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Abstract

The Kondo e�ect, the screening of the spin of an impurity by the conduction electrons
of a metallic host system, is a standard problem in solid state physics. At weak coupling
strengths between the host system and a group of impurities, the Kondo e�ect competes
with indirect (RKKY) exchange, mediated by the conduction electrons, which promotes
magnetic order among the impurities.

This work deals with the physics emerging in impurity systems with spatially con�ned
metallic host materials, relevant to the quantum dots and arti�cial nanostructures
created by scanning tunnelling techniques. It is shown that (i) the �nite system size
leads to an unconventional reentrant Kondo-vs.-RKKY competition, where the Kondo
e�ect prevails at weak couplings in contradiction to the standard Doniach picture.
(ii) A novel mechanism is proposed which ferromagnetically correlates the impurities'
magnetic moments without any indirect exchange. (iii) In case of degenerate Fermi
levels, a "multi-channel �nite-size Kondo e�ect" is observed. (iv) In the regime of
strong couplings magnetic ordering is shown to be driven by a novel inverse indirect
magnetic exchange (IIME), which is mediated by magnetically inert Kondo singlets.

The evolution of this physics is studied from the "single-impurity Kondo box" limit
via the "Kondo-vs.-RKKY quantum box" to the regime of the "Kondo-lattice box".
Key insights are gained analytically by deriving e�ective low-energy Hamiltonians in
the respective regimes by perturbation theory, and numerically by means of density-
matrix renormalisation group (DMRG), dynamical mean-�eld theory (DMFT), and full
diagonalisation calculations.

The presented theoretical concept is robust against weak environmental in�uences. The
predicted e�ects await an experimental con�rmation and exploration.

Zusammenfassung

Der Kondo-E�ekt, die Abschirmung eines Störstellen-Spins durch Leitungselektronen
eines metallischen Wirtssystems, ist ein Standardproblem in der Festkörperphysik. Bei
schwachen Kopplungen zwischen dem Wirtssystem und einer Gruppe von Störstellen
konkurriert er mit dem indirekten, durch die Leitungselektronen vermittelten (RKKY)
Austausch, der magnetische Ordnungen der Störstellen begünstigt.

Die vorliegende Arbeit behandelt die Physik von Störstellensystemen mit räumlich
eingeschränkten metallischen Wirtsmaterialien, die von groÿer Bedeutung ist für Quan-
tenpunkte und künstliche Nanostrukturen, die mit Rastertunneltechniken erscha�en
werden können. Es wird gezeigt, dass (i) die endliche Systemgröÿe zu einem un-
konventionellen Kondo-vs.-RKKY Wettstreit führt, in dem der Kondo-E�ekt sich ent-
gegen den Standardvorstellungen nach Doniach bei kleinen Kopplungen durchsetzt.
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(ii) Ein neuartiger Mechanismus wird vorgeschlagen, der die magnetischen Momente
von Störstellen ohne jeglichen indirekten Austausch ferromagnetisch korreliert. (iii) Im
Fall von entarteten Fermikanten-Zuständen wird ein �multi-channel �nite-size� Kondo-
E�ekt beobachtet. (iv) Magnetische Ordnung im Regime groÿer Kopplungen wird durch
einen neuartigen inversen indirekten magnetischen Austausch (IIMA) verursacht, der
durch magnetisch inerte Kondo-Singlets vermittelt wird.

Die Entwicklung dieser Physik wird untersucht von der �Eine-Störstelle-Kondo-Box�,
über die �Kondo-vs.-RKKY-Quantum-Box�, bis hin zum Regime der �Kondo-Gitter-
Box�. Schlüsselerkenntnisse werden analytisch gewonnen durch die störungstheoreti-
sche Ableitung von e�ektiven Niedrigenergie-Hamiltonoperatoren in den entsprechenden
Grenzfällen und numerisch mithilfe von Dichtematrix-Renormierungsgruppe (DMRG),
dynamischer Mean�eld-Theorie (DMFT) und voller Diagonalisierung.

Das vorgestellte Konzept ist robust gegen schwache Umgebungsein�üsse. Die vorherge-
sagten E�ekte sehen einer experimentellen Bestätigung und Erforschung entgegen.
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1 Introduction

It was nobel laureate P. W. Anderson [1, 2], amongst others, who pointed out that
"emergence" plays a fundamental, constitutive role for our surrounding world. Opposed
to the point of view of reductionism�a complementary major paradigm of physics�the
emergence of new phenomena and e�ects is intimately linked to complexity of many-
body systems, which permits organising principles which are not obvious from or de-
pendent on the building blocks of a particular theory.

Condensed matter physics may be regarded as a prime example. While the physical
laws dictating the microscopic electronic and atomic behaviour are known for decades,
theoreticians are not able to readily explain all new e�ects observed by experimentalists,
overwhelmed by the sheer complexity. In this regard, we might for example think
of unconventional superconductors whose physics is apparently determined by many
competing energy scales, posing a yet intractable challenge.

History reveals that new experimental discoveries and theoretical concepts may lead
to "revolutionary" Kuhnian paradigm shifts [3], changing the way physicists view and
understand their subject. Among remarkable examples due to emergence are that the
single-electron excitations may become impossible in one-dimensional materials due
to spin-charge separation (Tomonaga-Luttinger liquid [4, 5]), that seemingly indivisible
quanta such as electron charges can be broken into pieces due to the fractional quantum
Hall e�ect [6], or that Cooper pairs seem to condense from the nowhere without being
explicitly mentioned by microscopic theory [7].

The Kondo liquid [8], a low-temperature state of matter in multi-impurity systems, is
another preeminent example. In fact, the �eld of Kondo physics played an important
role in the development of ideas of emergence. The Kondo problem (Fig. 1.1), unsolved
for a decade, triggered the development of renormalisation group ideas and techniques
[9, 10], which reveal that a system may show di�erent physical behaviour, when probed
at di�erent energy or length scales, respectively. Doubtlessly, these concepts can be
considered to be of fundamental signi�cance; with implications not only in physics but
also on a human scale.

The Kondo model [8] represents a typical strongly-correlated system as it generates a
small energy scale; smaller than any other coupling in the Hamiltonian. This scale is
related to the Kondo e�ect [11], which occurs due to screening of the spin of a single
impurity surrounded by a metallic host system with a local antiferromagnetic exchange
coupling J between impurity and electrons (Fig. 1.1). In real space, the screening takes
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1 Introduction

J

ξK

Figure 1.1: A magnetic impurity (yellow circle), immersed in a metallic host system
(antiferromagnetic exchange coupling J), is screened by itinerant electrons (grey) below
the Kondo temperature TK , resulting in the Kondo e�ect. In real space, the screening
occurs at a speci�c length scale�the Kondo cloud size ξK ∼ vF

TK
(green cloud), where

vF denotes the Fermi velocity.

place on a length scale of mesoscopic size, denoted as the Kondo screening cloud. A
competition arises for su�ciently large impurity concentrations; that is when Kondo
clouds would start to overlap and impurities are provided the possibility to indirectly
interact with each other via the conduction electrons (RKKY exchange [12, 13, 14]).

With the advent of low-temperature, nano-scale experimental techniques [15, 16, 17],
the realisation of Kondo models of nanoscopic or mesoscopic size came into reach.
While the physics of impurity models is itself fasciniating enough due to the correlation
of localised magnetic moments with itinerant electrons [18], it rapidly became clear
that this experimental progress adds a new dimension to the problem: the system size
plays a crucial role when the Kondo cloud is too large to match it [19, 20]. However,
we will demonstrate that also the interplay between Kondo e�ect and indirect impurity
interactions may be fundamentally changed by �nite-size and boundary e�ects. For
example, we observe an unexpected reentrant competition, where the Kondo e�ect
prevails even for weak couplings, in contradiction to conventional belief [21].

This constitutes the starting point for our work. Our objective is the detailed study of
the physics of impurity systems in �nite host systems. We will develop a conclusive
and comprehensive picture of �nite-size e�ects in multi-impurity models, which goes
beyond existing theories and demonstrates that such impurities can be correlated with
one another and with the conduction electrons in basically di�erent ways as compared
to traditional considerations. First, we turn to models with few impurities coupled to
a spatially con�ned host system [22, 21]. An important aspect is that open boundary
conditions induce Friedel oscillations in the host system [23], determining the spatial
variation of �nite-size e�ects. Stimulated by the success of our picture, we turn to
multi-impurity systems of large size, where the emergence of magnetic order becomes
possible. We reveal that ordering in the strong-coupling regime is provided by the
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1.1 Motivation from experiments

novel "inverse indirect magnetic exchange" (IIME) [24]. Furthermore, we motivate
that the presented physics is accessible by experiments. The key to understand our
results is provided by perturbation theory, which permits to derive the e�ective low-
energy Hamiltonians in the weak and strong-coupling regime. Our concept is evidenced
by numerical results obtained mainly from density-matrix renormalisation group [25]
(DMRG) but also from real-space dynamical mean-�eld theory [26, 27] (R-DMFT) and
full diagonalisation calculations.

However, our work is not only important from a point of view of physics on nano-
size length scales, but we may also understand it as studying the transition from few-
particle systems to many-particle systems, allowing for emergent phenomena such as the
conventional Kondo e�ect or magnetic ordering. Furthermore, it permits to characterise
�nite-size e�ects with which numerical methods such as DMRG are typically plagued.

1.1 Motivation from experiments

As already suggested in the preceding section, systems may behave di�erently when
relevant (correlation) length scales are cut o� by the system size, e.g. the exponential
Kondo cloud size ξK (see section 2.3). Kondo models of nanoscopic size�"Kondo
boxes"�have been realised as an individual grain [28, 29], as a single metallocene
molecule [30], or as a small quantum dot which acts as a spin-half impurity and which
is coupled to a large quantum dot with a �nite level spacing [31]. The ratio between
the Kondo scale and the spectral gap, induced by the �nite system size, can be tuned
by varying the voltage on the gates separating the two dots. One-dimensional Kondo
boxes can be realised by small Co clusters in short carbon nanotube pieces [32] or by
a carbon nanotube exchange coupled to a localised electron [33].

Recent developments in the experimental techniques to investigate properties of mag-
netic adatoms on non-magnetic surfaces, allow for direct probing and analysis of fun-
damental magnetic exchange mechanisms on an atomic scale. A prominent example
for this challenge represents the competition between the indirect magnetic exchange
of the adatoms via conduction electrons of the substrate and the screening of the mag-
netic moment of the adatoms by the conduction electrons. The scanning-tunnelling
microscope (STM) [15] has been used to study the Kondo physics of single magnetic
adatoms [16, 34, 35] and the magnetic properties of individual magnetic islands on
non-magnetic substrates [36, 37]. Even atomically precise maps of the inter-impurity
coupling between individually pairs on metallic surfaces can be recorded [17, 38, 39, 40]

With progress in manipulation and characterisation of magnetic systems on meso-
scopic and nanoscopic scales, studies of the interplay between Kondo screening and
indirect exchange in a quantum box seem possible in the near future, e.g., in arti�-
cial and tunable double quantum-dot systems [41]. STM techniques nowadays allow
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1 Introduction

the bottom-up construction of tailored magnetic nanostructures with atomic control
[42, 43]. Our work will reveal the relevant basic mechanisms which can be employed
for this purpose, along with many intriguing phenomena.

1.2 Structure of the work

In the �rst place, we present a compact overview of the knowledge about the Kondo
e�ect in chapter 2, to become familiar with historical and conceptual aspects [44]. In
particular, we want to understand the conventional ideas about its competition with
indirect exchange mediated by the conduction electrons [45, 46] (sections 2.2 and 2.3,
continued in section 4.2) in order to contrast them with the results of our work. In
section 2.5, we discuss the physics of the Kondo box [19, 20], i.e. the in�uence of
the �niteness of the host system and open boundary conditions on the single-impurity
Kondo e�ect. We want to demonstrate that the traditional picture of the Kondo
resonance breaks down in a Kondo box at weak couplings and that it has to be replaced
in return by a suitable theory of �nite-size e�ects to be developed in this work.

In chapter 3, the main numerical methods, density-matrix renormalisation group [25]
(DMRG) (section 3.3) and real-space dynamical mean-�eld theory [26, 27] (R-DMFT)
(section 3.4), are introduced as well as the generalised Lieb theorem [47, 48] (section
3.5), which permits exact analytical statements of great signi�cance at half-�lling.

In the following chapters 4-9, we turn our attention to the detailed discussion of
�nite-size and boundary e�ects in multi-impurity models, i.e. the "Kondo-vs.-RKKY-
exchange quantum box" [21]. Our aim is to acquire a broader understanding of how
this competition is modi�ed. An important step represents the derivation of the e�ec-
tive low-energy Hamiltonian at weak couplings by perturbation theory (section 5.2).
Furthermore, we illustrate the diverse and sometimes counterintuitive consequences of
these �nite-size e�ects, along with e�ects from the open boundaries.

We discuss two models for which �nite-size e�ects occur at weak couplings in ba-
sically di�erent ways. The "o�-resonance case" (chapter 4), using the example of
a two-impurity model [22], is in line with the conventional considerations about the
competition between RKKY exchange and Kondo e�ect, whereas the "on-resonance
case" (chapter 5) is in contradiction to them by leading to an unconventional reentrant
competition. The consequences are explicated by using a three-impurity model [21].

As chapter 6 demonstrates, "on-resonance cases" have unexpected implications such as
"resonant enhancement", found in several quantities: enhanced RKKY couplings and
special inter-impurity correlations. These appear at �rst glance to be contradictory to
the conclusions of chapter 5, but they turn out to be consistent with our picture. In
chapter 7 we investigate the corresponding in�uences in periodic host systems.

So far we studied somehow arti�cial models, perfectly isolated from any environmental
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1.2 Structure of the work

in�uences. This condition is relaxed in chapter 8 in order to mimic experimental
situations and to contrast our concept with the results of previous works [49, 50]. It
is shown that the discussed �nite-size physics is stable against weak coupling to the
environment at energy scales larger than the induced spectral broadening of conduction-
electron states [21].

In chapter 9 we make contact to conventional ideas by studying systems of large size.
The recovery of established paradigms of Kondo physics such as the number of screening
channels in the RKKY regime or phase transitions between Kondo and RKKY regime
[51, 52] is analysed as a function of system size.

Our analysis also motivates questions related to the strong-coupling regime (chapter 10)
in terms of adiabatic connection to the weak-coupling regime. We derive an e�ective
low-energy Hamiltonian for multi-impurity models at strong couplings, describing the
weak interactions among the remaining electrons which are not trapped in Kondo
clouds. These interactions are provided by virtual excitations of magnetically inert
Kondo clouds, constituting a novel "inverse indirect magnetic exchange" (IIME) [24].

After elaborating all integral parts of our concept, we make the leap to models of large
size with a large number of impurities, discussed in chapter 11 using the example of
a depleted Kondo lattice model [53]. The macroscopic number of impurities gives rise
to instabilities of the remaining Fermi liquid against magnetic ordering.

The broad understanding of weak and strong-coupling regime allows us to extend
our concepts to systems away from half-�lling (chapter 12). In the end, we derive a
qualitative magnetic phase diagram for the depleted Kondo lattice model discussed in
chapter 11.

We conclude our work with a brief survey of the physics of dense Kondo lattice models
[44] (chapter 13) and relate it to our results.
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2 The Kondo E�ect

2.1 Introduction

In the �rst half of the twentieth century the recently developed low-temperature ex-
perimental techniques brought a great deal of new fascinating evidences for unconven-
tional behaviour in solid state materials. However, they challenged the theoreticians for
decades. As prominent example the conventional superconductivity may be regarded,
which needed almost sixty years to be satisfyingly explained by BCS theory [7].

Another collective phenomenon is the Kondo e�ect, �rst described in 1934 [8]. Mea-
surements of Au with Fe impurities showed a puzzling resistance minimum at low tem-
peratures. It appeared contradicting that the resistance increases when the temperature
is lowered, since familiar mechanisms such as electron-phonon scattering or electron-
electron interaction vanish or remain constant for vanishing temperatures T → 0 [44].

In this chapter we want to give an idea of the obstacles that theory had to overcome
to understand the Kondo e�ect and which concepts evolved in consequence. At the
heart of the Kondo e�ect is the screening of an impurity spin by a set of otherwise
non-interacting electrons. Screening e�ects are also known in classical contexts such
as the screening of electrical charges and electromagnetic �elds. However, the Kondo
e�ect is inaccessible by weak-coupling perturbation theory [8] owing to low-temperature
divergencies of perturbatively calculated system quantities. This makes the problem
theoretically intractable at �rst sight [54].

Before tackling these divergencies, the formation and role of magnetic impurities needed
to be clari�ed. In 1961, Anderson �gured out that local moments can be obtained in
incompletely �lled atomic electron shells, whose wave functions exhibit a very localised
behaviour [55]. This includes 4f (rare earth, for example Ce), 5f (actinide, e.g. U),
and 3d (transition metals, e.g. Fe) shells. If the corresponding energy levels lie in
the conduction bands of the host materials, hybridisation due to tunneling becomes
possible. On the other hand, the presence of strongly repulsive interactions among the
localised electrons leads to the formation of local moments.

The discovery of an e�ective antiferromagnetic spin exchange, which couples the im-
purity moment to the conduction electrons, led Jun Kondo to derive his famous per-
turbative results in 1964 [11]. The generation of the associated exponential energy
scale TK , known as the Kondo temperature, and the corresponding low-temperature
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2 The Kondo E�ect

physics could later be convincingly explained by the development of renormalisation
group ideas in the early 1970s [9, 10]. For his distinguished contributions to this �eld,
Kenneth Wilson was recognised with a Nobel prize in 1982.

Nowadays, the Kondo e�ect attracts interest also as playground to develop and test
new theoretical concepts and numerical tools. The study of �nite-size systems, in
which the level spacing of the conduction-electron system is a non-negligible energy
scale, has become an important branch, which will cover a large fraction of this work
[19, 20, 21, 21, 24]. It may govern the physics at weak couplings with profound
consequences.

2.2 Local-moment formation

Mean-�eld theory of local-moment formation

We may think of the host materials under consideration conceptually as simple metals
with broad conduction bands. The Coulomb interaction between electrons is described
by the Hamiltonian

HC =
e2

8πε0

i 6=j∑
i,j

1

|ri − rj|
, (2.1)

where e denotes the elementary charge and ri the electron positions.1 The interaction
is found to be screened in typical materials for distances of the order of magnitude larger
than 1Å [18]. Thus, the conduction band is composed of quasi-particles�electrons with
their (charge) screening clouds�whose short-range interactions should be negligible
due to their delocalised nature.

Friedel and Blandin worked out the consequences of a non-magnetic impurity without
interactions [8], which is coupled to the conduction band, amounting to the screen-
ing of the impurity's excess charge by the electrons. Though their considerations led
to the development of the concept of resonant bound states (also known as virtual
bound states), the ideas are inadequate for the physical situation in rare earth mate-
rials or transition metals. They cannot explain, e.g., the resistance minimum at low
temperatures, which is due to screening of local moments.

An important step further in understanding the reasons for the formation of local
magnetic moments is provided by the mean-�eld theory of the Anderson model [55],
which incorporates interactions between localised electrons into Friedel's picture of
resonant bound-states [56, 44]. Although the Coulomb interaction experienced by the

1In the following, we will work in natural units with ~ = 1 and kB = 1.
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2.2 Local-moment formation

delocalised conduction electrons is strongly screened, it can take large values in the
inner d or f shells of a solute atom. In the following, we will refer to the impurity
states as "f states" or "f levels" for simplicity. Neglecting any orbital degeneracy, these
impurity sites possess the atomic basis states | ↑↓〉 (doubly occupied), |0〉 (empty), | ↑〉,
and | ↓〉 (singly occupied with spin up or down). In its simplest version the Anderson
model contains a single impurity site and is given by the Hamiltonian [57]

H =
∑
kσ

εkc
†
kσckσ + V

∑
σ

(c†i1σfσ + H.c.) + εf
∑
σ

nfσ + Unf↑nf↓, (2.2)

where the �rst term describes the conduction-electron sea, to which the f level couples
locally at site i1. c

†
kσ creates a conduction electron with momentum k and spin σ, while

c†i1σ creates an electron with spin σ at site i1. fσ denotes an annihilation operator for
electrons at the impurity site and εf the on-site energy of the f level. The interaction
term U , the remainder of the Coulomb interaction, is only active at the impurity site
between up and down electrons.

If V = 0, the f level shows atomic behaviour. A magnetic (singly occupied) ground
state | ↑〉 or | ↓〉 is obtained for U

2
> |εf + U

2
|, i.e. U must be positive. A symmetric

Anderson model is obtained for εf = −U
2
, i.e. mixed-valence states are avoided.

Throughout the whole work, we will exclusively consider symmetric Anderson models
with positive U .

When V is �nite but weak compared to U and |εk|, we may assume that the f ground
state is changed adiabatically and is only weakly in�uenced by the hybridisation, re-
sulting in energetically broadened resonances of width ∆̃.

This is supported by the results of Anderson's mean-�eld treatment of the Anderson
Hamiltonian (Eq. (2.2)). A single resonance centered at εf is obtained at weak U ,
whereas it splits into two resonances for su�ciently large U , i.e. U > Uc ∼ π∆̃. The
spin resolved density of states of the f orbital ρfσ(E) is given by a Lorentzian with
position at εfσ

ρfσ(E) =
∆̃

(E − εfσ)2 + ∆̃2
. (2.3)

One �nds εfσ = εf + Unf,−σ, where the occupancy of the impurity site nfσ has to be
self-consistently determined.

Another important �nding consists in the Friedel sum rule, nfσ = 1
π
δσ. δσ is the phase

shift for scattering of electrons with spin σ o� the f resonance. The sum rule says that
the charge bound in an atomic potential is equal to the number of nodes

∑
σ
δσ
π
added

to the scattering wave function [56].

However, Anderson's approach turns out to be incomplete in situations in which quan-
tum �uctuations are important. As we will see below, the formed impurity spin becomes
highly correlated with the conduction electrons below TK in form of the Kondo e�ect.
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2 The Kondo E�ect

E

ρf (E)

εF

Z∆̃

1/∆̃

εf ∼ −U
2

εf + U ∼ U
2

Figure 2.1: Impurity density of states ρf (E) in the single-impurity Anderson model
for large U in the particle-hole symmetric case, εf = −U

2
. Two peaks are found at

E ∼ ±U
2
with weights of almost 1/2 each. The "Kondo resonance" builds up at low

energy scales; its peak height is �xed by 1/∆̃. Consequently, its width Z∆̃ is small,
and thus Z � 1. The shaded area shows the �lled fraction. Figure adapted from Ref.
[56].

How does the Kondo e�ect manifests in the impurity density of states? Based on
Anderson's mean-�eld results, we may assume two peaks in ρf (E) for large U �
|εk|, V . Due to adiabatic connection to the states at weak U , they are expected to
have weights of almost 1

2
.

However, one can �nd that ρf (E) at E = 0 is �xed at a particular value, namely

ρf (E = 0) =
1

∆̃
, (2.4)

suggesting a third peak at the Fermi energy. The pinning of ρf (E = 0) is a consequence
of the adiabatic connection to U = 0, where we can think of the system as a collection
of non-interacting electrons. We may assume the usual one-to-one correspondence of
(low-energy) quasi-particles and their (low-energy) excitations for U = 0 to �nite U , as
established by Landau's Fermi liquid concept. In the single-impurity model, adiabaticity
is ensured by the absence of instabilities for any �nite U [56].

The central peak is called "Kondo resonance" or "Abrikosov-Suhl resonance" and can
be shown to possess a width of Z∆̃ � 1. Z denotes the Fermi liquid parameter,
describing the strength of the "wave function" renormalisation. The narrow width is
enforced by the large weights of the two outer Hubbard peaks at ±U

2
and leads to a

rather small Z � 1. It is astonishing that quasi-particles with such a small weight
can be nevertheless of such importance for the determination of low-energy properties.
Fig. 2.1 shows the resulting three-peak structure of ρf (E) [8, 56].

We will come back to the Fermi liquid concept later again in the case of multi-impurity
models (chapter 13), where this approach allows to understand the peculiar low-energy
properties of this system.
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2.2 Local-moment formation

Schrie�er-Wol� transformation

Anderson's approach has the typical drawbacks of a mean-�eld theory, in that it shows
symmetry breaking in form of the magnetisation of the impurity, what could be justi�ed
only for a macroscopic number of degrees of freedom. This is de�nitely not the case
for a single spin. We would rather assume quantum mechanical tunneling between
| ↑〉 and | ↓〉 con�gurations of the impurity spin, which is determined by quantum
�uctuations due to the interaction with the conduction electrons, especially below the
Kondo temperature TK .

Anderson ventured heuristic arguments that the spin exchange between formed impurity
spin and conduction electrons may lead to a quench of the local moment [55]. The
reason is that the total spin cannot be changed by the action of V , which consists in
mixing conduction-electron states with f states. To lowest order, spin exchange occurs
in two ways; intermediate states contain a doubly occupied or empty impurity site

c↑ + f 1
↓ ←→ f 2 ←→ c↓ + f 1

↑ ∆E ∼ U + εf
c↑ + f 1

↓ ←→ c↑ + c↓ ←→ c↓ + f 1
↑ ∆E ∼ −εf .

(2.5)

f 1
σ stands for a singly occupied f level with spin σ and f 2 for a doubly occupied f level.
The reasoning was as follows: the intermediate states are total singlet states (with
respect to the considered electrons) due to the intermediate doubly occupied impurity
site or site i1, respectively. Thus, scattering is only possible if c and f electron are in a
mutual singlet state, amounting to an antiferromagnetic2 spin exchange [56].

In the following, we want to derive the antiferromagnetic exchange in a more quan-
titative way, taking the Schrie�er-Wol� transformation as basis [58]. Schrie�er's and
Wol�'s method makes use of canonical transformations. It should be remarked that
it belongs to the �rst applications of renormalisation group techniques, i.e. �nding an
e�ective Hamiltonian for the low-energy degrees of freedom. The idea is to regard the
above processes (2.5) as high-energetic valence �uctuations at the impurity site, which
occur as virtual �uctuations when a local moment has formed. We start again from
the Anderson model Eq. (2.2) and decompose the Hamiltonian into two parts

H = H1 + λHmix (2.6)

H1 =

[
HL 0
0 HH

]
(2.7)

Hmix =

[
0 V †

V 0

]
. (2.8)

2As Anderson remarks in Ref. [55], this was quite unexpected, since intra-atomic Coulomb exchange
was usually expected to be ferromagnetic. However, it can be exceeded by the antiferromagnetic
contributions due to hybridisation processes.
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2 The Kondo E�ect

The block structure of the Hamiltonian matrices in the above equations refers to
the separation into low-energy and high-energy subspaces (HL and HH , respectively),
which are mixed by the hybridisation V . The low-energy subspace consists of states
in which the impurity is singly occupied, while the high-energy subspace contains only
states with an empty or doubly-occupied impurity site [56].

We seek for a canonical transformation Ũ that brings H into block-diagonal form

Ũ

[
HL λH†mix

λHmix HH

]
Ũ † =

[
H∗ 0
0 H ′

]
. (2.9)

The right-hand side of the above equation can be regarded as a renormalised Hamil-
tonian, whose low-energy part H∗ is the e�ective Hamiltonian which describes the
low-energy physics of the model.

We assume Ũ = eS, where S is the antihermitian generating function (S = −S†), and
expand Ũ in a power series of λ

S = λS1 + λ2S2 + . . . (2.10)

Comparing coe�cients, one obtains after some algebra up to second order in λ

H∗ = HL +Hint = HL +
1

2
PL[S1, Hmix]−PL, (2.11)

where PL denotes the projector of the low-energy subspace of the unperturbed Hamil-
tonian. Hint is the additional interaction term, generated by virtual excitations into the
high-energy subspaces of the unperturbed Hamiltonian. Its matrix elements are given
by

(Hint)ab =
1

2

∑
|λ〉∈PH

(
H†mix,aλHmix,λb

EL
a − EH

λ

+
H†mix,aλHmix,λb

EL
b − EH

λ

)
, (2.12)

where PH is the projector of the high-energy subspace of the unperturbed Hamiltonian.
EL,H are energies of states in the corresponding subspaces [56].

Employing the identity δabδcd + σσσab · σσσcd = 2δadδbc, which is valid for the vector of
Pauli matrices σσσ, and assuming a large interaction U � |εk|, we �nd for the Anderson
model

Hint =
1

2

∑
σσ′

Jc†i1σσσσσσ′ci1σ′ · S1 −
1

2

∑
σ

V 2

(
1

εf + U
+

1

εf

)
c†i1σci1σ +

V 2

εf
(2.13)

J = 2V 2

(
1

εf + U
− 1

εf

)
(2.14)

S1 =
1

2

∑
αβ

f †ασσσαβfβ. (2.15)
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2.3 The Kondo problem

The suppression of charge �uctuations at the impurity site for large U indeed produces
a local moment S1 with spin S = 1

2
. The exchange coupling J can be seen to be a

nonnegative quantity; hence antiferromagnetic, as already anticipated from Anderson's
arguments. In case of particle-hole symmetry, i.e. εf = −U

2
, we obtain J = 8V

2

U
, and

the second term in Eq. (2.13), describing potential scattering at the site below the
impurity, disappears. However, it does not in�uence the dynamics of the local moment
in general [56].

One can check that terms, involving higher orders in V , do not lead to basically new
contributions [58]. Furthermore, if applied to a multi-impurity model, the transforma-
tion does not generate new terms up to second order in V which would for example
involve two impurities.

Summarising, we �gured out how local moments evolve under the action of a strongly
repulsive interaction U between localised electrons at the impurity site. If U is su�-
ciently large (i.e. U � |εk| and |V | � |εk|), the impurity valence is frozen at single
occupancy and we can restrict our considerations to spin exchange between the im-
purity spin S1 and conduction electrons, provided we are interested in the low-energy
physics. We will refer to this situation as the "Kondo limit". It should be remarked that
more generally, electron models with local interactions U at each lattice site ("Hub-
bard models") represent a typical example of a correlated electron system in which
quasi-particles can be destroyed and replaced by, e.g., local moments [59].

The e�ective Hamiltonian, Eq. (2.13), can be slightly reformulated, resulting in the
Kondo model [11] with the following Hamiltonian

H =
∑
kσ

εkc
†
kσckσ + Jsi1S1. (2.16)

si1 = 1
2

∑
σσ′ c

†
i1σ
σσσσσ′ci1σ′ is the conduction-electron spin at site i1, to which the S = 1

2
-

impurity is coupled. The Kondo e�ect is obtained for antiferromagnetic J as we will
see below, but J can be also set ferromagnetic to mimic other exchange interactions.

Thereby, the stage is set for the study of the Kondo e�ect, which initiated a dramatic
change of concepts in solid state physics.

2.3 The Kondo problem

Orthogonality catastrophe

In 1967, Anderson pointed out that the ground states of the Kondo model Eq. (2.16)
with and without the Kondo impurity are orthogonal to each other [54]. It is the
direct consequence of the "infrared catastrophe" occurring in Fermi gases when local
scattering potentials such as the local Kondo coupling J are turned on. The scattering
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2 The Kondo E�ect

phase shift δ modi�es the wave function of scattered electrons in such a way that the
overlap S̃ between wave functions of the unperturbed and perturbed problem near the
Fermi surface becomes

S̃ ≤ Ñ− sin2 δ/3π2

, (2.17)

where Ñ is the volume of the considered system3 and δ is taken at εF . Since Ñ →∞,
we obtain S̃ → 0 for any small but �nite phase shift δ. The result is understandable
if we think of emerging bound states or provoked phase transitions, when the local
potential is switched on. However, it is remarkable that orthogonality is predicted even
for small δ.

The orthogonality catastrophe has profound implications on the low-energy properties
of the Kondo model (δ = π

2
). The vanishing overlap between ground states of the

unperturbed and the perturbed system renders standard perturbation theory impossi-
ble because of the missing adiabaticity [61]. This corroborates the conclusions from
Kondo's results from perturbation theory [8] and suggests the formation of some sort
of bound state.

The situation was disturbing, since experiments provided only evidences for Fermi liquid
states at low temperatures, while the theory was plagued by divergencies. Though
Kondo was able to reproduce adequate results for the high-temperature regime (T �
TK), the "Kondo problem" of the nature of the low-temperature regime remained
unsolved. However, it can be tackled in an elegant way, as Anderson showed by his
"poor man's scaling approach" [9], which can be regarded as some kind of "re�ned
perturbation theory". The essential idea is to iteratively follow the evolution of speci�c
model quantities such as couplings, in order to understand their qualitative changes,
when considering excitations of decreasing energy.

Poor man's scaling approach

For this purpose we assume a weak coupling J � |εk| and rewrite the Kondo model,
Eq. (2.16), in momentum space

H =
∑

|εk|<D,σ
εkc
†
kσckσ +

1

2
J(D)

1

L

∑
|εk|,|εk′ |<D,σ

c†kσσσσσσ′ck′,σ′S1, (2.18)

taking the density of conduction-electron states ρ(E) to be constant for simplicity. D
(−D) is the upper (lower) band edge of the e�ective conduction-electron band, while

3The overlap S̃ is largely determined by the number of possible transitions from the unperturbed
states to states of the perturbed system (close to the Fermi energy) [60]. Thus, in �nite systems
one may expect an avoided catastrophe and a �nite overlap.
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2.3 The Kondo problem

removed states

removed states

states to be removed

states to be removed

D0
D

δD

εF
S1

Je�(D)

Figure 2.2: Illustration of the "poor man's scaling approach". At each iteration, the
contributions to perturbation theory are calculated, which are produced by intermediate
high-energy conduction-electron states in a thin energy shell δD at the band edges D
and −D (dark grey). The contributions are absorbed in the local Kondo coupling J ,
leading to an e�ective coupling Je�(D). Subsequently, states in the interval δD at the
e�ective band edges ±D are removed from the system, and the procedure is repeated,
until Je� becomes too large to be treated by perturbation theory. The greenish area
shows the �lled fraction of the e�ective conduction-electron system. Figure adapted
from Ref. [8].

the original band edge is D0 (−D0). The poor man's scaling procedure consists in
"integrating out" the high-energy electron states in a thin energy shell δD at the band
edges D and −D, e.g. by using the Schrie�er-Wol� transformation, Eq. (2.11), as
sketched in Fig. 2.2. After some algebra, that we skip here for simplicity (see Refs. [8]
and [56] for details),4 we obtain an additional interaction term of the form

(δHint)k′σ′,kσ ≈
1

2

1

L
J2ρ

δD

D
σσσσσ′S1. (2.19)

In Eq. (2.19) we take into account the contributions stemming from initial and �nal
low-energy electron states of energy |εk|, |εk′ | ≈ εF with intermediate high-energy
states of energy D. δHint can be added to the original Kondo interaction term (Eq.
(2.18)), resulting in the following recursive relation for the e�ective Kondo coupling

Je�(D′) = Je�(D) + J2
e�(D)ρ

δD

D
. (2.20)

D′ = D − δD denotes the e�ective band width ("cuto� scale") of the next iteration
step. In the following, we omit the index of Je� in situations in which a confusion with
the "bare" coupling J can be excluded [56].

We want to pause for a moment and analyse the result. The e�ect of spin �uctuations
associated to high-energy electrons is to enhance the local Kondo coupling, thus to

4Only results in second order in J are taken into account. The linear-in-J term is energy-scale
independent (Sec. 5.2) and is therefore omitted in our considerations. However, it may have
substantial e�ects in a �nite-size system, see chapter 5.
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2 The Kondo E�ect

"antiscreen" the antiferromagnetic exchange [56] and thereby degrading the reliabil-
ity of perturbation theory iteration by iteration. However, this is not the case for a
ferromagnetic exchange coupling J , which e�ectively decreases when we decrease the
cuto� D. In fact, J can be found to vanish for cuto�s approaching the Fermi surface
(Eq. (2.22)). One may think of the impurity as essentially being decoupled from the
conduction electrons at small energy scales. We will see in the sections 2.5 and 5.2
that the described low-energy behaviour is changed in �nite-size systems.

The above equation (2.20) can be rewritten in terms of the dimensionless coupling
g = ρJ , de�ning the so-called β function of g

∂g

∂ lnD
= β(g) = −g2. (2.21)

It is an explicit ordinary di�erential equation of �rst order and can be integrated without
di�culty

g(D′) =
g0

1− 2g0 ln(D0/D′)
(2.22)

with the boundary condition g(D0) = g0. Introducing the scale-invariant parameter
TK , the Kondo temperature,

TK = D0 exp

(
− 1

g0

)
= D0 exp

(
− 1

ρJ(D0)

)
, (2.23)

we obtain

g(D) =
1

ln(D/TK)
, (2.24)

where g(D) depends only on TK and the energy scale D at which g is measured. There
is no reference to the original (ultraviolet) cuto� energy scale D0 left, signaling the
irrelevance of the high-energy properties of the Kondo model for the low-energy degrees
of freedom.

An important feature of Eq. (2.21) is that it represents an example of "asymptotic
freedom", since the e�ective coupling Je� is weak at large energy scales, i.e. at the
beginning of the poor man's scaling procedure, and grows beyond unity at low energy
scales. This is quite similar to quark con�nement, where we �nd the same low-energy
scaling behaviour for weak bare coupling strengths between gluons and between gluons
and quarks [62]. Probed at high-energy scales, the quarks appear free, whereas con�ne-
ment occurs at low-energy scales. The characteristic energy scale ΛQCD = 1GeV, the
mass of the proton. The corresponding length scale is of the order of 1 fm. In contrast,
the Kondo length scale ξK ∼ vF

TK
is typically of the order of 10−6 m, i.e. of mesoscopic

order of magnitude. Except of some pitfalls, one may generally switch between energy
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2.3 The Kondo problem

dependent (temperature, excitation energies) and distance dependent picture5 [62, 63].
For example, the low-temperature regime T � TK is then (physically) identi�ed with
the behaviour at large distances r � ξK . Let us also remark the di�erence to charge
screening, which exhibits a large e�ective interaction potential at small length scales
due to the essentially free charge. Conversely, it is exponentially damped at large length
scales [61].

According to Eq. (2.24), the e�ective Kondo coupling Je� diverges for D = TK .
However, we must question this result, since it is derived from a perturbative approach,
which is basically unreliable for large Je�. Nevertheless, it is reasonable that Je� can
be extrapolated to large values at energy scales at and below TK and that the system
reaches a strong-coupling �xed point in terms of the scaling procedure. Hence, TK
might be rather thought of as a characteristic energy scale indicating a crossover instead
of a phase transition.

For T � TK we can be certain of the scaling behaviour of J and �nd it re�ected in
physical quantities, i.e. they can be written as universal functions of T

TK
. This concerns,

e.g., the magnetic susceptibility or the resistance τ−1(T )

τ−1(T ) = τ−1
0 F

(
T

TK

)
. (2.25)

F
(

T
TK

)
can be speci�ed by weak-coupling perturbation theory, leading to Jun Kondo's

result

τ−1(T ) = ñi
2π

ρ
S(S + 1)

(
Jρ+ (Jρ)2 ln

D

T

)2

, (2.26)

where ñi is the density of impurities and S = 1
2
the impurity spin. When the temper-

ature is lowered T → TK , the spin scattering of electrons at the magnetic impurity
increases, resulting in the Kondo resistance minimum�the famous signature of the
Kondo e�ect [56, 11].

At the strong-coupling �xed point Je� � |εk| and the impurity is strongly bound to the
conduction electrons by antiferromagnetic exchange. A paramagnetic "Kondo singlet"
is established and decouples from the system. The remaining (low-energy) conduction
electrons at length scales larger than ξK would then represent a special kind of Fermi
liquid, since moving to the Kondo cloud sites is accompanied by a large energy cost.
This setting is the starting point of Nozières' "local Fermi liquid" picture [64]. He

5Keeping with the usage of natural units (footnote 1), TK is converted by the Fermi velocity vF to
length scales, ξK ∼ vF /TK . Further, it corresponds to time scales τK ∼ 1/TK .
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2 The Kondo E�ect

found that the remaining Fermi liquid6 in case of J � |εk| is only weakly interacting
and characterised by a phase shift of δ = π

2
. The phase shift can be understood as

a boundary condition on the otherwise (comparatively) free electrons, owing to the
exclusion of them at the Kondo singlet site i1. It is in agreement with the Friedel sum
rule, which states that the number of electrons bound in the Kondo singlet is 2 1

π
δ. It is

remarkable, that many-body interactions induced by J lead to a simple phase shift at
low energy scales, showing that the Kondo singlet resembles a non-magnetic scatterer.
An indication of Fermi liquid properties is the speci�c heat, which turns out to be a
linear function of temperature [56, 65].

Further developments of the concept of scaling

Although the poor man's scaling approach clari�ed the physical behaviour of the Kondo
model at energy scales above TK by introducing the idea of scaling, it still did not
(fully) solve the Kondo problem (i.e. the physics below TK). This was achieved by the
further development of the "renormalisation group"7 (RG) methodology and especially
by Wilson's numerical renormalisation group method, which put Anderson's approach
on a numerically exact basis [10].

The aim is to describe only the relevant low-energy physics of the system, for which only
speci�c features of the high-energy physics matter. As we already did for the Kondo
model, we may generally parameterise a considered Hamiltonian as a function of the
cuto� energy scale D, i.e. H(D). Decreasing D → D′ = 1

b
D with b > 1, requires

to integrate out the excitations in the interval [D′, D]. The resulting Hamiltonian H ′L
describes the remaining low-energy degrees of freedom. In a last step, the Hamiltonian
is rescaled H(D′) = bH ′L [56]. Iterating these steps generates a whole trajectory of
Hamiltonians H(D), which becomes continuous as a function of D when b→ 1. If we
understand the Hamiltonians as dependent on couplings {gi} (in analogy to the local
Kondo coupling g = ρJ), we can characterise the trajectories by scaling equations or

6Another fascinating property of the Kondo model is that it has conformal symmetry [65]. The
strict locality of the coupling leads to an e�ective one-dimensional description, which permits the
application of the concepts of one-dimensional �eld theory in terms of left and right movers, and
particularly the techniques of conformal �eld theory. We also know that the strong-coupling �xed
point must describe a scale-invariant (and conformally invariant) situation at low energies, since it
is e�ectively a Fermi liquid at length scales larger than ξK . After bosonisation of the conduction
electrons in terms of spin and charge bosons, one �nds indeed that the strong-coupling �xed
point has conformal symmetry. The Hamiltonian is determined by spin currents which obey a
Kac-Moody algebra, the in�nite-dimensional generalisation of the SU(2) Lie algebra, with central
charge k = 1.

7Actually, it is more a semigroup due to the missing inverses.
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g � 1, H∗
LM

g � 1, H∗
SC

Figure 2.3: Renormalisation group �ow from the weak-coupling �xed point to the
strong-coupling �xed point. At weak couplings J � |εk|, the local moment is essen-
tially free and the system is described e�ectively by the "local-moment �xed point"
Hamiltonian H∗LM. Due to the �ow equation Eq. (2.21) the e�ective coupling grows,
until one approaches the strong-coupling �xed point, described by the Hamiltonian
H∗SC: the impurity becomes highly correlated with the conduction electrons in form of
the emerging Kondo singlet. We remark that in an Anderson model, one additionally
�nds the "free-orbital �xed point" (H∗FO), where valence �uctuations are dominant and
prevent the local moment formation at the impurity site [8, 63]. Figure adapted from
Ref. [56].

renormalisation group �ow equations, respectively,

∂gj
∂ lnD

= βj({gi}). (2.27)

If β is negative, as in case of the Kondo model (Eq. (2.21)), the coupling constant g
is called "relevant" and increases with decreasing the cuto�. Conversely, a positive β
leads to an "irrelevant" coupling. The renormalisation group �ow of the Kondo model
is depicted in Fig. 2.3.

