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Abstract

In multi-agent-based simulation (MABS) the behavior of individual actors is modelled in large
detail. The analysis and validation of such models is rated as difficult in the literature and
requires support by innovative methods, techniques, and tools. Problems include the complexity
of the models, the amount and often qualitative representation of the simulation results, and
the typical dichotomy between microscopic modeling and macroscopic observation perspectives.

In recent years, the application of data mining techniques has been increasingly propagated
in this context. Data mining might, to some degree, bear the potential to integrate aspects
of automated, formal validation on the one hand and explorative, qualitative analysis on the
other hand. A promising approach is found in the field of process mining. Due to its rooting
in business process analysis, process mining shares several process- and organization-oriented
analysis perspectives and use cases with agent-based modeling.

On the basis of detailed literature research and practical experiences from case studies, this
thesis proposes a conceptual framework for the systematic application of process mining to
the analysis and validation of MABS. As a foundation, agent-oriented analysis perspectives
and simulation-specific use cases are identified and embellished with methods, techniques, and
further results from the literature.

Additionally, a partial formalization of the identified analysis perspectives is sketched by uti-
lizing the concept of process dimensions by Rembert and Ellis as well as the MAS architecture
MULAN by Rolke. With a view to future tool support the use cases are broadly related to
concepts of scientific workflow and data flow modeling. Furthermore, simulation-specific re-
quirements and limitations for the application of process mining techniques are identified as
guidelines.

Beyond the conceptual work, process mining is practically applied in two case studies re-
lated to different modeling and simulation approaches. The first case study integrates process
mining into the model-driven approach of Petri net-based agent-oriented software engineering
(PAOSE). On the one hand, process mining techniques are practically applied to the analysis of
agent interactions. On the other hand, more general implications of combining process mining
with reference net-based agent modeling are sketched.

The second case study starts from a more code-centric MABS for the quantitative analysis of
different logistic strategies for city courier services. In this context, the practical utility and
applicability of different process mining techniques within a large simulation study is evaluated.
Focus is put on exploratory validation and the reconstruction of modularized agent behavior.






Kurzfassung

In der agentenbasierten Simulation wird das Verhalten individueller Akteure detailliert im Mod-
ell abgebildet. Die Analyse und Validierung dieser Modelle gilt in der Literatur als schwierig und
bedarf der Unterstiitzung durch innovative Methoden, Techniken und Werkzeuge. Probleme
liegen in der Komplexitit der Modelle, im Umfang und der oft qualitativen Darstellungsform
der Ergebnisse sowie in der typischen Dichotomie zwischen mikroskopischer Modellierungs- und
makroskopischer Beobachtungssicht begriindet.

In den letzten Jahren wurde in diesem Zusammenhang zunehmend der Einsatz von Techniken
aus dem Data Mining propagiert. Diese bergen in gewisser Weise das Potenzial, Aspekte der
automatisierten, formalen Validierung mit denen der explorativen, qualitativen Analyse zu vere-
inen. Einen vielversprechenden Ansatz bietet das sogenannte Process Mining, welches aufgrund
seiner Ndhe zur Geschéftsprozessmodellierung mit der agentenbasierten Modellierung vergleich-
bare prozess- und organisationsorientierte Modellsichten (Perspektiven) und Anwendungsfille
aufweist.

Ziel der vorliegenden Arbeit ist es, auf Basis umfangreicher Literaturrecherche und in Fallstu-
dien gesammelter Erfahrungen ein konzeptionelles Rahmenwerk fiir den systematischen Ein-
satz von Process Mining zur Analyse und Validierung agentenbasierter Simulationsmodelle
vorzuschlagen. Als Grundlage werden agentenspezifische Analyseperspektiven und simulation-
sspezifische Anwendungsfiille identifiziert und durch Methoden, Techniken und weitere Ergeb-
nisse aus der Literatur ausgestaltet.

Dariiber hinaus wird ansatzweise eine Teilformalisierung der Analyseperspektiven unter Ver-
wendung des Prozessdimensionen-Konzepts nach Rembert und Ellis sowie der auf Referen-
znetzen basierenden Architektur MULAN nach Rolke angestrebt. Die Anwendungsfille wer-
den mit Blick auf eine mégliche Werkzeugunterstiitzung mit Konzepten der wissenschaftlichen
Workflow- und Datenflussmodellierung in Beziehung gesetzt und durch die Identifikation sim-
ulationsspezifischer Anwendungsrichtlinien fiir das Process Mining ergénzt.

Neben der konzeptionellen Arbeit wird der Einsatz von Process Mining praktisch in unter-
schiedlichen Modellierungs- und Simulationsanséitzen erprobt. Die erste Fallstudie integriert
Process Mining konzeptionell und technisch in den modellgetriebenen Ansatz der Petrinetz-
basierten agentenorientierten Softwareentwicklung (PAOSE). Dabei wird einerseits der praktis-
che Einsatz von Process Mining-Techniken zur Interaktionsanalyse von Agenten beschrieben.
Andererseits zeigt die Studie generelle Implikationen der Kombination von Process Mining und
Referenznetz-basierter Agentenmodellierung auf.

Ausgangspunkt der zweiten Fallstudie ist eine eher Code-zentrierte agentenbasierte Simulation
zur quantitativen Analyse verschiedener Logistikstrategien fiir Stadtkurierdienste. Im Rahmen
dieser Fallstudie werden Process Mining-Techniken im Hinblick auf Anwendbarkeit und Nutzen
fiir eine grofsen Simulationsstudie untersucht. Dabei steht die explorative Validierung und die
Rekonstruktion modularisierten Agentenverhaltens im Vordergrund.
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1. Introduction

Multi-agent systems (MAS) are a promising theoretical concept to approach practical challenges
related to the flexibility, adaptivity, and distribution of computer systems. The agent metaphor
combines an object-oriented encapsulation of program state and control flow with ideas on the
“mechanics of |...| decision making” (Davis et al., 1989) rooted in artificial intelligence, sociology,
and economics.! One common example of MAS are teams of real or simulated robots competing
in the robot soccer league Robo Cup? (see e.g. Nair et al., 2004).

Accordingly, agent-based abstractions are used in “several subfields of computer science; e.g. soft-
ware engineering, distributed systems, and robotics.” (Page and Kreutzer, 2005, pp. 339). Inde-
pendent from the application context, a major problem is posed by the need to analyze and
understand the behavior of agent-based systems, and in particular to assess their validity. This
term, which will be defined precisely later, means in short that a system fulfills its intended
functions in an appropriate way.

An agent-based simulation model should, for instance, represent the microscopic agent-level as
well as the macroscopic system-level of the corresponding original system in detail to allow for
reliable conclusions about reality. The increasing application of agent technology in domains
with high safety or real-time requirements (e.g. manufacturing control) calls for particularly
powerful validation techniques. The call for appropriate methods and tools to support the
analysis and validation of agent-based systems has been uttered in early publications on agent-
based software engineering already (e.g. Gasser and Huhns, 1989) and apparently not been
answered sufficiently (see e.g. Guessoum et al., 2004, pp. 440). Therefore, the aim of this thesis
is to shed light on innovative techniques to validate agent-based models.

1.1. Motivation

For a number of reasons, the analysis and validation of MAS poses severe problems that are
inherent to the approach. “The distributed system state and high sensitivity of ABS [agent-based
simulations| often results in an unmanageable and unpredictable global behaviour.” (Knaak, 2007,
p. 29, see also Kliigl, 2008, Sec. 2.2). Minor deviations in the system’s initial conditions might
give rise to strong deviations in behavioral trajectories (Rand et al., 2003, p. 2)%. “Due to
the microscopic modelling perspective, global [system| properties are not influenced directly” (Knaak,
2007, pp. 29-30), but only by specifying the behavior of individual agents. Since relations be-
tween microscopic causes and macroscopic effects are generally hard to determine in distributed

! A paragraph with similar content also forms the introduction to our pre-publication (Cabac et al., 2006c).

http://robocup.org, last visit 2012-11-17

3page numbers relate to the version of the article downloadable at http://masi.cscs.lsa.umich.edu/
sluce/publications/sluce-abs.pdf (last visit 2012-10-06)

15



1. Introduction

systems, this situation often complicates tasks like calibration and optimization (Kliigl, 2000,
p. 205).

Certain uses of the agent metaphor even prohibit an a-priori specification of the system’s
behavior as in traditional software engineering: Innovative fields such as social simulation,
swarm intelligence (Kennedy, 2001) or the engineering of self-organizing systems (Potgieter,
2004) explicitly strive to investigate or benefit from self-organizing or emergent effects observed
in certain MAS (David et al., 2002, p. 91). For the analysis and validation of MAS several
approaches reaching from formal to simulation-based techniques have been proposed.

Formal verification is based on representations using formalisms such as Petri nets or modal
logic. Due to their conciseness, formal methods are increasingly applied in agent-oriented
software-engineering. However, as noted in (Cabac et al., 2006b, Sec. 1) only “simple and often
practically irrelevant classes of MAS (Edmonds and Bryson, 2004)” can be analyzed with formal
methods alone.

The simulation-based approach relies on the empirical observation of operational MAS and
an a-posteriori analysis of the observed behavior. The empirical analysis of MAS and agent
behavior is an important means for validation, often outperforming the application of formal
methods (see e.g. Cohen, 1995 and Guessoum et al., 2004). According to Uhrmacher (2000,
p. 39) “the development of software agents is [...] mainly an experimental process™. However,
as cited in (Cabac et al., 2006b, Sec. 1) “the observation of even simple multi-agent systems might
produce large and complex amounts of data (Sanchez and Lucas, 2002)”, the interpretation of which
requires complex, computer-supported analysis techniques.

The literature provides complementary approaches for analyzing and validating MAS based
on empirical observations: While confirmatory techniques such as statistical hypothesis tests
or model-based trace-analysis (e.g. Howard et al., 2003) allow for the falsification of a-priori
specifications or hypotheses, exploratory techniques serve to investigate and better understand
previously unknown aspects of MAS behavior (e.g. Botia et al., 2004).

Due to the experimental character of MAS development (Uhrmacher, 2000, p. 39), exploratory
analysis techniques seem well-suited to foster analysis and validation tasks. Several MAS
development tools support exploratory analysis by means of powerful visualization techniques
(e.g. Ndumu and Nwana, 1999). To overcome inherent drawbacks of visualization (e.g. in
handling large amounts of high-dimensional data) the additional use of data mining (DM) in
MAS analysis and validation has increasingly been proposed in the last years (e.g. Remondino
and Correndo, 2005).5

The notion of data mining will be introduced later in detail. For the moment it is used as an
umbrella term for computer supported methods from machine learning and exploratory statis-
tics that automatically generate models from large amounts of data. In MAS analysis, data
mining is in particular suited to find implicit interaction patterns and relations between pro-
cesses at multiple levels of a system. Such patterns can serve as meaningful high-level system
descriptions supporting data-intensive analysis tasks such as validation (see also Remondino
and Correndo, 2005). This has some tradition in simulation analysis where simulation out-
put is aggregated to more abstract meta models used in result interpretation, validation, and
optimization (e.g. Barton and Szczerbicka, 2000).

4 All literal citations from German sources were translated by the author of this thesis.
Ssee also Cabac et al. (2006b, Sec. 1)
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1.2. Objectives and Contributions of the Thesis

“Since processes are an important aspect and event logs an important data source in ABS, a
class of highly appropriate techniques is found in a DM subfield called process mining (PM)
(Aalst and Weijters, 2004). These techniques are typically applied in workflow management
and serve to reconstruct process models from workflow execution logs.

Similar to ABS, PM research considers multiple system views with a focus on concurrent
control flow and organisational models. Despite these similarities, relations between both
fields have not been considered in the literature often. There are only few explicit entries
(e.g. Hiel, 2005) and |[...] recent [...| case example[s| (|e.g.| Dongen et al., 2006b).” (Knaak,
2007, p. 30)

However, process mining has been applied in ‘M AS-like’ domains, such as inter-organizatio-
nal workflows (e.g. Aalst, 2004), computer-supported cooperative work (Aalst, 2005a), or web
services (e.g. Gombotz et al., 2005). Related techniques such as grammar inference have been
applied to the analysis of MAS as well (e.g. Mounier et al., 2003).

Summarizing — as will be substantiated later — the 'research landscape’ in this field has evolved
rapidly within the last years on the one hand (see also Dongen et al., 2006b). On the other
hand, the approaches appear heterogeneous and sometimes far from being applicable to real
world scenarios in MAS and simulations.

1.2. Objectives and Contributions of the Thesis

Though the spectrum of topics and applications discussed in this thesis is quite broad, the
presented work is positioned in the field of multi-agent-based simulation (MABS). More specific,
the main objective is to evaluate and methodologically enhance the applicability of process mining
and related techniques to the analysis and validation of MABS.

This restriction seems sensible for several reasons: Firstly, the motivation for this work origi-
nates from the lack of appropriate validation techniques in agent-based simulation that became
apparent to the author during a research project on courier service logistics (Bachmann et al.,
2004; Deecke et al., 2004; Knaak et al., 2003). Secondly, analyzing and validating simulation
output is a restricted problem characterized by good data quality and a need for semi- (instead
of fully) automated techniques. Considering the current state of process mining techniques, this
problem seems manageable, and developments from this context can be extended in the future
towards more complex tasks such as autonomous learning. Thirdly, the presented approach can
straightforwardly be transfered to the more general but closely related field of agent-oriented
software engineering (AOSE).

1.2.1. Research Questions

To refine the general objective stated above, the following research questions will be discussed
in the thesis:

1. Q1 - State-of-the-art: In which way have process mining and related techniques already
been applied to MABS and similar domains? What aspects of the systems have been
analyzed and which analysis tasks (such as validation or calibration) have been supported?

17



1. Introduction

2. Q2 - Conceptual foundations: What is an appropriate conceptual foundation for the
integration of process mining, simulation, and MAS? What are the general possibilities
and limitations of this integration and in what way does it contribute to the respective
fields?

3. Q3 - Techniques for interaction mining: How can process mining algorithms and re-
lated techniques be combined and extended to foster the complex task of analyzing and
validating simulated agents’ interactions?

4. Q4 - Tool integration: How can process mining techniques and tools be embedded into
software environments for simulation studies?

5. Q5 - Practical benefit: What is the practical value of process mining in model-driven and
code-centric simulation approaches?

6. Q6 - Level-encompassing validation: How can process mining be combined with advanced
techniques from simulation (e.g. simulation-based optimization) in order to support the
task of analyzing and validating processes at multiple levels of a (simulated) MAS?6

Note that the scope of the research questions )2 to (4 covers most constituents of an approach
(i.e. “tools, applications, techniques, and methods”, Cabac, 2010, p. 23) according to the definition
by Moldt (1996, p. 30, cited in Cabac, 2010, p. 23).

1.2.2. Conceptual Framework

The first question is tackled by means of a literature review, where the objective is to evaluate
the current state-of-the-art in analysis and validation of MA(B)S”. Due to the broad applica-
bility of the agent metaphor, this review has to take into account several neighboring fields
such as distributed systems, software reverse engineering, and social network analysis.

In order to answer the second question, a conceptual framework for the integration of process
mining and MABS will be derived from the literature review. The framework includes comple-
mentary dimensions of analysis perspectives (i.e. what aspects of MAS can be analyzed), use
cases (i.e. when and how automated analysis techniques can be applied in the different phases
of a simulation study), techniques (i.e. what mining, representation, and support techniques
can be applied, and how they can be combined), as well as simulation-specific requirements and
limitations.

Despite the large body of case examples, there are only few general attempts to integrate auto-
mated analysis techniques into AOSE or MABS (e.g. Arroyo et al., 2010; Koster, 2002; Ndumu
and Nwana, 1999; Remondino and Correndo, 2005) that the presented framework combines
and extends. The contribution is therefore twofold: On the one hand, it allows to classify
the heterogeneous work found in the literature in a coherent way and point out directions for
further research. On the other hand, it serves as a guideline for the practical application of
process mining techniques during a simulation study.

5Note that the thesis by Chen (2009), which was published in parallel to the work on the thesis at hand, is
solely dedicated to this question. This work will be cited and related to the presented approach in many
places in the following (e.g. Sections 5.2.2.4 and 6.2.6).

"This notation is used when both multi-agent systems (MAS) and multi-agent-based simulation (MABS) are
addressed.
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“A novel aspect [of the framework] is the use of the Petri net-based MULAN model (MULti Agent Nets,
Rolke, 2004) as a formal foundation” (Knaak, 2007, p. 30) for integrating process mining into
MA(B)S. MULAN is a Petri net-based MAS architecture that builds upon the Reference net
formalism by Kummer (2002). Petri nets are a common means for result representation in
process mining. MULAN provides further structure by distinguishing multiple Petri net-based
views of a MAS. Thereby, it might help to formalize the framework’s analysis perspectives in
order to perform more MAS-specific analyses. Reference nets can also be used to formalize the
use cases in the style of scientific workflows.

1.2.3. Techniques, Tools, and Case Studies

After defining the conceptual frame, the scope of the discussion is narrowed down to the appli-
cation and extension of specific process mining techniques and tools for MABS analysis (and
thereby refer to research questions 3, 4, and 5). From the various perspectives discussed be-
fore, the focus is put on agent behavior and interactions. Two complementary modeling and
simulation approaches developed at the University of Hamburg will be chosen as case examples
for an integration of process mining. These will be explained in the following.

1.2.3.1. Process Mining in the PAQOSE Approach

The first is the model-driven Petri net-based AOSE (PAOSE, see e.g. Cabac, 2010) approach
developed at the University of Hamburg’s theoretical foundations group (TGI). In PAOSE,
simulation is mainly used to validate the developed applications. Since process mining appears
as a promising support technique due to its strong relation to the Petri net formalism, an
integration is attempted in cooperation with members of this group (mainly Dr. Lawrence
Cabac and Dr. Daniel Moldt).

At the conceptual level, it will be shown that the MULAN model (Rolke, 2004) with its related
development process and tools (Cabac, 2010) is an appropriate basis for realizing the analysis
and validation tasks described in the framework. This is mainly due to the fact, that a com-
mon executable formalism is available to represent the conceptual and computer model, the
meta-models extracted from observed data, and the experimentation and analysis processes
themselves.

At the technical level, an approach towards the reconstruction of agent interaction protocols
from message logs observed during simulation is presented. Agent interaction mining is a
complex task that requires to combine and extend several existing process mining techniques.
While the interaction mining approach is closely related to parallel work from the web service
context (e.g. Gaaloul, 2005; Gombotz et al., 2005), it contains some novel aspects indicated in
the following.

A processing chain will be presented as an extension of work by Schiitt (2003) that allows to
reconstruct models of basic interactions between pairs of agents. One central part is a simple
algorithm to mine process models with non-unique activity labels from event-based message
logs. Schiitt (2003) proposes a hybrid algorithm consisting of a subsequent grammar inference
and concurrency detection stage. The grammar inference is, however, restricted to cycle-free
models and the concurrency detection is only described conceptually.
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The grammar inference is therefore extended towards cyclic models by using the well-known -
RI algorithm (Angluin, 1982), the concurrency detection is operationalized, and the algorithm
is compared to related approaches based on log preprocessing (e.g. Gu et al., 2008) and the
theory of regions (e.g. Rubin et al., 2006). Furthermore, a preceding log segmentation and
role mining stage is integrated (based on work from, among others, Dustdar and Gombotz,
2006; Greco et al., 2004; Schiitt, 2003; Srinivasa and Spiliopoulou, 2000; Vanderfeesten, 2006)
that clusters similar courses of interaction in the absence of unique conversation and protocol
identifiers.

The basic interaction mining chain is conceptually expanded towards the reconstruction of
hierarchical and multicast protocols. Multicast protocols are special hierarchical protocols
closely related to the multiple instantiation workflow pattern, where a variable number of
instances of the same activity (or message) are executed (or sent) in parallel (see e.g. Guabtni
and Charoy, 2004).

While several workflow patterns can be detected by process mining algorithms (see e.g. Gaaloul
et al., 2004), first (and partly rather preliminary) approaches to reconstruct control flow models
containing multiple instantiation constructs have only been presented recently (e.g. Canbaz,
2011; Kikas, 2011; Kumar et al., 2010; Lou et al., 2010b). In this thesis, an algorithm for
reconstructing multicast protocols and detecting synchronizations between the participating
agents will be sketched and compared to the related approaches.

At the tool level, the plugin-based architecture of the Petri net simulator RENEW (Kummer
et al., 2006) and the lightweight component mechanism of net components (Cabac, 2002) are
employed to model analysis and validation processes (called mining chains here) as hierarchical
scientific workflows (see e.g. Guan et al., 2006). At a small example it is shown how validation
and roundtrip engineering can be supported.

1.2.3.2. Process Mining in a Discrete Event Simulation Study

The second case study is conducted on the basis of a research project on the simulation of
sustainable logistics strategies for large city courier services (Deecke et al., 2004). The author
of this thesis started to work on this project during his diploma thesis (Knaak, 2002) and
developed parts of the employed software framework. As a domain for process mining, the
courier service study complements the PAOSE approach in several respects: (1) The software
development is mainly code-centric, based on the discrete event simulation framework DESMO-
J (Lechler and Page, 1999) and its extension FAMOS for agent-based simulation (Knaak, 2002;
Meyer, 2008). (2) The study employs discrete event simulation to perform a quantitative
analysis of a target system. (3) The number of agents in the model is relatively high, and large
amounts of log data are produced.

The applicability of process mining to this example is investigated in an affiliated bachelor
thesis by Haan (2009). Beyond the results gained from this study, the author of this thesis
presents a first, strongly simplified implementation of the complex interaction mining procedure
mentioned above and discusses ways to further continue the integration of MABS with process
mining techniques and tools.

In particular, it is sketched how process mining-based analysis workflows can be integrated into
a generic simulation environment (Czogalla et al., 2006) that helps users to perform experiments
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with (in principle) arbitrary simulators based on the programming language Java (e.g. Arnold
et al., 2000). The environment is conceptually rooted in experimentation and analysis tools
developed earlier at the University of Hamburg’s simulation group (MBS) such as DISMO
(Gehlsen, 2004), CoSim (Bachmann, 2003), and MOBILE (Hilty et al., 1998). The tool is
implemented in the form of plugins for the well-known Eclipse platform®.

A prototypical integration of process mining algorithms implemented in the tool ProM (Don-
gen et al., 2005) is tackled with the aid of the scientific workflow system KNIME (Chair for
Bioinformatics and Information Mining at Konstanz University, 2007) and might in the future
employ RENEW as an alternative, possibly more flexible, workflow engine (Simmendinger, 2007;
Simmendinger et al., 2007). Beyond that, it will be discussed how the environment relates to
recent similar efforts like the framework WorMS (Workflows for Modeling and Simulation) by
Rybacki et al. (2011).

1.3. Outline of the Thesis

Due to the relatively broad scope of the thesis, the presentation is grouped into two parts: (1)
foundations and state of the art, (2) concepts and case studies. An overview of the structure of
the thesis is shown in Figure 1.1.° The first part starts with an introduction of concepts from
modeling and simulation in Chapter 2. This chapter introduces basic modeling techniques from
the domains of discrete event simulation (DES), Petri net theory, and workflow modeling. A
particular way of using the UML 2 notation (e.g. Jeckle et al., 2002) for simulation modeling is
introduced and related to the DES world views'® and the reference net formalism. Beyond that,
the chapter reviews “the later stages of the modeling process” (Edmonds, 2000, p. 23) including
experimentation, analysis, and validation as the main focus of this thesis.

Chapter 3 reviews basic concepts from multi-agent systems and agent-based simulation, cov-
ers modeling and implementation techniques from MABS and AOSE, and finally focuses on
the problem of analysis and validation (i.e. ultimately understanding) of agent-based models.
With respect to the techniques used in the thesis, the focus is put on UML 2 and the refer-
ence net-based MULAN architecture. Besides providing the reader with the thesis’ conceptual
foundations, a main objective of the chapter is to motivate the need for advanced analysis and
validation techniques.

Chapter 4 completes the foundations by presenting data mining and especially process mining
as promising candidate methods. After introducing foundations concerning the validation of
agent-based simulations in general, Chapter 5 brings together both fields by presenting an
extensive review of related work on MABS analysis and validation with the aid of data mining,
process mining, or similar techniques.

The second part of the thesis elaborates on the author’s contributions described in Section 1.2.
Based on the literature review, Chapter 6 presents the conceptual framework for integrating
process mining and MABS. It closes by classifying (small parts of) the previously reviewed

Shttp://www.eclipse.org, last visit 2012-11-17

9Tt is no surprise that several theses on topics related to modeling use precedence graphs to display dependencies
between chapters (e.g. Kliigl, 2000, p. 5; Medeiros, 2006, p. 12). This thesis is no exception.

Ybased on pre-publications like Page and Kreutzer (2005, Sec. 4) and Knaak (2006)
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Introduction
(Chapter 1)
I
Part 1: v
Foundations and Modeling and
State of the Art Simulation
(Chapter 2)

Agent-Based Data Mining and
Simulation Process Mining
(Chapter 3) (Chapter 4)

Related Work
(Chapter 5)
!
Part 2: ¥
Concepts, Tools, Conceptual Framework
and Case Studies (Chapter 6)
Process Mining Process Mining in a
in PAOSE DES Study
(Chapter 7) (Chapter 8)
Summary, Discussion,
and Outlook
(Chapter 9)

Figure 1.1.: Overview of the chapters of this thesis in the form of a precedence graph. A
directed edge in the graph indicates that a chapter largely builds upon the results
of a previous chapter.

work along the framework’s dimensions in order to present a coherent view on the ’research
landscape’ and identify promising directions for the development of new techniques.

Chapter 7 reports the first case study in the PAOSE approach with a focus on agent interaction
mining techniques as well as architectural integration into MULAN. Chapter 8 reviews the
procedure and results of the second case study in the DESMO-J context with a focus on
evaluating the practical value of process mining in a large simulation project. Chapter 9
concludes the thesis by deriving implications from the two case studies, critically discussing
their results and pointing out directions for further research.

As a final remark it should be emphasized that the work presented in this thesis (like most
similar projects) was neither developed ’in isolation’, nor written down ’in one go’. Therefore,
several parts were developed in cooperation with colleagues, and some of the texts were previ-
ously published as part of conference and journal papers as well as a textbook on simulation.
Though these pre-publications were partly written together with other authors, this monograph
naturally focuses on those parts that the author of this thesis contributed to most.

In particular, parts of the Chapters 2 and 3 are based on Chapters 4 (UML modeling), 8 (model
validation) and 11 (multi-agent-based simulation) of the Java Simulation Handbook (Page and
Kreutzer, 2005), as well as on articles about simulation modeling with UML 2 by (Knaak and
Page, 2005, 2006). The practical application of UML 2 to discrete event simulation modeling
was investigated together with Thomas Sandu.
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As already mentioned, much of the research presented in Chapters 6 and 7 was conducted
together with Dr. Daniel Moldt and Dr. Lawrence Cabac from the Department of Informatics’
theoretical foundations group (TGI). The monitoring tool presented in Chapter 7 was imple-
mented by Frank Heitmann and Florian Pldhn. Intermediate results were pre-published as
conference papers and technical reports (Cabac et al., 2006a,b,c, 2008a; Knaak, 2006, 2007).

Several parts of the second case study from Chapter 8 were conducted as part of the bachelor
thesis by Johannes Haan (2009) and the study project by Sven Kruse (2005). The simula-
tion system described in the latter Sections of this chapter was developed together with Rainer
Czogalla and several (former) students including Felix Simmendinger and Philip Joschko. Inter-
mediate results were pre-published in conference papers by Czogalla et al. (2006), Simmendinger
et al. (2007), and the diploma thesis by Simmendinger (2007).

To emphasize this embedding of an individual dissertation project into a larger community
(including you as a reader), the first person plural narrative mode'! ("we’) will often be preferred
in the following.!?

"http://en.wikipedia.org/wiki/First-person_narrative, last visit 2012-11-17
2for a similar discussion see Eagleman (2011, p. 266)
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Foundations and State of the Art
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2. Modeling and Simulation

This chapter reviews relevant foundations from system theory and simulation and brings out
their connotations in the context of this thesis. After an introduction to fundamental terms, we
focus “on the later stages of the modelling process” (Edmonds, 2000, p. 23) including experimen-
tation, output analysis, and validation, as the thesis’ main topics. The presentation is largely
based on the simulation handbook by Page and Kreutzer (2005, Chs. 1, 2, 4, 5, 7, 8, and 9).
Chapters 4 and 8 of that book were co-written by the author of this thesis.

2.1. Basic System Theory

According to Page and Kreutzer (2005, p. 4) a system is “a subset of reality which we study to
answer a question; i.e. its boundary to the environment in which it is embedded will be determined by
the question we wish to ask.” Important points of this definition are that (a) the term is generic,
i.e. anything can be regarded as a system, and that (b) system identification is a constructive
act, since systems are always considered in relation to an observer and an observation goal.

Further following Page and Kreutzer (2005, p. 5), “a system must have a number of distinct and
clearly identifiable components which may themselves be considered as systems at a “lower” level.”
Systems are decomposed hierarchically to perform a complexity reduction (Kouvastos, 1976,
p. 1081). We distinguish between elementary components with basic properties (such as position
or velocity, see also Page and Kreutzer, 2005, p. 25) and non-elementary sub-systems whose
properties emerge from the interplay of their components. The set of all properties observed at
a certain instant is called system state (Page and Kreutzer, 2005, p. 5).

The system theoretical stance is characterized by a “duality of structure and behaviour” (London,
2004, p. 166). Structure refers to the statical aspects of a system, i.e. the network of relations
between the existing elements and their roles within this network (see e.g. Wikipedia, 2007).
System behavior is described in terms of one or more processes, where a process is understood
as a chronological sequence of state variable vectors (Page and Kreutzer, 2005, p. 5).

System structure and behavior are closely linked and mutually dependent (Wikipedia, 2007).
Whereas the system structure sets up boundary conditions for the processes running within
it, the processes can modify the structure, thus giving rise to new boundary conditions for
future behavior. Due to such complicated interrelations, system behavior often appears “counter
intuitive and hard to predict” (Page and Kreutzer, 2005, p. 5).

2.1.1. Complexity and Emergence

Auyang (1998, p. 13) notes that “there is no precise definition of complexity and degree of com-
plexity in the natural sciences”, and continues by identifying two different meanings of the term.
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2. Modeling and Simulation

On the one hand, it is applied in an intuitive way “to describe self-organized systems that have
many components and many characteristic aspects, exhibit many structures in various scales, undergo
many processes in various rates, and have the capability to change abruptly and adapt to external
environments” (Auyang, 1998, p. 13). In the same manner, Page and Kreutzer (2005, p. 5) state
that “system complexity depends on the number of state variables (properties) and the density of their
connections.”

On the other hand, formal approaches from computer science define the term more concisely.
A well-known measure is the computational complexity of a problem, i.e. the number of steps
(computation time complexity) and the amount of memory (computation space complexity)
needed to algorithmically solve the problem in relation to the size of its encoding (see e.g.
Auyang, 1998, p. 13 or Gruska, 1997, Ch. 5).

Another formal measure is the information content complezity' of a character sequence defined
as “the length in bits of the smallest program capable of specifying it completely to a computer”
(Auyang, 1998, p. 13). This measure assigns the lowest complexity to very regular sequences,
and the highest complexity to purely random sequences without any patterns (Auyang, 1998,
p. 13). While the former seems plausible, the latter might appear counter-intuitive, since
complexity is not commonly understood as a complete lack of structure.

Formal definitions of complexity seem less useful in the context of this thesis due to their limited
scope: Computational complexity is a different concept than complexity in system theory.
Information content complexity might be interpreted to that effect that a more complex system
(program) is able to generate more variable patterns of behavior (character sequences). A purely
random sequence contains so many variations that it cannot be described more compactly than
by stating the sequence itself (Auyang, 1998, p. 13). In system theory, we are often interested in
phenomena with a medium information content complexity, i.e. systems that exhibit behavioral
variety, but still allow for the recognition of patterns.? The possibility to aggregate system
behavior to a more compact description is of great importance for the applicability of data
mining techniques described below.

A related quality of complex systems is emergence. This concept is based on the observation
that systems include multiple levels with at least a macroscopic level of the system as a whole
and a microscopic level of the basic components. According to Jones (2003, p. 418), “the term is
applied to the appearance of novel, coherent objects [at the macroscopic level] that are not predictable
from the system’s [microscopic] parts.”

The notion of emergence is used quite ambiguously, since for some authors, it denotes “an
invocation of something mystical” (Jones, 2003, p. 418), while others use it as a “shorthand ex-
planation” for multi-level phenomena within a reductionist world view (Jones, 2003, p. 421).
Cariani (1991, p. 771)3, for instance, subsumes the fact that “complex global forms can arise from
local computations” under the notion of computational emergence. This includes deterministic
phenomena like swarm formation in artificial life simulations or the appearance of identifiable
shapes in cellular automata.

In this thesis, we use the term complezity in the intuitive way for systems that

Lwhich is also called Kolmogorov complezity, see e.g. Gruska (1997, p. 398)
2See also the discussion on “pattern-formation” by Gribbin (2005, p. 135), who uses the term “edge of chaos”.
3cited in Jones (2003, p. 418)
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e consist of a large number of components, where each component itself exhibits a certain
behavioral variability and flexibility (i.e. complex micro-level processes),

e contain a large number of relations and interactions between the components (includ-
ing feedback) and possibly a variable structure (i.e. complex macro-level structures and
processes),

e can be viewed at multiple levels, where relations between the levels are often obscured due
to distributed and sensitive cause-effect dependencies (i.e. complex inter-level relations).

We will avoid using the term emergence due to its non-scientific connotations. However, we will
regard multi-agent systems that exhibit computational emergence where macroscopic patterns
emerge from microscopic interactions through deterministic computations. Data mining will
be applied to expose such patterns and the rules that generated them from observed data.

2.1.2. Models

The term model describes a simplified image of a system. As a main benefit, a model allows to
conduct controlled experiments that might be inconvenient or impossible with the real system
(see Niemeyer, 1977, p. 57 cited in Page and Kreutzer, 2005, p. 5).

The complexity of the system under analysis is reduced by considering only the most relevant
parts in the model and by putting them in a simplified form (see e.g. Heinrich, 2002, p. 1046).
This “abstraction and idealization” (Page and Kreutzer, 2005, p. 6) needs to preserve structural
similarity between the model and the real system (Heinrich, 2002, p. 1046) with regard to a
“certain purpose or set of questions [... the model] can answer” (Page and Kreutzer, 2005, p. 5).
Given this similarity, the model is considered as valid and its analysis allows to draw conclusions
on the real system.

The notion of models is also central to statistics and data mining. In this context, Hand et al.
(2001, p. 9) define a model (structure) as “a global summary of a data set”. According to Han and
Kamber (2000, p. 24), one main purpose of data mining is “finding models |...] that describe and
distinguish data classes or concepts [...] The derived model is based on the analysis of a set of training
data [...]".

Large data sets are thus algorithmically aggregated to abstract models that describe the data
more compactly. This is somehow similar to modeling in simulation with the exception that
the abstraction is performed automatically. One important property of models in statistics and
machine learning is generalization. To be useful for prediction and classification tasks (see Han
and Kamber, 2000, p. 24), a model should not only describe the specific training data set that
it has been derived from, but a possibly large range of data that the underlying system might
be able to generate. We will continue this discussion in Section 4.1.2.

2.2. Computer Simulation

To understand complex systems we analyze abstract models and draw conclusions on the origi-
nal. The analysis of formal models can be performed either with analytical methods that allow
to compute a closed-form solution ’in one go’, or by using simulation, where the model state is
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advanced step by step in order to emulate the temporal development of the real system (Page
and Kreutzer, 2005, p. 10).

Simulation can thus be defined as “the process of describing a real system and using this model
for experimentation with the goal of understanding the system’s behaviour or to explore alternative
strategies for its operation” (Shannon, 1975, cited in Page and Kreutzer, 2005, p. 9). This general
definition fits many activities in computer science such as the stepwise execution of a computer
program for the purpose of debugging or the token-game in Petri nets (see Section 2.3.2.1).

Though this general meaning is sometimes referred to here, we mostly draw to the more specific
definition of Page and Kreutzer (2005, p. 9), who use the term to denote the field of computer
simulation as well as the execution of a computer simulation study. In this context, “the model
building process is explicitly mentioned”, and simulation is characterized as “the modelling of dynamic
processes in real systems, based on real data and seeking predictions for a real system’s behaviour
[ .. where] models are represented by (simulation) programs, and simulation experiments (“runs”) are
performed by a models’s execution for a specific data set.” (Page and Kreutzer, 2005, p. 9)

This definition emphasizes the embedding of the actual ’simulations’ into a scientific or indus-
trial research study, where activities like data acquisition, model validation, experimentation,
result analysis, and presentation are of equal importance than the modeling and simulation
itself.

2.2.1. Classification of Simulation Models

Typical dimensions for the classification of models in simulation, which may also apply to other
fields, are shown in Figure 2.1 (e.g. form of analysis, purpose, etc.). From these dimensions,
Page and Kreutzer (2005, pp. 6) emphasize the purpose, the representation medium, and the
type of state changes occurring in the model.

2.2.1.1. Purpose of Models

Models are used to better explain and understand the represented system, to predict its fu-
ture behavior, to support the design of a planned system or to optimize the operation of an
existing one (Page and Kreutzer, 2005, p. 7): The purpose of a model strongly influences its
properties. Explanatory models should represent the system’s structure and behavior in an
appropriate and interpretable way to allow for an understanding of the observed phenomena.
For predictive models it might be sufficient to mimic the system’s behavior closely enough for
successful predictions, even if the model’s behavior is generated by unrealistic or not explicitly
understandable structures. We will take up this point in Section 4.1.2.

2.2.1.2. Representation Forms

Models are represented in different forms ranging from physical and verbal models to graphical
and mathematical models (Page and Kreutzer, 2005, p. 6). One might additionally consider the
explicitness and conciseness of model representation (Page and Kreutzer, 2005, p. 6): Mental

“Brade (2003, Sec. 1.2) focuses on the latter two dimensions as well.
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models only exist in the modeller’s mind while ezternal models are represented in some other
medium for means of communication. Formal models are described in a language with a concise
formal semantics which permits their operationalization. In this thesis we further differentiate
between explicit formal models represented in a modeling language such as UML or Petri nets,
and implicit formal models 'hidden’ in programming language code. While this criterion is
somewhat fuzzy, explicit models are deemed more understandable and verifiable than implicit

models.
predictive
Form of
analysis Purpose
optimization
I Medium of

representation

graphical

State changes

algorithmic @
Explicitness of

representation Modelling -
point of view macroscopic
Comemt Craite

equation-
based

Figure 2.1.: Common dimensions for the classification of models. Compiled with modifications
from Brade (2003); Kliigl (2001); Lechler and Page (1999); Page and Kreutzer
(2005). Model types treated in this thesis are shaded in grey.

2.2.1.3. Types of State Changes

An important criterion to characterize dynamic simulation models is the type of state changes,
which might occur continuously or instantaneously at discrete points in time. The next model
state can be determined by its predecessor in a deterministic or stochastic fashion (Page, 1991,
p. 6). Concerning discrete simulation models we distinguish two kinds of simulation time
advance (Page et al., 2000, p. 6): In time-driven models, the clock proceeds in equidistant
intervals and the model state is permanently re-computed. In event-driven models, time advance
is triggered by a sequence of events that occur in arbitrary intervals. Since the model state
is only updated 'when something has happened’, event-driven models often exhibit a lower
computational complexity (Page et al., 2000, p. 6).
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2.2.1.4. Modeling Point of View

A complementary dimension for simulation model classification is the modeling point of view.
According to Kliigl (2000, p. 42) a macroscopic model “represents the whole system as a single
object, describes its state by means of variables and relates them to each other with respect to certain
parameters”, while a microscopic model consists of multiple components whose interactions
generate the model’s overall behavior. A multi-level model is composed of “multiple micro models
at different levels of aggregation” (Kliigl, 2000, p. 44).

While macroscopic models are mostly formulated in terms of differential equations (Kliigl, 2000,
p. 42), microscopic modeling styles are more diverse, ranging from cellular automata to discrete
event as well as individual- and agent-based models.® By comparison, microscopic modeling
allows for a more detailed and straightforward representation of real systems consisting of
multiple components, and is better suited for the explanation of their behavior (Kliigl, 2000,
p. 72). Problems are the models’ high computational complexity and the difficulty to find an
appropriate level of detail (Kliigl, 2000, pp. 73).5

This thesis is, on the one hand, concerned with agent-based simulation models, i.e. microscopic
discrete event models whose overall behavior is encoded by an (often implicit) algorithmic
description of the components. On the other hand, explicit formal and graphical models at
different levels are reconstructed from observations of the models’ behavior to aid analysis and
validation.

2.2.2. World Views of Discrete Event Simulation

The traditional world views in discrete event simulation (DES) are event-, process-, activity-,
and transaction-orientation (see e.g. Page and Kreutzer, 2005, Ch. 5). These are characterized
by different, but closely akin concepts for relating model state and simulation time (Page and
Kreutzer, 2005, pp. 24) depicted in Figure 2.2.

The basic unit in discrete modeling is the event. Events describe instantaneous system state
changes at discrete but arbitrary points in (simulation) time. At the next level of aggregation,
we consider time-consuming activities, where each activity consists of a start and end event.
Multiple related activities can be aggregated to a process describing an entity’s life-cycle.

Each concept builds the foundation for one or more modeling styles. In event-orientation
(see e.g. Page and Kreutzer, 2005, Ch. 5.2.2), we identify relevant entities and events of the
system. In the model, each event is represented by an event class with an event routine
that algorithmically describes the caused state changes. This modeling style often (but not
necessarily) takes in a top-down view in that each event describes “the set of all transformations
of all relevant entities at specified points in time” (Page and Kreutzer, 2005, p. 108).

In contrast, the process-oriented world view takes in a bottom-up view where all state changes
concerning an entity are aggregated into a single algorithmic description, i.e. the entities lifecycle
executed as a simulation process (Page and Kreutzer, 2005, p. 98). During simulation, a

5For an overview see e.g. Kliigl (2000, Ch. 3.2)
5In fact, this author discusses agent-based versus macroscopic models, but many arguments apply to micro-
scopic models in general.
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P2
Processes
Activities A3 A4
A1 A2 "
i i i i i i
Events E1 E2 E3 E4 E5 E6

E1: Arrival Customer#1; E2: Begin of service Customer#1; E4: End of service Customer#1
E3: Arrival Customer#2; E5: Begin of service Customer#2; E6: End of service Customer#2

A1: Customer #1 waits for service; A2: Customer#1 is in service
A3: Customer#2 waits for service; A4: Customer#2 is in service

P1: Life-cycle of Customer#1; P2: Life-cycle of Customer#2

Figure 2.2.: Relations between events, activities, and processes with a possible interpretation
in a DES model (adopted with modifications from Page, 1991, p. 27).

process undergoes alternating phases of computational activity and passiveness. Active phases
correspond to events where the process instantaneously modifies its own or other entities’ states.
Simulation time only passes during the passive phases. These either represent conceptually
active states, where the process executes an activity after which it re-activates itself, or passive
states, where the process waits for re-activation by another process (Page and Kreutzer, 2005,
p. 100). Process interaction is often limited to untyped activation signals, but might also include
typed signals to represent interrupt conditions (Page and Kreutzer, 2005, p. 105).

Activity-oriented models (Page and Kreutzer, 2005, pp. 131) are described in terms of time
consuming activities together with preconditions for their invocation (see the level ’activities’
in Figure 2.2). Their execution somehow resembles rule-based systems: A scheduler chooses
the next activity whose preconditions hold and executes it by advancing the simulation clock to
its end time and performing the assigned state changes. Transaction-oriented models consist of
a net of permanent resources (blocks) that transient entities (transactions) flow through (Page
and Kreutzer, 2005, p. 129). Page and Kreutzer (2005, p. 129 and p. 132) show how both
modeling styles can be mapped to process-oriented models.

2.3. Modeling Techniques

Executable simulation models are often stated implicitly in the form of program code while
conceptual models are specified using explicit graphical notations. To narrow this semantic
gap (see e.g. Kliigl, 2000, p. 76) several formal and semi-formal notations are applied. In the
following, we introduce the Unified Modeling Language (UML) and reference nets as notations
used to explicitly represent simulation models in this thesis.
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2.3.1. UML 2

As noted in (Knaak and Page, 2006, p. 33), UML is quite commonly used as a simulation
modeling language today. Several applications (see e.g. De Wet and Kritzinger, 2004) and
extensions (see e.g. Oechslein et al., 2001) are reported in the literature (Knaak and Page,
2006, p. 33). Page and Kreutzer (2005, Ch. 4) as well as Knaak and Page (2006) present our
way of applying and extending UML 2 for discrete event simulation that is briefly reviewed
below.

2.3.1.1. The Unified Modeling Language

In (Page and Kreutzer, 2005, p. 60)7 we have introduced the Unified Modeling Language by

determining

specialized to an application area and |[...] first of all not a method or software process".

“what UML is and — of equal importance — what it is not. According to the UML reference
manual, it is "a general-purpose visual modeling language that is used to specify, visualise,
construct, and document the artifacts of a software system". As Jeckle et al. (2002, p. 10)
point out, UML is not "complete, not a programming language, not a formal language, not

n»

Further following the shorter presentation in (Knaak and Page, 2006, pp. 34-35):

“UML 2.0 contains a total of 13 diagram types to visualise different aspects of object-
oriented modelling (Jeckle et al., 2002, p. 15). According to Jeckle et al. (2002, p. 16) these
diagrams can be broadly divided into three classes [mirroring the dualism of structure and
behavior mentioned in Section 2.1]:

o Structural diagrams model the static structure of a system. Among them are class

diagrams, object diagrams, package diagrams, component diagrams, composition struc-
ture diagrams and deployment diagrams.

Behaviour diagrams serve to display the [...] behaviour of objects or components
at different levels of detail. This [...] includes use case diagrams, activity diagrams,
statechart diagrams and several interaction diagram types.

Interaction diagrams are special behaviour diagrams that focus on the interactions
going on between [...] objects in a system. [... They] can be divided into sequence
diagrams and timing diagrams that emphasise the temporal order of interaction events
on the one hand and communication diagrams that highlight the general structure of
the cooperation between partners in an interaction on the other hand (Jeckle et al.,
2002, p. 391). [...] interaction overview [...] diagrams represent a mixture between
activity diagrams and interaction diagrams showing the causal and temporal interplay
among different interaction scenarios (Jeckle et al., 2002, p. 419).

[...] the concepts and notations of the UML are [...] defined in [a so-called meta] model that
is [itself] expressed in terms of the UML (Born et al., 2004, p. 12). This object-oriented
language definition makes extensions of the UML quite easy. [...] Such extensions are either
stated as extensions of the metamodel itself, or by using a lightweight extension mechanism
called stereotyping (Born et al., 2004, p. 245). According to Jeckle et al. (2002, p. 95) a

"and similarly in (Knaak and Page, 2006)
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stereotype is a "a class in the metamodel that is able to further specify other classes |[...]
by extension".

[... As an example, we might] represent entity types in DES models [by extending] the
meta class Class [...] with a stereotype «entity». [...] Now entity types in class diagrams
are marked by attaching the term «entitys in angle brackets to the respective model
elements.”

2.3.1.2. UML in Simulation

A main feature that makes UML suitable “for the DES domain [... is| the event-based communication
model underlying all behaviour diagrams (see Jeckle et al., 2002, pp. 172)” (Knaak and Page, 2006,
p. 36). Similar to DES, an event in UML is a “relevant occurrence” such as sending a message
or invoking an operation (Jeckle et al., 2002, p. 173). Different from DES, a UML event has
a lifecycle consisting of creation, distribution and consumption, and its occurrence in a real
system might consume time (Jeckle et al., 2002, p. 173). We can, however, abstract from these
aspects and regard UML events in DES models as instantaneous.

Simulation practitioners “benefit from UML diagrams as a common and simulation-software inde-
pendent basis for documenting, visualizing and understanding the model structure (Richter and Mérz,
2000, p. 2). The different UML diagrams provide multiple views focusing on [... complementary]| aspects
of the model.” (Knaak and Page, 2006, p. 36)

In an industrial or non-computer-science context, the diagrams might be understood more
easily than more abstract formal languages like Petri nets (see Section 2.3.2.1). Nevertheless,
“the quite concise semi-formal semantics of UML 2 behaviour diagrams [...] provide support for the task
of model validation and verification” as well as code generation (Knaak and Page, 2006, p. 36).
Current approaches towards model driven software development apply transformation rules that
map UML models to executable code.®

In the following, we briefly introduce UML activity and interaction diagrams for modeling
the dynamics of discrete simulations. The presentation is based on Page and Kreutzer (2005,
Ch. 4) and Knaak and Page (2006). Basic concepts of object orientation (such as inheritance)
and their representation in class, object and package diagrams are taken for granted (for an
overview see e.g. Jeckle et al., 2002, Chs. 3, 4, 5).

2.3.1.3. Activity Diagrams

In (Page and Kreutzer, 2005, pp. 77), we introduced activity diagrams with a focus on DES:

“According to Jeckle et al. (2002, p. 199) activity diagrams are [an appropriate] notation [...]
for modelling [...] operations, use cases, and business processes. [... Consequently, they]
are particularly well suited for modelling lifecycles of simulation processes in [... DES].
Since they provide features such as concurrency, object flow[,] and message passing they
are convenient for showing the synchronization of two or more processes. [...] In UML 2.0,
the statechart-like event-handling semantics of [UML 1.x ...] has been replaced by a Petri
net-like token semantics [see also Section 2.3.2.1].”

80n the application of model driven software development in the simulation context see Sandu (2007).

35



2. Modeling and Simulation

In (Knaak and Page, 2005, p. 404) we observed that the synchronization operations of the
process-oriented world view (see Section 2.2.2)

“map quite obviously to send- and receive-signal actions |[...] (Jeckle et al., 2002, p. 214). [...]
Generally any time consumption is modelled using receive-signal actions, whereas normal
action nodes correspond to active process phases without passing of simulation time.

Figure 2.3 shows [an example of] two process classes [...] that synchronize via sending and
reception of activation signals.”

Truck Loading Dock

Insert myself «queue» Remove
into truck > Trucks first truck
queue [waiting] from queue

[Loading dock free]

Enter idle
loading dock queue
«passive»
Wait for truck arrival
Leave idle
loading dock queue

[elpe] «activate»
Notify free

loading dock

«hqld»
Load|truck

«activate»
Tt T T T T T Notify truck on
end of loading

«passive»
Wair for end
of loading

Leave
loading dock

Figure 2.3.: “Synchronisation of [... simulation processes in an imaginary] “Gravel Pit” model via
sending and reception of signals.” Figure and caption adopted from Knaak and Page
(2006, p. 38).

The separation by activity regions (Jeckle et al., 2002, pp. 245) makes it possible to display
multiple interacting processes in a single diagram. As carried out in (Knaak and Page, 2006,
p. 38) we denote process activations

“by a send-signal action (Jeckle et al., 2002, p. 214) with the stereotype <activates. [...]
The passive state is indicated by a receive-signal action (Jeckle et al., 2002, p. 214) with
the stereotype «passives. [...]

[In compliance with ...] Jeckle et al. (2002, p. 215) [... the hold operation is| modelled using
a time signal reception node depicted by an hour glass symbol [...] with the additional
stereotype «hold» [... that] delays incoming tokens for a specified duration.”

Further following Knaak and Page (2006, p. 39), data flow is displayed with the aid of

“object nodes depicted by rectangles (Jeckle et al., 2002, pp. 218). When the outgoing
edge of an action node is connected to an object node, execution of the action produces
a so called data token that contains the result object of the execution. The data token is
stored in the object node and might serve as input to another action [... Object nodes can
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be] used as synchronisation constructs in [... process- and transaction-oriented| models [see
Figure 2.3]. We use the stereotype «queue» to indicate that an object node has a queue
semantic.”

A mapping of UML activity diagrams to further DES-specific constructs (e.g. interrupts) and
modeling styles (e.g. transaction orientation) is presented by Knaak and Page (2006) and Page
and Kreutzer (2005, Ch. 4 and 5).

2.3.1.4. Interaction Diagrams

sd
Truck service

< _______

|

passlf?f notil n arrival |
|

- M

| leave queue

I
I
truck fueve remove first
load fruck ; {15..30}
Simulation |
time unit: minutes

I
|
| is empty?
|
1

:ArrivalEvent | :LoadingDock | | truckQ: Queue | | dockQ: Queue
T T T
1 1
create - idle and waiting | |
T T Truck in dock: queue : :
! T ] I I
X ! I I I
! | I I
] insgrt myself » |
Ll
1 1
1 1
. >
|
—————————
1
1
1
|

\ 4

insert myself
|

A\ 4

Evate
leave Ianing dock

L
I
I
I
|
|
|

Figure 2.4.: An example of using basic sequence diagrams in DES (adopted from Page and
Kreutzer, 2005, p. 89)

In (Page and Kreutzer, 2005, pp. 87-91) we described UML interaction diagrams as follows:

“[While] the main purpose of [... activity] diagrams is the description of individual [...]
behaviour [...] interaction diagrams are often better suited to model the interplay between
multiple entities.

[...] basic [...] sequence diagrams display timely ordered message sequences describing an
interaction scenario [...] Figure 2.4 shows an [...] example [...that] can be regarded as a
possible [refined] execution sequence of the activity diagrams shown in Figure 2.3.
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[...] the different [...] roles [...] taking part in an interaction are plotted along the horizontal
axis, while the vertical axis represents time (Jeckle et al., 2002, p. 327). The main diagram
elements are the lifelines of the interaction partners and what messages pass between them.

[...] UML distinguishes several communication modes, each of which is symbolized by a
different arrow-head (Jeckle et al., 2002, p. 346). A filled black arrowhead indicates a
synchronous message, where the sender waits [...] until the message has been processed by
the receiver. The receiver answers by sending a response message, represented by a dashed
arrow with filled arrowhead. [...]

Asynchronous messages are symbolized by an open arrowhead. [... Here] the sender con-
tinues its lifecycle without waiting for the message to be processed by the receiver. [We
model method calls as synchronous messages and process interactions including passivation
as asynchronous messages.|

[...] Conditions ensuring the correctness of a scenario [...] can be expressed by [...] state
invariants (Jeckle et al., 2002, p. 356) [...] symbolized by using rounded rectangles [...]

[...] Time constraints can be inserted at any place in the diagram where they are meaningful
(Jeckle et al., 2002, p. 352).

[...] in UML 2 it is also possible to represent alternative, optional, parallel, and repeated
sequences of interaction [using block-structured interaction fragments]. Furthermore, dia-
grams might contain references to other sequence diagrams that contain a refined descrip-
tion of particular interaction steps. Due to their derivation from [...] High Level Message
Sequence Charts (Jeckle et al., 2002, p. 332), we will refer to this notation as "high level
sequence diagrams".

Like activity diagrams [...], high level sequence diagrams do not display a single scenario
but rather a class of possible interaction sequences. A drawback of the extended notation
is that such diagrams can become [...] difficult to understand.” (Page and Kreutzer, 2005,
pp. 87-91)

sd Truck Arrival |

- -
Truck
\L 1:Arrival
2:Request(transport order)
_—
:Dispatcher :AGV
<

3[idle]:Accept(transport order)
3[not idle]: Reject(transport order)

Figure 2.5.: A communication diagram displaying an interaction at an imaginary container
terminal.

A more detailed description of UML 2 sequence diagrams including a comparison with the
similar AgentUML interaction diagrams is provided in Section 3.3.2.1. An alternative view
upon communicating entities is provided by communication diagrams as shown in Figure 2.5
(see also Jeckle et al., 2002, pp. 391). The example shows a possible interaction taking place
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at a container terminal.? On the arrival of a truck, the order dispatcher generates a transport
order to fetch a certain container and dispatches it to an automatic guided vehicle (AGV) that
might accept or reject the order depending on its state.

Note that communication diagrams do not focus on control flow (Jeckle et al., 2002, p. 392) but
display relations between communication partners similar to a social network Aalst and Song
(see e.g. 2004b). Nevertheless it is possible to indicate the order of messages by consecutive
numbering. While alternatives are expressed using the UML guard notation, other interaction
fragments (e.g. loops) are not supported (Jeckle et al., 2002, pp. 400).

2.3.2. Petri Nets

Despite several attempts to formalize and execute UML models, the UML remains a semi-
formal language without an explicit operational semantic. In contrast, Petri nets (PN) are
formal models to represent concurrent processes. In the following, we will focus on the reference
net formalism by Kummer (2002) and its relations to simulation and UML.

2.3.2.1. Petri Nets

Rolke (2004, p. 251) informally introduces a PN as “a directed graph with two different node types:
places and transitions. A place [drawn as a circle] is a passive element corresponding to a storage |[... ]
while a transition [drawn as a rectangle] represents an action or processing step. Ares can only connect
a place with a transition or vice versa.”

The PN formalism was proposed by Petri (1962) to model distributed system states and con-
currency (Rolke, 2004, p. 253). A set of events or actions are concurrent if they are not
causally interrelated and might therefore be executed in an arbitrary order or even simultane-
ously (Rélke, 2004, p. 253). The state of a PN is indicated by a marking of its places with
tokens (Rolke, 2004, p. 251), where each place can contain a number of tokens up to a certain
(possibly unlimited) capacity.

The behavior of a PN is realized by the firing of transitions. A transition’s ability to fire depends
on its local environment, i.e. the input places connected via incoming arcs and the output places
connected via outgoing arcs (Rolke, 2004, pp. 251). The transition is activated if all input
places contain enough tokens (with respect to the incoming arcs’ weights) and the firing of
the transition does not exceed any output place’s capacity (with respect to the outgoing arcs’
weights) (Jessen and Valk, 1987, p. 39). The firing removes tokens from the input places and
puts tokens into the output places (Rolke, 2004, p. 252).

Figure 2.6 exemplifies a PN representing a ’gravel pit’ model with two loading docks.!® Since
places and arcs do not contain numerical inscriptions, each place capacity is unlimited and each
arc weight is 1 by default.

In the following, we review further aspects of PNs that will be relevant later in this thesis.
As usual (see e.g. Baumgarten, 1996 or Bause and Kritzinger, 1996) we distinguish between
structural and dynamic properties.

90On the simulation of container terminal logistics, see e.g. the diploma thesis by Planeth and Willig (2004)
0The ’gravel pit’ example is adopted from Page and Kreutzer (2005, p. 32).
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Loading dock 2

. Loading
Begin of End of Leave
service service system
Idle Finished
trucks
Truck Loading
Arrival
Begin of End of Leave
service service system
Idle

Loading dock 1

Figure 2.6.: A very abstract PN model of a 'gravel pit’ with two loading docks. Note that this
model neglects simulation time consumption and queueing strategies.

2.3.2.2. Structural Patterns and Properties

Structural properties are based on the net graph N = (P, T, F'), where P is the set of places, T
the set of transitions and F' the set of arcs or flow relation. To handle the potential complexity
of general net graphs, we can identify common structural patterns (see e.g. Rolke, 2004, pp. 254)
on the one hand and consider simplified net classes on the other hand.

Sequence Cycle
Conflict
Concurrency Loop

O 0 TFT0

Figure 2.7.: Basic structural patterns commonly found in Petri nets (adopted with modifications
from Rolke, 2004, p. 255 and Baumgarten, 1996, p. 53, 72)

Common structural patterns are displayed in Figure 2.7. The definition of sequences and cycles
(Baumgarten, 1996, p. 72) is straightforward. Cycles of length 1 are called loops (Baumgarten,
1996, p. 53). A conflict corresponds to a decision node in an activity diagram (see Section
2.3.1.3. The concurrent pattern splits and re-joins the control flow into parallel threads similar
to fork and join nodes in activity diagrams.
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Restricted sub classes of net graphs considered in this thesis are workflow, free-choice, and
causal nets. According to Aalst and Hee (2002, p. 271) a workflow-net (WF net) serves to
model the control flow of workflow instances (cases).'! Its transitions are interpreted as the
basic activities (tasks) occurring in the workflow, while arcs and places represent the causal
relations and states of the workflow (Aalst and Hee, 2002, p. 271).

