1996, p. 153).

Baumgarten (1996, p. 153, 341) shows that while every �ring sequence language is also a label
language, the opposite is not true. Broadly speaking, this is due to the fact that labelled
nets allow for a more '�exible' naming of transitions. Normally, each transition is implicitly
identi�ed by a unique name. In a labelled net, however, multiple transitions can be mapped
to the same label (also called duplicate tasks, see e.g. Li et al., 2007) and transitions can be
assigned the empty label λ (also called hidden tasks). Both possibilities can occasionally ease
modeling but complicate formal analyses and process mining (Aalst and Weijters, 2004).

Timed Augmented Petri Nets An important requirement for PNs in DES is the introduction
of time. According to Bause and Kritzinger (1996, p. 161) temporal information can either
be assigned to places (timed places PN or TPPN) or to transitions (timed transitions PN
or TTPN): TPPN de�ne a token sojourn time for each place. A token that enters a place
becomes available to output transitions only after this time has passed (Bause and Kritzinger,
1996, p. 161). In TTPN each transition is assigned a �ring delay. When the transition becomes
activated, it does not �re immediately but with the speci�ed delay.

Time information can either be deterministic (timed PN or TPN) or stochastic (stochastic PN
or SPN) (Bause and Kritzinger, 1996, p. 162). To allow for formal analyses, SPN often pose
strong restrictions on the applicable random distributions. A common class are continous-time
stochastic PN (also called SPN) where each transition ti is assigned a transition rate λi that
speci�es an exponentially distributed �ring delay (Bause and Kritzinger, 1996, p. 163). An
SPN thus represents a Markov process whose Markov chain is the reachability graph of the
related P/T-net with the assigned transition rates (Bause and Kritzinger, 1996, p. 165). Since
the focus of this thesis is not on the formal analysis of time-augmented PNs we refer to Bause
and Kritzinger (1996, Part III) and the summary by Strümpel (2003) for further details.

Colored Petri Nets Another important extension to model real world systems is the intro-
duction of typed, distinguishable tokens that are historically called colored tokens (see Rölke,
2004, p.251). A colored petri net (CPN) is de�ned by extending the net graph N = (P, T, F )
as follows (Valk, 2006, p. 82,86): A set C of color sets is introduced, where each color set is a
token type and each color is a value. A color domain mapping cd assigns a type from C to each
place of the net and the adjacent arcs. Furthermore, a set of variables with the token types as
domains is introduced, and each transition is assigned a guard predicate over these variables.

Markings, arc weights, and �ring are re-de�ned with respect to these extensions (see Valk, 2006,
pp. 86): A marking of a CPN is a vector of bags12 of appropriate token colors. Arc weights
are stated as bags of token colors and variables. A transition is activated if all input places
contain appropriate tokens that �t the incoming arcs' weights and the guard condition holds

12Di�erent from a set, a bag or multiset can contain multiple instances of an element.
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Figure 2.9.: A slightly more detailed variant of the gravel pit model from Figure 2.6 represented
as a colored PN.

with respect to a possible binding of the contained variables. It can then �re by putting tokens
into the output places according to the outgoing arcs' weights and the current variable binding.

Figure 2.9 shows that the above simulation example can be modelled more compactly as a
CPN. Tokens are identi�ed as distinct simulation entities. Duplicate net elements from the
previous example are folded onto a common structure. Note that arc weights and guards in
this example are stated as programming language expressions, which is a common extension of
CPNs (see e.g. Bause and Kritzinger, 1996, p. 152).

2.3.2.5. Reference Nets

Reference nets (Kummer, 2002) are a CPN variant that combines many properties of previous
formalisms. This includes object oriented concepts, the idea of using nets as tokens in other
nets, the synchronisation of transitions via synchronous channels, a time concept, and some
additional arc types (see e.g. Rölke, 2004, pp. 254). Figures 2.10 and 2.11 show simple, yet
typical 'customer' and 'server' processes from discrete simulation modeled as reference nets
(example inspired by Page, 1991).13 The level of detail is comparable to typical process-oriented
simulations.

Di�erent from '�at' PNs, the example exhibits an object oriented structure. Following Strümpel
(2003), the model consists of multiple 'process nets' representing the relevant entities with their
life-cycles. Simulation-speci�c Java classes for queues, random number generation, etc. are re-
used from the simulation framework DESMO-J (see Lechler and Page, 1999 and Section 3.4.4)
via a static (singleton) facade (Gamma et al., 1995, p. 193).

As in object orientation net classes are templates to create net instances (Valk, 2006, p. 108).
Each net instance has an identity and encapsulates an individual state described by its marking
(Rölke, 2004, p. 257). Net instances can reside as tokens on places of superordinate nets, which

13An example of a simple discrete event simulation in Renew is also found in the Renew User Guide (Kummer
et al., 2006).
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Figure 2.10.: A simple 'customer' process modeled as a reference net. The example in-
cludes simulation-speci�c Java classes from the framework DESMO-J for queue-
ing (including statistical data collection) and random number generation via net
inscriptions.

allows to model locality and mobility. This token re�nement has a reference semantic: A
net instance can be assigned to multiple tokens at the same time, since the tokens only hold
references to it (Valk, 2006, p. 108). A transition inscribed with the expression n: new net

creates a new instance of the class net bound to the variable n (Rölke, 2004, p. 258).

Net instances communicate via synchronous channels that synchronize the pairwise �ring of
transitions (Rölke, 2004, p. 257). A synchronous channel consists of two end-points called uplink
and downlink. The downlink is a transition inscription of the form net:channel(parameters),
where net is a reference to a net instance, channel is the channel's name, and parameters

is a parameter list (Rölke, 2004, p. 258). The downlink transition can only �re if it is acti-
vated in its local environment and if a transition providing a compatible14 uplink of the form
:channel(parameters) is activated in the net instance referenced by net (Rölke, 2004, p. 257).
Then both transitions �re synchronously and the parameters are passed between them. Using

14i.e. identical channel name and �tting parameter list
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Figure 2.11.: A simple 'server' process modeled as a reference net with Java inscriptions calling
DESMO-J.

the keyword this in the downlink allows to synchronize transitions of the same net (Valk, 2006,
p. 106).

Firing delays of transitions can be speci�ed as inscriptions n@dt of their outgoing arcs, where
n is a token produced by the transition and dt is a �xed or dynamically computed relative
delay speci�ed in real-valued units of simulation time (Strümpel, 2003, p. 57). The simulation
semantic of timed reference nets is event-driven (Strümpel, 2003, pp. 57).

Reference nets provide further elements shown in Figure 2.12 (Rölke, 2004, pp. 255): A virtual
place is used as a link to a place in order to enhance the visual presentation of a net. A reserve
arc is a shortcut notation for two arcs of a loop. A test arc is similar with the exception that
a token on a place can be tested concurrently by multiple transitions connected via test arcs.
A �exible arc allows to transport a variable number of tokens. The number and type of tokens
is speci�ed by an inscription with a variable of an array type. An inhibitor arc activates the
connected transition if the connected place contains no appropriate tokens (Kummer et al.,
2006, p. 55), and a clear arc removes all tokens from the assigned place (Kummer et al., 2006,
p. 54).15

15Due to an unclear concurrency semantics related to the problem of zero tests, inhibitor arcs and clear arcs
are only available in the sequential mode of the Renew simulator.
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Figure 2.12.: Additional elements of reference nets (adopted with modi�cations from Rölke,
2004, p. 255,257).

The Java-basedRenew16 (Reference NetWorkshop, see Kummer et al., 2006) toolset provides a
modeling environment and simulator for reference nets. The net inscription language is also Java
combined with elements of functional programming languages such as pattern matching and
a notation for tuples (square brackets) and lists (curly braces). This combination of reference
nets with custom Java classes ensures a good practical applicability. The simulator runs in
several modes including a concurrent mode supporting true concurrency and a sequential mode
for timed nets.

2.3.2.6. Petri Nets and Reference Nets in Simulation

Though PNs have often been applied to DES (see e.g. Kämper, 1990), their suitability to this
domain is not without controversy. The notation is sometimes deemed too abstract and general
for modeling real-world problems. However, this does not depend as much on the formalism
itself as on the availability of additional structuring mechanisms and appropriate tools for
building and executing large PN models.

Kämper (1990, p. 82) summarizes advantages of PNs as a 'simulation language': PNs are at
the same time an intuitive graphical notation and an executable formal language. Structural
and behavioral aspects of the model are described with a small number of symbols. The
token game (e.g. Badouel et al., 2007) helps to understand and validate the model's dynamics.
Formal methods can be applied to the veri�cation of (at least simpli�ed variants of) the model.
Causality, concurrency, and synchronization are naturally displayed. More domain-speci�c
graphical notations can straightforwardly be mapped to PNs as an operational semantics.

The generality and compactness of the PN language is also a drawback for simulation modeling
(Kämper, 1990, p. 83). It results in a low aggregation level without simulation-speci�c con-
structs. This is problematic for two reasons: Firstly, domain experts are accustomed to their
speci�c concepts and symbols (like machines or stores) even if the semantics conform to places
or transitions. Secondly, many PN-based tools do not su�ciently support simulation tasks like
data collection or random number generation.

These drawbacks are to a certain extent compensated by advanced structuring mechanisms
and modeling tools. Kämper (1990), for instance, uses hierarchical modeling and provides

16http://www.renew.de, last visit 2013-11-03
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simulation-speci�c constructs in the form of sub nets. Aarhus University's CPN simulator CP-
NTools17 provides relatively mature support for data collection and random number generation.

Strümpel (2001) rates the ease of modeling with reference nets superior to programming
language-based simulation frameworks due to the straightforward graphical notation. Flexi-
bility and extensibility are similar thanks to the integration with Java. On this basis, Strümpel
(2003) extends Renew with classes for data collection and random distributions.

Another drawback is that reference nets with many Java inscriptions partly loose their concep-
tual clarity and formal veri�ability. The complex simulator's performance is naturally inferior
to a simple DES scheduler. Important simulation-speci�c functionality (such as e.g. queues of
unlimited size) is still missing in Renew. The author has prototypically integrated classes from
the simulation framework DESMO-J (see Figures 2.10 and 2.11), to re-use queueing strategies,
repeatable random number generation, and reporting. The Renew simulator in sequential
mode serves as simulation scheduler. However, this rudimentary integration still su�ers from
conceptual and technical drawbacks (e.g. a means to stop all nets of a simulation at a certain
point in simulation time).

Compared to domain-speci�c graphical simulation tools, Renew's �exibility is obviously higher,
while the reference net language might be harder to understand for domain experts. The So-
cionics project has shown that reference nets can be taught to non-computer scientists (in this
case sociologists) as a means to build domain-speci�c models (von Lüde et al., 2003). Based on
experiences with reference nets in large simulation studies (see e.g. Bessey, 2004), Szczerbicka
(2006) mentions the formalism's complex �ring semantics as the main criticism.

To improve the customizability of Renew, Strümpel (2003, p. 127) proposes to replace places,
transitions, tokens, or subnets with domain-speci�c graphical symbols.18 As an intermediate
step � reminiscent of Kämper (1990) � the net components tool is used to integrate simulation
constructs into Renew's graphical user interface (Strümpel, 2003, p. 122).

Net components (Cabac et al., 2003) are re-usable sub nets that roughly correspond to pro-
gramming language idioms or patterns. Each sub net can be assigned to a button in a custom
tool palette of Renew. The mechanism is rather light-weight, since net components merely
provide a graphical grouping of net elements that can be inserted and modi�ed in Renew.
Additional tool support to parameterize net components (as proposed by Kämper, 1990) or to
'collapse' the assigned elements into an abstract symbol is currently not available.

2.3.3. Work�ow Modeling and Patterns

The modeling of business processes or work�ows (e.g. Dumas et al., 2005) is a domain that
is closely related to simulation and multi-agent systems with respect to the need to explicitly
represent complex control �ow. According to Dumas et al. (2005, p. 22):

�Work�ow is usually regarded as "the computerized facilitation or automation of a business
process, in whole or in part" (Hollingworth, 1995). It consists of a coordinated set of
activities that are executed to achieve a prede�ned goal. Work�ow management aims at

17http://cpntools.org, last visit 2013-11-03
18The current version of Renew already supports custom images for tokens and the addition of custom �gures

without functionality to a net drawing.
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supporting the routing of activities (i.e. the �ow of work) in an organization such that the
work is e�ciently done at the right time by the right person with the right software tool.�

Similar to software development, simulation, and multi-agent systems, business process model-
ing (BPM) attempts to reduce the complexity of the modeled work�ows by considering di�erent
perspectives (Aalst et al., 2003b, p. 6). Aalst et al. (2003b, p. 6) state the examples of the con-
trol �ow perspective (control �ow of a business process), the data perspective (data items and
documents considered in a work�ow), and resource perspective (organizational and technical
resources required in a business process).

A contribution of work�ow modeling that is also valuable beyond the domain of business pro-
cess management consists in the identi�cation of a large set of so-called work�ow patterns, as
presented by Aalst et al. (2003b). Similar in spirit to (object-oriented) design patterns, work-
�ow patterns abstractly describe routing structures that re-appear in many BPM languages
and tools (Aalst et al., 2003b, p. 7). In doing so, di�erent languages and tools can be compared
and modeling requirements are stated in a general form (Aalst et al., 2003b, p. 5).

According to Aalst et al. (2003b, p. 8), �the [...] patterns range from fairly simple constructs
present in any work�ow language to complex routing primitives not supported by today's [...] systems�.
Among the simple patterns, we �nd basic control �ow constructs like sequence (P1 in Aalst
et al., 2003b, p. 10), parallel split (P2 in Aalst et al., 2003b, p. 10-11), or exclusive choice (P4 in
Aalst et al., 2003b, p. 11) already mentioned above. More complex patterns include structures
like multi-choice (also called or split, see P6 in Aalst et al., 2003b, p. 13) and cancel activity
(P19 in Aalst et al., 2003b, p. 38).

A class of work�ow patterns that are closely related to interactions in multi-agent systems
(see e.g. Section 3.3.2.1) are �patterns involving multiple instances� (Aalst et al., 2003b). These
patterns will be reconsidered later in the context of auction and mediation protocols where a
central agent (e.g. an auctioneer) engages in similar conversations with multiple other agents
(e.g. bidders) in parallel. In the context of work�ow management, Aalst et al. (2003b, Sec. 2.4)
distinguish the following variants of multiple instantiation patterns:

• Multiple instances without synchronization (P12 in Aalst et al., 2003b, p. 23): Several
similar threads are run concurrently without further synchronized interaction among each
others or with the main process.

• Multiple instances with a-priori design time knowledge (P13 in Aalst et al., 2003b, p. 24):
A work�ow runs a previously �xed number of similar activities or sub-processes in parallel
and waits until all have terminated.

• Multiple instances with a-priori runtime time knowledge (P14 in Aalst et al., 2003b, p. 25-
26): Di�erent from the previous pattern, the number of concurrent activities is not �xed
in the work�ow model, but remains constant once the processing of the work�ow case has
started. This variant might be most common in agent interaction protocols such as e.g.
contract net (Smith, 1980; see also Section 3.3.2.3).

• Multiple instances without a-priori runtime time knowledge (P15 in Aalst et al., 2003b,
p. 27): Here the number of concurrent threads might even change after the processing
has started
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In this thesis, we will not further focus on BPM itself, but only on the closely related analysis
technique of process mining that mirrors many BPM concepts like work�ow perspectives and
patterns (see Section 4). For relations of BPM to further topics considered in this thesis, we
refer to the literature on work�ow simulation (e.g. Rozinat et al., 2009c) and agent-oriented
work�ow management systems (e.g. Reese, 2009).

2.4. Experimentation, Analysis, and Validation

After introducing di�erent modeling techniques, we will turn to result analysis, and validation,
as the main focus of the thesis. Though modeling might itself provide important insights into
a system, the main purpose of a simulation study is to conduct experiments with a model, to
analyse the observed behavior, and to draw conclusions from the results of the analysis (see
also Kelton and Barton, 2003, p. 59). While simulation modeling and implementation can
be understood as a special 'software development project', the character of experimentation,
analysis, and validation is closer to an empirical scienti�c study (Wittmann, 1993, p. 47).19

2.4.1. Experimentation

In (Czogalla et al., 2006, Sec. 2), we have described the experimentation phase based on the
terminology used by Wittmann:

�An experiment is "a number of [simulation] runs that we execute with di�erent models in
order to answer a certain question" (literal interpretation of Wittmann, 1993, p. 57). This
de�nition mirrors the separation of models and experiments [postulated by Zeigler, see e.g.
Zeigler et al., 2000]: Di�erent experiments can be conducted with the same model if the
attended questions lie within the model's validity range, and an experiment can include
di�erent models (e.g. for the purpose of model comparison).

Wittmann re�nes the notion of models by distinguishing a model from a model class. As in
object orientation, a model class is a template that is de�ned by "a set of model elements
[i.e. constants, parameters, state variables, and derived elements] and a description of their
dynamics" (Wittmann, 1993, p. 55). A model is an instance of a model class with concrete
values assigned to these elements.

[In this context ...], it seems reasonable to neglect internal model structure and behaviour
and consider a model class as a black-box with a well-de�ned input-output interface. Fol-
lowing Bachmann (2003, pp. 77), a model class is de�ned by a set of access points, i.e. typed
model and experiment parameters as inputs and observable results and runtime variables
as output. Thus, an experiment might be reused with any model realizing the same model
class.

An experiment is described by means of an experiment speci�cation and an experimental
setup that jointly constitute a kind of experimental frame (see e.g. Zeigler et al., 2000). The
experiment speci�cation states which model classes to use and how to vary their parame-
ter values. Parameter variations are either speci�ed in terms of iterations (e.g. similar to
"for/to/next" loops) or through higher-level speci�cations of experiment objectives. We re-
fer to the former as manual experimental design and call the latter automated experimental
design.

19also reviewed in (Czogalla et al., 2006, Sec. 2)
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Following the often-cited idea of a "virtual laboratory", the experimental setup describes
the control and observation apparatus applied in an experiment. This includes settings of
experiment control parameters (e.g. simulation duration) on the one hand, and the setup
of observers and analyses on the other hand. The execution of an experiment speci�cation
within an experimental setup leads to a series of simulation runs (see also Wittmann, 1993,
p. 56).�

2.4.1.1. Experimental Design

The main goal of experimental design is to evaluate a preferably wide range of simulation
model behavior by simulating a possibly small number of parameter con�gurations, also called
scenarios (Page and Kreutzer, 2005, p. 190). Inmanual experimental design this goal is achieved
through systematic parameter variations. A common approach is the 2k factorial design (Page
and Kreutzer, 2005, p. 190). In this design, we identify a characteristic high and low value for
each of the model's k parameters.20 We then perform a simulation run for each combination
of parameter values leading to a total of 2k runs. More advanced techniques for experimental
design are e.g. presented by Law and Kelton (2000, Ch. 12).

The main technique for automated experimental design is simulation-based optimization (see
e.g. Page and Kreutzer, 2005, pp. 190 and Ch. 13) which is used to automatically optimize
scenarios that are too complex for analytical optimisation. Simulation and optimization tech-
niques are integrated as follows (Page and Kreutzer, 2005, Sec. 13.2): Given a model class, an
initial parameter con�guration is chosen, and a simulation of this scenario is run. The results of
the simulation are then evaluated by means of an objective function. Based on this evaluation,
an optimization algorithm tries to compute a 'better' con�guration that is again evaluated in
a simulation run. This iterative process usually continues until the objective value converges.
Note that simulation-based optimization is not guaranteed to �nd an optimal con�guration due
to the use of (stochastic) simulation and often heuristic optimization techniques (e.g. genetic
algorithms, see Gehlsen, 2004).

2.4.2. Output Analysis

Law and Kelton (2000, pp. 496) note that the proper output analysis of (stochastic) simulations
is an often neglected aspect in practical studies. In contrast, many textbooks largely emphasize
techniques for statistical analysis (examples include Law and Kelton, 2000, Ch. 9-11; Banks
et al., 1999, Ch. 12-13). However, the diversity of analysis techniques applied in simulation
exceeds mere statistics since informal as well as formal techniques from several �elds can be
applied. The classi�cation scheme in Figure 2.13 shows one possibility to structure the di�erent
analysis techniques applied in simulation.

The well-known distinction of statistical analysis techniques into the exploratory and the con-
�rmatory approach is also relevant in simulation (see e.g. Köster, 2002). �Exploratory techniques
are applied to gather knowledge about a model's structural or behavioural features, while con�rmatory

20The 2k factorial design is thus related to software engineering's equivalence partitioning and extreme input
testing (see e.g. Balci, 1998, pp. 370).
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Figure 2.13.: A classi�cation scheme for analysis techniques. The scheme was derived from
several sources in the literature and from our classi�cation of validation techniques
presented in (Page and Kreutzer, 2005, p. 211; see also Figure 2.16).

techniques serve to test [...] pre-established hypotheses� (Page and Kreutzer, 2005, p. 210) that rep-
resent expectations on a scenario (in model comparisons) or knowledge about the real system
(in validation).

Following Ritzschke and Wiedemann (1998, Sec. 1), output analyses are either based on raw
event traces observed during simulation or on preprocessed results (simulation reports) pro-
duced by speci�c data collectors in the experimental setup (e.g. average queue waiting times):
In trace-based analysis all available information are logged and subsequently �ltered and aggre-
gated. This allows for detailed and temporally �ne-grained analyses. Furthermore, the trace
can be analysed from di�erent view angles without modi�cations of the experimental setup and
rerun of the simulation (Ritzschke and Wiedemann, 1998, Sec. 1). A drawback of trace-based
analyses is the high computational e�ort necessary to process large trace �les, and the reduced
convenience compared to result-based analyses with speci�c data collectors connected to the
model components (Ritzschke and Wiedemann, 1998, Sec. 1).

Analyses can either be performed after the simulation, taking into account the whole observed
data set (o�ine analysis) or during the simulation, taking into account the currently available
data (online analysis).21 Apart from animations (Page and Kreutzer, 2005, Sec. 9.6), online
analyses only appear reasonable if a feedback of results into the running simulation is required.
A typical example is the reset of statistical counters after detecting the end of a simulated
process' transient phase (Page and Kreutzer, 2005, pp. 174). Generally, online analyses are
algorithmically more demanding than o�ine analyses due to the need to incrementally update
the results when more data becomes available.

Another typical criterion to classify analysis techiques is the degree of formality, which is sub-
divided into qualitative, quantitative, and symbolic techniques in (Page and Kreutzer, 2005,

21see e.g. Page and Kreutzer (2005, p. 242)
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p. 210): Qualitative techniques are mostly based on visualization. Quantitative methods are
often rooted in statistics. In this thesis we will also consider symbolic techniques from �elds
like data mining or formal veri�cation (Page and Kreutzer, 2005, p. 210; see also Brade, 2003,
p. 56).

Common purposes for the application of data analysis techniques in simulation include the
analysis of real system data during model building, the analysis of a single simulation run, the
comparison of multiple scenarios (see e.g. Law and Kelton, 2000, Ch. 9,10), and operational
validation as a comparison between simulation and real system data (see Section 2.4.3).

2.4.3. Validation

When simulation models are used as a basis for decision making, it is vital to ensure that the
analysis of the model leads to similar decisions as an analysis of the represented system (Page,
1991, p. 147), i.e. the model is valid (Page and Kreutzer, 2005, pp 195). In (Page and Kreutzer,
2005, p. 196), we emphasized the attention paid to validation in the simulation literature:

�Following Page (1991, pp. 146) we should ideally accept model validity as one of the most
important criteria for judging model quality. [...] the wide range of literature on this
topic re�ects its importance. There are numerous papers and textbooks, which emphasise
di�erent aspects, such as practical techniques (e.g. Balci, 1998), statistical methodology
(e.g. Kleijnen, 1999), or [...] similarities between [... simulation] validation and [...] the
philosophy of science (e.g. Naylor and Finger, 1967).

Other disciplines, such as software engineering, theoretical computer science, or statistics
have developed approaches [...] which are also relevant for simulation. Kleindorfer and
Ganeshan (1993, p. 50) emphasize the "eclectic" character of validation in this regard [...]�

2.4.3.1. Basic Terms

The following list adopted from (Page and Kreutzer, 2005, p. 196) reviews relevant terms in
simulation validation based on de�nitions by Brade (2003, Ch. 1.5):22

• Model validation serves to ensure that a simulation model is a �suitable representation of
the real system with respect to an intended purpose of the model's application� (Brade, 2003,
p. 16 cited with minor modi�cations in Page and Kreutzer, 2005, p. 198). Furthermore,
�the term validation is also [...] used as an umbrella term for all quality assurance activities (i.e.
[...] model validation, veri�cation, and testing)� (Page and Kreutzer, 2005, p. 198).

• Model veri�cation in the wide sense serves to ensure that �a model is correctly represented
and was correctly transformed from one representation into another� (Brade, 2003, p. 14 cited
with minor modi�cations in Page and Kreutzer, 2005, p. 198). Model veri�cation in the
narrow sense denotes the application of formal methods to �prov[e ...] the correctness of
model representations and their transformations� (Page and Kreutzer, 2005, pp. 198).

22Actually, the de�nitions by Brade (2003) include the terms validation and veri�cation. The distinction between
veri�cation in the wider and narrower sense and the notion of testing are added. A detailed discussion of
di�erent forms and 'degrees' of veri�cation is led by Fetzer (2001), who uses the term �veri�cation in the
broad sense� (Fetzer, 2001, p. 243). A similar de�nition for testing from the software engineering domain is
found in Whittaker (2000, p. 77).

53
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Figure 2.14.: A re�ned validation process based on Balci (1998, p. 337) and Sargent (2001,
p. 109). Adoped from Page and Kreutzer (2005, p. 200).

• Model testing denotes the execution of �a computerized simulation model in order to
corroborate that it correctly implements its corresponding conceptual model. [...] testing
is regarded as an important technique for model veri�cation in the wide[...] sense.� (Page
and Kreutzer, 2005, p. 199)

2.4.3.2. Validation in the Model Building Cycle

In (Page and Kreutzer, 2005, pp. 199-200) we contrasted di�erent variants of the process fol-
lowed to conduct a simulation study:

�Many authors, e.g. Page (1991) and Sargent (2001), di�erentiate between three main
validation phases [in the model building cycle]:

1. Conceptual model validation is performed during the conceptual modelling phase. It
aims to ensure that the model is a plausible representation of the real system; i.e.
suitable to answer all questions raised by the problem de�nition.

2. Model veri�cation (in the wide sense) is performed during the implementation phase
and seeks to establish that the computerized model implements the conceptual model
correctly.
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3. Operational model validation is conducted before and during simulation experiments.
It aims to determine how closely a model's behaviour resembles the real system's
behaviour. [...] To achieve this, data collected during model execution is compared
with corresponding data gathered during the real system's operation.�

The more complex variant of this basic process shown in Figure 2.14 �has been strongly in�uenced
by Sargent (2001, p. 109), Balci (1998, p. 3), and the "V&V triangle" (standing for validation and
veri�cation) presented in Brade (2003, p. 62)" (Page and Kreutzer, 2005, p. 200). We will only
clarify some basic principles by means of this �gure. A more detailed description is provided
in (Page and Kreutzer, 2005, pp. 200).

Firstly, as noted in (Page and Kreutzer, 2005, p. 200), the placement of the problem de�nition
above the whole process indicates that �a simulation model is built with respect to the study objec-
tives and its credibility is judged with respect to those objectives� (Balci, 1998, p. 346 cited in Page
and Kreutzer, 2005, pp. 200-201). �Validation [...] can never guarantee "absolute" model validity
[... but] only improve models' credibility for answering certain questions [...] by means of certain sim-
ulation experiments. Zeigler et al. (2000, p. 369) refer to this endeavour as an "experimental frame".�
(Page and Kreutzer, 2005, p. 201)

Secondly, as also cited in (Page and Kreutzer, 2005, p. 201), �validation should be conducted
throughout the whole model building process.� (Page, 1991, p. 148). �Every phase [of the model
building cycle] must be complemented by an associated validation activity� (Page and Kreutzer,
2005, p. 201) ensuring the validity of the artifacts produced in that phase. �Although the process
shown in Figure 2.14 is reminiscent of [. . . a] classical waterfall model, it must be stressed that model
building is a strongly iterative activity� (Page and Kreutzer, 2005, p. 202).

2.4.3.3. Validation and the Philosophy of Science

To put the validation of simulation models into a broader context, many authors (e.g. Naylor
and Finger, 1967; Birta and Özmizrak, 1996, p. 79) cite its relation to problems considered in
the philosophy of science. In (Page and Kreutzer, 2005, p. 203) we summarized these relations
as well:

�As Cantú-Paz et al. (2004, p. 1) point out, "computer simulations are increasingly being
seen as the third mode of science, complementing theory and experiments". If we re-
gard simulation models as "miniature scienti�c theories" (Kleindorfer and Ganeshan, 1993,
p. 50), it becomes obvious that there is a close correspondence between validation of simu-
lation models and the more general problem of validating a scienti�c theory (see Troitzsch,
2004, p. 5 cited in Küppers and Lenhard, 2004, p. 2). The latter problem traditionally
belongs to the domain of the philosophy of science and has been studied extensively.

[... According to Popper's critical rationalism], the main characteristic of the so-called
"scienti�c method" [is the permanent] e�ort to falsify [...] preliminary theories. [...] falsi�-
cation is superior to veri�cation [...], since inductions from facts [...] to theories can never
be justi�ed on logical grounds alone [...] (Popper, 1982, p. 198). We can, however, use
empirical observations to falsify a theory. A single wrong prediction su�ces. [...]

[A more ...] practical viewpoint, proposed by Naylor and Finger (1967, pp. B-95), takes
a "utilitarian" view of validation, with a mixture of rationalist, empiricist and pragmatist
aspects [...]:
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Figure 2.15.: �Estimation of cost, value, and bene�t in model validation (adopted with modi�cations
from Shannon, 1975, p. 209)�. Figure and caption cited from Page and Kreutzer
(2005, p. 207).

1. Rationalist step: assessment of intuitive plausibility of model structure. By follow-
ing the rationalist approach, i.e. criticising a model based on well-founded a-priori
knowledge, this step seeks to eliminate obviously erroneous assumptions.

2. Empiricist step: detailed empirical validation of those assumptions that have "sur-
vived" the �rst step.

3. Pragmatist step: validation of model behaviour by comparing model output to cor-
responding output obtained from the target system (if available). In this step the
model's ability to predict the real system's behaviour is tested. [...]

Using the terminology introduced [... above], the steps 1 and 2 are concerned with concep-
tual model validation. Step 3 views the model as a "black box" and corresponds to [...]
operational validation [...].�

2.4.3.4. General Guidelines

Due to the large number and variety of available validation approaches, it can be useful to
have a list of guidelines at hand when performing practical model validation. In (Page and
Kreutzer, 2005, pp. 205), we cited the following guidelines derived from similar treatments by
Page (1991, Ch. 5.2) and Balci (1998, Ch. 10.3):

• �Degrees of Model Validity : [...] rationalists and empiricists are interested in models that explain
the behaviour of systems in terms of their structure. In contrast to this, pragmatists simply view
systems as black boxes and rate model quality solely on the basis of a model's predictive power.
In the simulation domain these two perspectives have led to the de�nition of di�erent degrees of
model validity, which Bossel (1989, p. 14) summarizes as [...] (cited from Martelli, 1999, pp. 88):
structural validity [...,] behavioural validity [...,] empirical validity [..., and] application validity�
(Page and Kreutzer, 2005, p. 206).

• �Scope and E�ort of Model Validation: [...] the impossibility of empirical theory veri�cation
strongly suggests that the establishment of "absolute" model validity is also a logical impossibility.
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This belief is con�rmed by many other results [...] including the limits of formalization explored
by Goedel and Turing (see e.g. Gruska, 1997, Ch. 6). [...] Shannon (1975, pp. 208) [... therefore]
stresses the need for an "economic" approach to validation activities. The pseudo-quantitative
estimation in Figure 2.15 shows that value and cost of a model do not increase in a linear fashion
with [...] validity. [...] In several cases simple but suitably accurate models are better than
extremely detailed ones, whose complexity and data requirements quickly become intractable.
This is another example of the principle of "Occam's Razor", which [...] claims that a simpler
theory with fewer parameters should be preferred [...], based on its easier testability (Popper,
2004, p. 188).� (Page and Kreutzer, 2005, pp. 206-207)

• Value of Human Insight : �In critical domains such as model validation, people often call for
increased formality, automation, and tool-support [...]. However, according to Page (1991, p. 147),
"the application of mathematical and statistical methods in model validation is limited" and
such methods typically impose strong restrictions on model representation and complexity [...
Furthermore they] only cover a narrow aspect of model validity. Brade (2003, p. 90) concludes that
"although automated computer-based validation techniques are more objective, more e�cient,
more likely to be repeatable, and even more reliable than human review, the human reviewer
plays an extremely important role for the V&V of models and simulation results". [...] In
recognition of this, proponents of formal and automated techniques [like those discussed in this
thesis] should seek to develop tools whose primary focus is the support and augmentation of
human modelling and validation activities.� (Page and Kreutzer, 2005, p. 208)

2.4.3.5. Classi�cation of Validation Techniques

As recognized in (Page and Kreutzer, 2005, p. 210):

�The simulation literature o�ers more (e.g. Balci, 1998) or less (e.g. Garrido, 2001) ex-
haustive listings of model validation techniques [... that] originate in di�erent �elds [of ...]
computer science. To bring some structure into this "chaos", many authors propose their
own schemes for classifying validation techniques; [... including] Balci (1998, p. 27) [...,]
Garrido (2001, p. 216) [...,] Page (1991, p. 16) [..., and] Brade (2003, p. 56) [...]

To integrate these di�erent schemes into a coherent classi�cation, we [...] arrange validation
techniques along the following dimensions [based on proposals by the above authors23]:

• Approach: [As in output analysis] we separate exploratory from con�rmatory valida-
tion techniques. [...]

• Phase in model building cycle: This dimension describes whether a validation tech-
nique is mainly used for conceptual model validation, model veri�cation, or opera-
tional validation; or one of the phases attached to a more sophisticated validation
process.

• Degree of formality : Along this dimension we di�erentiate between qualitative infor-
mal, [statistical, and exhaustive . . . ] validation methods. [...]

• System view : This dimension refers to the perspective which characterizes a validation
technique. [...]�

23For a detailed review of these sources see Page and Kreutzer (2005, p. 210). Since validation is closely related
to analysis, the scheme shown in Figure 2.16 strongly resembles the classi�cation of analysis techniques in
Section 2.4.2.
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Figure 2.16.: A classi�cation scheme for validation techniques in simulation (adopted with mod-
i�cations from Page and Kreutzer, 2005, p. 211)

Note that in (Page and Kreutzer, 2005, p. 211), we originally stated the same 'degrees of
formality' as in the classi�cation of analysis techniques presented in Section 2.4.2. However, in
the context of this thesis, a distinction between statistical and exhaustive techniques seems more
appropriate to cover the range of validation techniques treated. Besides statistical techniques
for log and output analysis, we can also apply exhaustive formal veri�cation techniques to
simpli�ed versions of a simulation model. In either case, both symbolic and numeric analysis
techniques might be used.
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This chapter provides an introduction to concepts, modeling techniques, and tools for multi-
agent systems (MAS) and multi-agent-based simulation (MABS). The structure and content
of the presentation is largely based on Klügl (2000, Chs. 2,3,4). Several sections were adopted
from Page and Kreutzer (2005, Ch. 11), co-written by and partly based on the diploma thesis
(Knaak, 2002) of the author.

3.1. Agents and Multi-Agent Systems

According to Page and Kreutzer (2005, p. 340) �multi-agent systems have become an important
metaphor� in system analysis and modeling (see also Klügl, 2000, p. 9). In the following, we
explain the meaning of the term 'agent' in the context of this thesis. Subsequently, we review
common agent architectures and discuss dimensions that in�uence their complexity with respect
to analysis and validation. The focus is then turned to MAS for the same purpose.

3.1.1. Agents

Concerning de�nitions of the term 'agent' we noted in (Page and Kreutzer, 2005, pp. 340-341):

�Unfortunately, no agreement on exact de�nitions [...] and what distinguishes agency from
related concepts (e.g. objects) has so far been reached [see e.g. Klügl, 2001, p. 10]. As
a result, ambiguous usage of terms remains a concern for MAS research. To address this
concern and retain enough �exibility to capture all the diversity of the subject, some authors
resort to very general and abstract de�nitions. An often cited example [e.g. in Klügl, 2000,
p. 10] for this is the following characterization [...] by Franklin and Graesser (1997, p. 25):
�An autonomous agent is a system situated within and a part of an environment that senses
that environment and acts on it, over time, in pursuit of its own agenda and so as to e�ect
what it senses in the future.� [...] Another prominent and [...] more concrete approach is
the de�nition of agents by means of a set of properties, all or some of which a prospective
agent must possess (see e.g. Klügl, 2000, pp. 10, Ferber, 1995, p. 10, [... Gilbert and
Troitzsch, 1999, and Wooldridge and Jennings, 1995, pp. 116-118]):

• Autonomy : An agent is able to ful�l its tasks without or with only minor interventions
by other entities.

• Situatedness: An agent inhabits some environment that it can sense and act upon.

• Reactivity : An agent is able to respond to changes in its environment in a timely
fashion.

• Goal-orientation: An agent does not merely react to environmental stimuli, but can
act pro-actively � according to a set of persistent goals. To meet these goals, it is
able to execute plans over time.
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• Sociality : In order to reach its goals an agent communicates and interacts with other
agents in a cooperative or competitive manner.

• Adaptivity : An agent can adapt its future behaviour based on past experiences; i.e. it
can learn.

• Mobility : An agent is able to change its location within a physical or virtual environ-
ment (e.g. a computer network).� (Page and Kreutzer, 2005, pp. 340-341)

While these properties are listed in many textbooks, their appropriateness is a subject of con-
tinuing discussions. One common objection says that the conceptual framework of agents might
not provide signi�cant advantages, because computer science has dealt with systems exhibiting
similar properties before; e.g. in active objects or expert systems which can be regarded as pre-
decessors of agents (Wooldridge, 2003, pp. 26). A second popular objection says that talking
about computer systems hardly justi�es the use of philosophically or sociologically biased terms
like autonomy.

In the following, we will discuss the bene�ts and limitations of the agent metaphor and compare
it with related concepts. The presentation is based on Klügl (2000), Wooldridge (2003), Ferber
(1995), and Padgham and Winiko� (2004).

3.1.1.1. Bene�ts and Limitations of the Agent Metaphor

As criticized in the �rst objection, MAS are indeed nothing 'new', but a mixture of concepts
from object-orientation, distributed systems, arti�cial intelligence, and sociology. Their main
purpose is to provide a �natural abstraction and decomposition of complex [...] systems� (Padgham
and Winiko�, 2004, p. 5). In this context, sociological and economic terms are used as a
metaphor. Though MAS research has gained relevant results at the technological level, the
provision of a new1 conceptual framework might be regarded as the main contribution.

The unre�ected adoption of sociological and economic terms, however, leads to the second
objection. Therefore it is important to narrow down the scope of biased notions like autonomy
in the context of MAS. In this thesis (as often in agent-based simulation) the terms are on the
one hand used to conceptually describe actors from a real system. On the other hand, several
notions can be given a technical interpretation that helps to distinguish agents from related
concepts.

Situatedness, for instance, is a characteristic property because it delimits agents from earlier
AI artifacts like expert systems (Wooldridge, 2003, p. 27). According to Ferber (1995, p. 53),
classical AI programs are abstract �thinkers� that can at the utmost advise users how to act on
the basis of presented data. In contrast agents percieve and change their environment directly.
They can only percieve, act, and move within a certain local radius (Klügl, 2000, p. 59), which
�ts the modeling of real-world actors in simulation well (see also Klügl, 2000, p. 6).

Autonomy, even in a restricted sense, distinguishes agents from the object-oriented world view
(Wooldridge, 2003, p. 25). This is summarized in the often-cited sentence that �objects do it for
free [while] agents do it because they want to� (Wooldridge, 2003, p. 26). Some authors concretize
the term by identifying di�erent degrees of autonomy. According to Klügl (2000, p. 11) au-
tonomy of control means that an agent can perform its tasks without extensive interventions

1but nevertheless historically grown, as indicated above
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of users. This is a rather unspeci�c property in the simulation context, since entities in many
simulation models exhibit autonomy of control without being regarded as agents. Autonomy
of behavior denotes learning agents that autonomously modify their behavior based on past
experiences.

Though autonomous control and behavior can be implemented in an object-oriented language,
autonomy is not an inherent concept of this world view, which is dominated by the principle
of design by contract (see e.g. Meyer, 1997).

AgentObject

Methods Queries

Replies

Services

Goals

Messages

Figure 3.1.: �Conceptual distinction between objects and agents (adopted [with modi�cations] from
Ferber, 1995, p. 58).� (Caption and �gure cited from Page and Kreutzer, 2005,
pp. 353)

In (Page and Kreutzer, 2005, p. 352), we reviewed the discussion by Ferber (1995) on this
subject:

�Objects are de�ned through their interfaces; i.e. the services they can perform on demand.
Their implementation must therefore ensure that all methods are correctly implemented
and that expected results are returned (Ferber, 1995, p. 57). This viewpoint clashes with
the requirement for agent autonomy, which leaves agents free to pursue their own goals.
Agents can, for example, refuse a request if it would cause con�ict or if some information
is currently unavailable (Ferber, 1995, p. 58).

The important point of distinction is that such decisions are based on the perceived state
of an environment, as well as the state of the agent's internal knowledge base. The same
request can therefore lead to di�erent reactions at di�erent times. In a typical implemen-
tation this results in an additional �ltering level, which mediates between service requests
and internal agent processes (see Figure 3.1). In this way agents themselves retain tight
control over their own behaviour.�

An agent's actions can fail in certain situations (Wooldridge, 2003, p. 24) or it might select
between di�erent possibilities to satisfy its clients' needs based on their respective preferences
(Garion and van der Torre, 2006, p. 175; see also Knaak, 2002, p. 7). This leads to higher
demands on the agent's 'intelligence' where the term denotes behavioral �exibility. Agents
with �exible behavior provide increased robustness �in situations in which the environment is
challenging� (Padgham and Winiko�, 2004, pp. 4�5).

The presented bene�ts of the agent metaphor must be contrasted by a number of problems:

1. The slightly 'esoteric' terminology of MAS might lead to an over-expectation. As dis-
cussed above, this can be avoided by clearly distinguishing between conceptual and tech-
nical implications of the metaphor. According to Padgham and Winiko� (2004, p. 4),
�agents are not magic [but ...] simply an approach to structuring and developing software�.
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2. The very general agent metaphor might be overused in situations where other concepts
appear more appropriate. An example is the modeling of a spatial environment as a
speci�c 'agent' in simulation (Klügl, 2000, p. 104). Moss (2000, p. 2) notes that MA(B)S
research often seems to exhibit an overstated focus on its abstract concepts instead of
practical applications.

3. Complex agent systems tend to be hard to analyze and validate (Klügl, 2000, p. 190).
While this problem can be partly reduced by �nding an appropriate level of modeling
detail (Klügl, 2000, p. 74) and applying proven software engineering methods, it is also
inherent to the modeling style.

3.1.2. Agent Architectures2

According to Klügl (2000, p. 14) an agent's architecture determines its internal information
processing, i.e. how perceptions are mapped to actions. Many agent architectures have been
proposed, ranging from intentionally simple designs to complex reasoning systems (Klügl, 2000,
p. 15).

Reactive

Subcognitive

Subsymbolic

Tropistic

Model-Based

Agent

Architectures

Deliberative

Cognitive

Hybrid

Utility-Based

Learning

Figure 3.2.: Classi�cation of agent architectures based on Ferber (1995); Klügl (2000); Müller
(1996); Russel and Norvig (2003).

In view of this variety, the literature distinguishes several classes of agent architectures. Di�er-
ent classi�cation schemes are reviewed and integrated by Klügl (2000, Sec. 2.2.1), who regards
the complexity of the internal representation as the main classi�cation criterion (Klügl, 2000,
p. 14). Figure 3.2 displays a structured overview of the architectural types mentioned in this
summary. Most authors distinguish between reactive and deliberative agents as the two main
classes.

The behaviour of reactive agents is constituted by more or less direct reactions to stimuli. Their
design is often inspired by the idea of a collective �intelligence without reason� (Brooks, 1999)
emerging from basic interactions (Klügl, 2000, p. 20). Klügl (2000, p. 20) criticizes that the

2This Section is based on (Page and Kreutzer, 2005, Ch. 11.2.3), which contains a more detailed presentation
of exemplary agent architectures based on the diploma thesis of the author (Knaak, 2002, Sec. 2.4).
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term 'reactive' is misleading since deliberative agents can also react to external stimuli.3 In-
stead she identi�es two classes of 'non-deliberative' architectures: Subsymbolic architectures use
non-symbolic internal representations such as neural networks (Klügl, 2000, p. 18). Subcogni-
tive architectures apply symbolic information processing, often based on rule-based production
systems or �nite automata (Klügl, 2000, pp. 19).

Russel and Norvig (2003, Ch. 2.4) take the presence of an internal memory as a further criterion
to classify reactive agents:4 A simple re�ex agent5 is 'memory-less' without an internal model of
its environment. A model-based re�ex agent, in contrast, has an internal state that additionally
in�uences its action selection.

Deliberative agents hold internal representations of goals and are able to generate and execute
plans for their achievement (Klügl, 2000, pp. 20). Again, several sub-classes can be identi�ed.
Russel and Norvig (2003, Sec. 2.4) distinguish between plan-based agents capable of dynamic
planning, and utility-based agents that can additionally evaluate the utility of alternative plans
with respect to their current goals.6 Müller (1996, cited in Klügl, 2000, p. 15) adds the class
of hybrid architectures that consist of at least one deliberative and one reactive layer.

Klügl (2000, pp. 22) introduces the class of cognitive architectures, i.e. deliberative agents
the design of which is explicitly based on theories from cognitive science. As examples, she
names the BDI (Belief, Desire, Intention) architecture (e.g. Rao and George�, 1995) based on
a theory of rational action by Bratman (1987) and the PECS (Physics, Emotion, Cognition,
Status) architecture by Urban (1997) that strives to include non-rational aspects related to
physics and emotions into agent design (Klügl, 2000, pp. 22-23).

Learning agents (also called adaptive agents by some authors) can autonomously acquire new
or adapt existing abilities from the observation of their environment (Russel and Norvig, 2003,
Sec. 2.4).

3.1.3. Multi-Agent Systems

As reviewed by Page and Kreutzer (2005, p. 341):

�A straightforward de�nition of multi-agent systems (MAS) views them as systems in Sec-
tion [... 2.1]'s sense. MAS' de�ning property is that its components are sets of agents,
located and cooperating in a shared environment (Wooldridge, 2003, pp. 105).�

A formal de�nition mirroring this explanation is e.g. stated by Ferber (1995). Thereby, a MAS
might also contain further passive components (objects or resources) that are not understood
as agents.

The analysis of MAS is often focused on how structures and processes at the macroscopic level
emerge from interactions of agents at the microscopic level without or with only few in�uence
of a central control instance (Jennings et al., 1998, cited in Klügl, 2000, p. 13). The MAS
metaphor is thus closely connected to questions of distributed problem solving based on local

3cited in (Page and Kreutzer, 2005, p. 343)
4also cited by Klügl (2000, pp. 16)
5called a tropistic agent by Ferber (1995, p. 192; see also Klügl, 2000, p. 15)
6see also Klügl (2000, p. 16-17)
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information (Jennings et al., 1998, cited in Klügl, 2001, p. 13), computational emergence (see
Section 2.1.1), and (self-)organisation (e.g. Holland, 1998); see also the brief discussion in (Page
and Kreutzer, 2005, p. 342).

3.2. The Agent-Based Simulation World View

Meyer (2008) regards multi-agent-based simulation (MABS) as a distinct world view that com-
plements the typical modeling styles from discrete simulation (see Section 2.2.2). This section
introduces MABS in the context of other simulation world views as well as other relations
between simulation and agent technology. The former allows to identify speci�c requirements
on analysis and validation. The latter helps to position the subject of this thesis in the broader
context of simulation and MAS.

3.2.1. Relations between Agents and Simulation

In (Page and Kreutzer, 2005, Sec. 11.3) we reviewed the di�erent relations between the �elds
of MAS and simulation:

�The relationship between agent technology and simulation can be viewed and exploited in
a number of di�erent ways (Uhrmacher, 2000, p. 16) [see also Ören (2000, p. 1758) using
the umbrella term of agent-directed simulation]:

1. Due to the complexity of agents' internal processes and interactions, software systems
based on an agent metaphor are often hard to validate and test. While formal veri�-
cation methods are only of limited use, simulation provides an important tool for the
operational validation of MAS (Moss, 2004, p. 2). Simulated environments for testing
software or hardware agents are often called agent testbeds. Ören (2000, p. 1758)
refers to this application of simulation to agent technology as agent simulation.

2. The MAS metaphor brings an additional modelling perspective to simulation. MAS
theory o�ers a framework for improving both understanding and modeling of systems
consisting of multiple, autonomous, and goal-oriented actors. This agent-based mod-
eling perspective has been referred to as multi-agent-based simulation (MABS) and is
most frequently used to simulate social, biological, and economic systems. However,
in MABS, agent concepts are often employed exclusively at the conceptual modeling
level, while the corresponding computer models are implemented in a more or less
conventional object-oriented style (Drogoul et al., 2002, p. 11).

3. Simulation software can be designed and implemented using agent technology. Ac-
cording to Uhrmacher (2000, p. 16), such agent-based simulation tools can enhance
distribution and interoperability [...] Software agents employing AI techniques, such
as data mining, can o�er support for experimentation in knowledge-intensive domains;
e.g. simulation data analysis, validation, parameter calibration, or experiment plan-
ning. Ören (2000, p. 1758) calls this application of agent technology to simulation
agent-supported simulation.

Note that all three views of agent-oriented simulation are closely related. Agent simulation
and MABS only di�er in that software agents populating a software engineering model
are usually destined to function in a �real� environment later, whereas simulated agents
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in MABS models do not exist outside the model [see also the discussion by Klügl (2000,
pp. 62)].

Finally, due to the inherent complexity of data analysis in agent-based models (Sanchez
and Lucas, 2002, p. 117), simulation tools built on the agent metaphor may occasionally
even be helpful during an agent-based model's design and analysis (Drogoul et al., 2002,
pp. 10).�

This thesis is focused on the process-oriented analysis and validation of MABS, but the pre-
sented concepts and techniques might also be applied in agent simulation. The main distinction
is the analysis objective with a scienti�c focus in MABS and a software-technical focus in agent
simulation. The integration of the presented analysis techniques into automated assistants
might as well be regarded as agent-supported simulation.

3.2.2. Components of Agent-Based Models

A MABS is a MAS in a simulated (spatial and temporal) environment that serves to represent
a real system (Klügl, 2000, p. 60). Thus the main components of a MABS include (see Klügl,
2000, p. 60 and the review in Page and Kreutzer, 2005, pp. 353):

• a simulation scheduler,

• a set of simulated agents,

• an infrastructure for communication and organization,

• a (possibly spatial) environment.

These components are brie�y described below with one exception: It seems not sensible to
elaborate on speci�c properties of simulated agents since these do not signi�cantly di�er from
other types of software agents described in Section 3.1. The main di�erence is that simulated
agents exist in simulated time and space (Meyer, 2008), which normally allows to keep their
sensors and e�ectors simple (Klügl, 2000, p. 64). The following description is based on Klügl
(2000, pp. 63) and our review in (Page and Kreutzer, 2005, pp. 354).

3.2.2.1. Scheduling in MABS

As reviewed in (Page and Kreutzer, 2005, p. 354):

�Scheduling in MABS can be both time- or event-driven. For models with few
complex agents, which communicate via messages, event-driven scheduling is often
the better choice. Conversely, time-driven control may be preferable where models
consist of large numbers of agents with similar behaviour, and where every agent is
activated in every simulation cycle and similar actions are executed in a regular[...]
fashion.

Execution order of agents is an important aspect in time-driven, and to a lesser
extent in event-driven scheduling strategies. While conceptually agents will act in
parallel, the serialization of actions required to execute on a single processor may
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introduce so-called �artifacts� into the model.7 The execution order of agents in
time-driven models is therefore often randomized at each simulation step (Klügl,
2001, p. 157).�

Davidsson (2000, p. 100) argues that event-driven scheduling contradicts the autonomy of
agents, because the scheduler imposes a central control by ordering the individual actions on a
global event list. Meyer (2008) rightly disagrees with this in two respects: On the one hand, a
time-driven simulation scheduler must also impose a global execution order to ensure repeatable
simulation results. On the other hand, MABS deals with autonomy mainly on the conceptual
level and not in (distributed) implementations (see also Section 3.1.1.1).

As indicated in Section 2.2.1, the event-driven approach is more general because time-driven
scheduling can be emulated and integrated by means of equidistant clock pulse events. Similarly,
the analysis of event-driven models might be regarded as more general, since non-equidistant
inter-event durations must be coped with (e.g. in time-weighted statistics over event-traces).
This thesis is concerned with trace-based analysis techniques for event-driven models, which
are straightforwardly applied to time-driven models as well.

3.2.2.2. Communication and Organization

Two di�erent modes of communication are found in MABS: Agents either communicate ex-
plicitly via messages or implicitly by placing objects in a common environment (Ferber, 1995,
p. 13).8 An appropriate communication model should be chosen with respect to the repre-
sented system, e.g. implicit communication via 'pheromones' in anthill simulations (Ferber,
1995, pp. 389). Message-based communication requires a communication infrastructure that
might exhibit an own dynamic, e.g. to simulate delayed or unreliable forwarding of messages
(Page and Kreutzer, 2005, p. 355).

The analysis of models with explicit communication seems less demanding than the implicit
case, because message passing events can be clearly identi�ed in the simulation trace. Therefore,
we will focus on the analysis of MABS with explicit (message-based) communication in this
thesis.

An important objective in MABS is to investigate the mutual in�uences between individual
behaviour and organizational structures, which requires an appropriate representation of these
structures in the model. In some cases, organizational structures are represented implicitly in
terms of the spatial model, where spatial proximity of two agents might e.g. be interpreted as
'sharing a similar culture' (e.g. Axelrod, 1995).

Agent-Group-Role Model A well-known framework for the explicit representation of organi-
zational structures is the agent-group-role (AGR) model by Ferber and Gutknecht (1998). It
describes an infrastructure that allows agents to dynamically found, disband, join, and leave
groups in a virtual environment. Within groups, agents can play roles that represent their
organizational positions, speci�c abilities, or responsibilities. As an example, several agents

7In particular such �model-artifacts� are arti�cial causal dependencies due to the serialization of originally
concurrent actions.

8see also Page and Kreutzer (2005, p. 354)
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might enact the role 'professor' in the group 'University of Hamburg'. Groups and roles allow
agents to reference others in an indirect or �deictic� (Klügl, 2000, p. 64) way, e.g. 'the professor
who teaches my computer science course at the University of Hamburg'. Extensions of the
AGR model towards spatial constructs (places, locations, and paths) are described by Rupert
et al. (2007).

FIPA Standard Another common (but more technical) model is the communication and plat-
form infrastructure de�ned in the FIPA9 standard. Following our review in (Page and Kreutzer,
2005, p. 360):

�This standard de�nes an agent communication language (ACL), as well as a platform
architecture consisting of an agent communication channel (ACC) and two special agents
called AMS (Agent Management System) and DF (Directory Facilitator) (see e.g. Rölke,
2004, pp. 87). By registering and de-registering agents with a unique identi�er, the AMS
provides so-called �white page services�. The DF manages the agents' service descriptions
[which are roughly comparable to roles in the AGR model] (�yellow page services�). The
internal agent architecture is not part of the FIPA standard.�

The ACL is a standardized message format for agent communication speci�ed in (FIPA, 2002b):
A FIPA ACL message contains a number of attributes including message type (performative),
sender, receiver, and content. The performative indicates the intention pursued by sending the
message. It can be chosen from a set of standardized communicative acts such as request

or propose (FIPA, 2002a).10 The content can be speci�ed in an arbitrary format, but the
FIPA advocates the use of certain knowledge representation languages including SL (semantic
language), RDF (resource description framework), and KIF (knowledge interchange format, see
FIPA, 2005).

An ACL message can include further optional attributes for self-description and communica-
tion control (FIPA, 2002b): The former comprises information on the language (e.g. SL) and
ontology (i.e. the domain-speci�c terminology) of the content. The latter includes the at-
tributes reply-with and in-reply-to to identify threads of related messages that were sent in
reply to each other as well as conversation-id and protocol-id to identify the conversation
and the protocol that a message belongs to. The FIPA speci�es a number of standardized
protocols for common interaction types (mainly auctions or negotiations, see FIPA, 2005). Due
to their representation in AgentUML, a detailed description is deferred to Section 3.3.2.1.

Implicit versus Explicit Organization Organizational structures (e.g. groups and roles) and
processes (e.g. interaction protocols) in MABS are either pre-de�ned by the modeler or emerge
from local interactions during the simulation (see Ferber, 1995, p. 114 cited in Page and
Kreutzer, 2005, p. 355). As in reality, a combination of both approaches is found most often:
We might e.g. pre-de�ne a set of basic interaction protocol classes. However, the agents' actual
execution and combination of these protocols into cooperative tasks might not be predictable
from the (static) speci�cation but can only be observed at runtime.

9Foundation for Physical Intelligent Agents (FIPA, 2005)
10The idea of communicative acts is based on the speech act theory by Searle (1974), in which communication

is understood as a speci�c form of action.
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The analysis of implicit organizational patterns is challenging because (a) the patterns are often
hidden in the data observed during simulation, and (b) an automated analysis is complicated
by the fact that many organizational concepts cannot be straightforwardly reduced to simple
quantitative measures. This topic is further discussed in Section 3.5.

3.2.2.3. Spatial Environment

A spatial environment is a central component of many MABS. In most cases, it represents a
'real' spatial topology, e.g. a landscape in an ecological model or a tra�c network in logistic
simulation. As mentioned above, some social simulations also visualize more abstract concepts
like group formation by means of the agents' spatial distribution. The presentation in this
section is in particular in�uenced by the view on spatial modeling described by Meyer, 2008
and implemented in our MABS framework FAMOS (Knaak, 2002; Knaak et al., 2002; Meyer,
2008; see also Section 3.4.4).

Spatial Structures Several spatial models are employed in MABS (e.g. Gilbert and Troitzsch,
1999; Meyer, 2008): A common representation is a two-dimensional grid consisting of rectan-
gular cells. Other regular (e.g. hexagons) and irregular cell shapes (e.g. Voronoi tesselations),
or higher dimensional grids are less frequently used. Grid-based models include a neighborhood
relation that determines which neighboring cells an agent can reach from a certain position.
As in cellular automata, this relation is often de�ned homogeneously on the whole grid.

A more �exible alternative are graph-based models that consist of nodes representing locations
and edges representing (un)directed connections between locations (Meyer, 2001). Graphs
are well suited to model heterogeneous topologies in logistics (road networks, see Page and
Kreutzer, 2005, p. 357 and Meyer, 2001), telecommunications (communication networks), and
abstract sociological models (social networks). Arbitrary grid-based models can be mapped to
graphs by associating nodes with centers of grid cells and edges with (possibly heterogeneous)
neighborhood relations (Meyer, 2001).

A less common alternative are continuous spatial models, that are e.g. used in pedestrian
simulation. An example is the simulation of aircraft boarding and deplaning processes described
by Matzen and Czogalla (2003).

Dynamics of the Environment The most obvious environmental dynamics result from the
agents' movements. Depending on the modeled domain, di�erent movement strategies are
employed (see Meyer, 2008; Page and Kreutzer, 2005, p. 357): The most common are random
walk as a simple exploration strategy, following gradient �elds (e.g. simulated pheromone trails
in ant foraging), and movement along previously planned routes.

Agents must be able to sense and modify other agents or objects in the environment. This
is often constrained by an (individual) perception and action range to represent behavioral
locality. Depending on the model's purpose, restrictions on spatial resources (e.g. the number
of agents that '�t' on a grid cell) are considered as well. The environment can exhibit an
additional dynamic that is caused by environmental processes modeled in a more abstract
fashion (e.g. as cellular automata). An example stated in (Page and Kreutzer, 2005, p. 357) is
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the re-growth of 'sugar' resources in the well-known Sugar Scape model by Epstein and Axtell
(1996)

As indicated in Section 3.1.1.1 interactions between an agent and its environment are often
modeled similar to interactions between agents (e.g. using message passing). This leads to
a view on the environment as a particular agent (Klügl, 2000, pp. 103), which is a common
'workaround' if agents are the only available modeling construct. It should, however, be avoided
in favour of more speci�c means to model objects and environments (Page and Kreutzer, 2005,
p. 355).

3.2.3. Comparison with other Simulation World Views

To complete the introduction to MABS, we brie�y compare it to related simulation world views.
The structure and content of this Section is largely adopted from (Page and Kreutzer, 2005,
Ch. 11.4.4) co-written by and based on the diploma thesis (Knaak, 2002, Sec. 3.2.1) of the
author. The presentation complements the treatment in (Klügl, 2001, pp. 27,45,61,84) with a
stronger focus on discrete event simulation.

3.2.3.1. Event-Oriented Simulation versus MABS

The event-oriented world view mirrors the implementation of event-driven scheduling. Though
this is an appropriate technical basis for MABS (see Section 3.2.2.1), the concepts of event-
oriented modeling as described in Section 2.2.2 contradict the agent metaphor in two respects
(see Page and Kreutzer, 2005, p. 351 and Knaak, 2002, p. 29): Firstly, events are often de�ned
on a level above individual agents, which contradicts the microscopic modeling perspective.
Secondly, entities are regarded as passive elements which state is modi�ed by events 'from the
outside'. This obviously contradicts the concept of autonomy.

However, Page and Kreutzer (2005, p. 351) note that:11

�Some authors like Spaniol and Ho� (1995) [...] view event-orientation di�erently, and
attach no event routines to events. Instead, events are processed by active entities, which
contain the event's relevant actions. Each entity groups state changing actions for all events
in which it participates and performs these on demand; i.e. whenever relevant events occur.
This viewpoint matches agent-based modeling frameworks much better. It o�ers an e�cient
base for controlling a set of simulated agents' behaviour and is instantiated in some software
systems, such as [the well-known MABS framework] Swarm [Minar et al., 1996 ...] It should
be noted that in this context agents act only if an external event occurs, or if a relevant
event has been triggered by the agent itself. Between events the agents' states remain
constant.�

3.2.3.2. Process-Oriented Simulation versus MABS

Further following Page and Kreutzer (2005, p. 352)12, we �nd that

11based on (Knaak, 2002, p. 29)
12again based on (Knaak, 2002, pp. 29)
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�A simulation process is an active and persistent entity, whose behaviour is described from
a local perspective [...] Although the agent concept is somewhat more general, it �ts
a process-based simulation's world view quite well (Klügl, 2001, p. 94). Inter-process
communications occur either through direct or indirect synchronizations; i.e. processes
are delayed in their lifecycles and must wait until reactivated, or they must queue for a
resource. Patterns of communication in agent-based models can be richer. Some MABS
models may even require negotiations according to complex protocols.

The behavioural �exibility of simulation processes, in whose lifecyles a linear sequence of
actions unfolds in a synchronous fashion, also falls short of some MABS models' require-
ments. Agents may be placed in highly dynamic environments and must react quickly to
asynchronous events. Di�erent from the process interaction world view, spatial location of-
ten also plays an important role in MABS. Simulation processes should therefore be viewed
as particularly simple, pro-active agents, with limited capabilities for communication and
movement.�

On two occasions, the author was pointed to the fact that the original process-oriented simula-
tion language Simula with its extension library DEMOS (Birtwistle, 1979) can be regarded as
a predecessor of MABS due to its innovative concepts of co-routines and object-orientation.13

3.2.3.3. Individual-Based Simulation versus MABS

This umbrella term subsumes simulation world views that take up the microscopic modeling
perspective of individual entities.14 According to Klügl (2000, Sec. 3.2) this includes some
process- and object-oriented models as well as cellular automata and so-called microanalytical
models15. Though most agent-based models can be regarded as indvidual-based, the following
di�erences must be mentioned as summarized by Klügl (2000, pp. 61):

• Agent-based modeling is more general in that the agent metaphor is not restricted to
individuals (Klügl, 2000, p. 61). Depending on the modeling level, groups or organizations
can be modeled as agents as well (Klügl, 2000, p. 61).

• Agent-based models are often more complex and heterogeneous than individual-based
models with respect to behavioral and spatial modeling (Klügl, 2000, p. 62). AI methods
for learning and planning are usually not found in individual-based models either.

Nevertheless the distinction between individual and agent-based models is not clear-cut, and
both modeling styles apply to similar domains, such as sociology and biology.

3.2.3.4. Activity- and Transaction-Oriented Simulation versus MABS

As mentioned in Section 2.2.2 an activity-oriented model is stated as a set of rules that describe
pre- and post-conditions of time-consuming activities, which is also common in MABS. Klügl

13This relation was pointed out by Prof. Dr. Horst Oberquelle at the University of Hamburg as well as a reviewer
of the author's contribution (Knaak, 2004) to the Fujaba Days 2004.

14A comparison of agent- and individual-based modeling is also found in (Klügl, 2000; Knaak, 2002; Meyer,
2008).

15This model type will not be treated here. For a summary see Klügl (2000, pp. 45)
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(2000, pp. 112-113) explicitly relates her (time-driven) activity-based MABS modeling approach
to activity-oriented modeling. Besides the di�erent scheduling approach (Klügl, 2000, p. 113),
a main distinction between both world views is that rules in activity-based models are speci�ed
at the system level, while rules in MABS are assigned to speci�c agents. This provides an
additional object-oriented structure to the rule set (Klügl, 2000, p. 109).

A comparison of MABS and transaction-oriented models is not reasonable in the �rst place.
Both world views di�er strongly with respect to the modeling perspective and target systems.
However, some application domains imply a combination of both approaches. A prominent
example are so-called 'holonic factories', i.e. production systems without central control, where
each machine (or even workpiece) is regarded as an autonomous agent responsible for its own
processing (see e.g. Giret and Botti, 2009). In this scenario, the factory layout and the process-
ing of workpieces can be modeled in a transaction-oriented fashion, while a controller agent is
assigned to each machine. The transaction-oriented model can thus be regarded as part of the
MABS's environment.

3.3. Modeling Techniques for Agent-Based Simulation

Appropriate modeling techniques are an important means to handle the complexity of MA(B)S.
While declarative modeling might still be the most common paradigm, descriptions based on
UML or Petri nets provide better means to represent the processes running in a MABS. In the
following, these modeling techniques are introduced and compared with respect to their ability
to handle the complexity of agent-based models.

3.3.1. Declarative Modeling

Declarative (rule-based) models are a traditional logic-based representation in AI. We brie�y
introduce the foundations of this paradigm and review its advantages and disadvantages for
MABS. The presentation follows Luger (2002), Klügl (2000), and our summary in (Page and
Kreutzer, 2005, Sec. 11.4.4.1 based on Knaak, 2002, Sec. 4.1).

3.3.1.1. Rule-Based Production Systems

A rule-based system (also called production system) consists of a rule-base containing rules
and a knowledge-base containing facts (Ferber, 1995, p. 134). Each rule has a condition and
an action part (Klügl, 2000, p. 53): The condition is checked with respect to the facts in the
knowledge-base. If it holds, the rule becomes activated and the action can be executed. This
causes modi�cations of the knowledge-base as well as possible side-e�ects if the production
system is embedded into an environment.

Rules are speci�ed in several formal languages (Ferber, 1995, p. 134) ranging from simple
programmatic if-then clauses to declarative languages based on propositional or predicate logic
(e.g. Prolog, Bratko, 1990). Subsymbolic descriptions are employed in adaptive rule-based
classi�er systems (see e.g. Holland et al., 2000; Ferber, 1995, p. 135). The execution of rules
is guided by a rule interpreter (sometimes called reasoning engine) that de�nes an execution
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order for the subsequent or parallel activation of multiple rules (Luger, 2002, cited in Klügl,
2000, p. 53).16

The reasoning process can be either data-driven (forward chaining) or goal-driven (backward
chaining); see (Klügl, 2000, p. 55). Clearly, forward chaining is an appropriate strategy for
reactive agents while backward chaining is a basis for planning (Klügl, 2000, p. 55).

3.3.1.2. Advantages and Drawbacks of Declarative Modeling

According to Klügl (2000, p. 52), a main advantage of declarative modeling is the separation
of the model speci�cation from the execution logic encapsulated in the rule interpreter. The
high abstraction level is further ensured by the fact that many rule-based languages provide
powerful programming constructs including uni�cation and pattern matching (Klügl, 2000,
p. 54). Another advantage of rule-based models is their inherent modularization at the rule-
level (Klügl, 2000, p. 56): Since rules can only invoke each other indirectly through modi�cations
of the knowledge base, easy changeability and extensibility is ensured.

However, according to Klügl (2000, p. 57), these properties also lead to drawbacks. Due to the
indirect coupling of rules it is not straightforward to model sequences of actions (Klügl, 2000,
p. 57). If the modeling and execution environment provides no structuring concepts above rules,
larger models become hard to understand (Klügl, 2000, p. 57). Furthermore, the performance
of execution might su�er from the need to check a large rule set in every execution cycle when
no additional structure of the rule base is available (Klügl, 2000, p. 57).

3.3.1.3. Agent-Based Structuring of Rule-Based Models

Klügl (2000, Sec. 5.3.1) presents di�erent approaches to partition a rule set in MABS. A basic
distinction is drawn between horizontal and vertical partitioning (Klügl, 2000, p. 110): Hori-
zontal partitioning is oriented towards �functional categories�, i.e. rules related to the same task,
role, target object, etc. (Klügl, 2000, p. 110). Vertical partitioning bundles rules that belong
to the same phase of the rule interpreter's execution cycle, e.g. 'sense, reason, and act' in case
of an agent (Klügl, 2000, p. 110).

Activity Automata The agent-based world view suggests an obvious structure by partitioning
the overall rule set into di�erent subsets for each (type of) agent (Klügl, 2000, p. 109). However,
since the rule set of an agent can become rather large, additional structuring means are pro-
posed. The approach by Klügl (2000, pp. 114) partitions rules by similar preconditions. This
leads to (possibly hierarchical) automata-like structures � called activity automata in (Klügl,
2000, p. 115) � where each state represents a set of common pre-conditions for all assigned
rules.

16Klügl (2000, p. 53) actually cites a previous edition of (Luger, 2002).
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Agent Architectures Many agent architectures provide additional means to partition an
agent's rule and knowledge base.17 One example is the subsumption architecture by Brooks
(1999) shown in Figure 3.3. In this reactive architecture the agent's behaviour is modularized
into a number of distinct tasks, where each module is described by a set of stimulus-response
rules or an automaton. The modules are ordered hierarchically according to their priority.
When a rule of a lower level module becomes activated, it immediately inhibits all rules of
higher level modules until the agent's survival has been ensured.
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Figure 3.3.: �Schematic representation of a subsumption architecture for controlling an ore mining
robot (adopted with modi�cations from Ferber, 1995, pp. 132)�. Figure and caption
cited from (Page and Kreutzer, 2005, p. 345), also found in (Knaak, 2002).

A partitioning for the knowledge base is accomplished by the well-known deliberative Belief-
Desire-Intention (BDI) architecture (e.g. reviewed in Klügl, 2000, pp. 22; Wooldridge, 2003,
pp. 82; Wooldridge, 1999; Page and Kreutzer, 2005, pp. 345 based on Knaak, 2002): As the
name indicates, the set of facts is divided into three categories called beliefs, desires, and
intentions. Beliefs represent the agent's (individual and possibly erroneous) knowledge about
the current state of the environment (Klügl, 2000, p. 22). Desires represent future states that
the agent strives to achieve in general (Klügl, 2000, p. 101). As in reality, an agent's di�erent
desires can, to a certain degree, contradict each other, which is �nally resolved by the rule
interpreter (see Wooldridge, 1999, cited in Page and Kreutzer, 2005, p. 346). In every execution
cycle, the BDI interpreter re�nes a set of non-contradictory desires into actual intentions, whose
assertion into the knowledge base triggers the execution of a related plan for their achievement
(see Wooldridge, 1999, cited in Page and Kreutzer, 2005, p. 346).

17The subsumption and BDI architectures presented in the following might be two of the most typical agent
architectures. Therefore they are often selected as examples in the literature (e.g. in Braubach, 2007 and
Page and Kreutzer, 2005, pp. 344).
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3.3.2. UML-Based Modeling

Though declarative formalisms can be used to describe several structural and behavioural as-
pects of agent-based models, the rule-based representation is strongly tailored towards one
modeling perspective, i.e. behaviour descriptions of entities like simulated agents or other active
model components. UML diagrams, in contrast, provide more speci�c means to represent and
visualize multiple model aspects, including structure, individual behaviour, and interactions
(see Section 2.3.1).

Due to the close relation between agents and objects (see Section 3.1.1.1) the idea to establish
the mature and wide-spread UML as a standard modeling technique for agent-based simulations
seems plausible (see e.g. Oechslein et al., 2001; Page and Kreutzer, 2005, p. 359). Nevertheless,
extensions are necessary for those agent-speci�c concepts not covered in object-orientation. The
following sections review relevant attempts towards this endeavor.

3.3.2.1. AgentUML

AgentUML (or AUML, Odell et al., 2000) is an early and well-accepted attempt to extend
a subset of UML 1.x diagrams for agent modeling. It was adopted by the FIPA to model
standardized interaction protocol templates (see Section 3.2.2.2). However, since many of the
proposed extensions are nowadays covered by the standard UML (especially version 2.x), the
further development of AUML has been discontinued recently (AgentUML, 2007).

The extensions provided by AUML focus on protocol modeling and (to a lesser extent) struc-
tural modeling with extended class diagrams (AgentUML, 2007). Odell et al. (2000) present a
layered approach towards modeling interaction protocols with sequence, statechart, and activ-
ity diagrams. The main intention is to provide a means to visualize parameterizable interaction
protocol patterns that can be re-used for and adapted to di�erent domains.

At the highest speci�cation level, AUML introduces protocol packages that contain extended
UML sequence diagrams for the modeled interactions (Odell et al., 2000, p. 4).18 These are
re-usable templates that can be parameterized with domain-speci�c interaction roles, message
types, and deadlines using the standard UML template syntax (Odell et al., 2000, p. 5).

The second layer covers the actual agent interactions. It includes extended UML 1.x sequence
diagrams to model roles as well as �concurrent threads of interaction� (Odell et al., 2000, p. 6).
These diagrams form the most prominent part of AUML.

The �rst extension enables n:m-relations between agents and roles, i.e. an agent (type) can
change its role during a communication and a role can be covered by multiple (types of) agents.
Di�erent from standard UML, lifelines are identi�ed by a term agentName/role : agentType
where name and role are optional (Odell et al., 2000, p. 6). Role changes can be depicted in
several di�erent forms shown in (Odell et al., 2000, pp. 11).

The second major extension is the addition of control-�ow constructs including 'and', 'or', and
'exclusive or' split and join nodes (Odell et al., 2000, p. 6). Di�erent from UML sequence

18page numbers relate to the version of the article downloadable at http://www.jamesodell.com/

ExtendingUML.pdf (last visit 2012-09-15)
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diagrams, the AUML variant can not only display exemplary courses of interaction, but also
depict protocol templates with branches, multiple threads (concurrency), and cycles.

According to Odell et al. (2000, pp. 6), control �ow nodes can be inserted along the lifeline of an
agent to indicate conditional or concurrent processing. Furthermore, it is possible to connect
message arrows with these nodes to display conditional or concurrent sending and reception
of messages. It is not necessary to re-join multiple concurrent or conditional messages on the
receiver's lifeline. Horizontally or vertically stacked activation bars can be used instead. Cabac
et al. (2003, p. 114) notes that some of these possibilities prohibit to provide the diagrams with
a concise formal semantics (for details see Section 3.3.3.3). Figure 3.4 shows an example AUML
sequence diagram.

Figure 3.4.: An example AUML interaction diagram showing a simpli�ed version of the 'con-
tract net'-like order mediation protocol used in our agent-based simulations of city
courier services described in Chapter 8. The diagram was drawn with the Agent
Interaction Protocol Diagram editor of the Capa agent platform (see Section 3.4.5).

As a further extension, cardinalities and related constraints can be added to the message arrows
of the diagram in order to display multicast communication. Cardinality constraints are stated
as arbitrary terms over message cardinalities. The example in Figure 3.4 e.g. states that the
o�ce agent broadcasts n call-for-proposal messages to the registered courier agents. These
either reply by proposing an abstract price or by refusing the call. The number of propose
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and refuse messages adds up to n, i.e. courier agents always answer in this protocol variant.19

In addition, deadlines can be added to the diagram using the UML note symbol (Odell et al.,
2000, p. 3). They often serve to indicate when an agent will stop waiting for answers to its last
message and pro-actively continue its processing.

The third layer of AUML represents the internal processing of agents, i.e. the re�nement of
the sequence diagrams' activation bars into state chart or activity diagrams (Odell et al., 2000,
Sec. 6). The only extension proposed in this context is a proprietary notation for sending and
receiving messages in activity diagrams (Odell et al., 2000, p. 9). Odell et al. (2000, pp. 8)
show that both diagram types can also be employed to model interaction protocols on level 2.
However, the authors prefer the agent-centric view of sequence diagrams over the state-centric
view of statecharts for protocol modeling (Odell et al., 2000, p. 9). Statecharts are understood
as an additional �constraint mechanism� to ensure that the overall protocol performs correct state
transition (Odell et al., 2000, p. 9).

A very preliminary speci�cation by the FIPA (2003) proposes additional AUML extensions for
class diagrams. An agent class diagram is introduced as a UML class diagram with several
extended classi�ers. The stereotype �agent� indicates an agent class with compartments for
roles (the agent can play), organisations (the agent is part of), and protocols (the agent can
execute) (FIPA, 2003, p. 3).

An agent class can be associated further stereotyped classi�ers that represent agent concepts.
A capability describes �what an agent is able to do under what circumstances� (FIPA, 2003, p. 4).
A service description de�nes a provided service in terms of the related protocols, ontology,
communication language, and context language (FIPA, 2003, pp. 5).

3.3.2.2. SeSAm UML

Oechslein et al. (2001) propose extensions of UML 1.x for MABS. The main focus lies on
extended activity diagrams, called activity graphs, that are partly inspired by features of activity
automata (see Section 3.3.1.3) proposed by Klügl (2000). Since activity graphs can be designed
and executed in the SeSAm simulation system (see Section 3.4.3), the UML dialect is called
SeSAm UML (Oechslein, 2004).

SeSAm UML builds upon UML 1.3, where activity diagrams already include send and receive
signal as well as object nodes. The proposed extensions focus on means to model di�erent
patterns of agent interaction including exchange of resources, agent creation, modi�cation of
shared state variables, and direct communication via messages (Oechslein, 2004, p. 86).

The activity graph notation supported by the SeSAm tool provides further extensions. This
includes (1) a proprietary time symbol indicating that an activity consumes a certain amount
of simulation time, (2) an emergency node with associated emergency rules, the activation
of which causes the agent to terminate its current activity and enter an exception handling
procedure, and (3) an activity graph node that contains a subgraph to support hierarchical
modeling (Oechslein, 2004, p. 129).

Beyond activity graphs, SeSAm UML also includes minor extensions to UML class diagrams.
These are mainly stereotypes to tag the di�erent components of a MABS (see Section 3.2.2)

19di�erent from the actual courier service model described in Chapter 8
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such as �agent�, �world�, or �resource� (Oechslein, 2004, p. 78). An agent class includes
compartments to display state variables, behaviours, and assertions (i.e. invariants, pre-, and
post conditions) stated in OCL (Oechslein, 2004, p. 79).

SeSAm UML contains many of the features of UML 2 that are rated as useful for (discrete
event) simulation by Knaak and Page (2006). Di�erent from the standard, SeSAm UML has a
time-driven execution semantics speci�ed in a formal language named SeSAm-Impl. Due to its
partial deviations from the current UML standard and its extension mechanisms, SeSAm UML
is at the moment exclusively supported by the SeSAm tool and cannot extend other CASE
tools as a UML pro�le.

3.3.2.3. Application and Extension of UML 2

While Agent UML is based on UML 1.x, Bauer and Odell (2005) discuss applications of the
follower version UML 2 to the modeling of agents and MAS. The authors also identify a need to
extend UML 2 with better support for agent-speci�c concepts. This includes �constructs to ex-
press: goals, agents, groups, multicasting, generative functions, such as cloning, birthing, reproduction,
parasitism and symbiosis, emergent phenomena, and many other nature-based constructs ...� (Bauer
and Odell, 2005, p. 19).20 In the following we provide a brief overview of their applications and
extensions of UML 2 for agent-based modeling. Similar to the original the presentation mirrors
the UML-inherent classi�cation into structure, behavior, and interaction diagrams.

Structure diagrams: As reviewed in (Page and Kreutzer, 2005, p. 359), �class diagrams can
be employed to model agent organizations and ontologies; i.e. the domain-dependent parts of an agent
communication language (Bauer and Odell, 2005, p. 5).� Stereotypes tag speci�c constructs such
as agents or groups (Bauer and Odell, 2005, p. 8). Using the inheritance arrow, hierarchies of
concepts like goals, tasks, or roles can be depicted. Object diagrams serve to display the state
of agents or communicative acts at runtime (Bauer and Odell, 2005, p. 6).

Further focus is put on composite structure diagrams, a new diagran type to display �organi-
zations and dependencies among components� (Bauer and Odell, 2005, p. 7). It is shown how
these diagrams can be used to display collaborations between and within groups, roles, and
work�ows of an organization (Bauer and Odell, 2005, p. 7). However, the possibilities do not
seem to di�er substantially from former use case and collaboration diagrams.

Behavior diagrams: In OOSE, use case diagrams serve to display requirements on a software
system in terms of intended use cases, (sub-)system boundaries and external actors (Bauer and
Odell, 2005, p. 10�11). Plain, undirected associations describe relations between use cases and
actors. For the application of these diagrams in agent-based modeling, Bauer and Odell (2005,
p. 11) propose some extensions and a rede�nition: Firstly, associations between external actors
and use cases can be directed and inscribed with event types, names of providing (internal)
agents, and multiplicities. Secondly, the actor symbol is not only used for external entities
interacting with the system but also for agents as parts of the modeled MAS. This rede�nition

20page numbers relate to the version of the article downloadable at http://www.jamesodell.com/

EAAI-Bauer-Odell.pdf (last visit 2012-09-15)
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of the original UML semantic is due to the generality of the agent concept. It is also implicitly
stated in the context of discrete event simulation by Knaak and Page (2006, p. 36).

As mentioned in (Page and Kreutzer, 2005, p. 360):

�Statecharts: [...] can be used to model reactive agents' state-dependent responses to
message or signal reception. They are also used occasionally to represent protocols or
agents' reactive plans (Bauer and Odell, 2005, p. 14). [...] Since they focus on how agents
react to asynchronous events, statecharts might be better suited for modelling reactive
agents than activity diagrams.

Activity diagrams [...] model an agent's tasks; i.e. its plans or protocols (Bauer and Odell,
2005, p. 13). Patterns of synchronization between concurrent tasks performed by di�erent
agents, or within the same agent, can be modelled using synchronization bars or send and
receive signal actions.�

Interaction Diagrams: According to Bauer and Odell (2005, p. 15), sequence diagrams are
the most prominent interaction diagram type in agent-based modeling. The authors mainly
focus on the di�erences between the UML 2 notation for (high level) sequence diagrams and
the UML 1.x-based AgentUML interaction diagrams. To their conclusion, the UML 2 notation
includes all control �ow patterns from AgentUML and adds advanced constructs such as critical
fragments (Bauer and Odell, 2005, p. 15). Note that UML 2 sequence diagrams are strictly
block-structured, while AgentUML allows to connect elements more freely. As described in
Section 3.3.2.1 the latter can lead to unclear semantics.

To compensate the drawback that roles, multicast communication, and constraints on message
cardinalities remain unsupported in UML 2, the authors � broadly speaking � propose to
transfer the respective AgentUML extensions to the new notation (Bauer and Odell, 2005,
p. 15). The di�erent appearance of UML 2 and AgentUML is visualized by the example of the
FIPA contract net protocol which is cited in Figure 3.5. The block-structured UML 2 notation
might appear less readable due to visually overlapping message arrows and interaction fragments
(Bauer and Odell, 2005, p. 17; see also the review in Page and Kreutzer, 2005, p. 360).

Communication diagrams are rated less useful for agent based modeling due to their limited
control �ow constructs (Bauer and Odell, 2005, p. 16). The authors propose to apply the
aforementioned extensions for roles and multicast communication to this diagram type as well.
In this case, each node in a communication diagram corresponds to a role and role changes are
indicated by connecting nodes with a stereotyped dashed arrow.

A more powerful diagram type for agent-based modeling are interaction overview diagrams,
i.e. activity diagrams with sequence diagrams embedded in the activity nodes (Bauer and
Odell, 2005, p. 17). The authors emphasize the improved visual clearness compared to UML 2
interaction diagrams when it comes to displaying protocols with complex control �ow (Bauer
and Odell, 2005, p. 17). Note that these diagrams are especially suitable to display hierarchical
protocols where a number of basic interaction patterns (displayed in the activity nodes) are
embedded into a larger (multi-agent) work�ow.
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Figure 3.5.: �An example for modelling agent interaction protocols with AUML (left) and UML 2
(right). Both diagrams show the popular Contract Net protocol for distributed task al-
location (adopted with modi�cations from Bauer and Odell (2005, p. 16).� Figure and
caption adopted from Page and Kreutzer (2005, p. 359).

3.3.3. Petri Nets and Mulan

Beyond the application of UML as a visual modeling technique for MA(B)S, Petri net-based
approaches strive to provide a concise semantic for agent-based models which, among other
advantages, leads to executable models. Rölke (2004, Ch. 5) presents an overview of several
approaches to model (parts of) MAS by means of Petri nets. He furthermore introduces the
Mulan architecture that also builds a formal basis for the integration of MABS and process
mining in this thesis.

In the following the Mulan architecture and its aplications to AOSE as well as its suitability
for MABS are reviewed. It is also compared to a recent approach by Stuit et al. (2007b) that
has been mentioned in the context of process mining in the literature.

3.3.3.1. MULti Agent Nets

The Mulan architecture was developed in the dissertation by Heiko Rölke (2004) at the Uni-
versity of Hamburg's Department of Informatics. The main intention is to employ reference
nets to model agents and multi agent systems. Especially the concept of nets-within-nets is
used to �describe the natural hierarchies in an agent system� (Duvigneau et al., 2003, p. 62).
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Figure 3.6.: Overview of theMulan architecture (adopted from Rölke, 2004, as cited in Cabac
et al., 2006c, p. 14).

As indicated in Figure 3.6, the Mulan architecture consists of four levels, i.e. protocol, agent,
platform, and multi-agent system. Entities on all levels are modeled as nets with Java inscrip-
tions and connected through token re�nement (see Section 2.3.2.5). This means that entities
of a higher level (e.g. platforms) contain entities of the next lower level (e.g. agents) as tokens.

Agent Level According to Cabac et al. (2008a, p. 39), a Mulan agent consists of a main
agent net and several sub-components: protocols, decision components, a knowledge base, and
a protocol factory. The agent net represents the agent's interface to the environment. Since all
agent interaction in Mulan is message-based (Duvigneau et al., 2003, p. 62), the net contains
two transitions with synchronous channels :send() and :receive() that are employed to
exchange messages with other agents via the platform.

For the sake of adaptivity, the behaviour of an agent is not modeled statically in the agent
net but by means of distinct protocols which can be dynamically created and removed (Rölke,
2004, pp. 112). Each protocol is a work�ow-like net (template) that describes a task or plan
the agent can execute. Protocol nets are instantiated either as a reaction to messages or pro-
actively triggered by agent-internal events. Active protocol instances reside on a certain place
of the agent net from which they are removed when the protocol terminates.

Protocol instantiation is executed by the knowledge base and the protocol factory: The knowl-
edge base contains facts that map message types to handler protocols. When the agent receives
a new message, it �rst checks if this message belongs to a conversation lead by an already active
protocol instance.21 If the message does not belong to an active protocol, the knowledge base
is queried for a protocol matching the type of the new message. The corresponding net token
is added to the place for active protocols and the protocol is started.

Besides mappings between trigger messages and protocols, the knowledge base can contain
further facts reresenting the knowledge of an agent. This includes pro-active triggers for protocol
instantiation as well as further knowledge used by active protocols. Note that besides the
basic net structure and the synchronous channels used for communication, Mulan poses no

21The FIPA-ACL tag in-reply-to is used to store this information. The tag conversation-id is currently not
used in Mulan.
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restrictions on the particular design of agent net, knowledge base, and protocol factory, which
allows for implementations with di�erent complexity (for the knowledge base see e.g. Rölke,
2004, pp. 150).

Protocols and Decision Components Protocols model the behaviour of agents. Di�erent
from a common use of the term to describe the course of an interaction, a Mulan protocol
represents the behaviour of a single agent (role) during an interaction (Cabac et al., 2008a,
p. 39). Di�erent types of protocols and supportive constructs are distinguished (see Rölke,
2004, Sec. 6.3; Cabac et al., 2008a, pp. 39):

• (elementary) protocol nets,

• subnets and decision components,

• higher order protocols,

• meta-protocols.

A protocol net describes a plan to perform a task (e.g. Cabac, 2010, pp. 58): Protocols can
be arbitrary reference nets that respect the channel names of the agent net for communication
and knowledge base access. There must be a single start point in the form of a transition with
an uplink :start() and it is generally recommended to use a work�ow net-like structure with
a single end point and without 'dead' transitions.

To improve readability and convenience of modeling, Cabac et al. (2003) introduced a set
of standardized net components (see Section 2.3.2.6) for protocols. These include common
constructs to model control �ow and interactions quite similar to AgentUML sequence or UML
2 activity diagrams. As shown in Figure 3.7, each component is given a concise semantic by the
contained net elements. To ease the understandability of the resulting models, data �ow-related
aspects are not covered by the components. Rölke (2004, p. 152) recommends to store only
local data within protocol nets, while data between di�erent protocols must be exchanged via
message passing or the agent's knowledge base.

For this reason it is not advisable to model all aspects of an agent's behaviour as protocols.
Supportive sub-routines can be modeled as arbitrary subnets that exchange data with the calling
protocol net directly via synchronous channels (Rölke, 2004, p. 136). A net component SubCall
standardizes the communication between protocols and subnets (Rölke, 2004, pp. 135). Speci�c
subroutines that encapsulate algorithms for decision making are called decision components
(DCs, Cabac et al., 2008a, p. 40). These also serve as interfaces to �external tools or legacy code
as well as a graphical user interface� (Cabac et al., 2008a, p. 40). There is a set of net components
to model DCs and their communication with protocol nets.

Elementary protocol nets are re-usable behavior modules that can be composed to larger work-
�ows by higher order protocols. These are nets that take other protocols as parameters and
link their control �ow in a certain way, e.g. by sequential, concurrent, conditional, or iterated
execution (Rölke, 2004, p. 137). While elementary protocols are identi�ed in the knowledge
base by the name of the protocol net, higher order protocols are denoted by a parameterized
protocol descriptor. As an example, XOR(p1,p2) might describe a higher-order protocol XOR
for the exclusive-or execution of two protocols p1 and p2 (Rölke, 2004, p. 142).
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Figure 3.7.: A simple protocol net with components for protocol start, message sending, message
reception, exclusive-or split, and merge. The net only serves for demonstration and
was therefore not re�ned into an implementation.

Speci�c higher order protocols that ease the modeling of adaptivity are called meta protocols
(Rölke, 2004, p. 142). While higher order protocols normally just impose a certain order on
the execution of multiple elementary protocols, meta protocols can additionally �in�uence the
[internal] control �ow of the passed (complex) protocols� (Rölke, 2004, p. 142). As an example,
Rölke (2004, p. 143) shows a protocol that adopts a new protocol sent in a message into the
knowledge base if the corresponding descriptor is not already known to the agent.

Platform Level As indicated in Figure 3.6 a Mulan platform hosts references to a number
of agents on a dedicated place (Rölke, 2004, p. 158). Its main purpose is to provide the
inhabiting agents with an infrastructure for communication. This includes internal message
passing between agents on one platform as well as external communication with agents on
other connected platforms (Rölke, 2004, p. 164). Further responsibilities of the platform are
lifecycle management (especially creation and deletion of agents), mediation of services, and
support for agent migration (Rölke, 2004, p. 159,161).

Rölke (2004, p. 197) notes that �Mulan was modelled 'in the spirit of' the FIPA speci�cations. This
means thatMulan nets are not su�cient to be completely compatible to the speci�cation. However, no
speci�cation is violated either.� Therefore, agent management and service mediation on aMulan
platform are carried out by two dedicated agents AMS and DF. Both are standard Mulan
agents that possess speci�c protocols to perform their tasks like the registration of a new agent
(AMS) or the resolution of a service description (DF) (Rölke, 2004, pp. 175).

An important concept in Mulan is the analogy between platforms and agents (Rölke, 2004,
pp. 181): The behavior of an agent is constituted by its active protocols, and the behavior of
a platform is realized by its inhabiting agents (see also Cabac et al., 2006b, Sec. 2.2). This
leads to a hierarchical view of agents as platforms that host a number of (simpler) agents as
'protocols'. On the other hand, platforms are agents that communicate via message passing
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with other platforms within a multi agent system. This analogy allows for arbitrary hierarchies
of nested agent systems.

Rölke (2004, pp. 183) claims that using the concept of an agent as the only abstraction o�ers
several advantages. However, he admits that the four-level hierarchy of the Mulan archi-
tecture has proven to be easier understandable than the more abstract concept that �every-
thing is an agent� (Rölke, 2004, p. 181). In the fully FIPA-compliant Mulan implementation
Capa (see Section 3.4.5), the platform is nevertheless realized as an agent. This simpli�es the
(message-based) communication between platform and AMS agent and allows for a hierarchical
embedding of platforms (Rölke, 2004, p. 201).

MAS Level AMulan MAS is a net that represents a domain-speci�c infrastructure for agent
communication and mobility between multiple platforms (Rölke, 2004, p. 158). This system
net �consists of places that contain platform nets and transitions that build the infrastructure of the
agent system� (Rölke, 2004, p. 158). As an example, Rölke (2004, p. 222) shows a system net
that represents di�erent rooms of a one-family house inhabited by a simulated housekeeping
robot.

Though Rölke (2004) does not cover the MAS level in detail, the aspect of mobility receives
attention due to its close relation to the nets-within-nets formalism. Köhler et al. (2003, p. 125)
identify four classes of mobility of an object net within a system net that depend on the net(s)
that exercise control over the migration. Rölke (2004, p. 191) also shows agent protocols for
migration from a source to a destination platform.

3.3.3.2. Petri Net-Based Agent-Oriented Software Engineering

The good practical applicability of the Mulan architecture in combination with the Petri net
development environment Renew (for examples see Rölke, 2004, Ch. 9) allowed to establish the
software engineering approach Paose (Petri net-based Agent Oriented Software Engineering)
(Cabac et al., 2007). This approach strives to tackle the problems of complexity, concurrency,
and distribution in software development by using concepts of reference nets and MAS. Paose
can be considered model-driven since it stipulates the stepwise transformation of reference nets
and UML-based models (see Section 3.3.3.3) from speci�cation to implementation. It therefore
relies on a set of additional tools reviewed in Section 3.4.5.

Di�erent from other AOSE approaches, Paose targets the developed software artifacts and
the software development process with similar agent-based concepts. In particular, the MAS
metaphor is applied as a �guiding metaphor� to the development team and process (�multi-agent
system of developers�, see Cabac, 2007, p. 8). This allows for a uni�ed view upon technical and
organizational aspects of software development and emphasizes properties commonly associated
with the (technical) MAS metaphor such as �exibility, self-responsibility, and self-organization
in the development team (Cabac, 2007, pp. 8).

The basic process model of Paose is shown in Figure 3.8 (left): After an initial analysis of
requirements, the phases of design, implementation, and integration are executed repeatedly
to produce several incremental software milestones. A regular re-consideration and re�nement
of requirements is also included. The implementation of agents, interactions, and ontology
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Figure 3.8.: Principles of Paose: Basic process model (left) and matrix organization with well-
de�ned intersection points (right). Adopted with modi�cations from (Cabac, 2007,
pp. 6,7).

proceeds in a �concurrent and higly interactive� manner supported by the development tools de-
scribed in Section 3.4.5 (Cabac, 2007, p. 7). This partitioning of the system under development
into three orthogonal perspectives of �structure, behaviour, and terminology� allows for a matrix
organization (see Figure 3.8, right) with well-de�ned intersection points between the di�erent
development tasks (Cabac, 2007, p. 6).

3.3.3.3. Mulan and UML

Besides reference nets, several UML-like diagram types are applied in Paose. For practical
modeling tasks these diagrams provide a more specialized and compact model representation
that can be automatically transformed into implementations in the form of reference nets with
Java inscriptions. The diagram types used in Paose are use case diagrams, agent interaction
protocol (AIP) diagrams, role-dependency (RD) diagrams, and ontology diagrams (Cabac et al.,
2007, Sec. 3).

Use case diagrams are applied during the coarse design phase to provide an overview of agent
roles (displayed as actors) and their interactions (displayed as use cases); see Cabac et al. (2007,
p. 42). From these diagrams the matrix shown in Figure 3.8 (right) can be derived. Intersection
points in the matrix are represented as connections between use cases and actors in the use
case diagram (Cabac et al., 2007, p. 42).
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AIP diagrams are basically AgentUML sequence diagrams (see Section 3.3.2.1) with restrictions
that allow to provide a precise formal semantics in terms of reference nets (Cabac et al., 2003).
The main restriction is that message split elements are not used due to their unclear semantics.
In particular a message split violates the chronological order of tasks on the receiver's lifeline.
In AIP diagrams, only control �ow split elements on the lifeline of the sender are allowed
(Cabac et al., 2003, p. 114). Message join elements are used to express the situation when a
receiver expects exactly one of several alternative replies (Cabac et al., 2003, p. 114). With
these restrictions it is straightforward to transform the elements of AIP diagrams to Mulan
net components (Cabac et al., 2003, pp. 114�115). Thus (a template for) an executable protcol
net can be constructed for every lifeline in the AIP diagram.

The remaining two diagram types are variants of UML class diagrams that are used to model
the structure and the terminology of the MAS under development. R/D diagrams are a mixture
of class and component diagrams (Cabac et al., 2007, p. 42). To describe the system structure,
di�erent types of entities (service interfaces, agent roles) and dependencies (specializes, uses,
requires) are used (see e.g. Cabac et al., 2007, p. 42).

Service interfaces are drawn as rectangles tagged with the stereotype �Interface� that include
one compartment with the name of a single service description. Role entities describe all
relevant aspects of a certain agent role. They are also displayed as rectangles with the stereotype
�AgentRole�. Four di�erent types of members can be declared (see e.g. Cabac et al., 2007,
p. 42):

• incoming messages that the role can handle,

• protocols executed by the role in response to certain trigger messages,

• state descriptions including factual knowledge and pro-active protocol triggers,

• required services of the role.

Connections in a R/D diagram describe the relations between roles and services (Cabac et al.,
2007, p. 42): The relations provides and requires indicate that a certain service is provided or
required by a role. The relation specializes is drawn as an inheritance arrow from the specialized
to the general role. Abstract (base) roles are also possible. Note that the member types of
agent roles correspond to the elements of a Mulan agent introduced in Section 3.3.3.1. Thus,
one or more agent roles describe a certain Mulan agent class.

To model the terminology of a Mulan MAS, common ontology notations can be used. One
easily understandable notation are concept diagrams, i.e. class diagrams that use inheritance and
associations as the only relations (Cabac et al., 2007, p. 43). Due to these restrictions, concept
diagrams can be mapped to a PN formalism called feature structure nets which is tailored
towards data modeling (Wienberg et al., 2006). This formalism and the concept diagram
notation is directly supported by Renew (Cabac et al., 2007, p. 43).

3.3.3.4. Mulan as a MABS Framework

As already discussed in Section 2.3.2.6 the suitability ofMulan for simulation is not as much a
question of general modeling power as of appropriate tool support. Several case studies (see e.g.
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Rölke, 2004, Ch. 9) show that the architecture can be used to structure even large agent-based
models.

The simulation scheduler functionality of Renew in the sequential mode is also available for
Mulan. As noted in (Page and Kreutzer, 2005, p. 362): �further built-in simulation support,
e.g. for experimental planning, data collection, or data analysis, is currently not o�ered. However, [as
discussed above] prototypical data analysis tools, which help in using Renew for discrete and agent-
based simulations, have been developed Strümpel, 2003.�

The inherent concepts of locality and mobility allow to employ Mulan for spatially explicit
simulations as well. A discrete spatial model can be represented by a system net with locations
modeled as places and pathways modeled as connected arrows and transitions; or an arbitrary
spatial model implemented in Java can be connected to the Mulan MAS (see Rölke, 2004).

While the former approach provides a formal representation of (spatial) mobility in terms
of Petri nets (Köhler et al., 2003), the latter might o�er an improved performance and the
possibility to integrate grid-based and continuous spatial models as well. An overhead of the
PN-based spatial model is that each place (location) must in principle contain a full Mulan
platform that allows the agent to communicate with the local environment.

3.3.3.5. Other Petri-Net Based Approaches

Though there is a relevant number of alternative approaches towards agent-based modeling
with Petri nets, we will only review one more here. This approach was developed at Groningen
University's 'The Agent Lab' (TAL) and shows some parallels to Paose. Most important for
this thesis, it has been extended with machine learning techniques and an integration of process
mining has been proposed (Stuit et al., 2007b, Sec. 7). The objective of the TAL approach
is to support the modeling and implementation of inter-organizational business processes with
agent concepts. Its cornerstones are the visual modeling language TALL (The Agent Lab
Language) and the simulation environment AGE (Agent Growing Environment). The following
presentation is based on a paper by (Stuit et al., 2007b) and a related poster (Stuit et al., 2007a).

Similar to Paose, TALL combines UML-like elements with an extension of Petri nets called
Behavior Nets. The TALL diagrams comprise two modeling levels:

• On the high level, interactions are described using Interaction Structure diagrams (Stuit
and Wortmann, 2012, pp. 144): As shown in Figure 3.9 (top), these diagrams display
interactions with the participating roles and agents bound to these roles.

• On the low level, the behavior of interacting agents is described by means of Behavior
Nets (see Figure 3.9, bottom) (Stuit et al., 2007b, Sec. 3): These are basically work�ow
nets with input and output places depicted similar to initial and �nal nodes of activity
diagrams. Behavior Nets of multiple interaction roles can be combined into a sequence
diagram-like structure using message places (marked with a 'letter' symbol) and swim-
lanes. As indicated by Stuit et al. (2007b, Sec. 3) Behavior Nets are thus rather similar
to protocol nets in Mulan.

A concept in TALL that goes beyond standard interaction protocols are so-called interaction
beliefs (IBs, see Stuit et al., 2007b, Sec. 3). IBs are part of an agent's knowledge base, where
each IB represents an agent's assumptions about a certain interaction between itself and a
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Figure 3.9.: Overview of the TALL notation. Adopted with modi�cations from (Stuit et al.,
2007a).

number of other roles. An IB consists of multiple Behavior Nets separated by swim lanes. One
dedicated swim lane is tagged with the keyword me, and represents the behavior associated
with the agent's own interaction role. All other swimlanes, in contrast, represent the way that
the agent expects other interaction roles to behave during the conversation (Stuit et al., 2007b,
Sec. 3).

The actual behavior of other agents in an interaction might di�er from these expectations
depending on their own interaction beliefs. To visualize this uncertainty, transitions of 'foreign'
Behavior Nets are depicted by a cloud symbol (Stuit et al., 2007b, Sec. 3). When an agent's
actual communication partner behaves other than expected, further following the prede�ned
protocol might lead to failure. The agent can thus either autonomously align its behavior to
the new situation or enter a so-called escape mode to expect an intervention by another agent
or user (Stuit et al., 2007b, Sec. 5).

Interaction beliefs, escape mode, and interventions are central to the TAL modeling approach
because they allow to model and simulate stakeholders' di�erent views upon a decentralized
business process with a focus on strategies to resolve con�icts resulting from di�erent expecta-
tions (Stuit et al., 2007a, Sec. 3). The involvement of stakeholders into the modeling process is
supported by AGE, a visual development and simulation environment for TALL models. AGE
allows participatory simulations called 'gaming sessions' (Stuit et al., 2007a, Sec. 4) in which
human domain experts incrementally provide training to simulated agents that entered escape
mode due to con�icting expectations. The agents should then learn how to resolve the con�ict
by observing the user. The actual and planned application of machine learning techniques in
this context is detailed in Section 5.3.4.5.
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3.3.3.6. Summary

In the previous sections we have reviewed di�erent modeling techniques for MABS. In this
thesis, all presented modeling styles will be considered due to their speci�c advantages and
drawbacks. Code-centric and rule-based modeling provides high �exibility and productiveness
for simulation practitioners with programming skills and is found in many real-world settings.
The use of UML and reference nets eases modeling and validation due to the explicit graphical
notation.

Current approaches towards roundtrip engineering and model driven development provide
transformations between the di�erent representations. This thesis focuses on the 'inverse'
direction of reconstructing reference net and UML-like models from simulation traces by means
of process mining. While the bene�t of such trace abstraction is obvious in code-centric and
rule-based simulation, we will also consider speci�c advantages of process mining in connec-
tion with reference nets and UML. Furthermore, we apply reference nets as a means to model
work�ows for experimentation, result analysis, and validation.