In general, two di�erent situations may be expected in the course of the scaling pro-
cedure [56]. If the cuto� D drops below the energy scale of a certain group of high-
energy excitations, these become virtual. Thus, a crossover occurs, where additional
interaction terms emerge in the transformed Hamiltonian H(D′) which absorb the cor-
responding e�ects on the low-energy degrees of freedom. A prominent example is the
crossover from the Anderson model to the Kondo model for V � |εk| and U � |εk|.
Charge �uctuations at the impurity sites become virtual, leading to an e�ective spin
exchange.

If the iterated low-energy Hamiltonian does not change any longer, H(D′) = H(D)
(i.e. β = 0), we arrive at a �xed point of the scaling procedure. From the physical
point of view, the cuto� D is then smaller than the lowest energy scale of the problem.

The development of the numerical renormalisation group (NRG [10]) was a milestone
for the quantitative analysis of the Kondo model, as it does not rely on a perturba-
tive determination of the in�uence of the high-energy states. Instead, the e�ective
Hamiltonian is numerically diagonalised and only a small set of low-energy states are
kept for the next iteration. Another essential feature is the logarithmic discretisation of
the conduction-electron system, allowing for further improvements in the applicability
but also to cover a broad range of energy scales�important to resolve exponentially
dependent Kondo scales, Eq. (2.23). A basic requirement for an e�cient renormal-
isation group treatment is the clear separation of energy scales. Nonetheless, there
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Figure 2.4: The multi-impurity Kondo model discussed in this work. Local moments
Sr with spin S = 1

2
are locally, antiferromagnetically exchange coupled to a non-

interacting conduction-electron system of size L (i = 1, 2, . . . , L). The electron hop-
ping t = 1 sets the energy scale. We assume open boundary conditions.

are extensions such as the "functional renormalisation group" (fRG [66]), arguing to
more e�ectively treat situations with competing energy scales, arising for example in
multi-orbital models. Over the decades, NRG gained the status of a reliable tool for
the numerical investigation of few-impurity systems. Its accuracy is con�rmed by exact
analytical results for the Kondo model which are based on the Bethe approach [67].

2.4 Model Hamiltonians, conventions, and

notations

Before proceeding with the question related to e�ects of spatial con�nement of single-
impurity systems in section 2.5, we want to clarify notations and the setup of our
numerical calculations. We already introduced the Anderson model (Eq. (2.2)) and
the Kondo model (Eq. (2.16)). In both cases, the system can be subdivided into an
impurity system, which is composed of R impurity sites, and a conduction-electron
system containing a �nite number of lattice sites L (i = 1, 2, . . . , L); see Fig. 2.4 for
the case of the Kondo model. Keeping in mind the applicability to surface systems,
the subsystems will be sometimes also referred to as "adatoms" and "substrate". The
energy scale is set by the conduction-electron hopping t := 1 between nondegenerate
orbitals of nearest-neighbouring sites. The electron number is denoted as N .

If not stated di�erently, we consider one-dimensional conduction-electron systems with
open boundaries at zero temperature, in order to be able to apply DMRG (Sec.
3.3)�the default numerical method in this work. We usually employ one-dimensional
systems also for simplicity, but our conclusions are similarly valid for higher dimensions
(see e.g. Sec. 11.5). Impurities are placed at positions which are as symmetrical as
possible with respect to the chain center. The systems are investigated at half-�lling.

Practical DMRG calculations are performed in the subspace with the smallest total
magnetisation Mtot possible (i.e. Mtot = 0 or Mtot = 1

2
, respectively) to in principle

permit ground states of all possible total spins Sgs.
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Figure 2.5: Energy levels εk of the non-interacting one-dimensional conduction-
electron system (J = 0 or V = 0, respectively) with open boundary conditions as
functions of the momentum k. Solid lines: the electronic dispersion for L → ∞.
±D0 denote the band edges. Left: on-resonance case (L = 5). An odd number of
conduction electrons leaves one electron at the Fermi level resulting in a twofold spin
degeneracy of the ground state. Right: L = 4. In an o�-resonance case the number of
conduction electrons is even. Hence, the chemical potential µ lies within the �nite-size
gap between doubly occupied and empty levels.

The nondegenerate conduction-band eigenenergies of the models under consideration
can be found by an analytical diagonalisation [68]

εk = −2t cos k (2.28)

k = π
n

L+ 1
(2.29)

n = 1, 2, . . . , L. (2.30)

The corresponding unitary transformation of the conduction-electron operators is given
by

c†iσ =
∑
k

Uikc
†
kσ (2.31)

Uik =

√
2

L+ 1
sin(ik). (2.32)

The local density of states at substrate site i is then

ρii(E) = ρi(E) =
∑
k

U2
ikδ(E − (εk − µ)), (2.33)

where µ = 0 for a system at half-�lling. If L is odd, the Fermi energy εF = 0 and
the energy-level spacing ∆ = 2t sin (π/L+1) at half-�lling. Considering the �lling, two
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2 The Kondo E�ect

di�erent situations possible: when the number of conduction electrons is even, the
Fermi energy lies exactly between two conduction-electron states what is termed "o�-
resonance case" (Fig. 2.5(b)). By contrast, in an "on-resonance case", i.e. for an odd
conduction-electron number, a single electron occupies the level at the Fermi energy
(Fig. 2.5(a)). Both cases cause basically di�erent types of �nite-size e�ects at low-
energy scales as we will see in chapters 4-9. To ensure an integer total spin of the
full system, we usually �x the total number of conduction electrons and localised spins
N + R to be an even number. O�-resonant models then correspond to even R and
on-resonant models to odd R.

The multi-impurity Kondo Hamiltonian is de�ned by

H = −t
∑
〈i,j〉,σ

c†iσcjσ + J

R∑
r=1

sirSr. (2.34)

ciσ annihilates an electron at site i = 1, . . . , L with spin projection σ =↑, ↓, and
si = 1

2

∑
σσ′ c

†
iσσσσσσ′ciσ′ is the local conduction-electron spin density at substrate site

i, where σσσ is the vector of Pauli matrices. Impurity spins Sr (S = 1
2
) couple anti-

ferromagnetically (J > 0) or ferromagnetically (J < 0) to the local electron spins at
the sites ir, where r = 1, . . . , R. In case of Kondo models, N is the number of the
itinerant and non-interacting conduction electrons.

The Hamiltonian of the multi-impurity Anderson model is given by [57]

H =− t
∑
〈i,j〉,σ

c†iσcjσ + U
R∑
r=1

nfr↑n
f
r↓ + εf

R∑
r=1

nfr (2.35)

+ V
R∑
r=1

∑
σ

(
f †rσcirσ + H.c.

)
− µ

(
R∑
r=1

nfr +
L∑
i=1

nci

)
.

Here f †rσ and c†iσ create an electron with spin projection σ =↑, ↓ at impurity sites
r = 1, 2, . . . , R and at substrate sites i = 1, 2, . . . , L, respectively. nfrσ = f †rσfrσ
and nciσ = c†iσciσ denote the corresponding occupation-number operators. The spin-
summed occupation at one of the impurity sites and at one of the substrate sites are
given by nfr = nfr↑ + nfr↓ and nci = nci↑ + nci↓, respectively. V is the hybridisation
between an impurity site r and the nearest-neighbour substrate lattice site ir. U and
εf are the on-site Hubbard interaction and the local on-site energy for the impurity
sites, respectively. µ is the chemical potential. In our calculations we consider the
particle-hole symmetric case with µ = 0 and εf = −U

2
, where the system is half �lled,

i.e. the average occupation numbers are given by 〈nfr 〉 = 1 and 〈nci〉 = 1 for all r and
all i.

The magnetic properties of the system are best characterised by site-dependent local
and nonlocal spin correlation functions and susceptibilities. We consider the impurity-
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2.5 The Kondo box

impurity susceptibility

χr,r′ =
∂mf

r

∂hr′

∣∣∣
hr′=0

= −
∫ 1/T

0

dτ〈Sfr,z(τ)Sfr′,z(0)〉, (2.36)

i.e., the local impurity susceptibilities χr,r and the inter-impurity susceptibility χr,r′ =
χr′,r. These provide information on the local impurity magnetic moment and, most
important, on the indirect magnetic coupling. Further, we are interested in the lin-
ear magnetic response of the conduction-electron system which is accessible via the
impurity-substrate susceptibilities

χcond
i,r =

∂mc
i

∂hr

∣∣∣
hr=0

= −
∫ 1/T

0

dτ〈sci,z(τ)Sfr,z(0)〉. (2.37)

Here mf
r = 〈Sfr,z〉 and mc

i = 〈sci,z〉, with Sfr,z = 1
2
(nfr↑−nfr↓) and sci,z = 1

2
(nci↑−nci↓), are

magnetic moments at the impurity site r and at the substrate lattice site i, respectively.
Note that we will sometimes omit c and f indices in cases where an identi�cation is
clear, e.g. due to the mapping of capital letters to impurity sites and small letters to
substrate sites.

Furthermore, the imaginary-time dependence of an operator A is given by A(τ) =
eHτAe−Hτ . In our calculations the susceptibilities, Eqs. (2.36) and (2.37), are com-
puted as a numerical derivative with respect to a local magnetic �eld of strength hr
coupling as H → H − hrSfr,z to the Hamiltonian. We use weak local magnetic �elds
with a strength hr = 10−5 to 10−2 at an impurity and look for the response at substrate
site i. The linear-response regime is ensured by performing calculations with di�erent
hr.

Finally, we remark that the conventional weak-coupling Kondo temperature (Eq. (2.23))
is denoted as T 0

K in the following. Since the Kondo temperature TK is a function of
L, we will sometimes also use the term T

(bulk)
K for TK in the bulk limit.

2.5 The Kondo box

After making familiar with the essential ideas in the �eld of single-impurity Kondo
physics, we want to turn our attention to the basic questions of the present work.
Experimental progress allows to construct nano-scale sized materials such as quantum
chorals or ultra-small metallic grains (Sec. 1.1), which may exhibit a quite di�erent
physical behaviour as compared to bulk systems. In case of Kondo physics, the term
"Kondo box" has been coined to emphasise the special properties of a single-impurity
system in contact with a spatially con�ned conduction-electron system [19, 20, 69, 62].

Due to the �nite size of the Kondo box, we must include a new energy scale into
our considerations, namely the level spacing ∆ of the conduction-electron system. ∆
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2 The Kondo E�ect

acts as a cuto� in terms of RG, similar to a high temperature. It stops the RG �ow
for cuto� energy scales D smaller than ∆; excitations become impossible, since their
energy is at least of the order ∆ (section 2.3). Consequently, we obtain no further
contributions to the e�ective coupling Je� for D < ∆, compare Eq. (2.21). Most
clearly, this circumstance is seen for ∆ = TK , what occurs for an initial Je�(D0) with
Je�(D0) = J∆ by de�nition. Keeping with Eq. (2.21), for Je�(D0) < J∆, the system
is not able to reach the strong-coupling �xed point in the course of the RG procedure.
Thus, we may conclude that a crossover to the �nite-size regime is expected at J∆,
which usually corresponds to weak couplings. Be aware that, again, we have to weaken
the meaning of ∆ = TK in the way that it represents a crossover region rather than a
phase transition.

The conduction-electron spectrum of the Kondo box consists of a discrete set of delta
peaks. However, �nite-size e�ects occur for J < J∆, while for J > J∆ we can think
of the Kondo screening as being conducted by a collection of electrons in the energy
interval TK . This suggests averaging e�ects over several electron states, whereby their
discrete nature becomes irrelevant, allowing to resort, in this case, to the bulk density
of states for our argumentation purposes.

Let us translate our ideas into a real-space picture, as it provides a very intuitive way
of understanding. The Kondo energy scale TK corresponds to a characteristic length
scale ξK ∼ vF/TK , which de�nes the size of the "Kondo screening cloud". For low
temperatures T � TK , the impurity is screened by the Kondo e�ect and a Kondo
cloud develops. The high-energy physics is that of an essentially free impurity and
can be found at distances r � ξK from the impurity, i.e. within the cloud. On the
other hand, for r � ξK , physics is governed by the low-energy Kondo physics, i.e. the
strong-coupling �xed point, implying almost free electrons which experience a strong
repulsion from the Kondo cloud sites.

If we choose ∆ > TK , the strong-coupling �xed point cannot be reached, and hence
the concept of the Kondo screening cloud collapses, with signi�cant implications in
particular for large distances and low temperatures. As outlined above, the RG �ow
is stopped in the vicinity of or at the starting point of the RG procedure which is
the "local-moment �xed point" with an unscreened impurity. Since Je� is prevented
from diverging, we merely obtain residual couplings of the impurity to the conduction
electrons, determined by the low-energy properties of the �nite substrate. The residual
interactions can be obtained perturbatively, just as in the case of high temperatures.
Converting the condition ∆ > TK into the real-space picture, we obtain the intuitive
requirement that the bulk Kondo cloud does not match the system size, i.e. ξK > L.

We want to numerically check our ideas using a single-impurity Anderson model (SIAM).
As known from section 2.2, the impurity is coupled by an e�ective antiferromagnetic
exchange to the conduction electrons, resulting in screening of the impurity spin. A
convenient measure for the Kondo cloud correlations is the integrated correlation func-
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2.5 The Kondo box

(a)

U

(b)

U

Figure 2.6: Integrated correlation functions Θ(r), as de�ned in the text (Eq. (2.38)),
as functions of site r on a log scale. SIAM at U = 1 with impurity at i1 = 1 and
di�erent system sizes L as indicated. Left: V 2 = 1

2
. Right: V 2 = 2.

tion [69]

Θ(r) = 1 +
∑
|i−i1|<r

〈S1si〉
〈S1S1〉

, (2.38)

where Θ(0) = 1. i1 denotes the site to which the impurity is coupled. With increasing
distance r from the impurity more and more electron spins around i1 are included in the
sum and Θ(r) essentially decreases with r. Θ = 0 if all spins are included, signaling the
complete screening of the impurity spin S1. Θ(r) gives the fraction of the impurity spin
that remains unscreened by the electrons up to distance r from i1. A 90%-screening
criterion, i.e. Θ(ξ0.9) = 0.1, for example, may be regarded as suitable to value the
Kondo cloud size. For su�ciently large L, ξ0.9 should give a good estimation of the
bulk Kondo cloud size ξK .

An example for the typical shape of a Kondo cloud Θ(r) is provided by a SIAM with
L = 299 (Fig. 2.6(a)). For decreasing L, the Kondo cloud shrinks, accommodating
to the decreasing space. For large systems, this a�ects mostly the large distance
behaviour, while for small systems L . 99 we observe that also short-range details
become in�uenced. The 90%-screening criterion for Θ(r) suggests a Kondo cloud size
of ξ0.9 = 20 (L > 99), where ξ0.9 ≈ ξK due to ξK � L. Thus, for L = 9 the
condition ξK > L (∆ > TK) is supposed to be ful�lled, and we enter the �nite-
size regime. Although the conventional Kondo cloud is not capable to develop, we
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2 The Kondo E�ect

(a) (b)

U

Figure 2.7: Left: spin correlations between impurity and conduction electrons 〈S1si〉
as functions of site i for di�erent impurity positions i1 as indicated. SIAM with V 2 = 1

3
,

U = 1, and system size L = 49. Lines have been shifted for better visibility. We do
not show results in cases in which i1 is even due to the degeneracy of the ground state
(see text). Right: integrated correlation functions Θ(r), as de�ned in the text (Eq.
(2.38)), as functions of site r on a log scale. SIAM with i1 = 1 and L = 49. For
di�erent U as indicated, where V 2/U = 1

3
is kept �xed.

nonetheless obtain a singlet ground state and some sort of Kondo cloud. However,
Θ(r) has changed into an approximately linear function of r, indicating homogeneous
spin correlations 〈S1si〉 (visible in Fig. 2.8(a), black circles). We will have to �gure
out the reason for this observation (Sec. 5.2).

On the other hand, increasing V 2 from V 2 = 1
2
in Fig. 2.6(a) to V 2 = 2 in Fig. 2.6(b)

obviously reduces the Kondo cloud size ξK . This leads to a faster convergence of Θ(r)
with respect to increasing L. In fact, by an appropriate data collapse of Θ(r) for
di�erent V 2, one could �nd universal behaviour in terms of r/ξK [69]. TK ∼ vF/ξK is
inferred to be larger for V 2 = 2, what is in line with the relations J = 8V

2

U
(Eq. (2.14))

and TK ∼ exp
(
− 1
J

)
(Eq. (2.23)), provided we could ignore valence �uctuations on

the impurity site.

When the impurity position i1 is varied, as done in Fig. 2.7(a), we observe that Kondo
correlations 〈S1si〉 are longer ranged if the impurity is at the chain center (i1 = 25)
as compared to a position at the chain edges (i1 = 1). This circumstance rests on
the fact that the local density of states experienced by the impurity is in fact not
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2.5 The Kondo box

equal for all sites in the electron system owing to the open boundaries, which induce
Friedel oscillations [23]. Another peculiar �nding is that an impurity, coupled to an
even site i1 = 2, 4, . . ., leads to a degenerate ground state spanned by states with
total spin Sgs = 0 and Sgs = 1. For V → 0, we might understand this as e�ective
decoupling of the impurity, i.e. vanishing residual couplings to the electron system for
∆ > TK�despite the �nite V . A similar e�ect is seen for Kondo boxes with an even
number of conduction electrons (o�-resonance case), where the chemical potential falls
between two electron states. Hence, for ∆ > TK , there are no states available which
could couple to the impurity. Clearly, both observations deserve a deeper and more
fundamental understanding and shall be regarded as starting points for the following
investigations conducted in this work.

We brie�y comment on the in�uence of charge �uctuations, which becomes apparent
when we vary the local interaction U on the impurity site. Coming from U = 1, charge
�uctuations become suppressed for increasing U , leading to a better de�ned impurity
spin of almost S1 = 0.5 for U = 1000, in contrast to S1 ≈ 0.37 for U = 1 (based on
〈S2

1〉 = S1(S1 + 1)). Likewise TK rises for increasing U (keeping V 2/U �xed), visible
from the stronger decrease of Θ(r) in Fig. 2.7(b), what indicates a decreasing ξK .
Apparently, TK is also sensitive to the size S1 of the local moment.

The impurity-electron spin correlations 〈S1sr〉 in the interior and exterior regions of the
Kondo cloud, shown in Fig. 2.8(a), are strongly governed by their di�erent physical
background. Following our above discussion, the impurity appears free at distances
within the cloud r < ξK ; screening has not yet set in. We note that, in principle, we
could also distinguish a characteristic length scale inside the cloud ξorb < ξK , below
which the impurity moment is not yet formed due to pronounced charge �uctuations8

("free-orbital �xed point" [63, 8]). However, we �nd no indications for this scale in
our results, as U is too large, i.e. ξorb � ξK .

Since the local moment has already formed, the local-moment regime allows for a
perturbative treatment in the local exchange coupling J , yielding 〈S1sr〉 ∼ (−1)r/rD in
case of a D-dimensional lattices [70, 20]. Although the impurity spin S1 is a conserved
quantity within its lifetime τK ∼ 1/TK , it decays for larger times owing to spin �ips
caused by the conduction electrons. Thus, for r ≥ ξK , one expects an exponential
dependency 〈S1sr〉 ∼ exp(−2r/ξK) [20], which is only hardly observable due to larger
contributions from the following e�ect: for r � ξK , the impurity is completely screened
and we obtain a Fermi liquid which feels the cloud as hardcore scatterer. This situation
is accessible by perturbation theory in t/J , leading to 〈S1sr〉 ∼ (−1)r/rD+1 [70, 20].

8A. Mitchell et al demonstrate in Ref. [63] that a reliable, alternative method for the discrimination
of the three regimes is to analyse |∆n(r)| as a function of distance r or temperature T . |∆n(r)|
is the modulus of the excess charge density, i.e. of the di�erence between the conduction-electron
density with and without impurity.
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(a) (b)

Figure 2.8: Two-site averaged Kondo cloud correlations |C(r)| = 1
2
|〈S1si1+r〉 +

〈S1si1+r+1〉| as functions of the distance r from the impurity on a double log scale. Dif-
ferent system sizes as indicated are considered. In all cases the impurity is coupled to a
chain edge, i.e. i1 = 1. For comparison, special distance dependencies are indicated as
black dashed lines. Left: single-impurity Kondo model (SIKM) with antiferromagnetic
J = 4 (open squares) and single-impurity Anderson model (SIAM) with V 2 = 1

2
and

U = 1 (�lled circles). Right: SIKM with ferromagnetic coupling J = −4. Note that
there is a sign change manifesting as minimum in |C(r)|. For smaller distances than
the position of the minimum, correlations are antiferromagnetic (C(r) < 0), while they
are ferromagnetic (C(r) > 0) for larger distances.

In Fig. 2.8(a), we show the Kondo correlations 〈S1sr〉, appropriately averaged, for
a single-impurity Anderson model (upper lines with �lled circles) for di�erent system
sizes L. For large L � ξK , one can clearly distinguish the local-moment regime and
the strong-coupling regime by means of the di�erent distance dependencies (∼ 1/r
and ∼ 1/r2, respectively), indicating a crossover around ξK ≈ 15 − 20. This is
in agreement with the above value of ξ0.9 obtained from Θ(r) (Fig. 2.6(a)). For
small lattices with ξK . L (e.g. L = 29), just the local-moment regime is retained,
accompanied by a distance dependence ∼ 1/r for almost all r. In the extreme limit
ξK > L, where the system size cuts o� the development of the Kondo cloud, the
averaged Kondo correlations converge to a constant function of r, as already discussed
above for L = 9.

In line with the previous results, a larger Kondo temperature TK is obtained by sup-
pressing charge �uctuations, what can be observed when we switch to a single-impurity
Kondo model with perfect S1 = 1

2
(lower lines with open squares in Fig. 2.8(a)). Choos-

ing an equivalent coupling J = 4 according to the relation J = 8V
2

U
(Eq. (2.23)), we

�nd a large strong-coupling regime with a crossover at ξK ≈ 10.
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The results should be contrasted to those for a single-impurity model with ferromagnetic
exchange coupling J < 0 between impurity and conduction electrons (Fig. 2.8(b)),
where we do not expect a crossover. As discussed in section 2.3, in the course of an
RG procedure, the ferromagnetic Je� decreases for decreasing cuto� energy scale and
therefore the strong-coupling �xed point, which would correspond to a ferromagnetic
Kondo e�ect, is not reached [8]. Interestingly, though we expectedly �nd a local-
moment regime with 1/r distance dependence, it is replaced at large distances by
a regime with averaged spin correlations of opposite sign, resulting in a dip for the
absolute values (Fig. 2.8(b)). As can be seen, the respective distance r for this sign
change is, however, dependent on the system size L, signaling the �nite-size origin of
it.

2.6 Outlook

In the course of the numerical study of Kondo box models, we have recognised that
�nite-size e�ects may play a major role in determining the physics of the weak-coupling
regime. This is the case when the �nite-size gap ∆ of the conduction-electron system
is larger than the Kondo energy scale ∆ > TK or ξK > L, respectively. From the
point of view of RG, the physics is settled: the system cannot reach the strong-
coupling �xed point but remains trapped at the local-moment �xed point, where the
impurity is unscreened. It means that the system size L may act as a cuto� energy
scale comparable to a high temperature T � TK , rendering perturbative approaches
possible.

However, for our purposes we need to develop a much broader concept of �nite-size
e�ects than those currently available. We will have to analyse the e�ect of residual
couplings to the electron system, which can result in completely di�erent behaviour
than in the conventional regime TK > ∆. Some important questions have been already
raised: what happens at even sites, where the impurity appears to be decoupled for
∆ > TK? What is the origin of "Kondo clouds" of an impurity at odd sites for
∆ > TK? Which e�ects do mutual interactions with other impurities have in the
�nite-size regime? By means of perturbation theory and numerical techniques, we will
elaborate a conclusive concept of �nite-size e�ects in impurity systems, which allows
to answer such questions.
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3 Methods and theorems

3.1 Introduction

It is a well-known obstacle for numerical calculations that the Hilbert space of a quan-
tum system scales exponentially with the system size, preventing the application of any
exact diagonalisation approaches for system sizes signi�cantly beyond L = 10 − 20,
what is our intention in this work. Major alternative numerical methods have their
own drawbacks: numerical RG (NRG [10]) is tailored for the investigation of Kondo
models, however, typically only for a few impurities or orbitals. Dynamical mean-�eld
theory (DMFT) [26, 71] may be plagued by the incomplete incorporation of nonlo-
cal correlations due to its mean-�eld nature. On the other hand, quantum Monte
Carlo techniques can have severe problems with low temperatures and the fermionic
sign�especially in frustrated situations, e.g. in two dimensions [53]. Exact analytical
results, even if they exist (e.g., on the basis of the Bethe approach [67]), may demand
involving evaluations. An exception represents the general Lieb theorem (Sec. 3.5)
which is applicable to systems of interest for us and delivers important, exact analytical
results [47, 48, 72].

If we are interested in the ground-state properties of one-dimensional models, we may
choose density-matrix renormalisation group [25] (DMRG, Sec. 3.3). It permits an
e�cient control over the number of numerical degrees of freedom and produces highly
accurate, nonperturbative results without restriction to special model types. In this
work we employ a DMRG variant which is based on matrix-product states (MPS).
Standard DMRG is basically a zero-temperature technique.

However, its power is limited to one-dimensional models, as we will explain below.
For this reason, we will also work with a real-space variant of dynamical mean-�eld
theory [27] (R-DMFT, Sec. 3.4) to be able to investigate higher-dimensional models
(Sec. 11.5). This requires understanding of the reliability of R-DMFT, which will be
discussed in chapters 4 and 11.

For clarity, all DMRG calculations for this work have been performed by the author,
whereas the R-DMFT results have been obtained by Irakli Titvinidze. Both numerical
methods are discussed in this chapter; with emphasis on DMRG as the main source for
numerical results.
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3.2 Origin of DMRG

We want to brie�y present a survey of the historical background of DMRG. It was
developed by Steven White in 1992 [25] as consequence of trying to formulate a real-
space renormalisation group method, what turned out to be a di�cult task. The
problem can be traced back to the question as to what an appropriate approach for
low-energy wave functions of a certain system is. Keeping in mind the necessary �ow
from small to large length scales, an intuitive but incomplete guess would be a product
state of low-energy wave functions of two corresponding subsystems [73]. Individual
boundary conditions of the subsystems then usually lead to the wrong ground state
of the total system, since the true ground state is not subject to these constraints at
the interface of the subsystems. However, White showed that the correct low-energy
wave functions can be obtained if one introduces a bipartite structure of system and
environment, which allows for �uctuations between both subsystems, and hence a larger
class of possible ground states than just a product state. This is indicative of entangled
states (Eq. (3.20)), which are discussed below.

Later, one realised that DMRG is connected to matrix-product states: �rst, it was
shown that the �xed-point state of a DMRG procedure in an in�nite system attains the
structure of matrix-product states. Then it became clear that the �nite-system variant
of DMRG is a variational treatment of MPS [74, 75].

A second, independent branch evolved from the study of certain models with ground
states which have remarkable simple structure in form of MPS with small matrix di-
mensions. A prominent example is the one-dimensional A�eck-Kennedy-Lieb-Tasaki
Hamiltonian (AKLT) [76, 75]

H =
∑
i

(
SiSi+1 +

1

3
(SiSi+1)2

)
, (3.1)

where, in this case, Si refer to S = 1 spins. Its ground state ("AKLT state") belongs
to the simplest, non-trivial MPS as it contains two-dimensional matrices. However, it
also exhibits further fascinating properties. In the AKLT state, the S = 1 spins at
each site can be regarded as being decomposed into two single S = 1

2
which are linked

across sites by singlet states, indicating a valence bond structure. Furthermore, it can
be shown that spin correlations decrease exponentially in real space 〈Szi Szj 〉 ∼ (−1

3
)i−j.

On the other hand the so-called "string correlator" 〈Szi exp(iπ
∑

i<k<j S
z
k)Szj 〉 = −4

9

for j − i > 2, suggesting some kind of topological order.

3.3 Density-matrix renormalisation group

In the following, we want to present the basic elements of DMRG formulated with
matrix-product states. Even though there are conceptual di�erences to original DMRG,
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3.3 Density-matrix renormalisation group

A B

n1 n2 n3 n4 nL

m0 = 1 m1 m2 m3 mL = 1

Ln1 Cn2 Rn3 Rn4 RnL

Figure 3.1: Network representation of a matrix-product state (MPS), which is an
essential entity in MPS-based DMRG. The depicted MPS is local orthogonal with
respect to the second site, which is currently dealt with by the algorithm (indicated by
the red rectangle). The green lines indicate the respective bipartition into subsystem
A and B. Blue circles symbolise local matrices, labeled below, which are connected
with each other by "virtual bonds" (black lines). mq denotes the corresponding matrix
dimensions and nq the local basis states at site q. In the course of one iteration step
of a right-moving sweep, the solution of the local, e�ective eigenvalue problem, Eq.
(3.7), gives new elements for Cn2 . Subsequently, we may adapt m2, the size of Cn2 ,
by using the "mixed single-site approach", Eq. (3.13). The left-orthogonalisation of
Cn2 (Eq. (3.3)) leaves remainder matrices which are multiplied to the right-orthogonal
matrices Rn3 at site 3. The resulting Cn3 are the initial matrices for the next iteration
step of the algorithm.

we will refer to it also as DMRG for simplicity. However, due to the wealth of funda-
mental aspects and implementation details, this overview cannot be complete. Instead,
we want to focus more on the illustration of certain aspects which are essential for the
numerical power of our speci�c implementation. Further detailed informations are com-
piled in Refs. [77], [78], and [68]. For general review papers, we refer for example to
Refs. [79] and [75].

Our implementation is based on the premise to represent a state |ψ〉, usually the ground
state, in form of a matrix-product state (MPS) [79, 75]

|ψ〉 =
∑

n1,n2,...,nL

An1An2 . . .AnL|n1〉|n2〉 . . . |nL〉, (3.2)

where |nq〉 are local basis states at site q (with dimension dq).1 Anq are mq−1 ×mq

matrices which contain the corresponding coe�cients. These can be assumed to be
real as we are just interested in the ground state. As we consider open boundary
conditions, m0 = 1 and mL = 1.

1However, "local" should not be taken to literally. Here, the choice of basis states is independent
of any picture; we could alternatively use for example the momentum-space picture.
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3 Methods and theorems

The MPS representation, Eq. (3.2), might appear as a severe approximation; however,
it does not need to be an approximation at all, since one just needs to su�ciently
increase the matrix dimensions to parameterise every state faithfully. On the other
hand, we can also reverse this statement: by constraining the matrix dimensions to a
numerically convenient size, we can �nd accurate approximations to the exact ground
state. A rather extreme choice would bemp = 1 for all sites, resulting in 1×1 matrices,
i.e. scalars. Obviously, this represents a product state in real space, which neglects all
nonlocal correlations.

Matrix-product states possess a gauge freedom (inserting XX−1 = 1 into the MPS),
which can be used to bring them into a locally orthogonalised form with respect to a
particular site q. This will simplify the calculation of the e�ective Hamiltonian later on
(Eq. (3.7)). We require ∑

np

Lnp†Lnp = 1 (p < q) (3.3)∑
np

RnpRnp† = 1 (p > q). (3.4)

The matrices at site q, Cnq , remain non-orthogonal. The MPS attains the following
form

|ψ〉 =
∑

n1,...,nq−1,nq,
nq+1,...,nL

Ln1 . . .Lnq−1CnqRnq+1 . . .RnL|n1〉 . . . |nq−1〉|nq〉|nq+1〉 . . . |nL〉. (3.5)

As a side product, we �nd the conditions that mp−1dp ≥ mp for p < q and mpdp ≥
mp−1 for p > q. Replacing the inequality signs by equality signs, de�nes an MPS which
is able to represent any state of the system, re�ecting the exponential growth of the
Hilbert space with increasing system size.

Variational principle and sweeping

The matrix elements of an MPS can be regarded as variational parameters and the
MPS itself as a trial wave function, subjected to a Ritz variational principle to obtain
the ground state. Let us formulate how to choose the matrix elements which are best
approximations for the ground state of a given Hamiltonian H. In principle, we could
vary all matrix elements at the same time, but this would amount to some kind of
exact diagonalisation algorithm. A more convenient way is to exploit the explicitly
local representation of the MPS by varying only matrix elements at a particular site q
and keeping matrix elements of all other sites �xed, i.e.

〈ψ|H|ψ〉
〈ψ|ψ〉 = minimal for variations of Cnq . (3.6)
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3.3 Density-matrix renormalisation group

In general, Eq.(3.6) can be formulated as generalised eigenvalue problem of the e�ective
Hamiltonian K (de�ned below). But since we require the MPS to be locally orthogonal
(Eqs. (3.3) and (3.4)), it reduces to an ordinary eigenvalue problem with eigenvalue λ∑

ijnq

Ki′j′n′q ,ijnqC
nq
ij = λC

n′q
i′j′ . (3.7)

In consequence of the locality of the problem to solve, the whole algorithm scales
essentially linearly with the system size L, in contrast to exponential scaling in case of
exact-diagonalisation routines.

To understand how Ki′j′n′q ,ijnq is determined, we need to know how to conveniently
handle operators in the MPS language. In a similar way as states, they are represented
as matrix-product operators (MPO), e.g. the Hamiltonian H

H =
∑

n1,n2,...,nL

∑
n′1,n

′
2,...,n

′
L

Hn′1n1Hn′2n2 . . .Hn′LnL|n′1〉〈n1||n′2〉〈n2| . . . |n′L〉〈nL|. (3.8)

Hn′qnq are Mq−1 ×Mq matrices, where M0 = 1 and ML = 1. An operator can have
di�erent faithful representations (also varying in matrix size), but schemes have been
developed to generate matrices which are as small as possible and sparse [80, 81, 68].
Typically Mq is O(10) in our calculations.

Furthermore, we recursively de�ne two useful entities

Ep
αp =

∑
npn′p

∑
αp−1

H
n′pnp
αp−1αpL

n′p†Ep−1
αp−1

Lnp (p < q) (3.9)

Fp†
αp−1

=
∑
npn′p

∑
αp

H
n′pnp
αp−1αpR

npFp+1†
αp Rn′p† (p > q), (3.10)

where E0 = 1 and FL+1† = 1. 1 denotes the unity matrix. One may notice that the
recursive formulation of Ep and Fp† permits an iterated update of both expressions
when sweeping through the lattice site by site.

Now we can express the e�ective Hamiltonian Ki′j′n′q ,ijnq in terms of known entities of
site q and its adjacent sites q ± 1

Ki′j′n′q ,ijnq =
∑

αqαq−1

Eq−1
αq−1;i′iH

n′qnq
αq−1αqF

q+1
αq ;j′j

∗
. (3.11)

The corresponding sparse eigenvalue problem, Eq. (3.7), can be solved by e�cient exact
diagonalisation methods [82] such as the Lanczos method [83], the Davidson algorithm
[84], or the Jacobi-Davidson algorithm, depending on the accuracy and convergence
requirements. Regarding only the determination of the ground state, this is the most
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time consuming part with an overall scaling of O(m̃3M̃2d2
q). m̃ denotes the order of

magnitude of Anq matrix dimensions and M̃ those of Hn′qnq .

We want to brie�y describe the complete iteration procedure of our DMRG implemen-
tation (sketched in Fig. 3.1). According to previous considerations, a single iteration
step contains only local updates. Thus, let us assume that the algorithm arrives at a
speci�c site q and will deal with site q + 1 in the next step, i.e. is right-moving. The
optimal matrix elements of Cnq are obtained from the variational principle, Eq. (3.7).
We have to take care that the matrices at site q are left orthogonal, i.e. obey Eq.
(3.3). However, since this is not the case for Cnq , remainder matrices result from the
left-orthogonalisation (e.g. singular value decomposition, SVD), which are multiplied
to the matrices Rq+1 at site q + 1 in a consistent way (wave-function transformation
[85]). In consequence, we get a convenient initial guess for the variational treatment at
the next site, reducing the number of necessary iterations. At the end, the Eq matrices
and updated using the recently obtained Lnq matrices according to Eq. (3.9), to en-
sure working with the correct e�ective Hamiltonian K (Eq. (3.7)) in the next iteration
step. When the right chain end is reached, the processing direction is changed to left,
followed by analogue iteration steps. The outlined iteration scheme is performed until
convergence is reached, what is usually the case after a few sweeps through the whole
chain. A suitable exit criterion can be the convergence of the ground-state energy
which has to decrease at each iteration towards the true ground-state energy. Alter-
natively, one can track the convergence of the overlap of the MPS before and after a
complete sweep through the chain, what is a more demanding criterion as it captures
also nonlocal aspects of the MPS convergence.

Improvements and numerical details

A typical problem is that the algorithm can get stuck in a local energy minimum. In
the original DMRG algorithm [25], such a situation is prevented by the two-site imple-
mentation, naturally introducing �uctuations from the second site. Another drawback
of the pure single-site algorithm is that quantum numbers of the initial state do not
change in the course of the calculation, constraining the convergence to the true ground
state. For these purposes, White developed a "mixed single-site approach" [86, 81],
applicable to single-site implementations, as discussed here. The idea is to weakly
perturb the state; however, not randomly but in a physically consistent way. Based on
the power method [86, 81], we may replace |ψ〉 → (1 + εH)|ψ〉, where ε � 1 and
|ψ〉 is the considered state. Note that this approach violates the variational property
of the pure single-site variant, what may occasionally lead to a slight incline of the
ground-state energy in the course of iterations.

A tractable implementation of this approach considers the reduced density matrix ρρρ.
For an MPS |ψ〉, ρρρ is obtained by carrying out the partial traces of the density matrix
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3.3 Density-matrix renormalisation group

|ψ〉〈ψ|. For a right-moving algorithm, this means tracing out states from sites to the
right of a particular site q, resulting in

ρiq−1nq ,i′q−1n
′
q

= (CnqCn′q†)iq−1i′q−1
. (3.12)

For clarity, ρρρ is a mq−1dq dimensional square matrix. We apply the perturbation in the
following way

ρρρ→ ρρρ+ ερρρ′ (3.13)

ρρρ′ = TrR
(
H (ρρρ⊗ 1R)H†

)
, (3.14)

where ε is of the order 10−2 − 10−3 in our calculations. TrR denotes the partial trace
with respect to states to the right of q and 1R the corresponding unity matrix.

After some algebra and using de�nitions Eqs. (3.9) and (3.10), one obtains

ρ′iq−1nq ,i
′
q−1n

′
q

=
∑
i′q−1n

′
q

iq−1nq

∑
αq−1αq
βq−1βq

(3.15)

Gq+1
αqβq

H
nqnq
αq−1αqE

q−1
αq−1,iq−1iq−1

ρiq−1nq ,i′q−1n
′
q
Eq−1†
βq−1,i′q−1i

′
q−1
H
n′qn
′
q∗

βq−1βq

Gq+1
αqβq

= TrFq+1†
αq Fq+1

βq
. (3.16)

Computing the elements of ρρρ′ this way is a quite demanding task and in principle
not necessary, as our aim is to introduce only a small amount of physical �uctua-
tions. Therefore, usually we use one of the two following simpli�ed expressions in our
calculations

ρρρ′nq ,n′q =
∑
αq−1

Eq−1
αq−1

ρρρnq ,n′qE
q−1†
αq−1

(3.17)

ρρρ′nq ,n′q =
∑
n′qnq

∑
αq−1αq

H
nqnq
αq−1αqE

q−1
αq−1

ρρρnq ,n′qE
q−1†
αq−1

H
n′qn
′
q∗

αq−1αq . (3.18)

Another practical advantage of the introduction of �uctuations is that we can augment
the pool of accessible states. We want to illustrate this issue by diagonalising the
unperturbed reduced density matrix ρρρ for a right-moving sweep at a particular site q

ρρρ = UDU†, (3.19)

where UU† = U†U = 1. D is a diagonal matrix whose entries Di add up to unity
due to normalisation. Without �uctuations, as assumed so far, only mq eigenvalues
are permitted to be nonzero, preserving the matrix dimensions of Cnq . However, by
incorporating ρρρ′ in general all mq eigenvalues of ρρρ are �nite (mq−1dq ≥ mq). Since
the introduced perturbations are of physical origin, this circumstance can be exploited
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to dynamically adjust matrix dimensions by a well-chosen criterion in the course of
iterations. For example, we would increase matrix dimensions if the true ground state
has an MPS representation with larger matrix dimensions, and conversely decrease
matrix dimensions if they are not needed. Practically, we can de�ne the maximal
truncated weight which is the sum of eigenvalues Di of discarded states. As we will
see below, a reasonable approach is to discard states with the smallest eigenvalues Di.

Besides the application of parallelisation techniques, further numerical optimisation is
obtained by exploiting the two U(1) symmetries of impurity Hamiltonians corresponding
to conservation of the total particle number and the z component of the total spin.
However, it demands �ner and more careful labeling and bookkeeping of states and
operators. In our calculations, the matrix dimensions are of the order of m = 500 in
the largest invariant blocks of the A matrices, corresponding to a truncated weight of
about 10−8.

A reliable error measure is the variance r = 〈ψ|(H − E)2|ψ〉, since it also captures
the convergence of nonlocal parts of the ground state (opposed to the ground-state
energy, which is related to the rather local Hamiltonian). It is easily accessible within
an MPS-based implementation. For the two-impurity model calculations in chapter 4,
we have checked that typically the standard deviation

√
r < 10−4.

The MPO representation of the Hamiltonian allows us to easily consider di�erent im-
plementations of the Hamiltonian. For the case of a one-dimensional chain with R
impurities, there are two possibilities to treat the impurities: (i) an impurity orbital r
and the conduction-electron orbital ir "below" r are treated as a single "site" q in the
DMRG context. The disadvantage is that therewith the local Hilbert-space dimension
at q is enlarged. (ii) The impurity orbitals r are treated as separate sites; i.e. a chain of
length L+R is formed. This leaves the local Hilbert-space dimension constant but in-
troduces next-nearest-neighbour hopping terms. In the case of the two-impurity models
in chapter 4, we have tested both variants and found the di�erences in computational
costs and accuracy to be marginal only. Mainly, variant (i) is employed.