Workflow-net Causal-net
i i
I R i el
] customer i‘ customer
ook ][] ook Seat Ticke
No further

requests requests

Figure 2.8.: Left: A WF net representing a simple ticket reservation workflow. The grey section
mixes an alternative split and a parallel join but nevertheless has the free-choice
property. Right: A causal net representing a single ticket reservation case without
cycles and conflicts. Example model adopted with modifications from Page (1991,

pp. 46).

A WF net comprises a single input place i (i.e. a place without input transitions) and a single
output place o (i.e. a place without output transitions) to indicate a well-defined begin and end
of the represented workflow (Aalst and Hee, 2002, p. 272). As a further condition, all places
and transitions of a WF net must be on a path from the input to the output place to prevent
the modeling of unused tasks and states (Aalst and Hee, 2002, p. 272). An example is shown
in Figure 2.8.

A WF net strongly resembles an activity diagram with an initial and final node. However, Aalst
and Hee (2002, p. 277) note that most control flow notations (including activity diagrams) do
not model conditions as explicit places but as an implicit part of the decision nodes. Therefore,
it is not possible to include a routing construct like the grey area of Figure 2.8. It is nevertheless
possible to build an equivalent structure composed from decision and fork/join nodes.

"on workflow modeling see Dumas et al. (2005) and Section 2.3.3
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A net composed from elementary parallel and decision blocks has the free-choice property
(Aalst and Hee, 2002, p. 277) characterized by the fact that “output transitions of places branched
in forward direction are not branched in backward direction” (Baumgarten, 1996, p. 74). In work-
flow modeling, free choice nets are preferred due to their compatibility with common modeling
languages and their better understandability and analyzability (Aalst and Hee, 2002, p. 279).
Furthermore non-free-choice nets might exhibit a behavior where the decision of conflicts de-
pends on the order of previously executed tasks (Aalst and Hee, 2002, p. 278).

Further net classes with structural restrictions are (generalized) state machines, (generalized)
synchronisation graphs, and causal nets (Baumgarten, 1996, p. 72): In a (generalized) state
machine, every transition has exactly (or at most in the generalized form) one input and one
output place (i.e. no concurrency). In a (generalized) synchronisation graph, each place has
exactly (or at most in the generalized form) one input and one output transition, i.e. there are
no conflicts. Cycle-free generalized synchronisation graphs are called causal nets (see Figure
2.8). These are used for the formal definition of processes on Place/Transition-nets.

2.3.2.3. Representing the Dynamics of Place/Transition Nets

Place/Transition-nets (P/T-nets) are used to model the dynamics of processes. They consist
of a net graph N = (P, T, F'), an initial marking Mj, a capacity function C for the places, and
a weighting function W for the arcs (see e.g. Baumgarten, 1996, p. 79).

Starting from the initial marking, the behavior of a P/T-net develops according to the firing
rule described informally above. This behavior can be illustrated by different representations
that depend on the purpose of the analysis. A state-based representation is the reachability
graph, which nodes represent reachable markings of the PN; connected according to the possible
firing of transitions (Bause and Kritzinger, 1996, pp. 110).

A firing sequence is an event-based representation of a certain process running on a PN. It
consists of an ordered 'recording’ of firing transitions’ names (see e.g. Bause and Kritzinger,
1996, p. 103). The set of all possible firing sequences of a PN N represents a formal language
Ly. This language can be further restricted, e.g. by considering only those firing sequences
leading to a certain goal marking or those leading to a deadlock (Baumgarten, 1996, p. 154).

Baumgarten (1996, p. 108) notes that in a firing sequence all conflicts and concurrencies of
the underlying net are resolved, which corresponds to the interleaving semantics of PNs. An
alternative representation that resolves conflicts but preserves concurrency is the net process
corresponding to the partial order semantics of PNs (Baumgarten, 1996, p. 110). A net process
is an unfolding of the original net into a causal net (Baumgarten, 1996, pp. 108). A constructive
definition of net processes is stated in (Jessen and Valk, 1987, p. 46). The re-construction of
the original net from the net process can be considered as a folding, i.e. a mapping of nodes
with the same type onto a single node (Baumgarten, 1996, p. 67).

2.3.2.4. Extended Net Classes

This section reviews common extensions to the basic PN formalism considered in simulation
and process mining.
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Labelled Petri Nets In practical modeling tasks we can label PN elements in order to provide
them with a domain-specific meaning. A labelled P/T-net is a P/T-net extended by a labeling
function h that assigns a label from an arbitrary alphabet to every transition (Baumgarten,
1996, p. 152). Similar to the 'firing sequence language’ described above a ’label language’ is
defined by mapping each firing sequence to a label sequence according to the homomorphism
generated by h (Baumgarten, 1996, p. 153).

Baumgarten (1996, p. 153, 341) shows that while every firing sequence language is also a label
language, the opposite is not true. Broadly speaking, this is due to the fact that labelled
nets allow for a more 'flexible’ naming of transitions. Normally, each transition is implicitly
identified by a unique name. In a labelled net, however, multiple transitions can be mapped
to the same label (also called duplicate tasks, see e.g. Li et al., 2007) and transitions can be
assigned the empty label A (also called hidden tasks). Both possibilities can occasionally ease
modeling but complicate formal analyses and process mining (Aalst and Weijters, 2004).

Timed Augmented Petri Nets An important requirement for PNs in DES is the introduction
of time. According to Bause and Kritzinger (1996, p. 161) temporal information can either
be assigned to places (timed places PN or TPPN) or to transitions (timed transitions PN
or TTPN): TPPN define a token sojourn time for each place. A token that enters a place
becomes available to output transitions only after this time has passed (Bause and Kritzinger,
1996, p. 161). In T'TPN each transition is assigned a firing delay. When the transition becomes
activated, it does not fire immediately but with the specified delay.

Time information can either be deterministic (timed PN or TPN) or stochastic (stochastic PN
or SPN) (Bause and Kritzinger, 1996, p. 162). To allow for formal analyses, SPN often pose
strong restrictions on the applicable random distributions. A common class are continous-time
stochastic PN (also called SPN) where each transition t; is assigned a transition rate \; that
specifies an exponentially distributed firing delay (Bause and Kritzinger, 1996, p. 163). An
SPN thus represents a Markov process whose Markov chain is the reachability graph of the
related P/T-net with the assigned transition rates (Bause and Kritzinger, 1996, p. 165). Since
the focus of this thesis is not on the formal analysis of time-augmented PNs we refer to Bause
and Kritzinger (1996, Part IIT) and the summary by Striimpel (2003) for further details.

Colored Petri Nets Another important extension to model real world systems is the intro-
duction of typed, distinguishable tokens that are historically called colored tokens (see Rolke,
2004, p.251). A colored petri net (CPN) is defined by extending the net graph N = (P, T, F)
as follows (Valk, 2006, p. 82,86): A set C of color sets is introduced, where each color set is a
token type and each color is a value. A color domain mapping cd assigns a type from C to each
place of the net and the adjacent arcs. Furthermore, a set of variables with the token types as
domains is introduced, and each transition is assigned a guard predicate over these variables.

Markings, arc weights, and firing are re-defined with respect to these extensions (see Valk, 2006,
pp. 86): A marking of a CPN is a vector of bags'? of appropriate token colors. Arc weights
are stated as bags of token colors and variables. A transition is activated if all input places
contain appropriate tokens that fit the incoming arcs’ weights and the guard condition holds

2Different from a set, a bag or multiset can contain multiple instances of an element.
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Figure 2.9.: A slightly more detailed variant of the gravel pit model from Figure 2.6 represented
as a colored PN.

with respect to a possible binding of the contained variables. It can then fire by putting tokens
into the output places according to the outgoing arcs’ weights and the current variable binding.

Figure 2.9 shows that the above simulation example can be modelled more compactly as a
CPN. Tokens are identified as distinct simulation entities. Duplicate net elements from the
previous example are folded onto a common structure. Note that arc weights and guards in
this example are stated as programming language expressions, which is a common extension of
CPNs (see e.g. Bause and Kritzinger, 1996, p. 152).

2.3.2.5. Reference Nets

Reference nets (Kummer, 2002) are a CPN variant that combines many properties of previous
formalisms. This includes object oriented concepts, the idea of using nets as tokens in other
nets, the synchronisation of transitions via synchronous channels, a time concept, and some
additional arc types (see e.g. Rolke, 2004, pp. 254). Figures 2.10 and 2.11 show simple, yet
typical ’customer’ and ’server’ processes from discrete simulation modeled as reference nets
(example inspired by Page, 1991).1% The level of detail is comparable to typical process-oriented
simulations.

Different from 'flat’ PNs, the example exhibits an object oriented structure. Following Striimpel
(2003), the model consists of multiple 'process nets’ representing the relevant entities with their
life-cycles. Simulation-specific Java classes for queues, random number generation, etc. are re-
used from the simulation framework DESMO-J (see Lechler and Page, 1999 and Section 3.4.4)
via a static (singleton) facade (Gamma et al., 1995, p. 193).

As in object orientation net classes are templates to create net instances (Valk, 2006, p. 108).
Each net instance has an identity and encapsulates an individual state described by its marking
(Rolke, 2004, p. 257). Net instances can reside as tokens on places of superordinate nets, which

13 An example of a simple discrete event simulation in RENEW is also found in the RENEw User Guide (Kummer
et al., 2006).
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Customer
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import de.renew.simulation.desmo.*;
import desmoj.core.simulator.*;
m:removeCustomer(this) import desmoj.core.dist.*;

Figure 2.10.: A simple ’customer’ process modeled as a reference net. The example in-
cludes simulation-specific Java classes from the framework DESMO-J for queue-
ing (including statistical data collection) and random number generation via net
inscriptions.

allows to model locality and mobility. This token refinement has a reference semantic: A
net instance can be assigned to multiple tokens at the same time, since the tokens only hold
references to it (Valk, 2006, p. 108). A transition inscribed with the expression n: new net
creates a new instance of the class net bound to the variable n (Roélke, 2004, p. 258).

Net instances communicate via synchronous channels that synchronize the pairwise firing of
transitions (Rolke, 2004, p. 257). A synchronous channel consists of two end-points called uplink
and downlink. The downlink is a transition inscription of the form net:channel (parameters),
where net is a reference to a net instance, channel is the channel’s name, and parameters
is a parameter list (Rolke, 2004, p. 258). The downlink transition can only fire if it is acti-
vated in its local environment and if a transition providing a compatible!® uplink of the form
:channel (parameters) is activated in the net instance referenced by net (Rolke, 2004, p. 257).
Then both transitions fire synchronously and the parameters are passed between them. Using

4] e. identical channel name and fitting parameter list
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:start(m) L Server

action g = DesmoFacade.getQueue
("testmodel”, "idleServerQueue")

Oe—a—"1—@®
guard !cq.isEmpty()

action ¢ = cq.first() action q = DesmoFacade.getQueue
("testmodel”, "customerQueue")

:activate()
action isq.remove(me)

guard cq.isEmpty();
action isq.insert(me)

action me = DesmoFacade
action cq.remove(c); .createNetEntity(this, "testmodel")

action cn = c.getNetInstance() cn
# @+r—1+—®

cn
action dt = DesmoFacade
.getRealDist("testmodel”,

"serviceTime").sample()

cn@dt
import de.renew.simulation.desmo.*;
cn import desmoj.core.simulator.*;
|j import desmoj.core.dist.*;
cn:activate()

Figure 2.11.: A simple ’server’ process modeled as a reference net with Java inscriptions calling
DESMO-J.

the keyword this in the downlink allows to synchronize transitions of the same net (Valk, 2006,
p. 106).

Firing delays of transitions can be specified as inscriptions n@dt of their outgoing arcs, where
n is a token produced by the transition and dt is a fixed or dynamically computed relative
delay specified in real-valued units of simulation time (Striimpel, 2003, p. 57). The simulation
semantic of timed reference nets is event-driven (Striimpel, 2003, pp. 57).

Reference nets provide further elements shown in Figure 2.12 (Rélke, 2004, pp. 255): A wvirtual
place is used as a link to a place in order to enhance the visual presentation of a net. A reserve
arc is a shortcut notation for two arcs of a loop. A fest arc is similar with the exception that
a token on a place can be fested concurrently by multiple transitions connected via test arcs.
A flexible arc allows to transport a variable number of tokens. The number and type of tokens
is specified by an inscription with a variable of an array type. An inhibitor arc activates the
connected transition if the connected place contains no appropriate tokens (Kummer et al.,
2006, p. 55), and a clear arc removes all tokens from the assigned place (Kummer et al., 2006,
p. 54).1

5Due to an unclear concurrency semantics related to the problem of zero tests, inhibitor arcs and clear arcs
are only available in the sequential mode of the RENEW simulator.
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Virtual Reserve Test Flexible Inhibitor Clear
place

arc arc arc arc arc

Figure 2.12.: Additional elements of reference nets (adopted with modifications from Rolke,
2004, p. 255,257).

The Java-based RENEW!® (Reference Net Workshop, see Kummer et al., 2006) toolset provides a
modeling environment and simulator for reference nets. The net inscription language is also Java
combined with elements of functional programming languages such as pattern matching and
a notation for tuples (square brackets) and lists (curly braces). This combination of reference
nets with custom Java classes ensures a good practical applicability. The simulator runs in
several modes including a concurrent mode supporting true concurrency and a sequential mode
for timed nets.

2.3.2.6. Petri Nets and Reference Nets in Simulation

Though PNs have often been applied to DES (see e.g. Kamper, 1990), their suitability to this
domain is not without controversy. The notation is sometimes deemed too abstract and general
for modeling real-world problems. However, this does not depend as much on the formalism
itself as on the availability of additional structuring mechanisms and appropriate tools for
building and executing large PN models.

Kamper (1990, p. 82) summarizes advantages of PNs as a ’simulation language’: PNs are at
the same time an intuitive graphical notation and an executable formal language. Structural
and behavioral aspects of the model are described with a small number of symbols. The
token game (e.g. Badouel et al., 2007) helps to understand and validate the model’s dynamics.
Formal methods can be applied to the verification of (at least simplified variants of) the model.
Causality, concurrency, and synchronization are naturally displayed. More domain-specific
graphical notations can straightforwardly be mapped to PNs as an operational semantics.

The generality and compactness of the PN language is also a drawback for simulation modeling
(Kémper, 1990, p. 83). It results in a low aggregation level without simulation-specific con-
structs. This is problematic for two reasons: Firstly, domain experts are accustomed to their
specific concepts and symbols (like machines or stores) even if the semantics conform to places
or transitions. Secondly, many PN-based tools do not sufficiently support simulation tasks like
data collection or random number generation.

These drawbacks are to a certain extent compensated by advanced structuring mechanisms
and modeling tools. Kémper (1990), for instance, uses hierarchical modeling and provides

Yhttp://wuw.renew.de, last visit 2013-11-03
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simulation-specific constructs in the form of sub nets. Aarhus University’s CPN simulator CP-
NTools'™ provides relatively mature support for data collection and random number generation.

Striimpel (2001) rates the ease of modeling with reference nets superior to programming
langnage-based simulation frameworks due to the straightforward graphical notation. Flexi-
bility and extensibility are similar thanks to the integration with Java. On this basis, Striimpel
(2003) extends RENEW with classes for data collection and random distributions.

Another drawback is that reference nets with many Java inscriptions partly loose their concep-
tual clarity and formal verifiability. The complex simulator’s performance is naturally inferior
to a simple DES scheduler. Important simulation-specific functionality (such as e.g. queues of
unlimited size) is still missing in RENEW. The author has prototypically integrated classes from
the simulation framework DESMO-J (see Figures 2.10 and 2.11), to re-use queueing strategies,
repeatable random number generation, and reporting. The RENEW simulator in sequential
mode serves as simulation scheduler. However, this rudimentary integration still suffers from
conceptual and technical drawbacks (e.g. a means to stop all nets of a simulation at a certain
point in simulation time).

Compared to domain-specific graphical simulation tools, RENEW’s flexibility is obviously higher,
while the reference net language might be harder to understand for domain experts. The So-
cionics project has shown that reference nets can be taught to non-computer scientists (in this
case sociologists) as a means to build domain-specific models (von Liide et al., 2003). Based on
experiences with reference nets in large simulation studies (see e.g. Bessey, 2004), Szczerbicka
(2006) mentions the formalism’s complex firing semantics as the main criticism.

To improve the customizability of RENEW, Striimpel (2003, p. 127) proposes to replace places,
transitions, tokens, or subnets with domain-specific graphical symbols.'® As an intermediate
step — reminiscent of Kdmper (1990) — the net components tool is used to integrate simulation
constructs into RENEW’s graphical user interface (Striimpel, 2003, p. 122).

Net components (Cabac et al., 2003) are re-usable sub nets that roughly correspond to pro-
gramming language idioms or patterns. Each sub net can be assigned to a button in a custom
tool palette of RENEW. The mechanism is rather light-weight, since net components merely
provide a graphical grouping of net elements that can be inserted and modified in RENEW.
Additional tool support to parameterize net components (as proposed by Kamper, 1990) or to
"collapse’ the assigned elements into an abstract symbol is currently not available.

2.3.3. Workflow Modeling and Patterns

The modeling of business processes or workflows (e.g. Dumas et al., 2005) is a domain that
is closely related to simulation and multi-agent systems with respect to the need to explicitly
represent complex control flow. According to Dumas et al. (2005, p. 22):

“Workflow is usually regarded as "the computerized facilitation or automation of a business
process, in whole or in part" (Hollingworth, 1995). It consists of a coordinated set of
activities that are executed to achieve a predefined goal. Workflow management aims at

"http://cpntools.org, last visit 2013-11-03
8The current version of RENEW already supports custom images for tokens and the addition of custom figures
without functionality to a net drawing.
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supporting the routing of activities (i.e. the flow of work) in an organization such that the
work is efficiently done at the right time by the right person with the right software tool.”

Similar to software development, simulation, and multi-agent systems, business process model-
ing (BPM) attempts to reduce the complexity of the modeled workflows by considering different
perspectives (Aalst et al., 2003b, p. 6). Aalst et al. (2003b, p. 6) state the examples of the con-
trol flow perspective (control flow of a business process), the data perspective (data items and
documents considered in a workflow), and resource perspective (organizational and technical
resources required in a business process).

A contribution of workflow modeling that is also valuable beyond the domain of business pro-
cess management consists in the identification of a large set of so-called workflow patterns, as
presented by Aalst et al. (2003b). Similar in spirit to (object-oriented) design patterns, work-
flow patterns abstractly describe routing structures that re-appear in many BPM languages
and tools (Aalst et al., 2003b, p. 7). In doing so, different languages and tools can be compared
and modeling requirements are stated in a general form (Aalst et al., 2003b, p. 5).

According to Aalst et al. (2003b, p. 8), “the |...| patterns range from fairly simple constructs
present in any workflow language to complex routing primitives not supported by today’s [...] systems”.
Among the simple patterns, we find basic control flow constructs like sequence (P1 in Aalst
et al., 2003b, p. 10), parallel split (P2 in Aalst et al., 2003b, p. 10-11), or exclusive choice (P4 in
Aalst et al., 2003b, p. 11) already mentioned above. More complex patterns include structures
like multi-choice (also called or split, see P6 in Aalst et al., 2003b, p. 13) and cancel activity
(P19 in Aalst et al., 2003b, p. 38).

A class of workflow patterns that are closely related to interactions in multi-agent systems
(see e.g. Section 3.3.2.1) are “patterns involving multiple instances” (Aalst et al., 2003b). These
patterns will be reconsidered later in the context of auction and mediation protocols where a
central agent (e.g. an auctioneer) engages in similar conversations with multiple other agents
(e.g. bidders) in parallel. In the context of workflow management, Aalst et al. (2003b, Sec. 2.4)
distinguish the following variants of multiple instantiation patterns:

e Multiple instances without synchronization (P12 in Aalst et al., 2003b, p. 23): Several
similar threads are run concurrently without further synchronized interaction among each
others or with the main process.

o Multiple instances with a-priori design time knowledge (P13 in Aalst et al., 2003b, p. 24):
A workflow runs a previously fized number of similar activities or sub-processes in parallel
and waits until all have terminated.

o Multiple instances with a-priori runtime time knowledge (P14 in Aalst et al., 2003b, p. 25-
26): Different from the previous pattern, the number of concurrent activities is not fixed
in the workflow model, but remains constant once the processing of the workflow case has
started. This variant might be most common in agent interaction protocols such as e.g.
contract net (Smith, 1980; see also Section 3.3.2.3).

o Multiple instances without a-priori runtime time knowledge (P15 in Aalst et al., 2003b,
p. 27): Here the number of concurrent threads might even change after the processing
has started
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In this thesis, we will not further focus on BPM itself, but only on the closely related analysis
technique of process mining that mirrors many BPM concepts like workflow perspectives and
patterns (see Section 4). For relations of BPM to further topics considered in this thesis, we
refer to the literature on workflow simulation (e.g. Rozinat et al., 2009¢) and agent-oriented
workflow management systems (e.g. Reese, 2009).

2.4. Experimentation, Analysis, and Validation

After introducing different modeling techniques, we will turn to result analysis, and validation,
as the main focus of the thesis. Though modeling might itself provide important insights into
a system, the main purpose of a simulation study is to conduct experiments with a model, to
analyse the observed behavior, and to draw conclusions from the results of the analysis (see
also Kelton and Barton, 2003, p. 59). While simulation modeling and implementation can
be understood as a special ‘software development project’, the character of experimentation,
analysis, and validation is closer to an empirical scientific study (Wittmann, 1993, p. 47).19

2.4.1. Experimentation

In (Czogalla et al., 2006, Sec. 2), we have described the experimentation phase based on the
terminology used by Wittmann:

“An ezperiment is "a number of [simulation] runs that we execute with different models in
order to answer a certain question" (literal interpretation of Wittmann, 1993, p. 57). This
definition mirrors the separation of models and experiments [postulated by Zeigler, see e.g.
Zeigler et al., 2000]: Different experiments can be conducted with the same model if the
attended questions lie within the model’s validity range, and an experiment can include
different models (e.g. for the purpose of model comparison).

Wittmann refines the notion of models by distinguishing a model from a model class. As in
object orientation, a model class is a template that is defined by "a set of model elements
[i.e. constants, parameters, state variables, and derived elements| and a description of their
dynamics" (Wittmann, 1993, p. 55). A model is an instance of a model class with concrete
values assigned to these elements.

[In this context ...], it seems reasonable to neglect internal model structure and behaviour
and consider a model class as a black-box with a well-defined input-output interface. Fol-
lowing Bachmann (2003, pp. 77), a model class is defined by a set of access points, i.e. typed
model and experiment parameters as inputs and observable results and runtime variables
as output. Thus, an experiment might be reused with any model realizing the same model
class.

An experiment is described by means of an experiment specification and an experimental
setup that jointly constitute a kind of ezperimental frame (see e.g. Zeigler et al., 2000). The
experiment specification states which model classes to use and how to vary their parame-
ter values. Parameter variations are either specified in terms of iterations (e.g. similar to
"for/to/next" loops) or through higher-level specifications of experiment objectives. We re-
fer to the former as manual experimental design and call the latter automated experimental
design.

9also reviewed in (Czogalla et al., 2006, Sec. 2)
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Following the often-cited idea of a "virtual laboratory", the experimental setup describes
the control and observation apparatus applied in an experiment. This includes settings of
experiment control parameters (e.g. simulation duration) on the one hand, and the setup
of observers and analyses on the other hand. The execution of an experiment specification
within an experimental setup leads to a series of simulation runs (see also Wittmann, 1993,
p. 56).”

2.4.1.1. Experimental Design

The main goal of experimental design is to evaluate a preferably wide range of simulation
model behavior by simulating a possibly small number of parameter configurations, also called
scenarios (Page and Kreutzer, 2005, p. 190). In manual experimental design this goal is achieved
through systematic parameter variations. A common approach is the 2% factorial design (Page
and Kreutzer, 2005, p. 190). In this design, we identify a characteristic high and low value for
each of the model’s k parameters.? We then perform a simulation run for each combination
of parameter values leading to a total of 2¥ runs. More advanced techniques for experimental
design are e.g. presented by Law and Kelton (2000, Ch. 12).

The main technique for automated experimental design is simulation-based optimization (see
e.g. Page and Kreutzer, 2005, pp. 190 and Ch. 13) which is used to automatically optimize
scenarios that are too complex for analytical optimisation. Simulation and optimization tech-
niques are integrated as follows (Page and Kreutzer, 2005, Sec. 13.2): Given a model class, an
initial parameter configuration is chosen, and a simulation of this scenario is run. The results of
the simulation are then evaluated by means of an objective function. Based on this evaluation,
an optimization algorithm tries to compute a ’better’ configuration that is again evaluated in
a simulation run. This iterative process usually continues until the objective value converges.
Note that simulation-based optimization is not guaranteed to find an optimal configuration due
to the use of (stochastic) simulation and often heuristic optimization techniques (e.g. genetic
algorithms, see Gehlsen, 2004).

2.4.2. QOutput Analysis

Law and Kelton (2000, pp. 496) note that the proper output analysis of (stochastic) simulations
is an often neglected aspect in practical studies. In contrast, many textbooks largely emphasize
techniques for statistical analysis (examples include Law and Kelton, 2000, Ch. 9-11; Banks
et al., 1999, Ch. 12-13). However, the diversity of analysis techniques applied in simulation
exceeds mere statistics since informal as well as formal techniques from several fields can be
applied. The classification scheme in Figure 2.13 shows one possibility to structure the different
analysis techniques applied in simulation.

The well-known distinction of statistical analysis techniques into the exploratory and the con-
firmatory approach is also relevant in simulation (see e.g. Koster, 2002). “Ezploratory techniques
are applied to gather knowledge about a model’s structural or behavioural features, while confirmatory

20The 2" factorial design is thus related to software engineering’s equivalence partitioning and extreme input
testing (see e.g. Balci, 1998, pp. 370).
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Analysis
techniques
Analysis Degree of
Approach Data time formality Purpose

Online
(at runtime)

Confirmatory
Exploratory

Result-based

Qualitative
(informal)
Quantitative
(statistic)
Symbolic
(formal)

Figure 2.13.: A classification scheme for analysis techniques. The scheme was derived from
several sources in the literature and from our classification of validation techniques
presented in (Page and Kreutzer, 2005, p. 211; see also Figure 2.16).

Validation

Single system
analysis

Comparison
of alternatives

techniques serve to test [...] pre-established hypotheses” (Page and Kreutzer, 2005, p. 210) that rep-
resent expectations on a scenario (in model comparisons) or knowledge about the real system
(in validation).

Following Ritzschke and Wiedemann (1998, Sec. 1), output analyses are either based on raw
event traces observed during simulation or on preprocessed results (simulation reports) pro-
duced by specific data collectors in the experimental setup (e.g. average queue waiting times):
In trace-based analysis all available information are logged and subsequently filtered and aggre-
gated. This allows for detailed and temporally fine-grained analyses. Furthermore, the trace
can be analysed from different view angles without modifications of the experimental setup and
rerun of the simulation (Ritzschke and Wiedemann, 1998, Sec. 1). A drawback of trace-based
analyses is the high computational effort necessary to process large trace files, and the reduced
convenience compared to result-based analyses with specific data collectors connected to the
model components (Ritzschke and Wiedemann, 1998, Sec. 1).

Analyses can either be performed after the simulation, taking into account the whole observed
data set (offline analysis) or during the simulation, taking into account the currently available
data (online analysis).?! Apart from animations (Page and Kreutzer, 2005, Sec. 9.6), online
analyses only appear reasonable if a feedback of results into the running simulation is required.
A typical example is the reset of statistical counters after detecting the end of a simulated
process’ transient phase (Page and Kreutzer, 2005, pp. 174). Generally, online analyses are
algorithmically more demanding than offline analyses due to the need to incrementally update
the results when more data becomes available.

Another typical criterion to classify analysis techiques is the degree of formality, which is sub-
divided into qualitative, quantitative, and symbolic techniques in (Page and Kreutzer, 2005,

*see e.g. Page and Kreutzer (2005, p. 242)
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p. 210): Qualitative techniques are mostly based on wvisualization. Quantitative methods are
often rooted in statistics. In this thesis we will also consider symbolic techniques from fields
like data mining or formal verification (Page and Kreutzer, 2005, p. 210; see also Brade, 2003,
p. 56).

Common purposes for the application of data analysis techniques in simulation include the
analysis of real system data during model building, the analysis of a single simulation run, the
comparison of multiple scenarios (see e.g. Law and Kelton, 2000, Ch. 9,10), and operational
validation as a comparison between simulation and real system data (see Section 2.4.3).

2.4.3. Validation

When simulation models are used as a basis for decision making, it is vital to ensure that the
analysis of the model leads to similar decisions as an analysis of the represented system (Page,
1991, p. 147), i.e. the model is walid (Page and Kreutzer, 2005, pp 195). In (Page and Kreutzer,
2005, p. 196), we emphasized the attention paid to validation in the simulation literature:

“Following Page (1991, pp. 146) we should ideally accept model validity as one of the most
important criteria for judging model quality. [...] the wide range of literature on this
topic reflects its importance. There are numerous papers and textbooks, which emphasise
different aspects, such as practical techniques (e.g. Balci, 1998), statistical methodology
(e.g. Kleijnen, 1999), or [...] similarities between [... simulation| validation and [...] the
philosophy of science (e.g. Naylor and Finger, 1967).

Other disciplines, such as software engineering, theoretical computer science, or statistics
have developed approaches [...] which are also relevant for simulation. Kleindorfer and
Ganeshan (1993, p. 50) emphasize the "eclectic" character of validation in this regard [...]”

2.4.3.1. Basic Terms

The following list adopted from (Page and Kreutzer, 2005, p. 196) reviews relevant terms in
simulation validation based on definitions by Brade (2003, Ch. 1.5):22

o Model validation serves to ensure that a simulation model is a “suitable representation of
the real system with respect to an intended purpose of the model’s application” (Brade, 2003,
p. 16 cited with minor modifications in Page and Kreutzer, 2005, p. 198). Furthermore,
“the term walidation is also [...] used as an umbrella term for all quality assurance activities (i.e.
[...] model validation, verification, and testing)” (Page and Kreutzer, 2005, p. 198).

o Model verification in the wide sense serves to ensure that “a model is correctly represented
and was correctly transformed from one representation into another” (Brade, 2003, p. 14 cited
with minor modifications in Page and Kreutzer, 2005, p. 198). Model verification in the
narrow sense denotes the application of formal methods to “prov|e ...| the correctness of
model representations and their transformations” (Page and Kreutzer, 2005, pp. 198).

22 Actually, the definitions by Brade (2003) include the terms validation and verification. The distinction between
verification in the wider and narrower sense and the notion of testing are added. A detailed discussion of
different forms and ’degrees’ of verification is led by Fetzer (2001), who uses the term “verification in the
broad sense” (Fetzer, 2001, p. 243). A similar definition for testing from the software engineering domain is
found in Whittaker (2000, p. 77).

93



o4

Modeling and Simulation

System Pro.bler_n Dgfi_njtihop
| Validation® ;
A" measure  aPPRlY Real World i Y
[}
Dat.a S Problem
Validation Definiti
Data efinition
R v 'y whypothesize
E Theory |
1 Validation ™ - Theories
........ TN oo ol Y
: I “\‘ build
] 1
X Conceptual ' __ _ | Model formalize
X Model Validation
\ A conclude
\ 1
\ )
X Specification” ] Eounal
i e Specification ;
3 Verification T implement
\‘ ‘
v Program '_ _ _
Operational Verification ~ ] Computer experiment
Validation and Test Model
' Simulation B L)
. xperiment 1_
. Verification ~ ™~ Simulation
A __-----7 Results

Figure 2.14.: A refined validation process based on Balci (1998, p. 337) and Sargent (2001,
p. 109). Adoped from Page and Kreutzer (2005, p. 200).

o Model testing denotes the execution of “a computerized simulation model in order to
corroborate that it correctly implements its corresponding conceptual model. |...] testing
is regarded as an important technique for model verification in the wide]...| sense.” (Page
and Kreutzer, 2005, p. 199)

2.4.3.2. Validation in the Model Building Cycle
In (Page and Kreutzer, 2005, pp. 199-200) we contrasted different variants of the process fol-
lowed to conduct a simulation study:
“Many authors, e.g. Page (1991) and Sargent (2001), differentiate between three main
validation phases [in the model building cycle]:

1. Conceptual model validation is performed during the conceptual modelling phase. It

aims to ensure that the model is a plausible representation of the real system; i.e.
suitable to answer all questions raised by the problem definition.

Model verification (in the wide sense) is performed during the implementation phase
and seeks to establish that the computerized model implements the conceptual model
correctly.
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3. Operational model validation is conducted before and during simulation experiments.
It aims to determine how closely a model’s behaviour resembles the real system’s
behaviour. [...] To achieve this, data collected during model execution is compared
with corresponding data gathered during the real system’s operation.”

The more complex variant of this basic process shown in Figure 2.14 “has been strongly influenced
by Sargent (2001, p. 109), Balci (1998, p. 3), and the "V&V triangle" (standing for validation and
verification) presented in Brade (2003, p. 62)" (Page and Kreutzer, 2005, p. 200). We will only
clarify some basic principles by means of this figure. A more detailed description is provided
in (Page and Kreutzer, 2005, pp. 200).

Firstly, as noted in (Page and Kreutzer, 2005, p. 200), the placement of the problem definition
above the whole process indicates that “a simulation model is built with respect to the study objec-
tives and its credibility is judged with respect to those objectives” (Balci, 1998, p. 346 cited in Page
and Kreutzer, 2005, pp. 200-201). “Validation |...| can never guarantee "absolute" model validity
[... but] only improve models’ credibility for answering certain questions [...] by means of certain sim-

no»

ulation experiments. Zeigler et al. (2000, p. 369) refer to this endeavour as an "experimental frame".

(Page and Kreutzer, 2005, p. 201)

Secondly, as also cited in (Page and Kreutzer, 2005, p. 201), “validation should be conducted
throughout the whole model building process.” (Page, 1991, p. 148). “Every phase [of the model
building cycle] must be complemented by an associated validation activity” (Page and Kreutzer,
2005, p. 201) ensuring the validity of the artifacts produced in that phase. “Although the process
shown in Figure 2.14 is reminiscent of [...a| classical waterfall model, it must be stressed that model
building is a strongly iterative activity” (Page and Kreutzer, 2005, p. 202).

2.4.3.3. Validation and the Philosophy of Science

To put the validation of simulation models into a broader context, many authors (e.g. Naylor
and Finger, 1967; Birta and Ozmizrak, 1996, p. 79) cite its relation to problems considered in
the philosophy of science. In (Page and Kreutzer, 2005, p. 203) we summarized these relations
as well:

“As Cantu-Paz et al. (2004, p. 1) point out, "computer simulations are increasingly being
seen as the third mode of science, complementing theory and experiments". If we re-
gard simulation models as "miniature scientific theories" (Kleindorfer and Ganeshan, 1993,
p. 50), it becomes obvious that there is a close correspondence between validation of simu-
lation models and the more general problem of validating a scientific theory (see Troitzsch,
2004, p. 5 cited in Kiippers and Lenhard, 2004, p. 2). The latter problem traditionally
belongs to the domain of the philosophy of science and has been studied extensively.

[... According to Popper’s critical rationalism], the main characteristic of the so-called
"scientific method" [is the permanent] effort to falsify [...] preliminary theories. [...] falsifi-
cation is superior to verification [...], since inductions from facts [...] to theories can never
be justified on logical grounds alone [...] (Popper, 1982, p. 198). We can, however, use
empirical observations to falsify a theory. A single wrong prediction suffices. [...]

[A more ...] practical viewpoint, proposed by Naylor and Finger (1967, pp. B-95), takes
a "utilitarian" view of validation, with a mixture of rationalist, empiricist and pragmatist
aspects [...]:
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Figure 2.15.: “Estimation of cost, value, and benefit in model validation (adopted with modifications
from Shannon, 1975, p. 209)”. Figure and caption cited from Page and Kreutzer
(2005, p. 207).

1. Rationalist step: assessment of intuitive plausibility of model structure. By follow-
ing the rationalist approach, i.e. criticising a model based on well-founded a-priori
knowledge, this step seeks to eliminate obviously erroneous assumptions.

2. Empiricist step: detailed empirical validation of those assumptions that have "sur-
vived" the first step.

3. Pragmatist step: validation of model behaviour by comparing model output to cor-
responding output obtained from the target system (if available). In this step the
model’s ability to predict the real system’s behaviour is tested. [...]

Using the terminology introduced [... above], the steps 1 and 2 are concerned with concep-
tual model validation. Step 3 views the model as a "black box" and corresponds to [...]
operational validation [...].”

2.4.3.4. General Guidelines

Due to the large number and variety of available validation approaches, it can be useful to
have a list of guidelines at hand when performing practical model validation. In (Page and
Kreutzer, 2005, pp. 205), we cited the following guidelines derived from similar treatments by
Page (1991, Ch. 5.2) and Balci (1998, Ch. 10.3):

e “Degrees of Model Validity: |[...] rationalists and empiricists are interested in models that explain
the behaviour of systems in terms of their structure. In contrast to this, pragmatists simply view
systems as black boxes and rate model quality solely on the basis of a model’s predictive power.
In the simulation domain these two perspectives have led to the definition of different degrees of
model validity, which Bossel (1989, p. 14) summarizes as [...] (cited from Martelli, 1999, pp. 88):
structural validity |[...,| behavioural validity |[...,| empirical validity |..., and]| application validity”

(Page and Kreutzer, 2005, p. 206).

e “Scope and Effort of Model Validation: [...] the impossibility of empirical theory verification
strongly suggests that the establishment of "absolute" model validity is also a logical impossibility.
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This belief is confirmed by many other results [...] including the limits of formalization explored
by Goedel and Turing (see e.g. Gruska, 1997, Ch. 6). [...] Shannon (1975, pp. 208) [... therefore]
stresses the need for an "economic" approach to validation activities. The pseudo-quantitative
estimation in Figure 2.15 shows that value and cost of a model do not increase in a linear fashion
with [...] validity. [...] In several cases simple but suitably accurate models are better than
extremely detailed ones, whose complexity and data requirements quickly become intractable.
This is another example of the principle of "Occam’s Razor", which [...] claims that a simpler
theory with fewer parameters should be preferred [...], based on its easier testability (Popper,
2004, p. 188).” (Page and Kreutzer, 2005, pp. 206-207)

e Value of Human Insight: “In critical domains such as model validation, people often call for
increased formality, automation, and tool-support [...|. However, according to Page (1991, p. 147),
"the application of mathematical and statistical methods in model validation is limited" and
such methods typically impose strong restrictions on model representation and complexity [...
Furthermore they] only cover a narrow aspect of model validity. Brade (2003, p. 90) concludes that
"although automated computer-based validation techniques are more objective, more efficient,
more likely to be repeatable, and even more reliable than human review, the human reviewer
plays an extremely important role for the V&V of models and simulation results". [...] In
recognition of this, proponents of formal and automated techniques [like those discussed in this
thesis| should seek to develop tools whose primary focus is the support and augmentation of
human modelling and validation activities.” (Page and Kreutzer, 2005, p. 208)

2.4.3.5. Classification of Validation Techniques

As recognized in (Page and Kreutzer, 2005, p. 210):

“The simulation literature offers more (e.g. Balci, 1998) or less (e.g. Garrido, 2001) ex-
haustive listings of model validation techniques [... that] originate in different fields [of ...]
computer science. To bring some structure into this "chaos", many authors propose their
own schemes for classifying validation techniques; [... including] Balci (1998, p. 27) [...)]
Garrido (2001, p. 216) [...,] Page (1991, p. 16) [..., and] Brade (2003, p. 56) [...]

To integrate these different schemes into a coherent classification, we [...] arrange validation
techniques along the following dimensions [based on proposals by the above authors?3|:

e Approach: [As in output analysis] we separate exploratory from confirmatory valida-
tion techniques. [...]

e Phase in model building cycle: This dimension describes whether a validation tech-
nique is mainly used for conceptual model validation, model verification, or opera-
tional validation; or one of the phases attached to a more sophisticated validation
process.

o Degree of formality: Along this dimension we differentiate between qualitative infor-
mal, [statistical, and exhaustive ...]| validation methods. [...]

o System view: This dimension refers to the perspective which characterizes a validation
technique. [...]”

*3For a detailed review of these sources see Page and Kreutzer (2005, p. 210). Since validation is closely related
to analysis, the scheme shown in Figure 2.16 strongly resembles the classification of analysis techniques in
Section 2.4.2.
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Validation
techniques

Phase in Degree of System view /
Approach model building 9 . y .
o formality perspective

Conceptual
model
validation

Qualitative

Exploratory (informal)

. Computer Statistical
Confirmatory model (formal)
verification

Exhaustive
(formal)

Operational

validation Black box

Figure 2.16.: A classification scheme for validation techniques in simulation (adopted with mod-
ifications from Page and Kreutzer, 2005, p. 211)

Note that in (Page and Kreutzer, 2005, p. 211), we originally stated the same ’degrees of
formality’ as in the classification of analysis techniques presented in Section 2.4.2. However, in
the context of this thesis, a distinction between statistical and exhaustive techniques seems more
appropriate to cover the range of validation techniques treated. Besides statistical techniques
for log and output analysis, we can also apply exhaustive formal verification techniques to
simplified versions of a simulation model. In either case, both symbolic and numeric analysis
techniques might be used.
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This chapter provides an introduction to concepts, modeling techniques, and tools for multi-
agent systems (MAS) and multi-agent-based simulation (MABS). The structure and content
of the presentation is largely based on Kliigl (2000, Chs. 2,3,4). Several sections were adopted
from Page and Kreutzer (2005, Ch. 11), co-written by and partly based on the diploma thesis
(Knaak, 2002) of the author.

3.1. Agents and Multi-Agent Systems

According to Page and Kreutzer (2005, p. 340) “multi-agent systems have become an important
metaphor” in system analysis and modeling (see also Kliigl, 2000, p. 9). In the following, we
explain the meaning of the term ’agent’ in the context of this thesis. Subsequently, we review
common agent architectures and discuss dimensions that influence their complexity with respect
to analysis and validation. The focus is then turned to MAS for the same purpose.

3.1.1. Agents

Concerning definitions of the term ’agent’ we noted in (Page and Kreutzer, 2005, pp. 340-341):

“Unfortunately, no agreement on exact definitions [...| and what distinguishes agency from
related concepts (e.g. objects) has so far been reached [see e.g. Kliigl, 2001, p. 10]. As
a result, ambiguous usage of terms remains a concern for MAS research. To address this
concern and retain enough flexibility to capture all the diversity of the subject, some authors
resort to very general and abstract definitions. An often cited example [e.g. in Kliigl, 2000,
p. 10] for this is the following characterization [...] by Franklin and Graesser (1997, p. 25):
“An autonomous agent is a system situated within and a part of an environment that senses
that environment and acts on it, over time, in pursuit of its own agenda and so as to effect
what it senses in the future.” [...] Another prominent and [...] more concrete approach is
the definition of agents by means of a set of properties, all or some of which a prospective
agent must possess (see e.g. Kliigl, 2000, pp. 10, Ferber, 1995, p. 10, [... Gilbert and
Troitzsch, 1999, and Wooldridge and Jennings, 1995, pp. 116-118]):

o Autonomy: An agent is able to fulfil its tasks without or with only minor interventions
by other entities.

e Situatedness: An agent inhabits some environment that it can sense and act upon.

e Reactivity: An agent is able to respond to changes in its environment in a timely
fashion.

e Goal-orientation: An agent does not merely react to environmental stimuli, but can
act pro-actively — according to a set of persistent goals. To meet these goals, it is
able to execute plans over time.

29
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e Sociality: In order to reach its goals an agent communicates and interacts with other
agents in a cooperative or competitive manner.

o Adaptivity: An agent can adapt its future behaviour based on past experiences; i.e. it
can learn.

e Mobility: An agent is able to change its location within a physical or virtual environ-
ment (e.g. a computer network).” (Page and Kreutzer, 2005, pp. 340-341)

While these properties are listed in many textbooks, their appropriateness is a subject of con-
tinuing discussions. One common objection says that the conceptual framework of agents might
not provide significant advantages, because computer science has dealt with systems exhibiting
similar properties before; e.g. in active objects or expert systems which can be regarded as pre-
decessors of agents (Wooldridge, 2003, pp. 26). A second popular objection says that talking
about computer systems hardly justifies the use of philosophically or sociologically biased terms
like autonomy.

In the following, we will discuss the benefits and limitations of the agent metaphor and compare
it with related concepts. The presentation is based on Kliigl (2000), Wooldridge (2003), Ferber
(1995), and Padgham and Winikoff (2004).

3.1.1.1. Benefits and Limitations of the Agent Metaphor

As criticized in the first objection, MAS are indeed nothing 'new’, but a mixture of concepts
from object-orientation, distributed systems, artificial intelligence, and sociology. Their main
purpose is to provide a “natural abstraction and decomposition of complex |...] systems” (Padgham
and Winikoff, 2004, p. 5). In this context, sociological and economic terms are used as a
metaphor. Though MAS research has gained relevant results at the technological level, the

provision of a new! conceptual framework might be regarded as the main contribution.

The unreflected adoption of sociological and economic terms, however, leads to the second
objection. Therefore it is important to narrow down the scope of biased notions like autonomy
in the context of MAS. In this thesis (as often in agent-based simulation) the terms are on the
one hand used to conceptually describe actors from a real system. On the other hand, several
notions can be given a technical interpretation that helps to distinguish agents from related
concepts.

Situatedness, for instance, is a characteristic property because it delimits agents from earlier
AT artifacts like expert systems (Wooldridge, 2003, p. 27). According to Ferber (1995, p. 53),
classical Al programs are abstract “thinkers” that can at the utmost advise users how to act on
the basis of presented data. In contrast agents percieve and change their environment directly.
They can only percieve, act, and move within a certain local radius (Kliigl, 2000, p. 59), which
fits the modeling of real-world actors in simulation well (see also Kliigl, 2000, p. 6).

Autonomy, even in a restricted sense, distinguishes agents from the object-oriented world view
(Wooldridge, 2003, p. 25). This is summarized in the often-cited sentence that “objects do it for
free |while| agents do it because they want to” (Wooldridge, 2003, p. 26). Some authors concretize
the term by identifying different degrees of autonomy. According to Kliigl (2000, p. 11) au-
tonomy of control means that an agent can perform its tasks without extensive interventions

'but nevertheless historically grown, as indicated above
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of users. This is a rather unspecific property in the simulation context, since entities in many
simulation models exhibit autonomy of control without being regarded as agents. Autonomy
of behavior denotes learning agents that autonomously modify their behavior based on past
experiences.

Though autonomous control and behavior can be implemented in an object-oriented language,
autonomy is not an inherent concept of this world view, which is dominated by the principle
of design by contract (see e.g. Meyer, 1997).

/ Services
\ el et

Replies A Messages

Queries

Agent

Figure 3.1.: “Conceptual distinction between objects and agents (adopted [with modifications]| from
Ferber, 1995, p. 58).” (Caption and figure cited from Page and Kreutzer, 2005,

pp- 353)

In (Page and Kreutzer, 2005, p. 352), we reviewed the discussion by Ferber (1995) on this
subject:

“Objects are defined through their interfaces; i.e. the services they can perform on demand.
Their implementation must therefore ensure that all methods are correctly implemented
and that expected results are returned (Ferber, 1995, p. 57). This viewpoint clashes with
the requirement for agent autonomy, which leaves agents free to pursue their own goals.
Agents can, for example, refuse a request if it would cause conflict or if some information
is currently unavailable (Ferber, 1995, p. 58).

The important point of distinction is that such decisions are based on the perceived state
of an environment, as well as the state of the agent’s internal knowledge base. The same
request can therefore lead to different reactions at different times. In a typical implemen-
tation this results in an additional filtering level, which mediates between service requests
and internal agent processes (see Figure 3.1). In this way agents themselves retain tight
control over their own behaviour.”

An agent’s actions can fail in certain situations (Wooldridge, 2003, p. 24) or it might select
between different possibilities to satisfy its clients’ needs based on their respective preferences
(Garion and van der Torre, 2006, p. 175; see also Knaak, 2002, p. 7). This leads to higher
demands on the agent’s ’intelligence’ where the term denotes behavioral flexibility. Agents
with flexible behavior provide increased robustness “in situations in which the environment is
challenging” (Padgham and Winikoff, 2004, pp. 4-5).

The presented benefits of the agent metaphor must be contrasted by a number of problems:
1. The slightly ’esoteric’ terminology of MAS might lead to an over-expectation. As dis-
cussed above, this can be avoided by clearly distinguishing between conceptual and tech-

nical implications of the metaphor. According to Padgham and Winikoff (2004, p. 4),
“agents are not magic [but ...] simply an approach to structuring and developing software”.
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2. The very general agent metaphor might be overused in situations where other concepts
appear more appropriate. An example is the modeling of a spatial environment as a
specific "agent’ in simulation (Kliigl, 2000, p. 104). Moss (2000, p. 2) notes that MA(B)S
research often seems to exhibit an overstated focus on its abstract concepts instead of
practical applications.

3. Complex agent systems tend to be hard to analyze and validate (Kliigl, 2000, p. 190).
While this problem can be partly reduced by finding an appropriate level of modeling
detail (Kliigl, 2000, p. 74) and applying proven software engineering methods, it is also
inherent to the modeling style.

3.1.2. Agent Architectures?
According to Kliigl (2000, p. 14) an agent’s architecture determines its internal information

processing, i.e. how perceptions are mapped to actions. Many agent architectures have been
proposed, ranging from intentionally simple designs to complex reasoning systems (Kligl, 2000,

p. 15).
Agent
Architectures

Subcognitive

Reactive

Figure 3.2.: Classification of agent architectures based on Ferber (1995); Kliigl (2000); Miiller
(1996); Russel and Norvig (2003).

In view of this variety, the literature distinguishes several classes of agent architectures. Differ-
ent classification schemes are reviewed and integrated by Kligl (2000, Sec. 2.2.1), who regards
the complexity of the internal representation as the main classification criterion (Kliigl, 2000,
p. 14). Figure 3.2 displays a structured overview of the architectural types mentioned in this
summary. Most authors distinguish between reactive and deliberative agents as the two main
classes.

The behaviour of reactive agents is constituted by more or less direct reactions to stimuli. Their
design is often inspired by the idea of a collective “intelligence without reason” (Brooks, 1999)
emerging from basic interactions (Kliigl, 2000, p. 20). Kliigl (2000, p. 20) criticizes that the

2This Section is based on (Page and Kreutzer, 2005, Ch. 11.2.3), which contains a more detailed presentation
of exemplary agent architectures based on the diploma thesis of the author (Knaak, 2002, Sec. 2.4).
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term 'reactive’ is misleading since deliberative agents can also react to external stimuli.® In-
stead she identifies two classes of 'non-deliberative’ architectures: Subsymbolic architectures use
non-symbolic internal representations such as neural networks (Kligl, 2000, p. 18). Subcogni-
tive architectures apply symbolic information processing, often based on rule-based production
systems or finite automata (Kliigl, 2000, pp. 19).

Russel and Norvig (2003, Ch. 2.4) take the presence of an internal memory as a further criterion
to classify reactive agents:* A simple reflex agent® is 'memory-less’ without an internal model of
its environment. A model-based reflex agent, in contrast, has an internal state that additionally
influences its action selection.

Deliberative agents hold internal representations of goals and are able to generate and execute
plans for their achievement (Kliigl, 2000, pp. 20). Again, several sub-classes can be identified.
Russel and Norvig (2003, Sec. 2.4) distinguish between plan-based agents capable of dynamic
planning, and utility-based agents that can additionally evaluate the utility of alternative plans
with respect to their current goals.® Miiller (1996, cited in Kliigl, 2000, p. 15) adds the class
of hybrid architectures that consist of at least one deliberative and one reactive layer.

Kliigl (2000, pp. 22) introduces the class of cognitive architectures, i.e. deliberative agents
the design of which is explicitly based on theories from cognitive science. As examples, she
names the BDI (Belief, Desire, Intention) architecture (e.g. Rao and Georgeff, 1995) based on
a theory of rational action by Bratman (1987) and the PECS (Physics, Emotion, Cognition,
Status) architecture by Urban (1997) that strives to include non-rational aspects related to
physics and emotions into agent design (Kliigl, 2000, pp. 22-23).

Learning agents (also called adaptive agents by some authors) can autonomously acquire new
or adapt existing abilities from the observation of their environment (Russel and Norvig, 2003,
Sec. 2.4).

3.1.3. Multi-Agent Systems

As reviewed by Page and Kreutzer (2005, p. 341):

“A straightforward definition of multi-agent systems (MAS) views them as systems in Sec-
tion [... 2.1]’s sense. MAS’ defining property is that its components are sets of agents,
located and cooperating in a shared environment (Wooldridge, 2003, pp. 105).”

A formal definition mirroring this explanation is e.g. stated by Ferber (1995). Thereby, a MAS
might also contain further passive components (objects or resources) that are not understood
as agents.

The analysis of MAS is often focused on how structures and processes at the macroscopic level
emerge from interactions of agents at the microscopic level without or with only few influence
of a central control instance (Jennings et al., 1998, cited in Kliigl, 2000, p. 13). The MAS
metaphor is thus closely connected to questions of distributed problem solving based on local

3cited in (Page and Kreutzer, 2005, p. 343)

*also cited by Kliigl (2000, pp. 16)

Scalled a tropistic agent by Ferber (1995, p. 192; see also Kliigl, 2000, p. 15)
Ssee also Kliigl (2000, p. 16-17)
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information (Jennings et al., 1998, cited in Kliigl, 2001, p. 13), computational emergence (see
Section 2.1.1), and (self-)organisation (e.g. Holland, 1998); see also the brief discussion in (Page
and Kreutzer, 2005, p. 342).

3.2. The Agent-Based Simulation World View

Meyer (2008) regards multi-agent-based simulation (MABS) as a distinct world view that com-
plements the typical modeling styles from discrete simulation (see Section 2.2.2). This section
introduces MABS in the context of other simulation world views as well as other relations
between simulation and agent technology. The former allows to identify specific requirements
on analysis and validation. The latter helps to position the subject of this thesis in the broader
context of simulation and MAS.

3.2.1. Relations between Agents and Simulation

In (Page and Kreutzer, 2005, Sec. 11.3) we reviewed the different relations between the fields
of MAS and simulation:

“The relationship between agent technology and simulation can be viewed and exploited in
a number of different ways (Uhrmacher, 2000, p. 16) [see also Oren (2000, p. 1758) using
the umbrella term of agent-directed simulation]:

1. Due to the complexity of agents’ internal processes and interactions, software systems
based on an agent metaphor are often hard to validate and test. While formal verifi-
cation methods are only of limited use, simulation provides an important tool for the
operational validation of MAS (Moss, 2004, p. 2). Simulated environments for testing
software or hardware agents are often called agent testbeds. Oren (2000, p. 1758)
refers to this application of simulation to agent technology as agent simulation.

2. The MAS metaphor brings an additional modelling perspective to simulation. MAS
theory offers a framework for improving both understanding and modeling of systems
consisting of multiple, autonomous, and goal-oriented actors. This agent-based mod-
eling perspective has been referred to as multi-agent-based simulation (MABS) and is
most frequently used to simulate social, biological, and economic systems. However,
in MABS, agent concepts are often employed exclusively at the conceptual modeling
level, while the corresponding computer models are implemented in a more or less
conventional object-oriented style (Drogoul et al., 2002, p. 11).

3. Simulation software can be designed and implemented using agent technology. Ac-
cording to Uhrmacher (2000, p. 16), such agent-based simulation tools can enhance
distribution and interoperability [...] Software agents employing AT techniques, such
as data mining, can offer support for experimentation in knowledge-intensive domains;
e.g. simulation data analysis, validation, parameter calibration, or experiment plan-
ning. Oren (2000, p. 1758) calls this application of agent technology to simulation
agent-supported simulation.

Note that all three views of agent-oriented simulation are closely related. Agent simulation

and MABS only differ in that software agents populating a software engineering model
are usually destined to function in a “real” environment later, whereas simulated agents
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in MABS models do not exist outside the model [see also the discussion by Kliigl (2000,
pp. 62)].

Finally, due to the inherent complexity of data analysis in agent-based models (Sanchez
and Lucas, 2002, p. 117), simulation tools built on the agent metaphor may occasionally
even be helpful during an agent-based model’s design and analysis (Drogoul et al., 2002,
pp. 10).”

This thesis is focused on the process-oriented analysis and validation of MABS, but the pre-
sented concepts and techniques might also be applied in agent simulation. The main distinction
is the analysis objective with a scientific focus in MABS and a software-technical focus in agent
simulation. The integration of the presented analysis techniques into automated assistants
might as well be regarded as agent-supported simulation.

3.2.2. Components of Agent-Based Models

A MABS is a MAS in a simulated (spatial and temporal) environment that serves to represent
a real system (Kliigl, 2000, p. 60). Thus the main components of a MABS include (see Kliigl,
2000, p. 60 and the review in Page and Kreutzer, 2005, pp. 353):

e a simulation scheduler,
e a set of simulated agents,
e an infrastructure for communication and organization,

e a (possibly spatial) environment.

These components are briefly described below with one exception: It seems not sensible to
elaborate on specific properties of simulated agents since these do not significantly differ from
other types of software agents described in Section 3.1. The main difference is that simulated
agents exist in simulated time and space (Meyer, 2008), which normally allows to keep their
sensors and effectors simple (Kliigl, 2000, p. 64). The following description is based on Kliigl
(2000, pp. 63) and our review in (Page and Kreutzer, 2005, pp. 354).

3.2.2.1. Scheduling in MABS

As reviewed in (Page and Kreutzer, 2005, p. 354):

“Scheduling in MABS can be both time- or event-driven. For models with few
complex agents, which communicate via messages, event-driven scheduling is often
the better choice. Conversely, time-driven control may be preferable where models
consist of large numbers of agents with similar behaviour, and where every agent is
activated in every simulation cycle and similar actions are executed in a regular]...]
fashion.

Execution order of agents is an important aspect in time-driven, and to a lesser
extent in event-driven scheduling strategies. While conceptually agents will act in
parallel, the serialization of actions required to execute on a single processor may
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introduce so-called “artifacts” into the model.” The execution order of agents in
time-driven models is therefore often randomized at each simulation step (Kliigl,
2001, p. 157).7

Davidsson (2000, p. 100) argues that event-driven scheduling contradicts the autonomy of
agents, because the scheduler imposes a central control by ordering the individual actions on a
global event list. Meyer (2008) rightly disagrees with this in two respects: On the one hand, a
time-driven simulation scheduler must also impose a global execution order to ensure repeatable
simulation results. On the other hand, MABS deals with autonomy mainly on the conceptual
level and not in (distributed) implementations (see also Section 3.1.1.1).

As indicated in Section 2.2.1, the event-driven approach is more general because time-driven
scheduling can be emulated and integrated by means of equidistant clock pulse events. Similarly,
the analysis of event-driven models might be regarded as more general, since non-equidistant
inter-event durations must be coped with (e.g. in time-weighted statistics over event-traces).
This thesis is concerned with trace-based analysis techniques for event-driven models, which
are straightforwardly applied to time-driven models as well.

3.2.2.2. Communication and Organization

Two different modes of communication are found in MABS: Agents either communicate ex-
plicitly via messages or implicitly by placing objects in a common environment (Ferber, 1995,
p. 13).2 An appropriate communication model should be chosen with respect to the repre-
sented system, e.g. implicit communication via ’pheromones’ in anthill simulations (Ferber,
1995, pp. 389). Message-based communication requires a communication infrastructure that
might exhibit an own dynamic, e.g. to simulate delayed or unreliable forwarding of messages
(Page and Kreutzer, 2005, p. 355).

The analysis of models with explicit communication seems less demanding than the implicit
case, because message passing events can be clearly identified in the simulation trace. Therefore,
we will focus on the analysis of MABS with explicit (message-based) communication in this
thesis.

An important objective in MABS is to investigate the mutual influences between individual
behaviour and organizational structures, which requires an appropriate representation of these
structures in the model. In some cases, organizational structures are represented implicitly in
terms of the spatial model, where spatial proximity of two agents might e.g. be interpreted as
'sharing a similar culture’ (e.g. Axelrod, 1995).