3.4. Implementation of Agent-Based Models

For the implementation of MABS a large number of tools exist that can be characterized as
follows (see Oechslein et al., 2001, Sec. 3; Klügl, 2001, Sec. 4.4):

• simulation-speci�c extensions of agent frameworks and platforms

• agent-speci�c extensions of object-oriented simulation frameworks and systems

• frameworks and simulation systems originally developed for MABS

According to (Page and Kreutzer, 2005, pp. 263) a simulation framework is a software frame-
work that adds simulation-speci�c functionality to an underlying programming language via
a customizable object-oriented class library. The framework can be extended at certain 'hot
spots' by means of inheritance (white box framework) and composition (black box framework);
see Page and Kreutzer (2005, p. 264). While simulation frameworks mainly support model
building and implementation, a simulation system is a tool that supports all phases of a simu-
lation study (Page and Kreutzer, 2005, pp. 245).

Following Page and Kreutzer (2005, p. 360):

�An agent platform is �a software environment agents live in�; i.e. a runtime environment
for agent-based software (Rölke, 2004, p. 159). Most available platforms are based on Java
and follow the FIPA (Foundation for Intelligent Physical Agents) standard [see Section
3.2.2.2]. [...]

Agent platforms can be employed to build MABS as well. This o�ers a number of advan-
tages:

• Agent platforms often come with powerful frameworks for modelling complex agents
(e.g. those of the BDI architecture [...]), which are rarely available in pure simulation
environments.
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• Since agent platforms are usually designed as distributed systems, the distributed
execution of complex models is supported in a natural way. Platform interoperabilty
is ensured by the FIPA standard.

• Agents interacting with a simulated environment on an agent platform can be easily
deployed in their �real� environment after the testing phase.

Since simulation is not an application domain most agent platforms were originally designed
for, there are also disadvantages to their use:

• Often there is no simulation scheduler for managing simulation time, and for synchro-
nizing agents with simulated environments.

• Typical simulation tasks like stochastic modelling, planning experiments, data collec-
tion, and statistical data analysis are usually not directly supported.

• Agents running on typical agent platforms are often quite �heavy-weight� objects, with
one or more concurrent threads of control. This might cause performance problems
in models with many such agents.

There are, however, a number of agent platforms which make simulation support available
as an integral part of their architecture or as an add-on.�

In the following, we brie�y review some common agent platforms and MABS frameworks as
well as the simulation framework FAMOS and the agent platform Capa used in this thesis.

3.4.1. JADE Agent Platform

As described in (Page and Kreutzer, 2005, p. 361):

�The Java Agent DEvelopment Framework [...] (Bellifemine et al., 2001) is a widely used
open source agent platform, which follows [...] the FIPA standard. JADE o�ers a dis-
tributed agent runtime environment, an extensible framework for behaviour modelling,
and some graphical agent management and debugging tools; e.g. a so-called �sni�er agent�
which constructs simple UML sequence diagrams tracing agent communications. An agent's
[...] behaviour is composed of so-called behaviour objects, each of which represents a single
agent task. Since these tasks can be added to and removed from an agent dynamically
at runtime, the architecture o�ers a powerful base for de�ning complex behaviour. There
are extension packages for behaviour modelling with hierarchical UML statecharts (Griss
et al., 2002) or the Jadex BDI architecture (Pokahr et al., 2003). Some graphical modelling
tools are also available.

JADE has not been speci�cally designed to support MABS, but a so-called time service,
i.e. a process-oriented simulation scheduler encapsulated in a JADE agent, has been devel-
oped as an add-on package by Braubach et al. (2003). [... Furthermore], it provides some
interesting tools for analysing agent behaviour based on ACL message traces. In addition
to the above mentioned �sni�er agent�, a tool called ACLAnalyser (Botía et al., 2004) can
be used to aggregate message traces into social networks at di�erent levels of detail. JADE
has occasionally been applied in MABS; e.g. for the agent-based simulation of supply chains
(Ahn and Park, 2004).�22

Simulation-speci�c extensions have been realized by Gildho� (2007) and Koppehel (2007) in
the context of the Jadex project.
22JADE is available at http://jade.tilab.com, last visit 2014-02-16.
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3.4.2. MadKit Agent Platform and Simulation Framework

MadKit (Ferber et al., 2012) is at the same time a Java-based framework and platform for
agent development and a library for time-driven agent-based simulation reminiscent of the
'classic' MABS framework Swarm (Minar et al., 1996). Simulations are executed in a so-called
synchronous engine that builds upon the agent platform. The modeling and execution of
simulated agents slightly di�ers from agents developed for the 'real' platform.

The common organizational concept used in both 'modes' (i.e. agent platform and synchronous
engine) is the AGR model described in Section 3.2.2.2. The reviewed version 4 of MadKit
extends the basic AGR model with a construct for (network) communities.

Agents on the MadKit platform run in an own thread and de�ne an own life cycle. They
can be assigned an exchangeable behavior module (controller) and communicate via messages
quite similar to JADE. MadKit supports several languages and tools for behavior description
including Java, the JESS23 rule engine, and a graphical modeling tool for di�erent formalisms
including extended Petri nets. Di�erent from JADE, a MadKit agent can only run one controller
module at a time. The execution policy is event-driven, which leads to a strong similarity of
the the Java-based MadKit agent with a simulation process running in real-time.

In agent-based simulations with the synchronous engine, agents do not have an own life cycle
and normally do not use an own controller. Instead, a so-called Activator is de�ned that
implements a time-driven schedule for a group of agents. A scheduler agent running in a
thread on the MadKit platform merges and synchronizes the schedules of all activators. A
more abstract simulation framework named Turtle Kit builds upon the synchronous engine
and allows to implement simple models comparable to the Star Logo system.

For simulation observation, MadKit adopts the probe construct from Swarm (Minar et al., 1996).
Probes provide well-de�ned programmatic interfaces to observe properties and collect data
about agents from a certain group and role. Basic statistic measures like minimum, maximum,
and average of the observed values can be computed. The MadKit platform comprises further
visualization tools such as a group viewer and a message tra�c observer named spy agent, quite
similar to the JADE Sni�er.

3.4.3. SeSAm Simulation System

SeSAm (ShEll for Simulated Agent SysteMs)24 is a simulation system for MABS that was
developed at the University of Würzburg. The initial version of SeSAm was designed by Klügl
(2000) as part of her dissertation and implemented in the object-oriented LISP variant CLOS.
As a simulation system (Page and Kreutzer, 2005, p. 245), SeSAm supports all phases of a
simulation study with visual tools. The CLOS version in particular contains a graphical editor
to model the behavior of agents by means of activity automata (see Section 3.3.1.3). A summary
of this version's functionality is also given by Page and Kreutzer (2005, pp. 364).

The current version of SeSAm is a re-implementation of the original CLOS-based system in
Java. It was mainly designed and implemented as part of the dissertation by Oechslein (2004),

23http://herzberg.ca.sandia.gov, last visit 2012-09-17
24http://www.simsesam.de, last visit 2012-01-12

90



3.4. Implementation of Agent-Based Models

on which the following description is based. A main di�erence to the initial version is the
use of the UML dialect SeSAm UML (see Section 3.3.2.2) for agent modeling instead of the
proprietary activity automata notation. The SeSAm editor supports all elements of activity
graphs described in Section 3.3.2.2.

Besides activity graphs, SeSAm provides a visual editor to design grid-based environments.
Sensors and e�ectors of agents can be speci�ed by means of pre-de�ned as well as custom prim-
itives via graphical dialogs. Experimental designs can be set up in an experiment speci�cation
language based on the formal language SeSAm Impl mentioned in Section 3.3.2.2. The lan-
guage supports manual as well as automated experimental design (see Section 2.4.1) and can
be extended with custom Java code.

Furthermore, online- and o�ine analyses might be registered with a model for result analysis
based on simulation traces. The SeSAm simulator also runs in a client/server mode that allows
to distribute parallel simulation runs (e.g. for simulation-based optimization) in a computer
network. The SeSAm system can be extended using a plugin mechanism.

3.4.4. FAMOS and DESMO-J

FAMOS (Framework for Agent-based MOdeling and Simulation) is a framework for agent-
based discrete event simulation. It was developed at the University of Hamburg's Department
for Informatics as an extension of the discrete event simulator DESMO-J (Discrete Event Sim-
ulation and MOdeling in Java). FAMOS integrates common features of frameworks for agent
development with the world views of discrete event simulation (Knaak, 2002; Knaak et al.,
2002). Furthermore it o�ers powerful and extensible constructs for spatial modeling (Meyer,
2001, 2008).

3.4.4.1. DESMO-J

The discrete event simulator DESMO-J (see e.g. Page et al., 2000, Ch. 10) is a strongly ex-
tended and re-designed object-oriented Java implementation of the Simula library DEMOS
(Birtwistle, 1979). It o�ers support for event scheduling, process interaction, and combined
models. Transaction- and activity-oriented models are mapped to process interaction mod-
els with speci�c synchronization constructs such as resources. DESMO-J furthermore o�ers
constructs for queues, statistical data-collectors, a con�gurable reporting system, and a simula-
tion infrastructure based on the conceptual separation of models and experiments (see Section
2.4.1). A simple Desktop- and Web-based graphical user interface to con�gure, run, and observe
experiments is also included (Kiesel, 2004).

3.4.4.2. Agents in FAMOS

Though MABS is often understood as an extension of process interaction, agents in DESMO-
J are technically based on event-oriented constructs. The reasons for this design decision are
performance (since every simulation process employs an own Java thread) and better suitability
for asynchronous event handling (Page and Kreutzer, 2005, p. 363).
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Figure 3.10 shows the structure of a FAMOS agent (see also Knaak, 2002, Sec. 5.2.1): As an
extended entity, it actively handles so-called signals. These are either received from other agents
(external signals) or self-scheduled as future intentions (internal signals). Pending signals are
stored chronologically on an 'inner' schedule, which is encapsulated from the environment as
opposed to the global event list of DESMO-J (Page and Kreutzer, 2005, p. 363).

Figure 3.10.: �Integration of FAMOS agents into the framework DESMO-J (adopted with modi�ca-
tions from Knaak et al., 2002)�. Figure and caption cited from (Page and Kreutzer,
2005, p. 365).

When the agent receives a signal, it dequeues and handles all signals that are scheduled for the
current simulation time. This can cause the execution of actions (encapsulated in methods)
and the addition of new signals (i.e. intentions) to the schedule. Finally, an external agent
activation event is scheduled on DESMO-J's global event list for the time point of the �rst
(earliest) signal on the internal schedule.

To allow for �exible behavior modeling, the actual handling of signals is delegated to a behavior
module that is derived from an abstract base class Behaviour. As indicated above, this design
is rather common in agent modeling. Similar to MadKit or JADE, di�erent techniques for
behavior modeling are supported by sub-classes of Behaviour. FAMOS currently includes the
following modules (Knaak et al., 2002):

• A simple event-oriented behavior merely declares two abstract methods to implement
reactions to signals and pro-active initial actions.
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• A process-oriented behavior runs in a thread and provides methods for process synchroni-
sation (such as hold) and signal handling. This module is rather similar to the standard
agent behaviour in MadKit (see Section 3.4.2).

• The state machine encapsulates an interpreter for hierarchical and concurrent UML state
charts. It is basically a modi�ed version of the state chart framework from the open
source CASE tool Fujaba25 (Köhler, 1999). Implementation details and a comparison
with Fujaba are provided in (Knaak, 2004). The domain-speci�c part of the state chart
code is generated from XML scripts built with an included graphical editor.

• The rule engine encapsulates the JESS forward chaining rule interpreter for declarative
modeling, quite similar to the integration of JESS into MadKit (see Section 3.4.2).

Di�erent from behavior architectures in some agent platforms, the internal scheduler of a
FAMOS agent does not run in an own thread. While this improves the performance of models
with many agents, it complicates the implementation of dynamic deliberative architectures. As
in MadKit, a FAMOS agent is equipped with one �xed behavior module. The architecture
could be extended to a dynamic plan execution environment by using the composite pat-
tern (Gamma et al., 1995) similar to JADE. A possible design is sketched by Knaak (2002,
Sec. 5.3.4). Czogalla and Matzen (2003) implemented a simple deliberative architecture to
simulate the goal-directed behavior of passengers boarding an airplane.

3.4.4.3. Agent-Based Models in FAMOS

The main component of a FAMOS model is the environment that serves as a container for
all agents. Furthermore it provides access to a communication infrastructure, a group-based
organizational structure, and an optional spatial model.26

The standard communication infrastructure is rather simple: transfer of signals is assumed
to be instantanious and error-free. It could, however, be exchanged with a more complex
implementation that e.g. simulates transfer durations and failure probabilities according to
random distributions (Knaak, 2002, p. 87).

The organizational structure is based on the AGR model as implemented in MadKit. Di�erent
from the standard version, FAMOS supports the hierarchical embedding of groups reminiscent
of the seminal MABS framework Swarm (Minar et al., 1996). In fact, this makes the role concept
dispensable at the implementation level because roles contained in a group can be mapped
to sub-groups. For compatibility, a subclass RoleGroup that supports roles is also included.
Groups can receive signals that they broadcast to all contained agents. They furthermore
provide means for the functional referencing of contained agents similar to SeSAm (see Section
3.4.3).

As a main focus, FAMOS provides an extensible framework to model spatial structures and
dynamics (i.e. agent movement and environmental processes). Spatial structures are represented
in terms of abstract positions and connecting links. This abstract representation is realized by
di�erent topologies. FAMOS currently includes graph-based models and di�erent kinds of

25http://www.fujaba.de, last visit 2012-09-17
26The following description is based on (Knaak, 2002, Secs. 5.2.3, 5.5).

93



3. Agent-Based Simulation

regular and irregular grids (Meyer, 2008). Czogalla and Matzen (2003) implemented a 'vector-
based' continuous model to represent cabin layouts of airplanes.

The movement of agents is realized by di�erentmovement strategies. These strategies determine
how and when an agent moves between di�erent positions of the spatial topology. Available
movement strategies include random walk, gradient following, and movement along previously
planned routes (Page and Kreutzer, 2005, p. 364). Due to the abstract spatial representation,
movement strategies can in principle be re-used with di�erent spatial topologies.

Besides agents, arbitrary objects implementing a certain interface can be located in the spatial
environment. For each agent, the environment manages an individual horizon of perception and
action, and the agent can query the environment for observable objects. The environment can
also manage groups that agents automatically enter and leave when they reach certain spatial
positions. Dynamics of environmental properties can be represented by macroscopic modeling
constructs from DESMO-J such as events.

For the observation of agents, a variant of the probe concept from Swarm is used. DESMO-J
provides so-called access points27 that provide a uniform interface to arbitrary object properties
(Page and Kreutzer, 2005, p. 364). FAMOS includes a statistical observer (class Individual-
Observer) that observes the access points of a set of agents. The results are displayed by the
DESMO-J reporting system as tables, and common statistical quantities are computed over
numerical properties.

3.4.5. Capa Agent Platform

Capa (Duvigneau, 2003) is an �agent platform built on top of the Java-based Petri net simulator
Renew� (Page and Kreutzer, 2005, p. 361) described in Section 2.3.2.5. It is a fully FIPA-
compliant re-implementation of the Mulan architecture (Section 3.3.3.1) realized with refer-
ence nets and Java code. This �provides an explicit and easily understandable architecture for both
platform and agent models� (Page and Kreutzer, 2005, p. 362). The FIPA compatibility allows
Capa to interact with other FIPA platforms such as JADE (Section 3.4.1).

Capa includes a number of additional visual development tools that support the di�erent phases
of the Paose approach:

• Net components for protocol nets and decision components are provided as additional
toolbars in the Renew IDE.

• An editor for use case diagrams is embedded into Renew to document the results of
the coarse design phase. From these diagrams a generator can build a new development
project skeleton including folder structure and diagram templates (Cabac et al., 2007,
p. 41).

• Another Renew plugin allows to draw AIP diagrams of agent interactions. These are
automatically mapped to protocol net templates for every participant of the communica-
tion. To implement an executable agent, the user �lls these templates with Java code for
elementary agent actions (Cabac et al., 2007, pp. 44).

27the term was adopted from the work by Bachmann (2003)
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• R/D-diagrams are drawn with a Renew plugin called knowledge base editor. From the
diagrams the tool generates so called role descriptions that can be integrated into knowl-
edge bases of agents. Functionality to manage and start multi-agent applications is o�ered
as well (Cabac et al., 2007, p. 43).

• Ontology diagrams are either created with the external tool Protege28 or by using the
feature structure (FS) plugin of Renew. Both tools also o�er (at least experimental in
the latter case) Java code generators (Cabac et al., 2007, p. 43).

The main tool to debug applications developed with Capa is theMulan Viewer (Cabac et al.,
2008b, Sec. 3). It provides a tree-structured view on the state of the platform according to
the four levels of the Mulan architecture (Cabac et al., 2008b, p. 403). Starting from this
view, it is possible to inspect the markings of all involved nets. A hierarchical inspection of
net tokens and a UML-like display of data tokens is also possible (Cabac et al., 2008b, p. 404).
Furthermore the Mulan Viewer provides basic functionality to control agents and log ACL
messages (Cabac et al., 2008b, p. 404). A dedicated message monitoring tool named Mulan
Sni�er was developed in the context of this thesis and is described in Section 7.4.1.

3.5. The Problem of Analysis and Validation

In the previous sections, it has become clear that agent-based models tend to be complex
and allow for a high degree of modeling freedom. This Section brie�y reviews the problems
that this inherent complexity poses on their analysis and validation. On this basis, properties
of appropriate validation techniques are discussed with respect to the classi�cation scheme
presented in Section 2.4.3.5. Concrete validation techniques for MABS will be reviewed in
Section 5.1.

In (Knaak, 2006), we divided the di�culties to analyze and validate a MABS into three main
categories based on the literature (mainly Klügl, 2001; Edmonds, 2000):

�The possibility to simulate complex micro-macro relations is at the same time an op-
portunity and a drawback of MABS. Understanding and controlling the behaviour of the
models remains a challenging task. [...] the �rst [di�culty, ...] we call the problem of model
complexity : MABS contain numerous agents running complex internal processes and ex-
ternal interactions. The agent-based modelling style itself poses few restrictions on model
complexity (Edmonds, 2000). During simulation of even simple MABS, large amounts of
data (such as event logs of the agents' interactions) are observed, whose analysis requires
advanced techniques (Sanchez and Lucas, 2002).

The second di�culty is the problem of result representation and interpretation: MABS
usually produce complex, qualitative results, such as spatial or organisational patterns,
that cannot be reduced to simple statistical measures. The models' explanatory function
prohibits to regard MABS as black boxes and analyse global simulation outputs only. The
model must in principle be analysed at multiple levels (Edmonds, 2000). Furthermore,
the sensitivity of many MABS to initial conditions (see below) often leads to strongly
divergent simulation trajectories (Rand et al., 2003) that complicate the application of
standard statistical aggregation techniques. Instead temporally �ne-grained analyses are
required that take into consideration intermediate simulation states (Edmonds, 2000).

28protege.stanford.edu, last visit 2012-09-17
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The validation, optimisation, and calibration of MABS is complicated by the [... prob-

lem of distributed system state29]. Many MABS contain sensitive free parameters at the
agent-level that strongly in�uence the overall behavior. Due to the typical causal spread
appearing in distributed systems, it is often hard to tell how certain microscopic parameters
in�uence macroscopic properties of the overall system (Fehler et al., 2004; Klügl, 2001).
Therefore, �tting microscopic parameters to produce certain macro-level phenomena might
lead to a tedious process of trial and error (Klügl, 2001, p. 83). The calibration of MABS
su�ers from further problems: Due to the models' high level of detail, lack of real-world
data is a major concern, and parameters of agents' 'mental' processes can often not be
measured su�ciently (Horne and Meyer, 2005; Oechslein et al., 1999).� (Knaak, 2006)

Note that Klügl (2008, Sec. 2.2) settles for quite analogical problem categiories when discussing
the problems of analysis and validation of MABS. This related approach is reviewed in Section
5.1.1.2.

In (Knaak, 2006), we further observed that

�Due to these di�culties, it is especially hard to determine if a MABS model is a su�cient
representation of reality. Many techniques for model validation (for an overview see e.g.
Page and Kreutzer, 2005, Ch. 8) are of limited use: Static validation techniques fail be-
cause the structure of MABS is often variable and incompletely speci�ed in advance. The
applicability of formal veri�cation techniques is limited due to large state spaces and often
non-explicit computational model representations (Moss, 2004). Generally, con�rmative
techniques contradict the explorative character of many MABS studies where the focus is
put on experimental investigations of cause-e�ect relations in decentralized systems (see
e.g. Uhrmacher, 2000).

Taking into account the qualitative character of MABS results, informal techniques [...]
seem appropriate for analysing and validating MABS. However, important patterns might
go unrecognised within the large amounts of observed data.�

In the next chapter, we introduce data mining and process mining as potential techniques to
tackle this problem.

29In (Knaak, 2006) we named this issue the �problem of sensitivity and causal spread� (adopting the term
�causal spread� from Edmonds, 2000, p. 22). Recapitulating, however, distributed system state seems to be
the more pristine cause for the described di�culties.
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This chapter introduces foundations of data mining and the more specialized sub�eld of process
mining. The presentation of data mining concepts and techniques mainly follows Dunham
(2003) and Cios et al. (2007). For process mining as the main topic of this thesis a large
number of sources are reviewed. A summary of the current state-of-the art in process mining
and its applications (mainly) to the domain of business process management is also provided
in the book by Aalst (2011a).

4.1. Data Mining

Following Page and Kreutzer (2005, p. 228):

�Data mining [DM] is "the automated analysis of large or complex data sets in order to
discover signi�cant patterns or trends that would otherwise go unrecognised" (Woods and
Kyral, 1997, p. 6, cited in Köster, 2002, p. 54).

The goals of data mining are quite similar to those of traditional exploratory statistics, but
the technique focuses more strongly on algorithms that automatically abstract complex
hypotheses (i.e. models) from large sets of data [see also Köster, 2002].�

DM is often considered as part of the larger process of Knowledge Discovery in Databases
(KDD) where DM is the crucial step of automated hypothesis generation. Chamoni (2009,
cited in Haan, 2009, p. 40) relates to this point of view as �data mining in the narrower sense�,
whereas �data mining in the wider sense� includes the whole KDD process.

For the purpose of DM, a large number of interpolation and machine learning techniques are
applied, rooted in di�erent �elds like soft computing (e.g. neural networks and genetic algo-
rithms), symbolic machine learning (e.g. inductive logic programming), and statistical data
analysis (e.g. regression). Speci�c process mining techniques for the reconstruction and analy-
sis of process models (see e.g. Aalst and Weijters, 2004 and Section 4.2) are in the focus of this
thesis due to their close relation to the perspectives of agent-based modeling.

An often-cited example application of data mining is market basket analysis (see e.g. Dunham,
2003, p. 5), which serves to detect typical patterns in the shopping behavior of customers.
Simply speaking, the goal is to automatically detect association rules that describe correlated
products (e.g. �customers who buy product A and product B are likely to buy product C as
well�).

Note, however, that most algorithms and models used in data mining are application-indepen-
dent. Hence, association rules can be applied to describe the navigation behavior of web site
visitors as well as decision strategies of agents in a MABS.
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4.1.1. The KDD Process

Data mining activities are usually embedded into a broader knowledge acquisition process called
'Knowledge Discovery in Databases' (KDD). Most variants of this process contain �ve phases
originally proposed by Fayyad et al. (1996). The following description is based on Dunham
(2003, p. 10):

1. Selection: Data is selected from one or more, possibly heterogeneous, sources like �les,
databases, or non-electronic sources.

2. Preprocessing : The raw data is prepared to meet the requirements of the applied mining
algorithms. This includes the elimination of outliers and errors as well as the addition of
missing data based on estimations.

3. Transformation: The original, often heterogeneous, data formats are transformed into a
common format that serves as input to the mining algorithms. Many algorithms work on
vector-based data, i.e. feature vectors encoding relevant attributes.

4. Data Mining : Patterns are extracted from the transformed data using a DM algorithm.
The extracted patterns should be 'useful' for the problem under study. In the context of
the KDD process, data mining is often understood in a rather broad sense that covers
simple SQL queries or methods from explorative statistics as well as complex machine
learning techniques.

5. Interpretation of Results: The mined patterns are interpreted by a person to gain insight
into the analyzed data. Appropriate visualization techniques are crucial in this step to
understand and rate the quality of the discovered patterns (Dunham, 2003, p. 14).

Figure 4.1.: The KDP model of Knowledge Discovery in Databases (adopted with modi�cations
from Cios et al., 2007, p. 15).
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Extensions of the basic process have been stated in scienti�c and industrial contexts. The
six-step KDP model (Cios et al., 2007, pp. 14) based on the industrial CRISP-DM1 process is
shown in Figure 4.1. This variant puts a speci�c focus on validation and iterative re�nement.

The KDP model starts with two steps related to the clear de�nition and understanding of the
problem and the collected data. Furthermore, every step allows to return to previous phases
due to detected inconsistencies and errors. The �fth step includes a thorough assessment of
the discovered knowledge including �understanding [of] the results, checking whether the discovered
knowledge is novel and interesting, interpretation of the results by domain experts, and checking the
impact of the discovered knowledge. [...] A list of errors made in the process is prepared� (Cios et al.,
2007, p. 16).

The KDP model is rather akin to the simulation model building cycle as presented in Section
2.4.3.2. While the core methods for system analysis di�er (i.e. data mining on the one hand
and modeling and simulation on the other hand) the overall procedures are very similar.

4.1.2. Classi�cation of Data Mining Techniques

This section presents a number of properties that can be used to structure the variety of existing
data mining techniques.

4.1.2.1. Data Mining Tasks

Data mining algorithms are often classi�ed by the task accomplished. Though there are minor
di�erences, the identi�cation of these tasks is rather homogeneous in the literature. Basically,
DM is applied (a) to describe the analyzed data in a generalized form (descriptive data mining)
and (b) to make predictions about missing or future data from the same domain (predictive data
mining) (Dunham, 2003, p. 5). This classi�cation mirrors the distinction between explanatory
and predictive simulation models in Section 2.2.1.

The basic DM tasks can be re�ned into several subtasks. Dunham (2003, pp. 7) identi�es the
following descriptive tasks:

• Clustering (Dunham, 2003, pp. 7-8): The input data set is algorithmically partitioned into
disjoint classes of 'similar' items. Elements from di�erent classes should be 'di�erent' with
respect to their features. Similarity is de�ned by a formal similarity measure calculated
over the feature vectors. Clustering is also referred to as segmentation and closely related
to unsupervised learning (see Section 4.1.2.3).

• Summarization (Dunham, 2003, p. 8): The information contained in a dataset is con-
densed into an aggregate form that makes key aspects easier accessible. The calculation
of aggregate statistics or performance indicators is a typical example.

• Association rules (Dunham, 2003, pp. 8-9): Relations between data items are extracted
from input data in the form of rules. These describe common correlations in the data
and should not be mistaken for causal relations.

1CRoss-Industry Standard Process for Data Mining, see e.g. Cios et al. (2007, pp. 32).
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• Sequence discovery (Dunham, 2003, p. 9): In this special form of association rule learning,
frequent temporal (or ordering) relations of time-stamped data items are sought. An
example is the reconstruction of common browsing patterns from web server logs to
analyse and improve web navigation. Note that several process mining algorithms fall
into this category as well.

Among the predictive data mining tasks, Dunham (2003, pp. 5) mentions:

• Classi�cation (Dunham, 2003, p. 5): From a set of input data items with previously known
classes, a mapping function (classi�er) is learned. The classi�er is used to determine the
class of new data items based on their features (pattern recognition). Classi�cation is
related to supervised learning (see Section 4.1.2.3).

• Regression (Dunham, 2003, p. 6): A real-valued function of a previously known type (e.g.
linear) is learned from the input data. It can be used to extrapolate missing or future
values.

• Time series analysis (Dunham, 2003, p. 6): The variations of a feature are examined over
time with the purpose to automatically classify or compare time series based on similar
behavior, or to predict future development based on historical data.

• Prediction: (Dunham, 2003, p. 7): This term is used to describe classi�cation, regression,
or time series analysis with the purpose to predict future values based on past observa-
tions.

4.1.2.2. Interpretability of models

Another important aspect to classify data mining techniques is the interpretability of the models
that represent the generated hypotheses. Generally we can identify two classes of models that
mirror the distinction between predictive and descriptive data mining tasks described above
(see e.g. Diaz et al., 2005, pp. 32,36):

• Interpretable models represent hypotheses with the aid of symbols that convey a meaning
to the user. Therefore these models can be used for a compact and readable description
of the observed patterns and aid in their explanation.

• Non-interpretable models, in contrast, are an abstraction of the analyzed data in terms
of non-symbolic units such as bit strings in classi�ers (Holland et al., 2000) or weighted
connections in arti�cial neural networks (Haykin, 1999). The structure of such models
can not straightforwardly be 'read' by a human. However, these models can be rather
e�cient in classi�cation or prediction tasks.

Note that the two classes of models correspond to the classi�cation of agent architectures by
Klügl (2000) into subsymbolic and symbolic architectures. It is straightforward to see that an
adaptive agent can (in principle) use data mining techniques to learn an internal representation
of its environment (including other agents' behavior) by applying data mining algorithms to
observations from the environment.

In this case, symbolic models better allow the user to understand and validate the models
learned by the agent. They might also enable the agent to 're�ect' upon the learned models
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itself using pre-implemented algorithms. Generally, interpretable models are of greater utility
with respect to the analysis and validation of agent-based systems, since an interpretation of
the information conveyed by the mined models is crucial in these tasks.

4.1.2.3. Types of Learning Algorithms

At the core, many data mining techniques are machine learning algorithms that adapt a model
to properties of the input data. These can be divided into four classes (Cios et al., 2007, pp. 49):

1. Supervised learning (Cios et al., 2007, pp. 52-53): These algorithms are provided with a
set of input data samples together with the desired outputs. During the training phase,
the algorithm learns an input-output mapping representing the sample data to solve
classi�cation or regression problems.

2. Unsupervised learning (Cios et al., 2007, pp. 49-52): In unsupervised learning, the desired
output (e.g. classes) is not known beforehand. Often the learning algorithm structures
the data into clusters of similar items using a distance measure. Thus, the algorithm does
not only generate a mapping of the training data to a prede�ned classi�cation scheme,
but it generates the classi�cation scheme itself.

3. Reinforcement learning (Cios et al., 2007, p. 53): This variant lies in between supervised
and unsupervised learning. Di�erent from unsupervised learning, the algorithm is pro-
vided with an external feedback on the quality of the learned model, but in a less detailed
form than in supervised learning. After processing the sample data, the learner receives
an abstract reward based on a domain-speci�c performance measure. Since this learning
mechanism resembles 'natural' learning situations, it is well suited to model learning in
MA(B)S (Kruse, 2008).

4. Semi-supervised learning (Cios et al., 2007, p. 54): In a basically unsupervised setting,
domain-speci�c knowledge is applied to in�uence the clustering process. For example,
the similarity of selected data items from a larger set is rated by a domain expert as a
guidance for clustering.

Another technical distinction covers the way that the learned model is updated during the
training phase (Cios et al., 2007, p. 383): Batch or non-incremental learning algorithms process
the whole training data set at once and produce a single output model. If the data set is changed
or extended, the procedure must be repeated. Online or incremental learning algorithms start
from an initial (often random) model and update it step by step while processing sample
data. The training thus results in a series of models that represent the problem domain with
(preferably) increasing precision.

Incremental algorithms are superior in real time learning situations where sample data is not
completely available beforehand, or the problem domain might change over time (Cios et al.,
2007, p. 40). Furthermore, incremental algorithms usually exhibit a lower computation space
complexity: In every step, the algorithm must only keep a single data item and the learned
model in memory (see e.g. Dongen et al., 2007). In contrast, o�ine learning algorithms are
often simpler and more precise.
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4.1.3. Model Validity in Data Mining

A hypothesis generated by a DM algorithm is a model of the problem domain in the form of a
function that maps input variables (data items) to output variables (Cios et al., 2007, p. 470),
such as predicted values or classes. The model is estimated from sample data by means of
an algorithm. Like any model, it can be invalid, such that the system under analysis is not
appropriately represented. The following discussion of validity and validation in DM is based
on Cios et al. (2007, pp. 470) and Dunham (2003, pp. 14).

4.1.3.1. Quality and Availability of Data

Like computer simulation, KDD often su�ers from a lack of available sample data. This typically
leads to models that do not provide a statistically valid description of the target system, but
an overly specialized representation of the sample data set.

Other problems related to data quality are missing data and noise (Dunham, 2003, p. 15):
Errors introduced during measurement, sampling, or preprocessing of input data can lead to
missing or invalid data items. As in signal processing, such noise will be re�ected more or less
heavily in the mined models and interfere with or superimpose onto the actual reference data.

Even complete and error-free data sets are di�cult to handle when the number of considered
data attributes (features) is large. The term curse of dimensionality (see e.g. Geenens, 2011,
p. 30) subsumes the fact that the algorithmic complexity as well as the number of required
samples to gain valid results increases largely with the dimension of the feature vectors. There-
fore, input data should be reduced to those features that are most relevant for the considered
problem, which is not always straightforward to see. Cios et al. (2007, pp. 208) discuss criteria
and algorithms for feature selection.

4.1.3.2. Quality of Mined Models

To be useful, data mining algorithms must generalize from input data during the training phase.
However, it is not straightforward to �nd an appropriate level of generalization (Cios et al.,
2007, p. 470): Under-�tting (or over-generalization) means that the mined model is too simple
and represents a too unspeci�c superset of data generated by the target system. Over-�tting
makes the mined model unnecessarily complex and speci�c to the training data set.

In statistics, the complexity of a model is quanti�ed by its degrees of freedom, i.e. the �number
of independent pieces of information required for estimating the model� like mean or variance, which
typically equal the number of model parameters (Cios et al., 2007, p. 470).

The performance of a mined model is described by two measures (Cios et al., 2007, p. 470):
Goodness of �t describes the ability to correctly represent the training data set in terms of a
low deviation between actual and predicted data values. Goodness of prediction measures the
ability to predict values beyond the training data set.

These concepts are quanti�ed in error calculation. From a statistical viewpoint, a mined model
is an estimator for the underlying distribution of data. In the following, we restrict the pre-
sentation to point estimation of a single parameter p by an estimator p̂ (see Dunham, 2003,
p. 47).
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The bias B(p̂) describes the systematic error of p̂ induced by the sampling procedure or the
learning algorithm, which �cannot be reduced by increasing the sample size� (Cios et al., 2007,
p. 471). It is calculated as di�erence between the expectation of the estimator p̂ and the actual
value of the parameter p (Cios et al., 2007, p. 471):

B(p̂) = E[p̂]− p (4.1)

The in�uence of the algorithm and its parameterization is sometimes called inductive bias
(Aalst and Weijters, 2004, Sec. 5.1): Strong inductive bias means that a �strong tendency [...]
towards certain solutions� (Luykx, 2009, p. 2) is built into an algorithm. Data mining users might
be unaware of this and mistakenly consider models as 'pure' representations of data-intrinsic
properties.

The variance S2(p̂) is the mean square deviation of estimations by p̂ from actual values of p in
N independent experiments (Cios et al., 2007, p. 471):

S2(p̂) =

∑N
i=1 (p̂i − pi)2

N − 1
(4.2)

Variance and squared bias constitute the mean square error (MSE) as one of the most common
error measures in data mining (Cios et al., 2007, p. 471):

MSE(p̂) = E[p̂− p]2 = S2(p̂) +B2(p̂) (4.3)

The decomposition of error into bias and variance leads to the notion of the bias/variance
dilemma (Geman et al., 1992) that describes an inevitable tradeo� in inductive learning: Simple
data mining algorithms with few parameters and regarded features usually have a strong bias
(Cios et al., 2007, p. 209). Such estimators tend to be stable but more likely to be stuck in
local optima (Luykx, 2009, p. 2). When the bias is reduced by making algorithm and feature
set more complex, the variance increases (Cios et al., 2007, p. 209), which tends to make the
estimator unstable (Luykx, 2009, p. 2).

In general, an appropriate balance between bias and variance must be reached (AiAccess, 2010).
Apart from that, Aalst and Weijters (2004, Sec. 5.1) advocate the use of biased algorithms
when few data but good background knowledge about the searched models is available: When
�exibility is not an issue, biased algorithm require less data, are more robust to noise, and
computationally less complex.

4.1.3.3. Common Approaches to Validation

According to Cios et al. (2007, p. 469), model validation in data mining � similar to computer
simulation � largely depends on ratings by domain experts. Nevertheless, several approaches
have been developed that help to improve the quality of mined models independent from or
additional to expert reviews (Cios et al., 2007, p. 469).

First of all, di�erent types of learning algorithms require di�erent validation approaches (Cios
et al., 2007, p. 471): In supervised learning, the quality of a model is measured based on the
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number of correctly classi�ed training data items. Validation is more di�cult in unsupervised
learning (Cios et al., 2007, p. 471): On the one hand, we can calculate the conformance of
a cluster partition to the underlying data distribution as average distance between cluster
centroids and sample data items. On the other hand, the appropriateness and consistence of
the partitioning itself must be validated using measures for cluster validity (Cios et al., 2007,
Ch. 9).

Cios et al. (2007, p. 471) subdivide validation techniques into data-reuse (resampling) methods,
heuristic methods, analytical methods, and interestingness criteria. These are brie�y reviewed
in the following.

Data Reuse Methods are, broadly speaking, concerned with the question how to gain the
best model quality from a limited sample data set. Simply re-using identical data for training
and validation is clearly not a good choice.

Therefore, the available data is split into training and test parts, where the training part should
consist of about 1/2 or 2/3 of the overall data items chosen by random (Cios et al., 2007, p. 473).
Since this simple split typically leads to high bias and low variance, a more elaborate k-fold
cross validation might be performed (Cios et al., 2007, p. 473): The data set is randomly
partitioned into k equal parts with k− 1 parts for training and 1 part for validation. The MSE
is then calculated from k repetitions of the procedure (Cios et al., 2007, p. 473).

Heuristic Methods for model validation are informal but rather common due to their simplic-
ity (Cios et al., 2007, p. 471). As a simple heuristic for model selection, a variant of Occam's
Razor (see also Section 2.4.3.4) can e.g. be applied by preferring, from a number of models with
similar performance, the most 'simple' one like the model with the fewest degrees of freedom
(Cios et al., 2007, p. 470, p. 474). However, Cios et al. (2007, p. 475) note that this is not
always a good heuristic in practice: Firstly, similar heuristics are part of many data mining
algorithms already and might therefore not be appropriate for the validation of their results.
Secondly, a simple model might not be appropriate to describe a very complex system.

Analytical Methods are applied to formally measure model validity (Cios et al., 2007, p. 475).
Some of these methods assume knowledge about the optimal mapping from input to output
data with respect to the training set, while others do not require such knowledge (Cios et al.,
2007, p. 477).

In the �rst category, we �nd several measurements based on the confusion matrix that de-
scribes the performance of a classi�er (Dunham, 2003, p. 79). In the style of Dunham (2003,
p. 79), we assume a classi�er ĉ that accepts or rejects data items s ∈ S according to their
assumed membership to a class C. The confusion matrix contains four entries (adopted with
modi�cations Dunham, 2003, p. 79):

• TP (true positive): ĉ accepts s and s ∈ C,

• FP (false positive): ĉ accepts s though s /∈ C,

• TN (true negative): ĉ rejects s and s /∈ C,
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• FN (false negative): ĉ rejects s though s ∈ C.

From this matrix, several performance measures for classi�ers can be calculated including recall,
speci�ty, accuracy, and precision (Cios et al., 2007, p. 478). Recall and speci�ty express the
classi�er's ability to correctly identify elements belonging (or not belonging) to C (adopted
with modi�cations from Cios et al., 2007, p. 478):

Recall(ĉ) =
TP

TP + FN
(4.4)

Specifity(ĉ) =
TN

TN + FP
(4.5)

Precision originates from text mining and describes the ability of a classi�er (e.g. a web search
engine) to retrieve relevant documents (adopted with modi�cations from (Cios et al., 2007,
p. 478)):

Precision(ĉ) =
TP

TP + FP
(4.6)

Accuracy captures the general ability of a classi�er to perform correct predictions on the sample
set S and is a rather weak measure compared to speci�ty and recall (adopted with modi�cations
from Cios et al., 2007, p. 478):

Accuracy(ĉ) =
TP + TN

|S|
(4.7)

The above measures can only be applied in supervised learning settings where a-priori knowl-
edge about class membership is available. Other analytical methods (e.g. for hypothesis testing)
pose additional restrictions on the data distribution (e.g. normal) often not met in practice (Cios
et al., 2007, p. 475).

When none of these assumptions hold, information content complexity (see Section 2.1.1) can
be applied for model assessment (Cios et al., 2007, p. 475). From an information-theoretical
viewpoint, learning a model as an input/output mapping from a set of sample data can be
regarded as a compression of the data set (Cios et al., 2007, p. 475). According to the well-
known minimum description length (MDL) principle, the worst-case complexity of a model is
the size of the represented data set (Cios et al., 2007, p. 475), which corresponds to maximal
over�tting in the bias-variance dilemma (Cios et al., 2007, p. 476).

According to Cios et al. (2007, p. 476) �the MDL principle can be seen as a formalization of the
Occam's Razor heuristic�. Let |M | denote the length of the (shortest) binary encoding of a model
M , and let |M(S)| denote the size of the sample dataset S compressed with M , then following
the MDL principle, we prefer the model with the minimal sum

|M |+ |M(S)| →Min! (4.8)
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as the best compromise between over- and under-�tting (adopted with modi�cations from Cios
et al., 2007, p. 475).

Interestingness criteria, �nally, are an attempt to formalize the relevance of discovered rules to
users based on domain-speci�c and general interestingness measures. A brief summary of this
approach can be found in (Cios et al., 2007, pp. 484).

4.1.4. Exemplary Data Mining Techniques

To provide the reader with an impression how data mining is actually performed, exemplary
DM algorithms will be reviewed in the following. Focus is put on techniques also relevant in
the context of process mining.

4.1.4.1. Decision Tree Learning

A decision tree is a classi�er generated by supervised learning. Dunham (2003, p. 59) illustrates
the concept as

�a tree where the root node and each internal node are labelled with a question. The arcs
emanating from each node represent each possible answer to the associated question. Each
leaf node represents a prediction of a solution to the problem under consideration.�

Decision trees are interpretable classi�cation models, the application of which can be roughly
compared to the �20 questions game� played by children (Dunham, 2003, pp. 58): Trying to
guess a person by asking yes/no-questions only, an experienced player will choose questions
that presumably divide the search space into partitions of equal size (such as 'Is the person
male or female?'). The same principle underlies decision tree learning.

Though several algorithms for decision tree learning exist, a common basic structure can be
identi�ed that is sketched by Dunham (2003, p. 94). Given a sample dataset S = s1, s2, . . . , sn
of feature vectors si ∈ A1 ×A2 · · · ×Ak with k categorical attributes, a decision tree T can be
obtained with the following procedure (adopted with modi�cations from Dunham, 2003, p. 94):

1. Set T := ∅.

2. Find the 'best' attribute Ai to split the sample data set S.

3. Add a (root) node n to T and label it with Ai.

4. For each attribute value a ∈ Ai/S appearing in S, add an outgoing edge ea to n and label
it with a.

5. For each edge ea:

a) Let Sa ⊆ S be the subset of data items containing attribute value a.

b) If a stopping criterion is met, then append a leaf node to ea and label it with the
associated class.

c) Otherwise apply the above procedure recursively to the subset Sa and append the
resulting subtree Ta to ea.
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This �simplistic [...] algorithm� (Dunham, 2003, p. 94) contains several placeholders including
the choice of a splitting criterion, the number of splits taken, the preferred tree structure
(e.g. deep vs. �at), an appropriate stopping criterion, and the pruning strategy to reduce tree
size (Dunham, 2003, p. 94-95). E�ectiveness and e�ciency of real-world decision tree learners
depend on how these placeholders are �lled.

Dunham (2003, p. 94) stresses that the performance of decision tree learning is mainly in�uenced
by the number of processed data items and by the selection of a splitting criterion. One viable
approach is the use of entropy in the well-known algorithm ID3 (Dunham, 2003, p. 97). Entropy
is applied in information theory to quantify �the amount of [...] surprise or randomness in a data
set� (Dunham, 2003, p. 97).

The entropy of a data set S is minimal when all contained items are members of the same
class (Dunham, 2003, p. 97). Since the objective of decision tree mining is to partition the
input data by class membership, the problem can be reduced to a minimization of the overall
partition entropy (Dunham, 2003, p. 98).

Formally2, we assume that the items s ∈ S can be divided into n disjoint classes {C1, C2, . . . , Ck}.
Let pi = P (s ∈ Ci) denote the probability that an item s is member of Ci. Then the entropy
of S is expressed by (Dunham, 2003, p. 98):

H(S) = H(p1, p2, . . . , pn) =
n∑

i=1

pi · log(1/pi). (4.9)

To �nd the best splitting criterion for a given input S, the ID3 algorithm evaluates the entropy
gained by the particular split (Dunham, 2003, p. 98). Let πA(S) = {S1, S2, . . . , Sk} be a
partition of S into k disjoint subsets by a splitting attribute A. The entropy gain of the split
is expressed by (Dunham, 2003, p. 98):

Gain(πA(S)) = H(S)−
k∑

i=1

P (Si) ·H(Si). (4.10)

By choosing the splitting criterion with maximum gain, the ID3 algorithm strives to achieve a
division of the input data into possibly equal-sized partitions in every step, roughly comparable
to the presented �20 questions game� heuristics (Dunham, 2003, p. 97).

On the downside, the algorithm must occasionally assign the same splitting attribute to multiple
nodes of the generated tree and �favors attributes with many divisions� (Dunham, 2003, p. 100).
The widely-used C4.5 algorithm extends ID3 in several aspects including �missing data [...],
continuous data [...], pruning strategies [...]� (Dunham, 2003, p. 100), and an improved splitting
criterion that reduces the number of divisions in the resulting tree (Dunham, 2003, p. 101).

4.1.4.2. Clustering

In clustering (Dunham, 2003, pp. 125), an input data set S is segmented into clusters of
similar items, where each cluster represents a di�erent class. Since the number of classes and
2The formalizations in this and the following paragraphs are adopted with modi�cations from Dunham (2003,
p. 98) using partition notation in the style of Angluin (1982).
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their membership functions are unknown in advance, unsupervised learning is applied. Several
clustering algorithms exists that di�er in the used clustering strategies and in the applied
similarity measures.

Clustering Strategies Concerning clustering strategies, Dunham (2003, p. 128) distinguishes
hierarchical, partitional, categorical, and large database approaches and characterizes them as
follows:

Hierarchical algorithms compute an increasingly (or decreasingly) re�ned hierarchy of clus-
terings. In the coarsest partition, all data items are in the same cluster, while in the �nest
partition each item belongs to an own cluster (Dunham, 2003, p. 128). Agglomerative (bottom-
up) strategies start from the �nest partition and proceed to an appropriate clustering by cluster
merging (Dunham, 2003, p. 132). Divisive (top-down) strategies begin with the coarsest parti-
tion and proceed by splitting inappropriate clusters (Dunham, 2003, p. 138). In any case, the
user can choose the most appropriate clustering from the hierarchy which is often output in
the form of a dendrogram, i.e. a tree of increasingly re�ned clusters (Dunham, 2003, p. 131).

Partitional algorithms only provide a single clustering as an output (Dunham, 2003, p. 138).
The main problem is therefore to �nd an appropriate number of clusters, which can be either
prede�ned by the user as an input parameter (Dunham, 2003, p. 138) or determined by the
algorithm at runtime using an error threshold (Dunham, 2003, p. 142).

Categorical algorithms are dedicated to the problem of clustering categorical (i.e. non-conti-
nuous) data (Dunham, 2003, p. 157). Large database approaches focus on the clustering of
large real-world databases where the input data set does not �t into working memory at once
(Dunham, 2003, p. 149).

Distance Measures (or similarity measures as the 'inverse' term) are used by cluster algo-
rithms to determine the distance (or similarity) between data items and clusters. Generally,
the distance between neighboring items belonging to the same cluster should be less than the
distance between those from di�erent clusters (Dunham, 2003, p. 129).

The distance between two data items is measured depending on the domain of the data at-
tributes. For data encoded by numerical feature vectors over a metric vector space, measures
like the Euclidian distance are applied (Dunham, 2003, p. 59):

dist(x,y) =

√√√√ d∑
i=1

(xi − yi)2 (4.11)

where x,y denote vectors of dimension d and xi, yi their components. As indicated above,
di�erent measures must be used for categorical data. One example is the Jaccard coe�cient

sim(x,y) =
x ∩ y

x ∪ y
(4.12)

that determines the similarity of two data tuples x,y by dividing the number of common
components by the number of overall components in both tuples (Dunham, 2003, p. 158).
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Example: Nearest Neighbour Algorithm Though numerous clustering algorithms exist, we
will only review one example here, that will also be applied in the process mining study reported
in Chapter 7. The Nearest Neighbor algorithm is a simple partitional algorithm based on
shortest cluster distance (Dunham, 2003, p. 142).

Let S = s1, s2, . . . , sn be a list of input data items, dist : S × S → [0, 1] a distance measure
and t ∈ [0, 1] a prede�ned threshold value. Then a set C = C1, C2, . . . , Ck of clusters can be
computed as follows (adopted with modi�cations from Dunham (2003, p. 142)):

1. Set C := ∅.

2. Dequeue the �rst item s0 from the list S and set C := {{s0}} as the initial cluster.

3. While |S| > 0:

a) Dequeue the next item s from the list.

b) Find the cluster Ci ∈ C that contains the item s′ ∈ Ci with the minimum distance
dist(s, s′) of all items clustered so far.

i. If dist(s, s′) < t set Ci := Ci ∪ {s}.

ii. Otherwise set C := C ∪ {{s}}.

4. Output the resulting cluster set C.

Di�erent from other partitional algorithms, the number of output clusters is not stated ex-
plicitly, but depends on the threshold t (Dunham, 2003, p. 142). The time complexity of the
algorithm is O(n2) since all pairs of input data items are compared (Dunham, 2003, p. 142).
An overview of further clustering algorithms is e.g. found in Dunham (2003, Ch. 5) and Cios
et al. (2007, Ch. 9)

4.1.4.3. Inductive Logic Programming

Inductive Logic Programming (ILP) is closely related to knowledge representation in predicate
logic and programming languages like Prolog (Bratko, 1990). According to Muggleton et al.
(1995, p. 243), the deduction process of inference engines (see Section 3.3.1.1) is inverted in
ILP: From an example knowledge base containing positive and negative facts, a set of predicate
logic rules (theory) is learned (induced) that abstractly describes the represented knowledge.

Nienhuys-Cheng and de Wolf (1997, pp. 166) formalize the basic ILP setting like this: A
theory is a �nite set of clauses Σ = {C1, C2, . . . , Cn}. E+ and E− denote possibly in�nite sets
of positive and negative example clauses (typically ground literals), and B denotes a �nite,
possibly empty, set of clauses representing available background knowledge.

Further following Nienhuys-Cheng and de Wolf (1997, p. 166), a theory Σ is correct with respect
to E+ and E− if it is consistent with E− and complete with respect to E+. Completeness means
that every clause e ∈ E+ can be derived from Σ (denoted as Σ |= E+). Consistency means
that no assignment of boolean values to predicates can be found that satis�es Σ ∪ E− where
E− = {¬ei|ei ∈ E−}.
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On this foundation a basic induction procedure is stated (adopted with modi�cations from
Nienhuys-Cheng and de Wolf, 1997, p.168): Let E+, E−, B be de�ned as above, such that B
is correct with respect to E+ and E−. Then Σ is induced as follows:

1. Set Σ to an initial value (e.g. Σ := ∅).

2. If Σ ∪B is correct with respect to E+ and E− then terminate and output Σ.

3. If ∃e ∈ E+ : Σ ∪ B 6|= e (Σ ∪ B is too weak) then generalize Σ and return to the second
step.

4. If ∃e ∈ E− : Σ ∪B |= e (Σ ∪B is too strong) then specialize Σ and return to the second
step.

ILP implementations re�ne this basic scheme in several dimensions, e.g. reviewed by Nienhuys-
Cheng and de Wolf (1997, pp. 169). Important criteria include the prede�ned language bias
related to the available logical language (e.g. Horn clauses) and the rules to modify, create, and
delete predicates of Σ (Nienhuys-Cheng and de Wolf, 1997, pp. 171).

4.1.4.4. Bayesian Networks

Bayesian networks are acyclic graph models that display dependencies between multiple random
variables in order to �represent knowledge about an uncertain domain� (Ben-Gal, 2007, p. 1). The
name relates to Bayes' well-known theorem to calculate conditional probabilities (e.g. Kjaerul�
and Madsen, 2005, p. 45).

According to Ben-Gal (2007, p. 1), �nodes [... in the graph] represent random variables [... and] edges
represent [their] direct dependencies�. Every node is furthermore inscribed with the conditional
probability distribution of the respective variable depending on its predecessors in the graph
(Ben-Gal, 2007, p. 1), (Chen, 2009, p. 121).

From an existing Bayesian network, new knowledge can be inferred in the form of predictive
and diagnostic support (Ben-Gal, 2007, p. 3): In the former case, the joint probability of a
child note ('e�ect') is calculated from the estimated probabilities of its predecessors ('causes')
(Ben-Gal, 2007, p. 3).3 In the latter case, the probabilities of causes are calculated from the
observation of an e�ect (Ben-Gal, 2007, p. 3).

Besides deductive reasoning, Bayesian networks can also be induced from observations (i.e.
data mining) with algorithms like maximum likelihood estimation and expectation minimization
(Ben-Gal, 2007, pp. 3-4). We will encounter Bayesian networks in the review of approaches
towards the identi�cation of cause-e�ect relations in MABS (e.g. Chen, 2009) in Section 5.

4.1.4.5. Techniques from Soft Computing

The term Soft Computing describes a range of algorithms and data representations inspired by
natural or social phenomena. Soft computing techniques include (Maimon and Rokach, 2008,
p. 1):

3The use of the terms 'cause' and 'e�ect' in this context is adopted from authors like Kjaerul� and Madsen
(2005, p. 2).
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• arti�cial neural networks: models and algorithms inspired by brain functions found in
animals and humans.

• evolutionary algorithms: optimization algorithms inspired by natural evolution.

• fuzzy logic: data representation and deduction rules based on 'soft', possibly overlapping
categories instead of boolean logic.

• swarm intelligence: optimization algorithms that simulate self organization and division
of labor found in natural swarming phenomena and colonies of insects.

In the following, we brie�y review neural networks, and evolutionary algorithms, that will be
referred to later in the context of process mining. Fuzzy logic is e.g. treated by Lämmel and
Cleve (2008, Sec. 2.4), swarm intelligence by Kennedy (2001).

Arti�cial Neural Networks: From the large body of neural network models and algorithms, we
present feed-forward networks and self-organizing maps as two common examples that support
di�erent data mining tasks.

A feedforward neural network consists of formal neurons as shown in Figure 4.2. In rough
analogy to natural neurons, these are basically threshold elements that compute a weighted sum
of their input signals. From this sum, an output is generated using a threshold (or activation)
function like a sigmoid or step function (see e.g. Ferber, 1995, p. 137).
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Figure 4.2.: �Functionality of a formal neuron (from Haykin, 1999, p. 11)�. Figure and caption
adopted from Page and Kreutzer (2005, p. 343; also in Knaak, 2002, p. 11).

A single neuron can solve simple classi�cation problems: When the components of a (numerical)
feature vector are assigned to the neuron's inputs, the output signal indicates class membership
(Dunham, 2003, p. 103). To learn a classi�cation function over an input vector space S, the
input weights of a neuron are adapted by supervised learning using the delta rule; e.g. described
by Lämmel and Cleve (2008, p. 185).

The classi�cation ability of single neuron layers is restricted to linearly separable functions
(Lämmel and Cleve, 2008, p. 187). This limitation is overcome by networks of multiple in-
terconnected layers. To train a multi-layer network, the simple delta rule cannot be applied
directly but error information must be fed back through the network using back propagation
(see e.g. Lämmel and Cleve, 2008, pp. 191; Ferber, 1995, p. 138).

111



4. Data Mining and Process Mining

A class of neural networks tailored towards clustering with unsupervised learning is called self
organizing maps (see e.g. Lämmel and Cleve, 2008, p. 261). A self-organizing map consists of
an input layer NI = {m1,m2, . . .mn} and a map layer NM = {n1, n2, . . . nk} of neurons mi, nj
(see e.g. Lämmel and Cleve (2008, p. 261)). The number of input neurons equals the dimension
n of the input vector space S, while the number k of map neurons is a �xed parameter.

Each input neuron mi is connected to all map neurons nj via weighted arcs wij (Lämmel and
Cleve, 2008, p. 262), i.e. each nj is assigned a vector wj = (w1j , w2j , . . . , wkj) (Lämmel and
Cleve, 2008, p. 265). This vector can be interpreted as the position of nj in S and used for
visualization in low-dimensional cases (Lämmel and Cleve, 2008, p. 268). In a training process
called competitive learning, the neurons are moved towards the centers of (preferably distinct)
clusters of input vectors (see e.g. Lämmel and Cleve, 2008, pp. 260, 265, 267).

Evolutionary Algorithms are heuristic optimization algorithms that simulate natural evolu-
tion. Data mining can be viewed as an optimization problem where the task is to �nd the most
appropriate model for the given input data (Dunham, 2003, p. 67).

Two common classes of evolutionary algorithms are genetic algorithms (GA) and genetic pro-
gramming (GP); see Burke and Kendall (2005, p. 14). Both approaches work with populations
of individuals: Like a DNA encodes features of an organism, each individual represents a solu-
tion to the given problem in a well-de�ned encoding (Dunham, 2003, p. 67).

In every iteration of the algorithm (generation), only the '�ttest' individuals with respect
to an objective function 'survive'. The next generation is set up by selection, splitting and
combination (crossover), and random modi�cations (mutation) of these individuals (Dunham,
2003, p. 67; Medeiros et al., 2004b, p. 5). The process is repeated until a stopping criterion,
like a maximum number of iterations or a desired goodness of the �tness function, is met (e.g.
Medeiros et al., 2004b, p. 13).

GA and GP mainly di�er in the encodings of individuals. GA are domain-independent since
very general encodings like bit strings are used. The main challenge is to encode problem
instances in this general form, and to de�ne appropriate crossover and mutation operations4.
In GP, individuals represent expressions of a programming language (e.g. LISP) in the form
similar to parsing trees (Poli et al., 2008, p. 9). Crossover and mutation are de�ned with respect
to the syntax of the underlying programming language, i.e. branches of the operator trees are
exchanged or modi�ed (Poli et al., 2008, pp. 15).

Due to large numbers of generations and individuals, the computational complexity of evolu-
tionary algorithm tends to be rather high. However, the inherent parallelism of the approach
allows for a straightforward execution in distributed environments (see e.g. Gehlsen, 2004).

4.1.5. Tools for Data Mining

In rough analogy to Page's (1991, Sec. 6.1) classi�cation scheme for simulation software, we
can distinguish the following types of software systems for data mining:

1. General programming languages and data mining APIs5,
4see Medeiros et al. (2004b, pp. 8) reviewed in Section 4.2.3.4 for an example from process mining
5Application Programming Interface
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2. data mining-speci�c programming languages and databases,

3. knowledge discovery and scienti�c work�ow systems

4.1.5.1. Programming Languages and APIs

Obviously, data mining algorithms can be implemented in any general programming language.
C and C++ are often preferred for performance reasons, while Java is especially common in
the academic �eld. One important aspect is database access, which many current programming
languages support in the form of libraries for database access via SQL (e.g. JDBC 6 for Java)
and object/relational mappers (e.g. Hibernate7).

To promote re-usability and standardization, several object-oriented frameworks and APIs for
data mining have been developed in industry and education. A common academic example is
the Java-based open source framework WEKA from Waikato University (New Zealand) (Hall
et al., 2009). This framework provides common interfaces and base classes for di�erent data
mining tasks as well as implementations of several data mining algorithms.

4.1.5.2. Data Mining-Speci�c Languages

These are often extensions of database query languages like SQL (Structured Query Language;
see e.g. Cannan, 1993). One example is DMQL (Data Mining Query Language) that extends
SQL with data mining-speci�c constructs to state background knowledge in the form of ontolo-
gies, rules for data mining, threshold values, etc. (Dunham, 2003, p. 18).

The development of data mining-speci�c query languages must be accompanied by extensions
of database management systems (DBMS) towards data mining, as well as extensions of data
mining algorithms towards the handling of real-world databases (Dunham, 2003, p. 17). How-
ever, Dunham (2003, p. 17) notes that the state of the art in data mining systems is roughly
comparable to the state of DBMS �in the early 1960s�.

4.1.5.3. Knowledge Discovery Systems

Analogous to the classi�cation scheme by Page (1991, Sec. 6.1), Ahonen (1998) de�nes a knowl-
edge discovery system (KDS) as a software tool that supports a relevant number of phases in
the knowledge discovery process (see Section 4.1.1).

Dunham (2003, p. 18) uses the related term �knowledge and data discovery management system
(KDDMS)� to describe (next generation) data mining systems

�that include not only data mining tools but also techniques to manage the underlying
data, ensure its consistency, and provide concurrency and recovery features. A KDDMS
will provide access via ad hoc data mining queries that have been optimized for e�cient
access.�

6see http://www.oracle.com/technetwork/java/overview-141217.html, last visit 2012-09-18
7http://www.hibernate.org, last visit 2012-09-18
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The de�nition of KDS includes KDDMS but also applies to systems with a less distinct DBMS
focus. Ahonen (1998) states that �a lot of generic single-task tools [are] available� in data mining
and regards the intuitive integration of such tools, the related �concepts and vocabulary�, and
available domain-speci�c knowledge as main challenges in the development of KDS.

Today, an increasing number of systems dedicated or at least applicable to knowledge discov-
ery can be found. These are rooted in �elds like statistics (e.g. the commercial SPSS suite8)
and scienti�c computing (e.g. MATLAB9). The open source tool WEKA (see above) can also
be regarded as a knowledge discovery system since it includes three graphical user interfaces
Explorer, Experimenter, and Knowledge Flow that support the interactive and automated ex-
ecution of knowledge discovery processes (Hall et al., 2009, pp. 10).

In the following paragraphs, a common technique to model knowledge discovery processes in
KDS is described. The choice of content and literature references is largely based on the diploma
thesis by Simmendinger (2007, Ch. 3).

4.1.5.4. Data Flow Modeling

Di�erent from control �ow modeling, data �ow modeling is focused on multi-step transfor-
mations from input to output data (Shields, 2007, cited in Simmendinger, 2007, p. 32). A �
possibly concurrent � execution order of the transformations is de�ned by dependencies between
producers and consumers of the exchanged data elements (Simmendinger, 2007, p. 32).

Data �ow diagrams (DFDs) from structured system analysis are one popular notation to model
data �ow at the conceptual level using four symbols shown in Figure 4.3 (see e.g. Lee and Tan,
1992, pp. 4-5). These symbols are su�cient to display the fundamental data �ow between
processes of a system, while omitting details of control �ow (see e.g. Bruza and van der Weide,
1993, p. 1).

Figure 4.3.: Elements of data �ow diagrams with example instantiations from the data mining
domain (adopted with modi�cations from Lee and Tan, 1992, p. 5).

Since the informal notation of DFDs lacks a concise operational semantics (Bruza and van der
Weide, 1993, p. 2), extensions and mappings to formal languages like path expressions and
Petri nets (see Section 2.3.2.1) have been proposed (e.g. Bruza and van der Weide, 1993, pp. 4-
9). Mapping data �ow notations to executable formalisms leads to the challenge to represent
data and control �ow in the same model while retaining understandability and maintainability
(Bowers et al., 2006, p. 2) as well as support for concurrency and stream processing (Bowers
et al., 2006, p. 1, cited in Simmendinger, 2007, p. 33).

8http://www.spss.com, last visit 2010-12-01.
9http://www.mathworks.com, last visit 2010-12-01.
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Figure 4.4.: Two of four mappings of DFN patterns to reference nets shown by Farwer and
Varea (2005, p. 8).

This problem is caused by the fact that control �ow constructs are, to a certain extent, also
required in data �ow applications, e.g. to realize fault-tolerance, adaptivity, and access to
complex data structures (Bowers et al., 2006, p. 2). However, the modeling of control �ow
with mere data �ow constructs often results in unnecessarily complicated work�ows that mix
low level control �ow constructs with high level components (Bowers et al., 2006, p. 2). In
the following we brie�y review a theoretical and a practice-oriented approach to tackle this
problem.

Dual Flow Nets and Object Petri Nets Farwer and Varea (2005) propose to disentangle
data and control �ow with the aid of an object-based nets-within-nets formalism (see Section
2.3.2.5). The proposal is based on Dual Flow Nets (DFNs), a variant of P/T nets with 3 node
types including places as storage elements, transitions as control �ow elements, and hulls as
transformational elements for arithmetic operations on data (Farwer and Varea, 2005, p. 2).
DFNs are an earlier attempt to solve the problem of combined data and control �ow by means
of a modi�ed execution semantics (Farwer and Varea, 2005, p. 1).

A marking of a place p is a tuple (n, z), where n is the number of control �ow tokens and z
an integer data element residing at p (Farwer and Varea, 2005, p. 3). The synchronization of
data- and control �ow proceeds in two directions: A transition can be inscribed with a guard
function from the set G = {=, 6=, <,>,≤,≥} as an additional �ring condition evaluated over
the data tokens on incoming places (Farwer and Varea, 2005, p. 2). Hulls are triggered by the
�ring of incoming transitions to perform a summation of data elements from incoming places
(Farwer and Varea, 2005, pp. 4,8).
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Farwer and Varea (2005) transform DFNs to a subset of reference nets to receive a more 'Petri
net-like' �ring semantics. Basically, the control �ow of the DFN is extracted into a system net.
The arithmetic operations by the hulls are realized in an object net �owing through the system
net, where the triggering of hulls by transitions is mapped to synchronous channels. Farwer
and Varea (2005, p. 8) map four main patterns of DFNs to reference nets (see Figure 4.4) and
present a net for the computation of the Fibonacci series as an example (Farwer and Varea,
2005, p. 11).

Structured Composition of Data and Control Flow Bowers et al. (2006) present a more
practical approach to combine data and control �ow modeling implemented in the scienti�c
work�ow system Kepler. As summarized by Simmendinger (2007, p. 44), the approach utilizes
a combination of Data�ow Process Networks, a common notation for data �ow modeling, and
�nite state machines to model control �ow. Furthermore, Bowers et al. (2006, p. 4) distinguish
between actor components as implementations of concrete processing algorithms and frames
as abstract speci�cations of functionality by signatures (i.e. input and output ports).

Figure 4.5.: Structured modeling of scienti�c work�ows with alternating data and control �ow
layers. Adopted with modi�cations from Bowers et al. (2006, p. 6, cited in Sim-
mendinger, 2007, p. 45).

These concepts are recursively embedded in a three-level hierarchy shown in Figure 4.5 and
reviewed by Simmendinger (2007, p. 44) as follows: (1) On the top level, data �ow components
for speci�c tasks are composed into a data �ow network. (2) A top level frame is implemented
by one or more alternative state machines representing the local control �ow of the respective
task. (3) Each state of the automaton is again a frame that can be implemented by a data �ow
network for the actual data processing performed in that state.

By keeping control �ow local to the state machines, implementations of data processing algo-
rithms remain largely stateless and easy to re-use as part of di�erent work�ows (Simmendinger,
2007, p. 44). Simmendinger (2007, p. 44) gives the example of a work�ow in a web service-
based system: Communication-related aspects like load-balancing and authentication can be
modelled in the state machine and thereby kept out of the data �ow model that performs the
actual processing when an appropriate state is reached.
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Despite the di�erent underlying intentions (i.e. theoretical veri�ability vs. practical applicabil-
ity), the approach by Bowers et al. (2006) also shares a few common ideas with the reference
net-based model by Farwer and Varea (2005):

1. Layers 2 (control �ow) and 3 (low level data �ow) in the model by Bowers et al. (2006)
roughly correspond to the separation of system and object nets in the model by Farwer
and Varea (2005). However, the low-level data �ow models in the former approach do
not 'move' through the superordinate control �ow model but are assigned to �xed states.

2. The combination of multiple task-speci�c notations (i.e. data �ow networks and state
machines) slightly resembles the possibility to use di�erent formalisms in Renew (Sim-
mendinger, 2007, p. 44).

4.1.5.5. Scienti�c Work�ow Systems

Data �ow modeling in scienti�c applications has recently received recurring interest under the
notion of scienti�c work�ows. The basic idea is to apply and adapt concepts and tools from
business processes modeling for the scienti�c domain. Based on the literature, Simmendinger
(2007) summarizes the following characteristics of scienti�c work�ows as compared to business
work�ows (described in Section 2.3.3):

• increased importance of data �ow (Simmendinger, 2007, p. 27),

• integration of several heterogeneous tools and data formats into a common work�ow
(Simmendinger, 2007, pp. 27, 44),

• appropriate user interaction and guidance in complex tasks (Simmendinger, 2007, pp. 29,
44),

• support for ressource-intensive, long running calculations in distributed environments
(Simmendinger, 2007, p. 29).

The aspect of distribution has received speci�c attention in the context of recent distribution
concepts like Grid (e.g. Guan et al., 2006) or Cloud Computing (e.g. Ho�a et al., 2008). It is,
however, not a de�ning property of scienti�c work�ow systems. Especially in data mining, sev-
eral work�ow-based systems mainly focus on data �ow modeling, method and tool integration,
and user assistance.

Authors like Rice and Boisvert (1996) use the term 'Problem Solving Environment' (PSE)
for systems that combine domain speci�c libraries with a user interface, a knowledge base
of common patterns, and methods for tool integration (cited in Simmendinger, 2007, p. 28).
Simmendinger (2007, p. 29) notes that the guiding patterns from the knowledge base can be
well realized in the form of work�ows.

Two common examples of PSEs reviewed by Simmendinger (2007, Sec. 3.4) are Keppler/Pto-
lemy10 and KNIME 11. Keppler is a Java-based scienti�c computing system that utilizes the
structured modeling approach by Bowers et al. (2006) described above. KNIME (Knowledge
Information Miner) is a work�ow-based, extendable knowledge discovery system that builds

10http://www.kepler-project.org, last visit 2010-12-15.
11http://www.knime.org, last visit 2010-12-15.
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upon the Eclipse platform and integrates several third-party libraries (e.g. WEKA) in the form
of components. Section 8.4.3 presents our application of KNIME for a prototypical integration
of process mining techniques into an Eclipse-based simulation system.

4.2. Process Mining

In this section, process mining is introduced as a speci�c form of data mining guided by per-
spectives of (business) process and organizational modeling. After reviewing general de�nitions
and classi�cations, process mining techniques with relevance for this thesis are presented. A
brief summary of applications is �nally followed by an introduction of the process mining tool
ProM. This tool forms a de-facto standard in process mining and the basis for the algorithms
implemented in this work.

4.2.1. De�nitions

In (Cabac et al., 2006b, Sec. 3.1) we cited an early de�nition by Maruster et al. (2002, p. 1)
that describes process mining as �method for distilling a structured process description from a set of
real executions�. Thus, the objective is to reconstruct a previously unknown process model from
log data produced by example executions, and to present the results in a structured modeling
language like e.g. Petri nets or UML diagrams.

Since the �eld has undergone large progress during the last decade, the above de�nition seems
too narrow to capture the diversity of current research activities in process mining (Dongen
et al., 2006b, p. 145). According to Aalst (2010a, p. 29), �The idea of process mining is to discover,
monitor and improve real processes (i.e. not assumed processes) by extracting knowledge from event
logs.� Similarly, a call for workshop papers states that �the area of process mining is concerned
with the analysis of business processes in general, where the basis of this analysis is formed by the
recorded behavior of an information system in the form of an event log.�12 These descriptions imply
that process mining is not limited to 'mining' (i.e. process discovery) in the narrow sense, but
includes further tasks like conformance checking and extension of process models as well (Aalst,
2010a, p. 29).

Authors like Aalst (2010a, p. 28) emphasize the proximity of process mining to (business)
process modeling and analysis, which is mirrored in the alias term 'work�ow mining'. Business
process analysis is the most prominent application of process mining. A major contribution of
business process modeling (BPM) consists in a set of 'process mining perspectives' derived from
BPM methodologies and notations. These perspectives represent di�erent views that guide the
analysis of process logs.

With this broad de�nition in mind, a clear distinction between process mining and data mining
is not easy. Based on the literature, di�erent aspects can be identi�ed:

• Type of input data: Process mining is normally performed on process execution logs, i.e.
lists of time stamped or at least chronologically ordered event or activity traces (Aalst

12http://www.mail-archive.com/petrinet@informatik.uni-hamburg.de/msg00770.html, last visit 2010-12-
28.
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et al., 2012, p. 174). However, log data is not the only input for process mining algorithms:
Attributional data embedded into process logs is considered to reconstruct decision models
(Rozinat and Aalst, 2006) or ontologies (Medeiros et al., 2007). The extension of input
models into improved output models is also regarded as process mining (Aalst, 2010a,
p. 29).

• Type of output models: Process mining typically deals with graph-structured models re-
lated to process modeling notations (Aalst and Weijters, 2004, p. 239) like Petri nets,
event-driven process chains (EPCs) or communication diagrams ('social networks'). In
contrast, data mining is often concerned with models that �are not process-centric� (Aalst
et al., 2012, p. 176), like rule-based and numerical models. However, this distinction
appears rather weak since process mining has increasingly adopted algorithms and mod-
els from data mining (e.g. decision trees in Rozinat and Aalst, 2006), and data mining
considers sequence, automata, and network models as well.

• Application domain: Most work in process mining is rooted in the �eld of business process
analysis. Other application �elds like e.g. software engineering (Rubin et al., 2007) have
been considered as well.

• Guiding perspectives: One of the most characteristic properties of process mining is its
guidance by perspectives from BPM (Aalst et al., 2012, p. 176). While multi-perspective
approaches are also a topic of data mining research (see e.g. Furtado, 1999), the closest tie
of mining techniques to multi-perspective modeling might be observed in process mining.

In the following chapters, we argue that the relation of process mining to multi-perspective
modeling approaches makes these techniques especially well-suited for the analysis of multi-
agent systems and simulations. For the moment, we can summarize the above observations
from the literature as follows: Process mining is a sub-discipline of data mining concerned with
computer-aided techniques for the acquisition, analysis, validation, improvement, and transfor-
mation of (business) process and organizational models on the basis of event- or activity-oriented
logs of process executions. The development and application of process mining techniques is
guided by process modeling languages and methodologies covering multiple perspectives.

4.2.2. Classi�cation of Process Mining Techniques

Due to the broad scope of process mining, several attempts have been made to structure the �eld
by classi�cation of the available techniques. As one result of a workshop on �Process Mining
and Monitoring of Services and Processes�, Aalst (2006, p. 3-4) proposes the following (mostly
orthogonal) dimensions for classi�cation:13

1. Three di�erent 'types' of process mining are distinguished by the presence of an a-priori
model : In process discovery, no model exists beforehand, but a model is discovered from
an execution log. In conformance checking and extension, an existing model is validated
or modi�ed respectively.

2. Several perspectives can be identi�ed as di�erent functional and non-functional views
upon the analyzed system. The functional perspectives include aspects of control �ow,

13The reduction of the original number of 6 dimensions to 5 by integrating the dimensions perspectives and
functional vs. non-functional follows the summary by Weber and Wittenberger (2007, p. 12).
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organization, work cases, resources, or data. The non-functional perspectives include
measures of process performance and quality.

3. The considered number of process instances might range from a single case over multiple
cases to all cases observed in a process log.

4. The examined time period can take into account historic data to discover characteristic
process behavior or real time data to analyze the present situation.

5. Di�erent result types are distinguished by their purpose, i.e. if the result merely informs
about properties of the reconstructed process, or if an action is taken on this basis.

Actual classi�cations are often limited to process mining types and perspectives (e.g. Weber and
Wittenberger, 2007, Sec. 2.1�2.2), additionally taking into account certain data- and algorithm-
related properties that are considered as challenging (e.g. Weber and Wittenberger, 2007, p. 14).
In the following, we inspect these most relevant dimensions in detail.

4.2.2.1. Process Mining Perspectives

The introduction of di�erent perspectives into process mining was mainly promoted by the
research group at Eindhoven University (the Netherlands; see e.g. Aalst and Song, 2004a) and a
group of authors around Professor Clarence Ellis from the University of Colorado-Boulder (USA;
see Rembert and Ellis, 2009). While the former researchers identify process mining perspectives
in an ad-hoc fashion (Rembert and Ellis, 2009, p. 35), the latter provide a formalization based
on the Information Control Net (ICN) meta-model for BPM (Rembert and Ellis, 2009, p. 37).
Both approaches are contrasted in the following.

Eindhoven Approach As criticized by Rembert and Ellis (2009), the Eindhoven research group
mainly enumerates relevant perspectives driven by the development and application of algo-
rithms. Nevertheless, this proceeding helped to identify a number of important perspectives.
There is some agreement in the literature that the most relevant perspectives � with respect to
the number of available algorithms and applications � are the control �ow perspective and, to
a lesser extent, the organizational perspective (e.g. Aalst, 2010a, p. 30; see also Figure 4.6).

Though publications di�er in the identi�cation of further relevant perspectives, the following
list can be compiled from the literature:

1. Control �ow perspective: The control �ow of the considered process is reconstructed
or analyzed based on log data (Aalst, 2010a, p. 30). The analysis might include basic
control �ow constructs like �sequences, branches, loops, and concurrency� (Cabac et al.,
2006b, Sec. 3.1.1), as well as complex work�ow patterns such as transactions. Aalst and
Weijters (2004, p. 235) note that the focus on concurrency distinguishes process mining
from earlier approaches for grammar inference (see Section 4.2.3.3).

2. Organizational perspective: This perspective �focuses on the "structure and the population"
of the organization in which the processes are observed [..., including] "relations between roles
[...] groups [...] and other artifacts" (Aalst and Weijters, 2004, p. 10)� (Cabac et al., 2006b,
Sec. 3.1.1). It is alternatively called resource perspective (Aalst, 2006, p. 4).
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Figure 4.6.: A visualization of example process mining perspectives identi�ed by the Eindhoven
research group. Adopted with modi�cations from Dumas et al. (2005, p. 239).

3. Information perspective: This perspective is concerned with properties of �control and
production data� processed in a work�ow (Aalst and Weijters, 2004, p. 237), and is also
called data perspective (Aalst, 2006, p. 4). One example is the reconstruction of branching
decisions of a control �ow model from attributes of the processed data (decision mining;
see e.g. Rozinat and Aalst, 2006).

4. Application perspective: According to Aalst and Weijters (2004, p. 237), the view is on
software applications used during the processing of a work�ow. Though the authors do
not name particular examples, work on web service mining (Dustdar and Gombotz, 2006)
might be assigned to this perspective.

5. Case perspective: This perspective concentrates on work case-related properties like the
particular path taken in the work�ow, the actors involved, or values of certain data
attributes in a work�ow instance (Aalst, 2010a, p. 30).

6. Performance perspective: This non-functional perspective deals with quantitative �key
performance indicators such as �ow time, utilization, service level, etc.� (Aalst, 2006, p. 4).
Due to the focus on temporal measures, time perspective is an alternative name (Aalst,
2006, p. 4).

7. Quality perspective: Another non-functional perspective concerned with �quality measures,
e.g. the number of failures, near-failures, customer satisfaction, etc.� (Aalst, 2006, p. 4).

8. Semantic perspective: In a position paper on semantic process mining (Medeiros et al.,
2007, p. 1253), this perspective is characterized by a focus on semantic concepts and
relations (i.e. ontologies) that underly a process de�nition. On the one hand, logs can be
enriched with semantic information to improve the capabilities of mining algorithms; on
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the other hand, (parts of) ontologies might be reconstructed from process logs (Medeiros
et al., 2007, p. 1253).

Two further research directions in the Eindhoven group with a focus on speci�c log types are
activity mining and change mining. Both are not explicitly introduced as perspectives but
might be understood this way. Activity mining is concerned with the reconstruction of well-
de�ned task descriptions (such as 'submit order') from logs containing low-level operations like
access to certain database attributes (see e.g. Günther et al., 2010). Change mining attempts
to detect changes of a work�ow schema (e.g. addition or removal of tasks) over time from logged
change operations (see e.g. Günther et al., 2006).

Researchers have repeatedly stressed the need for algorithms that take into account perspectives
other than control �ow (see e.g. Aalst and Weijters, 2004, p. 237). Aalst and Weijters (2004,
p. 237) especially emphasize the relevance of links between di�erent perspectives. Nevertheless,
a strong focus on the control �ow perspective can still be observed, followed by signi�cantly
fewer work on organizational and data perspectives. Further perspectives are more or less
limited to individual researchers and publications.

Information Control Net Approach Rembert and Ellis (2009, p. 35) argue that an ad-hoc
approach complicates the de�nition of new perspectives and algorithms as well as the compar-
ison of existing algorithms for the same perspective (Rembert and Ellis, 2009, p. 36). These
authors even hold this shortcoming responsible for the lack of work on perspectives beyond
control �ow (Rembert and Ellis, 2009, p. 35). As a solution, they propose a formalization of
process perspectives based on the concept of process dimensions from the Information Control
Net (ICN) meta-model (Rembert and Ellis, 2009, p. 36):

�A process dimension is any measurable characteristic of a business process, such as the
activities that compose it, the agents that collaboratively execute it, and the artifacts it
uses and produces. [...]

A process perspective is a pair of sets (D,M) where D is a set of process dimensions and
M is a set of dimensional mappings over and between those process dimensions in D.�

The entities and relations of a certain process perspective are explicitly represented by either
a process model or a process pattern (Rembert and Ellis, 2009, p. 37). Both terms are distin-
guished as follows:

�A process entity is any abstract, concrete, active, or functional resource that is used during
the execution of a process instance. A process entity can be decomposed into an arbitrary
number of (sub)process entities. [. . . ]� (Rembert and Ellis, 2009, p. 36)

�A process model [...] describes the appropriate mappings between all of the process entities
in the process dimensions used in a particular process perspective. [...]

A process pattern [...] describes the relationships of only a portion of the process entities
in one or all of the process dimensions used.� (Rembert and Ellis, 2009, p. 37)

An example of a process model is a global control �ow model that relates all activities (process
entities in the process dimension activities) of a process based on their precedences (Rembert
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and Ellis, 2009, p. 37). An example of a process pattern is a mapping in the decision perspec-
tive14 that relates some activities (namely the decision activities) of a process model to decision
rules (Rembert and Ellis, 2009, p. 37).

Practical bene�t of the presented de�nitions is established by relating it to logs used in process
mining and by stating a procedure for the systematic development of mining algorithms for
arbitrary perspectives. The relation between process perspectives and logs is straightforward:
A log can be regarded as a matrix where each column represents a process dimension (e.g.
process instance, activity name, executing agent, and time stamp) and each row represents a
logged event with certains values bound to each dimension (Rembert and Ellis, 2009, p. 37).

The proposed approach towards mining arbitrary process perspectives is a rather sketchy, gen-
eral procedure that consists of four steps (Rembert and Ellis, 2009, p. 38):

1. The relevant dimensions D and the process entities that constitue their domains15 are
identi�ed for the given perspective.

2. The relevant dimensional mappings M are identi�ed.

3. An appropriate process model or pattern to represent the given perspective is chosen or
designed.

4. A mining algorithm is chosen or developed that reconstructs the values and mappings for
the considered dimensions from the log.

Rembert and Ellis (2009, Secs. 4.1, 4.2) apply this procedure to the behavioral (or control �ow)
perspective by reconstructing ICN Activity Precedence Graphs, and to the role assignment
perspective (i.e. information about which role executes which activities) by discovering ICN
Role Assignment Graphs from event logs. The authors also name several examples of further
process perspectives, such as data �ow (Rembert and Ellis, 2009, p. 40), and dimensions, such
as spatial locations, money, or goals (Rembert and Ellis, 2009, p. 37).

By the example of role assignment mining, Rembert and Ellis (2009, p. 40) show that the
complexity of the reconstruction step might di�er depending on the domains of the process
dimensions: If the domain roles consists of atomic process entities (e.g. represented by role
names like 'customer' or 'insurance agent'16), the relation between roles and activities can be
reconstructed by simple selection of values from the log. If the log only contains agent names
without explicit role information, the reconstruction is more di�cult. Roles must be inferred
from the relation between agents and activities as composite process entities, e.g. by means of
clustering (Rembert and Ellis, 2009, p. 40).

In Section 6.2, we will follow the approach by Rembert and Ellis (2009) to identify perspectives
for process mining in MA(B)S.

4.2.2.2. Process Mining Tasks and Use Cases

The distinction between di�erent process mining �types� depending on the existence of an a-
priori model is another common dimension for classi�cation (see e.g. Aalst, 2010a, p. 29). In

14also called information or data perspective above
15Rembert and Ellis (2009, p. 36) call the domain of a process dimension the dimensional type.
16examples inspired by Rembert and Ellis (2009, p. 36)
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accordance with researchers like Goedertier et al. (2008, p. 47), we refer to this dimension
as process mining tasks for better compliance with the data mining literature (see Section
4.1.2.1). In the following, we brie�y review the main process mining tasks and relate them to
the predictive and descriptive data mining tasks listed in Section 4.1.2.1.

Classi�cation by the Eindhoven Research Group The main process mining tasks identi�ed by
the Eindhoven research group include (see Aalst, 2006, p. 3, cited in Weber and Wittenberger,
2007, p. 12):

• Process discovery : Process mining in the narrower sense, i.e. reconstruction of process
and organizational models from execution logs.

• Conformance checking : Techniques for the assessment of conformance between process
models and logs. This includes algorithms and distance measures to analyze the similar-
ity between di�erent process models (delta analysis) as well as techniques to check the
compliance of execution logs against a process model.

• Extension: An existing process model is extended, enriched, or improved. Extension
algorithms take a process model and an execution log as input and return a new process
model that is extended by information mined from the log.

Ailenei et al. (2012) re�ne these basic process mining tasks by identifying and validating a
set of 18 more detailed use cases for process mining in an empirical study. The use cases
capture common requirements on process mining techniques and tools, such as determining the
�most frequent path in the process� (in process discovery) or �exceptions from the normal path� (in
conformance checking); see Ailenei et al. (2012, p. 79).

In the context of business process mining and simulation, Aalst (2010b, pp. 6) distinguishes 10
di�erent �activities� performed to improve business processes on the basis of simulation models
and event logs: discovery, enhancement, diagnosis, detection (of deviations), (conformance)
checking, comparison, promotion (of actual model features into reference models), exploration,
prediction, and recommendation. The activities are subsumed under the metaphors of �cartog-
raphy, auditing, and navigation� (Aalst, 2010b, p. 7)

Section 6.3 will present use cases for the application of process mining to MA(B)S. Concerning
their granularity, these might be positioned in between the general process mining tasks from
(Aalst, 2006) and the �ne-grained use cases from (Ailenei et al., 2012). They also exhibit close
relations to the �activities� (e.g. use case 'exploration') identi�ed by Aalst (2010b).

Relations to Data Mining Tasks In Section 4.1.2.1 we have cited the most common data
mining tasks. We will now discuss their meaning for process mining and their relation to the
three process mining tasks.

Classi�cation is on the one hand related to conformance checking, which can be regarded as
a (binary) classi�cation problem, whether or not a given log complies to a process model. On
the other hand, supervised algorithms to learn classi�cation models can be applied to process
discovery. This includes decision trees in the data (Rozinat and Aalst, 2006) and role assignment
perspectives (Ly et al., 2006) as well as ILP in the control �ow perspective (Goedertier et al.,
2008).
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Predicting the future course of a running process based on historical log data is important for
process analysis. One approach towards �ow prediction based on process mining is found in
(Schütt, 2003).

Regression analysis has been used for process mining in the control �ow perspective (Maruster
et al., 2002) and for the analysis of resource behavior (Nakatumba and Aalst, 2009). Time
series analysis has, to our knowledge, not been applied in the process mining context yet.

Clustering is an important supplementary task in process mining. It is applied when relevant
composite process entities (e.g. activities, roles, or process instances) are not explicitly logged
(see Rembert and Ellis, 2009, p. 40; reviewed in Section 4.2.2.1). If, for example, a log contains
execution instances stemming from di�erent process models, an overall model mined from the
log might be unclear and adulterant. Clustering can appropriately partition the log prior to
process discovery (see e.g. Medeiros et al., 2008b).

Summarization: Besides the reconstruction of process models, simple summarizations of process
logs (e.g. which event types and executing agents appear) are also relevant for process mining
and supported by software tools like ProM (see Section 4.2.6.1).

Association rule mining is well-applicable to the data perspective. According to Günther et al.
(2008, p. 75), association rules can e.g. display correlations between process model changes and
values of certain data attributes as hints why the model was changed.

Though sequence discovery is closely related to process discovery, there is one important di�er-
ence: The goal is not to reconstruct a full process model, but a set of frequent process patterns
(according to the above de�nitions from Rembert and Ellis, 2009) that display common tem-
poral relations between activities.

4.2.2.3. Properties of Data and Algorithms

Besides perspectives and tasks (or use cases), a number of algorithm- and data-related proper-
ties are commonly used to classify process mining techniques. This includes:

1. properties of the input data (logs) that an algorithm operates on,

2. characteristics of the algorithm itself,

3. ability of an algorithm to cope with certain constructs in the process model that generated
a log, and

4. properties of the output model representation.

Properties of Log Data Process logs can be event- or activity-based17 (see e.g. Sun et al.,
2011, p. 296), where both terms are used analogous to Section 2.2.2: Event-based logs consist of
entries that represent momentary, possibly time-stamped, events listed in chronological ordered
(Sun et al., 2011, p. 296). Activity-based logs contain related start and end events of time-
consuming activities (Sun et al., 2011, p. 296). In terms of Petri nets, an event-based log

17Authors like Medeiros (2006, p. 16) also refer to these as logs of atomic (i.e. event-based) and non-atomic (i.e.
activity-based) task.
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corresponds to a sequence and an activity-based log to a causal net (Section 2.3.2.3; see also
Dongen and Aalst, 2004, p. 366; Dongen et al., 2006a).

Since temporal overlaps between activities provide hints towards concurrency, activity-based
logging eases the detection of concurrent tasks (Medeiros, 2006, p. 16). Log entries might
contain further data values of arbitrary process dimensions as additional information for process
mining.

Incomplete or noisy logs, in contrast, impede process discovery in general: Completeness refers
to the fact that any data mining algorithm requires an appropriate number of samples to
reliably infer properties of the underlying model (Aalst, 2010a, p. 37). In control �ow discovery,
di�erent degrees of log completeness are considered (Aalst, 2010a, p. 37): The strong notion
of completeness requires every execution path through a process model to be present in the
log, which is practically impossible for cyclic models. Local completeness only requires every
possible direct succession of activities to be traced.

Characteristics of Mining Algorithms Based on the work by Medeiros (2006, Sec. 2.1), Lang
(2008, p. 55) summarizes a number of dimensions to classify control �ow mining techniques by
algorithm-related properties. Among others, this includes:

• Single-phase vs. multi-phase: Some algorithms reconstruct the resulting model 'in one go',
while others execute a chain of steps with intermediate model representations (Medeiros,
2006, p 16).

• Mining strategy : Aalst and Weijters (2004, p. 240) refer to this as the �local/global dimen-
sion�. Locally-optimizing techniques stepwise reconstruct a model from elementary local
information (e.g. the successor relation), while globally-optimizing techniques search for
a model that describes the whole input data set at once (Lang, 2008, p. 56). Hybrid
approaches integrate local and global search (Lang, 2008, p. 56).

• Causality metrics: Lang (2008, pp. 56) mainly distinguishes neighborhood-based metrics
from successor-based metrics: The former only regard for direct succession, while the
latter also take indirect succession into account.

• Mined modeling constructs: This dimension will be discussed in more detail in the next
paragraph.

Besides the above dimensions, Medeiros (2006, p. 16) considers the fact if a whole model or a
partial model is mined. In a comprehensive review of current process mining research, Tiwari
et al. (2008, pp. 7) use the origin of the applied technique as another dimension. According to
their review, existing techniques are based on genetic algorithms, event driven process chains,
Markov chains, cluster analysis, neural networks, Petri nets, data mining, and other algorithmic
approaches. The majority of reviewed algorithms is based on Petri nets (> 20), data mining
techniques (> 5), and other approaches (> 25); see Tiwari et al. (2008, p. 10).

Properties of Generating Models A number of control �ow constructs have been identi�ed as
di�cult to be reconstructed from process logs (e.g. Aalst and Song, 2004a). An early approach
by Herbst (2001, pp. 61) classi�es process models by the presence or absence of concurrency and
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duplicate tasks (see Section 2.3.2.4), where process models with both constructs are regarded
as the most demanding.

In their research agenda, Aalst and Weijters (2004) present a more exhaustive list of challenging
constructs including hidden tasks, duplicate tasks, (short) loops, and non-free-choice constructs
(see Section 2.3.2.4). Medeiros (2006, pp. 54) identi�es relations between these constructs and
substantiates the di�culty of their reconstruction, among others, by the fact that �the same
set of ordering relations [...] can be inferred when the original net contains one of these constructs.�
Naively speaking, we can e.g. infer from the repeated occurrence of an activity a in the trace
of a process instance that either a is part of a cycle or that a is a non-unique label.

In recent years, several algorithms have been developed that target these constructs as well
as more complex work�ow patterns, such as transactions (see e.g. Gaaloul et al., 2004). A
quantitative overview of existing techniques for the most relevant control �ow constructs is
found in (Tiwari et al., 2008, p. 15).

Properties of Output Model Representations The choice of an appropriate representation
for reconstructed models depends on the domain context of process mining, i.e. which modeling
language is common there. Internally, many algorithms for control �ow discovery use rather
abstract representations which are transformed into more readable notations for display. In
this regard, Schütt (2003, p. 34) distinguishes algorithms based on dependency graphs (or
matrices) and algorithms based on grammars (or automata). The former are tailored towards
the detection of concurrency, while the latter are better suited to detect alternatives (Schütt,
2003, p. 34), cycles, and duplicate tasks.

Figure 4.7.: Di�erent model representations in process mining: Dependency graphs, Petri nets,
and �nite automata (from left to right).

Figure 4.7 shows di�erent model representations used in process mining. The precedence graph
displays the precedence relation of activities. In the example, edges are annotated with proba-
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bilities that activities directly follow each other in the analyzed log.18 While all models show
similar precedences, the relation between activities B and C is interpreted as concurrency in
the Petri net and as alternatives in the automaton. Techniques to reconstruct and convert
between these model representations are reviewed in Section 4.2.3.

Output model representations for control �ow discovery include, among others, EPCs (Dongen
et al., 2005), (UML) sequence diagrams (Lassen et al., 2007), and block structured languages
like ADONIS (Herbst, 2001). Aalst and Weijters (2004, pp. 239) note that the generality of a
modeling language is 'inversely proportional' to the inductive bias that it imposes on a mining
algorithm. The assumption that the target model is block-structured e.g. constrains the search
space stronger than the assumption that the analysed log might be generated by an arbitrary
Petri net (Aalst and Weijters, 2004, p. 239).

4.2.3. Control Flow Mining

In the following, we review a number of algorithms for control �ow discovery that appear
suitable for control �ow mining in the context of MA(B)S. The requirements in this domain,
which will be substantiated in Chapters 6 and 7, include

• ability to handle concurrency, alternatives, arbitrary cycles, and duplicate tasks,

• reliable process discovery from noise-free, event-based logs,

• relatively straightforward understandability and usability,

• possibility to extend (enrich) the reconstructed control �ow models with information
mined from other perspectives.

More general overviews of techniques for the control �ow perspective are e.g. found in (Lang,
2008; Medeiros, 2006).

4.2.3.1. Alpha Algorithm

The Alpha (α) algorithm was one of the �rst techniques to discover concurrent processes (Aalst,
2010a, p. 34). It is driven by Petri net theory and the question, which process models can be
inferred from the direct successor relation of activities in a log (Aalst et al., 2003a, p. 249). The
basic algorithm has a strong academic and demonstrative focus: It is very simple and elegant
but fails under many practically relevant conditions (Aalst, 2010a, p. 34).

The original α algorithm can provably rediscover a sound, structured work�ow net without
hidden elements, duplicate tasks, and short cycles of length 1 or 2 from a noise-free, locally
complete event-based log (Medeiros et al., 2004a, p. 7).19 Aalst (2010a, p. 37-38) shows that
the reliance on local completeness provides the algorithm with a strong bias towards imputing
concurrency: To identify 10 di�erent activities as concurrent, 10! = 3628800 di�erent traces
(i.e. every potential interleaving) are required under the strong notion of completeness, while
the α algorithm gets along with 90 variations at best (Aalst, 2010a, p. 38).

18The �gure is leaned on the result representation of the Heuristics Miner algorithm by Weijters et al. (2006).
19Recall the description of Petri net properties from Section 2.3.2.1.
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The basic procedure consists of two steps: Firstly, four di�erent ordering relations are recon-
structed from the log. Secondly, a work�ow net is generated from these relations. The following
formalization is adopted with modi�cations from (Aalst, 2010a, pp. 34): Let A be a set of ac-
tivities. A bag of strings over A is called an event log L ∈ Bag(A∗). A string σ ∈ L is called
a trace. For pairs of activities a, b ∈ A, the following ordering relations can be de�ned over L
(Aalst, 2010a, p. 34):

1. a >L b ≡ ∃σ ∈ L: b directly follows a in σ,

2. a→L b ≡ (a >L b) ∧ ¬(b >L a)

3. a||Lb ≡ (a >L b) ∧ (b >L a),

4. a#Lb ≡ ¬(a >L b) ∧ ¬(b >L a).

The semantics of these relations is explained as follows (Medeiros et al., 2004a, p. 8): >L

contains pairs of direct followers. a →L b provides a hint towards causality based on the
observation that a is directly followed by b, but not vice versa. The relation ||L marks potentially
parallel activities, while #L contains pairs of unrelated activities. Together, both relations �are
used to di�erentiate between parallelism and choice� (Aalst et al., 2003a, p. 250) in the reconstructed
net.

From the four relations, a work�ow net N = α(L) = (PL, TL, FL) is built by means of the
following rules (Aalst, 2010a, p. 35):

1. Transitions are created for all activities in the log. 'Input' ('output') transitions corre-
spond to the �rst (last) elements of a trace:

• TL = {ta|∃σ ∈ L : a ∈ σ}

• TI = {ti|∃σ ∈ L : first(σ) = i}

• TO = {to|∃σ ∈ L : last(σ) = o}

2. Places are introduced to connect maximal sets of mutually unrelated transitions according
to the causal relation →L. Additionally, there is a single input and output place:

• XL = {(A,B)|A,B ⊆ TL ∧ (∀a ∈ A, b ∈ B : a →L b) ∧ (∀a1, a2 ∈ A : a1#La2) ∧
(∀b1, b2 ∈ B : b1#Lb2)}

• YL = {(A,B) ∈ XL|∀A′, B′ ∈ XL : (A ⊆ A′ ∧B ⊆ B′) =⇒ (A,B) = (A′, B′)},

• PL = {p(A,B)|(A,B) ∈ YL} ∪ {pi, po}

3. Arcs connect places with their related transitions:

• FL = {(a, p(A,B))|(A,B) ∈ YL ∧ a ∈ A} ∪ {(p(A,B), b))|(A,B) ∈ YL ∧ b ∈ B} ∪
{(t, po)|t ∈ TO} ∪ {(pi, t)|t ∈ TI}

Medeiros et al. (2004a) extend the basic algorithm with the ability to correctly discover short
cycles of length 1 (loops) and 2. Loops are detected during pre-processing from the observation
that an activity is directly followed by itself in some trace (Medeiros et al., 2004a, p. 16). The
detection of length 2-cycles requires to distinguish patterns like aba, that indicate a short cycle,
from patterns that indicate parallelism (i.e. ||L) (Medeiros et al., 2004a, p. 11); as well as a
rede�nition of local completeness (Medeiros et al., 2004a, p. 10).
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Medeiros et al. (2004a, Sec. 5) and Wen et al. (2006) present further extensions to discover an
extended class of sound structured work�ow nets that are allowed to contain certain non-free-
choice constructs. The latter authors note that the time complexity of this 'α++ algorithm' is
�linear in the size of the log [... and] exponential in the number of tasks� (Wen et al., 2006, p. 21).
Wen et al. (2004) present a variant of the α algorithm for activity-based logs.

4.2.3.2. Mining Duplicate Tasks

Duplicate tasks are a means to improve the understandability and to enforce certain formal
properties of control �ow models (see e.g. Medeiros, 2006, Sec. 3.3). Figure 4.8 (left) shows an
example adopted from Medeiros (2006, p. 40). It models the ordered execution of two activities
A and B, where one activity is optional, but not both. The net on the right hand side of this
�gure exhibits the same label language without duplicate tasks. However, this is at the expense
of two hidden tasks and an additional place for the condition that 'only one of the activities
might be skipped'.

Figure 4.8.: Two di�erent Petri nets with the label language L = {A,B,AB}. The net on the
left was adopted from Medeiros (2006, p. 40) and contains duplicate tasks, while
the net on the right contains hidden tasks.

The identi�cation of duplicate tasks from an execution log is di�cult when no a-priori informa-
tion on the structure of the generating model, such as the number of transitions with the same
label, is available (Herbst, 2001, p. 62). The reviews by Medeiros (2006, Sec. 2), Lang (2008,
Sec. 3), and Tiwari et al. (2008, Sec. 3) show that only few control �ow discovery algorithms
are able to reconstruct process models that contain duplicate tasks, concurrency, and loops at
the same time. Most existing approaches are based on one of the following ideas:

1. global search through a space of labeling functions (Herbst, 2001; Medeiros, 2006),

2. clustering of activity occurrences based on the local succession relation during log pre-
processing (e.g. Gu et al., 2008; Schimm, 2004),

3. two-step approaches that combine (regular) grammar inference with the subsequent syn-
thesis of a concurrent model (Rubin et al., 2006; Schütt, 2003).
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Example algorithms of the classes 1 and 2 are brie�y reviewed below. The third class incor-
porates the control �ow mining technique applied and extended in this thesis (see Section 7.2)
and is therefore described more detailed in Section 4.2.3.3.

Approaches based on global search In his dissertation, Herbst (2001) presents the SplitPar
algorithm as the �rst technique to reconstruct models containing concurrent and duplicate
activities. The following description is based on summaries by Lang (2008, pp. 65), Medeiros
(2006, p. 23), and Aalst et al. (2003a, pp. 256).

Similar to the α algorithm, SplitPar is a two-step procedure that uses di�erent model represen-
tations for internal processing and presentation. The �rst step (induction) consists of a search
procedure with embedded graph generation (Aalst et al., 2003a, p. 256). From the indirect
follower relation de�ned on the log (Aalst et al., 2003a, p. 257), a stochastic activity graph
(SAG) is induced, that describes the relative frequency of succession for each pair of activities
(Lang, 2008, pp. 65).20

Di�erent from the α algorithm, SplitPar does not induce ordering relations on a �xed set of
activities, but a whole lattice of mappings between log events and graph nodes, which are
partially ordered by increasing specialization (Aalst et al., 2003a, p. 256). The most general
SAG contains a single node for each activity name, i.e. there are no duplicate tasks, while in
the most speci�c SAG, every log event is assigned an own node (Medeiros, 2006, p. 23; Aalst
et al., 2003a, p. 256).

A search procedure is run on the lattice to identify an optimal mapping between log events and
activities with respect to duplicate tasks. The objective is to maximize a likelihood function
that describes the conformance of a SAG to the log traces (see Aalst et al., 2003a, p. 257; Lang,
2008, p. 66). To improve this measure during search, a mapping can be specialized by splitting
selected activities (Aalst et al., 2003a, p. 256) into duplicate tasks.

After termination of the search, the 'best' SAG is transformed into an output model in the
block-structured ADONIS language (Aalst et al., 2003a, p. 257). The main challenge of the
transformation consists in the identi�cation of alternative and concurrent routing constructs
which are not explicitly distinguished in the SAG (Aalst et al., 2003a, p. 258).

Medeiros (2006, Sec. 5) describes an alternative approach to discover duplicate tasks employ-
ing global search with genetic algorithms. Her algorithm is shown to successfully reconstruct
(among others) examples from Herbst's dissertation (2001), but �the models tend to have more
duplicates than necessary� (Medeiros, 2006, p. 121). A brief review of genetic process mining is
given in Section 4.2.3.4.

Approaches based on local preprocessing: The dissertation by Schimm (2004) presents an
approach to reconstruct block-structured process models from activity-based logs using concepts
from grammar inference, process algebra, and term rewriting (Medeiros, 2006, p. 24). Though
the approach does not focus on duplicate tasks, it is proposed to detect these from local successor
relations during pre-processing of the log (Medeiros, 2006, p. 24).

20similar to the leftmost model in Figure 4.7
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This idea is operationalized in two akin approaches by Li et al. (2007) and Gu et al. (2008),
who extend the α algorithm with log preprocessing to handle duplicate tasks. Both approaches
search for local patterns, somewhat similar to the 'length-1 loop' extension of the α algorithm
described above.

Li et al. (2007, pp. 403) state 3 simple heuristic rules based on the observation that duplicate
tasks typically have di�erent successors and predecessors in log traces. Their rules also regard
for the fact that a distinct neighborhood might be merely caused by di�erent interleaving of
concurrent tasks (called �cross-equivalence�; Li et al., 2007, p. 399). In Section 7.2.4, a related
technique will be applied, also together with the α algorithm, on automata to implement the
concurrency detection approach by Schütt (2003).