The success of DMRG

The reliability of DMRG for (most) one-dimensional systems rests on the scaling be-
haviour of an important quantity: the von Neumann entanglement entropy SA|B, which
measures the amount of entanglement between two subsystems2 A and B in a pure
state |ψ〉 [75]. Here we consider the sites p ≤ q as subsystem A and the sites p > q
belong to subsystem B (Fig. 3.1). SA|B is related to the eigenvalue spectrum of the

2Here, we concentrate on the entanglement properties and, thus, merely remark that there are deep
connections to Schmidt decomposition and singular value decomposition (SVD). For details for
example we refer to Ref. [75].
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reduced density matrix ρρρA = TrB|ψ〉〈ψ| and ρρρB = TrA|ψ〉〈ψ|, respectively,

SA|B = −TrρρρA log2 ρρρA = −TrρρρB log2 ρρρB = −
mq−1dq∑
a=1

Da log2Da, (3.20)

where Da is an eigenvalue of ρρρ. Da is a nonnegative real number due to the corre-
sponding Schmidt decomposition [75]. Obviously, a product state in real space gives
SA|B = 0, as there is just one �nite Da. On the other hand, if all Da are equal, we
obtain a maximally entangled situation.

The important aspect of Eq. (3.20) is that it relates SA|B to the required matrix
dimensions of an MPS (see also Eq. (3.19)) which faithfully represents the ground
state. The matrix dimensions mq can be read o� from Eq. (3.20) as the number
of nonzero eigenvalues Da. Since the numerical costs increase with increasing matrix
dimensions, SA|B is a measure for the numerical requirements. Furthermore, it is
illustrative for the compromise which DMRG achieves by truncating the reduced density
matrix: the aim is to keep as much entanglement SA|B between both subsystems as
possible, while requiring that Da is as small as possible. Consequently, when truncating
Cnq , discarded eigenstates of ρρρ should have small or vanishing Da.

In the thermodynamic limit, a generic state of a D-dimensional system possesses an
entanglement entropy that is extensive, i.e. increases with the volume of the subsys-
tems: S ∼ LD, where L is the linear size. However, an interesting exception represent
states which obey the "area-law". Their entanglement entropy scales with the sub-
system surface in leading order, i.e., S ∼ LD−1. This is predicted to be the case
for short-ranged Hamiltonians with an excitation gap, which induces a characteristic
length scale and consequently a somehow localised form of entanglement. In such
one-dimensional models, we thus obtain a constant entanglement entropy for area-law
states, which is always tractable by an MPS with su�ciently large matrix dimensions,
explaining the successful application of DMRG to a great number of one-dimensional
models. However, already two-dimensional models would exhibit S ∼ L, implying an
unmanageable exponential increase of matrix dimensions for a suitable MPS with in-
creasing L. Critical one-dimensional systems may be described by a conformal �eld
theory (CFT) and exhibit S ∼ c logL, where c is the central charge of the CFT. Eq.
(3.20) suggests that the matrix dimensions of a suitable MPS would increase linearly
with L [75].

This issue can be also analysed from the perspective of real-space correlations. MPS
are also known as �nitely-correlated states, since they exhibit a speci�c behaviour for
nonlocal correlations between an operator pair OiOj at sites i and j [75]. Assuming
L→∞, one can derive (i < j)

〈ψ|OiOj|ψ〉
〈ψ|ψ〉 = c1 +

m2∑
a=2

ca exp(−r/ξa), (3.21)
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where ξa = −1/ lnλa is the exponential decay length and λa (|λa| ≤ 1) an eigenvalue
of a generalised E matrix (here, however, for O and not for H). m is the translational
invariant A matrix dimension, and r = |j− i− 1|. The coe�cients of the exponentials
are denoted by ca, where c1 belongs to eigenvalues λα of modulus 1. By a �nite c1, an
MPS may mimic states with diverging correlation length. However, the more general
situation is that the exponentials dominate the contributions to the MPS two-point
correlations. In practice, an MPS may approximate true correlations by a superposition
of these exponentials, what may be faithful for non-critical one-dimensional system.
On the other hand, two-point correlations of critical one-dimensional systems obey
power-law form (maybe with logarithmic corrections), which can be captured even by
an MPS for short distances. However, at larger distances, the slowest exponential in
Eq. (3.21) will start to dominate the MPS correlations, turning the correlations into a
pure (incorrect) exponential [75].

In this context, it is important to notice that local (or almost local) quantities such
as densities or ground-state energies of short-ranged Hamiltonians are reproduced very
accurately. Nevertheless, one should always keep track of the convergence regarding
the matrix dimensions mq, to ensure that the MPS displays the correct long-range
correlations.3

Extensions of DMRG tackle the discussed problems in di�erent ways: tensor-network
approaches such as projected entangled pair states (PEPS) or tensor-product states
(TPS) try to reproduce higher-dimensional states (spatial dimensions D > 1) obeying
area laws [73]. The multi-scale entanglement renormalization ansatz (MERA) [89], on
the other hand, emerged as a convenient tool to investigate critical systems. An intrinsic
feature is the adding of an extra dimension representing the di�erent energy scales at
which the system is studied. Additionally, MERA sheds light on the recent promising
claim of a correspondence between D+ 1-dimensional conformal �eld theories and D-
dimensional (classical) gravity theories in anti-de Sitter space (AdS/CFT, "holographic
duality"), tracing back to the work of Juan Maldacena in 1997 [90].

3.4 Real-space dynamical mean-�eld theory

Dynamical mean-�eld theory (DMFT) [26, 71, 59] is a comprehensive, thermodynami-
cally consistent, and nonperturbative approximation for correlated lattice-fermion mod-
els. It is based on the circumstance that the fermion self-energy, usually a nonlocal

3Refs. [87] and [88] discuss the reliability of �nite-size scaling (i.e. increasing L for large but �xed
matrix dimensions m → ∞) versus �nite-entanglement scaling (varying m, keeping L �xed and
large). This is especially interesting for critical systems, where both a �nite L and a �nite m
may severely cut the long-range correlations by inducing arti�cial gaps and correlation lengths,
respectively.
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Figure 3.2: Schematic picture of real-space dynamical mean-�eld theory (R-DMFT)
for the two-impurity Anderson model (TIAM). The system is given by two "magnetic"
sites with strong Hubbard interaction U (orange) at a distance d coupled via a hy-
bridisation term V to a one-dimensional conduction-electron system consisting of L
non-interacting sites (blue). In the R-DMFT, the TIAM is self-consistently mapped
onto two single-impurity Anderson models which are solved independently to get the
local self-energies. These are used to set up the TIAM Dyson equation, which de�nes
the parameters of the impurity models via the R-DMFT self-consistency equations (Eq.
(3.25)). Figure is taken from Ref. [22].

quantity, becomes entirely local in the limit of in�nite spatial dimensions (or in�nite
coordination number, respectively). Consequently, the Fourier transform of the self-
energy is momentum independent. Nevertheless, it is still a function of frequency in
this limit, what distinguishes DMFT from static mean-�eld approaches, because the
problem retains its full local dynamics. An essential part of DMFT is that, start-
ing from the limit of in�nite dimensions, one can construct a mapping of a correlated
fermionic lattice model to an e�ective single-site model which is embedded in the bath,
constituted by the other fermions.

Applying DMFT in �nite-dimensional lattices, therefore represents an approximation,
which may be still remarkable reliable, even down to low-dimensional systems. However,
this is highly dependent on the physical situation, as we will demonstrate in chapter 4
and 11. In case of multi-impurity models, DMFT is not able to incorporate the feedback
of nonlocal inter-impurity correlations on the self-energy,4 demanding a detailed check
of its reliability. Our main goal is to apply DMFT to higher-dimensional impurity
models which are beyond the applicability of DMRG (Sec. 11.5). For the purpose of
determining the quality of DMFT, we will compare DMFT results for the two-impurity
model in chapter 4 and for the multi-impurity model in chapter 11 with those obtained

4Nonlocal correlations may be taken into account to some extent by cluster extensions derivable
from the "self-energy-functional approach" [91].
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from numerically exact DMRG.

Here, the real-space DMFT (R-DMFT) is employed, which generalises DMFT to sys-
tems with missing or reduced translational symmetry [27]. This is achieved by mapping
the original lattice model to a set of single-impurity Anderson models (SIAM), one for
each of the geometrically or electronically inequivalent sites. R-DMFT has been applied
for example to surface systems [92, 93], layered structures [94] as well as to ultracold
atomic gases in optical lattices [95, 96].

We want to picture the general ideas of R-DMFT using the example of a multi-impurity
Anderson model (illustrated in case of two impurities in Fig. 3.2). For further details
of the two-impurity procedure we refer to Ref. [22]. Our goal is the computation of
spin-dependent average occupation numbers 〈nciσ〉 and 〈nfασ〉 for substrate and impurity
sites, respectively. They are related to the local single-electron Green's functions

Gimp
αα,σ(iωn) = 〈〈fασ; f †ασ〉〉ωn (3.22)

Gcond
ii,σ (iωn) = 〈〈ciσ; c†iσ〉〉ωn , (3.23)

given at the fermionic Matsubara energies ωn = (2n+ 1)πT . On the other hand, they
are also diagonal elements of the Green's function matrix, which can be obtained from
the real-space Dyson equation:

Ĝ−1
σ (iωn) = (iωn + µ)1− ε̂σ − T̂ − Σ̂σ(iωn), (3.24)

where 1 is the unity matrix, ε̂σ the diagonal local energy matrix, and T̂ the hopping
matrix. ε̂σ also includes magnetic �eld terms and is thus possibly spin dependent. T̂
not only includes the hopping t between substrate sites but also hopping V between
the substrate and impurity sites. For a system with L substrate sites and R impurities,
the matrix dimension is L+R for each spin direction σ.

Within real-space DMFT, the self-energy is obtained by considering weak-coupling
perturbation theory in U to all orders and by summing all local diagrams in the skeleton-
diagram expansion of the self-energy, Σ̂ = Σ̂[Ĝ]. This implies that the resulting self-
energy is local, Σαβ,σ(iωn) = δαβΣα,σ(iωn), but in general site dependent. As in the
conventional DMFT, the local diagrams are not summed explicitly; the problem is rather
reformulated by introducing a self-consistent mapping onto an e�ective single-impurity
problem. In case of R-DMFT, a lattice model with R geometrically or electronically
inequivalent sites is self-consistently mapped onto a set of R e�ective single-impurity
models.

Knowing the self-energies Σα,σ(iωn) using Eq. (3.24), we can calculate the Green's
function matrix Ĝ(iωn), i.e. in particular the local Green's functions. The R-DMFT
self-consistency conditions,

1

G0
α,σ(iωn)

=
1

Gimp
αα,σ(iωn)

+ Σα,σ(iωn), (3.25)
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then provide us with the Weiss Green's functions G0
α,σ(iωn) for α = 1, . . . , R, i.e.,

with the non-interacting Green's functions of the R e�ective impurity models. The
one-particle parameters of each e�ective SIAM can be extracted from G0

α,σ(iωn). The
solutions of the e�ective models deliver the self-energies Σα,σ(iωn), which are fed into
Eq. (3.24), closing the self-consistency circle. In practice, the procedure starts with an
initial guess of parameters of the e�ective SIAM, i.e. of the Weiss Green's functions
G0
α,σ(iωn), what allows to calculate the self-energies Σα,σ(iωn).

In our calculations, we use exact-diagonalisation methods for the solution of the e�ec-
tive models [83, 82]. As we investigate systems at zero temperature, we introduce a
low-frequency cuto� speci�ed by the �ctitious temperature T

t
= 0.001, which allows to

work in the �nite-temperature Matsubara framework. A �nite small number ns − 1 of
auxiliary bath degrees of freedom in the e�ective SIAM is considered, typically ns = 10
for the Lanczos method. The computational e�ort of the R-DMFT scheme roughly
scales linearly with the number of e�ective impurity models, i.e. with the number of
inequivalent sites in the original system. However, for large (L + R) one has to take
into account also the matrix inversion in Eq. (3.24).

If we replace the Anderson impurities (Eq. (2.35)) by Kondo impurities (Eq. (2.34)),
we can still work with the presented R-DMFT scheme. The e�ective impurity problem
in this case will be a single-impurity Kondo model. It consists of the local spin Sr, the
corresponding conduction-electron site ir, to which the impurity is coupled, and the
auxiliary bath sites.

3.5 Generalised Lieb theorem

Except of results from numerical calculations and insights from perturbation theory
in the weak and strong-coupling regime, strict analytical results are available based
on re�ection positivity in spin space. Important applications concern the Hubbard
model, as �rst was done by Lieb [47], and the Anderson and Kondo impurity model
[48, 72, 97], which will be referred to in the following also as "generalised Lieb theorem".
The theorem is of signi�cance for our understanding of the physics at half-�lling, in
particular in checking and supporting our perturbative and numerical results, before
extending them to models away of half-�lling. It makes strict statements about the
degeneracy of the ground state as well as about the total spin and the sign of spin
correlation functions.

In this section we compactly outline the essential parts of the proof and its consequences
for the Kondo impurity model, as presented by Shen [48]. A comparable proof can be
given for a periodic Anderson impurity model [97]. First, we show the Hamiltonian of
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the multi-impurity Kondo model with Hubbard-Ui in the conduction-electron system

H = −t
∑

〈i,j〉∈Λc,σ

c†iσcjσ +
∑
i∈Λc

Ui

(
nci↑ −

1

2

)(
nci↓ −

1

2

)
+
∑
r∈Λf

JscirS
f
r , (3.26)

where Λc,f denote the subsets of c and f lattice sites, respectively. sci =
∑

σσ′ c
†
iσσσσσσ′ciσ′

is the electron spin at site i (Sec. 2.4). In the following, the impurity spin operators Sfr
are represented as fermions, enforcing single occupancy at impurity sites. An essential
assumption of the proof is that Λc is a bipartite lattice at half-�lling. Thus, each site
is occupied by one electron on average. The above Hamiltonian commutes with the z
component of the total spin.

One may represent the ground state in terms of an orthonormal, real basis for N0

electrons of spin σ with elements {|ψσα〉}, labeled by α. We consider the following
particle-hole transformation applied to the basis

T̃ =
∏
i∈Λc

(ci↑ − ε(i)c†i↑)
∏
r∈Λf

(
fir↑ + ε(ir)

J

|J |f
†
ir↑

)
, (3.27)

where ε(i) = 1 if site i belongs to the A sublattice, and ε(i) = −1 if it belongs to
the B sublattice. Due to the properties of the transformation, the z component of the
total spin for any vector T̃|ψ↑α〉⊗ |ψ↓β〉 is Szgs = 1

2
(NΛ− 2N0), where NΛ is the number

of lattice sites.

The variational wave function for the ground state of the subspace Sz = 1
2
(NΛ− 2N0)

can be written as

|ψ(W)〉 =
∑
αβ

WαβT̃|ψ↑α〉 ⊗ |ψ↓β〉, (3.28)

where W is the matrix of coe�cients. W is Hermitian, since the Kondo model is spin
up-down symmetric under the transformation T̃�a necessary property for the theory
of re�ection positivity.

After some algebra, we are prepared to evaluate the variational energy of the lowest-
energy state |ψ(W)〉 in the subspace with Sz = 1

2
(NΛ−2N0). SinceW is Hermitian, it

can be diagonalised: W = Ṽ†D̃Ṽ, where D̃ is a (real) diagonal matrix with diagonal
entries {d̃α}. We can de�ne a positive semide�nite matrix |W| = Ṽ†|D̃|Ṽ, where
|D̃| = diag(|d̃1|, |d̃2|, . . .). For all Ui ≥ 0, one can now estimate

E(W) ≥ E(|W|). (3.29)

This means, |ψ(|W|)〉 belongs to the ground-state manifold in the subspace with
Sz = 1

2
(NΛ − 2N0). In other words, one of the ground states (in case of degeneracy)

can be identi�ed as positive semide�nite (it has d̃α ≥ 0), i.e., W = |W|. This
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statement is independent of Ui. W = |W| is consequence of the re�ection positivity
in spin space.

It needs to be shown that the ground state in the subspace Sz = 1
2
(NΛ − 2N0) is

nondegenerate for all Ui > 0 and J 6= 0. This is done in a similar way as Lieb does
in [47], amounting to the question whether W is positive de�nite (all d̃α > 0), what
allows to apply some variant of the Perron-Frobenius positivity argument. Indeed, it
turns out that |W| is positive de�nite. Since one can also show that W = ±|W|, i.e.
that |ψ(W)〉 and |ψ(|W|)〉 are equal except for a phase factor, the ground state is
positive de�nite. This fact strictly excludes another orthogonal, positive de�nite ground
state in the same basis. Summarising, when Ui > 0 and |J | 6= 0 the ground state is
nondegenerate,5 while for Ui ≥ 0 it is only known that |ψ〉 (Eq. (3.28)) belongs to the
ground-state manifold.

Already for the positive semide�nite ground state (Ui ≥ 0), we �nd that the overlap
with the ground state of an exactly solvable Heisenberg model [98] is �nite, permitting
to calculate the total ground-state spin Sgs = 1

2
|NÃ − NB̃|. NÃ and NB̃ denote the

number of A and B sites of the two generalised sublattices, combining c and f sites. In
consequence of the transformation T̃ (Eq. (3.27)), for J < 0, c and f orbital belong to
the same generalised sublattice, while, for J > 0, they belong to di�erent sublattices.
One obtains

Sgs =

{
1
2
(NA +N f

B −NB −N f
A), if J > 0,

1
2
(NA +N f

A −NB −N f
B), if J < 0

, (3.30)

where NA,B gives the number of c sites belonging to a particular sublattice, while
N f
A,B gives the same number for the f sites. An important �nding is that the total spin

remains constant when changing J (keeping its sign �xed).

It is remarkable that even correlation functions can be obtained for all �nite J

〈ψ|sc,+i sc,−j |ψ〉 = ε(i)ε(j)Cij (3.31)

〈ψ|Sf,+r Sf,−r′ |ψ〉 = ε(ir)ε(ir′)Frr′ (3.32)

〈ψ|sc,+i Sf,−r |ψ〉 = −ε(i)ε(ir)
J

|J |Giir , (3.33)

where Cij, Frr′ , and Giir ≥ 0 if all Ui ≥ 0, while they are strictly positive if all Ui > 0.

It can be noted that the sign of the correlation functions is not dependent on J .
Purely staggered behaviour is found for 〈ψ|sc,+i sc,−j |ψ〉 and 〈ψ|Sf,+r Sf,−r′ |ψ〉, whereas
〈ψ|sc,+i Sf,−r |ψ〉 may have an extra sign due to the factor J/|J |.

5In Ref. [72] is shown that nondegeneracy is obtained already at Ui = 0 for a dense Kondo lattice
model, i.e. R = L.
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Although the generalised Lieb theorem gives the sign of correlations as well as the total
spin of the ground state, it says nothing about the amount of speci�c correlations.
Speci�cally, we will realise in this work that these are generally quite di�erent for
J → 0 and J → ∞. Questions, such as those related to spatial ordering of spins,
cannot be satisfyingly answered by the theorem. In fact, the variety of di�erent possible
physical regimes is just the basic motivation for our work.

A crucial detail for our calculations is the situation when the ground state is not
degenerate already for all Ui = 0 but |J | 6= 0 (e.g. due to the residual interactions
for J < J∆). Then, one can imagine to turn on weak Ui (smaller than all other
energy scales), what can be done adiabatically in a �nite-size system. Thereby, the
requirements for the generalised Lieb theorem are ful�lled and the same total ground-
state spin is found for any other �nite J ′, too. Switching o� the Ui at J ′ can be done
again without changes in the total spin. Hence, we found that the ground state stays
nondegenerate even for Ui = 0, when J is varied. In other words, the ground-state
spin is preserved in this case for all �nite couplings J .
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4.1 Introduction

When impurities are low concentrated in metallic host materials, single-impurity con-
cepts (chapter 2) can be easily applied. However, the larger this concentration be-
comes, the more important the mutual indirect interaction of impurities becomes [8]:
impurities may locally polarise the conduction electrons and thereby a�ect impurity
spins at other sites due to the itinerancy of the conduction electrons, constituting the
Ruderman-Kittel-Kasuya-Yosida [12, 13, 14] (RKKY) exchange. This mechanism may
lead to the breakdown of single-impurity concepts for larger impurity densities.

Indirect magnetic exchange between impurities can be derived perturbatively yielding
the inter-impurity coupling JRKKY ∼ J2. Doniach [45, 99] realised that this dependence
on J will lead to a competition with the Kondo e�ect, which is related to an exponential
scale TK ∼ exp(− 1

J
): the weak-coupling regime J � 1 is dominated by RKKY

exchange, while the strong-coupling regime is governed by the Kondo e�ect, both
being separated by a crossover (as in the �nite systems in this work) or even a phase
transition at JD where |JRKKY| = TK .

This raises the obvious question what happens with this competition when we transfer
the problem from an in�nite conduction-electron system to a �nite box. How and when
do �nite-size e�ects show up? In which fashion does the conventional physics change?
These questions shall de�ne the central objective for this and the following chapters
5-9.

In section 2.5 we have seen that the Kondo e�ect can be strongly a�ected by the
presence of a �nite level spacing ∆ in the conduction band, which, in our case, results
from a spatially con�ned conduction-electron system (Kondo box [19, 20]). We realised
that the typical spin correlations are cut o� by the �nite length of the system for
∆ > TK , or equivalently, L < ξK [19, 20, 49, 100, 101, 102, 103, 104, 105]. From
a renormalisation group (RG) perspective, the strong-coupling �xed point, describing
the formation of the nonlocal Kondo singlet, is removed.

In this chapter, we want to start our study with the more "trivial" o�-resonance case
in which the chemical potential falls between empty and doubly-occupied conduction-
electron states. Since there are no electron states available at energy scales lower than
∆, not only the conventional Kondo e�ect is absent but also residual couplings of
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JRKKY ∼ J2

JD

TK ∼ exp(− 1
J

)

∆

J

Figure 4.1: Competition between Kondo e�ect (black, green, and red) and RKKY
interaction (blue) in an o�-resonant impurity model for larger but �nite lattices. The
strong-coupling regime is ruled by the Kondo scale TK (black) with a crossover to
an RKKY regime below JD. When TK < ∆ or ξK > L, respectively, the Kondo
cloud collapses. Since residual couplings between impurities and conduction electrons
(red) vanish in o�-resonance cases, this regime is entirely governed by the RKKY scale
(blue). In the case in which the RKKY exchange leads to a �nite total impurity spin
Stot (not shown here), corresponding Kondo correlations are already cut at J∆,Rspins,

i.e. ∆ = T
(Rspins)
K where T

(Rspins)
K < T

(1spin)
K (Sec. 4.7).

impurities to the electrons (compare also the perturbative results in section 5.2). On
the other hand, RKKY couplings remain qualitatively unchanged, and the conventional
picture, which predicts an RKKY regime for J < JD, is consequently unchanged
(illustrated in Fig. 4.1). This is shown here using the example of a two-impurity
model, which is o�-resonant according to our conventions.

The clarity of the two-impurity model represents also a good occasion to analyse how
the presence of another impurity in�uences the traditional single-impurity picture and
how e�ects from the �nite system and its boundaries come into play. Another purpose
is to check how valid mean-�eld approaches, such as R-DMFT (Sec. 3.4), are�with
its application to higher-dimensional models in mind (Sec. 11.5). We also address the
in�uence of charge �uctuations at impurity sites by using an Anderson model (Sec.
2.2).

Before analysing the numerical results, we want to proceed with the presentation of
conventional considerations in section 4.2, yet, with focus on the rich interplay between
Kondo e�ect and RKKY exchange.
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4.2 Review of multi-impurity and two-impurity

models in the literature

Kondo lattice model

One of the early works studying the physics of multi-impurity models was by S. Doniach
and co-workers. First by mean-�eld approaches [45] and later by means of numerical
renormalisation group (NRG) [99], they investigated the competition between magnetic
impurity order and the Kondo e�ect in the one-dimensional Kondo necklace model

Hnecklace = J
∑
i

Siτττ i + W̃
∑
i

(τxi τ
x
i+1 + τ yi τ

y
i+1), (4.1)

The Kondo necklace model captures the low-energy spin physics of the dense Kondo
lattice model in which an impurity is coupled to each site of the conduction-electron
system [45].

The RKKY exchange between impurities may drive the system at low energy scales to
other infrared �xed-points, governed by magnetic correlations among the impurities,
than the strong-coupling �xed-point with screened impurities, known from the single-
impurity model. Essentially, this sets the stage for a competition with the individual
Kondo e�ect in the weak-coupling regime.

One �nds that the RKKY interaction, which is derived from second-order perturbation
theory in the local coupling J , is oscillatory in sign ∼ cos(2kFd), when the distance be-
tween the impurities d is varied (kF is the Fermi momentum). At half-�lling (kF = π

2
),

we obtain an antiferromagnetic coupling for odd d and a ferromagnetic one at even
d, de�ning "(anti)ferromagnetic distances". For the given Hamiltonian, the impurities
consequently experience an antiferromagnetic pattern of RKKY couplings. Doniach
and co-workers were able to detect a second-order phase transition or crossover, re-
spectively,1 separating the Kondo regime for strong J from a regime with antiferro-
magnetically correlated impurities without Kondo e�ect (local-moment �xed point with
e�ective coupling Je� = 0) in the weak-coupling regime. For large J , the Kondo e�ect
leads to individual Kondo singlets for each impurity (Je� →∞).

The transition is supported by simple scaling arguments: the transition point JD is
found at the particular coupling where the nonperturbative Kondo temperature TK ∼

1Due to the Mermin-Wagner theorem [106] there is no breaking of a continuous symmetry, such as
spin rotation symmetry, in one dimension at �nite temperatures. However, mean-�eld approaches
may (possibly implicitly) assume broken symmetries, suggesting arti�cial phase transitions. In fact,
at half-�lling in one dimension, the Kondo lattice model exhibits a "spin liquid phase"�a quantum
disordered phase with �nite spin and charge gaps. In this regime, spin and charge correlations
decay exponentially in space and time [97].
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exp(− 1
J

) equals the modulus of the RKKY energy scale JRKKY ∼ J2. The transition
is numerically found to take place at JD/W̃ = 0.411 [99] for the one-dimensional
necklace model, Eq. (4.1). Interestingly, our numerical results show that JD is of the
same order also in other one-dimensional two and three-impurity models (section 5.5
and chapter 9).

Two-impurity Kondo model

However, Doniach's picture is oversimpli�ed in that the large density of impurities
makes it impossible to ensure independent Kondo clouds for each impurity even for
large J . This became known as the famous Nozières exhaustion principle [107, 108].
As soon as the clouds su�ciently overlap, a new state of matter emerges: the heavy
fermions. We will be occupied in more detail with this question in chapter 13 and
therefore �rst restrict ourselves to the case of models with few impurities.

The two-impurity model is the most simple impurity model that extends the physics of
the single-impurity model by the indirect (or direct) exchange between two impurities.
An immediate consequence is that universality in terms of the Kondo temperature TK is
lost due to the presence of JRKKY. The model is described by the following Hamiltonian

H = Hel − J(S1si1 + S2si2), (4.2)

where si is the spin density of conduction electrons at site i and Hel the Hamiltonian
of an half-�lled non-interacting conduction-electron system.

The interplay of Kondo e�ect and exchange in this model has been treated by C.
Jayaprakash et al in Ref. [46] by perturbative scaling techniques [9]. When the tem-
perature T (or energy scale, respectively) is successively lowered, one may pass through
several di�erent regimes. Technically, these are described as e�ective Hamiltonians at
energy scale D (where D0 is the bandwidth), obtained from "integrating out" high-
energy conduction-electron states.

For high temperatures (above all Kondo temperatures in the system) the impurities
will be essentially free and all interactions can be treated perturbatively; thus, we are
in the "two local moments regime". When the temperature T is lowered, we may
encounter Kondo e�ects as soon as T < TK . In these regimes, the system obeys the
usual perturbative �ow equation for the e�ective coupling Je�(D) (Eq. (2.21)).

As discussed above, if the single-impurity Kondo temperature TK is the largest energy
scale, i.e. TK > |JRKKY| (when, e.g., impurities are far away from each other), we will
obtain separately screened impurities with vanishing interactions between them (strong-
coupling �xed point). Certainly, more interesting are situations in which the impurities
interact with each other, leading to substantial deviations from single-impurity results,
hence we set J < JD or TK < |JRKKY|, respectively.
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When JRKKY is antiferromagnetic (JRKKY < 0), the two impurities are locked in a singlet
state for energy scales below |JRKKY|. This is a special situation, as there is no residual
magnetic impurity moment to be screened by conduction electrons. Furthermore, by
means of NRG, Jones et al [109, 51] found that the competition leads to a critical point
at |JRKKY|

TK
≈ 2.2 in case of a special particle-hole symmetry of the conduction-electron

screening channels [52]. At and around this point, the e�ective Hamiltonian cannot be
formulated in terms of a Fermi liquid, indicated for example by a very small Wilson ratio2

R� 1 [109]. One may understand the result of this competition as transition between
the physics of two Kondo clouds in the strong-coupling regime ("correlated Kondo
�xed point") and the physics without any Kondo clouds, leading to an asymptotic zero
phase shift ("local-moment singlet �xed point") in the weak-coupling regime. The
critical point itself is characterised by a diverging impurity contribution to the staggered
susceptibility and the inter-impurity correlation function approaching 〈S1S2〉 = −1

4
.

It is emphasised that, in spite of the phase transition, away from the critical point
inter-impurity correlations 〈S1S2〉 persist in the strong-coupling regime and Kondo
correlations are still present in the weak-coupling regime [109, 51]. The transition
turns into a crossover if the particle-hole symmetry is absent [50]. We will examine it
in more detail in section 9.1.

For a ferromagnetic JRKKY (JRKKY > 0) the scenario is di�erent. Just as above, for
temperatures below JRKKY the two impurities are in a triplet state, Stot = 1, which
turns out to be screened by the conduction electrons in a complex way. In the triplet
subspace the Hamiltonian Eq. (4.2) can be rewritten so that

Hfm = Hel(D ≈ JRKKY)− J∗(si1 + si2)Stot, (4.3)

where Stot = S1 +S2 is the total impurity spin and J∗ = J(D ≈ JRKKY) is the e�ective
local coupling at D ≈ JRKKY. At this point it is convenient to have a closer look on the
inversion symmetry of the conduction-electron system with respect to the midpoint of
the two impurities. It is natural to de�ne two orthogonal conduction-electron channels,
namely odd and even with ψ(x) = ∓ψ(−x) (where x is measured from the midpoint)

Hel = Hel,odd +Hel,even (4.4)

si1 + si2 = 2
∑
kk′

(uodd(k)uodd(k
′)sodd,kk′ + ueven(k)ueven(k

′)seven,kk′) , (4.5)

where sodd/even,kk′ = 1
2

∑
σσ′ c

†
odd/even,kσσσσσσ′codd/even,k′σ′ is the spin operator of odd and

even conduction electrons for momenta k and k′ with Fourier coe�cients uodd/even(k).

2The Wilson ratio, de�ned as the ratio between the magnetic susceptibility and the linear speci�c
heat with the corresponding value in a non-interacting system, takes the universal value W = 2 at
low energy scales, as shown by NRG and later explained using Nozières' strong-coupling picture
[64]. SinceW = 1 for non-interacting electrons, W = 2 is a direct signature of the single-impurity
Kondo e�ect [8].
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Since the k dependence3 of uodd/even(k) is not of interest for our discussion, all associ-
ated quantities are taken at their low-energy value for k = kF .

It follows that the Hamiltonian Eq. (4.2) in the subspace with Stot = 1, can be
rewritten

Hfm = Hel(D ≈ JRKKY)− (Joddsodd + Jevenseven)Stot, (4.6)

where Jodd/even = 2u2
odd/evenJ

∗.

This is the Hamiltonian of a two-channel problem for the nonlocal spin Stot, which
may be compensated in two stages. The corresponding Kondo scales TK,odd/even are

of the order |JRKKY|(TK/|JRKKY|)1/u2
odd/even . Without loss of generality, let us assume that

TK,odd is the largest Kondo scale. When the temperature is lowered below TK,odd, this
e�ectively results in a complex S = 1

2
object τττ , described by the e�ective Hamiltonian

Hτττ = Hel(D ≈ TK,odd)− (JF sodd − JAseven)τττ . (4.7)

The residual coupling of τττ to the remaining odd electrons, JF , is ferromagnetic. This
can be inferred from the results of an NRG calculation for a S = 1 single-impurity model
[110, 107] whose spectrum at the �xed point is understood in terms of a decoupled
S = 1

2
single-impurity model. Consequently, when the temperature is decreasing, this

leads to a decrease of JF towards the local-moment �xed point regarding τττ (JF = 0,
compare also Sec. 2.3).

Unlike JF , JA is antiferromagnetic, allowing for an additional screening process of τττ by
the even electrons below TK,A (where JA ∼ Jeven(D ≈ TK,odd)). Thus, the e�ective
Hamiltonian below TK,A describes a Fermi liquid with remaining self-interactions be-
tween even and odd electrons separately. This means in particular that the phase shift
at this stable "correlated Kondo �xed point" is asymptotically π

2
in both the even and

the odd channel and π in total.

If one of the energy scales TK,odd/even is not present, e.g. when the respective density
of states is vanishing, one obtains an underscreening situation, in which the total
impurity spin exceeds the number of screening channels 2Stot > Nchannels. This concerns
especially �nite-size systems, as we will see in section 9.2.

3By requiring normalisation and anticommutator relations for odd and even conduction electrons
(e.g. [c†even/odd,k, ceven/odd,k′ ]+ = δkk′), a one-dimensional electron system can be shown to have

u2
odd/even(k) = 1

2 (1 ∓ cos(kd)), where d is impurity distance. In the case of a three-dimensional

electron system one has to reduce to an e�ective one-dimensional description at �rst (the connect-
ing line between the two impurities) by integrating over all solid angles dΩ in spherical coordinates.
Then, the coe�cients u2

odd/even(k) = 1 ∓ 1
kd sin(kd) where k = |k|. In both cases, for d → 0

and �xed electron momentum k, the coe�cient of the even channel outweighs the one of the odd
channel, since the odd electron wave function at the midpoint x = 0 is strictly zero.
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4.3 Two-impurity models�e�ective RKKY

models

Our numerical investigation starts with the two-impurity model, which is the simplest
impurity model to capture the competition between Kondo e�ect and RKKY exchange.
Furthermore, �nite-size e�ects show up in a relatively simple way. In this chapter, we
will employ a two-impurity Anderson impurity model (TIAM, see section 2.4), aiming
also at e�ects stemming from the inclusion of charge �uctuations at impurity sites. We
will closely follow the ideas and arguments given in our paper, Ref. [22].

The model consists of two magnetic Hubbard sites ("impurities") modeled by single
nondegenerate orbitals hybridising with a non-interacting tight-binding chain ("sub-
strate"). In the limit of a strong local Hubbard interaction U and weak hybridisation,
the Schrie�er-Wol� transformation (Sec. 2.2) explains the formation of local mag-
netic moments with a local antiferromagnetic exchange J = 8V

2

U
between impurities

and conduction electrons. For antiferromagnetic distance d (as in most cases in this
chapter), there is a crossover from local Kondo-singlet formation at strong hybridisa-
tions V to nonlocal RKKY coupling of the impurities for V → 0, as can be seen in
spin-correlation functions and susceptibilities [111, 22, 112].

The �niteness of the electron system even promotes the RKKY regime as the Kondo ef-
fect is cut by the �nite-size gap ∆ (Fig. 4.1). Considering our conventions, the number
of electrons N is even in two-impurity models. The chemical potential µ lies between
fully occupied and unoccupied conduction-electron eigenstates ("o�-resonance", Fig.
2.5(b)). Following the conclusions for the single-impurity Kondo box (Sec. 2.5), the
behaviour at J → 0 is predicted as follows: the impurities will not be able to couple
to the conduction electrons due to the presence of the �nite-size gap for TK < ∆. Be-
cause the Fermi sea is nondegenerate, the screening of an impurity spin by conduction
electrons would need a �nite energy ∼ ∆. Converting this into couplings, one can de-
�ne a coupling strength J∆ at which the Kondo temperature TK becomes comparable
with the �nite-size gap ∆ [19]. Thus, for J < J∆ the Kondo e�ect is absent and free
moments are generated. The low-energy sector at J → 0 is exactly described by the
e�ective RKKY two-spin model

HRKKY = −JRKKYS1S2 (4.8)

JRKKY = J2χ0,cond
i1,i2

∼ (−1)|i1−i2|
J2

|i1 − i2|
, (4.9)

where JRKKY is given in terms of the static conduction-electron susceptibility at J = 0.
Another issue to be treated in this chapter is the reliability of the picture of two
independent Kondo clouds. For strong couplings, we assume local clouds which do
not disturb each other, but in the weak-coupling regime with its spatially extended
clouds this cannot be valid any longer. This circumstance touches also the topic of
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how appropriate mean-�eld approaches, such as real-space dynamical mean-�eld theory
(R-DMFT), are. Here, we want to compare magnetic susceptibilities (introduced in
section 2.4) obtained from R-DMFT to numerically exact DMRG results.

4.4 Magnetic response and spin correlations

In Fig. 4.2 is shown the magnetic susceptibility χcond
i,1 for a TIAM with L = 50. Placing

the impurities at odd distances leads to an antiferromagnetic RKKY coupling, and we
want to focus �rst on distances d = 4m+1, where m is an integer. For d = 49 (lowest
panel on the right in Fig. 4.2), the impurities are located at the edges of the substrate
chain. As a consequence of the antiferromagnetic coupling of the impurities to the
conduction-electron system, the response at the impurity site ir is antiferromagnetic,
i.e., χi1,1 < 0. The calculations have been done for U = 8 and V 2 = 2, corresponding
to an intermediate e�ective coupling strength J = 8V

2

U
= 2, what is clearly beyond

the Kondo limit J → 0. However, charge �uctuations are still suppressed: we �nd an
average double occupancy of 〈nf1↑nf1↓〉 = 0.072 at the impurity site, and the impurity

local moment 〈S2
1〉 = 3(1 − 2〈nf1↑nf1↓〉)/4 = 0.64 is much closer to the localised-spin

value 3/4 than to the free-fermion value 3/8.

The response is oscillatory in the distance |i − i1| to the �rst impurity corresponding
to the 2kF = π nesting wave vector. Its modulus is maximal at i1, decreases with
increasing i, and almost saturates until there is a slight upturn for i → i2 = 50 for
d = 49, i.e. at the position of the second impurity. This is consistent with the 2kF
oscillation so that χcond

i,1 is positive at i = i2. Furthermore, it implies that there is an
antiferromagnetic alignment of the two impurities due to the antiferromagnetic RKKY
interaction.

When the distance d between the impurities is decreased (d odd), the picture is sup-
posed to change gradually. However, the i dependence of the susceptibility becomes
more complicated: as the impurities are more correlated due to a stronger RKKY cou-
pling, the response below the second impurity (see the second maximum of |χcond

i,1 |)
becomes stronger and stronger. The response at substrate sites between the two impu-
rities increases, and its modulus develops a pronounced minimum close to i2, while the
response beyond the second impurity, for i > i2, becomes very weak. Furthermore, the
susceptibility changes sign between nearest neighbours. Its two-site average is negative
between the impurities and also beyond the �rst impurity for i < i1 but is found to
be positive for i > i2. Another subtle feature is the ferromagnetic response at the
nearest neighbour to the right of i1, which is larger than the one to the left of i1 for
all distances except for d = 5 and d = 9. The ratio χcond

i1+1,1/χ
cond
i1−1,1 is decreasing with

decreasing d, becomes smaller than unity for d = 5 and d = 9, and larger than unity
again for d = 1.
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4.4 Magnetic response and spin correlations

Figure 4.2: Static magnetic susceptibility χcond
i,1 at Hubbard interaction U = 8 and

hybridisation strength V =
√

2 for a system with L = 50 and two Anderson impurities
at positions symmetric to the chain center and di�erent distances d as indicated (taking
into account the mirror symmetry). χcond

i,1 gives the linear response of the substrate
at site i to a local magnetic �eld at the �rst (left) impurity. Blue lines with squares:
results as obtained from real-space DMFT. Red dashed lines with circles: numerically
exact solution as obtained from DMRG calculations. For comparison DMRG results for
a system with L = 49 sites and a single Anderson impurity are shown (dotted green
line with triangles). Figures taken from Ref. [22].

63



4 O�-resonant models

Figure 4.3: Spin-spin correlation function 〈S1si〉 (upper panel) and magnetic suscep-
tibility χcond

i,1 (lower panel) for U = 8 and V =
√

2 as obtained by DMRG for a system
size L = 50 (L = 49) and two impurities (one impurity) as functions of site i. Red
lines: results for two impurities and L = 50 (TIAM). Green lines: results for L = 49
and a single impurity at the same position as the left impurity in the two-impurity
model (SIAM). The dashed lines indicate the positions i1 and i2 of the sites "below"
the impurities. Figures taken from Ref. [22].

These non-trivial �ndings are perfectly captured by R-DMFT. This circumstance should
not be regarded as obvious, because the nonlocal impurity-impurity susceptibility χ2,1

is �nite (Fig. 4.4(b)), and hence R-DMFT represents an approximation; even for
d = L − 1 (Sec. 3.4). And in fact, the mentioned features result from the e�ective
impurity-impurity interaction, as can be concluded by comparing the TIAM results to
results of a corresponding single-impurity Anderson model (SIAM, green lines in Fig.
4.2). To ensure a singlet ground state at half-�lling, the system size of the SIAM is
reduced by one site, L = 49. It can be seen that the di�erences between the single-
impurity and the two-impurity results visible in the susceptibilities are most pronounced
for i > i2 but also non-negligible for substrate sites between the two impurities.

In Fig. 4.3, we show χcond
i,1 and the equal-time spin-spin correlation function 〈S1si〉
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4.4 Magnetic response and spin correlations

for d = 13 on a larger scale in order to discuss its physics in detail. The response of
the substrate to a static local �eld at the �rst impurity is governed by the low-energy
excitations around the Fermi edge, i.e., ω = 0. Contrarily, the equal-time spin-spin
correction function is obtained by a frequency integration of the dynamic (retarded)
susceptibility χcond

i1,1
(ω) and thus includes several energy scales. Nevertheless, the spin-

spin correlation behaves qualitatively very similar to χcond
i1,1

, and we will refer to it on an
equal footing with the susceptibility.

From the total ground-state spin Sgs = 0, one can directly �nd the following spin rule

〈S1S1〉+ 〈S1S2〉+ 〈S1stot〉 = 0, (4.10)

where stot =
∑L

i=1 si is the total spin in the conduction-electron system. Instead, we
have for the single-impurity model

〈S1S1〉+ 〈S1stot〉 = 0. (4.11)

Keeping in mind that the inter-impurity correlations 〈S1S2〉 are antiferromagnetic, it
is clear that these will just compensate the impurity local moment; in the same way
the Kondo correlations 〈S1stot〉 do. For the two-impurity model at d = 13, 〈S1S2〉
is negative but its modulus is small compared to 〈S1S1〉. Looking at Eq. (4.10),
the overall substrate response is thus still antiferromagnetic but somewhat reduced as
compared to the single-impurity model.

Qualitatively, the same applies to the susceptibility as can be con�rmed by the lower
panel in Fig. 4.3. For any large but �nite system with a nondegenerate singlet ground
state, we again have a simple sum rule: a singlet ground state and a �nite gap implies
that the total magnetic moment must vanish for any h1 up to some �nite critical �eld:
〈Sgs〉 = 〈S1〉+ 〈S2〉+ 〈stot〉 = 0. Taking the derivative with respect to h1 then yields

χ1,1 + χ2,1 +
∑
i

χcond
i,1 = 0. (4.12)

In the same way as above,
∑

i χ
cond
i,1 = −χ1,1 < 0 for a single impurity. For two

impurities the total response of the substrate is still negative but slightly reduced in
absolute values due to the presence of the second impurity, since χ2,1 < 0 at d = 13.