Agent-Group-Role Model A well-known framework for the explicit representation of organi-
zational structures is the agent-group-role (AGR) model by Ferber and Gutknecht (1998). It
describes an infrastructure that allows agents to dynamically found, disband, join, and leave
groups in a virtual environment. Within groups, agents can play roles that represent their
organizational positions, specific abilities, or responsibilities. As an example, several agents

“In particular such “model-artifacts” are artificial causal dependencies due to the serialization of originally
concurrent actions.
8see also Page and Kreutzer (2005, p. 354)
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might enact the role ’professor’ in the group "University of Hamburg’. Groups and roles allow
agents to reference others in an indirect or “deictic” (Kliigl, 2000, p. 64) way, e.g. the professor
who teaches my computer science course at the University of Hamburg’. Extensions of the
AGR model towards spatial constructs (places, locations, and paths) are described by Rupert
et al. (2007).

FIPA Standard Another common (but more technical) model is the communication and plat-
form infrastructure defined in the FIPA? standard. Following our review in (Page and Kreutzer,
2005, p. 360):

“This standard defines an agent communication language (ACL), as well as a platform
architecture consisting of an agent communication channel (ACC) and two special agents
called AMS (Agent Management System) and DF (Directory Facilitator) (see e.g. Rolke,
2004, pp. 87). By registering and de-registering agents with a unique identifier, the AMS
provides so-called “white page services”. The DF manages the agents’ service descriptions
[which are roughly comparable to roles in the AGR model] (“yellow page services”). The
internal agent architecture is not part of the FIPA standard.”

The ACL is a standardized message format for agent communication specified in (FIPA, 2002b):
A FIPA ACL message contains a number of attributes including message type (performative),
sender, receiver, and content. The performative indicates the intention pursued by sending the
message. It can be chosen from a set of standardized communicative acts such as request
or propose (FIPA, 2002a).!% The content can be specified in an arbitrary format, but the
FIPA advocates the use of certain knowledge representation languages including SL (semantic
language), RDF (resource description framework), and KIF (knowledge interchange format, see
FIPA, 2005).

An ACL message can include further optional attributes for self-description and communica-
tion control (FIPA, 2002b): The former comprises information on the language (e.g. SL) and
ontology (i.e. the domain-specific terminology) of the content. The latter includes the at-
tributes reply-with and in-reply-to to identify threads of related messages that were sent in
reply to each other as well as conversation-id and protocol-id to identify the conversation
and the protocol that a message belongs to. The FIPA specifies a number of standardized
protocols for common interaction types (mainly auctions or negotiations, see FIPA, 2005). Due
to their representation in AgentUML, a detailed description is deferred to Section 3.3.2.1.

Implicit versus Explicit Organization Organizational structures (e.g. groups and roles) and
processes (e.g. interaction protocols) in MABS are either pre-defined by the modeler or emerge
from local interactions during the simulation (see Ferber, 1995, p. 114 cited in Page and
Kreutzer, 2005, p. 355). As in reality, a combination of both approaches is found most often:
We might e.g. pre-define a set of basic interaction protocol classes. However, the agents’ actual
execution and combination of these protocols into cooperative tasks might not be predictable
from the (static) specification but can only be observed at runtime.

“Foundation for Physical Intelligent Agents (FIPA, 2005)
0The idea of communicative acts is based on the speech act theory by Searle (1974), in which communication
is understood as a specific form of action.
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The analysis of implicit organizational patterns is challenging because (a) the patterns are often
hidden in the data observed during simulation, and (b) an automated analysis is complicated
by the fact that many organizational concepts cannot be straightforwardly reduced to simple
quantitative measures. This topic is further discussed in Section 3.5.

3.2.2.3. Spatial Environment

A spatial environment is a central component of many MABS. In most cases, it represents a
real’ spatial topology, e.g. a landscape in an ecological model or a traffic network in logistic
simulation. As mentioned above, some social simulations also visualize more abstract concepts
like group formation by means of the agents’ spatial distribution. The presentation in this
section is in particular influenced by the view on spatial modeling described by Meyer, 2008
and implemented in our MABS framework FAMOS (Knaak, 2002; Knaak et al., 2002; Meyer,
2008; see also Section 3.4.4).

Spatial Structures Several spatial models are employed in MABS (e.g. Gilbert and Troitzsch,
1999; Meyer, 2008): A common representation is a two-dimensional grid consisting of rectan-
gular cells. Other regular (e.g. hexagons) and irregular cell shapes (e.g. Voronoi tesselations),
or higher dimensional grids are less frequently used. Grid-based models include a neighborhood
relation that determines which neighboring cells an agent can reach from a certain position.
As in cellular automata, this relation is often defined homogeneously on the whole grid.

A more flexible alternative are graph-based models that consist of nodes representing locations
and edges representing (un)directed connections between locations (Meyer, 2001). Graphs
are well suited to model heterogeneous topologies in logistics (road networks, see Page and
Kreutzer, 2005, p. 357 and Meyer, 2001), telecommunications (communication networks), and
abstract sociological models (social networks). Arbitrary grid-based models can be mapped to
graphs by associating nodes with centers of grid cells and edges with (possibly heterogeneous)
neighborhood relations (Meyer, 2001).

A less common alternative are continuous spatial models, that are e.g. used in pedestrian
simulation. An example is the simulation of aircraft boarding and deplaning processes described
by Matzen and Czogalla (2003).

Dynamics of the Environment The most obvious environmental dynamics result from the
agents’ movements. Depending on the modeled domain, different movement strategies are
employed (see Meyer, 2008; Page and Kreutzer, 2005, p. 357): The most common are random
walk as a simple exploration strategy, following gradient fields (e.g. simulated pheromone trails
in ant foraging), and movement along previously planned routes.

Agents must be able to sense and modify other agents or objects in the environment. This
is often constrained by an (individual) perception and action range to represent behavioral
locality. Depending on the model’s purpose, restrictions on spatial resources (e.g. the number
of agents that 'fit” on a grid cell) are considered as well. The environment can exhibit an
additional dynamic that is caused by environmental processes modeled in a more abstract
fashion (e.g. as cellular automata). An example stated in (Page and Kreutzer, 2005, p. 357) is
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the re-growth of 'sugar’ resources in the well-known Sugar Scape model by Epstein and Axtell
(1996)

As indicated in Section 3.1.1.1 interactions between an agent and its environment are often
modeled similar to interactions between agents (e.g. using message passing). This leads to
a view on the environment as a particular agent (Kliigl, 2000, pp. 103), which is a common
'workaround’ if agents are the only available modeling construct. It should, however, be avoided
in favour of more specific means to model objects and environments (Page and Kreutzer, 2005,
p. 355).

3.2.3. Comparison with other Simulation World Views

To complete the introduction to MABS, we briefly compare it to related simulation world views.
The structure and content of this Section is largely adopted from (Page and Kreutzer, 2005,
Ch. 11.4.4) co-written by and based on the diploma thesis (Knaak, 2002, Sec. 3.2.1) of the
author. The presentation complements the treatment in (Kliigl, 2001, pp. 27,45,61,84) with a
stronger focus on discrete event simulation.

3.2.3.1. Event-Oriented Simulation versus MABS

The event-oriented world view mirrors the implementation of event-driven scheduling. Though
this is an appropriate technical basis for MABS (see Section 3.2.2.1), the concepts of event-
oriented modeling as described in Section 2.2.2 contradict the agent metaphor in two respects
(see Page and Kreutzer, 2005, p. 351 and Knaak, 2002, p. 29): Firstly, events are often defined
on a level above individual agents, which contradicts the microscopic modeling perspective.
Secondly, entities are regarded as passive elements which state is modified by events 'from the
outside’. This obviously contradicts the concept of autonomy.

However, Page and Kreutzer (2005, p. 351) note that:!'!

“Some authors like Spaniol and Hoff (1995) [...] view event-orientation differently, and
attach no event routines to events. Instead, events are processed by active entities, which
contain the event’s relevant actions. Each entity groups state changing actions for all events
in which it participates and performs these on demand; i.e. whenever relevant events occur.
This viewpoint matches agent-based modeling frameworks much better. It offers an efficient
base for controlling a set of simulated agents’ behaviour and is instantiated in some software
systems, such as [the well-known MABS framework]| Swarm [Minar et al., 1996 ...] It should
be noted that in this context agents act only if an external event occurs, or if a relevant
event has been triggered by the agent itself. Between events the agents’ states remain
constant.”

3.2.3.2. Process-Oriented Simulation versus MABS

Further following Page and Kreutzer (2005, p. 352)'2, we find that

"based on (Knaak, 2002, p. 29)
12again based on (Knaak, 2002, pp. 29)
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“A simulation process is an active and persistent entity, whose behaviour is described from
a local perspective [...] Although the agent concept is somewhat more general, it fits
a process-based simulation’s world view quite well (Kligl, 2001, p. 94). Inter-process
communications occur either through direct or indirect synchronizations; i.e. processes
are delayed in their lifecycles and must wait until reactivated, or they must queue for a
resource. Patterns of communication in agent-based models can be richer. Some MABS
models may even require negotiations according to complex protocols.

The behavioural flexibility of simulation processes, in whose lifecyles a linear sequence of
actions unfolds in a synchronous fashion, also falls short of some MABS models’ require-
ments. Agents may be placed in highly dynamic environments and must react quickly to
asynchronous events. Different from the process interaction world view, spatial location of-
ten also plays an important role in MABS. Simulation processes should therefore be viewed
as particularly simple, pro-active agents, with limited capabilities for communication and
movement.”

On two occasions, the author was pointed to the fact that the original process-oriented simula-
tion language Simula with its extension library DEMOS (Birtwistle, 1979) can be regarded as
a predecessor of MABS due to its innovative concepts of co-routines and object-orientation.'?

3.2.3.3. Individual-Based Simulation versus MABS

This umbrella term subsumes simulation world views that take up the microscopic modeling
perspective of individual entities.!* According to Kliigl (2000, Sec. 3.2) this includes some
process- and object-oriented models as well as cellular automata and so-called microanalytical
models'®. Though most agent-based models can be regarded as indvidual-based, the following
differences must be mentioned as summarized by Kliigl (2000, pp. 61):

e Agent-based modeling is more general in that the agent metaphor is not restricted to
individuals (Kliigl, 2000, p. 61). Depending on the modeling level, groups or organizations
can be modeled as agents as well (Kliigl, 2000, p. 61).

e Agent-based models are often more complex and heterogeneous than individual-based
models with respect to behavioral and spatial modeling (Kliigl, 2000, p. 62). Al methods
for learning and planning are usually not found in individual-based models either.

Nevertheless the distinction between individual and agent-based models is not clear-cut, and
both modeling styles apply to similar domains, such as sociology and biology.

3.2.3.4. Activity- and Transaction-Oriented Simulation versus MABS

As mentioned in Section 2.2.2 an activity-oriented model is stated as a set of rules that describe
pre- and post-conditions of time-consuming activities, which is also common in MABS. Kliigl

13This relation was pointed out by Prof. Dr. Horst Oberquelle at the University of Hamburg as well as a reviewer
of the author’s contribution (Knaak, 2004) to the Fujaba Days 2004.

MA comparison of agent- and individual-based modeling is also found in (Kliigl, 2000; Knaak, 2002; Meyer,
2008).

15This model type will not be treated here. For a summary see Kliigl (2000, pp. 45)
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(2000, pp. 112-113) explicitly relates her (time-driven) activity-based MABS modeling approach
to activity-oriented modeling. Besides the different scheduling approach (Kliigl, 2000, p. 113),
a main distinction between both world views is that rules in activity-based models are specified
at the system level, while rules in MABS are assigned to specific agents. This provides an
additional object-oriented structure to the rule set (Kligl, 2000, p. 109).

A comparison of MABS and transaction-oriented models is not reasonable in the first place.
Both world views differ strongly with respect to the modeling perspective and target systems.
However, some application domains imply a combination of both approaches. A prominent
example are so-called "holonic factories’, i.e. production systems without central control, where
each machine (or even workpiece) is regarded as an autonomous agent responsible for its own
processing (see e.g. Giret and Botti, 2009). In this scenario, the factory layout and the process-
ing of workpieces can be modeled in a transaction-oriented fashion, while a controller agent is
assigned to each machine. The transaction-oriented model can thus be regarded as part of the
MABS’s environment.

3.3. Modeling Techniques for Agent-Based Simulation

Appropriate modeling techniques are an important means to handle the complexity of MA(B)S.
While declarative modeling might still be the most common paradigm, descriptions based on
UML or Petri nets provide better means to represent the processes running in a MABS. In the
following, these modeling techniques are introduced and compared with respect to their ability
to handle the complexity of agent-based models.

3.3.1. Declarative Modeling

Declarative (rule-based) models are a traditional logic-based representation in Al. We briefly
introduce the foundations of this paradigm and review its advantages and disadvantages for
MABS. The presentation follows Luger (2002), Kliigl (2000), and our summary in (Page and
Kreutzer, 2005, Sec. 11.4.4.1 based on Knaak, 2002, Sec. 4.1).

3.3.1.1. Rule-Based Production Systems

A rule-based system (also called production system) consists of a rule-base containing rules
and a knowledge-base containing facts (Ferber, 1995, p. 134). Each rule has a condition and
an action part (Kligl, 2000, p. 53): The condition is checked with respect to the facts in the
knowledge-base. If it holds, the rule becomes activated and the action can be executed. This
causes modifications of the knowledge-base as well as possible side-effects if the production
system is embedded into an environment.

Rules are specified in several formal languages (Ferber, 1995, p. 134) ranging from simple
programmatic if-then clauses to declarative languages based on propositional or predicate logic
(e.g. Prolog, Bratko, 1990). Subsymbolic descriptions are employed in adaptive rule-based
classifier systems (see e.g. Holland et al., 2000; Ferber, 1995, p. 135). The execution of rules
is guided by a rule interpreter (sometimes called reasoning engine) that defines an execution
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order for the subsequent or parallel activation of multiple rules (Luger, 2002, cited in Kliigl,
2000, p. 53).16

The reasoning process can be either data-driven (forward chaining) or goal-driven (backward
chaining); see (Kliigl, 2000, p. 55). Clearly, forward chaining is an appropriate strategy for
reactive agents while backward chaining is a basis for planning (Kliigl, 2000, p. 55).

3.3.1.2. Advantages and Drawbacks of Declarative Modeling

According to Kliigl (2000, p. 52), a main advantage of declarative modeling is the separation
of the model specification from the execution logic encapsulated in the rule interpreter. The
high abstraction level is further ensured by the fact that many rule-based languages provide
powerful programming constructs including unification and pattern matching (Kliigl, 2000,
p. 54). Another advantage of rule-based models is their inherent modularization at the rule-
level (Kliigl, 2000, p. 56): Since rules can only invoke each other indirectly through modifications
of the knowledge base, easy changeability and extensibility is ensured.

However, according to Kliigl (2000, p. 57), these properties also lead to drawbacks. Due to the
indirect coupling of rules it is not straightforward to model sequences of actions (Kliigl, 2000,
p. 57). If the modeling and execution environment provides no structuring concepts above rules,
larger models become hard to understand (Kliigl, 2000, p. 57). Furthermore, the performance
of execution might suffer from the need to check a large rule set in every execution cycle when
no additional structure of the rule base is available (Kliigl, 2000, p. 57).

3.3.1.3. Agent-Based Structuring of Rule-Based Models

Kliigl (2000, Sec. 5.3.1) presents different approaches to partition a rule set in MABS. A basic
distinction is drawn between horizontal and vertical partitioning (Kliigl, 2000, p. 110): Hori-
zontal partitioning is oriented towards “functional categories”, i.e. rules related to the same task,
role, target object, etc. (Kliigl, 2000, p. 110). Vertical partitioning bundles rules that belong
to the same phase of the rule interpreter’s execution cycle, e.g. ’sense, reason, and act’ in case
of an agent (Kliigl, 2000, p. 110).

Activity Automata The agent-based world view suggests an obvious structure by partitioning
the overall rule set into different subsets for each (type of) agent (Kliigl, 2000, p. 109). However,
since the rule set of an agent can become rather large, additional structuring means are pro-
posed. The approach by Kliigl (2000, pp. 114) partitions rules by similar preconditions. This
leads to (possibly hierarchical) automata-like structures — called activity automata in (Kliugl,
2000, p. 115) — where each state represents a set of common pre-conditions for all assigned
rules.

16Kliigl (2000, p. 53) actually cites a previous edition of (Luger, 2002).
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Agent Architectures Many agent architectures provide additional means to partition an
agent’s rule and knowledge base.!” One example is the subsumption architecture by Brooks
(1999) shown in Figure 3.3. In this reactive architecture the agent’s behaviour is modularized
into a number of distinct tasks, where each module is described by a set of stimulus-response
rules or an automaton. The modules are ordered hierarchically according to their priority.
When a rule of a lower level module becomes activated, it immediately inhibits all rules of
higher level modules until the agent’s survival has been ensured.

7(% Exploration  |—=0) I
H Mapping }% D)

2 —= Mining  [—=0 §

‘Qf) ——={ Path Optimization [—=0) %
% Refuelling }% O

% Collision Avoidance }7
N

Figure 3.3.: “Schematic representation of a subsumption architecture for controlling an ore mining
robot (adopted with modifications from Ferber, 1995, pp. 132)”. Figure and caption
cited from (Page and Kreutzer, 2005, p. 345), also found in (Knaak, 2002).

A partitioning for the knowledge base is accomplished by the well-known deliberative Belief-
Desire-Intention (BDI) architecture (e.g. reviewed in Kliigl, 2000, pp. 22; Wooldridge, 2003,
pp. 82; Wooldridge, 1999; Page and Kreutzer, 2005, pp. 345 based on Knaak, 2002): As the
name indicates, the set of facts is divided into three categories called beliefs, desires, and
intentions. Beliefs represent the agent’s (individual and possibly erroneous) knowledge about
the current state of the environment (Kliigl, 2000, p. 22). Desires represent future states that
the agent strives to achieve in general (Kliigl, 2000, p. 101). As in reality, an agent’s different
desires can, to a certain degree, contradict each other, which is finally resolved by the rule
interpreter (see Wooldridge, 1999, cited in Page and Kreutzer, 2005, p. 346). In every execution
cycle, the BDI interpreter refines a set of non-contradictory desires into actual intentions, whose
agsertion into the knowledge base triggers the execution of a related plan for their achievement
(see Wooldridge, 1999, cited in Page and Kreutzer, 2005, p. 346).

1"The subsumption and BDI architectures presented in the following might be two of the most typical agent
architectures. Therefore they are often selected as examples in the literature (e.g. in Braubach, 2007 and
Page and Kreutzer, 2005, pp. 344).
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3.3.2. UML-Based Modeling

Though declarative formalisms can be used to describe several structural and behavioural as-
pects of agent-based models, the rule-based representation is strongly tailored towards one
modeling perspective, i.e. behaviour descriptions of entities like simulated agents or other active
model components. UML diagrams, in contrast, provide more specific means to represent and
visualize multiple model aspects, including structure, individual behaviour, and interactions
(see Section 2.3.1).

Due to the close relation between agents and objects (see Section 3.1.1.1) the idea to establish
the mature and wide-spread UML as a standard modeling technique for agent-based simulations
seems plausible (see e.g. Oechslein et al., 2001; Page and Kreutzer, 2005, p. 359). Nevertheless,
extensions are necessary for those agent-specific concepts not covered in object-orientation. The
following sections review relevant attempts towards this endeavor.

3.3.2.1. AgentUML

AgentUML (or AUML, Odell et al., 2000) is an early and well-accepted attempt to extend
a subset of UML 1.x diagrams for agent modeling. It was adopted by the FIPA to model
standardized interaction protocol templates (see Section 3.2.2.2). However, since many of the
proposed extensions are nowadays covered by the standard UML (especially version 2.x), the

further development of AUML has been discontinued recently (AgentUML, 2007).

The extensions provided by AUML focus on protocol modeling and (to a lesser extent) struc-
tural modeling with extended class diagrams (AgentUML, 2007). Odell et al. (2000) present a
layered approach towards modeling interaction protocols with sequence, statechart, and activ-
ity diagrams. The main intention is to provide a means to visualize parameterizable interaction
protocol patterns that can be re-used for and adapted to different domains.

At the highest specification level, AUML introduces protocol packages that contain extended
UML sequence diagrams for the modeled interactions (Odell et al., 2000, p. 4).!® These are
re-usable templates that can be parameterized with domain-specific interaction roles, message
types, and deadlines using the standard UML template syntax (Odell et al., 2000, p. 5).

The second layer covers the actual agent interactions. It includes extended UML 1.x sequence
diagrams to model roles as well as “concurrent threads of interaction” (Odell et al., 2000, p. 6).
These diagrams form the most prominent part of AUML.

The first extension enables n:m-relations between agents and roles, i.e. an agent (type) can
change its role during a communication and a role can be covered by multiple (types of) agents.
Different from standard UML, lifelines are identified by a term agentName/role : agentType
where name and role are optional (Odell et al., 2000, p. 6). Role changes can be depicted in
several different forms shown in (Odell et al., 2000, pp. 11).

The second major extension is the addition of control-flow constructs including ’and’, ’or’; and
‘exclusive or’ split and join nodes (Odell et al., 2000, p. 6). Different from UML sequence

'8page numbers relate to the version of the article downloadable at http://www.jamesodell.com/
ExtendingUML.pdf (last visit 2012-09-15)
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diagrams, the AUML variant can not only display exemplary courses of interaction, but also
depict protocol templates with branches, multiple threads (concurrency), and cycles.

According to Odell et al. (2000, pp. 6), control flow nodes can be inserted along the lifeline of an
agent to indicate conditional or concurrent processing. Furthermore, it is possible to connect
message arrows with these nodes to display conditional or concurrent sending and reception
of messages. It is not necessary to re-join multiple concurrent or conditional messages on the
receiver’s lifeline. Horizontally or vertically stacked activation bars can be used instead. Cabac
et al. (2003, p. 114) notes that some of these possibilities prohibit to provide the diagrams with
a concise formal semantics (for details see Section 3.3.3.3). Figure 3.4 shows an example AUML
sequence diagram.

/Biker /CarDriver
:Courier :Courier

:Customer :Office

request(order)

cfp(order)

n
propose(order, price)

j<n

reject(order)

i=n-j

i accept(order, price)

T
D cfp(order)

propose(order, price)

k<m

reject(order)

I=m-k

: - ljk >0 accept(order, price)

Figure 3.4.: An example AUML interaction diagram showing a simplified version of the ’con-
tract net’-like order mediation protocol used in our agent-based simulations of city
courier services described in Chapter 8. The diagram was drawn with the Agent
Interaction Protocol Diagram editor of the CAPA agent platform (see Section 3.4.5).

As a further extension, cardinalities and related constraints can be added to the message arrows
of the diagram in order to display multicast communication. Cardinality constraints are stated
as arbitrary terms over message cardinalities. The example in Figure 3.4 e.g. states that the
office agent broadcasts n call-for-proposal messages to the registered courier agents. These
either reply by proposing an abstract price or by refusing the call. The number of propose
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and refuse messages adds up to n, i.e. courier agents always answer in this protocol variant.'?

In addition, deadlines can be added to the diagram using the UML note symbol (Odell et al.,
2000, p. 3). They often serve to indicate when an agent will stop waiting for answers to its last
message and pro-actively continue its processing.

The third layer of AUML represents the internal processing of agents, i.e. the refinement of
the sequence diagrams’ activation bars into state chart or activity diagrams (Odell et al., 2000,
Sec. 6). The only extension proposed in this context is a proprietary notation for sending and
receiving messages in activity diagrams (Odell et al., 2000, p. 9). Odell et al. (2000, pp. 8)
show that both diagram types can also be employed to model interaction protocols on level 2.
However, the authors prefer the agent-centric view of sequence diagrams over the state-centric
view of statecharts for protocol modeling (Odell et al., 2000, p. 9). Statecharts are understood
as an additional “constraint mechanism” to ensure that the overall protocol performs correct state
transition (Odell et al., 2000, p. 9).

A very preliminary specification by the FIPA (2003) proposes additional AUML extensions for
class diagrams. An agent class diagram is introduced as a UML class diagram with several
extended classifiers. The stereotype «agenty» indicates an agent class with compartments for
roles (the agent can play), organisations (the agent is part of), and protocols (the agent can
execute) (FIPA, 2003, p. 3).

An agent class can be associated further stereotyped classifiers that represent agent concepts.
A capability describes “what an agent is able to do under what circumstances” (FIPA, 2003, p. 4).
A service description defines a provided service in terms of the related protocols, ontology,
communication language, and context language (FIPA, 2003, pp. 5).

3.3.2.2. SeSAm UML

Oechslein et al. (2001) propose extensions of UML 1.x for MABS. The main focus lies on
extended activity diagrams, called activity graphs, that are partly inspired by features of activity
automata (see Section 3.3.1.3) proposed by Kliigl (2000). Since activity graphs can be designed
and executed in the SeSAm simulation system (see Section 3.4.3), the UML dialect is called

SeSAm UML (Oechslein, 2004).

SeSAm UML builds upon UML 1.3, where activity diagrams already include send and receive
signal as well as object nodes. The proposed extensions focus on means to model different
patterns of agent interaction including ezchange of resources, agent creation, modification of
shared state variables, and direct communication via messages (Oechslein, 2004, p. 86).

The activity graph notation supported by the SeSAm tool provides further extensions. This
includes (1) a proprietary time symbol indicating that an activity consumes a certain amount
of simulation time, (2) an emergency node with associated emergency rules, the activation
of which causes the agent to terminate its current activity and enter an exception handling
procedure, and (3) an activity graph node that contains a subgraph to support hierarchical
modeling (Oechslein, 2004, p. 129).

Beyond activity graphs, SeSAm UML also includes minor extensions to UML class diagrams.
These are mainly stereotypes to tag the different components of a MABS (see Section 3.2.2)

19different from the actual courier service model described in Chapter 8
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such as «agenty, «worldy, or «resource» (Oechslein, 2004, p. 78). An agent class includes
compartments to display state variables, behaviours, and assertions (i.e. invariants, pre-, and
post conditions) stated in OCL (Oechslein, 2004, p. 79).

SeSAm UML contains many of the features of UML 2 that are rated as useful for (discrete
event) simulation by Knaak and Page (2006). Different from the standard, SeSAm UML has a
time-driven execution semantics specified in a formal language named SeSAm-Impl. Due to its
partial deviations from the current UML standard and its extension mechanisms, SeSAm UML
is at the moment exclusively supported by the SeSAm tool and cannot extend other CASE
tools as a UML profile.

3.3.2.3. Application and Extension of UML 2

While Agent UML is based on UML 1.x, Bauer and Odell (2005) discuss applications of the
follower version UML 2 to the modeling of agents and MAS. The authors also identify a need to
extend UML 2 with better support for agent-specific concepts. This includes “constructs to ex-
press: goals, agents, groups, multicasting, generative functions, such as cloning, birthing, reproduction,
parasitism and symbiosis, emergent phenomena, and many other nature-based constructs ...” (Bauer
and Odell, 2005, p. 19).2° In the following we provide a brief overview of their applications and
extensions of UML 2 for agent-based modeling. Similar to the original the presentation mirrors
the UML-inherent classification into structure, behavior, and interaction diagrams.

b

Structure diagrams: As reviewed in (Page and Kreutzer, 2005, p. 359), “class diagrams can
be employed to model agent organizations and ontologies; i.e. the domain-dependent parts of an agent
communication language (Bauer and Odell, 2005, p. 5).” Stereotypes tag specific constructs such
as agents or groups (Bauer and Odell, 2005, p. 8). Using the inheritance arrow, hierarchies of
concepts like goals, tasks, or roles can be depicted. Object diagrams serve to display the state
of agents or communicative acts at runtime (Bauer and Odell, 2005, p. 6).

ki

Further focus is put on composite structure diagrams, a new diagran type to display “organi-
zations and dependencies among components” (Bauer and Odell, 2005, p. 7). It is shown how
these diagrams can be used to display collaborations between and within groups, roles, and
workflows of an organization (Bauer and Odell, 2005, p. 7). However, the possibilities do not
seem to differ substantially from former use case and collaboration diagrams.

Behavior diagrams: In OOSE, use case diagrams serve to display requirements on a software
system in terms of intended use cases, (sub-)system boundaries and external actors (Bauer and
Odell, 2005, p. 10-11). Plain, undirected associations describe relations between use cases and
actors. For the application of these diagrams in agent-based modeling, Bauer and Odell (2005,
p. 11) propose some extensions and a redefinition: Firstly, associations between external actors
and use cases can be directed and inscribed with event types, names of providing (internal)
agents, and multiplicities. Secondly, the actor symbol is not only used for external entities
interacting with the system but also for agents as parts of the modeled MAS. This redefinition

*page numbers relate to the version of the article downloadable at http://www.jamesodell.com/
EAAI-Bauer-0dell.pdf (last visit 2012-09-15)
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of the original UML semantic is due to the generality of the agent concept. It is also implicitly
stated in the context of discrete event simulation by Knaak and Page (2006, p. 36).

As mentioned in (Page and Kreutzer, 2005, p. 360):

“Statecharts: [...] can be used to model reactive agents’ state-dependent responses to
message or signal reception. They are also used occasionally to represent protocols or
agents’ reactive plans (Bauer and Odell, 2005, p. 14). [...] Since they focus on how agents
react to asynchronous events, statecharts might be better suited for modelling reactive
agents than activity diagrams.

Activity diagrams [...] model an agent’s tasks; i.e. its plans or protocols (Bauer and Odell,
2005, p. 13). Patterns of synchronization between concurrent tasks performed by different
agents, or within the same agent, can be modelled using synchronization bars or send and
receive signal actions.”

Interaction Diagrams: According to Bauer and Odell (2005, p. 15), sequence diagrams are
the most prominent interaction diagram type in agent-based modeling. The authors mainly
focus on the differences between the UML 2 notation for (high level) sequence diagrams and
the UML 1.x-based AgentUML interaction diagrams. To their conclusion, the UML 2 notation
includes all control flow patterns from AgentUML and adds advanced constructs such as critical
fragments (Bauer and Odell, 2005, p. 15). Note that UML 2 sequence diagrams are strictly
block-structured, while AgentUML allows to connect elements more freely. As described in
Section 3.3.2.1 the latter can lead to unclear semantics.

To compensate the drawback that roles, multicast communication, and constraints on message
cardinalities remain unsupported in UML 2, the authors — broadly speaking — propose to
transfer the respective AgentUML extensions to the new notation (Bauer and Odell, 2005,
p. 15). The different appearance of UML 2 and AgentUML is visualized by the example of the
FIPA contract net protocol which is cited in Figure 3.5. The block-structured UML 2 notation
might appear less readable due to visually overlapping message arrows and interaction fragments
(Bauer and Odell, 2005, p. 17; see also the review in Page and Kreutzer, 2005, p. 360).

Communication diagrams are rated less useful for agent based modeling due to their limited
control flow constructs (Bauer and Odell, 2005, p. 16). The authors propose to apply the
aforementioned extensions for roles and multicast communication to this diagram type as well.
In this case, each node in a communication diagram corresponds to a role and role changes are
indicated by connecting nodes with a stereotyped dashed arrow.

A more powerful diagram type for agent-based modeling are interaction overview diagrams,
i.e. activity diagrams with sequence diagrams embedded in the activity nodes (Bauer and
Odell, 2005, p. 17). The authors emphasize the improved visual clearness compared to UML 2
interaction diagrams when it comes to displaying protocols with complex control flow (Bauer
and Odell, 2005, p. 17). Note that these diagrams are especially suitable to display hierarchical
protocols where a number of basic interaction patterns (displayed in the activity nodes) are
embedded into a larger (multi-agent) workflow.
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Figure 3.5.: ”An example for modelling agent interaction protocols with AUML (left) and UML 2
(right). Both diagrams show the popular Contract Net protocol for distributed task al-
location (adopted with modifications from Bauer and Odell (2005, p. 16).” Figure and
caption adopted from Page and Kreutzer (2005, p. 359).

3.3.3. Petri Nets and Mulan

Beyond the application of UML as a visual modeling technique for MA(B)S, Petri net-based
approaches strive to provide a concise semantic for agent-based models which, among other
advantages, leads to executable models. Roélke (2004, Ch. 5) presents an overview of several
approaches to model (parts of) MAS by means of Petri nets. He furthermore introduces the
MULAN architecture that also builds a formal basis for the integration of MABS and process
mining in this thesis.

In the following the MULAN architecture and its aplications to AOSE as well as its suitability
for MABS are reviewed. It is also compared to a recent approach by Stuit et al. (2007b) that
has been mentioned in the context of process mining in the literature.

3.3.3.1. MULti Agent Nets

The MULAN architecture was developed in the dissertation by Heiko Rolke (2004) at the Uni-
versity of Hamburg’s Department of Informatics. The main intention is to employ reference
nets to model agents and multi agent systems. KEspecially the concept of nets-within-nets is
used to “describe the natural hierarchies in an agent system” (Duvigneau et al., 2003, p. 62).
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Figure 3.6.: Overview of the MULAN architecture (adopted from Roélke, 2004, as cited in Cabac
et al., 2006¢, p. 14).

As indicated in Figure 3.6, the MULAN architecture consists of four levels, i.e. protocol, agent,
platform, and multi-agent system. Entities on all levels are modeled as nets with Java inscrip-
tions and connected through token refinement (see Section 2.3.2.5). This means that entities
of a higher level (e.g. platforms) contain entities of the next lower level (e.g. agents) as tokens.

Agent Level According to Cabac et al. (2008a, p. 39), a MULAN agent consists of a main
agent net and several sub-components: protocols, decision components, a knowledge base, and
a protocol factory. The agent net represents the agent’s interface to the environment. Since all
agent interaction in MULAN is message-based (Duvigneau et al., 2003, p. 62), the net contains
two transitions with synchronous channels :send() and :receive() that are employed to
exchange messages with other agents via the platform.

For the sake of adaptivity, the behaviour of an agent is not modeled statically in the agent
net but by means of distinct protocols which can be dynamically created and removed (Rolke,
2004, pp. 112). Each protocol is a workflow-like net (template) that describes a task or plan
the agent can execute. Protocol nets are instantiated either as a reaction to messages or pro-
actively triggered by agent-internal events. Active protocol instances reside on a certain place
of the agent net from which they are removed when the protocol terminates.

Protocol instantiation is executed by the knowledge base and the protocol factory: The knowl-
edge base contains facts that map message types to handler protocols. When the agent receives
a new message, it first checks if this message belongs to a conversation lead by an already active
protocol instance.?! If the message does not belong to an active protocol, the knowledge base
is queried for a protocol matching the type of the new message. The corresponding net token
is added to the place for active protocols and the protocol is started.

Besides mappings between trigger messages and protocols, the knowledge base can contain
further facts reresenting the knowledge of an agent. This includes pro-active triggers for protocol
instantiation as well as further knowledge used by active protocols. Note that besides the
basic net structure and the synchronous channels used for communication, MULAN poses no

*'The FTPA-ACL tag in-reply-to is used to store this information. The tag conversation-id is currently not
used in MULAN.

80



3.3. Modeling Techniques for Agent-Based Simulation

restrictions on the particular design of agent net, knowledge base, and protocol factory, which
allows for implementations with different complexity (for the knowledge base see e.g. Rolke,
2004, pp. 150).

Protocols and Decision Components Protocols model the behaviour of agents. Different
from a common use of the term to describe the course of an interaction, a MULAN protocol
represents the behaviour of a single agent (role) during an interaction (Cabac et al., 2008a,
p. 39). Different types of protocols and supportive constructs are distinguished (see Rolke,
2004, Sec. 6.3; Cabac et al., 2008a, pp. 39):

e (elementary) protocol nets,

e subnets and decision components,
e higher order protocols,

e meta-protocols.

A protocol net describes a plan to perform a task (e.g. Cabac, 2010, pp. 58): Protocols can
be arbitrary reference nets that respect the channel names of the agent net for communication
and knowledge base access. There must be a single start point in the form of a transition with
an uplink :start() and it is generally recommended to use a workflow net-like structure with
a single end point and without 'dead’ transitions.

To improve readability and convenience of modeling, Cabac et al. (2003) introduced a set
of standardized net components (see Section 2.3.2.6) for protocols. These include common
constructs to model control flow and interactions quite similar to AgentUML sequence or UML
2 activity diagrams. As shown in Figure 3.7, each component is given a concise semantic by the
contained net elements. To ease the understandability of the resulting models, data flow-related
aspects are not covered by the components. Rolke (2004, p. 152) recommends to store only
local data within protocol nets, while data between different protocols must be exchanged via
message passing or the agent’s knowledge base.

For this reason it is not advisable to model all aspects of an agent’s behaviour as protocols.
Supportive sub-routines can be modeled as arbitrary subnets that exchange data with the calling
protocol net directly via synchronous channels (Rolke, 2004, p. 136). A net component SubCall
standardizes the communication between protocols and subnets (Rolke, 2004, pp. 135). Specific
subroutines that encapsulate algorithms for decision making are called decision components
(DCs, Cabac et al., 2008a, p. 40). These also serve as interfaces to “external tools or legacy code
as well as a graphical user interface” (Cabac et al., 2008a, p. 40). There is a set of net components
to model DCs and their communication with protocol nets.

Elementary protocol nets are re-usable behavior modules that can be composed to larger work-
flows by higher order protocols. These are nets that take other protocols as parameters and
link their control flow in a certain way, e.g. by sequential, concurrent, conditional, or iterated
execution (Rolke, 2004, p. 137). While elementary protocols are identified in the knowledge
base by the name of the protocol net, higher order protocols are denoted by a parameterized
protocol descriptor. As an example, X0R(p1,p2) might describe a higher-order protocol XOR
for the exclusive-or execution of two protocols p1 and p2 (Rélke, 2004, p. 142).
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Figure 3.7.: A simple protocol net with components for protocol start, message sending, message
reception, exclusive-or split, and merge. The net only serves for demonstration and
was therefore not refined into an implementation.

Specific higher order protocols that ease the modeling of adaptivity are called meta protocols
(Rolke, 2004, p. 142). While higher order protocols normally just impose a certain order on
the execution of multiple elementary protocols, meta protocols can additionally “influence the
[internal] control flow of the passed (complex) protocols” (Rolke, 2004, p. 142). As an example,
Rolke (2004, p. 143) shows a protocol that adopts a new protocol sent in a message into the
knowledge base if the corresponding descriptor is not already known to the agent.

Platform Level As indicated in Figure 3.6 a MULAN platform hosts references to a number
of agents on a dedicated place (Rolke, 2004, p. 158). Its main purpose is to provide the
inhabiting agents with an infrastructure for communication. This includes internal message
passing between agents on one platform as well as external communication with agents on
other connected platforms (Rolke, 2004, p. 164). Further responsibilities of the platform are
lifecycle management (especially creation and deletion of agents), mediation of services, and
support for agent migration (Rolke, 2004, p. 159,161).

Rélke (2004, p. 197) notes that “MULAN was modelled ’in the spirit of” the FIPA specifications. This
means that MULAN nets are not sufficient to be completely compatible to the specification. However, no
specification is violated either.” Therefore, agent management and service mediation on a MULAN
platform are carried out by two dedicated agents AMS and DF. Both are standard MULAN
agents that possess specific protocols to perform their tasks like the registration of a new agent
(AMS) or the resolution of a service description (DF) (Rolke, 2004, pp. 175).

An important concept in MULAN is the analogy between platforms and agents (Rolke, 2004,
pp. 181): The behavior of an agent is constituted by its active protocols, and the behavior of
a platform is realized by its inhabiting agents (see also Cabac et al., 2006b, Sec. 2.2). This
leads to a hierarchical view of agents as platforms that host a number of (simpler) agents as
'protocols’. On the other hand, platforms are agents that communicate via message passing
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with other platforms within a multi agent system. This analogy allows for arbitrary hierarchies
of nested agent systems.

Rolke (2004, pp. 183) claims that using the concept of an agent as the only abstraction offers
several advantages. However, he admits that the four-level hierarchy of the MULAN archi-
tecture has proven to be easier understandable than the more abstract concept that “every-
thing is an agent” (Rolke, 2004, p. 181). In the fully FIPA-compliant MULAN implementation
CAPA (see Section 3.4.5), the platform is nevertheless realized as an agent. This simplifies the
(message-based) communication between platform and AMS agent and allows for a hierarchical
embedding of platforms (Rolke, 2004, p. 201).

MAS Level A MULAN MAS is a net that represents a domain-specific infrastructure for agent
communication and mobility between multiple platforms (Rolke, 2004, p. 158). This system
net “consists of places that contain platform nets and transitions that build the infrastructure of the
agent system” (Rolke, 2004, p. 158). As an example, Rolke (2004, p. 222) shows a system net
that represents different rooms of a one-family house inhabited by a simulated housekeeping
robot.

Though Roélke (2004) does not cover the MAS level in detail, the aspect of mobility receives
attention due to its close relation to the nets-within-nets formalism. Kohler et al. (2003, p. 125)
identify four classes of mobility of an object net within a system net that depend on the net(s)
that exercise control over the migration. Rolke (2004, p. 191) also shows agent protocols for
migration from a source to a destination platform.

3.3.3.2. Petri Net-Based Agent-Oriented Software Engineering

The good practical applicability of the MULAN architecture in combination with the Petri net
development environment RENEW (for examples see Rolke, 2004, Ch. 9) allowed to establish the
software engineering approach PAOSE (Petri net-based Agent Oriented Software Engineering)
(Cabac et al., 2007). This approach strives to tackle the problems of complexity, concurrency,
and distribution in software development by using concepts of reference nets and MAS. PAOSE
can be considered model-driven since it stipulates the stepwise transformation of reference nets
and UML-based models (see Section 3.3.3.3) from specification to implementation. It therefore
relies on a set of additional tools reviewed in Section 3.4.5.

Different from other AOSE approaches, PAOSE targets the developed software artifacts and
the software development process with similar agent-based concepts. In particular, the MAS
metaphor is applied as a “guiding metaphor” to the development team and process (“multi-agent
system of developers”, see Cabac, 2007, p. 8). This allows for a unified view upon technical and
organizational aspects of software development and emphasizes properties commonly associated
with the (technical) MAS metaphor such as flexibility, self-responsibility, and self-organization
in the development team (Cabac, 2007, pp. 8).

The basic process model of PAOSE is shown in Figure 3.8 (left): After an initial analysis of
requirements, the phases of design, implementation, and integration are executed repeatedly
to produce several incremental software milestones. A regular re-consideration and refinement
of requirements is also included. The implementation of agents, interactions, and ontology
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defined intersection points (right). Adopted with modifications from (Cabac, 2007,

pp. 6,7).

proceeds in a “concurrent and higly interactive” manner supported by the development tools de-
scribed in Section 3.4.5 (Cabac, 2007, p. 7). This partitioning of the system under development
into three orthogonal perspectives of “structure, behaviour, and terminology” allows for a matriz
organization (see Figure 3.8, right) with well-defined intersection points between the different
development tasks (Cabac, 2007, p. 6).

3.3.3.3. Mulan and UML

Besides reference nets, several UML-like diagram types are applied in PAOSE. For practical
modeling tasks these diagrams provide a more specialized and compact model representation
that can be automatically transformed into implementations in the form of reference nets with
Java inscriptions. The diagram types used in PAOSE are use case diagrams, agent interaction
protocol (AIP) diagrams, role-dependency (RD) diagrams, and ontology diagrams (Cabac et al.,
2007, Sec. 3).

Use case diagrams are applied during the coarse design phase to provide an overview of agent
roles (displayed as actors) and their interactions (displayed as use cases); see Cabac et al. (2007,
p. 42). From these diagrams the matrix shown in Figure 3.8 (right) can be derived. Intersection
points in the matrix are represented as connections between use cases and actors in the use
case diagram (Cabac et al., 2007, p. 42).
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ATP diagrams are basically AgentUML sequence diagrams (see Section 3.3.2.1) with restrictions
that allow to provide a precise formal semantics in terms of reference nets (Cabac et al., 2003).
The main restriction is that message split elements are not used due to their unclear semantics.
In particular a message split violates the chronological order of tasks on the receiver’s lifeline.
In AIP diagrams, only control flow split elements on the lifeline of the sender are allowed
(Cabac et al., 2003, p. 114). Message join elements are used to express the situation when a
receiver expects exactly one of several alternative replies (Cabac et al., 2003, p. 114). With
these restrictions it is straightforward to transform the elements of AIP diagrams to MULAN
net components (Cabac et al., 2003, pp. 114-115). Thus (a template for) an executable protcol
net can be constructed for every lifeline in the AIP diagram.

The remaining two diagram types are variants of UML class diagrams that are used to model
the structure and the terminology of the MAS under development. R/D diagrams are a mixture
of class and component diagrams (Cabac et al., 2007, p. 42). To describe the system structure,
different types of entities (service interfaces, agent roles) and dependencies (specializes, uses,
requires) are used (see e.g. Cabac et al., 2007, p. 42).

Service interfaces are drawn as rectangles tagged with the stereotype «Interfacey that include
one compartment with the name of a single service description. Role entities describe all
relevant aspects of a certain agent role. They are also displayed as rectangles with the stereotype
«AgentRole». Four different types of members can be declared (see e.g. Cabac et al., 2007,
p. 42):

e incoming messages that the role can handle,
e protocols executed by the role in response to certain trigger messages,
e state descriptions including factual knowledge and pro-active protocol triggers,

o required services of the role.

Connections in a R/D diagram describe the relations between roles and services (Cabac et al.,
2007, p. 42): The relations provides and requires indicate that a certain service is provided or
required by a role. The relation specializes is drawn as an inheritance arrow from the specialized
to the general role. Abstract (base) roles are also possible. Note that the member types of
agent roles correspond to the elements of a MULAN agent introduced in Section 3.3.3.1. Thus,
one or more agent roles describe a certain MULAN agent class.

To model the terminology of a MULAN MAS, common ontology notations can be used. One
easily understandable notation are concept diagrams, i.e. class diagrams that use inheritance and
associations as the only relations (Cabac et al.; 2007, p. 43). Due to these restrictions, concept
diagrams can be mapped to a PN formalism called feature structure nets which is tailored
towards data modeling (Wienberg et al., 2006). This formalism and the concept diagram
notation is directly supported by RENEw (Cabac et al., 2007, p. 43).

3.3.3.4. Mulan as a MABS Framework

As already discussed in Section 2.3.2.6 the suitability of MULAN for simulation is not as much a
question of general modeling power as of appropriate tool support. Several case studies (see e.g.
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Rolke, 2004, Ch. 9) show that the architecture can be used to structure even large agent-based
models.

The simulation scheduler functionality of RENEW in the sequential mode is also available for
MULAN. As noted in (Page and Kreutzer, 2005, p. 362): “further built-in simulation support,
e.g. for experimental planning, data collection, or data analysis, is currently not offered. However, [as
discussed above] prototypical data analysis tools, which help in using RENEW for discrete and agent-
based simulations, have been developed Striimpel, 2003.”

The inherent concepts of locality and mobility allow to employ MULAN for spatially explicit
simulations as well. A discrete spatial model can be represented by a system net with locations
modeled as places and pathways modeled as connected arrows and transitions; or an arbitrary
spatial model implemented in Java can be connected to the MuLAN MAS (see Rolke, 2004).

While the former approach provides a formal representation of (spatial) mobility in terms
of Petri nets (Kohler et al., 2003), the latter might offer an improved performance and the
possibility to integrate grid-based and continuous spatial models as well. An overhead of the
PN-based spatial model is that each place (location) must in principle contain a full MULAN
platform that allows the agent to communicate with the local environment.

3.3.3.5. Other Petri-Net Based Approaches

Though there is a relevant number of alternative approaches towards agent-based modeling
with Petri nets, we will only review one more here. This approach was developed at Groningen
University’s "The Agent Lab’ (TAL) and shows some parallels to PAOSE. Most important for
this thesis, it has been extended with machine learning techniques and an integration of process
mining has been proposed (Stuit et al., 2007b, Sec. 7). The objective of the TAL approach
is to support the modeling and implementation of inter-organizational business processes with
agent concepts. Its cornerstones are the visual modeling language TALL (The Agent Lab
Language) and the simulation environment AGE (Agent Growing Environment). The following
presentation is based on a paper by (Stuit et al., 2007b) and a related poster (Stuit et al., 2007a).

Similar to PAOsE, TALL combines UML-like elements with an extension of Petri nets called
Behavior Nets. The TALL diagrams comprise two modeling levels:

e On the high level, interactions are described using Interaction Structure diagrams (Stuit
and Wortmann, 2012, pp. 144): As shown in Figure 3.9 (top), these diagrams display
interactions with the participating roles and agents bound to these roles.

e On the low level, the behavior of interacting agents is described by means of Behavior
Nets (see Figure 3.9, bottom) (Stuit et al., 2007b, Sec. 3): These are basically workflow
nets with input and output places depicted similar to initial and final nodes of activity
diagrams. Behavior Nets of multiple interaction roles can be combined into a sequence
diagram-like structure using message places (marked with a ’letter’ symbol) and swim-
lanes. As indicated by Stuit et al. (2007b, Sec. 3) Behavior Nets are thus rather similar
to protocol nets in MULAN.

A concept in TALL that goes beyond standard interaction protocols are so-called interaction
beliefs (IBs, see Stuit et al., 2007b, Sec. 3). IBs are part of an agent’s knowledge base, where
each IB represents an agent’s assumptions about a certain interaction between itself and a
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Figure 3.9.: Overview of the TALL notation. Adopted with modifications from (Stuit et al.,
2007a).

number of other roles. An IB consists of multiple Behavior Nets separated by swim lanes. One
dedicated swim lane is tagged with the keyword me, and represents the behavior associated
with the agent’s own interaction role. All other swimlanes, in contrast, represent the way that
the agent expects other interaction roles to behave during the conversation (Stuit et al., 2007b,
Sec. 3).

The actual behavior of other agents in an interaction might differ from these expectations
depending on their own interaction beliefs. To visualize this uncertainty, transitions of *foreign’
Behavior Nets are depicted by a cloud symbol (Stuit et al., 2007b, Sec. 3). When an agent’s
actual communication partner behaves other than expected, further following the predefined
protocol might lead to failure. The agent can thus either autonomously align its behavior to
the new situation or enter a so-called escape mode to expect an intervention by another agent
or user (Stuit et al., 2007b, Sec. 5).

Interaction beliefs, escape mode, and interventions are central to the TAL modeling approach
because they allow to model and simulate stakeholders’ different views upon a decentralized
business process with a focus on strategies to resolve conflicts resulting from different expecta-
tions (Stuit et al., 2007a, Sec. 3). The involvement of stakeholders into the modeling process is
supported by AGE, a visual development and simulation environment for TALL models. AGE
allows participatory simulations called 'gaming sessions’ (Stuit et al., 2007a, Sec. 4) in which
human domain experts incrementally provide training to simulated agents that entered escape
mode due to conflicting expectations. The agents should then learn how to resolve the conflict
by observing the user. The actual and planned application of machine learning techniques in
this context is detailed in Section 5.3.4.5.
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3.3.3.6. Summary

In the previous sections we have reviewed different modeling techniques for MABS. In this
thesis, all presented modeling styles will be considered due to their specific advantages and
drawbacks. Code-centric and rule-based modeling provides high flexibility and productiveness
for simulation practitioners with programming skills and is found in many real-world settings.
The use of UML and reference nets eases modeling and validation due to the explicit graphical
notation.

Current approaches towards roundtrip engineering and model driven development provide
transformations between the different representations. This thesis focuses on the ’inverse’
direction of reconstructing reference net and UML-like models from simulation traces by means
of process mining. While the benefit of such trace abstraction is obvious in code-centric and
rule-based simulation, we will also consider specific advantages of process mining in connec-
tion with reference nets and UML. Furthermore, we apply reference nets as a means to model
workflows for experimentation, result analysis, and validation.

3.4. Implementation of Agent-Based Models

For the implementation of MABS a large number of tools exist that can be characterized as
follows (see Oechslein et al., 2001, Sec. 3; Kliigl, 2001, Sec. 4.4):

e simulation-specific extensions of agent frameworks and platforms
e agent-specific extensions of object-oriented simulation frameworks and systems

e frameworks and simulation systems originally developed for MABS

According to (Page and Kreutzer, 2005, pp. 263) a simulation framework is a software frame-
work that adds simulation-specific functionality to an underlying programming language via
a customizable object-oriented class library. The framework can be extended at certain "hot
spots’ by means of inheritance (white box framework) and composition (black box framework);
see Page and Kreutzer (2005, p. 264). While simulation frameworks mainly support model
building and implementation, a simulation system is a tool that supports all phases of a simu-
lation study (Page and Kreutzer, 2005, pp. 245).

Following Page and Kreutzer (2005, p. 360):

“An agent platform is “a software environment agents live in”; i.e. a runtime environment
for agent-based software (Rolke, 2004, p. 159). Most available platforms are based on Java
and follow the FIPA (Foundation for Intelligent Physical Agents) standard [see Section
3.2.2.2]. [..]

Agent platforms can be employed to build MABS as well. This offers a number of advan-
tages:

e Agent platforms often come with powerful frameworks for modelling complex agents

(e.g. those of the BDI architecture [...]), which are rarely available in pure simulation
environments.
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e Since agent platforms are usually designed as distributed systems, the distributed
execution of complex models is supported in a natural way. Platform interoperabilty
is ensured by the FIPA standard.

e Agents interacting with a simulated environment on an agent platform can be easily
deployed in their “real” environment after the testing phase.

Since simulation is not an application domain most agent platforms were originally designed
for, there are also disadvantages to their use:

e Often there is no simulation scheduler for managing simulation time, and for synchro-
nizing agents with simulated environments.

e Typical simulation tasks like stochastic modelling, planning experiments, data collec-
tion, and statistical data analysis are usually not directly supported.

e Agents running on typical agent platforms are often quite “heavy-weight” objects, with
one or more concurrent threads of control. This might cause performance problems
in models with many such agents.

There are, however, a number of agent platforms which make simulation support available
as an integral part of their architecture or as an add-on.”

In the following, we briefly review some common agent platforms and MABS frameworks as
well as the simulation framework FAMOS and the agent platform CAPA used in this thesis.

3.4.1. JADE Agent Platform

As described in (Page and Kreutzer, 2005, p. 361):

“The Java Agent DEvelopment Framework [...] (Bellifemine et al., 2001) is a widely used
open source agent platform, which follows [...] the FIPA standard. JADE offers a dis-
tributed agent runtime environment, an extensible framework for behaviour modelling,
and some graphical agent management and debugging tools; e.g. a so-called “sniffer agent”
which constructs simple UML sequence diagrams tracing agent communications. An agent’s
[...] behaviour is composed of so-called behaviour objects, each of which represents a single
agent task. Since these tasks can be added to and removed from an agent dynamically
at runtime, the architecture offers a powerful base for defining complex behaviour. There
are extension packages for behaviour modelling with hierarchical UML statecharts (Griss
et al., 2002) or the Jadex BDI architecture (Pokahr et al., 2003). Some graphical modelling
tools are also available.

JADE has not been specifically designed to support MABS, but a so-called time service,
i.e. a process-oriented simulation scheduler encapsulated in a JADE agent, has been devel-
oped as an add-on package by Braubach et al. (2003). [... Furthermore]|, it provides some
interesting tools for analysing agent behaviour based on ACL message traces. In addition
to the above mentioned “sniffer agent”, a tool called ACLAnalyser (Botia et al., 2004) can
be used to aggregate message traces into social networks at different levels of detail. JADE
has occasionally been applied in MABS; e.g. for the agent-based simulation of supply chains
(Ahn and Park, 2004).7%?

Simulation-specific extensions have been realized by Gildhoff (2007) and Koppehel (2007) in
the context of the Jadex project.

22JADE is available at http://jade.tilab.com, last visit 2014-02-16.
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3.4.2. MadKit Agent Platform and Simulation Framework

MadKit (Ferber et al., 2012) is at the same time a Java-based framework and platform for
agent development and a library for time-driven agent-based simulation reminiscent of the
‘classic’ MABS framework Swarm (Minar et al., 1996). Simulations are executed in a so-called
synchronous engine that builds upon the agent platform. The modeling and execution of
simulated agents slightly differs from agents developed for the 'real’ platform.

The common organizational concept used in both 'modes’ (i.e. agent platform and synchronous
engine) is the AGR model described in Section 3.2.2.2. The reviewed version 4 of MadKit
extends the basic AGR model with a construct for (network) communities.

Agents on the MadKit platform run in an own thread and define an own life cycle. They
can be assigned an exchangeable behavior module (controller) and communicate via messages
quite similar to JADE. MadKit supports several languages and tools for behavior description
including Java, the JESS?? rule engine, and a graphical modeling tool for different formalisms
including extended Petri nets. Different from JADE, a MadKit agent can only run one controller
module at a time. The execution policy is event-driven, which leads to a strong similarity of
the the Java-based MadKit agent with a simulation process running in real-time.

In agent-based simulations with the synchronous engine, agents do not have an own life cycle
and normally do not use an own controller. Instead, a so-called Activator is defined that
implements a time-driven schedule for a group of agents. A scheduler agent running in a
thread on the MadKit platform merges and synchronizes the schedules of all activators. A
more abstract simulation framework named 7Turtle Kit builds upon the synchronous engine
and allows to implement simple models comparable to the Star Logo system.

For simulation observation, MadKit adopts the probe construct from Swarm (Minar et al., 1996).
Probes provide well-defined programmatic interfaces to observe properties and collect data
about agents from a certain group and role. Basic statistic measures like minimum, maximum,
and average of the observed values can be computed. The MadKit platform comprises further
visualization tools such as a group viewer and a message traffic observer named spy agent, quite
similar to the JADE Sniffer.

3.4.3. SeSAm Simulation System

SeSAm (ShEIll for Simulated Agent SysteMs)** is a simulation system for MABS that was
developed at the University of Wiirzburg. The initial version of SeSAm was designed by Kliigl
(2000) as part of her dissertation and implemented in the object-oriented LISP variant CLOS.
As a simulation system (Page and Kreutzer, 2005, p. 245), SeSAm supports all phases of a
simulation study with visual tools. The CLOS version in particular contains a graphical editor
to model the behavior of agents by means of activity automata (see Section 3.3.1.3). A summary
of this version’s functionality is also given by Page and Kreutzer (2005, pp. 364).

The current version of SeSAm is a re-implementation of the original CLOS-based system in
Java. It was mainly designed and implemented as part of the dissertation by Oechslein (2004),

*http://herzberg.ca.sandia.gov, last visit 2012-09-17
http://www.simsesam.de, last visit 2012-01-12
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on which the following description is based. A main difference to the initial version is the
use of the UML dialect SeSAm UML (see Section 3.3.2.2) for agent modeling instead of the
proprietary activity automata notation. The SeSAm editor supports all elements of activity
graphs described in Section 3.3.2.2.

Besides activity graphs, SeSAm provides a visual editor to design grid-based environments.
Sensors and effectors of agents can be specified by means of pre-defined as well as custom prim-
itives via graphical dialogs. Experimental designs can be set up in an experiment specification
language based on the formal language SeSAm Impl mentioned in Section 3.3.2.2. The lan-
guage supports manual as well as automated experimental design (see Section 2.4.1) and can
be extended with custom Java code.

Furthermore, online- and offline analyses might be registered with a model for result analysis
based on simulation traces. The SeSAm simulator also runs in a client/server mode that allows
to distribute parallel simulation runs (e.g. for simulation-based optimization) in a computer
network. The SeSAm system can be extended using a plugin mechanism.

3.4.4. FAMOS and DESMO-J

FAMOS (Framework for Agent-based MOdeling and Simulation) is a framework for agent-
based discrete event simulation. It was developed at the University of Hamburg’s Department
for Informatics as an extension of the discrete event simulator DESMO-J (Discrete Event Sim-
ulation and MOdeling in Java). FAMOS integrates common features of frameworks for agent
development with the world views of discrete event simulation (Knaak, 2002; Knaak et al.,
2002). Furthermore it offers powerful and extensible constructs for spatial modeling (Meyer,
2001, 2008).

3.4.4.1. DESMO-J

The discrete event simulator DESMO-J (see e.g. Page et al., 2000, Ch. 10) is a strongly ex-
tended and re-designed object-oriented Java implementation of the Simula library DEMOS
(Birtwistle, 1979). It offers support for event scheduling, process interaction, and combined
models. Transaction- and activity-oriented models are mapped to process interaction mod-
els with specific synchronization constructs such as resources. DESMO-J furthermore offers
constructs for queues, statistical data-collectors, a configurable reporting system, and a simula-
tion infrastructure based on the conceptual separation of models and experiments (see Section
2.4.1). A simple Desktop- and Web-based graphical user interface to configure, run, and observe
experiments is also included (Kiesel, 2004).