Li et al. (2007, p. 404) developed a preprocessing stage for the α algorithm that compares
all events in a log by the above conditions and marks duplicate tasks with di�erent indices.
The algorithm was evaluated against 8 logs from di�erent process models including �sequential
processes, concurrent processes[,] and loops� (Li et al., 2007, p. 406) as well as variable numbers
of duplicate tasks ranging from 1 to 3 (Li et al., 2007, p. 405). While these examples are
successfully identi�ed from logs containing 1000 traces, the simple heuristics can fail under
more realistic conditions like globally incomplete logs (Li et al., 2007, p. 406).

Gu et al. (2008, p. 362) criticize that the above approach does not �take account of both cyclic
constructs and duplicate tasks synchronously�. These authors present an extended preprocessing
stage with a larger number of pattern detection rules that also regard for short cycles. The
rules are formally proven to detect duplicate tasks in a number of routing constructs of sound
SWF nets and applied to several examples (Gu et al., 2008, pp. 363-368). However, this rather
theoretical approach might pose a number of challenges on a practical implementation: The
algorithm might e.g. only be able to handle locally complete logs when it takes advantage of
the fact that the pattern detection is performed on sub-strings of arbitrary length.21

Wang et al. (2009) present another related approach to �discover duplicate tasks based on directed
diagram[s]� where the handling of �multistep loop[s]� is named as future work (Wang et al., 2009,
p. 262).

4.2.3.3. Grammatical Inference and Two-Step Approaches

In the following we review a set of well-investigated techniques from theoretical informatics
that have recently received increased interest in process mining, i.e. grammatical inference and
the theory of regions. In combination, these allow for the detection of duplicate tasks and a
number of other important control �ow constructs from process execution logs.

Grammatical Inference (GI) is closely related to the theory of formal languages (Higuera,
2005, p. 1332). The objective is to induce a generating grammar or an accepting automaton
from a set of example words (Higuera, 2005, p. 1332). Since many GI techniques have been
developed during the 1970s and 80s, Aalst (2010a, p. 33�34) regards GI as a predecessor of
process discovery without focus on concurrency and high level process modeling languages.

21Only limited by the size of the considered trace σ ∈ L.
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Nevertheless, an important lesson that process mining can learn from GI lies in the rigorous
formal analysis of grammar induction problems (Aalst and Weijters, 2004, p. 237). Researchers
like Gold (1967) and Angluin and Smith (1983) have thoroughly investigated the general possi-
bilities and algorithmic complexity of formal language induction from examples. The following
review of results is based on the article by Angluin and Smith (1983) and the brief summary
by Vidal (1994).

Two basic concepts for inductive inference are identi�cation in the limit and identi�cation by
enumeration (Gold, 1967, cited in Angluin and Smith, 1983, Sec. 1.2). Identi�cation in the limit
means that inference procedures generate a (possibly in�nite) sequence of models, increasingly
re�ned with the number of presented data items (Angluin and Smith, 1983, p. 240). An
inference algorithm A correctly identi�es a model M in the limit if it produces a sequence of
estimations m1,m2, . . . with mk = mk+1 = mk+2 = . . . for some integer k where mk is an
appropriate estimation of M (Angluin and Smith, 1983, p. 240); i.e. A converges towards a
suitable solution.

Identi�cation by enumeration describes an inference strategy that is �very general and powerful
but also rather impractical because [of] the size of the space that must be searched [...]� (Angluin
and Smith, 1983, p. 241). Let S+ be a set of positive examples (words generated by the target
grammar G) and S− be a set of negative examples (words not generated by G). If the search
space of possible target grammars is recursively enumerable, G can be identi�ed in the limit
by enumerating all possible grammars and checking, for each candidate, if it generates S+ and
not S− (Angluin and Smith, 1983, p. 241).

Feasibility and Complexity Based on these concepts, a number of important feasibility and
complexity results have been obtained, as summarized by Vidal (1994, p. 1�3). Feasibility
and complexity of language identi�cation mainly depend on the expressiveness of the target
language class and on the presence of negative examples.

While �any enumerable class of recursive languages (context-free and below) can be identi�ed in the
limit from complete presentation (both positive and negative data) [...,] no super�nite class of languages
can be identi�ed in the limit from only positive presentation. A super�nite class of languages is one
that contains all �nite languages and at least one in�nite language� (Vidal, 1994, p. 1). These results
directly follow from the concept of identi�cation by enumeration where negative examples serve
as constraints to avoid over-generalization (Vidal, 1994, p. 1).

Several subclasses (Vidal, 1994, p. 2) but only few superclasses of the regular languages can be
identi�ed in the limit from positive examples only (Vidal, 1994, p. 3). The question, if a certain
class of languages can be identi�ed in the absence of negative examples is already undecidable
for the context-free languages (Vidal, 1994, p. 3).

Though possible in general, the problem to discover the smallest regular grammar or deter-
ministic �nite automaton (DFA) from positive and negative examples is NP -hard (Gold, 1978,
cited in Vidal, 1994, p. 1). However, by either (a) dropping the minimality or exactness con-
straints, (b) resorting to less expressive language subclasses, or (c) applying stochastic and
heuristic techniques, polynomial algorithms for both complete and positive presentation could
be developed (Vidal, 1994, p. 2).
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These results make immediately plausible why process mining often resorts to limited net
classes and heuristic methods. In general, though suggested by authors like Aalst (2010a,
p. 33), theoretical results from grammar inference might not have received su�cient attention
in process mining so far. The framework of Petri net languages, as studied by Jantzen (1979),
could e.g. provide an appropriate foundation for a transfer.

Positive and Negative Examples Vidal (1994, p. 1) and Aalst (2010a, p. 34) accordingly state
that GI and process mining often focus on positive presentation for reasons of lower algorithmic
complexity and practical lack of negative examples. Nevertheless, several GI algorithms have
been developed for complete presentation as well. In process mining, a �rst approach to make
use of negative examples is presented by Goedertier et al. (2008) in an ILP context.

The lack of negative examples is due to the fact that real logs normally contain positive examples
of executed process instances only (Goedertier et al., 2008, p. 42). Goedertier et al. (2008,
p. 47) extend logs with arti�cial negative events expressing �that a state transition [in the process
model] could not take place�. Since most work�ow engines do not expose information about
inhibited transitions, Goedertier et al. (2008, p. 47) derive negative events from (positive)
logged examples. Though this approach does not add 'new' information to the log, it enables
the use of supervised classi�cation learners in process mining (Goedertier et al., 2008, p. 47).

When regarding only positive examples, the subclasses of regular languages that can be iden-
ti�ed in the limit in polynomial time include (see Rey, 2003 and Yokomori, 1995):

• k-reversible languages: According to the informal characterization by Pilato and Berwick
(1985, p. 71), a regular language L is k-reversible if, �whenever two pre�xes [of two words
in L] whose k last [... symbols] match have a tail in common, then the pre�xes have all tails in
common�.

• subclasses of the k-testable languages (see e.g. Yu, 1997), such as �k-testable languages
in the strict sense (k-TLSS) [...] Informally speaking, [... these are] de�ned by a �nite set of
substrings of length k that are allowed to appear in the strings of the language.� (Garcia and
Vidal, 1990, p. 921). The k-TLSS are a subclass of the k-reversible languages that can
be inferred using speci�c, more performant algorithms (Garcia and Vidal, 1990, p. 923).

• languages identi�ed by strictly deterministic automata: These are deterministic �nite
automata (DFA, see de�nition below) where each transition label starts with a di�erent
character from the underlying alphabet (Yokomori, 1995, p. 154). In the case of single
letter labels, they might be described as 'DFA without duplicate tasks'.

In the following, we review a well-investigated algorithm for the identi�cation of the rather
general class of k-reversible languages. This algorithm will be applied as part of a procedure
to discover agent interaction protocols in Section 7.2.

Inference Algorithm k-RI The k-RI algorithm by Angluin (1982) learns a minimal k-reversible
DFA (k ≥ 0) in the limit from positive examples (Angluin, 1982, p. 759). It is based on a
de�nition of k-reversibility in terms of automata. Let A = (Q, I, F, δ) be an automaton with
sets Q, I, F of states, initial states, and �nal states, and a transition relation δ ⊆ Q × U × Q
over an alphabet U (Angluin, 1982, p. 745).
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Figure 4.9.: Illustrations of the k-RI algorithm. Left: A PTA for the regular language L =
{aab, aac, abc}. Middle: States B1 and B2 are merged to enforce determinism
according to condition 1 below. Right: States B1 and B2 are merged to enforce
k-reversibility according to condition 2 below.

In case of k = 0, the de�nition of reversibility is rather simple: An automaton A is deterministic
if |I| = 1 and δ : Q × U → Q is a function (Angluin, 1982, p. 745). Let Ar be the reverse
automaton of A obtained by 'inverting' the transition relation δ. A is 0-reversible if and only
if its reverse Ar is deterministic (Angluin, 1982, p. 745).

For k > 0 a weaker notion of determinism is introduced: A string u ∈ U∗ of length k is called
a k-leader of a state q ∈ Q if q can be reached from some state q′ ∈ Q by input of u, and
k-follower of q if some q′ can be reached from q by input of u (Angluin, 1982, p. 749). Let
q1, q2 ∈ Q be either initial states, or both states can be reached from a state q3 by input of the
same a ∈ U . An automaton A is deterministic with lookahead k if it contains no such states
q1, q2 that share a common k-follower u ∈ U∗ (Angluin, 1982, p. 749). A DFA A is k-reversible
whenever its reverse acceptor Ar is deterministic with lookahead k (Angluin, 1982, p. 749).

The algorithm k-RI starts by constructing a pre�x tree acceptor (PTA) from an example log
of traces over U (Angluin, 1982, p. 759). This DFA represents every log trace by a transition
sequence from the initial state to a �nal state, such that traces with a common pre�x share
common states and transitions (see Figure 4.9).

The state space of the PTA is reduced by merging appropriate pairs of similar states. Broadly
speaking, two states are considered as similar if both represent the same set of �possible future
strings that can stem from it� (Walkinshaw et al., 2008, p. 274).22 Then both states are replaced
by a single new state, whose incoming and outgoing transitions are the unions of the respective
sets from the original states.

The k-RI algorithm �rst merges all �nal states of the PTA into one. This is a precondition to
make the reverse acceptor deterministic. Then the algorithm repeatedly merges pairs of states
that violate the conditions of determinism or k-reversibility in A, thus producing a sequence
of automata A0, A1, . . . , AL with decreasing size of the state space. The procedure is repeated
until no further state merging is possible and the resulting automaton AL is returned.

The conditions for state merging are formalized as follows and illustrated in Figure 4.9:23

22Walkinshaw et al. (2008, p. 274) actually relate to grammar inference in general.
23The synonymous use of the terms 'state' and 'block' and the notion of �enforc[ing ...] determinism� in the

following de�nitions are derived from Pilato and Berwick (1985, p. 72).
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1. Enforce determinism: Let U be an alphabet and b ∈ U an input character. If there exist
states B1, B2, B3 ∈ Q such that δ(B3, b) = B1 and δ(B3, b) = B2, then B1 and B2 are
merged (Angluin, 1982, p. 759).

2. Enforce k-reversibility : If there exist states �B1 and B2 [that] have a common k-leader [...]
and either B1 and B2 are both �nal states [...] or there exists a [... state] B3 [...] and a symbol
b ∈ U such that B3 is a b-successor of both B1 and B2� (Angluin, 1982, p. 759), then B1 and
B2 are merged.

Angluin (1982, p. 760) proves that this algorithm identi�es the smallest k-reversible language
in the limit that contains the examples from the log. The identi�cation is correct with respect
to a given k-reversible language L whenever the log contains a so-called characteristic sample
S ⊆ L. This subset is well-de�ned and can be algorithmically derived from an automaton
accepting L (Angluin, 1982, pp. 750).

Angluin (1982, p. 760) shows that �the algorithm k-RI may be implemented to run in time O(kn3),
where n is one more than the sum of the lengths of the input strings�. The simpli�ed algorithm ZR
('zero-reversible') for the special case k = 0 �may be implemented to run in time O(nα(n)) where n
[is de�ned as above . . . ] and α is a very slowly growing function� (Angluin, 1982, p. 758). To obtain
a minimal k-reversible DFA, the output AL of the k-RI algorithm is minimized (Angluin, 1982,
p. 761) in time O(m2) where m is the number of states in AL (Hopcroft et al., 2003, p. 153).

Two-Step Approaches Though GI typically neglects concurrency, well-known GI algorithms
can be applied to the mining of concurrent processes as follows (Herbst, 2001):

1. Grammar inference techniques are extended to generate concurrent models instead of
sequential automata. This is e.g. done by Herbst (2001) and Schimm (2004).

2. A standard GI algorithm is employed to induce a sequential automaton from a process
log. The automaton is subsequently converted into a (possibly) concurrent model. Such
procedures are proposed by Herbst (2001), Schütt (2003), and Kindler et al. (2006).

Though Herbst (2001) expresses his preference towards the �rst approach, procedures of the
second type have recently received attention under the name of two-step process mining (e.g.
Rubin et al., 2006).24 An important building block of these procedures is an appropriate
technique to convert a �nite automaton into a concurrent model. For this purpose, the following
techniques might be applied:

• The theory of regions serves to synthesize a Petri net from an automaton, such that the
automaton is bi-similar to the Petri net's reachability graph (Badouel and Darondeau,
1998, p. 529). Herbst (2001) was probably the �rst to propose a combination of GI
and region theory in process mining. Related algorithms and case studies are reported
(among others) by Kindler et al. (2006), Rubin et al. (2006), Carmona et al. (2008), and
Bergenthum et al. (2007).

24Rubin et al. (2006) only apply this term to their combination of automata inference and the theory of regions.
In the opinion of the author of this thesis, the term also �ts other approaches that combine automata
inference with the synthesis of a concurrent model.
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• Graph rewriting can be used to identify patterns of concurrency in an automaton and
transform it to a higher-level modeling language. This approach is e.g. taken by Schütt
(2003).

• From the precedence relation de�ned by an automaton's labelled transitions, a depen-
dency graph can be generated and transformed into a concurrent model. The process
mining tool ProM (Section 4.2.6.1) e.g. o�ers the possibility to run the standard α algo-
rithm (Section 4.2.3.1) on an automaton instead of a log.

Theory of Regions The theory of regions (see e.g. Badouel and Darondeau, 1998) provides
means to synthesize Petri nets from �nite automata, often called transition systems in this
context. One goal of Petri net synthesis is to reduce the size of the model (see e.g. Aalst et al.,
2010, p. 101 and Verbeek et al., 2008, p. 153): Automata for concurrent processes tend to be
large since every interleaving of concurrent tasks is represented by an own path. This state
explosion (Verbeek et al., 2008, p. 153) can be avoided by transformation to concurrent models
like Petri nets (Aalst et al., 2010, p. 89).

An important feature of region-based synthesis is bi-similarity, i.e. the synthesized net exactly
mimics the behavior of the automaton, which can be interpreted as the net's reachability graph
(see Section 2.3.2.3) (Carmona et al., 2008, p. 364). In process mining, bi-similarity might be
unwanted because an abstraction from the observed process executions is required (Carmona
et al., 2008, p. 358).

We brie�y review the basic formalism of region theory and an extension towards process mining,
both following Carmona et al. (2008): Let TS = (S,E,A, sin) be a transition system with a
set of states S, transitions A, transition labels (events) E, and an initial state sin (Carmona
et al., 2008, p. 360). On TS, the following relations can be de�ned that relate an event e ∈ E
to a subset of states S′ ⊆ S (Carmona et al., 2008, p. 361):

• enter(e, S′): At least one transition a ∈ A labelled with e enters a state s ∈ S′, emanating
from a state s′ /∈ S′.

• exit(e, S′): At least one transition a ∈ A labelled with e leaves a state s ∈ S′, targeting
a state s′ /∈ S′.

• nocross(e, S′): At least one transition a ∈ A labelled with e connects two states s, s′ that
are either both inside or both outside of S′.

A subset r ⊆ S is called a region of TS if exactly one of the relations enter(e, r), exit(e, r),
or nocross(e, r) holds for all events in E (Carmona et al., 2008, p. 361). The region can be
understood as a place in a Petri net with well-de�ned pre- and post-sets of transitions, where
each state s ∈ r corresponds to a di�erent marking (Carmona et al., 2008, p. 361). The set of
regions that an event e ∈ E enters (exits) are called its pre-regions (post-regions) (Carmona
et al., 2008, p. 362). The excitation region of an event e is the set of states that e is enabled in
(Carmona et al., 2008, p. 363).

A Petri net can be synthesized by building places from the regions of a transition system,
transition from its events, and arcs according to the events' pre- and post-regions (Carmona
et al., 2008, p. 363). To avoid place redundancy, only minimal regions are considered. A region
r is called minimal if no subset S′ ⊂ r is a region (Carmona et al., 2008, p. 362).
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Bi-similarity between the original transition system TS and the reachability graph of the syn-
thesized net is only reached if TS is excitation closed (for a de�nition see Carmona et al.,
2008, p. 364). This property can be achieved for an arbitrary transition system by means of
label-splitting, i.e. dividing single transitions into multiple copies with the same label but em-
anating from di�erent states (Carmona et al., 2008, p. 364). Carmona et al. (2008, Sec. 3.1)
drop this requirement to better �t region-based synthesis to the needs of process mining, since
the reachability graph of a Petri net synthesized from a non-excitation closed transition system
can be shown to be an over-approximation (generalization) of the original transition system.

The theory of regions allows to synthesize several subclasses of P/T nets: Structural properties
like free-choice (Section 2.3.2.2) can be enforced by means of label splitting and di�erent strate-
gies for place generation (Aalst et al., 2010, p. 103). While algorithms to synthesize k-bounded
nets were developed by Badouel et al. (1995, cited in Carmona et al., 2009b, p. 327), higher
level classes like colored or object-oriented nets have not been considered so far (see also Flick
et al., 2010).

A main problem of region-based Petri net synthesis is its high algorithmic complexity. Though
even the synthesis of k-bounded nets is possible in polynomial time (Badouel et al., 1995, cited
in Carmona et al., 2009b, p. 327), the algorithms might become practically intractable on large
transition systems (Verbeek et al., 2008, p. 166) and log sizes considered in process mining
(Carmona et al., 2009b, p. 327). Iterative (Dongen et al., 2007) as well as divide-and-conquer
strategies (Carmona et al., 2009a) have been proposed to reduce complexity, but the problem of
e�cient, practically applicable, Petri net synthesis remains challenging (see e.g. Verbeek et al.,
2008, p. 166).

Approach by Kindler, Rubin, and van Dongen Kindler et al. (2006) were the �rst to prac-
tically apply a combination of automata inference and region-based net synthesis to process
mining. This so-called �two-step approach�, continued in the work by Rubin et al. (2006)25,
consists of an automata inference stage followed by Petri net synthesis (Rubin et al., 2006,
p. 3) using the tool Petrify (Cortadella et al., 1997). Interestingly, no existing grammar in-
ference algorithms are employed for automata inference, but an own framework to reconstruct
�nite automata from event logs is developed. This 'reinvention' leads to certain advantages
and drawbacks discussed in the following.

Similar to grammar inference, the basic idea of Rubin et al. (2006, p. 14) is to reconstruct
explicit state information from an event-based log, resulting in a possible generating transition
system. Basically, states are identi�ed from the events that occurred before or after a certain
position in a log trace. The authors propose to implement this simple strategy by applying vari-
ations along three dimensions, which leads to an overall of 36 strategies for state identi�cation
(Rubin et al., 2006, p. 17):

1. Filtering : are all events from the log or only events from a certain subset taken into
account (Rubin et al., 2006, p. 16)?

2. Horizon: are the events before (past), after (future) or both considered to identify a
state? How long are the considered pre- or post�xes (Rubin et al., 2006, pp. 14)?

25and also reported in (Aalst et al., 2010)
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3. Order : Is the order and number of event occurrences before or after a certain position in
the log relevant, i.e. are states de�ned by sequences, sets, or multisets of events (Rubin
et al., 2006, p. 15)?

Rubin et al. (2006, p. 32) emphasize that an advantage of their approach is the large number
of possible strategies: These allow to �ne-tune transition system identi�cation to reach an
appropriate balance between specialization and generalization. A disadvantage of their rather
practical approach is that, di�erent from classical grammar inference, it is not related to formal
language theory. Therefore it is not clearly stated which classes of languages can be identi�ed
from which sets of example words.

It might, however, be straightforward to establish this relation in several cases. In terms of the
above strategies, the k-RI algorithm e.g. applies no �ltering, an in�nite 'past' horizon, and the
'sequence' semantics (i.e. event order is considered) during the generation of the PTA. When
merging the states of the PTA, a 'past' horizon of k and a 'future' horizon of 1 are applied
together with the 'sequence' semantics. Though this comparison is rather preliminary, further
attempts to relate formal grammar inference to the practical framework of Rubin et al. (2006)
might be useful.

Before performing region-based synthesis, Rubin et al. (2006) apply certain modi�cations to
the reconstructed transition system in order to improve the quality of the synthesized net. The
following strategies are implemented using the basic operations of arc addition, arc removal,
and state merging (Rubin et al., 2006, p. 20):

• �Kill loops� (Rubin et al., 2006, p. 20): Loops are removed to either create an acyclic
transition system or to avoid self-loops. The latter are produced as artifacts by the 'set'
semantics of state representation when an event occurs more than once.

• �Extend� (Rubin et al., 2006, p. 21): Arcs are added to the transitions system to amend
traces with a certain interleaving of presumably concurrent events26 not observed in the
log.

• �Merge by output� (Rubin et al., 2006, p. 22): States with the same output events are
merged under certain conditions.

For the second step, Petri net synthesis, the existing tool Petrify is applied without modi�ca-
tions. The authors note that a wealth of di�erent net classes can be generated using di�erent
parameter settings (Rubin et al., 2006, p. 22). Though the large number of possible strategies
for automata inference and net synthesis leads to high versatility (Rubin et al., 2006, p. 32),
the related degrees of freedom might also make the overall algorithm hard to understand for
users without a strong theoretical background.

Approach by Schütt Prior to Rubin et al. (2006), Schütt (2003) proposed an alternative 'two-
step approach' consisting of automata inference and transformation into a concurrent model
as part of his Diploma thesis. Unlike the former authors, Schütt (2003) (a) explicitly relates
his automata inference stage to grammar inference (e.g. Schütt, 2003, p. 35) and (b) does not
apply region-based synthesis but a pattern-based technique for �concurrency detection� (Schütt,
2003, pp. 58).

26called �state diamonds� by Rubin et al. (2006, p. 21)
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The automata inference stage is inspired by the work of Schimm (2004), who uses grammar
inference-like techniques to mine block-structured models containing concurrent and alternative
routing as well as loops from activity-based logs (see Schütt, 2003, pp. 11,35). Schütt (2003)
only applies grammar inference as an intermediate step to reconstruct a sequential, non-cyclic
model with choices as the only routing construct.

Algorithmically, this is achieved by performing so-called �pre�x tree induction� and �post�x opti-
mization� on the observed traces (Schütt, 2003, pp. 55). First a pre�x tree automaton (PTA) is
built from the log (Schütt, 2003, pp. 55). Next, the PTA is post�x-optimized by merging di�er-
ent, but identically labelled (partial) paths starting from the �nal state (Schütt, 2003, pp. 57).
The procedure bears strong resemblance with the k-RI algorithm except that no cycles are
introduced.

Figure 4.10.: Simple pattern-based concurrency detection: Assuming interleaving semantics,
the left activity diagram with a choice can be simpli�ed into the right diagram
with concurrent fork and join. Adopted with modi�cations from (Schütt, 2003,
p. 59).

Concurrency detection is applied in the second step to further reduce the size of the recon-
structed model in case of concurrent control �ow. Basically, the algorithm searches the se-
quential model for �state diamonds� (already mentioned in Rubin's approach) as a hint towards
di�erent interleavings of concurrent tasks. Figure 4.10 reviews an example by Schütt (2003,
p. 59): Two alternative paths labelled PQ and QP with the same source and target are merged
into a concurrent routing construct.

Note that the behavior of the two diagrams in Figure 4.10 is bi-similar only if interleaving
semantics (see Section 2.3.2.3) is assumed. Under partial order semantics, the right diagram
allows for a temporally overlapped execution of the tasks P and Q while the left diagram does
not. This restriction also holds for the approach by Rubin et al. (2006).

Schütt (2003, pp. 59) further proposes to optimize potentially concurrent models by detecting
causal dependencies of larger subgraphs called �atomic blocks�. Figure 4.11 shows an example
where an atomic block (A⊕B) is identi�ed to be concurrent to a task sequence (CD). Imitating
the notation from (Schütt, 2003, pp. 59), the Petri net on the right of this �gure displays the
intended execution semantics.

140



4.2. Process Mining

Figure 4.11.: Using the concept of atomic blocks proposed by Schütt (2003, pp. 59), the au-
tomaton on the left might be simpli�ed into the Petri net on the right. The
identi�ed concurrent atomic blocks (A ⊕ B) and (CD) are shaded grey. Figure
inspired by (Schütt, 2003, p. 60).

Since concurrency detection is described as an optional, conceptual extension of the sequential
control �ow mining approach (see Schütt, 2003, pp. 61), there are only few hints towards its
implementation, computational complexity, and proof of correctness. In Section 7.2 we discuss
our implementation of parts of the concurrency detection in order to optimize cyclic automata
reconstructed by the k-RI algorithm.

4.2.3.4. Heuristic Algorithms

The mining algorithms described so far neglect the frequency with which patterns, like e.g.
direct succession of activities, are found in the log. This means that rare patterns a�ect the
reconstructed model as much as very frequent patterns. A major drawback of these approaches
is their low robustness against noise (see Section 4.1.3.1) because occasional errors in the log
strongly in�uence the mining results.

Heuristics Miner To cope with noisy logs, heuristic algorithms have been developed that take
pattern frequencies into account. A common example is the Heuristics Miner algorithm by
Weijters et al. (2006). This algorithm calculates log relations quite similar to the α algorithm,
where each relation element (e.g. a → b) is assigned a plausibility value based on pattern
frequencies. From these relations, a dependency graph is constructed employing a number of
parametrizable heuristics.
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The basic precedence relation of the Heuristics Miner is expressed by (Weijters et al., 2006,
p. 7):

a⇒L b =
|a >W b| − |b >W a|
|a >W b|+ |b >W a|+ 1

(4.13)

with >L de�ned similar to the α algorithm (see Section 4.2.3.1). Di�erent from the relation
→L used by the α algorithm, the domain of ⇒L is the interval ] − 1, 1[ (Weijters et al., 2006,
p. 7). �A high A⇒L B value strongly suggests that there is a dependency relation between activity A
and B� (Weijters et al., 2006, p. 7). The interval borders are not reached due to the additional
summand 1 in the denominator of equation 4.13, which emphasizes the 'heuristic' character of
the algorithm (Haan, 2009, p. 49).

The Heuristics Miner starts by calculating a dependency matrix that contains the ⇒L val-
ues for all pairs of activities occurring in the log L (Weijters et al., 2006, p. 8). To build a
dependency graph from the matrix without a �xed dependency threshold, the so-called all-
activities-connected heuristics is applied (Weijters et al., 2006, p. 8):

1. Initial activities of the graph are identi�ed by the fact that their assigned matrix column
contains no positive value.

2. Final activities are those whose assigned column does not contain a negative value.

3. Starting from the initial activities, every activity a is connected to its most likely successor
b with the maximum value of a⇒L b among all activities b′ ∈ A (with (b′ 6= a).

4. If necessary, every activity a is additionally connected to its most likely predecessor b
with the highest b⇒L a value among all b′ ∈ A (with b′ 6= a).

The restriction to the most likely successor and predecessor of every activity results in a de-
pendency graph that only mirrors the most common behavior of the observed process. To
�ne-tune the level of detail of the reconstructed process model (Weijters et al., 2006, p. 9),
several threshold parameters are introduced (Weijters et al., 2006, p. 8):

• dependency threshold : minimum required ⇒L value of a dependency to occur in the
dependency graph,

• positive observation threshold : minimum required number of observations of a dependency
to occur in the graph,

• relative-to-best-threshold : maximum allowed di�erence between the value of an assumed
dependency a⇒ b and the highest ⇒L value in the dependency matrix.

Besides the basic dependency relation⇒L the Heuristics Miner considers further relations that
represent the presence of self-loops (a ⇒L a), length-two-cycles (a ⇒2

L b), and concurrent
splits (a ⇒L b ∧ c). The values of the relations concerned with short cycles increase with the
number of patterns found that indicate the respective cycle, i.e. aa for self-loops and [aba, bab]
for length-two-cycles (Weijters et al., 2006, p. 9). The 'concurrency' relation is based on the
idea that for a concurrent split a → b ∧ c, direct successions of b and c (in arbitrary order)
are frequently found in the log, while for an alternative split a → b ⊕ c they are impossible
(Weijters et al., 2006, p. 9).
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Weijters et al. (2006, p. 12) further explain how the Heuristics Miner identi�es long distance
dependencies where the path taken in a process depends on a choice of activities several steps
before: This is achieved by determining tasks that often appear together in the same trace,
and by establishing an additional precedence between these tasks if necessary.

Due to its convincing performance on both error-free and noisy data (see e.g. the experimental
results presented by Weijters et al., 2006, Sec. 3), the Heuristics Miner is one of the most widely
used process mining algorithms in practice. It has been applied, analyzed, and compared to
other mining algorithms in several studies (e.g. Rozinat et al., 2009a; Weber, 2009). The main
drawbacks of the Heuristics Miner are its inability to handle duplicate tasks and the large
number of parameters that must be calibrated to the given data.

The former issue might be compensated by applying preprocessing or embedding the Heuristics
Miner into a two-step approach as described above. To tackle the latter issue, Burattin and
Sperduti (2010) present a procedure to automatically calibrate the parameters of a Heuristics
Miner variant for activity based logs (HM++). Weijters and Ribeiro (2011) developed an
extended algorithm Flexible Heuristics Miner with an improved representation of concurrent
and alternative routing constructs in augmented C-nets.

Evolutionary Algorithms The most algorithms presented so far are locally-optimizing (see
Section 4.2.2.3) approaches where the mined model is reconstructed stepwise from relations
between elementary activities. De Medeiros (see e.g. Medeiros, 2006; Medeiros et al., 2004b)
proposes a process mining approach based on genetic algorithms (GA, see Section 4.1.4.5) as
a heuristic, globally optimizing technique that can also handle noise. We will not discuss this
approach in detail but only provide a brief overview of its advantages and drawbacks.

In general, the application of evolutionary algorithms to process mining, requires solutions to
the following problems (Medeiros et al., 2004b, p. 10):

• mapping of process models to individuals encoded for processing by genetic operators like
mutation and crossover,

• generation of an initial population,

• choice of an objective function to rate the �tness of the generated process models with
respect to the analyzed log, and

• identi�cation of appropriate genetic operators and a stopping criterion.

Medeiros et al. (2004b, pp. 5) employ an encoding based on binary dependency matrices (causal
matrices), from which Petri nets can be generated. The initial population of individuals is built
from random variations of the heuristic relations a ⇒L b, a ⇒L a, and a ⇒2

L b (see above) on
the analyzed log (Medeiros et al., 2004b, pp. 8). As an objective function, di�erent measures
for the conformance of the generated process models to the log are applied (Medeiros et al.,
2004b, pp. 11).27

The procedure �nishes if either a maximum number n of iterations, an 'optimal' process model
with the highest possible �tness value of 1, or a 'plateau' in the search space without relevant
changes of the best individual during n/2 iterations has been reached (Medeiros et al., 2004b,

27see also Section 4.2.5.4 on conformance checking
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p. 13). Otherwise, a new population is generated by applying genetic operators described in
(Medeiros et al., 2004b, Sec. 3.4).

Medeiros (2006, Chs. 4,5,8) shows by experiments that genetic process mining can reconstruct
complex process models including non-free-choice constructs, invisible, and duplicate tasks also
in the presence of noise. Drawbacks include the algorithms' high computational complexity
(Medeiros, 2006, p. 230) and the large number of parameters to be set by the user.

To compensate the former drawback, Bratosin (2011) presents a distributed genetic process
mining algorithm that works on a Grid architecture. Turner et al. (2008) propose an alterna-
tive evolutionary process mining approach based on a genetic programming technique called
Graph Based Program Evolution that works on graph structures directly instead of a causal
matrix. The authors claim that this representation can be manipulated more �exibly and
straightforwardly by genetic operators and that �tness evaluation is more e�cient (Turner
et al., 2008, pp. 1307).

4.2.3.5. Mining Complex Work�ow Patterns

Recalling the work�ow patterns introduced in Section 2.3.3, control �ow mining might go
beyond basic routing constructs as well. However, only few process mining approaches deal
with more complex patterns like transactions or multiple instantiations in parallel. Due to the
relevance of such patterns in MAS, we review two approaches towards their reconstruction in
the following.

Work�ow Patterns Mining Gaaloul et al. (2005) present an algorithm that identi�es the
control �ow patterns sequence, xor-split/join, and-split/join, or-split, and m-out-of-n-join from
statistical properties of event-based logs. In (Gaaloul and Godart, 2005) the approach is ex-
tended towards mining transactional properties of work�ows.

Similar to the Heuristics Miner (Section 4.2.3.4) the algorithms are based on a matrix of direct
follower relations named initial statistical dependency table (SDT, Gaaloul et al., 2005, p. 27).
An entry at matrix position (i, j) represents the relative frequency P (Ai/Aj) ∈ [0, 1] by which
activity Ai directly follows Aj in the observed log (Gaaloul et al., 2005, p. 26). The absolute
frequency of each task Ai is counted as #Ai (Gaaloul et al., 2005, p. 26).

To mark potentially concurrent tasks, a second matrix (�nal SDT ) is set up (Gaaloul et al.,
2005, p. 27): It contains an entry of−1 for each pair of tasks with P (Ai/Aj) 6= 0∧P (Aj/Ai) 6= 0,
i.e. Ai and Aj are 'causally' independent. An entry of 1 indicates P (Ai/Aj) 6= 0∧P (Ai/Aj) = 0,
meaning that Aj 'causally' depends on Ai.

To discover indirect dependencies, every activity is assigned a value called activity concurrent
window (ACW, Gaaloul et al., 2005, p. 27). Since interleaving of concurrent activities masks
the direct follower relation in the log, the ACW counts how often an activity or one of its
predecessors are concurrent to other tasks (Gaaloul et al., 2005, pp. 27). On this basis, further
dependencies might be added to the �nal SDT (Gaaloul et al., 2005, p. 28).
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Gaaloul et al. (2005, Sec. 3.2) show that several control �ow patterns can be identi�ed from the
activity count and the �nal SDT. A sequence A→ B is e.g. characterized by the rule (Gaaloul
et al., 2005, p. 30):

#A = #B ∧ P (A/B) = 1. (4.14)

A non-exclusive or-split between an activity A and a set of activities Bi (0 ≤ i ≤ n), which
is neglected by most process mining algorithms, can be identi�ed using a more complex set of
rules (Gaaloul et al., 2005, p. 30):

(#A ≤
∑n

i=0 #Bi) ∧ (∀0 ≤ i ≤ n : #Bi ≤ #A)
(∀0 ≤ i ≤ n : P (Bi/A) = 1) ∧ (∃0 ≤ i, j ≤ n : P (Bi/Bj) = −1)

(4.15)

Based on the identi�ed patterns, an overall control �ow graph could be reconstructed from a
complete log (Gaaloul et al., 2005, p. 29). However, the authors stress that �local discovery�
is a particularly useful ability of their approach, e.g. when �only fractions of work�ow log[s]� are
available (Gaaloul et al., 2005, p. 29).

Gaaloul and Godart (2005) extend the algorithm towards mining transactional properties of
activities (activity transactional properties) and work�ows (transactional �ow) (Gaaloul and
Godart, 2005, pp. 177). These properties characterize how a work�ow behaves in order to
recover a consistent state after failures.

Transactional properties are de�ned under the assumption of a set of observable activity states
including completed, aborted, and failed (Gaaloul and Godart, 2005, p. 178). Depending on
the set of possible transitions between these states, an activity A is said to be re-triable (A is
repeated after failure until completion), pivot (the e�ect of A persists and cannot be undone
after its completion), or both (Gaaloul and Godart, 2005, p. 178).

Transactional �ow relates to the control �ow of recovery procedures that a work�ow or an
external entity executes to ensure a consistent state after an activity has failed (Gaaloul and
Godart, 2005, pp. 179,180). In this context, Gaaloul and Godart (2005, p. 180) focus on
alternative dependencies (which activities Bi are executed for recovery after a certain activity
A has failed) and abortion dependencies (which activities Bi must be aborted after A's failure).

To mine transaction-related properties from work�ow logs, Gaaloul and Godart (2005, p. 179)
build two SDTs that only contain dependencies observed after an activity has failed. From
these SDTs, transactional properties such as 're-triable' are reconstructed using simple rules
quite similar to those for work�ow pattern mining.

The work by Wen et al. (2010) is dedicated to another complex work�ow pattern, i.e. the mining
of batch processing features. Batch processing means that certain steps of multiple instances of
a process are executed in a synchronized fashion, such as common rides of multiple travelers
with the same destination in work�ows of a car-sharing agency (Wen et al., 2010, p. 393). Wen
et al. (2010, pp. 395) present an algorithm to identify batch processing areas (Wen et al., 2010,
p. 393) on the basis of event logs. Using this algorithm, logs of �batch processing processes� can
be preprocessed such that conventional control �ow mining techniques are applicable for their
analysis (Wen et al., 2010, p. 393).
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Mining Traces of Interleaved Threads All above algorithms work under the assumption that
each case in the analyzed log corresponds to a single instantiation of the underlying work�ow
model. Therefore, task repetitions are either interpreted as cycles or duplicates. However, this
assumption does not hold in the presence of multiple instantiation patterns as described in
Section 2.3.3.

Lou et al. (2010b,c) present the �rst algorithm to reconstruct work�ow models from traces
generated by multiple interleaved threads. Their approach is targeted towards dynamic software
reverse engineering of multi-threaded programs. Based on practical experience, the authors
assume that the analyzed log does not necessarily contain an explicit mapping of events to
threads (Lou et al., 2010c, p. 613). Thus, threading information must be reconstructed by
means of process mining.

The algorithm's ability to handle multiple instantiations of the same sub-work�ow is enabled by
considering indirect dependency relations that also hold true in presence of interleaved threads
(Lou et al., 2010c, p. 613). From these relations, a simple initial work�ow model without loops,
shortcuts, and multiple instantiation is �rst reconstructed and subsequently re�ned by applying
heuristics based on replay of log traces (Lou et al., 2010b, p. 613).

The procedure does not rely on the 'direct follower' relation but on four indirect dependency
relations observed over a log L (Lou et al., 2010c, pp. 615):

• Forward dependency : A→f B if in every trace s ∈ L containing A, there is at least one
B after the occurrence of A.

• Backward dependency : A→b B if in every trace s ∈ L containing A, there is at least one
A before the occurrence of B.

• Strict forward dependency : A →sf B if in every trace s ∈ L, every occurrence of A is
(directly or indirectly) followed by at least one related occurrence of B.

• Strict backward dependency : A →sb B if in every trace s ∈ L, every occurrence of B is
(directly or indirectly) preceded by at least one related occurrence of A.

• Unrelated : A||B if A and B stand in none of the above relations.

The authors note that the strict dependency relations imply their non-strict counterpart and
that any relation (except for ||) implies a path from activity A to activity B in the generating
work�ow model (Lou et al., 2010c, p. 616). Based on these observations, an initial model
is reconstructed from estimates of the dependency relations and expressed in terms of the
automata-based modeling language shown in Figure 4.12.

Lou et al. (2010c, p. 615) apply the terms fork and join to states (diamond shape) where
multiple threads running the same sub-work�ow are instantiated and re-synchronized. The
authors compare this situation to a work�ow net that contains multiple tokens in the initial
place (Lou et al., 2010c, p. 614) of the fork construct.28 In contrast, 'static' concurrent �ow
known from standard work�ow nets, is expressed by split and merge states with a rectangular
shape (Lou et al., 2010c, p. 615).

28This comparison only applies to the fork node, since it neglects the synchronisation necessary at the join
node.
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Figure 4.12.: Elements of the automata-based formalism used by Lou et al. (2010b). Left:
sequential automaton with decision node, loop, and shortcut transition labelled
with the empty event ε. Bottom right: concurrent split and merge nodes. Top
right: fork and join nodes spawning multiple threads. Adopted with modi�cations
from (Lou et al., 2010c, p. 615).

The initial work�ow model is constructed from the mined dependencies by applying the follow-
ing steps (see Lou et al., 2010c, pp. 617):

1. Eliminate bidirectional dependencies (Lou et al., 2010c, p. 617): For the cycle shown in
Figure 4.12 (left), both B →b C and C →f B hold, which makes the dependency pruning
of step 3 run into an in�nite loop. Bidirectional dependencies are therefore eliminated
by introducing a cloned event B′ and replacing the forward dependency C →f B with
C →f B

′.

2. Identify successors and predecessors (Lou et al., 2010c, p. 617): For each event X, a
predecessor list prec(X) and a successor list succ(X) are constructed: If (A →f B) ∨
(A→b B) then succ(A) := succ(A) ∪ {B} and prec(B) := prec(B) ∪ {A}.

3. Prune indirect dependencies (Lou et al., 2010c, p. 617): If A ∈ prec(C) ∧A ∈ prec(B) ∧
B ∈ prec(C), then A is removed from prec(C). Equally, if C ∈ succ(A) ∧B ∈ succ(A) ∧
C ∈ succ(B), then C is removed from succ(A). After pruning, cloned events introduced
in step 1 are replaced with their originals again.

4. Introduce initial and �nal states based on the observation which events start and �nish
traces in the log with a support of at least 5% to compensate for noise (Lou et al., 2010c,
pp. 617-618).

5. Identify control �ow patterns (Lou et al., 2010c, p. 618): Alternative and concurrent split
and merge states are identi�ed in the model based on rules quite similar to the work�ow
patterns mining approach by Gaaloul et al. (2005). One example given by the authors is
the relation #A = #B for a concurrent split state with two outgoing transitions labelled
A and B.

To detect cycles, fork/join nodes, and shortcut transitions, Lou et al. (2010c, pp. 618) re�ne the
initial work�ow model based on statistical properties observed during replay of the analyzed
traces. The authors describe the procedure for loop identi�cation as follows (Lou et al., 2010c,
pp. 618;Lou et al., 2010b, pp. 11-12):
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For each log trace s ∈ L, a new instance (thread) m0 of the simple work�ow model M0 is
started in the initial state s0. As long as w0 can interpret the events of s, the current state of
w0 is updated according to the transition function of M0. If w0 cannot interpret an event of s,
a new instance (thread) w1 of M0 is tentatively started from its initial state.

If the trace s can be interpreted as an interleaving of w0 and w1, the procedure is repeated,
optionally starting further instances ofM0. However, if the current event E of s does not �t any
interleaving of multiple instances, the initial work�ow modelM0 must be re�ned by introducing
a shortcut transition looping back to a previous state. The target state of this transition is
unambiguous when the model contains no duplicate tasks. The source state, however, could be
the current state of an arbitrary active thread. Lou et al. (2010c, p. 618) therefore determine
the state q of M0 for which the probability that event E cannot be interpreted is maximal over
all traces s ∈ L. This state is assumed to be the shortcut transition's source state.

Since �fork/join states do not expose any unique statistical properties� and �event traces that can
be interpreted by a work�ow W1 with loop structures can also be interpreted by a work�ow W2 [...]
with fork/join structures, [...] but not vice versa� (Lou et al., 2010c, p. 618), the authors apply
a complexity-based heuristics to decide between cycles and fork/join patterns. This heuristics
prefers the construct that leads to a lower overall number of transitions and sub-work�ow types
in the resulting model (Lou et al., 2010c, p. 618). If both variants have the same complexity,
cycles are preferred (Lou et al., 2010c, p. 618). Detailed algorithms for all steps of the procedure
are found in the appendices of (Lou et al., 2010c) and (Lou et al., 2010b).

Lou et al. (2010c, Sec. 6) show by experiments that their algorithm is e�ective and e�cient on
simulated as well as real-world examples from the domain of program comprehension. Though
the computational complexity of the re�nement procedure is not considered formally, search
appears to be expensive especially in case of multiple interleaved threads. Further drawbacks
are the inability to handle duplicate tasks and a tendency for over-generalization in presence
of long-distance dependencies (Lou et al., 2010c, p. 21).

To improve this, the authors plan to include further �domain or existing knowledge about a pro-
gram� into their approach in the future (Lou et al., 2010c, p. 21). In Section 7.3, we present
a procedure to reconstruct multicast protocols that is less general than the approach by Lou
et al. (2010c) but already makes use of additional information (e.g. thread identi�ers) available
in logs of multi-agent simulations.

4.2.4. Organizational Perspective

Complementary to the control �ow perspective, the organizational perspective focuses on de-
riving information about actors and organizational entities from process execution logs (Song
and Aalst, 2008, p. 5).29 The temporal dimension, which is central to control �ow mining, is
often neglected. Following Song and Aalst (2008, p. 3), relevant problems in organizational
mining include:

1. Social Network Analysis (SNA): Networks of organizational actors and their relations are
reconstructed and formally analyzed.

29page numbers relate to the pre-print of the article downloadable at http://wwwis.win.tue.nl/

�wvdaalst/publications/p484.pdf (last visit 2012-09-28)

148



4.2. Process Mining

2. Organizational model mining : A model of an organizational structure (i.e. teams, roles,
or sta� assignment rules) is mined from log data. The role mining approach by Rembert
and Ellis (2009, Sec. 4.2) was already presented in Section 4.2.2.1.

3. Information �ow mining : The information �ow between organizational entities (e.g. roles)
is analyzed by means of SNA and control �ow mining techniques.

As a fourth category, the reconstruction and analysis of frequent interaction patterns (e.g.
Dustdar and Ho�mann, 2007) might be added. In the following, we review relevant approaches
for SNA, organizational model mining, and interaction pattern analysis. Mutual bene�ts of
combining organizational process mining with MAS are treated in Sections 5.3.4 and 6.2.3.

4.2.4.1. Social Network Mining and Analysis

In Social Network Analysis (SNA) social positions and relations are mapped to a graph struc-
ture G = (V,E) called sociogram (Aalst and Song, 2004b, p. 9).30 Vertices v ∈ V represent
individual or abstract actors, while (un)directed and possibly weighted edges e ∈ E model their
relations (Aalst and Song, 2004b, p. 9) based on quantitative measures like frequency of e-mail
communication (Aalst and Song, 2004b, p. 2).

After building a sociogram from observations, its properties like node degree and distance are
calculated and related to properties of the analyzed society, such as the status of certain actors
or the e�ciency of communication (Aalst and Song, 2004b, p. 10). Though this analysis is
rather abstract and neglects informal social interaction (Aalst and Song, 2004b, p. 38), SNA
has been applied to diverse areas ranging from education to defense against terrorism (Aalst
and Song, 2004b, p. 1,9).31

Social Network Mining on Work�ow Logs Aalst and Song (2004b, p. 2) argue that work�ow
logs are a highly appropriate data source for SNA due to the amount and quality of logged
data. To reconstruct a sociogram from work�ow logs, the authors de�ne the following metrics
(presentation based on the summary by Dustdar and Ho�mann, 2007, Sec. 4):

1. Follower relations of events: Aalst and Song (2004b, pp. 12) distinguish between handover
of work and subcontracting metrics: For handover of work, a link from an actor A to an
actor B is added to the sociogram if A performs a task on a work�ow case directly before
B. For subcontracting, a link from A to B is added, if B works on a case in between two
tasks performed by A. Both metrics can be further re�ned, e.g. by measuring the degree
of causality, i.e. how many other actors work on the task in between A and B (Dustdar
and Ho�mann, 2007, p. 148).

2. Joint cases: A weighted edge between two actors A and B indicates the relative number
of cases on which these actors worked together (Dustdar and Ho�mann, 2007, p. 148;
Aalst and Song, 2004b, p. 17).

30page numbers relate to the version of the article available at http://wwwis.win.tue.nl/

�wvdaalst/publications/p233.pdf (last visit 2012-09-28)
31For further details on sociographic metrics, tools, applications, and literature see e.g. the brief summary by

Aalst and Song (2004b).
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3. Joint activities (Dustdar and Ho�mann, 2007, p. 149): A matrix C is set up with actors
as columns and observed activities as rows. A matrix element cij counts how often actor
i performed activity j. By applying a vector distance to the columns of C, the similarity
of actors can be rated in terms of performed activities.

4. Special event types: One example of this metric is the use of the special event type
delegation to identify hierarchical relations in an organization (Dustdar and Ho�mann,
2007, p. 149).

The above metrics for social network mining were implemented as part of a tool named MiSoN
(Aalst and Song, 2004b, Sec. 5) and integrated into the process mining system ProM (Song
and Aalst, 2008, Sec. 6.1). Aalst and Song (2004b, pp. 23) present a large case study from the
�Dutch national public works department�, in which social networks are mined with MiSoN and
subsequently analysed using the SNA tool AGNA32.

Social Network Dynamics Fewer SNA approaches attempt to mine models of structural
dynamics in social networks. One example is the work by Lahiri and Berger-Wolf (2008),
who tackle the problem of �[frequent] periodic subgraph mining for dynamic networks� (Lahiri and
Berger-Wolf, 2008, p. 373). The task is to identify, from a time series of network graphs
G = {G1, G2, . . . , Gn} (called a dynamic network), those subgraphs F that re-occur with a
�xed period (Lahiri and Berger-Wolf, 2008, p. 373).

Lahiri and Berger-Wolf (2008, pp. 374-378) present a polynomial time algorithm to mine sub-
graphs that are frequent, maximal, periodic, and pure33 from a dynamic network with unique
node labels. Di�erent from Aalst and Song (2004b), the analyzed dynamic networks are not
constructed from work�ow logs but from more diverse and less formalized data sources. Ex-
amples presented in (Lahiri and Berger-Wolf, 2008, Sec. 6) include a business e-mail archive,
movement pro�les of Plains Zebra, and an image database of Hollywood celebrities. By the
latter example, Lahiri and Berger-Wolf (2008, pp. 380) show that their algorithm is able to
detect periodic events like award shows or weekly television series from the joint occurrence of
celebrities on pictures in the image database.

4.2.4.2. Mining Organizational Models

The 'joint activities' metrics described above can be applied to cluster actors by similar �pro�les�
(Aalst and Song, 2004b, p. 17) of performed activities. Since these pro�les provide hints
towards the organizational role of a performer, they are an appropriate basis for role mining,
i.e. identifying which roles exist in an organization and which actors are assigned (Song and
Aalst, 2008, p. 11).

Song and Aalst (2008, pp. 11) apply hierarchical agglomerative clustering (see Section 4.1.4.2)
based on the joint activities metrics to reconstruct a hierarchical role model from a work�ow
log. Hierarchical clustering seems appropriate since organizational models are often structured
hierarchically (Song and Aalst, 2008, p. 11), e.g. in a hospital there might be a role 'nurse' with

32http://www.oocities.org/imbenta/agna (last visit 2011-11-13)
33This means that the non-periodic support of a subgraph is small compared to its periodic support (purity

measure; Lahiri and Berger-Wolf, 2008, p. 376).
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the specialization 'lead nurse' (Ly et al., 2006, p. 178): Both basically perform the same set of
activities, but the lead nurse has additional responsibilities such as creating a service schedule.

Song and Aalst (2008, Sec. 6) show that their approach is able to reconstruct plausible orga-
nizational models from work�ow logs of a large Dutch municipality. By using the 'joint cases'
metric instead of 'joint activities' the algorithm can be tuned towards the mining of teams,
i.e. people with di�erent roles working together on the same cases, rather than roles (Song
and Aalst, 2008, p. 12). The organizational mining algorithm, a graphical notation, and an
XML-based format (OMML) to display and persist hierarchical organizational models were
implemented as part of ProM (Song and Aalst, 2008, pp. 8, 16).

As a drawback, the current organizational mining approach can only assign a single role to
each performer. Song and Aalst (2008, p. 21) propose to �apply non-disjoint clustering methods
ro re�ect an organization in which originators play multiple roles� in the future. Due to the use of
unsupervised learning, it is necessary that a 'meaning' is assigned to the detected roles by an
analyst based on the underlying performers and activity pro�les after mining. Furthermore,
process dimensions beyond task and originator names are not taken into account.

The latter two issues are adressed in a sta� assignment mining approach by Ly et al. (2006).
Di�erent from Song and Aalst (2008), these authors assume that an organizational model
is known a-priori, whereby supervised learning becomes possible (Ly et al., 2006, p. 183).
Organizational modeling is based on a meta-model that comprises the concepts of agents,
roles, abilities, organizational positions, and organizational units (Ly et al., 2006, p. 181).

Given a work�ow log and an organizational model, Ly et al. (2006) apply the C4.5 algorithm
to mine decision trees (see Section 4.1.4.1) that represent sta� assignment rules, i.e. which
roles and abilities are necessary to perform a certain task. Negative examples, stating which
activities are not performed by actors with certain roles and abilities in the analyzed log, are
also taken into account (Ly et al., 2006, pp. 183).

Song and Aalst (2008, p. 20) emphasize the similarity between organizational model mining and
role mining in the context of role-based access control for resource management (e.g. computer
network administration). Molloy et al. (2009) e.g. provide a summary and evaluation of role
mining algorithms from this domain. Zhao et al. (2012) present an alternative approach where
roles and their interactions, as displayed in so-called role-activity diagrams (Zhao et al., 2012,
p. 404), are reconstructed based on the �diversity degree[s]� of their activities and interactions
using genetic algorithms (Zhao et al., 2012, p. 402).

4.2.4.3. Detection of Interaction Patterns

Dustdar and Ho�mann (2007) use social networks reconstructed from work�ow logs as a basis
to detect speci�c interaction patterns found in an organization. Their approach is not 'mining'
in the narrower sense of hypothesis generation, but the objective is to recognize a set of pre-
de�ned patterns related to (object-oriented) software engineering (Dustdar and Ho�mann, 2007,
pp. 140):

• Proxy : provides services on behalf of another actor. The proxy receives requests of a �xed
type from several clients, pre-processes the requests, forwards them to another actor, and
returns the answer to the client after performing some post-processing (Dustdar and
Ho�mann, 2007, pp. 140,143).
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• Broker : receives di�erent kinds of requests and propagates them to a �xed server per
request type (Dustdar and Ho�mann, 2007, pp. 140,145).

• Master/slave: A master receives requests of a �xed type, splits the requested task into
subtasks, forwards the subtasks to a set of slaves, and collects the (partial) results returned
(Dustdar and Ho�mann, 2007, pp. 140,143).

Based on these speci�cations, the authors implemented 3 rules as Java classes that work
on a social network represented in terms of an object model (Dustdar and Ho�mann, 2007,
pp. 141,145). For pattern detection, the rules check properties of the social network for confor-
mance with the above speci�cations. To detect proxies, tests are e.g. performed if a candidate
node in the social network communicates with a minimum of two peers, if all received requests
are of a common type, etc. (Dustdar and Ho�mann, 2007, pp. 142).

This intrinsically simple pattern detection is complicated by a number of di�culties (Dustdar
and Ho�mann, 2007, p. 141):

1. Actors might appear in di�erent roles like e.g. proxies for di�erent task types.

2. To handle a log containing multiple communications, it must be possible to trace back
reactive tasks to an initial client request.

3. Speci�c task types (like pre-processing, post-processing or decomposition) must be iden-
ti�ed to distinguish the di�erent patterns.

Dustdar and Ho�mann (2007, p. 141) solve these issues by explicitly enriching the log with
the necessary data including �causal information, [. . . ] task-subtask relation[s ..., and] the kind of
request�. Taking into account these enrichments, a �pattern �nding algorithm� reconstructs social
networks from the log that represent the contained �single communication tie[s]� (Dustdar and
Ho�mann, 2007, p. 146).

The e�ectivity of the pattern detection is demonstrated by analyzing example logs recorded
with the work�ow management system Caramba, which is tailored towards keeping ad-hoc
processes (Dustdar and Ho�mann, 2007, Sec. 5). For future work, the authors suggest to lead
their approach back to the software engineering �eld and apply pattern detection to the analysis
of web service interactions (Dustdar and Ho�mann, 2007, p. 154).

Data mining in a more traditional sense is applied to interaction pattern detection in the
approach by Yu et al. (2010). These authors use frequent subtree mining to identify common
interaction patterns emerging in discussions between multiple persons at meetings. For data
collection, di�erent meeting situations are �lmed and subsequently interpreted by assigning
performative-like tags to the observations, including the communicative acts �propose, comment,

acknowledgement, requestInfo, askOpinion, pos[itive]Opinion and neg[ative]Opinion� (Yu et al., 2010,
p. 2).

In the resulting communication logs, the contained discussion threads (sessions) are identi�ed
together with the initiating pro-active events (Yu et al., 2010, p. 3). The reactions of other
participants to these events are recursively aggregated into an interaction �ow represented by
a multicast tree-like data structure displayed in Figure 4.13. The identi�ed interaction �ows
are encoded in a normalized form that takes account of isomorphic subtrees and stored in a
database (Yu et al., 2010, Sec. 4.1).
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Figure 4.13.: Two interaction �ows (left) an a derived subtree representing the common inter-
action pattern propose → comment (right). Adopted with modi�cations from
(Yu et al., 2010, p. 4).

On the database, a frequent pattern mining algorithm is applied, that returns a set of subtrees
for the most common interaction patterns (Yu et al., 2010, Sec. 4.2). The algorithm was
evaluated in exemplary real world discussions on subjects including �PC purchase [,...] trip-
planning [,. . . ] soccer preparation [...], and [...] job selection� (Yu et al., 2010, p. 7).

A drawback of the procedure is its current inability to handle indirect causal dependencies,
which the authors plan to compensate by using so-called embedded subtrees for representation
(Yu et al., 2010, p. 10). Furthermore, the algorithm seems to be unable to abstract from
multiple similar reactions to an event: Thus, 3 subtrees representing 1, 2, and 3 comments to
the same proposal are identi�ed as di�erent patterns. Yu et al. (2011) present an alternative,
graph-based pattern mining approach that only regards for the number of interacting persons
and the order, direction, and frequency of their interactions.

4.2.5. Further Perspectives and Tasks

So far we have treated the main mining perspectives of control �ow and organizational structure
and the main task of discovery. However, a large number of further process mining perspectives
and tasks have been identi�ed, on which fewer work exists. Relevant examples with ties to
MABS (as explained later) are presented in the following.

4.2.5.1. Log Clustering

In Section 4.2.4.2, we explained how unsupervised clustering is applied to the reconstruction of
organizational models. Clustering algorithms can also be used to provide additional structure
to logs and mined process models in the absence of explicit structuring information. From the
literature, 4 main applications can be identi�ed:

1. Some logs are not composed of events representing high-level activities but contain low-
level data like transactional database change sets (Ellis et al., 2006, p. 56). The clustering
of similar sets of low-level operations into aggregated high-level activities is called activity
mining by Günther et al. (2010, cited from the brief summary in Lang, 2008, p. 83). A
rather similar approach is presented by Ellis et al. (2006, Sec. 3.2)

153



4. Data Mining and Process Mining

2. Though a log contains high-level events, these are not explicitly assigned to a certain
process instance (i.e. missing case identi�er). In this situation clustering allows to group
related events into distinct traces for each process instance (see e.g. Schütt, 2003, pp. 47).
Aalst et al. (2005, p. 21) refer to this as �chained correlation�.

3. When cases can be identi�ed, but were generated by multiple di�erent process models
or variants, clustering can be applied to group traces into sub-logs for each model (Song
et al., 2008, p. 110). A set of smaller models reconstructed from each sub-log is often
more understandable than a large model mined from the overall log, which might soon
become unmanageable (e.g. Song et al., 2008, p. 110). Algorithms for trace clustering are
(among others) presented by Greco et al. (2004) and Song et al. (2008).

4. Clustering of similar sub-structures found in a process log or model is the basis for min-
ing hierarchical models that represent control �ow at multiple levels of abstraction. Ap-
proaches by Medeiros et al. (2008b) and Bose et al. (2011b) are reviewed in the next
section.

The former three types of log clustering are rather similar except that the grouping of entities is
performed at di�erent levels of abstraction: (1) activity mining = assignment of low-level events
to high-level activities, (2) chaining = assignment of activities to traces, (3) trace clustering
= assignment of traces to process models. Günther et al. (2010, p. 129) also emphasize the
applicability of their log segmentation approach to both activity mining and �trace discovery�,
i.e. a combination of (2) and (3).

Existing approaches di�er in the used clustering algorithms, the encoding of entities, and the
applied distance measures. The main challenge lies in choosing an appropriate encoding to
represent log entities by characteristic feature vectors (Greco et al., 2004, pp. 57). Given this
representation, standard algorithms like k-means (Greco et al., 2004, p. 56; Song et al., 2008,
p. 115), Agglomerative Hierarchical (Jung and Bae, 2006, p. 385; Song et al., 2008, p. 115),
or Nearest Neighbour-like clustering (Ellis et al., 2006, pp. 57) and distance measures like
Euclidian, Hamming, or Jaccard distance (Song et al., 2008, p. 115) can be applied.

A number of encodings of log traces as feature vectors are summarized by Song et al. (2008,
pp. 113):

• Activity pro�les: The elements of the feature vector represent the di�erent activity types
found in the log. In a vector s representing trace s ∈ L, an element si is set to the number
of times activity Ai appears in s.

• Transition pro�les: Every vector component represents a direct follower relation found
in the log. It is set to the number of times the represented trace contains the respective
transition.

• Originator pro�les: The vector components stand for the di�erent activity performers
involved in the represented case.

• Attribute pro�les: Cases are represented by vectors containing values or counts of certain
data attributes assigned to the case or its events.

• Performance pro�les: Cases are represented by performance measures like trace length
or duration.
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These basic encodings are re�ned and domain-speci�cally adapted in several articles on work�ow
clustering. Jung and Bae (2006, pp. 382) and Kastner et al. (2009, Sec. 3) cluster work�ow
instances by activity and transition similarity taking into account control �ow constructs beyond
direct follower relations. Dustdar and Gombotz (2006, p. 263) present encodings to rate session
(i.e. case) similarity in the context of web service interaction mining that are detailed in Section
5.3.3.1.

4.2.5.2. Mining Hierarchical Models

Hierarchical models are an important means to display complex control �ow in a readable form.
In the following, two approaches are reviewed where the �rst combines control �ow mining with
clustering while the second is based on pattern recognition and log abstraction. In Section 7.3
we present a concept for mining hierarchical agent interaction protocols which is akin to the
reviewed approaches but also accounts for the detection of multicast communication.

Mining Hierarchies of Work�ow Schemas Based on their clustering approach mentioned
above, Greco et al. (2006) developed a technique to reconstruct a hierarchy of increasingly
re�ned work�ow models from an event log. The algorithm is improved, generalized, and adopted
into the ProM framework by Medeiros et al. (2008b). According to these authors, �the goal [...]
is to allow for the mining of processes with very diverse cases [...] while avoiding over-generalization�
(Medeiros et al., 2008b, p. 21). The basic procedure works as follows (Medeiros et al., 2008b,
pp. 22):

1. An initial process model is reconstructed from the overall log by means of a control �ow
mining algorithm.

2. The model's quality and compliance to the represented log is determined with a confor-
mance measure.

3. If the quality of the model is insu�cient, the related traces from the log are partitioned
into disjoint clusters. For each cluster, the above procedure is repeated starting from step
1. If multiple clusters exist, the cluster belonging to the model with the worst quality is
considered for splitting �rst.

4. If the quality of all discovered models su�ces,the resulting hierarchy of disjoint models
(with their assigned traces) is output as a result.

Medeiros et al. (2008b, p. 23) emphasize that their approach should be understood as a template
in which concrete mining algorithms can be plugged in to support the di�erent steps. For control
�ow mining the Heuristics Miner (Section 4.2.3.4) is chosen due to its robustness (Medeiros
et al., 2008b, p. 24). Following the original proposal by Greco et al. (2004, 2006), the k-means
algorithm is applied for clustering (Medeiros et al., 2008b, p. 24).

As a distance measure for clustering and quality assessment Medeiros et al. (2008b, p. 23) use
a feature identi�cation scheme adopted from (Greco et al., 2004, 2006): �A relevant feature is a
sequence [...] t1, . . . , tn together with a task [...] tn+1 such that [...] (i) t1, . . . , tn is frequent, [...] (ii)
tn, tn+1 is also frequent [...], but, (iii) the whole sequence t1, . . . , tn, tn+1 is not frequent� (Medeiros
et al., 2008b, pp. 23) in the analysed log.
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After identifying features with relevant support, all traces are mapped to vectors over the
feature space, which serve as input to the k-means algorithm (Medeiros et al., 2008b, p. 24).
To assess the quality of a reconstructed model Medeiros et al. (2008b, p. 23) propose to check
for over-generalization in terms of the number of patterns that are implied by the model but
not found in the log. Greco et al. (2006, p. 1017) suggest to re�ne the model with the lowest
soundness34 or � for the sake of e�ciency � the model with the highest number of alternative
splits.

Greco et al. (2008, p. 79) further extend the algorithm by restructuring the resulting model tree
into a taxonomy of work�ow models, where each 'non-leaf' model can be composed from its
(disjoint) sub models. They also present an application of the hierarchical mining approach to
real world log data from the domain of container terminal logistics (Greco et al., 2008, Sec. 6.3).

Process Maps Li et al. (2010) approach the problem of hierarchical model reconstruction
with a two-step procedure of pattern-based log abstraction and subsequent control �ow mining
on the abstracted log (Li et al., 2010, p.110). In the �rst step, (combinations of) events from
the original log are mapped to a more abstract alphabet. One example is the aggregation of
frequent sub-processes into higher-level activities.

In the second step, a control �ow mining algorithm is applied (1) to the abstracted traces to
reconstruct the overall model structure, and (2) to the sub-traces belonging to each abstraction
to mine the hierarchical re�nements (Li et al., 2010, p. 117). Like the approach by Medeiros
et al. (2008b), the work by Li et al. (2010, p. 110) is also intended as a template to plug in
di�erent algorithms for log abstraction and control �ow mining.

The pattern detection procedure used in (Li et al., 2010, p. 112) searches for maximal repeats
of event sequences in the log:35 Basically, if a sequence like p0 = [a, b, c, d] appears frequently in
the analyzed log, it is identi�ed as a sub-process and each occurrence is replaced by a symbol
from an abstracted alphabet, e.g. x (Li et al., 2010, p. 111).

The implemented procedure is more complex since it also regards for variations (e.g. p1 =
[a, c, b, d] might be a variation of p0 due to concurrency of b and c; see Li et al., 2010, p. 113)
and hierarchical embeddings (e.g. p2 = [a, b] and p3 = [c, d] might be sub-processes of p0; see Li
et al., 2010, p. 114) of patterns.36 Nevertheless, pattern detection can be performed �in linear

time and space with respect to the length of the traces� (Bose et al., 2011b, p. 35).

For control �ow mining, Li et al. (2010, p. 117) apply the Fuzzy Miner algorithm by Günther
and Aalst (2007) with a modi�cation that allows to �zoom� into the abstracted sub-processes by
aggregating the related pattern variations. The overall procedure is validated at the example
of log data from a Dutch house rental agency (Li et al., 2010, p. 118). Bose et al. (2011b)
describe an implementation in the form of multiple ProM plugins including an additional pat-
tern abstraction stage for loop constructs. A semi-automated, interactive de�nition of pattern
abstractions is also supported (Bose et al., 2011b, p. 37).

In comparison to other techniques for hierarchical mining like (Medeiros et al., 2008b), the
authors emphasize the domain-speci�c adaptability of their approach by de�ning context-
34Here, soundness is characterized by a low relative number of possible process model executions that do not

�t an actual trace from the log (see Greco et al., 2006, p. 1011 and Greco et al., 2004, p. 55).
35as one of several patterns de�ned by the authors
36All adopted examples were modi�ed by the author.
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dependent abstractions, and the practical suitability of �[log] abstraction from a functionality/sub-
process point of view� (Li et al., 2010, p. 120).

4.2.5.3. Mining Non-Stationary Processes

Most process mining techniques presuppose a stationary process, i.e. the model that generated
the analyzed log has not changed over time (Bose et al., 2011a, pp. 391). However, this assump-
tion is too restrictive for many real-world and simulated processes (Bose et al., 2011a, p. 392),
which exhibit second-order dynamics (Bose et al., 2011a, pp. 391). Applying a conventional
control �ow mining algorithm like α++ (Section 4.2.3.1) to the log of a non-stationary process
will at best yield a result that represents the 'sum' of all behavior variants observed over time.

In the following we review two of the few approaches dedicated to the mining of control �ow
models from non-stationary processes. While the work by Günther et al. (2006) implies that
changes to the process model (e.g. insertion of a new transition) are explicitly logged, the ap-
proach by Bose et al. (2011a) tackles the problem of deriving information on such changes from
implicit data. In Section 6.2.5 we identify second order dynamics as an important characteris-
tic of MABS and discuss possible applications and extensions of the reviewed 'change mining'
techniques in this context.

Change Mining The change mining approach by Günther et al. (2006, p. 310) is rooted in
adaptive process management systems (PMS). Here, modi�cations of a work�ow model can
be performed during execution and are explicitly logged. The adaptive PMS thus generates,
besides the conventional execution (or enactment) log, an additional change log (Günther et al.,
2006, p. 312) where process model changes including insertion, deletion, and movement of model
elements (Günther et al., 2006, p. 315) are listed.

The straightforward idea of change mining consists in the application of standard control �ow
mining algorithms to change logs in order to �provide an aggregated overview of all changes that
happened� (Günther et al., 2006, p. 309) to the analyzed model. Furthermore, data from the
change log and the execution log can be correlated to identify possible reasons for process model
changes (integrated analysis); see Günther et al. (2006, pp. 312).

To practically solve the problem of change mining, Günther et al. (2006) proceed as follows:

1. The XML-based log data format of the framework ProM (Section 4.2.6.1) is extended with
�elds to store change information including the change operation, the a�ected activity,
and its context in the model graph (i.e. preceding and following activities); see Günther
et al. (2006, p. 317). Change logs are imported from the adaptive PMS ADEPT (Günther
et al., 2006, pp. 322).

2. Exemplary control �ow mining algorithms implemented in ProM are applied to the im-
ported change logs. In (Günther et al., 2006, p. 321) the Multi Phase Mining algorithm
by Dongen and Aalst (2004) is chosen due to its �robust[ness] in handling fuzzy branching
conditions�.

3. The idea of commutativity of change operations is employed to reduce the size of the
mined model representing the change process (Günther et al., 2006, p. 320): Two change
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operations are commutative if their application leads to the same result regardless of
execution order. Causal dependencies between commutative operations can therefore be
omitted from the reconstructed model of the change process.

4. A concept is developed for integrated analysis (Günther et al., 2006, pp. 312): Frequent
patterns found in the change log are related to data attributes of corresponding traces
from the enactment log. Decision tree learning might be applied to the combined data,
to unveil possible causes for the observed changes.

Günther et al. (2008) report an experimental analysis of further existing control �ow mining
algorithms for change mining at the example of clinical pathways. A main drawback of this
approach is the low availability of process-aware information systems logging change information
in practice (Bose et al., 2011a, p. 393).

Detection of Concept Drift Due to this drawback Bose et al. (2011a, p. 392) focus on the
detection and characterization of change points in standard execution logs. These authors
consult time-series analysis and data mining and adopt the term concept drift to characterize
second order dynamics that change a process model at runtime (Bose et al., 2011a, pp. 391). A
transfer of existing techniques to handle concept drift is not straightforward, because most are
tailored towards models that only consist of a few simple variables (Bose et al., 2011a, p. 392).

Due to the initiating character of their work, Bose et al. (2011a) start by identifying relevant
problems and perspectives related to concept drift in process mining:

• Three major problems are stated including �change (point) detection [...,] change localization
and characterization [..., and] unravel[ling of] process evolution� (Bose et al., 2011a, p. 392):
The �rst problem refers to the identi�cation of change points in the log. The second
problem consists in the detection and description of which model parts actually changed.
The third problem is related to the derivation of a change process from the detected
changes, somehow similar to the work by Günther et al. (2006).

• Bose et al. (2011a, p. 393) observe that second order dynamics can a�ect a model at
di�erent process perspectives (see Section 4.2.2.1). Typical change operations are iden-
ti�ed for three main perspectives. While the control �ow perspective is treated similar
to (Günther et al., 2006), some examples for the data and resource (i.e. organizational)
perspectives are added (Bose et al., 2011a, Sec. 3).

• Finally, the authors pinpoint 4 di�erent types of concept drift (Bose et al., 2011a, pp. 394):
Sudden drift means that a process model M is suddenly replaced by a changed model
M ′. In recurring drift the old and new models keep re-occurring with a certain (ir)regular
period.37 Gradual drift says that the old model does not disappear immediately but keeps
existing together with the new model for a certain duration. Incremental drift relates to
the situation where the observed changes do not happen to the model all at once, but
stepwise during an extended period of time.

In their practical work, Bose et al. (2011a, p. 395) address the detection and characterization
of change points for sudden drift in the control �ow perspective. Their approach is basically

37similar to the dynamic (social) network mining technique by Lahiri and Berger-Wolf (2008) reviewed in Section
4.2.4.1
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similar to log clustering (Section 4.2.5.1): One (local features) or more (global features) traces
are mapped to feature vectors, and change points are detected by measuring deviations between
these features over time (Bose et al., 2011a, pp. 396). The similarity between log clustering
and concept drift detection is put forward in the approach by Luengo and Sepulveda (2012)
detailed below.

Bose et al. (2011a, p. 396) propose four control �ow-related feature mappings rooted in data and
process mining. To detect change points in execution logs, Bose et al. (2011a, p. 397) proceed
similar to statistical time series analysis: The log is segmented into multiple (non-)overlapping
windows and the traces from each sub-log are encoded into feature vectors using one of the
above measures. By applying statistical hypothesis tests to the di�erent vector subsets, it is
assessed if the statistical properties of the encoded features di�er over time, thus revealing
possible changes in the underlying process model (Bose et al., 2011a, p. 397).

After their identi�cation, change points are characterized by further analyzing the features of
the related sub-logs (Bose et al., 2011a, p. 402). As a simple example, one might observe that
the relation 'b follows a' frequently occurs in a sub-log L spanning the time period [t0, t1[,
but not in the following sub-log L′ starting at t1. This could lead to the conclusion that the
transition a→ b was removed from the process model around change point t1.38

Bose et al. (2011a, Sec. 5) successfully evaluate their approach at the example of arti�cial
logs re�ecting four local changes to an insurance claim work�ow. Despite this initial success,
the authors identify several challenges for future work including (1) de�nition of more speci�c
features, (2) reduction of the currently high-dimensional feature space (see also Section 4.1.3.1),
(3) inclusion of further mining perspectives, (4) application of change detection techniques
beyond hypothesis tests, and (5) analysis of the minimum sample size needed to detect certain
changes (Bose et al., 2011a, p. 404).

A slightly di�erent approach towards concept drift detection by Luengo and Sepulveda (2012,
p. 154) explicitly �include[s] the temporal dimension� as an attribute into the feature vectors
presented to a mining algorithm. Hickey and Black (2001, p. 23) refer to this technique as
�TSAR (Time Stamp Attribute Relevance)�. These authors propose 3 di�erent possibilities to
tag feature vectors with time stamps in batch learning of decision trees: (1) simple distinction
between �current� or �new� batches of feature vectors (Hickey and Black, 2001, p. 23), (2) feature
vectors tagged with explicit �batch identi�ers� (Hickey and Black, 2001, p. 24), (3) �continuous
time stamping [of ...] training example[s ...] without regard to batch[es]� (Hickey and Black, 2001,
p. 25).

In a similar way, Luengo and Sepulveda (2012, pp. 154) detect concept drift in process min-
ing by including time stamps into feature vectors that encode process instances by maximal
repeat (MR) patterns according to the approach by Li et al. (2010); see Section 4.2.5.2. They
experimentally evaluate possibilities to weight the temporal and MR pattern-related features
in a distance measure (Luengo and Sepulveda, 2012, p. 155). Comparing their approach to
the work by Bose et al. (2011a), Luengo and Sepulveda (2012, p. 154) stress the linear time
complexity and the ability to handle �sudden, recurring, gradual, and incremental changes�.

38More realistic examples are provided by Bose et al. (2011a, pp. 401-403).
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4.2.5.4. Conformance Checking

So far we have reviewed techniques related to the task of process discovery. In the next two
Sections we will discuss the additional tasks of conformance checking and process model exten-
sion.

Following Rozinat and Aalst (2008, p. 1)39, �Conformance checking, also referred to as conformance
analysis, aims at the detection of inconsistencies between a process model and its corresponding exe-
cution log and their quanti�cation by the formation of metrics�. In general, four main approaches
for conformance analysis can be identi�ed: (1) comparison of high-level features using distance
measures, (2) model and trace checking against speci�cations in (temporal) logic, (3) analyses
based on log replay, and (4) detection of pre-de�ned patterns related to control �ow and other
perspectives in the log. These are brie�y characterized in the following.

Feature-Based Approaches Feature abstraction, as reviewed in the previous sections, forms
one possible basis for conformance analysis: Two traces, logs, or models are abstracted to com-
mon high-level features and the conformance between the feature values of both instances is
assessed by means of a distance measure (see Section 4.2.5.1). This analogy between confor-
mance checking and clustering-related techniques is e.g. noted by Medeiros et al. (2008b, Sec. 5)
in the context of their hierarchical process mining approach (Section 4.2.5.2).

Compared to the symbolic techniques presented further below, conformance checking based on
high-level features exhibits some characteristic advantages and drawbacks. On the positive side,
it allows for an equal comparison of logs and models when both can be abstracted into similar
features. Abstract representations like causal footprints40 even permit to compare models
represented in di�erent modeling languages, possibly lacking exact execution semantics (Dongen
et al., 2006c, p. 127). Medeiros et al. (2008b, p. 28) see a speci�c advantage of their metrics-
based approach in the detection and characterization of over-generalizations.

A disadvantage of feature-based conformance checking is the lack of exactness when heuristics
are used to encode and compare the features. However, the use of heuristics and high-level
abstractions might reduce the computational complexity of conformance analysis compared
with exact techniques like model checking.

Model and Trace Checking In (Page and Kreutzer, 2005, Ch. 8), we have described model
checking in the context of discrete simulation. Since the typical complexity of models in this
context is rather similar to those treated in process mining, we brie�y repeat the presentation
here (Page and Kreutzer, 2005, pp. 214):

�Finite state machines o�er a suitable base for model checking, a formal veri�cation tech-
nique that has gained [...] relevance in several applications; e.g. protocol analysis (Holz-
mann, 1991, Ch. 11). The core idea of model checking is to give a speci�cation of expected

39page numbers relate to the version of the article downloadable at http://www.processmining.org/

_media/publications/rozinat_conformancechecking.pdf (last visit 2012-09-30)
40In fact, causal footprints are not feature vectors, but graph-based �description[s] of what can and cannot be

done� in a control �ow model (Dongen et al., 2006c, p. 127). However, due to their high level of abstraction,
an equivalent treatment might be admissible.
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model behaviour in a logical language, and then apply a "model checker" tool to verify if
the �nite state model's behaviour conforms to this speci�cation.

Since we are interested in [...] model behaviour, a temporal logic is chosen as speci�cation
language. Temporal logics are extensions of propositional or predicate logic with temporal
operators, such as 'until' and 'next' [... which] allow [...] to specify properties for feasible
state sequences of a FSM. [...]

An important advantage of model checking [...] is that it provides exhaustive veri�cation:
This means that it can verify that a speci�cation holds for all possible state sequences. This
advantage is a consequence of the �nite state property of the input model.�

The state spaces of models or programs considered in practice are, however, often in�nite or
at least too large to allow for exhaustive veri�cation. One possible solution is the application
of model checking only to sample traces (i.e. a log) generated during the execution of a model.
As discussed in Section 4.2.3.3 a log of traces corresponds to a �nite state machine, e.g. in the
form of a pre�x tree automaton. Further following our discussion in (Page and Kreutzer, 2005,
p. 221):

�Model-based trace checking [...] (e.g. Howard et al., 2003) applies the concept of model
checking to log-�le analysis. As in "traditional" model checking the expected [...] behaviour
is described in terms of a temporal logic. However, instead of a �nite state model, a trace
of a single [...] run is checked for correspondence with its speci�cation.�

The ProM framework contains a plugin named LTL Checker that supports model-based trace
checking in linear temporal logic (e.g. Dongen et al., 2006b, Sec. 1.4.4), the simplest extension of
propositional logic with temporal operators (Page and Kreutzer, 2005, p. 214). An application
of this plugin to our MABS of courier service logistics is reported in Section 8.3.1.1. Dongen
et al. (2006b, Sec. 1.4.4) report an application to another MABS reviewed in Section 5.3.4.2.

Conformance Checking by Log Replay is related to the idea of formal language acceptors.
Given a log and a process model, it is checked in how far the model accepts the traces from
the log and to which degree the model exhibits behavior beyond what is observed in the log
(Rozinat and Aalst, 2008, p. 69). In combination, both metrics provide a characterization of
conformance between model and log (Rozinat and Aalst, 2008, p. 69).

Rozinat and Aalst (2008, Sec. 3) operationalize this idea by means of a �tness and several
appropriateness metrics. Fitness describes the model's ability to accept (parts of) the logged
traces (Rozinat and Aalst, 2008, p. 69). Given a work�ow net N = (S, T, F,m0), �tness is
measured by replaying every distinct log trace si ∈ {s1, . . . , sk}, from the initial marking m0

while updating statistical counters including (Rozinat and Aalst, 2008, p. 70):

• ni: number of traces in the log that are equal to si

• mi: number of arti�cial tokens that must be added externally during log replay to make
N 'accept' si

• ri: number of tokens that remain in N after replay of si

• ci: overall count of tokens consumed while replaying si

• pi: overall count of tokens produced while replaying si
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From these statistics, Rozinat and Aalst (2008, p. 70) calculate a �tness measure f ∈ [0; 1] that
decreases with an increasing number of tokens missing and remaining in the net in relation to
the tokens consumed and produced overall:41

f =
1

2

(
2−

∑k
i=1 ni ·mi∑k
i=1 ni · ci

−
∑k

i=1 ni · ri∑k
i=1 ni · pi

)
(4.16)

Log replay might be complicated by missing tokens, enablement of invisible tasks, and non-
deterministic enablement of multiple duplicate tasks at the same time (Rozinat and Aalst,
2008, p. 72). Missing tokens to enable the next logged transition for replay are inserted on
demand and noted in the statistics (Rozinat and Aalst, 2008, p. 70). In case of invisible tasks
and non-determinism, the replay engine must perform a look-ahead search in the state space
of N (Rozinat and Aalst, 2008, p. 72, Sec. 7.2).

Measuring appropriateness is less straightforward due to its rather subjective characterization
as �the degree of accuracy in which the process model describes the observed behaviour, combined with
the degree of clarity in which it is represented� (Rozinat and Aalst, 2008, p. 69). To capture these
requirements, Rozinat and Aalst (2008, Sec. 5) de�ne metrics for behavioral and structural
appropriateness in a simple and advanced form.

The conformance checking techniques are implemented as ProM plugins, also including a vi-
sualization of detected mismatches (Rozinat and Aalst, 2008, Sec. 7.2). Section 7.3 of this
thesis presents a prototypical implementation of a simple conformance checker in terms of ref-
erence nets. In this context, future requirements on the Renew simulator towards an improved
support for log replay-based analysis will also be discussed brie�y.

Pattern-Based Compliance Checking Instead of replaying logs in global control �ow models,
Ramezani et al. (2012) apply Petri net-based conformance checking to evaluate the compliance
of a log to one or more patterns related to the control �ow, data (�ow), and organizational
perspectives (Ramezani et al., 2012, Sec. 4.1). Their approach is thus closely related to trace-
based model checking with the exception that the patterns are not de�ned using temporal logic
but in terms of Petri nets (Ramezani et al., 2012, Sec. 4.2).

Ramezani et al. (2012) present a large �collection of compliance rules� (Ramezani et al., 2012,
Sec. 4.2) ranging from simple rules like �Direct Precedence of a Task� to more complex situations
like �Bounded Existence of [a] Sequence of Tasks� (Ramezani et al., 2012, Sec. 4.3) . For every
rule, a �parametrized Petri net pattern� (Ramezani et al., 2012, Sec. 4.2) is de�ned that can be
checked against a log using an alignment technique developed by Adriansyah et al. (2011)42.
An advantage of this technique is that it can exactly identify deviations of 'almost' �tting log
instances from the prede�ned patterns (Ramezani et al., 2012, Sec. 3).

The organizational and data perspectives are analyzed by simply 'unfolding' the related data
elements (e.g. originators of actions) into multiple labelled transitions of the Petri net pattern
(Ramezani et al., 2012, Sec. 5.1). Ramezani et al. (2012, Sec. 5.2) state the example of two
transition labels [A,R] and [A,¬R]: The �rst indicates that action A was executed by originator
R, while the second says that A was executed by another user.
41adopted with minor modi�cations
42see Ramezani et al. (2012, Sec. 3)
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This proceeding can clearly lead to a 'state explosion' in the represented patterns when many
di�erent data types and values must be considered. An extension of the conformance checker
towards a higher level representation mechanism (such as colored Petri nets) is identi�ed as a
topic for future work (Ramezani et al., 2012, Sec. 7). In Sections 6.2.6.2 and 7.1.3.1 of this
thesis we will relate the work by Ramezani et al. (2012) to a somewhat similar approach from
the MABS domain (Chen, 2009; Chen et al., 2008, 2010) and sketch how reference nets can be
applied to model compliance rules comprising multiple perspectives.

4.2.5.5. Model Extension

As described in Section 4.2.2.2, the process mining task of extension deals with the improvement
of existing process models based on information mined from a log (e.g. Aalst, 2006, p. 3). In
the following, we review techniques for the enrichment of control �ow models with branching
conditions and performance data. Like conformance checking (Section 4.2.5.4) some of these
techniques are based on log-replay. The additional information are collected while replaying
traces annotated with data attributes of the respective process dimensions (e.g. time stamps).

Decision Mining The assignment of branching conditions to decision nodes (e.g. in UML
activity diagrams, see Section 2.3.1.3) is an obvious extension for control-�ow related models.
Herbst (2001) and Rozinat and Aalst (2006) employ decision tree mining, Schütt (2003) uses
fuzzy rule mining techniques for this endeavor.

We exemplarily review the �decision point analysis� by Rozinat and Aalst (2006, p. 421), which
will be experimentally applied to our courier service simulations in Section 8.3.3 due to its
availability in the ProM framework. As input, the decision point analysis takes a Petri net
and a log in which cases or events are enriched with data attributes (Rozinat and Aalst, 2006,
p. 421). An example43 is the assignment of a boolean attribute isUrgentOrder to an event
orderReceived.

At �rst, �place[s] with multiple outgoing arcs� (Rozinat and Aalst, 2006, p. 421) in the Petri
net are tagged as decision points. Then every decision point is assigned a set of data attributes
belonging to events or cases that triggered the related transitions (Rozinat and Aalst, 2006,
p. 422). Mapping this data to the triggered transition at the decision point forms a classi�cation
problem that can be solved by decision tree learning (Rozinat and Aalst, 2006, p. 422).

The decision point analysis implemented by Rozinat and Aalst (2006, p. 423) uses the Data
Mining system WEKA (Section 4.1.5.1) to perform the actual decision tree mining with the
C4.5 algorithm (Section 4.1.4.1). The decision trees returned by WEKA are assigned to the
respective decision nodes in the Petri net and can be visualized in ProM (Rozinat and Aalst,
2006, p. 424).

Similar to log replay-based conformance checking, decision point analysis is complicated by
constructs like loops or duplicate and invisible tasks, where the determination of the route
through a decision point is not straightforward (Rozinat and Aalst, 2006, p. 422).

43inspired by our courier service simulations described in Chapter 8
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Performance Analysis The enrichment of process models with timing- and performance-
related data is an important requirement on process mining in the context of discrete sim-
ulation (see Section 6.4). While many other techniques exist to collect, display, and analyze
performance data, process mining o�ers the advantage of automatically relating this data to
appropriate parts of the process model.

Hornix (2007) implemented techniques to add performance data to process models displayed
in the form of Petri nets and UML-like sequence diagrams (see Section 2.3.1.4). The Petri Net
Performance Analysis (PAPN) is based on log-replay and relies on the existence of a (mined
or modelled) Petri net with a compatible log containing time stamps (Hornix, 2007, p. 24).

The log replay engine collects timing data from which key performance indicators (KPIs),
including throughput times of cases, sojourn times of tokens at places, and durations between
the �ring of transitions, are derived (Hornix, 2007, pp. 26). For the KPIs, typical statistical
measures like mean, standard deviation, minimum, and maximum are calculated (Hornix, 2007,
p. 26). The user interface of the performance analysis component in the ProM framework can
visualize the performance data directly in the underlying Petri net, including a color-coding of
performance bottlenecks (Hornix, 2007, p. 31).

The performance sequence diagram analysis (PSDA) does not require an a-priori model but
mines all relevant information from the time-stamped log (Hornix, 2007, p. 23). Basically,
the user can choose from a number of process dimensions, including activities and performers
(Hornix, 2007, p. 32). A sequence diagram for a case is drawn by taking the �rst entity from
the respective trace and measuring how long this entity remains active (Hornix, 2007, pp. 32).
This information is encoded by the length of the assigned task node in the sequence diagram
(Hornix, 2007, p. 35).

When another entity (e.g. performer) becomes active in the logged case, an arrow is drawn
between the task nodes of the previous and the new entity and the procedure repeats (Hornix,
2007, p. 34). This arrow is assigned the duration passed between the activation of both entities
(Hornix, 2007, p. 35). To abstract from di�erent interleaving of concurrent tasks, a control
�ow mining algorithm (multi-phase miner, see Dongen and Aalst, 2004) converts the traces
into causal nets (see Section 2.3.2.2) prior to performance analysis (Hornix, 2007, p. 32).

To improve the readability of sequence diagrams derived from large logs, similar sequences can
be aggregated into patterns (Hornix, 2007, Sec. 4.3.2) based on two di�erent equivalence metrics
(strict and �exible equivalence, see Hornix, 2007, p. 38). In this case, the implementation of the
sequence diagram-based performance analysis in ProM can calculate aggregated performance
measures for each pattern (Hornix, 2007, p. 40) and display the resulting patterns sorted by
frequency (Hornix, 2007, p. 39).

4.2.6. Tools and Applications

After reviewing a number of process mining concepts and techniques with relevance for the
analysis and validation of MABS we will provide a brief overview of practical aspects covering
software tools and applications.
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4.2.6.1. Process Mining Tools

Tool support in process mining is nowadays dominated by the Java-based open source frame-
work ProM 44, developed and maintained at Eindhoven University. This toolset has become
a de-facto standard in (scienti�c) process mining. Therefore our application and extension of
process mining techniques for MABS analysis will also be based on this software framework.

ProM 4 and 5 In Cabac et al. (2006b, Sec. 3.1.3) we have summarized the functionality of
the ProM framework with respect to its former version 4:

�Aalst et al. present the ProM process mining tool that is extensible through a plugin
mechanism (Dongen et al., 2005). The basic application framework can be extended by
mining, import, export, and analysis plugins. ProM relies on a general [XML-based] log
data format [MXML, short for 'Mining XML'], where each trace entry contains information
on event name, event type, process instance, process type, originator, [data attributes,] and
time stamp. In ProM, process mining is seen as the core tool functionality, while functions
such as data acquisition, simulation, formal analysis of mining results, etc. are regarded as
extensions. To generate data for testing process mining algorithms, Medeiros and Günther
(2005) integrated the CPN-Tools Petri net simulator as a ProM plugin.�

In addition, ProM contains several visualization plugins that support techniques like dotted
chart plots or process log inspection to provide a quick overview of an analyzed log. Up to
version 5, however, complex non-interactive batch analyses composed from several steps formed
a weakness of the system that we mentioned in (Cabac and Denz, 2008, p. 89):

�Interoperability is ensured by a large number of supported input and output formats.
Though the plugin architecture of ProM resembles the idea of a processing chain with data
acquisition, mining, conversion, analysis, and visualization steps, the current user interface
is merely tailored towards an interactive application.�

This drawback becomes manifest in the user interface as well as in the architecture that su�ers
from a lack of separation between functional and presentation layers (Verbeek et al., 2011,
p. 70). As an example, a 'mining result' object is in the �rst place described by its graphical
representation in a desktop frame. In Sections 7.4.2.1 and 8.4 we present our approach to
overcome this drawback by integrating wrapped ProM plugins into simulation tools using data
�ow modeling.

ProM 6 The Eindhoven research group developed ProM further into a similar direction with
the current version 6. In this context, the system underwent an architectural re-design including
a better separation of program logic and user interface (Verbeek et al., 2011, p. 70). Further
improvements are summarized by Verbeek et al. (2011, pp. 70):

• The four di�erent plugin types mentioned above were merged into a single general plugin
interface, which eases plugin composition.

44short for 'PROcess Mining', http://www.processmining.org/prom/start (last visit 2011-13-12)
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• Input and output data of algorithms is stored in a common object pool that is accessible
to all plugins.

• A software assistant-like user interface supports the chaining of plugins into complex
analysis procedures: Starting from input data in the object pool, the user is o�ered a
pre-selection of all plugins that can handle the contained objects. After selecting a plugin,
the output type of this plugin is displayed and the user can select a further plugin that
takes this type of data as input.

• Plugin variants can be de�ned that o�er the same functionality on di�erent data types.

• Besides MXML, ProM 6 supports the more generic log data format XES (eXtensible
Event Stream).

Di�erent from MXML, the XES schema contains only few prede�ned concepts including log,
trace, event, and attribute (Verbeek et al., 2011, p. 63). Speci�c domain entities like activity
names, timestamps, and originators are consistently added as attributes in the form of typed
key-value pairs, where attribute hierarchies are also supported (Verbeek et al., 2011, p. 63).
A support tool named XESame allows to de�ne import mappings from other data formats
without having to implement Java code (Verbeek et al., 2011, p. 67).

Despite these advantages, the implementations and experiments presented in this thesis will
not be based on ProM 6 due to its late availability in relation to the accomplishment of (large
parts of) the reported practical work.

Further Process Mining Tools Most process mining tools developed in parallel or prior to the
ProM framework only support a single mining algorithm. Examples include Emit (α algorithm)
and MiSoN (social network mining) from the Eindhoven research group (Aalst, 2005a, p. 452)
as well as Involve (algorithm by Herbst, 2001), and Work�ow Miner (approach by Schimm,
2004).

As indicated above, ProM delegates speci�c process mining subtasks like decision tree mining,
log data generation, or Petri net synthesis to external tools includingWEKA (see Section 4.1.5),
CPN Tools45, and Petrify (see Section 4.2.3.3). A more advanced command line tool for
Petri net synthesis that also o�ers process mining functionality is Genet by Carmona et al.
(2009a). The process mining approach by Lou et al. (2010b) reviewed in Section 4.2.3.5 was
also implemented as a command line tool with an integrated process simulator using a simple
text-base format to describe models and logs.

Further process mining systems akin to the data �ow-based tool integration presented in this
thesis will be reviewed in Section 5.4.1.

4.2.6.2. Application and Evaluation of Process Mining Algorithms

Process mining research is largely driven by practical applications, where the most prominent
domains are work�ow management (e.g. Aalst et al., 2007) and software engineering (e.g. Rubin
et al., 2007). In this section, we review an exemplary case study in which process mining

45http://www.cpntools.org (last vist 2012-10-03)
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algorithms are applied to and evaluated in a real-world problem. We choose the study by Lang
(2008) due to its comprehensiveness and methodological clearness. Further case studies with a
closer relation to the subject of this thesis will be reviewed in Section 5.3.4.

The dissertation by Lang (2008) provides an exhaustive evaluation of control �ow mining al-
gorithms and log clustering metrics in the domain of medical image processing. The author
implements a knowledge discovery process to extract log data generated by radiological diag-
nostic work�ows from databases of a large hospital, preprocess and cluster the data, and import
it into the MXML format.

Several control �ow mining techniques including the α algorithm, the Heuristics miner, the
DWS miner, etc. are applied to these logs and evaluated with respect to 6 requirements. The
requirements include (1) faithfulness of the reconstructed models, (2) ability to handle noise,
(3) detection of sequences, alternative branches, and concurrency, (4) ability to detect loops,
(5) handling of duplicate tasks and sub-processes, and (6) ability to cope with non-unique start
and end points of processes (Lang, 2008, Sec. 4.3.2).

As one result of the study, Lang (2008, p. 219) �nds that control �ow mining algorithms based
on direct succession metrics only (e.g. the α algorithm) perform worse in the presence of noise
than techniques that also regard for indirect succession. Consequently, Lang (2008, Sec. 7.2.5)
proposes a concept to improve the di�erentiation between loops and multiple task instances
that slightly resembles the approach by Lou et al. (2010b).

The case study on process mining in MABS performed by Haan (2009) and presented in Chap-
ter 8 of this thesis is orientated on the methodology by Lang (2008) but puts focus on di�erent
requirements and research questions. Several further case and evaluation studies covering mul-
tiple process mining perspectives can be found in the literature, including the work by Aalst
et al. (2007, analysis of invoice handling in a Dutch government agency) and Rozinat et al.
(2009a, analysis of test processes in wafer production).
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The introductions to MABS and process mining in the previous chapters provided a �rst im-
pression why process mining might be useful to tackle the problem of MABS analysis and
validation. In this chapter, we review existing research related to this topic in particular. Due
to the broad scope of both MAS and process mining, an appreciation of related work must
cover several interconnected research �elds some of which are displayed in Figure 5.1.

Figure 5.1.: Research �elds related to the thesis at hand. The darker a circle or connection is
drawn, the closer it is related to the subject of this thesis.

5.1. Analysis and Validation of MABS

One �eld of related work concerns methodologies and techniques for the validation of MA(B)S.
While most validation approaches do not explicitly refer to data or process mining, related
ideas and starting points for an integration can be identi�ed.

5.1.1. Methodologies for MABS Validation

In recent years, a number of validation methodologies with a focus on MA(B)S have been devel-
oped. These range from theoretical concepts rooted in social science to tool-centric approaches
from software engineering. We also �nd modi�cations and extensions of 'classical' simulation
model building cycles. In the following, selected examples from each category are described.
For a more exhaustive overview, we refer to the list by Ören and Yilmaz (2010, p. 206).
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5.1.1.1. Approaches to Validate MABS

After an initial1 focus on modeling under the multi-agent paradigm, the MABS research com-
munity identi�ed a need to spend more �e�ort on the later stages of the modeling process (analysis,
interpretation, and application)� to increase their models' utility (Edmonds, 2000, p. 23).

Edmonds et al. In his position paper postulating this focal change, Edmonds (2000) does not
present a validation methodology, but discusses a number of properties of agent-based models
with respect to validation. One claim concerns the need for detailed validation due to the lack
of constraints posed by the methodology:

�Strengthening validation means checking the output of the simulation in as many ways
as possible by comparison with the system goals or actual target behaviour.� (Edmonds,
2000, p. 23)

�We should seek to verify and validate our models on as many levels of detail as possible
[and ...] at a �ner temporal level. [...] the intermediate stages of the resulting processes in
the simulation should be checked [...]� (Edmonds, 2000, p. 29).

�The increased descriptive realism [of MABS means ...] that the simulation has imported
more of the [... real] system's behaviour including its unpredictability and complexity [...]
The practical import of this is that the analysis and interpretation stages [...] require
much more attention than in simple deterministic or stochastical mathematical models.�
(Edmonds, 2000, p. 22)

Illustrated by an 'agent-based' variant of the halting problem, Edmonds and Bryson (2004,
p. 937) stress the unsuitability of deductive formal methods to tackle realistic MABS in favor
of experimentalism and a-posteriori analysis. As an example, Edmonds et al. (2006) present
an approach to characterize the whole scope of trajectories of a stochastic simulation (with
respect to a numerical variable) by its upper and lower bounds. Due to the use of constraint
logic programming (CLP) for model representation, these bounds can be explored by queries
without the need to simulate many scenarios (Edmonds et al., 2006, p. 6).

David et al. (2002) reason about the requirements that self-organizing MABS of arti�cial or
real societies pose on software engineering and validation. An important characteristic is that
'surprising' e�ects due to self-organisation are, to a certain degree, wanted and should not be
suppressed by rigid a-priori speci�cation (David et al., 2002, p. 91).

David et al. (2002, p. 90) claim that the distinction between dynamic veri�cation and valida-
tion therefore becomes blurred in MABS: It is not always clear if an unexpected macroscopic
behavior emerging at runtime is inherent to the conceptual model or caused by faulty imple-
mentation. Proposed techniques to tackle this problem include model alignment and speci�c
software metrics (David et al., 2002, Sec. 4.1) as well as hierarchical model speci�cations (�hy-
perstructures�) that include multiple layers of aggregate (�emergent�) entities (David et al., 2002,
Sec. 2.3).

1partly rather theoretical, see also Moss (2000)
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Drogoul et al. (2002) sketch a model building cycle for MABS in modi�cation of previous
work from discrete and social simulation. One characteristic of this methodology is the explicit
introduction of three roles, i.e. thematician (domain expert), modeler, and computer scientist
(Drogoul et al., 2002, Sec. 3), that we have adopted with minor modi�cations in (Page and
Kreutzer, 2005, Ch. 8.2.2). Another peculiarity is the explicit distinction between domain
knowledge at the microscopic and macroscopic levels: �Micro knowledge� builds the basis for
modeling while �macro knowledge� guides validation, experimentation, and analysis (Drogoul
et al., 2002, p. 9).

Within the role model Drogoul et al. (2002, p. 10) observe that agent concepts are frequently
used by domain experts and modelers. However, as already cited in Section 3.2.1, implementa-
tions of MABS mostly employ object-oriented or rule-based techniques lacking the properties
of agents postulated in distributed AI (DAI); see Drogoul et al. (2002, p. 10). The authors
claim that especially MABS experimentation and validation can pro�t from DAI techniques
(Drogoul et al., 2002, Sec. 4), thereby arguing for agent supported simulation:2

1. Participatory simulation is performed by letting domain experts play the role of agents
in a simulation. Computational agents with the ability to learn could observe users and
derive behavioral models from their actions (Drogoul et al., 2002, p. 11).

2. Agent-aided interpretation means that the simulation contains observer agents that per-
form intelligent data analysis on a local portion of the simulation results (Drogoul et al.,
2002, p. 11). On the one hand, this supports result interpretation. On the other hand, the
detection of certain 'emergent' patterns might give rise to �macro agents� that explicitly
represent macroscopic phenomena in the simulation (Drogoul et al., 2002, p. 12). As an
example, Drogoul et al. (2002, p. 12) cite hydrological multi-level simulations conducted
by Servat et al. (1998).

3. System-level adaptation is related to the implementation of �exible distributed simulations
with the aid of mobile computational agents (Drogoul et al., 2002, p. 12).

4. Agent-aided calibration might be performed by distributed problem solving and local
optimization (Drogoul et al., 2002, p. 13).

While the presented concepts remain rather abstract in (Drogoul et al., 2002), later work by
the same research group focuses on participatory simulation (e.g. using decision tree mining in
Chu et al., 2009) and distributed simulation (Scerri et al., 2010). In Section 6.3, we discuss how
process mining can add to agent-supported simulation as envisioned in the work by Drogoul
et al. (2002).

Kennedy et al. (2006) evaluate the utility of validation techniques from the catalog by Balci
(1998) for MABS. For this purpose, a selection of validation techniques is applied to an agent-
based and an equation-based model of the evolution of natural organic matter (NOM), roughly
following the validation process by Sargent (see e.g. 2001, p. 108).

The authors choose validation techniques from the discrete event simulation domain because the
�discrete event modelling approach is the most closely [related] approach [... to] agent-based modelling
[...]� (Xiang et al., 2005, p. 54). In addition, a comparison of di�erent model implementations

2as to use the term by Ören (2000) cited in Section 3.2.1
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Validation techniques MABS Equation-based

Face validation very good very good
Turing test of real and simulated output very good good
Sensitivity against random seed very good n/a
Tracing fair excellent
Black-box input/output testing good good
Model alignment very good very good
Comparison with historical data very good very good
Sensitivity analysis good good
Prediction of new data good fair

Table 5.1.: A rating of the utility of validation techniques for MABS and equation-based mod-
eling. The applied scale comprises the levels fair, good, very good, and excellent.
Adopted with slight modi�cations from (Kennedy et al., 2006, p. 102).

(model alignment, see Section 5.1.2.3) is performed to identify artifacts introduced during
implementation (Xiang et al., 2005, p. 23).

A main result of the study by Kennedy et al. (2006, p. 102) is a rating of the utility of validation
techniques on a four-level scale. This overview is cited in Table 5.1, where some validation
techniques are renamed for better understandability. For additional explanations of the listed
techniques see Kennedy et al. (2006)

The authors con�ne the validity of the results to the speci�c study and provide few details about
reasons for their ratings. In the context of this thesis, it is especially interesting why tracing
is rated as excellent for equation-based modeling but only fair for MABS. One reason might
be the higher complexity of MABS traces, the handling of which requires powerful analysis
techniques.

5.1.1.2. Validation Methodology by Klügl

Klügl (2008) presents a validation methodology for MABS based on common validation pro-
cesses and techniques from computer simulation.3 Furthermore, she identi�es a set of typical
problems in MABS validation (Klügl, 2008, Sec. 2.2) and proposes metrics to assess the com-
plexity of multi-agent models (Klügl, 2007). Klügl's thoughts on validation problems are rather
similar to the discussion in (Knaak, 2006) and Section 3.5. This is not surprising since our ar-
gumentation is largely based on Klügl's (2000) view upon MABS.

As a starting point, Klügl (2008, Sec. 2.2) identi�es 5 typical problems in MABS validation:

1. The identi�cation of �characteristic output descriptors� to compactly describe simulation
results is di�cult especially at the microscopic level (Klügl, 2008, p. 40). This problem
roughly corresponds to the problem of result representation and interpretation mentioned
in (Knaak, 2006).