Pronounced e�ects due to the presence of the second impurity are observed directly
below S2, at i2, manifesting in a strong enhancement of χi2,1. The antiferromagnetic
RKKY coupling then implies a singlet ground state. Thus, the substrate contribution
to the magnetic moment induced by the magnetic �eld at the �rst impurity vanishes,
χcond

1 =
∑

i χ
cond
i,1 = ∂

∂h1
〈stot,z〉 = 0. We can infer from Eq. (4.12) that in this case

χ1,1 + χ2,1 = 0. Hence, applying a �eld h1 at the �rst impurity induces antiferromag-
netically aligned magnetic impurities with the same absolute magnitude. For J beyond
but close to the RKKY regime we expect the corresponding modulus of the substrate
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4 O�-resonant models

response at sites at i1 and i2 as almost equal. For �nite and actually intermediate J ,
see Fig. 4.3, the e�ect is strongly diminished but still clearly visible. Note that the
above argumentation can analogously be given by referring to the spin-spin correlation.

Based on these conclusions, we can understand a reduction of the response of the
substrate in the TIAM as compared to the SIAM. In Fig. 4.3 we see, however, that the
reduction is not homogeneous: there is a comparatively strong reduction beyond the
second impurity for i > i2, while the response is nearly the same or even enhanced close
to i2 for i < i2, and there is almost no e�ect for i < i1. However, large di�erences
between TIAM and SIAM results are not expected close to the �rst impurity. This
is understood from the extreme Kondo limit, where a picture of two separate Kondo
clouds applies, leading to a magnetic response to a �eld at the �rst impurity similar
to the one of a corresponding single-impurity model. According to the sum rule Eq.
(4.12), we must then expect a weaker response away from i1, i.e. for i > i2.

We can use the sum rule Eq. (4.10) to roughly estimate the size of the individual
"Kondo clouds" by working with the DMRG data for 〈S1si〉 for the single-impurity
model. We de�ne the integrated spin-spin correlation function [69]

Θ(r) = 1 +
∑
|i−i1|<r

〈S1si〉
〈S1S1〉

(4.13)

where Θ(0) = 1. Like in section 2.5, Θ(r) is the fraction of the impurity spin that
remains unscreened by the conduction electrons up to distance r from i1. Applying a
90%-screening criterion, the extent of the cloud amounts to ξK ≈ 10−15 lattice sites,
consistent with the above discussion.

4.5 Distance dependence

The substrate susceptibility χcond
i,1 at the substrate site below the �rst impurity is shown

in Fig. 4.4(a). The local impurity susceptibility χ1,1 and the nonlocal impurity-impurity
susceptibility χ2,1 as functions of the distance d = 4m+1 between the impurities (where
m is an integer) are displayed in Fig. 4.4(b).

As a consequence of the intermediate e�ective coupling strength J = 2, the distance
dependence of χ2,1 cannot be explained by conventional RKKY theory. For J → 0, the
magnetic susceptibility is determined by the e�ective two-spin Heisenberg model Eq.
(4.8) which yields χ2,1 = −χ1,1 ∼ 1/JRKKY ∼ (−1)dd = −d at odd distance d. Both
the decreasing modulus of χ2,1 with increasing d and the fact that χ1,1 + χ2,1 6= 0
are evidences that the RKKY regime has been left. Ful�lling the sum rule Eq. (4.12)
amounts to a strong substrate contribution

∑
i χ

cond
i,i .

Large d implies the applicability of the picture of two individual Kondo clouds. Thus,
|χ2,1| is expected to decrease for growing d, whereas the behaviour of χ1,1 is more
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4.5 Distance dependence

(a) (b)

Figure 4.4: Left: susceptibility χcond
i1,1

at lattice site i1 below the �rst impurity as a

function of the impurity distance d = 4m + 1 (m integer) for U = 8, V =
√

2,
and L = 50 as obtained from R-DMFT (blue line) and DMRG (red line). Right:
local impurity susceptibility χ1,1 and nonlocal impurity-impurity susceptibility χ2,1 as
functions of the impurity distance d for U = 8, V =

√
2, and L = 50 as obtained

from R-DMFT (blue line) and DMRG (red line). R-DMFT calculations are done with
di�erent numbers of bath orbitals in the e�ective single-impurity models: ns = 6, 8, 10,
as indicated. It shows that the R-DMFT results are converged with respect to ns.
Figures taken from Ref. [22].

interesting as it develops a maximum around d = 15 − 20. At short distances, the
increase of χ1,1 is due to the decreasing e�ective RKKY coupling. However, it is not
the substrate contribution |∑i χ

cond
i,1 | that increases accordingly. The Kondo e�ect is

only slightly in�uenced, since the density of states is roughly constant in the center of
the chain. Hence, χ1,1 increases, i.e. the magnetic moments tend to become free for
increasing d. For large d, on the other hand, impurity-impurity interactions can be ne-
glected completely, and one would naively expect a saturation of the local susceptibility
at the inverse Kondo temperature since χ1,1 ∼ 1/TK in a single-impurity model [10, 8].
However, χ1,1 must decrease with increasing d at �xed L = 50, because the impurities
move to the chain edges, where we have a site-dependent Kondo temperature. TK in-
creases with decreasing distance to the edge, since the non-interacting substrate local
density of states at the Fermi energy is increasing. This observation has been already
made in section 2.5 for the single-impurity Kondo box.

Our interpretation is supported by Fig. 4.5(a) which displays R-DMFT results for
χ1,1 and χ2,1 for di�erent system sizes L = 30, L = 50, and L = 90. We �nd
the same qualitative behaviour in all three cases. Quantitatively, however, there are
sizable di�erences at inter-impurity distance d = 1, for example, which show that even
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4 O�-resonant models

(a) (b)

Figure 4.5: Left: local and nonlocal impurity susceptibilities χ1,1 and χ2,1 as functions
of the impurity distance d for U = 8, V =

√
2. R-DMFT calculations for di�erent

system sizes L as indicated. DMRG data are shown for comparison at nearest-neighbour
distance d = 1 only. Figure taken from Ref. [22]. Right: correlation functions of a
TIAM at antiferromagnetic distance as functions of the impurity distance d. For the
cases of d = 4m+ 1 (black symbols) and d = 4m+ 3 (red symbols), each with integer
m. V 2

U
= 0.1 (U = 1000) and L = 50. inter-impurity correlations 〈S1S2〉 (circles) and

correlations between impurity and conduction electrons 〈S1stot〉 = 〈S2stot〉 (squares)
are shown.

with L = 90 substrate sites the chain center cannot be regarded as bulk-like and that
the center local density of states is still considerably dependent on L. On the other
hand, the susceptibilities for d close to L, i.e. for systems with impurities located at
or very close to the chain edges, are almost converged. Note that χ1,1 for d = L − 1
is almost the same for L = 50 and L = 90. Again this shows that, at least for
the larger systems, the magnetic response is dictated by the physics of the single-site
Kondo e�ect. The presence of the second impurity has almost no e�ect on χ1,1 and on
the Kondo temperature of the �rst impurity. This does not exclude a �nite magnetic
interaction between the impurities and in fact a nonzero χ2,1 for d = L − 1 is found,
which, in addition, also does not depend on L for the larger systems.

In Fig. 4.5(b), the spin correlation functions of a comparable TIAM, but with U = 1000
and V 2/U = 0.1, are shown. Due to their rather special behaviour, we want to shift
the discussion of the results for distances d = 4m + 3 (red symbols) to section 4.7.
We could repeat conclusions for the correlations 〈S1S2〉, based on those drawn from
χ2,1. But we rather want to focus on the in�uence of charge �uctuations at the
impurity sites, which become visible in the correlation function 〈Sistot〉. For distances
d = 4m+1, the modulus of 〈Sistot〉 (black squares) increases for increasing d, starting
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4.6 Dependence on the local exchange coupling

from a small value of 0.18 at d = 1. Since 〈S1S2〉 = −0.57 for d = 1 (black
circles), these results are indeed dominated by the antiferromagnetic RKKY interaction,
since a pure singlet-state would correspond to 〈S1S2〉 = −3

4
. On the other hand, for

large d the Kondo e�ect becomes stronger and we could naively expect perfect Kondo
singlets with 〈Sistot〉 → −3

4
which are not interfered by inter-impurity interactions.

However, 〈Sistot〉 → −3
4
would be only possible in the Kondo limit, where the Anderson

impurities become well-formed S = 1
2
impurities. Beyond this parameter regime, i.e.

for intermediate and large V , charge �uctuations become important and we would
rather expect values between −3

4
(perfect Kondo singlets) and −3

8
(V → ∞). This

transition is clearly seen at d = 45 as minimum in 〈Sistot〉 at 〈Sistot〉 = 0.45 and shows
that charge �uctuations are present even despite the extraordinary large U = 1000.

Let us also comment on another illustrative feature of the real-space interplay of the
two Kondo clouds. As known from Sec. 2.5, inside of a single Kondo cloud and close
to the impurity, i.e. in the "local-moment" region, the impurity appears essentially
free since Kondo correlations due to the screening have not yet set in. Taking into
account the extension of Kondo clouds using Eq. (4.13), this circumstance explains
the above mentioned strange behaviour of χcond

i1+1,1/χ
cond
i1−1,1 for d = 5 and d = 9 in Fig.

4.2. For these distances d < ξK ≈ 10−15 and in a naive picture both impurities are in
the local-moment region of each other due to the antiferromagnetic impurity-impurity
interaction. Thereby they can mutually screen the spin of each other, before screening
by conduction electrons takes place on larger length scales, leading to smaller substrate
response as compared to d > ξK .

In the strong-coupling limit J →∞, two Kondo impurities form perfectly local Kondo
singlets which do not interact with each other. Let us consider a one-dimensional
system of even length L, where the two impurities are coupled to the chain edges.
State corrections in second-order perturbation theory in the electron hopping t result
in inter-impurity correlations [113, 70, 114]

〈S1S2〉 = 12

(
20

9

)2(
t

J

)4

〈FS′|sz2szL−1|FS′〉, (4.14)

which are found to decay as 1/d2. |FS′〉 denotes the conduction-electron Fermi sea with
size L− 2, ranging from site 2 to L− 1. Eq. (4.14) can be interpreted as well as one
impurity probing the spin correlations induced by the other impurity, i.e. correlations
from the exterior region of the other Kondo cloud.

4.6 Dependence on the local exchange coupling

The crossover between the regime of individual Kondo clouds for large distances d
and correlated impurities for small d can be converted to a crossover from strong
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(a) (b)

Figure 4.6: Left: local and nonlocal impurity susceptibilities χ1,1 and χ2,1 as functions

of V
2

U
for U = 8 and d = 1 as obtained by R-DMFT, real-space two-site DMFT (see Ref.

[22] for details) and DMRG for a system with L = 50. Insets: Same quantities plotted
on a logarithmic scale. Dashed lines indicate V 2

U
where χ1,1 and χ2,1 diverge. Figure

taken from Ref. [22]. Right: correlation functions of a TIAM at antiferromagnetic
distance d = 1 ("afm", black and red symbols) and at ferromagnetic distance d = 2
("fm", green symbols). Correlations are shown as functions of V 2

U
(U = 1000) on a

log scale. Di�erent system sizes L = 50 (black and green symbols) and L = 100 (red
symbols) are considered. inter-impurity correlations 〈S1S2〉 (circles) as well as 〈S1stot〉
(squares) are displayed. Due to the unavoidable, asymmetric impurity positions for
d = 2, we show in this case also 〈S2stot〉 (triangles).

couplings to weak couplings. Fig. 4.6(a) shows the susceptibilities for d = 1 as
functions of V 2/U . For decreasing J , the system crosses over to a perfect RKKY model,
accompanied by signi�cant increasing deviations between R-DMFT and numerically
exact DMRG data. Those can be noticed also in previous �gures of this chapter for
results at small distances (Figs. 4.4(b), 4.4(a), and 4.5(a)).

As long as V 2/U is large, the picture of two more or less separate Kondo clouds is
maintained and correctly reproduced by R-DMFT. But as soon as V 2/U decreases, the
mean-�eld approach, inherent in the method, breaks down completely. The screening
of the magnetic moments is too weak to compensate the ordering tendencies induced
by a comparatively strong inter-impurity interaction. The system becomes too suscep-
tible to an arti�cial spontaneous symmetry breaking that is induced by the mean-�eld
approximation itself. While the impurities' state is given by a SU(2) invariant singlet

1√
2
(| ↑↓〉 − | ↓↑〉) for J → 0, the mean-�eld theory predicts an incoherent mixture of

degenerate ordered states | ↑↓〉 and | ↓↑〉.
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4.7 Di�erent distances between the impurities

This qualitative failure is indicated by divergencies of χ1,1 and χ2,1 which take place
at coupling strengths V 2/U which are somewhat smaller than those where �rst quan-
titative deviations from the exact data were found (see insets of Fig. 4.6(a)). This
also implies that the mean-�eld approach is able to exhibit its limitations by itself
before breaking down. One can �nd that the arti�cial transition occurs roughly at
J = 8V

2

U
≈ 1 for d = 1, i.e. in the intermediate J region.

Again, we want to compare our �ndings to 〈S1S2〉 and 〈Sistot〉 in Fig. 4.6(b) for
the TIAM with U = 1000. 〈S1S2〉 (black circles) indicates the crossover from Kondo
to RKKY regime by decreasing from almost vanishing values for strong V to perfect
impurity singlet correlations −3

4
for weak V . Complementary, 〈Sistot〉 (black squares) is

large in absolute values and antiferromagnetic due to the Kondo e�ect for intermediate
and strong couplings, while it is vanishing for weak V due to the disappearing Kondo
e�ect for ∆ > TK . For a larger system size L = 100 (red symbols), the �nite-size
gap is approximately half as small. It is seen that this circumstance fosters the Kondo
e�ect, since at weak but �xed V the modulus of 〈S1S2〉 is decreasing for increasing L,
whereas the modulus of 〈Sistot〉 is increasing.

4.7 Di�erent distances between the impurities

So far we discussed the results for odd distances d = 4m + 1 (m integer). Inspecting
the relevant correlations for odd distances d = 4m+3 and �xed V and U , shown in Fig.
4.5(b) (red symbols), we observe that the distance dependence of local and nonlocal
correlations is reversed: for increasing d, instead of vanishing, the inter-impurity corre-
lation 〈S1S2〉 even increases, while 〈Sistot〉 decreases. This pronounced odd-even e�ect
is caused by the local density of states close to the Fermi energy, which is decreasing
towards the chain edges for d = 4m + 3, while it is increasing for d = 4m + 1. It is
a consequence of Friedel oscillations from the chain edges [23]. At the corresponding
substrate sites i1 and i2 (symmetric to the chain center) we have a low weight |UikF |2
of the highest (doubly) occupied one-particle energy eigenstate of the non-interacting
substrate at the Fermi wave vector kF , whereas |UikF |2 is high for distances d = 4m+1.
The weight |UikF |2 determines the local substrate density of states and thus the local
Kondo temperature. Consequently, for increasing d = 4m + 3, the Kondo e�ect is
more suppressed, resulting in more dominant RKKY exchange. At the edges (d = 47)
|UikF |2 is suppressed by more than a factor of 100 compared to the d = 4m + 1 case
(d = 49), and the Kondo temperature is essentially vanishing.

Two-impurity models at ferromagnetic distances d = 2m are likewise interesting and
far from trivial. In the Kondo limit the impurities become ferromagnetically correlated
S = 1/2 spins, leading to a triplet ground state. This is easily veri�ed by means of
DMRG calculations for L = 50 (Fig. 4.6(b)): 〈S1S2〉 → 1

4
for V → 0 (green circles).

The purely RKKY-ruled behaviour can be understood for J → 0 in the same way
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as in the antiferromagnetic case as a cuto� of the Kondo e�ect by the �nite system
size. However, as discussed in section 4.2, the triplet formed by both impurities can be
screened as a whole by the conduction electrons and thus be attributed an own Kondo
temperature T (2spins)

K . Note that this screening can only take place for ∆ < T
(2spins)
K

(but J < JD). This is not in con�ict with the adiabaticity of the ground state enforced
by Lieb's theorem (Sec. 3.5), since, in the case of the screening, an additional triplet
develops in the substrate, so that the total ground-state spin Sgs = 1 is preserved.
The physical background of this mechanism will occupy us in chapter 10. On the
other hand, we know from section 4.2 that the Kondo temperatures of a two-impurity
model at ferromagnetic distance may be much smaller than the one of a single-impurity
model, T (2spins)

K < T
(1spin)
K , resulting in J∆,1spin < J∆,2spins. This suggests that L = 50

is far too small to accomodate the corresponding screening cloud. It is imaginable that
this condition changes in larger systems, which will be explored in chapter 9.

The numerical results in Fig. 4.6(b) substantiate our considerations: over a large
parameter region 0.1 ≤ V 2/U ≤ 1, the correlation function 〈S1stot〉 (green squares)
remains weaker for �xed V than the corresponding results for d = 1. Consequently,
the impurities are much more free and stronger governed by the ferromagnetic RKKY
interaction. On the other hand, for large V 2/U charge �uctuations reduce the spin at
the impurity sites.4

R-DMFT reproduces the spin-triplet ground state for small V 2/U by predicting, for in-
�nitesimally small external magnetic �eld in the +z direction, a spontaneously symmetry-
broken ferromagnetic state | ↑↑〉. However, for increasing V , 〈Sztot〉 deviates from unity
and even vanishes for V →∞.

4.8 Summary

We computed spin correlation functions and static spin susceptibilities of two-impurity
Anderson models with �nite L. Depending on the distance d between the two impu-
rities and depending on the hybridisation strength V , we could classify the di�erent
features of the correlations as single-impurity e�ects or as resulting from the e�ective
impurity-impurity interaction by comparing the TIAM results with those obtained from
a corresponding single-impurity model. In this way, clear reminiscences of the RKKY
interaction, i.e. of nonlocal singlet formation, are found to compete with the formation
of individual Kondo clouds, i.e. screening of the impurity magnetic moments.

In addition, the correlations are strongly a�ected by the �niteness of the host system
and by its boundaries. This results in e�ects from strong Friedel oscillations in the local

4This can be seen in Fig. 4.6(b) as the minimum of 〈S1stot〉 (green squares) and 〈S2stot〉 (green
triangles) at V 2

U = 2.
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density of states, especially if the impurities are in the vicinity of one of the chain edges.
In this context, it is important to notice that due to the RKKY interaction, which may
generate a new Kondo scale T (2spins)

K < T
(1spin)
K , �nite-size e�ects may be dominant

over a much larger parameter range than in the single-impurity case, as observed in
the TIAM at ferromagnetic distance.

Another aspect of our study was the reliability of real-space DMFT and it turned out
that the aforementioned, complex interplay is almost perfectly recovered by R-DMFT.
Qualitatively, the R-DMFT is reliable as long as the model parameters, in particular
the local exchange coupling J ∼ V 2

U
, are in a regime well separated from the arti�cial

symmetry-broken state. This parameter regime, where the impurity susceptibilities are
not too large or where the magnetic moments are predominantly interacting with the
conduction electrons rather than with each other, goes well beyond the extreme Kondo
regime of non-overlapping Kondo clouds. The critical value of J = 8V

2

U
≈ 1 for d = 1

gives an impression of a lower bound for the applicability of R-DMFT.

On the other hand, nonlocal e�ective interactions do not contribute to the single-
particle self-energy on the DMFT level: the DMFT self-energy is just de�ned as the
sum of the local skeleton diagrams only. This is a well-known shortcoming of mean-
�eld theory, which gives rise to artifacts in the RKKY regime. Namely, for J → 0 the
magnetic impurities are only weakly coupled to the host and thus become extremely
susceptible. A tiny Weiss �eld within DMFT is then su�cient to drive the system to an
arti�cial symmetry-broken state; i.e., a Néel-like state rather than a nonlocal singlet of
the impurity magnetic moments is formed. Therefore, the physics of the RKKY regime
in a two-impurity model is not accessible by DMFT.

However, an emerging question is how the total ground-state spin Sgs is maintained
for all J . It was raised for a TIAM at ferromagnetic distance, where a triplet ground
state is obtained for all �nite V and U > 0. While we could easily identify the RKKY
exchange as respective driving mechanism at weak J , it is not clear how a triplet builds
up for strong J , where we �nd two paramagnetic Kondo clouds. This puzzle will be
our inspiration to investigate in-depth the strong-coupling regime in chapter 10.

Considering e�ects from the �nite chain size, the next logical step is to examine "on-
resonance cases", which generate an even more interesting class of �nite-size e�ects
characterised by unconventional ground states. They will be discussed in the following
chapters.
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5 On-resonant models

5.1 Introduction

Unlike "o�-resonance cases" (chapter 4), in "on-resonance cases" the highest occupied
one-particle eigenenergy εkF is singly occupied and thus the ground state of the non-
interacting conduction-electron system is twofold Kramers degenerate [19, 20]. The
essential di�erence is that when the standard Kondo cloud picture collapses (∆ > TK),
the kF state may be subject to residual impurity couplings for ∆ > TK , inducing a
fundamentally di�erent behaviour for J → 0, as compared to o�-resonance cases. This
circumstance may result in an unconventional reentrant competition between RKKY
exchange and Kondo e�ect where the ground state deviates from predictions of standard
RKKY perturbation theory. This will constitute an important, if not the fundamental,
cornerstone of our weak-coupling picture (|J | � t).

In this chapter, we will see that the �nite system size along with open boundary
conditions causes an unconventional, spatially dependent competition with the RKKY
interaction. As known from section 4.2, Doniach's scaling arguments predict that a
multi-impurity system is dominated by the RKKY interaction for J < JD or |JRKKY| >
TK , respectively. It allows for magnetic ordering among the impurities, which then can
be screened by the Kondo e�ect as a whole.

Cutting the nonperturbative Kondo e�ect at J∆ (where ∆ = T
(1spin)
K ) implies that

standard perturbation-theory in J is regularised. In on-resonance cases, our results
show that screening of an impurity spin is possible for J → 0 but competes with the
RKKY exchange. Our concept is summarised in Fig. 5.1. The corresponding linear-
in-J Kondo scale depends on the weight of the single-electron eigenstate at the Fermi
edge at the substrate site "below" the impurity. Sites with �nite weight are termed
"good sites", whereas for "bad sites" the linear-in-J contribution is vanishing and these
sites are therefore subjected to RKKY coupling.

In the following we will show that these arguments give a complete qualitative picture
of this physics, which is supported by numerical results obtained for a three-impurity
Kondo using full diagonalisation, weak-coupling perturbation theory, and DMRG (Sec.
3.3). Note that in this and the following chapters we switch to Kondo impurity mod-
els, which neglect valence �uctuations at impurity sites, to concentrate on the spin
exchange.
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5 On-resonant models

G G GB B B

Figure 5.1: Competition between Kondo screening and RKKY interaction in an on-
resonant quantum box. Local Kondo singlets (LKS) are formed for extremely strong
J (regime 4). With decreasing J , the energy to break up a Kondo singlet becomes
exponentially small (3). Below JD, RKKY coupling is dominant (2). Finite-size e�ects
set in for J < J∆, de�ned as the point where the bulk Kondo temperature equals the
�nite-size gap, TK = ∆. If the system is su�ciently large, we have J∆ < JD. The
singlet-formation energy is linear in J for "good" and vanishes for "bad" sites (1):
i.e., for sites where the kF conduction-electron wave function has a �nite (vanishing)
weight, the Kondo e�ect "wins" (RKKY exchange wins). The remaining unscreened
moments are subjected to nonlocal RKKY exchange subsequently. Simultaneously,
RKKY exchange may generate a further Kondo scale T

(Rspins)
K < T

(1spin)
K (not shown

here), whose Kondo correlations are cut at T
(Rspins)
K = ∆ (Sec. 5.4). As we will

discuss in chapter 8, the coupling to the environment gives rise to an energy scale δ
[49, 115, 50], below which the reentrant competition breaks down and an exponentially
small Kondo scale leads to an RKKY regime (0). The arrow marks the parameter range
covered by the numerical calculations of Ref. [21]. Figure taken from Ref. [21]. The
pictogram visualises the typical distribution of good (G) and bad sites (B) for sites
i = 1, 2, 3, . . .

To gain a deeper understanding, we start with the perturbation theory with respect to
the local coupling J (Sec. 5.2), which aims at the derivation of an e�ective low-energy
Hamiltonian for weak J . Additionally, as supplement, we specify the corresponding
results for the "o�-resonance case" (chapter 4). Subsequently, we apply the results to
a particular three-impurity model which turns out to be a prime example as particular
correlation functions re�ect the dramatic impact of �nite-size and boundary e�ects on
the interplay between RKKY exchange and Kondo e�ect. However, we emphasise that
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5.2 Perturbation theory in the weak-coupling regime

we choose the three-impurity model for the sake of simplicity. Similar results could
be obtained also for other models if they are "on-resonant", e.g. two-impurity models
with an odd number of conduction electrons. In the following, we will closely follow
the arguments and explanations presented in our paper, Ref. [21].

5.2 Perturbation theory in the weak-coupling

regime

Since the spectrum of a spatially con�ned host system is gapped by ∆, Anderson's
infrared orthogonality catastrophe will be prevented by removing the exponentially
large number of possible excitations at the Fermi energy that are introduced by a
single impurity (Sec. 2.3). Therefore, the overlap between the ground state without
and with a single impurity will be �nite, permitting an adiabatic connection of both
situations by perturbation theory.

Thus, we can motivate the usefulness and reliability of perturbation theory in the �nite-
size regime where ∆ > TK . Our intention is to understand the weak-coupling regime
J � t in on-resonance cases as well as in o�-resonance cases by deriving an e�ective
low-energy Hamiltonian according to Ref. [116] (p. 39).

The multi-impurity Kondo model Hamiltonian Eq. (2.34) can be decomposed as H =
H0 +H1, where

H0 = −t
∑
〈i,j〉,σ

c†iσcjσ (5.1)

describes the system of non-interacting conduction electrons, and

H1 = J
R∑
r=1

sirSr (5.2)

is the local interaction between the conduction-electron spin at site ir with the r-th
impurity spin.

The on-resonance case

In an on-resonance case the system's ground state

|FS, µ〉 ⊗ |µ1〉 ⊗ . . .⊗ |µR〉 =: |µ;µ1, . . . , µr〉 (5.3)

is 2R+1-fold degenerate if there are R impurity spins. |FS, µ〉 represents the Fermi sea
of an odd number N of conduction electrons with a net spin projection µ = ±1

2
which
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5 On-resonant models

is due to the z-component of the spin of the electron in the highest singly occupied
one-particle state kF . µr = ±1

2
for r = 1, . . . , R is the magnetic quantum number of

the localised spin Sr, and |µr〉 the corresponding eigenstate of S(z)
r .

Let P0 be the projector onto the subspace spanned by the degenerate ground states.
Then, for �nite J 6= 0 and up to O(J2), the interacting eigenenergies and eigenstates
of H are obtained from the e�ective Hamiltonian

He� = P0H1P0 +

m6=0∑
m

1

E0 − Em
P0H1PmH1P0 (5.4)

which is de�ned in the restricted Hilbert space corresponding to P0. Here, m 6= 0
labels the di�erent subspaces spanned by non-interacting basis states with energy Em
orthogonal to the ground states with energy E0. This is the standard expression
obtained from degenerate second-order perturbation theory [116].

The linear-in-J term is

P0H1P0 = J
R∑
r=1

∑
µ,µ′

∑
µ1,...,µR
µ1,...,µ

′
R

(5.5)

|µ;µ1, . . . , µR〉〈µ;µ1, . . . , µR|sirSr|µ′;µ′1, . . . , µ′R〉〈µ′;µ′1, . . . , µ′R|.

Employing a unitary transformation of the one-particle basis, c†iσ =
∑

k Uikc
†
kσ, which

diagonalises the tight-binding part, the local spin of the conduction-electron system at
site ir can be written as:

sir =
1

2

∑
σσ′

∑
kk′

Uirkc
†
kσσσσσσ′ck′σ′Uirk′ . (5.6)

Therewith, the matrix element becomes

〈µ;µ1, . . . , µR|sirSr|µ′;µ′1, . . . , µ′R〉 =
1

2

∑
σσ′

∑
kk′

UirkUirk′〈FS, µ|c†kσck′σ′ |FS, µ′〉

× σσσσσ′δµ1µ′1 . . . 〈µr|Sr|µ
′
r〉 . . . δµRµ′R . (5.7)

Terms with k < kF do not contribute, since
∑

σσ′ σσσσσ′δσσ′ = 0. Therefore, we can
assume k = k′ = kF and get 〈µ|c†kF σckF σ|µ′〉 = δµσδµ′σ′ . Thus

〈µ;µ1, . . . , µR|sirSr|µ′;µ′1, . . . , µ′R〉 = U2
kF ir

1

2
σσσµµ′δµ1µ′1 . . . 〈µr|Sr|µ

′
r〉 . . . δµRµ′R .

(5.8)
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5.2 Perturbation theory in the weak-coupling regime

With the spin of the kF electron, sF := 1
2

∑
σσ′ c

†
kF σ

σσσσσ′ckF σ′ , we �nd

P0H1P0 = P0

(
R∑
r=1

J (1)
r SrsF

)
P0. (5.9)

The e�ective linear-in-J coupling is J (1)
r := JU2

irkF
.

In order J2 we obtain analogously

P0H1PmH1P0 = J2
∑
r,r′

∑
µ,µ′

∑
µ1,...,µR
µ1,...,µ

′
R

(5.10)

|µ;µ1, . . . , µR〉〈µ;µ1, . . . , µR|sirSrPmsir′Sr′ |µ′;µ′1, . . . , µ′R〉〈µ′;µ′1, . . . , µ′R|.

In the m sum only single-particle excitations (p, σ)→ (p′, σ′) with p 6= p′ contribute:

Pp,p′,σ,σ′ =
∑

µ̄;ν1,...,νR

c†pσcp′σ′ |µ̄;µ1, . . . , µR〉〈µ̄;µ1, . . . , µR|c†p′σ′cpσ (5.11)

=
∑
µ̄

c†pσcp′σ′ |FS, µ̄〉〈FS, µ̄|c†p′σ′cpσ. (5.12)

We insert this into the above equations, sum over p, p′, σ, σ′ (p 6= p′), and employ
the unitary transformation of sir and sir′ to k-space. The resulting matrix elements
factorise into matrix elements of impurity spins and matrix elements of conduction-
electron degrees of freedom. The latter are of the form

〈µ|c†kσck′σ′c†pσ′′cp′σ′′′ |µ̄〉 = 〈0|ckFµc†kσck′σ′c†pσ′′cp′σ′′′c†kF µ̄|0〉 (5.13)

with the nondegenerate Fermi sea |0〉 of N − 1 conduction electrons, where N − 1 is
an even number. This matrix element is conveniently computed using Wick's theorem.
After some straightforward algebra, we get

〈µ;µ1, . . . , µR|
m6=0∑
m

H1PmH1

E0 − Em
|µ′;µ′1, . . . , µ′R〉 (5.14)

=
J2

2

∑
r,r′

∑
α,β∈{x,y,z}

〈µ1, . . . , µR|S(α)
r S

(β)
r′ |µ′1, . . . , µ′R〉

×
[
δαβδµµ′

∑
p<kF ,p′>kF

1

εp − εp′
UirpUirp′Uir′p′Uir′p

+
(
σασβ

)
µµ′ UirkFUir′kF

∑
p>kF

1

εkF − εp
UirpUir′p

−
((
σβσα

)
µµ′ − 2δαβδµµ′

)
UirkFUir′kF

∑
p<kF

1

εp − εkF
UirpUir′p

]
.
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5 On-resonant models

We �nally use the identity σασβ = δαβ+i
∑

γ εαβγσ
γ for the products of Pauli matrices,

treat the terms r = r′ and r 6= r′ separately, and exploit partice-hole symmetry, i.e.,∑
p>kF

1
εkF−εp

UirpUir′p =
∑

p<kF
1

εp−εkF
UirpUir′p. This yields

m 6=0∑
m

1

E0 − Em
P0H1PmH1P0 = P0

(
R∑
r=1

J (2)
r SrsF −

R∑
r,r′=1

Jrr′SrSr′

)
P0, (5.15)

where

Jrr′ =
J2

2

p 6=p′∑
p≤kF ,p′≥kF

1

εp′ − εp
UirpUirp′Uir′p′Uir′p (5.16)

and

J (2)
r = 2J2U2

irkF

∑
p>kF

1

εp − εkF
U2
irp. (5.17)

Jrr′ are the RKKY couplings, while J (2)
r is the e�ective local Kondo coupling. Taking

the limit L→∞, J (2)
r expectedly diverges (Sec. 2.3): it is rougly ∼∑p

1
εp
∼
∫
dp 1

εp
∼

lnL, where p denotes a conduction-electron momentum.

In general, without assuming partice-hole symmetry, we obtain

m 6=0∑
m

1

E0 − Em
P0H1PmH1P0

=
J2

2
P0

[
2

R∑
r=1

|UirkF |2
(∑
p>kF

|Uirp|2
εp − εkF

+
∑
p<kF

|Uirp|2
εkF − εp

)
SrsF

−
R∑

r,r′=1

p 6=p′∑
p≤kF ,p′≥kF

UirpUirp′Uir′p′Uir′p

εp′ − εp
SrSr′

]
P0.

The o�-resonance case

For completeness, we now turn to the o�-resonance cases, in which the total number
of conduction electrons is even. The ground states are given by

|FS〉 ⊗ |µ1〉 ⊗ . . .⊗ |µR〉 =: |µ1, . . . , µr〉, (5.18)

where the degeneracy fully stems from the uncorrelated impurity spins.
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5.2 Perturbation theory in the weak-coupling regime

Repeating our considerations for the linear-in-J term,

P0H1P0 = J

R∑
r=1

∑
µ1,...,µR
µ1,...,µ

′
R

|µ1, . . . , µR〉〈µ1, . . . , µR|sirSr|µ′1, . . . , µ′R〉〈µ′1, . . . , µ′R|,

(5.19)

we �nd that this term is vanishing, because there is no conduction-electron state at
the chemical potential, and states below it (εk < µ) do not contribute.

The second-order contribution is

P0H1PmH1P0 = J2
∑
r,r′

∑
µ1,...,µR
µ1,...,µ

′
R

(5.20)

|µ1, . . . , µR〉〈µ1, . . . , µR|sirSrPmsir′Sr′|µ′1, . . . , µ′R〉〈µ′1, . . . , µ′R|.

Again only single-particle excitations (p, σ)→ (p′, σ′) with p 6= p′ give contributions:

Pp,p′,σ,σ′ =
∑

ν1,...,νR

c†pσcp′σ′ |µ1, . . . , µR〉〈µ1, . . . , µR|c†p′σ′cpσ (5.21)

= c†pσcp′σ′ |FS〉〈FS|c†p′σ′cpσ. (5.22)

One easily �nds

〈µ1, . . . , µR|
m6=0∑
m

H1PmH1

E0 − Em
|µ′1, . . . , µ′R〉 (5.23)

=
J2

2

∑
r,r′

∑
α,β∈{x,y,z}

〈µ1, . . . , µR|S(α)
r S

(β)
r′ |µ′1, . . . , µ′R〉[

δαβδµµ′
∑

εp<µ,εp′>µ

1

εp − εp′
UirpUirp′Uir′p′Uir′p

]
,

which gives a result comparable to the on-resonance case but without Kondo couplings

m6=0∑
m

1

E0 − Em
P0H1PmH1P0 = P0

(
−

R∑
r,r′=1

J ′rr′SrSr′

)
P0 (5.24)

J ′rr′ =
J2

2

∑
εp<µ,εp′>µ

1

εp′ − εp
UirpUirp′Uir′p′Uir′p. (5.25)
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Figure 5.2: Eigenenergies of the e�ective low-energy model (solid lines, Eq. (5.26)),
as functions of the local coupling J . Note that energies are shown only for states, arising
from the subset of unperturbed conduction-electron states which are ground state(s)
and thus separated from higher energy states by the �nite-size gap ∆. For compar-
ison the corresponding eigenenergies of the original model for weak J are shown, as
obtained from full diagonalisation (circles). Di�erent impurity systems are considered
with up to three impurities in on-resonance con�gurations as well as in o�-resonance
con�gurations. "g": single-impurity model with impurity at a good site (green), "b":
single-impurity model with impurity at a bad site (red), "gbg": "good-bad-good"
three-impurity con�guration (black), "bbb": "bad-bad-bad" three-impurity con�gura-
tion (orange), "afm": two-impurity model at antiferromagnetic distance d = 1 (blue).
The pictogram visualises the distribution of good (G) and bad sites (B) in a one-
dimensional chain with open boundary conditions and an odd number of conduction
electrons for sites i = 1, 2, 3, . . .

Comparison to full diagonalisation

In Fig. 5.2 the eigenenergies of several small impurity systems with up to three impu-
rities (symbols) are compared with the eigenenergies of the corresponding low-energy
e�ective models (lines), see Eq. (5.26). The perfect agreement for J → 0 is replaced
by small deviations for intermediate J . These are mainly due to the formation of con-
ventional Kondo singlets (i.e. ξK < L), which give negative contributions ∼ −3

4
J .

This is clearly not captured by the perturbation theory above where Kondo clouds (if
present) are established only with the kF electron and, thus, are of the size of the
spatial extension of this state, i.e. generally ξK = L. Hence, the largest deviations are
observed for o�-resonance systems (R = 2, blue) or systems with impurities at bad
sites (e.g. R = 1 at a bad site, red) where Kondo clouds are absent for TK < ∆.
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5.3 The "bad-good-bad" con�guration

Remarks

We want to shortly comment on the results. An on-resonance case is characterised
by a �nite-size system which sustains just a single conduction-electron state within ∆
to form a Kondo singlet�the kF state. From Eq. (5.15) we can read o� that the
linear-in-J contribution J (1)

r is the leading order coupling at weak J . It depends on
the weights of the kF state at the impurity site (Sec. 2.4) and is �nite in the models
under consideration at odd sites i = 1, 3, . . . (Eq. (2.32)), whereas it vanishes at
even sites i = 2, 4, . . . (see the pictogram in Fig. 5.2). The same scheme is found
for the second-order local contribution J (2)

r . However, the nonlocal RKKY couplings
Jrr′ are generally always �nite. By contrast, in o�-resonance cases (Eq. (5.24)) there
is no electron state within ∆, and hence only the RKKY interaction is retained. We
emphasise that our results are not dependent on the dimensionality of the host system.

Our �nal remark picks up on the topic of a ferromagnetic J , for which our derivations
are likewise valid. As known from section 2.3, a ferromagnetic Kondo e�ect cannot
develop, because the ferromagnetic Je� decreases in the course of an RG procedure. On
the other hand, if Je� is su�ciently small, we may apply our weak-coupling perturbation
theory. This would occur at large distances r, which correspond to low cuto� energy
scales in an RG treatment. Using the results above, we �nd that an impurity at a
good site is then in a triplet state with the kF conduction electron; what we could
call a "ferromagnetic �nite-size Kondo e�ect". Let us go back to Fig. 2.8(b) in
section 2.5, where we showed spatially resolved impurity-electron spin correlation for
a ferromagnetic single-impurity Kondo model. On the basis of our considerations, the
large-distance regime is supposed to be governed by the �nite-size Kondo e�ect. And
indeed, we obtain ferromagnetic impurity-electron spin correlations there, which are
almost constant as functions of r and decreasing for increasing L. This indicates that
at these length scales the triplet is in fact made up with the kF electron, which is
homogeneously distributed among good sites, since U2

ikF
= 2

L+1
for good sites i (Eq.

(2.32)).

5.3 The "bad-good-bad" con�guration

Let us take a special respresentative of an on-resonant "Kondo-vs.-RKKY-exchange
quantum box" and regard a model composed of three impurities coupled to adjacent
sites of a chain. A naive argument based on Doniach's idea would consider the cor-
responding e�ective three-spin RKKY model with indirect antiferromagnetic couplings
of the central with the adjacent spins and ferromagnetic coupling between the latter.
The dominance of the RKKY exchange for weak couplings J would lead to a total
impurity-spin doublet ground state, independent of the absolute magnitudes of the
RKKY couplings.
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J
(1)
2 + J

(2)
2

J12 J23
J13

S1 S2 S3

sF

Figure 5.3: E�ective low-energy model in the "bad-good-bad" con�guration for ∆ >
TK : only the central impurity S2 is capable of forming a singlet state with the kF
conduction-electron spin sF due to a �nite Ui2kF 6= 0. The e�ective local coupling
of S2 to the conduction electrons has contributions both in �rst and second-order
perturbation theory, J

(1)
2 + J

(2)
2 . Indirect RKKY exchange occurs in second-order per-

turbation theory in J , leading to antiferromagnetic couplings for adjacent impurities
and ferromagnetic coupling otherwise.

However, it is in fact the Kondo e�ect that wins in this case: since the strong-coupling
Kondo �xed point is cut o� for J → 0 in a �nite lattice, we �nd that perturbation theory
is regularised and predicts that impurities couple to the conduction-electron system on
a linear-in-J scale (Sec. 5.2). There will be a �nite weak J for which this scale is larger
than the RKKY scale ∼ J2 (sketched in Fig. 5.1). For couplings below this particular
J , we expect the formation of a spin-singlet involving the conduction electrons. We
will call this a "Kondo singlet" although TK ∼ J rather than being exponentially small.
Additionally, as continuation of the Kondo cloud picture, one might think of this spin
singlet as a "Kondo cloud" which spreads over the whole lattice (Sec. 2.5).

In understanding the consequences of this "�nite-size Kondo e�ect"�as we will call
this mechanism,�it is instructive to inspect the perturbative coupling of the impurity
spin to the conduction-electron system. Whether or not there is this coupling depends
on the weight factor Uik at k = kF which is the i component of the conduction-band

one-particle energy eigenstate at εF : UikF =
√

2
L+1

sin(ikF ). For half-�lling, where

kF = π
2
, this quantity is �nite at i = 1, 3, . . . , L − 2, L, which we call "good" sites,

opposed to "bad" sites at i = 2, 4, . . . , L− 1 with UikF = 0.

In section 5.2, we derived the low-energy e�ective Hamiltonian up to order J2 (Eq.
(5.15))

He� =
R∑
r=1

(
J (1)
r + J (2)

r

)
SrsF −

R∑
r,r′=1

Jrr′SrSr′ , (5.26)

where sF is the spin of the delocalised kF electron.
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5.4 Uncovering the RKKY regime

The e�ective Hamiltonian inherits the symmetries of the full model such as total spin
and particle conservation. He� can be veri�ed by full diagonalisation for very small
systems with L = 5 and L = 9 but also for larger chains with L = 21 and L = 49
using DMRG. The e�ective coupling constants depend on the weights Uirk and εk as
follows for half-�lling

J (1)
r = J |UirkF |2 (5.27)

J (2)
r = 2J2|UirkF |2

∑
p>kF

|Uirp|2
εp − εkF

(5.28)

Jrr′ =
J2

2

p 6=p′∑
p≤kF ,p′≥kF

1

εp′ − εp
UirpUirp′Uir′p′Uir′p. (5.29)

The ground-state properties now crucially depend on the position of the impurities.