3.4.4.2. Agents in FAMOS

Though MABS is often understood as an extension of process interaction, agents in DESMO-
J are technically based on event-oriented constructs. The reasons for this design decision are
performance (since every simulation process employs an own Java thread) and better suitability
for asynchronous event handling (Page and Kreutzer, 2005, p. 363).
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Figure 3.10 shows the structure of a FAMOS agent (see also Knaak, 2002, Sec. 5.2.1): As an
extended entity, it actively handles so-called signals. These are either received from other agents
(external signals) or self-scheduled as future intentions (internal signals). Pending signals are
stored chronologically on an ’inner’ schedule, which is encapsulated from the environment as

opposed to the global event list of DESMO-J (Page and Kreutzer, 2005, p. 363).

desmoj.core.simulator
Event
Entity + eventRoutine()
N N
famos.agent
Agent _(re-)activates_ AgentActivationEvent
+ receive(s: Signal) + eventRoutine()
# scheduleln(s: Signal, dt: SimTime)
# cancel(s: Signal)
~ activate() ¢ controlled by Behaviour
handles _ _ _ _ _ _ | + start()
/ + handle(signals: List)
/
/ ay
Schedule //
// StateMachine SimpleBehaviour
/ State-based agent Event-oriented
ordgred / modelling with agent modelling
bytme // UML statecharts in Java
4
Signal
- A RuleEngine ProcessBehaviour
- time: SimTime - -
Declarative agent Process-oriented
modelling with the JESS agent modelling
expert system shell in Java

Figure 3.10.: “Integration of FAMOS agents into the framework DESMO-J (adopted with modifica-
tions from Knaak et al., 2002)”. Figure and caption cited from (Page and Kreutzer,
2005, p. 365).

When the agent receives a signal, it dequeues and handles all signals that are scheduled for the
current simulation time. This can cause the execution of actions (encapsulated in methods)
and the addition of new signals (i.e. intentions) to the schedule. Finally, an external agent
activation event is scheduled on DESMO-J’s global event list for the time point of the first
(earliest) signal on the internal schedule.

To allow for flexible behavior modeling, the actual handling of signals is delegated to a behavior
module that is derived from an abstract base class Behaviour. As indicated above, this design
is rather common in agent modeling. Similar to MadKit or JADE, different techniques for
behavior modeling are supported by sub-classes of Behaviour. FAMOS currently includes the
following modules (Knaak et al., 2002):

o A simple event-oriented behavior merely declares two abstract methods to implement
reactions to signals and pro-active initial actions.
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e A process-oriented behavior runs in a thread and provides methods for process synchroni-
sation (such as hold) and signal handling. This module is rather similar to the standard
agent behaviour in MadKit (see Section 3.4.2).

e The state machine encapsulates an interpreter for hierarchical and concurrent UML state
charts. It is basically a modified version of the state chart framework from the open
source CASE tool Fujaba?® (Ké&hler, 1999). Implementation details and a comparison
with Fujaba are provided in (Knaak, 2004). The domain-specific part of the state chart
code is generated from XML scripts built with an included graphical editor.

e The rule engine encapsulates the JESS forward chaining rule interpreter for declarative
modeling, quite similar to the integration of JESS into MadKit (see Section 3.4.2).

Different from behavior architectures in some agent platforms, the internal scheduler of a
FAMOS agent does not run in an own thread. While this improves the performance of models
with many agents, it complicates the implementation of dynamic deliberative architectures. As
in MadKit, a FAMOS agent is equipped with one fixed behavior module. The architecture
could be extended to a dynamic plan execution environment by using the composite pat-
tern (Gamma et al., 1995) similar to JADE. A possible design is sketched by Knaak (2002,
Sec. 5.3.4). Czogalla and Matzen (2003) implemented a simple deliberative architecture to
simulate the goal-directed behavior of passengers boarding an airplane.

3.4.4.3. Agent-Based Models in FAMOS

The main component of a FAMOS model is the environment that serves as a container for
all agents. Furthermore it provides access to a communication infrastructure, a group-based
organizational structure, and an optional spatial model.?6

The standard communication infrastructure is rather simple: transfer of signals is assumed
to be instantanious and error-free. It could, however, be exchanged with a more complex
implementation that e.g. simulates transfer durations and failure probabilities according to
random distributions (Knaak, 2002, p. 87).

The organizational structure is based on the AGR model as implemented in MadKit. Different
from the standard version, FAMOS supports the hierarchical embedding of groups reminiscent
of the seminal MABS framework Swarm (Minar et al., 1996). In fact, this makes the role concept
dispensable at the implementation level because roles contained in a group can be mapped
to sub-groups. For compatibility, a subclass RoleGroup that supports roles is also included.
Groups can receive signals that they broadcast to all contained agents. They furthermore
provide means for the functional referencing of contained agents similar to SeSAm (see Section
3.4.3).

As a main focus, FAMOS provides an extensible framework to model spatial structures and
dynamics (i.e. agent movement and environmental processes). Spatial structures are represented
in terms of abstract positions and connecting links. This abstract representation is realized by
different topologies. FAMOS currently includes graph-based models and different kinds of

*Shttp://www.fujaba.de, last visit 2012-09-17
26The following description is based on (Knaak, 2002, Secs. 5.2.3, 5.5).
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regular and irregular grids (Meyer, 2008). Czogalla and Matzen (2003) implemented a 'vector-
based’ continuous model to represent cabin layouts of airplanes.

The movement of agents is realized by different movement strategies. These strategies determine
how and when an agent moves between different positions of the spatial topology. Available
movement strategies include random walk, gradient following, and movement along previously
planned routes (Page and Kreutzer, 2005, p. 364). Due to the abstract spatial representation,
movement strategies can in principle be re-used with different spatial topologies.

Besides agents, arbitrary objects implementing a certain interface can be located in the spatial
environment. For each agent, the environment manages an individual horizon of perception and
action, and the agent can query the environment for observable objects. The environment can
also manage groups that agents automatically enter and leave when they reach certain spatial
positions. Dynamics of environmental properties can be represented by macroscopic modeling
constructs from DESMO-J such as events.

For the observation of agents, a variant of the probe concept from Swarm is used. DESMO-J
provides so-called access points®” that provide a uniform interface to arbitrary object properties
(Page and Kreutzer, 2005, p. 364). FAMOS includes a statistical observer (class Individual-
Observer) that observes the access points of a set of agents. The results are displayed by the
DESMO-J reporting system as tables, and common statistical quantities are computed over
numerical properties.

3.4.5. Capa Agent Platform

CaApA (Duvigneau, 2003) is an “agent platform built on top of the Java-based Petri net simulator
RENEW” (Page and Kreutzer, 2005, p. 361) described in Section 2.3.2.5. It is a fully FIPA-
compliant re-implementation of the MULAN architecture (Section 3.3.3.1) realized with refer-
ence nets and Java code. This “provides an explicit and easily understandable architecture for both
platform and agent models” (Page and Kreutzer, 2005, p. 362). The FIPA compatibility allows
CAPA to interact with other FIPA platforms such as JADE (Section 3.4.1).

CApA includes a number of additional visual development tools that support the different phases
of the PAOSE approach:

e Net components for protocol nets and decision components are provided as additional
toolbars in the RENEwW IDE.

e An editor for use case diagrams is embedded into RENEW to document the results of
the coarse design phase. From these diagrams a generator can build a new development
project skeleton including folder structure and diagram templates (Cabac et al., 2007,
p. 41).

e Another RENEW plugin allows to draw AIP diagrams of agent interactions. These are
automatically mapped to protocol net templates for every participant of the communica-
tion. To implement an executable agent, the user fills these templates with Java code for
elementary agent actions (Cabac et al., 2007, pp. 44).

*Tthe term was adopted from the work by Bachmann (2003)
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e R/D-diagrams are drawn with a RENEW plugin called knowledge base editor. From the
diagrams the tool generates so called role descriptions that can be integrated into knowl-
edge bases of agents. Functionality to manage and start multi-agent applications is offered
as well (Cabac et al., 2007, p. 43).

e Ontology diagrams are either created with the external tool Protege®® or by using the
feature structure (FS) plugin of RENEW. Both tools also offer (at least experimental in
the latter case) Java code generators (Cabac et al., 2007, p. 43).

The main tool to debug applications developed with CAPA is the MULAN Viewer (Cabac et al.,
2008b, Sec. 3). It provides a tree-structured view on the state of the platform according to
the four levels of the MULAN architecture (Cabac et al., 2008b, p. 403). Starting from this
view, it is possible to inspect the markings of all involved nets. A hierarchical inspection of
net tokens and a UML-like display of data tokens is also possible (Cabac et al., 2008b, p. 404).
Furthermore the MULAN Viewer provides basic functionality to control agents and log ACL
messages (Cabac et al., 2008b, p. 404). A dedicated message monitoring tool named MULAN
Sniffer was developed in the context of this thesis and is described in Section 7.4.1.

3.5. The Problem of Analysis and Validation

In the previous sections, it has become clear that agent-based models tend to be complex
and allow for a high degree of modeling freedom. This Section briefly reviews the problems
that this inherent complexity poses on their analysis and validation. On this basis, properties
of appropriate validation techniques are discussed with respect to the classification scheme
presented in Section 2.4.3.5. Concrete validation techniques for MABS will be reviewed in
Section 5.1.

In (Knaak, 2006), we divided the difficulties to analyze and validate a MABS into three main
categories based on the literature (mainly Kliigl, 2001; Edmonds, 2000):

“The possibility to simulate complex micro-macro relations is at the same time an op-
portunity and a drawback of MABS. Understanding and controlling the behaviour of the
models remains a challenging task. [...] the first [difficulty, ...] we call the problem of model
complexity: MABS contain numerous agents running complex internal processes and ex-
ternal interactions. The agent-based modelling style itself poses few restrictions on model
complexity (Edmonds, 2000). During simulation of even simple MABS, large amounts of
data (such as event logs of the agents’ interactions) are observed, whose analysis requires
advanced techniques (Sanchez and Lucas, 2002).

The second difficulty is the problem of result representation and interpretation: MABS
usually produce complex, qualitative results, such as spatial or organisational patterns,
that cannot be reduced to simple statistical measures. The models’ explanatory function
prohibits to regard MABS as black boxes and analyse global simulation outputs only. The
model must in principle be analysed at multiple levels (Edmonds, 2000). Furthermore,
the sensitivity of many MABS to initial conditions (see below) often leads to strongly
divergent simulation trajectories (Rand et al., 2003) that complicate the application of
standard statistical aggregation techniques. Instead temporally fine-grained analyses are
required that take into consideration intermediate simulation states (Edmonds, 2000).

Zprotege.stanford.edu, last visit 2012-09-17

95



3. Agent-Based Simulation

The validation, optimisation, and calibration of MABS is complicated by the [... prob-
lem of distributed system state®®]. Many MABS contain sensitive free parameters at the
agent-level that strongly influence the overall behavior. Due to the typical causal spread
appearing in distributed systems, it is often hard to tell how certain microscopic parameters
influence macroscopic properties of the overall system (Fehler et al., 2004; Kliigl, 2001).
Therefore, fitting microscopic parameters to produce certain macro-level phenomena might
lead to a tedious process of trial and error (Kligl, 2001, p. 83). The calibration of MABS
suffers from further problems: Due to the models’ high level of detail, lack of real-world
data is a major concern, and parameters of agents’ ‘mental’ processes can often not be
measured sufficiently (Horne and Meyer, 2005; Oechslein et al., 1999).” (Knaak, 2006)

Note that Kliigl (2008, Sec. 2.2) settles for quite analogical problem categiories when discussing
the problems of analysis and validation of MABS. This related approach is reviewed in Section
5.1.1.2.

In (Knaak, 2006), we further observed that

“Due to these difficulties, it is especially hard to determine if a MABS model is a sufficient
representation of reality. Many techniques for model validation (for an overview see e.g.
Page and Kreutzer, 2005, Ch. 8) are of limited use: Static validation techniques fail be-
cause the structure of MABS is often variable and incompletely specified in advance. The
applicability of formal verification techniques is limited due to large state spaces and often
non-explicit computational model representations (Moss, 2004). Generally, confirmative
techniques contradict the explorative character of many MABS studies where the focus is
put on experimental investigations of cause-effect relations in decentralized systems (see
e.g. Uhrmacher, 2000).

Taking into account the qualitative character of MABS results, informal techniques |...]
seem appropriate for analysing and validating MABS. However, important patterns might
go unrecognised within the large amounts of observed data.”

In the next chapter, we introduce data mining and process mining as potential techniques to
tackle this problem.

2In (Knaak, 2006) we named this issue the “problem of sensitivity and causal spread” (adopting the term
“causal spread” from Edmonds, 2000, p. 22). Recapitulating, however, distributed system state seems to be
the more pristine cause for the described difficulties.
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This chapter introduces foundations of data mining and the more specialized subfield of process
mining. The presentation of data mining concepts and techniques mainly follows Dunham
(2003) and Cios et al. (2007). For process mining as the main topic of this thesis a large
number of sources are reviewed. A summary of the current state-of-the art in process mining
and its applications (mainly) to the domain of business process management is also provided
in the book by Aalst (2011a).

4.1. Data Mining

Following Page and Kreutzer (2005, p. 228):

“Data mining [DM] is "the automated analysis of large or complex data sets in order to
discover significant patterns or trends that would otherwise go unrecognised" (Woods and
Kyral, 1997, p. 6, cited in Koster, 2002, p. 54).

The goals of data mining are quite similar to those of traditional exploratory statistics, but
the technique focuses more strongly on algorithms that automatically abstract complex
hypotheses (i.e. models) from large sets of data [see also Koster, 2002].”

DM is often considered as part of the larger process of Knowledge Discovery in Databases
(KDD) where DM is the crucial step of automated hypothesis generation. Chamoni (2009,
cited in Haan, 2009, p. 40) relates to this point of view as “data mining in the narrower sense”,
whereas “data mining in the wider sense” includes the whole KDD process.

For the purpose of DM, a large number of interpolation and machine learning techniques are
applied, rooted in different fields like soft computing (e.g. neural networks and genetic algo-
rithms), symbolic machine learning (e.g. inductive logic programming), and statistical data
analysis (e.g. regression). Specific process mining techniques for the reconstruction and analy-
sis of process models (see e.g. Aalst and Weijters, 2004 and Section 4.2) are in the focus of this
thesis due to their close relation to the perspectives of agent-based modeling.

An often-cited example application of data mining is market basket analysis (see e.g. Dunham,
2003, p. 5), which serves to detect typical patterns in the shopping behavior of customers.
Simply speaking, the goal is to automatically detect association rules that describe correlated
products (e.g. “customers who buy product A and product B are likely to buy product C as
well”).

Note, however, that most algorithms and models used in data mining are application-indepen-
dent. Hence, association rules can be applied to describe the navigation behavior of web site
visitors as well as decision strategies of agents in a MABS.
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4.1.1. The KDD Process

Data mining activities are usually embedded into a broader knowledge acquisition process called
"Knowledge Discovery in Databases’ (KDD). Most variants of this process contain five phases
originally proposed by Fayyad et al. (1996). The following description is based on Dunham
(2003, p. 10):

1.

Selection: Data is selected from one or more, possibly heterogeneous, sources like files,
databases, or non-electronic sources.

Preprocessing: The raw data is prepared to meet the requirements of the applied mining
algorithms. This includes the elimination of outliers and errors as well as the addition of
missing data based on estimations.

Transformation: The original, often heterogeneous, data formats are transformed into a
common format that serves as input to the mining algorithms. Many algorithms work on
vector-based data, i.e. feature vectors encoding relevant attributes.

. Data Mining: Patterns are extracted from the transformed data using a DM algorithm.

The extracted patterns should be ’useful’ for the problem under study. In the context of
the KDD process, data mining is often understood in a rather broad sense that covers
simple SQL queries or methods from explorative statistics as well as complex machine
learning techniques.

Interpretation of Results: The mined patterns are interpreted by a person to gain insight
into the analyzed data. Appropriate visualization techniques are crucial in this step to
understand and rate the quality of the discovered patterns (Dunham, 2003, p. 14).

Understanding of the Problem -

!

Input .
Understanding of the Data -

i

Preparation of the Data

i

Data Mining —

!

Knowledae Evaluation of the
9 Discovered Knowledge

Use of the
Discovered Knowledge

Figure 4.1.: The KDP model of Knowledge Discovery in Databases (adopted with modifications
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Extensions of the basic process have been stated in scientific and industrial contexts. The
six-step KDP model (Cios et al., 2007, pp. 14) based on the industrial CRISP-DM! process is
shown in Figure 4.1. This variant puts a specific focus on validation and iterative refinement.

The KDP model starts with two steps related to the clear definition and understanding of the
problem and the collected data. Furthermore, every step allows to return to previous phases
due to detected inconsistencies and errors. The fifth step includes a thorough assessment of
the discovered knowledge including “understanding [of] the results, checking whether the discovered
knowledge is novel and interesting, interpretation of the results by domain experts, and checking the
impact of the discovered knowledge. [...] A list of errors made in the process is prepared” (Cios et al.,

2007, p. 16).

The KDP model is rather akin to the simulation model building cycle as presented in Section
2.4.3.2. While the core methods for system analysis differ (i.e. data mining on the one hand
and modeling and simulation on the other hand) the overall procedures are very similar.

4.1.2. Classification of Data Mining Techniques

This section presents a number of properties that can be used to structure the variety of existing
data mining techniques.

4.1.2.1. Data Mining Tasks

Data mining algorithms are often classified by the task accomplished. Though there are minor
differences, the identification of these tasks is rather homogeneous in the literature. Basically,
DM is applied (a) to describe the analyzed data in a generalized form (descriptive data mining)
and (b) to make predictions about missing or future data from the same domain (predictive data
mining) (Dunham, 2003, p. 5). This classification mirrors the distinction between explanatory
and predictive simulation models in Section 2.2.1.

The basic DM tasks can be refined into several subtasks. Dunham (2003, pp. 7) identifies the
following descriptive tasks:

e Clustering (Dunham, 2003, pp. 7-8): The input data set is algorithmically partitioned into
disjoint classes of ’similar’ items. Elements from different classes should be ’different’ with
respect to their features. Similarity is defined by a formal similarity measure calculated
over the feature vectors. Clustering is also referred to as segmentation and closely related
to unsupervised learning (see Section 4.1.2.3).

e Summarization (Dunham, 2003, p. 8): The information contained in a dataset is con-
densed into an aggregate form that makes key aspects easier accessible. The calculation
of aggregate statistics or performance indicators is a typical example.

e Association rules (Dunham, 2003, pp. 8-9): Relations between data items are extracted
from input data in the form of rules. These describe common correlations in the data
and should not be mistaken for causal relations.

!CRoss-Industry Standard Process for Data Mining, see e.g. Cios et al. (2007, pp. 32).
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e Sequence discovery (Dunham, 2003, p. 9): In this special form of association rule learning,
frequent temporal (or ordering) relations of time-stamped data items are sought. An
example is the reconstruction of common browsing patterns from web server logs to
analyse and improve web navigation. Note that several process mining algorithms fall
into this category as well.

Among the predictive data mining tasks, Dunham (2003, pp. 5) mentions:

e Classification (Dunham, 2003, p. 5): From a set of input data items with previously known
classes, a mapping function (classifier) is learned. The classifier is used to determine the
class of new data items based on their features (pattern recognition). Classification is
related to supervised learning (see Section 4.1.2.3).

e Regression (Dunham, 2003, p. 6): A real-valued function of a previously known type (e.g.
linear) is learned from the input data. It can be used to extrapolate missing or future
values.

e Time series analysis (Dunham, 2003, p. 6): The variations of a feature are examined over
time with the purpose to automatically classify or compare time series based on similar
behavior, or to predict future development based on historical data.

e Prediction: (Dunham, 2003, p. 7): This term is used to describe classification, regression,
or time series analysis with the purpose to predict future values based on past observa-
tions.

4.1.2.2. Interpretability of models

Another important aspect to classify data mining techniques is the interpretability of the models
that represent the generated hypotheses. Generally we can identify two classes of models that
mirror the distinction between predictive and descriptive data mining tasks described above
(see e.g. Diaz et al., 2005, pp. 32,36):

o Interpretable models represent hypotheses with the aid of symbols that convey a meaning
to the user. Therefore these models can be used for a compact and readable description
of the observed patterns and aid in their explanation.

o Non-interpretable models, in contrast, are an abstraction of the analyzed data in terms
of non-symbolic units such as bit strings in classifiers (Holland et al., 2000) or weighted
connections in artificial neural networks (Haykin, 1999). The structure of such models
can not straightforwardly be 'read’ by a human. However, these models can be rather
efficient in classification or prediction tasks.

Note that the two classes of models correspond to the classification of agent architectures by
Kliigl (2000) into subsymbolic and symbolic architectures. It is straightforward to see that an
adaptive agent can (in principle) use data mining techniques to learn an internal representation
of its environment (including other agents’ behavior) by applying data mining algorithms to
observations from the environment.

In this case, symbolic models better allow the user to understand and validate the models
learned by the agent. They might also enable the agent to 'reflect’ upon the learned models
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itself using pre-implemented algorithms. Generally, interpretable models are of greater utility
with respect to the analysis and validation of agent-based systems, since an interpretation of
the information conveyed by the mined models is crucial in these tasks.

4.1.2.3. Types of Learning Algorithms

At the core, many data mining techniques are machine learning algorithms that adapt a model
to properties of the input data. These can be divided into four classes (Cios et al., 2007, pp. 49):

1. Supervised learning (Cios et al., 2007, pp. 52-53): These algorithms are provided with a
set of input data samples together with the desired outputs. During the training phase,
the algorithm learns an input-output mapping representing the sample data to solve
classification or regression problems.

2. Unsupervised learning (Cios et al., 2007, pp. 49-52): In unsupervised learning, the desired
output (e.g. classes) is not known beforehand. Often the learning algorithm structures
the data into clusters of similar items using a distance measure. Thus, the algorithm does
not only generate a mapping of the training data to a predefined classification scheme,
but it generates the classification scheme itself.

3. Reinforcement learning (Cios et al., 2007, p. 53): This variant lies in between supervised
and unsupervised learning. Different from unsupervised learning, the algorithm is pro-
vided with an external feedback on the quality of the learned model, but in a less detailed
form than in supervised learning. After processing the sample data, the learner receives
an abstract reward based on a domain-specific performance measure. Since this learning
mechanism resembles 'natural’ learning situations, it is well suited to model learning in

MA(B)S (Kruse, 2008).

4. Semi-supervised learning (Cios et al., 2007, p. 54): In a basically unsupervised setting,
domain-specific knowledge is applied to influence the clustering process. For example,
the similarity of selected data items from a larger set is rated by a domain expert as a
guidance for clustering.

Another technical distinction covers the way that the learned model is updated during the
training phase (Cios et al., 2007, p. 383): Batch or non-incremental learning algorithms process
the whole training data set at once and produce a single output model. If the data set is changed
or extended, the procedure must be repeated. Online or incremental learning algorithms start
from an initial (often random) model and update it step by step while processing sample
data. The training thus results in a series of models that represent the problem domain with
(preferably) increasing precision.

Incremental algorithms are superior in real time learning situations where sample data is not
completely available beforehand, or the problem domain might change over time (Cios et al.,
2007, p. 40). Furthermore, incremental algorithms usually exhibit a lower computation space
complexity: In every step, the algorithm must only keep a single data item and the learned
model in memory (see e.g. Dongen et al., 2007). In contrast, offline learning algorithms are
often simpler and more precise.
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4.1.3. Model Validity in Data Mining

A hypothesis generated by a DM algorithm is a model of the problem domain in the form of a
function that maps input variables (data items) to output variables (Cios et al., 2007, p. 470),
such as predicted values or classes. The model is estimated from sample data by means of
an algorithm. Like any model, it can be invalid, such that the system under analysis is not
appropriately represented. The following discussion of validity and validation in DM is based
on Cios et al. (2007, pp. 470) and Dunham (2003, pp. 14).

4.1.3.1. Quality and Availability of Data

Like computer simulation, KDD often suffers from a lack of available sample data. This typically
leads to models that do not provide a statistically valid description of the target system, but
an overly specialized representation of the sample data set.

Other problems related to data quality are missing data and noise (Dunham, 2003, p. 15):
Errors introduced during measurement, sampling, or preprocessing of input data can lead to
missing or invalid data items. As in signal processing, such noise will be reflected more or less
heavily in the mined models and interfere with or superimpose onto the actual reference data.

Even complete and error-free data sets are difficult to handle when the number of considered
data attributes (features) is large. The term curse of dimensionality (see e.g. Geenens, 2011,
p. 30) subsumes the fact that the algorithmic complexity as well as the number of required
samples to gain valid results increases largely with the dimension of the feature vectors. There-
fore, input data should be reduced to those features that are most relevant for the considered
problem, which is not always straightforward to see. Cios et al. (2007, pp. 208) discuss criteria
and algorithms for feature selection.

4.1.3.2. Quality of Mined Models

To be useful, data mining algorithms must generalize from input data during the training phase.
However, it is not straightforward to find an appropriate level of generalization (Cios et al.,
2007, p. 470): Under-fitting (or over-generalization) means that the mined model is too simple
and represents a too unspecific superset of data generated by the target system. Owver-fitting
makes the mined model unnecessarily complex and specific to the training data set.

In statistics, the complexity of a model is quantified by its degrees of freedom, i.e. the “number
of independent pieces of information required for estimating the model” like mean or variance, which
typically equal the number of model parameters (Cios et al., 2007, p. 470).

The performance of a mined model is described by two measures (Cios et al., 2007, p. 470):
Goodness of fit describes the ability to correctly represent the training data set in terms of a
low deviation between actual and predicted data values. Goodness of prediction measures the
ability to predict values beyond the training data set.

These concepts are quantified in error calculation. From a statistical viewpoint, a mined model
is an estimator for the underlying distribution of data. In the following, we restrict the pre-
sentation to point estimation of a single parameter p by an estimator p (see Dunham, 2003,
p. 47).

102



4.1. Data Mining

The bias B(p) describes the systematic error of p induced by the sampling procedure or the
learning algorithm, which “cannot be reduced by increasing the sample size” (Cios et al., 2007,
p. 471). It is calculated as difference between the expectation of the estimator p and the actual
value of the parameter p (Cios et al., 2007, p. 471):

B(p) = Elp] —p (4.1)

The influence of the algorithm and its parameterization is sometimes called inductive bias
(Aalst and Weijters, 2004, Sec. 5.1): Strong inductive bias means that a “strong tendency [...]
towards certain solutions” (Luykx, 2009, p. 2) is built into an algorithm. Data mining users might
be unaware of this and mistakenly consider models as 'pure’ representations of data-intrinsic
properties.

The variance S?(p) is the mean square deviation of estimations by p from actual values of p in
N independent experiments (Cios et al., 2007, p. 471):

N /.
i=1 (pi — pz‘)2
N -1

$(p) = = (42)

Variance and squared bias constitute the mean square error (MSE) as one of the most common
error measures in data mining (Cios et al., 2007, p. 471):

MSE(p) = E[p — p)* = 5*(p) + B*(p) (4.3)

The decomposition of error into bias and variance leads to the notion of the bias/variance
dilemma (Geman et al., 1992) that describes an inevitable tradeoff in inductive learning: Simple
data mining algorithms with few parameters and regarded features usually have a strong bias
(Cios et al., 2007, p. 209). Such estimators tend to be stable but more likely to be stuck in
local optima (Luykx, 2009, p. 2). When the bias is reduced by making algorithm and feature
set more complex, the variance increases (Cios et al., 2007, p. 209), which tends to make the
estimator unstable (Luykx, 2009, p. 2).

In general, an appropriate balance between bias and variance must be reached (AiAccess, 2010).
Apart from that, Aalst and Weijters (2004, Sec. 5.1) advocate the use of biased algorithms
when few data but good background knowledge about the searched models is available: When
flexibility is not an issue, biased algorithm require less data, are more robust to noise, and
computationally less complex.

4.1.3.3. Common Approaches to Validation

According to Cios et al. (2007, p. 469), model validation in data mining — similar to computer
simulation — largely depends on ratings by domain experts. Nevertheless, several approaches
have been developed that help to improve the quality of mined models independent from or
additional to expert reviews (Cios et al., 2007, p. 469).

First of all, different types of learning algorithms require different validation approaches (Cios
et al., 2007, p. 471): In supervised learning, the quality of a model is measured based on the

103



4. Data Mining and Process Mining

number of correctly classified training data items. Validation is more difficult in unsupervised
learning (Cios et al., 2007, p. 471): On the one hand, we can calculate the conformance of
a cluster partition to the underlying data distribution as average distance between cluster
centroids and sample data items. On the other hand, the appropriateness and consistence of
the partitioning itself must be validated using measures for cluster validity (Cios et al., 2007,
Ch. 9).

Cios et al. (2007, p. 471) subdivide validation techniques into data-reuse (resampling) methods,
heuristic methods, analytical methods, and interestingness criteria. These are briefly reviewed
in the following.

Data Reuse Methods are, broadly speaking, concerned with the question how to gain the
best model quality from a limited sample data set. Simply re-using identical data for training
and validation is clearly not a good choice.

Therefore, the available data is split into training and test parts, where the training part should
consist of about 1/2 or 2/3 of the overall data items chosen by random (Cios et al., 2007, p. 473).
Since this simple split typically leads to high bias and low variance, a more elaborate k-fold
cross wvalidation might be performed (Cios et al., 2007, p. 473): The data set is randomly
partitioned into k equal parts with k — 1 parts for training and 1 part for validation. The MSE
is then calculated from k repetitions of the procedure (Cios et al., 2007, p. 473).

Heuristic Methods for model validation are informal but rather common due to their simplic-
ity (Cios et al., 2007, p. 471). As a simple heuristic for model selection, a variant of Occam’s
Razor (see also Section 2.4.3.4) can e.g. be applied by preferring, from a number of models with
similar performance, the most ’simple’ one like the model with the fewest degrees of freedom
(Cios et al., 2007, p. 470, p. 474). However, Cios et al. (2007, p. 475) note that this is not
always a good heuristic in practice: Firstly, similar heuristics are part of many data mining
algorithms already and might therefore not be appropriate for the validation of their results.
Secondly, a simple model might not be appropriate to describe a very complex system.

Analytical Methods are applied to formally measure model validity (Cios et al., 2007, p. 475).
Some of these methods assume knowledge about the optimal mapping from input to output
data with respect to the training set, while others do not require such knowledge (Cios et al.,
2007, p. 477).

In the first category, we find several measurements based on the confusion matriz that de-
scribes the performance of a classifier (Dunham, 2003, p. 79). In the style of Dunham (2003,
p. 79), we assume a classifier ¢ that accepts or rejects data items s € S according to their
assumed membership to a class C. The confusion matrix contains four entries (adopted with
modifications Dunham, 2003, p. 79):

e TP (true positive): ¢ accepts s and s € C,
e F'P (false positive): ¢ accepts s though s ¢ C,

e T'N (true negative): ¢ rejects s and s ¢ C,
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e F'N (false negative): ¢ rejects s though s € C.

From this matrix, several performance measures for classifiers can be calculated including recall,
specifity, accuracy, and precision (Cios et al., 2007, p. 478). Recall and specifity express the
classifier’s ability to correctly identify elements belonging (or not belonging) to C' (adopted
with modifications from Cios et al., 2007, p. 478):

TP
() = ————— 4.4
Recall(¢) TP L FN (4.4)
Cpe, a TN
SpeCZthy(C) = W (45)

Precision originates from text mining and describes the ability of a classifier (e.g. a web search
engine) to retrieve relevant documents (adopted with modifications from (Cios et al., 2007,
p. 478)):

TP
Precision(é) = W (46)

Accuracy captures the general ability of a classifier to perform correct predictions on the sample
set S and is a rather weak measure compared to specifity and recall (adopted with modifications
from Cios et al., 2007, p. 478):

Accuracy(¢) = TP—;’TN (4.7)

The above measures can only be applied in supervised learning settings where a-priori knowl-
edge about class membership is available. Other analytical methods (e.g. for hypothesis testing)
pose additional restrictions on the data distribution (e.g. normal) often not met in practice (Cios
et al., 2007, p. 475).

When none of these assumptions hold, information content complexity (see Section 2.1.1) can
be applied for model assessment (Cios et al., 2007, p. 475). From an information-theoretical
viewpoint, learning a model as an input/output mapping from a set of sample data can be
regarded as a compression of the data set (Cios et al., 2007, p. 475). According to the well-
known minimum description length (MDL) principle, the worst-case complexity of a model is
the size of the represented data set (Cios et al., 2007, p. 475), which corresponds to maximal
overfitting in the bias-variance dilemma (Cios et al., 2007, p. 476).

According to Cios et al. (2007, p. 476) “the MDL principle can be seen as a formalization of the
Occam’s Razor heuristic”. Let |M| denote the length of the (shortest) binary encoding of a model
M, and let |M(S)| denote the size of the sample dataset S compressed with M, then following
the MDL principle, we prefer the model with the minimal sum

M|+ |M(S)] — Min! (4.8)

105



4. Data Mining and Process Mining

as the best compromise between over- and under-fitting (adopted with modifications from Cios
et al., 2007, p. 475).

Interestingness criteria, finally, are an attempt to formalize the relevance of discovered rules to
users based on domain-specific and general interestingness measures. A brief summary of this
approach can be found in (Cios et al., 2007, pp. 484).

4.1.4. Exemplary Data Mining Techniques

To provide the reader with an impression how data mining is actually performed, exemplary
DM algorithms will be reviewed in the following. Focus is put on techniques also relevant in
the context of process mining.

4.1.4.1. Decision Tree Learning

A decision tree is a classifier generated by supervised learning. Dunham (2003, p. 59) illustrates
the concept as

“a tree where the root node and each internal node are labelled with a question. The arcs
emanating from each node represent each possible answer to the associated question. Each
leaf node represents a prediction of a solution to the problem under consideration.”

Decision trees are interpretable classification models, the application of which can be roughly
compared to the “20 questions game” played by children (Dunham, 2003, pp. 58): Trying to
guess a person by asking yes/no-questions only, an experienced player will choose questions
that presumably divide the search space into partitions of equal size (such as ’Is the person
male or female?’). The same principle underlies decision tree learning.

Though several algorithms for decision tree learning exist, a common basic structure can be
identified that is sketched by Dunham (2003, p. 94). Given a sample dataset S = s1,89,..., 8,
of feature vectors s; € Ay X Ag - x Ay, with k categorical attributes, a decision tree T can be
obtained with the following procedure (adopted with modifications from Dunham, 2003, p. 94):

Set T := 0.
Find the 'best’” attribute A; to split the sample data set S.
Add a (root) node n to T and label it with A;.

- W e

For each attribute value a € A;/S appearing in S, add an outgoing edge e, to n and label
it with a.

5. For each edge e,:
a) Let S, C S be the subset of data items containing attribute value a.

b) If a stopping criterion is met, then append a leaf node to e, and label it with the
associated class.

¢) Otherwise apply the above procedure recursively to the subset S, and append the
resulting subtree T} to e,.
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This “simplistic |...] algorithm” (Dunham, 2003, p. 94) contains several placeholders including
the choice of a splitting criterion, the number of splits taken, the preferred tree structure
(e.g. deep vs. flat), an appropriate stopping criterion, and the pruning strategy to reduce tree
size (Dunham, 2003, p. 94-95). Effectiveness and efficiency of real-world decision tree learners
depend on how these placeholders are filled.

Dunham (2003, p. 94) stresses that the performance of decision tree learning is mainly influenced
by the number of processed data items and by the selection of a splitting criterion. One viable
approach is the use of entropy in the well-known algorithm /D% (Dunham, 2003, p. 97). Entropy
is applied in information theory to quantify “the amount of [...] surprise or randomness in a data

set” (Dunham, 2003, p. 97).

The entropy of a data set S is minimal when all contained items are members of the same
class (Dunham, 2003, p. 97). Since the objective of decision tree mining is to partition the
input data by class membership, the problem can be reduced to a minimization of the overall
partition entropy (Dunham, 2003, p. 98).

Formally?, we assume that the items s € S can be divided into n disjoint classes {C1, Ca, . .., Cy}.
Let p; = P(s € C;) denote the probability that an item s is member of C;. Then the entropy
of S is expressed by (Dunham, 2003, p. 98):

H(S) = H(p1,pa,...,pn) = »_ pi-log(1/pi). (4.9)
i=1

To find the best splitting criterion for a given input .S, the ID3 algorithm evaluates the entropy
gained by the particular split (Dunham, 2003, p. 98). Let w4(S) = {S1,S52,...,Sk} be a
partition of S into k disjoint subsets by a splitting attribute A. The entropy gain of the split
is expressed by (Dunham, 2003, p. 98):

Gain(ma(S)) = H(S) — Z P(S;) - H(S;). (4.10)

By choosing the splitting criterion with maximum gain, the ID3 algorithm strives to achieve a
division of the input data into possibly equal-sized partitions in every step, roughly comparable
to the presented “20 questions game” heuristics (Dunham, 2003, p. 97).

On the downside, the algorithm must occasionally assign the same splitting attribute to multiple
nodes of the generated tree and “favors attributes with many divisions” (Dunham, 2003, p. 100).
The widely-used C4.5 algorithm extends ID3 in several aspects including “missing data |[...],
continuous data [...], pruning strategies [...]” (Dunham, 2003, p. 100), and an improved splitting
criterion that reduces the number of divisions in the resulting tree (Dunham, 2003, p. 101).

4.1.4.2. Clustering

In clustering (Dunham, 2003, pp. 125), an input data set S is segmented into clusters of
similar items, where each cluster represents a different class. Since the number of classes and

2The formalizations in this and the following paragraphs are adopted with modifications from Dunham (2003,
p. 98) using partition notation in the style of Angluin (1982).
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their membership functions are unknown in advance, unsupervised learning is applied. Several
clustering algorithms exists that differ in the used clustering strategies and in the applied
similarity measures.

Clustering Strategies Concerning clustering strategies, Dunham (2003, p. 128) distinguishes
hierarchical, partitional, categorical, and large database approaches and characterizes them as
follows:

Hierarchical algorithms compute an increasingly (or decreasingly) refined hierarchy of clus-
terings. In the coarsest partition, all data items are in the same cluster, while in the finest
partition each item belongs to an own cluster (Dunham, 2003, p. 128). Agglomerative (bottom-
up) strategies start from the finest partition and proceed to an appropriate clustering by cluster
merging (Dunham, 2003, p. 132). Divisive (top-down) strategies begin with the coarsest parti-
tion and proceed by splitting inappropriate clusters (Dunham, 2003, p. 138). In any case, the
user can choose the most appropriate clustering from the hierarchy which is often output in
the form of a dendrogram, i.e. a tree of increasingly refined clusters (Dunham, 2003, p. 131).

Partitional algorithms only provide a single clustering as an output (Dunham, 2003, p. 138).
The main problem is therefore to find an appropriate number of clusters, which can be either
predefined by the user as an input parameter (Dunham, 2003, p. 138) or determined by the
algorithm at runtime using an error threshold (Dunham, 2003, p. 142).

Categorical algorithms are dedicated to the problem of clustering categorical (i.e. non-conti-
nuous) data (Dunham, 2003, p. 157). Large database approaches focus on the clustering of
large real-world databases where the input data set does not fit into working memory at once
(Dunham, 2003, p. 149).

Distance Measures (or similarity measures as the ’inverse’ term) are used by cluster algo-
rithms to determine the distance (or similarity) between data items and clusters. Generally,
the distance between neighboring items belonging to the same cluster should be less than the
distance between those from different clusters (Dunham, 2003, p. 129).

The distance between two data items is measured depending on the domain of the data at-
tributes. For data encoded by numerical feature vectors over a metric vector space, measures
like the Euclidian distance are applied (Dunham, 2003, p. 59):

dist(x,y) = (4.11)

where x,y denote vectors of dimension d and z;,¥y; their components. As indicated above,
different measures must be used for categorical data. One example is the Jaccard coefficient

xNy

sim(x,y) = (4.12)

xUy

that determines the similarity of two data tuples x,y by dividing the number of common
components by the number of overall components in both tuples (Dunham, 2003, p. 158).
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Example: Nearest Neighbour Algorithm Though numerous clustering algorithms exist, we
will only review one example here, that will also be applied in the process mining study reported
in Chapter 7. The Nearest Neighbor algorithm is a simple partitional algorithm based on
shortest cluster distance (Dunham, 2003, p. 142).

Let S = s1,892,...,5, be a list of input data items, dist : S x S — [0,1] a distance measure
and ¢ € [0, 1] a predefined threshold value. Then a set C = C1,Cy,...,C}) of clusters can be
computed as follows (adopted with modifications from Dunham (2003, p. 142)):

1. Set C :=10.
2. Dequeue the first item sg from the list S and set C' := {{sp}} as the initial cluster.
3. While |S| > 0:

a) Dequeue the next item s from the list.

b) Find the cluster C; € C that contains the item s’ € C; with the minimum distance
dist(s, s") of all items clustered so far.

i. If dist(s,s') <t set C; := C; U {s}.
ii. Otherwise set C' := C U {{s}}.

4. Output the resulting cluster set C.

Different from other partitional algorithms, the number of output clusters is not stated ex-
plicitly, but depends on the threshold ¢ (Dunham, 2003, p. 142). The time complexity of the
algorithm is O(n?) since all pairs of input data items are compared (Dunham, 2003, p. 142).
An overview of further clustering algorithms is e.g. found in Dunham (2003, Ch. 5) and Cios
et al. (2007, Ch. 9)

4.1.4.3. Inductive Logic Programming

Inductive Logic Programming (ILP) is closely related to knowledge representation in predicate
logic and programming languages like Prolog (Bratko, 1990). According to Muggleton et al.
(1995, p. 243), the deduction process of inference engines (see Section 3.3.1.1) is inverted in
ILP: From an example knowledge base containing positive and negative facts, a set of predicate
logic rules (theory) is learned (induced) that abstractly describes the represented knowledge.

Nienhuys-Cheng and de Wolf (1997, pp. 166) formalize the basic ILP setting like this: A
theory is a finite set of clauses ¥ = {C,Cs,...,C,}. ET and E~ denote possibly infinite sets
of positive and negative example clauses (typically ground literals), and B denotes a finite,
possibly empty, set of clauses representing available background knowledge.

Further following Nienhuys-Cheng and de Wolf (1997, p. 166), a theory X is correct with respect
to ET and E~ if it is consistent with £~ and complete with respect to ET. Completeness means
that every clause e € ET can be derived from ¥ (denoted as ¥ = ET). Consistency means
that no assignment of boolean values to predicates can be found that satisfies ¥ U E— where
E- = {ﬁei]ei S E_}.
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On this foundation a basic induction procedure is stated (adopted with modifications from
Nienhuys-Cheng and de Wolf, 1997, p.168): Let E*, E~, B be defined as above, such that B
is correct with respect to E* and E~. Then ¥ is induced as follows:

1. Set ¥ to an initial value (e.g. ¥ :=0).
2. If ¥ U B is correct with respect to ET and E~ then terminate and output 2.

3. fde € ET : X UB e (XU B is too weak) then generalize ¥ and return to the second
step.

4. If 3e€ E~ : ¥ U B [ e (XU B is too strong) then specialize ¥ and return to the second
step.

ILP implementations refine this basic scheme in several dimensions, e.g. reviewed by Nienhuys-
Cheng and de Wolf (1997, pp. 169). Important criteria include the predefined language bias
related to the available logical language (e.g. Horn clauses) and the rules to modify, create, and
delete predicates of ¥ (Nienhuys-Cheng and de Wolf, 1997, pp. 171).

4.1.4.4. Bayesian Networks

Bayesian networks are acyclic graph models that display dependencies between multiple random
variables in order to “represent knowledge about an uncertain domain” (Ben-Gal, 2007, p. 1). The
name relates to Bayes’ well-known theorem to calculate conditional probabilities (e.g. Kjaerulff
and Madsen, 2005, p. 45).

According to Ben-Gal (2007, p. 1), “nodes [... in the graph] represent random variables [... and] edges
represent [their| direct dependencies”. Every node is furthermore inscribed with the conditional
probability distribution of the respective variable depending on its predecessors in the graph
(Ben-Gal, 2007, p. 1), (Chen, 2009, p. 121).

From an existing Bayesian network, new knowledge can be inferred in the form of predictive
and diagnostic support (Ben-Gal, 2007, p. 3): In the former case, the joint probability of a
child note (‘effect’) is calculated from the estimated probabilities of its predecessors (’causes’)
(Ben-Gal, 2007, p. 3).3 In the latter case, the probabilities of causes are calculated from the
observation of an effect (Ben-Gal, 2007, p. 3).

Besides deductive reasoning, Bayesian networks can also be induced from observations (i.e.
data mining) with algorithms like mazimum likelihood estimation and expectation minimization
(Ben-Gal, 2007, pp. 3-4). We will encounter Bayesian networks in the review of approaches
towards the identification of cause-effect relations in MABS (e.g. Chen, 2009) in Section 5.

4.1.4.5. Techniques from Soft Computing

The term Soft Computing describes a range of algorithms and data representations inspired by
natural or social phenomena. Soft computing techniques include (Maimon and Rokach, 2008,

p. 1):

3The use of the terms ’cause’ and ’effect’ in this context is adopted from authors like Kjaerulff and Madsen
(2005, p. 2).

110



4.1. Data Mining

e artificial neural networks: models and algorithms inspired by brain functions found in
animals and humans.

o cvolutionary algorithms: optimization algorithms inspired by natural evolution.

e fuzzy logic: data representation and deduction rules based on ’soft’, possibly overlapping
categories instead of boolean logic.

e swarm intelligence: optimization algorithms that simulate self organization and division
of labor found in natural swarming phenomena and colonies of insects.

In the following, we briefly review neural networks, and evolutionary algorithms, that will be
referred to later in the context of process mining. Fuzzy logic is e.g. treated by Lammel and
Cleve (2008, Sec. 2.4), swarm intelligence by Kennedy (2001).

Artificial Neural Networks: From the large body of neural network models and algorithms, we
present feed-forward networks and self-organizing maps as two common examples that support
different data mining tasks.

A feedforward neural network consists of formal neurons as shown in Figure 4.2. In rough
analogy to natural neurons, these are basically threshold elements that compute a weighted sum
of their input signals. From this sum, an output is generated using a threshold (or activation)
function like a sigmoid or step function (see e.g. Ferber, 1995, p. 137).

6 (a) y
Gl
Inputs Weights Summation  Threshold Output

7

Figure 4.2.: “Functionality of a formal neuron (from Haykin, 1999, p. 11)”. Figure and caption
adopted from Page and Kreutzer (2005, p. 343; also in Knaak, 2002, p. 11).

A single neuron can solve simple classification problems: When the components of a (numerical)
feature vector are assigned to the neuron’s inputs, the output signal indicates class membership
(Dunham, 2003, p. 103). To learn a classification function over an input vector space S, the
input weights of a neuron are adapted by supervised learning using the delta rule; e.g. described
by Lammel and Cleve (2008, p. 185).

The classification ability of single neuron layers is restricted to linearly separable functions
(Lammel and Cleve, 2008, p. 187). This limitation is overcome by networks of multiple in-
terconnected layers. To train a multi-layer network, the simple delta rule cannot be applied
directly but error information must be fed back through the network using back propagation
(see e.g. Lammel and Cleve, 2008, pp. 191; Ferber, 1995, p. 138).
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A class of neural networks tailored towards clustering with unsupervised learning is called self
organizing maps (see e.g. Lammel and Cleve, 2008, p. 261). A self-organizing map consists of
an input layer Ny = {my,ma,...my} and a map layer Np; = {ny, ng,...nx} of neurons m;, n;
(see e.g. Lammel and Cleve (2008, p. 261)). The number of input neurons equals the dimension
n of the input vector space .S, while the number k of map neurons is a fixed parameter.

Each input neuron m; is connected to all map neurons n; via weighted arcs w;; (Ldmmel and
Cleve, 2008, p. 262), i.e. each n; is assigned a vector w; = (wij, wyj,...,ws;) (Ladmmel and
Cleve, 2008, p. 265). This vector can be interpreted as the position of n; in S and used for
visualization in low-dimensional cases (Ladmmel and Cleve, 2008, p. 268). In a training process
called competitive learning, the neurons are moved towards the centers of (preferably distinct)
clusters of input vectors (see e.g. Lammel and Cleve, 2008, pp. 260, 265, 267).

Evolutionary Algorithms are heuristic optimization algorithms that simulate natural evolu-
tion. Data mining can be viewed as an optimization problem where the task is to find the most
appropriate model for the given input data (Dunham, 2003, p. 67).

Two common classes of evolutionary algorithms are genetic algorithms (GA) and genetic pro-
gramming (GP); see Burke and Kendall (2005, p. 14). Both approaches work with populations
of individuals: Like a DNA encodes features of an organism, each individual represents a solu-
tion to the given problem in a well-defined encoding (Dunham, 2003, p. 67).

In every iteration of the algorithm (generation), only the ’fittest’ individuals with respect
to an objective function ’survive’. The next generation is set up by selection, splitting and
combination (crossover), and random modifications (mutation) of these individuals (Dunham,
2003, p. 67; Medeiros et al., 2004b, p. 5). The process is repeated until a stopping criterion,
like a maximum number of iterations or a desired goodness of the fitness function, is met (e.g.
Medeiros et al., 2004b, p. 13).

GA and GP mainly differ in the encodings of individuals. GA are domain-independent since
very general encodings like bit strings are used. The main challenge is to encode problem
instances in this general form, and to define appropriate crossover and mutation operations?.
In GP, individuals represent expressions of a programming language (e.g. LISP) in the form
similar to parsing trees (Poli et al., 2008, p. 9). Crossover and mutation are defined with respect
to the syntax of the underlying programming language, i.e. branches of the operator trees are

exchanged or modified (Poli et al., 2008, pp. 15).

Due to large numbers of generations and individuals, the computational complexity of evolu-
tionary algorithm tends to be rather high. However, the inherent parallelism of the approach
allows for a straightforward execution in distributed environments (see e.g. Gehlsen, 2004).

4.1.5. Tools for Data Mining

In rough analogy to Page’s (1991, Sec. 6.1) classification scheme for simulation software, we
can distinguish the following types of software systems for data mining:

1. General programming languages and data mining APIs®,

“see Medeiros et al. (2004b, pp. 8) reviewed in Section 4.2.3.4 for an example from process mining
5 Application Programming Interface
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2. data mining-specific programming languages and databases,

3. knowledge discovery and scientific workflow systems

4.1.5.1. Programming Languages and APlIs

Obviously, data mining algorithms can be implemented in any general programming language.
C and C++ are often preferred for performance reasons, while Java is especially common in
the academic field. One important aspect is database access, which many current programming
languages support in the form of libraries for database access via SQL (e.g. JDBC® for Java)
and object /relational mappers (e.g. Hibernate”).

To promote re-usability and standardization, several object-oriented frameworks and APIs for
data mining have been developed in industry and education. A common academic example is
the Java-based open source framework WEKA from Waikato University (New Zealand) (Hall
et al., 2009). This framework provides common interfaces and base classes for different data
mining tasks as well as implementations of several data mining algorithms.

4.1.5.2. Data Mining-Specific Languages

These are often extensions of database query languages like SQL (Structured Query Language;
see e.g. Cannan, 1993). One example is DMQL (Data Mining Query Language) that extends
SQL with data mining-specific constructs to state background knowledge in the form of ontolo-
gies, rules for data mining, threshold values, etc. (Dunham, 2003, p. 18).

The development of data mining-specific query languages must be accompanied by extensions
of database management systems (DBMS) towards data mining, as well as extensions of data
mining algorithms towards the handling of real-world databases (Dunham, 2003, p. 17). How-
ever, Dunham (2003, p. 17) notes that the state of the art in data mining systems is roughly
comparable to the state of DBMS “in the early 1960s”.

4.1.5.3. Knowledge Discovery Systems

Analogous to the classification scheme by Page (1991, Sec. 6.1), Ahonen (1998) defines a knowl-
edge discovery system (KDS) as a software tool that supports a relevant number of phases in
the knowledge discovery process (see Section 4.1.1).

Dunham (2003, p. 18) uses the related term “knowledge and data discovery management system
(KDDMS)” to describe (next generation) data mining systems

“that include not only data mining tools but also techniques to manage the underlying
data, ensure its consistency, and provide concurrency and recovery features. A KDDMS
will provide access via ad hoc data mining queries that have been optimized for efficient
access.”

Ssee http://www.oracle.com/technetwork/java/overview-141217.html, last visit 2012-09-18
"http://www.hibernate.org, last visit 2012-09-18
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The definition of KDS includes KDDMS but also applies to systems with a less distinct DBMS
focus. Ahonen (1998) states that “a lot of generic single-task tools [are] available” in data mining
and regards the intuitive integration of such tools, the related “concepts and vocabulary”, and
available domain-gspecific knowledge as main challenges in the development of KDS.

Today, an increasing number of systems dedicated or at least applicable to knowledge discov-
ery can be found. These are rooted in fields like statistics (e.g. the commercial SPSS suite®)
and scientific computing (e.g. MATLAB?). The open source tool WEKA (see above) can also
be regarded as a knowledge discovery system since it includes three graphical user interfaces
Ezplorer, Experimenter, and Knowledge Flow that support the interactive and automated ex-
ecution of knowledge discovery processes (Hall et al., 2009, pp. 10).

In the following paragraphs, a common technique to model knowledge discovery processes in
KDS is described. The choice of content and literature references is largely based on the diploma
thesis by Simmendinger (2007, Ch. 3).

4.1.5.4. Data Flow Modeling

Different from control flow modeling, data flow modeling is focused on multi-step transfor-
mations from input to output data (Shields, 2007, cited in Simmendinger, 2007, p. 32). A -
possibly concurrent — execution order of the transformations is defined by dependencies between
producers and consumers of the exchanged data elements (Simmendinger, 2007, p. 32).

Data flow diagrams (DFDs) from structured system analysis are one popular notation to model
data flow at the conceptual level using four symbols shown in Figure 4.3 (see e.g. Lee and Tan,
1992, pp. 4-5). These symbols are sufficient to display the fundamental data flow between
processes of a system, while omitting details of control flow (see e.g. Bruza and van der Weide,
1993, p. 1).

Training
Decision data
CSV reader tree miner Database
Source or sink Process Storage Data flow

Figure 4.3.: Elements of data flow diagrams with example instantiations from the data mining
domain (adopted with modifications from Lee and Tan, 1992, p. 5).

Since the informal notation of DFDs lacks a concise operational semantics (Bruza and van der
Weide, 1993, p. 2), extensions and mappings to formal languages like path expressions and
Petri nets (see Section 2.3.2.1) have been proposed (e.g. Bruza and van der Weide, 1993, pp. 4-
9). Mapping data flow notations to executable formalisms leads to the challenge to represent
data and control flow in the same model while retaining understandability and maintainability
(Bowers et al., 2006, p. 2) as well as support for concurrency and stream processing (Bowers
et al., 2006, p. 1, cited in Simmendinger, 2007, p. 33).

Shttp://www.spss.com, last visit 2010-12-01.
“http://www.mathworks. com, last visit 2010-12-01.
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Pattern Dual flow network Corresponding reference net

n+z 1,+z2+.+zKk

Data translation

Object net:

n+z 1,+z2+.+zKk

Control/synchronisation

System net:
C net I:l net O

net:q()

Figure 4.4.: Two of four mappings of DFN patterns to reference nets shown by Farwer and
Varea (2005, p. 8).

This problem is caused by the fact that control flow constructs are, to a certain extent, also
required in data flow applications, e.g. to realize fault-tolerance, adaptivity, and access to
complex data structures (Bowers et al., 2006, p. 2). However, the modeling of control flow
with mere data flow constructs often results in unnecessarily complicated workflows that mix
low level control flow constructs with high level components (Bowers et al., 2006, p. 2). In
the following we briefly review a theoretical and a practice-oriented approach to tackle this
problem.

Dual Flow Nets and Object Petri Nets Farwer and Varea (2005) propose to disentangle
data and control flow with the aid of an object-based nets-within-nets formalism (see Section
2.3.2.5). The proposal is based on Dual Flow Nets (DFNs), a variant of P/T nets with 3 node
types including places as storage elements, transitions as control flow elements, and hulls as
transformational elements for arithmetic operations on data (Farwer and Varea, 2005, p. 2).
DFNs are an earlier attempt to solve the problem of combined data and control flow by means
of a modified execution semantics (Farwer and Varea, 2005, p. 1).

A marking of a place p is a tuple (n,z), where n is the number of control flow tokens and z
an integer data element residing at p (Farwer and Varea, 2005, p. 3). The synchronization of
data- and control flow proceeds in two directions: A transition can be inscribed with a guard
function from the set G = {=,#,<,>,<,>} as an additional firing condition evaluated over
the data tokens on incoming places (Farwer and Varea, 2005, p. 2). Hulls are triggered by the
firing of incoming transitions to perform a summation of data elements from incoming places
(Farwer and Varea, 2005, pp. 4,8).
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Farwer and Varea (2005) transform DFNs to a subset of reference nets to receive a more "Petri
net-like’ firing semantics. Basically, the control flow of the DFN is extracted into a system net.
The arithmetic operations by the hulls are realized in an object net flowing through the system
net, where the triggering of hulls by transitions is mapped to synchronous channels. Farwer
and Varea (2005, p. 8) map four main patterns of DFNs to reference nets (see Figure 4.4) and
present a net for the computation of the Fibonacci series as an example (Farwer and Varea,
2005, p. 11).

Structured Composition of Data and Control Flow Bowers et al. (2006) present a more
practical approach to combine data and control flow modeling implemented in the scientific
workflow system Kepler. As summarized by Simmendinger (2007, p. 44), the approach utilizes
a combination of Dataflow Process Networks, a common notation for data flow modeling, and
finite state machines to model control flow. Furthermore, Bowers et al. (2006, p. 4) distinguish
between actor components as implementations of concrete processing algorithms and frames
as abstract specifications of functionality by signatures (i.e. input and output ports).

Top-level L — >
data flow (1) Actor 1 @—b Actor 2

Control flow |:| Actor

template (2) > > |:| Frame

C] State machine
—— e O State

Low-level F
Port
data flow (3) | _gme + >

Figure 4.5.: Structured modeling of scientific workflows with alternating data and control flow
layers. Adopted with modifications from Bowers et al. (2006, p. 6, cited in Sim-
mendinger, 2007, p. 45).

These concepts are recursively embedded in a three-level hierarchy shown in Figure 4.5 and
reviewed by Simmendinger (2007, p. 44) as follows: (1) On the top level, data flow components
for specific tasks are composed into a data flow network. (2) A top level frame is implemented
by one or more alternative state machines representing the local control flow of the respective
task. (3) Each state of the automaton is again a frame that can be implemented by a data flow
network for the actual data processing performed in that state.

By keeping control flow local to the state machines, implementations of data processing algo-
rithms remain largely stateless and easy to re-use as part of different workflows (Simmendinger,
2007, p. 44). Simmendinger (2007, p. 44) gives the example of a workflow in a web service-
based system: Communication-related aspects like load-balancing and authentication can be
modelled in the state machine and thereby kept out of the data flow model that performs the
actual processing when an appropriate state is reached.
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Despite the different underlying intentions (i.e. theoretical verifiability vs. practical applicabil-
ity), the approach by Bowers et al. (2006) also shares a few common ideas with the reference
net-based model by Farwer and Varea (2005):

1. Layers 2 (control flow) and 3 (low level data flow) in the model by Bowers et al. (2006)
roughly correspond to the separation of system and object nets in the model by Farwer
and Varea (2005). However, the low-level data flow models in the former approach do
not 'move’ through the superordinate control flow model but are assigned to fixed states.

2. The combination of multiple task-specific notations (i.e. data flow networks and state
machines) slightly resembles the possibility to use different formalisms in RENEW (Sim-
mendinger, 2007, p. 44).

4.1.5.5. Scientific Workflow Systems

Data flow modeling in scientific applications has recently received recurring interest under the
notion of scientific workflows. The basic idea is to apply and adapt concepts and tools from
business processes modeling for the scientific domain. Based on the literature, Simmendinger
(2007) summarizes the following characteristics of scientific workflows as compared to business
workflows (described in Section 2.3.3):

e increased importance of data flow (Simmendinger, 2007, p. 27),

e integration of several heterogeneous tools and data formats into a common workflow
(Simmendinger, 2007, pp. 27, 44),

e appropriate user interaction and guidance in complex tasks (Simmendinger, 2007, pp. 29,
44),

e support for ressource-intensive, long running calculations in distributed environments
(Simmendinger, 2007, p. 29).