3A review of the approach by Klügl (2008) with some focus on its relations to process mining is found in the
bachelor thesis by Haan (2009).
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2. The �focus on transient dynamics� in MABS forbids the application of conventional steady
state statistics (Klügl, 2008, p. 40).

3. �Non-linearities and brittleness� in the model's behavior (mainly due to �feedback loops�) and
parameter space complicate calibration and validation (Klügl, 2008, p. 40). In Section
3.5, we attribute this e�ect to the problem of distributed system state.4

4. The �size of the validation task� is large due to the size of the model and the need for
�multi-level validity�, and su�cient real world data is often not available for comparison
(Klügl, 2008, p. 41). In (Knaak, 2006) we subsume similar issues under the problem of
model complexity.

5. It might be impossible to falsify (see Section 2.4.3.3) one of two competing models due to
a lack of available data and over�tting in the presence of many free parameters (Klügl,
2008, p. 41).

From these observations, Klügl (2008, Sec. 3) derives a validation process drawing on common
techniques. In the �rst step, face validity is established by letting experts rate animations and
output of the simulation. This might be complemented by �immersive assessment� (Klügl, 2008,
p. 42), i.e. participatory simulation.

Face validation is followed by sensitivity analysis and calibration of model parameters (Klügl,
2008, p. 42). In this context, Klügl (2008, p. 42-43) advocates the use of automated methods like
optimization and reinforcement learning (see Section 5.1.2.2). Finally, a statistical validation
of the model is performed using di�erent input data than calibration (Klügl, 2008, p. 43); i.e.
cross validation, see Section 4.1.3.2.

Klügl (2007) further attempts to quantify the �sources of [model] complexity� (Klügl, 2007, p. 123)
that aggravate the �understandability [. . . ] and [. . . ] predictability of the model dynamics and output�
(Klügl, 2007, p. 136) by means of software metrics. For this purpose, she identi�es several
system-, agent-, and interaction-level metrics (Klügl, 2007, Sec. 5).

System-level metrics include (among others) the number of agent and resource types, the min-
imal and maximal numbers of active agents and resources counted during simulation, as well
as an �agent-resource relation� de�ned as the quotient of agent and resource counts in the model
(Klügl, 2007, pp. 128). At the interaction-level, measures like the number of references between
agents and resources or the number of agent movements are taken (Klügl, 2007, pp. 132).

An important metric at the agent-level is the �architectural complexity rank� where three increas-
ingly complex types of agent architectures, i.e. �behavior-describing [...,] behavior-con�guring [...,
and] behavior-generating architectures�, are identi�ed (Klügl, 2007, p. 130). Further agent-level
metrics include the size of an agent's rule base and procedural knowledge (Klügl, 2007, p. 131)
as well as the �action plasticity metric� that depends on the parameter variability of the agent's
actions (Klügl, 2007, pp. 130).

In relation to the thesis at hand, it is interesting that Klügl (2008, p. 40) points out the
potential of data mining to validate transient dynamics: �There, the current progress in trend
analysis and data mining for time series may provide methods and tools for supporting validation of
transient dynamics produced by agent-based simulation. However, the application to validation of

4based on the discussions led in the dissertation by Klügl (2000)
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agent-based simulation is still missing.� Haan (2009, p. 55) brie�y sketches how process mining
might support the validation process by Klügl (2008):

�In face validation, the two tests animation and immersive assessment could be well realized
using process mining [...] Basically, these [... tests relate to] the control �ow perspective
[of process mining] on the one hand and to [... an] agent perspective on the other hand.
The organizational perspective could be considered to additionally further validation. In
sensitivity analysis and calibration, the decision point analysis plugin [of ProM ] might be
an [... appropriate] aid.�

5.1.1.3. Engineering of Self-Organizing Systems

Self-organizing systems often contain a large number of rather simple agents that must ac-
complish coherent global behavior only by local interactions (Wolf et al., 2005, p. 139). The
engineering of self-organizing systems resembles MABS in the need to understand relations
between the microscopic modeling level and the macroscopic outcomes; at least enough to tune
the local behavior towards the intended global results. Since self-organizing systems are in-
creasingly deployed to the real world due to advantages like fault tolerance and e�ciency of
computation (Wolf et al., 2005, p. 141), validation is even more an issue (Wolf et al., 2005,
p. 140).

It has often been argued that neither �traditional top-down oriented development approaches�
(Sudeikat and Renz, 2009, p. 32) nor formal speci�cation and veri�cation are appropriate to
design reliable self-organizing systems (Wolf et al., 2005, pp. 140). Instead, simulation-based
analysis has become the method of choice (Sudeikat and Renz, 2009, p. 32). While MABS
allows for detailed experimentation with self-organizing systems before deployment, it does not
solve the problem of understanding system behavior due to the system complexity �imported�
(Edmonds, 2000, p. 22) into the simulation.

An increasingly popular approach towards modeling, analysis, and validation of self-organizing
systems employs complementary macroscopic equation-based and microscopic agent-based rep-
resentations. Work in this direction has been carried out (among others) by Sierra et al. (2004),
Sudeikat and Renz (2009), and Wolf et al. (2005).

SADDE Methodology The SADDE (Social Agents Design Driven by Equations) methodo-
logy (Sierra et al., 2004) applies top-down modeling to self-organizing systems engineering as
shown in Figure 5.2. First an equation-based model (EBM) is created that �model[s] the desired
global behaviour of the agent society [... without] references to individuals in that society� (Sierra
et al., 2004, p. 197). With this speci�cation in mind, a model of the agents' interactions
(electronic institution model, EIM) is built that regulates the allowed communication in terms
of interaction protocols, scenes (i.e. higher order protocols in terms of Mulan), and norms
(Sierra et al., 2004, pp. 197, 204-205). From the EIM, an agent-based model (ABM) is derived
with a focus on parametrizable individual decisions, and implemented as a MAS (Sierra et al.,
2004, pp. 197,198).

Experiments are conducted with the MAS under di�erent parameter settings and the results
are compared to those predicted by the EBM (Sierra et al., 2004, p. 197). Deviations in
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Figure 5.2.: The SADDE methodology visualized as a Petri net. Places stand for models,
transitions for modeling and validation steps. The shading of transitions indicates
the degree of automation, i.e. manual (white), semi-automatic (light grey), and
automatic (dark grey). Adopted with modi�cations from the diagram by Sierra
et al. (2004, p. 196).

the simulation results trigger manual or semi-automated modi�cations of the model and its
parameters (Sierra et al., 2004, p. 198). In addition, automatic model checking of the speci�ed
norms and protocols is performed to assess the validity of the ABM (Sierra et al., 2004, p. 198).

Sierra et al. (2004, Sec. 8) calibrate the parameters of an ABM representing an electricity
market to �t the dynamics of a related EBM with the aid of genetic algorithms and an objective
function over multiple global variables. A su�cient adaptation could be reached after about
20 iterations of the genetic algorithm (Sierra et al., 2004, p. 214).

Other Approaches The work by Sudeikat and Renz (2009) is based on a similar idea but
employs di�erent techniques. Here, causal loop diagrams (CLDs) from System Dynamics are
used for macroscopic modeling (Sudeikat and Renz, 2009, pp. 34). This simpli�es the display
of causal relations and feedback cycles between aggregate entities of the ABM (e.g. groups and
roles); see Sudeikat and Renz (2009, pp. 35). Sudeikat and Renz (2006, Secs. 3.2,5.1) addition-
ally show how macroscopic Markovian rate equations can be derived from goal hierarchies of
BDI agents.

Time series-based correlation analysis serves to substantiate the speci�ed causal relations in
the macroscopic behavior of the MABS (Sudeikat and Renz, 2009, pp. 39). Based on the Jadex
platform (see Section 3.4.1), the authors implemented an agent-supported simulation system
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that allows for manual experiment planning, distributed execution, and time series analysis by
integration of a numerical computing environment (Sudeikat and Renz, 2009, pp. 39)

De Wolf and Holvoet (2007), whose work is also cited by Sudeikat and Renz (2009), show how
macroscopic causal relations can be validated by following the object �ow in UML 2 activity
diagrams (Section 2.3.1.3) that model the behavior of interacting agents. Their example is a
simulation of decentralized AGV (Automated Guided Vehicle) control in a warehouse, rather
similar to the courier service model introduced in Chapter 8.1. At the same example, Wolf
et al. (2005, pp. 141,143) perform an �equation-free� analysis to validate trends in the temporal
development of macroscopic variables. Simulation e�ort is reduced by extrapolating these
variables using numerical integration (Wolf et al., 2005, p. 144).

5.1.1.4. Validation of Deliberative Agents

Agent-oriented software engineering (AOSE) typically considers systems of few complex agents
employing deliberative architectures like BDI (see Section 3.3.1.3). Since the agents often pursue
well-de�ned common goals for distributed problem solving, these systems can in principle be
designed with conventional top-down approaches (David et al., 2002, p. 90). Nevertheless, the
validation of deliberative agents' complex internal processes and external interactions is di�cult
and often adressed with the aid of advanced monitoring and debugging tools.

Debugging by Corroboration In the context of the ZEUS agent platform, Ndumu and Nwana
(1999) present a tool-supported validation methodology named debugging by corroboration. The
core idea is to detect errors and identify their causes by observing and visualizing a MAS from
several di�erent perspectives. Clearly, this approach ful�lls the requirement of multi-level
validation postulated by Edmonds (2000).

Ndumu and Nwana (1999) developed 4 visualization tools based on static analysis of agent
speci�cations and runtime observation of exchanged messages. Abstracting from the tools,
Weiss and Jakob (2005, pp. 113-114) list related perspectives for MAS analysis:

1. The society perspective is concerned with organizational structures and message exchange
(Weiss and Jakob, 2005, p. 113). It is supported by the society tool that derives a
social network from static role relations and visualizes the actual message exchange, also
supporting �lter, record, and playback functionality (Ndumu and Nwana, 1999, Sec. 4.1)

2. The task perspective focuses on the decomposition, distribution, and execution of (collabo-
rative) tasks over time (Weiss and Jakob, 2005, p. 113). The related report tool visualizes
the assignment and execution states of selected tasks using Gantt charts (Ndumu and
Nwana, 1999, Sec. 4.2).

3. The agent perspective is related to the knowledge base, activities, and communication of
individual agents (Weiss and Jakob, 2005, p. 113). The micro tool allows to observe these
properties while the control tool lets the users modify agents' states at runtime (Ndumu
and Nwana, 1999, Sec. 4.3-4.4).

4. The statistical perspective shows global performance statistics of distributed problem solv-
ing (Weiss and Jakob, 2005, p. 114). The related statistics tool collects and visualizes
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di�erent indicators on the levels of individual agents and the MAS (Ndumu and Nwana,
1999, Sec. 4.5).

Ndumu and Nwana (1999, p. 333) emphasize that neither the debugging approach nor the
related tools are in principle limited to the ZEUS agent platform. The authors further note
that the value of their methodology does not lie in the tools as such but in their reasonable
application and combination by developers (Ndumu and Nwana, 1999, pp. 331,333) for �multi-
perspective� debugging (Weiss and Jakob, 2005, p. 113). In Section 6.2 we merge these and other
analysis perspectives from MAS design with the perspectives from process mining to establish
a conceptual framework for process mining in MABS.

Validation in Jadex Advanced validation tools are also available for the BDI framework Jadex
by Pokahr et al. (2003); see Section 3.4.1. From the often-cited (e.g. by Sudeikat et al., 2007,
p. 187) categorization of validation techniques for AI systems by Menzies and Pecheur (2005),
the work by Sudeikat and Renz (2006) and Sudeikat et al. (2007) covers the categories of testing,
runtime monitoring, and static analysis; as displayed in Figure 5.3.

Figure 5.3.: Categorization of validation techniques for AI systems by Menzies and Pecheur
(2005). Techniques applied in the Jadex system are shaded grey. Adopted with
minor modi�cations from Sudeikat et al. (2007, p. 187)

.

For static analysis, Sudeikat et al. (2007, pp. 197-198) developed a tool that extracts message
sender and receiver relations from agent speci�cations. Results are visualized as a social net-
work, which allows to detect missing communication and �orphaned message events� (Sudeikat
et al., 2007, p. 197). Additionally, events that do not trigger the execution of plans as expected
are monitored at runtime (Sudeikat et al., 2007, p. 197).

Runtime monitoring and testing is implemented in the style of crosscutting concerns from
aspect-oriented programming (AOP). AOP distinguishes core concerns, that represent the core
functionality of a system, from crosscutting concerns that realize supplementary functionality
re-used by multiple core concerns, like e.g. logging (Sudeikat and Renz, 2006, pp. 179). The
execution environment (in this case the BDI interpreter) weaves the functionality of core and
crosscutting concerns at well-de�ned join points during runtime (Sudeikat and Renz, 2006,
p. 180).
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In Jadex, crosscutting concerns for logging and assertion checking are realized similar to core
concerns as speci�c agent capabilities (i.e. functional components), which allows for a �minimal
intrusive� addition of monitoring functionality when needed (Sudeikat and Renz, 2006, p. 179).
Assertions speci�ed as Java code can be assigned to several BDI constructs (e.g. plans) and are
automatically checked on the respective state changes (Sudeikat et al., 2007, p. 194). Logging
is used as a basis for the numerical analyses described in (Sudeikat and Renz, 2006, 2009) and
reviewed in Section 5.1.1.3.

5.1.2. Techniques

In the previous section, we named several validation techniques for MABS. We will now provide
further details on techniques with relevance for this thesis. For this purpose, we cite parts of
our reviews in (Page and Kreutzer, 2005, Ch. 8) and (Bachmann et al., 2004). To provide a
representative extract of di�erent concepts, we proceed along two dimensions related to the
classi�cation scheme for validation techniques from Section 2.4.3.5, i.e. the distinction between
con�rmatory and exploratory techniques and the degree of automation. An overview is shown
in Figure 5.4.

Figure 5.4.: Overview of MABS validation techniques with exemplary publications.

5.1.2.1. Model-Based Validation and Veri�cation

Due to the close relation between dynamic veri�cation and operational validation in MABS
(David et al., 2002, p. 90), both phases can be equally supported by automated techniques to
check the conformance of simulation outputs and traces with respect to an abstract speci�cation.
In (Page and Kreutzer, 2005, p. 229), we relate these techniques to the 'test-�rst' approach (see
e.g. Link, 2002, cited in Page and Kreutzer, 2005, p. 219) and regression testing in software
engineering:

�The core idea there is that we must write [...] speci�cations of expected behaviour (e.g. a
unit test) prior to implementation. During implementation we then use a test automation
tool [...] to constantly re-check all [... existing implementations] against these speci�cations.
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Since most test tools only support functional unit tests, this approach is only of limited
use to simulation [see e.g. Overstreet, 2002, cited in Page and Kreutzer, 2005, pp. 229].

However, the "test �rst" approach can still contribute to dynamic model veri�cation and
operational validation if we can draw on suitable tool support for automatically checking
simulation results. For this the following proposals are found in the literature:

• As already mentioned, model-based trace checking can determine if a simulation trace
conforms to a speci�cation in temporal logic (see e.g. Brade, 2003, Ch. 5.3). As in
regression tests, this check must be repeated whenever the model is extended or
refactored.

• Birta and Özmizrak (1996) propose a knowledge-based system for automatic result
validation. The user can de�ne several kinds of numerical validity criteria, such as
required causal dependencies of input and output quantities or so-called "change-in-
value relationships". The latter represent statements of the type "if the value of [an
...] input parameter [...] is increased by a given amount, the value of [a related ...]
output variable [...] should increase correspondingly". The system can automatically
check if the output of a single simulation run or the aggregate output of several runs
adhere to their speci�cations.� (Page and Kreutzer, 2005, pp. 229)

Birta and Özmizrak (1996, Secs. 5-6) further present an automated experimental design tech-
nique that ensures a high coverage of model behavior with respect to the speci�ed validity
criteria.

Exhaustive model checking can in principle be applied to MAS as well. Walton (2004) e.g.
translates simple auction protocols for web services to the language PROMELA of the widely
used model checker SPIN (Holzmann, 1997). Nevertheless, resorting to traces is reasonable
due to model complexity in practice. In (Page and Kreutzer, 2005, p. 221) we discuss the
advantages and drawbacks of model-based trace checking in comparison with another approach
to handle in�nite state spaces, i.e. program abstraction:

�Program abstraction (Visser et al., 2003) is based on the idea that we can derive a �nite
state model from a program that exhibits at least all erroneous behaviour of the original
code. The derivation of this model could be performed manually, which is in itself a complex
and error-prone task. Alternatively,Visser et al. (2003) propose a tool for the automatic
abstraction of Java programs, named Java PathFinder. However, this approach only works
on a restricted subset of Java, and its practical applicability is therefore limited. [...]

Model-based trace checking is easier to perform than program abstraction and will, in
principle, work for arbitrarily complex models. [...]

A drawback [...] is that it o�ers no exhaustive behaviour veri�cation, but rather checks
a single simulation trajectory. In order to gain reasonable levels of con�dence in the cor-
rectness of stochastic simulations we must therefore consider traces for several independent
simulation runs. Brade (2003, pp. 81) has developed a tool called Violade for assisting in
model checking of simulation traces on the basis of Propositional Linear Temporal Logic
(PLTL).�

Several applications of trace checking to MAS are reported in the literature. Howard et al.
(2003), who introduce the term model-based trace checking, translate traces from a travel agency
case study to PROMELA in order to verify them against PLTL formulae with the model checker
SPIN.
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Bosse et al. (2006) automatically compare traces of a MABS simulating unmanned aerial ve-
hicles (UAVs) to assertions stated in the formal language TTL (Temporal Trace Language).
TTL is an expressive temporal logic that allows to formulate queries like �There is an inter-
val with length i in which target tg is visited at least twice (by two di�erent [UAV] agents)� (Bosse
et al., 2006, p. 728). This expressiveness is, among other things, due to the use of real valued
variables (Bosse et al., 2006, p. 725). On the downside, it makes exhaustive model checking
infeasible (Bosse et al., 2006, p. 726). In addition to trace checking, Bosse et al. (2006, Sec. 4)
employ a trace visualization tool (see Section 5.2.4.2) to support the understanding of reasons
for assertion failures.

Further applications of conformance checking to MAS with relations to process mining are
reviewed in Sections 5.2.2.4, 5.3.3.3, and 5.3.4.5. In Section 6.3.3.3, we sketch how model-based
result checking might be extended beyond numerical analysis (as in Birta and Özmizrak, 1996)
to handle 'qualitative' patterns based on data mining.

5.1.2.2. Calibration and Meta-Modeling

In the previous sections, we have already cited several characteristics of MABS that inherently
complicate the task of calibration. In (Bachmann et al., 2004, Sec. 1) we summarized the main
problems when attempting to �t the macroscopic behavior of a MABS to real system behavior
by adapting microscopic parameters based on the literature:5

�One problem is that the complex behavior of intelligent actors is often not su�ciently
understood by the modeler or that strong simpli�cations are required due to limitations of
modeling formalisms and computing power. [...]

Calibration is further aggravated by the typically large number of free parameters in [...]
agent-based models (Köster, 2002) as well as the often non-linear and hardly predictable
responses of the model [see also Klügl, 2008, cited in Section 5.1.1.2]. Speci�c problems
occur when large populations of agents must be modeled on the basis of limited data
(Drogoul et al., 2002, p. 12), or when parameters exhibit a large global sensitivity because
they in�uence the local behavior models of many agents (Klügl, 2001, p. 83). A practical
impediment that hinders the exploration of model behavior is the high computational
complexity due to detailled modeling.�

In (Bachmann et al., 2004, Sec. 2) we also cite an early proposal of MABS calibration techniques
by Oechslein et al. (1999):

�In (Oechslein et al., 1999, ...) di�erent possibilities are described to support the calibration
of agent-based models with the aid of software tools:

• manual comparison of variable trajectories,

• de�nition of microscopic and macroscopic constraints that can be veri�ed during
simulation,

• separate calibration of partial models,

5A far more detailed discussion on this subject is also led in the dissertation by Fehler (2011) dedicated to the
problem of MABS calibration.
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• de�nition of microscopic meta-models that contain the parameters to calibrate but
are more abstract than the original models.

The application of systems for simulation-based optimization is proposed by Klügl (2001,
p. 213) but rated as di�cult due to the necessary computational e�ort and the problem of
de�ning an appropriate objective function.�

In continuation of the work by Oechslein et al. (1999), Fehler et al. (2004, pp. 306) distinguish
between black box and white box approaches for MABS calibration. Black box calibration
is related to simulation-based optimization as e.g. employed in the SADDE methodology6:
An objective function is de�ned over output variables of the simulation. A search algorithm
explores di�erent parameter scenarios guided by the objective function, where each scenario is
evaluated in a simulation run. Di�erent from this global approach, Fehler et al. (2006a) also
perform calibration by local learning at the agent level.

In (Page and Kreutzer, 2005, p. 223) we discuss potential pitfalls in the de�nition of the
objective function:7

�In general terms calibration can be viewed as a multi-criteria optimization problem (Dro-
goul et al., 2002, p. 12), whose goal is to minimize deviations between model and system
output (Klügl, 2001, p. 213) Using suitable weights, multiple criteria for model validity can
be collapsed into a single objective function G (Zitzler, 1999). In an (often too) simplistic
approach, G computes a weighted sum of all deviations between relevant model [outputs
Fi(x)] and system outputs [yi]:

G(x) = min

(
n∑

i=1

wi · |Fi(x)− yi|

)
(5.1)

[...] A major challenge is the appropriate choice of weighting factors wi for output quantities
with di�erent dimensions. The collapse of multiple complex validity criteria into a single
number may also require invalid simpli�cations. These di�culties might be resolved by
delegating responsibility for evaluating results to the users and feedback their ratings into
the optimization's attempts at improving parameter settings. An example for such an
approach are the interactive genetic algorithms proposed by Boschetti (1995).�

In the same discussion, we name further general problems related to calibration. This includes
the danger �to misuse [... it] for "tuning" a model's performance by varying parameter values in order to
cover errors in model structure� (Page and Kreutzer, 2005, p. 222). Another di�culty is �to decide if
model and system output are "su�ciently similar", particularly if models contain stochastic components
and the simulations' results are complex, e.g. spatial patterns in multi-agent-based simulations� (Page
and Kreutzer, 2005, p. 223).

Fehler et al. (2004, pp. 306) regard the application-independence of simulation-based optimiza-
tion (e.g. Gehlsen and Page, 2001) as an advantage and drawback at the same time, since it
forbids to constrain the calibration process with context-speci�c knowledge besides restricted
variation ranges of parameters. The authors therefore propose a methodology for white box

6which is also cited by Fehler et al. (2004, p. 307)
7A similar German description is also found in (Bachmann et al., 2004, pp. 116-117).
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calibration (Fehler et al., 2004, Secs. 4-6). It comprises several context-aware model �decomposi-
tion and abstraction methods� (Fehler et al., 2004, p. 320), related to the proposals by Oechslein
et al. (1999), to reduce the complexity of calibration (Fehler et al., 2004, p. 308).

Decomposition aims at the extraction of possibly independent model components and states
that can be calibrated in isolation (Fehler et al., 2004, p. 308). Proposed dimensions include
functional, goal-oriented, behavioral, and temporal decomposition (Fehler et al., 2004, Secs. 5.2-
5.5). Using functional decomposition, one might e.g. calibrate the behavior of a single agent or
of spatial dynamics without in�uences by other agents (Fehler et al., 2004, p. 309).

Abstraction means that microscopic sub-models are manually or (semi-)automatically aggre-
gated into macroscopic models and that deterministic or irrelevant model components are
simpli�ed and eliminated (Fehler et al., 2004, p. 313). Among the techniques for automated
model abstraction, Fehler et al. (2004, p. 314) name distribution �tting to replace a microscopic
sub-model with a stochastic process and meta-modeling. The latter technique is explained in
(Page and Kreutzer, 2005, p. 224) as follows:

�Simply put, meta-modelling is about building a more abstract or, as Zeigler et al. (2000,
p. 32) call it, "lumped" model, which exhibits similar relevant behaviour as the original.
[...]

A common technique used in meta-modelling is to derive mathematical approximations
of input-output functions computed by the original model. [...] Parameters are [...] sys-
tematically varied within given ranges, and the corresponding results are sampled. From
these samples a reaction surface is computed, using an interpolation technique such as
polynomial �tting or neural networks (Kilmer et al., 1997).

There are applications of meta-modelling in validation which go beyond explorations of the
original model's response surface. For example, we can use the comparison of meta-models
as a quantitative operational validation technique [...] by checking the coe�cients of [...
polynomial] meta-models [of the simulation and the real system] for similarity.�

Fehler et al. (2004, pp. 315) additionally propose an order in which to perform the di�erent
decomposition and abstraction tasks to reduce overall calibration e�ort. They emphasize that
decomposition can only be performed in case of su�ciently independent model components
(Fehler et al., 2004, p. 308). After abstracting and calibrating appropriate sub-models, it
is important to perform a �nal integrative calibration (Fehler et al., 2004, p. 316), possibly
supported by simulation-based optimization (Fehler et al., 2004, p. 320).

Besides decomposition and abstraction, Fehler et al. (2006b, Sec. 4.5) describe a further tech-
nique for the �reverse-engineering� of environmental models such that they �t the simulated agent
models in the same way that real agent behavior and real environments match. Technical details
of this and the above methods are provided in the dissertation by Fehler (2011).

5.1.2.3. Pattern-Based Validation and Model Alignment

Grimm (2002, p. 25), among others, constates a �communication crisis� in the MABS community
concerning the scienti�c value of models and the clarity of publications. This is caused by
several factors related to model complexity:
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• Di�erent from mathematical models, a concise and falsi�able publication of agent-based
models is impractical because one would in principle have to publish the source code of
the model (Grimm, 2002, p. 24).

• Due to the few restrictions of the modeling formalism (Klügl, 2000, p. 73), it is hard
to decide and validate if an appropriate level of detail is modelled (Grimm et al., 2005,
p. 987).

• For similar reasons models and experiments are seldom compared, re-used, and enhanced
within the community (Axtell et al., 1996, p. 124).

• In-depth analysis and validation of relations between microscopic behavior and macro-
scopic outcomes is seldom performed (Railsback et al., 2002, p. 84).

In the following, we review manual and semi-automated validation techniques to improve this
situation. The focus in this section is on techniques to con�rm (or falsify) previously stated
hypotheses. The next section treats explorative techniques, mainly based on visualization.

Pattern-Based Modeling and Validation rests upon the idea that a reasonable validity crite-
rion for agent-based models is the ability to reproduce certain characteristic macro-level patterns
of the real system (Railsback et al., 2002, p. 84). According to Rand et al. (2003, p. 2) a fo-
cus on macroscopic patterns is preferable since microscopic trajectories in MABS might di�er
strongly between di�erent (stochastic) simulation runs due to path-dependence and sensitivity
to initial conditions. Beyond that, a concentration on the macro-level furthers the generality
(Rand et al., 2003, p. 2) and comparability of models, even allowing to �contrast [...] alternative
theories� (Grimm et al., 2005, p. 988).

Similar to test-driven software development, target patterns at multiple levels of aggregation
are de�ned before the model is implemented (Grimm et al., 2005, p. 987). Thus, the modelled
entities and their levels of detail are constrained by the model's ability to reproduce the relevant
patterns (Grimm et al., 2005, pp. 987-988). Another advantage is the possibility for incremental
model development, ideally focusing on one pattern per iteration (Grimm et al., 2005, p. 988).

The patterns considered in actual studies largely depend on the modelled domain. In a simula-
tion of urban development Rand et al. (2003, pp. 3) consider two patterns from the literature
including (1) a power law relation between the size of population clusters and the number
of similarly sized clusters and (2) a negative exponential decrease of population density with
increasing distance from the city center. Grimm et al. (2005, p. 989) report on a beech forest
model where one requirement consists in the reproduction of a �horizontal mosaic of developmental
stages� in the spatial distribution of the (simulated) trees.

Note that the potential to automate pattern-based validation in a model-based validation sys-
tem (as proposed by Birta and Özmizrak, 1996) depends on the types of patterns considered.
While the numerical relations by Rand et al. (2003) are straightforwardly validated with statis-
tical techniques, an automated detection of the 'mosaic' structure mentioned by Grimm et al.
(2005) appears more demanding.

Model Alignment or docking relates to comparisons of di�erent models representing the same
domain. Docking studies are mainly performed for two reasons:
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1. If no su�cient data from the real system is available, a new model can be validated
against an existing simulation as an initial plausibility check (Xiang et al., 2005, p. 48).

2. Relations between alternative models by di�erent developers are evaluated. In doing so,
model hierarchies (such as 'model A is a special case of model B') can be established
(Axtell et al., 1996, p. 124) and results can be con�rmed or falsi�ed experimentally,
somehow similar to the natural sciences (Hales et al., 2003).

A seminal study of the second type was conducted by Axtell et al. (1996, pp. 124), who com-
pared the well-known Sugarscape model by Epstein and Axtell (1996) with Axelrod's cultural
transmission model (ACM, Axelrod, 1995). Both models simulate cultural spread in societies
in a very abstract form. The purpose of the study was to reproduce the results of the ACM
with a modi�ed variant of the �more general Sugarscape system� (Axtell et al., 1996, pp. 124).
The authors successfully aligned both models (Axtell et al., 1996, p. 135) and analyzed the
e�ect of certain properties, such as agents' ability to move, on the simulation of cultural spread
(Axtell et al., 1996, p. 131).

Axtell et al. (1996, p. 135) also discuss the level at which simulation results should be compared
for alignment. Similar to pattern-based validation, they propose two equivalence criteria at the
global level: Distributional equivalence, as the strict variant, demands that �two models produce
distributions of results that cannot be distinguished statistically� (Axtell et al., 1996, p. 135).
Relational equivalence �mean[s] that the two models can be shown to produce the same internal
relationship among their results�, like e.g. the power law relation in the land-use model by Rand
et al. (2003).

5.1.2.4. Visual Debugging and Analysis

Despite progress in formal and quantitative analysis, �visualising the simulation and observing the
interactions� (Chen et al., 2008, p. 2) is still one of the main techniques to explore the behavior of
MABS. In (Page and Kreutzer, 2005, pp. 224-225) we discussed the advantages and drawbacks
of visualization as an explorative validation technique:

• �Often statistical methods [...] cannot be used due to overly restrictive statistical
assumptions or the lack of comparable system data (Sargent, 2001, p. 110).

• Given a descriptive representation of model dynamics, human experts can often detect
faults more quickly and more reliably than [...] computer-aided analysis methods.

• Visualization and animation help model developers to detect obvious errors during
design and implementation. It also helps to improve communication with customers.

Unfortunately, visualizations also have a number of important disadvantages. [...] since
it is only a single snapshot which might show completely untypical random behaviour,
modellers must be very careful not to draw overly general conclusions from the animation of
single stochastic simulation trajectories. This is a particular concern if such animations are
(mis)used as the sole basis for making decisions. In addition, visual analysis of simulation
results is largely subjective and must draw on expert knowledge which cannot be readily
automated or objecti�ed.�

In the following, we review selected approaches to visually analyze and debug MABS. Note
that some of these approaches are even supported by data mining.
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Visual Debugging In Section 5.1.1.4, we described the often-cited 'debugging by corrobora-
tion' approach of Ndumu and Nwana (1999) with its 4 perspectives and related visualization
tools. The focus of these tools conforms well to the most common bug types in (message-based)
multi-agent systems identi�ed by Poutakidis et al. (2003, pp. 630): �failure to send a message [...,]
uninitialised agents [...,] sending a message to the wrong recipient [...,] sending the wrong message [...,
and] sending the same message multiple times�.

Grimm (2002) presents a tool that is tailored towards visually debugging MABS of many
(simple) agents situated in a spatial environment. He argues that due to model complexity,
the debugging of MABS should not primarily be performed at the code level but in terms of
high-level visualization and animation (Grimm, 2002, pp. 27). Based on these ideas, a user
interface to a simulation of plant populations in South African grassland is implemented with
the Java-based GECKO system (Grimm, 2002, p. 30).

The user interface can display the spatial model as well as all relevant local and global state
variables (Grimm, 2002, p. 32) using common visualizations like time series, scatter plots,
and histograms (see e.g. Sargent (2001, p. 111), cited in (Page and Kreutzer, 2005, p. 225)).
Furthermore, all relevant model parameters can be modi�ed and the simulation can be run in
either single step or batch mode (Grimm, 2002, p. 28) using a 'CD player-like' control panel
(Grimm, 2002, p. 32). All traces and results are also stored to �les for further analysis (Grimm,
2002, p. 29).

Grimm (2002, pp. 33) emphasizes that, despite the additional coding e�ort (Grimm, 2002,
p. 32), interactive user interfaces to observe and control all relevant state variables are crucial
to provide domain experts with the possibility to explore and validate agent-based models.

Advanced Visual Data Analysis Visualizations like simple time series are often inappropriate
to display state spaces and trajectories of many interacting agents. Therefore, several proposals
have been made to 'intelligently' aggregate raw simulation output prior to visualization by
means of data mining. In the following, we name some visualization-related work before turning
to general data mining support for MABS in Section 5.2.

Sanchez and Lucas (2002) employ (among other techniques) visualizations of regression trees,
neural networks, and three-dimensional response surface plots to analyze the impact of param-
eter changes on the behavior of MABS in large-scale experiment series. St. Amant et al. (2001)
use 3D visualization and an automated constraint-based camera assistant to 'integrate' users
as closely as possible into a spatially explicit military planning simulation.

Schroeder and Noy (2001) cluster groups of related agents based on multivariate data, e.g.
related to message exchange. To improve the visualization of clusters in high-dimensional
feature spaces, they apply Principal Component Analysis (PCA), which allows to automatically
detect those (combinations of) feature dimensions with the highest variability (Schroeder and
Noy, 2001, p. 87). Gabbai et al. (2004) perform dimension reduction in MAS visualization with
the aid of self-organizing maps (SOM, see Section 4.1.4.5).
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5.2. Data Mining in Multi-Agent Systems and Simulations

The validation techniques presented above can be useful to improve the credibility of MABS.
Nevertheless, there are several limitations that we already discussed in Section 3.5.

In recent years, data mining and, to some extent, process mining (Chapter 4) have been in-
creasingly applied to support MABS validation with automated hypothesis generation. Figure
5.5 illustrates that data mining may provide a 'link' between con�rmatory and exploratory as
well as (automated) quantitative and (less automated) qualitative validation.

Data mining supports model exploration with the automated extraction of aggregate formal
representations from large simulation output datasets (see e.g. Remondino and Correndo, 2006,
p. 14). Since mined models like association rules or decision trees are relatively straightforward
to understand, they bear larger potential to formalize 'qualitative' results of MABS than mere
numerical representations (see e.g. Remondino and Correndo, 2006, Sec. 3.2).

Figure 5.5.: Potential of data and process mining in the context of validation techniques re-
viewed in Section 5.1.2.

The following sections review methods and techniques related to data and process mining in
MA(B)S. While these approaches mirror the ideas sketched in Figure 5.5, the �eld is still in its
infancy (see also Arroyo et al., 2010, p. 418 reviewed in Section 5.2.2.3). In chapter 6, we will
attempt to integrate the reviewed approaches into a coherent conceptual framework for data
mining and especially process mining in MABS.

5.2.1. Relations between Data Mining and MAS

In general, 3 relevant relations between the research �elds of data mining and MAS can be
identi�ed:

1. Adaptive agents: Agents are equipped with the ability for data mining to increase their
robustness, �exibility, and autonomy (Zhang et al., 2005, p. 56). Remondino and Cor-
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rendo (2005, p. 4) refer to this variant as endogenous modeling.8 Applications of adaptive
agents reach from information extraction on the internet to simulated persons in social
simulation.

2. Analysis of MA(B)S : As indicated above, the behavior of complex MAS can be analyzed
with the aid of data mining. Such analyses might support veri�cation and validation
in AOSE as well as MABS. Remondino and Correndo (2005, p. 4) call this application
exogenous modeling.

3. Agent-supported data mining : Similar to the idea of agent-supported simulation (see Ören,
2000, reviewed in Section 3.2.1), agent technology can be utilized to develop improved
(distributed) data mining algorithms and systems (Zhang et al., 2005, p. 52).

The focus of this thesis and the following literature review is on the second variant, i.e. data
mining as a support techniques for the validation and analysis of MABS. The case of adap-
tive agents is covered brie�y in Section 6.3.5, focusing on similarities and di�erences in the
requirements of 'endogenous' and 'exogenous' mining.9

Agent-supported data mining is not explicitly treated in this thesis. The article by Zhang et al.
(2005, Secs. 2,4) presents an overview of this topic and states examples including an agent-
based decomposition of the WEKA library (see Section 4.1.5.1) and a plugin-based �nancial
trading system.

Adopting this perspective, the reference net-based 'mining chains' that will be presented in Sec-
tions 7.1.3 and 7.4.2 might be understood as a basis for a futureMulan-based agent-supported
data mining system with a similar objective as the examples by Zhang et al. (2005), i.e. distribu-
tion, encapsulation, and �exible plugin-based composition of data mining procedures. Though
not explicitly 'agent-based', the assistant-supported, plugin-based ProM 6 system described in
Section 4.2.6.1 �ts this category as well.

Further information on all variants of integrating agents and data mining is provided in the
book by Cao (2009) and on the website of the special interest group on Agent and Data Mining
Interaction and Integration (AMII).10

5.2.2. Data Mining in MABS

This section reviews methodologies, techniques, and tools to integrate data mining and MABS.
Among the presented approaches, the work by Köster (2002) and Nair et al. (2004) might
have in�uenced this thesis most strongly. The approach by Remondino and Correndo (2005) is
parallel work guided by rather similar objectives and ideas. To simplify the comparison between
di�erent methodologies and our integrated approach in Section 6.3, respective modeling cycles
will be presented in a coherent Petri net notation.11

8page numbers relate to the version of the article downloadable at http://www.di.unito.it

/�remond/Ric/Remondino_ECMS2005.pdf (last visit 2012-10-07)
9as to use the terminology by Remondino and Correndo (2005)

10www.agentmining.org (last visit 2012-01-03)
11This approach is inspired by the comparison of agent architectures in the dissertation by Rölke (2004) and

further similar work in the Mulan context (e.g. the dissertation by Fix, 2012).
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5.2.2.1. Simulation Data Analysis with Knowledge Discovery in Databases

The dissertation by Köster (2002) proposes a methodology to integrate knowledge discovery in
databases (KDD, see Section 4.1.1) and simulation. As shown in Figure 5.6, the former phases
of his process (grey) form a conventional model building cycle, while the latter (white) are
taken from the KDD process (Köster, 2002, p. 88). The iterative and exploratory character of
the process is indicated by the possibility to revise all phases during validation (Köster, 2002,
p. 89).

Figure 5.6.: Integrated process of simulation and KDD displayed as a Petri net. Adopted with
modi�cations from the diagram by Köster (2002, p. 88)

Köster (2002) applies the integrated process to an individual-based epidemiological simulation
and to an interactive �ight training simulator, where the objectives di�er in both case studies:

• In individual-based simulation, the goal is to support model exploration and validation
with the automated detection of dependencies between (changes of) local parameters and
global outcomes (Köster, 2002, p. 89). �Furthermore, the results of the data mining can be
used to identify model components that do not signi�cantly contribute to the (global) behavior
of the model�

• �In the context of [...] interactive training simulators, two important goals are in the focus of the
application: on the one hand to derive objective criteria to rate the performance of candidates; on
the other hand to thoroughly identify de�ciencies in the way they handle the system.� (Köster,
2002, p. 91)

In both case studies, a new data mining technique is applied that combines multivariate time-
series analysis with data �ow modeling and evolutionary algorithms. Numerical time series of
state variables, such as the simulated persons' strength of exposition to a pathogen, serve as
input (Köster, 2002, p. 188). Additionally, a target variable is speci�ed, e.g. the infection state
of a person at the end of simulation (Köster, 2002, p. 188).
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From this input, a supervised learning algorithm constructs classi�er trees based on a pool
of prede�ned selector, �lter, and processor components for time series analysis. Using an
evolutionary algorithm, it attempts to identify those combinations of nodes that best predict
the target variable from (a selection of) the provided time series. From analyzing the nodes and
connections in the resulting data �ow networks, a deeper understanding of cause/e�ect-relations
in the model might be gained (Köster, 2002, p. 192).

Köster (2002, Chs. 5,6.8) further presents mature implementations of a data mining tool (EA
Mole) and an interactive individual-based simulation system (iEpiSim2). While not in the
research focus, Köster (2002, p. 90) also brie�y discusses the potential of simulation as a support
technique for KDD: On the one hand, the structure provided by a conceptual simulation model
might improve insight into the analyzed domain. On the other hand, valid simulation results
can, to a certain degree, compensate the typical lack of data in KDD projects.

For future work, Köster (2002, pp. 226) especially suggests to apply the proposed methodology
to the validation of (individual-based) simulation models. In personal communication with the
author of this thesis, Köster (2004) mentioned �rst attempts of using EA Mole for the validation
and prediction of trajectories in swarming and population simulations.

5.2.2.2. Analysis of Simulated Robot Soccer Games

Nair et al. (2004) apply data mining to the analysis of team behavior in simulated robot
soccer (Robo Cup12). An interesting aspect of their work is the explicit de�nition of multiple
analysis perspectives, related to the debugging approach by Ndumu and Nwana (1999); see
Section 5.1.1.4. From a common log format, the implemented system ISAAC reconstructs
meta-models of the observed simulations on three levels with di�erent data mining techniques:

• The �individual agent model� is a situation-oriented decision tree that represents conditions
under which certain �critical events�, like e.g. a shot on the goal, fail or succeed (Nair et al.,
2004, Sec. 3). Given a user-de�ned speci�cation of critical events and relevant attributes,
decision trees (Section 4.1.4.1) are learned from the log with the supervised C5.0 algorithm
(Nair et al., 2004, p. 10).

• The �multiple agent model� describes action sequences that form characteristic strategies
of a team in terms of stochastic automata (Nair et al., 2004, Sec. 4). Again, the user can
specify a critical event (e.g. a goal) as the �nal state of the automaton (Nair et al., 2004,
p. 17). Further parameters include a window size that constrains the considered pattern
length and a structural generalization factor that in�uences the induction of cycles (Nair
et al., 2004, p. 21).

• The �global team model� is also represented by decision trees that relate macro-level statis-
tics (e.g. ball possession time) to overall outcomes of soccer games (Nair et al., 2004,
Sec. 5).

Besides the analysis perspectives, Nair et al. (2004, p. 2) name 4 main requirements for their
assistant: �Locating key aspects of team behaviour [...]; diagnosing [...], particularly, problematic
behaviour; [...] suggesting alternative courses of action; and [...] presenting the relevant information

12http://www.robocup.org (last visit 2012-10-07)
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to the user comprehensibly.� To meet these requirements, data mining is complemented with
visualization, perturbation analysis, and natural language generation.

Perturbation analysis is applied to the individual and multiple agent models to identify a
minimum set of conditions that distinguish successful from ine�ective (inter)actions. In the
individual agent model, the conditions of a decision tree representing an unsuccessful action
are inverted, one after the other, before searching for corresponding successful actions in the
log (Nair et al., 2004, Sec. 3.3). In the multi agent model, the assistant �mines patterns from the
behaviour traces that are very similar [to a stochastic automaton representing success], and yet end in
failure� (Nair et al., 2004, p. 23).

To further compare key success factors of di�erent teams, the assistant performs statistical tests
on the distribution of the teams' frequent patterns (Nair et al., 2004, p. 23). From the global
team model, newspaper-like summaries of the run of play are generated in English language
(Nair et al., 2004, pp. 31).

Prior to Nair et al. (2004), Jacobs et al. (1998) used inductive logic programming (ILP, see
Section 4.1.4.3) in the Robo Cup domain to verify13 and validate individual agent behavior and
interactions based on logs of simulated soccer games. As indicated by Nair et al. (2004, p. 46),
the approach strongly depends on the availability of formalized background knowledge, which
complicates a transfer to other programming paradigms.

5.2.2.3. Data Mining Applied to Agent-Based Simulation

Parallel to this thesis, Remondino and Correndo (2005) developed an attempt to conceptually
integrate data mining and MABS, that we already mentioned in (Knaak, 2006, Sec. 2):14

�[...] Remondino and Correndo (2005) [...] integrate DM into a basic model building
process and di�erentiate between two main applications: [...] endogenous DM [... and]
exogenous DM [... as explained in Section 5.2.1 ...]. Further applications, such as automated
modelling, (automated) validation by comparison of [understandable] meta-models, and
(automated) calibration of model parameters are mentioned implicitly in the context of
certain mining techniques such as multiple regression, clustering, and rule inference.�

The authors sketch a simple �modelling and model-revision process�, depicted in Figure 5.7, in
which exogenous data mining is applied to support the initial modeling phase and validation
(Remondino and Correndo, 2006, p. 18). In (Remondino and Correndo, 2006, Sec. 7), they
further propose to apply mining techniques to data from multiple simulation runs of di�erent
scenarios to identify previously unknown cause/e�ect-relations between parameters and results.
However, to the understanding of the author, Remondino and Correndo (2006, Sec. 7.1) only
use histograms to show that the model of their case study is able to reproduce a macroscopic
pattern from the real system over a broad range of parameter settings.

In a mere conceptual study, Baqueiro et al. (2009, p. 221) extend the work of Remondino
and Correndo (2006) by discussing two directions of integration, i.e. �applying DM in ABMS
[Agent-Based Modeling and Simulation ... and] applying ABMS in DM�. In the former direction, the

13in the wider sense
14misspelling in (Knaak, 2006) corrected by the author of this thesis
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Figure 5.7.: Data mining-based model revision process by Remondino and Correndo displayed
as a Petri net. Adopted with modi�cations from Remondino and Correndo (2006,
p. 18).

authors only cite the work of Remondino and Correndo (2005, 2006) and additionally propose
to abstract real and simulation data by means of rule mining, clustering, and sequence mining
to aid comparisons between di�erent simulation models and the real system (Baqueiro et al.,
2009, p. 225).

In the 'inverse' direction, Baqueiro et al. (2009, pp. 226-227) propose (1) to use MABS as
a testbed to train and validate data mining algorithms and (2) to compensate missing and
erroneous real data with substitute simulation outputs, similar to the idea by Köster (2002).
However, to generate �(a) quasi-real [...]; (b) suitable-sized [...]; (c) quali�ed [...]; and (d) signi�cant�
data � as claimed by Baqueiro et al. (2009, p. 226) � a high degree of model validity would be
necessary.

Also citing the work of Remondino and Correndo (2006), Arroyo et al. (2010) present a more
thorough integration of data mining into a model building cycle accompanied by a larger case
study. As depicted in Figure 5.8, this process employs data mining on real and simulation data
in the phases of model-building and validation. The authors emphasize the need for domain and
data mining experts attending a simulation study to handle the large variety and complexity
of mining techniques (Arroyo et al., 2010, p. 433).

Arroyo et al. (2010, p. 423) further discuss the applicability of several data mining techniques
to simulation: (1) clustering to identify groups of related agents, (2) PCA to minimize the
simulated agents' degrees of freedom by dimensionality reduction, (3) time series analysis to
analyze the development of variables over time, (4) association rules to model and validate
�hidden relationships�, and (5) graph mining to detect frequent patterns in social networks.

In the case study, a data-intensive model of change in political and religious values during the
post-Franco era in Spain is analyzed with the aid of clustering (Arroyo et al., 2010, Sec. 4).
The authors constate that the temporal evolution of population clusters in their simulation
�ts clusters mined from real population data quite well regarding variables like age, religiosity,
political ideology, etc. (Arroyo et al., 2010, p. 427). Thus, a successful example of data mining
support for pattern-based validation (see Section 5.1.2.3) is given.

191



5. Related Work

Figure 5.8.: Data mining-enhanced model building cycle displayed as a Petri net. Adopted with
modi�cations from two �gures in (Arroyo et al., 2010, pp. 421, 422)

5.2.2.4. Analysis and Discovery of Inter-Level Relations

The analysis of relations between multiple levels of aggregation is one of the most demanding
tasks in MABS. It somehow mirrors the unsolved problem of micro/macro links in sociology (e.g.
Malsch, 2001). Even in the restricted case of computational emergence (see Section 2.1.1) the
description of non-explicitly modelled macroscopic entities and their response to local changes
remains challenging, especially with regard to formalization and tool support (Chen et al., 2010,
pp. 41).

Approach by Chen et al. Chen et al. (2008, 2010) present an approach to formalize com-
putationally emergent phenomena that is rather 'process mining-like' in spirit.15 It is based
on the common observation that simulations generate events at multiple levels of abstraction.
According to Chen et al. (2010, p. 45), �a simple event se is a state transition de�ned at some level
of abstraction that results from the execution of a single [...] rule�. Simple events are recursively
aggregated into complex events denoted as ce (Chen et al., 2010, p. 45):

ce :: se|ce1♦ce2 (5.2)

where ♦ is a relation with respect to time (e.g. e1 < e2), space (e.g. e1 and e2 occur at the
same location), or data attributes (e.g. e1 and e2 have a di�erent originator).16

15though no explicit relation to process mining techniques is drawn in (Chen et al., 2008, 2010)
16examples adopted with modi�cations from Chen et al. (2010, p. 45), also inspired by ideas from Ramezani

et al. (2012)
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All simple events caused by the same rule at the same abstraction level form a simple event
type SET (Chen et al., 2010, p. 46). Accordingly, a complex event type CET consists of a
set of simple event types and a set of relations de�ned over these types (Chen et al., 2010,
p. 46). Chen (2009, p. 98) name 3 temporal relations (concurrency, direct succession, indirect
succession), 2 spatial relations (within distance, at location), and 1 'organizational' relation
(same agent) to build CET s.

A CET thus describes a pattern of interrelated events that can be visualized as a labelled
(multi-)graph with simple event types as node labels and relations as edge labels (Chen et al.,
2010, p. 46). Subsystem state types SST �represent static property descriptions� (Chen, 2009,
p. 60) over multiple system components (Chen, 2009, p. 78). Based on these de�nitions, the
authors formalize several relations that are typically stated between phenomena at di�erent
aggregation levels:

• Scope: An event type CETX has a larger scope than an event type CETA if CETX can
be composed from CETA and some CETB: CETX = CETA♦CETB (Chen et al., 2010,
p. 47).

• Resolution: A supertype CETX has a lower resolution than a subtype CETA if the ob-
served events belonging to CETA are a subset of those belonging to CETX : E(CETA) ⊆
E(CETX) (Chen et al., 2010, p. 47).

• Level of abstraction: An event type CETX has a higher level of abstraction than an event
type CETY if CETX has a larger scope or a lower resolution than CETY (adopted with
modi�cations from Chen et al., 2008, p. 5x).

• Emergent law : A non-simple event type CETX and an event type CETY are related by
an emergent law if the occurrence of an event cex ∈ CETX implies the occurrence of an
event cey ∈ CETY : CETX → CETY (Chen et al., 2010, p. 47).

• Top-down constraint : An event type CETX exposes a top-down constraint on an event
type CETY if CETX → CETY and CETX has a higher level of abstraction than CETY
(adopted with modi�cations from Chen et al., 2010, p. 47).

Chen et al. (2010, Sec. 3) operationalize this formalism in the MABS framework of X-machines,
a speci�c class of communicating automata. As an example, a simple prey-predator model of
'lions' and 'antelopes' is implemented (Chen et al., 2010, Sec. 4.1). For this model, (Chen et al.,
2010, p. 49) specify exemplary CET s that represent the patterns �starvation� (Figure 5.9), �same
lion overhunting�, and �between lion overhunting�,

Figure 5.9.: Graph for the complex event type 'starvation': A lion dies after moving two times
in succession without having the possibility to hunt (Chen et al., 2010, p. 49).
Adopted with modi�cations from (Chen et al., 2010, p. 50).
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The simulation log is matched against the speci�ed patterns, and their occurrence is correlated
with model parameters like density of population (Chen et al., 2010, pp. 49). Chen (2009,
p. 107) additionally propose to employ machine learning techniques for �validating and discovering
[...] models� of inter-level relations. In doing so, the following types of models are (among others)
distinguished (Chen, 2009, pp. 116):

• �Associative [models ...] de�ne a set of linear and/or non-linear relationships between a set
of CET s and/or SST s� (Chen, 2009, p. 116). These models are mined by correlating
occurrences of CET s detected in the log as shown in (Chen and Hardoon, 2010).

• �Causal [models ...] de�ne a set of directed causal relationships between a set of CET s and/or
SST s� (Chen, 2009, p. 116). Chen (2009, Sec 4.2.2) propose to use structural equa-
tion models and Bayesian networks (Section 4.1.4.4) for representation. In a Bayesian
Network, nodes represent CET s which are connected according to their conditional oc-
currence probabilities estimated from log data. Potgieter (2004) and Gore (2010) also use
Bayesian networks to infer inter-level relations from MA(B)S data.

• �Functional modular [models ...] de�ne associative relations between CET s and/or SST s which
can be treated as functional units� (Chen, 2009, p. 117). Under the �premise that within-
module statistical association [...] is greater than between-module association for a particular
function� (Chen, 2009, p. 122), it is proposed to discover modules by clustering CET s
according to similar patterns of occurrence.

Beyond describing inter-level relations, Chen (2009, Sec. 4.3) also use machine learning to
predict computationally emergent behavior modeled in terms of CET s. In addition, multi-level
models that �explicitly de�ne di�erences in the dependency relations between CET s for groups of
simulations with di�erent attributes� (Chen, 2009, p. 217) are analyzed with the aid of linear
regression and hierarchical Bayesian networks (Chen, 2009, Sec. 4.4).

A future challenge of the approach lies in �implementation issues associated to the detection of
CET occurrences� with feasible time complexity, where logic-based optimization techniques are
proposed as a starting point (Chen, 2009, p. 216). In Sections 6.2 and 7.1.3.1 we discuss
process mining as an alternative and relate the work by Chen (2009) to the compliance checking
approach by Ramezani et al. (2012) and to reference nets.

Moncion et al. (2010), who relate themselves to the work of Chen et al. (2010)17, present
an approach towards the automated detection of emergence based on so-called interaction
signs, i.e. arbitrary indicators for interactions observed in a MABS (Moncion et al., 2010,
Sec. 3.1). Interaction signs might reach from measures like distance or direction of movement
in simple �ocking simulations to complex events as de�ned by Chen (2009) (Moncion et al.,
2010, Sec. 3.1).

Based on the observation of interaction signs during a simulation, Moncion et al. (2010, Sec. 3.2)
build a time-series of social networks (see also Lahiri and Berger-Wolf, 2008, reviewed in Section
4.2.4.1) where nodes represent agents and edges represent their relations with respect to an
interaction sign. The time series are analyzed (a) by tracking coherent subnets over time with
the aid of a clustering algorithm (Moncion et al., 2010, Sec. 4.2) and (b) by applying metrics
from social network analysis in order to analyze the increase or decrease of 'order' in a simulation

17see Moncion et al. (2010, Sec. 2)
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(Moncion et al., 2010, Sec. 4.1). The approach is evaluated at the example of a simple �ocking
simulation (Moncion et al., 2010, Sec. 5).

5.2.2.5. Data Farming

In (Knaak, 2006, Sec. 2), we brie�y reviewed a methodology rooted in the military simulation
domain that integrates MABS and data mining (DM):

�Brandstein et al. (1998) propose a method called data farming that integrates MABS with
large-scale experiment planning, distributed execution of simulation runs, visualisation, and
DM. However, the current data farming research seems to focus stronger on experimentation
methodology than on the integration of DM techniques. The applied DM techniques are
mostly limited to the numerical analysis of factors in�uencing the agents' behaviour.�

In the context of data farming, Sanchez and Lucas (2002) support visualization with data min-
ing as reviewed in Section 5.1.2.4. Barry and Koehler (2004, p. 815) propose to use clustering,
decision tree mining, rule mining, and Bayesian network inference on data farming results to
uncover relations between simulation parameters and results over many replications. To iden-
tify relevant variables for simulation-based optimization, Brady and Yellig (2005, p. 286) use
correlation analysis over keywords that reference model components in the simulation trace.

5.2.2.6. Adaptive Intelligent Model-Building for the Social Sciences (AIMSS)

As part of the AIMSS project, Kennedy et al. (2007, p. 1098) present an assistant software that
supports iterative model building with data mining. At the example of a housing simulation,
association rules are mined from simulation output and real data as �high level descriptions� for
pattern-based validation (Kennedy et al., 2007, p. 1102).

As an example, the authors present the following rule that was mined from simulation output
with maximum con�dence (Kennedy et al., 2007, p. 1102):

incomeLevel = low ∧moveReason = affordability ⇒ newHomeCost = low. (5.3)

This rule indicates that agents with the lowest income level, that move houses due to a�ord-
ability, will always move into a house at the lowest rent level (Kennedy et al., 2007, p. 1103).
The quantization of numerical data into levels is necessary since the applied association mining
technique can only handle categorial data (Kennedy et al., 2007, p. 1104).

For future work, Kennedy et al. (2007, pp. 1103) plan to automate model revision on the basis
of data mining results. The architecture of the assistant is already prepared for this extension
due to the use of �machine readable� declarative model speci�cations based on XML (Kennedy
et al., 2007, p. 1102).

5.2.2.7. Further Work on Data Mining in MABS

In his bachelor thesis at the University of Rostock, Enrico Seib (2008) discusses the application
of data mining to (agent-based) simulation and evaluates a number of mining techniques and
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simulation tools (including SeSAm reviewed in Section 3.4.3) in this respect (Seib, 2008, p. V).
As a practical example, a clustering algorithm is integrated into the MABS framework JAMES
II and applied to a MABS of a chemical process (Seib, 2008, pp. III,V).18

Schmitz et al. (2010, p. 88) systematically evaluate di�erent data mining techniques, i.e. �time
series analysis, association rule mining, clustering, and social network analysis in regard to their use-
fulness for the[...] purpose[...]� of �validating� and �understanding� MABS of �inter-organizational
networks�. The applied techniques are rated with respect to di�erent domain-speci�c analysis
questions (Schmitz et al., 2010, p. 100). Generalization of the investigated questions and im-
provement of tool support are identi�ed as topics for further work (Schmitz et al., 2010, p. 100).
An interesting �nding is that �at early analysis stages [...] mostly qualitative analyses are relevant
[while ...] at a later point in time [...], we can expect a shift towards more quantitative analyses that
better serve as input to management decisions� (Schmitz et al., 2010, pp. 100).

5.2.3. Data Mining in Other Simulation World-Views

Huber et al. (1993, p. 237) report an early application of decision tree mining to generate �a
qualitative description of [... simulation] input/output behaviour [... that] can easily be interpreted
by the modeller and other users because of its intuitive representation.� Huber and Berthold (2000,
Sec. 3.3) compare di�erent formalisms for meta-modeling including regression analysis, neural
networks, and association rules. Based on this comparison, they propose fuzzy graphs as a
means to combine the straightforwardness and understandability of rule mining with the other
techniques' ability to handle continuous values.

Szczerbicka and Uthmann (2000) were among the �rst to generally consider interactions between
AI techniques and simulation: In the introduction to their anthology, the potential of AI to
support the usage, modeling, optimization, and analysis of simulation models is discussed. The
authors name decision tree learning and case-based reasoning as the most common data mining
techniques for simulation analysis (Szczerbicka and Uthmann, 2000, Sec. 4.4).

Further articles in the anthology report on applications of di�erent data mining techniques to
validation, meta-modeling, and optimization. Barton and Szczerbicka (2000) discuss the utility
of machine learning for model validation and perform simulation-based optimization with the
aid of decision tree mining and a time-dependent scoring function.

Morbitzer et al. (2003) compare data mining with traditional techniques for simulation analysis.
The authors emphasize the ability of data mining to (semi-) automatically generate results that
are at the same time numerically quanti�ed and visually understandable (Morbitzer et al., 2003,
p. 913). This con�rms the view of data mining as a 'link' between quantitative, qualitative,
exploratory, and con�rmatory validation mentioned in Section 5.2. However, the claim that
�the method allows the analysis to be carried out by a user with a very limited understanding of the
underlying numerical analysis techniques� (Morbitzer et al., 2003, p. 913) might be called into
question.

Morbitzer et al. (2003, pp. 913) further discuss the appropriateness of several data mining
techniques (association rules, decision trees, outlier analysis, time series analysis, and clustering)

18information extracted from the (incomplete) preview of the thesis at books.google.de/books?

isbn=364014547X (last vist 2012-10-10)
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to analyze a simulation of air �ow in a building. Clustering is practically applied to e.g.
group distributions of parameter settings, such as wind speed and ambient temperature, by the
resulting temperature in the simulated building (Morbitzer et al., 2003, pp. 915).

As summarized by Czogalla (2007, p. 21), Cantú-Paz et al. (2004) use Bayesian classi�ers and
k-nearest neighbor clustering to automatically query and validate visual turbulence patterns
generated by a physics simulation of a liquid.

In the context of the AssistSim project, Lattner et al. (2011, p. 179) use �machine learning [...] not
[...] to discover knowledge from simulation results but to learn a classi�er for the estimation of statistical
properties�. The objective is to rate the signi�cance of simulation results and to determine the
number of runs required to achieve a certain level of signi�cance (Lattner et al., 2011, p. 177).
The article also reviews further work related to data mining in simulation (Lattner et al., 2011,
p. 177), mostly complementary to this thesis.

5.2.4. Data Mining in MAS

After reviewing applications of data mining to simulation, we will now present examples of data
mining in MAS without speci�c focus on simulation. Some of these approaches already come
close to the idea of 'process-oriented' analysis, which is further detailed in the next sections.

5.2.4.1. Log Analysis in the INGENIAS Methodology

INGENIAS is a tool-supported AOSE methodology that comprises multiple modeling perspec-
tives including agent, organization, task/goal, interaction, and environment (Vigueras et al.,
2008, Sec. 3). Validation is performed by a-posteriori analysis of message logs recorded during
MAS execution. A tool named ACLAnalyser supports the analysis of FIPA-compliant message
logs recorded on the JADE agent platform with visualization and data mining techniques (Botía
et al., 2004).19 Serrano et al. (2009, Sec. 4) summarize several models that are reconstructed
for analysis, mostly related to the organization and interaction perspectives of INGENIAS.

Causality graphs display the partial order of events in a recorded conversation, where nodes
represent agent states and edge labels denote messages (Serrano et al., 2009, p. 2788). To
detect causal dependencies in concurrent multi-party conversations, every message is assigned
a vector clock containing local event counters for all participating agents (Vigueras and Botia,
2008, p. 193). Figure 5.10 shows a causality graph for an example execution of the contract
net protocol. Vigueras et al. (2008, Sec. 4) propose to enrich the nodes of the causality graph
with detailed state information from the interaction and task/goal perspectives.

Besides causality graphs, the following further visualizations are available in the ACL Analyser
(Serrano et al., 2009, Sec. 4.3):

• Order graphs are similar to causality graphs with the exception that messages are repre-
sented by graph nodes.

19see also http://ants.dif.um.es/staff/emilioserra/ACLAnalyser (last visit 2012-10-10) and the User's
Guide (Serrano and Botia, 2011) available at this location
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Figure 5.10.: A causality graph for an example execution of the contract net protocol. Nodes
represent agent states in the form agentName / stateId. Edges are labelled
with performatives. Adopted with modi�cations from (Vigueras and Botia, 2008,
p. 201).

• Abstract graphs display the order of multiple related conversations without showing details
of the conversations themselves.

• Collaboration graphs are social networks of communicating agents based on the send-
/receive-relation of messages.

• Sequence diagrams of the recorded messages (Serrano and Botia, 2011, p. 17) and several
conversation statistics (Serrano and Botia, 2011, p. 20) can be displayed as well.

Since these visualization tools are only appropriate to analyze small (cut-outs of) MAS, Serrano
et al. (2009, pp. 2789) apply a knowledge discovery process including clustering and associa-
tion rule mining. Clustering supports the visualization of large collaboration graphs with the
possibility to zoom into and out of groups of similar agents (Botía et al., 2004, p. 305). The
categorial cluster algorithm ROCK is employed to group agents that communicate with sim-
ilar peers (Serrano et al., 2009, p. 2790). The distance-based k-means algorithm is used to
cluster agents by frequent message exchange (Serrano et al., 2009, pp. 2791). With the aid of
association rule mining, relations between performatives, senders, and receivers of messages are
reconstructed (Serrano et al., 2009, p. 2790).

Though the reconstructed models somehow resemble the control-�ow and organizational per-
spectives of process mining, it should be noted that (except for association rule mining) no gen-
eralization of the displayed dependencies is performed over multiple executions. Furthermore,
background knowledge and meta-data is required: Messages must be tagged with conversation
and protocol identi�ers as well as vector clocks as time stamps. A state machine representing
the observed protocol must be available in the ACLAnalyser to record conversation statistics
and bindings of agents to interaction roles (Botía et al., 2004, p. 305).
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5.2.4.2. Agent Software Comprehension

Similar to Vigueras and Botia (2008), Lam and Barber (2005) use causality graphs to analyze
logs of MAS. Both approaches can be regarded as complementary, because the focus of Lam and
Barber (2005) is on analyzing internal events of single agents (Vigueras and Botia, 2008, p. 203).
As a basis, agents are instrumented with logging statements to record state changes with respect
to agent-concepts like beliefs, intentions, or actions (Lam and Barber, 2005, pp. 588,589). Lam
and Barber (2005, p. 589) emphasize that the concentration on the abstract level of agent
concepts reduces the amount of log entries, as e.g. compared to the code level.

From the logs, a software named Tracer Tool extracts causal graphs to trace events back to their
root causes (Lam and Barber, 2005, Sec. 3). Di�erent from the ACL Analyser (see above), the
partial order of causal dependencies is not reconstructed from vector clocks, but with the aid of
con�gurable, potentially domain speci�c background knowledge related to the applied agents
concepts (Lam and Barber, 2005, p. 589). An example for this automated log interpretation is
provided by Lam and Barber (2005, p. 591):

�if o is an action, then the algorithm searches for the last observed intention i that has
some similar attribute as those of action o. If such an intention is found, a relation from
intention i to action o is suggested.�

Bosse et al. (2006) complement the explorative analyses of the Tracer Tool with con�rmative
trace checking with the TTL Checker mentioned in Section 5.1.2.1. Lam and Barber (2005,
p. 593) also mention �behaviour pattern recognition� as a topic for future work.

5.2.4.3. Agent Academy

Mitkas et al. (2002) present the software framework Agent Academy implemented on the JADE
agent platform. Di�erent from the above approaches, Agent Academy employs data mining
to improve agents' adaptivity by means of �dynamic re-training� based on data collected from
previous agent behavior and from the environment.

Adaptivity is not realized by equipping individual agents with learning algorithms but by using
the centralized data mining architecture depicted in Figure 5.11. This architecture makes it
possible that �functionally unrelated agents within the society may bene�t from each others' �ndings
and be able to collectively exploit the shared knowledge base thereby increasing the e�ectiveness of the
system� (Mitkas et al., 2002, p. 757).

The architecture consists of 4 main components implemented as agents that communicate via
FIPA-ACL messages (Mitkas et al., 2002, p. 758): The agent factory creates and con�gures
new untrained agents on demand. Based on a given ontology, the agent use repository stores
data from multiple sources in a database. The data mining module extracts hypotheses from
the agent use repository in the form of association rules, decision trees, and neural networks.
The agent training module translates the models generated by the data mining module into
executable behavior descriptions and transfers these to the agents.

Mitkas et al. (2002, Sec. 4) present an example system that monitors environmental data,
predicts health-critical situations concerning allergies, etc. and sends alerts to registered users
via di�erent channels such as e-mail. Based on user feedback, predictions concerning alerts and
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Figure 5.11.: Architecture of the Agent Academy framework displayed as a Petri net. Core
components of the system are shaded grey. Adopted with modi�cations from
(Mitkas et al., 2002, p. 758)

preferred distribution channels are improved by re-training. For this purpose, decision trees are
mined from the agent use repository and translated into executable rules for the Java Expert
System Shell (JESS, see Section 3.4.2) that the agents employ for decision making.

In the context of Agent Academy, Dimou et al. (2007) present a concept to select and apply
metrics for performance evaluation of data mining agents. In Section 6.2, we will brie�y discuss
the modeling and validation of adaptive agents based on process mining.

5.3. Process Mining in Software Engineering and Simulation

Finally, we will focus on those approaches that are most closely akin to the thesis at hand, i.e.
process mining or related techniques are applied to MAS-like systems or simulations.

5.3.1. Process Mining in Software Engineering

Interestingly, the reconstruction of software development processes was one of the �rst objec-
tives for process mining (Cook and Wolf, 1998). In (Cabac and Denz, 2008, pp. 87) we reviewed
previous applications of process mining to software engineering:

�One direction of research focuses on the analysis of software development processes (which
we will call software development process mining). The goal is to retrieve control-�ow
and organizational aspects of software development cycles from available data sources such
as CVS [Concurrent Versions System, a common software tool for source con�guration
management20] repositories. [...] the second direction of research uses mining to analyze

20see http://www.nongnu.org/cvs (last visit 2012-10-13)

200



5.3. Process Mining in Software Engineering and Simulation

software artifacts in order to support tasks like debugging or validation (which we will call
software process mining21).

Early work on software development process mining was carried out by Cook and Wolf
(1998), who reconstruct models of software development processes from event-based logs
and use conformance checking techniques to compare actual development activities with
speci�ed process models. They also present a tool implementing their techniques within
a software development environment. Christley and Madey (2007b) apply social network
mining and grammar inference to the analysis of open source projects. Rubin et al. (2007)
introduce a general framework for process mining of software development processes. They
consider several aspects including speci�c data sources, algorithms, and perspectives, and
propose the ProM framework (Dongen et al., 2005) as a supporting toolset.

Software process mining is concerned with the reconstruction of abstract models of software
systems from their execution traces. [...] Dallmeier et al. (2006) [e.g.] apply grammar
inference to the state-based analysis of basic software objects in order to support testing.�

Since the time of this review, further work on software development process mining has been re-
ported including the dissertation by Rubin (2007) and the software framework FRASR (FRame-
work for Analyzing Software Repositories) based on ProM (Poncin et al., 2011). The latter
allows to de�ne so-called �event bindings� to map implicitly de�ned events from di�erent sources
such as code repositories and bug tracking software to MXML logs (Poncin et al., 2011, p. 6).

In the context of software process mining, Bose and Suresh (2008) apply techniques from
Bioinformatics and Information Retrieval to identify root-causes for software failures. One of
these techniques, i.e. sequence alignment, helps to identify common patterns that distinguish
erroneous from successful executions.

Approaches to reconstruct understandable models from the source code and runtime observation
of software systems are developed in software reverse engineering. One direction of work is
scenario-based synthesis (Lassen et al., 2007, p. 13): Software systems are implemented by
'playing' example user interactions 'into' a development environment (see e.g. Harel and Marelli,
2003). These scenarios, often represented in the form of sequence diagrams, serve to (semi-
)automatically generate the behavior of the system under development. The article by Lassen
et al. (2007, Sec. 5) further discusses relations between process mining and scenario-based
synthesis.

Gueheneuc and Ziadi (2005) propose to reconstruct UML 2 sequence diagrams (SDs, see Section
2.3.1.4) with a combination of static and dynamic analysis: Program execution traces are �rst
transformed into basic SDs of 1 : 1 object interactions (Gueheneuc and Ziadi, 2005, p. 2).22

Based on an additional static analysis of the source code, multiple basic SDs are then merged
into a single high-level SD that represents the overall control �ow (Gueheneuc and Ziadi, 2005,
p. 2-3). From the high level SD, state charts of the involved interaction roles can be generated
(Gueheneuc and Ziadi, 2005, p. 3). However, Gueheneuc and Ziadi (2005) do not propose any
technical details on how to merge the basic SDs and identify the interaction roles.

Lassen et al. (2007) use process mining to merge multiple basic SDs into an overall control
�ow model: Basic SDs stored in XMI23 are converted into a speci�c MXML �le that contains
21In contrast, Rubin et al. (2007) use this term for the mining of development processes.
22page numbers relate to the version of the article downloadable at http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.83.3347&rep=rep1&type=pdf (last visit 2014-02-23)
23a common XML-based format to store and exchange UML models (Lassen et al., 2007, p. 6)
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case data in the form of partial orders of message send- and receive-events (Lassen et al., 2007,
pp. 6). From this log, a Petri net model is reconstructed and transformed into further notations
such as EPCs (Lassen et al., 2007, pp. 9). A transformation into high level SDs (e.g. in UML
2 notation) is not intended, since this diagram type is deemed less suitable �to model the full
system behaviour.� (Lassen et al., 2007, p. 12).

5.3.2. Mining Message Sequence Graphs

Message Sequence Graphs (MSGs) are higher level sequence diagrams quite similar to UML
interaction overview diagrams (Section 2.3.1.4). Basically, a MSG is a control �ow graph that
contains basic message sequence charts (MSCs, quite similar to simple UML sequence diagrams)
as nodes (Kumar et al., 2011, p. 93). MSGs are thus well-suited to represent complex protocols
with di�erent �phases� (Kumar et al., 2012, p. 916) of re-occurring (basic) interaction scenarios
(Kumar et al., 2011, p. 94).

Kumar et al. (2011) present an approach to reconstruct MSGs from program traces consisting
of send- and receive-message events. In the �rst step every trace is converted into a partially-
ordered dependency graph that displays the 'interaction threads' of the participating objects
on the basis of send- and receive-message relations (Kumar et al., 2011, pp. 93). Next, frequent
subgraphs are searched in the dependency graphs in order to identify candidate scenarios (i.e.
basic MSCs) that form the nodes of the reconstructed MSG (Kumar et al., 2011, pp. 94).
To avoid an �exhaustive search for [matching] graph structures�, a so-called event tail algorithm
is applied that �successively merges� appropriate subgraphs starting from single events (Kumar
et al., 2011, p. 95).

On the abstracted �alphabet of basic MSCs�, a grammar inference algorithm (sk-strings) is applied
to reconstruct the superordinate control �ow graph of the MSG (Kumar et al., 2011, p. 96).
The resulting Mealy automaton with basic MSCs as egde labels is converted into a Moore
automaton with MSCs as node labels that comes closer to the MSG notation (Kumar et al.,
2011, p. 96).

Besides the work by Lou et al. (2010b) reviewed in Section 4.2.3.5, the approach by Kumar et al.
(2011) is among the few reverse-engineering techniques that consider multiple instantiation
patterns (Section 2.3.3). Starting from the observation that �in some systems, a process may
broadcast messages to multiple processes [... and] in such scenarios, the order in which messages are
sent or [...] received is usually inconsequential� Kumar et al. (2011, p. 96) introduce a so-called
�oracle� into the algorithm that provides additional information about message broadcast.

For an implementation of the oracle, Kumar et al. (2010, Sec. 5) propose that �the user speci�es�24

which messages and responses belong to broadcasts. Based on this information, rules are de�ned
to construct correct dependency graphs in the presence of broadcast messages (Kumar et al.,
2010, Sec. 5):

�The �rst [... rule] states that there is no dependency between two send events at the same
lifeline [...], if the message being sent is [... a broadcast message] and it is being sent to
di�erent lifelines. The second [... rule] states that two receive events at a lifeline have no

24Kumar et al. (2010, Sec. 5) note that �as a future extension, such exceptions can be automatically inferred
[...] from statistical analysis of traces�.
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dependency if they arrive from di�erent processes and are both responses to a broadcast.
The third [... rule] enforces there to be no dependency between a send of a broadcast
message and the receipt of [... a] response[...] from some other process.�

A drawback of the approach is that it lacks a �formal notion of roles� (Kumar et al., 2011, p. 99)
such that interaction patterns are identi�ed at the level of objects rather than classes. Kumar
et al. (2012) therefore present an extension towards the mining of �class level speci�cations�.
However, di�erent from role mining techniques in process mining (Section 4.2.4.2), Kumar
et al. (2012, p. 915) assume that the �analysis has prior knowledge of the classi�cation of concrete
processes [...] obtained from either the source code [...] or an input from [the] user.�

Instead, the class-level mining concentrates on the reconstruction of guards for transitions
between basic scenarios in the MSG (Kumar et al., 2012, Sec. III). The authors use a technique
for regular expression induction to reconstruct constraints on message types, senders, receivers,
and cardinalities that determine which objects enact which basic MSCs in a message sequence
graph (Kumar et al., 2012, Sec. III).

Overall, the approach by Kumar et al. (Kumar et al., 2010, 2011, 2012) appears akin to the
mining of (hierarchical) process maps proposed by Li et al. (2010) and the ILP-based process
mining by Lamma et al. (2007b). It also exhibits several relations to our process mining-based
procedure to reconstruct higher level agent interaction protocols presented in Section 7.3. A
more general similarity to this thesis is the intention by Kumar et al. (2011, p. 99) to provide a
�multi-view mining framework [...] which mines [...] intra-process [...] as well as [...] inter-process style
speci�cations�.

5.3.3. Web Service and Interaction Mining

Message-based communication is an important aspect of MAS. Process mining with a similar
focus is applied in the context of inter-organizational business processes25. These are often
implemented with the aid of web services, i.e. heterogeneous, self-contained, distributed com-
ponents that communicate over the World Wide Web using XML-based standard formats such
as SOAP (Simple Object Access Protocol) and WSDL (Web Services Description Language);
see Reichert and Stoll (2004, pp. 21-22).

5.3.3.1. Approach by Dustdar and Gombotz

In (Cabac et al., 2006b, Sec. 3.1.1), we have reviewed the multi-perspective approach by Gom-
botz et al. (2005) towards process mining of web service behavior:

�In the context of web service interaction mining, Gombotz et al. (2005, p. 3) distinguish
three perspectives that integrate aspects of control �ow and organizational structure: The
web service operation level deals with the internal behavior of single web services. On
the web services interaction level the focus is on "a single web service [and ...] its direct
neighbors". On the web service work�ow level "large-scale interactions and collaborations"
are observed, "which together form an entire work�ow" (Gombotz et al., 2005).�

25for an overview of this research �eld see e.g. Legner and Wende (2007)
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Practical work is reported on the levels of interactions and work�ows. As summarized in (Cabac
et al., 2006b, Sec. 3.1.2):

�[The] mining result[... on the interaction level] is a so-called web service interaction graph

representing the relations of a particular web service and its neighbors. Compared to UML
style interaction diagrams (see e.g. Jeckle et al., 2002), the interaction graph is closer to a
communication diagram than to a sequence diagram, since it does not focus on interaction
control �ow.�

The development of mining procedures for the work�ow level is guided by the identi�cation
of 5 increasingly detailed log levels: These range from standard web server logs that record
timestamps, requesting IP addresses, and requested URLs (level 1) to detailed logs that pro-
vide information on SOAP message content and work�ow-related data like case and schema
identi�ers (level 5); see Dustdar and Gombotz (2006, Sec. 3). Dustdar and Gombotz (2006,
Sec. 4) show that level 5 logs can be straightforwardly converted to MXML and mined using
ProM.

Since level 5 logs are seldom found in practice (Dustdar and Gombotz, 2006, p. 261), a concept
for process mining in the absence of work�ow-related information is presented as well (Dustdar
and Gombotz, 2006, Sec. 6): The main phases of the procedure are (1) reconstruction of
sessions by aggregation of messages that belong to the same case, (2) similarity assessment of
reconstructed sessions to validate the results of step 1 and to identify sessions belonging to the
same work�ow, and (3) process mining on the preprocessed logs.

To reconstruct sessions from server logs, Dustdar and Gombotz (2006, p. 263) propose to
use either �temporal information� or key events like calls to a login service. Temporal session
reconstruction is based on estimated parameters like minimum time between messages and
maximum session duration (Dustdar and Gombotz, 2006, p. 263). For similarity assessment,
Dustdar and Gombotz (2006, pp. 263-264) mention several measures including (1) session
duration and size, (2) type, number, and order of consumed services, (3) initial and �nal
services called, (4) common message parameters, and (5) frequent control �ow patterns. The
authors note that the latter must also account for advanced constructs like concurrency and
cycles (Dustdar and Gombotz, 2006, p. 264).

5.3.3.2. Approach by Schütt

Schütt (2003) presents the software prototype FuzFlow for interaction mining and control �ow
prediction of inter-organizational work�ows. Similar to Dustdar and Gombotz (2006), he as-
sumes that the provided log contains raw messages without explicit session information. Thus,
sessions must be reconstructed by data mining. Di�erent from Dustdar and Gombotz (2006),
Schütt (2003) requires that all analyzed sessions are of the same type.

The main processing pipeline is shown in Figure 5.12: The simulator creates example logs
based on user-de�ned message types and sequence patterns (Schütt, 2003, p. 96). Message
aggregation is realized by clustering messages with similar values of content attributes (Schütt,
2003, pp. 47). Process mining is performed with the (�rst part of the) two-step algorithm
described in Section 4.2.3.3. Subsequently, the branching points of the mined process model
are enriched with conditions discovered from message attributes by fuzzy rule mining. The

204



5.3. Process Mining in Software Engineering and Simulation

Figure 5.12.: Interaction mining procedure and architecture by Schütt (2003) displayed as a
Petri net. Components mentioned in the text are shaded grey. Adopted with
modi�cations from (Schütt, 2003, p. 99).

resulting model is considered to predict the future control �ow of selected running process
instances. In Section 7.2, we use the approach by Schütt (2003) as a starting point to mine
agent interaction protocols.

5.3.3.3. Artifact-Centric Process Mining

Proclets are an extension of Petri nets that support an artifact-centric view upon work�ow
modeling (Fahland et al., 2011a, p. 39): This paradigm focuses on data objects (documents,
orders, etc.) involved in the execution of a business process. It is strongly in�uenced by
relational database constructs like entities, relations, and cardinalities. Extending the relational
paradigm, the life cycle of each entity type is represented by an own Petri net (proclet) that
interacts with other proclets over ports connected by channels (see Figure 5.13).

A proclet is formalized as a tuple P = (N,Ports) where N is a labelled Petri net (Fahland
et al., 2011a, p. 40). Ports p ∈ Ports are tuples p = (Tp, dir, card,mult) with the following
components (Fahland et al., 2011a, pp. 40; Fahland et al., 2011b, p. 3):26

• The direction dir ∈ {in, out} indicates an input or output port.

26page numbers from (Fahland et al., 2011b) relate to the version downloadable at http://ceur-ws.org/

Vol-705/paper1.pdf (last visit 2012-10-13)
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Figure 5.13.: An example proclet system modeling the delivery of orders by a transport vehicle.
Adopted from Fahland et al. (2011b, p. 2). Input and output ports are only
inscribed with cardinalities here.

• A set of transitions Tp ⊆ T is connected to the port. In case of an output port, the �ring
of a transition tp ∈ Tp triggers p to send one or more messages. For an input port, tp will
only be enabled if p receives messages.

• The cardinality card ∈ {1,+, ∗} determines how many messages are sent or received when
port p is triggered (exactly one, at least one, or an arbitrary number).

• The multiplicity mult ∈ {1,+, ∗} speci�es how often p is triggered during the lifetime of
the proclet.

Multiple proclets form a proclet system PS = ({P1, . . . , Pn}, C) where C is a set of channels,
each connecting an input and output port (Fahland et al., 2011a, pp. 40). Similar to reference
nets and agent-based modeling, proclets are a means to reduce the complexity of work�ow
models by providing additional structure. This expressiveness also leads to new requirements
and possibilities for process mining and conformance checking.

Conformance Checking of Proclet Systems Fahland et al. (2011a) present an approach
towards conformance checking of proclet systems. Since replaying the log of a whole system
at once is considered as computationally expensive, the work focuses on the sub-problems of
behavioral and interaction conformance (Fahland et al., 2011a, pp. 42).

Behavioral conformance is simply assessed by splitting the log into sub-logs for each entity
type and removing all ports from the corresponding proclets. Then standard log replay-based
conformance checking (see Section 4.2.5.4) can be used, but all interaction-related information
is lost (Fahland et al., 2011a, p. 43).

Interaction conformance is based on an �instance-aware log� (Fahland et al., 2011a, p. 46). This
log contains entries e = (a, id, SID,RID), where a is an action, id is the acting entity's
identi�er, and the sets SID and RID contain identi�ers of entities that entity id sent messages
to or received messages from during the execution of a (Fahland et al., 2011a, p. 46). After
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merging related send and receive events of communication peers into the log of the considered
entity type, interaction conformance can be checked (Fahland et al., 2011a, p. 46-47).

To enable conformance checking of port cardinalities and multiplicities, a concise execution
semantic for ports is de�ned by a mapping to inhibitor-reset nets (Fahland et al., 2011c, p. 26).
These are Petri nets that contain inhibitor and reset arcs like e.g. reference nets (see Section
2.3.2.5). Fahland et al. (2011c, pp. 29-30) show how all combinations of port types, cardinalities,
and multiplicities can be mapped to corresponding 'net components'27 checked during log replay.

Discovery of Proclet Systems Only recently, initial e�ort has been made to reconstruct
proclet systems from instance-aware logs. In this context, the following subtasks have been
approached so far:

• A ProM plugin was developed for the log-based reconstruction of Entity/Relationship
(E/R) diagrams as the predominant structural model of the artifact-centric view (see
Popova et al., 2012, Sec. 2 and Canbaz, 2011, pp. 83,145).

• Popova and Dumas (2012, p. 1) �propose a method for translating Petri Net models into GSM
[Guard-Stage-Milestone models] which gives the possibility to use the numerous existing algo-
rithms for mining Petri Nets for discovering the life cycles of single artifacts and then generating
GSM models.� These represent a speci�c �meta-model [...] for artifact life cycles which is more
declarative and supports hierarchy and parallelism within a single artifact instance.� (Popova
and Dumas, 2012, p. 1)

• Kikas (2011) presents an algorithm to automatically map event types found in a database
to action labels of a corresponding proclet system by comparing their behavioral pro�les
of precedence relations. This is needed in the context of conformance checking, since the
labels found in models and databases often di�er in practice (Kikas, 2011, p. 20).

• Canbaz (2011) reconstructs the control and interaction �ow of proclets as well as statistics
related to cardinalities of ports from event and message logs stored in a database.

The latter two approaches are (especially in combination) very similar to our procedure to mine
complex agent interaction protocols (Section 7.3) and its simple implementation to analyze our
courier service model (Section 8.3.2.2). While our implementation was already in�uenced by the
idea of instance-aware logs in (Fahland et al., 2011b), a �rst concept was drafted considerably
earlier than process mining for proclet systems (see Knaak, 2007).

An important characteristic that both approaches share with our concept is the separate mining
of inter- and intra-entity relations, where the latter are reconstructed by a pairwise comparison
of logs for all entity types. Similar to one aspect of our work, Canbaz (2011, Chs. 5, 6)
concentrates on collecting message statistics to reconstruct cardinalities. Similar to another
aspect, Kikas (2011, Ch. 4) uses strict and interleaving order relations as proposed by Weidlich
et al. (2009)28 to reconstruct intra- and inter-entity precedences in the presence of multiply
instantiated behavior threads.

27as to use the term by Cabac et al. (2003)
28cited in (Kikas, 2011, p. 11)
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A further comparison and discussion of possibilities to merge both lines of work is given in
Section 7.3. In doing so, we also broach the issue of conceptual similarities and di�erences
between artifact-centric and agent-based modeling.

Research on artifact-centric process mining is currently continued as part of the funded EU
project ACSI29 (Artifact Centric Service Operation). According to Popova et al. (2012, p. 43),
especially �the interaction aspect of the artifact model will be addressed in [the upcoming] year three
of this project. This will allow to discover how artifacts and their instances relate to and communicate
with each other [...]�. This topic is closely related to agent-oriented process mining as discussed
in this thesis.

5.3.3.4. Further Work on Web Service Mining

Early work on interaction mining in service-oriented environments was carried out by Srinivasa
and Spiliopoulou (2000). These authors assume that messages in the analyzed log can simply
be assigned to conversations (called interaction entities) by a unique identi�er. However, since
the log might contain interaction entities of di�erent types, clustering of similarly structured
entities must be performed.

For this purpose, each interaction entity �is represented by a directed graph structure, where nodes
correspond to services and edges correspond to recorded transactions between services� (Srinivasa and
Spiliopoulou, 2000, p. 282). The similarity between two interaction entities is expressed by the
relative �overlap� of nodes and edges in their graphs G1 = (V1, E1) and G2 = (V2, E2) (Srinivasa
and Spiliopoulou, 2000, p. 282):

overlap(G1, G2) =
|V1 ∩ V2|+ |E1 ∩ E2|
|V1 ∪ V2|+ |E1 ∪ E2|

. (5.4)

After clustering, a state machine is reconstructed from each cluster using grammatical inference
to display the generalized control �ow of the corresponding interaction entity type (Srinivasa
and Spiliopoulou, 2000, p. 282). Similar to the work by Vigueras and Botia (2008), mes-
sage precedences are detected on the basis of logical clocks (Srinivasa and Spiliopoulou, 2000,
p. 281). Srinivasa and Spiliopoulou (1999) also present a query language to retrieve �interesting�
interaction entities from a database using a regular expression-like pattern syntax.

Musaraj et al. (2010) focus on message correlation and protocol mining without prede�ned
assignment of messages to conversations. Their approach is based on a representation of proto-
col automata by linear equations, where each state corresponds to one equation with labels of
incoming and outgoing transitions as positive and negative terms (Musaraj et al., 2010, p. 262).
The equations are learned from the interaction log by linear regression (Musaraj et al., 2010,
pp. 262) and converted into an automaton for display (Musaraj et al., 2010, p. 264).

Motahari-Nezhad et al. (2011) perform message correlation in web service logs based on mul-
tiple conditions. As summarized by Musaraj et al. (2010, p. 265), these authors distinguish
between key-based correlation, where messages are aggregated by common attribute values, and
reference-based correlation, where messages are chained by mutual references (Motahari-Nezhad
et al., 2011, p. 424). Algorithms are presented to identify appropriate composite conditions

29http://www.acsi-project.eu, last visit 2012-01-17.
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for message correlation and to reconstruct a hierarchical process model (�process space�) on this
basis (Motahari-Nezhad et al., 2011, Sec. 3).

For further literature on web service and interaction mining, the reader is e.g. referred to the
reviews of related work by Musaraj et al. (2010, Sec. 6) and Motahari-Nezhad et al. (2011,
Sec. 7).

5.3.4. Process Mining for Agents and Simulation

Despite the use of process mining and related techniques in many domains, applications to
simulation and MAS are still not common. Before presenting a conceptual framework for this
endeavor in Section 6, we review existing case studies from the literature.

5.3.4.1. Process Mining and Simulation

An early application of a process mining-like analysis to a discrete event simulation is reported
by Tolujew (1999, p. 130): Traces of transaction-oriented (Section 2.2.2) queueing network
simulations are aggregated into graphs that depict routes of transactions and state transitions
of resources. Di�erent from process mining, no generalization of the observed behavior is
performed.

Rozinat et al. (2009d) and Wynn et al. (2010) present a 'roundtrip-engineering'-cycle for busi-
ness process simulation and analysis centered around the software systems CPNTools and ProM
(see Figure 5.14). As a starting point, a log and partial models from a work�ow management
system based on the modeling language YAWL30 are imported into ProM. Models and min-
ing results from the control �ow, organizational, data, and performance perspectives (i.e. a
Petri net, a role model, a set of branching conditions, and performance statistics) are then
semi-automatically merged into an executable simulation model represented as a colored Petri
net.

This net is simulated in CPNTools to analyze its behavior in di�erent scenarios beyond the
observed log. During the simulation, a new log is written that can again be mined with ProM.
A conversion of the mining result back to YAWL allows a 're-import' into the real work�ow
system. Wynn et al. (2010, p. 454) emphasize that a main advantage of their approach lies
in the possibility to apply the same analysis techniques (i.e. process mining) to data collected
from the model and the real system.

To integrate the perspectives of control �ow, data, and performance into a single executable
model, Zhang et al. (2010) propose to use event graphs as target models in process mining.
These are a common modeling formalism in event-scheduling simulation originally developed by
Schruben (1983).31 Process mining is simpli�ed by the fact that event graphs do not contain
complex control �ow constructs (including concurrency) like Petri nets (Zhang et al., 2010,
p. 134). The approach is experimentally evaluated at the example of a simple event-oriented
manufacturing simulation (Zhang et al., 2010, Sec. 4).

30Yet Another Work�ow Language, see http://www.yawlfoundation.org (also cited in Hofstede et al., 2010;
last visit 2012-10-13)

31cited in Zhang et al. (2010, p. 132)
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Figure 5.14.: Toolset of the 'roundtrip-engineering' approach by Wynn et al. (2010). Adopted
with modi�cations from (Wynn et al., 2010, p. 446).

Sunindyo and Bi� (2011) use the α-algorithm in the context of simulation-based analysis of
a production system. Dolean and Petrusel (2011) present an approach towards mining and
conformance checking of decision processes represented in the form of decision data models
(DDMs) based on logs of decision-support systems. DDMs are directed, acyclic graphs that
depict the in�uence of decision variables to intermediate and �nal decisions, somehow similar
to Bayesian networks (Dolean and Petrusel, 2011, p. 83). While the 'decision support' provided
by the example software is restricted to simple '�nancial' calculations, an integration of the
techniques into a real decision support system, e.g. based on simulation, should be possible
(Petrusel, 2012, p. 62).

5.3.4.2. Case Studies by the Eindhoven Research Group

To the knowledge of the author, the Eindhoven group has so far applied process mining (PM)
and the tool ProM to MA(B)S in two case studies. Both examples are reviewed in the following
and discussed with respect to the objectives of the thesis at hand.

Process Mining in a Multi-Agent Auctioning Simulation Similar to our work, Dongen et al.
(2006b, p. 1)32 promote the idea of combining PM and MABS in order to (1) gain a better
understanding of the complex simulations' behavior and (2) provide agents with enhanced
'intelligence' and adaptivity.

32page numbers refer to the version of the article downloadable at http://www.win.tue.nl/

�hverbeek/downloads/preprints/Dongen06.pdf (last visit 2012-10-13)
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The authors use several PM techniques in order to analyze di�erent aspects of a multi-agent
auctioning simulation; namely control �ow mining, decision tree mining, and LTL trace checking
(Dongen et al., 2006b, Secs. 1.4.2-1.4.4). Interestingly, the latter is not used to verify properties
of traces but to perform output aggregations similar to trace-based output analysis in simulation
(see Section 2.4.2).

Another interesting aspect of this work is that the authors present a quite realistic case study
that shows the utility of PM for MABS analysis. They use the advantage of simulation (com-
pared to real-world MAS) that the data can be 'tailored' to �t the requirements of the mining
algorithms. This becomes obvious in the insertion of data �elds into the observed messages for
decision mining and in an application-dependent log segmentation based on knowledge about
which events start and �nish a conversation (Dongen et al., 2006b, Sec. 1.4.1).

However, the analysis is restricted to properties of single agents rather than relations between
multiple agents. The authors also give no hint how the auctioneer agent (that performs the
process mining in the example) can technically interpret the control �ow and decision models
learned from the observation of other agents. In general, the article does not discuss agent-
or simulation-speci�c requirements on process mining in detail. Though Dongen et al. (2006b,
p. 2) regard MABS as a natural example to show the interplay between di�erent PM techniques,
the potential of MAS as a concept to structure the di�erent mining perspectives and tasks is
not made explicit. We will further discuss this potential in Chapter 6.

Process Mining in Robot Soccer Rozinat et al. (2009d) apply process mining to the analysis
of �activity logs� (Rozinat et al., 2009d, p. 5)33 from robot soccer games in Robo Cup. The
objective is to improve team performance by means of �self-analysis [... and] opponent analysis�,
which are considered technically equivalent (Rozinat et al., 2009d, p. 2). Similar to the work by
Nair et al. (2004) reviewed in Section 5.2.2.2, multiple perspectives are analyzed, i.e. individual
robot behavior, team behavior, and team decisions (Rozinat et al., 2009d, Sec. 5).

The main di�erence of the two behavioral perspectives consists in the aggregation level of the
logs imported into the MXML format (Rozinat et al., 2009d, pp. 6): In the individual perspec-
tive, activities are de�ned by roles that a robot adopts during its life cycle (e.g. DefendCircle
or PositionForPass), and cases correspond to the behavior of a single robot during a game. In
the team perspective, activities are combinations of roles that the 4 out�eld players of a team
adopt during a game. To reduce the huge amount of observed log data, repetitive behavior
(i.e. a robot or a team adopts the same role or combination of roles in subsequent steps) is
eliminated (Rozinat et al., 2009d, pp. 6).

To analyze robot and team behavior, Rozinat et al. (2009d, p. 7) reconstruct control �ow
models from both logs with the Heuristics Miner algorithm (see Section 4.2.3.4). The resulting
model in the team perspective is additionally enriched with branching conditions mined from
event attributes related to speci�c situations such as kick-o�s or free kicks (Rozinat et al.,
2009d, pp. 8). This analysis allows to identify and validate conditions that lead to speci�c
team formations (Rozinat et al., 2009d, p. 9). Rozinat et al. (2009d, p. 9) further propose to
support the validation of robot teams with LTL checking.

33page numbers refer to the version of the article downloadable at http://szickler.net/index.php

?sid1=245&session= (last visit 2012-10-13)
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5.3.4.3. Experiments Using Grammar Inference

Grammar inference has occasionally been applied to the analysis of agent behavior and inter-
action protocols. In (Cabac et al., 2006b,c) we mentioned a few examples:

�Mounier et al. (2003) present an approach towards agent conversation mining using
stochastic[...] grammar inference. Mining results are represented as a stochastic automaton
whose edges are labelled with message performatives. The approach neglects concurrency
and interaction roles. Hiel (2005) applies extended Hidden Markov Models [... to recon-
struct agent interaction protocols including dependencies between distant choice nodes];
also neglecting the aforementioned aspects. However, he suggests to improve the recon-
struction of (concurrent) protocols by process mining techniques as a possible direction for
future research.� (Cabac et al., 2006c, p. 15)

�Barber and Lam (2003) also propose a simple grammar inference algorithm to reconstruct
models of a single agent's behaviour. However, in the continuation of this work [... see Sec-
tion 5.2.4.2], they turn to more agent-speci�c models representing causal relations between
concepts from the well-known BDI architecture [...]� (Cabac et al., 2006b, Sec. 3.2)

5.3.4.4. Declarative Process Mining of Agent Protocols

Lamma et al. (2007b, p. 132) use inductive logic programming (ILP, see Section 4.1.4.3) to
reconstruct rule-based �integrity constraints� formulated in the temporal logic SCIFF from
message logs of agent interaction protocols. Their examples show that di�erent from typical
control �ow discovery algorithms, the approach allows to detect deadlines and precedences in
protocols with multicast communication (Lamma et al., 2007b, pp. 138). The reconstructed
rules can be converted into the graphical notations DecSerFlow and ConDec for declarative
process modelling (Lamma et al., 2007a).

On the downside, the ILP-based algorithm requires negative examples (Lamma et al., 2007b,
p. 133) and considerable prede�ned background knowledge about the structure of the recon-
structed rules (Lamma et al., 2007b, p. 142). Di�erent from control �ow mining, the result does
not display the overall course of a protocol but constraints on its execution like �the auctioneer
can not answer both win and loose to the same bidder� (Lamma et al., 2007b, p. 139). Another
drawback is the �high computational cost� of the algorithm (Lamma et al., 2007b, p. 143).

Further work on declarative process mining includes probabilistic (Bellodi et al., 2010) and
incremental (Catta� et al., 2010) variants of the mining algorithm as well as trace checking based
of models speci�ed in ConDec and SCIFF (Montali et al., 2008). The declarative process mining
and conformance checking techniques were implemented as plugins for the ProM framework.

Later articles on process discovery and conformance checking by this group of authors were also
published in the context of the ACSI project (see Section 5.3.3.3) on artifact centric modeling34

(e.g. Maggi et al., 2012) and on the topic of agent-based simulation (Chesani et al., 2011).

34see http://www.acsi-project.eu/deliverables/ACSI-D6.3.2-V1.0.pdf (last visit 2012-10-14)
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5.3.4.5. Petri Net-Based Process Mining in MAS

As advocated in this thesis, process mining �ts the context of Petri net-based MAS modeling
well due to the common formal foundation (Cabac et al., 2006b). Examples for the combined
application of Petri nets and process mining (or related) techniques to the modeling and analysis
of MAS are also found in the literature.

Multi-Agent Process Mining Based on Petri Nets Winarjo (2009) and Ou-Yang and Juan
(2010) use process mining and Petri nets for the validation of MAS: First, a Petri net model of
an agent interaction protocol is mined from a message log collected with the JADE platform's
Sni�er tool (Section 3.4.1). A modi�ed variant of the α algorithm is used, which constructs
additional 'message' places to link send- and receive-events in control �ow models of distinct
agents. Since the algorithm does not abstract from agents to roles, every individual agent's
behavior is represented by an own Petri net.

In the second step, the reconstructed Petri net is exported to CPNTools for simulation and
formal analysis. In (Ou-Yang and Juan, 2010), the analysis focuses on the detection of po-
tential deadlocks. Note that, given the preconditions stated in Section 4.2.3.1, the standard
α algorithm always returns a sound WF net, which only 'deadlocks' on proper completion in
the output place (Aalst, 2011a, p. 127). As shown in an example by Ou-Yang and Juan (2010,
p. 144), the possibility for further deadlocks is introduced by coupling multiple agents' WF
nets via message places.

Data and Process Mining in the TAL Approach In the context of the Petri net-based MABS
approach developed at Groningen University's The Agent Lab (TAL), Meyer and Szirbik (2007)
present a technique for automated behavior alignment in agent interactions. As explained in
Section 3.3.3.5, agents in this model are equipped with interaction beliefs that represent the
assumed course of an interaction protocol in the form of behavior nets. When the assumptions
fail, an interaction cannot proceed properly and user-intervention is required.

Meyer and Szirbik (2007) assume that interventions consist in modi�cations of behavior nets
involved in the failing interaction. To automate interventions, �xed sets of possible failure
diagnoses, e.g. �an unknown message is received� (Meyer and Szirbik, 2007, p. 277), and �alignment
policies� (Meyer and Szirbik, 2007, p. 278), e.g. �delete[...] an outgoing message place� (Meyer and
Szirbik, 2007, p. 275), are de�ned. A mapping between both sets is learned by an arti�cial
neural network (ANN, see Section 4.1.4.5).

In the training phase, failures during the execution of behavior nets are logged and resolved
by a user applying appropriate alignment policies. In the productive phase, the trained ANN
takes the place of the user and attempts to resolve failures automatically. If an interaction
keeps failing, the user must again intervene and the ANN is retrained.

In the same line of work, Stuit and Wortmann (2012) reconstruct interaction structure (IS)
diagrams from e-mail conversations spanning multiple threads. Di�erent from most process
mining techniques, no generalization is performed; hence the resulting model only represents
the partial order of observed e-mail threads. To enrich the IS diagram with interaction roles
(instead of particular senders and receivers), prede�ned organizational models are consulted;
i.e. there is no 'role mining' in the sense of Section 4.2.4.2.
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Further Work on Petri Nets and Process Mining in MAS In an early approach by Poutakidis
et al. (2002), interaction protocols speci�ed in AUML are mapped to labelled P/T nets. These
nets are used by a debugging agent to automatically detect protocol violations based on the
observation of message tra�c on a FIPA-compliant agent platform. The authors assume that
the observed messages contain unique identi�ers for conversations (Poutakidis et al., 2002,
p. 962), but not for protocol types (Poutakidis et al., 2002, p. 964).

Therefore the debugging agent instantiates a net for every known protocol when a new con-
versation is started on the platform (Poutakidis et al., 2002, p. 964): During the conversation,
transitions of all net instances matching the received messages are �red, while nonconforming
nets are dropped. This procedure repeats until either a net instance completes successfully or
all net instances have been dropped, thus indicating an invalid message sequence.

Mazouzi et al. (2002) present a similar approach based on a transformation of AUML interaction
diagrams to colored Petri nets. As summarized by Mounier et al. (2003, p. 159), the proposed
system identi�es protocol types by comparing causal graphs derived from the observed messages
with causal graphs of known protocol types.

Di�erent from the work by Poutakidis et al. (2002), the system can even distinguish between
protocols that only di�er in the concurrent or sequential occurrence of certain events due to
the use of partial order semantics (Mazouzi et al., 2002, p. 522) and tagging of messages with
logical clocks (Mazouzi et al., 2002, p. 521). In contrast to grammar inference or process mining,
the reconstructed causal graphs are dropped after identifying the prede�ned protocol (Mounier
et al., 2003, p. 159). Nevertheless, Mazouzi et al. (2002, p. 525) name interaction protocol
learning as a direction for future work.

In the context of Socionics, Martens (2002, p. 137) proposes to integrate process mining into
Petri net agent platforms based on the Mulan architecture:

�By adopting a meta-level and recording all performatives sent on a platform, process
mining allows to derive novel processes, which are not realized by single agents but only
emerge from a conversation of multiple agents. [...] These [processes] could be facilitated
on every platform to provide foreign agents with information about behavioral norms [...
In the context of Socionics ...] such information can be understood as an organizational

memory [...]�

As a �rst step, Martens (2002, p. 156) shows a simple reference net-based service to collect
information from messages sent on the platform. A further prototypical integration of process
mining into the Mulan agent platform is realized in Section 7 of this thesis.

5.3.4.6. Organizational Process Mining in MAS

A close relation exists between agent concepts and the organizational perspective of process
mining (Section 4.2.4). Though most work on organizational process mining seems to adopt
a 'MAS-like' view in an ad-hoc manner, only few examples for an explicit integration can be
found in the literature. In Section 5.3.1 we already mentioned the work by Christley and Madey
(2007b) who combine static and dynamic social network analysis and MABS to analyze open
source software development processes.
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Beyond that, Vanderfeesten (2006) evaluates data mining and conformance validation tech-
niques with respect to their ability to identify roles of agents in MAS. The underlying idea is
similar to the organizational model mining technique by Song and Aalst (2008) (see Section
4.2.4.2): Roles are identi�ed by considering agents' characteristic 'pro�les' of actions (in this
case sending and reception of message performatives) or state transitions. The approach is
exempli�ed by role detection in the contract net protocol.