In the following, we want to focus on the "bad-good-bad" con�guration of the three
impurities (illustrated in Fig. 5.3): S2 is coupled to the good central site, and S1

and S3 are at the adjacent sites, which are bad sites. For small J and small L with
T

(bulk)
K < ∆, the perturbative arguments given above apply; the Kondo scale is linear

in J and S2 is Kondo screened. The weaker ferromagnetic RKKY interaction then
couples S1 and S3 to a nonlocal spin triplet. Thus we obtain a total ground-state spin
Sgs = 1.

This is clearly re�ected by several ground-state spin correlation functions (Fig. 5.4(a)):
for L = 9 at J → 0, we �nd 〈S1S3〉 → 1

4
(red symbols), while 〈S1S2〉 → 0 (blue

symbols) and 〈S2S3〉 → 0 by symmetry. The local correlations vanish 〈S1si1〉 → 0
at the bad sites (red symbols in Fig. 5.5(a)), but for the good one (green symbols)
〈S2si2〉 → 0 remains �nite for J → 0.

In the strong-J limit J > J∆, the distinction between good and bad sites becomes
irrelevant, because the Kondo singlet is formed with conduction electrons in the energy
range TK measured from the Fermi energy εF , implying an e�ective averaging. Thus,
all local spin correlation functions behave equally for strong J . That they tend to −3/4,
indicates local Kondo-singlet formation, which is basically independent of the system
size.

5.4 Uncovering the RKKY regime

At intermediate J , i.e. J∆ < J < JD, the conventional interplay between Kondo
screening and RKKY interaction is recovered and a domination of the RKKY interaction
is expected. However, this crucially depends on the system size: for small systems, we
rather have J∆ > JD, and the intermediate-J regime is skipped. This can be seen
in Fig. 5.4(a) for L = 9 and 〈S1S2〉, which stays close to zero in the entire J
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Figure 5.4: Left: inter-impurity spin correlations 〈SiSj〉 showing reentrant competi-
tion between Kondo screening and RKKY coupling for the R = 3 model ("bad-good-
bad" as discussed in the text) with increasing system size up to L = 301 sites. Note
the log scale for J . With decreasing J , di�erent regimes are found: (4) strong-coupling
limit with local Kondo singlets. (3) Kondo screening dominates over RKKY interaction
(shown in Fig. 5.5(a)). (2) RKKY interaction is the leading energy scale for large
systems (JD > J∆). (1) The linear Kondo scale dominates and leads to a screening
of the central spin (at a good site), while in a second step RKKY exchange couples
the remaining spins (at bad sites) to a nonlocal triplet. Right: respective total spin of
the impurity system 〈S2

tot〉 =
∑

ij〈SiSj〉 as functions of J on a log scale. Dashed lines

indicate the characteristic values in the di�erent regimes as discussed in the text.

regime with an only shallow minimum around J = 1.5. In the strong-coupling limit
the total impurity spin 〈S2

tot〉 =
∑

ij〈SiSj〉 is made up by three independent local
moments S = 1/2 with 〈S2

tot〉 = 3 · 3
4
, while in the weak-coupling regime one determines

〈S2
tot〉 = 2 + 3

4
for the triplet of S1 and S3, and S2 being uncorrelated with S1 and S3,

see e.g. the results for L = 9 in Fig. 5.4(b).

RKKY correlations among neighbouring impurity spins can develop only if the system
is su�ciently large, namely if J∆ < JD. In fact, for larger L the correlation function
〈S1S2〉 → −1/2 in the intermediate-J regime and 〈S1S3〉 is close to 1/4. These are the
spin correlations of a three-spin system with ferromagnetic coupling between S1 and S3

and antiferromagnetic ones otherwise. Consequently, a more and more perfect Stot → 1
2

can develop for increasing L, con�rmed by Fig. 5.4(b): 〈S2
tot〉 → 3

4
for intermediate

J , e.g. at J = 0.6 for L = 149. With decreasing J , the system eventually crosses
over to the perturbative �nite-size Kondo regime at a J∆ which strongly decreases with
decreasing L. From Fig. 5.4(b), one �nds for example J∆ = 0.5 for L = 149.
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5.4 Uncovering the RKKY regime

(a) (b)

S=0

S=1

S=1/2
S=0

Figure 5.5: "Bad-good-bad" con�guration as discussed in the text. Left: local spin
correlations 〈Srsir〉 as functions of J on a log scale. Figure taken from Ref. [21].
Right: 〈Sistot〉 as functions of J on a log scale. For L = 5 (black circles) and L = 149
(red squares). Open symbols: 〈S1stot〉 = 〈S3stot〉, �lled symbols: 〈S2stot〉.

Following the experiences with two-impurity models at ferromagnetic distance in section
4.7, one may speculate that the nonlocal impurity spin doublet, that is formed by the
RKKY interaction in the intermediate-J regime with ∆ < T

(bulk)
K < |JRKKY|, is Kondo

screened in a subsequent step on a very small energy scale T (3spins)
K � T

(bulk)
K .1 A

conventional Kondo e�ect would be obtained only if ∆ < T
(3spins)
K � T

(bulk)
K < |JRKKY|,

i.e. for very large systems. For intermdediate L we rather expect T (3spins)
K < ∆ <

T
(bulk)
K < |JRKKY|; i.e. the corresponding Kondo correlations are again cut by the

system size, which is responsible for the emergence of a new variant of the �nite-size
Kondo e�ect.

Can we numerically resolve the scale T (3spins)
K ? How does the screening of the three

RKKY-correlated local moments takes place in detail?

1Remember from section 4.2 that the Kondo temperature of a two-impurity model at ferromagnetic

distance is roughly of the order |JRKKY|(TK/|JRKKY|)
1/u2

odd/even , what may be estimated to be smaller
than TK . Moreover, in the presence of a symmetry between odd and even channel the Kondo

temperature T
(2spins)
K ∼ (T

(1spin)
K )2

|JRKKY| due to u2
odd = u2

even = 1
2 . Hence

T
(2spins)
K

|JRKKY| ∼
(

TK

JRKKY

)2 J→0−→ 0

and
T

(2spins)
K

T
(1spin)
K

∼ T
(1spin)
K

|JRKKY|
J→0−→ 0 in the RKKY regime where TK < |JRKKY|.
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5 On-resonant models

5.5 The screening process

Notable insights can be obtained from analysing 〈Sistot〉 shown in Fig. 5.5(b). While
for J →∞ all local moments are equally and fully screened 〈Sistot〉 → −3

4
, for J → 0

only S2 forms a singlet with the spin sF of the kF electron, as it is coupled to a good
site. Since 〈Sistot〉 → 〈SisF 〉 for J → 0 (Sec. 5.2), one �nds 〈S2stot〉 → −3

4
(�lled

circles), while 〈S1stot〉 → 0 and 〈S3stot〉 → 0 (open circles).

As shown above, a larger system size of, e.g., L = 149, allows for a dominance of the
RKKY interaction. We will see that this leads to two major deviations in 〈Sistot〉 as
compared to those obtained for small system sizes (Fig. 5.5(b)). Unlike a system with
L = 5, S2 is weaker correlated with stot (�lled red squares) for couplings J & 2 than its
adjacent impurities (open red squares). This can be regarded as a consequence of the
emerging RKKY correlations between the impurities, interfering with the (dominant)
Kondo correlations of the impurities. Most easily, this circumstance is understood
in the limit of the RKKY regime, as illustrated in Fig. 5.6(b): assume that the three
impurities form a perfect Stot = 1/2. Then the Kondo e�ect aligns the total conduction-
electron spin stot antiparallel to it, that is antiparallel to S1 and S3, and parallel to S2.
The tendency 〈S1stot〉 < 〈S2stot〉 is then continued into the Kondo regime J > JD.

Fig. 5.5(b) also shows that 〈Sistot〉 decline in absolute magnitudes at decreasing but
intermediate couplings around J = 1−3. This is a signature of the RKKY dominance,
leading to a smaller total impurity spin Stot, compare Fig. 5.4(b). We can think of the
impurities partially screening themselves due to the antiferromagnetic pattern of the
RKKY couplings. Thus, weaker screening by the conduction electrons is necessary.

Second, for J ≤ 1 the behaviour of 〈Sistot〉 is radically changed, and the roles of the
impurities are reversed (Fig. 5.5(b)). S2 becomes stronger antiferromagnetically corre-
lated with the electrons when J decreases, while S1 and S3 exhibit strongly increasing
ferromagnetic correlations with the conduction electrons. Note that in this parameter
region, i.e. 0.4 ≥ J ≥ 1, the total impurity spin doublet is still developing and Stot is
approaching 1

2
, see Fig. 5.4(b).

These are the characteristics of the parameter regime where the collective Kondo cloud
of the RKKY-correlated impurities does not any longer match the system size, i.e.
T

(3spins)
K < ∆ (0.4 ≥ J ≥ 1). To substantiate this conclusion, we can determine the

residual couplings of the three RKKY-correlated impurities to the conduction electrons
in analogy to the e�ective low-energy Hamiltonian (Eq. (5.26)), since perturbation the-
ory in J is regularised by the �nite ∆. Keeping in mind that we are in the RKKY regime,
it appears reasonable that the starting point of a suitable perturbation theory would
be RKKY-correlated impurities�instead of uncorrelated impurities as in section 5.2.
The contributions of their couplings with the conduction electrons are then analysed
in orders of J , and we would �nd that the highest occupied one-particle state kF has
again a central status: only S2 experiences a �nite weight of the kF state, Ui2kF 6= 0,
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K < ∆ < T
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Figure 5.6: "Screening" of the total impurity spin in the "bad-good-bad" case within
the RKKY regime. Stot = 1

2
due to the antiferromagnetic RKKY couplings of adja-

cent impurities and ferromagnetic coupling between S1 and S3. Left: only S2 can be
screened by the kF electron in the �nite-size Kondo regime. However, RKKY correla-
tions between S2 and its adjacent impurities are still dominant, leading to an e�ective
ferromagnetic alignment of Stot and sF . Right: conventional screening process in which
stot aligns antiferromagnetically to Stot.

and hence exhibits antiferromagnetic correlations to the total conduction-electron spin
stot (Fig. 5.6(a)). This is in contrast to J > 1, where stot displays an antiferromagnetic
alignment to Stot due to the conventional Kondo e�ect. Nevertheless, for 0.4 < J < 1,
we are in the RKKY regime and the antiferromagnetic RKKY couplings of S2 to S1 and
S3 are dominant. This constellation leads to a ferromagnetic alignment of S1 and S3

to sF , as seen in Fig. 5.5(b). At this point, it is emphasised that these ferromagnetic
correlations 〈S1stot〉 → 1

4
are not due to some kind of ferromagnetic �nite-size Kondo

e�ect but a reasoned consequence of the vanishing UikF at bad sites.

In the following, we will refer to the presented mechanism as "�nite-size Kondo e�ect"
of the RKKY-correlated impurities, based on the insight that it orignates from a Kondo
cloud which is cut o� by the system size. This is similar as in the single-impurity
�nite-size Kondo e�ect occuring for ∆ > T

(1spin)
K . However, we have to be cautious

with the term "screening" in this regime, since Sgs 6= 0.

Below J = 0.4, the RKKY interaction gradually loses its dominance and the system
is governed by the single-impurity �nite-size Kondo e�ect with consequences discussed
already above. Interestingly, the crossover is completed not before J becomes relatively
small, J < 0.1, due to the tiny �nite-size gap ∆ ≈ 1/25 (L = 149). Note that for
a small system of size L = 9 (∆ ≈ 2/3), this crossover occurs already at around
J∆ ≈ 1.5 (Fig. 5.4(a)).

Is it also possible to estimate more accurately the crossover region between RKKY and
Kondo regime? In this regard, a convenient strategy turns out to be the inspection
of the total conduction-electron spin 〈s2

tot〉, since it (or at least parts of it) is exactly
as large as necessary to screen the impurity spin. As it can be seen in Fig. 5.7(a),
for a larger lattice of L = 149, 〈s2

tot〉 (red squares) develops an extended plateau at
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(a)
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S=1/2

S=0
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Figure 5.7: "Bad-good-bad" con�guration as discussed in the text. Left: total
conduction-electron spin 〈s2

tot〉 as a function of J . For L = 5 (black circles) and
L = 149 (red squares). The characteristic values in the discussed regimes are indicated
as dashed horizontal lines. Right: ground-state �delity F (J) = |〈GS(J)|GS(J + δJ)〉|
for di�erent system sizes L as indicated as functions of J , where δJ = 1/8. For numer-
ical convenience, the results for L = 249 and L = 301 are obtained in the Mtot = 1
subspace.

2 + 3 · 3
4
in the strong-coupling regime (in comparison with L = 5, black circles) with

three individually screened impurities.2 Decreasing J leads to a smooth crossover at
JD ≈ 1.75−2. The characteristic value in the RKKY regime, when the electrons screen
an e�ective Stot = 1

2
, is 〈s2

tot〉 = 2 + 3
4
and is reached around J = 1.25− 1.75. It has

to be taken into account, however, that the total impurity spin is still larger than 1
2

(compare Fig. 5.4(b)). Hence, the screening has to be larger, giving rise to larger 〈s2
tot〉

than 2+ 3
4
. The corresponding intermediate plateau is supposed to stabilise and extend

to smaller couplings J when L increases.3 Nonetheless, it is interesting to recognise
that JD ≈ 1.75 is roughly in agreement with the value for the Kondo necklace model
[99] which might be identi�ed with JD ≈ 1.6 (section 4.2). In line with our previous
results, already for J ≤ 1, 〈s2

tot〉 approaches 3
4
as expected from a �nite-size Kondo

e�ect either of the RKKY-correlated impurity compound or just of S2.

2The adiabaticity of the ground state with total spin Sgs = 1 (see section 3.5) implies the formation
of a triplet somewhere in the conduction-electron system when the impurities are fully screened
by the conventional Kondo e�ect. This is also the case for the correlated three spins in the RKKY
regime as long as their collective Kondo cloud is not cut by the system size (see also Sec. 10.6).

3However, one has to keep in mind that TK is an exponential energy scale as a function of J . That
is why, meeting the condition ∆ = TK means that for visible changes in J∆ we have to take
exponentially increasing large system sizes L.
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Figure 5.8: Full crossover scenario for the "bad-good-bad" case as a function of J .
In the strong-coupling regime impurity spins are screened locally by the conduction
electrons, while a decreasing J leads to growing Kondo clouds. Below JD, the RKKY
exchange is the leading energy scale, promoting antiferromagnetic order among the
impurities. When further decreasing J , the perturbative regime is entered for T

(3spins)
K <

∆. Hence, the Kondo e�ect of the three RKKY-correlated impurity spins develops a
linear-scale, which is replaced by the �nite-size Kondo e�ect of the central impurity for
T

(1spin)
K < ∆. Note that T

(3spins)
K < T

(1spin)
K .

Let us summarise our �ndings to get an impression of the manifold consequences of
a �nite ∆. In this respect, an illustrative overview is provided by the ground-state
�delity F (J) (Fig. 5.7(b)). It is de�ned as the overlap between the ground states
in the vicinity of a certain coupling J , F (J) = |〈GS(J)|GS(J + δJ)〉|, and delivers a
reliable measure for the changes in the ground-state correlations |GS(J)〉 when varying
J , especially at phase transitions and crossovers. Though the �delity F (J) is entirely
close to 1, it is still possible to identify the respective crossover regions by distinct
dips, in particular the crossover to the �nite-size Kondo regimes. On the one hand,
for small systems, e.g. L = 9, there is just a smooth crossover between the strong-
coupling regime dominated by the individual Kondo e�ects, and the weak-coupling
regime governed by the �nite-size Kondo e�ect. On the other hand, for larger system
sizes, there is a �rst smooth crossover from the strong-coupling regime to the RKKY
regime around J ≈ 1.5 − 2. It marks the transition from separate Kondo clouds to
an RKKY-correlated impurity system with total spin Stot = 1

2
, again giving rise to a

screening by the conduction electrons. When decreasing J , we meet the condition
T

(3spins)
K < ∆ < T

(bulk)
K < |JRKKY|, i.e. the corresponding Kondo correlations are cut

by the system size. Keeping with the previous �ndings, we expect to �nd a linear-in-J
3-spin Kondo scale below J = 1 (L = 149) which is visible in the dip at J = 0.875.
Close to J = 0.4, we observe the crossover to the regime ruled by the �nite-size Kondo
e�ect of S2, leading to a strong decrease of F (J) at J < 0.4 (L = 149). For increasing
L, the �nite-size induced crossover regions are shifted towards smaller J , in agreement
with the condition ∆ = TK .
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5.6 Summary

While in two-impurity models there are no drastic in�uences due to the �nite system
size on the competition between Kondo e�ect and RKKY interaction, the most dra-
matic impacts are found in three-impurity models, which are on-resonant according to
our conventions. Based on the e�ective low-energy Hamiltonian for weak J , derived
from perturbation theory, we established the scheme of good and bad sites, which de-
termines the residual couplings between an impurity and the kF electron for J < J∆

(∆ > T
(1spin)
K ). The linear-in-J Kondo scale is found to be �nite at good sites and

dominating RKKY couplings ∼ J2 for J < J∆ (∆ > T
(1spin)
K ). This central insight

allows us to understand the rich and remarkable consequences for the impurities and
their correlations with each other and with conduction electrons. We observe a reen-
trant competition between Kondo e�ect and RKKY exchange, where the Kondo e�ect
prevails for J → 0�in contradiction to conventional expectations. While the impuri-
ties at bad sites are governed by the RKKY interaction, the Kondo e�ect leads to the
screening of the central impurity of a "bad-good-bad" con�guration (Fig. 5.8).

What happens for �nite J when ∆ decreases, i.e. when the system size L increases?
Clearly, J∆ declines, i.e. the range of applicability of our perturbation theory shrinks
(Sec. 5.2). This is, however, superimposed by the RKKY interaction. On the one
hand, small systems are clearly a�ected by strong �nite-size e�ects, i.e. J∆,1spin & JD.
But even for systems with a few hundred substrate sites, a signi�cant fraction of the
standard weak-coupling physics is concealed by �nite-size e�ects, since J∆,3spins . JD.
This is just as in the two-impurity model at ferromagnetic distance (Sec. 4.7) where the
Kondo temperature of the RKKY-correlated impurity compound may be much smaller
than the single-impurity Kondo temperature. Thus, these Kondo clouds are much
larger, requiring correspondingly much larger host systems for conventional screening.

Another nice example for how di�erent the physics of �nite-size systems can be, as
compared to bulk systems, is the case of ferromagnetic J . Despite the nonexistence
of an energy scale, comparable to TK , for J < 0, we �nd triplet formation of the kF
electron and an impurity at a good site for a su�ciently small modulus of J . This
could be regarded as "ferromagnetic �nite-size Kondo e�ect" with a "cloud" of the
scale of the system size.

In chapters 2 and 4, a couple of questions have been raised which could be answered in
this chapter, constituting and underpinning our concept of �nite-size e�ects. However,
at the same time they raise new questions which will concern us in the next chapters:
for one thing, what happens in on-resonant models with more than one impurity at
good sites? In this case �nite-size, e�ects are responsible for the emergence of a
special mechanism which generates correlations between impurities, which do not rely
on indirect magnetic exchange.
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6 Resonant enhancement

6.1 Introduction

In the previous chapter a rather special on-resonant impurity model was chosen to
demonstrate the impressive impact of spatial con�nement on the competition between
RKKY exchange and Kondo e�ect. By means of the e�ective weak-coupling low-energy
Hamiltonian, we determined the residual couplings between impurities and conduction
electrons in case of ∆ > TK , i.e. when the conventional Kondo cloud picture collapses.
The residual couplings are regulated by the weights of the delocalised kF conduction-
electron state, resulting in a position-dependent (�nite-size) Kondo e�ect in models
with open boundaries.

Naively, one could ask which consequences follow for other impurity constellations?
Following the aforementioned results, the most interesting case should be realised when
all impurities are coupled to good sites. In this chapter, we will see that this setting
results in unconventional ground states for ∆ > TK , arising from the joint coupling of
impurities to the spin sF of the kF electron. Such impurities are shown to display special
correlations and enhanced interactions, what we refer to as "resonant enhancement".
We want to work out the (in some cases) counterintuitive consequences step by step,
because they manifest in several quantities in a sometimes not obvious way. Note
that we concentrate, therefore, on the �nite-size Kondo regime of single impurities, i.e.
∆ > T

(1spin)
K .

Interestingly, the situation with all impurities coupled to the kF electron could be re-
garded as the same occuring in multi-impurity systems in terms of Nozières' exhaustion
problem [107, 108]. The dramatic consequences resulting in multi-impurity systems,
explicated in chapter 13, underline the signi�cance and urgency of the problem posed
here: does the current picture of the �nite-size Kondo e�ect and its unusual competi-
tion with the RKKY echange remain valid in this case?
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Figure 6.1: Complete overview of crossovers from the strong to the weak-coupling
regime for the four possible con�gurations of three impurities according to the physical
picture acquired in chapter 5 ("b": bad, "g": good). In the strong-coupling regime
J > JD, we �nd the dominance of the Kondo e�ect, which is replaced by the RKKY
regime for intermediate J < JD in larger conduction-electron systems. Depending
on the distance d between next-neighbouring impurities, Stot = 3/2 is generated at
ferromagnetic distance (even d) and Stot = 1/2 at antiferromagnetic distance (odd d).

At smaller J (∆ > T
(3spins)
K ), the conventional Kondo correlations of the three RKKY-

correlated impurities are cut o�, while at even smaller J (∆ > T
(1spin)
K ) the system

is governed by the �nite-size Kondo e�ect of single impurities at good sites. Note
that here and hereafter, in case of more than one impurity at good sites, only one
combination of singlet formation with conduction electrons is shown as pictogram.

6.2 Apparent inconsistencies of the concept of

the �nite-size Kondo e�ect

Let us �rst go shortly through the remaining on-resonant three-impurity con�gurations
for J → 0, depicted in Fig. 6.1. Assume that L = 4n + 3 with integer n; i.e., the
central site is bad: "good-bad-good". The physics of this system is thus dominated by
Kondo screening of one of the two outer impurities at good sites. The remaining two
impurities are subject to an antiferromagnetic coupling mediated by RKKY exchange,
locking them into a spin singlet. Hence, the ground state is a Kondo singlet |KSi〉
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(a) (b)

Figure 6.2: Left: inter-impurity correlation functions 〈SiSj〉 as functions of the local
coupling J on a log scale. Filled symbols: 〈S1S2〉 = 〈S2S3〉, open symbols: 〈S1S3〉. All
possible con�gurations of three impurities (at smallest possible distance) are considered:
"bad-good-bad" (black symbols, L = 21), "good-good-good" (green symbols, L =
21), "bad-bad-bad" (red symbols, L = 19), and "good-bad-good" (orange symbols,
L = 19). Right: local correlation functions 〈Srsir〉 for the same con�gurations. Open
symbols: 〈S1s1〉 = 〈S3s3〉, �lled symbols: 〈S2s2〉. Due to the spin degeneracy in
the "bad-bad-bad" case (Sgs = 1 or Sgs = 2), only the corresponding inter-impurity
correlations can be shown, because they are the same in both total spin subspaces.
This is not the case for 〈Srsir〉, which is therefore not shown.

entangled with an RKKY singlet

|GS〉 = |KS1〉 ⊗ |RKKY23〉 − |RKKY12〉 ⊗ |KS3〉 (6.1)

with total spin Sgs = 0.

Placing the three impurities at bad sites, we expect no Kondo e�ect. Due to the
even impurity distance d = 2, 4, . . ., the RKKY interaction is ferromagnetic and leads
to a total impurity spin Stot = 3/2. The impurity spin does not couple to the total
conduction-electron spin stot = 1/2 for J → 0. Hence, the total spin Sgs = 1 or
Sgs = 2; the ground state is eightfold degenerate.

If the three impurities are on the other hand coupled only to good sites, the �nite-size
Kondo e�ect will allow one impurity spin to be screened by conduction electrons. Nu-
merical calculations and the generalised Lieb theorem (Sec. 3.5) show that the ground
state is a triplet for all �nite J . But how can the three impurities be ferromagnetically
correlated, when for ∆ > TK the linear-in-J Kondo scale is the leading energy scale?

In order to �nd a conclusive answer for this question, we have to make the role of
�nite-size e�ects transparent. Thus, we calculate the impurity spin correlations (Figs.
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6.2(a) and 6.2(b)) for three-impurity models with system sizes which are relatively small
(L � 150) and produce an expanded �nite-size regime (in terms of J). As already
known from the previous chapters, the strong-coupling regime is una�ected by �nite-
size e�ects, and so we focus on the weak-coupling regime. In line with the results of
chapter 5, local spin correlations 〈Srsir〉 of impurities Sr at bad sites vanish for J → 0
and those of impurities at good sites remain �nite, see Fig. 6.2(b). Furthermore, all
good sites of a particular con�guration show equal 〈Srsir〉 for J → 0, what is a result
of the homogeneity of U2

ikF
at half-�lling: U2

ikF
= 2

L+1
at all good sites, see Eq. (2.32).

Consequently, the dominating linear-in-J coupling J (1)
r is equal at all good sites. The

convergence of local correlations for J → 0 are best seen in the "good-good-good"
case in Fig. 6.2(b) (green symbols).

Let us turn to the inter-impurity correlations 〈SiSj〉, shown in Fig. 6.2(a). Due to the
absence of the �nite-size Kondo e�ect, 〈SiSj〉 → 1

4
for J → 0 in the "bad-bad-bad"

con�guration (red symbols), as expected for the RKKY regime. Furthermore, we are
also familiar with the unconventional crossover to the �nite-size Kondo regime in the
"bad-good-bad" case (black symbols, see chapter 5). However, it is rather unexpected
that 〈S1S2〉 → −1

2
and 〈S1S3〉 → 1

4
in the "good-bad-good" case (�lled orange circles)

and 〈SiSj〉 → 1
4
in the "good-good-good" case (green circles) for J → 0. These are

the values which are usually attributed to the respective RKKY regimes. Surprisingly,
there is no indication for the presence of the �nite-size Kondo e�ect, even not in the
"good-good-good" cases, where all impurities are involved in the �nite-size Kondo
e�ect.

In the previous section, it was shown that due to the �nite-size Kondo e�ect an impurity
at a good site has vanishing spin correlations with another one at a bad site, i.e.,
〈SgoodSbad〉 → 0. Thus, it might appear contradictory that there is no corresponding
sign in 〈S1S2〉 for J → 0 in the "good-bad-good" model. Instead, it rather exhibits
inter-impurity correlations which are similar to the respective e�ective three-spin RKKY
model (Sec. 5.4).

Another paradox is encountered when the RKKY couplings Jrr′ of the e�ective weak-
coupling Hamiltonian (Eq. (5.16)) are evaluated (shown in Fig. 6.3). For example
in the "bad-bad-bad" case (red symbols) and the "bad-good-bad" case (black sym-
bols) we can rediscover the common distance dependence of Jrr′ , oscillating between
antiferromagnetic (odd distances) and ferromagnetic (even distances) couplings, along
with a decline for increasing distances. Surprisingly, for couplings only between good
sites (open and �lled green circles, open orange circles in Fig. 6.3) one observes a sign
change at distances & 4 from ferromagnetic to antiferromagnetic (L ≈ 49). On the
other hand, it is checked by DMRG calculations for a "good-good-good" model with
L = 49 and maximal impurity distance that there is no corresponding sign change in
the inter-impurity correlation functions. Moreover, Fig. 6.3 shows that the moduli of
RKKY couplings between good sites increase with increasing distance, contradicting
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6.3 A mechanism generating ferromagnetically correlated impurities

Figure 6.3: RKKY couplings 2
J2Jrr′ , evaluated from perturbation theory (Eq. (5.29)),

as functions of the distance d = |ir − ir′|. Filled symbols: 2
J2J12 = 2

J2J23, open
symbols: 2

J2J13. For "bad-good-bad" (black symbols, L = 49), "good-good-good"
(green symbols, L = 49), "bad-bad-bad" (red symbols, L = 47), and "good-bad-
good" con�gurations (orange symbols, L = 47). Opposed to o�-resonance cases and
to couplings between bad sites, Jrr′ can become antiferromagnetic for impurities at
good sites, i.e. at ferromagnetic distances.

the usual RKKY distance dependence. We will have to come back to this problemati-
cal point later in this chapter (Sec. 6.4). Nevertheless, this �nding again clari�es that
correlations for J → 0 cannot be completely explained by RKKY dominance.

6.3 A mechanism generating ferromagnetically

correlated impurities

The previous section leaves us behind in a contradictory situation regarding the "good-
bad-good" and "good-good-good" con�gurations for J → 0: 〈Srsir〉 evidences the
presence of the linear-in-J Kondo scale which, however, has apparently no in�uence on
〈SiSj〉. On the other hand, 〈SiSj〉 can be explained by the conventional RKKY distance
dependence but not by the concrete RKKY couplings derived from perturbation theory
in section 5.2. Coming back to the questions posed in the introduction of this chapter,
we may state that a deeper understanding of our picture of �nite-size e�ects is highly
demanded to remove this controversy.

In the following, we want to explicate the reasons for the peculiar correlations of
impurities at good sites. For this purpose, we restrict ourselves to a simpler system with
only two impurities which are coupled to good sites i and j. The corresponding e�ective
low-energy Hamiltonian (Eq. (5.26)) is readily diagonalised, and the normalised ground
states |GS,M〉 will be a linear combination of both possibilities to choose an impurity
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6 Resonant enhancement

J
(1)
1

J
(1)
2

J
(1)
3

S1 S2 S3

sF

Figure 6.4: E�ective low-energy model in the "good-good-good" case for ∆ > TK :
only the linear-in-J coupling needs to be taken into account to explain the correlation
functions for J → 0 (Figs. 6.2(a) and 6.6). This circumstance results in a starlike
coupling geometry with a total spin Sgs = 1

2
(R− 1) = 1 ("central-spin model" [117]).

being in a singlet |KSi〉 with the kF electron spin sF

|GS,M〉 =
1√
3

(|KSi〉 ⊗ |mj〉+ |mi〉 ⊗ |KSj〉). (6.2)

|mi〉 is the state of the unscreened impurity at site i. The total magnetisation M =
mi = mj. Note that the structure of the ground state is completely una�ected by any
RKKY interaction appearing in the e�ective Hamiltonian.

We are interested in the inter-impurity correlation function 〈SiSj〉:

〈GS,M |SiSj|GS,M〉 (6.3)

=
1

3
〈KSi| ⊗ 〈mj|SiSj|KSi〉 ⊗ |mj〉+

1

3
〈mi| ⊗ 〈KSj|SiSj|mi〉 ⊗ |KSj〉

+
1

3
〈KSi| ⊗ 〈mj|SiSj|mi〉 ⊗ |KSj〉+

1

3
〈mi| ⊗ 〈KSj|SiSj|KSi〉 ⊗ |mj〉 =

1

4
.

Note that the same result would be obtained for a state in which the two impurities are
in a mutual triplet state and uncoupled from sF , resembling the situation in the RKKY
regime. At half-�lling, impurities at good sites are supposed to be at ferromagnetic
distance in terms of the RKKY interaction due to an even distance d = 2, 4, . . . Despite
this coincidence which resolves the apparent contradictions in our concept, we already
remarked that the above state, Eq. (6.2), is not in�uenced by RKKY exchange due to
the dominant linear-in-J Kondo scale. An intuitive view on this situation is rather that
the impurities try to simultaneously align antiferromagnetically to sF (although only
one of them can be in a singlet with it), thereby becoming ferromagnetically correlated.

A comparable analysis becomes increasingly involved if more impurities at good sites are
considered. Nonetheless, the ferromagnetic inter-impurity correlations can be con�rmed
by diagonalising an e�ective spin model with up to �ve impurities which are coupled
only to sF (this includes the "good-good-good" con�guration, Fig. 6.4), and extracting
〈SiSj〉 = 1

4
. The e�ective spin model is also known as "central-spin model" and is

exactly solvable by a Bethe approach [117].
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6.3 A mechanism generating ferromagnetically correlated impurities

(a)

S=0
S=1

S=3/2

S=0

S=0
S=0

S=1/2

S=0

(b)

Figure 6.5: Results for the "good-good-good" (green symbols) and the "good-bad-
good" (orange symbols) case (with smallest possible impurity distance). Di�erent
system sizes L as indicated are considered. For comparison the "bad-good-bad" results
for a system size of L = 149 (black symbols) are also shown. Left: total spin of the
impurity system 〈S2

tot〉 as a function of J on a log scale. Horizontal dashed lines
show the characteristic values in the weak and strong-coupling regime as discussed in
the text. Right: respective ground-state �delities F (J) = |〈GS(J)|GS(J + δJ)〉| as
functions of J , where δJ = 1/8.

The total spin of the e�ective weak-coupling models with impurities only at good sites
is numerically found to be Sgs = 1

2
(R− 1), supported by the generalised Lieb theorem

(Sec. 3.5). This con�rms the idea that the ground state is indeed a linear combination
of states, in which one impurity is screened by the kF conduction electron and the
other impurities are ferromagnetically correlated.1 With this insight in mind, we can
physically understand this situation as "resonant enhancement", as it originates from
the special role of the kF state and the joint coupling of impurities to it. However, we
will see that the ferromagnetic inter-impurity corrections are not the only implications
of it.

1Interestingly, the fact that Sgs = 1
2 (R− 1) gives rise to vague similarities to a spin-polaron picture,

where ferromagnetically-correlated local moments are coupled to a single spin-down Bloch electron
in an otherwise empty conduction band. The (under certain conditions) emerging polaron bound
state is composed of the electron glued to the local moments by virtual magnon exchange [97, 61].
For our �nite-size systems with impurities at good sites, the deviation of S = 1 compared to
a fully ferromagnetic state is spread homogeneously over the whole system; comparable to a
magnon. Thus, the magnetisation of any impurity 〈Sz

i 〉 is smaller than 1
2 in the ground state

with Mtot = Sgs = 1
2 (R − 1). For example 〈Sz

i 〉 = 5
12 in the Mtot = 1 ground state of the

"good-good-good" con�guration.
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6 Resonant enhancement

Figure 6.6: 〈Sistot〉 as functions of J on a log scale. For "bad-good-bad" (black
symbols), "good-bad-good" (orange symbols), and "good-good-good" (green symbols)
models with very small system sizes L as indicated. Open symbols: 〈S1stot〉 = 〈S3stot〉,
�lled symbols: 〈S2stot〉. For comparison the two-impurity result ("bb", red) with L = 2
is also shown as an example for an o�-resonance case. The "bad-bad-bad" result is
not shown due to the degeneracy of the ground state (Sgs = 1 or Sgs = 2).

Since the results of both the �nite-size Kondo e�ect and the conventional RKKY
theory more or less fall together, we cannot observe such pronounced dependencies of
correlations (Fig. 6.5(a)) and �delities (Fig. 6.5(b)) on the system size, as observed
in the "bad-good-bad" case (black symbols, see chapter 5). The total impurity spin
〈S2

tot〉 =
∑R

i,j=1〈SiSj〉 (Fig. 6.5(a)) nicely re�ect our conclusions. In the "good-
good-good" case (green symbols), we obtain 〈S2

tot〉 = 3
2

5
2

= 15
4
for J → 0, instead of

〈S2
tot〉 = 3

4
+ 2 from a naive expectation of one screened impurity and one remaining

triplet. In the "good-bad-good" case (orange symbols) 〈S2
tot〉 = 1

2
3
2

= 3
4
, as predicted

by RKKY arguments.

For completeness, we want to analyse also the correlation function 〈SisF 〉 describing
the correlation of an impurity with the kF electron in the state Eq. (6.2)

〈GS,M |SisF |GS,M〉 (6.4)

=
1

3
〈KSi| ⊗ 〈mj|SisF |KSi〉 ⊗ |mj〉+

1

3
〈mi| ⊗ 〈KSj|SisF |mi〉 ⊗ |KSj〉

+
1

3
〈KSi| ⊗ 〈mj|SisF |mi〉 ⊗ |KSj〉+

1

3
〈mi| ⊗ 〈KSj|SisF |KSi〉 ⊗ |mj〉 = −1

2
.

While there is still an antiferromagnetic correlation, the deviation from the ideal single-
impurity result 〈SisF 〉 = −3

4
comes from the joint coupling of both impurities to the

sF .
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6.4 Finite-size RKKY interaction

In Fig. 6.6 the correlation function 〈Sistot〉 is shown, which is supposed to coincide
with the above discussed 〈SisF 〉 for J → 0. As shown in Eq. (6.4), 〈S1stot〉 → −1

2
for

J → 0 in the "good-bad-good" case (orange open circles). From an e�ective four-spin
model (Fig. 6.4), one can also �nd that 〈Sistot〉 → − 5

12
for J → 0 in the "good-

good-good" case (open and �lled green circles). Consequently, the more impurities are
coupled to good sites, the lower is the magnitude of the respective 〈Sistot〉.
Another interesting feature represents the correlations of S2 with stot in the "good-bad-
good" case. While in the "bad-good-bad" case the impurities at bad sites do not show
any correlations with the conduction electrons for J → 0, in the "good-bad-good"
case S2 displays perfect ferromagnetic correlations 〈S2stot〉 → 1

4
(�lled orange circles

in Fig. 6.6). However, this is not caused by a ferromagnetic �nite-size Kondo e�ect
but by the RKKY interaction, which aligns S2 always antiferromagnetic to the speci�c
adjacent impurity spin which is not in a singlet-state with sF , leading to an overall
ferromagnetic correlation of S2 with sF .

6.4 Finite-size RKKY interaction

The last issue to be reconciled with our concept of �nite-size e�ects is the strange
distance dependence of the RKKY couplings between impurities at good sites, encoun-
tered in Fig. 6.3 (�lled and open green circles, orange open circles), which is still
missing a coherent explanation. The deviations from the standard RKKY behaviour
have been listed above: the RKKY coupling exhibits an unconventional sign change
from ferromagnetic to antiferromagnetic, and its modulus increases instead of decreas-
ing for increasing distances between impurities.

The "wrong" sign is the most critical point. Were these antiferromagnetic couplings
for impurities at even distances also present in the conventional RKKY regime, there
would be a serious contradiction to the traditional distance dependence of the RKKY
interaction ∼ cos(2kF (i − j))/|i − j|, namely the pattern of antiferromagnetic (odd)
and ferromagnetic (even) distances. In the RKKY regime, in a general consideration,
signs of couplings translate (with exceptions) into signs of correlations. Then, on the
level of correlations, the sign would be also in disagreement with the exact statements
of the generalised Lieb theorem (section 3.5).

To �gure out how to remove this discrepancy, we may let us guide by the fact that
the "wrong sign" can be traced back to the contributions from the kF state. This
insight indicates that we must think of the RKKY interaction also as depend on the
energy scale. The perturbative RKKY interaction in form of Eq. (5.29) is then only
present in a �nite-size regime in which the �nite-size gap ∆ exceeds the RKKY energy
scale ∆ > |JRKKY|. This is akin to the �nite-size Kondo regime (∆ > TK) with its

101



6 Resonant enhancement

(a) (b)

Figure 6.7: Ground-state correlations of a "good-bad-good" system of size L = 3 for
weak J in an homogeneous magnetic �eld Bhom, shown as functions of Bhom and J .
Results have been obtained by full diagonalisation. For interpretation, see Fig. 6.8.
Left: total magnetisation Mtot. Right: total conduction-electron spin 〈s2

tot〉.

special behaviour, which diverges from the conventional Kondo e�ect.2 Thus, in the
following we will refer to the RKKY interaction in form of Eq. (5.29) as "�nite-size
RKKY interaction". At energy scales larger than the �nite-size gap, the aforementioned
traditional dependence is recovered. Due to |JRKKY| > TK in the RKKY regime, the
�nite-size RKKY interaction can be found only within the single-impurity �nite-size
Kondo regime, where TK < |JRKKY| < ∆.

Interestingly and in line with our above arguments (Sec. 6.3), RKKY couplings be-
tween impurities at good sites are irrelevant exactly in the �nite-size Kondo regime;
at least for the determination of correlation functions for J → 0 (they nonetheless
give contributions to energy corrections). For this reason, the sign change cannot be
observed by inspecting the inter-impurity correlation functions at weak J .

The enlarged RKKY interaction between impurities at good sites is another e�ect which
only can be explained by the special conditions of the �nite-size regime. It originates
from the spatial dependence of the weight of the kF conduction-electron state. At
low energy scales, from the point of view of renormalisation group, small energy scales
and di�erences can be resolved, which is especially important around the Fermi energy,
where the largest contributions come from. If the distance between impurities is large
and hence the conventional RKKY coupling small, then contributions in the �nite-

2In contrast to the Kondo e�ect, where Je� →∞ at the strong-coupling �xed point, the RKKY cou-
plings do not diverge when changing the energy scale (at least not up to second-order perturbation
theory).

102



6.5 Evidencing the di�erent energy scales

Bhom
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∆
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Figure 6.8: Visualisation of the dominant ground-state correlations of a "good-bad-
good" system (L = 3) for J → 0 in an homogeneous magnetic �eld Bhom. When
Bhom is increased, one passes through the relevant energy scales, namely the RKKY
scale J12 = J23 between impurities at good and bad sites, the linear Kondo scale J

(1)
1 ,

and eventually the �nite-size gap ∆.

size RKKY couplings ∼ UikF (Eq. (5.29)) will become dominant. These special
contributions bene�t from two e�ects at good sites: a large density of states near
εF , particularly at sites close to the chain edges, and an homogeneous distribution of

weights of the kF state UikF = ±
√

2
L+1

. It is stressed that the "resonantly enhanced"

RKKY couplings are likewise only present in the �nite-size Kondo regime, where they
have no e�ect on the impurity correlations.

6.5 Evidencing the di�erent energy scales

Before concluding this chapter, we want to brie�y demonstrate the presence of the
relevant energy scales in �nite-size systems in the weak-coupling regime, in particular
the linear Kondo scale J (1). Additionally, this gives an idea of the typical structure of
the energy spectrum in this regime and the correlations of low-energy excited states.
In principle, J (1) is directly obtainable from the eigenenergies of excited states as
functions of J by using full diagonalisation or DMRG [68]. An alternative way, which is
furthermore experimentally accessible, represent an homogeneous magnetic �eld applied
to the system. Its coupling to the system is expressed by the additional Hamiltonian

HB = −2Bhom

(∑
r

Szr +
∑
i

szi

)
. (6.5)

For clarity, the z component of conduction-electron spin operators are de�ned as szi =
1
2

(ni↑ − ni↓).
Here, we consider a "good-bad-good" system of size L = 3 as example. Since the
ground state of this model is a singlet and all excited states have increasing Sgs, an
increasing Bhom leads to subsequent level crossings of states with di�erent total spin
(Fig. 6.7(a)).
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(a) (b)

(c) (d)

Figure 6.9: The same system as in Figs. 6.7(a) and 6.7(b). (a): inter-impurity
correlation 〈S1S2〉 = 〈S2S3〉, (b): inter-impurity correlation 〈S1S3〉, (c): impurity-
electron correlations 〈S1stot〉 = 〈S3stot〉, (d): 〈S2stot〉.