The aspect of distribution has received specific attention in the context of recent distribution
concepts like Grid (e.g. Guan et al., 2006) or Cloud Computing (e.g. Hoffa et al., 2008). It is,
however, not a defining property of scientific workflow systems. Especially in data mining, sev-
eral workflow-based systems mainly focus on data flow modeling, method and tool integration,
and user assistance.

Authors like Rice and Boisvert (1996) use the term 'Problem Solving Environment’ (PSE)
for systems that combine domain specific libraries with a user interface, a knowledge base
of common patterns, and methods for tool integration (cited in Simmendinger, 2007, p. 28).
Simmendinger (2007, p. 29) notes that the guiding patterns from the knowledge base can be
well realized in the form of workflows.

Two common examples of PSEs reviewed by Simmendinger (2007, Sec. 3.4) are Keppler/Pto-
lemy'® and KNIME''. Keppler is a Java-based scientific computing system that utilizes the
structured modeling approach by Bowers et al. (2006) described above. KNIME (Knowledge
Information Miner) is a workflow-based, extendable knowledge discovery system that builds

Ohttp://wuw.kepler-project.org, last visit 2010-12-15.
“http://wuw.knime.org, last visit 2010-12-15.
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upon the Eclipse platform and integrates several third-party libraries (e.g. WEKA) in the form
of components. Section 8.4.3 presents our application of KNIMFE for a prototypical integration
of process mining techniques into an Eclipse-based simulation system.

4.2. Process Mining

In this section, process mining is introduced as a specific form of data mining guided by per-
spectives of (business) process and organizational modeling. After reviewing general definitions
and classifications, process mining techniques with relevance for this thesis are presented. A
brief summary of applications is finally followed by an introduction of the process mining tool
ProM. This tool forms a de-facto standard in process mining and the basis for the algorithms
implemented in this work.

4.2.1. Definitions

In (Cabac et al., 2006b, Sec. 3.1) we cited an early definition by Maruster et al. (2002, p. 1)
that describes process mining as “method for distilling a structured process description from a set of
real executions”. Thus, the objective is to reconstruct a previously unknown process model from
log data produced by example executions, and to present the results in a structured modeling
language like e.g. Petri nets or UML diagrams.

Since the field has undergone large progress during the last decade, the above definition seems
too narrow to capture the diversity of current research activities in process mining (Dongen
et al., 2006b, p. 145). According to Aalst (2010a, p. 29), “The idea of process mining is to discover,
monitor and improve real processes (i.e. not assumed processes) by extracting knowledge from event
logs.” Similarly, a call for workshop papers states that “the area of process mining is concerned
with the analysis of business processes in general, where the basis of this analysis is formed by the
recorded behavior of an information system in the form of an event log.”'? These descriptions imply
that process mining is not limited to 'mining’ (i.e. process discovery) in the narrow sense, but
includes further tasks like conformance checking and extension of process models as well (Aalst,
2010a, p. 29).

Authors like Aalst (2010a, p. 28) emphasize the proximity of process mining to (business)
process modeling and analysis, which is mirrored in the alias term ’workflow mining’. Business
process analysis is the most prominent application of process mining. A major contribution of
business process modeling (BPM) consists in a set of 'process mining perspectives’ derived from
BPM methodologies and notations. These perspectives represent different views that guide the
analysis of process logs.

With this broad definition in mind, a clear distinction between process mining and data mining
is not easy. Based on the literature, different aspects can be identified:

o Type of input data: Process mining is normally performed on process execution logs, i.e.
lists of time stamped or at least chronologically ordered event or activity traces (Aalst

"http://www.mail-archive.com/petrinet@informatik.uni-hamburg.de/msg00770.html, last visit 2010-12-

28.
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et al., 2012, p. 174). However, log data is not the only input for process mining algorithms:
Attributional data embedded into process logs is considered to reconstruct decision models
(Rozinat and Aalst, 2006) or ontologies (Medeiros et al., 2007). The extension of input
models into improved output models is also regarded as process mining (Aalst, 2010a,
p. 29).

o Type of output models: Process mining typically deals with graph-structured models re-
lated to process modeling notations (Aalst and Weijters, 2004, p. 239) like Petri nets,
event-driven process chains (EPCs) or communication diagrams (’social networks’). In
contrast, data mining is often concerned with models that “are not process-centric” (Aalst
et al., 2012, p. 176), like rule-based and numerical models. However, this distinction
appears rather weak since process mining has increasingly adopted algorithms and mod-
els from data mining (e.g. decision trees in Rozinat and Aalst, 2006), and data mining
considers sequence, automata, and network models as well.

o Application domain: Most work in process mining is rooted in the field of business process
analysis. Other application fields like e.g. software engineering (Rubin et al., 2007) have
been considered as well.

o (uiding perspectives: One of the most characteristic properties of process mining is its
guidance by perspectives from BPM (Aalst et al., 2012, p. 176). While multi-perspective
approaches are also a topic of data mining research (see e.g. Furtado, 1999), the closest tie
of mining techniques to multi-perspective modeling might be observed in process mining.

In the following chapters, we argue that the relation of process mining to multi-perspective
modeling approaches makes these techniques especially well-suited for the analysis of multi-
agent systems and simulations. For the moment, we can summarize the above observations
from the literature as follows: Process mining is a sub-discipline of data mining concerned with
computer-aided techniques for the acquisition, analysis, validation, improvement, and transfor-
mation of (business) process and organizational models on the basis of event- or activity-oriented
logs of process executions. The development and application of process mining techniques is
guided by process modeling languages and methodologies covering multiple perspectives.

4.2.2. Classification of Process Mining Techniques

Due to the broad scope of process mining, several attempts have been made to structure the field
by classification of the available techniques. As one result of a workshop on “Process Mining
and Monitoring of Services and Processes”, Aalst (2006, p. 3-4) proposes the following (mostly
orthogonal) dimensions for classification:!3

1. Three different ’types’ of process mining are distinguished by the presence of an a-priors
model: In process discovery, no model exists beforehand, but a model is discovered from
an execution log. In conformance checking and extension, an existing model is validated
or modified respectively.

2. Several perspectives can be identified as different functional and non-functional views
upon the analyzed system. The functional perspectives include aspects of control flow,

13The reduction of the original number of 6 dimensions to 5 by integrating the dimensions perspectives and
functional vs. non-functional follows the summary by Weber and Wittenberger (2007, p. 12).
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organization, work cases, resources, or data. The non-functional perspectives include
measures of process performance and quality.

3. The considered number of process instances might range from a single case over multiple
cases to all cases observed in a process log.

4. The examined time period can take into account historic data to discover characteristic
process behavior or real time data to analyze the present situation.

5. Different result types are distinguished by their purpose, i.e. if the result merely informs
about properties of the reconstructed process, or if an action is taken on this basis.

Actual classifications are often limited to process mining types and perspectives (e.g. Weber and
Wittenberger, 2007, Sec. 2.1-2.2), additionally taking into account certain data- and algorithm-
related properties that are considered as challenging (e.g. Weber and Wittenberger, 2007, p. 14).
In the following, we inspect these most relevant dimensions in detail.

4.2.2.1. Process Mining Perspectives

The introduction of different perspectives into process mining was mainly promoted by the
research group at Eindhoven University (the Netherlands; see e.g. Aalst and Song, 2004a) and a
group of authors around Professor Clarence Ellis from the University of Colorado-Boulder (USA;
see Rembert and Ellis, 2009). While the former researchers identify process mining perspectives
in an ad-hoc fashion (Rembert and Ellis, 2009, p. 35), the latter provide a formalization based
on the Information Control Net (ICN) meta-model for BPM (Rembert and Ellis, 2009, p. 37).
Both approaches are contrasted in the following.

Eindhoven Approach As criticized by Rembert and Ellis (2009), the Eindhoven research group
mainly enumerates relevant perspectives driven by the development and application of algo-
rithms. Nevertheless, this proceeding helped to identify a number of important perspectives.
There is some agreement in the literature that the most relevant perspectives — with respect to
the number of available algorithms and applications — are the control flow perspective and, to
a lesser extent, the organizational perspective (e.g. Aalst, 2010a, p. 30; see also Figure 4.6).

Though publications differ in the identification of further relevant perspectives, the following
list can be compiled from the literature:

1. Control flow perspective: The control flow of the considered process is reconstructed
or analyzed based on log data (Aalst, 2010a, p. 30). The analysis might include basic
control flow constructs like “sequences, branches, loops, and concurrency” (Cabac et al.,
2006b, Sec. 3.1.1), as well as complex workflow patterns such as transactions. Aalst and
Weijters (2004, p. 235) note that the focus on concurrency distinguishes process mining
from earlier approaches for grammar inference (see Section 4.2.3.3).

2. Organizational perspective: This perspective “focuses on the "structure and the population"
of the organization in which the processes are observed [..., including] "relations between roles
[...] groups [...] and other artifacts" (Aalst and Weijters, 2004, p. 10)” (Cabac et al., 2006b,
Sec. 3.1.1). It is alternatively called resource perspective (Aalst, 2006, p. 4).
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Figure 4.6.: A visualization of example process mining perspectives identified by the Eindhoven
research group. Adopted with modifications from Dumas et al. (2005, p. 239).

3. Information perspective: This perspective is concerned with properties of “control and
production data” processed in a workflow (Aalst and Weijters, 2004, p. 237), and is also
called data perspective (Aalst, 2006, p. 4). One example is the reconstruction of branching
decisions of a control flow model from attributes of the processed data (decision mining;
see e.g. Rozinat and Aalst, 2006).

4. Application perspective: According to Aalst and Weijters (2004, p. 237), the view is on
software applications used during the processing of a workflow. Though the authors do
not name particular examples, work on web service mining (Dustdar and Gombotz, 2006)
might be assigned to this perspective.

5. Case perspective: This perspective concentrates on work case-related properties like the
particular path taken in the workflow, the actors involved, or values of certain data
attributes in a workflow instance (Aalst, 2010a, p. 30).

6. Performance perspective: This non-functional perspective deals with quantitative “key
performance indicators such as flow time, utilization, service level, etc.” (Aalst, 2006, p. 4).
Due to the focus on temporal measures, time perspective is an alternative name (Aalst,
2006, p. 4).

7. Quality perspective: Another non-functional perspective concerned with “quality measures,
e.g. the number of failures, near-failures, customer satisfaction, etc.” (Aalst, 2006, p. 4).

8. Semantic perspective: In a position paper on semantic process mining (Medeiros et al.,
2007, p. 1253), this perspective is characterized by a focus on semantic concepts and
relations (i.e. ontologies) that underly a process definition. On the one hand, logs can be
enriched with semantic information to improve the capabilities of mining algorithms; on
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the other hand, (parts of) ontologies might be reconstructed from process logs (Medeiros
et al., 2007, p. 1253).

Two further research directions in the Eindhoven group with a focus on specific log types are
activity mining and change mining. Both are not explicitly introduced as perspectives but
might be understood this way. Activity mining is concerned with the reconstruction of well-
defined task descriptions (such as ’submit order’) from logs containing low-level operations like
access to certain database attributes (see e.g. Giinther et al., 2010). Change mining attempts
to detect changes of a workflow schema (e.g. addition or removal of tasks) over time from logged
change operations (see e.g. Giinther et al., 2006).

Researchers have repeatedly stressed the need for algorithms that take into account perspectives
other than control flow (see e.g. Aalst and Weijters, 2004, p. 237). Aalst and Weijters (2004,
p. 237) especially emphasize the relevance of links between different perspectives. Nevertheless,
a strong focus on the control flow perspective can still be observed, followed by significantly
fewer work on organizational and data perspectives. Further perspectives are more or less
limited to individual researchers and publications.

Information Control Net Approach Rembert and Ellis (2009, p. 35) argue that an ad-hoc
approach complicates the definition of new perspectives and algorithms as well as the compar-
ison of existing algorithms for the same perspective (Rembert and Ellis, 2009, p. 36). These
authors even hold this shortcoming responsible for the lack of work on perspectives beyond
control flow (Rembert and Ellis, 2009, p. 35). As a solution, they propose a formalization of
process perspectives based on the concept of process dimensions from the Information Control
Net (ICN) meta-model (Rembert and Ellis, 2009, p. 36):

“A process dimension is any measurable characteristic of a business process, such as the
activities that compose it, the agents that collaboratively execute it, and the artifacts it
uses and produces. |[...]

A process perspective is a pair of sets (D, M) where D is a set of process dimensions and
M is a set of dimensional mappings over and between those process dimensions in D.”

The entities and relations of a certain process perspective are explicitly represented by either
a process model or a process pattern (Rembert and Ellis, 2009, p. 37). Both terms are distin-
guished as follows:

“A process entity is any abstract, concrete, active, or functional resource that is used during
the execution of a process instance. A process entity can be decomposed into an arbitrary
number of (sub)process entities. [...]” (Rembert and Ellis, 2009, p. 36)

“A process model [...] describes the appropriate mappings between all of the process entities
in the process dimensions used in a particular process perspective. |...]

A process pattern [...] describes the relationships of only a portion of the process entities
in one or all of the process dimensions used.” (Rembert and Ellis, 2009, p. 37)

An example of a process model is a global control flow model that relates all activities (process
entities in the process dimension activities) of a process based on their precedences (Rembert
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and Ellis, 2009, p. 37). An example of a process pattern is a mapping in the decision perspec-
tive'* that relates some activities (namely the decision activities) of a process model to decision
rules (Rembert and Ellis, 2009, p. 37).

Practical benefit of the presented definitions is established by relating it to logs used in process
mining and by stating a procedure for the systematic development of mining algorithms for
arbitrary perspectives. The relation between process perspectives and logs is straightforward:
A log can be regarded as a matrix where each column represents a process dimension (e.g.
process instance, activity name, executing agent, and time stamp) and each row represents a
logged event with certains values bound to each dimension (Rembert and Ellis, 2009, p. 37).

The proposed approach towards mining arbitrary process perspectives is a rather sketchy, gen-
eral procedure that consists of four steps (Rembert and Ellis, 2009, p. 38):

1. The relevant dimensions D and the process entities that constitue their domains!® are

identified for the given perspective.
2. The relevant dimensional mappings M are identified.

3. An appropriate process model or pattern to represent the given perspective is chosen or
designed.

4. A mining algorithm is chosen or developed that reconstructs the values and mappings for
the considered dimensions from the log.

Rembert and Ellis (2009, Secs. 4.1, 4.2) apply this procedure to the behavioral (or control flow)
perspective by reconstructing ICN Activity Precedence Graphs, and to the role assignment
perspective (i.e. information about which role executes which activities) by discovering ICN
Role Assignment Graphs from event logs. The authors also name several examples of further
process perspectives, such as data flow (Rembert and Ellis, 2009, p. 40), and dimensions, such
as spatial locations, money, or goals (Rembert and Ellis, 2009, p. 37).

By the example of role assignment mining, Rembert and Ellis (2009, p. 40) show that the
complexity of the reconstruction step might differ depending on the domains of the process
dimensions: If the domain roles consists of atomic process entities (e.g. represented by role
names like ’customer’ or ’insurance agent’'%), the relation between roles and activities can be
reconstructed by simple selection of values from the log. If the log only contains agent names
without explicit role information, the reconstruction is more difficult. Roles must be inferred
from the relation between agents and activities as composite process entities, e.g. by means of
clustering (Rembert and Ellis, 2009, p. 40).

In Section 6.2, we will follow the approach by Rembert and Ellis (2009) to identify perspectives
for process mining in MA(B)S.

4.2.2.2. Process Mining Tasks and Use Cases

The distinction between different process mining “types” depending on the existence of an a-
priori model is another common dimension for classification (see e.g. Aalst, 2010a, p. 29). In

HMalso called information or data perspective above
5Rembert and Ellis (2009, p. 36) call the domain of a process dimension the dimensional type.
Y6examples inspired by Rembert and Ellis (2009, p. 36)

123



4. Data Mining and Process Mining

accordance with researchers like Goedertier et al. (2008, p. 47), we refer to this dimension
as process mining tasks for better compliance with the data mining literature (see Section
4.1.2.1). In the following, we briefly review the main process mining tasks and relate them to
the predictive and descriptive data mining tasks listed in Section 4.1.2.1.

Classification by the Eindhoven Research Group The main process mining tasks identified by
the Eindhoven research group include (see Aalst, 2006, p. 3, cited in Weber and Wittenberger,
2007, p. 12):

e Process discovery: Process mining in the narrower sense, i.e. reconstruction of process
and organizational models from execution logs.

o Conformance checking: Techniques for the assessment of conformance between process
models and logs. This includes algorithms and distance measures to analyze the similar-
ity between different process models (delta analysis) as well as techniques to check the
compliance of execution logs against a process model.

e FErtension: An existing process model is extended, enriched, or improved. Extension
algorithms take a process model and an execution log as input and return a new process
model that is extended by information mined from the log.

Ailenei et al. (2012) refine these basic process mining tasks by identifying and validating a
set of 18 more detailed wuse cases for process mining in an empirical study. The use cases
capture common requirements on process mining techniques and tools, such as determining the
“most frequent path in the process” (in process discovery) or “exceptions from the normal path” (in
conformance checking); see Ailenei et al. (2012, p. 79).

In the context of business process mining and simulation, Aalst (2010b, pp. 6) distinguishes 10
different “activities” performed to improve business processes on the basis of simulation models
and event logs: discovery, enhancement, diagnosis, detection (of deviations), (conformance)
checking, comparison, promotion (of actual model features into reference models), exploration,
prediction, and recommendation. The activities are subsumed under the metaphors of “cartog-
raphy, auditing, and navigation” (Aalst, 2010b, p. 7)

Section 6.3 will present use cases for the application of process mining to MA(B)S. Concerning
their granularity, these might be positioned in between the general process mining tasks from
(Aalst, 2006) and the fine-grained use cases from (Ailenei et al., 2012). They also exhibit close
relations to the “activities” (e.g. use case ’exploration’) identified by Aalst (2010b).

Relations to Data Mining Tasks In Section 4.1.2.1 we have cited the most common data
mining tasks. We will now discuss their meaning for process mining and their relation to the
three process mining tasks.

Classification is on the one hand related to conformance checking, which can be regarded as
a (binary) classification problem, whether or not a given log complies to a process model. On
the other hand, supervised algorithms to learn classification models can be applied to process
discovery. This includes decision trees in the data (Rozinat and Aalst, 2006) and role assignment
perspectives (Ly et al., 2006) as well as ILP in the control flow perspective (Goedertier et al.,
2008).
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Predicting the future course of a running process based on historical log data is important for
process analysis. One approach towards flow prediction based on process mining is found in
(Schiitt, 2003).

Regression analysis has been used for process mining in the control flow perspective (Maruster
et al., 2002) and for the analysis of resource behavior (Nakatumba and Aalst, 2009). Time
series analysis has, to our knowledge, not been applied in the process mining context yet.

Clustering is an important supplementary task in process mining. It is applied when relevant
composite process entities (e.g. activities, roles, or process instances) are not explicitly logged
(see Rembert and Ellis, 2009, p. 40; reviewed in Section 4.2.2.1). If, for example, a log contains
execution instances stemming from different process models, an overall model mined from the
log might be unclear and adulterant. Clustering can appropriately partition the log prior to
process discovery (see e.g. Medeiros et al., 2008b).

Summarization: Besides the reconstruction of process models, simple summarizations of process
logs (e.g. which event types and executing agents appear) are also relevant for process mining
and supported by software tools like ProM (see Section 4.2.6.1).

Association rule mining is well-applicable to the data perspective. According to Giinther et al.
(2008, p. 75), association rules can e.g. display correlations between process model changes and
values of certain data attributes as hints why the model was changed.

Though sequence discovery is closely related to process discovery, there is one important differ-
ence: The goal is not to reconstruct a full process model, but a set of frequent process patterns
(according to the above definitions from Rembert and Ellis, 2009) that display common tem-
poral relations between activities.

4.2.2.3. Properties of Data and Algorithms

Besides perspectives and tasks (or use cases), a number of algorithm- and data-related proper-
ties are commonly used to classify process mining techniques. This includes:

1. properties of the input data (logs) that an algorithm operates on,
2. characteristics of the algorithm itself,

3. ability of an algorithm to cope with certain constructs in the process model that generated
a log, and

4. properties of the output model representation.

Properties of Log Data Process logs can be event- or activity-based!” (see e.g. Sun et al.,
2011, p. 296), where both terms are used analogous to Section 2.2.2: Event-based logs consist of
entries that represent momentary, possibly time-stamped, events listed in chronological ordered
(Sun et al.; 2011, p. 296). Activity-based logs contain related start and end events of time-
consuming activities (Sun et al., 2011, p. 296). In terms of Petri nets, an event-based log

7 Authors like Medeiros (2006, p. 16) also refer to these as logs of atomic (i.e. event-based) and non-atomic (i.e.
activity-based) task.
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corresponds to a sequence and an activity-based log to a causal net (Section 2.3.2.3; see also
Dongen and Aalst, 2004, p. 366; Dongen et al., 2006a).

Since temporal overlaps between activities provide hints towards concurrency, activity-based
logging eases the detection of concurrent tasks (Medeiros, 2006, p. 16). Log entries might
contain further data values of arbitrary process dimensions as additional information for process
mining.

Incomplete or noisy logs, in contrast, impede process discovery in general: Completeness refers
to the fact that any data mining algorithm requires an appropriate number of samples to
reliably infer properties of the underlying model (Aalst, 2010a, p. 37). In control flow discovery,
different degrees of log completeness are considered (Aalst, 2010a, p. 37): The strong notion
of completeness requires every execution path through a process model to be present in the
log, which is practically impossible for cyclic models. Local completeness only requires every
possible direct succession of activities to be traced.

Characteristics of Mining Algorithms Based on the work by Medeiros (2006, Sec. 2.1), Lang
(2008, p. 55) summarizes a number of dimensions to classify control flow mining techniques by
algorithm-related properties. Among others, this includes:

o Single-phase vs. multi-phase: Some algorithms reconstruct the resulting model ’in one go’,
while others execute a chain of steps with intermediate model representations (Medeiros,
2006, p 16).

e Mining strategy: Aalst and Weijters (2004, p. 240) refer to this as the “local/global dimen-
sion”. Locally-optimizing techniques stepwise reconstruct a model from elementary local
information (e.g. the successor relation), while globally-optimizing techniques search for
a model that describes the whole input data set at once (Lang, 2008, p. 56). Hybrid
approaches integrate local and global search (Lang, 2008, p. 56).

e Causality metrics: Lang (2008, pp. 56) mainly distinguishes neighborhood-based metrics
from successor-based metrics: The former only regard for direct succession, while the
latter also take indirect succession into account.

o Mined modeling constructs: This dimension will be discussed in more detail in the next
paragraph.

Besides the above dimensions, Medeiros (2006, p. 16) considers the fact if a whole model or a
partial model is mined. In a comprehensive review of current process mining research, Tiwari
et al. (2008, pp. 7) use the origin of the applied technique as another dimension. According to
their review, existing techniques are based on genetic algorithms, event driven process chains,
Markov chains, cluster analysis, neural networks, Petri nets, data mining, and other algorithmic
approaches. The majority of reviewed algorithms is based on Petri nets (> 20), data mining
techniques (> 5), and other approaches (> 25); see Tiwari et al. (2008, p. 10).

Properties of Generating Models A number of control flow constructs have been identified as
difficult to be reconstructed from process logs (e.g. Aalst and Song, 2004a). An early approach
by Herbst (2001, pp. 61) classifies process models by the presence or absence of concurrency and
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duplicate tasks (see Section 2.3.2.4), where process models with both constructs are regarded
as the most demanding.

In their research agenda, Aalst and Weijters (2004) present a more exhaustive list of challenging
constructs including hidden tasks, duplicate tasks, (short) loops, and non-free-choice constructs
(see Section 2.3.2.4). Medeiros (2006, pp. 54) identifies relations between these constructs and
substantiates the difficulty of their reconstruction, among others, by the fact that “the same
set of ordering relations [...] can be inferred when the original net contains one of these constructs.”
Naively speaking, we can e.g. infer from the repeated occurrence of an activity a in the trace
of a process instance that either a is part of a cycle or that a is a non-unique label.

In recent years, several algorithms have been developed that target these constructs as well
as more complex workflow patterns, such as transactions (see e.g. Gaaloul et al., 2004). A
quantitative overview of existing techniques for the most relevant control flow constructs is
found in (Tiwari et al., 2008, p. 15).

Properties of Output Model Representations The choice of an appropriate representation
for reconstructed models depends on the domain context of process mining, i.e. which modeling
language is common there. Internally, many algorithms for control flow discovery use rather
abstract representations which are transformed into more readable notations for display. In
this regard, Schiitt (2003, p. 34) distinguishes algorithms based on dependency graphs (or
matrices) and algorithms based on grammars (or automata). The former are tailored towards
the detection of concurrency, while the latter are better suited to detect alternatives (Schiitt,
2003, p. 34), cycles, and duplicate tasks.

Figure 4.7.: Different model representations in process mining: Dependency graphs, Petri nets,
and finite automata (from left to right).

Figure 4.7 shows different model representations used in process mining. The precedence graph
displays the precedence relation of activities. In the example, edges are annotated with proba-
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bilities that activities directly follow each other in the analyzed log.'® While all models show
similar precedences, the relation between activities B and C' is interpreted as concurrency in
the Petri net and as alternatives in the automaton. Techniques to reconstruct and convert
between these model representations are reviewed in Section 4.2.3.

Output model representations for control flow discovery include, among others, EPCs (Dongen
et al., 2005), (UML) sequence diagrams (Lassen et al., 2007), and block structured languages
like ADONIS (Herbst, 2001). Aalst and Weijters (2004, pp. 239) note that the generality of a
modeling language is 'inversely proportional’ to the inductive bias that it imposes on a mining
algorithm. The assumption that the target model is block-structured e.g. constrains the search
space stronger than the assumption that the analysed log might be generated by an arbitrary
Petri net (Aalst and Weijters, 2004, p. 239).

4.2.3. Control Flow Mining

In the following, we review a number of algorithms for control flow discovery that appear
suitable for control flow mining in the context of MA(B)S. The requirements in this domain,
which will be substantiated in Chapters 6 and 7, include

e ability to handle concurrency, alternatives, arbitrary cycles, and duplicate tasks,
e reliable process discovery from noise-free, event-based logs,
e relatively straightforward understandability and usability,

e possibility to extend (enrich) the reconstructed control flow models with information
mined from other perspectives.

More general overviews of techniques for the control flow perspective are e.g. found in (Lang,
2008; Medeiros, 2006).

4.2.3.1. Alpha Algorithm

The Alpha («) algorithm was one of the first techniques to discover concurrent processes (Aalst,
2010a, p. 34). It is driven by Petri net theory and the question, which process models can be
inferred from the direct successor relation of activities in a log (Aalst et al., 2003a, p. 249). The
basic algorithm has a strong academic and demonstrative focus: It is very simple and elegant
but fails under many practically relevant conditions (Aalst, 2010a, p. 34).

The original « algorithm can provably rediscover a sound, structured workflow net without
hidden elements, duplicate tasks, and short cycles of length 1 or 2 from a noise-free, locally
complete event-based log (Medeiros et al., 2004a, p. 7).!Y Aalst (2010a, p. 37-38) shows that
the reliance on local completeness provides the algorithm with a strong bias towards imputing
concurrency: To identify 10 different activities as concurrent, 10! = 3628800 different traces
(i.e. every potential interleaving) are required under the strong notion of completeness, while
the a algorithm gets along with 90 variations at best (Aalst, 2010a, p. 38).

!8The figure is leaned on the result representation of the Heuristics Miner algorithm by Weijters et al. (2006).
19Recall the description of Petri net properties from Section 2.3.2.1.
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The basic procedure consists of two steps: Firstly, four different ordering relations are recon-
structed from the log. Secondly, a workflow net is generated from these relations. The following
formalization is adopted with modifications from (Aalst, 2010a, pp. 34): Let A be a set of ac-
tivities. A bag of strings over A is called an event log L € Bag(A*). A string o € L is called
a trace. For pairs of activities a,b € A, the following ordering relations can be defined over L
(Aalst, 2010a, p. 34):

a >r b= do € L: b directly follows a in o,
a—rb=(a>rb)A=(b>r a)

CLHLbE ((1 >r b) AN (b > CL),

. S

a#trb=—=(a>p b) A=(b>r a).

The semantics of these relations is explained as follows (Medeiros et al., 2004a, p. 8): >,
contains pairs of direct followers. a — b provides a hint towards causality based on the
observation that a is directly followed by b, but not vice versa. The relation ||, marks potentially
parallel activities, while #, contains pairs of unrelated activities. Together, both relations “are
used to differentiate between parallelism and choice” (Aalst et al., 2003a, p. 250) in the reconstructed
net.

From the four relations, a workflow net N = a(L) = (Pr, T, Fr) is built by means of the
following rules (Aalst, 2010a, p. 35):

1. Transitions are created for all activities in the log. ’Input’ ("output’) transitions corre-
spond to the first (last) elements of a trace:

o Iy ={ty|3oc € L:aco}
o Tr={t;|3o € L: first(c) =i}
o Tp ={to|3o € L : last(o) = o}
2. Places are introduced to connect maximal sets of mutually unrelated transitions according
to the causal relation —. Additionally, there is a single input and output place:

e X, = {(A,B)JA,BC T A(Va€ Abe B:a—pb)AVa,as € A: ar#ras) A
(Vbi, by € B : bi#1bo)}

o Vi ={(A,B) € X VA, B' € X;,: (ACAANBCB) = (A,B)=(A,B)},
o PL={panl(4, B)€YrtU{pipo}

3. Arcs connect places with their related transitions:

o F, = {(a,pa,p)|(A,B) € YL ANa € Ay U {(pap)b)|(A,B) € YL Ab € B} U
{(t,po)|t € To} U{(ps,t)[t € Tr}

Medeiros et al. (2004a) extend the basic algorithm with the ability to correctly discover short
cycles of length 1 (loops) and 2. Loops are detected during pre-processing from the observation
that an activity is directly followed by itself in some trace (Medeiros et al., 2004a, p. 16). The
detection of length 2-cycles requires to distinguish patterns like aba, that indicate a short cycle,
from patterns that indicate parallelism (i.e. ||z) (Medeiros et al., 2004a, p. 11); as well as a
redefinition of local completeness (Medeiros et al., 2004a, p. 10).
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Medeiros et al. (2004a, Sec. 5) and Wen et al. (2006) present further extensions to discover an
extended class of sound structured workflow nets that are allowed to contain certain non-free-
choice constructs. The latter authors note that the time complexity of this ’a™ algorithm’ is
“linear in the size of the log [... and] exponential in the number of tasks” (Wen et al., 2006, p. 21).
Wen et al. (2004) present a variant of the a algorithm for activity-based logs.

4.2.3.2. Mining Duplicate Tasks

Duplicate tasks are a means to improve the understandability and to enforce certain formal
properties of control flow models (see e.g. Medeiros, 2006, Sec. 3.3). Figure 4.8 (left) shows an
example adopted from Medeiros (2006, p. 40). It models the ordered execution of two activities
A and B, where one activity is optional, but not both. The net on the right hand side of this
figure exhibits the same label language without duplicate tasks. However, this is at the expense
of two hidden tasks and an additional place for the condition that ’only one of the activities
might be skipped’.

Figure 4.8.: Two different Petri nets with the label language L = {A, B, AB}. The net on the
left was adopted from Medeiros (2006, p. 40) and contains duplicate tasks, while
the net on the right contains hidden tasks.

The identification of duplicate tasks from an execution log is difficult when no a-priori informa-
tion on the structure of the generating model, such as the number of transitions with the same
label, is available (Herbst, 2001, p. 62). The reviews by Medeiros (2006, Sec. 2), Lang (2008,
Sec. 3), and Tiwari et al. (2008, Sec. 3) show that only few control flow discovery algorithms
are able to reconstruct process models that contain duplicate tasks, concurrency, and loops at
the same time. Most existing approaches are based on one of the following ideas:

1. global search through a space of labeling functions (Herbst, 2001; Medeiros, 2006),

2. clustering of activity occurrences based on the local succession relation during log pre-
processing (e.g. Gu et al., 2008; Schimm, 2004),

3. two-step approaches that combine (regular) grammar inference with the subsequent syn-
thesis of a concurrent model (Rubin et al., 2006; Schiitt, 2003).
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Example algorithms of the classes 1 and 2 are briefly reviewed below. The third class incor-
porates the control flow mining technique applied and extended in this thesis (see Section 7.2)
and is therefore described more detailed in Section 4.2.3.3.

Approaches based on global search 1In his dissertation, Herbst (2001) presents the SplitPar
algorithm as the first technique to reconstruct models containing concurrent and duplicate
activities. The following description is based on summaries by Lang (2008, pp. 65), Medeiros
(2006, p. 23), and Aalst et al. (2003a, pp. 256).

Similar to the « algorithm, SplitPar is a two-step procedure that uses different model represen-
tations for internal processing and presentation. The first step (induction) consists of a search
procedure with embedded graph generation (Aalst et al., 2003a, p. 256). From the indirect
follower relation defined on the log (Aalst et al., 2003a, p. 257), a stochastic activity graph
(SAQG) is induced, that describes the relative frequency of succession for each pair of activities
(Lang, 2008, pp. 65).20

Different from the « algorithm, SplitPar does not induce ordering relations on a fixed set of
activities, but a whole lattice of mappings between log events and graph nodes, which are
partially ordered by increasing specialization (Aalst et al., 2003a, p. 256). The most general
SAG contains a single node for each activity name, i.e. there are no duplicate tasks, while in
the most specific SAG, every log event is assigned an own node (Medeiros, 2006, p. 23; Aalst
et al., 2003a, p. 256).

A search procedure is run on the lattice to identify an optimal mapping between log events and
activities with respect to duplicate tasks. The objective is to maximize a likelihood function
that describes the conformance of a SAG to the log traces (see Aalst et al., 2003a, p. 257; Lang,
2008, p. 66). To improve this measure during search, a mapping can be specialized by splitting
selected activities (Aalst et al., 2003a, p. 256) into duplicate tasks.

After termination of the search, the ’best’ SAG is transformed into an output model in the
block-structured ADONIS language (Aalst et al., 2003a, p. 257). The main challenge of the
transformation consists in the identification of alternative and concurrent routing constructs
which are not explicitly distinguished in the SAG (Aalst et al., 2003a, p. 258).

Medeiros (2006, Sec. 5) describes an alternative approach to discover duplicate tasks employ-
ing global search with genetic algorithms. Her algorithm is shown to successfully reconstruct
(among others) examples from Herbst’s dissertation (2001), but “the models tend to have more
duplicates than necessary” (Medeiros, 2006, p. 121). A brief review of genetic process mining is
given in Section 4.2.3.4.

Approaches based on local preprocessing: The dissertation by Schimm (2004) presents an
approach to reconstruct block-structured process models from activity-based logs using concepts
from grammar inference, process algebra, and term rewriting (Medeiros, 2006, p. 24). Though
the approach does not focus on duplicate tasks, it is proposed to detect these from local successor
relations during pre-processing of the log (Medeiros, 2006, p. 24).

2Osimilar to the leftmost model in Figure 4.7
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This idea is operationalized in two akin approaches by Li et al. (2007) and Gu et al. (2008),
who extend the « algorithm with log preprocessing to handle duplicate tasks. Both approaches
search for local patterns, somewhat similar to the ’length-1 loop’ extension of the « algorithm
described above.

Li et al. (2007, pp. 403) state 3 simple heuristic rules based on the observation that duplicate
tasks typically have different successors and predecessors in log traces. Their rules also regard
for the fact that a distinct neighborhood might be merely caused by different interleaving of
concurrent tasks (called “cross-equivalence”; Li et al., 2007, p. 399). In Section 7.2.4, a related
technique will be applied, also together with the « algorithm, on automata to implement the
concurrency detection approach by Schiitt (2003).

Li et al. (2007, p. 404) developed a preprocessing stage for the « algorithm that compares
all events in a log by the above conditions and marks duplicate tasks with different indices.
The algorithm was evaluated against 8 logs from different process models including “sequential
processes, concurrent processes|,] and loops” (Li et al., 2007, p. 406) as well as variable numbers
of duplicate tasks ranging from 1 to 3 (Li et al., 2007, p. 405). While these examples are
successfully identified from logs containing 1000 traces, the simple heuristics can fail under
more realistic conditions like globally incomplete logs (Li et al., 2007, p. 406).

Gu et al. (2008, p. 362) criticize that the above approach does not “take account of both cyclic
constructs and duplicate tasks synchronously”. These authors present an extended preprocessing
stage with a larger number of pattern detection rules that also regard for short cycles. The
rules are formally proven to detect duplicate tasks in a number of routing constructs of sound
SWF nets and applied to several examples (Gu et al., 2008, pp. 363-368). However, this rather
theoretical approach might pose a number of challenges on a practical implementation: The
algorithm might e.g. only be able to handle locally complete logs when it takes advantage of
the fact that the pattern detection is performed on sub-strings of arbitrary length.?!

Wang et al. (2009) present another related approach to “discover duplicate tasks based on directed
diagram[s]” where the handling of “multistep loop|s|” is named as future work (Wang et al., 2009,
p. 262).

4.2.3.3. Grammatical Inference and Two-Step Approaches

In the following we review a set of well-investigated techniques from theoretical informatics
that have recently received increased interest in process mining, i.e. grammatical inference and
the theory of regions. In combination, these allow for the detection of duplicate tasks and a
number of other important control flow constructs from process execution logs.

Grammatical Inference (GI) is closely related to the theory of formal languages (Higuera,
2005, p. 1332). The objective is to induce a generating grammar or an accepting automaton
from a set of example words (Higuera, 2005, p. 1332). Since many GI techniques have been
developed during the 1970s and 80s, Aalst (2010a, p. 33-34) regards GI as a predecessor of
process discovery without focus on concurrency and high level process modeling languages.

21Only limited by the size of the considered trace o € L.

132



4.2. Process Mining

Nevertheless, an important lesson that process mining can learn from GI lies in the rigorous
formal analysis of grammar induction problems (Aalst and Weijters, 2004, p. 237). Researchers
like Gold (1967) and Angluin and Smith (1983) have thoroughly investigated the general possi-
bilities and algorithmic complexity of formal language induction from examples. The following
review of results is based on the article by Angluin and Smith (1983) and the brief summary
by Vidal (1994).

Two basic concepts for inductive inference are identification in the limit and identification by
enumeration (Gold, 1967, cited in Angluin and Smith, 1983, Sec. 1.2). Identification in the limit
means that inference procedures generate a (possibly infinite) sequence of models, increasingly
refined with the number of presented data items (Angluin and Smith, 1983, p. 240). An
inference algorithm A correctly identifies a model M in the limit if it produces a sequence of
estimations my, ma, ... with mp = mgy1 = mpyo = ... for some integer k where my is an
appropriate estimation of M (Angluin and Smith, 1983, p. 240); i.e. A converges towards a
suitable solution.

Identification by enumeration describes an inference strategy that is “very general and powerful
but also rather impractical because [of| the size of the space that must be searched [...]” (Angluin
and Smith, 1983, p. 241). Let ST be a set of positive examples (words generated by the target
grammar () and S~ be a set of negative examples (words not generated by G). If the search
space of possible target grammars is recursively enumerable, G can be identified in the limit
by enumerating all possible grammars and checking, for each candidate, if it generates S* and
not S~ (Angluin and Smith, 1983, p. 241).

Feasibility and Complexity Based on these concepts, a number of important feasibility and
complexity results have been obtained, as summarized by Vidal (1994, p. 1-3). Feasibility
and complexity of language identification mainly depend on the expressiveness of the target
language class and on the presence of negative examples.

While “any enumerable class of recursive languages (context-free and below) can be identified in the
limit from complete presentation (both positive and negative data) [...,] no superfinite class of languages
can be identified in the limit from only positive presentation. A superfinite class of languages is one
that contains all finite languages and at least one infinite language” (Vidal, 1994, p. 1). These results
directly follow from the concept of identification by enumeration where negative examples serve
as constraints to avoid over-generalization (Vidal, 1994, p. 1).

Several subclasses (Vidal, 1994, p. 2) but only few superclasses of the regular languages can be
identified in the limit from positive examples only (Vidal, 1994, p. 3). The question, if a certain
class of languages can be identified in the absence of negative examples is already undecidable
for the context-free languages (Vidal, 1994, p. 3).

Though possible in general, the problem to discover the smallest regular grammar or deter-
ministic finite automaton (DFA) from positive and negative examples is N P-hard (Gold, 1978,
cited in Vidal, 1994, p. 1). However, by either (a) dropping the minimality or exactness con-
straints, (b) resorting to less expressive language subclasses, or (¢) applying stochastic and
heuristic techniques, polynomial algorithms for both complete and positive presentation could
be developed (Vidal, 1994, p. 2).
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These results make immediately plausible why process mining often resorts to limited net
classes and heuristic methods. In general, though suggested by authors like Aalst (2010a,
p. 33), theoretical results from grammar inference might not have received sufficient attention
in process mining so far. The framework of Petri net languages, as studied by Jantzen (1979),
could e.g. provide an appropriate foundation for a transfer.

Positive and Negative Examples Vidal (1994, p. 1) and Aalst (2010a, p. 34) accordingly state
that GI and process mining often focus on positive presentation for reasons of lower algorithmic
complexity and practical lack of negative examples. Nevertheless, several GI algorithms have
been developed for complete presentation as well. In process mining, a first approach to make
use of negative examples is presented by Goedertier et al. (2008) in an ILP context.

The lack of negative examples is due to the fact that real logs normally contain positive examples
of executed process instances only (Goedertier et al., 2008, p. 42). Goedertier et al. (2008,
p. 47) extend logs with artificial negative events expressing “that a state transition [in the process
model| could not take place”. Since most workflow engines do not expose information about
inhibited transitions, Goedertier et al. (2008, p. 47) derive negative events from (positive)
logged examples. Though this approach does not add 'new’ information to the log, it enables
the use of supervised classification learners in process mining (Goedertier et al., 2008, p. 47).

When regarding only positive examples, the subclasses of regular languages that can be iden-
tified in the limit in polynomial time include (see Rey, 2003 and Yokomori, 1995):

o k-reversible languages: According to the informal characterization by Pilato and Berwick
(1985, p. 71), a regular language L is k-reversible if, “whenever two prefixes [of two words
in L] whose k last [... symbols] match have a tail in common, then the prefixes have all tails in
common”.

o subclasses of the k-testable languages (see e.g. Yu, 1997), such as “k-testable languages
in the strict sense (k-TLSS) [...] Informally speaking, [... these are] defined by a finite set of
substrings of length k that are allowed to appear in the strings of the language.” (Garcia and
Vidal, 1990, p. 921). The k-TLSS are a subclass of the k-reversible languages that can
be inferred using specific, more performant algorithms (Garcia and Vidal, 1990, p. 923).

e languages identified by strictly deterministic automata: These are deterministic finite
automata (DFA, see definition below) where each transition label starts with a different
character from the underlying alphabet (Yokomori, 1995, p. 154). In the case of single
letter labels, they might be described as 'DFA without duplicate tasks’.

In the following, we review a well-investigated algorithm for the identification of the rather
general class of k-reversible languages. This algorithm will be applied as part of a procedure
to discover agent interaction protocols in Section 7.2.

Inference Algorithm k-RI  The k-RI algorithm by Angluin (1982) learns a minimal k-reversible
DFA (k > 0) in the limit from positive examples (Angluin, 1982, p. 759). It is based on a
definition of k-reversibility in terms of automata. Let A = (@, I, F, ) be an automaton with
sets @, I, F of states, initial states, and final states, and a transition relation § C Q x U X @)
over an alphabet U (Angluin, 1982, p. 745).
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B1 Q B1
B3 b Q ....... u_ b B3
B2 Q' B2

Figure 4.9.: Illustrations of the k-RI algorithm. Left: A PTA for the regular language L =
{aab, aac,abc}. Middle: States B; and Bs are merged to enforce determinism
according to condition 1 below. Right: States B; and Bj are merged to enforce
k-reversibility according to condition 2 below.

In case of k = 0, the definition of reversibility is rather simple: An automaton A is deterministic
if |I] =1and 6 : @ x U — @ is a function (Angluin, 1982, p. 745). Let A" be the reverse
automaton of A obtained by ’inverting’ the transition relation §. A is O-reversible if and only
if its reverse A" is deterministic (Angluin, 1982, p. 745).

For k > 0 a weaker notion of determinism is introduced: A string u € U* of length k is called
a k-leader of a state ¢ € Q if g can be reached from some state ¢ € @Q by input of u, and
k-follower of ¢ if some ¢’ can be reached from ¢ by input of u (Angluin, 1982, p. 749). Let
q1,q2 € Q be either initial states, or both states can be reached from a state g3 by input of the
same a € U. An automaton A is deterministic with lookahead k if it contains no such states
q1, g2 that share a common k-follower u € U* (Angluin, 1982, p. 749). A DFA A is k-reversible
whenever its reverse acceptor A" is deterministic with lookahead k& (Angluin, 1982, p. 749).

The algorithm k-RI starts by constructing a prefiz tree acceptor (PTA) from an example log
of traces over U (Angluin, 1982, p. 759). This DFA represents every log trace by a transition
sequence from the initial state to a final state, such that traces with a common prefix share
common states and transitions (see Figure 4.9).

The state space of the PTA is reduced by merging appropriate pairs of similar states. Broadly
speaking, two states are considered as similar if both represent the same set of “possible future
strings that can stem from it” (Walkinshaw et al., 2008, p. 274).22 Then both states are replaced
by a single new state, whose incoming and outgoing transitions are the unions of the respective
sets from the original states.

The k-RI algorithm first merges all final states of the PTA into one. This is a precondition to
make the reverse acceptor deterministic. Then the algorithm repeatedly merges pairs of states
that violate the conditions of determinism or k-reversibility in A, thus producing a sequence
of automata Ay, Ay, ..., Ar with decreasing size of the state space. The procedure is repeated
until no further state merging is possible and the resulting automaton Ay, is returned.

The conditions for state merging are formalized as follows and illustrated in Figure 4.9:23

22Walkinshaw et al. (2008, p. 274) actually relate to grammar inference in general.
?3The synonymous use of the terms ’state’ and ’block’ and the notion of “enforc[ing ...| determinism” in the
following definitions are derived from Pilato and Berwick (1985, p. 72).
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1. Enforce determinism: Let U be an alphabet and b € U an input character. If there exist
states By, Ba, B3 € @ such that §(Bs,b) = By and §(B3,b) = Bs, then B and By are
merged (Angluin, 1982, p. 759).

2. Enforce k-reversibility: If there exist states “B; and Bs [that] have a common k-leader |...]
and either B; and By are both final states [...] or there exists a [... state] Bs [...] and a symbol
b € U such that Bs is a b-successor of both By and By” (Angluin, 1982, p. 759), then B; and
By are merged.

Angluin (1982, p. 760) proves that this algorithm identifies the smallest k-reversible language
in the limit that contains the examples from the log. The identification is correct with respect
to a given k-reversible language L whenever the log contains a so-called characteristic sample
S C L. This subset is well-defined and can be algorithmically derived from an automaton
accepting L (Angluin, 1982, pp. 750).

Angluin (1982, p. 760) shows that “the algorithm k-RI may be implemented to run in time O(kn?),
where n is one more than the sum of the lengths of the input strings”. The simplified algorithm ZR
(’zero-reversible’) for the special case k = 0 “may be implemented to run in time O(na(n)) where n
[is defined as above ...| and « is a very slowly growing function” (Angluin, 1982, p. 758). To obtain
a minimal k-reversible DFA| the output Ay, of the k-RI algorithm is minimized (Angluin, 1982,
p. 761) in time O(m?) where m is the number of states in Ay, (Hopcroft et al., 2003, p. 153).

Two-Step Approaches Though GI typically neglects concurrency, well-known GI algorithms
can be applied to the mining of concurrent processes as follows (Herbst, 2001):

1. Grammar inference techniques are extended to generate concurrent models instead of
sequential automata. This is e.g. done by Herbst (2001) and Schimm (2004).

2. A standard GI algorithm is employed to induce a sequential automaton from a process
log. The automaton is subsequently converted into a (possibly) concurrent model. Such
procedures are proposed by Herbst (2001), Schiitt (2003), and Kindler et al. (2006).

Though Herbst (2001) expresses his preference towards the first approach, procedures of the
second type have recently received attention under the name of two-step process mining (e.g.
Rubin et al., 2006).2 An important building block of these procedures is an appropriate
technique to convert a finite automaton into a concurrent model. For this purpose, the following
techniques might be applied:

e The theory of regions serves to synthesize a Petri net from an automaton, such that the
automaton is bi-similar to the Petri net’s reachability graph (Badouel and Darondeau,
1998, p. 529). Herbst (2001) was probably the first to propose a combination of GI
and region theory in process mining. Related algorithms and case studies are reported
(among others) by Kindler et al. (2006), Rubin et al. (2006), Carmona et al. (2008), and
Bergenthum et al. (2007).

24Rubin et al. (2006) only apply this term to their combination of automata inference and the theory of regions.
In the opinion of the author of this thesis, the term also fits other approaches that combine automata
inference with the synthesis of a concurrent model.
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e Graph rewriting can be used to identify patterns of concurrency in an automaton and
transform it to a higher-level modeling language. This approach is e.g. taken by Schiitt
(2003).

e From the precedence relation defined by an automaton’s labelled transitions, a depen-
dency graph can be generated and transformed into a concurrent model. The process
mining tool ProM (Section 4.2.6.1) e.g. offers the possibility to run the standard « algo-
rithm (Section 4.2.3.1) on an automaton instead of a log.

Theory of Regions The theory of regions (see e.g. Badouel and Darondeau, 1998) provides
means to synthesize Petri nets from finite automata, often called transition systems in this
context. One goal of Petri net synthesis is to reduce the size of the model (see e.g. Aalst et al.,
2010, p. 101 and Verbeek et al., 2008, p. 153): Automata for concurrent processes tend to be
large since every interleaving of concurrent tasks is represented by an own path. This state
explosion (Verbeek et al., 2008, p. 153) can be avoided by transformation to concurrent models
like Petri nets (Aalst et al., 2010, p. 89).

An important feature of region-based synthesis is bi-similarity, i.e. the synthesized net ezactly
mimics the behavior of the automaton, which can be interpreted as the net’s reachability graph
(see Section 2.3.2.3) (Carmona et al., 2008, p. 364). In process mining, bi-similarity might be
unwanted because an abstraction from the observed process executions is required (Carmona
et al., 2008, p. 358).

We briefly review the basic formalism of region theory and an extension towards process mining,
both following Carmona et al. (2008): Let T'S = (S, E, A, s;) be a transition system with a
set of states S, transitions A, transition labels (events) E, and an initial state s;, (Carmona
et al., 2008, p. 360). On T'S, the following relations can be defined that relate an event e € E
to a subset of states S’ C S (Carmona et al., 2008, p. 361):

e cnter(e,S’): At least one transition a € A labelled with e enters a state s € S/, emanating
from a state s’ ¢ S’.

e cxit(e,S"): At least one transition a € A labelled with e leaves a state s € S', targeting
a state s’ ¢ S’

e nocross(e,S"): At least one transition a € A labelled with e connects two states s, s’ that
are either both inside or both outside of S’.

A subset r C S is called a region of T'S if exactly one of the relations enter(e,r), exit(e,r),
or nocross(e,r) holds for all events in £ (Carmona et al., 2008, p. 361). The region can be
understood as a place in a Petri net with well-defined pre- and post-sets of transitions, where
each state s € r corresponds to a different marking (Carmona et al., 2008, p. 361). The set of
regions that an event e € E enters (exits) are called its pre-regions (post-regions) (Carmona
et al., 2008, p. 362). The excitation region of an event e is the set of states that e is enabled in
(Carmona et al., 2008, p. 363).

A Petri net can be synthesized by building places from the regions of a transition system,
transition from its events, and arcs according to the events’ pre- and post-regions (Carmona
et al., 2008, p. 363). To avoid place redundancy, only minimal regions are considered. A region
r is called minimal if no subset S’ C r is a region (Carmona et al., 2008, p. 362).
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Bi-similarity between the original transition system TS and the reachability graph of the syn-
thesized net is only reached if T'S is excitation closed (for a definition see Carmona et al.,
2008, p. 364). This property can be achieved for an arbitrary transition system by means of
label-splitting, i.e. dividing single transitions into multiple copies with the same label but em-
anating from different states (Carmona et al., 2008, p. 364). Carmona et al. (2008, Sec. 3.1)
drop this requirement to better fit region-based synthesis to the needs of process mining, since
the reachability graph of a Petri net synthesized from a non-excitation closed transition system
can be shown to be an over-approzimation (generalization) of the original transition system.

The theory of regions allows to synthesize several subclasses of P/T nets: Structural properties
like free-choice (Section 2.3.2.2) can be enforced by means of label splitting and different strate-
gies for place generation (Aalst et al., 2010, p. 103). While algorithms to synthesize k-bounded
nets were developed by Badouel et al. (1995, cited in Carmona et al., 2009b, p. 327), higher
level classes like colored or object-oriented nets have not been considered so far (see also Flick
et al., 2010).

A main problem of region-based Petri net synthesis is its high algorithmic complexity. Though
even the synthesis of k-bounded nets is possible in polynomial time (Badouel et al., 1995, cited
in Carmona et al., 2009b, p. 327), the algorithms might become practically intractable on large
transition systems (Verbeek et al., 2008, p. 166) and log sizes considered in process mining
(Carmona et al., 2009b, p. 327). Iterative (Dongen et al., 2007) as well as divide-and-conquer
strategies (Carmona et al., 2009a) have been proposed to reduce complexity, but the problem of
efficient, practically applicable, Petri net synthesis remains challenging (see e.g. Verbeek et al.,
2008, p. 166).

Approach by Kindler, Rubin, and van Dongen Kindler et al. (2006) were the first to prac-
tically apply a combination of automata inference and region-based net synthesis to process
mining. This so-called “two-step approach”, continued in the work by Rubin et al. (2006)%°,
consists of an automata inference stage followed by Petri net synthesis (Rubin et al., 2006,
p. 3) using the tool Petrify (Cortadella et al., 1997). Interestingly, no existing grammar in-
ference algorithmns are employed for automata inference, but an own framework to reconstruct
finite automata from event logs is developed. This ’reinvention’ leads to certain advantages
and drawbacks discussed in the following.

Similar to grammar inference, the basic idea of Rubin et al. (2006, p. 14) is to reconstruct
explicit state information from an event-based log, resulting in a possible generating transition
system. Basically, states are identified from the events that occurred before or after a certain
position in a log trace. The authors propose to implement this simple strategy by applying vari-
ations along three dimensions, which leads to an overall of 36 strategies for state identification
(Rubin et al., 2006, p. 17):

1. Filtering: are all events from the log or only events from a certain subset taken into
account (Rubin et al., 2006, p. 16)?

2. Horizon: are the events before (past), after (future) or both considered to identify a
state?” How long are the considered pre- or postfixes (Rubin et al., 2006, pp. 14)?

?5and also reported in (Aalst et al., 2010)
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3. Order: Is the order and number of event occurrences before or after a certain position in
the log relevant, i.e. are states defined by sequences, sets, or multisets of events (Rubin
et al., 2006, p. 15)7

Rubin et al. (2006, p. 32) emphasize that an advantage of their approach is the large number
of possible strategies: These allow to fine-tune transition system identification to reach an
appropriate balance between specialization and generalization. A disadvantage of their rather
practical approach is that, different from classical grammar inference, it is not related to formal
language theory. Therefore it is not clearly stated which classes of languages can be identified
from which sets of example words.

It might, however, be straightforward to establish this relation in several cases. In terms of the
above strategies, the k-RI algorithm e.g. applies no filtering, an infinite 'past’ horizon, and the
'sequence’ semantics (i.e. event order is considered) during the generation of the PTA. When
merging the states of the PTA, a ’past’ horizon of k& and a ’future’ horizon of 1 are applied
together with the 'sequence’ semantics. Though this comparison is rather preliminary, further
attempts to relate formal grammar inference to the practical framework of Rubin et al. (2006)
might be useful.

Before performing region-based synthesis, Rubin et al. (2006) apply certain modifications to
the reconstructed transition system in order to improve the quality of the synthesized net. The
following strategies are implemented using the basic operations of arc addition, arc removal,
and state merging (Rubin et al., 2006, p. 20):

e “Kill loops” (Rubin et al., 2006, p. 20): Loops are removed to either create an acyclic
transition system or to avoid self-loops. The latter are produced as artifacts by the ’set’
semantics of state representation when an event occurs more than once.

e “Extend” (Rubin et al., 2006, p. 21): Arcs are added to the transitions system to amend
traces with a certain interleaving of presumably concurrent events?® not observed in the
log.

e “Merge by output” (Rubin et al., 2006, p. 22): States with the same output events are
merged under certain conditions.

For the second step, Petri net synthesis, the existing tool Petrify is applied without modifica-
tions. The authors note that a wealth of different net classes can be generated using different
parameter settings (Rubin et al., 2006, p. 22). Though the large number of possible strategies
for automata inference and net synthesis leads to high versatility (Rubin et al., 2006, p. 32),
the related degrees of freedom might also make the overall algorithm hard to understand for
users without a strong theoretical background.

Approach by Schiitt Prior to Rubin et al. (2006), Schiitt (2003) proposed an alternative "two-
step approach’ consisting of automata inference and transformation into a concurrent model
as part of his Diploma thesis. Unlike the former authors, Schiitt (2003) (a) explicitly relates
his automata inference stage to grammar inference (e.g. Schiitt, 2003, p. 35) and (b) does not
apply region-based synthesis but a pattern-based technique for “concurrency detection” (Schiitt,
2003, pp. 58).

called “state diamonds” by Rubin et al. (2006, p. 21)

139



4. Data Mining and Process Mining

The automata inference stage is inspired by the work of Schimm (2004), who uses grammar
inference-like techniques to mine block-structured models containing concurrent and alternative
routing as well as loops from activity-based logs (see Schiitt, 2003, pp. 11,35). Schiitt (2003)
only applies grammar inference as an intermediate step to reconstruct a sequential, non-cyclic
model with choices as the only routing construct.

Algorithmically, this is achieved by performing so-called “prefix tree induction” and “postfix opti-
mization” on the observed traces (Schiitt, 2003, pp. 55). First a prefix tree automaton (PTA) is
built from the log (Schiitt, 2003, pp. 55). Next, the PTA is postfix-optimized by merging differ-
ent, but identically labelled (partial) paths starting from the final state (Schiitt, 2003, pp. 57).
The procedure bears strong resemblance with the k-RI algorithm except that no cycles are
introduced.

_oe
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Figure 4.10.: Simple pattern-based concurrency detection: Assuming interleaving semantics,
the left activity diagram with a choice can be simplified into the right diagram
with concurrent fork and join. Adopted with modifications from (Schiitt, 2003,
p. 59).

Concurrency detection is applied in the second step to further reduce the size of the recon-
structed model in case of concurrent control flow. Basically, the algorithm searches the se-
quential model for “state diamonds” (already mentioned in Rubin’s approach) as a hint towards
different interleavings of concurrent tasks. Figure 4.10 reviews an example by Schiitt (2003,
p. 59): Two alternative paths labelled PQ and QP with the same source and target are merged
into a concurrent routing construct.

Note that the behavior of the two diagrams in Figure 4.10 is bi-similar only if interleaving
semantics (see Section 2.3.2.3) is assumed. Under partial order semantics, the right diagram
allows for a temporally overlapped execution of the tasks P and @) while the left diagram does
not. This restriction also holds for the approach by Rubin et al. (2006).

Schiitt (2003, pp. 59) further proposes to optimize potentially concurrent models by detecting
causal dependencies of larger subgraphs called “atomic blocks”. Figure 4.11 shows an example
where an atomic block (A® B) is identified to be concurrent to a task sequence (C'D). Imitating
the notation from (Schiitt, 2003, pp. 59), the Petri net on the right of this figure displays the
intended execution semantics.
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Figure 4.11.: Using the concept of atomic blocks proposed by Schiitt (2003, pp. 59), the au-
tomaton on the left might be simplified into the Petri net on the right. The
identified concurrent atomic blocks (A @ B) and (CD) are shaded grey. Figure
inspired by (Schiitt, 2003, p. 60).