Hanachi and Khaloul (2008, p. 93) argue that agent concepts like speech acts and interaction
protocols can add to the organizational perspective of process mining. The authors provide
a classi�cation of organizational structures (Hanachi and Khaloul, 2008, pp. 96) and show
that background knowledge on the semantics of message performatives (e.g. delegate) can aid
in the identi�cation of such structures from log data (Hanachi and Khaloul, 2008, p. 100).
The approach appears related to the interaction pattern detection techniques by Dustdar and
Ho�mann (2007) reviewed in Section 4.2.4.3. Hanachi and Khaloul (2008, p. 99) also state an
algorithm for Petri net-based protocol matching akin to the work of Poutakidis et al. (2002)
and Mazouzi et al. (2002) reviewed in Section 5.3.4.5.

Abdelka� and Bouzguenda (2010, p. 89) present a meta-model for work�ow logs that includes
control �ow, organizational, and informational process dimensions based on MAS-related con-
cepts like roles and performatives. A software prototype named DiscopFlow is developed, that
allows to identify simple organizational structures like hierarchies and federations (Abdelka�
and Bouzguenda, 2010, p. 97), verify logs against prede�ned interaction protocols, and display
the organizational position of actors in work�ows in the style of the AGR model (Abdelka�
et al., 2012, p. 4). In future work, the authors intend to discover models that integrate the con-
trol �ow, organizational, and informational perspectives which are currently treated separately
in DiscopFlow (Abdelka� et al., 2012, p. 5).

Yilmaz (2006, Sec. 5) supports the operational validation of agent-based social simulation
models with automated comparisons of real and simulated event streams using metrics based
on string edit distance. Though not explicitly related to process mining, the applied techniques
appear rather similar.

5.3.4.7. Further Work on Integrating Process Mining and MAS

Werner-Stark and Dulai (2010) report on the combined application of (a) the results by Rozinat
et al. (2009d)35 and (b) software development process mining in the education of engineering
students. This combination practically mirrors our discussion from (Cabac and Denz, 2008,
p. 90) to use MAS as an integrative concept for process mining on both the software development
process and the developed software.

In a later article, Werner-Stark and Dulai (2012) report on an integration of process mining
techniques into a �decision agent� (Werner-Stark and Dulai, 2012, p. 430) to support the �analysis
and detection of functional faults [... in the] vehicle industry� (Werner-Stark and Dulai, 2012, p. 424).

An earlier application of (Markovian) process mining techniques to �instance-based robot pro-
gramming� is reported by Wen and Ping (2005). One of the �rst references to process mining

35i.e. analysis of robot behavior by means of process mining, see Section 5.3.4.2
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in an agent context is found in the article by Furtado and Ciarlini (2001, p. 124) on the �iden-
ti�cation of typical plans adopted by agents, by analysing a Log registering the occurrence of events�.

Sperka et al. (2013, p. 515) recently applied �the analysis of agent-based simulation outputs through
process mining methods and methods for analysis of agents' behavior in order to verify [...] agent-based
simulations of Business Process Management� implemented in JADE (see Section 3.4.1).

5.4. Scienti�c Work�ows for Simulation and Process Mining

While not in the main focus, data �ow modeling and scienti�c work�ows play an important role
in the concepts and tools to integrate process mining and MABS presented in this thesis. In
this Section, we brie�y review related applications of scienti�c work�ows to simulation, process
mining, or both.

5.4.1. Scienti�c Work�ow Support for Process Mining

Interestingly, the �rst implementation of the α algorithm by the Eindhoven research group was
provided as a Petri-net based data �ow model (Aalst et al., 2002, Sec. 5). The component
MiMo (mining module) for the Petri net simulator ExSpect36 implements the α algorithm as
a colored Petri net annotated with programming language expressions. This net calculates
the α algorithm's ordering relations from a given execution log and constructs a Petri net on
this basis. Since ExSpect supports hierarchical modeling, this work�ow log analyzer can be
embedded into a transition and coupled with an (also Petri net-based) work�ow log generator
for test-data generation or with a component to import existing logs.

The implementation of a process mining algorithm in terms of a Petri net appears reasonable
for instructional purposes on the one hand, and to re-use an existing Petri net simulator as
an experimentation environment on the other hand. This motivation and the inherent 'self-
similarity' of the approach37 are closely akin to our idea of using net components to support
roundtrip engineering with process mining in Mulan (see Cabac and Denz, 2008 and Section
7.4.2).

The Eindhoven research group resumed their e�orts towards scienti�c work�ow support for
process mining only recently. Bratosin et al. (2007, p. 2)38 propose to distribute computation-
intensive process mining work�ows in a grid computing environment. Grid work�ows are mod-
elled with colored Petri nets to �clarify the basic concepts� and to support their analysis, veri�-
cation, and validation (Bratosin et al., 2007, p. 2). Bratosin et al. (2007, p. 18) cite our work
from (Cabac and Knaak, 2007) and present two grid work�ows for process mining (Bratosin
et al., 2007, pp. 12) as examples.

Also citing our work from (Cabac and Denz, 2008), Westergaard (2011, p. 335) employs the
interface Access/CPN 2.0 between CPNTools and Java to compose Petri net-based process

36http://www.exspect.com (last visit 2012-01-27)
37A Petri net implementing the α algorithm generates new nets based on the analysis of logs from observed

nets.
38page numbers relate to the version of the article downloadable at http://wwwis.win.tue.nl/

�wvdaalst/publications/p396.pdf (last visit 2012-10-14)

216



5.4. Scienti�c Work�ows for Simulation and Process Mining

mining work�ows from ProM 6 plugins. Adopting the mechanisms for plugin selection o�ered
by ProM 6 (see Section 4.2.6.1), the system dynamically binds transitions to appropriate mining
plugins by matching names, input, and output data types.

5.4.2. Scienti�c Work�ow Support for Simulation

Data �ow modeling is commonly used to specify models, experiments, and analyses in contin-
uous simulation. Example systems include the commercial scienti�c computing environment
MATLAB / Simulink39 as well as the open source projects Ptolemy II 40 and Kepler41. How-
ever, within the discrete event modeling and simulation (M&S) community, �work on supporting
work�ows in M&S has just started� (Rybacki et al., 2011, p. 716).

5.4.2.1. Work�ows for Modeling and Simulation

The University of Rostock investigates work�ow support for discrete event simulation in the
research project MoSiFlow.42 The utility of work�ow concepts for M&S is recognized in �fea-
tures like provenance, reproducibility[,] and roles support [that] are desired to overcome the "crisis of
credibility" of simulation studies [...]� (Rybacki et al., 2011, p. 716). Based on traditional model
building cycles, Rybacki et al. (2010, Sec. 3) identify several use cases for work�ow support and
state example work�ows, e.g. for operational validation (Rybacki et al., 2010, Sec. 3).

The plugin-based framework WorMS (Work�ows for Modeling and Simulation) de�nes a work-
�ow architecture that can be coupled to existing simulation systems (Rybacki et al., 2011). It
consists of a work�ow engine and several supplemental components, the implementations of
which are bound to so-called extension points as exchangeable plugins similar to the OSGi/E-
clipse43 platform (Rybacki et al., 2011, p. 717). Extension points are provided for the following
component types (Rybacki et al., 2011, p. 719):

• Work�ow executor : creates and executes instances of the provided work�ow models.

• Work�ow repository : stores work�ow models and instances, e.g. in a database.

• Converter : converts work�ow models into the work�ow language used by the work�ow
executor.

• Security management : handles user authentication and role-based access restrictions.

• Data store: allows work�ow tasks to store and exchange data via a common persistent
medium such as a database or a �le system.

• Monitoring : observes the execution of work�ow instances and records work�ow logs in
the data store.

• Analysis: performs static and dynamic analyses of work�ows based on the stored models
and execution logs.

39see http://www.mathworks.com (last visit 2012-1-30)
40see http://ptolemy.eecs.berkeley.edu (last visit 2012-1-30)
41see https://kepler-project.org (last visit 2012-1-30)
42see http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/mosiflow (last visit 2012-1-30)
43for explanations on OSGi and Eclipse see Section 8.4
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• Administration: Supports the administration of work�ows and user accounts.

• Plugin provider : Provides instances of the above components implemented on a concrete
plugin platform.

Rybacki et al. (2011, Sec. 3.5) present a partial implementation of the architecture in the plugin-
based MABS framework JAMES II using WF nets (Section 2.3.2.2) as a work�ow language.
While JAMES II already provides advanced experimentation functionality and some work�ow
support in the form of pre-de�ned assistants (Rybacki et al., 2010, p. 536), the WorMS archi-
tecture further increases �exibility and traceability (Rybacki et al., 2011, p. 721) by breaking
the hard-wired way of �orchestrating the plugins� (Rybacki et al., 2011, p. 718) in favor of ex-
tensible work�ows. In addition, Rybacki et al. (2012b) present �a set of prede�ned [hierarchical]
work�ow [net] templates� for typical simulation tasks such as validation and optimization (see
also Rybacki et al., 2012a, p. 102).

The ideas of simulation work�ows and plugin orchestration in the work by Rybacki et al. (2011)
are rather similar to our view of process-oriented validation (Section 7.1.3) and the prototypical
implementations inRenew (Section 7.4) and Eclipse (Section 8.4). Providing another potential
link to the subject of this thesis, Rybacki et al. (2011, p. 724) mention adaptive work�ows
and �analysis, interpretation [...,] and report generation from information generated by the Monitoring
components and [...] their visual presentation� as future challenges. While Rybacki et al. (2011,
p. 723) already visualize frequent paths taken in the execution of work�ow nets, process mining
might provide more advanced means to analyze simulation work�ows. This idea is further
discussed in Section 6.3.

Görlach et al. (2011) propose an alternative Eclipse-based work�ow system tailored towards
(grid-based) simulation. In this work, BPEL is used as a modeling language (Görlach et al.,
2011, p. 337) and the application focus seems to be put on continuous simulation (Görlach
et al., 2011, Sec. 12.4).

5.4.2.2. Previous Work at the University of Hamburg

At the University of Hamburg, the textual and visual scripting language MSL (MOBILE Script-
ing Language) was developed as part of the research project MOBILE (Hilty et al., 1998). It
served to design component-based simulation models as well as experiment and analysis work-
�ows in the domain of tra�c simulation. The MOBILE project also comprised an initial study
on the simulation of courier services that builds the basis for the models taken as a case study
in Section 8.

Kurzbach (2007, Sec. 7) realizes work�ow support for simulation by integrating Renew as a
work�ow engine into the Eclipse-based hydrodynamic simulation system KALYPSO. Since both
systems are implemented on di�erent plugin platforms, the whole Renew system is wrapped
into an OSGi-compliant Eclipse plugin (Kurzbach, 2007, p. 77). Reference nets are employed
to call simulation tasks in KALYPSO, remote-control the user interface, and orchestrate44 the
involved Eclipse plugins. The overall system architecture is based on the MAS concepts of
Mulan.

44as to use the term by Rybacki et al. (2011)
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In Section 8.4 of this thesis, a related idea to integrate Renew with an Eclipse-based simulation
system is discussed, focusing on process-oriented analysis of MABS. The concept builds upon
the work by Simmendinger (2007), who re-implemented parts of theRenew plugin system using
the OSGi architecture underlying Eclipse. As also indicated by Kurzbach (2007, p. 77), this
might allow for a closer and �ner-grained integration of both toolsets (see also Simmendinger,
2007, p. 3-4).
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6. Conceptual Framework

This chapter presents a conceptual framework for the process-oriented analysis and validation
of MABS. It adopts, integrates, and carries on several ideas from the literature on process
mining and MA(B)S reviewed above. Pre-publications of the framework in di�erent stages of
development are provided in Cabac et al. (2006b), Knaak (2006, 2007), and Cabac and Denz
(2008).

The chapter is structured as follows: After motivating and introducing the conceptual frame-
work in Section 6.1, we present analysis perspectives and use cases as its main constituents in
Sections 6.2 and 6.3. In this context, we elaborate on applicable techniques for data collection,
mining, and model representation. Section 6.4 points out MAS- and simulation-speci�c re-
quirements and constraints on these techniques. Finally, Section 6.5 summarizes the presented
work.

6.1. Motivation and Overview

To the impression gained during the literature review, existing approaches to integrate MABS
with data and process mining do not yet capture the full scope of possibilities. This includes
observations on 3 levels:

1. Methodological aspects: On the one hand, many case studies concentrate on a single min-
ing technique (e.g. grammar inference in Mounier et al., 2003, reviewed in Section 5.3.4.3)
that is thoroughly investigated under technical aspects, but less detailed from the view-
point of MA(B)S as an application domain. Therefore, techniques are often applied ad-hoc
without considering a systematic integration into a validation process and utilization of
the gained results within this process.1

On the other hand, general methodologies to integrate data mining and MABS, like the
approach by Remondino and Correndo (2005, reviewed in Section 5.2.2.3), still appear
preliminary. Even more elaborate work like the approach by Arroyo et al. (2010, reviewed
in Section 5.2.2.3) might be improved by explicitly integrating process- and agent-oriented
mining and modeling perspectives as reviewed in the previous chapters. Conceptual
frameworks for process mining like the work by Rembert and Ellis (2009) are not explicitly
tailored towards agent-orientation and simulation though related ideas are often contained
implicitly.

2. Technical aspects: Most work on the integration of data mining and MABS still con-
centrates on numeric and rule-based techniques, though an increasing focus on process

1Mounier et al. (2003, Sec. 3) e.g. only describe the knowledge discovery process that determines how the mining
itself is performed and mention automated code generation from the mined models as a future application
(Mounier et al., 2003, p. 166).
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and organizational perspectives can be observed (see Chapters 4 and 5). Process min-
ing has only recently started to consider requirements that are crucial for MA(B)S, such
as complex interaction protocols, non-stationary processes, and level-encompassing rela-
tions. Simulation validation often neglects the work from the process mining community
though closely related techniques are applied.

3. Tool-related aspects: MABS still su�ers from a lack of validation tools that are applicable
beyond the scope of a single modeling and simulation system. The ACLAnalyser by Botía
et al. (2004, reviewed in Section 5.2.4.1) is a notable exception but not tailored towards
simulation analysis. Despite recent improvements in the usability of the process mining
tool ProM 6 (Verbeek et al., 2011, reviewed in Section 4.2.6.1), there is still few guidance
for the application of mining techniques within model building cycles. The framework
WorMS by Rybacki et al. (2011, reviewed in Section 5.4.2.1) is a �rst step to utilize
work�ows for MABS but does not (yet) focus on data mining-supported validation.2

Figure 6.1.: �A Conceptual Framework for Data [and Process] Mining in MABS.� Figure and caption
adopted with modi�cations from (Knaak, 2006, Sec. 3).

2Though investigations on this subject have already been conducted within the same research group (e.g. Seib,
2008, reviewed in Section 5.2.2.7).
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The literature review showed that both process mining and MABS consider modeling and
analysis perspectives as well as use cases (also called tasks), either combined or in isolation,
to assist the systematic application of techniques during the course of a project. By focusing
on these dimensions, an integrative framework utilizes concepts that are well-understood by
modeling and simulation practitioners as well as process and data mining experts.

Similar to the Eindhoven research group (see Section 4.2.2), we employ analysis perspectives and
use cases to structure the available models, techniques, and data sources within an application
domain. A di�erence lies in our main focus on MABS3 instead of business process modeling.

Besides deviations in the identi�ed perspectives and use cases, this di�erence becomes mani-
fest in our investigation of simulation and MAS-speci�c requirements and constraints for the
application of mining techniques within MABS analysis in Section 6.4. Since we regard data
mining (especially in the form of process mining) as a valuable addition to the �eclectic� (Klein-
dorfer and Ganeshan, 1993, p. 50, reviewed in Section 2.4.3) portfolio of validation techniques,
we must also consider its integration with existing techniques for simulation modeling, exper-
imentation, and analysis. Note that Aalst et al. (2012, p. 190-191) regard the combination of
�process mining with other types of analysis [including] operations research, [. . . ] queueing models, [. . . ]
simulation [,. . . ] data mining [. . . , and] visual analytics� as a relevant challenge for future research.

By merging the above constituents and by abstracting from the diverse perspectives, use cases,
and requirements found in the literature review, we arrive at the overview diagram depicted in
Figure 6.1. Though our framework is tailored towards MABS, we argue, in line with authors
like Hanachi and Khaloul (2008, reviewed in Section 5.3.4.6), that an agent-oriented world view
can also add to process mining in general. This is due to the close relation of process mining's
main application �elds, i.e. business process management and software engineering, to MAS as
a modeling metaphor (see e.g. Reese, 2009).

6.2. Analysis Perspectives

There is wide consensus in the literature that perspectives (also referred to as views) are a
common means to reduce the complexity of a target system in simulation, software engineering,
and business process modeling: By observing a complex system from multiple complementary
viewpoints and by applying a well-proven structure to the observations, modeling becomes
tractable in the �rst place (see e.g. Bass et al., 2012, p. 9).

Taking into account the general advantages of data mining as a validation technique for MABS
(Section 5.2), we speci�cally focus on process mining in this thesis for the main reason already
indicated in Section 4.2.1 (see also Aalst et al., 2012, p. 176): Di�erent from other sub�elds
of data mining, process mining is led by a number of explicitly de�ned and partly formalized
analysis perspectives, closely related to those considered in agent-based modeling.

In the literature review, we encountered the concept of perspectives in several contexts includ-
ing the modeling frameworks of UML, Mulan, and TALL (Section 3.3), the process mining
perspectives by Rembert and Ellis (2009), the Eindhoven research group (Section 4.2.2.1), and
Dustdar and Gombotz (2006, reviewed in Section 5.3.3.1) as well as the MAS debugging ap-
proach by Ndumu and Nwana (1999, reviewed in Section 5.1.1.4) and the data mining-based

3which the Eindhoven research group only covers in few case studies, see Section 5.3.4.2
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analysis assistant by Nair et al. (2004, reviewed in Section 5.2.2.2). By integrating the most
frequently mentioned perspectives from process mining and MA(B)S, one might arrive at the
diagram shown in Figure 6.2. Naturally, this selection of perspectives is highly subjective.
However, in the following discussions and case studies we will argue why it might nevertheless
be reasonable and useful.

Figure 6.2.: Overview of analysis perspectives for MABS. Based on Ndumu and Nwana (1999),
Nair et al. (2004), Aalst (e.g. 2011a), Günther et al. (2006), Dustdar and Gombotz
(2006), UML (e.g. Jeckle et al., 2002), and several other sources.

The model shown in Figure 6.2 consists of six perspectives grouped into three categories. The
fourth category of domain-speci�c perspectives is introduced to ensure the framework's exten-
sibility and adaptability to di�erent application domains. The �rst two categories mirror the
typically opposed system views from MAS, i.e. microscopic vs. macroscopic perspectives. In
the microscopic perspectives, we consider elementary agents as structurally indivisible entities.
The analysis is therefore focused on agents' instantaneous decisions (decision perspective), tem-
porally extended internal control �ow (internal control perspective), and the relations between
both (see e.g. the approach by Nair et al. (2004) reviewed in Section 5.2.2.2).

The macroscopic perspectives mirror the common dualism of structure and behavior (Sec-
tion 2.1), as e.g. manifested in the UML meta-model (see Section 2.3.1.1). We therefore consider
the perspectives of system structure, external (i.e. interaction) control �ow, as well as their in-
tegration (e.g. �interaction �ow"4 between roles). Again, the temporal dimension is neglected in
the structural perspective but central to the external control perspective.

Note that we intentionally omit structural aspects5 at the microscopic level as well as additional
'mesoscopic' perspectives. This is due to the hierarchical view adopted from theMulan model

4adopting the term from Yu et al. (2010)
5except for control �ow structures composed of multiple elementary activities
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(see Rölke, 2004, pp. 181 and Section 3.3.3.1) that a non-elementary agent (or mesoscopic entity)
forms a MAS itself and can therefore be analyzed by taking up the macroscopic perspectives
of structure and external control �ow.

The meta perspectives are typical for MAS and often neglected in process mining (except for
recent work on change mining (Günther et al., 2006) and concept drift (Bose et al., 2011a) re-
viewed in Section 4.2.5.3). As the name indicates, the purpose is to describe relations between
models speci�ed in terms of the former perspectives. In the adaptivity perspective, the relations
span over the temporal dimension, i.e. we focus on structural and second order dynamics as
typically found in adaptive agents and self-organizing MAS. In the level-encompassing perspec-
tive the relations span over multiple levels, i.e. we are interested in the analysis of inter-level
dependencies as e.g. treated in the work by Chen et al. (2010, reviewed in Section 5.2.2.4).

Due to the generality and diversity of the agent metaphor, a general framework for the analysis
of MA(B)S can (to the author's impression) not include domain-speci�c aspects in the �rst
place. To nevertheless ensure its practical utility, we foresee an 'extension point'6 of domain
speci�c perspectives based on the process mining task of extension (see e.g. Aalst, 2011a, p. 10
and Section 4.2.5.5): Models mined in the 6 above perspectives can be extended or enriched to
assign further domain speci�c meaning to their elements (e.g. performance-related extensions
as in the approach by Hornix (2007) in Section 4.2.5.5).

In the following, the agent-oriented process mining perspectives are described in larger detail.
While we do not provide a formalized model, we will follow the approach by Rembert and Ellis
(2009, reviewed in Section 4.2.2.1) and state relevant process dimensions and some dimensional
mappings to clarify the meaning and scope of several perspectives.

6.2.1. Decision Perspective

The decision perspective is frequently mentioned in work on both process mining and MAS
analysis. It is also part of some multi-perspective approaches: e.g. the single agent model in
the framework by Nair et al. (2004) and the data perspective in process mining (e.g. Aalst,
2006, p. 4). The term 'decision perspective' is also used by Rembert and Ellis (2009, p. 37) to
describe the work by Rozinat and Aalst (2006). In (Cabac et al., 2006b, Sec. 4.2), we brie�y
characterized the decision perspective as follows:

�This perspective is concerned with analyzing the rules that a single agent's decisions are
based on; i.e. the question "how does the agent map observations to actions." In doing
so, temporal aspects are often neglected; i.e. the agent's behavior is analyzed in a certain
situation without taking into account the history leading to this situation.�

6.2.1.1. Process Dimensions of the Decision Perspective

As indicated in Figure 6.2, the main process dimensions considered in the decision perspective
are in accordance with rule-based agent models as e.g. described by Wooldridge (2003, pp. 50).
Given an agent (type) ag and an environment e, the relevant process dimensions include:

6borrowing the software engineering term from the Eclipse framework
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• internal state variables Vag of the agent (type) ag,

• external state variables Ve of the environment observable to ag, often conveyed via a set
of signals (or messages) Sag, and

• a set of actions Aag that the agent (type) ag can execute in reaction to its observations.

For process mining, the values of the variables are logged as preconditions together with the
actions performed by the agents.7 Note that all elements are tagged with the subscript ag
above to identify the owning agent instance or type in the log of the MAS. In practice, each
log entry will be tagged with an originator identi�er as in MXML. The respective focus on
agent instances or types depends on the purpose of the analysis, i.e. whether one is interested
in a generalized decision model for a class of similar agents or in decision models of individual
agents.

The dimensional mappings to be established are decision models that map (combinations of)
signals and state variables to actions. As a simple example, we assume an agent type ag with
a set of state variables Vag = {vag,1, ...vag,n} that processes one received signal s ∈ S per
time instant and reacts with a single action a ∈ Aag. This setting is e.g. typical in discrete
event simulations with our framework FAMOS (see Sections 3.4.4 and 8.1). The objective is
to discover a decision function in the spirit of Wooldridge (2003, p. 50):

D : Dom(vag,1)× ...×Dom(vag,n)× Sag → Aag (6.1)

where Dom(vag,i) denotes the domain of the agent's i-th state variable.

6.2.1.2. Mining Techniques for the Decision Perspective

Recall that in several approaches reviewed in the Chapters 4 and 5, decision models are dis-
covered with supervised learning where the chosen action serves as a target variable. The
reconstructed model will be biased by the assumed agent architecture (Section 3.1.2) and the
applied mining technique.

The agent architecture in�uences the considered state variables (e.g. categorical vs. real-valued
variables) and the complexity of the decision function. The simplest case is a stateless agent
that directly maps observations to actions (see Section 3.1.2). In contrast, more complex archi-
tectures8 like BDI implement a multi-step decision process that is not appropriately represented
by a single decision function.

The properties of the analyzed agent architecture also in�uence the selection of appropriate
mining techniques. In Chapters 4 and 5, we found examples of decision tree mining (the
most common technique, e.g. used by Nair et al., 2004), fuzzy rule mining (Schütt, 2003), and
inductive logic programming (Jacobs et al., 1998) to reconstruct rule-based decision models for
a prede�ned set of actions.

7see e.g. the decision mining approach by Rozinat and Aalst (2006) reviewed in Section 4.2.5.5
8Note that even the simple logic-based example stated by Wooldridge (2003, p. 50) comprises a three-step
decision process with the functions see (perception), next (update of internal state based on perception),
and action (action selection based on the internal state).
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Sometimes the objective is not the reconstruction of preconditions for a given action but the
detection of the most frequent decision patterns emerging during simulation. In this case,
unsupervised association rule learning can be applied as in the approach by Kennedy et al.
(2007, reviewed in Section 5.2.2.6). Unsupervised statistical learning might also be used to
automatically select the most relevant variables for an agent's decisions, as e.g. in the approach
by Schütt (2003, reviewed in Section 5.3.3.2). Focusing on a subset of variables is crucial
to reduce the dimensionality of the learning problem for agents with large state vectors (see
Section 4.1.3.1).9

For the mining of decision processes with multiple steps, techniques to reconstruct causal
chains seem more appropriate. In the literature review, we encountered causality graphs (e.g.
in the work by Lam and Barber, 2005, reviewed in Section 5.2.4.2), Bayesian networks (Sec-
tion 4.1.4.4), and the proprietary formalism of decision data models used by Dolean and Petrusel
(2011, reviewed in Section 5.3.4.1). Within the perspectives of the conceptual framework at
hand, such multi-step decision models mark the border between the decision perspective and
the internal control perspective described in Section 6.2.2.

A well-known problem related to decision processes is the in�uence of previously executed
actions on future decisions. In the simplest case, we assume a Markovian decision process
(MDP), i.e. the chosen action only depends on the current state while neglecting the history of
previous states or actions (e.g. Mahadevan, 2009, p. 419).

We will not discuss these topics in further detail here, but refer the reader to the literature
on machine learning (e.g. Mahadevan, 2009; Marsland, 2009). In the following research, we
will not put large focus on the decision perspective either due to the relatively large body of
existing case studies and mature mining techniques. We will only report an example application
of decision tree mining to the validation of the courier service model in Section 8.3.3.

6.2.2. Internal Control Perspective

The internal control perspective focuses on the control �ow of agent behavior from the point
of view of a single agent instance or type. Interactions and synchronization with other agents
are � if at all � taken into account only from the perspective of the analyzed agent(s). This
restriction, which we have not postulated with such rigor in pre-publications like (Cabac et al.,
2006b, Sec. 4.2), re�ects the ideas of Fahland et al. (2011a) and Kikas (2011) to enable discovery
and conformance checking of proclet systems based on existing techniques for '�at' Petri nets
(see Section 5.3.3.3).

The focus on 'internal' control �ow thus allows to reduce the complexity of process mining
by means of a two-step procedure: Firstly, basic building blocks of single agent behavior are
reconstructed. Secondly, interaction-related aspects are introduced in the context of the ex-
ternal control perspective (Section 6.2.4). This approach is taken in our case studies in the
following chapters, but also in related work like (Winarjo, 2009, reviewed in Section 5.3.4.5)
and artifact-centric process mining10.

9on dimensionality reduction techniques for Markovian decision processes see e.g. Mahadevan (2009)
10e.g. Fahland et al. (2011a) and Kikas (2011) reviewed in Section 5.3.3.3
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6.2.2.1. Granularity of Internal Control Flow

What to consider as 'basic building blocks' with respect to the reconstruction of understandable
models of behavior depends on the complexity of the analyzed agent architecture. An architec-
ture with a small number of �xed behavior modules, i.e. a behavior describing architecture in
the terminology of Klügl (2007, p. 130), might be simple enough to display its overall control
�ow in one '�at' model.

In a complex behavior con�guring architecture (Klügl, 2007, p. 130) like BDI it might be more
reasonable to mine elementary control �ow at the level of plans and subsequently reconstruct
interdependencies between di�erent plan types. This procedure, which again mirrors the hierar-
chies found in MAS models like Mulan (Rölke, 2004, pp. 181), is e.g. applied by Serrano et al.
(2009) to visualize agent conversations with order graphs (order within a single conversation)
and abstract graphs (order of multiple conversations), as reviewed in Section 5.2.4.1.

In an adaptive behavior generating architecture (Klügl, 2007, p. 130) we cannot event assume
stationary behavior. Therefore, valid control �ow models can only be reconstructed for re-
stricted periods of time. This problem is further discussed in the context of the adaptivity
perspective in Section 6.2.5.

6.2.2.2. Process Dimensions of the Internal Control Perspective

The process dimensions for the internal control perspective are basically similar to those of
the control �ow perspective in process mining: As also described by Rembert and Ellis (2009,
p. 38), we examine logged activities of agents with the objective to discover or validate ordering
relations between them. Depending on the chosen level of aggregation, each plan execution (or
agent life cycle) corresponds to a case and each type of behavior (or agent) to a process model.
Mirroring the di�erent levels of web service logs considered by Dustdar and Gombotz (2006,
Sec. 3, reviewed in Section 5.3.3.1 of this thesis), identi�ers of behavior instances and types
can be either logged explicitly or have to be reconstructed by aggregating similar entities with
cluster algorithms and distance measures.

To reconstruct a behavioral model displayed in a common notation like UML 2 activity dia-
grams, additional process dimensions might be taken into account. Recalling examples like our
use of activity diagrams for process-oriented simulation (Section 2.3.1.3) or SeSAm UML (see
Oechslein, 2004, reviewed in Section 3.3.2.2), the following additions can be imagined:

• Internal actions must be distinguished from message send- and receive-events in the log
to identify the corresponding node types of an activity diagram.

• Log entries tagged with a simulation time stamp allow (a) for performance-related en-
richments and (b) to distinguish instantaneous events from simulation time-consuming
activities (displayed with the 'hourglass' symbol in UML).

• Logging the consumed or produced resources of actions enables the reconstruction of
object �ow. From logged resource types (e.g. access to a certain queue), object nodes and
their connections to action nodes might be reconstructed.
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• By integrating results from the decision perspective (Section 6.2.1), branching conditions
can be added to the control �ow model as shown in several process mining approaches
(e.g. Rozinat and Aalst, 2006, reviewed in Section 4.2.5.5).11

6.2.2.3. Techniques for the Internal Control Perspective

As known from process mining, a choice of appropriate techniques for the internal control
perspective mainly depends on the available control �ow constructs of the target agent model
(e.g. concurrency or cycles). Dongen et al. (2006b, p. 8) claims that several existing process
mining algorithms are in principle suitable to reconstruct the control �ow of agent behavior.

When complex control �ow is composed from a small set of distinguishable events (e.g. FIPA
performatives) an algorithm with the ability to detect duplicate tasks should be used to avoid
over-generalization. This enables the identi�cation of details like: 'the accept message received
after sending a request is di�erent from the accept received as an answer to propose'. Fur-
ther agent- and simulation-speci�c requirements on control �ow discovery algorithms will be
discussed in Section 6.4.

6.2.3. Structural Perspective

The structural perspective is concerned with the analysis of static MAS structures while ne-
glecting structural dynamics. Structures in agent-based models often represent either spatial
or social and organizational structures of the real system. Furthermore, the reconstruction of
software structures as e.g. represented in UML class or component diagrams can be relevant
during computer model veri�cation (in the wider sense).

There is a close relation between spatial and social structures in MABS: Due to agents' behav-
ioral locality (Klügl, 2000, p. 59), the frequency of social interactions typically increases with
spatial proximity (e.g. in the ACM Cultural Transmission Model by Axelrod, 1995, mentioned
in Section 5.1.2.3). Social simulations like the ACM or SugarScape (Epstein and Axtell, 1996)
even employ topological representations to model and visualize social structures.

6.2.3.1. Techniques for the Structural Perspective

Since macroscopic structures in MABS are often not speci�ed in advance but emerge from
microscopic interactions (see also Ferber, 1995, p. 114), techniques for their automated dis-
covery and comparison are a valuable addition to validation. Structural models in MABS are
commonly represented by graph or grid topologies (Gilbert and Troitzsch, 1999; Meyer, 2001).
Recall from Section 3.2.2.3 that graphs can be considered as the more general representation
since grid structures are straightforwardly mapped to graphs without 'quantization loss', but
not vice-versa (Meyer, 2001).

11Bayraktar (2011) shows that integrating information from the organizational perspective (e.g. originators or
roles) further allows to enhance reconstructed UML (or actually BPMN) activity diagrams with swim-lanes
for di�erent organizational units. However, in terms of our framework, this construct belongs to the external
control perspective described in Section 6.2.4.
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Analysis of Social Structures The analysis of graph-based social structures in MAS is closely
related to the organizational perspective of process mining as described by Song and Aalst
(2008, reviewed in Section 4.2.4): Authors like Botía et al. (2004, reviewed in Section 5.2.4.1)
and Vanderfeesten (2006, reviewed in Section 5.3.4.6) apply similar social network analysis
(SNA) and role mining techniques to MAS analysis. Hanachi and Khaloul (2008) and Ab-
delka� and Bouzguenda (2010) explicitly refer to organizational process mining in the context
of organizational structure detection in MAS (see Section 5.3.4.6).

The literature review showed that the most common technique to mine organizational models
is unsupervised clustering. Agents are assigned to organizational entities based on similar
properties with respect to a distance measure. Hierarchical clustering, as e.g. used by Song
and Aalst (2008), might also allow to detect (behavioral) inheritance in object-oriented models.
Dimensionality reduction techniques like self-organizing maps or PCA support the visualization
of structures in high-dimensional feature spaces (for MAS-related applications see e.g. Arroyo
et al., 2010; Gabbai et al., 2004; Schroeder and Noy, 2001).

Further techniques for organizational process mining include supervised decision tree learning
(in the approach by Ly et al., 2006) and pattern matching for the identi�cation of organizational
structures (e.g. in the approaches by Dustdar and Ho�mann, 2007 and Hanachi and Khaloul,
2008).

Analysis of Spatial Structures As we noted in (Cabac et al., 2006b, Sec. 4.2), social network
analysis might, to a certain degree, also support the analysis of spatial relations:

�The most common metric for social network mining in MAS is the relation between message
senders and receivers. However, other metrics such as relations between distributed agent
platforms are considered as well; e.g. to �nd out which paths between distributed agent
platforms were preferably taken by mobile agents moving within a network.�

In this context, Flick et al. (2010, p. 4)12 observe that spatial concepts have been widely
neglected in process mining so far:13

�Locations might serve as side conditions for the synchronization of agent behaviour as in
rendezvous synchronisation (see e.g. Jessen and Valk, 1987). [... Nevertheless ...], locations
and locality are seldom regarded in current process mining techniques. In our opinion, the
focus on a nets-within-nets formalism can bring forward the handling of location-related
information in process mining. On the one hand, locations and their properties might
be reconstructed from a log based on hints of characteristic agent behaviour. On the
other hand, available information about locations might provide heuristics to improve the
reconstruction of process and organizational models.�

The automated analysis of grid-based spatial models in MABS has not received much attention
in the literature either (Czogalla, 2007, p. 21). At the University of Hamburg, Rainer Czogalla

12page numbers relate to the version of the article downloadable at http://ceur-ws.org/Vol-643/

paper09.pdf (last visit 2012-10-20)
13Among the few exceptions is the work by Leotta (2012) who integrates information about locations into an

approach to detect daily life habits with the aid of process mining techniques. Chai et al. (2012) also report
on a recent approach for geographical process mining. The ProM forum contains a similar feature request
at http://www.win.tue.nl/promforum/ discussion/28/geo-temporal-process-mining-.../p1 (last visit
2012-10-27).
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(2007) developed �rst ideas to employ techniques from pattern recognition and image processing
for this purpose. Citing our work from (Knaak, 2006), Czogalla (2007, Sec. 3) identi�es 4 use
cases in MABS analysis that might be supported by spatial pattern recognition:

1. �Supporting function for interactive analysis� (Czogalla, 2007, p. 23): Techniques for pat-
tern recognition and image interpretation could aid the visual analysis of spatial models
by automatically tagging spatial structures with high-level descriptions and pointing the
analyst to 'interesting' regions. This use case resembles the idea of �agent-aided inter-
pretation� by Drogoul et al. (2002, p. 11) and the related study by Servat et al. (1998),
reviewed in Section 5.1.1.1, in that grid-based patterns are abstracted into meaningful
entities (Czogalla, 2007, p. 23).

2. �Automated comparison of simulated and empirical data� (Czogalla, 2007, p. 24): Automated
validation can be supported by extracting and comparing features of simulated and real-
world spatial patterns using distance measures. Czogalla (2007, p. 24) mentions the
work by Cantú-Paz et al. (2004, reviewed in Section 5.2.3) as an example. In general,
feature extraction might be a promising approach to enable the automated validation
of 'qualitative' patterns in MABS like the characteristic 'mosaic' structure in the beech
forest model mentioned by Grimm et al. (2005, p. 989); see Section 5.1.2.3.

3. �Identi�cation of characteristic spatial regions� (Czogalla, 2007, p. 24): Here, the idea is to
support the simulation-based optimization of layouts (e.g. seat rows in an airplane as
in the study by Matzen and Czogalla, 2003) with an automated identi�cation of spatial
regions that have an impact on the optimization goal (e.g. to minimize the duration of
emergency evacuations; see Czogalla, 2007, p. 26). Czogalla (2007, p. 24) proposes to
mine spatial patterns that typically appear in desired and undesired scenarios with an
unsupervised learning algorithm. By correlating these patterns with potentially causative
layout properties and feeding this knowledge into the optimization process, the conver-
gence towards an advantageous con�guration might be improved (Czogalla, 2007, p. 26).

4. �Evaluation of Scenarios in Simulation-Based Optimization� (Czogalla, 2007, p. 24): Similar
to automated validation, the extraction and comparison of high level features also allows
to evaluate spatial patterns in an objective function for simulation-based optimization
(Czogalla, 2007, p. 24). To continue the previous example, one might attempt to (semi-
)automatically calibrate the beech forest model from (Grimm et al., 2005, p. 989) towards
the generation of the expected 'mosaic' pattern.

Czogalla (2007, p. 27) also mentions structural dynamics as an even more challenging setting
for spatial analysis. Though his ideas provide interesting future directions for the analysis of
spatially explicit simulations, an (at least partial) operationalization to con�rm their utility
and feasibility is still lacking (Czogalla, 2007, p. 27).

6.2.3.2. Process Dimensions of the Structural Perspective

Properties to assign agents to organizational entities can be measured along several process
dimensions. Abdelka� et al. (2012, Secs. 4,6) show that the agent-group-role (AGR) model
by Ferber and Gutknecht (1998, reviewed in Section 3.2.2.2) is a possible target model for
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organizational process mining in MAS.14 Similar models are employed in 'non-MAS-speci�c'
process mining as well, e.g. in the work by Ly et al. (2006). Groups and roles can also be
reconstructed from agent execution logs following the organizational model mining approach
by Song and Aalst (2008, Sec. 5.1) reviewed in Section 4.2.4.2.

Role mining for the analysis of work�ows (Song and Aalst, 2008) and MAS (Vanderfeesten,
2006) is often based on the identi�cation of characteristic sets of actions or events. The objective
is to reconstruct a role assignment RA ⊆ A × R between a set A of agents and a set R
of roles from an event log. When analyzing logged events, such as FIPA ACL messages in
(Vanderfeesten, 2006), several aspects must be taken into account.

Scope of considered events: Similar to the internal control perspective, we can vary the scope
in which event �pro�les�15 are collected. Considering the whole set of actions executed during
an agent's lifetime leads to the assignment of a single role per agent. As indicated by Song
and Aalst (2008, p. 21), this assumption is often unrealistic. When conversation identi�ers are
logged, event pro�les of agents can be collected per conversation instead. Again, the appropriate
scope depends on the �exibility and complexity of the observed agent behavior.

Additional process dimensions: To avoid over-generalization in the reconstruction of roles from
event pro�les, further process dimensions might be taken into account. At the example of
a FIPA-compliant, message-based MAS, several increasingly complex combinations of process
dimensions can be considered, including:16

1. Performatives: e.g. 'agent A sent or received req, cfp, prop, and acc'.17 Recall from
Section 5.3.4.6 that according to Hanachi and Khaloul (2008), Abdelka� and Bouzguenda
(2010), and Abdelka� et al. (2012), the relatively standardized semantics of ACL-like
performatives provide valuable background knowledge for organizational process mining
in general.

2. Action / event types: 'agent A sent cfp and received prop'. This option is e.g. taken by
Vanderfeesten (2006, pp. 46).

3. Message content : 'agent A sent cfp(′sell− car′) and received prop(′sell− car′, 1000) and
prop(′sell − car′, 2000)'.

4. Communication peers: 'agent A sent cfp to agents B and C and received prop from both
agents'.

5. Ordering relations between events: 'agent A received prop immediately after sending
cfp'.

6. In spatially explicit MABS, the locations visited by an agent might provide further hints
towards its role.

Note that role mining with detailed event scopes and many considered process dimensions
can lead to over�tting due to high vector dimensionality in combination with too few sample
conversations. In the worst case, a di�erent role is assigned to each individual agent due to

14though not many details on the applied mining techniques are provided
15as to use the term by Aalst and Song (2004b, p. 17)
16Some of the listed process dimensions are similar to those proposed by Dustdar and Gombotz (2006, pp. 263-

264) for web service session reconstruction (see Section 5.3.3.1).
17short notation for the performatives request, call-for-proposal, propose, and accept
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irrelevant, minor deviations of event pro�les. Ordering relations between events might be a
problematic role indicator when agents enact protocols with many possible execution paths.18

Acquaintance relations might be more signi�cant at the level of roles than at the level of
individual agents (e.g. 'a customer sent a request to a broker ' instead of 'agent A sent a request
to agent B'), which might somehow lead to a 'vicious circle' with respect to role mining.

Groups in the AGR model roughly correspond to �teams� in the organizational mining approach
by Song and Aalst (2008, p. 12). Thus, groups might be reconstructed based on the metric
of 'joint cases' (Song and Aalst, 2008, p. 12). Alternatively (e.g. if an identi�cation of joint
cases is not straightforward) one might simply cluster agents that frequently communicate via
messages.19 In spatially explicit MABS, group assignment might also be indicated by the areas
in which agents move. Section 8.1.2.1 provides the example of 'idle regions' for (simulated) city
couriers.

A further dimension that is occasionally considered in the mining of structural models is the
cardinality of communication and interaction relations. Dustdar and Ho�mann (2007), Hanachi
and Khaloul (2008), and Abdelka� and Bouzguenda (2010) use node degrees in social networks
as one feature to identify organizational structures and entities (e.g. brokers). The reconstruc-
tion of class diagrams (or E/R diagrams as described by Canbaz, 2011 and Popova et al., 2012)
is another example where cardinalities of relations between entity types are of interest.

6.2.4. External Control Perspective

In (Cabac et al., 2006b, Sec. 4.2), we introduced the external control perspective as follows:

�Here we focus our interest on analyzing the dynamics of multi-agent interactions. This
includes the detection of patterns on three levels: (1) Elementary conversation patterns
similar to standard FIPA interaction protocols (FIPA, 2005). (2) Hierarchical models
displaying dependencies between elementary agent conversations. (3) Higher-level patterns
of social interaction such as those considered in the framework of Socionics (Malsch, 2001).
The external control perspective thus unites aspects of the interaction and work�ow level
from web service mining [see Dustdar and Gombotz, 2006 and Section 5.3.3.1] with the
organizational perspective from process mining [... see Song and Aalst, 2008 and Section
4.2.4].�

Process dimensions and mining techniques for the external control perspective thus integrate
aspects of structure and behavior. An important objective is to provide additional structure
to complex inter-agent control �ow by (a) identifying (hierarchies of) sub-processes, as e.g.
proposed in (Greco et al., 2006; Kumar et al., 2011) and (b) describing interactions at the level
of abstract organizational entities instead of individual agents, as exempli�ed in (Song and
Aalst, 2008, pp. 18, reviewed in Section 4.2.4). Note that the focus is not on structural changes
over time, which is treated in the adaptivity perspective (Section 6.2.5) instead.

18A similar problem is noted by Dustdar and Gombotz (2006, p. 264).
19Note that this is related to the 'handover of work' metric proposed by Aalst and Song (2004b, pp. 12).
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6.2.4.1. Process Dimensions of the External Control Perspective

The levels 1 (basic interactions) and 2 (multi-agent work�ows) of external control �ow mirror
the constructs typically employed to model agent interactions. This is especially in�uenced by
the distinction between basic and higher order protocols in Mulan (Rölke, 2004, p. 137); see
Section 3.3.3.1.

The di�erence between both levels can be visualized at the example of basic UML sequence
diagrams as target models for level 1 and UML interaction overview diagrams for level 2.20

To clarify the involved process dimensions, we repeat some de�nitions related to interaction
protocols and logs in the following. These are �based on previous approaches of interaction mining
(e.g. Schütt, 2003) and on concepts from FIPA compliant multi-agent system[s].� (Cabac et al.,
2006b, Sec. 5.1).

As we wrote in (Cabac et al., 2006b, Sec. 5.1), �an interaction protocol is a template that describes
the message exchange during a cooperation between some agents.� At the most general level, it is
a tuple IP = (R,M,G) where R is a set of roles21, M is a set of message types, and G is a
directed graph that describes the control �ow of message events ME (see also Cabac et al.,
2006b, Sec. 5.1).22 One possible realization of G (e.g. used in out case study in Chapter 7) is
a labelled Petri net N = (S, T, F,ME) with message events as transition labels.

When asynchronous communication is assumed, message sending and reception must be repre-
sented by distinct send- and receive-events (see e.g. the speci�cation mining approach by Kumar
et al., 2011, p. 92): es, er = (type, sender,message, receiver) ∈ {send, receive} × R ×M × R
where es is precedent to er (es < er). In synchronous communication, message sending and
reception can be modelled as a single message event es,r = (sender,message, receiver) ∈
R×M ×R. This simpli�cation is used in the case study in Chapter 7.

Further following the terminology from (Cabac et al., 2006b, Sec. 5.1) with some formal exten-
sions:

�A conversation [convIP ] is an execution of an instantiated interaction protocol [IP ]. Dur-
ing the conversation, communication roles are bound to agents [according to a role assign-
ment RA, see Section 6.2.3.2] and a path through the control structure [ofG] is chosen. Role
bindings might be ambiguous, i.e. an agent can be bound to several roles and vice versa. A
multicast protocol is an interaction protocol where the number of agents bound to a certain
role is not �xed in the template; and might even vary during a conversation. A conversation
thread [thread(convIP , A1, A2)] is a part of a conversation [convIP ] covering the message
exchange between exactly two agents [A1 and A2]. Note that a conversation needs not
to be multicast to include multiple threads. A conversation trace [trace(convIP ) ∈ ME∗]
describes the sequence of [...] message[... events] observed during a conversation.

The [raw] message log [ML ∈ ME∗] is the basis for [... interaction mining]. It contains
an interleaving of all conversation traces observed during the analyzed execution. The
message log might contain messages from several conversations [conv1, ..., convk] according
to multiple interaction protocols [IP1, ..., IPn].�

20or message sequence charts vs. graphs, as described in the reverse engineering approach by Kumar et al.
(2011)

21also called lifelines in message sequence charts, see e.g. Kumar et al. (2011, p. 93)
22A similar de�nition is e.g. stated by Quenum et al. (2006, pp. 2010).
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As in web service mining (Dustdar and Gombotz, 2006, Sec. 3), the di�culty of agent interac-
tion mining depends on whether the assignment of messages to protocol types, conversations,
threads, and roles is explicitly logged. Furthermore it is relevant if a basic interaction protocol
(level 1) or a multi-agent work�ow (level 2) is used as the target model.

A basic interaction protocol is appropriate when every logged conversation only consists of a
single conversation thread. If multiple threads exist but every role is bound to a single agent,
both target model types are possible. One might either choose a (high level) sequence diagram
with multiple roles or an 'interaction overview'-style model that emphasizes the 'choreography'
of the conversation threads. Though AUML and UML 2 sequence diagrams allow to display
multicast protocols, Section 7.3.5 argues that 'interaction overview'-like notations with support
for multiple instantiation patterns might be most appropriate. This is in accordance with the
claim by Lassen et al. (2007, p. 12) cited in Section 5.3.1 and the approach by Kumar et al.
(2011) reviewed in Section 5.3.2.

Summarizing, a large number of process dimensions and dimensional relations are relevant for
levels 1 and 2 of the external control perspective:

1. agents and their assignments to roles,

2. message events with the properties mentioned in Section 6.2.3.2,

3. assignments of messages to conversations and conversation threads,

4. assignments of conversations and conversation threads to protocol types,

5. cardinalities of messages and role bindings,

6. internal ordering relations of message events within conversation threads,

7. external ordering relations of message events between conversation threads,

8. ordering relations between conversations (as e.g. in the abstract graph by Serrano et al.,
2009),

9. enrichments similar to the internal control perspective including branching conditions and
times / deadlines (see e.g. Lamma et al., 2007b).

Level 3 of the external control perspective is concerned with the identi�cation of high-level
interaction patterns. Recalling the ideas by Czogalla (2007) cited in Section 6.2.3.2, this means
that relations (or whole models) mined at the levels 1 and 2 are abstracted into high-level
features which are subsequently compared to features of known interaction types (e.g. an auc-
tion). Examples towards such analyses include the work by Mazouzi et al. (2002), Dustdar and
Ho�mann (2007), Hanachi and Khaloul (2008), as well as Abdelka� and Bouzguenda (2010).

6.2.4.2. Techniques for the External Control Perspective

Due to the large number of considered process dimensions, a multitude of mining techniques
are relevant to reconstruct models of external control �ow:

• Clustering serves (1) to aggregate messages into conversation threads and conversations
(e.g. Schütt, 2003), (2) to classify conversations by protocol types (e.g. Dustdar and
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Gombotz, 2006; Srinivasa and Spiliopoulou, 2000), and (3) to abstract from agents to
interaction roles (e.g. Song and Aalst, 2008).

• Control �ow discovery techniques can be used to reconstruct internal and (to a cer-
tain degree) external ordering relations of message events. For the reconstruction of
asynchronous communication �ow, techniques based on partial order semantics are often
preferred (e.g. Kumar et al., 2011; Lassen et al., 2007).

• Frequent pattern mining techniques aid in the detection of common sub-processes to re-
construct hierarchical control �ow models (e.g. Bose et al., 2011b; Kumar et al., 2011).

• Feature- or log replay-based conformance checking techniques might support log abstrac-
tion for hierarchical control �ow mining as well as the identi�cation of high-level interac-
tion patterns (level 3).

• Similar to the internal control �ow perspective, decision mining techniques can be used
to enrich interaction protocol models with branching conditions.

The literature review showed that clustering, decision mining, and conventional process mining
techniques to reconstruct '�at' control �ow models have been applied to interaction mining
in MAS or related systems quite frequently. In contrast, techniques that support the recon-
struction of hierarchical and multicast interactions are still rare. As discussed in Chapter 5,
approaches related to this endeavor, but not specialized for MAS, have only been proposed
recently (Bose et al., 2011b; Canbaz, 2011; Kumar et al., 2010; Lou et al., 2010b). In Chapter
7, a partially implemented processing chain for basic interaction mining (level 1) and a concept
for complex interaction mining (level 2) on the Mulan/Capa agent platform is presented and
compared to the related approaches.

6.2.5. Adaptivity Perspective

The adaptivity perspective is concerned with structural and second order dynamics. We will use
the term structural dynamics to describe changes of structural models (e.g. a social network
graph) over time and the term second order dynamics to characterize changes of behavioral
models (e.g. a UML activity diagram).

We used the notion of a meta-perspective above because such dynamics can be analyzed with
respect to all other perspectives in the framework. We can thus investigate how a single agent's
decision or control �ow models, the organizational and spatial structures and processes in a
MAS, and even relations between multiple aggregation levels change over time. This view is
in accordance with the claim for �holistic approaches [towards ...] change detection� in multiple
process mining perspectives uttered by Bose et al. (2011a, p. 404).

Considering use cases in AOSE and MABS, the analysis of second order dynamics in the
decision, internal control, and external control perspectives is closely related to the validation
of learning agents (Kruse, 2008). Analyzing the dynamics of structural and level-encompassing
models might add to the validation of macroscopic patterns as an �expression of self organization�
(Czogalla, 2007, p. 20) in MABS. In general, the ability to tackle non-stationary structures and
processes is an important requirement on process mining applied to simulation and MAS (see
also Section 6.4).
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The literature review in the previous chapters made obvious that research on second order
dynamics in process mining is still in an early stage. As reviewed in Section 4.2.5.3, Bose et al.
(2011a) only recently took �rst steps towards handling concept drift, followed by initial case
studies of further authors (e.g. Luengo and Sepulveda, 2012). Aalst et al. (2012, pp. 187) name
�dealing with concept drift� as a main future challenge for process mining.

Bose et al. (2011a, p. 393) observe that concept drift can occur in several process mining
perspectives. Mining techniques for the adaptivity perspective are therefore basically extensions
of algorithms for other perspectives towards the handling of concept drift. Since the analysis
and reconstruction of non-stationary models poses a major challenge that is not in the focus
of this thesis, we will only provide a rather sketchy overview of candidate mining techniques in
the following.

6.2.5.1. Techniques for the Adaptivity Perspective

In the decision perspective changes of rule-based decision models (e.g. decision trees) must be
analyzed over time. According to Lee et al. (2007, p. 639) algorithms to handle concept drift for
such classi�cation models are quite common in data mining. Techniques to reconstruct models
of multi-step decision processes, like Bayesian networks, have also been extended towards non-
stationary processes in recent years (e.g. Robinson and Hartemink, 2010).

In the internal control perspective the focus is on second order dynamics of control �ow models.
As reviewed in Section 4.2.5.3, two lines of work have been pursued so far: (1) change mining
(Günther et al., 2006) as an application of 'conventional' control �ow discovery techniques to
explicit change logs, and (2) detection of implicit change points with statistical hypothesis
tests (Bose et al., 2011a) and clustering (Luengo and Sepulveda, 2012) based on features of
subsequent partial logs.

In the structural perspective, the analysis of dynamic grid-based structures with techniques for
the processing of digital image sequences (Czogalla, 2007, p. 20), e.g. motion recognition (Fablet
and Bouthemy, 2003), might be a promising direction for further research. Analyzing dynamic
graph-based social (and possibly also spatial) structures is the subject of recent research in
social network analysis. We mentioned exemplary approaches by Lahiri and Berger-Wolf (2008)
and Christley and Madey (2007b) in Sections 4.2.4.1 and 5.3.1. Temporal changes of role
assignments (Bose et al., 2011a, p. 394) are indicated by time-varying action pro�les (Aalst and
Song, 2004b, p. 17) of agents. These might be detected with similar clustering and hypothesis
testing techniques as those applied to control �ow models in (Bose et al., 2011a; Luengo and
Sepulveda, 2012).23

The external control perspective can be regarded as an integration of the previous perspectives
into (possibly hierarchical and multi-threaded) interaction models. Therefore, the techniques
mentioned above should in principle su�ce to analyze non-stationary interaction processes.
However, recalling the discussion from Section 6.2.4, one should keep in mind that interaction
mining remains challenging even for stationary processes. In particular, the need to include
many di�erent process dimensions complicates the detection of change points. Bose et al.
(2011a, p. 404) reason about this aspect in the outlook section of their article:

23for a brief discussion of concept drift in the organizational perspective of process mining see also (Bose et al.,
2011a, p. 394)
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�[...] there could be [process] instances where more than one perspective (e.g. both control
and resource [meaning the organizational perspective]) change simultaneously. Hybrid ap-
proaches considering all aspects of change holistically need to be developed. [...] Sample
complexity [...] should be sensitive to the nature of changes, their in�uence and manifes-
tation in traces, and the feature space and algorithms used for detecting drifts.�

In terms of our framework, the claim for a holistic approach towards concept drift detection
becomes especially relevant in the context of the external control perspective.

The level-encompassing perspective will be introduced in Section 6.2.6 below. Therefore, the
discussion of techniques to analyze non-stationary inter-level relations is also deferred to this
section.

6.2.5.2. Process Dimensions of the Adaptivity Perspective

To identify relevant process dimensions for the adaptivity perspective, we should �rst recall the
distinction by Günther et al. (2006, p. 312, reviewed in Section 4.2.5.3) between change logs,
enactment logs, and integrated analysis of both log types. The process dimensions recorded
in a change log include the change operations performed on a (work�ow) model as well as the
target model elements24, optional time stamps and attributes (e.g. originator) of the recorded
changes (Günther et al., 2006, p. 317). Change operations describe the insertion, deletion, and
modi�cation of model elements, see e.g. Günther et al. (2006, p. 315), Li (2010, Sec. 2.2.1), and
the �alignment policies� by Meyer and Szirbik (2007, p. 278) reviewed in Section 5.3.4.5.

Note that our framework on the one hand foresees the logging of change operations for any
given perspective. On the other hand, the resulting change logs can also be analyzed from the
point of view of every perspective. Two examples are listed in the following:

• Changes to an adaptive agent's decision model (decision perspective) are logged over time.
From the change log, a control �ow model (internal control perspective) is reconstructed
that describes how the agent autonomously modi�es its decisions. Inspecting this model
might e.g. support the validation of the agent's learning process (Kruse, 2008).

• Changes to an interaction protocol (external control perspective) are logged similar to the
approach by Meyer and Szirbik (2007). From the change log, a social network (structural
perspective) is reconstructed that describes which agents communicated when changes oc-
curred. This model might aid in the identi�cation of agents with originally 'incompatible'
views upon the interaction (see also Meyer and Szirbik, 2007).

The 'self-re�exivity' of the adaptivity perspective enables a wealth of possibilities to combine
perspectives. In particular, an application of the adaptivity perspective to itself (i.e. 'How
does a change process change over time?') leads to a (possibly in�nite) hierarchy of models
describing higher order dynamics. Moss (2000, p. 3) warns25 that such self-re�exivity is quite
popular in agent-based modeling but seldom useful in practice.

24called �subject� by Günther et al. (2006, p. 317)
25at the example of �in�nite belief hierarchies (what I believe you believe about what I believe you believe

... about me)� (Moss, 2000, p. 2) mentioned in an article by Brainov and Sandholm (2000)
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Re�ecting the low availability of change logs in work�ow management (Bose et al., 2011a,
p. 393), only few MABS settings allow to record actual change operations. One case is the
validation of learning processes where a learning algorithm performs explicit changes on an
agent's behavioral model (Kruse, 2008). At the University of Hamburg, Sven Kruse (2008)
develops initial concepts to adapt the change mining framework by Günther et al. (2006) to
the validation of component-based reinforcement learning agents. Another case are explicitly
modelled organizational structures like the AGR model (Ferber and Gutknecht, 1998), where
changes to organizational entities (e.g. agents joining or leaving groups) can be logged.

Figure 6.3.: Process mining in the adaptivity perspective. This �gure integrates concepts by
Günther et al. (2006, Fig. 2), Luengo and Sepulveda (2012, Fig. 1), Bose et al.
(2011a), Lahiri and Berger-Wolf (2008), Rinderle-Ma et al. (2008), Li (2010), and
Tell and Moldt (2005).

Explicit change operations are not available when second order or structural dynamics implicitly
emerge at runtime. Instead, change points must be detected from an enactment log with
the techniques reviewed above (e.g. Bose et al., 2011a; Hickey and Black, 2001; Luengo and
Sepulveda, 2012). The input dimensions for change point detection include time stamps on
the one hand and features of traces or log entries that indicate concept drift in the observed
process on the other hand (see Luengo and Sepulveda, 2012, p. 155 and Hickey and Black,
2001, reviewed in Section 4.2.5.3). Change point detection results in a 'time series' of sub-logs
as shown in Figure 6.3 and by Luengo and Sepulveda (2012, p. 156). From each sub-log, a
model can be reconstructed that represents the structure of the observed process during the
respective time period.
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Besides manual inspection, the reconstructed series of models might serve as input to higher-
level processing stages as shown in Figure 6.3. One option is the application of frequent pattern
or subgraph mining algorithms to identify common (recurring) structures as in the work by
Lahiri and Berger-Wolf (2008, reviewed in Section 4.2.4.1). Another possibility is the automatic
identi�cation of change operations from comparisons of subsequent models or logs from the
series. Work in this direction has been carried out by Rinderle-Ma et al. (2008) and Li (2010)
who target the control �ow perspective in the context of adaptive work�ow management.

We will not go into details on the detection of change operations here but refer the reader
to the respective sources. In Section 7.1.2.4 we will only discuss extensions of reference nets
by Tell and Moldt (2005) and Köhler (2006) that might serve as a basis to represent change
processes in theMulan agent model. The basic idea of a system net that changes the structure
of contained object nets is already indicated in Figure 6.3.

6.2.6. Level-Encompassing Perspective

In (Cabac et al., 2006b, Sec. 4.2), we provided the following characterization of the level-
encompassing perspective:26

�Here we are interested in mining relations between the perspectives mentioned above.
Thus, we focus on questions like: "How does changing a single agent's decision model
a�ect interaction patterns observed in the MAS". The multi-level perspective is somewhat
related to the general problem of micro-macro links mentioned in Socionics (Malsch, 2001).
Not much work has been done for this perspective so far.�

The latter statement still holds true in the �eld of process mining, where concepts of self-
organization, computational emergence, and relations between multiple perspectives have not
received much attention.27 However, recent research on MABS and complex systems has started
to formalize and automatically detect inter-level relations. Examples include the work by Chen
(2009) and Moncion et al. (2010) reviewed in Section 5.2.2.4.28

Since these approaches rely on event logs, 'causal' relations, and social network analysis, an
integration with process mining appears obvious. In the following, we discuss relevant process
dimensions and techniques for the level-encompassing perspective and sketch possible contact
points between process mining and the mentioned approaches.

6.2.6.1. Process Dimensions of the Level-Encompassing Perspective

Broadly speaking, the input dimensions for process mining in the level-encompassing perspec-
tive are models or patterns from di�erent perspectives and levels of aggregation. The objective
is to �validate[...] and/or discover[...]� (Chen, 2009, p. 104) relations between occurrences of these
patterns in event logs.

26still called �multi-level perspective� in this pre-publication
27beyond the merging of mining results from multiple perspectives into a simulation model (e.g. Wynn et al.,

2010, reviewed in Section 5.3.4.1) and the idea to detect reasons for process model changes by evaluating
state attributes from the enactment log (Günther et al., 2006, reviewed in Section 4.2.5.3)

28though the work by Moncion et al. (2010) might also be classi�ed under the adaptivity perspective of the
presented framework
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The most basic form of level-encompassing analysis considers dependencies between a simula-
tion's input parameters and the corresponding (global) simulation results. Examples include
the work by Barton and Szczerbicka (2000) and the ideas by Remondino and Correndo (2005).29

The considered process dimensions are input and output variables of multiple simulation runs.
The mining result describes relations between both dimensions in the form of a quantitative
or qualitative meta-model; roughly corresponding to the notion of multi-level models by Chen
(2009, Sec. 4.4).

Recent work goes beyond the detection of simple input/output mappings and attempts to
include richer relations as well as arbitrary levels of aggregation. In Section 5.2.2.4 we reviewed
the approach by Chen (2009), who employs the construct of complex event types (CET s), i.e.
patterns of temporally, spatially, and organizationally interrelated events, for this purpose.

This viewpoint corresponds well to a de�nition of complex events that Gay et al. (2010, p. 3)
state in the context of work�ow analysis: �A complex event is an event abstraction that signi�es a set
of events and their relations over a time intervall�. The use of multi-graphs to represent temporal,
organizational, and spatial aspects of CET s at once (see e.g. Chen et al., 2010, p. 46) even
goes beyond most process mining approaches that only form graph-based patterns for a single
perspective (mostly control �ow).

Similar to the perspectives of our framework, Chen (2009, p. 60) considers both �static [...]
and [...] dynamic property descriptions� in inter-level modeling: CET s are event-based behav-
ioral abstractions (Chen, 2009, p. 60) related to the internal and external control perspectives.
Subsystem state types (SST s) are state-based abstractions (Chen, 2009, p. 60) related to the
structural and decision perspectives. Moncion et al. (2010, Sec. 3.1) also consider arbitrary
static and dynamic patterns to model their interaction signs and mention CET s as one possi-
ble realization (Moncion et al., 2010, p. 19).

We might thus generalize that the input process dimensions for the level-encompassing per-
spective are models from any of the above perspectives. A level-encompassing model describes
relations between these abstractions over one or more simulation runs. Note that we use the
term 'level-encompassing model' to subsume descriptive inter-level models, predictive inter-
level models, and multi-level models from the work of Chen (2009), who himself indicates that
all of these models can be integrated and combined (Chen, 2009, p. 136).

The literature review showed that level-encompassing models can take several di�erent forms:
Chen (2009) uses statistical correlation and regression models displayed as undirected graphs
(associative models), directed acyclic graphs like Bayesian networks (causal models), and hier-
archical Bayesian networks (multi-level models). Relations between input and output param-
eters over multiple simulation runs are often stated in a rule-based fashion (e.g. decision trees
in Barton and Szczerbicka, 2000), which somehow corresponds to a 'macroscopic' variant of
mining in the decision perspective. Moncion et al. (2010) examine time series of interaction
network graphs to trace groups of related agents over time (adaptivity perspective) and use
social network analysis (structural perspective) to derive global and local measures of 'order'.

Therefore, it might again be admissible to generalize that level-encompassing models can be
reconstructed with a focus on any of the aforementioned perspectives:

29see also Cabac et al. (2006b, Sec. 4.2)
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• Decision perspective: 'Level-encompassing decision models' show how attribute values
at one aggregation level (e.g. behavioral parameters of agents) in�uence observations at
another aggregation level (e.g. macroscopic simulation results). They are thus related to
multi-level models in the work by Chen (2009).

• Internal/external control perspective: 'Level-encompassing control �ow models' display
ordering relations between complex events30 at di�erent aggregation levels. These are
related to causal inter-level models in the work by Chen (2009, Sec. 4.2.2).

• Structural perspective: 'Level-encompassing structural models' relate organizational enti-
ties or spatial patterns at di�erent aggregation levels.

• Adaptivity perspective: Here, one is interested in the way that level-encompassing models
(from any of the above perspectives) change over time. An example is the work by
Moncion et al. (2010) focusing on 'level-encompassing structural dynamics'.

Di�erent from the base perspectives, level-encompassing models thus do not refer to elemen-
tary agents, events, or single-level abstractions (e.g. interaction roles), but to behavioral (e.g.
complex events in Chen, 2009) and structural (e.g. groups of similarly behaving agents in
Moncion et al., 2010) aggregations at di�erent levels. Furthermore, they often focus on dif-
ferences between these relations over multiple simulation runs with deviating initial conditions
(i.e. multi-level models according to Chen, 2009).

6.2.6.2. Techniques for the Level-Encompassing Perspective

Figure 6.4 perceives the approach by Chen (2009) as a template for process mining in the level-
encompassing perspective. All steps (transitions) and intermediate representations (places) are
annotated with concrete realizations from the work of Chen (2009) and Moncion et al. (2010);
and with possible extensions based on other data and process mining approaches reviewed in
the previous chapters.

The procedure followed by Chen (2009) starts with the de�nition of patterns (CET s and SST s)
as a basis for log abstraction. Next, relations between aggregate entities in the abstracted log
(e.g. complex event occurrences) are discovered in order to gain an inter-level model (Chen,
2009, Sec. 4.3). Finally, inter-level models from multiple simulation runs are grouped or clas-
si�ed (e.g. by similar initial conditions) to form a multi-level model (Chen, 2009, Sec. 4.4).

Chen (2009, p. 216) himself identi�es the lack of e�cient techniques to detect complex event
types in a log as a current weakness of his approach. Logging is based on the proprietary
MABS framework of X-machines. Patterns are detected during and after simulation using ad-
hoc mechanisms not further explained in his thesis. An integration of relatively mature process
mining and modeling techniques might be a promising direction for improvement. We will only
sketch some manifest possibilities in the following and leave an actual proof-of-concept to future
work:

1. Log formats like MXML (Dongen et al., 2005) and XES (Verbeek et al., 2011) (see Section
4.2.6.1) might be an appropriate basis to perform level-encompassing analyses due to their

30as to use the term by Chen (2009)
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Figure 6.4.: Petri net depicting the work by Chen (2009) as a template for process mining in
the level-encompassing perspective.

standardized format on the one hand and extensibility towards arbitrary event attributes
(e.g. to store spatial data) on the other hand.

2. The steps of log abstraction and inter-level model discovery in the approach by Chen
(2009) are closely related to hierarchical process mining (e.g. Greco et al., 2006; Li et al.,
2010; reviewed in Section 4.2.5.2) and conformance checking (e.g. Ramezani et al., 2012;
Rozinat and Aalst, 2008; reviewed in Section 4.2.5.4). The techniques and similarity mea-
sures proposed in such approaches might improve the modeling and detection of complex
events with a focus on either expressivity or performance. Especially the pattern-based
compliance checking approach by Ramezani et al. (2012) and the underlying techniques
by Adriansyah et al. (2011)31 to e�ciently align logs and process models appear promis-
ing in this context. In Section 7.3 we brie�y sketch how reference nets could support the
modeling of CET s using an example by Chen (2009).

3. Complementary to the manual speci�cation of CET s assumed by Chen (2009), frequent
sequence and pattern mining techniques like those proposed by Bose and Aalst (2009)
might support the discovery of characteristic CET s when less a-priori knowledge is avail-
able. Note that Moncion et al. (2010, p. 22) also identify the extensive background
knowledge required to identify interaction signs as a drawback of their approach and
name automation as a direction for further work.

4. Regarding the reconstruction of (causal) inter-level models, process mining techniques al-
low to discover richer control �ow constructs (e.g. cycles) and organizational relations (e.g.
interaction patterns like proxy, see Dustdar and Ho�mann, 2007) than those mentioned

31cited in (Ramezani et al., 2012)
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in the work by Chen (2009). In contrast, the discovery of spatial relations between events
or entities is still a weakness of most process mining approaches (see also Section 6.2.3.1).

5. The perspectives of process mining o�er means to structure level-encompassing models
beyond, but under integration of, the Bayesian and automata-based approach by Chen
(2009) and the SNA-based approach by Moncion et al. (2010). The discussion in the
previous section showed that the perspectives considered in the conceptual framework at
hand o�er a basis to integrate the di�erent types of level-encompassing models described
by these authors.

6.2.7. Domain-Speci�c Perspectives

The de�nition of the above perspectives is based on very general principles like the dualisms be-
tween structure and behavior and between microscopic and macroscopic observations. Though
this high level of abstraction ensures general applicability, the gap towards practical modeling
objectives in MABS (e.g. to reduce the emissions caused by motorized transports in our courier
service model described in Section 8.1) can be rather large.

Fortunately, process mining o�ers the concept of extension (see Aalst, 2011a, p. 216 and Section
4.2.5.5) to overcome this drawback: �Through extension we add a new perspective to the process
model by cross-correlating it with the log� (Aalst, 2011a, p. 216). As described in Section 4.2.5.5,
this correlation is often achieved by replaying the log in the model while aggregating and
assigning additional data read from the log to the elements of the model (Aalst, 2011a, p. 215).

Most approaches focus on the extension of control �ow models with information gained from
other perspectives like branching conditions or originator roles (Aalst, 2011a, p. 216). However,
it should in principle be possible to extend models from any given perspective with domain-
speci�c data of arbitrary type. In the following, we list some more or less common examples
of possible domain speci�c perspectives:

• Performance / �time perspective� (Aalst, 2011a, p. 230): Approaches in this direction
extend elements of control �ow models (e.g. places and transitions of Petri nets in Hornix,
2007, Sec. 4.2) with information about �times and [path] probabilities� (Aalst, 2011a, p. 230);
see also Section 4.2.5.5. However, performance-related extensions of other perspectives
are also possible. One example might be average �deliberation time[s]� (Uhrmacher and
Gugler, 2000, p. 102) of reconstructed decision rules (decision perspective) in testbed
agent simulations (see Section 3.2.1) as e.g. reported by Uhrmacher and Gugler (2000,
Sec. 5).

• Economic perspective: Model elements like activities in a control �ow model can be anno-
tated with related costs and revenues as a basis for economic analysis. While graph-based
models are occasionally used in economic analyses (e.g. in material �ow cost accounting,
see Wagner et al., 2010), the economic perspective has not been tackled in process mining
often. An approach towards ��nancial business process mining� is reported by Werner et al.
(2012).
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• Material �ow / ecologic perspective: By considering �not only the sequence of activities
but also input [...] and output materials of each activity� (Wang, 2011)32 process mining
algorithms can be extended towards the reconstruction of material �ow as a basis for
ecologic analyses like those conducted with the aid of material �ow networks (Möller,
2000). Initial work pointing into this direction is reported by Wang (2011) who integrates
material �ow-related data into the Heuristics Miner algorithm (Weijters et al., 2006,
reviewed in Section 4.2.3.4) to analyze carbon emissions of production processes.

• Combined analyses covering more than one of the above perspectives have been conducted
in environmental informatics and simulation. Wohlgemuth (2005) e.g. advocates a com-
bined analysis of ecologic and economic / performance-related measures of production
processes with the aid of material �ow simulation.

Due to the relation of domain-speci�c perspectives to the process mining task of extension, the
relevant input process dimensions can be adopted from extension approaches like the work by
Hornix (2007) in a generalized form: This includes (1) a model to be extended, (2) attributes
of events or cases with relevance to the considered perspective, and (3) a mapping that assigns
log elements to model elements (Hornix, 2007, p. 24). The output of the extension step is an
assignment of (aggregated) attributes to model elements (Hornix, 2007, Sec. 4.2).

A challenge of model extension lies in the choice of appropriate aggregation operations for the
considered attributes to derive domain-speci�c performance indicators. Another relevant aspect
is the visual presentation of the extended models. One means to display quantitative data in
graph-based models are so-called Sankey diagrams rooted in material and energy �ow analysis
(Schmidt, 2012, p. 263): A Sankey diagram is a graph in which nodes represent entities (e.g.
machines in a production system) and edges represent �ows between entities. Flows of di�erent
types (e.g. di�erent materials) are visualized by di�erent arrows colors (Schmidt, 2012, p. 266).
Arrow width increases proportionally with �ow quantity (Schmidt, 2012, p. 265).

Sankey diagram-like displays are occasionally used in process mining, e.g. in (Aalst, 2011a,
p. 225). Hornix (2007, p. 31) uses color coding of places and transitions to indicate performance
bottlenecks in Petri net-based control �ow models (see Section 4.2.5.5). Aalst et al. (2012,
p. 184) relate these visualization techniques to cartography :

�[. . . ] ideas from cartography can easily be incorporated in the construction of discovered
process maps. For example, the size of an activity can be used to re�ect its frequency or
some other property indicating its signi�cance (e.g. costs or resource use). The width of an
arc can re�ect the importance of the corresponding causal dependency, and the coloring of
arcs can be used to highlight bottlenecks.�

Figure 6.5 shows two examples of models from di�erent mining perspectives with domain-
speci�c annotations visualized as Sankey diagrams.33 Note that the 'material �ow' semantic
of Sankey diagrams does not always match the semantic of control �ow constructs in process
models straightforwardly. The concurrent split in the precedence graph of Figure 6.5 (right)
e.g. does not lead to a split or duplication of the accumulated cost depicted by the Sankey

32Cited from the English abstract. The full text of the thesis is written in Chinese language and was inaccessible
to the author.

33The diagrams were created with the software tool e!Sankey (http://www.e-sankey.com, last visit 2012-11-29).
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Figure 6.5.: Two examples of model extensions displayed with the aid of Sankey diagrams. Left:
Social network (organizational perspective) showing frequency of communication
between di�erent roles in a �ctitious software project di�erentiated by means of
communication (adopted with extensions from Aalst, 2011a, p. 225). Right: Prece-
dence graph showing phase successions (control �ow perspective) of the same soft-
ware project annotated with phase-speci�c and accumulated project cost (in the
style of diagrams like those by Wagner et al., 2010, p. 199 and Schmidt, 2012,
p. 268).

annotations. For this reason, the graph contains one mere 'control �ow' edge without assigned
cost �ows.

6.3. Use Cases within the Model Building Cycle

In process mining, perspectives help to 'partition' analysis problems and techniques by nar-
rowing down the subject of analysis to speci�c process dimensions and dimensional mappings
(Rembert and Ellis, 2009, p. 36). Another approach (that is called an �orthogonal [...] dimen-
sion[...]� to perspectives by Song and Aalst, 2008, p. 5) to systematize process mining problems
and algorithms is to focus on the purpose of analysis, i.e. which (general or domain-speci�c)
tasks are to be solved. As reviewed in Section 4.2.2.2, the Eindhoven research group contributes
to this dimension by identifying �three main types of process mining: discovery, conformance, and en-
hancement� (Aalst, 2011a, p. 9), and a set of more re�ned �use cases� for process mining focusing
on business process analysis (Ailenei et al., 2012).

In the context of the presented framework, the objective is to specify use cases for process
mining in MABS. As reviewed in Section 5.2.2, authors including Köster (2002), Remondino
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and Correndo (2005), Baqueiro et al. (2009), and Arroyo et al. (2010) attempted to systematize
applications of data mining within (agent-based) simulation model building cycles prior and in
parallel to this thesis. Integrating and extending these ideas leads to a list of 7 use cases that
are also displayed in the upper right corner of Figure 6.1:34

1. real system analysis and (semi-)automated modeling,

2. exploratory analysis of simulation results,

3. operational validation and veri�cation,

4. simulation-based optimization and calibration,

5. implementation of adaptive agents, and

6. analysis of the model building cycle itself.

An overview of these scenarios and their embedding into a basic model building cycle is depicted
in Figure 6.6. In the following, we provide descriptions of these use cases as well as more detailed
visualizations in the form of Petri nets. We also identify requirements on mining and modeling
techniques posed by each use case and point out relations to the dimension of perspectives, i.e.
which perspectives are most relevant in a certain use case.35 The presentation is based on the
pre-publications in (Cabac and Denz, 2008; Knaak, 2006, 2007).

6.3.1. Real System Analysis

In (Knaak, 2006, Sec. 3.3) we have described this use case as follows:

�In the system analysis phase [... of a simulation study, mining] in the decision and [internal
or external] control perspectives can be employed to automatically abstract real world data
into certain components of the MABS model; i.e. automated modelling. An example is the
application of process mining techniques to reconstruct Petri net models of agents' protocols
from real world process logs. On a Petri net-based simulation platform such as Mulan
[see Section 3.3.3.1], these models can be executed directly as part of the simulation.

However, automated modelling of agent's decisions and processes is a complex task, and
su�cient real world data is hardly available. To tackle the latter problem, Drogoul et al.
(2002) propose [...] participatory simulation [as reviewed in Section 5.1.1.1]. This [...]
enables a user to play the role of a certain agent during the simulation. The user's actions
are monitored and aggregated into a decision model for a simulated agent by means of DM.

DM in the structural [, level-encompassing, and adaptivity] perspective[s] can be applied
to extract typical macroscopic patterns from the real system. These serve as a reference to
validate related patterns generated by the simulation model. Clustering techniques can also
help to simplify the model structure by detecting similarities between certain components
of the real system (Remondino and Correndo, 2005)�.

34Recall that specializations of some of these use cases for spatial simulation data analysis were proposed by
Czogalla (2007, pp. 23) and reviewed in Section 6.2.3.1. The use cases of exploratory analysis and validation
are also contrasted by Köster (2002, p. 89).

35The author was pointed to the practical importance of the latter topic by a reviewer of the conference paper
published as (Knaak, 2006).
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Figure 6.6.: �Embedding of use cases for data and process mining in MABS into a modi�ed version
of the model building cycle by Page and Kreutzer (2005, p. 14)�. Figure and caption
adopted with modi�cations (�gure) from (Knaak, 2006, Sec. 3.3).

Data mining support for real system analysis is mentioned in the MABS methodologies by
Remondino and Correndo (2005), Baqueiro et al. (2009), and especially Arroyo et al. (2010).
The latter authors distinguish between di�erent data collected for modeling and for validation
(Arroyo et al., 2010, p. 419). This distinction allows to perform cross validation to avoid an
over-generalization of the reconstructed models (Arroyo et al., 2010, p. 421). Data used for
modeling typically stems from the microscopic level while data for validation is often observed
at the macroscopic level (see Drogoul et al., 2002, p. 103, reviewed in Section 5.1.1.1).

Based on the reviewed literature, Figure 6.7 summarizes how data and process mining can
support real system analysis and (semi-)automated modeling in a simulation study. The �gure
emphasizes that the latter will seldom be conducted in a fully automated fashion: On the
one hand, process discovery can be employed to reconstruct templates for behavioral models
in the internal or external control perspective (e.g. Petri nets) that are later re�ned into exe-
cutable models by manually adding programming language annotations (e.g. Java statements
in Renew).

On the other hand, automated model extension can support the re�nement and parameteriza-
tion of prede�ned agent templates. One example is the Agent Academy framework by Mitkas
et al. (2002), reviewed in Section 5.2.4.3, where the rule engine of an agent is extended with
decision rules obtained from data mining. The simulation model mining approach by Wynn
et al. (2010, reviewed in Section 5.3.4.1) automates both steps but is restricted to '�at' work�ow
models instead of MABS.
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Figure 6.7.: Process mining support for real system analysis. This �gure integrates aspects
from the methodologies and diagrams by Arroyo et al. (2010, p. 241, reviewed in
Section 5.2.2.3) and Wynn et al. (2010, p. 446, reviewed in Section 5.3.4.1).

The following list summarizes some guidelines to choose process mining techniques for the use
case of real system analysis:

• Since mining is applied to data observed from a real system, there will typically be a need
for data preprocessing (e.g. outlier detection) and algorithms with the ability to cope with
noise.

• Techniques like the Heuristics Miner can be con�gured to focus on the main behavior of a
system while neglecting infrequent special cases (Weijters et al., 2006, p. 24). This might
be useful to achieve a su�cient abstraction of the generated model from the observed
data.

• To support semi-automated modeling, it should be possible to export the reconstructed
models into an execution environment, e.g. similar to the use of ProM 's CPNTools and
BPMN export in the approach by Wynn et al. (2010).

• For semi-automated modeling it can in principle su�ce to reconstruct a non-interpretable,
executable model like e.g. a neural network (Section 4.1.4.5). However, due to the fallibil-
ity of data mining methods, interpretable models should be preferred since they provide
a better basis to understand and validate the gained results.

• As usual in simulation (see e.g. Balci, 1998, p. 346, cited in Page and Kreutzer, 2005,
p. 201), knowledge discovery (e.g. Cios et al., 2007, pp. 14), and process mining (Aalst
et al., 2012, p. 180) the selection of input data should be guided by a concise prob-

251



6. Conceptual Framework

lem de�nition.36 In Section 5.2.2.3 we already cited the claim by Arroyo et al. (2010,
p. 433) that both domain and data mining experts should ideally accompany a data
mining-supported real system analysis to compensate the pitfalls of applying data mining
techniques (e.g. unintended bias that the applied algorithm imposes on the gained results,
see Arroyo et al., 2010, p. 433).

6.3.2. Exploratory Analysis of Model Behavior

The use of data mining to support the abstraction of simulation output into more under-
standable (meta-)models as a basis for exploratory analysis is mentioned in all methodologies
reviewed in Section 5.2.2. In (Knaak, 2006, Sec. 3.3), we stated the following description of
this use case:

�In this less demanding use case [as compared to other use cases like adaptive agent design],
DM techniques basically accomplish the abstraction from large amounts of data observed
during simulation to interpretable meta-models representing these data in a general and un-
derstandable form. Following our above example, we can monitor the messages exchanged
by agents during the simulation, and then apply process mining to reconstruct a general
model of the protocol that produced the observed messages. The reconstructed protocol
model can be visualised in the form of a Petri net or an AgentUML interaction diagram.

Analysing the meta-model allows users to understand important features of the simulation
results better than analysing the raw simulation results. In princip[le ...], all perspectives
mentioned above contribute to a comprehensive understanding of the model. However,
di�erent phases of the modelling cycle emphasise di�erent perspectives: During computer
model veri�cation we typically concentrate on the functioning of agents' internal decisions
and processes as well as the adherence to certain conversation protocols (i.e. mining in
the decision, internal, and external control perspective[s]). Result validation often puts a
stronger focus on patterns related to global structures and processes (i.e. mining in the
structural and external control perspective). During calibration, the exploratory analysis
mainly concentrates on the [... level-encompassing] perspective. Obviously, the task of
model exploration bene�ts from additional support techniques and tools for designing,
executing, and managing large-scale experiments.�

Based on the reviewed literature, Figure 6.8 summarizes possibilities to employ data and process
mining techniques for the exploration of model behavior. The �gure mirrors some of the
dimensions for the classi�cation of analysis techniques introduced in Section 2.4.2: Input data
for mining can be either trace-based (logs) or result-based (reports), where the former case is
characteristic for process mining. Furthermore, attributes of experiment speci�cations, such
as parameter settings, can be fed into mining algorithms to reconstruct relations between
simulation input and output data in the level-encompassing perspective (see e.g. Barton and
Szczerbicka, 2000, reviewed in Section 5.2.3).

Recalling a further dimension from Section 2.4.2, the input for a mining algorithm can cover
multiple simulation runs or only a single simulation run. When data from a single run is
analyzed, there is clearly a high risk of gaining overly specialized and statistically invalid results.

36In their 'process mining manifesto', Aalst et al. (2012, p. 180) also formulate the principle that �log extraction
should be driven by questions�.
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Figure 6.8.: Possibilities of process mining support for the exploration of model behavior derived
from the literature. The �nal step of drawing conclusions from the analysis results
to the real system is adopted from Page and Kreutzer (2005, p. 9), its relation to
data mining (as depicted here) is discussed by Arroyo et al. (2010, p. 422).

Multiple simulation runs can serve as input for the mining algorithms for di�erent reasons: (a)
to increase the credibility and generality of the obtained results by analyzing multiple stochasti-
cally varying replications of the same simulation (see also Page and Kreutzer, 2005, pp. 173,185),
and (b) to explicitly mine di�erences between simulation runs in dependence on varying param-
eter (see also Page and Kreutzer, 2005, pp. 189) settings in the level-encompassing perspective.
In Section 6.4, we brie�y sketch how the semantics of typical numerical simulation statistics
like con�dence intervals might be transferred to the output of process mining techniques.

In the description cited above, the exploratory analysis of model behavior was called a �less
demanding use case� (Knaak, 2006, Sec. 3.3) for two main reasons: Firstly, since the input
data for mining originates from simulations, noisy or incomplete data is normally not an issue.
Furthermore, the logged events and attributes can be tailored to the purpose of the analysis and
the requirements of the applied algorithms well. The focus of analysis towards a certain agent,
class of agents, etc. can be shifted easily; either by �ltering an overall log or by re-running the
simulation and logging from a di�erent perspective.

Secondly, to explore a model's behavior, a visualization of the mined meta-models is often
su�cient, i.e. no further automated processing of these results is required in the �rst place.
However, special cases of exploratory analysis are imaginable where a further 'post-processing'
of the mining results might be required:

• As Czogalla (2007, p. 23) proposes for the analysis of spatial simulation data (see Section
6.2.3.1), mining results might be employed to aid exploratory analyses by pointing the
analyst to relevant regions in simulation output. This idea can also be transferred to
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the process mining context: A trivial example is the marking of all events in a log that
represent the support for a certain reconstructed rule or partial model; as implemented
in the Association Rule Miner of ProM (see Rebuge and Ferreira, 2012, p. 102)

• Mining executable meta-models (or parts thereof) from simulation output can serve as a
basis formodel simpli�cation (as e.g. mentioned in the calibration approaches by Oechslein
et al., 1999 and Fehler et al., 2004, see Section 5.1.2.2) and refactoring. Section 8.3.2.2
will show a simple example of how an architectural improvement can be anticipated
by installing a di�erent logging perspective in a simulation model and reconstructing a
behavioral model from the resulting logs.

Further use cases that employ meta-models reconstructed from simulation data beyond mere
visualization are discussed in the following.

6.3.3. Validation and Veri�cation

Besides the exploratory analysis of simulation results, data and process mining can provide
support for several phases of the validation process (see Section 2.4.3.2). In Figure 6.9, this is
indicated at the example of the main validation phases identi�ed by Page (1991) and Sargent
(2001), i.e. conceptual model validation, veri�cation (in the wider and narrower sense), and
operational validation (see Section 2.4.3.2). Following Page and Kreutzer (2005, pp. 221),
the �gure distinguishes between cases where (a) only simulation data is considered and (b)
simulation data is compared to �matchable output data from the real system� (Page and Kreutzer,
2005, p. 221).

6.3.3.1. Conceptual Model Validation

Precisely speaking, process mining is not a conceptual model validation technique because it
relies on logs observed from the execution of the computer model. However, by abstracting
logs into understandable process models, it supports the application of typical conceptual model
validation techniques such as face validation (see e.g. Section 5.1.1.2). For several reasons, visual
mining results like Petri nets or decision trees build a good basis to let domain experts rate the
plausibility of a simulation:

1. Process mining results can be presented in a 'conceptual' notation, thus abstracting from
details of the computer model and low-level simulation output like traces.

2. Interpretable control �ow, organizational, and decision models might nevertheless further
an understanding of the mechanisms underlying a simulation beyond common high-level
result statistics (see e.g. Kennedy et al., 2007, reviewed in Section 5.2.2.6).

3. Contrary to 'normal' conceptual models, process mining results are obtained from actual
simulation runs of the computer model. Aalst et al. (2012, p. 172) emphasize the focus
of process mining on �real processes (i.e. not assumed processes)�.

4. A valid mining result that represents multiple simulation runs is more general and sta-
tistically signi�cant than an animation of a single run.
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Figure 6.9.: A summary of possible data and process mining support for simulation model
validation based on the literature review in Sections 4 and 5.

To bene�t from these advantages, it is necessary that both simulation practitioners and domain
experts are aware of the peculiarities of applying data mining or process mining algorithms:
The meta-models mined for face validation should be validated themselves, e.g. using cross-
validation with data from further stochastically varying simulation runs (Arroyo et al., 2010,
p. 421). The statistical basis of the obtained results (e.g. number of considered cases, complete-
ness of the analyzed log) as well as the properties and settings of the applied mining algorithms
(e.g. 'hiding' of infrequent dependencies by the Heuristics Miner algorithm, see Section 4.2.3.4)
should be made explicit as part of the experiment speci�cation.

Displaying the behavior of a large MABS in a monolithic model can lead to overly complex pro-
cesses (see e.g. the example in Section 8.3.2.2). Therefore, di�erent mining perspectives should
be applied to obtain an understandable, yet comprehensive view of the simulation results.37

6.3.3.2. Veri�cation in the Wider and Narrower Sense

Process mining results can also support the veri�cation of the computer model. A simple qual-
itative 'veri�cation' (in the wider sense) is already conducted by 'manually' comparing a model
mined from simulation output to the conceptual speci�cation. Furthermore, conformance check-
ing techniques like trace-based model checking (e.g. Howard et al., 2003, reviewed in Section
4.2.5.4) can be applied to detect constraint violations in MABS logs (see also Dongen et al.,

37as advocated in multi-perspective validation approaches like the work by Ndumu and Nwana (1999) reviewed
in Section 5.1.1.4
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2006b, Secs. 1.4.2-1.4.4, reviewed in Section 5.3.4.2). These might even be part of regression
test suites to automatically check the output of every simulation run for inconsistencies.

When a failure in the computer model is detected (possibly on the basis of process mining
results) it is crucial to trace the observed symptoms back to the causative defect in the program
code (for terminology see Zeller, 2006, Sec. 1.6). As reviewed above, such root-cause analysis
(e.g. Zeller, 2006, p. 4) is deemed especially demanding in MABS due to model complexity
(Klügl, 2008, p. 41), unclear micro-macro relations (Klügl, 2000, p. 74), and the inde�nite
border between validation and veri�cation (David et al., 2002, p. 90).

In recent years, approaches have been developed to support root-cause analysis with automated
techniques including data and process mining. A thorough treatment of automated debugging
techniques in software-engineering is provided in the book by Zeller (2006). In Section 5.3.1,
we reviewed the work by Bose and Suresh (2008) who apply process mining for this purpose.

The basic principle of automated root cause analysis is to record multiple traces of both 'failing'
and 'succeeding' program executions and then use automated techniques to identify the minimal
set of states and/or events in the program that are necessary to reproduce the error (Bose and
Suresh, 2008; Calderon-Ruiz and Sepulveda, 2011; Zeller, 2006). Zeller (2006, p. 305) refers to
such procedures as delta debugging and relates them to the scienti�c method (Zeller, 2006, Ch. 6)
considered in philosophy (see e.g. Popper, 1982, mentioned in Section 2.4.3.3). Characteristic
states and events are described either at the level of program constructs like statements and
variables (Bose and Suresh, 2008; Zeller, 2006), or � especially when process mining is used �
in terms of model elements like activities.38

Ou-Yang and Juan (2010, reviewed in Section 5.3.4.5) show at the example of deadlock detection
that process mining can also support veri�cation in the narrower sense. Di�erent from simula-
tion model implementations, formal models mined from simulation logs are abstract enough to
be analyzed with exhaustive veri�cation techniques like model checking or reachability analysis.
In this regard, process mining could be considered as a technique for �program abstraction�.39

However, an important di�erence is that abstractions obtained via process mining are not based
on the computer model's source code (as in Visser et al., 2003) but induced from example logs.
Therefore the reconstructed model might be veri�ed exhaustively indeed, but only statistical
evidence can be gained that it is actually bi-similar to the original computer model.

6.3.3.3. Operational Validation

In (Knaak, 2006, Sec. 3.3), we focused on the use of data and process mining to support
con�rmative operational validation:

�Though DM is in principle an explorative analysis technique, we might also employ it to
support model validation in a con�rmative fashion. We therefore generate meta-models
of the data obtained from the real system and from the simulation (i.e. two models of
interaction protocols in our continuing example). We then validate the simulation results
by comparing properties of both meta models, thereby using the real system's meta-model

38see e.g. the failure identi�cation approach for business processes reported by Calderon-Ruiz and Sepulveda
(2011)

39As termed by Visser et al. (2003). Technical relations between process mining and abstract interpretation are
discussed by Carmona and Cortadella (2010).
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to classify the simulation results as valid or invalid [see also Remondino and Correndo
(2005); Arroyo et al. (2010) reviewed in Section 5.2.2.3]. This procedure is especially
valuable for structural and interaction-related patterns that are not explicitly coded in the
simulation model.

Traditionally, statistical tests and non-interpretable meta-models such as neural networks
(see e.g. Kilmer et al., 1997) are applied in this context. However, using more application-
speci�c understandable meta-models such as decision trees [see e.g. Nair et al. (2004) re-
viewed in Section 5.2.2.2], Petri nets [see e.g. Ou-Yang and Juan (2010) reviewed in Section
5.3.4.5], or social network graphs (see e.g. Christley et al., 2004) we can support the valida-
tion of qualitative simulation results by providing the user with a better understanding of
why results are classi�ed as valid or invalid. Beyond that, such meta-model-based valida-
tion allows to build automated validation suites similar to the well-known unit tests from
software engineering (see e.g. Link, 2002). A drawback of supporting automated validation
with DM techniques is that the reconstructed meta models might be erroneous and require
validation themselves.�

This description indicates that the conformance between simulation results and real system
data can be assessed with di�erent approaches: One option is to compare high level features
of meta-models reconstructed from real and simulated data. This variant especially supports
the requirement to validate MABS at the macroscopic level while abstracting from microscopic
trajectories (see e.g. Rand et al., 2003, p. 2, reviewed in Section 5.1.2.3). We might e.g. rate a
multi-agent work�ow (external control perspective) mined from simulation data as valid when
(a) it exhibits similar causal precedences as a matchable model reconstructed from real data
and (b) the distributions of activity durations in both models do not di�er signi�cantly.40 The
literature review indicates that feature-based comparisons of meta-models can be applied in
other perspectives as well; e.g. using metrics from social network analysis in the structural
perspective.

Another possibility is to evaluate the match between the meta-models reconstructed from sim-
ulation data and sample data from the real system (or vice versa). In the internal and external
control perspectives, this procedure relates to log replay-based conformance checking: Traces of
the real system are replayed in the process model mined from the simulation log (or vice-versa)
to assess its �tness and appropriateness (see e.g. Song and Aalst, 2008, p. 6 and Section 4.2.5.4
of this thesis). For decision models used in the decision and level-encompassing perspectives we
can test how well the decision rules reconstructed from the simulation succeed to classify situ-
ations observed in the real system (or vice versa). Song and Aalst (2008, p. 7) propose �tness
and appropriateness measures for sta� assignment rules as an example of the organizational
perspective.

Again, an important precondition for purposeful meta-model-based validation is that the models
reconstructed from simulation and real system data have at least passed a face validation, or
better a statistical cross-validation themselves. When su�cient data from the real system is
not available, the output of one or more reference models can take its place (see Xiang et al.,
2005, p. 48, reviewed in Section 5.1.2.3).

40This approach is taken by Calderon-Ruiz and Sepulveda (2011).
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6.3.4. Optimization and Calibration

The literature reviewed in Section 5 (e.g. the work by Remondino and Correndo, 2006, reviewed
in Section 5.2.2.3, and by Barry and Koehler (2004), reviewed in Section 5.2.2.4) shows that
data and process mining bear potential to support the di�cult task of MABS optimization
and calibration. In the pre-publication (Knaak, 2006, Sec. 3.3) the following possibilities are
discussed:

�[This ...] use case is the most demanding due to a high degree of automatisation: We
can support optimisation and calibration tasks in a MABS study by combining simulation-
based optimisation with DM. [...] A problem [in simulation-based optimization] is that
the objective function normally returns a one-dimensional value in order to ensure the
comparability of di�erent scenarios. This is acceptable for an evaluation based on simple
numerical results. However, it limits the applicability of simulation-based optimisation
to MABS, whose typically complex and qualitative results cannot easily be reduced to a
single value (see also Calvez and Hutzler, 2006). DM can in princip[le ...] help to tackle this
problem: Again following our above example, we can integrate a process mining algorithm
into the objective function that reconstructs a model of an interaction protocol from the
simulation trace. Due to the explicit representation of this model, we can employ automated
methods that help to judge the quality of this model (e.g. by analysing statistical properties
such as delay times or formal li[v ...]eness or safety properties). From this rating we might
compute an objective function value.

[...] Calibrating a MABS model is often di�cult, but simulation-based optimisation and
DM might help to support this task [as well]. As in operational validation, we can compare
properties of the real system's meta-model (usually in the external control or structural
perspective) with a related meta-model extracted from the simulation's output by means
of some similarity measure. The similarity measure is the objective function that we try
to maximise during the simulation-based optimisation process.

Another idea is to employ DM in the [level-encompassing ...]41 perspective to support the
search for better parameter con�gurations. In simulation-based optimisation, we mostly ap-
ply blind search algorithms or application-independent heuristics (e.g. genetic algorithms).
However, using DM techniques, we can try to extract an interpretable meta-model of how
the varied parameters in�uence the results to be optimised [...]. This meta-model can either
guide the search in a more application-speci�c way, or at least help the user to validate
the course and the results of the optimisation process. For an example [...] see Barton and
Szczerbicka (2000) [reviewed in Section 5.2.3].

[...] An important question is to what exten[t ...] the application of automated techniques
is tractable and sensible in [... simulation-based optimisation]. An alternative approach are
techniques such as interactive genetic algorithms (Boschetti, 1995) that leave the rating of
scenarios to the user [see Gehlsen, 2004, p. 67]. In this context DM techniques can also
be employed to provide the user with meaningful and understandable representations of
complex simulation results.�

Figure 6.10 illustrates these and further possibilities to support simulation-based optimization
with data and process mining. While 3 variants (i.e. manual result evaluation, automated
model-based result evaluation, and optimization with the aid of interpretable multi-level mod-
els) have been discussed in (Knaak, 2006) as cited above, 3 further use cases can be added based
on the additional literature reviewed in Section 5. These will be explained in the following.

41In (Knaak, 2006) we used the term �multi-level perspective�.
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Figure 6.10.: An overview of possible integrations of data and process mining with simulation-
based optimization based on the literature. The diagram also re�ects the main
components of simulation-based optimization systems like DISMO presented by
Gehlsen and Page (2001, p. 513).

6.3.4.1. Structural optimization

Simulation-based optimization is commonly used to �ne-tune model parameters towards an
optimal solution for a given problem (Hagendorf, 2009, p. 7). Beyond that, some authors
(e.g. Hagendorf, 2009, Sec. 6) also apply simulation-based optimization to the structure of
(partial) models. Due to the possibility to obtain mining results at the conceptual modeling
level, process mining techniques might provide valuable support for the optimization of the
model structure. One might e.g. �nd that a certain precedence in a behavioral model (internal
control perspective) or a cooperation between certain roles (structural perspective) leads to
particularly high or low values of the objective function.

Automation could be enabled by combining optimization and process mining with an automated
root-cause analysis (Zeller, 2006) as described in Section 6.3.3. While process mining has
occasionally been combined with (automated) structure optimization in the context of business
process analysis (see Hongtao et al., 2006) case studies in the MABS domain are still rare. The
behavior alignment techniques by Meyer and Szirbik (2007, reviewed in Section 5.3.4.5) might
be considered as an example.
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6.3.4.2. Model Abstraction and Decomposition

In Section 5.1.2.2, we reviewed the white box calibration approach by Fehler et al. (2004), who
apply model abstraction and decomposition to reduce the complexity of MABS calibration
when a-priori knowledge of the model structure is available (as opposed to black box cali-
bration). While Fehler et al. (2004) propose to employ distribution �tting and conventional
(non-interpretable) meta-models for model abstraction, process mining techniques might be an
interesting alternative due to the closer relation of the mining results to conceptual models in
MABS.

By applying process mining to logs recorded at a mesoscopic level (e.g. groups of agents)
one might even be able to reconstruct a �microscopic meta-model� as a basis for calibration, as
proposed by Oechslein et al. (1999, reviewed in Section 5.1.2.2). Nevertheless, the semantic
transfer of microscopic parameters under calibration to a higher level of aggregation remains
challenging. Mining results from the level-encompassing perspective could possibly provide
hints about relations between agent and group behavior.

Besides abstraction, process mining results might also support model decomposition. Fehler
et al. (2004, p. 308) emphasize that a separate calibration of model components is only admis-
sible if the components are su�ciently independent. Process mining results in the control �ow
and organizational perspectives can provide an overview whether dependencies between model
components (e.g. 'causal' dependencies between plans or interactions of certain agent types)
exist that forbid a functional or behavioral decomposition. Change point detection, as e.g.
proposed by Bose et al. (2011a, reviewed in Section 4.2.5.3), can additionally help to identify
phases of similar agent behavior as a basis for temporal decomposition.

6.3.4.3. Local optimization

As e.g. shown by Fehler et al. (2006a, cited in Section 5.1.2.2), an alternative possibility to
perform simulation-based optimization is the equipment of individual agents with learning
algorithms. This enables the modeled society of agents to learn an optimal solution (or an
approximation thereof) of the given problem by means of local optimization. In the following
section we will brie�y discuss how process discovery and extension algorithms can support the
implementation of adaptive agents.

6.3.5. Design of Adaptive Agents

The last two use cases discussed in this chapter fall out of the scope of simulation analysis and
validation as the main subjects of this thesis. An integration of process mining and MABS
might also add to further tasks within agent-based modeling, like the design of adaptive agents
(discussed in this section) and the analysis of the model building process itself (discussed in
Section 6.3.6).

In the pre-publication (Knaak, 2006, Sec. 3.3), the former of these use cases is characterized as
follows:

�The validity of many MABS models (e.g. sociological models simulating the e�ect of
downward causation) can be enhanced by the integration of agents that are able to observe
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and re�ect on the structure and global behaviour of their environment, i.e. perform DM in
the external control, structural, or even [level-encompassing42 ...] perspective. [This case
is somewhat related to the idea of "agent-aided interpretation" described by Drogoul et al.
(2002, p. 11), see Section 5.1.1.1]

Agents might also acquire or adapt their internal decision and control �ow models during
the simulation by imitating other agents' behaviour. Following our previous example, an
agent might be equipped with the ability to observe messages exchanged by its acquain-
tances and learn models of their protocols using process and decision mining techniques
([see also] Dongen et al., 2006b [...]). In our Mulan architecture [see Section 3.3.3.1], such
protocols can be added dynamically to the agent's range of behaviour[...], which allows to
simulate the ability to learn certain norms or interaction rules from observation. However,
the task seems challenging, since the agent must learn online in a completely autonomous
fashion.�

Though envisioned by authors like Remondino and Correndo (2005, p. 4) and Dongen et al.
(2006b, p. 1), reviewed in Sections 5.2.1 and 5.3.4.2, the development of agents that au-
tonomously perform process mining as part of a running simulation still poses several challenges.
These are related to the fully automated execution of mining algorithms (without letting a user
select data, calibrate parameters, validate results, etc. ) on the one hand and to the recon-
struction of immediately executable models (without the need to 'manually' add programming
language statements, etc.) on the other hand.