Fig. 6.8 illustrates the correlations in the di�erent ground states which are obtained
in the �nite-size Kondo regime when Bhom increases. The smallest energy scale is
the RKKY scale |J12|, above which antiferromagnetic correlations between S2 and its
neighbouring impurities become ferromagnetic (Figs. 6.9(a) and 6.9(b)). |J12| has a
quadratic J dependence, as it is typical for the RKKY exchange. The next largest
energy scale is the linear Kondo scale J (1)

1 , energetically separating states with Kondo
singlets from those with "Kondo triplets" (Figs. 6.9(c) and 6.9(d)). Expectedly, the
largest energy scale is the �nite-size gap ∆ =

√
2. Above ∆, the three conduction

electrons become polarised (Fig. 6.7(b)), generating linear-in-J scales for all impurities.
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6.6 Summary

6.6 Summary

Although there is not such a compelling crossover, displayed in correlation functions and
�delity as functions of J , as in the "bad-good-bad" case, the investigation of models
with more than one impurity at good sites proves the full validity and robustness of the
picture of the �nite-size Kondo e�ect, albeit with unexpected consequences.

If we let ourselves be guided by numerical results, e.g. for a model with three impurities
at good sites, we could be convinced that the weak-coupling regime was governed by
RKKY exchange�in contradiction to the picture developed in chapter 5 which claims
the dominance of the �nite-size Kondo e�ect. However, the resemblance to the RKKY
regime is indeed just a coincidence, and the results can be conclusively reconciled with
the �nite-size Kondo regime at weak J . In fact, in chapter 12, we will show that away
from half-�lling the same mechanism is responsible for a magnetic "phase transition"
at weak couplings J .

We termed the physical background of this regime "resonant enhancement": due to the
fact that all impurities couple to the same kF conduction-electron state, we obtain a
special form of the �nite-size Kondo e�ect where these impurities exhibit ferromagnetic
inter-impurity correlations for ∆ > TK . Furthermore, it is discussed that the �nite-
size picture includes a �nite-size variant of the RKKY interaction, Eq. (5.29), which
may exhibit a completely di�erent distance dependence for impurities at good sites, as
compared to the conventional RKKY couplings. This re�ects again the joint coupling
of these impurities to the kF electron and leads to enhanced RKKY couplings which
may show a sign change. Chapter 8 will demonstrate that "resonant enhancement"
survives if the electron system is coupled to the environment.

In addition, it is discussed that the ground-state degeneracy at J = 0 regarding the
total impurity spin Stot is lifted for impurities at bad sites in second-order perturbation
theory in J by RKKY exchange. The same happens for impurities at good sites already
in �rst order in J . Despite the strong similarities to the inter-impurity correlations
in the RKKY regime, the mechanism goes back to the �nite-size Kondo e�ect. This
provides a novel mechanism to generate ferromagnetic correlations among impurities
already linear in J , which do not rely on ferromagnetic indirect exchange ∼ J2 and
even dominate it for J → 0.
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7 Periodic chains

In the following chapter, we turn our attention to impurity models with a periodic
conduction-electron system. Our intention is twofold: on the one hand, we have realised
that system boundaries play a decisive role by inducing Friedel oscillations, which result
in spatially varying �nite-size e�ects. In this regard, it is generally interesting how these
e�ects react to changes of the boundary conditions.

The second motivation comes from chapter 6, where we increased the number of
impurities which couple jointly to the kF electron. In consequence, we obtained a quite
unexpected behaviour of impurity correlation functions. Here we want to pursue another
strategy: instead of increasing the number of impurities, we increase the number of
kF electrons which are accessible for screening ("screening channels", see also Sec.
9.2). Namely, a periodic one-dimensional non-interacting conduction-electron system
usually has got two Fermi levels which potentially establish a two-channel situation in
the weak-coupling regime. This circumstance may lead to hitherto unknown e�ects,
e.g. the simultaneous screening of two impurities for J → 0.

Our focus is on the modi�cations of the weak-coupling regime ∆ > T
(1spin)
K , as the

strong-coupling regime is not expected to encouter any drastic changes regarding the
impurity screening. However, we remark that an intermediate RKKY regime may appear
for larger system sizes and J < JD, in which two separate screening channels possibly
become accesible. This is in contrast to the usual situation for open boundaries. The
complete screening of the total impurity spin Stot = 1 for example should be possible
for a two-impurity model at ferromagnetic distance [46] (Sec. 4.2).

In this chapter, we will primarily take small system sizes L < 10 to achieve a largely
extended �nite-size Kondo regime. But also for another reason: While exact diagonal-
isation methods can easily manage the switching to periodic boundary conditions, for
standard real-space DMRG they come along with long-range hopping from one chain
edge to the other one. This directly introduces long-range entanglement, which is a se-
vere obstacle for the application of DMRG to systems even with moderate system sizes.
Nonetheless, there are extensions to genuine momentum-space formulations of DMRG
[75] as well as work-arounds with convenient arrangements of interactions. However,
R-DMFT results [112] will be also employed, as it easily allows us to investigate systems
of larger size.

The discrete energy levels of a non-interacting periodic conduction-electron system of
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Sr
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t

Figure 7.1: Impurity model discussed in chapter 7. The impurities are coupled to the
conduction electrons as in the preceding chapters, but here the conduction-electron
system is periodic, providing in most cases two Fermi levels. Two electrons at the
Fermi energy can act as separate screening channels in the weak-coupling regime.

even size L are given by

εk = −2t cos(k) (7.1)

exp(ikL)
!

= 1 → knL = 2πn (7.2)

n = −L/2 + 1, . . . ,−1, 0, 1, . . . , L/2 (7.3)

Ujk =
1√
L

exp(ikj). (7.4)

In a periodic conduction-electron system, either the system is o�-resonant or all sites
are good due to the translational invariance, what is re�ected by weights of a certain
one-particle level k, which are equal for all sites i

|Uik|2 =
1

L
∀i. (7.5)

In Figs. 7.2(a) and 7.2(b), one can recognize that energy levels are generally twofold
degenerate (aside from the usual spin degeneracy) expect at the band edges. On-
resonance situations occur when one, two (Fig. 7.2(a)), or three electrons occupy the
one-particle states at εF . On the other hand, in an o�-resonance case as depicted in
Fig. 7.2(b), the chemical potential µ falls in the �nite-size gap between fully occupied
levels and empty levels.

For the following discussion, it will be convenient to exploit the degeneracy of the levels
k and −k and to transform the weights Uik within the degenerate subspace to a basis
with real coe�cients

Ujk,1 =
1

2
(Ujk + Uj−k) =

1√
L

cos(kj) (7.6)

Ujk,2 =
1

2i
(Ujk − Uj−k) =

1√
L

sin(kj). (7.7)

These expressions are quite similar to the de�nitions of odd and even channels intro-
duced in section 4.2. Here, even and odd parity is de�ned with respect to the site i;
channel 1 may then be identi�ed with the even channel and channel 2 with the odd
channel.
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εk

k
−D0
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0 π−π −π/2 π/2

(a)
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−D0
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0 π−π −π/2 π/2
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Figure 7.2: Energy levels εk of the non-interacting one-dimensional conduction-
electron system with periodic boundary conditions (J = 0) as functions of the mo-
mentum k. Note the twofold degeneracy of nearly all levels (aside from the usual
twofold spin degeneracy). Solid lines: the electronic dispersion for L → ∞. ±D0

denote the band edges. Left: "on-resonance" case (L = 4): if L = 4m, two electrons
reside at the Fermi energy, leading to a sixfold ground-state degeneracy. They can be
either in a non-magnetic con�guration if one Fermi level is doubly occupied and the
other one is empty. Alternatively, they can be in a magnetic con�guration (as shown
in the left �gure), in which both levels are singly occupied. Right: for L = 4m+ 2 we
obtain an "o�-resonance" case (here L = 6), i.e. the chemical potential µ lies within
the �nite-size gap between doubly occupied and empty levels.

7.1 O�-resonant models

Recalling the results of chapter 4, it is clear right from the start that in o�-resonance
situations (Fig. 7.2(b)), i.e. L = 4m+2 = 2, 6, 10, . . ., we expect no �nite-size Kondo
e�ect and instead an RKKY regime when J < J∆. This conclusion can be con�rmed
by the results of two-impurity models with L = 6 (Figs. 7.3(a) and 7.3(b)), where,
for J → 0, 〈Sistot〉 → 0, and 〈S1S2〉 → 1

4
for ferromagnetic distance (red circles) and

〈S1S2〉 → −3
4
for antiferromagnetic distance (green circles). Also the ground-state

spin can be derived from RKKY arguments alone, i.e. S = 0 for antiferromagnetic
distance and S = 1 for ferromagnetic distance, see Tab. 7.1.

Similar conclusions have been drawn by I. Titvinidze et al in Ref. [112] where a periodic
two-impurity Anderson model at antiferromagnetic distance and of size L = 50 is
studied by R-DMFT (Figs. 7.4(a) and 7.4(b)). As it is characteristic for the RKKY
regime, the nonlocal susceptibility |χ2,1| of both impurities for small V 2/U = 0.25
(green symbols in Fig. 7.4(a)) turns out to be large compared to the corresponding
values for V 2/U ≥ 0.5 [112]. It can even be shown that χ1,1 +χ2,1 ≈ 0 approximately
holds at V 2/U = 0.25 (green symbols in Fig. 7.4(a)), what is a clear signature of the
RKKY regime or at least of its proximity (Sec. 4.4). Consequently, |χ2,1| increases
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7 Periodic chains

(a) (b)

Figure 7.3: Impurity correlation functions for impurity models with periodic
conduction-electron system as functions of the local coupling J on a log scale. For
the single-impurity model R = 1 (L = 3, black symbols) and two-impurity models
(R = 2) at antiferromagnetic distance d = 1 ("afm", green symbols) and ferromag-
netic distance d = 2 ("fm", red symbols). Triangles: L = 4, circles: L = 6. Left:
inter-impurity correlations 〈SiSj〉. Right: impurity-electron correlations 〈Sistot〉. The
two-impurity result with d = 2 and L = 4 is not shown due to the degeneracy of the
ground state (Sgs = 0 or Sgs = 1) as discussed in the text.

with distance d between the impurities for V 2/U ≤ 0.3 (Figs. 7.4(a) and 7.4(b) for
L = 50), again corroborating the RKKY picture (Sec. 4.5).

7.2 On-resonant models

We do not intent to go into detail with the analytical treatment of on-resonance cases,
especially because for a full picture we had to workout the perturbation theory in J
up to second order in these two-Fermi-level systems. Our aim is rather to understand
how the linear-in-J coupling, which is the leading energy scale in on-resonant models
at weak coupling strengths, lifts the degeneracy present for J = 0. To this end, we
take a closer (yet more schematical) look on the �rst order of perturbation theory.

Let P0 be the projector to the ground-state subspace, and µ denote the degrees of
freedom of the non-interacting conduction-electron system (for details of notations see
Sec. 5.2). The perturbation stems from H1 = J

∑R
r=1 sirSr. Then the �rst-order
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(a) (b)

Figure 7.4: Local and nonlocal impurity susceptibilities χ1,1 and χ2,1 as functions of
the distance d between adatoms for a TIAM at U = 8. Results have been obtained from
R-DMFT. Left: L = 50 and L = 52 for periodic and for open boundary conditions.
V 2

U
= 0.25. Right: results for periodic boundary conditions, system size L = 50, and

di�erent V 2

U
as indicated. Note that the susceptibilities are rescaled with their value

for d = 1. Figures taken from Ref. [112].

contribution of degenerate perturbation theory [116] gives

P0H1P0 = J
R∑
r=1

∑
µ,µ′

∑
µ1,...,µR
µ1,...,µ

′
R

(7.8)

|µ;µ1, . . . , µR〉〈µ;µ1, . . . , µR|sirSr|µ′;µ′1, . . . , µ′R〉〈µ′;µ′1, . . . , µ′R|,
where µr = ±1

2
are the magnetic degrees of freedom of the impurities.

Similar to the treatment in section 5.2, expressions with |k| < kF do not contribute,
since these one-particle energy levels are fully occupied and

∑
σσ′ σσσσσ′δσσ′ = 0. So we

can restrict ourselves to the computation of matrix elements for |k| = kF

〈µ;µ1, . . . , µR|sirSr|µ′;µ′1, . . . , µ′R〉 =
∑
µ,µ′

∑
σσ′

∑
α,α′=1,2

UirkF ,αUirkF ,α′
1

2
σσσσσ′ (7.9)

× 〈µ|c†kF ,α,σckF ,α′,σ′|µ
′〉δµ1µ′1 . . . 〈µr|Sr|µ

′
r〉 . . . δµRµ′R ,

where c†kF ,α,σ creates an electron at the α-th Fermi level with spin σ.

We do not want to calculate the matrix element 〈µ|c†kF ,α,σckF ,α′,σ′|µ′〉 but assume that
in general it gives a certain non-vanishing value. Namely, more important are the
products of weights of kF states U2

irkF ,α
and UirkF ,1UirkF ,2, respectively, since they

directly govern whether or not impurities couple in linear order in J to electrons at εkF .
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(a) (b)

Figure 7.5: Impurity correlation functions for models with periodic boundary condi-
tions as functions of J on a log scale. For three-impurity models R = 3 where next-
neighbouring impurities are positioned at antiferromagnetic distance d = 1 ("afm",
black symbols) and ferromagnetic distance d = 2 ("fm", red symbols). Triangles:
L = 5, circles: L = 7. Left: inter-impurity correlations 〈SiSj〉. Filled symbols:
〈S1S2〉 = 〈S2S3〉, open symbols: 〈S1S3〉. Right: impurity-electron correlations
〈Sistot〉. Open symbols: 〈S1stot〉 = 〈S3stot〉, �lled symbols: 〈S2stot〉.

One-channel situations

Given one or three electrons occupying the levels at εkF , then in general only one
electron is e�ectively provided for screening when J → 0. Already U2

irkF ,α
6= 0 is

su�cient that all impurities couple to this electron. Thus, for the single-impurity
model (black symbols in Fig. 7.3(b)) and the three-impurity models (R = 3, Fig.
7.5(b)), 〈Sistot〉 6= 0 for J → 0.

A surprising observation is that the weak-coupling inter-impurity correlations (Fig.
7.5(a)) behave qualitatively similar to those in the RKKY regime. From chapter 6
we know that if impurities jointly couple to one kF electron, they exhibit ferromagnetic
correlations 〈SiSj〉 > 0. Here, however, such correlations are only found for R = 3
models where next-neighbouring impurities are at ferromagnetic distance (red symbols
in Fig. 7.5(a)). Conversely, antiferromagnetic inter-impurity correlations 〈SrSr′〉 < 0
emerge at weak J for all (r, r′) pairs with odd |ir− ir′| (black symbols in Fig. 7.5(a)).
This behaviour is also re�ected by the ground-state spin as Sgs = 1 in the �rst case and
Sgs = 0 in the latter case (Tab. 7.1). Our observation makes aware that a complete
perturbative treatment is necessary to fully understand the correlation functions for
J → 0.
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7.2 On-resonant models

Sgs(L1) Sgs(L2)
R = 1, L1 = 3, L2 = 5 0 0
R = 2, d = 1 (antiferromagnetic), L1 = 4, L2 = 6 0 0
R = 2, d = 2 (ferromagnetic), L1 = 4, L2 = 6 0⊕ 1 1
R = 3, d = 1 (antiferromagnetic), L1 = 5, L2 = 7 0 0
R = 3, d = 2 (ferromagnetic), L1 = 5, L2 = 7 1 1

Table 7.1: Total spin Sgs of the ground state(s) of several impurity models with peri-
odic conduction-electron system for di�erent system sizes L. d is the distance between
next-neighbouring impurities. Results have been obtained by full diagonalisation.

site i

−1

0

1

1 2 3 4

√
LUikF,2

√
LUikF,1

Figure 7.6: Site dependent weights UikF ,1 and UikF ,2 of the two linearly independent
kF states of the periodic non-interacting conduction-electron system with size L = 4.
The dashed lines indicate the underlying functions, Eqs. (7.6) and (7.7).

Two-channel situations

Nevertheless, strict statements are possible: a genuine two-channel situation can be
found when two electrons reside at the Fermi levels, i.e. L = 4m = 4, 8, . . . The
ground-state degeneracy of the conduction-electron system at J = 0 is sixfold: there
are two non-magnetic con�gurations, in which two electrons occupy one Fermi level
and the other one is empty. Conversely, when each Fermi level is singly occupied,
magnetic states such as singlet and triplet states are possible (Fig. 7.2(a)). These will
be of importance for us in the following.

One �nds that UirkF ,1UirkF ,2, determining the strength of transitions of an electron
from one Fermi level to another, always vanish (Fig. 7.6). Thus, the set of kF states
can simply be divided in two independent subsets with respect to the impurity couplings
("screening channels"). On the other hand, U2

irkF ,α
6= 0 but only for one of the two

kF states at a particular site ir. Consequently, each impurity couples in linear order in
J to only one of the two possible subsets of kF states.

In the case of two impurities at ferromagnetic distance d = 2, depicted in Fig. 7.7(a),
both impurities are only able to couple to the same kF state for ∆ > TK . This is known
to lead to ferromagnetic correlations among them and antiferromagnetic correlations
to the kF electron (chapter 6), which is supported by Fig. 7.3(a) (L = 4): 〈S1S2〉 → 1

4
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S=1/2

S=1/2

S1 S2

sF,2sF,1

(a)

S=0 S=0

S1 S2

sF,2sF,1

(b)

Figure 7.7: E�ective weak-coupling low-energy models of periodic on-resonant two-
impurity models with two electrons at the Fermi energy. Contributions are obtained
when these two electrons are in a magnetic con�guration (Fig. 7.2(a)). sF,1 and sF,2
denote the respective spins at Fermi level 1 and 2. Left: impurities at ferromagnetic
distance. Both impurities experience the �nite weights of the same kF state. Right:
impurities at antiferromagnetic distance. Both impurities couple to separate kF states.

(red triangles) when J → 0. Since the electron at the other Fermi level is left e�ectively
uncoupled, one obtains a spin-degenerate ground-state manifold, spanned by states with
Sgs = 0 and Sgs = 1, compare Tab. 7.1.

A complete screening of both impurities using both screening channels is, however,
possible if they are at antiferromagnetic distance, e.g. d = 1 and L = 4 (Fig. 7.7(b)).
Then each impurity couples separately to a di�erent subset of kF states, leading to
perfect screening of both impurities 〈Sistot〉 → −3

4
and vanishing inter-impurity cor-

relations 〈S1S2〉 → 0 for J → 0 (green triangles in Figs. 7.3(a) and 7.3(b)). This
circumstance results in a total ground-state spin Sgs = 0 (Tab. 7.1).

In Ref. [112] (Fig. 7.4(a)), a similar on-resonance situation with a periodic conduction-
electron system of size L = 52 is analysed using a TIAM at antiferromagnetic distance.
For V 2/U = 0.25, a smaller nonlocal susceptibility |χ2,1| (maroon symbols) is found
than for the o�-resonant model with L = 50 (green symbol). On the other hand, χ1,1

(maroon symbols) is too large to disregard contributions from the conduction-electron
system

∑
i χ

cond
i,1 to the sum rule

χ1,1 + χ2,1 +
∑
i

χcond
i,1 = 0. (7.10)

Therefore, larger Kondo correlations may be inferred for the on-resonant model with
L = 52 in comparison to the o�-resonant model with L = 50. This conclusion is in
agreement with the picture of a two-channel �nite-size Kondo e�ect for J → 0.
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7.3 Summary

7.3 Summary

While the spatial variations of �nite-size e�ects are lost in periodic conduction-electron
systems due to translational invariance, our investigation reveals that a new class of
e�ects emerges. We showed that periodic boundary conditions in one-dimensional
systems usually result in two Fermi levels. Then two electrons in states at the Fermi
energy εF can act as separate screening channels for ∆ > TK , what we may call "multi-
channel �nite-size Kondo e�ect". Viewed from a wider perspective, this situation may
be generally established when the electron system is subject to a larger symmetry group.
Thus, periodic models may be regarded as representatives for the �nite-size physiscs in
higher dimensions, where the presence of a larger set of symmetries becomes possible
and more impurities can be screened at weak coupling strengths J .

In a random or even realistic system the situation is rather more single-channel like,
as several perturbations might break symmetries and leave behind only one level at
εF . But when energy scales are properly chosen, even an approximate degeneracy
around εF might be su�cient to ensure multi-channel physics for the �nite-size Kondo
e�ect. The investigation of these, including a fully-worked out perturbation theory
may be considered worthy but is beyond the scope of this work and therefore left for
future investigations. Nonetheless, the results presented here already give a fascinat-
ing foretaste for what is expected to occur in more symmetric or higher dimensional
conduction-electron systems.
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8 Coupling to the environment

8.1 Introduction

Encouraged by the convincing robustness of our picture of �nite-size e�ects, we want
to make contact to realistic situations and explore the consequences of a less perfect
con�nement of the Kondo box. In experiments, it is unavoidable that the box is at
least weakly coupled to an environment. As a result, for example, the total spin S = 1
of a "bad-good-bad" nano system can be screened by the lead spin degrees of freedom
[115].

In the case of a perfect isolation of the Kondo box from the environment, the conduction-
electron density of states consists of a set of delta peaks separated by the �nite-size gap
∆ in the vicinity of the Fermi energy. However, a remaining coupling of the box to an
environment will broaden these peaks with a characteristic width δ � ∆ [118, 115, 50]:
conduction-electron states acquire a �nite lifetime, i.e. electrons are localised within
the box only for a �nite time ∼ 1/δ.

In the following, we want to describe in detail, how the environment exerts in�uence
on both the Kondo e�ect and the RKKY exchange. As already indicated, the central
quantity is again the local density of states ρi(E), dictating the behaviour of both
phenomena. We will demonstrate that the picture of �nite-size e�ects acquired so far
is continuous in terms of the weak environment coupling at energy scales above δ.
Remember that this conclusion has been already brie�y mentioned in Fig. 5.1, where
we summarised our picture of impurity physics.

Since details will rapidly become complicated, we need careful preparations. First of
all, we determine the setting of the considered system (illustrated in Fig. 8.1). Though
it is not possible with standard DMRG to use in�nite conduction-electron systems in
order to represent the environment, we can still approximate them by using large but
�nite chains, denoted here as "leads" despite their �nite size. The system feels then
two basically di�erent types of �niteness: Lnano, beyond which the electrons penetrate
the walls of the nano system, and the total system size L.

We will primarily consider a "bad-good-bad" three-impurity model, where the impurities
are coupled accordingly to a Lnano = 5 nano-sized conduction-electron system. That
is, S1 and S3 are at bad sites of the nano system and S2 is at a good site. The nano
system is itself symmetrically coupled by a hopping t′ � t to the leads, which are of size
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J

nano system Lnano

left lead Lleft right lead Lright

t t tt′ � t t′ � t

Figure 8.1: Impurity model discussed in chapter 8. The impurities are coupled to
a small conduction-electron system of a few sites Lnano only, as shown here for the
"bad-good-bad" case. The nano system is symmetrically coupled via a small hopping
t′ � t to two much larger subsystems of size Lleads � Lnano, denoted as "leads".

Lleft and Lright; so L = Lleft +Lnano +Lright. In order to fully account for consequences
of �nite-size e�ects, we consider three di�erent con�gurations of {Lleft, Lright} (Tab.
8.1). The corresponding Hamiltonian can be formulated as follows

H =J
3∑
r=1

sirSr − t
∑

α=left,right,nano

∑
〈i,j〉∈α,σ

c†α,iσcα,jσ (8.1)

− t′
∑
σ

(
c†left,Lleft,σ

cnano,1,σ + c†nano,1,σcleft,Lleft,σ

+ c†right,1,σcnano,Lnano,σ + c†nano,Lnano,σ
cright,1,σ

)
.

8.2 In�uence on the local density of states

The typical changes of the non-interacting conduction-electron spectrum induced by a
�nite t′ are origin of several �nite-size driven phenomena and have been discussed by
P. Simon and I. A�eck in Ref. [118]. It turns out that, assuming t′ � t, ρi(E) at
site i within the nano system can be well-approximated by a sum of slightly broadened
Lorentzians located at the energies of the isolated nano system

πρi(E) ≈ 2

Lnano

Lnano∑
n=1

sin2(ikn)
δn

(E − εn)2 + δ2
n

(8.2)

kn ≈ π
n

Lnano + 1
(8.3)

εn = −2t cos kn (8.4)

n = 1, 2, . . . , Lnano. (8.5)
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8.2 In�uence on the local density of states

Lleft Lnano Lright L
bgb, on-resonance 42 5 42 89
bgb, on-resonance 43 5 43 91
bgb, o�-resonance 42 5 43 90

Table 8.1: Subsystem sizes Lleft, Lnano, and Lright of "bad-good-bad" con�gurations
("bgb") considered in the calculations.

Their widths are given by

δn ≈
2 (t′)2 sin3(kn)

t(Lnano + 1)
. (8.6)

In Fig. 8.2, ρi(E) according to Eq. (8.2) is displayed (solid lines) for i = i1 (bad site)
and i = i2 (good site). Despite the broadening, the peaks retain their coarse structure
known from the isolated "bad-good-bad" nano system. That is, gaps are approximately
as large as respective �nite-size gaps, e.g. ∆nano = 1 at the Fermi energy for Lnano = 5.
This circumstance already indicates that on energy scales larger than δn, we may obtain
essentially similar physics as in the isolated nano system.

From Eq. (8.6), it can be inferred that the peak widths δn are maximal in on-resonant

models at the Fermi level kF = π/2, where δF ≈ 2(t′)2

t(Lnano+1)
. For the here considered

on-resonant con�gurations δF ≈ 0.03 (t′ = 0.1). In the following, we will omit the
index of δF in situations in which it is clear that we refer to the broadening of the peak
at the Fermi energy εF .

As seen from Fig. 8.2, ρi(E) according to Eq. (8.2), which is for L→∞, is a reliable
approximation even for the exact weights U2

ik of the considered �nite-size systems as
functions of the eigenenergy εk. Thus, we may employ ρi(E) to deduct conclusions
also for the �nite systems. However, we have to be careful, since on �ner energy scales
they are basically di�erent, what is important for energy scales below the true �nite-
size gaps at εF , ∆env, as already known from preceding chapters. Let us remark the
observation that the gaps ∆env of the considered �nite-size systems increase when t′

increases.

It is understandable that the mentioned spectral di�erences near εF will provoke dra-
matically deviating behaviour for J → 0, caused by the �nite size of the leads. This
is in particular the case when good (bad) sites of the full system are not good (bad)
sites of the isolated nano system (here this concerns the models with L = 90 and
L = 91). E�ects can be also expected from the obviously strong dependence on t′,
which is in�uencing the energy gaps around the Fermi energy as well as the strong
increase (decrease) of the weights U2

ik close to εF if there is a (no) peak.
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(a) (b)

(c)

Figure 8.2: Exact weights U2
ik of non-interacting conduction-electron states (left

scale, circles) within the "bad-good-bad" nano conduction-electron system as functions
of the eigenenergy εk. For the systems discussed in the text (Tab. 8.1) with di�erent
hoppings t′ as indicated. (a): on-resonance case with L = 89, (b): on-resonance case
with L = 91, (c): o�-resonance case with L = 90. In the on-resonance cases, we have
U2
i1k

= U2
i3k

due to mirror symmetry. Results for t′ = 0.5 at i1: orange, for t
′ = 0.5 at

i2: blue, for t′ = 0.1 at i1: red, for t′ = 0.1 at i2: green. For comparison, the local
density of states ρi(E) according to Eq. (8.2) are shown as functions of the energy E
(right scale, solid lines), see Ref. [118]. Note the log scale for ρi(E) and U2

ik.

8.3 In�uence on the Kondo physics

While the behaviour in the �nite-size Kondo regime, i.e. TK < ∆env, is determined by
the mechanisms in-depth investigated in the previous chapters, the remaining question
is which e�ect has the strongly energy dependent density of states, Eq. (8.2), outside
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JRKKY ∼ J2

TK ∼ exp(− 1
J

)

bad
good

∆nano

δ

∆env

J

Figure 8.3: Competition between RKKY interaction (blue) and Kondo e�ect (black,
green, and red) in a small quantum box coupled to �nite but large leads by a small
hopping t′ � t. In the strong-coupling regime all impurities are separately screened by
the conduction electrons due to a large Kondo scale TK (black). For ξK > Lnano or,
respectively, ∆nano > TK , a crossover to the "lead Kondo e�ect" takes place, where
Kondo clouds leak into the leads [118]. An intermediate RKKY regime is expected for
larger nano systems sizes Lnano but is skipped here. At sites which correspond to good
sites of the isolated nano system (green), the lead Kondo e�ect dominates the RKKY
interaction, while it is exceeded by the RKKY interaction at bad sites (red). For large
lead sizes Lleft,right, the weights U2

ik of electron states become approximately �at as
functions of εk at small energy scales, i.e., εk � δ. This may give rise to an RKKY
regime which is skipped here due to ∆env ≈ δ. Eventually, this regime may be replaced
by the �nite-size Kondo e�ect at very weak coupling strengths, when ∆env > TK ,
where ∆env is the �nite-size gap at the Fermi energy. If the �nite-size Kondo e�ect is
possible, the weights of the kF state determine, whether a site is good (dark green) or
bad (dark red).

this regime, i.e. for ∆env < TK < ∆nano? To �nd an answer, we restrict ourselves
to the physics of a single impurity; tacitly assuming for a moment that the RKKY
interaction is only marginally in�uenced. If we have a �rst look on the evolution of
the Kondo energy scale TK as function of J , sketched in Fig. 8.3, we �nd striking
similarities to the situation in a �nite system (Fig. 5.1). In the following, we want to
explain why.

Let us �rst return to ρi(E), which consists of broadened peaks at the energies of
the nano system. Even in the �nite systems discussed here, on energy scales larger
than δ, the local density of states appears approximately continuous since lots of states
∼ L

Lnano
≈ 18 are collected within one broadened peak. This aspect makes it convenient

to explore the e�ects on the Kondo e�ect from an RG perspective [118]. As known
from Sec. 2.3, an iteration step within a perturbative RG treatment enhances the
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e�ective coupling Je� by

Je� → Je� +
1

2
J2
e�

(∫ −D′
−D

+

∫ D

D′

)
dE

ρ(E)

E
, (8.7)

where the e�ective band width is decreased from D to D′ < D. In case of D,D′ >
∆env, we can safely ignore the linear-in-J contribution as it gives only marginal energy-
scale independent contributions.

Due to averaging e�ects, the strong-coupling behaviour of the system is not dramati-
cally changed by a �nite δ. However, when D′ . ∆nano, the Kondo cloud leaks in the
surrounding leads, i.e., ξK > Lnano. We denote this regime as "lead Kondo regime", as
it is established by the lead degrees of freedom, and to distinguish it from the �nite-size
Kondo e�ect. The behaviour of Je� becomes strongly dependent on the fact whether
an impurity is coupled to a good or a bad site in the original nano system. This is made
clear by the �ow equation, Eq. (8.7), for the case when ρi(E) contains a broadened
peak at εF (that is for a good site i). By taking just a single iteration step of Eq. (8.7)
and lowering the energy scale from ∆nano to an energy scale εF < D′ � δF � ∆nano,
Je� is then greatly enhanced as compared to a �at local density of states [118]

Je�(D′) ≈ Je�(∆nano) + (Je�(∆nano))
2 2 sin2 kF
πLnanoδF

ln

(
δF
D′

)
. (8.8)

The corresponding increase of Je� at a bad site (i1 and i3 for the "bad-good-bad"
con�guration) is signi�cantly smaller due to the low density of states ∼ δ

∆2
nanoLnano

,
stemming from tails of peaks in the vicinity of εF . Estimating the respective Kondo
temperatures by the energy scale at which perturbation theory breaks down, Je�(TK) =
O(1), and writing them as functions of the weak-coupling bulk Kondo temperature T 0

K

(Eq. (2.23)), one obtains

T
(good)
K ≈ δ

(
T 0
K

D0

)(
t′
t

sin kF

)2

t′�t−→ δ (8.9)

T
(bad)
K ≈ ∆nano

(
T 0
K

D0

)(
t
t′

1
sin kF

)2

t′�t−→ 0. (8.10)

In Figs. 8.4(a) and 8.4(b), we show the evolution of TK , according to Eqs. (8.2)
and (8.7), as a function of T 0

K for a "bad-good-bad" nano system. As one can nicely
observe by comparing with the results for a �at ρi(E) (black lines), �nite-size e�ects
set in for ∆nano ≈ TK : the energy scale D′, passing the broadened peaks of ρi(E),
leads to distinct steps of TK (green and red lines). For ∆nano > TK , one obtains
the exponential slowing down of the decrease of TK at a good site (green lines, Eq.
(8.9)) and the rapid vanishing at a bad site (red lines, Eq. (8.10)). T (good)

K therefore
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(a) (b)

Figure 8.4: Single-impurity Kondo temperatures TK as functions of the weak-coupling
bulk Kondo temperature T 0

K = D0 exp(− 1
ρ0J

), obtained from one iteration of Eq. (8.8)
using the approximated ρi(E), Eq. (8.2) [118]. For a "bad-good-bad" nano system
of size Lnano = 5. TK is de�ned here as the energy scale at which perturbation
theory breaks down. ρ0 is the �at and hence featureless local density of states of the
non-interacting conduction-electron system near εF and D0 = 2t. For simplicity, we
assume ρ0 = 1

4t
. TK is shown for i2, a good site (green), and i1, a bad site (red).

For comparison, we show also results for a system with a �at local density of states
(LDOS) ρ = 1

4t
(black). Note the double log scale. Left: t′ = 0.5. Right: t′ = 0.1.

plays the role of a replacement for the linear-in-J coupling of a �nite-size system,
whereas impurities at bad sites are subject to RKKY exchange, again comparable to
the situation in �nite-size systems.

However, the rather constant behavior of T (good)
K must stop when we probe energy scales

close to εF where ρi(E) becomes approximately �at. This circumstance recovers the
exponential dependence of T (good)

K on J and may lead eventually to an RKKY regime
according to scaling Doniach's arguments [45] (Sec. 4.2). In Fig. 8.4(a) one observes
that, for t′ = 0.5, this regime is realised at T 0

K < 10−2 ≈ 1
10
δ, where TK shows a

decrease similar to the results for a �at density of states. On the other hand, regarding
the �nite systems discussed here, we �nd that ∆env ≈ δ (Fig. 8.2), which implies
strong �nite-size e�ects due to the �nite leads, suggesting that the emergence of this
RKKY regime is prevented.

When TK < ∆env, as we already mentioned, the approximation of a continuous
conduction-electron system loses its validity. Perturbation theory becomes reliable
again, causing the emergence of the �nite-size Kondo e�ect (if possible).
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Figure 8.5: Crossover scenario as a function of J . For a "bad-good-bad" nano system
coupled to larger �nite leads by a hopping t′ � t. For the discussion of the di�erent
regimes see Fig. 8.3 and the text. The upper panels illustrate the dominant ground-
state spin correlations in the di�erent regimes and considered con�gurations (Tab.
8.1). The lower panels display the relevant conduction-electron states in the di�erent
regimes in the case of a site, which is a good site of the isolated nano system, for an
o�-resonant model. Dashed lines indicate the local density of states at the same site
(L→∞).

8.4 How correlations change

With the above considerations, we are supplied with a coherent scenario of the compe-
tition between RKKY exchange and several �nite-size shaped forms of the Kondo e�ect
(summarised in Fig. 8.5). How are correlation functions a�ected by this interplay?

As is evident for inter-impurity correlation functions in Figs. 8.6(a), 8.6(b), and 8.6(c),
the strong-coupling regime is determined by the physics of the "bad-good-bad" nano
system, independently whether it is in total an on-resonance or an o�-resonance sit-
uation. Due to the fact that the nano system is quite small Lnano = 5, we observe
a direct crossover from the Kondo e�ect established by electrons localised witin the
nano system ("nano system Kondo e�ect") to the lead Kondo e�ect. It occurs in a
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8.4 How correlations change

(a) (b)

(c)

Figure 8.6: Inter-impurity correlations 〈S1S2〉 (blue symbols) and 〈S1S3〉 (red sym-
bols) as functions of J on a log scale. For "bad-good-bad" nano systems and di�erent
couplings t′ between leads and nano system: t′ = 0.5 (open symbols) and t′ = 0.1 (full
symbols). (a): on-resonance con�guration L = 89, (b): on-resonance con�guration
L = 91, (c): o�-resonance case L = 90. Due to the asymmetric impurity positions
in the o�-resonance con�guration, we also show in this case 〈S2S3〉 (green symbols).
For comparison, the results of the system with L = 90 and t′ = 0.5 (blue dashed
lines without symbols) are shown also in (a) and (c), the correlations of an isolated
"bad-good-bad" nano system (black solid lines) in (a), (b), and (c) (in (a) symbols
lie indistinguishably on those for t′ = 0.1), the correlations of an isolated "good-bad-
good" nano system (black dashed lines without symbols) in (b), and the correlations
of a "bad-good-bad" system without leads for L = 101 (black dashed lines without
symbols) in (c).
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8 Coupling to the environment

similar way as the nano system without environment would cross over from the Kondo
regime to the �nite-size Kondo regime (note the solid black lines without symbols).
This is clearly seen for t′ = 0.1: there is the same pattern of good and bad sites which
do or do not allow for Kondo e�ect at weak couplings 0.75 < J < 2. 〈S1S2〉 (blue
symbols) displays just small antiferromagnetic correlations for intermediate J , before
vanishing for decreasing J and ∆env < TK < ∆nano. As already indicated above, the
observed resemblance of nano system correlations for t′ = 0 (TK < ∆) and t′ 6= 0
(∆env < TK < ∆nano) is a consequence of the structure of the peaks in ρi(E) which
appear e�ectively not broadened on energy scales larger than δ. It underlines the
deep relation between �nite-size Kondo e�ect for TK < ∆ and lead Kondo e�ect for
∆env < TK < ∆nano. Let us also remark that larger nano systems would allow for
an RKKY regime, accompanied by the emergence of respective �nite-size e�ects (Sec.
5.5).

The agreement, however, expires for decreasing J , when the perturbative regime is
restored for TK < ∆env. The subsequent crossover takes place approximately at 0.01 <
J < 1 for t′ = 0.1 and at larger couplings 0.075 < J < 3 for t′ = 0.5. This shows
that the gaps of the non-interacting electron system are generally dependent not only
on L but also on t′, as recognised in section 8.2 (Figs. 8.2).

The crossover easily can be detected in the o�-resonance case (Fig. 8.6(c)): for t′ = 0.1
and J < 1, 〈SiSj〉 depart from the corresponding nano system correlations. The �nal
values for J → 0 can be understood from an e�ective three-spin model with unequal
RKKY couplings J12 6= J23, causing imperfect 〈S1S3〉 < 1

4
(red symbols) as well as

asymmetric 〈S1S2〉 6= 〈S2S3〉, both about −1
2
(blue and green symbols). In Fig. 8.7,

it is also seen that all impurities become e�ectively decoupled from the electrons for
J → 0 since 〈Sistot〉 → 0 (red symbols), as expected for an o�-resonance case.

On the other hand, the L = 89 system is in combination with the leads again a
"bad-good-bad" system (Fig. 8.6(a)), while for L = 91 we obtain in total a "good-
bad-good" system (Fig. 8.6(b)). The drastic deviation from "bad-good-bad" physics
for L = 91 (Fig. 8.7) and J → 0 is re�ected by 〈S1S2〉 → −1

2
(instead of 〈S1S2〉 → 0),

and 〈S1stot〉 → −1
2
(instead of 〈S1stot〉 → 0). S2 becomes e�ectively decoupled for

J → 0, since 〈S2stot〉 → 0 (instead of 〈S2stot〉 → −3
4
).

Finally, let us note that there is no indication of an enhanced inter-impurity correlations
〈SiSj〉, which would evidence an intermediate RKKY regime as discussed above (Sec.
8.3). We may infer this from Fig. 8.6(c) where are additionally shown as a rough
limit the correlations of a "bad-good-bad" system of size L = 101 without leads (black
dashed lines without symbols).
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8.5 Details of the screening process

Figure 8.7: Impurity-electron correlations 〈Sistot〉 as functions of J on a log scale.
〈S1stot〉: open circles, 〈S2stot〉: �lled circles. For di�erent total system sizes and "bad-
good-bad" nano systems with t′ = 0.1. O�-resonance case L = 90: red symbols,
on-resonance case L = 91: green symbols, on-resonance case L = 89: black symbols.
Due to the asymmetric impurity positions in the o�-resonance con�guration, we also
show in this case 〈S3stot〉 (crosses). For comparison, the correlations of an isolated
"bad-good-bad" (black dashed lines, nearly completely concealed by correlations of the
model with L = 89) and an isolated "good-bad-good" nano system (blue dahed lines)
are shown.

8.5 Details of the screening process

How does the environment get involved in the screening processes in detail? For large
J , Kondo clouds are well-localised within the nano system, whereas they leak into the
environment for decreasing J as soon as TK < ∆nano.

For TK < ∆env, in the �nite-size Kondo regime, the screening process is determined
by the kF state, which attains inhomogeneous weights UikF for �nite t′ (Fig. 8.8(a)),
what transfers to the shape of Kondo clouds for J → 0. Let us begin with L = 89,
which is an on-resonance case with a kF wave function which is strongly localised within
the nano system, see black symbols in Fig. 8.8(a). Therefore, the screening occurs
mainly within the nano system and only for S2, see black symbols in Fig. 8.8(b), e.g.,
at J = 0.05. Conversely, for L = 91 we �nd an e�ective "good-bad-good" system
for J → 0, where only S1 and S3 can be screened (green symbols in Fig. 8.8(b)).
Kondo correlations are concentrated in the two leads, since the kF wave function is
damped inside the nano system (red symbols in Fig. 8.8(a)). For L = 90, the Kondo
correlations 〈Sisj〉 (red symbols) expectedly vanish for J → 0.

The situation is more delicate in the lead Kondo regime ∆env < TK < ∆nano (e.g.
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8 Coupling to the environment

(a) (b)

Figure 8.8: Left: weights UikF of the exact kF conduction-electron state for t′ = 0.1
in on-resonant con�gurations. For L = 89, the kF state is strongly localised within
the nano system; with large weights at sites which are good sites of the isolated
nano system. On the other hand, for L = 91 the state is strongly damped inside
the nano system, possesing only small weights at sites which are bad in the isolated
nano system. Right: spatially resolved impurity-electron correlations 〈Sisj〉 ("Kondo
clouds"). 〈S1sj〉: open symbols, 〈S2sj〉: �lled symbols. For di�erent J as indicated
and "bad-good-bad" nano systems. O�-resonance case L = 90: red symbols, on-
resonance case L = 91: green symbols, on-resonance case L = 89: black symbols. In
case of J = 0.05, the crossover to the �nite-size Kondo regime is completed, while the
system is within the crossover region for J = 0.1. For J = 1, the system is in the lead
Kondo regime. For better visibility the lines have been shifted and are shown for sites
j in the vicinity of the nano system.