Since concurrency detection is described as an optional, conceptual extension of the sequential
control flow mining approach (see Schiitt, 2003, pp. 61), there are only few hints towards its
implementation, computational complexity, and proof of correctness. In Section 7.2 we discuss
our implementation of parts of the concurrency detection in order to optimize cyclic automata
reconstructed by the k-RI algorithm.

4.2.3.4. Heuristic Algorithms

The mining algorithms described so far neglect the frequency with which patterns, like e.g.
direct succession of activities, are found in the log. This means that rare patterns affect the
reconstructed model as much as very frequent patterns. A major drawback of these approaches
is their low robustness against noise (see Section 4.1.3.1) because occasional errors in the log
strongly influence the mining results.

Heuristics Miner To cope with noisy logs, heuristic algorithms have been developed that take
pattern frequencies into account. A common example is the Heuristics Miner algorithm by
Weijters et al. (2006). This algorithm calculates log relations quite similar to the « algorithm,
where each relation element (e.g. a — b) is assigned a plausibility value based on pattern
frequencies. From these relations, a dependency graph is constructed employing a number of
parametrizable heuristics.
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The basic precedence relation of the Heuristics Miner is expressed by (Weijters et al., 2006,
p. 7):

]a,>Wb]—|b>W CL‘
@ >w b+ b >w a] + 1

a=r b= (4.13)

with >, defined similar to the a algorithm (see Section 4.2.3.1). Different from the relation
—1, used by the a algorithm, the domain of =, is the interval | — 1, 1] (Weijters et al., 2006,
p. 7). “A high A = B value strongly suggests that there is a dependency relation between activity A
and B” (Weijters et al., 2006, p. 7). The interval borders are not reached due to the additional
summand 1 in the denominator of equation 4.13, which emphasizes the "heuristic’ character of
the algorithm (Haan, 2009, p. 49).

The Heuristics Miner starts by calculating a dependency matrix that contains the = val-
ues for all pairs of activities occurring in the log L (Weijters et al., 2006, p. 8). To build a
dependency graph from the matrix without a fixed dependency threshold, the so-called all-
activities-connected heuristics is applied (Weijters et al., 2006, p. 8):

1. Initial activities of the graph are identified by the fact that their assigned matrix column
contains no positive value.

2. Final activities are those whose assigned column does not contain a negative value.

3. Starting from the initial activities, every activity a is connected to its most likely successor
b with the maximum value of a =, b among all activities b’ € A (with (b' # a).

4. If necessary, every activity a is additionally connected to its most likely predecessor b
with the highest b =1, a value among all ¥/ € A (with ¥/ # a).

The restriction to the most likely successor and predecessor of every activity results in a de-
pendency graph that only mirrors the most common behavior of the observed process. To
fine-tune the level of detail of the reconstructed process model (Weijters et al., 2006, p. 9),
several threshold parameters are introduced (Weijters et al., 2006, p. 8):

o dependency threshold: minimum required = value of a dependency to occur in the
dependency graph,

e positive observation threshold: minimum required number of observations of a dependency
to occur in the graph,

o relative-to-best-threshold: maximum allowed difference between the value of an assumed
dependency a = b and the highest =, value in the dependency matrix.

Besides the basic dependency relation =, the Heuristics Miner considers further relations that
represent the presence of self-loops (a = a), length-two-cycles (a =% b), and concurrent
splits (a =1, b A ¢). The values of the relations concerned with short cycles increase with the
number of patterns found that indicate the respective cycle, i.e. aa for self-loops and [aba, bad]
for length-two-cycles (Weijters et al., 2006, p. 9). The ’concurrency’ relation is based on the
idea that for a concurrent split a — b A ¢, direct successions of b and ¢ (in arbitrary order)
are frequently found in the log, while for an alternative split a — b @ ¢ they are impossible
(Weijters et al., 2006, p. 9).
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Weijters et al. (2006, p. 12) further explain how the Heuristics Miner identifies long distance
dependencies where the path taken in a process depends on a choice of activities several steps
before: This is achieved by determining tasks that often appear together in the same trace,
and by establishing an additional precedence between these tasks if necessary.

Due to its convincing performance on both error-free and noisy data (see e.g. the experimental
results presented by Weijters et al., 2006, Sec. 3), the Heuristics Miner is one of the most widely
used process mining algorithms in practice. It has been applied, analyzed, and compared to
other mining algorithms in several studies (e.g. Rozinat et al., 2009a; Weber, 2009). The main
drawbacks of the Heuristics Miner are its inability to handle duplicate tasks and the large
number of parameters that must be calibrated to the given data.

The former issue might be compensated by applying preprocessing or embedding the Heuristics
Miner into a two-step approach as described above. To tackle the latter issue, Burattin and
Sperduti (2010) present a procedure to automatically calibrate the parameters of a Heuristics
Miner variant for activity based logs (HM™T). Weijters and Ribeiro (2011) developed an
extended algorithm Flezible Heuristics Miner with an improved representation of concurrent
and alternative routing constructs in augmented C-nets.

Evolutionary Algorithms The most algorithms presented so far are locally-optimizing (see
Section 4.2.2.3) approaches where the mined model is reconstructed stepwise from relations
between elementary activities. De Medeiros (see e.g. Medeiros, 2006; Medeiros et al., 2004b)
proposes a process mining approach based on genetic algorithms (GA, see Section 4.1.4.5) as
a heuristic, globally optimizing technique that can also handle noise. We will not discuss this
approach in detail but only provide a brief overview of its advantages and drawbacks.

In general, the application of evolutionary algorithms to process mining, requires solutions to
the following problems (Medeiros et al., 2004b, p. 10):

e mapping of process models to individuals encoded for processing by genetic operators like
mutation and crossover,

e generation of an initial population,

e choice of an objective function to rate the fitness of the generated process models with
respect to the analyzed log, and

e identification of appropriate genetic operators and a stopping criterion.

Medeiros et al. (2004b, pp. 5) employ an encoding based on binary dependency matrices (causal
matrices), from which Petri nets can be generated. The initial population of individuals is built
from random variations of the heuristic relations a =1, b, a =, a, and a =2 b (see above) on
the analyzed log (Medeiros et al., 2004b, pp. 8). As an objective function, different measures
for the conformance of the generated process models to the log are applied (Medeiros et al.,
2004b, pp. 11).%7

The procedure finishes if either a maximum number n of iterations, an ’optimal’ process model
with the highest possible fitness value of 1, or a 'plateau’ in the search space without relevant
changes of the best individual during n/2 iterations has been reached (Medeiros et al., 2004b,

*Tsee also Section 4.2.5.4 on conformance checking
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p. 13). Otherwise, a new population is generated by applying genetic operators described in
(Medeiros et al., 2004b, Sec. 3.4).

Medeiros (2006, Chs. 4,5,8) shows by experiments that genetic process mining can reconstruct
complex process models including non-free-choice constructs, invisible, and duplicate tasks also
in the presence of noise. Drawbacks include the algorithms’ high computational complexity
(Medeiros, 2006, p. 230) and the large number of parameters to be set by the user.

To compensate the former drawback, Bratosin (2011) presents a distributed genetic process
mining algorithm that works on a Grid architecture. Turner et al. (2008) propose an alterna-
tive evolutionary process mining approach based on a genetic programming technique called
Graph Based Program FEvolution that works on graph structures directly instead of a causal
matrix. The authors claim that this representation can be manipulated more flexibly and
straightforwardly by genetic operators and that fitness evaluation is more efficient (Turner
et al., 2008, pp. 1307).

4.2.3.5. Mining Complex Workflow Patterns

Recalling the workflow patterns introduced in Section 2.3.3, control flow mining might go
beyond basic routing constructs as well. However, only few process mining approaches deal
with more complex patterns like transactions or multiple instantiations in parallel. Due to the
relevance of such patterns in MAS, we review two approaches towards their reconstruction in
the following.

Workflow Patterns Mining Gaaloul et al. (2005) present an algorithm that identifies the
control flow patterns sequence, zor-split/join, and-split/join, or-split, and m-out-of-n-join from
statistical properties of event-based logs. In (Gaaloul and Godart, 2005) the approach is ex-
tended towards mining transactional properties of workflows.

Similar to the Heuristics Miner (Section 4.2.3.4) the algorithms are based on a matrix of direct
follower relations named initial statistical dependency table (SDT, Gaaloul et al., 2005, p. 27).
An entry at matrix position (i, j) represents the relative frequency P(A;/A;) € [0, 1] by which
activity A; directly follows A; in the observed log (Gaaloul et al., 2005, p. 26). The absolute
frequency of each task A; is counted as #A; (Gaaloul et al., 2005, p. 26).

To mark potentially concurrent tasks, a second matrix (final SDT) is set up (Gaaloul et al.,
2005, p. 27): It contains an entry of —1 for each pair of tasks with P(A4;/A;) # 0AP(A;/A;) # 0,
i.e. A; and A; are causally’ independent. An entry of 1 indicates P(A;/A;) # 0AP(A;/A;) =0,
meaning that A; ’causally’ depends on A;.

To discover indirect dependencies, every activity is assigned a value called activity concurrent
window (ACW, Gaaloul et al., 2005, p. 27). Since interleaving of concurrent activities masks
the direct follower relation in the log, the ACW counts how often an activity or one of its
predecessors are concurrent to other tasks (Gaaloul et al., 2005, pp. 27). On this basis, further
dependencies might be added to the final SDT (Gaaloul et al., 2005, p. 28).
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Gaaloul et al. (2005, Sec. 3.2) show that several control flow patterns can be identified from the
activity count and the final SDT. A sequence A — B is e.g. characterized by the rule (Gaaloul
et al., 2005, p. 30):

#A=#BANP(A/B) = 1. (4.14)

A non-exclusive or-split between an activity A and a set of activities B; (0 < i < n), which
is neglected by most process mining algorithms, can be identified using a more complex set of
rules (Gaaloul et al., 2005, p. 30):

(VO <i<n:P(ByA) = 1)A(EF0<i,j<n:P(Bi/B;) = 1) (4.15)

Based on the identified patterns, an overall control flow graph could be reconstructed from a
complete log (Gaaloul et al., 2005, p. 29). However, the authors stress that “local discovery”
is a particularly useful ability of their approach, e.g. when “only fractions of workflow log[s]” are
available (Gaaloul et al., 2005, p. 29).

Gaaloul and Godart (2005) extend the algorithm towards mining transactional properties of
activities (activity transactional properties) and workflows (transactional flow) (Gaaloul and
Godart, 2005, pp. 177). These properties characterize how a workflow behaves in order to
recover a consistent state after failures.

Transactional properties are defined under the assumption of a set of observable activity states
including completed, aborted, and failed (Gaaloul and Godart, 2005, p. 178). Depending on
the set of possible transitions between these states, an activity A is said to be re-triable (A is
repeated after failure until completion), pivot (the effect of A persists and cannot be undone
after its completion), or both (Gaaloul and Godart, 2005, p. 178).

Transactional flow relates to the control flow of recovery procedures that a workflow or an
external entity executes to ensure a consistent state after an activity has failed (Gaaloul and
Godart, 2005, pp. 179,180). In this context, Gaaloul and Godart (2005, p. 180) focus on
alternative dependencies (which activities B; are executed for recovery after a certain activity
A has failed) and abortion dependencies (which activities B; must be aborted after A’s failure).

To mine transaction-related properties from workflow logs, Gaaloul and Godart (2005, p. 179)
build two SDTs that only contain dependencies observed after an activity has failed. From
these SDTs, transactional properties such as ’re-triable’ are reconstructed using simple rules
quite similar to those for workflow pattern mining.

The work by Wen et al. (2010) is dedicated to another complex workflow pattern, i.e. the mining
of batch processing features. Batch processing means that certain steps of multiple instances of
a process are executed in a synchronized fashion, such as common rides of multiple travelers
with the same destination in workflows of a car-sharing agency (Wen et al., 2010, p. 393). Wen
et al. (2010, pp. 395) present an algorithm to identify batch processing areas (Wen et al., 2010,
p. 393) on the basis of event logs. Using this algorithm, logs of “batch processing processes” can
be preprocessed such that conventional control flow mining techniques are applicable for their
analysis (Wen et al., 2010, p. 393).
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Mining Traces of Interleaved Threads All above algorithms work under the assumption that
each case in the analyzed log corresponds to a single instantiation of the underlying workflow
model. Therefore, task repetitions are either interpreted as cycles or duplicates. However, this
assumption does not hold in the presence of multiple instantiation patterns as described in
Section 2.3.3.

Lou et al. (2010b,c) present the first algorithm to reconstruct workflow models from traces
generated by multiple interleaved threads. Their approach is targeted towards dynamic software
reverse engineering of multi-threaded programs. Based on practical experience, the authors
assume that the analyzed log does not necessarily contain an explicit mapping of events to
threads (Lou et al., 2010c, p. 613). Thus, threading information must be reconstructed by
means of process mining.

The algorithm’s ability to handle multiple instantiations of the same sub-workflow is enabled by
considering indirect dependency relations that also hold true in presence of interleaved threads
(Lou et al., 2010c, p. 613). From these relations, a simple initial workflow model without loops,
shortcuts, and multiple instantiation is first reconstructed and subsequently refined by applying
heuristics based on replay of log traces (Lou et al., 2010b, p. 613).

The procedure does not rely on the ’direct follower’ relation but on four indirect dependency
relations observed over a log L (Lou et al., 2010c, pp. 615):

Forward dependency: A —; B if in every trace s € L containing A, there is at least one
B after the occurrence of A.

Backward dependency: A —p B if in every trace s € L containing A, there is at least one
A before the occurrence of B.

Strict forward dependency: A —gp B if in every trace s € L, every occurrence of A is
(directly or indirectly) followed by at least one related occurrence of B.

Strict backward dependency: A —g B if in every trace s € L, every occurrence of B is
(directly or indirectly) preceded by at least one related occurrence of A.

Unrelated: A||B if A and B stand in none of the above relations.

The authors note that the strict dependency relations imply their non-strict counterpart and
that any relation (except for ||) implies a path from activity A to activity B in the generating
workflow model (Lou et al., 2010c, p. 616). Based on these observations, an initial model
is reconstructed from estimates of the dependency relations and expressed in terms of the
automata-based modeling language shown in Figure 4.12.

Lou et al. (2010c, p. 615) apply the terms fork and join to states (diamond shape) where
multiple threads running the same sub-workflow are instantiated and re-synchronized. The
authors compare this situation to a workflow net that contains multiple tokens in the initial
place (Lou et al., 2010c, p. 614) of the fork construct.?® In contrast, ’static’ concurrent flow
known from standard workflow nets, is expressed by split and merge states with a rectangular
shape (Lou et al., 2010c, p. 615).

28This comparison only applies to the fork node, since it neglects the synchronisation necessary at the join
node.
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| C

Q—AD split mergeTDO

Figure 4.12.: Elements of the automata-based formalism used by Lou et al. (2010b). Left:

sequential automaton with decision node, loop, and shortcut transition labelled
with the empty event €. Bottom right: concurrent split and merge nodes. Top
right: fork and join nodes spawning multiple threads. Adopted with modifications
from (Lou et al., 2010c, p. 615).

The initial workflow model is constructed from the mined dependencies by applying the follow-
ing steps (see Lou et al., 2010c, pp. 617):

1.

Eliminate bidirectional dependencies (Lou et al., 2010c, p. 617): For the cycle shown in
Figure 4.12 (left), both B —, C and C' —¢ B hold, which makes the dependency pruning
of step 3 run into an infinite loop. Bidirectional dependencies are therefore eliminated
by introducing a cloned event B’ and replacing the forward dependency C' —; B with
C —f B

. Identify successors and predecessors (Lou et al., 2010c, p. 617): For each event X, a

predecessor list prec(X) and a successor list succ(X) are constructed: If (A —¢ B) V
(A —p B) then succ(A) := succ(A) U{B} and prec(B) := prec(B) U {A}.

. Prune indirect dependencies (Lou et al., 2010c, p. 617): If A € prec(C) AN A € prec(B) A

B € prec(C), then A is removed from prec(C). Equally, if C' € succ(A) A B € succ(A) A
C € succ(B), then C' is removed from succ(A). After pruning, cloned events introduced
in step 1 are replaced with their originals again.

. Introduce initial and final states based on the observation which events start and finish

traces in the log with a support of at least 5% to compensate for noise (Lou et al., 2010c,
pp. 617-618).

. Identify control flow patterns (Lou et al., 2010c, p. 618): Alternative and concurrent split

and merge states are identified in the model based on rules quite similar to the workflow
patterns mining approach by Gaaloul et al. (2005). One example given by the authors is
the relation #A = # B for a concurrent split state with two outgoing transitions labelled
A and B.

To detect cycles, fork/join nodes, and shortcut transitions, Lou et al. (2010c, pp. 618) refine the
initial workflow model based on statistical properties observed during replay of the analyzed
traces. The authors describe the procedure for loop identification as follows (Lou et al., 2010c,
pp. 618;Lou et al., 2010b, pp. 11-12):
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For each log trace s € L, a new instance (thread) mg of the simple workflow model My is
started in the initial state sg. As long as wg can interpret the events of s, the current state of
wo is updated according to the transition function of My. If wg cannot interpret an event of s,
a new instance (thread) wy of My is tentatively started from its initial state.

If the trace s can be interpreted as an interleaving of wp and w;, the procedure is repeated,
optionally starting further instances of My. However, if the current event E of s does not fit any
interleaving of multiple instances, the initial workflow model My must be refined by introducing
a shortcut transition looping back to a previous state. The target state of this transition is
unambiguous when the model contains no duplicate tasks. The source state, however, could be
the current state of an arbitrary active thread. Lou et al. (2010c, p. 618) therefore determine
the state g of My for which the probability that event E cannot be interpreted is maximal over
all traces s € L. This state is assumed to be the shortcut transition’s source state.

Since “fork/join states do not expose any unique statistical properties” and “event traces that can
be interpreted by a workflow W; with loop structures can also be interpreted by a workflow W5 [..]
with fork/join structures, |...| but not vice versa” (Lou et al., 2010c, p. 618), the authors apply
a complexity-based heuristics to decide between cycles and fork/join patterns. This heuristics
prefers the construct that leads to a lower overall number of transitions and sub-workflow types
in the resulting model (Lou et al., 2010c, p. 618). If both variants have the same complexity,
cycles are preferred (Lou et al., 2010c, p. 618). Detailed algorithms for all steps of the procedure
are found in the appendices of (Lou et al., 2010c) and (Lou et al., 2010b).

Lou et al. (2010c, Sec. 6) show by experiments that their algorithm is effective and efficient on
simulated as well as real-world examples from the domain of program comprehension. Though
the computational complexity of the refinement procedure is not considered formally, search
appears to be expensive especially in case of multiple interleaved threads. Further drawbacks
are the inability to handle duplicate tasks and a tendency for over-generalization in presence
of long-distance dependencies (Lou et al., 2010c, p. 21).

To improve this, the authors plan to include further “domain or existing knowledge about a pro-
gram” into their approach in the future (Lou et al., 2010c, p. 21). In Section 7.3, we present
a procedure to reconstruct multicast protocols that is less general than the approach by Lou
et al. (2010c) but already makes use of additional information (e.g. thread identifiers) available
in logs of multi-agent simulations.

4.2.4. Organizational Perspective

Complementary to the control flow perspective, the organizational perspective focuses on de-
riving information about actors and organizational entities from process execution logs (Song
and Aalst, 2008, p. 5).2 The temporal dimension, which is central to control flow mining, is
often neglected. Following Song and Aalst (2008, p. 3), relevant problems in organizational
mining include:

1. Social Network Analysis (SNA): Networks of organizational actors and their relations are
reconstructed and formally analyzed.

page numbers relate to the pre-print of the article downloadable at http://wwwis.win.tue.nl/
“wvdaalst/publications/p484.pdf (last visit 2012-09-28)
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2. Organizational model mining: A model of an organizational structure (i.e. teams, roles,
or staff assignment rules) is mined from log data. The role mining approach by Rembert
and Ellis (2009, Sec. 4.2) was already presented in Section 4.2.2.1.

3. Information flow mining: The information flow between organizational entities (e.g. roles)
is analyzed by means of SNA and control flow mining techniques.

As a fourth category, the reconstruction and analysis of frequent interaction patterns (e.g.
Dustdar and Hoffmann, 2007) might be added. In the following, we review relevant approaches
for SNA, organizational model mining, and interaction pattern analysis. Mutual benefits of
combining organizational process mining with MAS are treated in Sections 5.3.4 and 6.2.3.

4.2.4.1. Social Network Mining and Analysis

In Social Network Analysis (SNA) social positions and relations are mapped to a graph struc-
ture G = (V, E) called sociogram (Aalst and Song, 2004b, p. 9).3¢ Vertices v € V represent
individual or abstract actors, while (un)directed and possibly weighted edges e € E model their
relations (Aalst and Song, 2004b, p. 9) based on quantitative measures like frequency of e-mail
communication (Aalst and Song, 2004b, p. 2).

After building a sociogram from observations, its properties like node degree and distance are
calculated and related to properties of the analyzed society, such as the status of certain actors
or the efficiency of communication (Aalst and Song, 2004b, p. 10). Though this analysis is
rather abstract and neglects informal social interaction (Aalst and Song, 2004b, p. 38), SNA
has been applied to diverse areas ranging from education to defense against terrorism (Aalst
and Song, 2004b, p. 1,9).3!

Social Network Mining on Workflow Logs Aalst and Song (2004b, p. 2) argue that workflow
logs are a highly appropriate data source for SNA due to the amount and quality of logged
data. To reconstruct a sociogram from workflow logs, the authors define the following metrics
(presentation based on the summary by Dustdar and Hoffmann, 2007, Sec. 4):

1. Follower relations of events: Aalst and Song (2004b, pp. 12) distinguish between handover
of work and subcontracting metrics: For handover of work, a link from an actor A to an
actor B is added to the sociogram if A performs a task on a workflow case directly before
B. For subcontracting, a link from A to B is added, if B works on a case in between two
tasks performed by A. Both metrics can be further refined, e.g. by measuring the degree
of causality, i.e. how many other actors work on the task in between A and B (Dustdar
and Hoffmann, 2007, p. 148).

2. Joint cases: A weighted edge between two actors A and B indicates the relative number
of cases on which these actors worked together (Dustdar and Hoffmann, 2007, p. 148;
Aalst and Song, 2004b, p. 17).

3%page numbers relate to the version of the article available at http://wwwis.win.tue.nl/
“wvdaalst/publications/p233.pdf (last visit 2012-09-28)

31For further details on sociographic metrics, tools, applications, and literature see e.g. the brief summary by
Aalst and Song (2004b).
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3. Joint activities (Dustdar and Hoffmann, 2007, p. 149): A matrix C is set up with actors
as columns and observed activities as rows. A matrix element ¢;; counts how often actor
1 performed activity j. By applying a vector distance to the columns of C, the similarity
of actors can be rated in terms of performed activities.

4. Special event types: One example of this metric is the use of the special event type
delegation to identify hierarchical relations in an organization (Dustdar and Hoffmann,
2007, p. 149).

The above metrics for social network mining were implemented as part of a tool named MiSoN
(Aalst and Song, 2004b, Sec. 5) and integrated into the process mining system ProM (Song
and Aalst, 2008, Sec. 6.1). Aalst and Song (2004b, pp. 23) present a large case study from the
“Dutch national public works department”, in which social networks are mined with MiSoN and
subsequently analysed using the SNA tool AGNA32.

Social Network Dynamics Fewer SNA approaches attempt to mine models of structural
dynamics in social networks. One example is the work by Lahiri and Berger-Wolf (2008),
who tackle the problem of “|frequent| periodic subgraph mining for dynamic networks” (Lahiri and
Berger-Wolf, 2008, p. 373). The task is to identify, from a time series of network graphs
G = {G1,Ga,...,G,} (called a dynamic network), those subgraphs F' that re-occur with a
fixed period (Lahiri and Berger-Wolf, 2008, p. 373).

Lahiri and Berger-Wolf (2008, pp. 374-378) present a polynomial time algorithm to mine sub-
graphs that are frequent, mazimal, periodic, and pure3® from a dynamic network with unique
node labels. Different from Aalst and Song (2004b), the analyzed dynamic networks are not
constructed from workflow logs but from more diverse and less formalized data sources. Ex-
amples presented in (Lahiri and Berger-Wolf, 2008, Sec. 6) include a business e-mail archive,
movement profiles of Plains Zebra, and an image database of Hollywood celebrities. By the
latter example, Lahiri and Berger-Wolf (2008, pp. 380) show that their algorithm is able to
detect periodic events like award shows or weekly television series from the joint occurrence of
celebrities on pictures in the image database.

4.2.4.2. Mining Organizational Models

The ’joint activities’ metrics described above can be applied to cluster actors by similar “profiles”
(Aalst and Song, 2004b, p. 17) of performed activities. Since these profiles provide hints
towards the organizational role of a performer, they are an appropriate basis for role mining,
i.e. identifying which roles exist in an organization and which actors are assigned (Song and
Aalst, 2008, p. 11).

Song and Aalst (2008, pp. 11) apply hierarchical agglomerative clustering (see Section 4.1.4.2)
based on the joint activities metrics to reconstruct a hierarchical role model from a workflow
log. Hierarchical clustering seems appropriate since organizational models are often structured
hierarchically (Song and Aalst, 2008, p. 11), e.g. in a hospital there might be a role 'nurse’ with

32http://www.oocities.org/imbenta/agna (last visit 2011-11-13)
33This means that the non-periodic support of a subgraph is small compared to its periodic support (purity
measure; Lahiri and Berger-Wolf, 2008, p. 376).
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the specialization ’lead nurse’ (Ly et al., 2006, p. 178): Both basically perform the same set of
activities, but the lead nurse has additional responsibilities such as creating a service schedule.

Song and Aalst (2008, Sec. 6) show that their approach is able to reconstruct plausible orga-
nizational models from workflow logs of a large Dutch municipality. By using the ’joint cases’
metric instead of ’joint activities’ the algorithm can be tuned towards the mining of teams,
i.e. people with different roles working together on the same cases, rather than roles (Song
and Aalst, 2008, p. 12). The organizational mining algorithm, a graphical notation, and an
XML-based format (OMML) to display and persist hierarchical organizational models were
implemented as part of ProM (Song and Aalst, 2008, pp. 8, 16).

As a drawback, the current organizational mining approach can only assign a single role to
each performer. Song and Aalst (2008, p. 21) propose to “apply non-disjoint clustering methods
ro reflect an organization in which originators play multiple roles” in the future. Due to the use of
unsupervised learning, it is necessary that a ‘'meaning’ is assigned to the detected roles by an
analyst based on the underlying performers and activity profiles after mining. Furthermore,
process dimensions beyond task and originator names are not taken into account.

The latter two issues are adressed in a staff assignment mining approach by Ly et al. (2006).
Different from Song and Aalst (2008), these authors assume that an organizational model
is known a-priori, whereby supervised learning becomes possible (Ly et al., 2006, p. 183).
Organizational modeling is based on a meta-model that comprises the concepts of agents,
roles, abilities, organizational positions, and organizational units (Ly et al., 2006, p. 181).

Given a workflow log and an organizational model, Ly et al. (2006) apply the C'4.5 algorithm
to mine decision trees (see Section 4.1.4.1) that represent staff assignment rules, i.e. which
roles and abilities are necessary to perform a certain task. Negative examples, stating which
activities are not performed by actors with certain roles and abilities in the analyzed log, are
also taken into account (Ly et al., 2006, pp. 183).

Song and Aalst (2008, p. 20) emphasize the similarity between organizational model mining and
role mining in the context of role-based access control for resource management (e.g. computer
network administration). Molloy et al. (2009) e.g. provide a summary and evaluation of role
mining algorithms from this domain. Zhao et al. (2012) present an alternative approach where
roles and their interactions, as displayed in so-called role-activity diagrams (Zhao et al., 2012,
p. 404), are reconstructed based on the “diversity degree[s]” of their activities and interactions
using genetic algorithms (Zhao et al., 2012, p. 402).

4.2.4.3. Detection of Interaction Patterns

Dustdar and Hoffmann (2007) use social networks reconstructed from workflow logs as a basis
to detect specific interaction patterns found in an organization. Their approach is not 'mining’
in the narrower sense of hypothesis generation, but the objective is to recognize a set of pre-
defined patterns related to (object-oriented) software engineering (Dustdar and Hoffmann, 2007,

pp. 140):

e Prozy: provides services on behalf of another actor. The proxy receives requests of a fixed
type from several clients, pre-processes the requests, forwards them to another actor, and
returns the answer to the client after performing some post-processing (Dustdar and
Hoffmann, 2007, pp. 140,143).
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e Broker: receives different kinds of requests and propagates them to a fixed server per
request type (Dustdar and Hoffmann, 2007, pp. 140,145).

e Master/slave: A master receives requests of a fixed type, splits the requested task into
subtasks, forwards the subtasks to a set of slaves, and collects the (partial) results returned
(Dustdar and Hoffmann, 2007, pp. 140,143).

Based on these specifications, the authors implemented 3 rules as Java classes that work
on a social network represented in terms of an object model (Dustdar and Hoffmann, 2007,
pp. 141,145). For pattern detection, the rules check properties of the social network for confor-
mance with the above specifications. To detect proxies, tests are e.g. performed if a candidate
node in the social network communicates with a minimum of two peers, if all received requests
are of a common type, etc. (Dustdar and Hoffmann, 2007, pp. 142).

This intrinsically simple pattern detection is complicated by a number of difficulties (Dustdar
and Hoffmann, 2007, p. 141):

1. Actors might appear in different roles like e.g. proxies for different task types.

2. To handle a log containing multiple communications, it must be possible to trace back
reactive tasks to an initial client request.

3. Specific task types (like pre-processing, post-processing or decomposition) must be iden-
tified to distinguish the different patterns.

Dustdar and Hoffmann (2007, p. 141) solve these issues by explicitly enriching the log with
the necessary data including “causal information, |...| task-subtask relation|s ..., and| the kind of
request”. Taking into account these enrichments, a “pattern finding algorithm” reconstructs social
networks from the log that represent the contained “single communication tie[s|” (Dustdar and
Hoffmann, 2007, p. 146).

The effectivity of the pattern detection is demonstrated by analyzing example logs recorded
with the workflow management system Caramba, which is tailored towards keeping ad-hoc
processes (Dustdar and Hoffmann, 2007, Sec. 5). For future work, the authors suggest to lead
their approach back to the software engineering field and apply pattern detection to the analysis
of web service interactions (Dustdar and Hoffmann, 2007, p. 154).

Data mining in a more traditional sense is applied to interaction pattern detection in the
approach by Yu et al. (2010). These authors use frequent subtree mining to identify common
interaction patterns emerging in discussions between multiple persons at meetings. For data
collection, different meeting situations are filmed and subsequently interpreted by assigning
performative-like tags to the observations, including the communicative acts “propose, comment,
acknowledgement, requestInfo, askOpinion, pos[itive]Opinion and neglative]Opinion” (Yu et al., 2010,
p. 2).

In the resulting communication logs, the contained discussion threads (sessions) are identified
together with the initiating pro-active events (Yu et al., 2010, p. 3). The reactions of other
participants to these events are recursively aggregated into an interaction flow represented by
a multicast tree-like data structure displayed in Figure 4.13. The identified interaction flows
are encoded in a normalized form that takes account of isomorphic subtrees and stored in a
database (Yu et al., 2010, Sec. 4.1).
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acknowledge

Figure 4.13.: Two interaction flows (left) an a derived subtree representing the common inter-
action pattern propose — comment (right). Adopted with modifications from
(Yu et al., 2010, p. 4).

On the database, a frequent pattern mining algorithm is applied, that returns a set of subtrees
for the most common interaction patterns (Yu et al., 2010, Sec. 4.2). The algorithm was
evaluated in exemplary real world discussions on subjects including “PC purchase |[,...] trip-
planning |[,.. .| soccer preparation |[...], and [...] job selection” (Yu et al., 2010, p. 7).

A drawback of the procedure is its current inability to handle indirect causal dependencies,
which the authors plan to compensate by using so-called embedded subtrees for representation
(Yu et al., 2010, p. 10). Furthermore, the algorithm seems to be unable to abstract from
multiple similar reactions to an event: Thus, 3 subtrees representing 1, 2, and 3 comments to
the same proposal are identified as different patterns. Yu et al. (2011) present an alternative,
graph-based pattern mining approach that only regards for the number of interacting persons
and the order, direction, and frequency of their interactions.

4.2.5. Further Perspectives and Tasks

So far we have treated the main mining perspectives of control flow and organizational structure
and the main task of discovery. However, a large number of further process mining perspectives
and tasks have been identified, on which fewer work exists. Relevant examples with ties to
MABS (as explained later) are presented in the following.

4.2.5.1. Log Clustering

In Section 4.2.4.2, we explained how unsupervised clustering is applied to the reconstruction of
organizational models. Clustering algorithms can also be used to provide additional structure
to logs and mined process models in the absence of explicit structuring information. From the
literature, 4 main applications can be identified:

1. Some logs are not composed of events representing high-level activities but contain low-
level data like transactional database change sets (Ellis et al., 2006, p. 56). The clustering
of similar sets of low-level operations into aggregated high-level activities is called activity
mining by Giinther et al. (2010, cited from the brief summary in Lang, 2008, p. 83). A
rather similar approach is presented by Ellis et al. (2006, Sec. 3.2)
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2. Though a log contains high-level events, these are not explicitly assigned to a certain
process instance (i.e. missing case identifier). In this situation clustering allows to group
related events into distinct traces for each process instance (see e.g. Schiitt, 2003, pp. 47).
Aalst et al. (2005, p. 21) refer to this as “chained correlation”.

3. When cases can be identified, but were generated by multiple different process models
or variants, clustering can be applied to group traces into sub-logs for each model (Song
et al., 2008, p. 110). A set of smaller models reconstructed from each sub-log is often
more understandable than a large model mined from the overall log, which might soon
become unmanageable (e.g. Song et al., 2008, p. 110). Algorithms for trace clustering are
(among others) presented by Greco et al. (2004) and Song et al. (2008).

4. Clustering of similar sub-structures found in a process log or model is the basis for min-
ing hierarchical models that represent control flow at multiple levels of abstraction. Ap-
proaches by Medeiros et al. (2008b) and Bose et al. (2011b) are reviewed in the next
section.

The former three types of log clustering are rather similar except that the grouping of entities is
performed at different levels of abstraction: (1) activity mining = assignment of low-level events
to high-level activities, (2) chaining = assignment of activities to traces, (3) trace clustering
= assignment of traces to process models. Giinther et al. (2010, p. 129) also emphasize the
applicability of their log segmentation approach to both activity mining and “trace discovery”,
i.e. a combination of (2) and (3).

Existing approaches differ in the used clustering algorithms, the encoding of entities, and the
applied distance measures. The main challenge lies in choosing an appropriate encoding to
represent log entities by characteristic feature vectors (Greco et al., 2004, pp. 57). Given this
representation, standard algorithms like k-means (Greco et al., 2004, p. 56; Song et al., 2008,
p. 115), Agglomerative Hierarchical (Jung and Bae, 2006, p. 385; Song et al., 2008, p. 115),
or Nearest Neighbour-like clustering (Ellis et al., 2006, pp. 57) and distance measures like
Euclidian, Hamming, or Jaccard distance (Song et al., 2008, p. 115) can be applied.

A number of encodings of log traces as feature vectors are summarized by Song et al. (2008,
pp. 113):

o Activity profiles: The elements of the feature vector represent the different activity types
found in the log. In a vector s representing trace s € L, an element s; is set to the number
of times activity A; appears in s.

o Transition profiles: Every vector component represents a direct follower relation found
in the log. It is set to the number of times the represented trace contains the respective
transition.

o Originator profiles: The vector components stand for the different activity performers
involved in the represented case.

o Attribute profiles: Cases are represented by vectors containing values or counts of certain
data attributes assigned to the case or its events.

e Performance profiles: Cases are represented by performance measures like trace length
or duration.
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These basic encodings are refined and domain-specifically adapted in several articles on workflow
clustering. Jung and Bae (2006, pp. 382) and Kastner et al. (2009, Sec. 3) cluster workflow
instances by activity and transition similarity taking into account control flow constructs beyond
direct follower relations. Dustdar and Gombotz (2006, p. 263) present encodings to rate session
(i.e. case) similarity in the context of web service interaction mining that are detailed in Section
5.3.3.1.

4.2.5.2. Mining Hierarchical Models

Hierarchical models are an important means to display complex control flow in a readable form.
In the following, two approaches are reviewed where the first combines control flow mining with
clustering while the second is based on pattern recognition and log abstraction. In Section 7.3
we present a concept for mining hierarchical agent interaction protocols which is akin to the
reviewed approaches but also accounts for the detection of multicast communication.

Mining Hierarchies of Workflow Schemas Based on their clustering approach mentioned
above, Greco et al. (2006) developed a technique to reconstruct a hierarchy of increasingly
refined workflow models from an event log. The algorithm is improved, generalized, and adopted
into the ProM framework by Medeiros et al. (2008b). According to these authors, “the goal |...]
is to allow for the mining of processes with very diverse cases [...] while avoiding over-generalization”
(Medeiros et al., 2008b, p. 21). The basic procedure works as follows (Medeiros et al., 2008b,

pp. 22):

1. An initial process model is reconstructed from the overall log by means of a control flow
mining algorithm.

2. The model’s quality and compliance to the represented log is determined with a confor-
mance measure.

3. If the quality of the model is insufficient, the related traces from the log are partitioned
into disjoint clusters. For each cluster, the above procedure is repeated starting from step
1. If multiple clusters exist, the cluster belonging to the model with the worst quality is
considered for splitting first.

4. If the quality of all discovered models suffices,the resulting hierarchy of disjoint models
(with their assigned traces) is output as a result.

Medeiros et al. (2008b, p. 23) emphasize that their approach should be understood as a template
in which concrete mining algorithms can be plugged in to support the different steps. For control
flow mining the Heuristics Miner (Section 4.2.3.4) is chosen due to its robustness (Medeiros
et al., 2008b, p. 24). Following the original proposal by Greco et al. (2004, 2006), the k-means
algorithm is applied for clustering (Medeiros et al., 2008b, p. 24).

As a distance measure for clustering and quality assessment Medeiros et al. (2008b, p. 23) use
a feature identification scheme adopted from (Greco et al., 2004, 2006): “A relevant feature is a
sequence [...] t1,...,t, together with a task [...] tn41 such that [...] (i) t1,...,t, is frequent, [...] (ii)
tnstny1 is also frequent [...], but, (iii) the whole sequence ti,...,t,,t, 41 is not frequent” (Medeiros
et al., 2008b, pp. 23) in the analysed log.
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After identifying features with relevant support, all traces are mapped to vectors over the
feature space, which serve as input to the k-means algorithm (Medeiros et al., 2008b, p. 24).
To assess the quality of a reconstructed model Medeiros et al. (2008b, p. 23) propose to check
for over-generalization in terms of the number of patterns that are implied by the model but
not found in the log. Greco et al. (2006, p. 1017) suggest to refine the model with the lowest
soundness®* or — for the sake of efficiency — the model with the highest number of alternative
splits.

Greco et al. (2008, p. 79) further extend the algorithm by restructuring the resulting model tree
into a tazonomy of workflow models, where each 'non-leaf’” model can be composed from its
(disjoint) sub models. They also present an application of the hierarchical mining approach to
real world log data from the domain of container terminal logistics (Greco et al., 2008, Sec. 6.3).

Process Maps Li et al. (2010) approach the problem of hierarchical model reconstruction
with a two-step procedure of pattern-based log abstraction and subsequent control flow mining
on the abstracted log (Li et al., 2010, p.110). In the first step, (combinations of) events from
the original log are mapped to a more abstract alphabet. One example is the aggregation of
frequent sub-processes into higher-level activities.

In the second step, a control flow mining algorithm is applied (1) to the abstracted traces to
reconstruct the overall model structure, and (2) to the sub-traces belonging to each abstraction
to mine the hierarchical refinements (Li et al., 2010, p. 117). Like the approach by Medeiros
et al. (2008b), the work by Li et al. (2010, p. 110) is also intended as a template to plug in
different algorithms for log abstraction and control flow mining.

The pattern detection procedure used in (Li et al., 2010, p. 112) searches for mazimal repeats
of event sequences in the log:®> Basically, if a sequence like pg = [a, b, ¢, d] appears frequently in
the analyzed log, it is identified as a sub-process and each occurrence is replaced by a symbol
from an abstracted alphabet, e.g. = (Li et al., 2010, p. 111).

The implemented procedure is more complex since it also regards for variations (e.g. p1 =
[a, ¢, b,d] might be a variation of py due to concurrency of b and ¢; see Li et al., 2010, p. 113)
and hierarchical embeddings (e.g. p2 = [a, b] and p3 = [c, d] might be sub-processes of pg; see Li
et al., 2010, p. 114) of patterns.3® Nevertheless, pattern detection can be performed “in linear
time and space with respect to the length of the traces” (Bose et al., 2011b, p. 35).

For control flow mining, Li et al. (2010, p. 117) apply the Fuzzy Miner algorithm by Giinther
and Aalst (2007) with a modification that allows to “zoom” into the abstracted sub-processes by
aggregating the related pattern variations. The overall procedure is validated at the example
of log data from a Dutch house rental agency (Li et al., 2010, p. 118). Bose et al. (2011b)
describe an implementation in the form of multiple ProM plugins including an additional pat-
tern abstraction stage for loop constructs. A semi-automated, interactive definition of pattern
abstractions is also supported (Bose et al., 2011b, p. 37).

In comparison to other techniques for hierarchical mining like (Medeiros et al., 2008b), the
authors emphasize the domain-specific adaptability of their approach by defining context-

34Here, soundness is characterized by a low relative number of possible process model executions that do not
fit an actual trace from the log (see Greco et al., 2006, p. 1011 and Greco et al., 2004, p. 55).

35as one of several patterns defined by the authors

36 All adopted examples were modified by the author.
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dependent abstractions, and the practical suitability of “[log] abstraction from a functionality /sub-
process point of view” (Li et al., 2010, p. 120).

4.2.5.3. Mining Non-Stationary Processes

Most process mining techniques presuppose a stationary process, i.e. the model that generated
the analyzed log has not changed over time (Bose et al., 2011a, pp. 391). However, this assump-
tion is too restrictive for many real-world and simulated processes (Bose et al., 2011a, p. 392),
which exhibit second-order dynamics (Bose et al., 2011a, pp. 391). Applying a conventional
control flow mining algorithm like o™ (Section 4.2.3.1) to the log of a non-stationary process
will at best yield a result that represents the ’sum’ of all behavior variants observed over time.

In the following we review two of the few approaches dedicated to the mining of control flow
models from non-stationary processes. While the work by Giinther et al. (2006) implies that
changes to the process model (e.g. insertion of a new transition) are explicitly logged, the ap-
proach by Bose et al. (2011a) tackles the problem of deriving information on such changes from
implicit data. In Section 6.2.5 we identify second order dynamics as an important characteris-
tic of MABS and discuss possible applications and extensions of the reviewed ’change mining’
techniques in this context.

Change Mining The change mining approach by Giinther et al. (2006, p. 310) is rooted in
adaptive process management systems (PMS). Here, modifications of a workflow model can
be performed during execution and are explicitly logged. The adaptive PMS thus generates,
besides the conventional execution (or enactment) log, an additional change log (Giinther et al.,
2006, p. 312) where process model changes including insertion, deletion, and movement of model
elements (Glinther et al., 2006, p. 315) are listed.

The straightforward idea of change mining consists in the application of standard control flow
mining algorithms to change logs in order to “provide an aggregated overview of all changes that
happened” (Giinther et al., 2006, p. 309) to the analyzed model. Furthermore, data from the
change log and the execution log can be correlated to identify possible reasons for process model
changes (integrated analysis); see Giinther et al. (2006, pp. 312).

To practically solve the problem of change mining, Giinther et al. (2006) proceed as follows:

1. The XML-based log data format of the framework ProM (Section 4.2.6.1) is extended with
fields to store change information including the change operation, the affected activity,
and its context in the model graph (i.e. preceding and following activities); see Giinther
et al. (2006, p. 317). Change logs are imported from the adaptive PMS ADEPT (Giinther
et al., 2006, pp. 322).

2. Exemplary control flow mining algorithms implemented in ProM are applied to the im-
ported change logs. In (Gilinther et al., 2006, p. 321) the Multi Phase Mining algorithm
by Dongen and Aalst (2004) is chosen due to its “robust|[ness] in handling fuzzy branching
conditions”.

3. The idea of commutativity of change operations is employed to reduce the size of the
mined model representing the change process (Giinther et al., 2006, p. 320): Two change
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operations are commutative if their application leads to the same result regardless of
execution order. Causal dependencies between commutative operations can therefore be
omitted from the reconstructed model of the change process.

4. A concept is developed for integrated analysis (Giinther et al., 2006, pp. 312): Frequent
patterns found in the change log are related to data attributes of corresponding traces
from the enactment log. Decision tree learning might be applied to the combined data,
to unveil possible causes for the observed changes.

Gilinther et al. (2008) report an experimental analysis of further existing control flow mining
algorithms for change mining at the example of clinical pathways. A main drawback of this
approach is the low availability of process-aware information systems logging change information
in practice (Bose et al., 2011a, p. 393).

Detection of Concept Drift Due to this drawback Bose et al. (2011a, p. 392) focus on the
detection and characterization of change points in standard execution logs. These authors
consult time-series analysis and data mining and adopt the term concept drift to characterize
second order dynamics that change a process model at runtime (Bose et al., 2011a, pp. 391). A
transfer of existing techniques to handle concept drift is not straightforward, because most are
tailored towards models that only consist of a few simple variables (Bose et al., 2011a, p. 392).

Due to the initiating character of their work, Bose et al. (2011a) start by identifying relevant
problems and perspectives related to concept drift in process mining:

e Three major problems are stated including “change (point) detection |...,] change localization
and characterization [..., and| unravel[ling of| process evolution” (Bose et al., 2011a, p. 392):
The first problem refers to the identification of change points in the log. The second
problem consists in the detection and description of which model parts actually changed.
The third problem is related to the derivation of a change process from the detected
changes, somehow similar to the work by Giinther et al. (2006).

e Bose et al. (2011a, p. 393) observe that second order dynamics can affect a model at
different process perspectives (see Section 4.2.2.1). Typical change operations are iden-
tified for three main perspectives. While the control flow perspective is treated similar
to (Giinther et al., 2006), some examples for the data and resource (i.e. organizational)
perspectives are added (Bose et al., 2011a, Sec. 3).

e Finally, the authors pinpoint 4 different types of concept drift (Bose et al., 2011a, pp. 394):
Sudden drift means that a process model M is suddenly replaced by a changed model
M. In recurring drift the old and new models keep re-occurring with a certain (ir)regular
period.3” Gradual drift says that the old model does not disappear immediately but keeps
existing together with the new model for a certain duration. Incremental drift relates to
the situation where the observed changes do not happen to the model all at once, but
stepwise during an extended period of time.

In their practical work, Bose et al. (2011a, p. 395) address the detection and characterization
of change points for sudden drift in the control flow perspective. Their approach is basically

37similar to the dynamic (social) network mining technique by Lahiri and Berger-Wolf (2008) reviewed in Section
4241
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similar to log clustering (Section 4.2.5.1): One (local features) or more (global features) traces
are mapped to feature vectors, and change points are detected by measuring deviations between
these features over time (Bose et al., 2011a, pp. 396). The similarity between log clustering
and concept drift detection is put forward in the approach by Luengo and Sepulveda (2012)
detailed below.

Bose et al. (2011a, p. 396) propose four control flow-related feature mappings rooted in data and
process mining. To detect change points in execution logs, Bose et al. (2011a, p. 397) proceed
similar to statistical time series analysis: The log is segmented into multiple (non-)overlapping
windows and the traces from each sub-log are encoded into feature vectors using one of the
above measures. By applying statistical hypothesis tests to the different vector subsets, it is
assessed if the statistical properties of the encoded features differ over time, thus revealing
possible changes in the underlying process model (Bose et al., 2011a, p. 397).

After their identification, change points are characterized by further analyzing the features of
the related sub-logs (Bose et al., 2011a, p. 402). As a simple example, one might observe that
the relation 'b follows a’ frequently occurs in a sub-log L spanning the time period [to, 1],
but not in the following sub-log L’ starting at ¢;. This could lead to the conclusion that the
transition a — b was removed from the process model around change point #;.3%

Bose et al. (2011a, Sec. 5) successfully evaluate their approach at the example of artificial
logs reflecting four local changes to an insurance claim workflow. Despite this initial success,
the authors identify several challenges for future work including (1) definition of more specific
features, (2) reduction of the currently high-dimensional feature space (see also Section 4.1.3.1),
(3) inclusion of further mining perspectives, (4) application of change detection techniques
beyond hypothesis tests, and (5) analysis of the minimum sample size needed to detect certain
changes (Bose et al., 2011a, p. 404).

A slightly different approach towards concept drift detection by Luengo and Sepulveda (2012,
p. 154) explicitly “includes] the temporal dimension” as an attribute into the feature vectors
presented to a mining algorithm. Hickey and Black (2001, p. 23) refer to this technique as
“TSAR (Time Stamp Attribute Relevance)”. These authors propose 3 different possibilities to
tag feature vectors with time stamps in batch learning of decision trees: (1) simple distinction
between “current” or “new” batches of feature vectors (Hickey and Black, 2001, p. 23), (2) feature
vectors tagged with explicit “batch identifiers” (Hickey and Black, 2001, p. 24), (3) “continuous
time stamping [of ...] training example[s ...] without regard to batchles]” (Hickey and Black, 2001,
p. 25).

In a similar way, Luengo and Sepulveda (2012, pp. 154) detect concept drift in process min-
ing by including time stamps into feature vectors that encode process instances by maximal
repeat (MR) patterns according to the approach by Li et al. (2010); see Section 4.2.5.2. They
experimentally evaluate possibilities to weight the temporal and MR pattern-related features
in a distance measure (Luengo and Sepulveda, 2012, p. 155). Comparing their approach to
the work by Bose et al. (2011a), Luengo and Sepulveda (2012, p. 154) stress the linear time
complexity and the ability to handle “sudden, recurring, gradual, and incremental changes”.

38 More realistic examples are provided by Bose et al. (2011a, pp. 401-403).
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4.2.5.4. Conformance Checking

So far we have reviewed techniques related to the task of process discovery. In the next two
Sections we will discuss the additional tasks of conformance checking and process model exten-
sion.

Following Rozinat and Aalst (2008, p. 1)3, “Conformance checking, also referred to as conformance
analysis, aims at the detection of inconsistencies between a process model and its corresponding exe-
cution log and their quantification by the formation of metrics”. In general, four main approaches
for conformance analysis can be identified: (1) comparison of high-level features using distance
measures, (2) model and trace checking against specifications in (temporal) logic, (3) analyses
based on log replay, and (4) detection of pre-defined patterns related to control flow and other
perspectives in the log. These are briefly characterized in the following.

Feature-Based Approaches Feature abstraction, as reviewed in the previous sections, forms
one possible basis for conformance analysis: Two traces, logs, or models are abstracted to com-
mon high-level features and the conformance between the feature values of both instances is
assessed by means of a distance measure (see Section 4.2.5.1). This analogy between confor-
mance checking and clustering-related techniques is e.g. noted by Medeiros et al. (2008b, Sec. 5)
in the context of their hierarchical process mining approach (Section 4.2.5.2).

Compared to the symbolic techniques presented further below, conformance checking based on
high-level features exhibits some characteristic advantages and drawbacks. On the positive side,
it allows for an equal comparison of logs and models when both can be abstracted into similar
features. Abstract representations like causal footprints’® even permit to compare models
represented in different modeling languages, possibly lacking exact execution semantics (Dongen
et al., 2006¢, p. 127). Medeiros et al. (2008b, p. 28) see a specific advantage of their metrics-
based approach in the detection and characterization of over-generalizations.

A disadvantage of feature-based conformance checking is the lack of exactness when heuristics
are used to encode and compare the features. However, the use of heuristics and high-level
abstractions might reduce the computational complexity of conformance analysis compared
with exact techniques like model checking.

Model and Trace Checking In (Page and Kreutzer, 2005, Ch. 8), we have described model
checking in the context of discrete simulation. Since the typical complexity of models in this
context is rather similar to those treated in process mining, we briefly repeat the presentation
here (Page and Kreutzer, 2005, pp. 214):

“Finite state machines offer a suitable base for model checking, a formal verification tech-
nique that has gained [...] relevance in several applications; e.g. protocol analysis (Holz-
mann, 1991, Ch. 11). The core idea of model checking is to give a specification of expected

%9page numbers relate to the version of the article downloadable at http://www.processmining.org/
_media/publications/rozinat_conformancechecking.pdf (last visit 2012-09-30)

40Tp fact, causal footprints are not feature vectors, but graph-based “description|[s] of what can and cannot be
done” in a control flow model (Dongen et al., 2006c, p. 127). However, due to their high level of abstraction,
an equivalent treatment might be admissible.
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model behaviour in a logical language, and then apply a "model checker" tool to verify if
the finite state model’s behaviour conforms to this specification.

Since we are interested in [...] model behaviour, a temporal logic is chosen as specification
language. Temporal logics are extensions of propositional or predicate logic with temporal
operators, such as 'until’ and ’next’ [... which] allow [...] to specify properties for feasible
state sequences of a FSM. [...]

An important advantage of model checking [...] is that it provides ezhaustive verification:
This means that it can verify that a specification holds for all possible state sequences. This
advantage is a consequence of the finite state property of the input model.”

The state spaces of models or programs considered in practice are, however, often infinite or
at least too large to allow for exhaustive verification. One possible solution is the application
of model checking only to sample traces (i.e. a log) generated during the execution of a model.
As discussed in Section 4.2.3.3 a log of traces corresponds to a finite state machine, e.g. in the
form of a prefix tree automaton. Further following our discussion in (Page and Kreutzer, 2005,
p. 221):

“Model-based trace checking [...] (e.g. Howard et al., 2003) applies the concept of model
checking to log-file analysis. Asin "traditional" model checking the expected [...] behaviour
is described in terms of a temporal logic. However, instead of a finite state model, a trace
of a single [...] run is checked for correspondence with its specification.”

The ProM framework contains a plugin named LTL Checker that supports model-based trace
checking in linear temporal logic (e.g. Dongen et al., 2006b, Sec. 1.4.4), the simplest extension of
propositional logic with temporal operators (Page and Kreutzer, 2005, p. 214). An application
of this plugin to our MABS of courier service logistics is reported in Section 8.3.1.1. Dongen
et al. (2006b, Sec. 1.4.4) report an application to another MABS reviewed in Section 5.3.4.2.

Conformance Checking by Log Replay is related to the idea of formal language acceptors.
Given a log and a process model, it is checked in how far the model accepts the traces from
the log and to which degree the model exhibits behavior beyond what is observed in the log
(Rozinat and Aalst, 2008, p. 69). In combination, both metrics provide a characterization of
conformance between model and log (Rozinat and Aalst, 2008, p. 69).

Rozinat and Aalst (2008, Sec. 3) operationalize this idea by means of a fitness and several
appropriateness metrics. Fitness describes the model’s ability to accept (parts of) the logged
traces (Rozinat and Aalst, 2008, p. 69). Given a workflow net N = (S, T, F,mg), fitness is
measured by replaying every distinct log trace s; € {s1,..., sk}, from the initial marking mq
while updating statistical counters including (Rozinat and Aalst, 2008, p. 70):

e n;: number of traces in the log that are equal to s;

e m;: number of artificial tokens that must be added externally during log replay to make
N ’accept’ s;

e 7;: number of tokens that remain in N after replay of s;

¢;: overall count of tokens consumed while replaying s;

pi: overall count of tokens produced while replaying s;
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From these statistics, Rozinat and Aalst (2008, p. 70) calculate a fitness measure f € [0; 1] that
decreases with an increasing number of tokens missing and remaining in the net in relation to
the tokens consumed and produced overall:*!

_ 1 Z§:1 ng - my Zle ng T4 4
f=52-5 - (4.16)
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Log replay might be complicated by missing tokens, enablement of invisible tasks, and non-
deterministic enablement of multiple duplicate tasks at the same time (Rozinat and Aalst,
2008, p. 72). Missing tokens to enable the next logged transition for replay are inserted on
demand and noted in the statistics (Rozinat and Aalst, 2008, p. 70). In case of invisible tasks
and non-determinism, the replay engine must perform a look-ahead search in the state space
of N (Rozinat and Aalst, 2008, p. 72, Sec. 7.2).

Measuring appropriateness is less straightforward due to its rather subjective characterization
as “the degree of accuracy in which the process model describes the observed behaviour, combined with
the degree of clarity in which it is represented” (Rozinat and Aalst, 2008, p. 69). To capture these
requirements, Rozinat and Aalst (2008, Sec. 5) define metrics for behavioral and structural
appropriateness in a simple and advanced form.

The conformance checking techniques are implemented as ProM plugins, also including a vi-
sualization of detected mismatches (Rozinat and Aalst, 2008, Sec. 7.2). Section 7.3 of this
thesis presents a prototypical implementation of a simple conformance checker in terms of ref-
erence nets. In this context, future requirements on the RENEW simulator towards an improved
support for log replay-based analysis will also be discussed briefly.

Pattern-Based Compliance Checking Instead of replaying logs in global control flow models,
Ramezani et al. (2012) apply Petri net-based conformance checking to evaluate the compliance
of a log to one or more patterns related to the control flow, data (flow), and organizational
perspectives (Ramezani et al., 2012, Sec. 4.1). Their approach is thus closely related to trace-
based model checking with the exception that the patterns are not defined using temporal logic
but in terms of Petri nets (Ramezani et al., 2012, Sec. 4.2).

Ramezani et al. (2012) present a large “collection of compliance rules” (Ramezani et al., 2012,
Sec. 4.2) ranging from simple rules like “Direct Precedence of a Task” to more complex situations
like “Bounded Existence of [a] Sequence of Tasks” (Ramezani et al., 2012, Sec. 4.3) . For every
rule, a “parametrized Petri net pattern” (Ramezani et al., 2012, Sec. 4.2) is defined that can be
checked against a log using an alignment technique developed by Adriansyah et al. (2011)%2.
An advantage of this technique is that it can exactly identify deviations of ’almost’ fitting log
instances from the predefined patterns (Ramezani et al., 2012, Sec. 3).

The organizational and data perspectives are analyzed by simply 'unfolding’ the related data
elements (e.g. originators of actions) into multiple labelled transitions of the Petri net pattern
(Ramezani et al., 2012, Sec. 5.1). Ramezani et al. (2012, Sec. 5.2) state the example of two
transition labels [A, R] and [A, ~R]: The first indicates that action A was executed by originator
R, while the second says that A was executed by another user.

“1adopted with minor modifications
*?see Ramezani et al. (2012, Sec. 3)
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This proceeding can clearly lead to a ’state explosion’ in the represented patterns when many
different data types and values must be considered. An extension of the conformance checker
towards a higher level representation mechanism (such as colored Petri nets) is identified as a
topic for future work (Ramezani et al., 2012, Sec. 7). In Sections 6.2.6.2 and 7.1.3.1 of this
thesis we will relate the work by Ramezani et al. (2012) to a somewhat similar approach from
the MABS domain (Chen, 2009; Chen et al., 2008, 2010) and sketch how reference nets can be
applied to model compliance rules comprising multiple perspectives.

4.2.5.5. Model Extension

As described in Section 4.2.2.2, the process mining task of extension deals with the improvement
of existing process models based on information mined from a log (e.g. Aalst, 2006, p. 3). In
the following, we review techniques for the enrichment of control flow models with branching
conditions and performance data. Like conformance checking (Section 4.2.5.4) some of these
techniques are based on log-replay. The additional information are collected while replaying
traces annotated with data attributes of the respective process dimensions (e.g. time stamps).

Decision Mining The assignment of branching conditions to decision nodes (e.g. in UML
activity diagrams, see Section 2.3.1.3) is an obvious extension for control-flow related models.
Herbst (2001) and Rozinat and Aalst (2006) employ decision tree mining, Schiitt (2003) uses
fuzzy rule mining techniques for this endeavor.