To the knowledge of the author, no fully automated process mining system or agent has been
presented in the literature so far.43 This might be due to the high modeling level and com-
plexity of process mining results as compared to other models used in autonomous learning
like neural networks. Compared to such low-level models, a learning agent built upon process
mining algorithms would o�er the advantage that the learned model representations (e.g. deci-
sion, control �ow, and organizational models) are closer to the conceptual modeling level and
therefore easier to validate by domain experts. This tradeo� between e�ectiveness of learning
algorithms and interpretability of model representations is typical in machine learning (see e.g.
Papadimitriou and Terzidis, 2005, p. 528).

Despite the limited e�ort and success in building autonomous process mining agents, the lit-
erature reviewed in Chapters 4 and 5 provides some starting points: The 'simulation model
mining' approach by Wynn et al. (2010, reviewed in Section 5.3.4.1) shows that executable
work�ow simulations can be generated by merging process mining results from di�erent per-
spectives with a high degree of automation. The AgentAcademy system by Mitkas et al. (2002)
(Section 5.2.4.3) indicates that agents with a simple, standardized architecture (in this case
decision rules formulated in JESS ) can be (re-)trained with the aid of data mining techniques.
The behavior alignment approach by Meyer and Szirbik (2007, reviewed in Section 5.3.4.5)
depicts further options to adapt the behavior of Petri net-based agents without having to learn
communication protocols 'from scratch'.

In the current state of research, a concentration on less automated applications of process
mining, such as simulation analysis and validation, appears reasonable. Metaphorically speak-
ing44, the requirements of a simulation analyst and a simulated agent performing process mining
42Again, the original formulation used the term 'multi-level perspective'.
43One approach towards this direction is discussed by Jaroucheh et al. (2011).
44Of course we do not attribute any actual self-motivation to a simulated agent.
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largely overlap with regard to the observed data, the considered mining perspectives, the chosen
result representations, and the underlying analysis objectives (i.e. understanding, predicting,
and improving the observed behavior). Therefore, concepts and techniques for simulation anal-
ysis and validation can provide a valuable basis for later extensions towards the development
of autonomously learning agents.

In line with authors like Wynn et al. (2010) and Meyer and Szirbik (2007), we further argue
that Petri net-based MA(B)S architectures are a particularly appropriate starting point to build
adaptive process mining agents due to the similarity of model representations (see also Cabac
et al., 2006b). Section 7.1.2.4 will brie�y sketch an integration of process mining techniques
into learning Petri net agents on the platformMulan/Capa. For the reasons stated above, the
integration will only be considered from a software engineering point of view without discussing
necessary extensions of process mining algorithms.

We continue this section with a discussion of dimensions that must be regarded when attempting
to build learning agents based on process mining techniques.

6.3.5.1. Discovery vs. Extension

Agents can either learn new or adapt existing behavior models on the basis of observations. This
distinction mirrors the process mining tasks of discovery and enhancement, where the latter
term is used by Aalst (2011a, p. 10) to subsume the tasks of model improvement and extension
(Aalst, 2006, p. 3), as reviewed in Section 4.2.2.2. For learning agents, model enhancement
might be preferred for several reasons.45

From a technical point of view, coherent agent behavior might be easier to obtain when large
parts have already been pre-de�ned by the modeler. From a modeling point of view, it appears
plausible that an agent comes with some initial knowledge about the simulated domain (i.e. 'the
world it dwells in'), which is then gradually improved during simulation. In accordance with
the above characterization from (Aalst, 2011a, p. 10), process mining-based model enhance-
ment might be applied in learning agents either as an improvement (e.g.the model structure is
modi�ed to better �t the simulated domain) or as an extension (e.g. the agent annotates its
behavioral model with new information like time constraints) of the internal models.

Note that in the TAL approach, Stuit et al. (2007b, p. 247) initially proposed the use of process
discovery to realize adaptive agents, but then settled on the implementation of an enhancement
technique in the form of behavior alignment (Meyer and Szirbik, 2007); see Sections 3.3.3.5 and
5.3.4.5.

6.3.5.2. Centralized vs. Individual Mining Support

From a software engineering point of view, process mining can be added to a MA(B)S either by
equipping individual agents with this functionality or by adding a distinct, singleton46 'process
mining service' to the platform. Both variants have characteristic advantages and drawbacks.

45The following discussion is partly based on ideas by Kruse (e.g. 2008) on learning in MABS in general.
46roughly in the sense of the well-known design pattern described by Gamma et al. (1995, pp. 127)
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Technically, it appears reasonable and resource-e�cient to encapsulate complex process mining
functionality o�ered by systems like ProM (see Section 4.2.6.1) in a dedicated agent that
provides these services to other agents on the platform. This agent might even be �omniscient�47

in the sense that it has access to all data logged in the current simulation and possibly to
additional data from past simulations.

Conceptually, it might often be more plausible to implement process mining abilities in indi-
vidual agents due to the lack of realism induced into the model by �omniscient� agents (Moreno
et al., 1999, p. 210). In doing so, we can straightforwardly restrict the available training data
to the local perception radius of an agent (see Klügl, 2000, p. 59, reviewed in Section 3.1.1.1).
Furthermore, agents can be equipped with di�erent mining algorithms or parameter settings
to model variations in learning strategies and abilities.48

A combination of both approaches is also possible: An agent might simply pass its local log
data and parameter settings to the (singleton) component that encapsulates the process mining
system. A similar strategy is e.g. followed in (Knaak, 2002) to reduce the memory consumption
of the rule engine JESS in MABS with the framework FAMOS. Note that Mitkas et al. (2002)
propose a centralized mining architecture in their AgentAcademy system (see Section 5.2.4.3),
whereas Meyer and Szirbik (2007, pp. 279) and Dongen et al. (2006b, p. 15), at least on the
conceptual level, seem to assume individual process mining support for adaptive agents.

6.3.5.3. Re-Training of Simulated Agents

A further question, that shall not be discussed in detail here, is how to determine states and
events that cause a re-training of learning agents in simulations. In the context of reinforcement
learning, Kruse (2008) notes that most machine learning approaches assume a time-driven
adaptation of the agents' internal models in regular intervals. In this regard, event-driven
simulations are more demanding since the irregular time intervals between events at least require
a time-weighted assessment of an agent's recent performance when determining the need to re-
learn (Kruse, 2008). We refer to Kruse (2008) for a further discussion of the embedding of
machine learning techniques into event-driven agent-based simulations.

6.3.6. Analysis of the Model Building Cycle

The �nal use case is only loosely related to the analysis and validation of simulation models
as the main subject of this thesis. Here, the analysis targets are not simulation models and
matchable real systems, but activities performed by persons involved in a simulation study.
In Section 5.3.1, we learned that the analysis of software development processes is one of
process mining's foremost applications (see e.g. Cook and Wolf, 1998; Poncin et al., 2011;
Rubin et al., 2007). Simulation studies share several phases (at least real system analysis,
conceptual modeling, implementation, and parts of validation) with process models for software
development (see also Brade, 2003, p. 20). It therefore seems plausible that process mining can
also support the analysis and improvement of simulation model building cycles.

47as to use the term by Moreno et al. (1999, p. 210) in a slightly di�erent context
48see the discussion on heterogeneity of multi-agent models led by Klügl (2000, p. 62)
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To transfer software development process mining (e.g. Rubin, 2007; Rubin et al., 2007) to the
simulation domain, several extensions are required. This is due to the fact that the mining of
�software repositories� (Rubin et al., 2007, pp. 172) typically focuses on the phases of software
design (modeling), implementation, testing, and review. However, a simulation study usually
comprises additional phases of operational validation, experimentation, result analysis, and
transfer of knowledge to the real system (Page and Kreutzer, 2005, p. 14), which are not (or
only in a rather di�erent form) considered in a conventional software development project (see
also Brade, 2003, p. 20).

Based on a diagram by Rubin et al. (2007, p. 172), Figure 6.11 sketches possible extensions
of software development process mining towards the analysis of simulation studies. White
diagram elements display repositories, roles, and activities of software (development) process
mining adopted from (Rubin et al., 2007, p. 172). These authors consider data from bug
tracking and revision management systems as well as several web- and E-mail-based sources to
analyze models of software development processes.

Diagram elements shaded in grey represent additional data sources, roles, and mining ap-
proaches that are more speci�c for the analysis of simulation studies. Data collected from
requirements tracking systems (e.g. O'Brien, 1996), analysis documents, and usage logs of mod-
eling tools might be considered to gain a better overview of activities performed by modelers,
domain experts, and managers during analysis and modeling.

While such data is also relevant for software development in general, it is particularly relevant
in model-driven approaches like Paose (Section 3.3.3.2). From the log of the Petri net IDE
Renew (Section 2.3.2.5), one might e.g. strive to gather knowledge about relations between
properties of the modelled net (such as its size, number of contained object nets, or code
inscriptions) and the need to re-simulate and correct it during a modeling session.

The lower half of Figure 6.11 focuses on the experimentation-related phases that distinguish
simulation studies from general software development projects. Relevant data sources for these
phases include validation reports, experiment and result databases, logs of knowledge discovery
processes conducted during result analysis, usage data of simulation tools, and documentations
of decisions derived from simulation results. While much of this data will be hard to obtain in
a form that is suitable for process mining, a few approaches from the literature might serve as
starting points.

In Section 5.3.4.1 we reviewed the 'decision process mining' approach by Dolean and Petrusel
(2011) and its relations to the simulation domain. However, the simple decision processes that
these authors analyze on the basis of logs from decision support systems are still far from the
complexity of real-world decisions based on simulation models.

The machine learning and KDD community has coined the term meta learning or meta min-
ing for the 'self-application' of data mining techniques to the analysis of knowledge discovery
processes (Hilario et al., 2011, p. 273). Hilario et al. (2011, pp. 302) e.g. apply data ming to a
database of mining experiments (Hilario et al., 2011, p. 281) to relate properties of algorithms
and work�ows to their mining performance. ProM also provides a usage log in MXML as a
source to analyze process mining sessions with the tool itself.

Due to the similarities between KDD and simulation analysis (Köster, 2002), meta mining
might prove useful in the simulation domain as well. This especially holds true when a data
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Figure 6.11.: 'Model building cycle mining' as an extension of software (development) process
mining. White diagram elements are adopted with modi�cations from the �process
mining framework for software processes� by Rubin et al. (2007, p. 172). Further cited
approaches are explained in the text.
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mining-based analysis process is assumed. One example of meta learning from simulation data
is the work by Ewald et al. (2009): These authors apply data mining to support the selection
of appropriate simulation algorithms (e.g. random number generators) for certain model types
based on simulation performance data (Ewald et al., 2009, p. 14:1). As reviewed in Section
5.4.2.1, the process-aware simulation frameworkWorMS from the same research group (Rybacki
et al., 2011) also foresees components to analyze the enacted work�ows, but without explicit
regard to process mining.

Clearly, the mining of model building cycles is not restricted to MABS in the �rst place.
Following the argumentation by Cabac (2007), a community of model or software developers
might be considered as a MAS itself. Therefore, an agent-oriented process mining framework,
as advocated in this thesis, might form a suitable basis for 'model building cycle mining' in
general. In doing so, the practical problems to be solved are partly similar, but also go beyond
software development process mining, including:

• Data availability : Data from many di�erent sources must be collected and integrated
(Poncin et al., 2011, p. 5). A work�ow-based simulation system like WorMS (Rybacki
et al., 2011) and a data mapping framework like FRASR (Poncin et al., 2011), developed
for process mining in software engineering, might be an appropriate technical basis.

• Privacy concerns: Process mining is not applied to simulated agents but to real persons
involved in a simulation study. Therefore, ethical aspects of the performed analyses
require speci�c attention (see also Aalst et al., 2012, p. 190).

• Appropriate target studies: Strictly structured process models like the V-model are typ-
ically applied in large organisations and safety-critical simulations (see e.g. Brade, 2003,
pp. 30). Such processes might provide the best data quality for analysis due to formalized
and well-documented work�ows. However, in agile processes like Paose, post-hoc analyses
with process mining could potentially deliver more interesting and relevant results.

6.4. Simulation-speci�c Requirements

In the preceding sections, we have punctually stated requirements that the domains of MAS and
simulation pose on the application of process mining algorithms. We will now summarize and
extend this discussion with a speci�c focus on requirements related to the analysis of di�erent
types of logs handled in simulation studies and logs collected from multiple replications of
simulated processes.

Summarizing the �ndings by Remondino and Correndo (2006) as well as Cabac and Denz
(2008), we can identify 3 types of logs encountered during the course of a simulation study:49

1. Logs observed from real systems are considered during real system analysis and validation.

49The author was pointed to the idea that di�erent forms of process mining (in particular software process mining
vs. software development process mining as described in Section 5.3.1) can be characterized according to
the analyzed log types by a reviewer of the article published as (Cabac and Denz, 2008). This reviewer also
indicated that the same approach is followed by Günther et al. (2006) to distinguish change mining from
'conventional' process mining (see Section 4.2.5.3).
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2. Logs generated by simulation models build the basis for model exploration, validation,
optimization (calibration), and the training of adaptive simulated agents. These logs can
be either program-centric focusing on programming language constructs like methods, or
model-centric focusing on high level activities.

3. Logs of activities performed by model developers and simulation users (called simulation
study logs in the following) are needed for the analysis of the model building cycle.

Each type of logs poses speci�c requirements on the process mining algorithms applied to their
analysis. In general, �multi-agent activity logs� (Rozinat et al., 2009d) can be event- or activity-
based. Communication logs of message-based MAS typically contain instantaneous events.
Their analysis therefore requires mining algorithms that do not depend on information about
activity durations (e.g. the α algorithm, see Section 4.2.3.1).

Recalling the properties of process mining techniques summarized in Section 4.2.2.3 (based on
sources like Medeiros, 2006), a number of general guidelines can be identi�ed, that are described
in the following.

6.4.1. Robustness and Degree of Generalization

Due to the potentially 'perfect' data quality of simulation logs, coping with noise and incom-
pleteness is mainly an issue for the mining of real system and simulation study logs. An
exception are testbed simulations for adaptive agents where noise is explicitly generated to
challenge the robustness of the examined learning algorithms. The typical lack of data in real
system analysis might suggest the use of mining algorithms with lower requirements on log com-
pleteness, such as local completeness in the α algorithm (see Aalst, 2010a, pp. 37-38, reviewed
in Section 4.2.3.1).

In most MABS, events are scheduled in a purely sequential fashion to ensure the repeatability
of experiments. However, in truly concurrent environments like Renew50 or in optimisti-
cally synchronized distributed simulations (see e.g. Page and Kreutzer, 2005, p. 376), logging
mechanisms must be able to compensate causality errors of events generated by independent
simulation components. We encountered this problem in the case study reported in Chapter
7. As mentioned in Section 5.2.4.1, vector clocks are a mechanism to ensure event causality in
distributed systems, which is also used in the MAS analysis tool ACLAnalyser (Vigueras and
Botia, 2008, p. 193).51

In real system analysis and adaptive agent design, a strongly generalizing process mining algo-
rithm might, to a certain degree and when used with care, help to compensate lacking data and
provide the required level of abstraction. For exploratory analysis and face validation, an algo-
rithm like the Heuristics Miner seems appropriate due to its ability to focus on main behavior
while neglecting infrequent cases (Weijters et al., 2006, p. 24). For operational validation and
veri�cation in the wider sense, an exact algorithm (e.g. based on the theory of regions as in
Rubin et al., 2006, reviewed in Section 4.2.3.3) might be more appropriate to reduce the risk
of suppressing infrequent, but nevertheless relevant error cases.

50Note that timed Renew simulations always run in a sequential mode (see Section 2.3.2.5).
51For a discussion of process mining on logs recorded in distributed environments see e.g. Kim (2009).
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6.4.2. Relevant Control Flow Constructs

To the impression gained from the literature review and our practical experience from the case
studies, the following control �ow constructs might be most relevant with respect to the mining
of agent behavior:

• Duplicate tasks often occur when complex models of behavior are built from a restricted
set of events.

• Loops are relevant because agents in MABS typically exhibit a temporally extended life
cycle with repeated execution of similar behavior.

• Though most MABS run sequentially (see above), concurrent splits and joins are used
to express 'causal' independence of activities at the conceptual level, and to simplify the
resulting behavioral models (see e.g. Schütt, 2003, reviewed in Section 4.2.3.3).

• Hierarchical sub-processes are an important construct to handle the complexity of agent
behavior.

• Multiple instantiation patterns often occur in agent interaction protocols like e.g. contract
net.

• Non-stationary processes can be observed in non-steady-state simulations (Page and
Kreutzer, 2005, p. 188) like our courier service simulations described in Chapter 8. They
are especially common in systems of self-organizing and adaptive agents.

Process mining techniques for the handling of these constructs have been discussed in the liter-
ature review (Chapters 4, 5) and arranged into a coherent framework of analysis perspectives
in Section 6.2. With the exception of non-stationary processes, which will be treated in the
dissertation by Kruse (see 2008), all mentioned constructs are also in the focus of the case
studies presented in Chapters 7 and 8.

6.4.3. Usability of Mining Techniques for Simulation Practitioners

A common observation in practical simulation studies is that simulation users are often unaware
of the pitfalls related to statistical output analysis and validation (Page and Kreutzer, 2005,
p. 21). This problem increases when they are confronted with a complex analysis technique like
process mining and its related algorithmic peculiarities. Targeting �non-expert users� of process
mining in general, Aalst et al. (2012, p. 191) claim that:

�Even if it is easy to generate process mining results, this does not mean the results are
actually useful. The user may have problems understanding the output or is tempted to
infer incorrect conclusions. To avoid such problems, the results should be presented in a
suitable representation [...and their] trustworthiness [...] should always be clearly indicated.
[...] In fact, existing process mining techniques do not warn for a low �tness or over�tting.

To further the thoughtful application of process mining in domains like simulation, techniques
based on straightforward algorithmic principles, with a manageable number of parameters (e.g.
the α algorithm) might even be preferable in comparison to more powerful, but less usable
techniques like e.g. genetic algorithms. This e�ort, which somehow mirrors the principle of
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Occam's Razor (Section 2.4.3.4), is clearly limited by the ability of 'simple' process mining
algorithms to handle the complexity of models and data in MABS.52

An alternative approach, also mentioned by Aalst et al. (2012, p. 191), is to reduce the di�cul-
ties of applying mining algorithms with the aid of software assistants: As reviewed in Section
4.2.3.4, Burattin and Sperduti (2010) developed an algorithm to identify appropriate parameter
settings for the Heuristics Miner algorithm. However, an automated optimization procedure
brings in further complexity itself that must, at least to a certain degree, be understood by the
user to rate the quality of its results. Due to such di�culties, Aalst et al. (2012, p. 191) regard
�improving the usability [and ...] understandability [of process mining techniques] for non-experts� as
an important goal of future process mining research:

�The challenge is to hide the sophisticated process mining algorithms behind user-friendly
interfaces that automatically set parameters and suggest suitable types of analysis.�

6.4.4. Handling of Multiple Stochastic Simulation Runs

Simulation experiments typically consist of multiple simulation runs where (a) di�erent sce-
narios are evaluated (Page and Kreutzer, 2005, pp. 189) and (b) multiple replications of the
same scenario are simulated to increase the statistical signi�cance of the results (Page and
Kreutzer, 2005, pp. 173,185). Statistical measures like con�dence intervals commonly capture
the range of variation within a set of (stochastic) simulation results (Page and Kreutzer, 2005,
pp. 180). As a technique for simulation analysis, process mining must also provide information
about similarities, di�erences, and stochastic variations in a collection of results. Basically,
every simulated scenario and replication results in a distinct log from which process mining can
reconstruct a meta-model representing the respective run.

For the explicit comparison of one or more meta-models from the result collection, an applica-
tion of methods for delta analysis (see e.g. Aalst, 2005b) appears manifest. These are originally
used for �comparing the actual process, [...] obtained through process mining with some prede�ned pro-
cess� (Aalst, 2005b, p. 203). Aalst (2005b, pp. 206) summarizes several techniques for manual
and automated delta analysis that might also be applied to the analysis of multiple simulation
runs:

• Manual comparison of two or more reconstructed models, which �for large processes [...]
may be di�cult� (Aalst, 2005b, p. 206).

• Automated �highlight [of] di�erences between two models in a graphical fashion. How-
ever, most of such techniques [...] focus [...] on syntactical [...] rather than semantical
di�erences.� (Aalst, 2005b, p. 206). One example of a simple graphical comparison tool
is the ImageNetDi� plugin, which visualizes di�erences between two Petri nets modelled
in Renew (Betz et al., 2011, p. 172).

• Application of concepts to describe behavioral inheritance in control �ow models. This
includes �the notion of the Greatest Common Divisor (GCD) and the Least Common Multiple

(LCM) of two or more processes� (Aalst, 2005b, p. 206). According to Aalst and Basten

52In this context, recall the famous �quote attributed to Einstein� that �everything should be made as simple
as possible but not simpler� (http://en.wikiquote.org/wiki/Albert_Einstein, last visit 2012-10-27).
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(2001, p. 40)53, �the idea is that the GCD should capture the commonality of all [model] variants,
i.e. the part they agree on. The LCM should capture all possible behavior of all the variants�.
Taking on the analogy with statistical measures, the GCD might be related to an 'average'
or 'median' behavior, while the LCM focuses on behavioral 'variance'.

• Computation of change regions that not do only consider syntactic di�erences of elements
between two models, but also regard for semantic e�ects that these di�erences have on
neighboring model elements (Aalst, 2005b, p. 206).

For the display of GCD and LCM, the techniques mentioned by Aalst et al. (2012, p. 184,
reviewed in Section 6.2.7) might be applied to visualize frequencies and variances of model
element occurrences in the underlying collection of models. Nevertheless, the LCM of a strongly
varying collection of models can be a rather complex and di�cult to understand model itself.

Li et al. (2011) propose an alternative approach to express the degree to which model variants
deviate from a prede�ned reference model. These authors �rst calculate the distance d(S,S′)

between a reference model S and every model variant S′ in terms of the �minimal number of
high level change operations [see Section 4.2.5.3] needed for transforming S into S′� (Li et al., 2011,
p. 412). Then the average weighted distance in a model variant collection can be determined
as (Li et al., 2011, p. 413):

D(S,M) =

∑n
i=1 d(S,Si) · wi∑n

i=1wi
, (6.2)

where wi is the number of occurrences of model variant Si in a collection of size n. For the
case that no reference model is given a-priori, Li et al. (2011, Sec. 6) also present a heuristic
algorithm to mine a reference model S from the collection of model variants {S1, ..., Sn} such
that the average weighted distance is minimized.

Since the mined reference model S represents the �'center' of the variants� (Li et al., 2011,
p. 426), it can again be identi�ed with the 'average' behavior found in the model collection.
By additionally determining the two model variants S′ and S′′, which di�er most strongly from
the reference model and from each other (i.e. dS,S′ + dS,S′′ + dS′,S′′ are maximized), one might
state a kind of 'con�dence interval' describing the collection in terms of three models.

Drawbacks of the approach by Li et al. (2011) are that (1) it is restricted to block structured
models (Li et al., 2011, p. 411), and (2) the computation of the distance measure d is a NP -hard
problem (Li et al., 2011, p. 412). A general drawback of the reviewed methods in the context of
simulation is that only the control �ow perspective is considered. While Li et al. (2011, p. 431)
suggest to include information on data �ow in the future, temporal information (durations of
activities, etc.) might be most important for the simulation domain.

Further peculiarities of simulation data analysis are often related to the handling of non-
stationary process phases (e.g. detection of a simulation's �warm-up phase�, Page and Kreutzer,
2005, p. 174). Within our framework, these are (at least conceptually) covered by the adaptivity
perspective discussed in Section 6.2.5.

53referenced in (Aalst, 2005b, p. 206)

270



6.5. Summary and Contributions

6.5. Summary and Contributions

In this chapter, we have presented a conceptual framework for the integration of process mining
and MABS. It is an attempt to integrate many ideas encountered in the review of the state-
of-the-art in process mining (Chapter 4) and conventional or data mining-supported MABS
analysis (Chapter 5) into a coherent scheme. The framework's dimensions of analysis perspec-
tives and use cases are chosen in accordance with common classi�cation schemes in modeling
(e.g. UML, see Jeckle et al., 2002), process mining (see e.g. Aalst, 2006; Rembert and Ellis,
2009), and (data mining-supported) MA(B)S validation (see e.g. Arroyo et al., 2010; Nair et al.,
2004; Ndumu and Nwana, 1999; Remondino and Correndo, 2005).

Based on the literature on process mining and MAS, six abstract analysis perspectives have
been identi�ed, i.e. decision, internal control, external control, structural, adaptivity, and level
encompassing perspective. The mechanism of process extension (Aalst, 2011a, p. 10) was
consulted to add domain-speci�c perspectives. Following the approach by Rembert and Ellis
(2009), the perspectives were concretized by an overview of relevant process dimensions and
dimensional relations. In doing so, existing process mining perspectives, algorithms, and model
representations were transferred into an explicitly agent-based context.

Integrating literature on data mining, process mining, (data mining-based) MA(B)S valida-
tion, and software reverse engineering, six use cases in the model building cycle were identi�ed.
This includes real system analysis, simulation model exploration, validation, optimization and
calibration, adaptive agent design, and model building cycle mining. The use cases were con-
cretized by discussing relevant data sources, mining algorithms, and support techniques. For
each use case54, a Petri net-based overview diagram was stated, that might serve as a basis
to derive more detailed data �ow diagrams. The gathered MABS-speci�c requirements were
summarized and detailed in the �nal section of this chapter.

The main contribution of the presented framework lies in the provision of a coherent view on
the research �elds of MABS and process mining. From the point of view of MABS, it might
serve as a guideline for the systematic application of process mining techniques in simulation
studies. Compared to existing work in MABS (e.g. Arroyo et al., 2010; Serrano et al., 2009) it
(1) strives to be more detailed and comprehensive by integrating all use cases identi�ed in the
extensive literature review, (2) explicitly regards for analysis perspectives adopted from process
mining and AOSE, and (3) explicitly focuses on process mining.

The identi�ed dimensions and use cases also support a coherent classi�cation of the literature
related to the subject at hand, which is rather 'scattered' across di�erent �elds (see Chapters
4 and 5). Figure 6.12 shows a �rst attempt to classify ten approaches from the literature,
that are especially in�uential for or closely related to this thesis, within the dimensions of
the framework.55 Extending and quantifying this classi�cation for further approaches from
the literature (e.g. those reviewed in Sections 4 and 5) will lead to a detailed overview of the
'research landscape', quite similar to the e�orts by Tiwari et al. (2008) regarding process mining
techniques.

54except for adaptive agent design
55Of course, the classi�cation can only mirror the author's individual understanding and subjective rating of

the cited work.
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Authors Title Year Perspectives Use Cases Focus Domain
Jacobs and 
Driessens

Inductive Verification and 
Validation of Multi-Agent Systems

1998 Decisions, external control Validation / verification 
(in the wider sense)

Data mining, 
techniques 
(ILP)

Robot 
soccer

Ndumu et al. Visualising and Debugging 
Distributed Multi-Agent Systems

1999 Internal control, external 
control, structure (social)

Exploration, verification 
(in the wider sense), 
calibration

Interactive 
visualization

AOSE

Köster Analyse von Simulationsdaten mit 
Methoden des Knowledge 
Discovery in Databases

2002 Decisions, internal control, 
level-encompassing

Exploration, validation Data mining, 
methodology, 
techniques

Simulation

Schütt FuzFlow: Automated Modelling of 
Business Interaction Processes for 
Flow Prediction

2003 Decisions, external control Meta-modeling / 
prediction

Process 
mining, 
techniques

Business 
process 
manage-
ment

Nair et al. Automated Assistants for Analyzing 
Team Behaviors

2004 Decisions, external 
control, level-
encompassing

Exploration, calibration Data mining, 
techniques 
and tools

Robot 
soccer, 
AOSE

Remondino and 
Correndo

MABS Validation through Repeated 
Execution and Data Mining Analysis

2006 (Decisions), structure, 
level-encompassing

Real system analysis, 
exploration, validation, 
calibration, adaptive 
agents

Data mining, 
methodology

MABS

Van Dongen et al. Process Mining in a Multi-Agent 
Auctioning System

2006 Decisions, internal control Exploration, adaptive 
agents

Process 
mining, 
techniques

MABS

Rozinat et al. Analyzing Multi-agent Activity Logs 
Using Process Mining Techniques

2009 Decisions, internal control, 
external control

Exploration, validation Process 
mining, 
techniques

Robot 
soccer

Chen Complex Event Types for Agent-
Based Simulation

2009 Structure, external 
control, level-
encompassing

Exploration, validation, 
meta-modelling / 
prediction

Complex 
events, data 
mining

MABS

Arroyo et al. Re-thinking Simulation: A 
Methodological Approach for the 
Application of Data Mining in Agent-
Based Modelling

2010 (Decisions), structure, 
adaptivity (structural 
dynamics), level-
encompassing

Real system analysis, 
exploration, validation, 
calibration

Data mining, 
methodology, 
techniques, 
case study

MABS

Figure 6.12.: Ten in�uential and closely related approaches from the literature classi�ed within
the framework dimensions of analysis perspectives and use cases.

From the point of view of process mining, the conceptual framework can be regarded as an
alternative to existing work on methodology and classi�cation (e.g. Aalst, 2006; Rembert and
Ellis, 2009) from an explicitly 'agent-based' viewpoint. This is in accordance with recent e�orts
by the Eindhoven research group to �introduce process mining as an enabling technology for analyzing
the behavior of agents�56] and might serve as a 'conceptual superstructure' for ad hoc-studies like
(Dongen et al., 2006b; Rozinat et al., 2009d); reviewed in Section 5.3.4.2.

The approach might be particularly useful since the main application areas of process mining,
i.e. business process analysis and software engineering have already proven to bene�t largely
from the concept of MAS. While parts of the framework were straightforwardly adopted from
concepts in process mining with an already strong 'agent-oriented �avor' (e.g. the organiza-
tional perspective (Abdelka� and Bouzguenda, 2010; Hanachi and Khaloul, 2008; Song and
Aalst, 2008) as part of the structural perspective), they were complemented by additional view-
points from the domain of MA(B)S, such as the level-encompassing perspective, embellished
by integrating recent work of Chen (2009).

In the following Chapters, the conceptual framework is applied and further concretized in two
MA(B)S studies, �rst following the model-based Paose approach (Chapter 7), then focusing on
a larger, more code-centric MABS project on logistics simulation with the software frameworks
DESMO-J and FAMOS (Chapter 8).

56http://www.lorentzcenter.nl/lc/web/2011/479/abstracts.php3 (last visit 2012-10-27)
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The objective of the �rst case study is to integrate process mining into the Petri net-based
Agent Oriented Software Engineering Approach Paose based on the MAS architectureMulan
(Section 3.3.3.1) and the agent platform Capa (Section 3.4.5) built on top of the Petri net
simulator Renew (Section 2.3.2.5). These tools and the underlying concepts are developed
by the Department of Informatic's theoretical foundations group (TGI) at the University of
Hamburg.

The case study was conducted in cooperation with colleagues from this group, mainly Lawrence
Cabac, Frank Heitmann, Daniel Moldt, and Florian Plähn. Results were pre-published, among
others, in reports and articles by Cabac et al. (2006b), Cabac et al. (2006c), and Cabac and
Denz (2008), which also build the basis for this chapter. Parts of the case study are described
in the dissertation by Cabac (2010, Ch. 17) as well.

7.1. Process Mining and the Mulan Framework

This section substantiates why the Paose approach and the Mulan architecture provide a
highly appropriate framework for the integration of process mining and MAS. Furthermore,
relations of this approach to the perspectives and use cases from the conceptual framework
presented in the previous chapter are sketched.

7.1.1. Introduction and Motivation

The Paose approach o�ers the obvious advantage of sharing the formal foundation of Petri
nets with many process mining techniques. In the abstract section of (Cabac et al., 2006b), we
summarize the mutual bene�ts of integrating MAS and process mining on this common basis:

�Process mining and multi-agent models are powerful techniques for the analysis of pro-
cesses and organizations. However, the integration of both �elds has seldom been considered
due to the lack of common conceptual background. We propose to close this gap by using
Petri nets as an operational semantics.

We consider process mining a useful addition to monitor and debug multi-agent applica-
tions and simulations in the development phase. Mining results can be represented in the
formalized form of Petri nets that allows to validate or verify the actual behavior. Agent
models can thus be improved by process mining results. Furthermore, multi-agent models
can be used to generate log data for testing process mining algorithms. Compared to �at

Petri nets, structured models based on agent-oriented Petri nets simplify the generation of
realistic, yet controllable test data.�
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From the point of view of MAS, the use of Petri nets as a modeling language especially eases
the feedback of mining results into the development of the model (Cabac et al., 2006b, Sec. 4.1).
Several use cases described in the previous chapter pro�t from this representational similarity
(Cabac et al., 2006b, Sec. 1):

• In real system analysis, the mining of real world process logs generates Petri nets that
can be used as templates for the implementation of the model.

• The design of adaptive Petri net agents is naturally complemented with process mining
to learn or improve their internal models. Concerning model improvement, the neural
network-based approach by Meyer and Szirbik (2007), reviewed in Section 5.3.4.5, is a
�rst step into this direction. Stuit et al. (2007b, Sec. 7) also mention process discovery
as a technique to implement learning Petri net agents.

• During operational validation, the representational similarity eases a matching between
the model components under validation and the mining results reconstructed from their
execution logs (Cabac et al., 2006b, Sec. 4.1). Both mined and implemented MAS models
in the form of Petri nets are, to a certain degree, accessible to formal veri�cation tech-
niques.. Recall the study by Ou-Yang and Juan (2010), reviewed in Section 5.3.4.5, as
an example.

From the point of view of process mining, the structure provided by a Petri net-based MAS
model like Mulan o�ers several advantages related to the use of perspectives for complexity
reduction, enhanced �representational bias� (Aalst, 2011b), and test data generation. These are
discussed in the following.

7.1.2. Analysis Perspectives and Mulan

In (Cabac et al., 2006b, Sec. 4.3) we related the 4 views of the Mulan model to the 'agent-
oriented' process mining perspectives from Section 6.2.1 Establishing this relation is straight-
forward in the �rst place, since the perspective model is largely in�uenced by theMulan views
itself.

In this publication, we identi�ed several areas that are a�ected by a mapping of analysis
perspectives to executable Petri net models (Cabac et al., 2006b, Sec. 4.3):

• determination of sources for data collection,

• use of formalized analysis perspectives as background knowledge to provide enhanced
�representational bias� (Aalst, 2011b) for agent-based models,

• development of structured models to generate complex test data,

• conversion of 'code-centric' MAS implementations into an explicit model, and

• identi�cation of target models in the Paose approach.

These areas will be detailed in the following.

1A similar attempt within the business process-centric ICN (Information Control Net) model is reported by
Rembert and Ellis (2009, Secs. 4.1, 4.2); see Section 4.2.2.1 of this thesis.
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7.1.2.1. Determination of Data Sources

Our �rst attempt to identify data sources for process mining in the Mulan model and the
related toolset is described in (Cabac et al., 2006b, Sec. 4.3.1):

�By comparing theMulan views with the [...] analysis perspectives we can determine data
sources for mining in these perspectives. Mining in the decision perspective relates the
state of an agent's knowledge [base] to its observable actions represented by sent messages.
Mining internal control means to reconstruct the protocols running within an agent from
these messages. For reconstructing external control information about message tra�c at
the level of the platform or the MAS is needed. As stated in (Aalst, 2004) "some agent"
observing all message tra�c is required. Structural information (e.g. about agents' relations
and roles on a platform) can also be reconstructed from observing messages. However, there
are sources of additional data: In the FIPA compliant platform Capa we can for example
request the services o�ered by an agent from a central directory facilitator (DF).

A more general advantage [of using Mulan] is the recursive organization of the [...] model
that results in "is-a" relationships between its components. (see Section [... 3.3.3.1]). Thus,
data collection and mining techniques for one level (e.g. analyzing interactions between
agents) are naturally transferred to other levels (e.g. analyzing interactions between plat-
forms).�

To improve mining results, it is even possible to fall back on data gathered below the agent
level: We can e.g. observe �rings of transitions or steps from the underlying Renew simulator
to gain additional information about concurrency relations. The use of logs generated by the
Renew simulator reduces the task of process discovery to the folding of a trace (see e.g. Diekert
and Rozenberg, 1995). In contrast to control �ow mining from conventional execution logs,
there is no need to �guess�2 elements of the reconstructed net. This is due to the availability
of information on (a) creation of net instances, (b) initial markings of nets, (c) places, (d)
production and consumption of tokens, and (e) synchronous �ring of transitions.

The below log snippet provides an impression. It was recorded during a simulation of a reference
net shown in Figure 7.5 of Section 7.1.3.1. The example represents a variation of a complex
event from the �lions and antelopes� example by Chen et al. (2010, p. 49) reviewed in Section
5.2.2.4:

(2)-------- Synchronously --------

(2)Removing {[int(1),hunt,L4],[int(2),hunt,L4],[int(3),die,L4]}

in ce_main[869].Logs

(2)Firing ce_lion_overhunting[875].T2

(2)Firing ce_main[869].T1

(2)New net instance ce_lion_overhunting[875] created.

(2)Putting {[int(1),hunt,L4],[int(2),hunt,L4],[int(3),die,L4]}

into ce_lion_overhunting[875].P2

(2)Putting ce_main[869] into ce_lion_overhunting[875].P1

(2)Putting ce_lion_overhunting[875] into ce_main[869].Patterns

(3)-------- Synchronously --------

(3)Removing {[int(1),hunt,L6],[int(2),hunt,L7],[int(3),die,L6]}

2as to use the term by Aalst et al. (2011, p. 30)
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in ce_main[869].Logs

...

The snippet indicates that despite the wealth of contained information, the Renew logger
traces the running processes on a level too low for the analysis of an agent-based model. For
instance, the separation of traces that represent actual agent interactions (with regards to
content) from traces of the agent platform's technical infrastructure appears highly di�cult on
this level.

In the case study at hand, we therefore focus on the more appropriate level of message-based
agent interactions. This approach additionally allows to transfer the developed techniques
and tools to other FIPA-compliant MAS. The Renew log might nevertheless be consulted to
derive additional information, somehow similar to an �oracle� in the software reverse engineering
approach by Kumar et al. (2011, p. 97) reviewed in Section 5.3.2.

7.1.2.2. Background Knowledge and Representational Bias

This idea is explicated by Cabac et al. (2006b, Sec. 4.3.1) only very brie�y:

�Another expectation is that the Mulan model can be used as background knowledge to
improve and structure mining results similar to the BDI-based approach by Lam and Barber
(2005) (compare with Section [... 5.2.4.2]). For process mining, the agent-based structure
might provide a stronger inductive bias (see Section [... 4.1.3.2]) than models based on �at

Petri nets.�

Though the topic is not in the focus of this thesis either, the mining procedure for complex
interaction protocols shown in Section 7.3 utilizes some background knowledge about the struc-
ture of MAS protocols, such as the fact that conversations are made up of multiple conversation
threads. This knowledge is hard-coded into the algorithm, which resembles the common use of
process mining perspectives for complexity reduction and the call for improved representational
bias (see Aalst, 2011b and Aalst et al., 2012, p. 188).

The primary idea, however, consisted in feeding Petri net patterns from the Mulan model
as additional input into a process mining algorithm; roughly similar to the use of clausal
background knowledge in inductive logic programming (Section 4.1.4.3). This idea will not be
investigated further here but remains for future work. One starting point is the use of Petri
net patterns in conformance checking reported by Ramezani et al. (2012); see Section 4.2.5.4.
These might as well be utilized as 'side-conditions' in process mining approaches based on
global optimization strategies such as genetic algorithms (see e.g. Medeiros et al., 2004b).3

7.1.2.3. Explicit Representation

The process mining-related bene�ts gained by explicitly representing MAS as Petri nets are
summarized in (Cabac et al., 2006b, Sec. 4.3.2) as follows:

3This is slightly related to the idea of algebraic optimization with material �ow networks described by Lam-
brecht et al. (2010), that establishes a relation between optimization problems and the elements and structure
of speci�c Petri nets (material �ow networks, see Möller, 2000).
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�Mulan models are an appropriate means to generate test data to evaluate process mining
algorithms. Compared to test data generators based on �at Petri nets (see e.g. Medeiros
and Günther, 2005), agent-based models allow to represent organizational and interaction-
related aspects more naturally and in greater detail. [... Since] all components of a
Mulan application are explicitly represented as Petri nets (Page and Kreutzer, 2005;
Rölke, 2004) [...], comparing mining results with the corresponding generator models is
[nearly] as straightforward as if using a �at Petri net.

Mulan closes the semantic gap between descriptive visual representations and executable
formalism. For example, we can mine a model of an agent interaction protocol from a
message log and represent the result as Petri nets by means of net components (Cabac
et al., 2003). These protocol nets can be mapped to AgentUML interaction diagrams to
aid the designer in model validation. Additional Java inscriptions might be added to obtain
an executable agent protocol.

Another important aspect is that process mining techniques can be applied to (re)construct
a Mulan model from observing other MAS. By monitoring other FIPA compliant agent
platforms, we could e.g. reconstruct explicit Petri net models of the observed interactions.�

The latter aspect is, to a certain degree, realized in the approach by Winarjo (2009) and
Ou-Yang and Juan (2010), see Section 5.3.4.5, where a colored Petri net model of an agent
conversation is reconstructed from a code-based MAS to enable formal veri�cation. However,
these authors map the mining result to an ad-hoc representation in CPNTools and not to an
explicit MAS model like Mulan.

In the context of our second case study, Section 8.3.2.2 will present another example of 'mono-
lithic', agent behavior that is decomposed using appropriate logging and process mining tech-
niques for the sake of improved visualization. Though this example will not exactly follow the
Mulan architecture, the resulting structure will be rather similar to an agent running multiple
protocol nets.

7.1.2.4. Target Models in the PAOSE Approach

For the practical use of process mining in software engineering or simulation, it is important to
map the artifacts of the respective development approach to appropriate analysis perspectives.
In a model-driven context, this proceeding bears the additional possibility of reconstructing or
improving executable models on the basis of log data. In the following, we brie�y relate the
analysis perspectives from Section 6.2 to the views and design diagrams of the Paose approach
as described by Cabac (2010, Secs. 9�14) and reviewed in Section 3.3.3.2.

Decision Perspective Rules or processes reconstructed in the decision perspective can be
inserted into aMulan agent basically at two places: The �rst possibility are guard expressions
of reference nets that constitute an agent's decision components (e.g. Cabac, 2010, p. 60) and
protocols (e.g. Cabac, 2010, pp. 57). Here, mined decision rules might be added in the form
of programming language expressions, quite similar to their integration into colored Petri nets
in CPNTools shown by Rozinat et al. (2009b, p. 316); see Section 5.3.4.1. Multi-step decision
processes or trees can also be mapped to own decision components for a more structured design.

The second option are ACL message templates that guard the instantiation of reactive protocols
stored in an agent's knowledge base (Cabac, 2010, pp. 64�65): Here, decision rules are not
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inserted into the protocol nets themselves but into the knowledge base in order to determine
under which conditions ACL messages trigger the agent to start a certain protocol.

As indicated by the alternative term data perspective (Aalst, 2006, p. 4), an important aspect
of logs and models in the decision perspective are the concepts (realized by data types with
attributes and relations) that an agent's decisions are based on. In Paose, these can be
modelled with Concept Diagrams, a simpli�ed variant of class diagrams (Cabac, 2010, p. 173)
that does not contain methods (Cabac, 2010, p. 177). The ontology speci�ed in a Concept
Diagram o�ers hints on data attributes that must be logged for process mining in the decision
perspective.

Renew also allows to convert concepts into feature structures, an extension of reference nets
towards logic-based representation of data types and class hierarchies (see e.g. Duvigneau et al.,
2006, p. 85 and Cabac, 2010, p. 175). With respect to decision mining, this link to the executable
model opens up further possibilities: Mined decision models cannot only be mapped to Java-
based guard inscriptions but also to the more declarative notation supported by the feature
structure net formalism of Renew. (Duvigneau et al., 2006, p. 85).4 Feature structure nets
might generally be an interesting form to represent models in the context of semantic process
mining (see e.g. Medeiros et al., 2008a), which will, however, not be discussed further in this
thesis.

Internal and External Control Perspectives In Paose, the di�erence between internal and
external control �ow is made explicit by distinguishing decision components (internal control
�ow) from (interaction) protocols (external control �ow); see e.g. Cabac (2010, p. 140). Since
this view directly in�uenced the identi�cation of analysis perspectives in Section 6.2, a mapping
appears straightforward. Note that due to the correspondence of protocol nets to plans of single
communicating agents, the external control �ow of an interaction protocol always comprises
multiple protocol nets (Cabac, 2010, p. 49). The scope of the external control �ow perspective
is therefore strongly related to and in�uenced by the constructs available in Agent Interaction
Protocol Diagrams (AIPs) (Cabac, 2003).

As mentioned in Section 6.2.4, the distinction between basic and higher order protocols in
Mulan is re�ected in the analysis perspectives as well. The process dimensions and dimensional
mappings (Rembert and Ellis, 2009) described there were mostly identi�ed on the basis of the
practical case study reported further below in this chapter. A more detailled discussion of the
external control �ow perspective in Mulan is therefore deferred to Sections 7.2 � 7.3.

Structural Perspective Depending on the considered level of detail, organizational structures
mined in the structural perspective can be mapped to Coarse Design Diagrams (CDDs, Cabac,
2010, Sec. 10.2), Dependency Diagrams (DDs, Cabac, 2010, Sec. 11.3), and Role/Dependency
(R/D) Diagrams (Cabac, 2010, Sec. 11.4). Recall from Section 3.3.3.3 that CDDs display
agent roles and their relations by interactions in a notation adopted from UML Use Case
Diagrams (Cabac, 2010, p. 144). DDs concretize this view by depicting the services provided
and required by agent roles (Cabac, 2010, p. 160). R/D Diagrams additionally indicate role
hierarchies (Cabac, 2010, p. 161).

4Tutorial examples are provided in the paper by Duvigneau et al. (2006, Sec. 3).
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From the point of view of organizational process mining (see Aalst and Song, 2004b and Song
and Aalst, 2008, reviewed in Section 4.2.4) the reconstruction of CDDs can be regarded as social
network mining using the metrics 'participation of agent roles in common interactions'. The
reconstruction of such diagrams from a message log is trivial when messages are annotated with
sender and receiver roles and the type of interaction they belong to. Since this is not the case
in Mulan / Capa, interaction mining, including the reconstruction of roles and interaction
types (as described in Section 7.2), must be performed �rst. Note that di�erent from a common
restriction in role mining (see e.g. Song and Aalst, 2008, p. 21, cited in Section 4.2.4), agents
can adopt multiple roles during the runtime of a Mulan MAS (see e.g. Cabac, 2010, p. 215).

To reconstruct DDs, roles and services might be mined from action pro�les of agents in a
similar fashion. This is indicated by Cabac's de�nition of services as �abstraction[s] of a set of
(complex) agent actions that serve a common purpose� (Cabac, 2010, p. 158). Note that DDs in
Paose originally serve to model hard (i.e. prede�ned) dependencies between roles and services
(Cabac, 2010, p. 157). Their reconstruction from log data with the aid of process mining would
presumably lead to models where hard and soft (i.e. dynamically emerging, see Cabac, 2010,
p. 157) dependencies are intermixed.

To identify the relations o�ered and requiredBy between roles and services (Cabac, 2010, p. 158),
previously reviewed ideas from interaction mining might be employed: Following the approach
by Dustdar and Gombotz (2006), reviewed in Section 5.3.3.1, it seems reasonable to focus on
sender and receiver (roles) of the �rst and last messages in interactions related to a service.
This relies on the assumption that many service-based agent interactions will (quite similar to
a method call in an object-oriented program) begin with a request to a service provider and end
with the return of a result, con�rmation, or refusal to the service taker (Cabac, 2010, p. 157).5

However, this assumption does �not always� hold (Cabac, 2010, p. 157). Due to their higher
behavioral autonomy, agents can also o�er services pro-actively. Therefore it might be necessary
to additionally search for characteristic message performatives (like request and inform) as
proposed in the approach by Hanachi and Khaloul (2008) reviewed in Section 5.3.4.6.

The reconstruction of role hierarchies in R/D Diagrams is clearly related to hierarchical role
mining as described by Song and Aalst (2008, p. 11); see Section 4.2.4.2. The reconstruction
of further details on agent roles, such as initial state, incoming messages, and known protocols
(Cabac, 2010, p. 136) might be achieved (1) by considering content and conversation control
attributes of messages received by role members and (2) by including mining results from the
microscopic perspective, such as ACL message templates for reactive protocol instantiation
mined in the decision perspective (see above).

In Section 6.2.3.1, we identi�ed spatial models (that depict positions and movement of agents
in a physical or virtual environment) as another important aspect of the structural perspective.
In the context of Paose, such topologies are most closely related to the MAS level of the
Mulan architecture (see Cabac et al., 2006b, Sec. 4.2 and Knaak, 2007, p. 33). Recall from
Section 6.2.3.1 that Flick et al. (2010, p. 4) regard the potential of reference nets to introduce
concepts of locality and 'spatial' synchronization into process mining as a promising future
research topic.

5An example stated by Cabac (2010, p. 157) is the FIPA Request protocol.
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Adaptivity Perspective In the context of Paose and reference nets, �the adaptivity perspective
[Section 6.2.5] is related to higher order recursive nets [Hornets] that modify structures of contained nets
(Köhler, 2006)� (Knaak, 2007, p. 33). Hornets are �algebraic extensions of object nets� that, among
other possibilities, �allow to modify the structure of net tokens at runtime� (Köhler-Buÿmeier, 2009a,
p. 243). Köhler-Buÿmeier (2009a, p. 243) notes that they are closely related to formalisms for
adaptive work�ow management such as adaptive work�ow nets (see e.g. Hee et al., 2006, cited
in Köhler-Buÿmeier, 2009a, p. 243).

Figure 7.1.: Simple examples of algebraic net transformations in Hornets. Net tokens shaded
grey depict the initial marking of the net. White net tokens display subsequent
markings. Inspired by Figures from Köhler-Buÿmeier (2009a, pp. 245,258).

Figure 7.1 depicts example modi�cations of net tokens. The arcs of the system net are in-
scribed with process-algebraic expressions using the operators || (parallel), + (alternative) and
; (sequence). When transitions �re, net tokens are bound to these inscriptions by uni�cation
and composed or deconstructed accordingly (Köhler-Buÿmeier, 2009a, p. 245). While originally
developed for adaptive work�ow management and agent modeling (Köhler-Buÿmeier, 2009a,
p. 244), Hornets might also provide an appropriate representation form for change processes in
process mining (see Günther et al., 2006, reviewed in Section 4.2.5.3).

Compared to nets inscribed with explicit change operations, such as those used by Günther et al.
(2006, p. 316), Hornets o�er a more 'declarative' way to describe modi�cations of net structures,
akin to term rewriting and process algebra (see e.g. Fokkink, 2000). Since the algebra described
by Köhler-Buÿmeier (2009a) is tailored towards and formally proved for the case of work�ow
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nets (see Section 2.3.2.2) as net tokens (Köhler-Buÿmeier, 2009a, p. 257), it mainly �ts change
processes in the (internal and external) control �ow perspective. To describe concept drift in
other perspectives, such as structural dynamics of social networks (see e.g. Lahiri and Berger-
Wolf, 2008, reviewed in Section 4.2.4.1) further algebras with reversible operators would have
to be de�ned.

Though Köhler-Buÿmeier (2009a, Sec. 2.4) speci�es an operative �ring rule for Hornets, an
implementation of the formalism in Renew is, to the knowledge of the author, not available
yet. However, in the context of their 'theory of units'6, Tell and Moldt (2005) describe a
prototypical extension of Renew towards self-modifying nets with the possibility to create,
(de)compose, connect, mark, and delete net tokens (Tell and Moldt, 2005, pp. 33�34).

In accordance with the reference net formalism, Köhler-Buÿmeier (2009a) and Tell and Moldt
(2005) assume net tokens to be instances of net classes. In contrast, change mining approaches
in process mining (e.g. Bose et al., 2011a; Günther et al., 2006) strive to reconstruct changes of
the underlying work�ow models or �concepts�, i.e. net classes. This con�ict might be resolved by
relating objects and classes according to the well-known design pattern prototype documented
by Gamma et al. (1995, p. 117): A net instance (token) modi�ed in a change process can be
regarded as a prototype for a net class from which further instances can be derived by cloning.

Level-Encompassing Perspective Di�erent from the adaptivity perspective, extensions of ref-
erence nets dedicated to the modeling of level encompassing relations have not been developed
yet. Nevertheless, the informal links between the di�erent Mulan views shown in Figure 3.6
(Section 3.3.3.1) and several sociology-related publications such as those by Malsch (2001) and
Köhler-Buÿmeier (2009b) show that the topic is still in the focus of the TGI research group.
Section 7.1.3 will sketch a small example how reference nets might be applied to support the
detection of complex event types in the approach by Chen (2009).

7.1.3. Support for Analysis Use Cases

To support the use cases from Section 6.3 in the context of Paose, we aim for models and imple-
mentations that integrate well with the concepts and techniques of the development approach.
As described in Section 4.1.5.4, data �ow modeling (e.g. Lee and Tan, 1992) and scienti�c work-
�ows (e.g. Guan et al., 2006) are appropriate techniques to support the modeling of knowledge
discovery processes and their integration with existing tools.

The appropriateness of reference nets to model data �ow in scienti�c applications is discussed
in the diploma theses by Kurzbach (2007) and Simmendinger (2007); see Section 5.4.2.2. Sim-
mendinger (2007), whose work is embedded into the research context of this thesis, identi�es
the following advantages of reference nets and Renew for the modeling of scienti�c work�ows:

• The possibility to inscribe reference nets with Java statements provides a good basis for
tool integration, since arbitrary scienti�c software accessible via a Java interface can be
�orchestrated�7 (Simmendinger, 2007, p. 79).

6German: �Einheitentheorie�
7as to use the term by Rybacki et al. (2011, p. 718)
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• Compared to specialized problem solving environments8 like Kepler and KNIME (Section
4.1.5.5), Renew allows to �exibly combine speci�c net components for scienti�c work�ows
with arbitrary Petri net elements for custom control �ow (Simmendinger, 2007, p. 79).
While the former systems can also be extended with user-de�ned processing nodes (e.g.
implemented as Eclipse plugins in KNIME ), the drawing of Petri nets in Renew might
be a more lightweight solution.

• Simmendinger (2007, Sec. 5.3) shows by examples that many relevant control and data
�ow patterns can be modelled with reference nets. Hierarchical models are realized by
embedding subnets as tokens into superordinate nets (Simmendinger, 2007, p. 79). As
typical for reference nets, this approach even allows subnets to modify their behavior de-
pending on the place on which they reside. Simmendinger (2007, pp. 77) further sketches
how the hierarchical separation of data and control �ow in the Kepler system (see Section
4.1.5.4) can be emulated with reference nets.

• The nets-within-nets formalism also allows to represent complex data objects as net tokens
with an own life cycle (Simmendinger, 2007, p. 79), somehow similar to proclets in artifact-
centric modeling (see e.g. Fahland et al., 2011a, reviewed in Section 5.3.3.3).

• The event-driven communication model underlying reference nets might be useful in the
context of runtime observation and online analysis (see Section 2.4.2) of (simulated)
processes (see Simmendinger, 2007, p. 69 and Cabac and Denz, 2008, p. 94).

On the downside, Simmendinger (2007, p. 70) recalls that �the locality of [data tokens] bound [to]
variables of transitions might [lead to] unhandy [and] complex work�ows (Rölke, 2006).� Additionally,
the reference semantics of data tokens might cause non-local e�ects similar to the alias problem
(see e.g. Schwanke, 1978, p. 19) known from programming languages (Cabac and Denz, 2008,
p. 94):

�The reference semantics [...] di�ers from the value semantics of classical Petri net-based
data �ow notations (see e.g. Jessen and Valk, 1987, pp. 242). This can be an advantage but
also a problem. On the one hand, it is possible to pass a reference to an object (or even to
a net instance) along a chain that successively changes the object's attributes in di�erent
processing stages. On the other hand, the concurrent modi�cation of a referenced object
in di�erent processing stages can lead to problems like race conditions. Nevertheless, the
use of Java as an implementation allows to clone processed objects in order to provide
independent copies.�

As a general purpose tool, Renew does not support speci�c requirements of scienti�c work�ows,
such as data persistence or made-to-measure user interfaces. Again, this drawback is to a certain
degree compensated by the possibility to integrate arbitrary existing Java libraries.

In the following, we focus on speci�c net components to support endogenous and exogenous9

data mining analyses of Mulan agents. The presentation repeats large passages from the
article by Cabac and Denz (2008).
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Figure 7.2.: �Generic mining chain components.� Figure and caption adopted from Cabac and
Denz (2008, p. 94).

7.1.3.1. Mining Components

Cabac and Denz (2008, pp. 93�95) identify the need for well-de�ned interfaces with the tools of
a software development or simulation approach as an important precondition for the integration
of process mining:

�Thus, the tasks to be supported are data acquisition, data processing, and feedback of the
results into the software development or even into the running system. We have therefore
identi�ed sources, processors, and sinks as basic (generic) components for mining chains.10

Figure [... 7.2] shows the generic mining components that can be used as templates to
create speci�c ones. These net components are rather simple consisting of one place and
one transition. The place holds a Java object that provides the respective data processing
algorithm via a standardized method. The transition calls this method when a data token
enters the net component. There might be an additional place and transition pair to
pass parameters to the component. While processors should be implemented without side-
e�ects, sinks and sources are explicitly introduced to interact with the surrounding software
environment.

The processing method can be implemented to perform either an online or an o�ine analysis
(see Section [... 2.4.2]). In an o�ine analysis, one incoming token represents a whole data
set (e.g. a log in process mining) that is processed at once. In an online analysis, each
token represents one data element (e.g. an event in process mining) in a continuing input

8as to use the term by Rice and Boisvert (1996), cited in (Simmendinger, 2007, p. 28)
9as to use the terms by Remondino and Correndo (2005, p. 4), see Section 5.2.1

10These component types are also common in other data-�ow modeling tools like e.g. KNIME (Chair for
Bioinformatics and Information Mining at Konstanz University, 2007).
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stream. The processing method is called on each token arrival to incrementally update the
computed results based on the new data. [...]

A mining chain is composed of several net components and can also include sub-chains in a
hierarchy of net instances. Also normal net elements can be used to add custom behavior.
Thanks to the use of the Petri nets representation, we [...] can also model chains that own a
complex control-�ow including concurrency. Mining chains can in principle be implemented
in any hierarchical colored Petri net formalism. However, the object-oriented structure and
the Java-based inscription language provided by reference nets are especially well-suited to
model large mining chains.

Hierarchical mining chains are realized by means of so-called complex sinks, sources, and
processors. Here, the object providing the processing functionality is not a simple Java
object but an instance of a sub-net. This instance receives and provides data from and
to the surrounding net components via synchronous channels (see Section [... 2.3.2.5]).
Thereby it is possible to encapsulate a whole Petri net-based simulation model into a
complex data source.

The generic as well as the interaction mining components are integrated in Renew by a
plugin (extending the net component plugin), which makes them available to the modeler
as palettes of tool buttons. The user can easily build custom palettes with new mining
components and use the generic components as templates.� (Cabac and Denz, 2008,
pp. 93�95)

Example 1: Test Data Generation As a �rst example, Figure 7.3 shows how a reference net-
based test data generator for process mining can be encapsulated into a mining component. The
use of Petri net simulators to generate data for process mining algorithms is rather common.
We already mentioned the examples by Medeiros and Günther (2005) using CPN Tools (Section
4.2.6.1) and Aalst et al. (2002, Sec. 5) using MiMo/ExSpect (Section 5.4.1). The latter authors
also encapsulate the test data generator into a transition of a hierarchical Petri net.

The net system in Figure 7.3 adopts this idea for Renew. At the root of the net hierarchy, there
is a complex mining component shown in the upper left. This component contains a subnet
(left) that serves as an adapter for an infrastructure net called simulation driver (bottom right).
This driver controls the simulation of the actual process model from which test data will be
generated. An example process model (testnet) is shown in the upper right of Figure 7.3.

Similar to the approach by Medeiros and Günther (2005, p. 6)11, the transitions of this process
model are inscribed with log statements which, in this case, are forwarded to a logger imple-
mented in Java. The displayed net uses a very simple implementation where activity names
are logged into lists of strings in memory (class ListLogWriter). However, the integration of
a more complex logger, e.g. using the MXML format of ProM as proposed by Medeiros and
Günther (2005, Sec. 3), is straightforward.

Only the net class testnet must be exchanged to generate test data for another process model.
Recall that an advantage of the reference net-based design lies in the fact that this model is
not restricted to a '�at' net (as shown in the example), but might itself consist of a net system
up to a full Mulan MAS.

11page numbers relate to the version of the paper downloadable at http://tmpmining.win.tue.nl/

_media/publications/medeiros2005b.pdf (last visit 2012-10-28)
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Figure 7.3.: A mining component encapsulating a system of reference nets for test data genera-
tion in process mining. Some implementation details (especially import statements
for required Java classes) have been omitted for the sake of clarity.
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Example 2: Conformance Checking and Log Abstraction As a further process mining-
related example, Figure 7.4 shows a complex mining component Trace Checker that encapsu-
lates a simple log replay-based conformance checker. Recall from Section 4.2.5.4 that confor-
mance checking by means of log replay in Petri nets is a frequently used technique in process
mining, e.g. supported by the approaches of Rozinat and Aalst (2008), Adriansyah et al. (2011),
and Ramezani et al. (2012), and also common in the context of MAS (e.g. Mazouzi et al., 2002,
reviewed in Section 5.3.4.5).

The displayed component receives a set of traces and a model to check these traces against as
input (net class model_to_check in the upper right of Figure 7.4). A replay of the traces in
the model is initiated with the aid of two infrastructure sub-nets (net classes mainChecker and
trace_replay) depicted in the lower half of Figure 7.4. By synchronizing the transitions of
the net that represents the model with the events read from the traces, valid and invalid traces
can be distinguished. Both groups of traces are �nally provided separately at the two output
places of the trace checker.

Note that the shown implementation only runs in the timed (sequential) simulation mode of
Renew. This is due to the fact that the net mainChecker schedules a delayed token (see the net
inscription [c,t]@1 in Figure 7.4) for the case that trace replay is blocked by a non-compliant
trace. Another peculiarity is the handling of invisible tasks (which generally requires additional
e�ort in conformance checking, see Rozinat and Aalst, 2008, p. 68, reviewed in Section 4.2.5.4).
In the example, a 'look-ahead' functionality in the style of Rozinat and Aalst (2008, p. 72) is
introduced by means of the channel :peek. This channel is called by the 'invisible' guarded
transition of the net model_to_check.

Though the shown trace checker is not as powerful as the conformance checking plugins imple-
mented in ProM, it might nevertheless be of some utility. On the one hand, the simple visual
implementation12 serves teaching purposes well, somehow similar to the visual implementation
of the α algorithm as a component of the Petri net simulator ExSpect (MiMo, see Aalst et al.,
2002, Sec. 5, reviewed in Section 5.4.1 of this thesis). On the other hand, �due to the expres-
siveness of the reference net inscription language, [a reference net-based conformance checker] might
combine [...] advantages of [...] Petri-net [see e.g. Aalst et al., 2005] and logic-based [see e.g. Gutnik
and Kaminka, 2006] conformance checking approaches� (Knaak, 2007, p. 36).

An extension towards the replay of partially compliant traces would enable further applications
like log abstraction (see e.g. Chen et al., 2010) and Petri net pattern detection (see Ramezani
et al., 2012). Log abstraction is relevant in the context of hierarchical process mining (see
e.g. Li et al., 2010 or Kumar et al., 2011) such as control �ow discovery for higher order
protocols discussed in Section 7.3. Broadly speaking,

�[...] we [... could] match the conversations in the original trace with the protocol models
and obtain an abstracted trace with basic protocol executions as elementary activities (e.g.
"from time t1 to time t2 an instance of protocol type P1 was executed with agent A1 as
initiator and agent A2 as responder"). Since the abstracted traces are activity-based [...],
more powerful algorithms [... could] be applied for detecting concurrency in their control
�ow (e.g. Herbst, 2001).� (Knaak, 2007, p. 35)

12which could be extended towards further features like replay of partially compliant traces (see Rozinat and
Aalst, 2008, p. 65)
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Figure 7.4.: A simple trace checker net component and its sub-nets.
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Figure 7.5.: A variant of the example pattern �same lion overhunting� by Chen et al. (2010, p. 50)
modeled as a reference net.

Another example for log abstraction outside of the process mining domain is the detection of
complex events (CEs) in the approach by Chen (2009); see Section 5.2.2.4. Representing and
detecting CEs with reference nets might be a �rst step towards level-encompassing process
mining in the Paose approach.

Figure 7.5 shows a modi�ed variant of the complex event �same lion overhunting� from the �lions
and antelopes� example by Chen et al. (2010, Sec. 4). The upper part of the �gure contains the
pattern itself (net class ce_lion_overhunting) that captures the rule that �the same lion kills
an antelope [at least] two time steps in succession [event hunt ] and then dies [event die ...]�
(Chen et al., 2010, p. 49). Note that Chen et al. (2010, p. 49) originally claim that the lion
�dies from starvation� which relates to another complex event starvation, i.e. moving three times
in succession without hunting before death. This addition is omitted here to keep the example
simple. It might, however, be straightforwardly integrated by inserting the pattern starvation
(either directly or via a net reference) into the displayed net.

The lower part of Figure 7.5 depicts a very simple infrastructure to check the pattern against
a set of traces. In the example, valid traces (marked green in Figure 7.5) must at least start
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with a hunt event. For each of these traces, an instance of the net ce_lion_overhunting is
created and the trace is replayed in the net. The acting lion is memorized on a place with label
Lion, such that events related to other lions can be sorted out. After successful replay, a token
with the tag overhunting is created and passed back to the main net. Instances that replay
non-compliant traces simply deadlock in the current implementation and are not forwarded to
the place Matches.

Compared to the compliance checking approach by Ramezani et al. (2012) reviewed in Section
4.2.5.4 our preliminary example is on the one hand less powerful: It cannot extract considered
patterns from larger traces that do not start with the expected initial event. Partial replay and
detailed identi�cation of non-compliant events is not possible either since no exhaustive state
space search is performed. On the other hand, the example depicts the advantages of higher
level Petri nets with respect to the integration of further perspectives (see also Wynn et al.,
2010): The originator attribute in the example traces ('lions' L1 − L7) is handled explicitly
and might even be replaced by objects with individual data attributes or object nets with an
own life cycle.

Section 7.4 will show a further application of mining components for the implementation of a
multi-step interaction mining chain to analyze message logs recorded on the Capa platform.

7.2. Reconstruction of Basic Interaction Protocols

In Section 7.1.2.1, we identi�ed ACL message logs as an appropriate level of observation for
process mining in Paose. Among all analysis perspectives, the external control �ow perspective,
concretized in the modeling technique of AIP diagrams, can be considered most prominent in
Paose since it establishes a link between interactions, roles, and (possibly) ontologies as the
core modeling concepts (Cabac, 2010, p. 133).

From these observations, agent interaction mining13 (AIM) can be identi�ed as the most urgent
task for process mining in Paose. As indicated in Section 7.1.2.4, mining results from the
external control perspective provide a good starting point for the integration of results from
other perspectives (e.g. decision models) on the one hand, and for the expansion towards 'higher
level' structural and meta-perspectives on the other hand.

In Section 6.2.4, we discussed that process mining in the external control �ow perspective
can be subdivided into the (increasingly abstract) levels of basic interaction mining, complex
interaction (or multi-agent work�ow) mining, and interaction pattern detection.14 The former
two levels roughly correspond to basic and higher order (interaction) protocols in Mulan. In
the following, we describe our partial implementation of a processing chain for basic interaction
mining in Mulan, �rst published in (Cabac et al., 2006c). Concepts for complex interaction
mining are added in Section 7.3.
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Figure 7.6.: �A mining chain for agent interaction mining.� Figure and caption adopted from Cabac
et al. (2006c, p. 17).

7.2.1. Basic Interaction Mining Chain

Presupposing the process dimensions of the external control �ow perspective described in Sec-
tion 6.2.4.1, Cabac et al. (2006c, pp. 17-18) identify the following (idealized) steps to perform
basic interaction mining in Mulan:

�Given a message log recorded during the execution of a MAS, [the task is to] �nd the
unknown set of interaction protocols involved in the generation of this log. This task can be
divided into several sub-phases depicted in Figure [... 7.6]. Generally, we consider the FIPA
ACL message attributes performative, sender, receiver, and some conversation control
tags. By masking message content, we keep the following stages application-independent.

The �rst phase � log segmentation � is necessary because a log normally contains messages
from several conversations, generated by multiple protocols. These messages must be sorted
by assigning them to a conversation; and by assign[...]ing each conversation to a protocol
type. Given the information available in FIPA ACL messages (e.g. conversation-id) this
segmentation is trivial.

However, these tags are not excessively used on the Capa platform and might generally
prove as too in�exible for detecting complex patterns of interaction. Therefore, we recon-
struct conversations by chained correlation (Aalst et al., 2005) of messages based on the
in-reply-to tag [...] In doing so, we obtain 1 : 1 conversation threads. [...] these might be
part of a larger multi-party conversation that we reconstruct by merging all conversation
threads sharing at least one reply-with or in-reply-to tag.

Assigning conversations to protocol types is a clustering task. For each conversation, we
build a feature vector representing a direct successor relation of performatives.15 Each
vector component represents one possible succession of two performatives. [...] To regard

13This term, as well as the initial idea to apply AIM in the Mulan context, trace back to Lawrence Cabac.
14Recall that the former two levels were derived from the levels of web service interaction and web service

work�ow mining in the approach by Dustdar and Gombotz (2006).
15A similar metric is used in a preliminary approach by Vanderfeesten (2006) towards detecting conversation

roles.
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for protocols with a typically branched control structure, combinations of performatives
appearing near the start of a conversation are weighted stronger than those appearing at
the end. Finally, we apply the nearest neighbour algorithm (Dunham, 2003) [see Section
4.1.4.2] to cluster similar vectors based on the Euclidian distance.

The result of the segmentation phase are traces of conversations ordered by protocol types.
In the second [and partly overlapping, see below] phase � role mining � we further abstract
the messages by replacing names of sender and receiver agents with conversation roles. We
currently apply a simple uni�cation algorithm that binds agent names to role names in the
order of their appearance in the conversation. [...]

In the third phase � control �ow mining � we collect the abstracted conversation traces of
each protocol type and try to induce a model of the protocol's control �ow. Interaction
protocols such as those speci�ed in AgentUML might contain concurrent, hidden, and
duplicate tasks. [...]

Based on ideas from Herbst (2001) and Schütt (2003) [Section 4.2.3.2], our preliminary
process mining technique consists of two stages � automata inference and concurrency
detection: First, we reconstruct a deterministic �nite automaton (DFA) from each set
of samples using the k-RI algorithm (Angluin, 1982) [see Section 4.2.3.3]. The edges of
the DFA are labelled with message performatives and sender / receiver roles. The k-RI
algorithm can detect loops and duplicate tasks, but not concurrency. We therefore apply a
modi�ed version of the α-algorithm [implementing the concurrency detection approach by
Schütt (2003, pp. 58), see Section 4.2.3.3] to the DFA next. [...]

Control �ow mining results in an overall Petri net model of each protocol. This model can
be split straightforwardly into protocol templates for every conversation role. Each of these
peers corresponds to one lifeline in an AgentUML interaction protocol diagram (AIP, see
Cabac et al., 2003) [... We might also] re�ne the reconstructed model by infer[r]ing temporal
relations between messages with techniques described in (Aalst and Weijters, 2004) [and
reviewed in Section 4.2.5.5 ...] The attachment of branching conditions to the protocol
templates leads to executable Mulan protocols.� (Cabac et al., 2006c, pp. 17-18)

The described steps are typical for interaction mining approaches like those by Srinivasa and
Spiliopoulou (2000), Schütt (2003), Dustdar and Gombotz (2006), or Musaraj et al. (2010) re-
viewed in Section 5.3.3. The presented chain is basically an extension of the approach by Schütt
(2003) towards the clustering of conversations by protocol types, (which is in turn supported in
approaches like Srinivasa and Spiliopoulou, 2000), role mining, and an operational concurrency
detection stage16 including support for cyclic models. In the following, the implemented phases
of log segmentation (i.e. message aggregation and conversation clustering), role detection, and
control �ow mining are explained in larger detail. Furthermore, hints are provided how the
remaining phases can be implemented in the future.

7.2.2. Message Aggregation

In Section 5.3.3.4 we cited Motahari-Nezhad et al. (2011, p. 424)17 in that key-based and
reference-based correlation are the most common heuristics to chain related messages in web
service mining. Since our AIM approach neglects message content attributes for simplicity and

16as opposed to the merely conceptual description by Schütt (2003)
17cited from Musaraj et al. (2010, p. 265)
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domain independence (see above), we resort to reference-based correlation (also called �chained
correlation� in Aalst et al., 2005) based on the FIPA ACL attributes replyWith and inReplyTo.

The chaining procedure is implemented in a Java class MulanInReplyToSorter18 which takes a
list of messages observed on the Capa platform and returns a list of conversation threads, each
consisting of associated messages. For internal processing, conversation threads are held in a
data structure ConvThread which stores (a) all replyWith and inReplyTo tags that appear in
messages of the conversation thread as keys and (b) the messages themselves ordered by time
stamps as values.

The implemented chaining procedure does not deliver 'pure' 1:1 conversation threads (in the
sense of Section 6.2.4.1) but potentially returns conversations with more involved interaction
roles. Recall from Section 6.2.4.1 that the basic interaction protocol mining procedure is suf-
�cient as long as every interaction role is only bound to one agent per conversation of the
target protocol. The chaining stage therefore consists of two phases: (1) initial aggregation of
'conversation threads' and (2) merging of related 'conversation threads' into conversations:19

input: RML // raw message list

output: CL // list of conversations

CTL := {} // list of conversation threads

changed := true // flag used for merging

// segment messages into conversation threads

foreach msg in RML:

if for any ct in CTL:

ct.Keys contains msg.InReplyTo or

ct.Keys contains msg.ReplyWith

then

append msg to ct.Values

else

create empty conversation thread ct

set ct.Values := {msg}

if msg.InReplyTo is set then add msg.InReplyTo to ct.Keys

if msg.ReplyWith is set then add msg.ReplyWith to ct.Keys

// merge conversation threads with common keys into conversations

CL := CTL

while changed:

set changed := false

if for any pair ct1 != ct2 in CL:

18The program code referred to in this and the following sections is internally available at TGI in sub-packages
of de.renew.agent.mining, de.renew.agent.mining2 and de.renew.agent.Sniffer in the Mulan code
repository. For the k-RI algorithm, the re-implementation described in this thesis is not available there yet.
Instead, an older version used in the studies from (Cabac et al., 2006c) and (Cabac and Denz, 2008) can be
found. This description of the MulanInReplyToSorter refers to the latest version in the package mining2.

19The notation used in this and the following pseudo code listings adopts elements from the programming
languages Java (e.g. Arnold et al., 2000), C# (e.g. Gri�ths et al., 2010), and Pascal (e.g. Wirth, 1971).
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intersection(ct1.Keys, ct2.Keys) <> {}

then

ct.Keys := merge(ct1.Keys, ct2.Keys)

ct.Values := merge(ct1.Values, ct2.Values)

remove ct1, ct2 from CL and add ct to CL

set changed := true

Note that the above pseudo code implements a heuristics tailored towards the speci�c use of
FIPA conversation control tags on the Capa platform. Though the basic proceeding would
be similar, it cannot be re-used without modi�cations on other agent platforms such as JADE
(see Section 3.4.1).

7.2.3. Conversation Clustering and Role Mining

Since ACL messages in Capa do not carry explicit information about the generating protocol
type and the involved interaction roles, these must be derived either from hints in the message
content (which is neglected in our approach) or in the structure of the enclosing conversations
(reconstructed in the previous step). For this purpose, we apply clustering techniques that are
basically similar to the log clustering and role mining approaches nowadays common in process
mining (see Sections 4.2.4.2 and 4.2.5.1).

Though the idealized processing chain in Figure 7.6 displays log segmentation and role mining
as two distinct phases, both steps are in fact closely related. This is due to the typical de�nition
of roles and protocols (or processes) in process mining and AOSE:

• A protocol is de�ned by the participating roles and their behavior.

• A role is determined by its behavior as part of a certain protocol.

This relation becomes obvious in the fact that rather similar clustering techniques and metrics
are applied in both role mining and log clustering (compare Sections 4.2.4.2 and 4.2.5.1). The
main technical di�erence lies in the observation of activity, transition, or other �trace pro�les�
(Song et al., 2008, Sec. 3.2) per originator in role mining and per work�ow case in log clustering.

For the implementation of the interaction mining chain reported in (Cabac et al., 2006c) we
combined the clustering of conversations and the abstraction from sender and receiver agents
to interaction roles into a common step. Since implementations of role mining and log clus-
tering algorithms for process mining were � at least to the knowledge of the author � not
straightforwardly available at the time of the study20, we settled for an own implementation in
Java.

Following the call for simple and understandable algorithms from Section 6.4.3, this implemen-
tation is based on the straightforward nearest neighbor clustering algorithm as e.g. explained
by Dunham (2003, p. 142); see Section 4.1.4.2. Figure 7.7 shows a slightly idealized display21

of the involved Java classes.
20though articles on the topic had already been published, e.g. by Srinivasa and Spiliopoulou (2000) and by

Greco et al. (2004)
21The diagram basically refers to the �rst implementation of the mining chain in the package

de.renew.agent.mining. It is idealized for better understandability in that a dedicated (non-anonymous)
class ConversationStructureDistance was only introduced later in the package mining2.
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Figure 7.7.: Slightly idealized diagram of Java classes that implement the conversation cluster-
ing and role mining approach reported by Cabac et al. (2006c).

The class NearestNeighborClustering implements the standard nearest neighbor algorithm
following the description by Dunham (2003, p. 142). It can be assigned an arbitrary distance
measure (interface DistanceMeasure) to calculate the similarity between two clustered objects.
The Euclidian distance between numeric vectors (of type double[]) might be the most common
measure (class EuclidianDistance, see also Section 4.1.4.2).

The interaction mining-speci�c part of the procedure is implemented in the classes Structu-
ralConversationClustering and ConversationStructureDistance. The latter realizes the
subsequent phases of role abstraction and conversation clustering by using the cluster algorithm
with the speci�c distance measure. For role abstraction, the following simple 'anonymization'
algorithm22 is applied (doRoleAndDupTaskAbstraction). This algorithm basically23 replaces
agent names with role names in the order of their appearance in the conversation. The singleton
FIPA 'infrastructure agents' AMS (agent management system) and DF (directory facilitator)
are always mapped to synonymous, conversation-independent roles:

// list of conversations consisting of ordered ACL messages

input: CL

// list of traces with entries 'performative(senderRole, receiverRole)'

output: TL

TL = {}

foreach conversation c in CL:

create new trace t := {'INIT'}

create dictionary D that maps agent names to role names

roleCount := 0

foreach message m in c:

22This term was coined by Lawrence Cabac.
23the actual implementation performs further simple pre-processing for the subsequent duplicate task detection,

which is omitted here.
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if m.Sender = 'DF' or m.Sender = 'AMS'

then senderRole := m.Sender

else

if D contains entry <m.Sender, role>

then senderRole := role

else

senderRole := 'R' + roleCount

roleCount := roleCount + 1

add entry <m.Sender, senderRole> to D

if m.Receiver = 'DF' or m.Receiver = 'AMS'

then receiverRole := m.Receiver

else

if D contains entry <m.Receiver, role>

then receiverRole := role

else

receiverRole := 'R' + roleCount

roleCount := roleCount + 1

add entry <m.Receiver, receiverRole> to D

performative := m.Performative

add entry 'performative(senderRole, receiverRole)' to t

add entry 'EXIT' to t

add t to TL

The result of the above procedure is a list of traces with timely ordered entries of the form
performative(senderRole, receiverRole). This list is forwarded to the method clusterCon-

versations, which aggregates traces with a similar structure into clusters using the nearest
neighbor algorithm and the StructuralConversationDistance. According to the classi�cation
by Song et al. (2008, p. 114), the latter realizes a �transition pro�le�. A transition is indicated by
a succession of two entries e1 = perf1(sender1, receiver1) and e2 = perf2(sender2, receiver2)
in a trace of the analyzed log.24

The clustering procedure realizes steps that are (in this or a similar form) nowadays common in
trace clustering (see e.g. Song et al., 2008): Initially, it counts the number n of distinct entries
E = {e1, ...en} appearing in the analyzed log L. Taking into account the number of possible
transitions over the alphabet E, the dimension of the feature vectors is set to m = n2. Next, a
vector v ∈ Rm is created25 for every trace t ∈ L. Let tj = ek and tj+1 = el be two successive
entries of t with 0 < j < |t| − 1 and 0 < k, l < n. Then the vector component corresponding
to the transition ek → el is increased by a value inversely proportional to the position j of the
occurrence in t:

vk+n·l := vk+n·l +

(
|t| − (j − 1)

|t|

)d

(7.1)

24The arti�cial start and end tasks (e.g. Medeiros, 2006, p. 126) INIT and EXIT are considered as well.
25mapped to the type double[] in Java
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The 'decrease order' d is a free parameter that determines how strong the added value decreases
with increasing position j of a transition identi�ed in the log. Thus, �to regard for protocols with a
typically [forward] branched control structure, combinations of performatives appearing near the start
of a conversation are weighted stronger than those appearing at the end.� (Cabac et al., 2006c,
p. 18). This well-known heuristics matches branched 'FIPA-style' interaction protocols like
e.g. contract net (see Smith, 1980 and Section 3.3.2.3). It is not appropriate for processes that
converge towards their characteristic trajectory only after a longer (variable) �warm-up phase�,
such as transient phases of stochastic steady-state processes in simulation (Page and Kreutzer,
2005, pp. 174).

Summarizing, the applied clustering procedure is rather similar to related approaches reported
in Section 4.2.5.1, some of which have also been implemented in the ProM tool. The inte-
gration with role mining leads to both advantages and drawbacks: By integrating sender and
receiver roles into log entries, traces of di�erent protocols become easier to discriminate than
by using performatives only.26 Since single conversations build the scope of role assignment,
the procedure also applies to the common case of agents adopting di�erent roles in multiple
di�erent interaction protocols.

On the downside, role detection and clustering fail in interaction protocols where initiator
roles are not determined uniquely.27 Here, the assignment of agents to roles in their order
of occurrence in the trace can only be a �rst guess that must be revised by using further
heuristics later (e.g. activity pro�les, see Song and Aalst, 2008, reviewed in Section 4.2.4.2).
Furthermore, the procedure cannot cope with agents that change their roles during the course
of a conversation. However, due to the 'elementary' character of basic interaction protocols (as
potential parts of larger multi-agent work�ows), this situation might not occur very frequently
in the protocols that this procedure targets.

In general, the integration of role information into the log entries has the disadvantage of
signi�cantly increasing the feature vector dimension as compared to using performatives only. In
addition, the simplistic, threshold-based nearest neighbor clustering makes it harder to �nd an
appropriate level of generalization (i.e. calibrate the threshold for cluster merging) as compared
to more elaborate techniques like hierarchical agglomerative clustering (see Sections 4.1.4.2
and 4.2.4.2).28

Section 7.4.2.2 will show a streamlined variant of the basic interaction mining chain imple-
mented with the aid of mining components (see Section 7.1.3) and ProM plugins. Though
this implementation does not yet include the hierarchical log clustering algorithms that are
nowadays29 available in ProM, an integration would be possible.

7.2.4. Control Flow Mining

As indicated above, the search for an appropriate control �ow mining algorithm for agent
interaction mining was driven by the control �ow constructs available in AIP diagrams, i.e. (1)

26e.g. an inform message from a bidder to an auctioneer can be distinguished from a message with the same
performative sent from an auctioneer to a seller.

27e.g. a protocol that might either start with a request from a customer to a seller or vice-versa
28The author was �rst alluded to this point by the reviewers of the MATES 2006 conference paper published

as (Cabac et al., 2006c).
29and also at the time of that second study
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sequences, (2) alternative and (3) parallel split and join nodes, (4) invisible tasks, and (5)
cycles and loops. Furthermore, the potential ambiguity of log entries caused by the restriction
of considered process dimensions to performatives and roles might necessitate the handling of
duplicate tasks.

From the algorithms published by the time of the study, the following appeared to be possible
choices:

• The α++ algorithm (see Wen et al., 2006, reviewed in Section 4.2.3.1) handles all required
constructs except for invisible and duplicate tasks. An implementation in ProM was
available early.

• The algorithm by Herbst (2001), reviewed in Section 4.2.3.2, handles most constructs
including duplicate tasks. However, it is a rather complex procedure limited to block-
structured models, while AIPs might not be 'purely' block structured.30

• Herbst (2001) alternatively proposes to combine grammar inference and the theory of
regions to reconstruct models with duplicate tasks, which was operationalized later by
Kindler et al. (2006); see Section 4.2.3.3.

• The control �ow mining approach by Schütt (2003), reviewed in Section 4.2.3.3, promises
to handle most mentioned constructs except for cycles. However, an implementation of
the concurrency detection stage was not provided in (Schütt, 2003, pp. 61).

Based on the requirement of algorithmic simplicity and understandability (see Section 6.4.3),
we decided to take the approach by Schütt (2003) as a starting point. Following the idea
by Herbst (2001), we planned to replace its proprietary grammar inference (GI) stage with a
proven GI algorithm that can handle cycles. Furthermore, we considered an implementation of
the concurrency detection stage as a modi�cation of the α algorithm to work on state machines
instead of logs.

From today's point of view, the region-based two-step mining approach by Kindler et al. (2006)
and the preprocessing stage for duplicate task detection by Li et al. (2007) or Gu et al. (2008)
might be viable (and closely related) solutions as well. As of version 4.2, ProM also contains
a plugin to apply the α algorithm to state machines but this variant does not handle duplicate
tasks.

7.2.4.1. Grammar Inference

After an initial exploration of the C++-based open source GI library Mical (Rey, 2003), we
decided to use the k-RI algorithm (Angluin, 1982) for our GI stage. Reasons include (1) its
independence from negative examples, (2) the relative algorithmic simplicity, (3) the possibility
to in�uence the obtained level of generalization with a single parameter k, and (4) the acceptable
computational complexity (see also Section 4.2.3.3). For better integration with Renew and

30Our concern uttered in (Cabac et al., 2006c, p. 18) that the algorithm by Herbst requires an activity-based
log seems to be inappropriate.
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due to minor di�culties31 with the k-RI implementation in Mical, we further opted for a re-
implementation in Java.32

Figure 7.8.: Classes implementing the k-RI algorithm by Angluin (1982) in the presented
approach.

Figure 7.8 shows the structure of our �nal implementation:33 The class KRInference con-
trols the overall mining process. In the �rst step, the PTAGenerator converts the given log
into a pre�x tree automaton (PTA). Starting from a single initial state, it attempts to replay
every log entry in the automaton (class Automaton) and amends new states and transitions
where needed.34 Next, the KRIAlgorithm merges the states of the PTA by mutually exe-
cuting the two conditions of the k-RI algorithm (Section 4.2.3.3, represented by the classes
EnforceDeterminism and EnforceReversibility) as long as changes occur. The resulting
automaton can �nally be minimized with the algorithm from (Hopcroft et al., 2003, Sec. 4.4)
implemented in the class MinimizeAutomaton.

As proposed by Angluin (1982, p. 743,758), our implementation allows to run the k-RI al-
gorithm both incrementally and non-incrementally. In the non-incremental case, a PTA is
generated for the whole log and its states are merged afterwards. In the incremental case,
a full cycle of PTA generation and state merging is run for every trace of the analyzed log.
This means that the result automaton from step i (which might already contain cycles and
'alternative join' nodes) is extended with a further trace in step i+ 1.

31In particular, the author of this thesis did not manage to run Mical on input logs with event names consisting
of more than one letter. However, this should be possible, since DeYoung (2008, p. 118) characterizes Mical
as �the only GI toolkit that support[s ...] multi-letter alphabets� and shows related examples.

32This implementation exhibits some similarities (mainly the PTA generation stage) but also di�erences (e.g.
the representation of every condition of the k-RI algorithm by an own class) to the implementation in Mical
(Rey, 2003).

33The experiments reported in Cabac et al. (2006c) and Cabac and Denz (2008) were run with a previous
version also published as a ProM plugin. However due to errors and performance issues, this version was
re-implemented later. The mentioned experiments (also reported in this chapter) have not been re-run
thoroughly with the new version yet. However, in a �rst test on similar data it delivered likewise results.

34quite similar to the implementation in Mical (Rey, 2003)
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Following a common approach, the traces of the input log are sorted by length before incremen-
tal processing. The incremental version seems to require less computation time on long traces
containing many cycles. This observation appears plausible, since the detection of appropriate
cycles on the shorter traces might prevent the introduction (and merging) of many states into
the automaton for the longer traces. However, the performance gain has not been analyzed
and quanti�ed in detail yet.

7.2.4.2. Concurrency Detection

Our �nal implementation35 of the concurrency detection procedure by Schütt (2003, pp. 58)
is realized as an extension of the α algorithm in ProM 36 and also uses the automata-speci�c
model classes37 provided by this framework.

As in the original approach by Schütt (2003, p. 59), the basic idea is that the k-RI algorithm can
merge 'super�uous' duplicate states and transition labels from the PTA by introducing alterna-
tive join states and cycles, but not by building concurrent splits and joins. Our implementation
of the k-RI algorithm returns an automaton where duplicate tasks, i.e. occurrences of the same
label a on multiple transitions, are tagged with unique indices i ∈ N, namely a1, a2, ... In case of
concurrent control �ow, the automaton contains the typical �diamond� structures mentioned by
Rubin et al. (2006, p. 21) and Schütt (2003, p. 59). Hence, the causally independent execution

of two tasks a and b will be mapped to 4 transitions s1
ai−→ s2, s2

bj−→ s4, s1
ak−→ s3, and

s3
bl−→ s4 where i, j, k, l ∈ N can (but do not have to) be di�erent (see also Schütt, 2003, p. 59

and Knaak, 2007, p. 35).

Our implementation of the simple concurrency detection by Schütt (2003, pp. 59)38 searches
the automaton for these diamond structures and merges the indices of a and b whenever the
additional conditions s2 6= s3 and s1 6= s4 hold. The procedure is repeated for all transition in
the automaton until no further merging is possible. Since the comparison iterates over all pairs
of transitions (except for identical ones) and over all outgoing edges of the transitions' target
states (to identify equal join states), the label merging should run in O(n2 · d) steps where n is
the number of transitions and d is the average out-degree of states in the automaton.39

After label merging, the log-based precedence relations of the α algorithm are derived from the
automaton40 and passed to the AlphaProcessMiner of ProM in a LogRelations object. As
of version 4.2, ProM also contains a built-in implementation41 of log relations derived from
a transition system. However, as mentioned before, this procedure does not regard for the
merging of (indexed) duplicate tasks.

35Cabac et al. (2006c) relate to a previous, slightly di�erent version not using the ProM framework.
36class AlphaProcessMiner
37presumably developed in the context of the work by Rubin et al. (2007)
38class SchuettConcurrencyDetection
39The current implementation additionally repeats the loop over all edges until no more merging is possible.

This might, however, not be necessary.
40class TSLogRelationBuilder
41class TSLogAbstraction
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7.2.5. Results and Discussion

This Section presents and discusses the results obtained with the implemented part of the
mining chain. Furthermore, hints towards improvements of the current procedure and the
implementation of the remaining steps are provided.

7.2.5.1. Control Flow Mining

The combination of the k-RI algorithm (Angluin, 1982) and the concurrency detection proce-
dure by Schütt (2003) was tested on logs of three process models shown in Figure 7.9. These
contain all control �ow constructs relevant for AIP diagrams; including cycles, duplicate tasks,
and (nested) alternative and concurrent splits and joins. All models were correctly recon-
structed from relatively small arti�cial logs (containing 29, 6, and 27 cases respectively) with
the parameter k set to 1 and minimization activated.

Though the procedure is able to reconstruct complex control �ow, there are also cases that
cannot be handled properly. The example in Figure 7.10 shows an automaton reconstructed
from the log L = abcdx, acbdx, abex. The transition labelled with e, that emanates from the
'diamond structure' b → c, c → b, causes the concurrency detection to generate a net that
over-generalizes the given log and does not terminate properly (i.e. with a single token in the
'�nal' place) for paths leading past this transition.

In contrast, the tool Petrify used in the region-based approach by Rubin et al. (2007) succeeds
to synthesize a bi-similar net from the automaton. To improve our implementation, we might
either (a) include a special case to handle additional edges of 'state diamonds' or (b) extend
it towards the detection of 'atomic blocks' as sketched by Schütt (2003, pp. 59). The latter
aspect is detailed further below.

Another peculiarity of the concurrency detection implementation is that, di�erent from the α
algorithm, it cannot properly reduce super�uous duplicate tasks caused by concurrent execution
in an automaton reconstructed from a locally, but not globally, complete log (see Section
4.2.2.3). However, the same holds true for the region-based approach by Rubin et al. (2007)
that always synthesizes a bi-similar net from an automaton, and presumably also for the pre-
processing stage for duplicate task detection by Gu et al. (2008); see Section 4.2.3.2.

Recall from Section 4.2.3.3 that Rubin et al. (2006, p. 21) introduced a heuristics to complete
candidate 'state diamonds' in an automaton. Carmona et al. (2008) modi�ed the theory of
regions towards generalization instead of bi-similarity to better �t the needs of process mining.

7.2.5.2. Implemented Mining Chain

The implemented part of the mining chain was tested on logs of a fairly complex interaction
protocol modeled in Mulan/Capa, which was inspired by the well-known contract net pro-
tocol (see Smith, 1980 and Section 3.3.2.3), the order mediation in our courier service model
(Section 8.1.2.1), and the example used by Mounier et al. (2003, p. 160).

As described in (Knaak, 2006, Sec. 4.2), the protocol includes three single-instantiated roles,
i.e. a customer, a mediator, and a service provider (see Figure 7.11): Initially, the customer
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Figure 7.9.: Example process models correctly reconstructed by our implementation of the k-RI
algorithm (Angluin, 1982) and the simple concurrency detection by Schütt (2003).
Example (3) was adopted from the dissertation by Herbst (2001).
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Figure 7.10.: An example automaton that our current implementation of the simple concurrency
detection by Schütt (2003) cannot properly transform into a Petri net, while the
region-based approach by Rubin et al. (2007) can.

requests (performative request) a service from a mediator who, in turn, invites an o�er from
a service provider (cfp). The provider can refuse immediately, which causes the mediator to
notify the customer about the failure (fail). Alternatively, it might submit an o�er (propose),
which is accepted (accept-proposal) or rejected (reject-proposal) by the mediator.

Rejecting leads to a negotiation (on the price or some other modality of service provision)
between the mediator and the provider, which is cancelled (cancel) by the mediator when no
agreement can be reached.42 In this case, the customer is again noti�ed about the failure.
When the mediator accepts the provider's o�er, it concurrently informs the customer about the
agreement.

Figure 7.11 shows an aggregate view upon the protocol modeled as a labeled P/T net. Based
on this description, protocol nets for the involved roles were implemented in Renew and run
on the Capa platform.43 The message tra�c was logged by an observer tool (Mulan Sni�er,
see Section 7.4.1) and fed into the 3 implemented steps of the mining chain.

The resulting logs contained not only �the messages belonging to the order allocation protocol
[... but also] surrounding 'noise', i.e. conversations executed during the initialization of agents and
platform.� (Cabac et al., 2006c, p. 19). The latter stemmed from infrastructure activities
like registrations of the model-speci�c agents with the AMS and DF of the platform. An
aggregation of messages into conversations and subsequent unsupervised classi�cation with the
nearest neighbor algorithm succeeded, but �the performance of the clustering procedure strongly

42This part of the protocol is similar in spirit to the example by Mounier et al. (2003, p. 160).
43Note that drawing an AIP diagram and generating protocol templates would have been another possible,

more comfortable approach in Paose.
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Figure 7.11.: Example protocol to test the implemented mining chain. Figure adopted from
(Knaak, 2006, Fig. 5).

depends on [... the] threshold for cluster similarity that needs careful calibration� (Cabac et al., 2006c,
p. 19).

Roles were also detected straightforwardly by 'anonymization' (see Section 7.2.3) since the
initial order of 'role appearances' in the example protocol is �xed. From the abstracted log,
the control �ow mining stage successfully reconstructed a model of the overall protocol at the
level shown in Figure 7.2.3. A (manually beauti�ed) view of the mining results in Renew is
shown below in Figure 7.16 (Section 7.4.2.2).

7.2.5.3. Discussion and Further Steps

It must be noted that the experiments conducted so far do not represent a thorough empirical
validation of the presented interaction mining approach, but only an initial feasibility study for
interaction mining on an operational agent platform. Firstly, more diverse protocols, including
variants less tailored to the abilities of the mining procedure, should be considered. Secondly,
the performance of the mining chain steps must be analyzed in more detail, also taking into
account further techniques and results from process and interaction mining (as reviewed in
Sections 4 and 5).

In the above example, the duty of the role mining and clustering procedures is made quite easy
by the fact that the target protocol contains no message exchange with the �xed AMS and DF
roles, while the 'surrounding' protocols do. In the subsequent study reported in (Cabac and
Denz, 2008) and Section 7.4.2.2, we replaced role mining with the procedure by Song and Aalst
(2008) implemented in ProM and performed clustering merely on the basis of performatives.
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On the given example, this variant seems to perform quite similar to the processing chain
described in (Cabac et al., 2006c) and above.

Concerning control �ow mining, the implemented technique was already brie�y compared to
the related work by Rubin et al. (2007) in Section 4.2.3.3. During the initial experiments with
the procedure reported in (Cabac et al., 2006c), we experienced problems related to (a) the
proper detection of cycles from small logs and (b) artifacts introduced by causality violations
during the observation of message tra�c in the concurrent execution environment. Recall from
Section 5.2.4.1 that vector clocks (see e.g. Vigueras and Botia, 2008, p. 193) might be a thorough
solution for this problem.44

To make the procedure more robust, one might orientate duplicate task and concurrency de-
tection in the implemented procedure towards the 'stochastic' log relations of the Heuristics
Miner (Section 4.2.3.4) instead of the 'binary' relations of the α algorithm.45 For this purpose,
the transitions of the automaton reconstructed in the �rst step must be enriched with path
frequencies by the k-RI algorithm. Alternatively, a stochastic grammar inference technique
might be used as in (Mounier et al., 2003).

Further theoretical and empirical comparisons of region-based net synthesis (as used by Rubin
et al., 2007) and 'pattern-based' concurrency and duplicate task detection (as e.g. proposed by
Schütt, 2003 and Gu et al., 2008) might be of special (in the �rst instance theoretical) interest
with respect to computational performance and the ability to handle (globally) incomplete logs.

To improve the practical applicability of the presented mining chain in the Paose approach,
an implementation of the remaining steps towards the reverse engineering of AIP diagrams
would be desirable. The decomposition of the reconstructed aggregate model into distinct
protocol nets is in principle straightforward (Cabac et al., 2006b, Sec. 5.2): Every transition
must be split into two related transitions according to its label. In doing so, we obtain a Petri
net representation of sequence diagram lifelines as e.g. shown by Aalst (2004, Sec. 5). The
challenge for this and the �nal visualization step lies in the mapping of the basic net elements
to (block-structured) net components or AIPs and in providing an appropriate visual layout.

The implementation of the simple concurrency detection by Schütt (2003, p. 59) might be
extended towards the identi�cation of 'atomic blocks', as sketched by the same author (Schütt,
2003, pp. 59); see Section 4.2.3.3. However, this task appears computationally expensive at
�rst sight because it must consider and compare connected fragments of arbitrary size46 in
the graph of the input automaton. In the context of this thesis, initial attempts towards an
implementation based on a block detection approach by Bae et al. (2006) were dropped due to
technical di�culties and priority in the working plan.

7.3. Reconstruction of Higher Order Protocols

As indicated in Section 6.2.4, conversations in MAS often exceed the level of basic protocols
covered by the mining procedure described so far. The above example might e.g. become

44which has not been realized yet
45which, in turn, might put the approach closer to the work by Herbst (2001)
46up to the size of the graph itself
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more realistic when the mediator negotiates about prices for the requested services with mul-
tiple providers in sequence or in parallel (i.e. a multicast conversation). Furthermore, the
mediation protocol might be embedded into the control �ow of a larger multi-agent work�ow
(Section 6.2.4.1). Recall from Section 3.3.3.1 that such control �ow models are termed higher
order protocols in Mulan (Rölke, 2004, p. 137).

Higher order and multicast protocols cannot be reconstructed by the above procedure for several
reasons: Firstly, a role might be adopted by multiple agents during a conversation, where
the number of agents per role is not known a-priori (i.e. work�ow pattern P13 mentioned in
Section 2.3.3). Our simple 'anonymization' procedure (Section 7.2.3) would fail in this situation.
The role mining approach by Song and Aalst (2008) might be able to identify agents that enact
the same role within a conversation based on their 'message pro�les' (see also the work by
Vanderfeesten, 2006, mentioned in Section 5.3.4.6). However, as reviewed in Section 4.2.4.2, it
cannot handle the case where an agent adopts di�erent roles in the protocols belonging to a
multi-agent work�ow yet.

Another problem, also mentioned by authors like Lou et al. (2010b) and Kumar et al. (2011),
is the fact that algorithms to discover '�at' control �ow, like the one used in the above pro-
cedure, cannot reliably reconstruct the complex patterns emerging from a variable number of
concurrent conversation threads. Event patterns resulting from message broadcasts might e.g.
be mistaken as cycles or lead to a large, over-specialized model that mirrors the (randomly)
observed interleaving too closely. A discussed in Section 6.2.4.1, higher order protocols also
include further process dimensions like (relations between) message cardinalities and protocol
phases, that the simple mining chain cannot handle.

From today's point of view, the following approaches from the literature might bear the poten-
tial to reconstruct higher order and multicast protocols from message logs:

• The approach by Lou et al. (2010b), reviewed in Section 4.2.3.5, allows to reconstruct the
control �ow of multiple interleaved threads using few a-priori knowledge. However, for
the same reason, it does not re�ect useful knowledge about the hierarchical structure of
higher order protocols.

• Authors like Greco et al. (2005) and Li et al. (2010), reviewed in Section 4.2.5.2, recon-
struct hierarchical models with the aid of pattern detection and clustering techniques.
However, these approaches neither take into account knowledge about the speci�c struc-
ture of higher order protocols (though it might be integrated), nor consider multiply
instantiated threads and 'protocol phases' as partial dependencies between concurrent
sub-models.

• The reverse engineering of message sequence graphs reported by Kumar et al. (2010,
2011, 2012), reviewed in Section 5.3.2, is closely akin to our view of higher order protocol
mining. However, the technique requires additional information about messages belonging
to the same 'multicast branch' to reconstruct multicast protocols, and on the assignment
of objects (agents) to classes (roles). This information is not directly available in message
logs from the Capa platform but might possibly be reconstructed or added.

• The work on artifact-centric process mining by authors like Fahland et al. (2011a) and
Kikas (2011), reviewed in Section 5.3.3.3, covers concepts of interacting processes and
(message) cardinalities. However, as indicated by Popova et al. (2012, Sec. 6), practical
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Figure 7.12.: Processing chain for multicast protocols.

work has mainly focused on single artifact life cycles so far.47 Furthermore, the closeness
of the artifact-centric view to relational databases might not be appropriate in the context
of agent systems.48

Since most of the above approaches were not available when the idea came up to reconstruct
higher order protocols in the case study at hand, an own sketch was developed to extend the
basic mining chain for this purpose. The envisioned procedure is described and related to recent
work from the literature in the following. A strongly simpli�ed partial implementation and �rst
experimental results are reported in Section 8.3.2.2 below.

7.3.1. Extended Interaction Mining Chain

Figure 7.12 shows an extension of the basic interaction mining chain towards higher order and
multicast protocols. The procedure is based on the distinction between conversation threads
(representing executions of elementary protocols) and conversations (representing executions
of multi-agent work�ows) introduced in Section 6.2.4.1. The reconstruction of conversation
threads is accomplished with the three subtasks already known from the previous sections,
which are displayed in the lower row of the diagram.

An initial overview of the extended procedure was provided in (Knaak, 2007, p. 36):

�First we segment the message log into 1:1 conversation threads. Next we merge similar
threads (e.g. based on similar causal matrices) belonging to the same conversation into

47One exception is the draft by Kikas (2011, Sec. 4.8), which is closely akin to the procedure described in the
following. The discovery of artifact interactions will also be a future topic of the project ACSI (see Popova
et al., 2012, Sec. 6).

48Nevertheless, the ongoing project ACSI covers agent-oriented and actifact-centric models side by
side, as mirrored in associated publications like (De Giacomo et al., 2012) listed at http://

www.acsi-project.eu/public.html (last visit 2012-11-03).
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a multicast conversation model. This model contains information on each conversation
thread's internal causal dependencies. In addition, we detect synchronisation points in the
multicast conversation by extracting external causal dependencies (such as �the initiator
sends an accept message only after receiving all propose and reject messages from the
responders�) between pairs of conversation threads. From the internal and external depen-
dencies, [... a hierarchical process model] is created. Actions without external dependencies
are merged into the same [... sub-]region [of the model]. The regions are ordered according
to the external dependencies, and in every region a sub-diagram with the contained internal
dependencies is built using conventional [... control �ow discovery] techniques.�

In the following, the steps of the extended mining chain will be described in more detail.

7.3.2. Log Segmentation and Role Mining

The �rst task in operationalizing the sketched procedure is to extend the log segmentation and
role mining stages towards an explicit handling of 1:1 conversation threads and of the enclosing
conversations. In Capa, messages belonging to the same conversation thread might still be
chained with the procedure from Section 6.2.4.1 (omitting the �nal merging step) and clustered
based on transition pro�les. In this context, role mining by means of simple 'anonymization'
remains possible as well.