J = 1 in Figs. 8.7 and 8.8(b)), where we observe the physics of a "bad-good-bad"
system for all discussed con�gurations: S1 and S3 make up a triplet, while S2 is in
a magnetically inert Kondo singlet.1 The triplet may then be screened by the spin
degrees of freedom of the leads, e.g. in case of L = 90 by the right lead, which is
composed of an odd number of lattice sites in our setup. Consequently, in Figs. 8.7
and 8.8(b) (red symbols, at J = 1), 〈S1si〉 6= 0 and 〈S1stot〉 6= 0, while 〈S2si〉 ≈ 0
and 〈S2stot〉 ≈ 0 for i in the right lead. One can even �nd that the triplet is screened
asymmetrically 〈S3stot〉 < 〈S1stot〉 (Fig. 8.7). This persists down to small J ≈ 1

1Since this is not the �nite-size Kondo regime, the Kondo singlet of S2 does not comprise only the kF
conduction electron but electrons within the whole broadened peak at εF in ρi(E). Accordingly,
the Kondo cloud size is not cut by the system size ξK < L but still ξK > Lnano.
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8.6 In�uence on the RKKY physics

and is due to the asymmetric geometry. Including the partial screening of the triplet,
one obtains a total spin Sgs = 1/2 for the whole system, compatible with the even
total number of conduction electrons. We note that this situation might be viewed as
underscreening of the nano system triplet.

For L = 89, the leads have an even size, and screening performed by them consequently
is possible only for energy scales above ∆leads ∼ 1/Lleft,right. On the other hand, Lieb's
theorem (Sec. 3.5) enforces Sgs = 1, suggesting that even if this screening takes place,
it generates a new triplet somewhere in the leads. Fig. 8.8(b), however, shows that
screening does not occur at J = 1 (black symbols). When L = 91 (green symbols),
both leads are involved in the screening of the triplet (Fig. 8.8(b)), leading to large
antiferromagnetic correlations 〈S1stot〉 = 〈S3stot〉 < −3

4
(Fig. 8.7)), whereas 〈S2stot〉

remains close to the correlations of the isolated nano system. Thus, Sgs = 0.

A "good-bad-good" nano system, which is a singlet for itself (t′ = 0), is not in need of
any screening by the environment for ∆env < TK < ∆nano (and similarly for ∆nano <
TK). This can be seen in Fig. 8.9(b) (for e.g. J = 1) by the observation that the
correlations 〈Sistot〉 are equal to those of the isolated nano system (compare Fig. 6.6)
for all considered con�gurations and large J > 0.75.

8.6 In�uence on the RKKY physics

So far we neglected the in�uences on the RKKY interaction, but we already brie�y
indicated above that those modi�cations can be strong due to the energy dependent
density of states close to εF . P. Simon found that for energy scales below the �nite-size
gap of the isolated nano system, D < ∆nano, intraresonance processes of the peak at
εF in ρi(E) may change the sign of the RKKY coupling JRKKY, and that |JRKKY| may
also encouter a strong enhancement at good sites of the isolated nano system due to
the strong increase of ρi(E) at εF (visible in Fig. 8.2) [50]. Experimentally, such a
strong enlargement of |JRKKY| is also observed in quantum chorals [119, 100]. On the
other hand, for energy scales D > ∆nano these e�ects are found to be absent and the
traditional dependency Jrr′ ∼ J2 cos(2kF (ir − ir′))/|ir − ir′| is recovered.
It is again intriguing but not unexpected to �nd here comparable "resonant enhance-
ment" behaviour as for a system of �nite size (Sec. 6.4). This is in close analogy to
the relation of the �nite-size Kondo e�ect to the lead Kondo e�ect. The broadening of
peaks in ρi(E) is only relevant (and can be resolved) for energy scales D < ∆nano. Nev-
ertheless, it is important to realise that the starting points of both results are basically
di�erent. In the case of Simon's work [50], one starts from L → ∞ and a continu-
ous density of states, while in a �nite-size system the conduction-electron spectrum is
intrinsically discrete without the possibility of intraresonance processes.

For the following discussion, we switch to a "good-bad-good" nano system and examine
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2
J2J12

2
J2J13

bgb, L = 5 −0.024 0.004
bgb, t′ = 0.1, on-resonance, L = 89 −0.024 0.004
bgb, t′ = 0.1, o�-resonance, L = 90 −0.024 0.004
bgb, t′ = 0.1, on-resonance, L = 91 −0.025 0.004
gbg, L = 3 −0.044 −0.155
gbg, t′ = 0.1, on-resonance, L = 89 −0.044 1.295
gbg, t′ = 0.1, on-resonance, L = 91 −0.044 0.287
gbg, t′ = 0.1, o�-resonance, L = 92 −0.046 1.773

Table 8.2: RKKY couplings Jrr′ evaluated from Eq. (5.29). For con�gurations dis-
cussed in chapter 8 with "bad-good-bad" ("bgb", Lnano = 5) or "good-bad-good"
("gbg", Lnano = 3) nano system, respectively.

the behaviour of J13, the RKKY coupling between sites which are good sites of the
isolated nano system. We again consider an o�-resonant model (L = 92) and two
on-resonant models (L = 89, an e�ective "bad-good-bad" system for TK < ∆env) and
(L = 91), to least constrain �nite-size e�ects.

A �rst approach is to analyse RKKY couplings according to Eq. (5.29) for the con-
sidered models,2 presented in Tab. 8.2. Indeed, a sign change for J13 as compared to
t′ = 0 is found, albeit from antiferromagnetic to ferromagnetic coupling. Note that
S1 and S3 are at ferromagnetic distance. This means that the "wrong" sign3 of J13

for t′ = 0 (chapter 6) is "healed" by a �nite t′. Interestingly, the sign change has
no visible e�ects on the inter-impurity correlations: the "wrong" sign is concealed in
the lead Kondo regime (0.75 < J < J∆nano) by the special ferromagnetic correlations
present between impurities at good sites (Sec. 6.3).

However, the enhancement of J13 has observable consequences. In section 6.4, we
already found a similar enhancement of RKKY couplings in �nite-size systems (see also
Tab. 8.2), leading to distance dependencies which are inconsistent with the conven-
tional RKKY interaction. Here, we �nd for t′ = 0.1 that the RKKY coupling |J13| is
enhanced by a factor of up to 10 as compared to t′ = 0, while J12 is almost una�ected
by changes in t′. Note that J13 is even a factor of up to 40 larger than J12 (t′ = 0.1).

We want to select just one example to illustrate the consequences: the o�-resonance
case (L = 92, red symbols in Figs. 8.9(a) and 8.9(b)) o�ers a good opportunity to

2As is well-known from section 6.4, the RKKY couplings according to Eq. (5.16) are applicable in
the �nite-size regime. That is why results for t′ 6= 0 are valid in the �nite-size Kondo regime
TK < ∆env and results for t′ = 0 in the lead Kondo regime ∆env < TK < ∆nano, where physics
is similiar to an isolated nano system in the �nite-size Kondo regime TK < ∆.

3The opposite sign is due to contributions ∼ UikF
�in the light of the work of Simon [50] an extreme

analogue to the intraresonance processes.
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(a) (b)

Figure 8.9: Correlation functions for "good-bad-good" nano systems (t′ = 0.1,
Lnano = 3) as functions of J on a log scale. O�-resonance con�guration L = 92:
red symbols, on-resonance con�guration L = 89: green symbols, on-resonance con-
�guration L = 91: black symbols. Left: inter-impurity correlations 〈S1S2〉 (open
circles) and 〈S1S3〉 (�lled circles). Note that results for 〈S1S3〉 for all three con�gura-
tions lie indistinguishably on each other. Right: impurity-electron correlations 〈Sistot〉.
〈S1stot〉: open circle, 〈S2stot〉: �lled circles. Due to the asymmetric impurity positions
for L = 90, we show in this case also 〈S2S3〉 and 〈S3stot〉 (crosses). For compari-
son, the correlations of an isolated "bad-good-bad" nano system (black dashed lines)
are shown. Note that results for the isolated "good-bad-good" nano system would lie
indistinguishably on those for L = 91.

do that. When the RKKY regime is entered for ∆env > TK , the o�-resonant situation
leads to 〈Sistot〉 → 0 for J < 0.1 (red symbols in Fig. 8.9(b)).

On the one hand, the lead Kondo e�ect governs the correlations between S1 and S3

for ∆env < TK < ∆nano (0.75 < J < J∆nano), resulting in 〈S1S3〉 → 1
4
. On the

other hand, the RKKY regime for J → 0 is e�ectively a simple three spin system with
ferromagnetic J13 and antiferromagnetic but unequal couplings J12 6= J23 (Tab. 8.2).
However, due to the large coupling J13, 〈S1S3〉 → 1

4
(�lled red circles in Fig. 8.9(a))

and 〈S1S2〉 → −1
2
(open red circles) for J → 0. The presence of an approximate mirror

symmetry 〈S1S2〉 ≈ 〈S2S3〉 for J → 0 (open red circles and red crosses, respectively)
is another implication of the strongly enhanced J13. This has to be contrasted with the
asymmetric correlations, displayed in the "bad-good-bad" case (Sec. 8.3, Fig. 8.6(c)),
likewise with an underlying asymmetric three-spin model. Furthermore, we may argue
that weak |J12| and |J23| lead to stronger in�uences on 〈S1S2〉 and 〈S2S3〉 by residual
couplings to the conduction electrons, which is visible as decrease of |〈S1S2〉| and
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|〈S2S3〉| in the intermediate crossover region (e.g. at J = 0.1 in Fig. 8.9(a)).

8.7 Summary

In general, a small coupling between nano system and environment t′ � t leads to a
slight spectral broadening of the non-interacting electron states of the nano system.
The broadening manifests in an emerging small energy scale δ < ∆nano and triggers
phenomena such as the leakage of the Kondo clouds into the environment ("lead
Kondo regime", Secs. 8.3 and 8.5), the possible reappearance of the RKKY regime for
J → 0 (Sec. 8.2), and particularly enhanced RKKY couplings between good sites of
the isolated nano system (Sec. 8.6). Several predictions for the lead Kondo regime in
Refs. [118] and [50] can be con�rmed by numerical calculations. However, it must be
noted that some results, such as the reappearance of the RKKY regime energy scales
well below δ, cannot be obtained owing to strong �nite-size e�ects, i.e., δ ≈ ∆env.

Furthermore, we concluded that correlations in the lead Kondo regime ∆env < TK <
∆nano are compatible with the predictions of �nite-size perturbation theory for TK < ∆.
For example the novel mechanism described in chapter 6, which ferromagnetically cor-
relates impurities at good sites of the isolated nano system for ∆env < TK < ∆, can
be transferred to the lead Kondo regime: impurities align antiferromagnetically to the
collection of electrons of the broadened peak at εF (instead of just to the kF electron).
The correspondence between both Kondo regimes follows from δ, which should be irrel-
evant for energy scales larger than the broadening, D � δ. However, the resemblance
of the analytical results is remarkable, as the starting points are basically di�erent for
t′ = 0 and t′ 6= 0. This gives us another view on the "resonant enhancement" of inter-
impurity correlations and RKKY couplings between impurities at good sites (chapter 6)
and furthermore con�rms that our concept of �nite-size e�ects is stable against weak
interactions with the environment. However, the conventional Kondo cloud picture
does not break down for ∆env < TK < ∆nano.

From a wider perspective, the coupling t′ can be viewed as a possibility to design density
of states with non-�at features as a function of energy with corresponding consequences
on Kondo e�ect and RKKY exchange in the weak-coupling regime. However, we may
also understand our results in a more general way. On the one hand they are insensitive
to a �nite t′ � t. On the other hand we may conclude that the energy gap ∆ at εF ,
which causes the �nite-size Kondo e�ect, does not need to be consequence only of
spatial con�nement. It can also be e�ectively induced by suitable interactions, e.g. by
localisation due to disorder or crystal defects (even on a mesoscopic scale). Additionaly,
it is vaguely imaginable that systems, which do not show a Kondo e�ect at energy
scales above ∆ (e.g. due to anisotropies [43]), exhibit the same �nite-size physics
discussed in this work. Concluding, these considerations may indicate that prospects
for experimental realisations are richer than maybe initially thought.
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9 Large systems

After elaborating our picture of �nite-size and boundary e�ects in detail with plenty
of surprising consequences for the weak-coupling regime, we want to make contact
to the old-established ideas about the screening process and the competition between
Kondo e�ect and RKKY interaction [46, 51]. Following the results for large system
size L in section 5.5, in which we recovered the RKKY regime of the "bad-good-bad"
model, it should be possible to con�rm conventional ideas also for other models. Here,
we focus on two aspects: the phase transition expected for a two-impurity model at
antiferromagnetic distance, which results in non-Fermi liquid physics [51] (Sec. 4.2),
and multi-stage Kondo screening for models which exhibit a large total impurity spin
Stot in the RKKY regime [46].

9.1 Phase transition between Kondo and RKKY

regime

As known from section 4.2, the low-energy sector of impurity models can serve as
prototypes for non-Fermi liquid physics. One example represents the two-impurity
Kondo model at antiferromagnetic distance, where Kondo screening by conduction
electrons competes with self-screening of the impurities by antiferromagnetic RKKY
exchange [51]. The model is known to exhibit such non-Fermi liquid properties at
the phase transition between Kondo and RKKY regime emerging in the presence of a
special particle-hole symmetry [52] which is deeply linked to the parity symmetry of
conduction electrons. However, a phase transition is only possible for L→∞ [44] and
parity symmetry for the corresponding screening channel couplings is always broken,
already due to the presence of open boundaries.1 Nonetheless, remanant behaviour
may be expected, especially for large lattices.

From our numerical results, the crossover can be suspected at J ≈ 1.6 (for L = 150),
based on the �nding in Ref. [51] that at the critical point 〈S1S2〉 = −0.25. According
to the experience gained in previous chapters, it is clear that the corresponding tran-

1I. A�eck et al propose in Ref. [52] to place two impurities at antiferromagnetic distance with a
direct ferromagnetic interaction in order to achieve this symmetric situation.
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(a) (b)

Figure 9.1: Correlation functions of two-impurity models at antiferromagnetic dis-
tance (d = 1, green symbols) and ferromagnetic distance (d = 2, red symbols) as
functions of J on a log scale. For system sizes L = 10 (�lled and open circles) and
L = 150 (�lled and open squares). Left: total conduction-electron spin 〈s2

tot〉. Hori-
zontal dashed lines indicate the characteristic values, as discussed in the text, in the
strong and weak-coupling regime, and for the ferromagnetic model also in the inter-
mediate RKKY regime. Right: impurity-electron correlations 〈Sistot〉. 〈S1stot〉: �lled
symbols. Due to asymmetric impurity positions for d = 2, we also show in this case
〈S2stot〉 (open symbols). Note that, in case of L = 150, 〈S1stot〉 and 〈S2stot〉 lie
indistinguishably on each other.

sition region will be entirely hidden by �nite-size e�ects for small system sizes such as
L = 10. However, for L = 150 we can expect the �nite-size e�ects to be su�ciently
repelled.

Nevertheless, the familiar correlations 〈s2
tot〉 (green symbols in Fig. 9.1(a)) and 〈Sistot〉

(green symbols in Fig. 9.1(b)) do not seem to be suited to �nd evidences for the critical
point. Increasing the system size from L = 10 to L = 150 obviously does not lead
to the same fundamental changes as they are found in the "bad-good-bad" case in
chapter 5.

However, a more convenient quantity in this regard represents the staggered impurity
susceptibility χimp

stag, which is expected to exhibit diverging behaviour at the transition
point [51]. We obtain χimp

stag as derivation of the magnetisation of one impurity with

respect to a vanishing small, staggered magnetic �eld Bstag, i.e. χ
imp
stag =

∂〈Sz1 〉
∂Bstag

∣∣∣
Bstag→0

.

Bstag is of the order of 10−4 in our numerical calculations and applied to the whole
system.
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9.1 Phase transition between Kondo and RKKY regime

(a) (b)

Figure 9.2: Left: staggered impurity susceptibility χimp
stag (green symbols), as de�ned

in the text, as functions of J on a double log scale. For a two-impurity model at
antiferromagnetic distance d = 1 and di�erent system sizes L: L = 2 (open diamonds),
L = 10 (open circles), L = 50 (open triangles), and L = 150 (�lled squares). Due to a
sign change of χimp

stag for systems of size L > 2, we also show −χimp
stag (orange symbols).

Right: two-site averaged Kondo cloud correlations |C(r)| = 1
2
|〈S1si1+r〉+ 〈S1si1+r+1〉|

as functions of the distance r from the �rst impurity. For two-impurity models at
antiferromagnetic distance d = 1 and couplings J = 0.5 (blue symbols) and J = 1.5
(green symbols), and for models at ferromagnetic distance d = 2 and couplings J = 0.5
(maroon symbols), J = 1.5 (red symbols), and J = 3 (orange symbols). System size
L = 150. For comparison, special distance dependencies are indicated as black solid
lines.

χimp
stag is displayed in Fig. 9.2(a) for di�erent system sizes L (green symbols). Let

us begin with an extremely small system of size L = 2 (open diamonds). For strong
couplings, the Kondo e�ect leads to vanishing χimp

stag, since the Kondo cloud is essentially
local. Only considering a local Kondo cloud, Bstag acts e�ectively as an homogeneous
magnetic �eld, i.e. χimp

stag → 0 for J → ∞. On the other hand, for TK < ∆, the
evolving nonlocal impurity singlet decouples from the conduction-electron system and
is consequently very susceptible to staggered magnetic �elds. Hence, χimp

stag → ∞ for
J → 0.

Turning to a larger systems size of L = 150 (�lled squares), we �nd that the behaviour
for J → 0 is unchanged, but in the intermediate-coupling regime we obtain a sign
change of χimp

stag. The negative χimp
stag (orange symbols) is directly connected to the ex-

panding Kondo clouds for �nite but large J : Bstag matches exactly the 2kF oscillations
within an extended Kondo cloud (Sec. 4.4). Since the spatial extension of the Kondo
cloud is established by conduction electrons, they are therefore strongly polarised by
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Bstag. One the other hand, the impurity is strongly bound antiferromagnetically to the
electrons within the cloud. Thus, we can expect a negative e�ect on the orientation of
the impurity spin for a positive Bstag, resulting in a negative χimp

stag. This e�ect becomes
strengthened for increasing system sizes L due to the increasing reachable Kondo cloud
size.

For this reason, we may identify χimp
stag < 0 with the presence of individual, large Kondo

clouds. The sign change in χimp
stag might then be regarded as indication for both the

crossover between Kondo regime and RKKY regime and the �nite-size induced crossover
to the RKKY regime for ∆ > TK . However, the results displayed in Fig. 9.2(a)
apparently favour the second possibility, since the J where the sign change occurs is
shifted to smaller values for increasing L. Moreover, for L = 150, the corresponding
coupling J ≈ 1.0− 1.25 is (unexpectedly) close to J∆,3spins ≈ 1 from the "bad-good-
bad" system of size L = 149 (Sec. 5.5).

Furthermore, a small peak in −χimp
stag may be spotted for J = 1.5 (L = 150), suggestive

of marking the sought transition region between Kondo and RKKY regime. For smaller
J than the peak position but still in its vicinity, χimp

stag is still negative but with decreasing
modulus (Fig. 9.2(a)), signaling the attenuation of individual Kondo e�ects in favor
of the RKKY exchange. The peak is located close to the above discussed coupling of
J ≈ 1.6 where 〈S1S2〉 = −0.25.

9.2 Multi-stage Kondo screening

When RKKY couplings are ferromagnetic, a large nonlocal total impurity spin Stot

develops in the RKKY regime J∆,1spin < J < JD. Unlike the antiferromagnetic model,
RKKY interaction and Kondo e�ect may then act in a cooperative manner, since Stot

can be subject to a multi-stage Kondo e�ect, having in mind the discussion of the
two-impurity Kondo model at ferromagnetic distance [46] (Sec. 4.2). As a function of
decreasing temperature or energy scale, the total impurity spin is screened subsequently
in steps of one half on (possibly) di�erent energy scales TK if no �nite-size e�ects
are present. However, a crucial issue in this discussion is the number of screening
channels for J → 0. Regarding a one-dimensional chain without orbital degeneracy, in
general just one channel is present for J → 0. This can be, however, circumvented by
periodic boundary conditions and additional symmetries such as parity, which allows
for an elegant transformation of the Hamiltonian of the non-interacting conduction-
electron system. Finally, it can be revealed that, in case of the two-impurity model at
ferromagnetic distance, two separate screening channels are provided, which permit to
completely quench the total impurity triplet for su�ciently low temperatures [46] (Sec.
4.2).

One screening channel may only contribute 1
2
in the screening process, suggested by
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9.2 Multi-stage Kondo screening

the results of Ref. [110]. Below the corresponding Kondo temperature, the residual
couplings to this channel usually turn out to be ferromagnetic, leading to an e�ective
decoupling of the residual impurity spin from the channel. On the other hand, for
J → ∞, the number of screening channels in one-dimensional systems is one per
impurity in form of localised electron states (J � t).

We are already familiar with the fact that one property of �nite-size e�ects for TK < ∆
is to limit the number of available screening channels. For J → 0 there is no screening
channel in o�-resonance cases, whereas a single one is left over in on-resonance cases,
namely the kF conduction electron.

Consequently, large Stot may establish underscreening situations, when the total impu-
rity spin exceeds the number of screening channels 2Stot > Nchannels. This is accompa-
nied by interesting physics such as the "underscreening cloud", which has been found
to emerge in a single-impurity model with impurity spin S = 1 at energy scales below
TK (or length scales beyond ξK , respectively) [120], where a residual impurity spin is
left over and governed by a ferromagnetic e�ective Kondo coupling. Therefore, the
spin correlations outside of the underscreening cloud have special spatial dependencies,
di�erent from usual dependencies outside of a Kondo cloud. The low-energy proper-
ties of such an underscreening Kondo model can be described in terms of a so-called
singular Fermi liquid, where the well-de�ned quasi-particles have a decay rate which
vanishes with energy in a singular way near the Fermi energy [120].

Thus, in our setup we may expect in general one screening channel to be present in
the RKKY regime, at most two in symmetrical con�gurations. Can we distinguish the
di�erent Kondo scales? At �rst glance, the answer appears to be negative, since the
calculations are performed for zero temperature, and thus we will obtain the maximal
screening. However, the �nite-size Kondo e�ect helps to discriminate the di�erent
Kondo scales TK,i (if present and taking part in the screening) since it translates them
into sequences of J∆,i de�ned by ∆ = TK,1, . . ., where corresponding �nite-size Kondo
e�ects set in.

Two-impurity model at ferromagnetic distance

Let us �rst turn to the two-impurity model at ferromagnetic distance. For TK <
∆, there is no screening channel available due to the o�-resonance situation. For
L = 10 the impurity-electron correlations 〈Sistot〉 (red circles in Fig. 9.1(b)) are
strongly dominated by �nite-size e�ects with crossover from 〈Sistot〉 → 0 for J → 0
to 〈Sistot〉 → −3

4
for J →∞. This translates into a crossover for 〈s2

tot〉 (red circles in
Fig. 9.1(a)) from 0 (J → 0) to 2 + 23

4
(J →∞).

On the other hand, for larger system sizes L at least one screening channel is expected
to be available in the RKKY regime. For L = 150, 〈S1stot〉 and 〈S2stot〉 (red squares in
Fig. 9.1(b)) become similar due to less in�uences by Friedel oscillations. Furthermore,
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(a)

S=0

S=1

S=3/2

S=0

(b)

S=0

S=1

S=3/2

S=0

Figure 9.3: Correlation functions of three-impurity models in a "good-good-good"
con�guration with impurity distance d = 2 as functions of J on a log scale. For system
sizes L = 9 (black circles) and L = 150 (red squares). Left: total conduction-electron
spin 〈s2

tot〉. Horizontal dashed lines indicate the characteristic values in the weak and
strong-coupling regime as well the value corresponding to a possible screening of 1 of
the total impurity spin in the intermediate RKKY regime. Right: impurity-electron
correlations 〈Sistot〉. 〈S1stot〉 = 〈S3stot〉: open symbols, 〈S2stot〉: �lled symbols.

stronger antiferromagnetic correlations 〈Sistot〉 are observed, hinting at a much more
e�cient screening process. This guess is con�rmed by in Fig. 9.1(a) (red squares), since
〈s2

tot〉 approaches 23
4
(middle dashed line) for 1.25 ≤ J ≤ 2. Note that the numerical

results are cumulating below the middle dashed line, because the total impurity spin is
not yet fully developed for these intermediate couplings, that is Stot < 1.2 However,
our calculations give no evidence for the presence of a second screening channel due
to symmetry arguments, since it would correspond to 〈s2

tot〉 = 2 + 2. We note that
the order of magnitude for the crossover between RKKY and Kondo regime is again in
agreement with previous �ndings for JD (e.g. Sec. 5.5).

2To ensure ground-state adiabaticity (Sec. 3.5), a rather interesting state develops: the screening
of 1

2 of the impurity triplet leads to an additional 1
2 spin in the conduction-electron system, which

builds up a triplet with the remaining impurity spin 1
2 .
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9.2 Multi-stage Kondo screening

Kondo screening clouds

Both in the two-impurity model at ferromagnetic and antiferromagnetic distance we �nd
traces of two interesting physical situations in the vicinity of J = 1.5, stemming from
the competition between Kondo e�ect and RKKY exchange. Is this maybe re�ected
by the Kondo cloud correlations ∼ 〈S1sr〉, shown in Fig. 9.2(b)? Recalling chapter
4, such an analysis can be involving, so we just focus here on the long-range distance
dependencies of ∼ 〈S1sr〉.
For the antiferromagnetic model at J = 1.5 (green symbols), the typical RKKY distance
dependence ∼ 1/r inside of the Kondo cloud is obtained for almost all r, where r is
the distance to the �rst impurity. Hence, we can think, in this case, of large Kondo
clouds on the scale of the system size L. On the other hand, at J = 0.5 (blue symbols)
the cuto� of Kondo correlations for J < J∆ (and J < JD, see Sec. 4.2) apparently
leads to an anomalous, constant distance dependence for 5 < r < 40 and a 1/r0.5

dependence for r > 40.

Interestingly, a comparable behaviour can also be found in the ferromagnetic model at
J = 0.5 (maroon symbols), i.e. J < J∆,2spins, and even at J = 1.5 (red symbols),
i.e. J & J∆,2spins. Even more peculiarly, while at J = 10 one can �nd an indication of
the boundary of the Kondo cloud, signaled by a 1/r2 power law, in both models (not
shown in Fig. 9.2(b)), this is not the case at J = 0.5, J = 1.5, and J = 3 in the
ferromagnetic model. Although it appears likely that the unusual distance dependency
is a signature of the cuto� of Kondo correlations in �nite systems, which can moreover
be strongly in�uenced by RKKY physics, our �nding shows that further research on it
is needed.

"Good-good-good" three-impurity model

In the "bad-good-bad" case only one channel is necessary to screen the Stot = 1/2,
while the "good-good-good" model develops a regular Stot = 3/2 total impurity spin
in the RKKY regime due to the ferromagnetic impurity distance. One might suspect
that, due to mirror symmetric positioning, the three impurities could access the two
screening channels, provided by the odd and even conduction electrons (with respect
to the center of the chain). This is in fact not found here: Fig. 9.3(a) displays 〈s2

tot〉,
crossing over from 3

4
for J → 0 (�nite-size Kondo e�ect) to 2 + 33

4
in the strong-

coupling regime (Kondo e�ect) for L = 10 (black symbols) as well as for L = 150
(red symbols). The additional screening of more than 1

2
of the Stot = 3

2
, which is

anticipated at 〈s2
tot〉 = 2 + 3

4
(see middle dashed line), is obviously not realised.

The in�uence of �nite-size e�ects in this underscreening situation (at weak J) can be
further characterised by 〈Sistot〉 (Fig. 9.3(b)). Its study is similar to previous ones
(Sec. 5.5); however, correlations of the three impurities at weak J are determined by
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position independent linear-in-J Kondo couplings (chapter 6).

9.3 Summary

It requires already at least system sizes L = 149 in the "bad-good-bad" case to reveal
the conventional RKKY physics (chapter 5). In this light it might appear challenging to
uncover with the help of DMRG the even smaller energy scales, caused by a two-stage
Kondo e�ect for a "good-good-good" model or a two-impurity model at ferromagnetic
distance [46], as well as the crossover between Kondo and RKKY regime in a two-
impurity model at antiferromagnetic distance [51]. And in fact, it turns out that, in
this regard, standard DMRG is pushed to its limits. The interesting physics is still
in�uenced by �nite-size e�ects or by the slightly broken symmetry between odd and
even conduction-electron screening channel due to boundary e�ects.

Notwithstanding, it is notable that the general tendencies can be still be investigated,
but we leave studies in this direction for further research. Such a program could include,
e.g., the determination of critical exponents in the discussed antiferromagnetic model
(Sec. 9.1). As examined in chapter 4, R-DMFT is applicable to these problems only
in limited cases. Hence, considering models with a small number of impurities, it may
be also more advantageous to choose other methods such as NRG [10], which deliver
a considerably �ner energy resolution than DMRG.

With this chapter we conclude our study of �nite-size e�ects in impurity models. How-
ever, we will realise that the architecture of our picture of impurity physics is still
incomplete, and thus we turn to a pressing question which arose several times in the
course of this work: what remains less understood is the adiabaticity observed for
the ground state of the discussed impurity models at half-�lling. While �nite-size ef-
fects modify large fractions of the weak-coupling regime, in the strong-coupling regime
(J � t) the conventional Kondo e�ect is the leading energy scale. Given the adiabatic-
ity [47, 48, 72] (Sec. 3.5), where does the ground-state spin go in the strong-coupling
regime in a large-spin model such as the "good-good-good" con�guration? What is
the mechanism which generates magnetism in this regime?
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10 Strong-coupling regime

10.1 Introduction

The preceding chapters revolved around the strong in�uences of the �nite size and the
boundaries of the host system on the weak-coupling regime of an impurity system. In
the course of our study, we employed an analytically proven adiabaticity for the ground
state at half-�lling [47, 48, 72] (Sec. 3.5), readily implying that magnetism may also
be present in the Kondo regime (J � t). This can be considered as the starting point
for the current chapter, which asks how magnetism is generated in the strong-coupling
regime of impurity models, where the magnetism of the impurities is quenched due to
the Kondo e�ect. Here, we will follow ideas and conclusions of our papers Refs. [24]
and [121].

We will reveal that magnetic couplings in the Kondo regime are due to a novel exchange
mechanism, where the roles of conduction electrons and impurities are "inverted". The
basic idea is as follows: for strong J , almost local Kondo singlets are formed, which act
as hard scattering centers for the itinerant conduction electrons and may con�ne their
motion, depending on the impurity position. In certain geometries, this tends to localise
the conduction electrons and leads to the formation of local magnetic moments in the a
priori uncorrelated conduction-electron system. The magnetic coupling between these
moments is established via virtual excitations of the Kondo singlets. This exchange
mechanism delivers a consistent physical explanation for the ground-state adiabaticity,
observed at half-�lling (Sec. 10.6) and ensured by exact results [48, 72] based on Lieb's
concept of re�ection positivity in spin space [47] (Sec. 3.5).

The resulting "inverse indirect magnetic exchange" (IIME) is studied by means of
strong-coupling perturbation theory (Sec. 10.4). We derive an e�ective low-energy
Hamiltonian for J → ∞, containing magnetic and isospin exchange terms (see Sec.
10.3 for details) which govern the physics of the free electrons which are not trapped
in Kondo singlets. In a sense, this may be regarded as a more detailed de�nition of
Nozières' strong-coupling picture [64], describing in detail the weak interactions among
the free "excess" electrons. A fascinating consequence of IIME are additional Kondo
e�ects arising between excess electrons in di�erent parts of the conduction-electron
system.

Note that the strong-coupling regime itself is of physical interest, since the strong-
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10 Strong-coupling regime

Figure 10.1: Inverse indirect magnetic exchange (IIME) mechanism. Lowest many-
body eigenenergies En−E0 for n = 0, . . . , 7 in the entire range 0 < J <∞ (note the
nonlinear scale) for the Kondo impurity model with L = 8 host sites and R = 2 impurity
spins 1/2 at the sites i1 = 3 and i2 = 5. Multiplicities are indicated by numbers. The
system smoothly crosses over from conventional indirect RKKY exchange (J → 0) to
a state for J →∞ where two local Kondo singlets lead to the formation of two spins
1/2 in the host, which are coupled to a triplet via a magnetically inert Kondo singlet.
The pictograms visualise the dominant spin correlations obtained numerically in both
limits. Figure taken from Ref. [24].

coupling �xed point often describes low-energy properties of impurity models (chapter
2 and section 4.2). This fact also suggests that the locality of Kondo clouds is a rather
�exible requirement for the IIME.

10.2 From RKKY to inverse exchange

The two-impurity model at ferromagnetic distance shall serve as an example for the
crossover from the weak-coupling regime to the strong-coupling regime. The model
is set with a small number of L = 8 sites and impurities at i1 = 3 and i2 = 5. Its
eigenenergies are evaluated by full diagonalisation and shown in Fig. 10.1. As known
from chapter 4, for J → 0, the low-energy sector of H is exactly described by an
e�ective RKKY two-spin model

HRKKY = −J12S1S2 (10.1)

J12 ∼ (−1)|i1−i2|J2 1

|i1 − i2|
. (10.2)
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Due to the "ferromagnetic distance" |i1 − i2| = 2, the two impurity spins form a
nonlocal triplet in the ground state for J → 0.

As seen in Fig. 10.1, the ground state is unique (apart from the spin degeneracy) for any
�nite J 6= 0, J 6=∞. The generalised Lieb therorem (Sec. 3.5) enforces the absence of
a ground-state level crossing at half-�lling for a bipartite lattice. Therefore, the ground-
state symmetry is preserved and the triplet remains intact for all couplings. However,
its character must change. With increasing J the Kondo e�ect, cut by the �nite size
gap ∆ for J → 0, sets in (TK ∼ ∆) and dominates for J → ∞. The corresponding
Kondo screening cloud is shrinking for increasing J , until it is essentially local. Hence,
two completely local and magnetically inert "Kondo singlets" are obtained. Since the
ground state must be a triplet, two spins S = 1

2
are formed in di�erent parts of

the conduction-electron system, which couple ferromagnetically. This is supported by
numerical analysis of spin correlation functions.

While the magnetic coupling of impurity spins is mediated by the conduction electron
of the metallic host for weak J , this type of interaction is mediated by local Kondo
singlets (see pictograms in Fig. 10.1), thus representing an "inverse indirect magnetic
exchange" (IIME).

10.3 Low-energy model

Before going into details with perturbation theory, we want to �rst discuss the general
structure of the resulting e�ective low-energy Hamiltonian at strong couplings. Let us
employ a modi�ed version of the ferromagnetic two-impurity model of section 10.2 as
example. To reduce complexity (and without changing the physics), we cut the system
by two sites at the left chain edge and as well at the right chain edge (Fig. 10.2). Sites
to which the impurities are coupled are denoted as B sites and the remaining sites as
A sites.

In order to analyse the IIME mechanism, which obviously generates a ferromagnetic
coupling between magnetic moments at both A sites i = 2 and i = 4, we treat the
hopping term ∼ t perturbatively (while keeping J →∞). This is compatible with the
variation of J � t for �xed t, as done in our numerical calculations.

The starting point is the highly degenerate ground state of the t = 0 model consisting
of local Kondo singlets and an arbitrary electron con�guration on A sites. As is shown
in the next section in detail, a non-trivial e�ective model, capturing the low-energy
sector of H in the limit 0 < t � J , can be obtained at fourth order in t through
processes, where e.g. an electron hops from i ∈ A and, again via B, back to i. The
local Kondo singlet must be excited at an energy cost ∼ J � t �rst and restored again
on the way back, underlining that these processes must be indeed considered as virtual.

143



10 Strong-coupling regime

S=0 S=0

fm

(a)

S=0 S=0

afm

(b)

S=0 S=0

(c)

Figure 10.2: Contributions of nonlocal interactions to the e�ective low-energy model
of the strong-coupling regime, Eq. (10.3): (a) ferromagnetic ("fm") spin exchange
s2s4 for con�gurations in which sites 2 and 4 are singly occupied, (b) antiferromagnetic
("afm") isospin exchange t2t4 for doubly occupied or empty sites, and (c) correlated
hopping between a site occupied by a spin and another one occupied by an isospin.
In case of doubly occupied or empty sites we also �nd contributing terms which are
Hubbard-U like.

For J > 0 and keeping terms up to O(t4/J3), we �nd

He� =− α̃(s2s4 − t2t4) + α̃
∑
i∈A

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
(10.3)

− 1

2
α̃
∑
σ

(
c†2σc4σ + H.c

)
(1− n2−σ − n4−σ)

α̃ =
64

3

t4

J3
. (10.4)

The e�ective model is governed by a single energy scale α̃ and describes spin and
charge degrees of freedom on A sites only. Degrees of freedom of local Kondo singlets
do not appear in the e�ective Hamiltonian, as they are released only on large energy
scales ∼ J � t.

When analysing the e�ective Hamiltonian, Eq. (10.3), (illustrated in Fig. 10.2), we
indeed �nd a ferromagnetic spin interaction (�rst term). A corresponding necessary
local-moment formation is favoured by a repulsive Hubbard term (third term in Eq.
(10.3)). This ferromagnetism competes with an antiferromagnetic exchange between
local isospins (second term in Eq. (10.3)), de�ned by

ti =
1

2

(
c†i↑, (−1)ici↓

)
· σσσ ·

(
ci↑, (−1)ic†i↓

)T
. (10.5)

Isospins can be regarded as counterparts of spins: while spins s are obtained at singly
occupied sites, isospins t are present if sites are empty (down isospin state) or doubly
occupied (up isospin state). Note that the total isospin of the system and the total
spin are the generators of the SO(4) symmetry group of the half-�lled Kondo model

144



10.3 Low-energy model

on the bipartite lattice [97]�and of the e�ective model as well. The fourth term in
He� describes correlated hopping between spin and isospin-containing sites.

The e�ective model and thus the IIME concept is also valid for �llings n away from
half-�lling, as long as the local Kondo singlets in the t = 0 ground state are unbroken,
i.e. in this case for �llings 1/2 ≤ n ≤ 3/2. In section 10.4, we show that in dimensions
D > 1 essentially the same e�ective model is obtained.

Before going into the details of the strong-coupling perturbation theory, let us �gure
out on general grounds why the isospin exchange must be antiferromagnetic and the
spin exchange ferromagnetic (following Anderson's reasoning of antiferromagnetic spin
exchange in the single-impurity model, Sec. 2.2). Our argumentation is illustrated in
Figs. 10.3 and 10.4 and is based on the idea that hopping processes to and o� a Kondo
singlet, considered in a strong-coupling perturbation theory, do not change the total
isospin or total spin of the system. Thus, isospin and spin symmetry are valid for the
original model as well as for the e�ective model.

Therefore, all intermediate states will have the same total spin and total isospin as
the unperturbed ground states which are connected to them by hopping processes.
In perturbation theory one can then only expect hopping sequences which match the
correct total isospin and total spin of states in the low-energy sector for �nite t, in
particular of the ground state. We may also invert this adiabatic statement: if it is
possible to infer from intermediate states a de�nite total spin or total isospin, we can
transfer the �nding to, e.g., the ground state for �nite t.

However, a few preparations are necessary. First we reduce to a simple toy system; a
single-impurity model with L = 3 and impurity at i1 = 2. For t = 0, we have the
sixfold ground-state degeneracy of spin and isospin states for the two electrons at A
sites i = 1 and i = 3. Second, as we will see in section 10.4, the essential contributions
to the perturbation theory stem from the excitation of the Kondo singlet to a triplet,
giving ∼ −t4/J3. Furthermore, we emphasise that we just give here examples for
motivation without claiming completeness, which will be provided in section 10.4 by
conducting the complete perturbation theory up to fourth order in t.

We start with the isospin exchange (Fig. 10.3) by the investigation of a ground state
for t = 0 in which two independent isospins Ti = 1

2
of opposite orientation reside at the

sites i = 1 and i = 3 next to the Kondo singlet, being in a superposition of Ttot,13 = 0
and Ttot,13 = 1 states (total isospin z component T ztot = 0 due to half-�lling). Since
the Kondo singlet contains no isospins, TKS = 0, the question is which state is the
ground state for �nite hopping t 6= 0: Tgs = 0 or Tgs = 1? When the system is
perturbed as described above, we may reach the highest-excited state with a "Kondo
triplet". Since we are interested in the isospin exchange, which is basically nonlocal,
we need to move one electron by two hopping events from site i = 1 to site i = 3.
As can be seen in Fig. 10.3, the intermediate state contains no isospin at all; i.e. the
total isospin Tsys = 0. Therefore, we conclude that the whole hopping sequence is
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ground state

TKS=0

T1=1/2 T3=1/2

Ttot,13=0

⇔perturbations

(�nite t)

highest-excited state

TKT=0

T1=0 T3=0

Figure 10.3: Antiferromagnetic isospin exchange in the strong-coupling regime of the
single-impurity model for L = 3. The ground-state degeneracy of two independent
isospins, prepared close to the Kondo singlet for t = 0 (left panel), is lifted for �nite
t by antiferromagnetic isospin exchange, indicated by a green arrow in the left panel.
The exchange is motivated here by perturbation theory in t, additionally using the fact
that these hopping processes do not change the total isospin of the system Tsys. In
fourth order of this perturbation theory, one may arrive at one of the highest-excited
intermediate states with a "Kondo triplet" and two singly occupied sites next to it
(right panel). Due to the total absence of isospins, Tsys = 0 in the intermediate state.
Hence, Ttot,13 = 0 for the two isospins in the ground state for �nite t.

possible only for total Tsys = 0 states. Since energy corrections of these sequences are
negative ∼ − t4

J3 (fermionic signs due to the hopping cancel out), Tsys = 0 states are
energetically favoured for �nite t. This means that the ground state for �nite t is an
isospin singlet and, thus, we �nd antiferromagnetic isospin exchange. It is obvious that
a similar connection by hopping events between the Tgs = 1 state and the intermediate
Kondo-triplet state is not possible within fourth-order perturbation theory.

Proceeding with the spin exchange, we prepare a ground state for t = 0 (depicted
in Fig. 10.4) where two independent spins Si = 1

2
are located at i = 1 and i = 3,

likewise in a superposition of Stot,13 = 0 and Stot,13 = 1 states (Mtot = 0). Then,
the intermediate Kondo-triplet state must contain two isospins, if we aim at nonlocal
interactions again. Consequently, the intermediate state arising in perturbation theory
is a total triplet state, whose total spin is determined by the Kondo triplet alone. With
the same arguments as above, we may conclude that the ground state for �nite t is
also a total triplet state, generated by a ferromagnetic spin exchange.
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ground state

SKS=0

S1=1/2 S3=1/2

Stot,13=1

⇔perturbations

(�nite t)

highest-excited state

SKT=1,MKT=0

S1=0 S3=0

Figure 10.4: Ferromagnetic spin exchange in the strong-coupling regime of the single-
impurity model for L = 3. The ground-state degeneracy of two independent spins,
prepared close to the Kondo singlet for t = 0 (left panel), is lifted for �nite t by
ferromagnetic spin exchange, indicated by a red arrow in the left panel. This is again
motivated by intermediate states within perturbation theory in t, using the circumstance
that these hopping processes do not change the total spin Ssys. In fourth order of this
perturbation theory, one may arrive at one of the highest-excited intermediate states
with a "Kondo triplet" in a M = 0 state (right panel). Then the resulting isospins
close to the triplet (doubly occupied and empty sites) carry no spin, hence Ssys = 1 in
the intermediate state. Consequently, Ssys = 1 as well in the ground state for �nite t.