We exemplarily review the “decision point analysis” by Rozinat and Aalst (2006, p. 421), which
will be experimentally applied to our courier service simulations in Section 8.3.3 due to its
availability in the ProM framework. As input, the decision point analysis takes a Petri net
and a log in which cases or events are enriched with data attributes (Rozinat and Aalst, 2006,
p. 421). An example®? is the assignment of a boolean attribute isUrgentOrder to an event
order Received.

At first, “place[s| with multiple outgoing arcs” (Rozinat and Aalst, 2006, p. 421) in the Petri
net are tagged as decision points. Then every decision point is assigned a set of data attributes
belonging to events or cases that triggered the related transitions (Rozinat and Aalst, 2006,
p. 422). Mapping this data to the triggered transition at the decision point forms a classification
problem that can be solved by decision tree learning (Rozinat and Aalst, 2006, p. 422).

The decision point analysis implemented by Rozinat and Aalst (2006, p. 423) uses the Data
Mining system WEKA (Section 4.1.5.1) to perform the actual decision tree mining with the
C4.5 algorithm (Section 4.1.4.1). The decision trees returned by WEKA are assigned to the
respective decision nodes in the Petri net and can be visualized in ProM (Rozinat and Aalst,
2006, p. 424).

Similar to log replay-based conformance checking, decision point analysis is complicated by
constructs like loops or duplicate and invisible tasks, where the determination of the route
through a decision point is not straightforward (Rozinat and Aalst, 2006, p. 422).

“3inspired by our courier service simulations described in Chapter 8
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Performance Analysis The enrichment of process models with timing- and performance-
related data is an important requirement on process mining in the context of discrete sim-
ulation (see Section 6.4). While many other techniques exist to collect, display, and analyze
performance data, process mining offers the advantage of automatically relating this data to
appropriate parts of the process model.

Hornix (2007) implemented techniques to add performance data to process models displayed
in the form of Petri nets and UML-like sequence diagrams (see Section 2.3.1.4). The Petri Net
Performance Analysis (PAPN) is based on log-replay and relies on the existence of a (mined
or modelled) Petri net with a compatible log containing time stamps (Hornix, 2007, p. 24).

The log replay engine collects timing data from which key performance indicators (KPIs),
including throughput times of cases, sojourn times of tokens at places, and durations between
the firing of transitions, are derived (Hornix, 2007, pp. 26). For the KPIs, typical statistical
measures like mean, standard deviation, minimum, and maximum are calculated (Hornix, 2007,
p. 26). The user interface of the performance analysis component in the ProM framework can
visualize the performance data directly in the underlying Petri net, including a color-coding of
performance bottlenecks (Hornix, 2007, p. 31).

The performance sequence diagram analysis (PSDA) does not require an a-priori model but
mines all relevant information from the time-stamped log (Hornix, 2007, p. 23). Basically,
the user can choose from a number of process dimensions, including activities and performers
(Hornix, 2007, p. 32). A sequence diagram for a case is drawn by taking the first entity from
the respective trace and measuring how long this entity remains active (Hornix, 2007, pp. 32).
This information is encoded by the length of the assigned task node in the sequence diagram
(Hornix, 2007, p. 35).

When another entity (e.g. performer) becomes active in the logged case, an arrow is drawn
between the task nodes of the previous and the new entity and the procedure repeats (Hornix,
2007, p. 34). This arrow is assigned the duration passed between the activation of both entities
(Hornix, 2007, p. 35). To abstract from different interleaving of concurrent tasks, a control
flow mining algorithm (multi-phase miner, see Dongen and Aalst, 2004) converts the traces
into causal nets (see Section 2.3.2.2) prior to performance analysis (Hornix, 2007, p. 32).

To improve the readability of sequence diagrams derived from large logs, similar sequences can
be aggregated into patterns (Hornix, 2007, Sec. 4.3.2) based on two different equivalence metrics
(strict and flexible equivalence, see Hornix, 2007, p. 38). In this case, the implementation of the
sequence diagram-based performance analysis in ProM can calculate aggregated performance
measures for each pattern (Hornix, 2007, p. 40) and display the resulting patterns sorted by
frequency (Hornix, 2007, p. 39).

4.2.6. Tools and Applications

After reviewing a number of process mining concepts and techniques with relevance for the
analysis and validation of MABS we will provide a brief overview of practical aspects covering
software tools and applications.

164



4.2. Process Mining

4.2.6.1. Process Mining Tools

Tool support in process mining is nowadays dominated by the Java-based open source frame-
work ProM**, developed and maintained at Eindhoven University. This toolset has become
a de-facto standard in (scientific) process mining. Therefore our application and extension of
process mining techniques for MABS analysis will also be based on this software framework.

ProM 4 and 5 In Cabac et al. (2006b, Sec. 3.1.3) we have summarized the functionality of
the ProM framework with respect to its former version 4:

“Aalst et al. present the ProM process mining tool that is extensible through a plugin
mechanism (Dongen et al., 2005). The basic application framework can be extended by
mining, import, export, and analysis plugins. ProM relies on a general [XML-based] log
data format [MXML, short for 'Mining XML’], where each trace entry contains information
on event name, event type, process instance, process type, originator, [data attributes,] and
time stamp. In ProM, process mining is seen as the core tool functionality, while functions
such as data acquisition, simulation, formal analysis of mining results, etc. are regarded as
extensions. To generate data for testing process mining algorithms, Medeiros and Giinther
(2005) integrated the CPN-Tools Petri net simulator as a ProM plugin.”

In addition, ProM contains several visualization plugins that support techniques like dotted
chart plots or process log inspection to provide a quick overview of an analyzed log. Up to
version 5, however, complex non-interactive batch analyses composed from several steps formed
a weakness of the system that we mentioned in (Cabac and Denz, 2008, p. 89):

“Interoperability is ensured by a large number of supported input and output formats.
Though the plugin architecture of ProM resembles the idea of a processing chain with data
acquisition, mining, conversion, analysis, and visualization steps, the current user interface
is merely tailored towards an interactive application.”

This drawback becomes manifest in the user interface as well as in the architecture that suffers
from a lack of separation between functional and presentation layers (Verbeek et al., 2011,
p. 70). As an example, a ‘mining result’ object is in the first place described by its graphical
representation in a desktop frame. In Sections 7.4.2.1 and 8.4 we present our approach to
overcome this drawback by integrating wrapped ProM plugins into simulation tools using data
flow modeling.

ProM 6 The Eindhoven research group developed ProM further into a similar direction with
the current version 6. In this context, the system underwent an architectural re-design including
a better separation of program logic and user interface (Verbeek et al., 2011, p. 70). Further
improvements are summarized by Verbeek et al. (2011, pp. 70):

e The four different plugin types mentioned above were merged into a single general plugin
interface, which eases plugin composition.

“short for 'PROcess Mining’, http: //www.processmining.org/prom/start (last visit 2011-13-12)
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e Input and output data of algorithms is stored in a common object pool that is accessible
to all plugins.

e A software assistant-like user interface supports the chaining of plugins into complex
analysis procedures: Starting from input data in the object pool, the user is offered a
pre-selection of all plugins that can handle the contained objects. After selecting a plugin,
the output type of this plugin is displayed and the user can select a further plugin that
takes this type of data as input.

e Plugin variants can be defined that offer the same functionality on different data types.

e Besides MXML, ProM 6 supports the more generic log data format XES (eXtensible
Event Stream).

Different from MXML, the XES schema contains only few predefined concepts including log,
trace, event, and attribute (Verbeek et al., 2011, p. 63). Specific domain entities like activity
names, timestamps, and originators are consistently added as attributes in the form of typed
key-value pairs, where attribute hierarchies are also supported (Verbeek et al., 2011, p. 63).
A support tool named XESame allows to define import mappings from other data formats
without having to implement Java code (Verbeek et al., 2011, p. 67).

Despite these advantages, the implementations and experiments presented in this thesis will
not be based on ProM 6 due to its late availability in relation to the accomplishment of (large
parts of) the reported practical work.

Further Process Mining Tools Most process mining tools developed in parallel or prior to the
ProM framework only support a single mining algorithm. Examples include Emit (« algorithm)
and MiSoN (social network mining) from the Eindhoven research group (Aalst, 2005a, p. 452)
as well as Involve (algorithm by Herbst, 2001), and Workflow Miner (approach by Schimm,
2004).

As indicated above, ProM delegates specific process mining subtasks like decision tree mining,
log data generation, or Petri net synthesis to external tools including WEKA (see Section 4.1.5),
CPN Tools*>| and Petrify (see Section 4.2.3.3). A more advanced command line tool for
Petri net synthesis that also offers process mining functionality is Genet by Carmona et al.
(2009a). The process mining approach by Lou et al. (2010b) reviewed in Section 4.2.3.5 was
also implemented as a command line tool with an integrated process simulator using a simple
text-base format to describe models and logs.

Further process mining systems akin to the data flow-based tool integration presented in this
thesis will be reviewed in Section 5.4.1.

4.2.6.2. Application and Evaluation of Process Mining Algorithms

Process mining research is largely driven by practical applications, where the most prominent
domains are workflow management (e.g. Aalst et al., 2007) and software engineering (e.g. Rubin
et al.,, 2007). In this section, we review an exemplary case study in which process mining

“Shttp://www.cpntools.org (last vist 2012-10-03)
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algorithms are applied to and evaluated in a real-world problem. We choose the study by Lang
(2008) due to its comprehensiveness and methodological clearness. Further case studies with a
closer relation to the subject of this thesis will be reviewed in Section 5.3.4.

The dissertation by Lang (2008) provides an exhaustive evaluation of control flow mining al-
gorithms and log clustering metrics in the domain of medical image processing. The author
implements a knowledge discovery process to extract log data generated by radiological diag-
nostic workflows from databases of a large hospital, preprocess and cluster the data, and import
it into the MXML format.

Several control flow mining techniques including the « algorithm, the Heuristics miner, the
DWS miner, etc. are applied to these logs and evaluated with respect to 6 requirements. The
requirements include (1) faithfulness of the reconstructed models, (2) ability to handle noise,
(3) detection of sequences, alternative branches, and concurrency, (4) ability to detect loops,
(5) handling of duplicate tasks and sub-processes, and (6) ability to cope with non-unique start
and end points of processes (Lang, 2008, Sec. 4.3.2).

As one result of the study, Lang (2008, p. 219) finds that control flow mining algorithms based
on direct succession metrics only (e.g. the a algorithm) perform worse in the presence of noise
than techniques that also regard for indirect succession. Consequently, Lang (2008, Sec. 7.2.5)
proposes a concept to improve the differentiation between loops and multiple task instances
that slightly resembles the approach by Lou et al. (2010b).

The case study on process mining in MABS performed by Haan (2009) and presented in Chap-
ter 8 of this thesis is orientated on the methodology by Lang (2008) but puts focus on different
requirements and research questions. Several further case and evaluation studies covering mul-
tiple process mining perspectives can be found in the literature, including the work by Aalst
et al. (2007, analysis of invoice handling in a Dutch government agency) and Rozinat et al.
(2009a, analysis of test processes in wafer production).
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5. Related Work

The introductions to MABS and process mining in the previous chapters provided a first im-
pression why process mining might be useful to tackle the problem of MABS analysis and
validation. In this chapter, we review existing research related to this topic in particular. Due
to the broad scope of both MAS and process mining, an appreciation of related work must
cover several interconnected research fields some of which are displayed in Figure 5.1.

Validation and
analysis

Multi-agent
systems

Process Mining

Figure 5.1.: Research fields related to the thesis at hand. The darker a circle or connection is
drawn, the closer it is related to the subject of this thesis.

5.1. Analysis and Validation of MABS

One field of related work concerns methodologies and techniques for the validation of MA(B)S.
While most validation approaches do not explicitly refer to data or process mining, related
ideas and starting points for an integration can be identified.

5.1.1. Methodologies for MABS Validation

In recent years, a number of validation methodologies with a focus on MA(B)S have been devel-
oped. These range from theoretical concepts rooted in social science to tool-centric approaches
from software engineering. We also find modifications and extensions of ’classical’ simulation
model building cycles. In the following, selected examples from each category are described.
For a more exhaustive overview, we refer to the list by Oren and Yilmaz (2010, p. 206).
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5.1.1.1. Approaches to Validate MABS

After an initial' focus on modeling under the multi-agent paradigm, the MABS research com-
munity identified a need to spend more “effort on the later stages of the modeling process (analysis,
interpretation, and application)” to increase their models’ utility (Edmonds, 2000, p. 23).

Edmonds et al. In his position paper postulating this focal change, Edmonds (2000) does not
present a validation methodology, but discusses a number of properties of agent-based models
with respect to validation. One claim concerns the need for detailed validation due to the lack
of constraints posed by the methodology:

“Strengthening validation means checking the output of the simulation in as many ways
as possible by comparison with the system goals or actual target behaviour.” (Edmonds,

2000, p. 23)

“We should seek to verify and validate our models on as many levels of detail as possible
[and ...] at a finer temporal level. [...] the intermediate stages of the resulting processes in
the simulation should be checked [...]” (Edmonds, 2000, p. 29).

“The increased descriptive realism [of MABS means ...| that the simulation has imported
more of the [... real] system’s behaviour including its unpredictability and complexity |...]
The practical import of this is that the analysis and interpretation stages [...] require
much more attention than in simple deterministic or stochastical mathematical models.”

(Edmonds, 2000, p. 22)

[lustrated by an ’agent-based’ variant of the halting problem, Edmonds and Bryson (2004,
p. 937) stress the unsuitability of deductive formal methods to tackle realistic MABS in favor
of experimentalism and a-posteriori analysis. As an example, Edmonds et al. (2006) present
an approach to characterize the whole scope of trajectories of a stochastic simulation (with
respect to a numerical variable) by its upper and lower bounds. Due to the use of constraint
logic programming (CLP) for model representation, these bounds can be explored by queries
without the need to simulate many scenarios (Edmonds et al., 2006, p. 6).

David et al. (2002) reason about the requirements that self-organizing MABS of artificial or
real societies pose on software engineering and validation. An important characteristic is that
'surprising’ effects due to self-organisation are, to a certain degree, wanted and should not be
suppressed by rigid a-priori specification (David et al., 2002, p. 91).

David et al. (2002, p. 90) claim that the distinction between dynamic verification and valida-
tion therefore becomes blurred in MABS: It is not always clear if an unexpected macroscopic
behavior emerging at runtime is inherent to the conceptual model or caused by faulty imple-
mentation. Proposed techniques to tackle this problem include model alignment and specific
software metrics (David et al., 2002, Sec. 4.1) as well as hierarchical model specifications (“hy-
perstructures”) that include multiple layers of aggregate (“emergent”) entities (David et al., 2002,
Sec. 2.3).

! partly rather theoretical, see also Moss (2000)
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Drogoul et al. (2002) sketch a model building cycle for MABS in modification of previous
work from discrete and social simulation. One characteristic of this methodology is the explicit
introduction of three roles, i.e. thematician (domain expert), modeler, and computer scientist
(Drogoul et al., 2002, Sec. 3), that we have adopted with minor modifications in (Page and
Kreutzer, 2005, Ch. 8.2.2). Another peculiarity is the explicit distinction between domain
knowledge at the microscopic and macroscopic levels: “Micro knowledge” builds the basis for
modeling while “macro knowledge” guides validation, experimentation, and analysis (Drogoul
et al., 2002, p. 9).

Within the role model Drogoul et al. (2002, p. 10) observe that agent concepts are frequently
used by domain experts and modelers. However, as already cited in Section 3.2.1, implementa-
tions of MABS mostly employ object-oriented or rule-based techniques lacking the properties
of agents postulated in distributed AI (DAI); see Drogoul et al. (2002, p. 10). The authors
claim that especially MABS experimentation and validation can profit from DAI techniques
(Drogoul et al., 2002, Sec. 4), thereby arguing for agent supported simulation:>

1. Participatory simulation is performed by letting domain experts play the role of agents
in a simulation. Computational agents with the ability to learn could observe users and
derive behavioral models from their actions (Drogoul et al., 2002, p. 11).

2. Agent-aided interpretation means that the simulation contains observer agents that per-
form intelligent data analysis on a local portion of the simulation results (Drogoul et al.,
2002, p. 11). On the one hand, this supports result interpretation. On the other hand, the
detection of certain ’emergent’ patterns might give rise to “macro agents” that explicitly
represent macroscopic phenomena in the simulation (Drogoul et al., 2002, p. 12). As an
example, Drogoul et al. (2002, p. 12) cite hydrological multi-level simulations conducted
by Servat et al. (1998).

3. System-level adaptation is related to the implementation of flexible distributed simulations
with the aid of mobile computational agents (Drogoul et al., 2002, p. 12).

4. Agent-aided calibration might be performed by distributed problem solving and local
optimization (Drogoul et al., 2002, p. 13).

While the presented concepts remain rather abstract in (Drogoul et al., 2002), later work by
the same research group focuses on participatory simulation (e.g. using decision tree mining in
Chu et al., 2009) and distributed simulation (Scerri et al., 2010). In Section 6.3, we discuss how
process mining can add to agent-supported simulation as envisioned in the work by Drogoul
et al. (2002).

Kennedy et al. (2006) evaluate the utility of validation techniques from the catalog by Balci
(1998) for MABS. For this purpose, a selection of validation techniques is applied to an agent-
based and an equation-based model of the evolution of natural organic matter (NOM), roughly
following the validation process by Sargent (see e.g. 2001, p. 108).

The authors choose validation techniques from the discrete event simulation domain because the
“discrete event modelling approach is the most closely [related] approach [... to] agent-based modelling
[..]" (Xiang et al., 2005, p. 54). In addition, a comparison of different model implementations

%as to use the term by Oren (2000) cited in Section 3.2.1
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Validation techniques MABS Equation-based
Face validation very good very good
Turing test of real and simulated output || very good good
Sensitivity against random seed very good n/a
Tracing fair excellent
Black-box input/output testing good good
Model alignment very good very good
Comparison with historical data very good very good
Sensitivity analysis good good
Prediction of new data good fair

Table 5.1.: A rating of the utility of validation techniques for MABS and equation-based mod-
eling. The applied scale comprises the levels fair, good, very good, and excellent.
Adopted with slight modifications from (Kennedy et al., 2006, p. 102).

(model alignment, see Section 5.1.2.3) is performed to identify artifacts introduced during
implementation (Xiang et al., 2005, p. 23).

A main result of the study by Kennedy et al. (2006, p. 102) is a rating of the utility of validation
techniques on a four-level scale. This overview is cited in Table 5.1, where some validation
techniques are renamed for better understandability. For additional explanations of the listed
techniques see Kennedy et al. (2006)

The authors confine the validity of the results to the specific study and provide few details about
reasons for their ratings. In the context of this thesis, it is especially interesting why tracing
is rated as excellent for equation-based modeling but only fair for MABS. One reason might
be the higher complexity of MABS traces, the handling of which requires powerful analysis
techniques.

5.1.1.2. Validation Methodology by Kliigl

Kliigl (2008) presents a validation methodology for MABS based on common validation pro-
cesses and techniques from computer simulation.? Furthermore, she identifies a set of typical
problems in MABS validation (Kliigl, 2008, Sec. 2.2) and proposes metrics to assess the com-
plexity of multi-agent models (Kliigl, 2007). Kligl’s thoughts on validation problems are rather
similar to the discussion in (Knaak, 2006) and Section 3.5. This is not surprising since our ar-
gumentation is largely based on Kliigl’s (2000) view upon MABS.

As a starting point, Kliigl (2008, Sec. 2.2) identifies 5 typical problems in MABS validation:

1. The identification of “characteristic output descriptors” to compactly describe simulation
results is difficult especially at the microscopic level (Kliigl, 2008, p. 40). This problem
roughly corresponds to the problem of result representation and interpretation mentioned
in (Knaak, 2006).

3 A review of the approach by Kliigl (2008) with some focus on its relations to process mining is found in the
bachelor thesis by Haan (2009).
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2. The “focus on transient dynamics” in MABS forbids the application of conventional steady
state statistics (Kliigl, 2008, p. 40).

3. “Non-linearities and brittleness” in the model’s behavior (mainly due to “feedback loops”) and
parameter space complicate calibration and validation (Kliigl, 2008, p. 40). In Section
3.5, we attribute this effect to the problem of distributed system state.*

4. The “size of the validation task” is large due to the size of the model and the need for
“multi-level validity”, and sufficient real world data is often not available for comparison
(Kliigl, 2008, p. 41). In (Knaak, 2006) we subsume similar issues under the problem of
model complexity.

5. It might be impossible to falsify (see Section 2.4.3.3) one of two competing models due to
a lack of available data and overfitting in the presence of many free parameters (Kliigl,
2008, p. 41).

From these observations, Kliigl (2008, Sec. 3) derives a validation process drawing on common
techniques. In the first step, face validity is established by letting experts rate animations and
output of the simulation. This might be complemented by “immersive assessment” (Kliigl, 2008,
p. 42), i.e. participatory simulation.

Face validation is followed by sensitivity analysis and calibration of model parameters (Kliigl,
2008, p. 42). In this context, Kliigl (2008, p. 42-43) advocates the use of automated methods like
optimization and reinforcement learning (see Section 5.1.2.2). Finally, a statistical validation
of the model is performed using different input data than calibration (Kliigl, 2008, p. 43); i.e.
cross validation, see Section 4.1.3.2.

Kliigl (2007) further attempts to quantify the “sources of [model] complexity” (Kliigl, 2007, p. 123)
that aggravate the “understandability [...] and [...]| predictability of the model dynamics and output”
(Kliigl, 2007, p. 136) by means of software metrics. For this purpose, she identifies several
system-, agent-, and interaction-level metrics (Kliigl, 2007, Sec. 5).

System-level metrics include (among others) the number of agent and resource types, the min-
imal and maximal numbers of active agents and resources counted during simulation, as well
as an “agent-resource relation” defined as the quotient of agent and resource counts in the model
(Kliigl, 2007, pp. 128). At the interaction-level, measures like the number of references between
agents and resources or the number of agent movements are taken (Kliigl, 2007, pp. 132).

An important metric at the agent-level is the “architectural complexity rank” where three increas-
ingly complex types of agent architectures, i.e. “behavior-describing |[...,] behavior-configuring [...,
and| behavior-generating architectures”, are identified (Kliigl, 2007, p. 130). Further agent-level
metrics include the size of an agent’s rule base and procedural knowledge (Kliigl, 2007, p. 131)
as well as the “action plasticity metric” that depends on the parameter variability of the agent’s
actions (Kliigl, 2007, pp. 130).

In relation to the thesis at hand, it is interesting that Kliigl (2008, p. 40) points out the
potential of data mining to validate transient dynamics: “There, the current progress in trend
analysis and data mining for time series may provide methods and tools for supporting validation of
transient dynamics produced by agent-based simulation. However, the application to validation of

“based on the discussions led in the dissertation by Kliigl (2000)
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agent-based simulation is still missing.” Haan (2009, p. 55) briefly sketches how process mining
might support the validation process by Kliigl (2008):

“In face validation, the two tests animation and immersive assessment could be well realized
using process mining [...] Basically, these [... tests relate to] the control flow perspective
[of process mining] on the one hand and to [... an] agent perspective on the other hand.
The organizational perspective could be considered to additionally further validation. In
sensitivity analysis and calibration, the decision point analysis plugin [of ProM]| might be
an [... appropriate] aid.”

5.1.1.3. Engineering of Self-Organizing Systems

Self-organizing systems often contain a large number of rather simple agents that must ac-
complish coherent global behavior only by local interactions (Wolf et al., 2005, p. 139). The
engineering of self-organizing systems resembles MABS in the need to understand relations
between the microscopic modeling level and the macroscopic outcomes; at least enough to tune
the local behavior towards the intended global results. Since self-organizing systems are in-
creasingly deployed to the real world due to advantages like fault tolerance and efficiency of
computation (Wolf et al.; 2005, p. 141), validation is even more an issue (Wolf et al., 2005,
p. 140).

It has often been argued that neither “traditional top-down oriented development approaches”
(Sudeikat and Renz, 2009, p. 32) nor formal specification and verification are appropriate to
design reliable self-organizing systems (Wolf et al., 2005, pp. 140). Instead, simulation-based
analysis has become the method of choice (Sudeikat and Renz, 2009, p. 32). While MABS
allows for detailed experimentation with self-organizing systems before deployment, it does not
solve the problem of understanding system behavior due to the system complexity “imported”
(Edmonds, 2000, p. 22) into the simulation.

An increasingly popular approach towards modeling, analysis, and validation of self-organizing
systems employs complementary macroscopic equation-based and microscopic agent-based rep-
resentations. Work in this direction has been carried out (among others) by Sierra et al. (2004),
Sudeikat and Renz (2009), and Wolf et al. (2005).

SADDE Methodology The SADDE (Social Agents Design Driven by Equations) methodo-
logy (Sierra et al., 2004) applies top-down modeling to self-organizing systems engineering as
shown in Figure 5.2. First an equation-based model (EBM) is created that “model[s] the desired
global behaviour of the agent society [... without] references to individuals in that society” (Sierra
et al., 2004, p. 197). With this specification in mind, a model of the agents’ interactions
(electronic institution model, EIM) is built that regulates the allowed communication in terms
of interaction protocols, scenes (i.e. higher order protocols in terms of MULAN), and norms
(Sierra et al., 2004, pp. 197, 204-205). From the EIM, an agent-based model (ABM) is derived
with a focus on parametrizable individual decisions, and implemented as a MAS (Sierra et al.,
2004, pp. 197,198).

Experiments are conducted with the MAS under different parameter settings and the results
are compared to those predicted by the EBM (Sierra et al., 2004, p. 197). Deviations in
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Figure 5.2.: The SADDE methodology visualized as a Petri net. Places stand for models,
transitions for modeling and validation steps. The shading of transitions indicates
the degree of automation, i.e. manual (white), semi-automatic (light grey), and
automatic (dark grey). Adopted with modifications from the diagram by Sierra
et al. (2004, p. 196).

the simulation results trigger manual or semi-automated modifications of the model and its
parameters (Sierra et al., 2004, p. 198). In addition, automatic model checking of the specified
norms and protocols is performed to assess the validity of the ABM (Sierra et al., 2004, p. 198).

Sierra et al. (2004, Sec. 8) calibrate the parameters of an ABM representing an electricity
market to fit the dynamics of a related EBM with the aid of genetic algorithms and an objective
function over multiple global variables. A sufficient adaptation could be reached after about
20 iterations of the genetic algorithm (Sierra et al., 2004, p. 214).

Other Approaches The work by Sudeikat and Renz (2009) is based on a similar idea but
employs different techniques. Here, causal loop diagrams (CLDs) from System Dynamics are
used for macroscopic modeling (Sudeikat and Renz, 2009, pp. 34). This simplifies the display
of causal relations and feedback cycles between aggregate entities of the ABM (e.g. groups and
roles); see Sudeikat and Renz (2009, pp. 35). Sudeikat and Renz (2006, Secs. 3.2,5.1) addition-
ally show how macroscopic Markovian rate equations can be derived from goal hierarchies of
BDI agents.

Time series-based correlation analysis serves to substantiate the specified causal relations in
the macroscopic behavior of the MABS (Sudeikat and Renz, 2009, pp. 39). Based on the Jadez
platform (see Section 3.4.1), the authors implemented an agent-supported simulation system
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that allows for manual experiment planning, distributed execution, and time series analysis by
integration of a numerical computing environment (Sudeikat and Renz, 2009, pp. 39)

De Wolf and Holvoet (2007), whose work is also cited by Sudeikat and Renz (2009), show how
macroscopic causal relations can be validated by following the object flow in UML 2 activity
diagrams (Section 2.3.1.3) that model the behavior of interacting agents. Their example is a
simulation of decentralized AGV (Automated Guided Vehicle) control in a warehouse, rather
similar to the courier service model introduced in Chapter 8.1. At the same example, Wolf
et al. (2005, pp. 141,143) perform an “equation-free” analysis to validate trends in the temporal
development of macroscopic variables. Simulation effort is reduced by extrapolating these
variables using numerical integration (Wolf et al., 2005, p. 144).

5.1.1.4. Validation of Deliberative Agents

Agent-oriented software engineering (AOSE) typically considers systems of few complex agents
employing deliberative architectures like BDI (see Section 3.3.1.3). Since the agents often pursue
well-defined common goals for distributed problem solving, these systems can in principle be
designed with conventional top-down approaches (David et al., 2002, p. 90). Nevertheless, the
validation of deliberative agents’ complex internal processes and external interactions is difficult
and often adressed with the aid of advanced monitoring and debugging tools.

Debugging by Corroboration In the context of the ZEUS agent platform, Ndumu and Nwana
(1999) present a tool-supported validation methodology named debugging by corroboration. The
core idea is to detect errors and identify their causes by observing and visualizing a MAS from
several different perspectives. Clearly, this approach fulfills the requirement of multi-level
validation postulated by Edmonds (2000).

Ndumu and Nwana (1999) developed 4 visualization tools based on static analysis of agent
specifications and runtime observation of exchanged messages. Abstracting from the tools,
Weiss and Jakob (2005, pp. 113-114) list related perspectives for MAS analysis:

1. The soctety perspective is concerned with organizational structures and message exchange
(Weiss and Jakob, 2005, p. 113). It is supported by the society tool that derives a
social network from static role relations and visualizes the actual message exchange, also
supporting filter, record, and playback functionality (Ndumu and Nwana, 1999, Sec. 4.1)

2. The task perspective focuses on the decomposition, distribution, and execution of (collabo-
rative) tasks over time (Weiss and Jakob, 2005, p. 113). The related report tool visualizes
the assignment and execution states of selected tasks using Gantt charts (Ndumu and
Nwana, 1999, Sec. 4.2).

3. The agent perspective is related to the knowledge base, activities, and communication of
individual agents (Weiss and Jakob, 2005, p. 113). The micro tool allows to observe these
properties while the control tool lets the users modify agents’ states at runtime (Ndumu
and Nwana, 1999, Sec. 4.3-4.4).

4. The statistical perspective shows global performance statistics of distributed problem solv-
ing (Weiss and Jakob, 2005, p. 114). The related statistics tool collects and visualizes
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different indicators on the levels of individual agents and the MAS (Ndumu and Nwana,
1999, Sec. 4.5).

Ndumu and Nwana (1999, p. 333) emphasize that neither the debugging approach nor the
related tools are in principle limited to the ZEUS agent platform. The authors further note
that the value of their methodology does not lie in the tools as such but in their reasonable
application and combination by developers (Ndumu and Nwana, 1999, pp. 331,333) for “multi-
perspective” debugging (Weiss and Jakob, 2005, p. 113). In Section 6.2 we merge these and other
analysis perspectives from MAS design with the perspectives from process mining to establish
a conceptual framework for process mining in MABS.

Validation in Jadex Advanced validation tools are also available for the BDI framework Jadex
by Pokahr et al. (2003); see Section 3.4.1. From the often-cited (e.g. by Sudeikat et al., 2007,
p. 187) categorization of validation techniques for AT systems by Menzies and Pecheur (2005),
the work by Sudeikat and Renz (2006) and Sudeikat et al. (2007) covers the categories of testing,
runtime monitoring, and static analysis; as displayed in Figure 5.3.
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Figure 5.3.: Categorization of validation techniques for Al systems by Menzies and Pecheur
(2005). Techniques applied in the Jadez system are shaded grey. Adopted with
minor modifications from Sudeikat et al. (2007, p. 187)

For static analysis, Sudeikat et al. (2007, pp. 197-198) developed a tool that extracts message
sender and receiver relations from agent specifications. Results are visualized as a social net-
work, which allows to detect missing communication and “orphaned message events” (Sudeikat
et al., 2007, p. 197). Additionally, events that do not trigger the execution of plans as expected
are monitored at runtime (Sudeikat et al., 2007, p. 197).

Runtime monitoring and testing is implemented in the style of crosscutting concerns from
aspect-oriented programming (AOP). AOP distinguishes core concerns, that represent the core
functionality of a system, from crosscutting concerns that realize supplementary functionality
re-used by multiple core concerns, like e.g. logging (Sudeikat and Renz, 2006, pp. 179). The
execution environment (in this case the BDI interpreter) weaves the functionality of core and
crosscutting concerns at well-defined join points during runtime (Sudeikat and Renz, 2006,
p. 180).
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In Jadex, crosscutting concerns for logging and assertion checking are realized similar to core
concerns as specific agent capabilities (i.e. functional components), which allows for a “minimal
intrusive” addition of monitoring functionality when needed (Sudeikat and Renz, 2006, p. 179).
Assertions specified as Java code can be assigned to several BDI constructs (e.g. plans) and are
automatically checked on the respective state changes (Sudeikat et al., 2007, p. 194). Logging
is used as a basis for the numerical analyses described in (Sudeikat and Renz, 2006, 2009) and
reviewed in Section 5.1.1.3.

5.1.2. Techniques

In the previous section, we named several validation techniques for MABS. We will now provide
further details on techniques with relevance for this thesis. For this purpose, we cite parts of
our reviews in (Page and Kreutzer, 2005, Ch. 8) and (Bachmann et al., 2004). To provide a
representative extract of different concepts, we proceed along two dimensions related to the
classification scheme for validation techniques from Section 2.4.3.5, i.e. the distinction between
confirmatory and exploratory techniques and the degree of automation. An overview is shown
in Figure 5.4.
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Figure 5.4.: Overview of MABS validation techniques with exemplary publications.

5.1.2.1. Model-Based Validation and Verification

Due to the close relation between dynamic verification and operational validation in MABS
(David et al., 2002, p. 90), both phases can be equally supported by automated techniques to
check the conformance of simulation outputs and traces with respect to an abstract specification.
In (Page and Kreutzer, 2005, p. 229), we relate these techniques to the ’test-first’ approach (see
e.g. Link, 2002, cited in Page and Kreutzer, 2005, p. 219) and regression testing in software
engineering:

“The core idea there is that we must write [...] specifications of expected behaviour (e.g. a
unit test) prior to implementation. During implementation we then use a test automation
tool [...] to constantly re-check all [... existing implementations| against these specifications.
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Since most test tools only support functional unit tests, this approach is only of limited
use to simulation [see e.g. Overstreet, 2002, cited in Page and Kreutzer, 2005, pp. 229].

However, the "test first" approach can still contribute to dynamic model verification and
operational validation if we can draw on suitable tool support for automatically checking
simulation results. For this the following proposals are found in the literature:

e As already mentioned, model-based trace checking can determine if a simulation trace
conforms to a specification in temporal logic (see e.g. Brade, 2003, Ch. 5.3). As in
regression tests, this check must be repeated whenever the model is extended or
refactored.

e Birta and Ozmizrak (1996) propose a knowledge-based system for automatic result
validation. The user can define several kinds of numerical validity criteria, such as
required causal dependencies of input and output quantities or so-called "change-in-
value relationships". The latter represent statements of the type "if the value of [an
...] input parameter [...] is increased by a given amount, the value of [a related ...]
output variable [...] should increase correspondingly"”. The system can automatically
check if the output of a single simulation run or the aggregate output of several runs
adhere to their specifications.” (Page and Kreutzer, 2005, pp. 229)

Birta and Ozmizrak (1996, Secs. 5-6) further present an automated experimental design tech-
nique that ensures a high coverage of model behavior with respect to the specified validity
criteria.

Exhaustive model checking can in principle be applied to MAS as well. Walton (2004) e.g.
translates simple auction protocols for web services to the language PROMELA of the widely
used model checker SPIN (Holzmann, 1997). Nevertheless, resorting to traces is reasonable
due to model complexity in practice. In (Page and Kreutzer, 2005, p. 221) we discuss the
advantages and drawbacks of model-based trace checking in comparison with another approach
to handle infinite state spaces, i.e. program abstraction:

“Program abstraction (Visser et al., 2003) is based on the idea that we can derive a finite
state model from a program that exhibits at least all erroneous behaviour of the original
code. The derivation of this model could be performed manually, which is in itself a complex
and error-prone task. Alternatively,Visser et al. (2003) propose a tool for the automatic
abstraction of Java programs, named Java PathFinder. However, this approach only works
on a restricted subset of Java, and its practical applicability is therefore limited. [...]

Model-based trace checking is easier to perform than program abstraction and will, in
principle, work for arbitrarily complex models. [...]

A drawback [...] is that it offers no exhaustive behaviour verification, but rather checks
a single simulation trajectory. In order to gain reasonable levels of confidence in the cor-
rectness of stochastic simulations we must therefore consider traces for several independent
simulation runs. Brade (2003, pp. 81) has developed a tool called Violade for assisting in
model checking of simulation traces on the basis of Propositional Linear Temporal Logic
(PLTL).”

Several applications of trace checking to MAS are reported in the literature. Howard et al.
(2003), who introduce the term model-based trace checking, translate traces from a travel agency
case study to PROMFELA in order to verify them against PLTL formulae with the model checker
SPIN.
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Bosse et al. (2006) automatically compare traces of a MABS simulating unmanned aerial ve-
hicles (UAVs) to assertions stated in the formal language TTL (Temporal Trace Language).
TTL is an expressive temporal logic that allows to formulate queries like “There is an inter-
val with length 4 in which target tg is visited at least twice (by two different [UAV] agents)” (Bosse
et al., 2006, p. 728). This expressiveness is, among other things, due to the use of real valued
variables (Bosse et al., 2006, p. 725). On the downside, it makes exhaustive model checking
infeasible (Bosse et al., 2006, p. 726). In addition to trace checking, Bosse et al. (2006, Sec. 4)
employ a trace visualization tool (see Section 5.2.4.2) to support the understanding of reasons
for assertion failures.

Further applications of conformance checking to MAS with relations to process mining are
reviewed in Sections 5.2.2.4, 5.3.3.3, and 5.3.4.5. In Section 6.3.3.3, we sketch how model-based
result checking might be extended beyond numerical analysis (as in Birta and Ozmizrak, 1996)
to handle 'qualitative’ patterns based on data mining.

5.1.2.2. Calibration and Meta-Modeling

In the previous sections, we have already cited several characteristics of MABS that inherently
complicate the task of calibration. In (Bachmann et al., 2004, Sec. 1) we summarized the main
problems when attempting to fit the macroscopic behavior of a MABS to real system behavior
by adapting microscopic parameters based on the literature:>

“One problem is that the complex behavior of intelligent actors is often not sufficiently
understood by the modeler or that strong simplifications are required due to limitations of
modeling formalisms and computing power. |...]

Calibration is further aggravated by the typically large number of free parameters in [...]
agent-based models (Koster, 2002) as well as the often non-linear and hardly predictable
responses of the model [see also Kliigl, 2008, cited in Section 5.1.1.2]. Specific problems
occur when large populations of agents must be modeled on the basis of limited data
(Drogoul et al., 2002, p. 12), or when parameters exhibit a large global sensitivity because
they influence the local behavior models of many agents (Kliigl, 2001, p. 83). A practical
impediment that hinders the exploration of model behavior is the high computational
complexity due to detailled modeling.”

In (Bachmann et al., 2004, Sec. 2) we also cite an early proposal of MABS calibration techniques
by Oechslein et al. (1999):

“In (Oechslein et al., 1999, ...) different possibilities are described to support the calibration
of agent-based models with the aid of software tools:

e manual comparison of variable trajectories,

e definition of microscopic and macroscopic constraints that can be verified during
simulation,

e separate calibration of partial models,

A far more detailed discussion on this subject is also led in the dissertation by Fehler (2011) dedicated to the
problem of MABS calibration.
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e definition of microscopic meta-models that contain the parameters to calibrate but
are more abstract than the original models.

The application of systems for simulation-based optimization is proposed by Kliigl (2001,
p. 213) but rated as difficult due to the necessary computational effort and the problem of
defining an appropriate objective function.”

In continuation of the work by Oechslein et al. (1999), Fehler et al. (2004, pp. 306) distinguish
between black box and white box approaches for MABS calibration. Black bozx calibration
is related to simulation-based optimization as e.g. employed in the SADDE methodology®:
An objective function is defined over output variables of the simulation. A search algorithm
explores different parameter scenarios guided by the objective function, where each scenario is
evaluated in a simulation run. Different from this global approach, Fehler et al. (2006a) also
perform calibration by local learning at the agent level.

In (Page and Kreutzer, 2005, p. 223) we discuss potential pitfalls in the definition of the
objective function:”

“In general terms calibration can be viewed as a multi-criteria optimization problem (Dro-
goul et al., 2002, p. 12), whose goal is to minimize deviations between model and system
output (Kliigl, 2001, p. 213) Using suitable weights, multiple criteria for model validity can
be collapsed into a single objective function G (Zitzler, 1999). In an (often too) simplistic
approach, G computes a weighted sum of all deviations between relevant model [outputs
F;(x)] and system outputs [y;]:

G(x) = min (Z w; - | Fy(x) — yi|> (5.1)

[...] A major challenge is the appropriate choice of weighting factors w; for output quantities
with different dimensions. The collapse of multiple complex validity criteria into a single
number may also require invalid simplifications. These difficulties might be resolved by
delegating responsibility for evaluating results to the users and feedback their ratings into
the optimization’s attempts at improving parameter settings. An example for such an
approach are the interactive genetic algorithms proposed by Boschetti (1995).”

In the same discussion, we name further general problems related to calibration. This includes
the danger “to misuse [... it] for "tuning" a model’s performance by varying parameter values in order to
cover errors in model structure” (Page and Kreutzer, 2005, p. 222). Another difficulty is “to decide if
model and system output are "sufficiently similar", particularly if models contain stochastic components

and the simulations’ results are complex, e.g. spatial patterns in multi-agent-based simulations” (Page
and Kreutzer, 2005, p. 223).

Fehler et al. (2004, pp. 306) regard the application-independence of simulation-based optimiza-
tion (e.g. Gehlsen and Page, 2001) as an advantage and drawback at the same time, since it
forbids to constrain the calibration process with context-specific knowledge besides restricted
variation ranges of parameters. The authors therefore propose a methodology for white boz

Swhich is also cited by Fehler et al. (2004, p. 307)
TA similar German description is also found in (Bachmann et al., 2004, pp. 116-117).
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calibration (Fehler et al., 2004, Secs. 4-6). It comprises several context-aware model “decomposi-
tion and abstraction methods” (Fehler et al., 2004, p. 320), related to the proposals by Oechslein
et al. (1999), to reduce the complexity of calibration (Fehler et al., 2004, p. 308).

Decomposition aims at the extraction of possibly independent model components and states
that can be calibrated in isolation (Fehler et al., 2004, p. 308). Proposed dimensions include
functional, goal-oriented, behavioral, and temporal decomposition (Fehler et al., 2004, Secs. 5.2-
5.5). Using functional decomposition, one might e.g. calibrate the behavior of a single agent or
of spatial dynamics without influences by other agents (Fehler et al., 2004, p. 309).

Abstraction means that microscopic sub-models are manually or (semi-)automatically aggre-
gated into macroscopic models and that deterministic or irrelevant model components are
simplified and eliminated (Fehler et al., 2004, p. 313). Among the techniques for automated
model abstraction, Fehler et al. (2004, p. 314) name distribution fitting to replace a microscopic
sub-model with a stochastic process and meta-modeling. The latter technique is explained in
(Page and Kreutzer, 2005, p. 224) as follows:

“Simply put, meta-modelling is about building a more abstract or, as Zeigler et al. (2000,
p. 32) call it, "lumped" model, which exhibits similar relevant behaviour as the original.

[

A common technique used in meta-modelling is to derive mathematical approximations
of input-output functions computed by the original model. [...] Parameters are [...] sys-
tematically varied within given ranges, and the corresponding results are sampled. From
these samples a reaction surface is computed, using an interpolation technique such as
polynomial fitting or neural networks (Kilmer et al., 1997).

There are applications of meta-modelling in validation which go beyond explorations of the
original model’s response surface. For example, we can use the comparison of meta-models
as a quantitative operational validation technique [...] by checking the coefficients of [...
polynomial] meta-models [of the simulation and the real system] for similarity.”

Fehler et al. (2004, pp. 315) additionally propose an order in which to perform the different
decomposition and abstraction tasks to reduce overall calibration effort. They emphasize that
decomposition can only be performed in case of sufficiently independent model components
(Fehler et al., 2004, p. 308). After abstracting and calibrating appropriate sub-models, it
is important to perform a final integrative calibration (Fehler et al., 2004, p. 316), possibly
supported by simulation-based optimization (Fehler et al., 2004, p. 320).

Besides decomposition and abstraction, Fehler et al. (2006b, Sec. 4.5) describe a further tech-
nique for the “reverse-engineering” of environmental models such that they fit the simulated agent
models in the same way that real agent behavior and real environments match. Technical details
of this and the above methods are provided in the dissertation by Fehler (2011).

5.1.2.3. Pattern-Based Validation and Model Alignment

Grimm (2002, p. 25), among others, constates a “communication crisis” in the MABS community
concerning the scientific value of models and the clarity of publications. This is caused by
several factors related to model complexity:
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e Different from mathematical models, a concise and falsifiable publication of agent-based
models is impractical because one would in principle have to publish the source code of
the model (Grimm, 2002, p. 24).

e Due to the few restrictions of the modeling formalism (Kliigl, 2000, p. 73), it is hard
to decide and validate if an appropriate level of detail is modelled (Grimm et al., 2005,
p. 987).

e For similar reasons models and experiments are seldom compared, re-used, and enhanced
within the community (Axtell et al., 1996, p. 124).

e In-depth analysis and validation of relations between microscopic behavior and macro-
scopic outcomes is seldom performed (Railsback et al., 2002, p. 84).

In the following, we review manual and semi-automated validation techniques to improve this
situation. The focus in this section is on techniques to confirm (or falsify) previously stated
hypotheses. The next section treats explorative techniques, mainly based on visualization.

Pattern-Based Modeling and Validation rests upon the idea that a reasonable validity crite-
rion for agent-based models is the ability to reproduce certain characteristic macro-level patterns
of the real system (Railsback et al., 2002, p. 84). According to Rand et al. (2003, p. 2) a fo-
cus on magcroscopic patterns is preferable since microscopic trajectories in MABS might differ
strongly between different (stochastic) simulation runs due to path-dependence and sensitivity
to initial conditions. Beyond that, a concentration on the macro-level furthers the generality
(Rand et al., 2003, p. 2) and comparability of models, even allowing to “contrast |...] alternative
theories” (Grimm et al., 2005, p. 988).

Similar to test-driven software development, target patterns at multiple levels of aggregation
are defined before the model is implemented (Grimm et al., 2005, p. 987). Thus, the modelled
entities and their levels of detail are constrained by the model’s ability to reproduce the relevant
patterns (Grimm et al., 2005, pp. 987-988). Another advantage is the possibility for incremental
model development, ideally focusing on one pattern per iteration (Grimm et al., 2005, p. 988).

The patterns considered in actual studies largely depend on the modelled domain. In a simula-
tion of urban development Rand et al. (2003, pp. 3) consider two patterns from the literature
including (1) a power law relation between the size of population clusters and the number
of similarly sized clusters and (2) a negative exponential decrease of population density with
increasing distance from the city center. Grimm et al. (2005, p. 989) report on a beech forest
model where one requirement consists in the reproduction of a “horizontal mosaic of developmental
stages” in the spatial distribution of the (simulated) trees.

Note that the potential to automate pattern-based validation in a model-based validation sys-
tem (as proposed by Birta and Ozmizrak, 1996) depends on the types of patterns considered.
While the numerical relations by Rand et al. (2003) are straightforwardly validated with statis-
tical techniques, an automated detection of the 'mosaic’ structure mentioned by Grimm et al.
(2005) appears more demanding.

Model Alignment or docking relates to comparisons of different models representing the same
domain. Docking studies are mainly performed for two reasons:

183



5. Related Work

1. If no sufficient data from the real system is available, a new model can be validated
against an existing simulation as an initial plausibility check (Xiang et al., 2005, p. 48).

2. Relations between alternative models by different developers are evaluated. In doing so,
model hierarchies (such as 'model A is a special case of model B’) can be established
(Axtell et al., 1996, p. 124) and results can be confirmed or falsified experimentally,
somehow similar to the natural sciences (Hales et al., 2003).

A seminal study of the second type was conducted by Axtell et al. (1996, pp. 124), who com-
pared the well-known Sugarscape model by Epstein and Axtell (1996) with Azelrod’s cultural
transmission model (ACM, Axelrod, 1995). Both models simulate cultural spread in societies
in a very abstract form. The purpose of the study was to reproduce the results of the ACM
with a modified variant of the “more general Sugarscape system” (Axtell et al., 1996, pp. 124).
The authors successfully aligned both models (Axtell et al., 1996, p. 135) and analyzed the
effect of certain properties, such as agents’ ability to move, on the simulation of cultural spread
(Axtell et al., 1996, p. 131).

Axtell et al. (1996, p. 135) also discuss the level at which simulation results should be compared
for alignment. Similar to pattern-based validation, they propose two equivalence criteria at the
global level: Distributional equivalence, as the strict variant, demands that “two models produce
distributions of results that cannot be distinguished statistically” (Axtell et al., 1996, p. 135).
Relational equivalence “mean(s| that the two models can be shown to produce the same internal
relationship among their results”, like e.g. the power law relation in the land-use model by Rand
et al. (2003).

5.1.2.4. Visual Debugging and Analysis

Despite progress in formal and quantitative analysis, “visualising the simulation and observing the
interactions” (Chen et al., 2008, p. 2) is still one of the main techniques to explore the behavior of
MABS. In (Page and Kreutzer, 2005, pp. 224-225) we discussed the advantages and drawbacks
of visualization as an explorative validation technique:

o “Often statistical methods [...] cannot be used due to overly restrictive statistical
assumptions or the lack of comparable system data (Sargent, 2001, p. 110).

e Given a descriptive representation of model dynamics, human experts can often detect
faults more quickly and more reliably than [...] computer-aided analysis methods.

e Visualization and animation help model developers to detect obvious errors during
design and implementation. It also helps to improve communication with customers.

Unfortunately, visualizations also have a number of important disadvantages. [...] since
it is only a single snapshot which might show completely untypical random behaviour,
modellers must be very careful not to draw overly general conclusions from the animation of
single stochastic simulation trajectories. This is a particular concern if such animations are
(mis)used as the sole basis for making decisions. In addition, visual analysis of simulation
results is largely subjective and must draw on expert knowledge which cannot be readily
automated or objectified.”

In the following, we review selected approaches to visually analyze and debug MABS. Note
that some of these approaches are even supported by data mining.
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Visual Debugging In Section 5.1.1.4, we described the often-cited ’debugging by corrobora-
tion” approach of Ndumu and Nwana (1999) with its 4 perspectives and related visualization
tools. The focus of these tools conforms well to the most common bug types in (message-based)
multi-agent systems identified by Poutakidis et al. (2003, pp. 630): “failure to send a message |[...,]
uninitialised agents [...,| sending a message to the wrong recipient [...,] sending the wrong message |...,
and] sending the same message multiple times”.

Grimm (2002) presents a tool that is tailored towards visually debugging MABS of many
(simple) agents situated in a spatial environment. He argues that due to model complexity,
the debugging of MABS should not primarily be performed at the code level but in terms of
high-level visualization and animation (Grimm, 2002, pp. 27). Based on these ideas, a user
interface to a simulation of plant populations in South African grassland is implemented with
the Java-based GECKO system (Grimm, 2002, p. 30).

The user interface can display the spatial model as well as all relevant local and global state
variables (Grimm, 2002, p. 32) using common visualizations like time series, scatter plots,
and histograms (see e.g. Sargent (2001, p. 111), cited in (Page and Kreutzer, 2005, p. 225)).
Furthermore, all relevant model parameters can be modified and the simulation can be run in
either single step or batch mode (Grimm, 2002, p. 28) using a ’CD player-like’ control panel
(Grimm, 2002, p. 32). All traces and results are also stored to files for further analysis (Grimm,
2002, p. 29).

Grimm (2002, pp. 33) emphasizes that, despite the additional coding effort (Grimm, 2002,
p. 32), interactive user interfaces to observe and control all relevant state variables are crucial
to provide domain experts with the possibility to explore and validate agent-based models.

Advanced Visual Data Analysis Visualizations like simple time series are often inappropriate
to display state spaces and trajectories of many interacting agents. Therefore, several proposals
have been made to ’intelligently’ aggregate raw simulation output prior to visualization by
means of data mining. In the following, we name some visualization-related work before turning
to general data mining support for MABS in Section 5.2.

Sanchez and Lucas (2002) employ (among other techniques) visualizations of regression trees,
neural networks, and three-dimensional response surface plots to analyze the impact of param-
eter changes on the behavior of MABS in large-scale experiment series. St. Amant et al. (2001)
use 3D visualization and an automated constraint-based camera assistant to ’'integrate’ users
as closely as possible into a spatially explicit military planning simulation.

Schroeder and Noy (2001) cluster groups of related agents based on multivariate data, e.g.
related to message exchange. To improve the visualization of clusters in high-dimensional
feature spaces, they apply Principal Component Analysis (PCA), which allows to automatically
detect those (combinations of) feature dimensions with the highest variability (Schroeder and
Noy, 2001, p. 87). Gabbai et al. (2004) perform dimension reduction in MAS visualization with
the aid of self-organizing maps (SOM, see Section 4.1.4.5).
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5.2. Data Mining in Multi-Agent Systems and Simulations

The validation techniques presented above can be useful to improve the credibility of MABS.
Nevertheless, there are several limitations that we already discussed in Section 3.5.

In recent years, data mining and, to some extent, process mining (Chapter 4) have been in-
creasingly applied to support MABS validation with automated hypothesis generation. Figure
5.5 illustrates that data mining may provide a ’link’ between confirmatory and exploratory as
well as (automated) quantitative and (less automated) qualitative validation.

Data mining supports model exploration with the automated extraction of aggregate formal
representations from large simulation output datasets (see e.g. Remondino and Correndo, 2006,
p. 14). Since mined models like association rules or decision trees are relatively straightforward
to understand, they bear larger potential to formalize 'qualitative’ results of MABS than mere
numerical representations (see e.g. Remondino and Correndo, 2006, Sec. 3.2).
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Figure 5.5.: Potential of data and process mining in the context of validation techniques re-
viewed in Section 5.1.2.

The following sections review methods and techniques related to data and process mining in
MA(B)S. While these approaches mirror the ideas sketched in Figure 5.5, the field is still in its
infancy (see also Arroyo et al., 2010, p. 418 reviewed in Section 5.2.2.3). In chapter 6, we will
attempt to integrate the reviewed approaches into a coherent conceptual framework for data
mining and especially process mining in MABS.

5.2.1. Relations between Data Mining and MAS

In general, 3 relevant relations between the research fields of data mining and MAS can be
identified:

1. Adaptive agents: Agents are equipped with the ability for data mining to increase their
robustness, flexibility, and autonomy (Zhang et al., 2005, p. 56). Remondino and Cor-
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rendo (2005, p. 4) refer to this variant as endogenous modeling.® Applications of adaptive
agents reach from information extraction on the internet to simulated persons in social
simulation.

2. Analysis of MA(B)S: As indicated above, the behavior of complex MAS can be analyzed
with the aid of data mining. Such analyses might support verification and validation
in AOSE as well as MABS. Remondino and Correndo (2005, p. 4) call this application
exogenous modeling.

3. Agent-supported data mining: Similar to the idea of agent-supported simulation (see Oren,
2000, reviewed in Section 3.2.1), agent technology can be utilized to develop improved
(distributed) data mining algorithms and systems (Zhang et al., 2005, p. 52).

The focus of this thesis and the following literature review is on the second variant, i.e. data
mining as a support techniques for the validation and analysis of MABS. The case of adap-
tive agents is covered briefly in Section 6.3.5, focusing on similarities and differences in the
requirements of ‘endogenous’ and ’exogenous’ mining.’

Agent-supported data mining is not explicitly treated in this thesis. The article by Zhang et al.
(2005, Secs. 2,4) presents an overview of this topic and states examples including an agent-
based decomposition of the WEKA library (see Section 4.1.5.1) and a plugin-based financial
trading system.

Adopting this perspective, the reference net-based 'mining chaing’ that will be presented in Sec-
tions 7.1.3 and 7.4.2 might be understood as a basis for a future MULAN-based agent-supported
data mining system with a similar objective as the examples by Zhang et al. (2005), i.e. distribu-
tion, encapsulation, and flexible plugin-based composition of data mining procedures. Though
not explicitly ’agent-based’, the assistant-supported, plugin-based ProM 6 system described in
Section 4.2.6.1 fits this category as well.

Further information on all variants of integrating agents and data mining is provided in the
book by Cao (2009) and on the website of the special interest group on Agent and Data Mining
Interaction and Integration (AMII).1°

5.2.2. Data Mining in MABS

This section reviews methodologies, techniques, and tools to integrate data mining and MABS.
Among the presented approaches, the work by Koster (2002) and Nair et al. (2004) might
have influenced this thesis most strongly. The approach by Remondino and Correndo (2005) is
parallel work guided by rather similar objectives and ideas. To simplify the comparison between
different methodologies and our integrated approach in Section 6.3, respective modeling cycles
will be presented in a coherent Petri net notation.!!

8page numbers relate to the version of the article downloadable at http://www.di.unito.it
/~remond/Ric/Remondino_ECMS2005.pdf (last visit 2012-10-07)

“as to use the terminology by Remondino and Correndo (2005)

10%ww.agentmining. org (last visit 2012-01-03)

" This approach is inspired by the comparison of agent architectures in the dissertation by Rolke (2004) and
further similar work in the MULAN context (e.g. the dissertation by Fix, 2012).
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5.2.2.1. Simulation Data Analysis with Knowledge Discovery in Databases

The dissertation by Koster (2002) proposes a methodology to integrate knowledge discovery in
databases (KDD, see Section 4.1.1) and simulation. As shown in Figure 5.6, the former phases
of his process (grey) form a conventional model building cycle, while the latter (white) are
taken from the KDD process (Koster, 2002, p. 88). The iterative and exploratory character of
the process is indicated by the possibility to revise all phases during validation (Koster, 2002,

p. 89).

Verification and validation H
V&V
L |
V&V
V&V — l
Basic "\ ! V&V
knowledge, |
hypotheses V&V |
4 T

System Conceptual Model Formal Simu-
analysis model building model lation

Knowledge

[

Inter-
pretation

Patterns

Data
mining

Simulation
data

Figure 5.6.: Integrated process of simulation and KDD displayed as a Petri net. Adopted with
modifications from the diagram by Koster (2002, p. 88)

Koster (2002) applies the integrated process to an individual-based epidemiological simulation
and to an interactive flight training simulator, where the objectives differ in both case studies:

e In individual-based simulation, the goal is to support model exploration and validation
with the automated detection of dependencies between (changes of) local parameters and
global outcomes (Koster, 2002, p. 89). “Furthermore, the results of the data mining can be
used to identify model components that do not significantly contribute to the (global) behavior

of the model”

e “In the context of [...] interactive training simulators, two important goals are in the focus of the

application: on the one hand to derive objective criteria to rate the performance of candidates; on
the other hand to thoroughly identify deficiencies in the way they handle the system.” (Koster,

2002, p. 91)

In both case studies, a new data mining technique is applied that combines multivariate time-
series analysis with data flow modeling and evolutionary algorithms. Numerical time series of
state variables, such as the simulated persons’ strength of exposition to a pathogen, serve as
input (Koster, 2002, p. 188). Additionally, a target variable is specified, e.g. the infection state

of a person at the end of simulation (Koster, 2002, p. 188).
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From this input, a supervised learning algorithm constructs classifier trees based on a pool
of predefined selector, filter, and processor components for time series analysis. Using an
evolutionary algorithm, it attempts to identify those combinations of nodes that best predict
the target variable from (a selection of) the provided time series. From analyzing the nodes and
connections in the resulting data flow networks, a deeper understanding of cause/effect-relations
in the model might be gained (Koster, 2002, p. 192).

Koster (2002, Chs. 5,6.8) further presents mature implementations of a data mining tool (FA
Mole) and an interactive individual-based simulation system (iEpiSim?). While not in the
research focus, Koster (2002, p. 90) also briefly discusses the potential of simulation as a support
technique for KDD: On the one hand, the structure provided by a conceptual simulation model
might improve insight into the analyzed domain. On the other hand, valid simulation results
can, to a certain degree, compensate the typical lack of data in KDD projects.

For future work, Koster (2002, pp. 226) especially suggests to apply the proposed methodology
to the validation of (individual-based) simulation models. In personal communication with the
author of this thesis, Koster (2004) mentioned first attempts of using EA Mole for the validation
and prediction of trajectories in swarming and population simulations.