The next level of clustering consists in an aggregation of related conversation threads into
conversations; and in the classi�cation of these conversations by the generating (higher order)
protocol type. For the former task, the following options appear possible:

• When all conversation threads of the same higher order protocol execution are related by
at least one replyWith or inReplyTo tag of their messages, the �nal merging step of the
simple chaining procedure might be applied.

• Another simple assumption (exploited in the implementation described in Section 8.3.2.2)
is that all messages belonging to the same conversation share a common content attribute
such as the order processed in the respective multi-agent work�ow.

• When none of these assumptions hold, more elaborate metrics from interaction and web
service mining might be applied, taking into account features like temporal proximity
and similar participants of conversation threads (see e.g. Dustdar and Gombotz, 2006,
reviewed in Section 5.3.3.1).

Conversations might, in principle, be classi�ed by their generating higher order protocols by
applying a small extension to the basic case. Initially, the log must be abstracted somewhat
similar to the hierarchical process mining approach by Li et al. (2010) and the complex event
detection by Chen et al. (2010): All message events that belong to the same conversation
thread are replaced by a single event representing the respective conversation thread type.49

Transition pro�les can be extracted from the abstracted conversations similar to the basic case.
To make clustering more reliable, further features might be integrated, including the following
examples:

49The mining component shown in Section 7.1.3 might be an appropriate basis to implement log abstraction in
Capa.
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• Cardinalities: How often is a certain conversation thread type instantiated within a
conversation? Does the execution of these instances overlap?

• Commonmessage content properties, as e.g. proposed by Schütt (2003); see Section 5.3.3.2.

• Relations between agents and roles observed across multiple threads belonging to a con-
versation: A simple example is 'The agent bound to role R1 in conversation thread type
CT1 is always the same as the agent bound to R2 in CT2'.

7.3.3. Control Flow Mining

The distinct levels of conversation threads and conversations must also be re�ected by a control
�ow discovery procedure that targets higher order protocols. The simplest option is to apply
conventional control �ow mining to the original and abstracted logs as e.g. in the hierarchi-
cal process mining techniques by Li et al. (2010). However, these approaches cannot prop-
erly reconstruct multicast conversations and 'protocol phases' indicated by individual message
precedences observed across di�erent conversation threads.

We therefore distinguish between internal precedences of messages belonging to the same con-
versation thread and external precedences between messages from di�erent conversation threads
and thread types. This approach is quite similar to the work on artifact-centric process mining
(e.g. Kikas, 2011, reviewed in Section 5.3.3.3) and message sequence graph mining (Kumar
et al., 2011, reviewed in Section 5.3.1). It provides the advantage that internal precedences
of conversation thread types can be reconstructed with conventional control �ow mining tech-
niques.

However, as also observed by Lou et al. (2010c, p. 613), precedence relations used in conventional
control �ow mining50 are often too restrictive to capture the control �ow between multiple
instances of interleaved threads. Similar to the artifact-centric process mining approach by
Kikas (2011, p. 12), we therefore employ the so-called strict order relation de�ned by Weidlich
et al. (2009)51 and denoted as <<L in this thesis: Simply put, A <<L B holds for two event
types A and B in a log L if in all traces t ∈ L the �rst event B only occurs after the last
occurrence of an event A (for a proper formal de�nition see e.g. Kikas, 2011, pp. 11).

Figure 7.13 displays a simple example how this relation can be used to discover external prece-
dences and protocol phases. The procedure is basically the same as the extraction of behavioral
pro�les from artifact interactions described by Kikas (2011, Secs. 4.5,4.8), which was developed
in parallel to our scheme. However, our main interest is not to match artifact-centric models
and logs (i.e. mapping discovery for conformance checking, as targeted by Kikas, 2011), but to
discover the control �ow of higher order protocols.

The example in Figure 7.13 corresponds to a small extension of the well-known contract net
protocol : Similar to the previous test example for the basic interaction mining chain, a customer
requests a service from a mediator (req). The mediator calls multiple service providers for
proposals (cfp), who might return a proposal (prop) or refuse the call (ref ). Each proposal
is either accepted (acc) or rejected (rej ). Multiple accepts are possible, i.e. the order can

50such as the direct follower relation underlying the α algorithm (Section 4.2.3.1)
51cited in Kikas, 2011, p. 12
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Figure 7.13.: An example showing how external precedences and protocol phases can be mined.

be shared between multiple service providers. After accepting or rejecting all proposals, the
mediator �nally informs the customer (inf ) about the result.

To reconstruct the control �ow of the conversation, the messages of the associated conversation
threads are �rst arranged in the style of a multicast tree (e.g. Ratnasamy and McCanne, 1999).
Figure 7.13 displays one conversation thread of type CT1 that represents the communication
between the customer and the mediator and four conversation threads of type CT2 for the
interactions between the mediator and four service providers. Black arrows indicate the direct
follower relation of messages within each conversation thread. Red arrows show the same
relation for all messages belonging to the conversation, i.e. the path actually taken through the
multicast tree in the (imaginary) protocol execution.

From the tree, we can, on the one hand, reconstruct the internal dependencies for every conver-
sation thread type using the relation → known from the α algorithm. On the other hand, the
external dependencies between every pair of conversation thread types are extracted by mutu-
ally comparing all conversation threads (including instances of the same type) according to the
relation <<. This proceeding is also proposed by Kikas (2011, p. 29) to extend his approach
towards artifact interactions. Also similar to Kikas (2011, p. 25), we can reduce the number
of mined external precedences by neglecting those that are implied by an internal precedence
(e.g. req/CT2 << prop/CT1).
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To identify precedences between di�erent phases of the higher order protocol, we cluster those
message types that do not stand in a strict order relation52 into the same phase. These phases
are indicated by green and blue marks in the multicast tree.53

The example protocol P thus consists of 4 sequential phases P1 = {req} (the customer requests
the service), P2 = {cfp, ref, prop} (the mediator collects o�ers from all providers), P3 =
{acc, rej} (the mediator selects the best o�ers), and P4 = {inf} (the mediator informs the
customer). Within each phase, messages can be ordered according to the internal precedences
of the involved conversation thread types.

Note that the procedure allows to detect deviations from this behavior (e.g. for the purpose
of validation) such as a protocol P ′ with only 3 phases where the mediator can already select
o�ers before all providers have answered (i.e. P ′1 = P1, P

′
2 = P2 ∪ P3, P

′
3 = P4). The map-

ping techniques described by Kikas (2011, Sec. 4.6), might possibly help to automate such
comparisons.

A drawback of using the strict order relation to detect external precedences is that it cannot
identify control �ow constructs like short cycles or duplicate tasks. While this might be accept-
able for an application to mapping discovery between logs and models (as reported by Kikas,
2011) it is a clear restriction in control �ow discovery of agent protocols.

7.3.4. Multiple Instantiation and Cardinalities

Another relevant process dimension in complex agent protocols is related to message broadcast
and cardinalities. Recall that AUML interaction diagrams employ the symbol ∗ to indicate that
a message is sent to multiple agents with the same role in parallel or in sequence. Furthermore, a
diagram can be inscribed with constraints on message cardinalities. An example is the relation
i = j + k indicating that the number i of cfp messages is equal to the sum of propose (j) and
refuse (k) messages (i.e. all responders must answer the call for proposal) in the well-known
display of the contract net protocol cited in Figure 3.5 (Section 3.3.2.3).

As discussed in (Knaak, 2007, p. 36): �Multicast protocols are closely related to the multiple in-

stantiation work�ow pattern, where a variable number of instances of the same activity are executed
in parallel (see e.g. Guabtni and Charoy, 2004).� A detection whether a conversation thread type
includes (parallel) multicast processing could therefore be achieved on the basis of the following
simple heuristics:54 A conversation thread type CT is assumed to be multicast in a conversation
type C if at least one instance of C contains multiple temporally overlapping instances of CT .
When the instances do not overlap, an iterative processing of multiple instances is implied (e.g.
Guabtni and Charoy, 2004, p. 182).

To reconstruct constraints on message cardinalities, the �rst step is to count the occurrence
of message types for every conversation and conversation thread, quite similar to the work�ow
pattern mining approach by Gaaloul et al. (2005) reviewed in Section 4.2.3.5. The results might

52The corresponding log relations are called exclusiveness relation and interleaving relation, see e.g. Kikas (2011,
p. 12).

53The behavioral pro�le graph used by Kikas (2011, p. 27) would be another appropriate graphical notation.
54somewhat akin to the rules stated by Kumar et al. (2010, Sec. 5), see Section 5.3.2, and Wen et al. (2010,

p. 396), see Section 4.2.3.5
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e.g. be represented by logical facts #(MT,CT, c, x), stating that in conversation c, the number
of observed messages of type MT exchanged by conversation threads of type CT is equal to x.

Several data mining techniques could then be applied to identify cardinality constraints over this
fact base: A simple statistical summarization (Dunham, 2003, p. 8, reviewed in Section 4.1.2.1)
of minimum, maximum, and average messages frequencies55 might already be useful for protocol
validation (see also the interaction pattern detection approach by Dustdar and Ho�mann, 2007,
reviewed in Section 4.2.4.3).

In addition, linear regression (Dunham, 2003, p. 6, reviewed in Section 4.1.2.1) can be applied to
detect simple linear relations between message cardinalities, somewhat similar to the approach
by Musaraj et al. (2010); see Section 5.3.3.4.56 Note that regression must in principle be
performed over the whole power set of message types that belong to a conversation. A linear
equation will also be returned in the case where no actual relations exist. However, invalid
relations should be characterized by a larger classi�cation error and non-integer coe�cients.57

To detect non-linear relations, more complex data mining techniques must be applied. The most
�exible might be symbolic techniques like genetic (Section 4.1.4.5) or inductive logic program-
ming (Section 4.1.4.3). However, recalling the simplicity of message cardinality constraints, it
might be more appropriate to search the fact base for known plausible relationships (e.g. con-
stants, linear equations, products), somehow similar to the work�ow and interaction pattern
detection approaches by Gaaloul et al. (2005), reviewed in Section 4.2.3.5, and Dustdar and
Ho�mann (2007), reviewed in Section 4.2.4.3. The following example shows a simple Prolog-
style rule to induce the relation |MT3| = |MT1| · |MT2| for three message types MT1, ...,MT3
from the above facts:

#(MT1, CT1) ·#(MT2, CT2) = #(MT3, CT3)⇐ ∀ci ∈ L :
#(MT1, CT1, ci, xi) ∧#(MT2, CT2, ci, yi) ∧#(MT3, CT3, ci, zi) ∧ xi · yi = zi.

(7.2)

7.3.5. Result Representation

After detecting internal and external precedences as well as multiple instantiation patterns and
constraints on message cardinalities, the wealth of discovered information must be presented in
an understandable form to support exploratory or con�rmatory analysis. Considering appro-
priate design diagrams, it stands out that AgentUML interaction diagrams support the display
of message broadcast and cardinality constraints, but not protocol phases.

As shown by Odell (2003), UML 2 interaction overview diagrams (Jeckle et al., 2002, p. 419) or
the rather similar Message Sequence Graphs (Kumar et al., 2011) better �t the latter require-
ment (see also Kumar et al., 2012, p. 916): Sequence diagrams displaying internal precedences
within certain protocol phases can be embedded into an activity diagram that represents the
external precedences, quite similar to the software reverse engineering approach by Kumar et al.
(2011, p. 99).

55possibly including standard deviations
56Musaraj et al. (2010) apply linear regression to reconstruct control �ow in interaction mining and not relations

between message cardinalities.
57A small initial experiment on arti�cial data was performed with the linear regression algorithm implemented

in WEKA.
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Figure 7.14.: Representation of a multicast protocol as a UML 2 activity diagram with expan-
sion regions.

A visually simpler alternative are UML 2 activity diagrams, where so-called expansion regions
can be used to indicate multiple instantiation (Wohed et al., 2004).58 Figure 7.14 shows a
possible simpli�ed variant tailored towards straightforward visualization in a process mining
tool: Conversation threads are indicated by swim lanes and annotated with the involved roles.
Message events are displayed by activities, quite similar to the aggregate interaction proto-
col model in Figure 7.11. Message broadcast (as well as related replies) is indicated by the
stereotype �multicast� together with an identi�er for the respective message cardinality and
the enclosing protocol phase. Relevant statistics and constraints on message cardinalities are
displayed within a 'note' symbol.

Mapping such design diagrams to executable reference nets requires the de�nition of an opera-
tional semantics for multicast protocols. This might be based on the ideas by Moldt and Rölke
(2003) concerning the representation of multiple instantiation patterns with reference nets (see
also Knaak, 2007, p. 36).

7.4. Tool Support

After discussing the algorithms for agent interaction mining used in this case study, we will
�nally turn our focus towards the toolset developed for the (preliminary) integration of process
mining into the Capa platform. For this purpose, we mainly cite relevant passages from the
pre-publications by Cabac et al. (2006c) and Cabac and Denz (2008).

58Related modeling constructs called multiple instantiation sets are proposed by Guabtni and Charoy (2004,
p. 179).
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7.4.1. Mulan Sni�er Tool

In the beginning of the case study, a message monitoring tool was implemented by Heitmann
and Pläehn (2005) as part of a study project. A brief description of this tool is provided in
(Cabac et al., 2006c, p. 19):

�To integrate process mining facilities into the Capa platform, we developed a monitoring
tool named Mulan Sni�er as a Renew plugin (Cabac et al., 2005). The name indicates
that the tool's functionality was derived from typical MAS debugging tools such as the
JADE Sni�er [...]. The Mulan Sni�er monitors all ACL messages sent between agents
on the platform during a simulation. The resulting message log is displayed textually as a
list or graphically as a UML sequence diagram. Filters can be applied to select messages
containing certain performatives, etc.

Figure [... 7.15] shows the user interface of the Sni�er with an observed message log. The
messages in the diagram are color coded to ease the monitoring of the MAS. They can be
inspected in the bottom left view of the Sni�er window. The upper left view shows a list
of observed agents which can be sni�ed or blocked. It also shows the numbers of messages
sent and received per agent. The tool allows to observe changes in the diagram on the �y,
i.e. when the message is sent.

The Mulan Sni�er di�ers from its `ancestors' in two aspects that are important for our
approach: (1) The recorded sequence diagrams are stored in the same format used by
the Mulan design tools. They can therefore be edited and mapped to executable agent
protocols. (2) More important, the Sni�er is a [...] Renew plugin (Cabac et al., 2005)
that can be extended by plugins for process mining and �ltering itself.

The interfaces for �ltering and mining plugins are reminiscent of similar tools such as ProM
(Dongen et al., 2005). Special emphasis is put on the recursive character of process mining
algorithms: These algorithms operate on data and provide data for higher-level analysis.
We therefore introduce[d] the concept of mining chains [as described in Section 7.1.3].�
(Cabac et al., 2006c, p. 19)

7.4.2. Analysis Framework and Mining Chains

The �rst version of the agent interaction mining chain described by Cabac et al. (2006c) was
implemented as a proprietary plugin for the Mulan Sni�er. However, with the continuing
improvement of the open source process mining tool ProM (see Section 4.2.6.1) on the one
hand and the visual modeling technique of mining components on the other hand, it seemed
more plausible to use scienti�c work�ows modeled with mining components as a starting point
for tool integration.

A more mature implementation of interaction mining in the Paose approach based on this
paradigm was therefore presented by Cabac and Denz (2008). Recall from Section 7.2.3 that
in this study some steps of the original interaction mining chain were modi�ed.
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Figure 7.15.: �Mulan Sni�er UI with observed interactions and Renew UI.� Figure and caption
adopted from (Cabac et al., 2006c, p. 19).

7.4.2.1. Integration with ProM

Compared to the previous implementation, a main di�erence was the integration of plugins
from the widespread process mining tool ProM (Section 4.2.6.1). This integration is described
by Cabac and Denz (2008, p. 95) as follows:

�As discussed in Section [... 4.2.6.1], ProM is a powerful Java-based process mining tool with
an open plugin architecture similar to the one of Renew. The algorithms implemented in
ProM are used interactively on imported log data or process models via a GUI. Due to
the simple Java interface provided by the mining components, an integration of both tools
appears straightforward. In doing so, we can on the one hand o�er Petri net-based data-
�ow modeling for ProM. On the other hand, we can comfortably integrate a large number
of existing process mining and analysis algorithms into our Petri net-based software.

[...] We have straightforwardly mapped import plugins [of ProM] to source components and
export plugins and viewers to sink components. Mining, analysis, and conversion plugins
are speci�c kinds of processors. Based on the ProM architecture two additional component
types were identi�ed: Filters restrict the log to certain event types, and interactive viewers
allow for user interactions during the mining process. The latter are implemented with the
aid of so-called manual transition[s] that the user �res after �nishing the interaction.

Since ProM o�ers interfaces for each plugin type, it is not even necessary to provide an
own wrapper for each algorithm. Instead, we can provide generic wrappers and pass the
concrete plugin class as a parameter.� (Cabac and Denz, 2008, p. 95)
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Figure 7.16.: �Example process mining chain for agent interaction mining.� Figure and caption
adopted from (Cabac and Denz, 2008, p. 96).

7.4.2.2. Improved Agent Interaction Mining Chain

On this foundation, the interaction mining procedure was re-implemented as a complex visual
mining chain in Renew. We cite our pre-publication in (Cabac and Denz, 2008, pp. 96-99) for
the following overview:

�Figure [... 7.16] shows the implementation of the �rst three steps by means of mining
components. Each step is represented by a complex processor and re�ned by a sub-net. The
sub-nets for the log segmentation and control �ow mining steps are depicted in Figs. [... 7.17]
and [... 7.18]. Furthermore, there are source and sink components that help to embed the
mining chain into the agent platform.

The processing starts from the Sni�er Message Source component that provides a message
log [... from] the Mulan Sni�er. [...] At the end of the processing chain, the Renew Petri
Net Viewer sink exports Petri net representations of the reconstructed interaction protocols
to Renew as new net drawings59 that can be instantiated and executed.

59The graphical representation of the resulting model in Renew is manually beauti�ed.
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Figure 7.17.: �A sub-chain implementing the segmentation step.� Figure and caption adopted from
(Cabac and Denz, 2008, p. 97).

Each step of the mining chain is implemented by means of several existing and new ProM
plugins wrapped as mining components. The Log Segmentation processor depicted in Fig-
ure [... 7.17] starts by chaining messages (Aalst et al., 2005) [...] into conversations. After-
wards two �lters are applied that add arti�cial start and end events to each conversation
in the log.60

Next, the Clustering component clusters the conversations in the log into protocol classes
based on similar follower relations of message types (performatives). [...] The results
are displayed using the Log Reader Viewer while the net execution waits on a manual
transition. In the example, this interactive viewer lets the user select a certain protocol
class for further investigation. After selecting the protocol, the manual transition is �red
by the user to continue the processing. At the end of the log segmentation, a Process Filter
restricts the log to those conversations that belong to the selected protocol.

The pre-processed log is forwarded to the Role Mining procedure. This step uses ProM's
existing organizational miner plugin to induce the participating agents' roles from the sets
of message types they send (as also proposed in Vanderfeesten, 2006). The corresponding
subnet is not shown here. It enriches the log with role information and forwards the
enriched log to the Control-Flow Mining processor shown in Figure [... 7.18].

This step illustrates how mining components can be combined with custom net structures
and Java code to build a simple optimization procedure. [...]

60This enhances the mining results and will not be explained in detail here.
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Figure 7.18.: �A sub-chain implementing the control-�ow mining step with an integrated optimization
procedure.� Figure and caption adopted from (Cabac and Denz, 2008, p. 98).

In process mining, a large number of algorithms exists for the reconstruction of control-�ow,
often tailored towards certain types of data. The well-known α++ (Wen et al., 2006) algo-
rithm e.g. performs well on noise-free, event-based data. Other algorithms are specialized
on handling circumstances like duplicate activities or noise.

Let us assume that the most appropriate algorithm for the given event log is unknown in
advance. We therefore employ the generic mining component and pass a list of algorithms61

as parameters that are applied to the same log in turn. [...]

Subsequent to the mining we use ProM's conformance checking plugin and a custom maxi-
mizer component to identify the mining result that represents the samples in the log `best'
in terms of [... �tness].62 The best result is �nally returned to the main mining chain.
A similar optimizer could be integrated into an adaptive agent in order to increase the
reliability of existing process mining techniques for autonomous learning.

61In the example, this includes the α++ algorithm and [... the] two-step approach [... described in Section 7.2.4].
62Of course in practice one should strive for better optimization methods than the presented brute-force ap-

proach. [The use of behavioral appropriateness instead of �tness as a conformance measure (see also Fig-
ure 7.18) was an error in the original publication by Cabac and Denz (2008, p. 99).]
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Summarizing, the example indicates that the mining components might indeed be a step
towards tackling the [...] problems of integrating process mining and software engineering
[... because] the presented source and sink components provide a well-de�ned interface
between the software development and execution environment (i.e. Renew and Capa) and
the process mining algorithms of ProM. This allows to obtain data from and feed back
results into the system. Since the mined protocols are represented as executable reference
nets, they can be [...] integrated into the [...] Petri net simulation. In practice, the
available algorithms have to be enhanced to permit the automated protocol reconstruction
by adaptive agents.

[... Furthermore], it is shown that the mining components support the creation of complex
mining procedures by means of stepwise re�nement. Compared to other data �ow environ-
ments, the approach provides a number of advantages indicated in the example: (1) in the
context of Petri net-based software engineering with Renew, the same formalism is used to
model the mining procedures and the analyzed software. (2) Pre-de�ned components can
be combined with custom Java code and net elements (e.g. to build the optimization pro-
cedure shown in Figure [... 7.18]). (3) This procedure also shows that unlike conventional
hierarchical notations, reference nets allow to dynamically exchange the applied algorithms
at runtime (e.g. depending on the provided data). (4) User interactions are simply included
by means of manual transitions as shown in Figure [... 7.17].� (Cabac and Denz, 2008,
pp. 96-99)

7.5. Summary

This section reports on the conceptual and practical integration of process mining into the
model-based, agent-oriented software development approach Paose. After identifying the par-
ticular bene�ts of a Petri net-based development approach with respect to process mining, we
explicitly related the perspectives and use cases of the analysis framework from Chapter 6 to
the Mulan model underlying Paose.

Establishing this relation proved basically straightforward since the identi�cation of the analysis
perspectives had already been strongly in�uenced by the Mulan views. Nevertheless, it also
became obvious that Mulan is still 'under-speci�ed' with respect to the formalization of some
of the perspectives including structure, structural dynamics, and level-encompassing relations.

The 'scienti�c work�ow' stance inherent to the use cases model presented in Section 6.3 was
mirrored in the development of speci�c Renew net components with a focus on data �ow mod-
eling. Besides (exploratory) interaction mining as the main use case, a test data generator was
implemented as a complex mining component, adopting concepts from Medeiros and Günther
(2005) and Aalst et al. (2002, Sec. 5). We further pointed out relations between log-replay
based conformance checking (Ramezani et al., 2012; Rozinat and Aalst, 2008), complex event
detection (Chen, 2009; Chen et al., 2010) and the modeling language of reference nets. In the
future, the integration of mining chains into Renew and Capa might allow to use them as
'protocols' of adaptive Petri net agents that generate (at least templates) for new protocols
learned from observed message tra�c.

From the discussion of the analysis perspectives in the context of Mulan, agent interaction
mining in the external control perspective was identi�ed as the foremost task. Based on the
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approach by Schütt (2003) and further literature, a mining chain was implemented that allows
to reconstruct aggregate overviews of basic interaction protocols (without hierarchy and multi-
ple instantiation) from ACL message logs observed on the Capa platform. With the continuing
development of process mining, original parts of the chain were later replaced by mining tech-
niques from the literature implemented in the open source framework ProM. A comparison of
the advantages and drawbacks of the di�erent options was initiated and should be carried on
in larger detail in the future.

Finally, preliminary techniques to reconstruct higher order (i.e. hierarchical and possibly mul-
ticast) protocols were sketched. A very prototypical and simpli�ed implementation comprising
parts of these techniques will be presented within the scope of the following case study in Chap-
ter 8. The techniques also bear strong resemblance to recent developments from the literature
in the context of software reverse engineering (Kumar et al., 2010, 2011, 2012) and artifact-
centric process mining (Canbaz, 2011; Fahland et al., 2011a; Kikas, 2011). Again, an initial
comparison of the approaches was conducted and should be carried on further. Regardless of
the technical similarities and di�erences marked in Section 7.3.3, the agent-oriented paradigm
might, to the author's subjective opinion, capture the mining of complex interaction processes
slightly better than the object-oriented or artifact-centric world views.63

A �nal appraisal of this case study's contributions including comparisons with the most closely
related work will be provided in Chapter 9.

63Note that recent work in the ACSI project seems to cover both paradigms side-by-side. See e.g. the publication
list at http://www.acsi-project.eu/public.html (last visit 2012-11-03).
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Simulation Study

The second case study was conducted in the context of the MABS approach developed at the
University of Hamburg's simulation group (MBS) led by Professor Bernd Page. This approach
utilizes conceptual modeling with UML as well as the Java-based discrete event simulation
framework DESMO-J and its MABS extension FAMOS (see Section 3.4.4).

Compared to Paose, there is a stronger focus on quantitative analyses of modeled (real-world)
systems like the courier service study presented in this chapter. Due to the more code-centric
implementation, verifying the transformations from the conceptual model to the computer
model is a larger issue than in the Petri-net based Paose approach. For these reasons, the
objectives of process mining and the criteria to rate the success of its application di�er slightly
from those discussed in the previous chapter.

The work reported in this Chapter was conducted in close cooperation with several colleagues
and students. The courier service study and the development of FAMOS were part of a funded
research project (see Deecke et al., 2004) handled by Ruth Meyer, Helmut Deecke, Bernd Page,
Remon Sadikni, and the author of this thesis. The automated calibration of the courier service
model was investigated together with Ralf Bachmann and Björn Gehlsen (Bachmann et al.,
2004). Sven Kruse developed an additional variant of the courier service model presented in
(Knaak et al., 2006) and also contributed to validation and veri�cation (Kruse, 2005). Johannes
Haan (2009) applied process mining with ProM to the courier service models and rated the
results in his bachelor thesis, technically co-supervised by the author of this thesis. The results
of his work will be summarized in Sections 8.2 and 8.3.

8.1. Courier Service Study

The courier service study serves as a case example in this chapter. It was part of the three
year research project 'Sustainable Logistics Concepts for City Courier Services' funded by
the Hamburg O�ce for Education and Science. The objective was to analyze the impact of
innovative logistics concepts to the economic, ecologic, and social quality of courier service
operation with the aid of agent-based simulation models. Results of the research project and
later extensions of the models are reported in several publications including the diploma thesis
of the author (Bachmann et al., 2004; Deecke et al., 2004; Knaak, 2002; Knaak et al., 2006).1

These publications also build the basis for this section.

1The project report by Deecke et al. (2004) is, among other pre-publications, partly based on the diploma
thesis (Knaak, 2002) of the author (see Deecke et al., 2004, p. 2). In this chapter, we prefer to cite the later
publication (Deecke et al., 2004).
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8.1.1. Problem Description

City couriers are a common view in the streets of large cities all over the world. The main
distinction between courier and other transport services (e.g. express services) is the direct
transport of consignments from a sender to a receiver by a single courier, which allows for quick
and reliable transportation (Meyer et al., 1999, p. 267). Courier services utilize di�erent small
to medium-size vehicles such as bicycles, cars, station wagons, and vans (Deecke et al., 2004,
p. 11). The individual transport can lead to high economical expenses as well as ecologically
relevant emissions produced by the motorized vehicles (Meyer et al., 1999, p. 267).

During the mid-nineties, a decrease of order volumes and an increase of operation costs could
be observed in Hamburg-based courier services, partly due to the rise of electronic media
and a worsening urban tra�c situation (Deecke et al., 2004, pp. 9). This lead to the idea
to optimize courier services with e�cient concepts borrowed from express service logistics,
which were expected to improve the conditions for an increased utilization of environmentally
bene�cial bicycle couriers (Deecke et al., 2004, p. 19). However, the optimization of courier
service logistics is not straightforward due to established conventions within the �rms as well
as speci�c expectations by customers (Meyer et al., 1999, p. 267-268).

The goal of the courier service study was to analyze the impact of alternative logistics con-
cepts with the aid of agent-based simulation models (Deecke et al., 2004, p. 8). In the �rst
step, data was collected from two co-operating Hamburg-based courier services (Deecke et al.,
2004, pp. 21). Models of the status quo2 and alternative logistics concepts were speci�ed and
implemented with the aid of the MABS framework FAMOS which had been developed in par-
allel (Deecke et al., 2004, p. 8). After validation and calibration, experiments were run with
all models and the di�erent objectives were analyzed by simple quanti�cations of economic,
ecologic, and social measures (Deecke et al., 2004, p. 8).

8.1.2. Agent-Based Courier Service Models

MABS are an appropriate method to simulate courier service logistics due to several analogies
between courier services and MAS described in (Deecke et al., 2004, p. 25): City couriers
usually work quite autonomously. Their choice of transport orders and routes underlies only
minor in�uences by the courier service's central o�ce. Communication schemes applied between
couriers and radio operators working at the o�ce resemble typical agent interaction protocols
like contract net (see Section 3.3.2.3). Couriers autonomously move through the streets of the
city, and their monetary success largely depends on individual experience and knowledge.

In the following, we brie�y describe the analyzed organization forms and their abstractions to
agent-based simulation models.

2This model and its implementation adopt results of a pilot study conducted as part of the project MOBILE
(Hilty et al., 1998).
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8.1.2.1. Status Quo Model

The model of the status quo might represent the most common organization of courier services
in an abstract and idealized form.3 According to Deecke et al. (2004, pp. 11) most courier
services consist of a central o�ce that employs one or more radio operators and a courier �eet
moving around the city. Each order placed at the o�ce is announced to the �eet (Deecke et al.,
2004, p. 11). The couriers rate orders by individual criteria and � in case of interest � contact
the o�ce which usually passes the order to the �rst applicant (Deecke et al., 2004, p. 11).

To ensure an equal utilization, orders are often passed to idle couriers, i.e. those who are not
currently picking up or delivering an order (Deecke et al., 2004, p. 13). For this purpose, the
city area is divided into so-called 'idle regions'4 (Deecke et al., 2004, p. 13). An incoming order
is �rst o�ered to the couriers in the idle region that covers its pickup address (Deecke et al.,
2004, p. 13).

In some �rms, couriers are allowed to process multiple orders in parallel for the sake of improved
route planning (Deecke et al., 2004, p. 12). In this case, the radio operators must take care
that a single courier does not take too many orders to ensure service quality and fairness of
order distribution (Deecke et al., 2004, p. 12).

The radio operators might impose increasing 'pressure' on the courier �eet when an order is
not accepted for a longer time period (Deecke et al., 2004, p. 38). The disposition5 of orders
is not common in this organization form (Deecke et al., 2004, p. 11) due to the legal status of
couriers as self-employed entrepreneurs (Meyer et al., 1999, p. 267).

Note that one analyzed courier service applied a completely di�erent strategy, where every
incoming order is o�ered to the courier whose current position is closest to the order's pickup
address based on GPS 6 information (Deecke et al., 2004, pp. 12,56). The agent-based Sta-
tus Quo model simulates both strategies depending on parameterization (Deecke et al., 2004,
pp. 56).

The environment consists of a graph-based representation of the Hamburg road network and
of the FAMOS infrastructure for message-based instantaneous and error-free communication
(Deecke et al., 2004, p. 38). The road network exists in a detailed variant with about 17000
nodes and in a broad variant (for debugging and face validation) that contains only main streets
(Deecke et al., 2004, p. 36).

The dynamic entities in the model include two agent types, couriers and o�ce, as well as two
arrival processes for couriers and transport orders (Deecke et al., 2004, pp. 49,51). The arrival
processes are fed with real data collected from the cooperating courier services (Deecke et al.,
2004, p. 52). Order pro�les were preprocessed, cleaned, and mapped to the model of the road
network (Deecke et al., 2004, p. 22). Courier pro�les were partly extracted from the order
pro�les by identifying each courier's begin and end of work with her earliest pickup time and
latest delivery time (Deecke et al., 2004, p. 23).7

3as of the time of analysis from about 1997 to 2003
4German: Freistellungsbezirke
5Disposition means that a speci�c courier is obliged to process an order without being allowed to reject it.
6Global Positioning System
7Detailed information on the collected data and its preprocessing can be found in (Deecke et al., 2004, Sec. 5).
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Figure 8.1.: Interaction protocol applied in the Status Quo model displayed as a communication
diagram. Adopted from (Deecke et al., 2004, p. 39)

The communication between couriers and o�ce is guided by the contract net-like protocol
displayed in Figure 8.1 (Deecke et al., 2004, pp. 39). On arrival of a transport order, the arrival
process sends an Allocate message to the o�ce (Deecke et al., 2004, p. 39). The o�ce reacts
by scheduling an Announce signal on itself, and, in reaction to this event, sends a Request

message with the order as argument to the most appropriate part of the courier �eet (Deecke
et al., 2004, pp. 38-39).

For this purpose, the couriers are organized in four groups for each combination of conveyance
types (bicycle or car) and courier states (idle or busy); see Deecke et al. (2004, p. 39). Con-
signments with a preference for bikes are o�ered to the courier �eet in the order 'idle bikers',
'idle cars', 'busy bikers', 'busy cars' (Deecke et al., 2004, p. 40). Orders with a preference for
cars are not o�ered to bikers since it is assumed that the consignment is too large or heavy for
bicycle transport (Deecke et al., 2004, p. 40).8

When a courier agent receives a Request signal it rates the order with a non-linear 'order
interest' function further explained in Section 8.1.3 (Deecke et al., 2004, p. 42). If the calculated
interest exceeds a conveyance-dependent threshold (see also Meyer et al., 1999, p. 271), the
courier will apply for the order by sending a Propose signal to the o�ce after having waited for
a time period inversely proportional to its interest (Deecke et al., 2004, p. 42-43).

When the o�ce receives a Propose signal, it passes the order to the �rst applicant and discards
all other messages related to that order (Deecke et al., 2004, p. 46). Otherwise, it waits for a
deadline after which it re-announces the order to the next-best �tting group of couriers (Deecke
et al., 2004, p. 46). If all attempts to pass on the order fail for a certain time period, the o�ce
disposes the order to the courier with the closest position to its pickup address (Deecke et al.,
2004, p. 46).9

The behavior of both agent types is modeled in terms of (hierarchical) UML state-charts from
which code can be generated (see Figure 8.2, left). The state-chart for the o�ce merely imple-
ments the interaction role described above (Deecke et al., 2004, pp. 45). The courier state-chart

8Sizes and weights of consignments are currently not modeled explicitly.
9Thus abstracting from the 'increasing pressure' applied during order mediation (Deecke et al., 2004, p. 40).
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Figure 8.2.: State charts of courier (top) and o�ce agents (bottom). Adopted with modi�ca-
tions from from (Deecke et al., 2004, pp. 42,46).
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realizes the interaction protocol by means of static reactions of the root state AtWork10 while
the transport process is implemented in sub-states (Deecke et al., 2004, pp. 41).

If the courier's tour contains at least one pickup or delivery address it starts to move to this
address using the shortest path on the road network (Deecke et al., 2004, p. 43). When an
intermediate position on the graph is reached, the courier receives a PositionReached signal
from the environment, tests if the destination is reached, and moves further otherwise (Deecke
et al., 2004, p. 50). Note that the courier continues to communicate with the o�ce while
moving: An incoming order might even replace the currently processed order if the distance to
its pickup position is closer on the road network (Deecke et al., 2004, p. 50).

When the courier reaches a pickup (delivery) address it picks up (delivers) the consignment,
both modeled as a consumption of a �xed amount of simulation time (Deecke et al., 2004,
p. 43). When a courier's intended end of work time is reached, it inserts its home address11

into its tour and moves to this position after having �nished its last order (Deecke et al., 2004,
p. 43). During the way home the courier might accept further orders, but only those that do
not interfere with its intention to reach the home point in terms of the rating function (Deecke
et al., 2004, p. 43).

8.1.2.2. Hub and Shuttle Model

Figure 8.3.: Alternative logistics concepts analyzed in the courier service study: Hub and Shut-
tle (left), Inside/Outside (right). Adopted with modi�cations from (Page et al.,
2004, Fig. 1).

The �rst alternative logistics concept modelled in the courier service study is called 'Hub and
Shuttle' (see Deecke, 1997 and Deecke et al., 2004, Sec. 4.1): In this express service-like strategy
the central city area, as the focal point of the transport order volume (Deecke et al., 2004, p. 15),
is divided into a small number of subregions (see Figure 8.3, left) where hubs are installed that
couriers use to deposit consignments (Deecke et al., 2004, p. 14). Vans commute between hubs
in shuttle service or line haul (Deecke et al., 2004, p. 14).

10Figure 8.2 shows the German inscription Im_Dienst.
11A courier's home address is, in most cases, naively derived from the position of the �rst order processed by

this courier according to the respective transport order pro�le (Deecke et al., 2004, p. 23).
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Transport orders with pickup and delivery addresses in di�erent subregions are transported via
the hub system (Deecke et al., 2004, p. 14): Initially a courier (preferably a biker) picks up
the consignment from the sender and delivers it to the hub of the respective subregion. When
a shuttle reaches the hub on its regular tour it picks up all consignments deposited there and
delivers them to the hubs of the destination regions. Another (again preferably bicycle) courier
�nally delivers the consignment from the destination hub to the sender. Orders with pickup
and delivery address in the same subregion or outside of the central area are always transported
from the sender to the receiver directly (Deecke et al., 2004, p. 14).

The hub and shuttle strategy was analyzed with regard to its potential for economic and eco-
logical improvements by increased bundling of consignment and application of bicycle couriers.
For this purpose, the Status Quo model was extended in the following respects (Deecke et al.,
2004, Sec. 7.3.1):

• Two di�erent variants to partition the central city area (consisting of 3 and 5 subregions
respectively) were de�ned.

• The available transport order records were mapped to these regions.

• A hub class was introduced in the model and hubs were positioned near the center of
each region in the tra�c network (Deecke et al., 2004, p. 52).

• The o�ce agent was extended with the ability to announce di�erent types of tours (from
sender to hub, from hub to receiver, etc.).

• The courier agents were extended with methods to deposit and redraw consignments from
a hub and their state-charts were adapted accordingly.

• An additional agent class (Shuttle, see Deecke et al., 2004, p. 52) was introduced to
simulate the vans. Simulations were run with two shuttles visiting all 3 (or 5 respectively)
hubs in line haul.

8.1.2.3. Inside/Outside Model

The second logistics strategy analyzed in the courier service study is called 'Inside/Outside'
(see Deecke, 1997 and Deecke et al., 2004, Sec. 4.2): As shown in Figure 8.3 (right), this concept
divides the city area into one central 'inside region' with an expectedly high volume of transport
orders and multiple bordering 'outside regions' with expectedly lower order volumes (Deecke
et al., 2004, p. 15). A single hub is installed near the center of the inside region (Deecke et al.,
2004, p. 15). Transport orders with a pickup address in the outside region and a delivery
address in the inside region (or vice versa) are processed via the hub, while orders within the
inside region or the same outside region are transported directly (Deecke et al., 2004, p. 15).

Each outside region is assigned a number of couriers in proportion to its expected transport
order volume (Deecke et al., 2004, p. 48). These regional couriers use cars or vans for the
bundled transport of consignments between their region and the hub (Deecke et al., 2004,
p. 16). The remaining couriers work in the inside region and deliver consignments from the
hub to receivers or from senders to the hub (Deecke et al., 2004, p. 14).

The Status Quo model must be modi�ed in several respects to simulate the Inside/Outside
strategy (Deecke et al., 2004, Sec. 7.3.2): Similar to the Hub and Shuttle model, the spatial
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environment is partitioned into inside and outside regions with transport order data mapped
to them (Deecke et al., 2004, p. 48). The Hub class and the redraw and deposit functionality
can be re-used from this model as well (Deecke et al., 2004, p. 48).

To gain an acceptable rate of consignment bundling, the behavior of regional couriers is modi�ed
(Deecke et al., 2004, p. 48): A regional courier collects regional orders announced by the o�ce
for a certain time interval (e.g. 30 minutes). Only at due time, the courier sets o� for the
central hub and deposits the collected consignments (�operational delay�12, see Deecke et al.,
2004, p. 19). Then it redraws all consignments destined for its region from the hub, moves
back, and delivers them to the receivers. At the same time, it starts to collect new orders and
the life cycle repeats.

Since the standard mediation protocol did not lead to satisfactory results for the outside regions,
the o�ce disposes every order that starts from an outside region to the closest available courier
(Deecke et al., 2004, p. 48).

When the simulation starts, couriers are assigned to regions using a simple strategy (Deecke
et al., 2004, p. 48): Every motorized courier that enters the model is assigned to another region
in a 'round-robin' manner until a prede�ned capacity is reached. The capacities of outside
regions are prede�ned in proportion to the regions's order volume, while the capacity of the
inside region is not limited.

8.1.3. Implementation with FAMOS and DESMO-J

All variants of the courier model were implemented using the Java-based simulation frameworks
DESMO-J and FAMOS (see Section 3.4.4) (Deecke et al., 2004, pp. 49).13 Couriers and shuttles
are subclasses of MobileAgent (Deecke et al., 2004, p. 49). The courier o�ce as a �purely
communicating agent� (Ferber, 1995, p. 12) is derived from the class Agent (Deecke et al., 2004,
p. 49). The behavior of couriers and o�ce is generated from the state-charts shown in the
previous section with the aid of a code generator (Deecke et al., 2004, p. 50). The less �exible
shuttle behavior is implemented in a process-oriented way (class ProcessBehaviour, Deecke
et al., 2004, p. 52).

Further (non-agent) entities in the model include transport orders (TransportOrder and sub-
classes), hubs (Hub), and arrival processes for couriers and orders (CourierArrival, Transport-
OrderArrival, and subclasses, Deecke et al., 2004, p. 51). Transport orders are implemented
as situated entities with a position in the spatial environment (Deecke et al., 2004, p. 51).
The arrival processes are derived from the FAMOS class ExternalObjectArrival that o�ers
support to schedule the arrival of arbitrary objects speci�ed in text or XML �les (Deecke et al.,
2004, p. 52).

The group structure of the courier model is mapped to the FAMOS variant of the AGR model
(Ferber and Gutknecht, 1998) with four groups for idle and busy bicycle and car couriers
(Deecke et al., 2004, p. 51). The road network is implemented as a spatial environment of type
Graph (Deecke et al., 2004, p. 51). Couriers are equipped with a movement strategy of type

12German: �operative Verzögerung�
13Details of the courier model implementations can be found in (Deecke et al., 2004, Sec. 7.4) and in the diploma

thesis of the author (Knaak, 2002).

328



8.1. Courier Service Study

OdoRoute that supports route planning14 and movement along the planned route including an
automated accumulation of the covered distances (Deecke et al., 2004, p. 50).15

The implementation of the couriers' reasoning abilities, i.e. rating of transport orders and
tour planning, are largely adopted from the predecessor model developed during the MOBILE
project (Hilty et al., 1998; Meyer et al., 1999). The tour planning is a common sense procedure
as it might be applied by real city couriers (Deecke et al., 2004, p. 44): Every courier is equipped
with a Tour object to store pickup and delivery points of pending transport orders, sorted by
intended processing time (Deecke et al., 2004, p. 49). When a courier accepts a new order
it �rst inserts the pickup point into its existing tour with the least possible detour; and then
inserts the delivery point at the position after the pickup point that leads to the least possible
detour for overall processing (Deecke et al., 2004, p. 44).

In (Bachmann et al., 2004, Sec. 4) we described the order rating procedure as follows:16

�We quantify the individual rating of transport orders with the aid of a function that was
proposed by Reick (1997) [during the MOBILE project] and slightly adapted [... for the
current model]. Criteria to rate orders include the couriers' individual estimations of order
quality, need for orders, and previous utilization. The quality of an order o for a courier c
is quanti�ed as

Q(c, o) =
revenues(c, o)

detour(c, o)
− cost(c) · vavg(c). (8.1)

Here revenues(c, o) are the revenues that courier c gains from order o and detour(c, o) is the
expected detour [that the transport of o causes] with respect to the courier's current tour.
cost(c) und vavg(c) express the cost of operation and the average speed of the courier's
conveyance. The need for orders of a courier is computed from its current order situation
[expressed in terms of the normalized tour length]

S(c) =
T (c)

Tmax
(8.2)

where T (c) is the estimated time that it will approximately take to process the already
accepted orders and Tmax is the courier service's guaranteed maximum delivery time. If
the latter is exceeded by T (c), the courier is not allowed to accept further orders without
endangering [...] service quality. In this case its need for orders N(C) = 0. Otherwise,
N(c) decreases inversely proportional to the [normalized] tour length following a negative
exponential function between 1 and 0:

N(c) =
e−q·S(c) − e−q

1− e−q
(8.3)

Here, q is a free parameter that in�uences the slope of the exponential function. If the
product [P =] Q(c, o)·N(c) exceeds a threshold w·util(c) that increases proportionally with

14The well-known algorithm by Dijkstra (see e.g. Domschke, 1989, cited in Deecke et al., 2004, p. 38) is applied
to �nd the shortest path from a start to a destination position.

15During the courier study, the automated accumulation of distances was not fully functional for the special
case of stops 'between' discrete positions on the road network. Therefore a simpli�ed variant was used.

16Similar presentations � besides the original source by Reick (1997) � can be found in (Deecke et al., 2004,
pp. 44) and (Knaak, 2002).
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[a conveyance-dependent] weighting factor w to the courier's [previous] utilization util(c),
the courier applies for the order after a deliberation duration [... inversely proportional to
P ].�

For this purpose, the courier schedules an Interest signal on itself (Deecke et al., 2004, p. 40).
The reception of this signal after the calculated 'deliberation time' will cause the courier to
apply for the order by sending a Propose message to the o�ce (Deecke et al., 2004, p. 40).

8.1.4. Data Collection and Result Analysis

To gain an insight into the modeled logistics strategies and their e�ects on the performance of
the simulated courier service, a wealth of data is collected during the courier service simulations
(Deecke et al., 2004, p. 37).

The following result and trace data is provided by the model for subsequent o�ine analysis:

• Individual and aggregate transport order data (Deecke et al., 2004, pp. 37,71): For each
transport order, the model provides a result data set of relevant attributes. These include,
among others, durations of life cycle phases like mediation or delivery. Additionally,
aggregate measures (mean, standard deviation, minimum, maximum, and sum) of these
attributes are computed over all transport orders processed during a simulated workday.

• Individual and aggregate courier data (Deecke et al., 2004, pp. 37,68): Values of important
attributes are also provided for the courier �eet of a simulation run. These e.g. include
the number of processed orders and the idle and overall distances covered by every courier
during simulation.

• Queue statistics collected at the hubs (Deecke et al., 2004, p. 52): Every hub contains
queues for incoming and outgoing consignments. For these queues standard waiting statis-
tics (e.g. average queue length and waiting duration) are computed by the DESMO-J
framework.

• Traces of agent behavior : Relevant actions of all agents are logged at runtime with the
mandatory attributes timestamp, action name, and originator as well as an optional
execution context consisting of the spatial position the action was executed at and the
objects (at most two) it was executed on (see also Haan, 2009, p. 61).

During simulation, the model provides further data for online analysis to registered event
listeners:

• Agent movement : When an agent changes its position in the spatial environment, a
position changed event is published for online animations of the agent movement.

• Agent attributes: During simulation, several agent attributes (e.g. the current occupation
status of a courier) can be accessed via probes.

• Time series data: Time series data of the current number of registered couriers, placed
orders, and �nished orders is published during runtime.

Courier and transport order data is collected for o�ine analysis using the FAMOS class
IndividualObserver (see Section 3.4.4). The courier model contains several subclasses that
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Figure 8.4.: Online simulation observation in the DESMO-J experiment starter. Adopted from
(Page and Kreutzer, 2005, p. 227).

implement di�erent con�gurations to observe attributes of couriers and transport orders via
DESMO-J access points (Deecke et al., 2004, pp. 51). Each IndividualObserver provides a
table of individual and aggregate attribute values to the DESMO-J report that can be stored
in either text, HTML, or in a relational database (Deecke et al., 2004, p. 52).

Actions of agents are logged with the method dump() provided by the class Agent (see also
Haan, 2009, p. 61). Log entries are stored either in a text �le or in a relational database.17

For online observation, a simple graphical observer to animate the courier movement as well as
plotters for time series and histograms were implemented as part of the DESMO-J experiment
starter tool displayed in Figure 8.4.18

8.1.5. Validation and Calibration

During and subsequent to the funded courier service study, several validation techniques were
applied to the courier model:19

17The limited number of context objects mentioned above is a tribute to these storage mechanisms.
18The courier observer was implemented by Ruth Meyer and the author of this thesis. The time series and

histogram plotters were provided by Philip Joschko. The implementation of the DESMO-J experiment starter
was started by Ruth Meyer and the author of this thesis based on (simpli�ed) concepts from Bachmann (2003)
and Gehlsen (2004). It was later improved and extended as part of the diploma thesis by Gunnar Kiesel
(2004).

19The list is merely based on the author's memory.
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• conceptual validation by review of the state-chart models,

• face validation of the rating function using MATLAB visualizations of its reaction surface
in dependence on parameter changes,

• veri�cation (in the wider sense) by code reviews and log-based debugging during model
implementation,

• manual and automated calibration of model parameters with simulation-based optimiza-
tion (Bachmann et al., 2004),

• operational (face) validation by observing animations of the courier movement and time
series at runtime,

• validation of exemplary model reports by the developers and a domain expert,

• application of model checking to an abstracted model of the courier state chart (Kruse,
2005),

• naive model-based validation of simulation results and traces using SQL queries on the
result database, and

• 'implicit' code and design reviews by students during the implementation of model ex-
tensions.

In the following we focus on our �rst attempts towards automation, i.e. automated calibration
and model-based validation. Subsequently the results of the validation and the productive
simulation runs are discussed and several problems are identi�ed.

8.1.5.1. Calibration of the Rating Function

As expected from the literature study, the calibration of the courier behavior proved to be
di�cult but vital for the validity of the model (Bachmann et al., 2004, Sec. 5):

�The free parameters q and w of the rating function (see Section [... 8.1.3]) are model
artifacts without counterparts in the real system and therefore hard to calibrate. Especially
the weighting factor w [...] strongly in�uences several macroscopic results since it [...] a�ects
the process of transport order assignment.�

In (Bachmann et al., 2004, Sec. 5) we reported on the calibration e�orts as follows:

�Since the transport order pro�les contain detailed information on order assignment, the
following calibration procedure could be applied (Deecke et al., 2003):

1. Simulations were run with an empirical order assignment, where orders were simply
assigned to couriers according to the transport order pro�le of the respective workday.
Only tour planning, [courier movement], and order delivery were actually simulated
in the model.

2. The results of this order assignment were examined [...against knowledge about the
real system and the predecessor model from the MOBILE project, i.e.model alignment
(Axtell et al., 1996) was performed as reviewed in Section 5.1.2.3] and accepted after
some modi�cations of the model. Thus, we accepted the model of route planning and
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order delivery as valid with respect to the relevant output quantities (order delivery
times, distances covered by the couriers, utilizations, revenues).

3. The parameters of the rating function were calibrated against the macroscopic results
of the 'empirical order assignment' model.�

Pilot simulation runs showed that a high previous utilization should attenuate the need for
orders of bicycle couriers stronger than that of car drivers to gain realistic results (Bachmann
et al., 2004, Sec. 5). This is due to the fact that the transport order pro�les indicate numerous
orders with bicycle preference but only few bicycle couriers. �It also seems plausible since bikers
tire sooner than car drivers� (Bachmann et al., 2004, Sec. 5).

The overall procedure can be considered as functional decomposition according to the white box
validation framework by Fehler et al. (2004). Further following the description in (Bachmann
et al., 2004, Sec. 5):

�By manual calibration of two conveyance-dependent weighting factors wBike and wCar,
average values and standard deviations of some output quantities could already be �t to the
reference results quite well (Deecke et al., 2003, p. 40). Nevertheless, the manual calibration
also revealed a high sensitivity of these parameters and a non-linear response of the model
to their variation. Due to the considerable simulation time [...] it did not seem reasonable
to continue the manual calibration.

Instead [an attempt to support the calibration procedure with the framework DISMO
for distributed simulation-based optimization was run. ... T]he model was prepared for
automated calibration by implementing a DISMO-speci�c interface. The interface describes
which model parameters will be optimized and which output quantities are considered to
calculate the objective function. In the �rst study, we restricted ourselves to �tting only
average motorized and unmotorized distances covered by the couriers and average order
delivery times to the reference results. In doing so, the weighting factors wBike and wCar

and the parameter q should be varied automatically.

Besides the de�nition of parameters and output quantities, the automated calibration with
DISMO requires the de�nition of an objective function which is technically realized by
implementing a certain interface as well. Based on the general multi-criterial objective
from [... Section 5.1.2.2] we used a variant

G(x) =

n∑
i=1

[
c · (fi(x)− yi)

yi

]2
→Min! (8.4)

Here fi denotes [...] the components of the simulation result vector (average distances
covered by bikers and motorized couriers and mean order delivery time) and yi their coun-
terparts from the empirical order assignment. To scale output quantities with heterogenous
units, the di�erences fi − yi are divided by the reference value yi. As usual in the calcu-
lation of errors, the square of the scaled di�erences is taken to ensure a non-linear rating
of di�erences. Thereby, con�gurations with low deviations of all output quantities are e.g.
preferred over those with a strong deviation of a single quantity. An additional weighting is
not performed because all considered output quantities appear equally important for model
validity.�

The simulations were run with the aid of the DISMO system that distributed independent
simulation runs for di�erent parameter con�gurations in a local workstation cluster (Bachmann
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Distance Revenues Utilization Order delivery
(km) (EUR/km) (percent) time (min)

Empirical assignment 49.3 (42.1)
Bicycle couriers 47.7 (21.7) 1.83 (0.32) 70.5 (17.0)
Car couriers 96.6 (49.2) 1.13 (0.31) 63.8 (19.2)
Simulated mediation 53.9 (43.2)
Bicycle couriers 52.0 (19.5) 1.50 (0.29) 67.8 (3.3)
Car couriers 96.3 (32.9) 1.17 (0.29) 59.2 (13.5)

Table 8.1.: �Comparison of multiple macroscopic output quantities of the courier models with empirical
and simulated transport order assignment. The parameter con�guration was computed by
the automated calibration procedure with wBike = 0.0298, wCar = 0.0167 and q = 0.76.
The �rst three quantities are averaged over the courier �eet, the order delivery time is
averaged over the order volume of the simulated workday. Standard deviations are stated
in brackets.� Table and caption adopted from (Bachmann et al., 2004, Fig. 2).

et al., 2004, Sec. 5). The results of each set of simulation runs were automatically evaluated with
the objective function. Based on this evaluation, new parameter con�gurations were generated
by a generational genetic algorithm (GGA, see Goldberg, 1989, p. 111, cited in Bachmann
et al., 2004, Sec. 5).20

Table 8.1 shows results of the automated calibration, which �ts the reference results fairly well
with respect to explicitly (average unmotorized distance and order delivery time) as well as
non-explicitly (average utilization) calibrated quantities (Bachmann et al., 2004, Sec. 5).

The parameter con�guration computed by DISMO is not necessarily optimal due to the appli-
cation of a heuristic optimization algorithm. Furthermore, number and size of the generations
evaluated by the genetic algorithm were relatively small to reduce overall computation time.
Nevertheless, the results of the automated calibration are roughly comparable to those of the
manual procedure, but were produced by an unsupervised calculation on a computer cluster.
Considering the limited statistical validity of the study, we noted in (Bachmann et al., 2004,
Sec. 5) that

�every parameter combination was only tested in one simulation run (i.e. using the order and
courier pro�les of a single workday). Every con�guration should be tested against multiple
input data sets with stochastic (or empirically measured) variations to gain more relevant
results and to avoid over�tting. [...] Furthermore, additional [... statistical measures and]
output quantities should be considered, which can easily be integrated into the objective
function.�

8.1.5.2. Naive Model-Based Validation

Another small step towards supporting validation with automated techniques was the appli-
cation of SQL (see e.g. Cannan, 1993) queries to analyze the simulation data stored in the
relational database. Typical advantages of database technology for result- and trace-based out-

20The parameterization of the genetic algorithm is described in (Bachmann et al., 2004, Sec. 5).
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put analysis (see Section 2.4.2) are discussed by Ritzschke and Wiedemann (1998, Secs. 3-4)
who, among other possibilities, mention aggregations, drill-downs, and correlation analysis.

We attempted to use SQL queries to check simulation traces and results for consistency and to
test hypotheses about detected failures; i.e. naive model-based validation and trace checking
(see Section 5.1.2.1). In the following we state constructed examples on a modi�ed database
schema that merely serve illustration purposes and were not applied during the actual courier
service study.

As indicated in Section 8.1.4, we assume that the simulation database contains tables to store
relevant attribute values of individual couriers (table couriers) and transport orders (table
orders) for each simulation run. Furthermore execution logs of all agents are stored in a table
trace. Every entry references a certain experiment from an additional table experiments. To
rate in�uences of parameter changes, the parameter settings of each experiment are stored in
a table parameters.

The following categories of validation rules stated by Birta and Özmizrak (1996, Sec. 4), re-
viewed in Section 5.1.2.1, might be re-built with queries on this database:

1. constraints on single result values (formal speci�cations, Birta and Özmizrak, 1996, p. 84),

2. constraints on relations between multiple result values (qualitative speci�cations, Birta
and Özmizrak, 1996, p. 84),

3. constraints on relations between input parameter and output value changes in multiple
experiments (qualitative change-in-value speci�cations, Birta and Özmizrak, 1996, p. 85),

4. constraints on comparisons between simulated and real-world behavior (observational
speci�cations, Birta and Özmizrak, 1996, p. 85), and

5. temporal and other relations between trace entries of a simulation run (re-building tem-
poral logic rules from trace-based model checking, see Section 4.2.5.4).

A simple example for the �rst category is the claim that 'at the end of a valid experiment, all
orders must have been delivered'. If order delivery is identi�ed by the order attribute delivery
set to a non-null time value, this is checked with the trivial query

select name from orders where delivery is null and experiment = 'E1'

that returns all orders violating this constraint in an experiment E1. Constraints of the second
and fourth category might be formulated similarly, where the latter would require real world
data to be stored in the database.

A similar example for the �fth category is the constraint that 'every order that was picked up
by a courier must be delivered by the same courier later' 21 This rule might be checked using
the nested query

select tr.object1, tr.agent from traces tr

where tr.action = 'pickup' and tr.experiment = 'E1' and not exists

21Note that this constraint only holds in the Status Quo model.
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(select * from traces tr2 where tr2.action = 'deliver'

and tr2.experiment = 'E1' and tr.object1 = tr2.object1

and tr.agent = tr2.agent and tr.timestamp < tr2.timestamp)

that returns all orders (object1 in table traces) the processing of which violated one of the
above conditions in an experiment E1.

The third category describes relations between model parameters and output values. An ex-
ample is the constraint that 'the number of disposed orders should increase when the duration
decreases that the o�ce waits until an order is disposed'.22 This can be checked using the
following nested query with aggregate functions that searches for counter-examples of the con-
straint:23

select ex.name from experiments ex, parameters par

where par.experiment = ex.name and par.name = 'durationUntilDisposition'

and exists (select * from experiments ex2, parameters par2

where par2.experiment = ex2.name and ex2.name <> ex.name

and par.name = par2.name and par2.value < par.value

and (select count(*) from orders o2

where o2.experiment = ex2.name and o2.disposed = 1)

< (select count(*) from orders o

where o.experiment = ex.name and o.disposed = 1))

The �ctitious examples (and our experiences from the courier service study) show that SQL
queries are a simple, yet powerful and �exible tool to support hypothesis checking in an agent-
based simulation. The last example, however, also indicates that queries representing complex
relationships might become di�cult to read due to the low abstraction level of SQL. Further-
more, only non-exhaustive con�rmatory validation of prede�ned hypotheses is supported.

To overcome these drawbacks, we will turn our focus to model checking in the next Section and
to data and process mining in Section 8.2.

8.1.5.3. Model Checking of Courier Statecharts

As part of a study project, Kruse (2005) evaluated the utility of model checking and data
mining techniques for the validation of the courier service model. Di�erent from Haan (2009,
pp. 77), who investigated hypotheses over the log of the courier service simulation by means of
trace checking, Kruse (2005, pp. 15) applied 'conventional' model checking to the state chart
model of the courier agent.

Due to the use of state charts for conceptual modeling and implementation of the courier model,
Kruse (2005, p. 27) advocates the use of model checking in an early conceptual modeling phase.
As exemplary hypotheses, he analyzes the questions �if a [courier] agent is guaranteed to reach an

22example inspired by Birta and Özmizrak (1996, pp. 96)
23Note that this query assumes that all stored experiments contain the same number of processed orders.

Otherwise relative numbers of disposed orders would have to be considered.
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Figure 8.5.: Kripke structure corresponding to parts of the courier statechart. Adopted with
minor modi�cations from Kruse (2005, p. 22)

active state from its start state [...and] if after activation [... it] eventually becomes inactive again?�
(Kruse, 2005, p. 20)

To convert the courier statechart into a �nite state model amenable for exhaustive model
checking (Kripke structure24), Kruse (2005, p. 21) proposes the following procedure:

1. �First, select signi�cant states [with respect to the analyzed hypotheses].

2. Then add an initial and a �nal state to the state set and a self-transition to the �nal
state to gain a complete transition relation.

3. Subsequently, de�ne a set of elementary logical formulae.

4. De�ne a label function to express in which states the respective formulae [or their
negations] hold true.

5. Whenever it is ambigous if a formula holds true in a state [of the original state
chart] this state must be duplicated [... and] the transition relation must be adapted
accordingly.�

Note that this procedure basically corresponds to manual program abstraction as discussed
by Visser et al. (2003) and reviewed in Section 5.1.2.1. Applying it to the courier statechart
from Figure 8.2 with respect to the hypotheses stated above and the elementary formulae
courierIsActive, courierHasOrders, and courierIsMoving (Kruse, 2005, p. 21) yields the Kripke
structure shown in Figure 8.5.

In this model, the states S0 and S5 correspond to the initial and �nal states of the courier
statechart. State S1 corresponds to the original state Idle and S2 to the preceding decision
node. Since �for the state Moving it is ambiguous if the agent has accepted orders or not [...] this state
must be duplicated� (Kruse, 2005, p. 21) resulting in the states S3 and S4. Kruse (2005, p. 20)
furthermore translated the two above hypotheses into temporal logic formulae and implemented
both the model and the formulae as a script for the model checker NuSMV 25 (Kruse, 2005,
pp. 22).

24For a formal de�nition of Kripke structures see Clarke et al. (1999) cited in Kruse (2005, p. 15).
25see http://nusmv.irst.itc.it/index.html (last visit 2005-02-03), cited in (Kruse, 2005, pp. 22,30)
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On this basis, the model checker proved that the �rst hypothesis (courier is guaranteed to
become active) holds true for every possible execution sequence of the model (Kruse, 2005,
p. 23). The second hypothesis (courier is guaranteed to become inactive again) was falsi�ed
by stating the counter-example of an in�nite loop between the states S1 and S3 (Kruse, 2005,
pp. 23-24). Kruse (2005, p. 25) notes that this formula only evaluates to true �when a fairness
condition is set in the model checker�, thus enforcing the transition to S5 to be taken eventually.

Concluding on the behavior actually implemented in the courier service model, the second
example roughly corresponds to the situation where a courier is not given the possibility to
reach its home point and �nish work before the end of the simulation due to a large number of
accepted orders. In the implementation, 'fairness' is to a certain degree ensured by the order
mediation scheme and the insertion of the home point into the tour when the intended end of
work has been reached (see Section 8.1.2.1).

Though the examples presented by Kruse (2005) remain rather simple due to the limited scope
of the study project, the work shows (in accordance with similar studies like Walton, 2004) that
model checking can be usefully applied to the conceptual modeling phase of a MABS study
(Kruse, 2005, p. 26). By performing an additional �paper and pencil� simulation26 of the model
checking algorithm on the example (Kruse, 2005, pp. 24) and by pointing out pitfalls in the
implementation of the NuSMV script (Kruse, 2005, pp. 22), focus is put on making the formal
veri�cation technique accessible to simulation practitioners.

8.1.6. Results and Discussion

In this section we provide a brief review of the courier service study's simulation results adopted
from (Page et al., 2004, Sec. 6). Subsequently the quality of these results and our previously
described validation attempts are discussed. A more detailed result presentation is found in
(Deecke et al., 2004, Sec. 8.3).

8.1.6.1. Review of Simulation Results

In (Page et al., 2004, Sec. 6) we summarized the results of the courier service simulations as
follows:

�The analysis of the di�erent logistic strategies' economic, ecologic and social impact con-
centrated on three measurements in the �rst instance. The total motorised distance is
considered as an indicator of ecologic quality and the mean order delivery time as a mea-
surement for economic bene�t. The distribution of the couriers' revenues provides an
indication of a policy's expected social acceptance.

[... Figure 8.6] (left) shows a comparison of the total motorised distance with order pro�les
from 5 di�erent workdays. Contrary to our primary expectations the distances covered in
the Hub and Shuttle model are noticeably larger than in the status quo. This might be
due to the fact that the investigated order pro�les do not �t the selected regions and hub
positions well since only about 25 percent of orders meet the conditions for transport via the
hub system. Therefore the desired bundling rate is not achieved and the balance su�ers from
additional distances caused by the shuttle service and splitting of consignments into two

26as to use the term by Page and Kreutzer (2005, Sec. 2.7)
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Figure 8.6.: Comparison between Status Quo, Hub and Shuttle, and Inside/Outside model by
ecologically and economically relevant measures. Adopted from (Page et al., 2004,
Fig. 4).

transport orders. In contrast the Inside/Outside strategy displays a marginal improvement
compared to the status quo. This strategy �ts the order pro�le slightly better and does
not involve additional motorised tra�c. Possibly a more detailed dimensioning of region
layout and courier assignment could improve the e�ect.

From [... Figure 8.6] (right) showing a comparison of mean order delivery times averaged
over 5 workdays it becomes obvious that both new policies display extended durations for
consignments processed via the hub [system]. Since only 30 percent of the consignments are
concerned and the remaining deliveries are even accelerated in the Inside/Outside model
the trade-o� might be acceptable. In both new strategies the couriers' average revenues
per kilometre are raised by about 0.3 [... Euros] due to the new accounting scheme and
increased bundling.�

8.1.6.2. Discussion of Validity

Though the courier service study showed that MABS can in principle be applied to the analysis
of sustainable logistics concepts, the validity of the particular results presented in the previous
section might be challenged for several reasons.

Firstly, the statistical representativeness is clearly limited since the experiments were based
on order pro�les of �ve consecutive workdays27 recorded from a single courier service. Two

27coincidentally including September 11th of 2001, the day of the dreadful attack to the World Trade Center
in New York
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additional order and courier pro�les stemmed from a courier service with a disposition strategy
which could not be directly compared.

The simulations are driven by real data traces without stochastic variations by random numbers.
To improve this situation, further order pro�les should be collected, and random distributions
for arrival rates and spatial �ows of transport orders should be derived from them, which might
lead to complex tra�c generation models (Deecke et al., 2004, p. 64). Though order arrival and
delivery rates exhibit steady phases, a steady-state analysis of the courier model is complicated
by the fact that the number of registered couriers permanently changes during the course of a
workday.

Another reason for the limited signi�cance of the presented results are several simpli�cations, es-
pecially in the models of the alternative logistics concepts. All model variants neglect temporal
variations of the tra�c situation and in�uences like tra�c jams or tra�c lights. Di�erent types
of courier behavior are only distinguished between bikers, car drivers, and 'regional couriers' in
the Inside/Outside model.

One reason for the rather disappointing performance of the simulated logistics strategies might
be the fact that the implemented planning and coordination abilities of courier and o�ce agents
do not ful�ll the requirements posed by these strategies. The o�ce might e.g. begin to announce
the second half of an order processed via the hub system before the order has actually arrived
at the hub.

Many of these drawbacks could obviously be improved by extending the existing models. How-
ever, the added complexity would further complicate the problems of data availability and
validation. The validation attempts described above could only in parts increase the con�-
dence in the model and the plausibility of its result. They could not completely displace the
impression of the courier model as a 'black box' where the actual course of internal processes
is not fully understood by its developers. The validation su�ered from a number of problems
that are described in the following.

A very common problem for simulation studies is the lack of available data and communication
with domain practitioners (e.g. city couriers) during conceptual and operational validation,
which could not be fully compensated by the presence of a domain expert in the development
team. The veri�cation28 of the computer model was alleviated by the use of state charts and
code generation on the one hand. On the other hand, problems with inconsistencies between the
di�erent model representations occurred, and several important parts of the agents' behavior
had to be implemented besides the visual state chart formalism.

During the veri�cation and operational validation of the courier model several examples for the
problem categories from Section 3.5 could be observed:

• Problem of model complexity : Due to the large amount of collected data, it was time-
consuming to check if the simulation runs from a larger series of experiments had all
delivered valid results. The use of SQL queries proved useful to �lter results or traces and
to validate simple constraints. These statements get complex soon, but an automated
translation from a higher level notation or the use of a more appropriate rule-based
validation system (e.g. a model checker) seems possible. However, as mentioned above,
these approaches only support con�rmatory validation of prede�ned hypotheses.

28in the wider sense, see Section 2.4.3.1
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• Problem of result representation and interpretation: Obviously, the analyzed performance
indicators are simplistic and provide a rather limited view on the concept of sustainabil-
ity. Attempts towards a pattern-oriented analysis of the model (e.g. patterns of courier
movement) largely failed due to a lack of appropriate aggregation and visualization tech-
niques. The applied visualization and analysis techniques were not su�cient to extract
useful aggregated representations of the processes running in the model.

• Problem of distributed system state: Erroneous or inconsistent simulation results proved
hard to isolate and trace back to faults in the behavior of an agent or other model com-
ponent. Some observed errors were path dependent, i.e. they only occurred when agents
had previously executed a certain (previously unknown) sequence of actions. While the
automated parameter calibration of the rating function con�rmed the results of the man-
ual calibration attempts, it provided no new insights into the 'meaning' of the calculated
solution, since validity was reduced to a single number in the objective function.29

In the next two sections, we discuss how the application of process mining can complement
the 'conventional' validation techniques described above, and which solutions, but also new
problems are encountered in return.

8.2. Application of Process Mining

In Chapter 7, process mining was integrated into the model-driven Paose approach, and applied
to a small example model. This raises the question how these techniques can support a large,
quantitative simulation study based on a code-centric simulation framework like DESMO-J.
The bachelor thesis by Johannes Haan (2009) was dedicated to this question and evaluated the
application of process mining to the courier service simulations described above. Since most
process mining algorithms (including the techniques presented in the previous chapter) were
implemented for ProM (see Section 4.2.6.1), this tool was again chosen as the technical basis
for the study.

8.2.1. Objectives and Methodology

According to Haan (2009, p. 7) �process mining has often been applied in studies to evaluate its
utility for di�erent areas of research in the past.� As shown in Section 5.3 and (Haan, 2009, Ch. 3)
this includes some applications to agent-based systems as well. In addition to the related work
and the Paose integration from the previous chapter, the focus of the present study was put
on the following questions as a re�nement of research question Q5 from Section 1.2:

• Q5.1 : Can process mining support or complement the previously described validation
and calibration attempts with respect to the observed problems?

• Q5.2 : Can process mining help to gain further insight into the behavior of the courier
models with respect to validation and domain-speci�c analysis? Does it deliver 'surprising'
or unexpected �ndings?

29This insu�ciency is mirrored in the term �black box calibration� that Fehler et al. (2004, p. 306) use to
describe these techniques.
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• Q5.3 : How large is the additional e�ort to instrument the models? How complex are
the experimental setups? Can they easily be re-used between di�erent models or model
variants?

• Q5.4 : How do result representations of process mining compare to typical reports from
discrete event simulation?

• Q5.5 : Which algorithms are suitable to reconstruct and enrich process and structural
models in the given problem domain (Haan, 2009, p. 7)?

• Q5.6 : How does the existing tool ProM and the additional interaction mining techniques
described in Chapter 7 perform on large logs produced by the courier service simulations?

As mentioned in Section 4.2.6.2, the dissertation by Lang (2008) is a good example for the sys-
tematic evaluation of process mining algorithms in a given domain (medical image processing in
this case). Haan (2009, p. 89) therefore decided to partly adopt the structure and methodology
proposed in this thesis for the present study. This results in an approach that roughly mirrors
the KDD process reviewed in Section 4.1.1.

In the conceptual part of the study, a list of relevant analysis and validation tasks must be
de�ned that will be performed with the aid of process mining. The analysis perspectives and
usage scenarios touched by these tasks must be stated. Furthermore, a list of criteria must
be developed to rate the ability of process mining techniques to help answering the previously
de�ned questions.

In practice, a logger must be implemented that maps the FAMOS trace format (Section 8.1.4)
to the MXML format processed by ProM. The courier models must be instrumented to provide
the required log entries. Filtering and preprocessing algorithms must be chosen to prepare
the collected log data with respect to the analysis questions de�ned before, and appropriate
algorithms must be selected to reconstruct the process models and perform subsequent analyses
(Haan, 2009, p. 59). Finally the experiments must be conducted, and the results and experiences
must be rated based on the de�ned criteria.

The following sections summarize the discussion from (Haan, 2009, Sec. 4) in a slightly stream-
lined and extended form.

8.2.2. Analysis Tasks

In the following, we present a catalogue of analysis tasks that seem appropriate to be supported
by process mining. Note that only a subset of these tasks was investigated in the study by
Haan (2009). In the listing, each task is assigned to one or more related perspectives and use
cases.

• T1 : Provide an aggregated overview of the transport order processing work�ow imple-
mented in the model. For veri�cation, it should become visible if the behavior of the
participating agents correctly implements the overall work�ow. For economic analysis,
lead times of all relevant process steps and hints on possible bottlenecks should be pro-
vided.

� Perspective: external control (multi-agent work�ow), domain perspectives (time)
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� Use cases: exploratory analysis and (qualitative) validation

• T2 : Find out in which way internal state attributes in�uence the rating of orders by
couriers. Is the observed behavior plausible with respect to the behavior of real couriers
and the intended modeling of the rating function?

� Perspective: agent decisions

� Use cases: exploratory validation & veri�cation, calibration and sensitivity analysis

• T3 : Verify the implementation of the order processing by couriers with a focus on the
possibility to switch the current destination in favor of a new order en route; and on the
correct accumulation of covered distances.30

� Perspective: internal control

� Use case: exploratory veri�cation (in the wider sense)

• T4 : Verify the implementation of the courier life cycle. Does the interplay between di�er-
ent aspects of courier behavior (e.g. occupation state and movement) work as intended?31

� Perspective: internal control

� Use cases: exploratory and con�rmatory veri�cation (in the wider sense)

• T5 : Find patterns in the observed agent behavior that help to explain why the alternative
logistics concepts seem to perform worse than the Status Quo model. Is it valid to transfer
this conclusion to the real system or must the models be enhanced for a valid comparison?

� Perspective: external control (high-level interaction patterns, see also Dustdar and
Ho�mann, 2007)

� Use case: exploratory analysis

In his thesis, Haan (2009) actually worked on task T1 as well as parts of the tasksT3, T4, and
T5. Task T2 was initially investigated in an earlier work by Kruse (2005).

8.2.3. Evaluation Criteria

As discussed in Section 4.2.6.2, the evaluation criteria by Lang (2008, Sec. 4.3.2) mainly re�ect
the objective performance of the evaluated process mining algorithms, such as e.g. the ability to
detect duplicate tasks. In contrast, Haan (2009, p. 72) puts his focus on subjective estimations
of the evaluated algorithms' bene�t to answer certain analysis questions and settles for the
following list of evaluation criteria:32

• C1 - Utility of results: Is the algorithm able to build a plausible model or aggregation
from the given input data? Does this model help to answer the investigated questions?

30This task was actually formulated after detecting a related error during the work on task T1.
31This task was also formulated a-posteriori to summarize the actually performed work.
32Haan (2009, p. 72) uses a �fth criterion, C5 - potential for further development, as an attempt to determine a

cost-bene�t ratio for programmatic corrections and extensions of an algorithm and its current implementation
in ProM. This category is omitted here since it appeared di�cult to rate for some of the evaluated mining
techniques.
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On the one hand, criterion C1 might be subdivided into the objective measures for the
correctness of the reconstructed process model used by Lang (2008, Sec. 4.3.2). On the
other hand it mirrors the more subjective notion of reasonable models used by Wainer
et al. (2005, Sec. 3.3).

• C2 - Ease of use: How easy is it to apply the algorithm and its implementation in ProM
for a person with knowledge in simulation and process mining? Is it necessary to con�gure
parameters before running the algorithm? Is the interpretation of results straightforward?
Could it mislead to wrong conclusions?

• C3 - Customizability : How easily can an algorithm and its implementation in ProM be
customized or extended to better meet the requirements of a certain analysis task? Are
programming skills necessary or is the customization carried out within the graphical user
interface of ProM ?

• C4 - Computational performance: What are the computation time and space requirements
of an algorithm and its implementation in ProM ? Haan (2009) concentrates on taking
empirical measurements for input data from the analyzed courier models here.

The ful�llment of each criterion is rated on a scale with three levels low, medium, and high
(Haan, 2009, p. 72). Since the study is performed by a single person, the statistical validity of
the results will be naturally low. Nevertheless, indications about the utility of process mining
in the context of this study might become visible.

8.2.4. Data Collection and Preprocessing

The �rst task by Haan (2009, p. 65) was to improve and extend a prototypical MXML logger
developed by the author of this thesis and to instrument the courier models with additional
logging statements.

8.2.4.1. Logging MXML in FAMOS

As indicated in Section 8.1.4 actions of FAMOS agents are logged with the method dump()

provided by the class Agent, which sends a message of type DumpNote to the DESMO-J messag-
ing sub-system (Haan, 2009, p. 61). The message is received by all MessageReceiver objects
registered with the current experiment for the given message type (see Figure 8.7). At the
beginning and end of an experiment, the simulation infrastructure calls each message receiver's
methods open() and close() respectively which allows to persist the collected data into a �le
or database.

Figure 8.7 shows the implementation33 of the MXML logger based on classes from FAMOS
and ProM (see also Haan, 2009, p. 61). The logger is implemented as a MessageReceiver for
DumpNote messages. During the simulation it stores incoming dump notes in an internal table.
To provide straightforward preprocessing, a criterion can be set by which the dump notes are
aggregated into process instances.

33Di�erent variants of the described implementation were used during the course of the study.
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«interface»
OutputType

+ open(...)
+ close()
...

«interface»
MessageReceiver

+ receive(m: Message)
+ receive(r: Reporter)

Experiment

+ addReceiver(...)

   *

Message

+ getSendTime(): SimTime
...

    *

receives

ProMDumpFileOut
- sortBy: int
+ receive(m: Message)
+ setLogFilter(Filter)
+ open(...)
+ close()

«interface»
Filter

+ accepts(o: Object): boolean

XMLLogExport

+ export(...)
«uses»

LogReader

getProcess(int): Process
getInstance(int): ProcessInstance
...

exports

MemoryLogReader

addProcessInstance(...)

converts sorted
dump notes to

 logFilter

ProMDESMO-J and FAMOS

DumpNote

+ getAgent(): String
+ getAction(): String
+ getObject1(): String
+ getObject2(): String
+ getPlace(): Point
+ getEventType(): String
+ getAdditionalInfo(): HashMap

Figure 8.7.: Class diagram of the MXML logging extensions for DESMO-J and FAMOS.

In the current implementation, dump notes can be aggregated either by similar originator agents
or by similar values of the context attributes object1 or object2, where each setting represents
a di�erent mining perspective (see Haan, 2009, p. 61). A similar approach is taken by Rozinat
et al. (2009d, p. 256) to log games of robot soccer (see Section 5.3.4). This preprocessing avoids
an additional event aggregation step in the mining procedure at the cost of less �exibility. It is
not straightforward to analyze the same log from di�erent perspectives without repeating the
simulation.

When the experiment is �nished, the logger converts the aggregated dump notes into Process-
Instance objects according to ProM 's MXML object model (see Section 4.2.6.1), where each
dump note is represented by an AuditTrailEntry. The dump notes' attributes time, action,
and agent are straightforwardly mapped to the attributes timestamp, element (event), and
originator of the audit trail entries. The generated process instances are bu�ered in an in-
memory log reader (MemoryLogReader) which is �nally exported to an MXML �le using the
ProM class XMLLogExport (Haan, 2009, p. 65).

Haan (2009, p. 65) extended the author's basic implementation inspired by further possibilities
of the MXML format: To support the generation of activity-based logs, he added a �eld
eventType to the class DumpNote which e.g. allows to indicate start and end events of time-
consuming activities. To enable the enrichment of mined models with additional information
like branching conditions, another attribute additionalInformation was added. It serves to
store arbitrary context data of logged actions as named key value pairs in a map.

8.2.4.2. Instrumentation of the Courier Service Models

Since the courier models had already been instrumented for logging during the courier service
study, the main task for Haan (2009, Sec. 4.1.2) was to correct the existing instrumentation
and to extend it with respect to the new possibilities. Basically, each relevant e�ector method
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Agent Method Log entry(s) Event type Arguments Models
O�ce takeOrder() receive complete order all

announce() announce complete order all

passOn() passOn complete order all

dispose() dispose complete order, courier all

occupyCourier() occupy complete order, courier all

disposeOutside() disposeOutside complete order, courier IO

Courier rateOrder() rate complete order all

applyFor() applyFor complete order all

takeOrder() take complete order all

moveToNextDestination() moveTo start order, destination all

stopMoving() moveTo complete order, position all

arriveAtOrderPoint() moveTo, arrive complete order all

pickUpOrder() pickUp complete order all

deliverOrder() deliver complete order all

becomeIdle() becomeIdle complete � all

becomeBusy() becomeBusy complete � all

insertHomePoint() headHome complete home point all

startWork() startWork complete � all

leaveWork() leaveWork complete � all

depositOrderAtStartHub() deposit complete order HS, IO

redrawOrderFromDestHub() redraw complete order HS, IO

Table 8.2.: Table of events logged in the investigated variants of the courier service model.
Adopted with modi�cations from (Haan, 2009, pp. 62,63).

of the courier and o�ce agents produces a similarly named log entry. Table 8.2 shows all events
logged in the investigated model variants.

Only the event moveTo is currently modelled as a time-consuming activity with two di�erent
event types start and complete (Haan, 2009, p. 62). The event pair startWork and leaveWork
would be another candidate for activity-based logging. Though it might also seem appropriate
to model pickup and delivery with time consumption, this option was neglected because both
activities are clearly delimited by the courier's arrival at the current destination (event arrive
[complete]) and the completion of the respective action (events pickUp and deliver) (Haan, 2009,
p. 63), i.e. a pickUp [start] (or deliver [start]) event would not provide additional information.

The �fth column of Table 8.2 shows the data attributes logged for each event. These values are
normally stored in the �elds object1 and object2 of the DumpNote, which do not appear in
the MXML log. The value of object1 (mostly the transport order) is only used to group the
log entries into process instances, while object2 is currently neglected (Haan, 2009, p. 62).

In the events applyFor and arrive, additional data (including the given order's preferred con-
veyance and pickup status) is stored in the data map of the DumpNote, which is added to the
MXML log as an enrichment (see Section 8.2.4.1). In the future, all data attributes should
be stored this way to make them equally available to the logger's grouping mechanism and to
ProM via the MXML log.34

The manual instrumentation provides �exibility for the generation of MXML logs on the one
hand. On the other hand, it is time consuming to manually create log statements and to keep
them consistent with the implemented behavior. According to Haan (2009, p. 76), especially the
instrumentation of the �moveTo.start and moveTo.complete cycle was extremely laborious because
the concepts behind the [implementation of the courier] agent had to be fully understood to �nd the

34A slightly similar grouping mechanism was e.g. implemented by Tobias Schnackenbeck for logging in the
Microsoft .NET-based plugin framework Empinia (http://www.empinia.org, last visit 12-11-12).
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"right" positions for logging�. While an intensive examination of the code should not be regarded
as a disadvantage for model validation, it seems reasonable to automate the instrumentation
for common cases. The following possibilities might be of interest in FAMOS :

• Certain behavior classes could provide low-level logging according to the provided mod-
eling constructs. The state-chart interpreter might e.g. log entry and exit events of states
as well as triggers and e�ects of transitions. The rule engine might log the �ring of rules
together with the a�ected state of the knowledge base. Modeling aids like the state-chart
editor could be used to control visibility and appearance of the generated log statements.
These ideas are roughly comparable to low-level logging in Renew (see Section 7.1.2.1).

• To provide a clear separation of concerns between the core agent code and additional
logging statements, the latter might be moved into method annotations and automatically
'weaved' into the invocation of certain methods by means of aspect oriented programming.
Such ideas are discussed by Sudeikat and Renz (2006, p. 181) reviewed in Section 5.1.1.4.
Note that an extended Java runtime platform like Aspect-J 35 is required to implement
these concepts.

• Components of the environment could automatically log relevant events. This includes
messages sent via the communication infrastructure, changes of the group structure, or
position changes of situated agents and objects in the spatial environment. Some of
these possibilities are found in other agent platforms like MadKit, JADE, or Capa (see
Section 3.4).

8.2.4.3. Log Filtering and Preprocessing

As it is typical for simulation, few additional preprocessing is required for the MXML logs
exported by the FAMOS logger (Haan, 2009, p. 66). Haan (2009, p. 67) applied perspective-
dependent �ltering to the log using the simple �lter provided by ProM. Besides masking certain
events and event types, the simple �lter allows to remove process instances with speci�c start
and end events from the log.

In the order work�ow perspective, Haan (2009, pp. 67, 68) used the latter option to reduce the
analyzed log to process instances starting with receive and ending with deliver, thus eliminating
events not assigned to a speci�c transport order (e.g. headHome). In the agent perspective, we
might focus on a certain agent role (e.g. the o�ce) by selecting only the start and end events
assigned to this role. However, this procedure bears the risk of unintentionally masking relevant
process instances that indicate erroneous behavior, such as a courier that does not de-register
from the model after �nishing work.

Besides �ltering, Haan (2009, p. 67, 68) employed the Dashboard and Log Inspector views in
ProM for an initial face validation of the analyzed log. While the dashboard provides statistics
about the occurrence of events, event types, and originators, the log inspector allows to list the
audit trail entries of all contained process instances (Haan, 2009, p. 68).

Data reduction is another important preprocessing step that was neglected in the study by
Haan (2009). However, it became obvious that the large number of process instances, audit trail

35see http://www.eclipse.org/aspectj (last visit 2010-20-06)
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entries, and originators in the courier service logs can cause problems with several algorithms
in ProM (see below for details). The following data reduction techniques might be applied to
improve this situation:

• ProM provides a mechanism to group process instances in an event log by either iden-
tical event sequences or an identical follower relation. Only one instance of each group
remains in the log. Since this mechanism changes frequencies of event occurrences, it is
only appropriate for mining algorithms with a binary follower-matrix (e.g. α algorithm).
Algorithms that estimate event occurrence probabilities (e.g. Heuristics Miner), perform
log replay (e.g. Petri net-based performance analysis), or make use of data attributes (e.g.
decision point analysis) do not comply with this reduction technique well.

• The ProM �lter Exact Tandem Repeats (see also Bose and Aalst, 2009) allows to elim-
inate identical repetitions of single events or event sequences within a process instance.
However, since only the �rst iteration is kept36 this leads to a complete elimination of
cycles in the mined process models.

8.2.5. Perspectives and Algorithms

The selection of appropriate perspectives and algorithms for the present study was guided
by (a) the domain speci�c questions to be answered, (b) the general considerations about
process mining algorithms in the simulation context discussed in Section 6.4, (c) our previous
experiences with ProM, and (d) experiences reported in related studies (see e.g. Rozinat et al.,
2009d).

Concerning perspectives, Haan (2009, p. 69) focuses on the so-called order perspective, i.e. the
external control �ow of the overall transport order processing work�ow with all involved agents
described in task T1. In the courier service study, the reconstructed order work�ow models
build an appropriate basis for an enrichment with further information like processing times for
economic analysis or (possibly) covered distances and related emissions for ecological analysis.

Further attention is paid to the so-called agent perspective (Haan, 2009, p. 90), i.e. reconstructed
models of the di�erent agent classes' internal control �ow, optionally enriched with branching
conditions, as described in task T3. As mentioned above, this perspective is mainly relevant
during validation. Haan (2009, pp. 111-112) made an initial attempt to reconstruct internal
control �ow models of courier and o�ce agents. Further experiments were conducted by the
author of this thesis.

Concerning algorithms, Haan (2009, pp. 68) orients himself along the KDD process and the
available categories of ProM plugins and distinguishes between algorithms for process discovery
and analysis. The following process discovery algorithms were selected for the study by Haan
(2009, p. 69) and further experiments by the author:

• The Heuristics Miner algorithm of ProM (Section 4.2.3.4) has been applied in several
process mining studies (e.g. Rozinat et al., 2009d) and is known to deliver suitable results
in acceptable time, also in the presence of noise and missing data (Haan, 2009, p. 69).
The question is if these advantages also become evident in the �eld of simulation where

36according to a comment in the program help of ProM 5.2
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noisy data is not an issue and heuristic model simpli�cations might even lead to wrong
conclusions. The simple Frequency Abstraction Miner (see Rozinat et al., 2007) is another
robust control �ow mining algorithm implemented in ProM that will be used in this study.

• The parameterless α and α++ algorithms seem promising due to their good understand-
ability and ease of use. As discussed in Section 4.2.3.1, the α algorithm is exact in the
sense that all successor relations from the log are considered regardless of their frequency.
However, it only employs the (local) direct successor relation for process reconstruction
(Lang, 2008, p. 124) and might fail on constructs like short loops or duplicate tasks
depending on the implemented variant (see Section 4.2.3.1).

• Grammar inference algorithms (see Section 4.2.3.3) for automata reconstruction, like our
k-RI Miner implementation (Section 7.2.4) and the FSM Miner implemented in ProM,
might be appropriate because the processes implemented in the courier model do not
exhibit concurrency at �rst sight.

• Complementary to control �ow mining algorithms the Role Hierarchy Miner plugin im-
plemented in ProM might be able to express common behavioral patterns in the courier
model in terms of (pre-de�ned or dynamically emerging) role hierarchies.

For further analysis and enrichment of the reconstructed models, the following techniques were
considered (Haan, 2009, pp. 70):

• The Linear Temporal Logic (LTL) Checker might aid in the con�rmatory validation of
simple rules (e.g. to check if all orders are eventually delivered after pickup) and to count
occurrences of events and their relations in the log (similar to Dongen et al., 2006b). Haan
(2009, p. 70) mainly applied this tool to cross-check doubtful �ndings in the reconstructed
models.

• The Performance Analysis with Petri Nets (PAPN) plugin by Hornix (2007), reviewed in
Section 4.2.5.5, can enrich a reconstructed Petri net model with time-related information
based on the replay of a time-stamped log. In the study by Haan (2009), a comparison
with the statistic measures displayed in the simulation report generated by DESMO-J
was of particular interest (see question Q5.4 and task T1 ).

• The Performance Sequence Diagram Analysis (PSDA) by Hornix (2007), reviewed in
Section 4.2.5.5, displays timing information either in a basic sequence diagram (Section
2.3.1.4) including all process instances or in an aggregated form of characteristic interac-
tion patterns (Haan, 2009, p. 79). In the study by Haan (2009) it was therefore interesting
(a) how the performed statistic analysis compares to the simulation report and (b) if ad-
ditional dependencies between order processing times and certain behavioral patterns can
be detected (see question Q5.2 and task T5 ).

• The Decision Point Analysis can be used to enrich the mined process models with infor-
mation on branching conditions and to validate the mechanisms by which couriers rate
o�ered transport orders in the model (see task T2 ). Decision mining as well as the par-
ticular ProM plugin have already been applied in several other studies on data mining in
an agent context (e.g. Jacobs et al., 1998; Dongen et al., 2006b; Rozinat et al., 2009d).
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8.3. Process Mining Experiments and Results

This section summarizes the results of the experiments conducted by Haan (2009, Ch. 5) as
well as additional experiments carried out by Kruse (2005) and the author of this thesis. The
presentation is structured along the analysis perspectives from Section 6.2. After describing the
experiments, we present a rating of the applied mining techniques according to Haan (2009)
with some extensions made by the author of this thesis.

8.3.1. External Control Perspective

The external control perspective of the courier service simulations was analyzed using di�erent
existing control �ow discovery and extension algorithms implemented in ProM. Haan (2009,
Secs. 5.1.1, 5.2.1) attempted to reconstruct overall order processing work�ows from all model
variants and further analyzed the results with the LTL checker plugin (Haan, 2009, Secs. 5.1.2,
5.2.2). The models were enriched with time-related information using the PAPN plugin. Fur-
thermore, Haan (2009, pp. 79) tried to extract characteristic (inter)action patterns with related
performance information from the order work�ows using the PSDA plugin. The author of this
thesis additionally applied the (hierarchical) role mining plugins from ProM to check their
ability to identify characteristic courier behavior in the form of roles.

8.3.1.1. Order Processing Work�ow37

To reconstruct the order processing work�ow implemented in the courier and o�ce agents,
Haan (2009, p. 74) simulated the courier and order pro�le of one workday twice with every
model variant using both the small and the large tra�c network. This lead to two logs for
each variant, sorted by order instances during recording and �ltered subsequently as described
above.

Heuristic Miner Both logs obtained from the Status Quo model consisted of 1925 process
instances (correctly corresponding to the number of processed orders) and 178557 (small tra�c
network) or 198588 (large tra�c network) log events respectively (Haan, 2009, p. 74).

Haan �rst applied the Heuristic Miner to reconstruct the models depicted in Figure 8.8. It is
straightforward to see that the events (nodes) and precedences (arrows) of the mined models
indicate a valid implementation of the order work�ow with one exception: A transition from
rate to announce seems to be missing for orders that were not accepted by a courier during
the �rst announcement and had to be re-announced. Note, however, that the applied standard
parameterization of the heuristic mining algorithm might lead to a suppression of rare events
and precedences in the model.

Haan (2009, pp. 74-76) next performed a more detailed validation of the reconstructed processes
by examining the frequencies and⇒L values calculated for every event and precedence. At �rst
sight, it might seem 'surprising' that, though the initial receive event correctly appears 1925
times and each receive is correctly followed by an announce, the⇒L value of the corresponding

37This section is based on (Haan, 2009, Sections 5.1.1, 5.1.2, 5.2.1, 5.2.2).
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Figure 8.8.: Results of the Heuristics Miner on logs of the Status Quo model simulated with
the small and large tra�c networks. In both cases the same process structure was
reconstructed. The displayed frequencies and⇒L values of events and precedences
belong to the simulation with the small tra�c network. Deviating values from the
large tra�c network are stated in brackets. Note that the original visual output of
ProM was edited. Adopted with modi�cations from (Haan, 2009, pp. 95,96).
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edge is 0.999 instead of 1. However, as discussed in Section 4.2.3.4, this is intended by the
developers of the Heuristic Miner to emphasize the uncertainty in the mined models by adding
1 to the denominator of equation 4.13 (Haan, 2009, p. 74). Accordingly, the ⇒L values of 1
displayed in the model are in fact smaller values rounded to three decimal digits (Haan, 2009,
p. 76).

From the number of announce events it is straightforward to see that every transport order
was announced about two times in average (Haan, 2009, p. 74). Unfortunately the Heuristic
Miner, like most ProM plugins, does not calculate variances or con�dence intervals.

Haan (2009, p. 76) additionally analyzed event and transition frequencies to compare the sim-
ulation runs with the two di�erent tra�c networks. The run with the large tra�c network
contained signi�cantly less dispositions, but more traversals of the 'moveTo cycle' (Haan, 2009,
p. 76). From these observation, Haan (2009, p. 76) concludes that couriers more often apply
for orders and change their current tour due to the acceptance of a new order, which might be
an indicator for better bundling potential in the more realistic model variant.

In the further analysis, Haan (2009, pp, 74-75) identi�ed three issues that appear in both
variants and are discussed at the example of the simulation with the small tra�c network in
the following:

1. The number of transitions from node announce to node rate is speci�ed as 3909. Since the
number of announce events is 3912 and no other outgoing edge from the node announce
exists, 3 occurrences seem to be 'missing' (Haan, 2009, p. 74).

2. The number of transitions from rate to applyFor seems to be too high at �rst sight.
Since 7 orders were disposed, there should be only 1918 such transitions (Haan, 2009,
p. 75).

3. The⇒L values (see Section 4.2.3.4) calculated for several transitions appear to be rather
low at �rst sight. An example is the edge from announce to rate. The value of this
transition is speci�ed as 0.327 which seems low even taking into account the 3 missing
transitions (Haan, 2009, p. 75). The transition from moveTo.start to moveTo.complete

with a value of 0.719 is another example (Haan, 2009, p. 76).

Haan (2009, pp. 81) also reconstructed order processing work�ows from the Hub and Shuttle
and Inside/Outside models with the Heuristics Miner : Again, the algorithm discovered the
expected graphs with the exception of the transition from rate to announce.

Figure 8.9 depicts the result for the Inside/Outside model with the small tra�c network. The
net graphs for the large tra�c network and the Hub and Shuttle model are similar (Haan, 2009,
pp. 105, 106, 108) except for the event dispose outside that only occurs in the Inside/Outside
model (Haan, 2009, p. 83). As expected, the main di�erence to the Status Quo model are two
additional actions deposit and redraw performed by couriers after arriving at a hub (Haan,
2009, p. 82).

The identical frequencies of both events indicate that 610 orders were transported via the
central hub in the example, and that no pending orders remained in the queue at the end
of the simulation. The larger number of 687 dispositions to outside couriers (event dispose

outside) might stem from additional orders that were directly transported within an outside
area. Interestingly, this event occurs 688 times in the simulation on the large tra�c network
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Figure 8.9.: Results of the Heuristics Miner on a log of the Inside/Outside model simulated
with the small tra�c network. Note that the layout of the original ProM output
was improved manually. Adopted with modi�cations from (Haan, 2009, p. 107).
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(Haan, 2009, p. 84). This might possibly be due to di�erent route planning causing a later end
of work of an outside courier. This courier might have been able to take another order before
de-registration in the simulation with the large tra�c network.38

All issues identi�ed in the Status Quo model can also be observed in Figure 8.9 as well as in
the further model variants: Again the loop at the node announce and the backward transition
from rate to announce seem to be suppressed due to a low frequency of occurrence and the
transition frequency from rate to applyFor appears too high. However, due to the similarity
of the order mediation process in all model variants, an additional analysis of these models
with the LTL Checker (which is described for the Status Quo model in the next section) did
not promise to provide further insight (Haan, 2009, p. 84).

Similar to the Status Quo model, the Inside/Outside simulations also shows a decrease of
dispositions and an increase of moveTo cycle traversals for the large tra�c network (Haan,
2009, p. 107, 108). Di�erent from this reference, the dispose event occurs more often for the
large tra�c network in the Hub and Shuttle simulations (Haan, 2009, p. 105,106).

Comparing all model variants, Haan (2009, pp. 82,83) observes that the number of dispose,
announce, and rate events is signi�cantly larger in both alternative strategies than in the Status
Quo model. Even taking into account the unavoidable increase of transports and announce-
ments caused by the hub system, the order mediation process seems to work most e�ective in
the Status Quo model (Haan, 2009, p. 85). This observation con�rms the conclusions drawn
from the simulation reports in (Page et al., 2004); see Section 8.1.6.1.

Additional Validation with LTL Checker Haan (2009, p. 78) further investigated the �rst
issue (apparently wrong number of transitions from announce to rate) with the LTL Checker
plugin, a simple trace-based model checker that evaluates linear temporal logic formulae over
MXML logs: The hypothesis was that the 3 missing transitions emanating from the node
announce are actually 'hidden' in a loop that is suppressed due to a low traversal frequency.
To detect this loop, the prede�ned formula eventually_activity_A_next_B was applied with
the parameters A and B both set to announce. The LTL Checker actually found one process
instance with 4 directly succeeding announce events. This instance corresponds to the earliest
order arriving in the system. This order was announced 3 times by the o�ce before the �rst
courier registered and rated it (Haan, 2009, p. 78).

Concerning the second issue (large number of transitions from rate to applyFor), Haan (2009,
p. 78) used the LTL checker to count the number of process instances where rate is directly
followed by applyFor. This lead to the expected number of 1918 process instances instead of
2013 occurrences displayed by the Heuristics Miner. A test if process instances with multiple
occurrences of the transition from rate to applyFor exist cannot be performed with the LTL
Checker due to the limitations of linear temporal logic: The algorithm can only count the
number of process instances containing any occurrence of a certain transition but not the
overall number of occurrences in a log (Haan, 2009, p. 78).

The idea to investigate the third issue (low ⇒L value of the transition from announce to rate)
by manually validating the Heuristics Miner's calculations with results from the LTL checker

38Haan (2009, p. 84) draws a di�erent conclusion that had to be revised. The hypothesis stated here also
requires future validation.
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was di�cult to realize for the same reason (Haan, 2009, p. 78): The LTL checker counted
1925 instances with at least one transition from announce to rate and 1187 instances with
the inverse transition. Inserting these numbers into equation 4.13 yields an even lower value of
about 0.237 (Haan, 2009, p. 78). This result at least indicates that the low value is caused by
many process instances that contain transitions in both directions due to multiple attempts to
announce an order.39 The inverse transition (from rate to announce) seems to be suppressed
in the reconstructed net.

A �nal attempt to analyze the cycle between moveTo.start and moveTo.complete made an-
other restriction of the LTL Checker obvious: The plugin cannot distinguish both events be-
cause it is unaware of di�erent event types (Haan, 2009, p. 79).

Alpha and Alpha++ Algorithms Trying to avoid the inconsistencies of the Heuristics Miner,
Haan (2009, p. 77) and the author also applied the non-probabilistic α and α++ algorithms (see
Section 4.2.3.1) to the logs. Figure 8.10 shows that the implementation of the α algorithm in
ProM nearly40 manages to reconstruct a Petri net of the part of the work�ow that represents
the order processing by the couriers, even recognizing the task moveTo as a time-consuming
activity (Haan, 2009, p. 77).

The part of the order work�ow that represents the communication between couriers and o�ce,
however, is not reconstructed as a connected work�ow net. According to Haan (2009, p. 77), one
reason might be that the corresponding conversations consist of multiple overlapping threads
for each courier: In the result of the Heuristics Miner shown in Figure 8.8, these (conceptually)
concurrent threads are represented as loops at the nodes rate and applyFor (Haan, 2009,
p. 77). This might also be a reason for the seemingly erroneous frequencies and low ⇒L values
in this result (Haan, 2009, p. 77).41 The implementation of the α++ algorithm also failed
to generate a connected work�ow net from the example logs similar to the basic algorithm
investigated by Haan (2009, p. 77).

Frequency Abstraction and Fuzzy Miner The Fuzzy Miner algorithm by Günther and Aalst
(2007) and its predecessor variant called Frequency Abstraction (Rozinat et al., 2007) originally
serve to handle potentially noisy logs of �less structured� processes without delivering overly
specialized �spaghetti-like� result models (Günther and Aalst, 2007, p. 328). Therefore, an
application to the strictly structured processes and noise-free logs of the courier service models
might seem inappropriate at �rst sight.

Nevertheless, the algorithms perform quite well in the reconstruction of the 'order work�ow'
from the log of the Status Quo model. Figure 8.11 shows a result delivered by the Frequency
Abstraction plugin of ProM 5.2 with the frequency threshold set to the minimum value of 0.0
to avoid clustering of less frequent activities and dependencies in the model. The structure of
the process was correctly reconstructed including the self-loop at the activity announce, which
was neglected by the Heuristics Miner with the tested (default) parameterization.

39Note again that the ⇒L value is not a probability estimate.
40except for missing arcs from the transitions take and pickUp to the second (left) input place of the transition

moveTo.start
41Haan (2009, p. 77) also cites Lang (2008, pp. 117-126) for this discussion.
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Figure 8.10.: Results of the α algorithm on a log of the Status Quo model simulated with the
small tra�c network. Adopted from (Haan, 2009, p. 98).

Another important advantage over the Heuristics Miner is the computation time of the Fre-
quency Abstraction, which takes around 1 to 2 seconds to reconstruct a model of the test data
drawn from a simulation of the Status Quo model on the small tra�c network. This perfor-
mance lies in the same range as that of the α algorithm, which requires around 2 to 3 seconds
but does not succeed in the proper reconstruction of the model. It clearly outperforms the
measured runs of the Heuristics Miner with times between 47 and 49 seconds.42

This computational speed is due to the linear complexity of the algorithm (Günther and Aalst,
2007, p. 341) and enables a further advantage: The Frequency Abstraction plugin is parameter-
ized only with the aid of a slider (�threshold�) and two checkboxes (�merge sibling clusters� and
�attenuate edges�). On every parameter change, the resulting model is updated immediately,
thereby allowing the user to 'explore' the e�ects of the parameters without a detailed under-

42For each of the 3 compared algorithms, 3 manual measurements were taken on an Apple Mac Book Pro 2.4
GHz computer using a log with 1925 cases and 178557 events.
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Figure 8.11.: Results of the Frequency Abstraction algorithm on a log of the Status Quo model
simulated with the small tra�c network.

standing of their meaning in the algorithm. Compared to the Heuristics Miner 's large number
of abstract numeric parameters and long computation times, usability is highly improved.