5.2.2.2. Analysis of Simulated Robot Soccer Games

Nair et al. (2004) apply data mining to the analysis of team behavior in simulated robot
soccer (Robo Cup'?). An interesting aspect of their work is the explicit definition of multiple
analysis perspectives, related to the debugging approach by Ndumu and Nwana (1999); see
Section 5.1.1.4. From a common log format, the implemented system ISAAC reconstructs
meta-models of the observed simulations on three levels with different data mining techniques:

e The “individual agent model” is a situation-oriented decision tree that represents conditions
under which certain “critical events”, like e.g. a shot on the goal, fail or succeed (Nair et al.,
2004, Sec. 3). Given a user-defined specification of critical events and relevant attributes,
decision trees (Section 4.1.4.1) are learned from the log with the supervised C5.0 algorithm
(Nair et al., 2004, p. 10).

e The “multiple agent model” describes action sequences that form characteristic strategies
of a team in terms of stochastic automata (Nair et al., 2004, Sec. 4). Again, the user can
specify a critical event (e.g. a goal) as the final state of the automaton (Nair et al., 2004,
p. 17). Further parameters include a window size that constrains the considered pattern
length and a structural generalization factor that influences the induction of cycles (Nair
et al., 2004, p. 21).

o The “global team model” is also represented by decision trees that relate macro-level statis-
tics (e.g. ball possession time) to overall outcomes of soccer games (Nair et al., 2004,
Sec. 5).

Besides the analysis perspectives, Nair et al. (2004, p. 2) name 4 main requirements for their
assistant: “Locating key aspects of team behaviour [...]; diagnosing [...], particularly, problematic
behaviour; [...] suggesting alternative courses of action; and [...] presenting the relevant information

2http://wuw. robocup.org (last visit 2012-10-07)
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to the user comprehensibly.” To meet these requirements, data mining is complemented with
visualization, perturbation analysis, and natural language generation.

Perturbation analysis is applied to the individual and multiple agent models to identify a
minimum set of conditions that distinguish successful from ineffective (inter)actions. In the
individual agent model, the conditions of a decision tree representing an unsuccessful action
are inverted, one after the other, before searching for corresponding successful actions in the
log (Nair et al., 2004, Sec. 3.3). In the multi agent model, the assistant “mines patterns from the
behaviour traces that are very similar [to a stochastic automaton representing success|, and yet end in
failure” (Nair et al., 2004, p. 23).

To further compare key success factors of different teams, the assistant performs statistical tests
on the distribution of the teams’ frequent patterns (Nair et al., 2004, p. 23). From the global
team model, newspaper-like summaries of the run of play are generated in English language
(Nair et al., 2004, pp. 31).

Prior to Nair et al. (2004), Jacobs et al. (1998) used inductive logic programming (ILP, see
Section 4.1.4.3) in the Robo Cup domain to verify'? and validate individual agent behavior and
interactions based on logs of simulated soccer games. As indicated by Nair et al. (2004, p. 46),
the approach strongly depends on the availability of formalized background knowledge, which
complicates a transfer to other programming paradigms.

5.2.2.3. Data Mining Applied to Agent-Based Simulation

Parallel to this thesis, Remondino and Correndo (2005) developed an attempt to conceptually
integrate data mining and MABS, that we already mentioned in (Knaak, 2006, Sec. 2):'*

‘[--.] Remondino and Correndo (2005) [...] integrate DM into a basic model building
process and differentiate between two main applications: [...] endogenous DM [... and]
exogenous DM |[... as explained in Section 5.2.1 ...]. Further applications, such as automated
modelling, (automated) validation by comparison of [understandable] meta-models, and
(automated) calibration of model parameters are mentioned implicitly in the context of
certain mining techniques such as multiple regression, clustering, and rule inference.”

The authors sketch a simple “modelling and model-revision process”, depicted in Figure 5.7, in
which exogenous data mining is applied to support the initial modeling phase and validation
(Remondino and Correndo, 2006, p. 18). In (Remondino and Correndo, 2006, Sec. 7), they
further propose to apply mining techniques to data from multiple simulation runs of different
scenarios to identify previously unknown cause/effect-relations between parameters and results.
However, to the understanding of the author, Remondino and Correndo (2006, Sec. 7.1) only
use histograms to show that the model of their case study is able to reproduce a macroscopic
pattern from the real system over a broad range of parameter settings.

In a mere conceptual study, Baqueiro et al. (2009, p. 221) extend the work of Remondino
and Correndo (2006) by discussing two directions of integration, i.e. “applying DM in ABMS
[Agent-Based Modeling and Simulation ... and] applying ABMS in DM”. In the former direction, the

3in the wider sense
“misspelling in (Knaak, 2006) corrected by the author of this thesis
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Figure 5.7.: Data mining-based model revision process by Remondino and Correndo displayed
as a Petri net. Adopted with modifications from Remondino and Correndo (2006,

p. 18).

Simulation

authors only cite the work of Remondino and Correndo (2005, 2006) and additionally propose
to abstract real and simulation data by means of rule mining, clustering, and sequence mining
to aid comparisons between different simulation models and the real system (Baqueiro et al.,
2009, p. 225).

In the ’inverse’ direction, Baqueiro et al. (2009, pp. 226-227) propose (1) to use MABS as
a testbed to train and validate data mining algorithms and (2) to compensate missing and
erroneous real data with substitute simulation outputs, similar to the idea by Koster (2002).
However, to generate “(a) quasi-real [...]; (b) suitable-sized [...]; (c) qualified [...]; and (d) significant”
data — as claimed by Baqueiro et al. (2009, p. 226) — a high degree of model validity would be
necessary.

Also citing the work of Remondino and Correndo (2006), Arroyo et al. (2010) present a more
thorough integration of data mining into a model building cycle accompanied by a larger case
study. As depicted in Figure 5.8, this process employs data mining on real and simulation data
in the phases of model-building and validation. The authors emphasize the need for domain and
data mining experts attending a simulation study to handle the large variety and complexity
of mining techniques (Arroyo et al., 2010, p. 433).

Arroyo et al. (2010, p. 423) further discuss the applicability of several data mining techniques
to simulation: (1) clustering to identify groups of related agents, (2) PCA to minimize the
simulated agents’ degrees of freedom by dimensionality reduction, (3) time series analysis to
analyze the development of variables over time, (4) association rules to model and validate
“hidden relationships”, and (5) graph mining to detect frequent patterns in social networks.

In the case study, a data-intensive model of change in political and religious values during the
post-Franco era in Spain is analyzed with the aid of clustering (Arroyo et al., 2010, Sec. 4).
The authors constate that the temporal evolution of population clusters in their simulation
fits clusters mined from real population data quite well regarding variables like age, religiosity,
political ideology, etc. (Arroyo et al., 2010, p. 427). Thus, a successful example of data mining
support for pattern-based validation (see Section 5.1.2.3) is given.
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Figure 5.8.: Data mining-enhanced model building cycle displayed as a Petri net. Adopted with
modifications from two figures in (Arroyo et al., 2010, pp. 421, 422)

5.2.2.4. Analysis and Discovery of Inter-Level Relations

The analysis of relations between multiple levels of aggregation is one of the most demanding
tasks in MABS. It somehow mirrors the unsolved problem of micro/macro links in sociology (e.g.
Malsch, 2001). Even in the restricted case of computational emergence (see Section 2.1.1) the
description of non-explicitly modelled macroscopic entities and their response to local changes
remains challenging, especially with regard to formalization and tool support (Chen et al., 2010,

pp. 41).

Approach by Chen et al. Chen et al. (2008, 2010) present an approach to formalize com-
putationally emergent phenomena that is rather ’process mining-like’ in spirit.'® It is based
on the common observation that simulations generate events at multiple levels of abstraction.
According to Chen et al. (2010, p. 45), “a simple event se is a state transition defined at some level
of abstraction that results from the execution of a single [...] rule”. Simple events are recursively
aggregated into complex events denoted as ce (Chen et al., 2010, p. 45):

ce :: se|ce;Qcea (5.2)

where ¢ is a relation with respect to time (e.g. e < ez), space (e.g. e; and ey occur at the
same location), or data attributes (e.g. e; and es have a different originator).

15though no explicit relation to process mining techniques is drawn in (Chen et al., 2008, 2010)
16examples adopted with modifications from Chen et al. (2010, p. 45), also inspired by ideas from Ramezani
et al. (2012)
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All simple events caused by the same rule at the same abstraction level form a simple event
type SET (Chen et al., 2010, p. 46). Accordingly, a complex event type CET consists of a
set of simple event types and a set of relations defined over these types (Chen et al., 2010,
p. 46). Chen (2009, p. 98) name 3 temporal relations (concurrency, direct succession, indirect
succession), 2 spatial relations (within distance, at location), and 1 ’organizational’ relation
(same agent) to build CETs.

A CFET thus describes a pattern of interrelated events that can be visualized as a labelled
(multi-)graph with simple event types as node labels and relations as edge labels (Chen et al.,
2010, p. 46). Subsystem state types SST “represent static property descriptions” (Chen, 2009,
p. 60) over multiple system components (Chen, 2009, p. 78). Based on these definitions, the
authors formalize several relations that are typically stated between phenomena at different
aggregation levels:

e Scope: An event type C'ETx has a larger scope than an event type CETy if CETx can
be composed from CETy and some CETp: CETx = CETAQCETg (Chen et al., 2010,
p. 47).

o Resolution: A supertype CETx has a lower resolution than a subtype C'ETy if the ob-
served events belonging to CETy are a subset of those belonging to CETx: E(CET4) C
E(CETx) (Chen et al., 2010, p. 47).

o Level of abstraction: An event type CETx has a higher level of abstraction than an event
type CETy if CETx has a larger scope or a lower resolution than C ETy (adopted with
modifications from Chen et al., 2008, p. 5x).

e Emergent law: A non-simple event type CETx and an event type C ETy are related by
an emergent law if the occurrence of an event ce, € CETx implies the occurrence of an
event ce, € CETy: CETx — CETy (Chen et al., 2010, p. 47).

o Top-down constraint: An event type CETx exposes a top-down constraint on an event
type CETy if CETx — CETy and CETx has a higher level of abstraction than CETy
(adopted with modifications from Chen et al., 2010, p. 47).

Chen et al. (2010, Sec. 3) operationalize this formalism in the MABS framework of X-machines,
a specific class of communicating automata. As an example, a simple prey-predator model of
lions’ and ’antelopes’ is implemented (Chen et al., 2010, Sec. 4.1). For this model, (Chen et al.,
2010, p. 49) specify exemplary C ET's that represent the patterns “starvation” (Figure 5.9), “same
lion overhunting”, and “between lion overhunting”,

Lion moves Lion moves Lion dies

Relations
— directly follows in log

,,,,,,,,,,,,,,, e same lion

Figure 5.9.: Graph for the complex event type ’starvation’: A lion dies after moving two times
in succession without having the possibility to hunt (Chen et al., 2010, p. 49).
Adopted with modifications from (Chen et al., 2010, p. 50).
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The simulation log is matched against the specified patterns, and their occurrence is correlated
with model parameters like density of population (Chen et al., 2010, pp. 49). Chen (2009,
p. 107) additionally propose to employ machine learning techniques for “validating and discovering
[...] models” of inter-level relations. In doing so, the following types of models are (among others)
distinguished (Chen, 2009, pp. 116):

e “Associative [models ...] define a set of linear and/or non-linear relationships between a set
of CETs and/or SSTs” (Chen, 2009, p. 116). These models are mined by correlating
occurrences of C ET's detected in the log as shown in (Chen and Hardoon, 2010).

e “Causal [models ...| define a set of directed causal relationships between a set of CET's and/or
SSTs” (Chen, 2009, p. 116). Chen (2009, Sec 4.2.2) propose to use structural equa-
tion models and Bayesian networks (Section 4.1.4.4) for representation. In a Bayesian
Network, nodes represent CET's which are connected according to their conditional oc-
currence probabilities estimated from log data. Potgieter (2004) and Gore (2010) also use
Bayesian networks to infer inter-level relations from MA(B)S data.

e “Functional modular [models ...] define associative relations between CETs and/or SST's which
can be treated as functional units” (Chen, 2009, p. 117). Under the “premise that within-
module statistical association [...] is greater than between-module association for a particular
function” (Chen, 2009, p. 122), it is proposed to discover modules by clustering CET's
according to similar patterns of occurrence.

Beyond describing inter-level relations, Chen (2009, Sec. 4.3) also use machine learning to
predict computationally emergent behavior modeled in terms of CET’s. In addition, multi-level
models that “explicitly define differences in the dependency relations between CETs for groups of
simulations with different attributes” (Chen, 2009, p. 217) are analyzed with the aid of linear
regression and hierarchical Bayesian networks (Chen, 2009, Sec. 4.4).

A future challenge of the approach lies in “implementation issues associated to the detection of
CET occurrences” with feasible time complexity, where logic-based optimization techniques are
proposed as a starting point (Chen, 2009, p. 216). In Sections 6.2 and 7.1.3.1 we discuss
process mining as an alternative and relate the work by Chen (2009) to the compliance checking
approach by Ramezani et al. (2012) and to reference nets.

Moncion et al. (2010), who relate themselves to the work of Chen et al. (2010)'7, present
an approach towards the automated detection of emergence based on so-called interaction
signs, i.e. arbitrary indicators for interactions observed in a MABS (Moncion et al., 2010,
Sec. 3.1). Interaction signs might reach from measures like distance or direction of movement
in simple flocking simulations to complex events as defined by Chen (2009) (Moncion et al.,
2010, Sec. 3.1).

Based on the observation of interaction signs during a simulation, Moncion et al. (2010, Sec. 3.2)
build a time-series of social networks (see also Lahiri and Berger-Wolf, 2008, reviewed in Section
4.2.4.1) where nodes represent agents and edges represent their relations with respect to an
interaction sign. The time series are analyzed (a) by tracking coherent subnets over time with
the aid of a clustering algorithm (Moncion et al., 2010, Sec. 4.2) and (b) by applying metrics
from social network analysis in order to analyze the increase or decrease of ’order’ in a simulation

"see Moncion et al. (2010, Sec. 2)
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(Moncion et al., 2010, Sec. 4.1). The approach is evaluated at the example of a simple flocking
simulation (Moncion et al., 2010, Sec. 5).

5.2.2.5. Data Farming

In (Knaak, 2006, Sec. 2), we briefly reviewed a methodology rooted in the military simulation
domain that integrates MABS and data mining (DM):

“Brandstein et al. (1998) propose a method called data farming that integrates MABS with
large-scale experiment planning, distributed execution of simulation runs, visualisation, and
DM. However, the current data farming research seems to focus stronger on experimentation
methodology than on the integration of DM techniques. The applied DM techniques are
mostly limited to the numerical analysis of factors influencing the agents’ behaviour.”

In the context of data farming, Sanchez and Lucas (2002) support visualization with data min-
ing as reviewed in Section 5.1.2.4. Barry and Koehler (2004, p. 815) propose to use clustering,
decision tree mining, rule mining, and Bayesian network inference on data farming results to
uncover relations between simulation parameters and results over many replications. To iden-
tify relevant variables for simulation-based optimization, Brady and Yellig (2005, p. 286) use
correlation analysis over keywords that reference model components in the simulation trace.

5.2.2.6. Adaptive Intelligent Model-Building for the Social Sciences (AIMSS)

As part of the AIMSS project, Kennedy et al. (2007, p. 1098) present an assistant software that
supports iterative model building with data mining. At the example of a housing simulation,
association rules are mined from simulation output and real data as “high level descriptions” for
pattern-based validation (Kennedy et al., 2007, p. 1102).

As an example, the authors present the following rule that was mined from simulation output
with maximum confidence (Kennedy et al., 2007, p. 1102):

incomeLevel = low N moveReason = af fordability = newHomeCost = low. (5.3)

This rule indicates that agents with the lowest income level, that move houses due to afford-
ability, will always move into a house at the lowest rent level (Kennedy et al., 2007, p. 1103).
The quantization of numerical data into levels is necessary since the applied association mining
technique can only handle categorial data (Kennedy et al., 2007, p. 1104).

For future work, Kennedy et al. (2007, pp. 1103) plan to automate model revision on the basis
of data mining results. The architecture of the assistant is already prepared for this extension
due to the use of “machine readable” declarative model specifications based on XML (Kennedy
et al., 2007, p. 1102).

5.2.2.7. Further Work on Data Mining in MABS

In his bachelor thesis at the University of Rostock, Enrico Seib (2008) discusses the application
of data mining to (agent-based) simulation and evaluates a number of mining techniques and
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simulation tools (including SeSAm reviewed in Section 3.4.3) in this respect (Seib, 2008, p. V).
As a practical example, a clustering algorithm is integrated into the MABS framework JAMES
II and applied to a MABS of a chemical process (Seib, 2008, pp. I11,V).'8

Schmitz et al. (2010, p. 88) systematically evaluate different data mining techniques, i.e. “time
series analysis, association rule mining, clustering, and social network analysis in regard to their use-
fulness for the|...] purpose|...]” of “validating” and “understanding” MABS of “inter-organizational
networks”. The applied techniques are rated with respect to different domain-specific analysis
questions (Schmitz et al., 2010, p. 100). Generalization of the investigated questions and im-
provement of tool support are identified as topics for further work (Schmitz et al., 2010, p. 100).
An interesting finding is that “at early analysis stages [...] mostly qualitative analyses are relevant
[while ...] at a later point in time [...], we can expect a shift towards more quantitative analyses that
better serve as input to management decisions” (Schmitz et al., 2010, pp. 100).

5.2.3. Data Mining in Other Simulation World-Views

Huber et al. (1993, p. 237) report an early application of decision tree mining to generate “a
qualitative description of [... simulation| input/output behaviour [... that] can easily be interpreted
by the modeller and other users because of its intuitive representation.” Huber and Berthold (2000,
Sec. 3.3) compare different formalisms for meta-modeling including regression analysis, neural
networks, and association rules. Based on this comparison, they propose fuzzy graphs as a
means to combine the straightforwardness and understandability of rule mining with the other
techniques’ ability to handle continuous values.

Szczerbicka and Uthmann (2000) were among the first to generally consider interactions between
Al techniques and simulation: In the introduction to their anthology, the potential of Al to
support the usage, modeling, optimization, and analysis of simulation models is discussed. The
authors name decision tree learning and case-based reasoning as the most common data mining
techniques for simulation analysis (Szczerbicka and Uthmann, 2000, Sec. 4.4).

Further articles in the anthology report on applications of different data mining techniques to
validation, meta-modeling, and optimization. Barton and Szczerbicka (2000) discuss the utility
of machine learning for model validation and perform simulation-based optimization with the
aid of decision tree mining and a time-dependent scoring function.

Morbitzer et al. (2003) compare data mining with traditional techniques for simulation analysis.
The authors emphasize the ability of data mining to (semi-) automatically generate results that
are at the same time numerically quantified and visually understandable (Morbitzer et al., 2003,
p- 913). This confirms the view of data mining as a ’link’ between quantitative, qualitative,
exploratory, and confirmatory validation mentioned in Section 5.2. However, the claim that
“the method allows the analysis to be carried out by a user with a very limited understanding of the
underlying numerical analysis techniques” (Morbitzer et al., 2003, p. 913) might be called into
question.

Morbitzer et al. (2003, pp. 913) further discuss the appropriateness of several data mining
techniques (association rules, decision trees, outlier analysis, time series analysis, and clustering)

"Binformation extracted from the (incomplete) preview of the thesis at books.google.de/books?
isbn=364014547X (last vist 2012-10-10)
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to analyze a simulation of air flow in a building. Clustering is practically applied to e.g.
group distributions of parameter settings, such as wind speed and ambient temperature, by the
resulting temperature in the simulated building (Morbitzer et al., 2003, pp. 915).

As summarized by Czogalla (2007, p. 21), Cantt-Paz et al. (2004) use Bayesian classifiers and
k-nearest neighbor clustering to automatically query and validate visual turbulence patterns
generated by a physics simulation of a liquid.

In the context of the AssistSim project, Lattner et al. (2011, p. 179) use “machine learning [...] not
[...] to discover knowledge from simulation results but to learn a classifier for the estimation of statistical
properties”. The objective is to rate the significance of simulation results and to determine the
number of runs required to achieve a certain level of significance (Lattner et al., 2011, p. 177).
The article also reviews further work related to data mining in simulation (Lattner et al., 2011,
p. 177), mostly complementary to this thesis.

5.2.4. Data Mining in MAS

After reviewing applications of data mining to simulation, we will now present examples of data
mining in MAS without specific focus on simulation. Some of these approaches already come
close to the idea of ’process-oriented’ analysis, which is further detailed in the next sections.

5.2.4.1. Log Analysis in the INGENIAS Methodology

INGENIAS is a tool-supported AOSE methodology that comprises multiple modeling perspec-
tives including agent, organization, task/goal, interaction, and environment (Vigueras et al.,
2008, Sec. 3). Validation is performed by a-posteriori analysis of message logs recorded during
MAS execution. A tool named ACLAnalyser supports the analysis of FIPA-compliant message
logs recorded on the JADFE agent platform with visualization and data mining techniques (Botia
et al., 2004).1° Serrano et al. (2009, Sec. 4) summarize several models that are reconstructed
for analysis, mostly related to the organization and interaction perspectives of INGENIAS.

Causality graphs display the partial order of events in a recorded conversation, where nodes
represent agent states and edge labels denote messages (Serrano et al., 2009, p. 2788). To
detect causal dependencies in concurrent multi-party conversations, every message is assigned
a vector clock containing local event counters for all participating agents (Vigueras and Botia,
2008, p. 193). Figure 5.10 shows a causality graph for an example execution of the contract
net protocol. Vigueras et al. (2008, Sec. 4) propose to enrich the nodes of the causality graph
with detailed state information from the interaction and task/goal perspectives.

Besides causality graphs, the following further visualizations are available in the ACL Analyser
(Serrano et al., 2009, Sec. 4.3):

e Order graphs are similar to causality graphs with the exception that messages are repre-
sented by graph nodes.

"Ysee also http://ants.dif.um.es/staff/emilioserra/ACLAnalyser (last visit 2012-10-10) and the User’s
Guide (Serrano and Botia, 2011) available at this location

197



5. Related Work
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Figure 5.10.: A causality graph for an example execution of the contract net protocol. Nodes
represent agent states in the form agentName / stateId. KEdges are labelled
with performatives. Adopted with modifications from (Vigueras and Botia, 2008,
p. 201).

o Abstract graphs display the order of multiple related conversations without showing details
of the conversations themselves.

o Collaboration graphs are social networks of communicating agents based on the send-
/receive-relation of messages.

e Sequence diagrams of the recorded messages (Serrano and Botia, 2011, p. 17) and several
conversation statistics (Serrano and Botia, 2011, p. 20) can be displayed as well.

Since these visualization tools are only appropriate to analyze small (cut-outs of ) MAS, Serrano
et al. (2009, pp. 2789) apply a knowledge discovery process including clustering and associa-
tion rule mining. Clustering supports the visualization of large collaboration graphs with the
possibility to zoom into and out of groups of similar agents (Botia et al., 2004, p. 305). The
categorial cluster algorithm ROCK is employed to group agents that communicate with sim-
ilar peers (Serrano et al., 2009, p. 2790). The distance-based k-means algorithm is used to
cluster agents by frequent message exchange (Serrano et al., 2009, pp. 2791). With the aid of
association rule mining, relations between performatives, senders, and receivers of messages are
reconstructed (Serrano et al., 2009, p. 2790).

Though the reconstructed models somehow resemble the control-flow and organizational per-
spectives of process mining, it should be noted that (except for association rule mining) no gen-
eralization of the displayed dependencies is performed over multiple executions. Furthermore,
background knowledge and meta-data is required: Messages must be tagged with conversation
and protocol identifiers as well as vector clocks as time stamps. A state machine representing
the observed protocol must be available in the ACLAnalyser to record conversation statistics
and bindings of agents to interaction roles (Botia et al., 2004, p. 305).
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5.2.4.2. Agent Software Comprehension

Similar to Vigueras and Botia (2008), Lam and Barber (2005) use causality graphs to analyze
logs of MAS. Both approaches can be regarded as complementary, because the focus of Lam and
Barber (2005) is on analyzing internal events of single agents (Vigueras and Botia, 2008, p. 203).
As a basis, agents are instrumented with logging statements to record state changes with respect
to agent-concepts like beliefs, intentions, or actions (Lam and Barber, 2005, pp. 588,589). Lam
and Barber (2005, p. 589) emphasize that the concentration on the abstract level of agent
concepts reduces the amount of log entries, as e.g. compared to the code level.

From the logs, a software named Tracer Tool extracts causal graphs to trace events back to their
root causes (Lam and Barber, 2005, Sec. 3). Different from the ACL Analyser (see above), the
partial order of causal dependencies is not reconstructed from vector clocks, but with the aid of
configurable, potentially domain specific background knowledge related to the applied agents
concepts (Lam and Barber, 2005, p. 589). An example for this automated log interpretation is
provided by Lam and Barber (2005, p. 591):

“if 0 is an action, then the algorithm searches for the last observed intention ¢ that has
some similar attribute as those of action o. If such an intention is found, a relation from
intention ¢ to action o is suggested.”

Bosse et al. (2006) complement the explorative analyses of the Tracer Tool with confirmative
trace checking with the TTL Checker mentioned in Section 5.1.2.1. Lam and Barber (2005,
p. 593) also mention “behaviour pattern recognition” as a topic for future work.

5.2.4.3. Agent Academy

Mitkas et al. (2002) present the software framework Agent Academy implemented on the JADE
agent platform. Different from the above approaches, Agent Academy employs data mining
to improve agents’ adaptivity by means of “dynamic re-training” based on data collected from
previous agent behavior and from the environment.

Adaptivity is not realized by equipping individual agents with learning algorithms but by using
the centralized data mining architecture depicted in Figure 5.11. This architecture makes it
possible that “functionally unrelated agents within the society may benefit from each others’ findings
and be able to collectively exploit the shared knowledge base thereby increasing the effectiveness of the
system” (Mitkas et al., 2002, p. 757).

The architecture consists of 4 main components implemented as agents that communicate via
FIPA-ACL messages (Mitkas et al., 2002, p. 758): The agent factory creates and configures
new untrained agents on demand. Based on a given ontology, the agent use repository stores
data from multiple sources in a database. The data mining module extracts hypotheses from
the agent use repository in the form of association rules, decision trees, and neural networks.
The agent training module translates the models generated by the data mining module into
executable behavior descriptions and transfers these to the agents.

Mitkas et al. (2002, Sec. 4) present an example system that monitors environmental data,
predicts health-critical situations concerning allergies, etc. and sends alerts to registered users
via different channels such as e-mail. Based on user feedback, predictions concerning alerts and
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Figure 5.11.: Architecture of the Agent Academy framework displayed as a Petri net. Core

components of the system are shaded grey. Adopted with modifications from
(Mitkas et al., 2002, p. 758)

preferred distribution channels are improved by re-training. For this purpose, decision trees are
mined from the agent use repository and translated into executable rules for the Java Frpert
System Shell (JESS, see Section 3.4.2) that the agents employ for decision making.

In the context of Agent Academy, Dimou et al. (2007) present a concept to select and apply
metrics for performance evaluation of data mining agents. In Section 6.2, we will briefly discuss
the modeling and validation of adaptive agents based on process mining.

5.3. Process Mining in Software Engineering and Simulation

Finally, we will focus on those approaches that are most closely akin to the thesis at hand, i.e.
process mining or related techniques are applied to MAS-like systems or simulations.

5.3.1. Process Mining in Software Engineering

Interestingly, the reconstruction of software development processes was one of the first objec-
tives for process mining (Cook and Wolf, 1998). In (Cabac and Denz, 2008, pp. 87) we reviewed
previous applications of process mining to software engineering:

“One direction of research focuses on the analysis of software development processes (which
we will call software development process mining). The goal is to retrieve control-flow
and organizational aspects of software development cycles from available data sources such
as CVS [Concurrent Versions System, a common software tool for source configuration
management>’] repositories. [...] the second direction of research uses mining to analyze

?0gee http://www.nongnu.org/cvs (last visit 2012-10-13)
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software artifacts in order to support tasks like debugging or validation (which we will call
software process mining?').

Early work on software development process mining was carried out by Cook and Wolf
(1998), who reconstruct models of software development processes from event-based logs
and use conformance checking techniques to compare actual development activities with
specified process models. They also present a tool implementing their techniques within
a software development environment. Christley and Madey (2007b) apply social network
mining and grammar inference to the analysis of open source projects. Rubin et al. (2007)
introduce a general framework for process mining of software development processes. They
consider several aspects including specific data sources, algorithms, and perspectives, and
propose the ProM framework (Dongen et al., 2005) as a supporting toolset.

Software process mining is concerned with the reconstruction of abstract models of software
systems from their execution traces. [...] Dallmeier et al. (2006) [e.g.] apply grammar
inference to the state-based analysis of basic software objects in order to support testing.”

Since the time of this review, further work on software development process mining has been re-
ported including the dissertation by Rubin (2007) and the software framework FRASR (FRame-
work for Analyzing Software Repositories) based on ProM (Poncin et al., 2011). The latter
allows to define so-called “event bindings” to map implicitly defined events from different sources
such as code repositories and bug tracking software to MXML logs (Poncin et al., 2011, p. 6).

In the context of software process mining, Bose and Suresh (2008) apply techniques from
Bioinformatics and Information Retrieval to identify root-causes for software failures. One of
these techniques, i.e. sequence alignment, helps to identify common patterns that distinguish
erroneous from successful executions.

Approaches to reconstruct understandable models from the source code and runtime observation
of software systems are developed in software reverse engineering. One direction of work is
scenario-based synthesis (Lassen et al., 2007, p. 13): Software systems are implemented by
'playing’ example user interactions ’into’ a development environment (see e.g. Harel and Marelli,
2003). These scenarios, often represented in the form of sequence diagrams, serve to (semi-
Jautomatically generate the behavior of the system under development. The article by Lassen
et al. (2007, Sec. 5) further discusses relations between process mining and scenario-based
synthesis.

Gueheneuc and Ziadi (2005) propose to reconstruct UML 2 sequence diagrams (SDs, see Section
2.3.1.4) with a combination of static and dynamic analysis: Program execution traces are first
transformed into basic SDs of 1 : 1 object interactions (Gueheneuc and Ziadi, 2005, p. 2).22
Based on an additional static analysis of the source code, multiple basic SDs are then merged
into a single high-level SD that represents the overall control flow (Gueheneuc and Ziadi, 2005,
p. 2-3). From the high level SD, state charts of the involved interaction roles can be generated
(Gueheneuc and Ziadi, 2005, p. 3). However, Gueheneuc and Ziadi (2005) do not propose any
technical details on how to merge the basic SDs and identify the interaction roles.

Lassen et al. (2007) use process mining to merge multiple basic SDs into an overall control
flow model: Basic SDs stored in XMI?? are converted into a specific MXML file that contains

2Tn contrast, Rubin et al. (2007) use this term for the mining of development processes.
22page numbers relate to the version of the article downloadable at http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.83.3347&rep=repl&type=pdf (last visit 2014-02-23)

%33 common XML-based format to store and exchange UML models (Lassen et al., 2007, p. 6)
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case data in the form of partial orders of message send- and receive-events (Lassen et al., 2007,
pp. 6). From this log, a Petri net model is reconstructed and transformed into further notations
such as EPCs (Lassen et al., 2007, pp. 9). A transformation into high level SDs (e.g. in UML
2 notation) is not intended, since this diagram type is deemed less suitable “to model the full
system behaviour.” (Lassen et al., 2007, p. 12).

5.3.2. Mining Message Sequence Graphs

Message Sequence Graphs (MSGs) are higher level sequence diagrams quite similar to UML
interaction overview diagrams (Section 2.3.1.4). Basically, a MSG is a control flow graph that
contains basic message sequence charts (MSCs, quite similar to simple UML sequence diagrams)
as nodes (Kumar et al., 2011, p. 93). MSGs are thus well-suited to represent complex protocols
with different “phases” (Kumar et al., 2012, p. 916) of re-occurring (basic) interaction scenarios
(Kumar et al., 2011, p. 94).

Kumar et al. (2011) present an approach to reconstruct MSGs from program traces consisting
of send- and receive-message events. In the first step every trace is converted into a partially-
ordered dependency graph that displays the ’interaction threads’ of the participating objects
on the basis of send- and receive-message relations (Kumar et al., 2011, pp. 93). Next, frequent
subgraphs are searched in the dependency graphs in order to identify candidate scenarios (i.e.
basic MSCs) that form the nodes of the reconstructed MSG (Kumar et al., 2011, pp. 94).
To avoid an “exhaustive search for [matching] graph structures”, a so-called event tail algorithm
is applied that “successively merges” appropriate subgraphs starting from single events (Kumar
et al., 2011, p. 95).

On the abstracted “alphabet of basic MSCs”, a grammar inference algorithm (sk-strings) is applied
to reconstruct the superordinate control flow graph of the MSG (Kumar et al., 2011, p. 96).
The resulting Mealy automaton with basic MSCs as egde labels is converted into a Moore
automaton with MSCs as node labels that comes closer to the MSG notation (Kumar et al.,
2011, p. 96).

Besides the work by Lou et al. (2010b) reviewed in Section 4.2.3.5, the approach by Kumar et al.
(2011) is among the few reverse-engineering techniques that consider multiple instantiation
patterns (Section 2.3.3). Starting from the observation that “in some systems, a process may
broadcast messages to multiple processes [... and] in such scenarios, the order in which messages are
sent or [...] received is usually inconsequential” Kumar et al. (2011, p. 96) introduce a so-called
“oracle” into the algorithm that provides additional information about message broadcast.

For an implementation of the oracle, Kumar et al. (2010, Sec. 5) propose that “the user specifies”?*

which messages and responses belong to broadcasts. Based on this information, rules are defined
to construct correct dependency graphs in the presence of broadcast messages (Kumar et al.,
2010, Sec. 5):

“The first [... rule] states that there is no dependency between two send events at the same
lifeline [...], if the message being sent is [... a broadcast message| and it is being sent to
different lifelines. The second [... rule| states that two receive events at a lifeline have no

" Kumar et al. (2010, Sec. 5) note that “as a future extension, such exceptions can be automatically inferred
[-..] from statistical analysis of traces”.
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dependency if they arrive from different processes and are both responses to a broadcast.
The third [... rule] enforces there to be no dependency between a send of a broadcast
message and the receipt of [... a] response]...] from some other process.”

A drawback of the approach is that it lacks a “formal notion of roles” (Kumar et al., 2011, p. 99)
such that interaction patterns are identified at the level of objects rather than classes. Kumar
et al. (2012) therefore present an extension towards the mining of “class level specifications”.
However, different from role mining techniques in process mining (Section 4.2.4.2), Kumar
et al. (2012, p. 915) assume that the “analysis has prior knowledge of the classification of concrete
processes [...| obtained from either the source code [...] or an input from [the] user.”

Instead, the class-level mining concentrates on the reconstruction of guards for transitions
between basic scenarios in the MSG (Kumar et al., 2012, Sec. III). The authors use a technique
for regular expression induction to reconstruct constraints on message types, senders, receivers,
and cardinalities that determine which objects enact which basic MSCs in a message sequence
graph (Kumar et al., 2012, Sec. III).

Overall, the approach by Kumar et al. (Kumar et al., 2010, 2011, 2012) appears akin to the
mining of (hierarchical) process maps proposed by Li et al. (2010) and the ILP-based process
mining by Lamma et al. (2007b). It also exhibits several relations to our process mining-based
procedure to reconstruct higher level agent interaction protocols presented in Section 7.3. A
more general similarity to this thesis is the intention by Kumar et al. (2011, p. 99) to provide a
“multi-view mining framework [...] which mines [...] intra-process [...] as well as [...] inter-process style
specifications”.

5.3.3. Web Service and Interaction Mining

Message-based communication is an important aspect of MAS. Process mining with a similar
focus is applied in the context of inter-organizational business processes®®. These are often
implemented with the aid of web services, i.e. heterogeneous, self-contained, distributed com-
ponents that communicate over the World Wide Web using XML-based standard formats such
as SOAP (Simple Object Access Protocol) and WSDL (Web Services Description Language);
see Reichert and Stoll (2004, pp. 21-22).

5.3.3.1. Approach by Dustdar and Gombotz

In (Cabac et al., 2006b, Sec. 3.1.1), we have reviewed the multi-perspective approach by Gom-
botz et al. (2005) towards process mining of web service behavior:

“In the context of web service interaction mining, Gombotz et al. (2005, p. 3) distinguish
three perspectives that integrate aspects of control flow and organizational structure: The
web service operation level deals with the internal behavior of single web services. On
the web services interaction level the focus is on "a single web service [and ...] its direct
neighbors". On the web service workflow level "large-scale interactions and collaborations"

9

are observed, "which together form an entire workflow" (Gombotz et al., 2005)

*5for an overview of this research field see e.g. Legner and Wende (2007)
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Practical work is reported on the levels of interactions and workflows. As summarized in (Cabac
et al., 2006b, Sec. 3.1.2):

“/The] mining result|... on the interaction level] is a so-called web service interaction graph
representing the relations of a particular web service and its neighbors. Compared to UML
style interaction diagrams (see e.g. Jeckle et al., 2002), the interaction graph is closer to a
communication diagram than to a sequence diagram, since it does not focus on interaction
control flow.”

The development of mining procedures for the workflow level is guided by the identification
of 5 increasingly detailed log levels: These range from standard web server logs that record
timestamps, requesting [P addresses, and requested URLs (level 1) to detailed logs that pro-
vide information on SOAP message content and workflow-related data like case and schema
identifiers (level 5); see Dustdar and Gombotz (2006, Sec. 3). Dustdar and Gombotz (2006,
Sec. 4) show that level 5 logs can be straightforwardly converted to MXML and mined using
ProM.

Since level 5 logs are seldom found in practice (Dustdar and Gombotz, 2006, p. 261), a concept
for process mining in the absence of workflow-related information is presented as well (Dustdar
and Gombotz, 2006, Sec. 6): The main phases of the procedure are (1) reconstruction of
sessions by aggregation of messages that belong to the same case, (2) similarity assessment of
reconstructed sessions to validate the results of step 1 and to identify sessions belonging to the
same workflow, and (3) process mining on the preprocessed logs.

To reconstruct sessions from server logs, Dustdar and Gombotz (2006, p. 263) propose to
use either “temporal information” or key events like calls to a login service. Temporal session
reconstruction is based on estimated parameters like minimum time between messages and
maximum session duration (Dustdar and Gombotz, 2006, p. 263). For similarity assessment,
Dustdar and Gombotz (2006, pp. 263-264) mention several measures including (1) session
duration and size, (2) type, number, and order of consumed services, (3) initial and final
services called, (4) common message parameters, and (5) frequent control flow patterns. The
authors note that the latter must also account for advanced constructs like concurrency and
cycles (Dustdar and Gombotz, 2006, p. 264).

5.3.3.2. Approach by Schiitt

Schiitt (2003) presents the software prototype FuzFlow for interaction mining and control flow
prediction of inter-organizational workflows. Similar to Dustdar and Gombotz (2006), he as-
sumes that the provided log contains raw messages without explicit session information. Thus,
sessions must be reconstructed by data mining. Different from Dustdar and Gombotz (2006),
Schiitt (2003) requires that all analyzed sessions are of the same type.

The main processing pipeline is shown in Figure 5.12: The simulator creates example logs
based on user-defined message types and sequence patterns (Schiitt, 2003, p. 96). Message
aggregation is realized by clustering messages with similar values of content attributes (Schiitt,
2003, pp. 47). Process mining is performed with the (first part of the) two-step algorithm
described in Section 4.2.3.3. Subsequently, the branching points of the mined process model
are enriched with conditions discovered from message attributes by fuzzy rule mining. The
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Figure 5.12.: Interaction mining procedure and architecture by Schitt (2003) displayed as a
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modifications from (Schiitt, 2003, p. 99).
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resulting model is considered to predict the future control flow of selected running process
instances. In Section 7.2, we use the approach by Schiitt (2003) as a starting point to mine
agent interaction protocols.

5.3.3.3. Artifact-Centric Process Mining

Proclets are an extension of Petri nets that support an artifact-centric view upon workflow
modeling (Fahland et al., 2011a, p. 39): This paradigm focuses on data objects (documents,
orders, etc.) involved in the execution of a business process. It is strongly influenced by
relational database constructs like entities, relations, and cardinalities. Extending the relational
paradigm, the life cycle of each entity type is represented by an own Petri net (proclet) that
interacts with other proclets over ports connected by channels (see Figure 5.13).

A proclet is formalized as a tuple P = (N, Ports) where N is a labelled Petri net (Fahland
et al., 2011a, p. 40). Ports p € Ports are tuples p = (1}, dir, card, mult) with the following
components (Fahland et al., 2011a, pp. 40; Fahland et al., 2011b, p. 3):26

e The direction dir € {in,out} indicates an input or output port.

%6page numbers from (Fahland et al., 2011b) relate to the version downloadable at http://ceur-ws.org/
Vol-705/paperl.pdf (last visit 2012-10-13)
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Figure 5.13.: An example proclet system modeling the delivery of orders by a transport vehicle.
Adopted from Fahland et al. (2011b, p. 2). Input and output ports are only
inscribed with cardinalities here.

o A set of transitions 7}, C 7' is connected to the port. In case of an output port, the firing
of a transition ¢, € T}, triggers p to send one or more messages. For an input port, ¢, will
only be enabled if p receives messages.

e The cardinality card € {1, +, *} determines how many messages are sent or received when
port p is triggered (exactly one, at least one, or an arbitrary number).

e The multiplicity mult € {1, +, *} specifies how often p is triggered during the lifetime of
the proclet.

Multiple proclets form a proclet system PS = ({Py,...,P,},C) where C is a set of channels,
each connecting an input and output port (Fahland et al., 2011a, pp. 40). Similar to reference
nets and agent-based modeling, proclets are a means to reduce the complexity of workflow
models by providing additional structure. This expressiveness also leads to new requirements
and possibilities for process mining and conformance checking.

Conformance Checking of Proclet Systems Fahland et al. (2011a) present an approach
towards conformance checking of proclet systems. Since replaying the log of a whole system
at once is considered as computationally expensive, the work focuses on the sub-problems of
behavioral and interaction conformance (Fahland et al., 2011a, pp. 42).

Behavioral conformance is simply assessed by splitting the log into sub-logs for each entity
type and removing all ports from the corresponding proclets. Then standard log replay-based
conformance checking (see Section 4.2.5.4) can be used, but all interaction-related information
is lost (Fahland et al., 2011a, p. 43).

Interaction conformance is based on an “instance-aware log” (Fahland et al., 2011a, p. 46). This
log contains entries e = (a,id, SID, RID), where a is an action, id is the acting entity’s
identifier, and the sets STD and RID contain identifiers of entities that entity id sent messages
to or received messages from during the execution of a (Fahland et al., 2011a, p. 46). After
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merging related send and receive events of communication peers into the log of the considered
entity type, interaction conformance can be checked (Fahland et al., 2011a, p. 46-47).

To enable conformance checking of port cardinalities and multiplicities, a concise execution
semantic for ports is defined by a mapping to inhibitor-reset nets (Fahland et al., 2011c, p. 26).
These are Petri nets that contain inhibitor and reset arcs like e.g. reference nets (see Section
2.3.2.5). Fahland et al. (2011c, pp. 29-30) show how all combinations of port types, cardinalities,
and multiplicities can be mapped to corresponding net components’®’ checked during log replay.

Discovery of Proclet Systems Only recently, initial effort has been made to reconstruct
proclet systems from instance-aware logs. In this context, the following subtasks have been
approached so far:

e A ProM plugin was developed for the log-based reconstruction of Entity/Relationship
(E/R) diagrams as the predominant structural model of the artifact-centric view (see
Popova et al., 2012, Sec. 2 and Canbaz, 2011, pp. 83,145).

e Popova and Dumas (2012, p. 1) “propose a method for translating Petri Net models into GSM
[Guard-Stage-Milestone models] which gives the possibility to use the numerous existing algo-
rithms for mining Petri Nets for discovering the life cycles of single artifacts and then generating
GSM models.” These represent a specific “meta-model |...] for artifact life cycles which is more

declarative and supports hierarchy and parallelism within a single artifact instance.” (Popova
and Dumas, 2012, p. 1)

e Kikas (2011) presents an algorithm to automatically map event types found in a database
to action labels of a corresponding proclet system by comparing their behavioral profiles
of precedence relations. This is needed in the context of conformance checking, since the
labels found in models and databases often differ in practice (Kikas, 2011, p. 20).

e Canbaz (2011) reconstructs the control and interaction flow of proclets as well as statistics
related to cardinalities of ports from event and message logs stored in a database.

The latter two approaches are (especially in combination) very similar to our procedure to mine
complex agent interaction protocols (Section 7.3) and its simple implementation to analyze our
courier service model (Section 8.3.2.2). While our implementation was already influenced by the
idea of instance-aware logs in (Fahland et al., 2011b), a first concept was drafted considerably
earlier than process mining for proclet systems (see Knaak, 2007).

An important characteristic that both approaches share with our concept is the separate mining
of inter- and intra-entity relations, where the latter are reconstructed by a pairwise comparison
of logs for all entity types. Similar to one aspect of our work, Canbaz (2011, Chs. 5, 6)
concentrates on collecting message statistics to reconstruct cardinalities. Similar to another
aspect, Kikas (2011, Ch. 4) uses strict and interleaving order relations as proposed by Weidlich
et al. (2009)?® to reconstruct intra- and inter-entity precedences in the presence of multiply
instantiated behavior threads.

2Tas to use the term by Cabac et al. (2003)
Bcited in (Kikas, 2011, p. 11)
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A further comparison and discussion of possibilities to merge both lines of work is given in
Section 7.3. In doing so, we also broach the issue of conceptual similarities and differences
between artifact-centric and agent-based modeling.

Research on artifact-centric process mining is currently continued as part of the funded EU
project ACSI?? (Artifact Centric Service Operation). According to Popova et al. (2012, p. 43),
especially “the interaction aspect of the artifact model will be addressed in [the upcoming]| year three
of this project. This will allow to discover how artifacts and their instances relate to and communicate
with each other [...]”. This topic is closely related to agent-oriented process mining as discussed
in this thesis.

5.3.3.4. Further Work on Web Service Mining

Early work on interaction mining in service-oriented environments was carried out by Srinivasa
and Spiliopoulou (2000). These authors assume that messages in the analyzed log can simply
be assigned to conversations (called interaction entities) by a unique identifier. However, since
the log might contain interaction entities of different types, clustering of similarly structured
entities must be performed.

For this purpose, each interaction entity “is represented by a directed graph structure, where nodes
correspond to services and edges correspond to recorded transactions between services” (Srinivasa and
Spiliopoulou, 2000, p. 282). The similarity between two interaction entities is expressed by the
relative “overlap” of nodes and edges in their graphs G; = (V1, E1) and Gy = (Va, Es) (Srinivasa
and Spiliopoulou, 2000, p. 282):

_ MinVa|+ |E1 N By

l _ )
overlap(Gy, Ga) V1 U Va| + |Ey U Es|

(5.4)

After clustering, a state machine is reconstructed from each cluster using grammatical inference
to display the generalized control flow of the corresponding interaction entity type (Srinivasa
and Spiliopoulou, 2000, p. 282). Similar to the work by Vigueras and Botia (2008), mes-
sage precedences are detected on the basis of logical clocks (Srinivasa and Spiliopoulou, 2000,
p. 281). Srinivasa and Spiliopoulou (1999) also present a query language to retrieve “interesting”
interaction entities from a database using a regular expression-like pattern syntax.

Musaraj et al. (2010) focus on message correlation and protocol mining without predefined
assignment of messages to conversations. Their approach is based on a representation of proto-
col automata by linear equations, where each state corresponds to one equation with labels of
incoming and outgoing transitions as positive and negative terms (Musaraj et al., 2010, p. 262).
The equations are learned from the interaction log by linear regression (Musaraj et al., 2010,
pp. 262) and converted into an automaton for display (Musaraj et al., 2010, p. 264).

Motahari-Nezhad et al. (2011) perform message correlation in web service logs based on mul-
tiple conditions. As summarized by Musaraj et al. (2010, p. 265), these authors distinguish
between key-based correlation, where messages are aggregated by common attribute values, and
reference-based correlation, where messages are chained by mutual references (Motahari-Nezhad
et al., 2011, p. 424). Algorithms are presented to identify appropriate composite conditions

Pnttp://www.acsi-project.eu, last visit 2012-01-17.
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for message correlation and to reconstruct a hierarchical process model (“process space”) on this
basis (Motahari-Nezhad et al., 2011, Sec. 3).

For further literature on web service and interaction mining, the reader is e.g. referred to the
reviews of related work by Musaraj et al. (2010, Sec. 6) and Motahari-Nezhad et al. (2011,
Sec. 7).

5.3.4. Process Mining for Agents and Simulation

Despite the use of process mining and related techniques in many domains, applications to
simulation and MAS are still not common. Before presenting a conceptual framework for this
endeavor in Section 6, we review existing case studies from the literature.

5.3.4.1. Process Mining and Simulation

An early application of a process mining-like analysis to a discrete event simulation is reported
by Tolujew (1999, p. 130): Traces of transaction-oriented (Section 2.2.2) queueing network
simulations are aggregated into graphs that depict routes of transactions and state transitions
of resources. Different from process mining, no generalization of the observed behavior is
performed.

Rozinat et al. (2009d) and Wynn et al. (2010) present a ’roundtrip-engineering’-cycle for busi-
ness process simulation and analysis centered around the software systems CPNTools and ProM
(see Figure 5.14). As a starting point, a log and partial models from a workflow management
system based on the modeling language YAWL? are imported into ProM. Models and min-
ing results from the control flow, organizational, data, and performance perspectives (i.e. a
Petri net, a role model, a set of branching conditions, and performance statistics) are then
semi-automatically merged into an executable simulation model represented as a colored Petri
net.

This net is simulated in CPNTools to analyze its behavior in different scenarios beyond the
observed log. During the simulation, a new log is written that can again be mined with ProM.
A conversion of the mining result back to YAWL allows a ’re-import’ into the real workflow
system. Wynn et al. (2010, p. 454) emphasize that a main advantage of their approach lies
in the possibility to apply the same analysis techniques (i.e. process mining) to data collected
from the model and the real system.

To integrate the perspectives of control flow, data, and performance into a single executable
model, Zhang et al. (2010) propose to use event graphs as target models in process mining.
These are a common modeling formalism in event-scheduling simulation originally developed by
Schruben (1983).3! Process mining is simplified by the fact that event graphs do not contain
complex control flow constructs (including concurrency) like Petri nets (Zhang et al., 2010,
p. 134). The approach is experimentally evaluated at the example of a simple event-oriented
manufacturing simulation (Zhang et al., 2010, Sec. 4).

30Yet Another Workflow Language, see http://www.yawlfoundation.org (also cited in Hofstede et al., 2010;
last visit 2012-10-13)
3lcited in Zhang et al. (2010, p. 132)
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Figure 5.14.: Toolset of the 'roundtrip-engineering’ approach by Wynn et al. (2010). Adopted
with modifications from (Wynn et al., 2010, p. 446).

Sunindyo and Biffl (2011) use the a-algorithm in the context of simulation-based analysis of
a production system. Dolean and Petrusel (2011) present an approach towards mining and
conformance checking of decision processes represented in the form of decision data models
(DDMs) based on logs of decision-support systems. DDMs are directed, acyclic graphs that
depict the influence of decision variables to intermediate and final decisions, somehow similar
to Bayesian networks (Dolean and Petrusel, 2011, p. 83). While the 'decision support’ provided
by the example software is restricted to simple 'financial’ calculations, an integration of the
techniques into a real decision support system, e.g. based on simulation, should be possible
(Petrusel, 2012, p. 62).

5.3.4.2. Case Studies by the Eindhoven Research Group

To the knowledge of the author, the Eindhoven group has so far applied process mining (PM)
and the tool ProM to MA(B)S in two case studies. Both examples are reviewed in the following
and discussed with respect to the objectives of the thesis at hand.

Process Mining in a Multi-Agent Auctioning Simulation Similar to our work, Dongen et al.
(2006b, p. 1)32 promote the idea of combining PM and MABS in order to (1) gain a better
understanding of the complex simulations’ behavior and (2) provide agents with enhanced
"intelligence’ and adaptivity.

%2page numbers refer to the version of the article downloadable at http://www.win.tue.nl/
“hverbeek/downloads/preprints/Dongen06.pdf (last visit 2012-10-13)
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The authors use several PM techniques in order to analyze different aspects of a multi-agent
auctioning simulation; namely control flow mining, decision tree mining, and LTL trace checking
(Dongen et al., 2006b, Secs. 1.4.2-1.4.4). Interestingly, the latter is not used to verify properties
of traces but to perform output aggregations similar to trace-based output analysis in simulation
(see Section 2.4.2).

Another interesting aspect of this work is that the authors present a quite realistic case study
that shows the utility of PM for MABS analysis. They use the advantage of simulation (com-
pared to real-world MAS) that the data can be “tailored’ to fit the requirements of the mining
algorithms. This becomes obvious in the insertion of data fields into the observed messages for
decision mining and in an application-dependent log segmentation based on knowledge about
which events start and finish a conversation (Dongen et al., 2006b, Sec. 1.4.1).

However, the analysis is restricted to properties of single agents rather than relations between
multiple agents. The authors also give no hint how the auctioneer agent (that performs the
process mining in the example) can technically interpret the control flow and decision models
learned from the observation of other agents. In general, the article does not discuss agent-
or simulation-specific requirements on process mining in detail. Though Dongen et al. (2006b,
p. 2) regard MABS as a natural example to show the interplay between different PM techniques,
the potential of MAS as a concept to structure the different mining perspectives and tasks is
not made explicit. We will further discuss this potential in Chapter 6.

Process Mining in Robot Soccer Rozinat et al. (2009d) apply process mining to the analysis
of “activity logs” (Rozinat et al., 2009d, p. 5)* from robot soccer games in Robo Cup. The
objective is to improve team performance by means of “self-analysis |... and] opponent analysis”,
which are considered technically equivalent (Rozinat et al., 2009d, p. 2). Similar to the work by
Nair et al. (2004) reviewed in Section 5.2.2.2, multiple perspectives are analyzed, i.e. individual
robot behavior, team behavior, and team decisions (Rozinat et al., 2009d, Sec. 5).

The main difference of the two behavioral perspectives consists in the aggregation level of the
logs imported into the MXML format (Rozinat et al., 2009d, pp. 6): In the individual perspec-
tive, activities are defined by roles that a robot adopts during its life cycle (e.g. DefendCircle
or PositionForPass), and cases correspond to the behavior of a single robot during a game. In
the team perspective, activities are combinations of roles that the 4 outfield players of a team
adopt during a game. To reduce the huge amount of observed log data, repetitive behavior
(i.e. a robot or a team adopts the same role or combination of roles in subsequent steps) is
eliminated (Rozinat et al., 2009d, pp. 6).

To analyze robot and team behavior, Rozinat et al. (2009d, p. 7) reconstruct control flow
models from both logs with the Heuristics Miner algorithm (see Section 4.2.3.4). The resulting
model in the team perspective is additionally enriched with branching conditions mined from
event attributes related to specific situations such as kick-offs or free kicks (Rozinat et al.,
2009d, pp. 8). This analysis allows to identify and validate conditions that lead to specific
team formations (Rozinat et al., 2009d, p. 9). Rozinat et al. (2009d, p. 9) further propose to
support the validation of robot teams with LTL checking.

33page numbers refer to the version of the article downloadable at http://szickler.net/index.php
?sid1=245&session= (last visit 2012-10-13)
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5.3.4.3. Experiments Using Grammar Inference

Grammar inference has occasionally been applied to the analysis of agent behavior and inter-
action protocols. In (Cabac et al., 2006b,c) we mentioned a few examples:

“Mounier et al. (2003) present an approach towards agent conversation mining using
stochastic|...] grammar inference. Mining results are represented as a stochastic automaton
whose edges are labelled with message performatives. The approach neglects concurrency
and interaction roles. Hiel (2005) applies extended Hidden Markov Models [... to recon-
struct agent interaction protocols including dependencies between distant choice nodes];
also neglecting the aforementioned aspects. However, he suggests to improve the recon-
struction of (concurrent) protocols by process mining techniques as a possible direction for
future research.” (Cabac et al., 2006¢c, p. 15)

“Barber and Lam (2003) also propose a simple grammar inference algorithm to reconstruct
models of a single agent’s behaviour. However, in the continuation of this work [... see Sec-
tion 5.2.4.2], they turn to more agent-specific models representing causal relations between
concepts from the well-known BDI architecture [...]” (Cabac et al., 2006b, Sec. 3.2)

5.3.4.4. Declarative Process Mining of Agent Protocols

Lamma et al. (2007b, p. 132) use inductive logic programming (ILP, see Section 4.1.4.3) to
reconstruct rule-based “integrity constraints” formulated in the temporal logic SCIFF from
message logs of agent interaction protocols. Their examples show that different from typical
control flow discovery algorithms, the approach allows to detect deadlines and precedences in
protocols with multicast communication (Lamma et al., 2007b, pp. 138). The reconstructed
rules can be converted into the graphical notations DecSerFlow and ConDec for declarative
process modelling (Lamma et al., 2007a).

On the downside, the ILP-based algorithm requires negative examples (Lamma et al., 2007b,
p. 133) and considerable predefined background knowledge about the structure of the recon-
structed rules (Lamma et al., 2007b, p. 142). Different from control flow mining, the result does
not display the overall course of a protocol but constraints on its execution like “the auctioneer
can not answer both win and loose to the same bidder” (Lamma et al., 2007b, p. 139). Another
drawback is the “high computational cost” of the algorithm (Lamma et al., 2007b, p. 143).

Further work on declarative process mining includes probabilistic (Bellodi et al., 2010) and
incremental (Cattafi et al., 2010) variants of the mining algorithm as well as trace checking based
of models specified in ConDec and SCIFF (Montali et al., 2008). The declarative process mining
and conformance checking techniques were implemented as plugins for the ProM framework.

Later articles on process discovery and conformance checking by this group of authors were also
published in the context of the ACSI project (see Section 5.3.3.3) on artifact centric modeling*
(e.g. Maggi et al., 2012) and on the topic of agent-based simulation (Chesani et al., 2011).

34see http://www.acsi-project.eu/deliverables/ACSI-D6.3.2-V1.0.pdf (last visit 2012-10-14)
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5.3.4.5. Petri Net-Based Process Mining in MAS

As advocated in this thesis, process mining fits the context of Petri net-based MAS modeling
well due to the common formal foundation (Cabac et al., 2006b). Examples for the combined
application of Petri nets and process mining (or related) techniques to the modeling and analysis
of MAS are also found in the literature.

Multi-Agent Process Mining Based on Petri Nets Winarjo (2009) and Ou-Yang and Juan
(2010) use process mining and Petri nets for the validation of MAS: First, a Petri net model of
an agent interaction protocol is mined from a message log collected with the JADE platform’s
Sniffer tool (Section 3.4.1). A modified variant of the « algorithm is used, which constructs
additional 'message’ places to link send- and receive-events in control flow models of distinct
agents. Since the algorithm does not abstract from agents to roles, every individual agent’s
behavior is represented by an own Petri net.

In the second step, the reconstructed Petri net is exported to CPNTools for simulation and
formal analysis. In (Ou-Yang and Juan, 2010), the analysis focuses on the detection of po-
tential deadlocks. Note that, given the preconditions stated in Section 4.2.3.1, the standard
a algorithm always returns a sound WEF net, which only 'deadlocks’ on proper completion in
the output place (Aalst, 2011a, p. 127). As shown in an example by Ou-Yang and Juan (2010,
p. 144), the possibility for further deadlocks is introduced by coupling multiple agents’ WF
nets via message places.

Data and Process Mining in the TAL Approach In the context of the Petri net-based MABS
approach developed at Groningen University’s The Agent Lab (TAL), Meyer and Szirbik (2007)
present a technique for automated behavior alignment in agent interactions. As explained in
Section 3.3.3.5, agents in this model are equipped with interaction beliefs that represent the
assumed course of an interaction protocol in the form of behavior nets. When the assumptions
fail, an interaction cannot proceed properly and user-intervention is required.

Meyer and Szirbik (2007) assume that interventions consist in modifications of behavior nets
involved in the failing interaction. To automate interventions, fixed se