A disadvantage of the Frequency Abstraction is the choice of node and edge inscriptions in the
reconstructed model, which appear even more inconsistent than those of the Heuristics Miner
mentioned above. Apparently, node and edge inscriptions display overall relative frequencies
of activities and precedences, that serve as a basis for clustering in the algorithm. While the
practical bene�t of these inscriptions might already be questioned, the fact that the frequencies
do not add up to a total of 1 (possibly due to rounding errors), neither for nodes nor for edges,
makes the display rather confusing.

The Fuzzy Miner as the improved and extended successor of the obsolete Frequency Abstrac-
tion plugin43 displays frequencies of precedences only by di�erent width and shading of edges44,
somehow similar to Sankey diagrams (see Section 6.2.7). The explicitly printed activity frequen-
cies, however, su�er from the same problem as in the Frequency Abstraction plugin. Beyond
that, the Fuzzy Miner o�ers much richer possibilities to con�gure the mining and clustering
procedures.

As foreseen by Günther and Aalst (2007, p. 335), mere clustering by frequencies does not lead
to the construction of a meaningful hierarchy for the order processing work�ow because less
relevant events such as the rating of orders (rate) appear in the courier model very often. The
author's attempt to partition the work�ow by the involved agents (couriers and o�ce) did
not succeed either, though the Fuzzy Miner in principle allows to individually weight di�erent
clustering criteria including the originator attribute of events (Günther and Aalst, 2007, p. 336).
Possibly a replacement of individual courier names by a common role descriptor would lead to
better results here.

In general, the improved con�guration possibilities of the Fuzzy Miner, partly using rather
abstract parameter descriptions like �Linear attenuation�, might even con�ict with the intuitive
usability of the previous Frequency Abstraction plugin to some degree.

43http://www.processmining.org/online/frequencyabstractionminer (last visit 2012-06-16)
44http://www.processmining.org/online/fuzzyminer (last visit 2014-03-01)

357



8. Process Mining in a Discrete Event Simulation Study

Automata Inference and Two-Step Approaches The previous experiments show that the
analyzed 'order work�ow' contains no concurrent activities except for the (conceptually) parallel
rating of orders by couriers. In the best case, this is reconstructed in the form of a length one-
loop. Therefore, automata inference techniques (that neglect concurrency) are in principle
su�cient to correctly reconstruct this control �ow.

Focusing on the techniques reviewed in Section 4.2.3.3, the FSM Miner plugin of ProM 5.2,
which implements the techniques developed by Rubin et al. (2006), was compared to our im-
plementation k-RI Miner of the established k-RI algorithm (Angluin, 1982) in ProM 4.1 (im-
proved unpublished version, for details see Section 7.2.4). While both implementations succeed
to reconstruct the 'order work�ow', a number of important di�erences can be identi�ed.45

The con�guration of the k-RI Miner consists of only two settings including the algorithm's
parameter k and a boolean �ag that indicates if the result automaton will be minimized after
mining. The e�ect of minimization (i.e. equivalent states are eliminated) should be straightfor-
ward to comprehend for non-experts. Understanding the e�ect of the parameter k, however,
requires good knowledge of the algorithm. The FSM Miner o�ers a large number of free pa-
rameters to the user that mirror the 36 di�erent strategies for state identi�cation implemented
by Rubin et al. (2006); see Section 4.2.3.3.

When neither the number of event types nor the expected number of states in the resulting
automaton are exceptionally large, minimization can be activated by default in the k-RI Miner
due to its moderate computational complexity (see Section 4.2.3.3). Increasing the parameter k
allows the algorithm to discover more detailed restrictions on the reconstructed formal language.

Figure 8.12 shows results obtained from a log of the Status Quo model simulated on the
small tra�c network. Obviously, the k-RI Miner performs few generalization in the model
reconstructed at k = 1. For example, it does not introduce a loop to 're-use' the events moveTo
and arrive for delivery and transport. Furthermore, the di�erent announce transitions indicate
that orders are either rated for the �rst time immediately after the initial announce or after
(multiples of) 3 further announce events. This seems to be an algorithmic generalization of
the �nding by Haan (2009, p. 78) obtained with the LTL Checker. The Conformance Checker
plugin of ProM calculates a �tness of 1.0 for the reconstructed models on the basis of the single
log used for training.

Figure 8.12 shows that the model mined at k = 0 in contrast over-generalizes the mediation-
related events. Here, the events applyFor, rate, and announce are simply attached to self-loops
of state s8. The movement-related events are nevertheless identi�ed as duplicate tasks, similar
to the results gained at k = 1.46

More reasonable47 results from a modeler's point of view can be gained with the FSM Miner by
setting the (backward and forward) state merging semantics to Set, all horizon parameters to 1
with respect to events and event types (due to the use of the event types start and stop for the

45The following discussion is somewhat inspired by a study comparing the applicability of optimization algo-
rithms for non-expert users conducted by Lambrecht et al. (2010).

46To further verify the implementation, a comparison to a reference like Mical (Rey, 2003) is advisable. Fur-
thermore, it should be compared thoroughly with the previous implementation. As a �rst impression, both
versions deliver quite similar results but also some deviations. However, similar to the non-incremental
version of the new implementation, the old version can only be applied to smaller subsets of the courier log
due to performance problems.

47as to use the term by Wainer et al. (2005, Sec. 3.3)
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Figure 8.12.: Finite state automata for the 'order work�ow' reconstructed with the k-RI Miner
plugin that implements the algorithm by Angluin (1982).
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moveTo event), and merging of �states with identical inputs and outputs� switched on. Other state
merging strategies are not applicable since the required data (e.g. attributes) are not available
in the analyzed log.

In this con�gurations, the algorithm provides a plausible generalization of the example log.48

Setting this (non-default) con�guration might be understandable taking into account the func-
tioning of the algorithm, but could clearly overstrain non-expert users.

Computation time is another relevant di�erence between both algorithms. The FSM Miner
implementation in ProM 5.2 required more computation time than the k-RI miner in ProM
4.1 that terminated on the given log after a few seconds with k = 1 and minimization switched
on. This computational speed would already allow users to interactively explore the e�ect of
the abstract parameter k similar to the 'threshold slider' in the Frequency Abstraction plugin.
However, computation times dramatically increase on logs observed in the 'courier perspec-
tive'.49

Though the 'order work�ow' exhibits no concurrency, the di�erent Petri net synthesis methods
described in Section 4.2.3.3 were also tested on the reconstructed automata. One purpose was
to generate appropriate input for the conformance checker and PAPN plugins, which require a
Petri net model for log replay. Both our implementation of the approach by Schütt (2003) in
ProM 4.1 and the Petrify integration plugin of ProM 5.2 produced 'one-to-one' translations of
the reconstructed state machines into Petri nets in negligible computation times.

Performance Analysis with Petri Nets The Petri net-based performance analysis developed
by Hornix (2007) and reviewed in Section 4.2.5.5 comes relatively close to the information
conveyed by a 'traditional' simulation report. This tool was applied to the example log of the
courier service model with a focus on the following questions:

1. How do the calculated performance statistics compare to the standard report provided
by DESMO-J / FAMOS?

2. Which advantages and drawbacks might the process mining-based performance analysis
provide from a simulation practitioner's point of view?

Before investigating these questions, a decision had to be made about the control �ow model
used as a basis for performance analysis. Converting the heuristic net of the 'order work�ow'
reconstructed by the Heuristics Miner into a Petri net seemed appropriate at �rst sight: Di�er-
ent from the two step-approaches, this conversion delivers a compact net with uniquely labelled
transitions as well as unlabelled transitions to express self-loops. However, due to the imperfect
reconstruction of the control �ow by the Heuristics Miner, the Performance Analysis plugin
failed to replay all log traces in this net. This leads to faulty statistics, which is not indicated
very prominently in the user interface of the performance analysis plugin.

Next, the Petri net reconstructed with the k-RI Miner and the concurrency detection by Schütt
(2003) was chosen for performance analysis.50 Since this model depicts the 'order perspective'

48Note, however, that the reconstructed FSM is non-deterministic.
49Respective experiments did not terminate in reasonable time and were therefore aborted without results.
50The result of the FSM Miner / Petrify plugins might have been an even more appropriate alternative.

However, for an unknown reason, the PAPN took considerably longer there than on the k-RI Miner / Schütt
result.
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of the courier service model, the performance statistics of order delivery were compared to the
FAMOS report. Both tools calculate the minimum, maximum, average, and standard devia-
tion of the observed activity durations. The performance analysis in ProM further measures
fractions of �fast�, �slow�, and �normal� cases, where the category borders can be con�gured by
the user (Hornix, 2007, p. 94). Overall, the calculated quantities in Figure 8.14 do not show
relevant di�erences between both tools.

Figure 8.14.: Top: performance statistics of order delivery in the Status Quo model visualized
in the Petri Net Performance Analysis plugin (Hornix, 2007, Sec. H.1) of ProM
5.2. Bottom: related cutout from DESMO-J report.

The usage of the process mining-based performance analysis, however, di�ers signi�cantly from
the simulation report. In FAMOS durations of activities are measured by storing relevant time
points in program variables and feeding them into an IndividualObserver via access points (see
Section 3.4.4). The calculation of the observed quantities (e.g. order delivery times) is left to
the developer.

In process mining-based performance analysis, the model developer must only51 instrument the
model with log statements for relevant activities. These can, but do not have to, exactly mirror
the actions performed by the implemented agents. Dependencies between logged activities are
automatically reconstructed by the control �ow mining algorithm. The observed statistics can
be chosen interactively. A text-based export of all possible measurements is also supported.

Summarizing, the following advantages and drawbacks of both analysis approaches can be
identi�ed:

• Instrumentation e�ort : Standard DESMO-J statistics, like queue statistics, are available
without additional instrumentation of the model. The more �exible IndividualObservers

51The study by Haan (2009, p. 76) shows that this seemingly simple task can nevertheless be demanding,
especially in the presence of errors in the model.
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in FAMOS require a higher instrumentation e�ort because all measured variables must
be computed programmatically. The instrumentation e�ort for the process mining-based
performance analysis is medium as it only requires time-stamped events to be logged.

• Clarity : To the impression of the author, the clarity of quantitative simulation results
largely bene�ts from their embedding into a visual model of the analyzed process, as
realized in ProM.

• Interactive con�gurability : The focus of DESMO-J reports can only be modi�ed by chang-
ing and re-simulating the model. The performance analysis in ProM is in principle in-
teractively recon�gurable by �ltering the analyzed log and choosing places, transitions,
and work�ow cases in the user interface. Some lack of usability could nevertheless be ob-
served: One might e.g. want to restrict the calculated performance statistics to transport
orders performed by bicycle couriers. To achieve this, it is necessary to manually deselect
all orders for motorized couriers in a case list, which is not practicable for the given log
size. Alternatively, the user must re-�lter the log outside of the plugin and repeat the
(potentially time-consuming) performance analysis.

• Extensibility : The �exibility of the IndividualObserver lets the user straightforwardly
combine multiple domain perspectives (e.g. ecological and economical measures related to
transport orders and couriers) in a common DESMO-J report. To change the perspective
of the process mining-based performance analysis either the instrumentation of the model
with log statements or the grouping of log events into cases (e.g. 'per courier' instead of
'per order') must modi�ed. It is also not possible to aggregate attributes other than
execution times (e.g. distances covered by couriers) during log replay.

• Computational performance: Simulation reports in DESMO-J are recorded and formatted
with negligible computational e�ort during simulation. The computation in ProM took
signi�cantly longer on the analyzed model and log.

To conclude, the bene�t of both forms of simulation analysis depends on the use case to be
supported: The process mining-based approach might be most useful for interactive explorative
analyses, e.g. of initial calibration or validation runs. In contrast, the con�rmative validation
and analysis of large experiment series might be better supported by 'traditional' simulation
reports.

8.3.1.2. Interaction Patterns and Organizational Structures

Besides control �ow models, an overview of typical interaction patterns and organizational
structures can provide valuable insight into a MABS. Haan (2009, pp. 79) evaluated the utility
of the Performance Sequence Diagram Analysis (PSDA) plugin by Hornix (2007, Sec. H.2) for
the analysis of the courier service model. In addition, the (hierarchical) role mining technique
by Song and Aalst (2008) was tested for its ability to identify the di�erent agent types of the
courier models by their behavior.

Performance Sequence Diagram Analysis As reviewed in Section 4.2.5.5, the PSDA can be
applied for two purposes (Haan, 2009, p. 79): (1) to display the temporal �ow of individual
process instances in a full sequence diagram, and (2) to relate the throughput time of a process
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to the occurrence of certain interaction patterns in a pattern diagram. Haan (2009, p. 79) notes
that for the 'order perspective' of the courier service model, the full diagram conveys informa-
tion on processing times of individual orders similar to the report of the IndividualObserver.
However, for the simulation of the Status Quo model, this diagram appears too overcharged
due the large number of interleaved process instances (Haan, 2009, p. 79, 100).

The analysis therefore focused on the pattern diagram, displayed in Figure 8.15 for the small
tra�c network (Haan, 2009, p. 79). Process instances were clustered by �exible equivalent
based on the data element taskID (see Section 4.2.5.5).

Figure 8.15.: Results of the PSDA plugin on the log of the Status Quo model simulated with
the small tra�c network. The diagram shows the most frequent patterns of order
processing (left) and related throughput time statistics (right). Adopted with
modi�cations from (Haan, 2009, p. 102).

In this example, the PSDA identi�ed �38 distinct patterns where 20 patterns had a support of less
than 4 [cases]. These 'outliers' were characterized by large announcement times [...]� (Haan, 2009,
p. 80). Figure 8.15 shows a cut-out of the 4 most frequent patterns. The PSDA has problems
to reconstruct short cycles in the work�ow. Instead it simply inserts several arrows when a
task (e.g. receive) is followed by multiple instances of another task (e.g. announce) in a trace.
Di�erent event types, as used for the event moveTo, are not considered either.

Since the order processing work�ow is rather static without many variants, the identi�ed pat-
terns mainly di�er in the duration of the announcement and transport phases and in the number
of times a courier stops on the way to accept a new order. Therefore, it is not straightforward
to identify relations between control �ow and execution times of work�ow cases from the re-
constructed patterns.
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Haan (2009, p. 79) indicates that, among the most frequent patterns, �the pattern categories 2

and 4 exhibit the shortest average throughput times [...]�.52 Besides short transport distances, this
might be due to the fact that these orders are passed on after the �rst announcement (only
one arrow from receive to announce). Furthermore, their transport is not interrupted by the
pickup or delivery of another order (only one arrow from pickUp to moveTo).

Haan (2009, p. 80) also applied the PSDA to a log of the Status Quo model simulated on
the large tra�c network. This results in quite similar pattern categories but some larger
throughput times due to velocity restrictions assigned to the edges of the road network, which
is in conformance with the simulation reports (Haan, 2009, p. 80).

The logs of the alternative logistic strategies promise to be a more interesting target for the
PSDA due to more diverse variants of the 'order work�ow'. In particular, the PSDA promises
to automatically distinguish between transport orders delivered directly and orders processed
via the hub system, which must be con�gured manually in the DESMO-J report.

Figure 8.16.: Results of the PSDA plugin run on a log from the Inside/Outside model.

Figure 8.16 shows results of the PSDA on a log recorded from the Inside/Outside model. Due to
the size of the log, the analysis took several hours to �nish.53 The algorithm distinguished 178

52Pattern 4 ist not visible in the result cut-out depicted in Figure 8.15.
53For this reason, Haan (2009, p. 84) did not include the Performance Sequence Diagram Analysis of the

Inside/Outside model into his evaluation at all.
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patterns that mirror di�erent variants of the order processing work�ow in the Inside/Outside
model. In Figure 8.16, pattern 3 e.g. represents transports from an 'outside' region to the
'inside' region via the central hub. In contrast patterns 0− 2 display direct transports.

As expected, throughput times of orders processed via the hub often seem to be signi�cantly
longer than those of 'conventional' orders. However, the over-specialization (only patterns 0−30
of 178 exhibit a support of more than 9 work�ow cases) performed by the PSDA does not allow
to identify relations between pattern structures and processing times, since a large number of
patterns would have to be analyzed in depth.

The only striking observation is the wide arrow pointing from receive to announce in patterns
like category 3. This indicates that tours from the hub to a destination in the 'inside' region
might not �nd much acceptance in the simulated courier �eet and must therefore be announced
several times. This is in accordance with the large number of order mediation-related events
observed in the analysis of the alternative logistics strategies with the Heuristics Miner (Haan,
2009, pp. 82,83); see Section 8.3.1.1.

Maybe the order rating strategy of the couriers must be adapted to better re�ect the require-
ment that tours from the hub to a destination in the 'inside' region must be processed in time as
well. An implementation �aw related to this special case of order mediation might be another
cause. A detailed manual analysis of the patterns identi�ed by the PSDA and the underlying
traces could possibly provide further hints on reasons underlying this model behavior.

Role Mining In addition to the PSDA, further experiments were conducted to reconstruct the
organizational model underlying the Inside/Outside strategy with the Organizational Model
and Role Hierarchy Mining plugins of ProM. These provide implementations of the role mining
techniques developed by Song and Aalst (2008, pp. 11) and reviewed in Section 4.2.4.2. Di�erent
from the PSDA, both algorithms produce results on the analyzed log within a few seconds of
computation time.

Figure 8.17.: Cutout from the result of the Organizational Model Miner plugin reconstructed
from a log of the Inside/Outside model simulated on the small road network.
Modi�ed screenshot from ProM 5.2.
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Figure 8.18.: Result of the Role Hierarchy Miner plugin reconstructed from a log of the In-
side/Outside model. Manually annotated screenshot from ProM 5.2.

Figure 8.17 shows a modi�ed54 result of the Organizational Miner obtained from a simulation
of the Inside/Outside model on the small tra�c network using agglomerative hierarchical clus-
tering by Euclidian distance of agents' activity pro�les (see Song and Aalst, 2008, reviewed in
Section 4.2.4.2). The Organizational Miner succeeds to identify the two main agent classes in
the model, i.e. couriers and o�ce, which is not very demanding due to the non-overlapping sets
of events logged for these agents. It fails, however, to distinguish between di�erent variants of
courier behavior (at least 'regional' and 'standard' couriers, see Section 8.1.2.3) implemented
in the model, neither with this nor other tested con�gurations of the clustering algorithms.

The Role Hierarchy Miner reconstructs a much richer model of behavior variants in the In-
side/Outside model. Figure 8.18 shows the resulting role hierarchy graph (top) and the so-called
originator / task (OT ) matrix of the selected graph node (bottom) as displayed in ProM. A
detailed inspection of the OT matrices of all discovered clusters reveals that the mining result
represents a plausible organization structure of the Inside/Outside model.

In Figure 8.18 the meaning of the discovered clusters is displayed with annotations added
to the output of ProM : Like the Organizational Miner, the Role Hierarchy Miner succeeds
to distinguish between courier and o�ce agents. Concerning courier behavior, the 3 marked
clusters (Courier431, Courier24, and Courier104, ...) represent di�erent variants of the role
regional courier. The related activity pro�les are characterized by a lack of rate (order) events
since these couriers do not take part in the normal mediation scheme.

54Role names were added and layout was modi�ed manually.
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The former two clusters each contain a single regional courier. This courier performs very
few transports where the consignments are either deposited at (Courier24 ) or redrawn from
(Courier431 ) the hub, but not both. The third cluster contains the majority of regional couriers.
It 'inherits' from both behavioral variants, which means that the assigned couriers both deposit
and redraw consignments at the hub.

The cluster labelled with Courier174, ... contains couriers that only transport consignments
directly from senders to receivers, i.e. their action pro�les contain no deposit and redraw events.
The remaining clusters represent couriers that take part in the normal order mediation scheme
(i.e. they rated orders announced by radio) and perform all kinds of transports. Again, the
Role Hierarchy Miner distinguishes between couriers that performed only deposit actions, only
redraw actions, or both.

Though (similar to the PSDA) the interpretation of the reconstructed organizational model re-
quires considerable e�ort, it would provide a good basis to analyze relations between di�erent
variants of courier behavior and performance measures taken on the respective groups of couri-
ers. Di�erent from the observation mechanism implemented in FAMOS, an a-priori assignment
of agents to roles (e.g. registering all regional couriers with a speci�c IndividualObserver) is
not necessary. However, in contrast to the PSDA plugin, the enrichment of a role model with
performance measures is not supported in ProM 5.2.

8.3.2. Internal Control Perspective

In the following, we continue to focus on the behavior of couriers implemented in the di�erent
model variants and report two relevant results of the case study: Haan (2009, Sec. 5.3) found
a hidden error in the control �ow of courier behavior with the aid of process mining. The
detection of this error initiated a revision of parts of the model implementation and the related
simulation results, as described in Section 8.3.2.1. Section 8.3.2.2 reports on how the failure to
reconstruct an understandable model of courier agents' life cycles with the control �ow mining
algorithms implemented in ProM motivated a (still rudimentary and simplistic) implementation
of parts of the procedure to reconstruct complex interaction protocols from Section 7.3.

8.3.2.1. Validation of Courier Behavior

While instrumenting the courier model with logging statements for the process mining-based
analysis, Haan (2009, p. 85) found that the movement of couriers on the road network was not
implemented correctly in the two models of alternative logistic strategies.

Figure 8.19 (left) shows the 'order work�ow' of the Hub and Shuttle model reconstructed with
the Heuristics Miner, which makes this error obvious: While the events moveTo.start (begin
of movement between 2 nodes of the road network) and moveTo.complete (end of movement)
should mutually follow each other, the reconstructed model contains a short cycle that indicates
the direct succession of multiple moveTo.start events (Haan, 2009, p. 85). The Status Quo
model did not exhibit this problem.

By code inspection, the error could be traced back to a missing e�ect inscription (method
call) in the courier state charts of the Hub and Shuttle and Inside/Outside models (Haan,
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Figure 8.19.: Erroneously implemented courier movement (left, Haan, 2009, p. 109) and cor-
rected version (right, Haan, 2009, p. 105) displayed in two process models mined
from the Hub and Shuttle model.

2009, p. 85). As a consequence, the method stopMoving(), in which event moveTo.Complete
is logged, is not called when a courier accepts a new transport order while moving on the
road network (Haan, 2009, p. 85). This stop is relevant because it triggers the accumulation
of distances covered between the courier's current position and the previous node in the road
network. The defect thus leads to an erroneous calculation of distances covered when couriers
change their current route in favor of a newly accepted order (see also Haan, 2009, p. 85).

After correcting the error, the reconstructed process displays the expected behavior shown
on the right hand side of Figure 8.19 (Haan, 2009, p. 85). The detection of this error and
further problems in the distance calculation of the corrected model initiated an additional
re-validation of the FAMOS subsystem for spatial movement. This included a revision of the
distance calculation55 as well as a process mining-based analysis of low-level events that control
the movement of agents in FAMOS.

Though not all problems related to distance calculation and movement-speci�c event handling56

could �nally be resolved, the calculation of distances seems to work more reliable in the cor-
rected model. To evaluate the e�ect of the corrections on the comparison of di�erent logistics
strategies, simulations of the competing Status Quo and Inside/Outside models were repeated
with the courier and order pro�les used in the research project.

55performed by Ruth Meyer, the developer of the spatial modeling support in FAMOS
56In simulations of both models fed with arti�cially enlarged order pro�les, two di�erent variants of distance

accumulation (either explicitly after every partial movement on the road network or implicitly in the FAMOS
class OdoRoute) still deliver deviating distances for some couriers. In the 'real-world' order pro�les used in
Figure 8.20 this e�ect could only be observed for a single courier.
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Figure 8.20.: Revised comparison of total motorized distances covered in simulations of the
Status Quo and Inside/Outside models on real order pro�les from 5 workdays.

Figure 8.20 shows that the Status Quo and Inside/Outside models still perform quite similar
with respect to the overall motorized distances covered (see also Haan, 2009, p. 85). The
minor advantages of the Inside/Outside model on some order pro�les have even lost signi�cance
compared to the results shown in Figure 8.6 (Section 8.1.6.1).

More important for this thesis, the example indicates that process mining can support the
explorative operational validation of MABS. While the error in the courier movement could
have been detected using con�rmative techniques like trace-based model checking or integration
testing as well, the application of process mining does not require an a-priori hypothesis to be
posed. Compared to code-based debugging, process mining provides a very clear indication of
the error due to its focus on high-level activities.

The remaining issues, however, show that process mining is not a 'magic bullet' for making
erroneous processes in complex models explicit either. It can only support the detection of
errors in connection with thorough manual validation activities.

8.3.2.2. Life Cycle Reconstruction of Courier Agents

Section 8.3.1.1 showed that despite some di�culties, most applied control �ow mining algo-
rithms succeed to reconstruct a plausible and understandable model of the 'order work�ow' in
all courier model variants. However, switching the focus from order processing to the whole
courier life cycle57 (which is achieved by aggregating the logged events by their performing
couriers) lead to less satisfactory results in the study by Haan (2009).

57The notion of a life cycle is used similarly in artifact centric process mining (see e.g. Popova et al., 2012,
p. 43, reviewed in Section 5.3.3.3).
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Figure 8.21.: Monolithic process model of courier behavior in the Status Quo model. Taken
from (Haan, 2009, p. 111).
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Figure 8.21 shows that the activities in the model reconstructed with the Heuristics Miner
algorithm are multiply interconnected. Therefore, a clear process �ow does not become visible.
This �spaghettiness�58 is due to the fact that courier behavior is modelled in a large hierarchical
state-chart which combines several aspects including communication with the o�ce, movement
on the road network, delivery of consignments, and change of occupation state (see Figure 8.2
in Section 8.1.2.1). While some of the sub-tasks causally depend (e.g. an order is picked up only
after it has been accepted), others are conceptually concurrent (e.g. receiving announcements
via radio while moving on the road network).

Kruse (2007, p. 41) regards the fact that FAMOS agents are equipped with a single, stati-
cally de�ned behavior object as a severe restriction. He therefore proposes to extend FAMOS
with the possibility to model agent behavior in terms of multiple, dynamically instantiated
components (Kruse, 2007, Sec. 3). This approach resembles behaviour-con�guring architectures
(Klügl, 2007, p. 130) such as Mulan or JADE and takes up the idea of agent abilities in
FAMOS as described by Meyer (2008).

Recent literature on process mining also proposes to structure complex processes with the aid
of hierarchical process mining based on automated pattern detection (Li et al., 2010), clustering
(Günther and Aalst, 2007), and �instance-aware� logs (Fahland et al., 2011a, p. 46).59 In terms
of our conceptual framework, the complex internal control �ow of a courier agent can be
clari�ed when it is regarded as external control �ow between multiple constituent components.
As indicated in Section 6.2, this approach adopts the hierarchical structure inherent to the
Mulan architecture (Rölke, 2004, pp. 181) and also relates to the ideas by Kruse (2007).

In Section 7.3, a 'mining chain' for complex interaction protocols was described as one possible
approach to reconstruct hierarchical processes including multiply instantiated components from
event-based logs. Following Dustdar and Gombotz (2006), reviewed in Section 5.3.3.1, we argue
that the e�ort to implement the algorithms for this processing chain depends on the component-
and interaction-related data available in the log. When the log is enriched with appropriate
data, a rather simple implementation su�ces to reconstruct a 'component-oriented' view upon
the courier life-cycle.

As a starting point, logging in FAMOS was extended with the possibility to specify a combina-
tion of agent and component (i.e. an AgentAbility) as originator of a logged event. Accordingly,
the FAMOS MXML logger (Section 8.2.4.1) is enabled to group recorded log entries by this
originator information. When converting the grouped FAMOS events into MXML process in-
stances, the component-related information are encoded in the name of the process instance as
follows:

< agentInstanceId >:< componentTypeId >:< componentInstanceId > (8.5)

Given this information, the aggregation and classi�cation tasks of the processing chain from
Section 7.3 become rather trivial:

58as to use the term by Günther and Aalst (2007, p. 328)
59An approach to reconstruct component dependencies using Bayesian methods is also proposed by Lou et al.

(2010a).
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Figure 8.22.: Class diagram showing the rudimentary implementation of 'component-oriented'
agent behavior mining in ProM 5.2. Framework classes and interfaces of ProM
are marked with a corresponding stereotype.
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1. Events are aggregated into (conversation) threads by the grouping mechanism of the
FAMOS MXML logger. Each thread represents the life cycle of a certain component
instance running in a certain agent.

2. The component threads are classi�ed by the component type identi�er encoded in the
name of the process instance.

3. Component threads are aggregated into life cycles of agents using the agent identi�er
in the name of the process instance. This corresponds to the grouping of conversation
threads into conversations in Section 7.3.

4. A further classi�cation of agent traces is not necessary because only one type of agent is
considered.

To handle these extended logs60 a number of classes were built on top of the MXML object
model of ProM : As shown in Figure 8.22, the class ComponentAuditTrailEntry serves to
provide component-related information based on a MXML AuditTrailEntry. Similarly, the
interface ILogComponent o�ers a 'component-oriented' view upon MXML ProcessInstances,
either for elementary (class BasicLogComponent) or composite61 instances (class Composite-
LogComponent). In our example, basic log components correspond to traces of elementary
components while composite log components represent traces of whole agent life cycles.

From this hierarchical log representation, the class MineAlwaysPrecedesRelation reconstructs
external precedences and multiplicity information of component life cycles and returns them in
an AgentComponentMiningResult.

As described in Section 7.3, external precedences correspond to the relation << between events
of two component types C1 and C2. The goal is to identify pairs of event types (e1, e2) such
that, for every instance c1 of C1 and c2 of C2 running in an agent A, e2 only occurs in c2 after
the last occurrence of e1 in c1. Recall that the relation << is used for a similar purpose in
artifact centric process mining (e.g. Kikas, 2011).

The class ComponentTypePrecedences represents the external precedences between two com-
ponent types. It is reconstructed from a set of log components with the procedure stated in
pseudo-code below. The algorithm resembles the reconstruction of the relation →L in the α-
algorithm (see e.g. Medeiros et al., 2004a, reviewed in Section 4.2.3.1) and also mirrors the
approach sketched by Kikas (2011, Sec. 8.4); see Section 7.3:

C1 // identifier of first component type

C2 // identifier of second component type

E1 // set of event types assigned to C1

E2 // set of event types assigned to C2

LA // list containing one composite log component for every agent

AP(et1, et2) // indicates that event type et1 always precedes et2

EP // list of external precedences

// initialization

60which are akin to the instance-aware logs used by Fahland et al. (2011a, p. 46); see Section 5.3.3.3
61following the composite pattern by Gamma et al. (1995)
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for each event type et1 in E1

for each event type et2 in E2

set AP(et1, et2) = AP(et2, et1) = true

// calculation of basic 'always precedes' relation

for each log component la in LA:

l1 = get elementary log components of type C1 from la

l2 = get elementary log components of type C2 from la

for each event e1 in l1

for each event e2 in l2

if timestamp(e1) < timestamp(e2)

then set AP(e2.Type, e1.Type) = false

if timestamp(e2) < timestamp(e1)

then set AP(e1.Type, e2.Type) = false

// calculation of external precedences ('derived relation')

for each event type et1 in E1

for each event type et2 in E2

if AP(et1, et2) and not AP(et2, et1) then add (et1, et2) to EP

if AP(et2, et1) and not AP(et1, et2) then add (et2, et1) to EP

return EP

Note that the relation AP corresponds to the class AlwaysPrecedesRelation in Figure 8.22.
The list EP stands for the result returned by the method getAlwaysPrecedesRelation().

Besides external precedences, an AgentComponentMiningResult provides multiplicity informa-
tion using the class Multiplicity. This class o�ers the following data:

• minOccurrence(C), maxOccurrence(C): minimum (maximum) number of instances of
components of type C run during the lifecycle of an observed agent,

• isOptional(C): true whenever agents are observed that do not run a component of type
C at all,

• isSingleton(C): true if every observed agent runs exactly one component of type C, and

• canOverlap(C): true when at least 2 instances of component type C run in parallel in
at least one observed agent.

Note that the approach is inspired by the interaction pattern mining of Dustdar and Ho�mann
(2007) reviewed in Section 4.2.4.3 and quite similar to the reconstruction of cardinalities in
artifact-centric process mining (see Canbaz, 2011, Sec. 6.6.3, reviewed in Section 5.3.3.3).

To apply this mining technique to the courier model, every logged event was assigned to one
of the imaginary components Movement (movement on the road network), Processing (selec-
tion and transport of orders), and Workday (control of occupation state). On the resulting
log, the Heuristics Miner was run to reconstruct the internal precedences of each component
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type. Complementary, the new Mine Always Precedes Relation plugin62 identi�ed external
precedences and multiplicities.

Figure 8.23 shows a model manually assembled from the output of both plugins. Besides visual-
izing the AgentComponentMiningResult and merging it with the partial models reconstructed
by the Heuristics Miner, the manual post-processing included the elimination of transitive
external precedences. The latter could be performed automatically when the Mine Always Pre-
cedes Relation plugin also has access to the internal precedences reconstructed by the Heuristics
Miner (a similar algorithm is described by Kikas, 2011, p. 22).

The mining result shows that every observed courier contains exactly one component of type
Movement and one of type Workday. In contrast a courier runs several, partly overlapping
instances of Processing. The large number of instances per courier is due to the fact that a
new (imaginary) instance of Processing is created in the log whenever a courier rates another
order, even without applying for it.

Figure 8.23.: Hierarchical, 'pseudo component-oriented' model of courier behavior in the Status
Quo model mined from a small subset of log data. Note that the displayed process
model was assembled manually from the results provided by two di�erent mining
algorithms, i.e. the Heuristics miner and a simple, preliminary ProM plugin to
mine external precedences.

The reconstructed external precedences seem quite obvious and are in accordance with the
expected behavior (e.g. event startWork of component Workday occurs before the �rst event
moveTo.start of component Movement in the same courier). More interesting external prece-
dences might result if the interplay between the (imaginary) components would be analyzed
at di�erent levels of granularity, e.g. not only per agent life cycle but also per processed or-

62This plugin was not run in the ProM user interface yet but should be able to run in this environment once a
graphical user interface and visual result representation have been implemented.
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der. Furthermore it must be noted that the example log was intentionally restricted to the
traces of 41 exemplary couriers due to the long computation time of the mining procedure's
still ine�cient implementation.

Despite these drawbacks, the presented approach promises to provide more understandable
representations of agent life cycles than '�at' control �ow mining. Compared to recent, rather
akin work on artifact-centric process mining (e.g. Canbaz, 2011; Fahland et al., 2011a; Kikas,
2011) based on Entity/Relationship modeling, we focus on hierarchical agent- and component-
oriented modeling as advocated by authors like Rölke (2004) and Kruse (2007).

8.3.3. Decision Perspective

The earliest attempt to validate the courier service model with the aid of data mining was
conducted as part of the study project by Sven Kruse (2005) already mentioned in Section
8.1.5.3. The goal was to identify and analyze the state variables that most strongly in�uence
how couriers rate the bene�t of transport orders and decide to apply for an order (Kruse, 2005,
p. 9); i.e. data mining in the decision perspective.

Though the relevant variables are in principle prede�ned in the rating function described in
Section 8.1.3, understanding their impact on the agents' decisions is not straightforward for
several reasons:

• The rating function contains many variables (Kruse, 2005, p. 10) including arti�cial pa-
rameters like the weighting factors wBike and wCar.

• It is not a linear function.

• The passing of an order to a certain courier does not only depend on the individual
decision of this courier but also on the decisions of all other couriers that rated the order.

Kruse (2005, p. 7) chose decision tree mining as an appropriate data mining technique for the
study because decision trees �provide [good] insight into the interplay of (a [...] large number
of) input variables with respect to a target variable� (Kruse, 2005, p. 7, citing Berry and Lino�,
2004, p. 165). In particular, the implementation of the C4.5 algorithm (see Section 4.1.4.1)
from the open source tool WEKA (Hall et al., 2009, see Section 4.1.5.1 of this thesis) was used
(Kruse, 2005, pp. 8).

For data collection, Kruse (2005, pp. 10) divides the state variables that in�uence the rating of
transport orders by couriers into three categories:63

1. �agent-based data [...] that only depend on the internal state of the agent� (Kruse, 2005, pp. 10).
This includes the courier's current number of accepted orders, its relative tour length
S(c), its need for orders N(c), the time T (c) needed to process the current orders, and
the previous utilization util(c) (Kruse, 2005, pp. 10).

2. �Subjective, transport order-based data [...] that the agent assigns to the order due to its internal
state� (Kruse, 2005, p. 11). Here, the required detour detour(c, o) and cost to process the
order, and the subjective order quality Q(c, o) are considered (Kruse, 2005, p. 11).

63For further explanations on the mentioned quantities S(c), N(c), T (c), util(c), detour(c, o), Q(c, o), and
revenues(o) see Section 8.1.3. The study by Kruse (2005) might nevertheless relate to a slightly di�erent
version of the rating function.
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Figure 8.24.: Cutout of the decision tree for transport order assignment reconstructed by Kruse
(2005, pp. 28). The original tree contains 19 internal and 20 leaf nodes (Kruse,
2005, p. 29). The full output of WEKA including parameter settings and quality
measurements is found in (Kruse, 2005, pp. 28).

3. �Objective, transport order-based data [...] that only depend on the order� (Kruse, 2005, p. 11).
These are the additional revenues revenues(o) gained by transporting the order (Kruse,
2005, p. 11).

During the courier service simulation, all variables are logged for every order rating action in a
format readable by WEKA (Kruse, 2005, p. 11). Additionally, Kruse (2005, p. 12) logs a 'rela-
tive' variant of most variables where all amounts are subsequently divided by the corresponding
amounts from the agent that has been granted the order. Two boolean target variables approve
(does an agent apply for an order?) and orderReceived (does the o�ce pass the order to the
respective agent?) are also recorded (Kruse, 2005, p. 12).

In an experiment to analyze the dependence of the variable orderReceived on the absolute
state variable values, Kruse (2005, pp. 13,28-29) found only the variables detour(c, o), util(c),
revenues(o), Q(c, o), and S(c) to be relevant for order assignment. A cutout of the decision
tree presented by Kruse (2005, p. 28) is shown in Figure 8.24.

Kruse (2005, p. 13) notes that the relatively low number of signi�cant factors might be due
to (linear) dependencies of some logged variables (e.g. detour and additional cost). Though
WEKA reports a correct classi�cation of around 97.5% of the training data64, the confusion
matrix (see Section 4.1.3.3) shows that about 46% of cases where a courier is actually granted
an order (orderReceived = true) are classi�ed as orderReceived = false (Kruse, 2005, p. 13).

This bias towards 'false negatives' might be explained by the large fraction of negative cases
inherent to the observed process: While 17929 order rating actions are observed in the exam-

64To gain a valid result, the classi�cation ability of a decision tree should better be assessed using cross validation
(see e.g. Haan, 2009, p. 54 and Section 4.1.3.3 of this thesis).
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ple, only 109 of these actions lead to a transport order being assigned (Kruse, 2005, p. 28).
Summarizing, an inspection of the branches in the reconstructed decision tree reveals a plau-
sible, though not very intuitive model of the decision process. More experiments with further
parameter settings (Kruse, 2005, p. 14) and the additionally logged data would be necessary
to reliably conclude on the bene�ts of the approach.

The later study by Haan (2009) also put some focus on the decision perspective: Firstly,
the MXML logger of FAMOS was extended with the possibility to log arbitrary attributes to
MXML audit trail entries (Haan, 2009, p. 65). Secondly, an attempt was conducted to apply
the Decision Point Analysis (DPA) plugin of ProM (Rozinat and Aalst, 2006), which also uses
decision tree mining from WEKA, to logs of courier service simulations (Haan, 2009, pp. 80).

As reviewed in Section 4.2.5.5, the DPA allows to assign branching conditions to decision
nodes in a process model on the basis of on logged attributes. Thereby, it should in principle be
possible to integrate the decision tree mined in the study by Kruse (2005) into the reconstructed
order processing work�ow shown in Figure 8.8 (Section 8.3.1.1).

However, Haan (2009, p. 80) experienced practical di�culties when applying the DPA to the
'order perspective' of the courier service model:

�Soon [...] it became evident that the DPA plugin could not cope well with the model
converted from a Heuristic [net] into a Petri net. Though decision nodes were detected for
all branches, the DPA [...] could not assign decision trees. [... This is due to] invisible
activities [i.e. unlabeled transitions] that were introduced to [... represent] loops from the
Heuristics net during conversion. The DPA cannot handle invisible activities [... in] loops
of length one [...]. Rozinat et al. (2009b) explain [...] how loops can be avoided, but the
[...] approach could not be transferred to the [analyzed] model.� (Haan, 2009, p. 80)

Haan (2009, pp. 80) therefore only reconstructed a trivial decision tree at the branching point
between the activities pickUp and deliver. This tree simply states that the path via deliver

is only taken when the attribute isPickedUp of the order has already been set to true. Further
experiments, e.g. to investigate if the DPA can better handle the order work�ow without un-
labeled transitions reconstructed with the k-RI /Schütt algorithm (see Section 8.3.1.1), remain
for future work.

8.3.4. Summary and Discussion

To conclude the study on the application of process mining to the courier service model, we
�nally

• evaluate how the applied techniques perform with respect to the criteria C1 to C4 stated
by Haan (2009, p. 72) and repeated in Section 8.2.3,

• rate to what degree the analysis tasks T1 to T4 could be carried out, and thereby

• answer the research questions Q5.1 to Q5.6 posed in this Section.
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8.3.4.1. Rating of Applied Techniques and Tools

Table 8.3 shows a rating of the applied algorithms and their implementations in ProM by
criteria C1 to C4. While rows 1, 8, 12, and 13 are adopted from Haan (2009, Sec. 5.5), further
rows display additional ratings made by the author. The α algorithm (row 3) was also evaluated
by Haan (2009, p. 77) but not rated with respect to the criteria. We should again emphasize
that all ratings are highly subjective. They merely re�ect the opinions of the experimenters
within the scope of the presented study.

While the rationale behind most ratings should become clear from the descriptions in the
previous sections, some entries might require additional explanations. In the following, we
provide details on selected ratings with most relevance for this thesis. Further explanations are
given by Haan (2009, Sec. 5.5).

The ease of use of the Heuristics Miner is rated as high by Haan (2009, p. 86) due to its good
documentation and ability to gain acceptable results in the default parameter con�guration.
Nevertheless, the large number of rather abstract parameters aggravates con�guration when
default settings must be changed; e.g. to avoid the suppression of infrequent transitions.

The Frequency Abstraction (and the Fuzzy Miner as its successor) score high ratings in the
categories utility, ease of use, and computational performance. Especially the straightforward
user interface and the fast reaction time to update the result display on parameter changes
seem very appropriate for non-expert users. The customizability of the Frequency Abstraction
is rated as low because the prede�ned clustering scheme does not �t the requirements of the
courier service model (see Section 8.3.1.1). Though the Fuzzy Miner provides considerably
more con�guration possibilities, a meaningful hierarchization of the 'order work�ow' could not
(yet) be achieved either (see Section 8.3.1.1).

The computational performance of the k-RI /Schütt algorithm is rated as medium due to its
quick reconstruction of the 'order work�ow' (see Section 8.3.1.1) as opposed to the signi�cantly
worse performance in the 'courier perspective'. The utility of results is rated higher for the
FSM miner due to its more plausible reconstruction of the order work�ow from a modeler's
point of view.

The utility of the result reconstructed by the Role Hierarchy Miner is only rated as medium
for two reasons. Firstly, as discussed in Section 8.3.1.2, the meaning of the reconstructed orga-
nizational model could only be understood after a detailed and time-consuming analysis of the
reconstructed graph and originator/task matrices. Secondly, a correlation of the reconstructed
roles with performance measures is not possible yet (see also Section 8.3.1.2).

Ease of use and performance of the 'component-based' mining technique developed in this
thesis are rated as low due to the rudimentary implementation. Nevertheless, the utility of the
returned result might be rated as high as compared to results gained with the Heuristics Miner
when attempting to reconstruct the courier life cycle.

8.3.4.2. Success of Analysis Tasks

The task T1 (provide an aggregated overview of the transport order processing work�ow includ-
ing performance statistics) could e.g. be solved successfully with the k-RI / Schütt algorithm
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C1 C2 C3 C4

Technique Utility Ease of use
Customiza-
bility

Performan-
ce

1
Heuristics Miner
(order work�ow)

+ + � o

2
Heuristics Miner
(courier life cycle)

�

3 α/α+ + algorithm � + � +

4
Frequency Abstrac-
tion / Fuzzy Miner

+ + � / o +

5
k-RI algorithm /
Schütt concurrency
detection

o + � o

6
FSM Miner / Pet-
rify

+ o + �

7
Petri Net Perfor-
mance Analysis

+ + o �

8
Performance Se-
quence Diagram A-
nalysis

o + � �

9
Organizational
Model Miner

� + � +

10
Role Hierarchy
Miner

o + o +

11
'Component-based'
mining (courier life
cycle)

+ � % �

12 LTL Checker o + + +

13
Decision Point A-
nalysis

� � � +

Table 8.3.: Evaluation of process mining techniques with respect to criteria C1 to C4 from Haan
(2009, p. 72). Similar to that publication, the criteria are rated on a three-level scale
with the levels + (high), o (medium), and � (low). The symbol % indicates no rating.
Rows 1, 8, 12, and 13 of the table are adopted from Haan (2009, pp. 86�88)
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and the Petri Net Performance Analysis plugin of ProM. While the Heuristics Miner also de-
livered an appropriate reconstruction of the 'order work�ow' (Haan, 2009, p. 74), log replay for
performance analysis failed due to missing infrequent arcs in the reconstructed model. This
issue might possibly be avoided by changing the con�guration of the Heuristics Miner.

Analysis task T2 (�nd out in which way internal state attributes in�uence the rating of orders
by couriers) was mainly tackled in the study by Kruse (2005, pp. 5) and to some degree by
Haan (2009, p. 80). Results and success of the studies are rather ambiguous: On the one hand,
a plausible decision tree could be reconstructed and knowledge about the most signi�cant state
variables could be gained. On the other hand, the reconstructed decision model does not appear
very intuitive and explanatory. Merging decision and control �ow perspectives with the aid of
the Decision Point Analysis plugin of ProM failed due to technical di�culties (Haan, 2009,
pp. 80,87-88).

Task T3 (verify the implementation of the order processing by couriers with a focus on correct
movement) got in the focus of the study by Haan (2009, Sec. 5.3) after detecting a hidden error
with the aid of process mining. Though other forms of analysis (especially manual log analysis)
were applied in the re-validation of the courier service models as well, process mining played
an important role in this case. While not all issues could be �nally clari�ed yet, the credibility
of the model was clearly improved.

The work on task T4 (verify the implementation of the courier life cycle) demonstrated the
drawbacks of 'conventional' control �ow discovery applied to the complex internal control �ow
of agents. This insight motivated a rudimentary, partial implementation of the 'mining chain'
from Section 7.3 to reconstruct hierarchical and multiply instantiated behavior. By switching
the perspective from internal control �ow of agents to external control �ow of their constituent
components65, the understandability of the reconstructed model was considerably improved.

These results (as well as the applied techniques) are in accordance with parallel work on artifact-
centric mining (e.g. Canbaz, 2011; Kikas, 2011). The reconstructed perspective emulates, to
a certain degree, the software-technical improvements of FAMOS proposed by Kruse (2007,
Sec. 3), which also inspired this work.

8.3.4.3. Research Questions

Based on the above summary we can proceed to answer the research questions posed in Section
8.2.1:

Q5.1: Can process mining support or complement the previous validation and calibration at-
tempts?

Compared to the previous manual and SQL-based log analysis, process mining o�ers the pos-
sibility to quickly detect problems during exploratory analysis without 'knowing exactly what
to search for'. During the reconstruction of the courier life cycle, an interesting parallel could
be drawn between the lack of understandability of the initial process mining results and the
software-technical �aws of FAMOS identi�ed by Kruse (2007, p. 41).

Q5.2: Can process mining help to gain further insight into the behavior of the courier models
and deliver 'surprising' �ndings?

65as to use the term by Kruse (2007)
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Besides the mentioned error in courier movement (Haan, 2009, Sec. 5.3), the low relevance
of several variables of the rating function (Kruse, 2005, p . 13) was also revealed with the
aid of data mining. However, new or even 'surprising' insights into the rather disappointing
performance of the alternative logistics strategies as compared to the Status Quo model could
not be gained yet.

This might be caused by at least two reasons: Firstly, due to their initiative character, the
experiments by Kruse (2005), Haan (2009), and the author of this thesis still put stronger
focus on methods and techniques than on domain-speci�c questions. Secondly, more advanced
analysis techniques of ProM with the ability to relate multiple perspectives (e.g. the PSDA or
DPA plugins) did not cope well with the structure and amount of log data from the courier
service simulations (Haan, 2009, pp. 87).

Q5.3: How large is the additional e�ort to instrument the models and extend the experimental
setups? Can they easily be re-used between di�erent models or variants?

Haan (2009, p. 65) rated the e�ort to instrument the courier model for the reconstruction
of the 'order work�ow' as rather high. This was partly due to the prototypical state of the
FAMOS MXML logger and the existence of errors in the model. After instrumenting the
Status Quo model, further model variants could be instrumented without large e�ort due to
object-oriented inheritance (see also Haan, 2009, p. 85). A change of the logged perspective
beyond the prede�ned aggregation criteria of the FAMOS MXML logger is still tedious and
bears the risk of overcharging the model's implementation with log statements. This problem
might be tackled by software-technical means like inheritance or aspect-oriented programming
(as in Sudeikat et al., 2007, p. 179) to 'inject' log statements for di�erent perspectives into
e�ector methods of agents.

Q5.4: How do result representations of process mining compare to typical reports from discrete
event simulation?

This question is discussed in Section 8.3.1.1 where the Petri Net Performance Analysis plugin
of ProM is compared to simulation reporting in FAMOS and DESMO-J.

Q5.5: Which algorithms are suitable to reconstruct and enrich process and structural models in
the given problem domain (Haan, 2009, p. 7)?

The Heuristics Miner (see Haan, 2009, pp. 74), the Frequency Abstraction, and the automata
inference-based algorithms appeared most appropriate to reconstruct the order processing work-
�ow of the courier service model. Models reconstructed by the latter techniques formed an ap-
propriate basis for extension with the Petri Net Performance Analysis. From the two evaluated
techniques, only the 'component-based' mining approach developed in this thesis could recon-
struct an understandable model of the courier life cycle. Di�erent variants of agent behavior in
the Inside/Outside model could be identi�ed with the Role Hierarchy Miner plugin of ProM.
Unfortunately, a correlation with performance-related data is not possible there.

Q5.6: How do the existing ProM tool and the additional mining plugins developed in this thesis
perform on large logs produced by the courier service simulations?

Though no detailed formal or empirical analysis of the evaluated algorithms' computational
e�ort was conducted, an impression of their computational performance can be gained from
the column C4 of Table 8.3. Due to a still very ine�cient implementation, the 'component-
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based' mining technique could only be applied to a very small subset (traces of 41 couriers) of
the recorded log data.

8.4. Integration into an Experimentation Environment

After summarizing and discussing the results of the process mining study, we will brie�y describe
�rst steps towards improved tool integration. Similar to the integration with Capa / Renew
reported in Section 7.4, it is based on concepts of plugins and data �ow modeling. Here, the
foundation is a generic experimentation environment implemented on top of the Java-based
plugin platform Eclipse66.

The experimentation environment was developed in parallel to the work reported in this thesis
under participation of Rainer Czogalla, Philip Joschko, several students at the University of
Hamburg's Department for Informatics, and the author of this thesis. Intermediate results were
pre-published in the article by Czogalla et al. (2006), from which several passages are cited in
the following.

8.4.1. Motivation and Introduction

Czogalla et al. (2006, p. 1)67 motivate the need for a generic experimentation approach based
on Eclipse:

�[...] regardless of Zeigler's well-known claim to separate models from experiments (see e.g.
Zeigler et al., 2000), most [...] tools [for simulation experimentation] are closely coupled to
a certain modeling environment. Experimentation support, though in princip[le ...] inde-
pendent of speci�c modeling styles, is therefore re-implemented over and over again. Some
promising steps towards generic and extensible experimentation environments have been
taken [...] (see e.g. Schöllhammer, 2001) but the respective systems are often prototypical
and lack adequate usability.

During the last years, [...] Eclipse has evolved from an IDE (integrated development en-
vironment) to a general tool platform. Eclipse's plug-in-mechanism allows to integrate
arbitrary extensions into a consistent application frame. Thus, the platform also provides
an appropriate and contemporary architectural framework for the development of simula-
tion tools. [... T]he concept and [...] prototypical implementation of [... our] interactive
experimentation environment [...] integrates the functionality of generic experimentation
tools previously developed in our group into experimentation support plug-ins.�

Previous experimentation tools developed at the University of Hamburg include the systems
DISMO by Gehlsen (2004) and CoSim by Bachmann (2003). Both systems are brie�y reviewed
by Czogalla et al. (2006, p. 3):

�The distributed simulation-based optimization framework DISMO (Gehlsen and Page,
2001) [...] allows to integrate di�erent Java-based simulators by using wrapper classes.
DISMO provides a simple experimentation environment that focuses mainly on automated

66http://www.eclipse.org (last visit 2012-07-21)
67page numbers relate to the version of the paper downloadable at http://www.scs-europe.net

/services/ecms2006/ecms2006%20pdf/80-meth.pdf (last visit 2012-11-15)
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experimental design and parallel execution of independent simulation runs distributed over
a computer network.

Another generic simulation tool developed in our group is the component-based infras-
tructure CoSim (Bachmann, 2003) which follows a di�erent approach. It provides cross-
platform simulation in distributed environments, ensuring CORBA-based interoperability
by speci�c model interface descriptions. CoSim includes an experimentation environment
ExpU (Schöllhammer, 2001) that permits experiments to be de�ned and managed inde-
pendently from speci�c model implementations (e.g. by using experiment variables).�

Porting concepts from these tools (and other authors such as Wittmann, 1993, see also Sec-
tion 2.4.1 of this thesis) to the Eclipse platform provides a number of advantages that are
summarized by Czogalla et al. (2006, p. 2):

�An underlying plug-in runtime environment based on the OSGi standard (Open Services
Gateway Initiative, www.osgi.org [last visit 2012-11-15]) provides a dynamic extension
mechanism, enabling the addition of functionality to existing components. Eclipse's core
features are concentrated in the Rich Client Platform (RCP) [...] that facilitates the devel-
opment of arbitrary applications.

As an integral part [...], a generic workbench supports user interaction. The Java Devel-
opment Tools (JDT) extend the Eclipse platform with a set of plug-ins that add Java IDE
functionality [... which is especially useful in code-centric simulation approaches like the
one described in this chapter.]

Many sub-projects aim at developing Eclipse extensions for various purposes [...] A broad
range of proven and tested plug-ins are available. Following the concept of software reuse,
many of them can be adapted and integrated into an experimentation environment to
support the tasks that arise in the context of a simulation study.�

8.4.2. Design and Implementation

At the core of the experimentation environment lies a software framework that adopts and
integrates several concepts from the aforementioned tools DISMO and CoSim (Czogalla et al.,
2006, p. 4). Similar to these tools, any simulation engine that exposes a Java interface can
bene�t from the experimentation environment's functionality (Czogalla et al., 2006, p. 4). The
framework architecture is sketched by Czogalla et al. (2006, p. 4) as follows:

�Models and simulators are adapted to the framework by implementing a simulation wrap-
per interface that provides standardized access to the model's parameters, results, and
runtime variables and to the simulator control (e.g. start, stop, and step functionality).
[...]

The framework's components re�ect the main tasks occur[r]ing in experimentation [...]
The central component is an experiment manager that arranges the experimental setup
and controls the experiment's execution. In particular, it initializes an experiment planner
responsible for the systematic variation of parameter settings; and an execution manager
that encapsulates the [...] execution of simulation runs. The experimental setup is com-
pleted by registering observers and analyses that monitor the experiment execution and
process available runtime values or simulation results.

385



8. Process Mining in a Discrete Event Simulation Study

The experiment planner incorporates two sub-components supporting manual and auto-
mated experimental design [see Section 2.4.1]. The manual experiment planner reads ex-
periment speci�cations stated in a newly developed XML-based Experiment Speci�cation
Language (XESL). [For details see the project report by Schulz et al. (2006) who developed
the experiment planner and the XML dialect together with a visual editor.] This language
provides several iteration types [...] to describe systematic variations of model and control
parameters.

The automated experiment planner's input are descriptions of simulation-based optimiza-
tion problems. These are stated in terms of an optimization algorithm and an objective
function implemented as Java classes. [...]

From an experiment speci�cation, the experiment planner creates simulation run descrip-
tions that are passed to the execution manager [... which] instantiates and executes these
runs [...] The execution manager employs a distribution strategy that [potentially] encap-
sulates a middleware and a strategy for load distribution. During and after the simulation,
runtime variables and results are observed, �ltered, and passed to several analysis compo-
nents.

The framework provides a number of extension points based on Eclipse's plug-in mecha-
nism. Additional simulators, analysis techniques, runtime observers, �lters, experimental
design and distribution strategies can be integrated. [...] As a simulator, [...] DESMO-J
(Page and Kreutzer, 2005, Ch. 10) has been integrated.�

To provide this functionality to the user, the following components were implemented as ex-
tensions of the Eclipse framework and user interface (Czogalla et al., 2006, p. 5):

• a new project type simulation project with a prede�ned folder structure,

• an assistant user interface (wizard) to create new simulation projects,

• an experiment wizard and an experiment editor to visually create and modify experiment
speci�cations (Schulz et al., 2006),

• a speci�c launch con�guration type to run simulation projects with appropriate �lters and
observers68 attached,

• a basic user interface to select and run analysis plugins contributed via the respective
extension point (O� et al., 2006), and

• a prede�ned layout of the Eclipse workbench suitable for simulation (simulation perspec-
tive).

An extension point allows to contribute model classes (i.e. simulation model implementations
wrapped into the interfaces required by the experimentation environment) as Eclipse / OSGi
plugins. The implementation of this mechanism is based on the concept of model factories by
Bachmann (2003), the prototypical integration ofRenew into the experimentation environment
by Simmendinger (see e.g. Simmendinger, 2007, p. 118), as well as the tutorial by Linke (2005).
The adaptation of existing simulation models to the prede�ned interfaces might in the future
also be supported by a graphical wizard (Czogalla et al., 2006, p. 5).

Concerning simulation execution strategies, the experimentation environment at the moment
only supports local execution on a single computer. Horvath and Krouk (2006) implemented

68also implemented by students
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a distributed execution strategy using the agent framework JADE (see Section 3.4.1) as a
middleware (Czogalla et al., 2006, p. 5), but the implementation is still in a rather preliminary
state.

8.4.3. Scienti�c Work�ows with KNIME and ProM

An obvious idea consists in the integration of process mining techniques into the experimen-
tation environment as a speci�c type of analysis plugins. However, to allow for more �exible
and re-usable experimental setups, a di�erent approach might be taken; akin to the data �ow
modeling techniques used for the integration of process mining techniques into Renew and
Capa (see Section 7.4).

Figure 8.25.: Simple KNIME data �ow network to mine and visualize agent life cycles recon-
structed with the Heuristics Miner. The results are shown in a ProM -based viewer
within the Eclipse experimentation environment.

As mentioned in Section 4.1.5.5, the open source scienti�c work�ow system KNIME 69 is imple-
mented as a set of Eclipse plugins. While common analysis tools like WEKA (see Hall et al.,
2009, reviewed in Section 4.1.5.1) have already been adapted as KNIME components, an in-
tegration with the process mining tool ProM is, to the knowledge of the author, not available
yet. The pursued idea for tool integration is therefore as follows:

69http://www.knime.org (last visit 2010-12-15)
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• An observer (ProcessLogObserver) with the ability to record log events of FAMOS agents
as runtime variables and store them into an MXML log is contributed to the respective
extension point of the experimentation environment. The implementation of the observer
is derived70 from the FAMOS MXML logger described in Section 8.2.4.1.

• Exemplary ProM plugins are wrapped into generic KNIME nodes (e.g. for mining or
conversion plugins) and thus made available in Eclipse.71

• Simple data types are added to KNIME to pass ProM objects like log readers or mining
results along a data �ow network.

• A process mining-speci�c data source is added to KNIME that supports the import of
result and log �les from the experimentation environment into a data �ow network via
a very rudimentary, 'clipboard-like' copy-and-paste mechanism. A sink to display mining
results is added as well.72

Figure 8.25 shows a KNIME workspace that contains, among other things, a basic 'mining
chain' consisting of a log data source, a KNIME node encapsulating the Heuristics Miner
plugin, and a result viewer73. Running this data �ow network on a cut-out of the courier
service model's log sorted by originators results in the display shown in the foreground of
Figure 8.25. It must be noted that the displayed screenshot should only be understood in the
sense of an early UI prototype and not as a fully functional system.

Though an integration of the Eclipse experimentation environment with ProM via KNIME can
already import basic process mining functionality into the environment, there is still plenty of
room for improvements:

• The current recording of logged events via a runtime value stored in a member variable
of the model is a rather inelegant mechanism. As an improvement, the experimentation
environment might o�er an additional, more speci�c interface to observe log events.

• The preliminary 'clipboard-like' mechanism to import log data into a data �ow network
is not very comfortable either. A better interaction with resources selected within the
simulation project tree would be desirable.

• A feedback of results generated by the 'mining chains' into other components of the
experimentation environment would allow to utilize the mining results in further use
cases such as validation (see Section 6.3.3) or optimization (see Section 6.3.4).

70not in the sense of object-oriented inheritance
71Switching to version 6 of ProM would make the distinction between di�erent plugin types obsolete (see

Section 4.2.6.1).
72Note that in the current prototypical implementation, result display is still performed by the mining node

itself (which is also supported in KNIME), while the result viewer is not functional yet.
73not yet functional, see above

388



9. Summary, Discussion, and Outlook

In this Section, the results of the thesis are summarized, discussed, and compared to related
approaches. Finally an outlook is provided on possible future tasks to �nish, improve, and
extend the presented work.

9.1. Summary of Contributions

The subject of this thesis is a transfer of methods1 from data mining and work�ow technology
to the domain of multi-agent based simulation (MABS). The objective is to provide a process-
oriented approach towards analysis and validation that complies to process-oriented modeling
perspectives of MABS (see e.g. Klügl, 2001, pp. 84). The developed approach employs process-
orientation on two levels: On the one hand, analysis and validation techniques were adopted
from process mining (e.g. Aalst, 2011a), a variant of data mining on (business) process execution
logs. On the other hand, the sketched integration of tools for simulation and process mining
follows the paradigm of data �ow modeling and scienti�c work�ows (e.g. Bowers et al., 2006).
In summary, the work presented in this thesis comprises the following parts:

Review of Literature Foundations and current research at the intersection of data mining,
work�ow technology, MAS, and simulation were structured and summarized in an extensive
literature review documented in the Chapters 2 to 5.

Conceptual Framework for Process Mining in MABS From the literature review, a con-
ceptual framework for the integration of process mining and MABS was derived in Chapter 6.
The framework consists of (1) a set of analysis perspectives common to process mining and
MABS, (2) a set of use cases to guide the application of process mining techniques in a generic
model building cycle, and (3) a list of speci�c requirements on techniques and tools for process
mining in the context of MABS (see also Cabac et al., 2006b; Knaak, 2006). To formalize
the framework as a basis for operationalization, we attempted to relate the analysis perspec-
tives to the MAS architecture Mulan (Rölke, 2004) based on reference nets (Kummer, 2002).
Furthermore, reference net-based 'mining components' (see also Cabac and Denz, 2008) were
introduced as an aid to model the identi�ed usage scenarios in the form of scienti�c work�ows.

Case Studies Guided by the conceptual framework, process mining was applied to two agent-
based modeling and simulation approaches developed at the University of Hamburg. In the case
studies, existing techniques were combined and extended, and the process mining tool ProM

1as to use the term preferred by Czogalla (2007, p. 26)
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(e.g. Dongen et al., 2005) from Eindhoven University was integrated with the simulation tools
employed in the respective studies.

The �rst case study reported in Chapter 7 was performed in cooperation with members of
the theoretical foundations group (TGI). It investigated the bene�ts and challenges of process
mining in a Petri net-based agent-oriented software engineering (Paose, see e.g. Cabac, 2010)
approach based on reference nets and Mulan. Techniques for process mining of basic and
higher-level agent interaction protocols were developed and partially implemented (see also
Cabac et al., 2006c; Knaak, 2007). An architectural integration was achieved by means of net
components to compose ProM plugins and custom code into hierarchical scienti�c work�ows
(see also Cabac and Denz, 2008) .

The second case study presented in Chapter 8 was partly performed in an a�liated Bachelor
thesis by Haan (2009) and a study project by Kruse (2005). Here, process mining was evaluated
in a large courier service simulation study with the DES framework DESMO-J (Lechler and
Page, 1999) and its MABS extension FAMOS (Knaak, 2002; Meyer, 2008). The focus of this
study was put on the practical applicability of ProM and a comparison of process mining
to more 'traditional' analysis and validation techniques from simulation. Furthermore, the
integration of analysis work�ows into a generic experimentation environment based on the
Eclipse rich client platform (RCP) was sketched (see also Czogalla et al., 2006; Simmendinger,
2007; Simmendinger et al., 2007).

Results: Abstracting from the structure of the thesis and the two case studies, this work
delivered the following results:

1. a conceptual framework to integrate data and process mining with MABS,

2. a partial implementation of a processing chain to reconstruct basic agent interaction
protocols as well as concepts and �rst prototypical implementations to reconstruct higher
level and multicast protocols from logs,

3. a concept for tool integration based on plugins and scienti�c work�ow technology with
prototypical implementations in Renew and Eclipse, and

4. practical applications and evaluations of process mining techniques to a Petri net-based
and a code-centric MABS approach.

9.2. Discussion

In the following, we discuss to which extent the presented contributions help to answer the
research questions initially posed in Section 1.2. Subsequently, the innovation of the presented
approach is discussed in comparison to related work.
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9.2.1. Attainment of Research Goals

9.2.1.1. Question 1: State-of-the-Art in Data Mining and MABS

This research question asked for the status of research at the intersection of data (or process)
mining and agent-based simulation. For an answer, the literature from several related �elds
was observed for the duration of this dissertation project, resulting in the following conclusions:

1. Despite increasing work during the last two decades, data mining cannot be considered
an established support technique for simulation analysis yet. This might be due to its
complexity on the one hand. On the other hand, many separate case examples are
seen alongside few elaborated and applicable general approaches with appropriate tool
support. The mutual acknowledgement between di�erent sub�elds and research groups
seems relatively low.2

2. While also uncommon in the beginning of this research, work on combining data mining
and MAS has received increasing attention over the last years. Nowadays, conferences
on �agents and data mining interaction and integration�3 are held, and mutual bene�ts are
discussed. However, much work still seems to focus on numerical, rule-, and automata-
based mining techniques instead of explicitly taking into account process-oriented and
organizational perspectives relevant in MAS modeling.

3. Process mining is a very active research �elds that has �evolv[ed ...] rapidly� (Dongen
et al., 2006b, p. 145) parallel to this thesis. The research group at Eindhoven and their
plugin-based software ProM serve as a concentrator for related research. Accordingly, the
de�nition of process mining evolved from a narrower to a wider sense form that comprises
a variety of automated process analysis techniques (see also Dongen et al., 2006b, p. 145).

4. Due to their generality, the frameworks of MAS and process mining (in the wider sense)
proved to be an appropriate means to relate and classify similar work from heterogeneous
�elds like software engineering, distributed systems, and arti�cial intelligence.

5. Despite similarities between system perspectives in both �elds, still only few (mostly ad-
hoc) examples exist for an integration. To the opinion of the author neither direction of
joint research (i.e. 'process mining for MAS' and 'MAS for process mining') has received
enough attention in the literature so far.

Overall, the literature review provided a rather clear-cut and uni�ed picture of research related
to the process-oriented analysis of MABS, which helped to derive and re�ne the objectives of
this thesis. However, due to the rapid development of process mining, these objectives had to
be adapted repeatedly to take into account results from parallel research.

9.2.1.2. Question 2: Conceptual Foundations

This question asked to concretize the similarities between process mining and MABS in terms
of common conceptual foundations, and to discuss the mutual impact of both �elds.

2though a number of researchers like e.g. Arroyo et al. (2010) relate themselves to the work by Remondino and
Correndo (2005)

3see www.agentmining.org (last visit 2012-01-03)
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We therefore tried to generalize the �ndings from the literature review towards a conceptual
framework for the integration of process mining and MABS in Chapter 6. While this framework
exhibits clear similarities to earlier and parallel research in process mining, simulation, and MAS
(see Section 9.2.2), we strived to extend the existing work in terms of completeness and level
of detail.

Based on the literature4, analysis perspectives and use cases were identi�ed as appropriate
framework dimensions. While the former dimension relates system views from process min-
ing and MABS, the latter relates process mining techniques to potential applications within a
(generic) MABS model building cycle. Furthermore, a list of simulation speci�c requirements
and caveats concerning the application of process mining techniques was compiled. The iden-
ti�ed perspectives, usage scenarios, and requirements evolved over time from discussions with
colleagues, practical experiences, and continued literature research.

To concretize both dimensions, a common base for formalization was sought in the framework
of reference nets andMulan. The basic idea was to formalize analysis perspectives by relating
them to the (partly similar) system views of Mulan, and to formalize use cases as scienti�c
work�ows with reference nets.

A basis to formalize the use cases could be built relatively easy by (1) identifying and mod-
eling typical scienti�c work�ow components in terms of reference nets, and (2) developing a
concept for the integration of process mining and simulation tools based on net components.5

Reference net-based overview diagrams and �rst example applications of mining components
were presented in Chapters 6.3 and 7 of this thesis. The modeling of larger use cases from the
conceptual framework by stating the related control and data �ow, as well as interactions with
users and external tools remains a topic for future work.

The bene�ts of the approach taken appear somewhat similar to other attempts of domain
modeling with reference nets (e.g. sociological theories in von Lüde et al., 2003 or emotion
theories in Fix, 2012):6 The reference net models combine advantages of informal (e.g. textual
or diagrammatic) and programmatic descriptions. On the one hand, the provided models
can be understood by domain experts to communicate and document the applied analysis
and validation techniques. On the other hand, the work�ows might be easier to understand,
maintain, and modify by developers than mere code-based implementations, especially with
respect to concurrency (e.g. in distributed experimentation).

The formalization of analysis perspectives proved to be more di�cult. The initial idea was (1)
to express result representations of the perspectives in terms of reference nets related to the
existing Mulan views. Furthermore, (2) data sources for process mining should be identi�ed
from the (Petri net-based) interface of each view. On this basis, we hoped (3) to be able to build
or adapt algorithms to reconstruct such models, and (4) to use partial models as background
knowledge to reduce the algorithms' search spaces.

Objectives (1), (2), and (3) were in parts achieved at the level of protocol nets (related to
the internal control perspective) and AIP diagrams (external control perspective). A further
formalization of analysis perspectives was sketched but not realized in detail for the following

4An important in�uence was, among others, work from the Eindhoven research group such as Aalst (2006)
and Ailenei et al. (2012).

5Some of this work was subject of the diploma thesis by Simmendinger (2007).
6see also our argumentation in (Cabac and Denz, 2008, Sec. 6)
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main reasons: On the one hand, the remaining Mulan views (e.g. the agent net) are currently
rather broad, con�gurable templates, that do not provide enough detail7 to improve the design
or prune the search space of mining algorithms. On the other hand, a detailed executable
reference net model for a more comprehensive analysis perspective (e.g. a multicast protocol
with several phases) might quickly become too complex to serve as a validation aid. We
therefore put stronger focus on relations between the analysis perspectives and higher level
design diagrams of the Paose approach in Section 7.1.

For these reasons, a related approach with similar objectives by Rembert and Ellis (2009) was
adopted. These authors strive to formalize process mining perspectives in terms of process
dimensions and dimensional mappings, exempli�ed for parts of the (not explicitly agent-based)
Information Control Net model. Following their approach, we thus identi�ed relevant process
dimensions and dimensional mappings for exemplary agent-based analysis perspectives as a �rst
step towards formalization. In the future it might be worth trying to map these dimensions
to reference net models or patterns similar to the procedure proposed for the ICN model (see
Rembert and Ellis, 2009, Sec. 4).

9.2.1.3. Question 3: Analysis and Validation of Agent Interactions

This topic was mainly treated in the context of the Paose approach. Based on previous work
on interaction mining, a processing chain was set up � mainly as an extension of the approach by
Schütt (2003) � to reconstruct basic interaction protocols without prior knowledge of interaction
roles and protocol classes. The �rst three steps (log segmentation, role mining, and control �ow
mining) were �nally implemented as ProM plugins by applying and extending existing process
mining algorithms: The chained correlation procedure proposed by Aalst et al. (2005) was
specialized to FIPA ACL messages on the Capa platform. Protocol classi�cation was achieved
by clustering based on (weighted) similar follower relations of protocol instance traces as e.g.
proposed in (Song et al., 2008). A simple role mining step was realized by anonymization of
agent names.

As an extension of the control �ow mining approach by Schütt (2003), a variant of a �two-
step� algorithm8 was implemented that combines the k-RI grammar inference technique with
a 'naive' concurrency detection stage which uni�es duplicate tasks from path alternatives like
[ab, ba] in the reconstructed automaton. The implementation was embedded into the Capa
platform and succeeded in reconstructing an interaction protocol with three �xed roles from a
log containing (easily separable) traces of di�erent protocols.

While the experiment was successful, de�ciencies of the current implementation can also be
identi�ed: Firstly, due to the rapid development of process mining during the course of this
thesis, several related approaches were published or found in the literature after the �rst in-
teraction mining chain had been implemented. While some steps of the chain, i.e. role mining
and concurrency detection, were compared to alternative implementations in ProM (see Sec-
tion 9.2.2), a more comprehensive evaluation will be necessary. The theoretical limits of the
presented control �ow mining procedure were only discussed by few examples, leaving a formal
proof to further work.

7beyond commonalities like the fact that agents inhabit a platform
8as to use the term by Rubin et al. (2006)
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Furthermore, we sketched an extension of the basic interaction mining chain to reconstruct
hierarchical and multicast protocols. Though similar procedures have recently been published
in the context of software reverse engineering (Kumar et al., 2010, 2011, 2012; Lou et al.,
2010b) and artifact-centric process mining (e.g. Kikas, 2011), this was one of the �rst drafts9

of a process mining algorithm to reconstruct process models containing the work�ow pattern
�multiple instantiations without a-priori design time knowledge� (pattern P13 in Aalst et al., 2003b,
p. 24).

The sketched procedure still has several drawbacks including its current inability to reconstruct
cycles in external precedences. It was nevertheless shown to work in a (still rather simpli�ed
and ine�cient) partial implementation on a small test dataset from the second case study.
Applying this hierarchical mining procedure to the reconstruction of courier agent life cycles
illustrated interesting relations to software-technical considerations on agent modularity in
FAMOS discussed by Kruse (2007).

Summarizing, relevant steps were taken towards answering research question Q3. However, the
presented solutions still need improvements to form a practically applicable tool for the recon-
struction, analysis, and validation of message-based agent interaction protocols. In particular,
the current implementation only aids in the reconstruction and visualization of protocols with-
out supporting protocol validation or improvement.

9.2.1.4. Question 4: Tool Integration

This question asked for a viable concept to integrate simulation and process mining tools
in a generic and re-usable way. Such a concept was found in a combination of (scienti�c)
work�ow and plugin technology. While plugins allow for a �exible adaptation of a simulation
and analysis tool to di�erent and changing requirements (e.g. Schnackenbeck et al., 2008),
scienti�c work�ow systems support the visual modeling of the control and data �ow of complex
procedures incorporating multiple heterogeneous tools or plugins (Simmendinger, 2007, p. 27).
For practical reasons, we focused on simulation and analysis tools implemented in the Java
programming language.

In the �rst step, a set of simple Java interfaces for typical data �ow components (i.e. sinks,
sources, and processors) was de�ned. In the Paose study, a related set of generic net com-
ponents was built that either encapsulate data processing algorithms implemented in Java
(elementary components) or embedded subnets (complex components). Several mining and
analysis plugins from ProM (including the interaction mining plugins) were adapted as net
components.

To provide message logs of agent interactions, a communication Sni�er was implemented for
Capa10 and coupled to a source component of the work�ow. Furthermore, a sink was imple-
mented that feeds back the mining results into Renew, thereby allowing to execute these nets
in the simulator. On this basis, the �rst three steps of the interaction mining chain were im-
plemented as a work�ow. More example work�ows were provided to show further possibilities
of reference net modeling for test data generation, conformance checking, and optimization in
process mining.

9the basic idea was �rst mentioned in (Knaak, 2007, Sec. 4.2)
10by students as part of a teaching project, see Heitmann and Pläehn (2005)
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In the second case study, �le-based MXML logging of agent activities was implemented for
FAMOS, and experiments were run interactively with DESMO-J and ProM by Haan (2009)
and the author of this thesis. A higher degree of automatization and re-usability might be
achieved by employing work�ow and plugin technology in this setting as well. Due to the central
role of Java code in this simulation approach, we chose the popular Java IDE Eclipse based
on the OSGi plugin framework as a basis. Building upon previous work from the University
of Hamburg, an interactive experimentation tool was implemented as a set of Eclipse plugins
(Czogalla et al., 2006) with participation of the author.

One objective was to provide generic interfaces to re-use experimentation functionality (i.e.
experimental design, simulation-based optimization, online observation, and output analysis)
with arbitrary Java-based simulators. While reasonable at �rst sight, we found that this
genericness also causes a trade o� since existing experimentation and analysis functionality from
the wrapped simulators (like DESMO-J ) must either be re-implemented or 'routed' through
the experimentation framework.

A variant of the MXML logger was included into this framework as an observer plugin. The
existing Eclipse plugin KNIME (Chair for Bioinformatics and Information Mining at Konstanz
University, 2007) for scienti�c work�ow modeling was extended with a prototypical source com-
ponent to feed log data into analysis work�ows. In addition to KNIME 's built-in data mining
functionality, selected ProM plugins were prototypically wrapped as KNIME components with
re-usable adapters.

Comparing both case studies, KNIME provides a more speci�c and mature user interface for
scienti�c work�ow modeling than our prototypical data �ow components in Renew. However,
KNIME su�ers from stronger restrictions to model complex control �ow. Despite the provided
implementation aids, more e�ort is needed to wrap existing classes as KNIME plugins in Eclipse
than simply calling their methods from net components in Renew. As a �rst step towards
integrating both approaches, Simmendinger (2007) re-implemented the Renew plugin system
based on the OSGi framework. This version of Renew should integrate well with the Eclipse-
based experimentation environment either as a simulator or as an execution engine for analysis
work�ows.

Summarizing, it must be stated that on the one hand, the prototypical implementation status
of tool integration in both case studies forbids to draw de�nite conclusions on their practical
bene�t and usability. On the other hand, the potential of employing plugin architectures and
scienti�c work�ow technology to combine simulation tools with advanced analysis tools was
successfully demonstrated. The Paose study provided hints how an architectural integration
of process mining into Petri-net based software development and adaptive Petri net agents
might be realized. The second case study showed advantages and trade o�s of �exible tool
integration into a simulation environment.

9.2.1.5. Question 5: Practical Value of Process Mining for MABS

This question was tackled from di�erent angles in the two case studies. In the Paose study, the
general feasibility and potential of interaction mining within a Petri net-based agent platform
was shown by prototypical implementations. However, the investigated example was only small-
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sized. Practical issues with the applied algorithms (e.g. the di�culty to set an appropriate
cluster threshold in log segmentation) were noticed but not investigated in further detail.

In the second case study, a larger number of existing process mining algorithms from ProM
were evaluated with respect to their potential to support the analysis and validation of a larger
MABS model. This study showed that di�erent from the beginning of this thesis, several process
mining algorithms exist to support the analysis perspectives and use cases of the conceptual
framework. However, the low stability and performance of many implementations in ProM
impede their practical application to large simulation logs. The same holds true for many
of ProM 's analysis and visualization plugins. Though they appear well applicable to MABS
analysis, several minor and major de�ciencies complicate a practical application.

Some of the best results in control �ow mining were (similar to other studies) achieved with the
Heuristic Miner algorithm. Nevertheless, this algorithm must be used with care in validation
since it does not reconstruct an exact model of the mined log. Automata-based techniques
like the FSM Miner (implementing work by Rubin et al., 2006) were identi�ed as appropriate
alternatives. This also holds true for the heuristic Frequency Abstraction (Rozinat et al., 2007)
and Fuzzy Miner (Günther and Aalst, 2007) algorithms implemented in ProM.

With the aid of the PAPN plugin by Hornix (2007) it was possible to reconstruct a model of
the transport order work�ow in the courier model that conveyed similar information than a
simulation report in a more vivid form. The re-usability of this solution is high since it only
depends on time-stamped log messages as an input. Haan (2009) also detected a hidden error in
the implementation of the courier model by means of process mining. Nevertheless, the reasons
for some inconsistencies in the reconstructed models could not be spotted de�nitely. Due to
these di�culties, process mining remains a tool for expert users with knowledge in both data
mining and simulation.

Though already applied in other MABS studies, decision tree mining did not deliver satisfying
results: The decision point analysis plugin of ProM could not enrich the model of the transport
order work�ow with relevant branching conditions due to di�culties with the structure of the
reconstructed net. The decision tree mined from the order rating procedure by Kruse (2005)
appeared too complex to draw valid conclusions on the implemented courier behavior. In
the structural/organizational perspective, the Role Hierarchy Miner of ProM (implementing
techniques by Song and Aalst, 2008) allowed to derive the most detailled role models from
the model of the Inside/Outside strategy but does not (yet) allow to correlate the identi�ed
structure with performance data (like the PSDA plugin by Hornix (2007), which appeared less
e�ective and e�cient in this example).

9.2.1.6. Question 6: Level-Encompassing Validation

This research question asked if data and process mining are appropriate techniques to gain
knowledge about the relations between multiple levels of a MABS, and if this knowledge can
be employed for validation and calibration. From a practical point of view, we were interested
in questions like: �What are the mechanisms by which the order rating strategies of simulated
couriers in�uence the overall performance of the courier service?� From an abstract point of
view, we asked if hints on micro/macro links can be mined from execution logs.
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This is clearly one of the most demanding research questions stated here. Admittedly, the
present thesis only delivers rather preliminary experiments at the practical level and discussions
at the conceptual level towards an answer.

At the practical level, two parameters of the courier rating function were automatically cal-
ibrated using the distributed simulation-based optimization tool DISMO (Bachmann et al.,
2004). This study con�rmed that automated calibration by simulation-based optimization can
deliver similar results than thorough manual calibration. However, due to the use of numerical
objective functions, parameters, and results in this study, no underlying mechanisms could be
revealed. As mentioned above, attempts to reconstruct decision trees describing the in�uence
of certain attributes on the outcome of the couriers' order rating function proved problematic
as well.

On the conceptual level, the thesis by Chen (2009), and related work by Moncion et al. (2010),
which was published in parallel to the work on the thesis at hand, presents promising concepts
and experiments towards multi-level MABS modeling in the framework of complex events. Chen
(2009) also applies data mining techniques like correlation analysis and Bayesian networks to
derive level-encompassing relations from simulation logs.

The work by Chen (2009) appears rather 'process mining-like' in spirit. A similar notion of
complex events, as (multi-perspective) patterns derived from or validated against log data, has
been used in a process mining context as well (see Gay et al., 2010). However, an explicit link
between Chen's work and process mining could not be found in the literature yet.

We therefore embellished the process dimensions and dimensional mappings of our conceptual
framework's level encompassing perspective using the concepts by Chen (2009). Furthermore,
we sketched how the modeling and analysis techniques presented by this author might pro�t
from an integration with process mining techniques (e.g. the pattern-based compliance checking
techniques by Ramezani et al., 2012) and advanced modeling techniques like reference nets. Fur-
thering this integration towards 'level encompassing process mining' appears to be a promising
direction for future research.

9.2.2. Comparison to Related Work

In the following, the results summarized in Section 9.1 are compared to related work described
in the literature review (Section 5). In order to preserve the concluding character, only the
most relevant and closely related approaches will be considered.

9.2.2.1. Conceptual Framework

Prior and parallel to this thesis, related concepts to integrate data mining with MAS or sim-
ulation have been developed. Similar to the presented framework, the methodology of Data
Farming (Brandstein et al., 1998) combines data mining with advanced experiment planning,
visualization and distributed execution. However, it does not focus on multiple analysis per-
spectives and merely applies numerical and rule-based mining techniques.

The dissertation by Köster (2002) on integrating KDD and individual-based simulation was an
important inspiration for this work. Based on own experiences, Köster (2004) also encouraged
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the author of this thesis to investigate the level-encompassing perspective. In comparison,
the thesis at hand puts a larger focus on process-oriented and organizational perspectives not
covered by Köster. The embedding of DM into the model building cycle is more detailed here
due to the elaboration of several di�erent use cases.

Remondino and Correndo (2006) developed concepts to apply DM to the validation of MABS.
Compared to the presented framework, they focus on rule-based and numerical techniques
and some use cases in the modeling cycle, but only implicitly treat perspectives. Their ideas
are still preliminary and their case study only employs parameter calibration by exhaustive
search combined with visual 'data mining' from histograms. As con�rmed in personal e-mail
communications, Remondino and Correndo (2006) and the author of this thesis developed
related ideas independently. The thesis at hand is an attempt to concretize, extend, and
evaluate some of these in a process-oriented setting. Joint research might have been fruitful
but failed due to tight schedules on both sides. Arroyo et al. (2010) re�ne the model building
cycle proposed by Remondino and Correndo (2006) but do not explicitly consider perspectives
either.

In the MAS �eld, Ndumu and Nwana (1999) presented a multi-perspective debugging approach
supported by visualization tools for the ZEUS platform, but without references to data mining.
Nair et al. (2004) developed an automated assistant that supports the analysis of MAS with
data mining techniques on three levels related to the decision, external control, and level-
encompassing perspectives. In the opinion of the author, this11 is one of the most advanced
examples of DM in MAS. The present thesis is an attempt to conceptually extend this multi-
level approach with further perspectives and use cases, and to strengthen the focus on process-
orientation.

In the �eld of (business) process modeling and mining, multi-perspective approaches are also
common. The close relation between the main process mining perspectives identi�ed by the
Eindhoven research group (see e.g. Aalst, 2006) and the modeling perspectives from MA(B)S
was an initial motivation for the presented conceptual framework. Nevertheless, the perspective
model from Eindhoven is not explicitly agent-based and remains vague about mechanisms to
identify, and formalize perspectives. Use cases for process mining are also identi�ed but are
not speci�c for MABS analysis and validation.

The approach by Rembert and Ellis (2009) helped to formulate analysis perspectives more
concisely in terms of process dimensions and dimensional mappings. Though the underlying
ICN model exhibits some similarities with a MAS model like Mulan, the approach is neither
explicitly agent-based nor related to simulation. By identifying dimensions and mappings
related to MA(B)S, the thesis at hand attempts to transfer the concepts into an agent-based
context. Another interesting point in the work by Rembert and Ellis (2009) is the direct
derivation of process mining algorithms from the formal de�nition of mining perspectives. This
idea also came up during the work on the present thesis but was not followed further.

The presented partitioning of the external control perspective into basic protocols, higher level
protocols, and high level interaction patterns was strongly in�uenced by Mulan and by the
levels of web service mining in the work by Dustdar and Ho�mann (2007) and Gombotz et al.
(2005). However, as discussed in Section 5.3.3.1, the latter authors mainly consider lower-

11together with the work in the context of the Ingenias methodology, e.g. Botía et al. (2004)
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level perspectives with a more technical focus. Only their 'web service work�ow perspective' is
closely related to higher order protocols.

The distinction between structure and behavior and between internal control �ow and inter-
actions in the analysis perspectives is reminiscent of UML (see e.g. Jeckle et al., 2002). The
adaptivity perspective was introduced to provide a uni�ed view upon work on change mining
and concept drift detection (e.g. Günther et al., 2006 and Bose et al., 2011a) on the one hand,
and the discovery of structural dynamics (e.g. Christley and Madey, 2007a) on the other hand.
The level encompassing perspective was mainly shaped using concepts from the work by Chen
(2009).

The use case of model building cycle reconstruction was adopted from Rubin et al. (2007) whose
thesis exclusively focuses on process mining of software development processes. Similar to our
approach, Antunes and Coelho (2004, Sec. 4) use work�ow-like overview diagrams to charac-
terize speci�c forms (or 'use cases') of agent-based simulation (e.g. exploratory simulation).

9.2.2.2. Techniques for Agent Interaction Mining

The processing chain for basic interaction protocol mining presented in Chapter 7.2 is mainly an
extension of the interaction mining approach by Schütt (2003) where the stages of conversation
clustering and role mining were added. The automata inference stage was replaced with the
k-RI algorithm by Angluin (1982) to allow for the reconstruction of cycles.

The basic concurrency detection scheme proposed by Schütt (2003) was implemented as a
variant of the α algorithm using code from ProM. The implemented technique also exhibits
similarities to work on duplicate task detection by Li et al. (2007) and Gu et al. (2008). Another
existing ProM plugin allows to apply the α algorithm to automata but does not consider
duplicate tasks.

Mounier et al. (2003) also developed a processing chain for conversation mining in MAS. How-
ever, their approach neglects clustering, role mining, and concurrency. Hiel (2005) focuses
on discovering long-distance dependencies from logged agent interactions by means of Hidden
Markov Models. His approach neglects pre-processing, role mining and concurrency detection,
though process mining is mentioned as an appropriate technique for the latter. Winarjo (2009)
proposes a variant of the α algorithm that is able to reconstruct sequence diagram-like nets
related to our idea of peer generation. Again, his approach neither includes protocol clustering
nor role mining. Clustering procedures are part of several web service mining approaches such
as Srinivasa and Spiliopoulou (2000).

The presented control �ow mining procedure consists of subsequent automata inference and
concurrency detection similar to the �two-step approach� by Rubin et al. (2006). As �rst proposed
by Herbst (2001), this approach uses the theory of regions and the related tool Petrify for Petri
net synthesis from automata. The experiments conducted in this thesis indicate that both
algorithms deliver quite similar results on many examples. To the impression of the author,
the algorithms used by Rubin et al. (2006) are more di�cult to parameterize and possibly less
e�cient (especially the FSM Miner) than those used in our implementation. However, from a
theoretical viewpoint, the theory of regions is well-investigated while the approach presented
here has not been formally proved yet. We could also identify an example that Petrify can
handle while the (implemented variant of the) approach by Schütt (2003) cannot.
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Clustering of process instances based on the follower matrix has been proposed in the literature
several times. To the author's knowledge, one of the earliest approaches was developed by
Greco et al. (2004). Role mining has been tackled in the literature by means of clustering as
well (e.g. Song and Aalst, 2008). This is due to the close relation between protocols and roles
in MAS where roles are often de�ned by the protocols they implement. Taking this duality into
account, our simple anonymization scheme is su�cient for role detection in 1:1 conversations if
the initiator role is �xed.

The presented concepts to reconstruct higher-order protocols will be compared to the few
existing attempts to handle hierarchies of process models and multiple instantiation patterns.
The proposed12 combination of process discovery and conformance checking techniques to mine
hierarchical protocols is related to activity mining by Günther et al. (2010), the hierarchical
process mining approach by Medeiros et al. (2008b), and the mining of process maps by Li
et al. (2010). The use of previously mined reference nets for pattern matching would allow
us to reconstruct further information like role assignments and message cardinalities. Other
authors employ similar conformance checking techniques to agent protocols (e.g. Mazouzi et al.,
2002), but do not use the detected patterns to reconstruct hierarchical process models.

While several work�ow patterns have been tackled in process mining (e.g. Gaaloul et al., 2005),
multiple instantiation patterns have not received much attention yet. One exception is the
approach recently implemented by Lou et al. (2010b), who reconstruct process models from
logs of interleaved threads. Similar to our concept, this approach supports the detection of
fork and join constructs where a variable number of threads are spawned and merged during
runtime of a software application. Di�erent from our approach, no a-priori knowledge about
mechanisms to chain events into threads is necessary to achieve this. The algorithm by Lou
et al. (2010b) is able to reconstruct cycles, but does not support the detection of regularities in
the number of instantiated threads as foreseen in our concept to handle message cardinalities.

Examples of agent interaction protocols with multicast communication are also presented by
Lamma et al. (2007a,b). Di�erent from our approach, these authors reconstruct declarative
speci�cations of process models by Inductive Logic Programming (ILP) in the temporal logic
language SCIFF. The reconstructed models can be graphically visualized but do not explicitly
display the control �ow of protocols like Petri nets or AIP diagrams. Nevertheless, their ILP-
based algorithm manages to detect a deadline in a multicast protocol, which our approach
would currently fail on.

The most closely related work to our approach are artifact-centric process mining (Canbaz, 2011;
Fahland et al., 2011a; Kikas, 2011; Popova et al., 2012) on the one hand and the techniques
to reverse engineer message sequence graphs by Kumar et al. (2010, 2011, 2012) on the other
hand. Similarities and di�erences between our work and artifact-centric process mining have
already been discussed in Chapters 7 and 8.

The work by Kumar et al. is very similar to our approach (and more elaborate concerning
the applied algorithms) in that internal and external precedences as well as message broad-
cast and related cardinality constraints are considered. However, slightly more explicit a-priori
knowledge about message broadcasts and object/class assignments might be required.13 Fur-

12but not implemented
13As compared to our concept and the basic mining chain presented in Chapter 7. The preliminary implemen-

tation shown in Section 8.3.2.2 does not perform role mining either.
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thermore, the use of MSCs and precedence graphs for internal precedences might constrain
the possibilities to display complex internal control �ow (beyond sequences and concurrency)
stronger than our approach.

9.2.2.3. Tool Integration based on Scienti�c Work�ows and Plugin Architectures

The earliest approach to model process mining algorithms as work�ows might be the module
MiMo (Aalst et al., 2002, Sec. 5) that integrated an implementation of the α algorithm as a
hierarchical work�ow into the Petri net-based simulation system ExSpect. The basic idea is
very similar to our 'mining chains', but the approach has not been developed further by the
Eindhoven research group.

Conceptual models of complex process mining algorithms have often been depicted using data
�ow diagrams (e.g. Schimm, 2004; Schütt, 2003). In the software architecture of the Process
Mining Workbench14 by Schimm (2004), the term �mining chain� is used as well. However, only
one �xed data �ow without explicit modeling facilities seems to be contained.

ProM o�ers interfaces to the Petri net simulator CPN Tools. Rather similar to the ideas
presented in this thesis, test data generation from colored Petri nets (Medeiros and Günther,
2005) and reconstruction of executable Petri net-based simulation models from multiple mining
perspectives (Rozinat et al., 2009b; Wynn et al., 2010) are supported. While the functionality
allows for a basic 'roundtrip engineering' of Petri net-based simulation models, the integration
is only realized as �le import and export. No common work�ows are de�ned to control both
tools.

The latest version 6 of ProM (Verbeek et al., 2011) o�ers software assistants with appealing
user interfaces to support complex process mining tasks. These assistants seem to be based on
explicit data �ow models. However, a graphical work�ow editor shipped with an early preview
version o�ered rather limited control �ow modeling constructs but has been removed from the
ProM 6 distribution. Bratosin et al. (2007) and Westergaard (2011) use colored Petri nets to
build scienti�c work�ows from ProM plugins, both citing our concepts pre-published in (Cabac
and Knaak, 2007). With the aid of the Java / CPNTools interface by Westergaard (2011),
Nakatumba et al. (2012) recently proposed a Petri net-based �infrastructure for cost-e�ective
testing of operational support algorithms� that integrates ProM 6 as a process mining tool.

The project MoSiFlow at the University of Rostock employs scienti�c work�ows in the context
of (agent-based) simulation with the software framework JAMES II. Di�erent from our work,
the focus of this project is put on support of the whole model building cycle instead of an
integration of data mining (see Rybacki et al., 2011 and the Master's thesis by Seib, 2009).
Interestingly, an integration of data mining and (agent-based) simulation is the subject of the
Bachelor thesis by Seib (2008), but no explicit relations are drawn between both topics. Further
work of the Rostock simulation group focuses on a generic architecture (FAMVal) for model
validation, also implemented in the framework JAMES II (see e.g. Leye and Uhrmacher, 2010).

The idea to use Eclipse / OSGi as a platform for simulation tools has been realized in several
forms including (among others) the UrbanSim project (Freeman-Benson and Borning, 2003,
p. 332)15, the DEVS/OSGi simulation framework (Petzold et al., 2011), the OSA project (Dalle,

14http://www.processmining.de/3294.html (last visit 2012-11-18)
15cited in Czogalla et al. (2006, Sec. 4)
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2007), and the simulation-speci�c (grid) work�ow management system SimTech (Görlach et al.,
2011).

In UrbanSim a (meanwhile abandoned) experimentation environment for a land-use simulator
was built in the form of Eclipse plugins. Dalle (2007) and Petzold et al. (2011) focus on
component-based simulation modeling and instrumentation in DEVS (e.g. Zeigler et al., 2000)
and related approaches. The work by Görlach et al. (2011) might be most closely related to
the ideas sketched in this thesis due to their focus on work�ow modeling and the Eclipse-based
�implement[ation of ...] di�erent perspectives corresponding to the di�erent phases in the life cycle of
simulation process management� (Görlach et al., 2011, p. 337). Instead of KNIME or reference
nets, BPEL is used as a work�ow language (Görlach et al., 2011, p. 337).

The component architecture of our generic experimentation environment is based on previous
work by Bachmann (2003) and Gehlsen (2004). While the functional scope of SimTools is
roughly comparable to simulation systems like SeSAm (Oechslein, 2004) the experimentation
functionality of the latter is closely coupled to the respective modeling and simulation tools.

The use of reference nets, Renew, and Eclipse for scienti�c work�ow modeling is also proposed
by Kurzbach (2007) in the context of Geographical Information Systems (GIS). This work might
be integrated with theOSGi-based re-design of the plugin architecture by Simmendinger (2007);
see (Kurzbach, 2007, p. 77).

9.2.2.4. Case Studies on Process Mining in MABS

An integration of process mining into a Petri net-based MA(B)S approach has � to the knowl-
edge of the author � not been realized before. While Stuit et al. (2007b) mention that process
mining could be used to support learning and alignment of protocols in their Petri net-based
MABS approach, they actually apply another alignment mechanism based on neural networks
(Meyer and Szirbik, 2007). Di�erent from our work, their focus is on participatory modeling
and adaptive agents instead of analysis and validation.

Winarjo (2009) employs process mining to reconstruct sequence diagram-like Petri nets from
FIPA ACL message logs recorded in a MAS on the Java-based platform JADE. These models
are analyzed in CPN Tools to detect potential deadlocks. However, it is not possible to feed
the mining results back into the development of the MAS directly due to the non-explicit
code-based implementation.

Applications of ProM to the analysis of MABS are reported by Dongen et al. (2006b) and
Rozinat et al. (2009d). While the algorithms and perspectives treated in these articles partly
overlap with the study by Haan (2009), the focus seems to be di�erent: Both articles report
successful ad-hoc applications of existing process mining techniques to certain aspects of MABS
analysis. However, few analysis questions and evaluation criteria are formulated to identify
weaknesses and propose enhancements of the existing algorithms and tools. In contrast, the
study by Haan (2009) and its advancement in this thesis detected several pitfalls that might
currently aggravate an application of process mining and ProM for simulation practitioners.

The dissertation by Lang (2008) contains a thorough, application-directed analysis of several
process mining techniques in the �eld of medical image processing. Haan (2009) and the
author of this thesis adopted several methodological aspects from this work. Di�erent from our
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approach, Lang (2008) evaluates mining techniques mainly with respect to 'objective' criteria
like the ability to handle duplicate tasks or noise. The study reported by Haan (2009) and in this
thesis puts more focus on 'subjective' evaluation criteria like user-friendliness or extensibility
of the analyzed techniques and tools.

9.3. Outlook

Several questions raised in this thesis remain open for future work. The open issues can be
divided into short-term extensions to �nish open ends of the presented work and ideas for longer
term projects that exceeded the scope of this thesis.

Among the short-term extensions, the implementation of the processing chains for agent interac-
tion mining should be �nished and a more thorough theoretical and empirical evaluation of the
presented algorithms should be performed. The Eclipse-based experimentation environment
needs to be extended and improved with respect to usability and stability. The preliminary
integration of DESMO-J, Renew, ProM, and (to some extent) Eclipse should be �nished and
improved, possibly trading genericness for better usability of the toolset. The improved com-
ponent and work�ow concepts underlying ProM 6 might further ease the embedding of process
mining with simulation tools.

The very preliminary attempt of the author to combine the statistics, random distributions, and
reporting functions of DESMO-J with the modeling facilities of Renew and Capa might be re-
factored and extended to become a Petri net-based MABS modeling, simulation, and analysis
environment as proposed by Strümpel (2003). Given a larger example (like a Petri net-based re-
implementation and extension of the courier service models), it would be interesting to further
evaluate the possibilities of process mining with respect to protocol learning and validation in
this context.

Longer term research projects are de�ned by the investigation of certain analysis perspectives
and usage scenarios from the presented conceptual framework that were not elaborated in
this thesis. Rainer Czogalla (2007) started an investigation into the analysis of structure and
dynamics of spatial patterns emerging in agent-based simulations using techniques from pattern
recognition and image processing. He also sketched a re�ned conceptual framework for this
perspective and � as the co-developer of the Eclipse-based simulation environment � extended
the experimentation tools with prototypical data collectors for spatial data.

In his ongoing dissertation project at the University of Hamburg, Sven Kruse investigates the
adaptivity perspective with the goal to build and validate learning simulated agents in FAMOS
(Kruse, 2007). While concepts from reinforcement learning are applied to realize the agents'
adaptivity, change mining as proposed by Günther et al. (2006) will be used to validate the
learning process (Kruse, 2008). This is due to the fact that, di�erent from classical machine
learning, agent learning in simulation is less focused on an optimal solution but on a valid
representation of learning processes going on in the target system (Kruse, 2008): An enactment
log and a change log of each learning agent will be generated based on the MXML logger from
Section 8.2.4.1. Both logs will be analyzed using the change mining algorithms implemented
in ProM (and possible extensions) to �nd regularities in the way agents change their internal
models.
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The level-encompassing perspective might be most demanding to analyze by means of data
mining. On the one hand, a prerequisite to extract formal models of relations between multiple
perspectives is that each considered perspective can be formally modeled itself. On the other
hand, the question if an automated extraction of meaningful level-encompassing relations is
possible by means of automated analysis techniques is closely related to open philosophical
questions regarding emergence and micro/macro links in general. As mentioned above, an
integration of the modeling and analysis framework of complex events proposed by Chen (2009)
with advanced process mining techniques could be a viable approach to tackle this perspective.

Beyond that, the application of process mining to related areas might be investigated. Cabac
(2007) pointed out that the principles of software architecture and team organization in Agent
Oriented Software Engineering (AOSE) can both be based on the guiding metaphor of MAS.
This similarity leads to the idea to found a framework for process mining in software engineering
on the agent metaphor. Di�erent from the work by Rubin et al. (2007), which only considers
development processes, this might to some extent allow to apply similar models and algorithms
for the analysis of development teams and developed software artifacts (Cabac and Denz, 2008,
p. 90). Due to the close relations between AOSE and MABS, many concepts discussed in this
thesis apply to the software engineering domain as well.16

For Paose the idea of process mining in software engineering opens a wide range of data sources
to be considered. These range from a community system like CommSy (e.g. Jackewitz et al.,
2002) used for the communication between developers to the low level logger of the Renew
Petri net simulator. Handling this variety of levels within a consistent conceptual framework
appears to be a large challenge. Since reference nets are the basic modeling language in Paose,
concepts for process mining of reference nets might be necessary.17 However, it is still unclear
what these concepts and techniques are, and if they go beyond mere aggregations of partial
models mined from di�erent perspectives into reference nets. Some preliminary ideas in this
direction have been discussed in the position paper by Flick et al. (2010).

The courier service study in Chapter 8 is related to the �eld of environmental informatics. Few
work exists, where process mining is applied to this domain. Wang (2011) use process mining to
analyze carbon emissions of industrial processes. They adapt the Heuristics Miner algorithm
(see Section 4.2.3.4) to regard for input and output materials of manufacturing steps (among
others) as data attributes and display the results as colored Petri nets.18

As discussed above, even simple domain-speci�c enrichments of mined models might be helpful
to analyze environmental aspects of mined processes. As a simple example, the order work�ow
in the Hub and Shuttle model might be enriched with information about emissions caused by
relevant process steps in a Sankey diagram-like notation (see e.g. Schmidt, 2012).

Beyond that, process mining algorithms might be adapted to speci�c model representations
used in environmental informatics. One example are material �ow networks (Möller, 2000), a
specialized form of Petri nets used to model and calculate the �ow of materials and energy
through a network of nodes. It is an open question, if existing process mining techniques
can contribute to the automated modeling of material �ow networks, since in many domains

16Actually several concepts presented in this thesis were developed with AOSE in mind.
17The idea of speci�c process mining techniques for reference nets was uttered by Prof. Dr. Ir. Wil van der

Aalst during a discussion at PNSE'2007 in Siedlce (Poland).
18Only a brief abstract of this thesis was publicly available by the time of writing.
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9.3. Outlook

the structure of the network is of less interest than the (computational) speci�cation of its
transitions. Therefore, it might be interesting:

1. if domains exist where su�cient data on environmental aspects of production processes
can be made available in the form of process logs,

2. if process mining algorithms can be adapted to reconstruct the structure of material �ow
networks as well as certain transition speci�cations19,

3. how the semantics of material �ow networks, more akin to an equation system than to
the token �ow of Petri nets, in�uences the applicability of process mining.

Finally, concluding a thesis on process mining in an agent context, we should be aware that
the agent metaphor by de�nition includes us humans as well. Going beyond the borders of
simulation, social and ethical aspects of process mining remain a central topic that requires
further discussion and investigation inside and outside of the research community.

19The work by Wang (2011) might provide a starting point to tackle this question.
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