10.4 Perturbation theory in the strong-coupling

regime

In the following, the aim is to derive the e�ective low-energy Hamiltonian in the strong-
coupling regime. However, this is conducted at a rather general level regarding the
geometry, i.e. we allow for higher dimensionality and we allow that Kondo singlets
con�ne spatially extended parts of the electron system for J →∞, which we will refer
for simplicity to as "subsystems" hereafter (an example is shown in Fig. 10.9).

In order to keep the perturbation theory in the spirit of our calculations, which are
performed at �xed t and varying J , the hopping t to and o� a site ir "below" an
impurity r is considered as a perturbation to the situation when this site is part of a
local Kondo singlet. Hence, J → ∞ corresponds to t → 0 for hopping processes to
and o� a local Kondo singlet. Note that for models with next-neighbouring impurities
at distance d > 2, there is a clear di�erence in the unperturbed ground states between
J →∞ and all hopping amplitudes t = 0.

Again, we employ the perturbation theory presented in [116] (p. 39), applying it for
the case of a small perturbation by t. In order to determine the e�ective low-energy
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10 Strong-coupling regime

Hamiltonian, we consider

P0H1

∞∑
k=0

(−t)k+1

 ∑
m (m6=0)

PmH1

E − E(0)
m

k

P0|φ〉 = (E − E(0)
n )P0|φ〉, (10.6)

where H1 is the perturbation to the unperturbed Hamiltonian H0, and H = H0− tH1,
and

E = E(0)
n − tE(1)

n + t2E(2)
n − . . . (10.7)

|φ〉 denotes a state from the restricted Hilbert space corresponding to the ground-state
manifold P0. Pm is a projector of a subspace of the unperturbed model corresponding
to the energy E(0)

m .
The left-hand side of the above equation,

P0H1

∞∑
k=0

(−t)k+1

 ∑
m (m 6=n)

PmH1

E − E(0)
m

k

P0, (10.8)

can be considered as an e�ective Hamiltonian in the subspace P0. The E dependence
may be regarded as harmless and can be eliminated for example by expanding in orders
of t [122, 123].

Hamiltonian and projection operators

For J → ∞, we obtain a collection of local Kondo singlets. In order to reduce
complexity, we �rst consider only cases with next-neighbouring impurities at distance
d = 2. This results in a bipartite structure with Kondo singlets at B sites and free
electrons residing at A sites i ∈ A. At the end of this section, we return to the general
case of d ≥ 2.

For clarity, we repeat the general multi-impurity Kondo Hamiltonian (J > 0, Eq.
(2.34))

H = −t
∑
〈i,j〉,σ

c†i,σcj,σ + J
R∑
r=1

Srsir , (10.9)

We assume that each impurity is in a Kondo singlet for J → ∞, implying that the
number of conduction electrons R ≤ N ≤ 2L − R. L is the number of sites in the
conduction-electron system, i.e. in a one-dimensional system it is equal to the chain
length.
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10.4 Perturbation theory in the strong-coupling regime

The starting point is the unperturbed Hamiltonian

H0 = J

R∑
r=1

Srsir , (10.10)

which contains the local exchange interaction terms.

The hopping to and o� a site ir below an impurity is considered as perturbation

H1 =
R∑
r=1

Hr
1 =

R∑
r=1

∑
〈j,ir〉
j∈A

∑
σ

(c†ir,σcj,σ + H.c.). (10.11)

The excess electrons are con�ned on sites j ∈ A by Kondo singlets (and by the
boundaries in case of open boundary conditions), causing a large degeneracy. The
subspace of unperturbed ground states (i.e. regarding H0 with J > 0) is then spanned
by the states

(|ψ0〉){α,σ} =

(
R∏
r=1

|KSr〉
)(∏

j

c†j,σj

)
|0〉, (10.12)

where |0〉 denotes the electron vacuum. |KSr〉 = 1√
2
(| ↑↓〉 − | ↓↑〉)r is a local Kondo

singlet between impurity r and a single electron at site ir ∈ B. j ∈ A and σj are the
position and the spin of the j-th excess electron, respectively.

In the strong-coupling regime, the projectors of the unperturbed model have the general
product form

Pm =

(
R∏
r=1

P r
mr

)
1A, (10.13)

where P r
mr denotes the projector to the mr-th subspace of the impurity r and the site

ir below it, and where 1A refers to A sites.

Considering a single Kondo singlet r, the ground-state projector is

P r
0 = |KSr〉〈KSr| (10.14)

corresponding to the energy E0 = −3
4
J .

The high-energy subspaces of one local Kondo singlet are constituted by the "free
impurity" states with an empty or doubly occupied site ir below an impurity r

P r
1 =

∑
s

(|r, s; 0〉〈r, s; 0|+ |r, s; 2〉〈r, s; 2|) (10.15)

E1 = 0 (10.16)
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10 Strong-coupling regime

and by the triplet states

P r
2 = |r, T, 0〉〈r, T, 0|+

∑
s

|r, T, zs〉〈r, T, zs| (10.17)

E2 =
1

4
J. (10.18)

|r, s; 0〉 (|r, s; 2〉) represents the impurity r in state s with an empty (doubly occupied)
site ir below it. The triplet states are |r, T, 0〉 = 1√

2
(| ↑↓〉 + | ↓↑〉)r, and |r, T,+1〉 =

| ↑↑〉r, and |r, T,−1〉 = | ↓↓〉r (using the same order as for the Kondo singlet |KS〉r).
Consequently, high-energy subspaces of the full, unperturbed model H0 are made up
by products of P r

0 , P
r
1 , P

r
2 for all impurities, excluding the ground-state subspace which

is

P0 = P 1
0P

2
0 . . . P

R
0 (10.19)

with energy E(0)
0 = −R · 3/4J .

One �rst observation is that P r
0H

j
1P

r
0 = 0 ∀j for a speci�c local Kondo singlet r,

so we will only have to deal with even orders of perturbation theory. Furthermore,
P r
mH

r
1P

r
n = 0 ∀|m−n| 6= 1, and one readily concludes that in second order only terms

involving one local Kondo singlet can contribute in Eq. (10.8) (Fig. 10.5)

P0H
r
1P

r
1H

r
1P0 (10.20)

P1 =
∑
r

P r
1

∏
r′ 6=r

P r′
0 , (10.21)

where P1 denotes the respective high-energy subspace. In fourth order, the relevant
excitations can be subdivided in two groups. The �rst one, P2, stems from the exci-
tation of a speci�c singlet to a triplet via an intermediate "free impurity" state (Fig.
10.7)

P0H
r
1P

r
1H

r
1P

r
2H

r
1P

r
1H

r
1P0 (10.22)

P2 =
∑
r

P r
2

∏
r′ 6=r

P r′
0 , (10.23)

while the latter one, P3, consists of states in which two singlets r and p are excited to
"free impurity" states (Fig. 10.6)

P0H
r
1P

r
1P

p
0H

p
1P

r
1P

p
1H

r
1P

r
0P

p
1H

p
1P0 (10.24)

P0H
r
1P

r
1P

p
0H

p
1P

r
1P

p
1H

p
1P

r
1P

p
0H

r
1P0 (10.25)

P3 =
∑

rp (r 6=p)
P r

1P
p
1

∏
r′ 6=r,p

P r′
0 . (10.26)
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10.4 Perturbation theory in the strong-coupling regime

The di�erence between the two processes (10.24) and (10.25) is the order in which the
Kondo singlets are restored.

Processes such as

P0H
r
1P

r
1P

p
0H

r
1P

r
0P

p
0H

p
1P

r
0P

p
1H

p
1P0, (10.27)

where the two impurities are excited into a "free impurity" state one after another are
not taken into account because the intermediate projector P 1

0 . . . P
r
0P

p
0 . . . P

R
0 is not

orthogonal to the ground-state projector.

To shorten the subsequent derivation, we compute the following general matrix ele-
ments of c(†)

irσ
and H1

〈KSr|H1|r, s, 2〉 =
1√
2

(δσ↑ + δσ↓)
∑
〈j,ir〉
j∈A

c†ir,σ (10.28)

〈KSr|H1|r, s, 0〉 =
1√
2
zs(δσ↓ + δσ↑)

∑
〈j,ir〉
j∈A

cir,σ (10.29)

〈r, T, 0|H1|r, s, 0〉 =
1√
2

∑
〈j,ir〉
j∈A

cj,−s (10.30)

〈r, T, 0|H1|r, s, 2〉 = − zs√
2

∑
〈j,ir〉
j∈A

c†j,s (10.31)

〈r, T,±1|H1|r, s, 0〉 = δzs,±1

∑
〈j,ir〉
j∈A

cj,s (10.32)

〈r, T, 0|H1|r, s, 2〉 = zsδzs,±1

∑
〈j,ir〉
j∈A

c†j,−s, (10.33)

where z↑ = +1 and z↓ = −1.

To lift the full degeneracy, we will have to go at least to fourth order in perturbation
theory and expect ground-state energy corrections in form of

E0 = E
(0)
0 − tE(1)

0 + t2E
(2)
0 − t3E(3)

0 + t4E
(4)
0 . (10.34)

Second order

An intermediate "free impurity" state (see Fig. 10.5 for an example) contributes as
follows
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ground state

S=0 S=0 S=0

. . .

r − 1 r r + 1

. . . ⇔H
r
1

"free impurity" state

S=0 S=0S=1/2

∆E=3/4J

. . .

r − 1 r r + 1

. . .

Figure 10.5: Second-order contribution to the strong-coupling perturbation theory of
a one-dimensional impurity system. The Kondo singlet of impurity r is broken by an
electron hopping to the site ir below the impurity. It is restored in a subsequent step.
The energy cost for one hopping process adds up to ∆E = E1 − E0 = 3

4
J , where E0

is the ground-state energy and E1 the energy of the excited state.

R∑
r=1

P0H
r
1P

r
1H

r
1P0

E − E(0)
1

=
t2

E + (R− 1)3/4J

R∑
r=1

ZirP0, (10.35)

where Zir denotes the coordination number of site ir, which is usually Zir = 2 in case
of one-dimensional models.

Fourth order: two-impurity contributions

Intermediate states in which two impurities are in a "free impurity" state (Fig. 10.6)
only give constant terms in perturbation theory. We �rst consider variant (10.24)

t4
R∑

r,p=1 (r 6=p)

(
1

E − E1 − E0 − (R− 2)E0

)2
1

E − 2E1 − (R− 2)E0

(10.36)

× P0H
r
1P

r
1P

p
0H

p
1P

r
1P

p
1H

r
1P

r
0P

p
1H

p
1P0

=t4
(

1

E + (R− 1)3/4J

)2
1

E + (R− 2)3/4J

R∑
r,p=1 (r 6=p)

(
−ZirZip +

1

2
(Zr,p)

2

)
P0,

where Zr,p =
∑
〈α1,ir〉
α1∈A

∑
〈α2,ip〉
α2∈A

δα1α2 denotes the number of con�ned sites being neigh-

bours of both the Kondo singlet r at site ir and the Kondo singlet p at site ip.

As one may have expected due to symmetry reasons, variant (10.25) amounts to a
comparable result (r 6= p)

P0H
r
1P

r
1P

p
0H

p
1P

r
1P

p
1H

p
1P

r
1P

p
0H

r
1P0 = ZirZipP0. (10.37)
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ground state

S=0 S=0 S=0

. . .

r − 1 r r + 1

. . . ⇔H
r
1

"free impurity" state

S=0 S=0S=1/2

∆E=3/4J

. . .

r − 1 r r + 1

. . .

⇔H
r−1
1

"free impurity" states

S=0S=1/2 S=1/2

∆E=2 · 3/4J

. . .

r − 1 r r + 1

. . .

Figure 10.6: Fourth-order contribution to the strong-coupling perturbation theory of
a one-dimensional impurity system which involves two neighbouring Kondo singlets.
Successive electron hopping to the Kondo singlet of impurity r and o� the Kondo
singlet of impurity r− 1 leave two "free impurities" behind. Both singlets are restored
in two subsequent steps. The energy cost of hopping to or o� a Kondo singlet is
∆E = E1 − E0 = 3

4
J .

Fourth order: one-impurity contributions

The essential contributions to our perturbation theory stem from the excitation of a
speci�c impurity to a triplet state via a "free impurity" state, illustrated in Fig. 10.7.
After some algebra one obtains

P r
0H

r
1P

r
1H

r
1P

r
2H

r
1P

r
1H

r
1P

r
0 (10.38)

= 3
∑
〈α1,ir〉
α1∈A

∑
〈α2,ir〉
α2∈A

∑
〈α3,ir〉
α3∈A

∑
〈α4,ir〉
α4∈A

∑
s

|KSr〉c†α1,s
cα2,−sc

†
α3,−scα4,s〈KSr|.

We consider a geometry where Kondo singlets may be surrounded by as many subsys-
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ground state

S=0 S=0 S=0

. . .

r − 1 r r + 1

. . . ⇔H
r
1

"free impurity" state

S=0 S=0S=1/2

∆E=3/4J

. . .

r − 1 r r + 1

. . .

⇔H
r
1

triplet state

S=1S=0 S=0

∆E=J

. . .

r − 1 r r + 1

. . .

Figure 10.7: Fourth-order contribution to the strong-coupling perturbation theory of a
one-dimensional impurity system, yielding the essential parts of the e�ective low-energy
Hamiltonian Eq. (10.3). The Kondo singlet of impurity r is excited to the triplet state
via a "free impurity" state (and restored afterwards). The energy di�erence between
the triplet state and the ground state is ∆E = E2 − E0 = J .

tems as desired, mimicking the situation in higher dimensions

P r
0H

r
1P

r
1H

r
1P

r
2H

r
1P

r
1H

r
1P

r
0 (10.39)

= 3
∑
s

|KSr〉
{ ∑
〈α1,ir〉
α1∈A

(2nα1,s − nα1,snα1,−s)

+
∑
〈α1,ir〉
α1∈A

α1 6=α2∑
〈α2,ir〉
α2∈A

(c†α1,s
c†α1,−scα2,scα2,−s + 2c†α1,s

cα2,s(1− nα1,−s − nα2,−s)

− nα1,snα2,−s + c†α1,s
cα1,−sc

†
α2,−scα2,s) +

all di�erent∑
〈α1,ir〉,〈α2,ir〉,〈α3,ir〉

α1,α2,α3∈A

2c†α1,s
cα2,s

(
1

2
− nα3,−s

)

−
all di�erent∑

〈α1,ir〉,〈α2,ir〉,〈α3,ir〉
α1,α2,α3∈A

(c†α1,s
cα2,s + c†α2,s

cα1,s)(c
†
α1,−scα3,−s + c†α3,−scα1,−s)

+
all di�erent∑

〈α1,ir〉,〈α2,ir〉,〈α3,ir〉,〈α4,ir〉
α1,α2,α3,α4∈A

c†α1,s
cα2,−sc

†
α3,−scα4,s

}
〈KSr|.

154



10.4 Perturbation theory in the strong-coupling regime

S=0

S=0

Figure 10.8: Exact ground-state energy (black line with �lled circles) of a single-
impurity model of size L = 3, where the impurity is coupled to i1 = 2, as a function
of J on a log scale. The ground-state energy is compared with the results of the
weak-coupling perturbation theory of section 5.2 (green line) and with those of the
strong-coupling perturbation theory presented here (red line).

Introducing spin operators si and isospin operators ti (Eq. (10.5)), we �nd

P0H
r
1P

r
1H

r
1P

r
2H

r
1P

r
1H

r
1P0 = 6

{
1 + 2

∑
〈α,ir〉
α∈A

β<α∑
〈β,ir〉
β∈A

(sαsβ − tαtβ) (10.40)

−
∑
〈α,ir〉
α∈A

(
nα,↑ −

1

2

)(
nα,↓ −

1

2

)

+
∑
s

∑
〈α,ir〉
α∈A

β<α∑
〈β,ir〉
β∈A

(
c†α,scβ,s + c†β,scα,s

)1

2
Zir −

∑
〈γ,ir〉
γ∈A

nγ,−s


− 1

2

all di�erent∑
〈α1,ir〉,〈α2,ir〉,〈α3,ir〉

α1,α2,α3∈A

(c†α1,s
cα2,s + c†α2,s

cα1,s)(c
†
α1,−scα3,−s + c†α3,−scα1,−s)

+
1

2

all di�erent∑
〈α1,ir〉,〈α2,ir〉,〈α3,ir〉,〈α4,ir〉

α1,α2,α3,α4∈A

c†α1,s
cα2,−sc

†
α3,−scα4,s

}
P0.

While the formulation of Eq. (10.40) in terms of si is always possible, the isospin
symmetry is only present for bipartite models [97]. However, this represents no general
constraint since, �rst, we only treat bipartite models hereafter, and second one would
otherwise replace tαtβ → 1

2
(c†α,↑c

†
α,↓cβ,↓cβ,↑ + cα,↓cα,↑c

†
β,↑c

†
β,↓) + 1

4
(nα − 1)(nβ − 1).
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The �nal result

The last step is to adjust E by expanding our perturbative result up to fourth order in
−t (Eq. (10.34)). We �nd

E =−R3

4
J − 4

3

t2

J

R∑
r=1

Zir +
32

27

t4

J3

2

(
R∑
r=1

Zir

)2

− 1

2

R∑
r,p=1 (r 6=p)

(Zr,p)
2


+

32

3

t4

J3

R∑
r=1

{
− 1 + 2

∑
〈α,ir〉
α∈A

β<α∑
〈β,ir〉
β∈A

(〈tαtβ〉0 − 〈sαsβ〉0)

+
∑
〈α,ir〉
α∈A

〈
(
nα,↑ −

1

2

)(
nα,↓ −

1

2

)
〉0

−
∑
s

∑
〈α,ir〉
α∈A

β<α∑
〈β,ir〉
β∈A

〈
(
c†α,scβ,s + c†β,scα,s

)1

2
Zir −

∑
〈γ,ir〉
γ∈A

nγ,−s

〉0
+

1

2

all di�erent∑
〈α1,ir〉,〈α2,ir〉,〈α3,ir〉

α1,α2,α3∈A

〈(c†α1,s
cα2,s + c†α2,s

cα1,s)(c
†
α1,−scα3,−s + c†α3,−scα1,−s)〉0

− 1

2

all di�erent∑
〈α1,ir〉,〈α2,ir〉,〈α3,ir〉,〈α4,ir〉

α1,α2,α3,α4∈A

〈c†α1,s
cα2,−sc

†
α3,−scα4,s〉0

}
+O(t6), (10.41)

where 〈. . .〉0 denotes an expectation value taken in the ground-state manifold.

Let us check the reliability of our perturbation theory. As can be seen in Fig. 10.8, the
perturbative results, Eq. (10.41), agree well with the exact eigenenergies of a single-
impurity system in the strong-coupling regime (L = 3, i1 = 2). Expectedly, deviations
become large when J is of intermediate order (here J < 4), since the Kondo cloud
cannot any longer be assumed to be local or even existing.

The general e�ective low-energy Hamiltonian

As promised, we want to extend our formalism to incorporate spatially extended subsys-
tems which result from con�nement by impurities in constellations where next neigh-
bours are at distance d ≥ 2. A typical one-dimensional example is depicted in Fig.
10.9. However, we have to adapt our labels to properly account for the inhomogeneity
in the electron system, i.e. resolve speci�c sites in the extended subsystems. Subsys-
tems are labeled by α ∈ A, where A denotes the set of all substrate sites which are
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S=0 S=0 S=0

r−1 r r+1

α−1 α α+1 α+2

tt t

Figure 10.9: A generic one-dimensional impurity model in the ground state for J →
∞. R Kondo singlets con�ne parts of the conduction-electron system, establishing
independent electron subsystems . . . , α− 1, α, α + 1, . . . for J →∞.

not connected to an impurity, while sites i ∈ B are coupled to an impurity. A⋃B
gives the set of all substrate sites.

Let us start with the unperturbed Hamiltonian

H0 = J

R∑
r=1

Srsir − t
R∑
r=1

∑
〈i,j〉∈A

∑
σ

(c†i,σcj,σ + H.c.). (10.42)

It contains the local exchange interaction terms (�rst term) and the tight-binding
Hamiltonian for sites which are not connected to an impurity (second term).

The hopping to and o� a site ir below an impurity is considered as perturbation

H1 =
R∑
r=1

Hr
1 =

R∑
r=1

∑
〈j,ir〉
j∈A

∑
σ

(c†ir,σcj,σ + H.c.) (10.43)

=
R∑
r=1

∑
α∈A

∑
〈j,ir〉
j∈α

∑
σ

(c†ir,σcα,j,σ + H.c.), (10.44)

where we resolved explicitly the subsystem dependence of the conduction electrons in
the last line. cα,j,σ annihilates an electron in subsystem α at site j with spin σ.

Actually, it was necessary to repeat all calculations with the assumption that the un-
perturbed extended subsystems possess more than one one-particle state. Fortunately,
this is not the case as we will see now.

The focus should be on the fourth-order one-impurity result (Eq. (10.40)) as it gives
the essential contributions to the e�ective Hamiltonian. Since our derivation is correct
up to fourth order in t, subsystem excitation energies ∼ t will not appear in the energy
denominators of the fourth-order result. This permits a tremendous simpli�cation,
since we are in the position to sum over all possible subsystem excitations, before
calculating anything in detail. Employing completeness in the Hilbert space of a speci�c
subsystem, this sum adds up to

∑
m P

A
m = 1A. In the end, we obtain qualitatively the
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10 Strong-coupling regime

same e�ective Hamiltonian as before. Keeping terms up to O(t4/J3) and neglecting
constant energy shifts, we �nd

He� ∼
32

3

t4

J3

R∑
r=1

{∑
α∈A

∑
〈i,ir〉
i∈α

(
nα,i,↑ −

1

2

)(
nα,i,↓ −

1

2

)
(10.45)

+ 2

β<α∑
α,β∈A

∑
〈i,ir〉,〈j,ir〉
i∈α,j∈β

(tα,itβ,j − sα,isβ,j) + 2
∑
α∈A

i<j∑
〈i,ir〉,〈j,ir〉

i,j∈α

(tα,itα,j − sα,isα,j)

−
β<α∑
α,β∈A

∑
〈i,ir〉,〈j,ir〉
i∈α,j∈β

∑
s

(c†α,i,scβ,j,s + c†β,j,scα,i,s)

1

2
Zir −

∑
γ∈A

∑
〈k,ir〉
k∈γ

nγ,k,−s


−
∑
α∈A

i<j∑
〈i,ir〉,〈j,ir〉

i,j∈α

∑
s

(c†α,i,scα,j,s + c†α,j,scα,i,s)

1

2
Zir −

∑
γ∈A

∑
〈k,ir〉
k∈γ

nγ,k,−s


+

1

2

∑
α1,α2,α3∈A

all di�erent∑
〈i,ir〉,〈j,ir〉,〈k,ir〉
i∈α1,j∈α2,k∈α3

(c†α1,i,s
cα2,j,s + c†α2,j,s

cα1,i,s)

× (c†α1,i,−scα3,k,−s + c†α3,k,−scα1,i,−s)

− 1

2

∑
α1,α2,α3,α4∈A

all di�erent∑
〈i,ir〉,〈j,ir〉,〈k,ir〉,〈l,ir〉
i∈α1,j∈α2,k∈α3,l∈α4

c†α1,i,s
cα2,j,−sc

†
α3,k,−scα4,l,s

}
.

An important extension is the inclusion of interaction terms within a speci�c subsystem
(third and �fth term), as a result of the fact that a particular Kondo singlet may have
connections to di�erent sites of the same subsystem.

10.5 Correlation functions and Kondo e�ects

In order to understand more deeply the implications of the e�ective low-energy strong-
coupling Hamiltonian, Eq. (10.45), the correlations of two di�erent families of impurity
systems shall be investigated. The �rst part of this section centers around single-
impurity systems (R = 1), where, for J → ∞, the Kondo singlet at i1 subdivides
the substrate chain in two separate subsystems, what permits an unambiguous analysis
of correlations. Another motivation comes from the observation that the subsystems
can exhibit a magnetic or isospin Kondo e�ect due their mutual coupling by IIME. By
contrast, multi-impurity models (second part) provide informations about the distri-
bution of isospins. The following analysis and its conclusions are not speci�c to the
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(a) (b)

Figure 10.10: Spin and isospin correlations of single-impurity models in which the
impurity is coupled to i1 = 2. For an Anderson-type impurity model of system size
L = 3 (green symbols, U = 10) and Kondo-type systems with L = 3 (black symbols)
and L = 51 (red symbols). Local spin 〈s2

1〉 (�lled circles) and isospin 〈t2
1〉 (open

circles) are shown as functions of J on a log scale (lower horizontal axis) or, in case
of an Anderson model, as functions of 8V

2

U
on a log scale (upper horizontal axis).

Furthermore, the correlations between the two electron subsystems, which are formed
for J → ∞, are displayed, i.e. 〈s1

∑L
i=3 si〉 (�lled squares) and 〈t1

∑L
i=3 ti〉 (open

squares). The inherent spin degeneracy of the ground state is lifted by an additional
chemical potential for isospins µ′iso. Left: µ

′
iso = 10−2. Right: µ′iso = −10−2.

ground-state of the models under consideration but also give valuable impressions of
the correlations of low-energy excited states of comparable systems at strong coupling
strengths.

In case of R = 1, odd L, and i1 = 2, we cannot apply Lieb's theorem (Sec. 3.5)
since the ground state is degenerate, spanned by Sgs = 0 and Sgs = 1 states. For
J → 0, this is due to the e�ective decoupling of the impurity at a bad site (chapter 5).
However, we also �nd the same ground-state degeneracy for J →∞, e.g. for system
size L = 3: the Sgs = 0 state is made up of isospins at the chain ends, whereas the
Sgs = 1 states contain ferromagnetically coupled spins there.

This circumstance allows us to easily switch between di�erent types of ground states,
since we can lift this degeneracy in a simple way for TK > ∆, i.e. in the presence of

159



10 Strong-coupling regime

the Kondo cloud. An additional, small1 chemical potential µ′iso for isospins (|µ′iso| � 1)
can discriminate between states with di�erent isospin number,

µ′iso
∑
i

ni,iso = µ′iso
∑
i

((1− ni↑)(1− ni↓) + ni↑ni↓). (10.46)

It favours (µ′iso < 0) or repels (µ′iso > 0) the development of isospins.2 Supported
by our numerical calculations, we will see that this treatment is successful for single-
impurity models of size up to L = 51 and for multi-impurity models with L = 47
with impurities only at bad sites. However, the presence or absence of total subsystem
isospins for models with impurities only at bad sites must be considered so far as not
strictly proven but mainly motivated by numerical results.

Let us begin with the aforementioned single-impurity model (odd L, i1 = 2), where,
at strong J , the left substrate subsystem is just site 1, while the right subsystem
is constituted by sites i = 3, 4, . . . , L (see pictogram in Fig. 10.10(a)). The results
shown in Fig. 10.10(a) con�rm that µ′iso > 0 results in perfect spins in the two separate
electron subsystems when J → ∞: for L = 3, 〈s2

1〉 = 〈s2
3〉 → 3

4
(�lled black circles)

and 〈t2
1〉 = 〈t2

3〉 → 0 (black open circles). As expected from the magnetic coupling
in the e�ective Hamiltonian, Eq. (10.45), the subsystem spins are ferromagnetically
correlated 〈s1s3〉 → 1

4
(�lled black squares). The same behaviour is observed for a larger

system L = 51 (red symbols) as well as for the correlations of an Anderson model of
size L = 3 (green symbols) at large V 2/U . However, the convergence of Anderson
and Kondo-type models is not trivial due to strong charge �uctuations at the impurity
site in case of the Anderson impurity. Nonetheless, a perturbation theory for Anderson
impurities comparable to the one in section 10.4 could provide the understanding for
it [121].

Decreasing J (or equivalently V 2/U for the Anderson-type model due to the Schrie�er-
Wol� transformation, Sec. 2.2) permits the Kondo cloud to more and more delocalise.
For ∆ > TK , i.e. in the absence of the Kondo cloud, the IIME breaks down, and we may
think of the conduction-electron system as a single standard Fermi sea at half-�lling,
since |µ′iso| � t. For larger system sizes (L = 51) this implies for example short-
range antiferromagnetic spin correlations, leading to 〈s1

∑L
i=3 si〉 < 0. Furthermore,

one �nds an approximately equal density of spins and isospins at a particular site, i.e.
〈s2
i 〉 ≈ 〈t2

i 〉 ≈ 1
2

3
4
. Apparently, it also leads to antiferromagnetic isospin correlations

since 〈t1

∑L
i=3 ti〉 < 0 (open squares). The L = 3 systems converge to other values

1In general, |µ′
iso| has to be balanced between |µ′

iso| < ∆ to avoid additional formation of isospins, and

|µ′
iso| > α̃ = 64

3
t4

J3 (Eq. (10.4)) to energetically separate low-energy states with and without total
subsystem isospins. In case of models with impurities at bad sites, this simpli�es to 0 < |µ′

iso| < ∆.
2In practice, due to the special properties of "Kondo clouds" in the Anderson model for V → ∞,
in our calculations we used in this case an additional Hubbard-U of the same size instead of µ′

iso.
This gives the same results for L = 3 as is con�rmed for Kondo-type models.
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10.5 Correlation functions and Kondo e�ects

s1

Figure 10.11: Spin correlations between the spin at the �rst chain site and sites i
in the conduction-electron system 〈s1si〉 for a single-impurity model with impurity at
i1 = 2. For L = 51 and di�erent local couplings J (as indicated). The spin degeneracy
of the ground state is lifted by an additional chemical potential for isospins µ′iso = 10−2.
For comparison, we also show the same correlations (blue open circles) for a respective
single-impurity Kondo model (SIKM, L = 49, i1 = 1) with ferromagnetic J = −0.01
(shifted by two sites to match the other correlation functions).

for J → 0 due to the strong discretisation.

A negative µ′iso generates the same ground-state correlations among the conduction
electrons for J → 0, as can be seen in Fig. 10.10(b). However, in the strong-coupling
regime we obtain for all considered models a perfect isospin at the left chain end 〈t2

1〉 →
3
4
(open circles) and 〈s2

1〉 → 0 (�lled circles). The isospin is antiferromagnetically

correlated with isospins of the right subsystem: 〈t1

∑L
i=3 ti〉 → −3

4
(open squares). In

contrast to the case of a positive µ′iso, the crossover between the weak-coupling and
the strong-coupling picture occurs already at larger J for L = 51 and is much sharper:
〈t2

1〉 decreases strongly for decreasing J around J ≈ 10.

Spin Kondo e�ect

The presence of a �nite µ′iso slightly modi�es the spectrum of the e�ective Hamiltonian
for J → ∞ (Eq. (10.45)); with the intention to energetically separate ground states
with and without total subsystem isospins. In the case of the above single-impurity
model and µ′iso > 0, we consequently obtain the following "lowest-energy e�ective
Hamiltonian"

He� ∼ J ′s1s3, (10.47)

where J ′ is ferromagnetic. Since the spin in the left subsystem 〈s2
1〉 ≈ 3

4
for J & 5

(see Fig. 10.10(a)), we can understand the original model in the lowest-energy sector
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10 Strong-coupling regime

approximately as another single-impurity model of size L − 2 where s1 plays the role
of the magnetic impurity and couples ferromagnetically to the boundary of the right
subsystem (sites 3 to L, see also pictogram in Fig. 10.11). Consequently, the spin
correlations 〈s1si〉 at i = 3, 4, . . . , L, shown in Fig. 10.11 for L = 51, can be explained
as correlations of a ferromagnetic Kondo model.

The coupling J ′ ∼ 64t4/3J3 (Eq. (10.45)), increasing when J is decreased. Thus,
the local parts of the spin correlations are supposed to become more dominant for
decreasing but strong J . This is, however, not (or only slightly) observable. Instead,
the correlations are almost homogeneous among the right subsystem, indicating a
ferromagnetic �nite-size Kondo e�ect, caused by the small subsystem size (Sec. 2.5).
Our conclusions are corroborated by the comparison to the results of a corresponding
single-impurity Kondo model (L = 49, i1 = 1) with ferromagnetic J = −0.01 (blue
open circles), which approximately match those of J = 10 (J ′ ≈ 0.02).

Isospin Kondo e�ect

It becomes even more interesting when we analyse the ground state of the single-
impurity model with µ′iso < 0. This setting favours a ground state for J → ∞ with
antiferromagnetic coupling between isospins in the two subsystems, corresponding to
the e�ective lowest-energy Hamiltonian

He� ∼ J ′t1t3. (10.48)

Since J ′ is antiferromagnetic, t1 may be subject to Kondo screening by isospins of the
right subsystem (see pictogram in Fig. 10.12(a)). This insight o�ers the exciting pos-
sibility of realising a Kondo e�ect without magnetic impurities (also known as "charge
Kondo e�ect" [124]), based on valence �uctuations instead of spin �uctuations.

The charge Kondo e�ect has gained interest due to its low-temperature emergence in
systems with strong electron-phonon interaction in C60 and C140 molecules, which gives
rise to a negative Hubbard-U ("bipolaronic state") [125]. If the molecule is attached
to leads, isospin Kondo correlations develop. Another considered material is Tl-doped
PbTe, which shows no magnetic moment but nevertheless a Kondo e�ect which is
therefore assigned to the isospin degrees of freedom. The coupling of superconducting
islands to non-superconducting leads may also give rise to such a Kondo e�ect [124].
The antiferromagnetic isospin Kondo e�ect here is caused by virtual excitations of the
Kondo singlet.

With the preceding result for the spin Kondo e�ect in mind, which is strongly governed
by �nite-size e�ects, we want to roughly estimate the isospin Kondo scale ∼ exp(− 1

ρJ ′ ).

Assuming a constant density of states ρ = 1
4
t, we �nd that even for larger system sizes

and moderate J the condition for a �nite-size Kondo e�ect, ∆ > TK , is ful�lled:
given J = 4, e.g., the subsystem size has to be of O(105) to obtain ∆ = TK . This
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t1

(a)

t1

(b)

Figure 10.12: Left: isospin correlations between the isospin at the �rst chain site
and sites i in the conduction-electron system 〈t1ti〉 for a single-impurity model with
impurity at i1 = 2. For L = 51 and di�erent local couplings J (as indicated). The
spin degeneracy of the ground state is lifted by an additional chemical potential for
isospins µ′iso = −10−2. For comparison, we also show the same correlations (blue open
circles) for a respective single-impurity Kondo model (SIKM, L = 49, i1 = 1) with
antiferromagnetic J = 0.01 (shifted by two sites to match the other correlation func-
tions). Right: the corresponding (integrated) correlation functions Θ(i) (Eq. (10.49))
as functions of sites i.

result questions the applicability for standard DMRG if one aims at going beyond the
�nite-size regime.

Consequently, we can expect the isospin Kondo e�ect to be always cut by the subsystem
size in our calculations. This is indeed seen in the isospin correlations between t1 and
the isospins ti of the right subsystem, displayed in Fig. 10.12(a) for a system size
L = 51. For J = 10, but also for smaller couplings J , one �nds a nearly homogeneous
Kondo cloud, however, with decreasing modulus of correlations for decreasing J owing
to the fast decay of 〈t2

1〉 (Fig. 10.10(b)).
For the same reason, the matching of results at J = 10 to the correlations of an
ordinary single-impurity model of size L− 2 with antiferromagnetic J = 0.01 is worse
than in the case of positive µ′iso. It is also illuminating to have a look on the following
the integrated correlation function (Fig. 10.12(b))

Θ(i) = 1 +
i∑

j=3

〈t1tj〉
〈t1t1〉

. (10.49)

It is formulated in analogy to the usual spin Kondo e�ect [69] (Eq. (2.38)). Θ(i)

163



10 Strong-coupling regime

gives the fraction of the isospin t1 which is not screened by isospins at sites 3, . . . , i.
Our results show that, with decreasing J , Θ(i) is increasing for i > 20 and conversely
decreasing for i < 20. In spite of the growing J ′, the screening becomes weaker: the
right subsystem even cannot screen t1 completely for J . 8, what can be inferred
from Θ(L) > 0. We also have to realise that for decreasing J the basic assumption of
our perturbation theory, that the Kondo cloud of S1 is local, becomes more and more
unrealistic, leading to substantial deviations from the strong-coupling picture, e.g. in
regard of the declining 〈t2

1〉.
Obviously, Θ(i) is almost a linear function of chain site i at J & 6. However, a
conventional Kondo e�ect is expected to show a stronger decay [69], as we have
seen for an ordinary single-impurity model in section 2.5 (Fig. 2.6(a)). This fact is
highlighting again the important role of �nite-size e�ects for the "inverse-exchange"
spin and isospin Kondo e�ect.

Spatial distribution of the isospin pair

The presence of isospins in ground states of models in the strong-coupling regime may
have attracted already interest as the foundation of an isospin Kondo e�ect. If we
let us guide by our previous results, we can further ask how they are distributed and
interacting with each other in the presence of a greater number of local Kondo singlets.
It can be supposed for J → ∞ that, when impurities are coupled without exception
to bad sites, the ground-state manifold contains states with total spin Sgs = 1

2
(R+ 1)

and Sgs = 1
2
(R − 1). For small and moderately large single-impurity models, we

already con�rmed that this degeneracy translates to the absence or presence of an
antiferromagnetically-coupled T = 1

2
isospin pair for J → ∞, and can be lifted by an

additional µ′iso 6= 0. Let us show the same for a multi-impurity model.

However, a crucial insight is that the collective Kondo energy scale T (Rspins)
K � T

(1spin)
K ,

generated by the RKKY interaction, is cut by the rather small system size (Sec. 9.2),
i.e. JD ≈ J∆,Rspins. Taking JD = 1 − 2 from results of other models (Sec. 9.2), we
would consequently not assume the presence of Kondo clouds below JD, what is, on
the other hand, the basic assumption for IIME. And indeed, our numerical results show
no evidence for the isospin pair at J = 1.5.

We compare the results of three di�erent multi-impurity models (shown as pictograms
in Fig. 10.13(a)), where next-neighbouring impurities are at distance d = 2. The
system with L = 49 and R = 25 contains no isospin for J → ∞ (all impurities are
at good sites). This model and its properties will be inspected in more detail in the
following chapters 11 and 12. For system size L = 47 and R = 23 (all impurities are
at bad sites), the ground state is degenerate.

Fig. 10.13(a) displays the local isospin 〈t2
i 〉 for all three considered models. While,

expectedly, the isospin density is almost vanishing at J = 10 for L = 49 (black
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(a) (b)

Figure 10.13: Results for multi-impurity Kondo models with distance d = 2 between
next-neighbouring impurities, as depicted in the left panel: for L = 49 (R = 25, black
symbols, results shifted for better visibility) and L = 47 (R = 23). In case of L = 47,
we employ an additional chemical potential for isospins µ′iso = 10−4 (green symbols)
or µ′iso = −10−4 (red symbols), respectively, to avoid a degenerate ground state. Left:
local conduction-electron isospins 〈t2

i 〉 as functions of sites i without Kondo singlet.
Right: modulus of isospin correlations |〈tcenter−1ti〉| on a log scale. We show the
correlations between the site left to the central site and chain sites i without Kondo
singlet. For J = 10 (�lled circles) and J = 5 (open circles). Note that, except of
〈tcenter−1tcenter−1〉, the correlations 〈tcenter−1ti〉 are negative (antiferromagnetic).

symbols) and L = 47 with µ′iso > 0 (green symbols), for the system with L = 47 and
µ′iso < 0 (red symbols) we �nd that the isospin pair is smeared over the whole lattice
(the slight spatial asymmetry is a harmless numerical artifact). It is even stable down
to the coupling J = 5, since the excess isospin number, de�ned by

∆Niso =
∑
i

(
〈ni,iso〉

∣∣
µ′iso<0

− 〈ni,iso〉
∣∣
µ′iso>0

)
, (10.50)

is computed to be ∆Niso ≈ 1.66 at J = 5 (to be compared with ∆Niso ≈ 1.92 at
J = 10). This fact is re�ected by 〈t2

i 〉 which is obviously larger for µ′iso < 0 than for
µ′iso > 0. It should be realised that this observation is quite surprising as the large
number of impurities may give rise to heavy-fermion physics at intermediate couplings,
possibly interfering with the IIME (chapter 13).

The correlations between isospins at di�erent sites vanish exponentially as functions of
the distance for L = 49 (black symbols) and L = 47 with µ′iso > 0 (green symbols), as
can be seen in Fig. 10.13(b). It is clear that these isospins are essentially uncorrelated,
re�ecting that the excess electrons are non-interacting in this regard. This statement
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S=0 S=0

S=0

s1 sL

(a)

s1 sL

J ′ J ′

(b)

Figure 10.14: Left: two-impurity model at antiferromagnetic distance in the deep
Kondo regime. Two S = 1

2
spins are con�ned at the chain ends for J → ∞ due to

the formation of local Kondo clouds. Right: the corresponding e�ective low-energy
model, describing the antiferromagnetic coupling of s1 and sL as an "inverse RKKY
exchange", mediated by electrons of the subsystem between both spins. The two local
Kondo singlets (not shown) provide the e�ective exchange coupling J ′ ∼ − t4

J3 (IIME),
which is ferromagnetic and locally couples s1 and sL to the intermediate subsystem.

applies to J = 5 as well as to the large coupling J = 10, albeit with di�erently
strong decay rates in space. We need to contrast this �nding with the correlations
found in the model with L = 47 and µ′iso < 0 (red symbols): although it displays
comparable short-range isospin correlations, for large distances from the central site
we �nd small but constant long-range correlations for J = 5 and J = 10 due to
the presence of the nonlocal isospin pair. It might be regarded as precursor of a
transition to an antiferromagnetically isospin-ordered ground state, which, however,
would be destroyed by order parameter �uctuations in this one-dimensional model due
to the Mermin-Wagner theorem [106]. Hence, the long-range isospin correlations are
constrained to a small value and vanish in the thermodynamic limit.

10.6 Indirect inverse exchange and adiabaticity

In section 10.2 we employed a two-impurity model to give an example for the adiabatic-
ity between weak and strong-coupling regime, which is also enforced by Lieb's theorem
under speci�c conditions (Sec. 3.5). However, the properties of more complex impurity
models in the strong-coupling regime may not be directly obvious from our perturbative
results (section 10.4). Take for example the two-impurity model at antiferromagnetic
distance, depicted in Fig. 10.14(a), which has a singlet ground state. For J →∞, the
two Kondo singlets at i1 = 2 and i2 = L− 1 produce two independent S = 1

2
spins at

i = 1 and i = L, and a non-magnetic subsystem in between them, i.e. comprising sites
i = 3, . . . , L−2. The absence of total subsystem isospins in the ground state manifold
is a consequence of the Hubbard-U like expressions in He�. We could diagonalise He�

for the purpose of studying the ground state, which is, on the other hand, impossible
for large L. Hence, we try an analytical approach: for J →∞, one could just calculate
the energy corrections 〈He�〉0 as a rough approximation for t4/J3 � 1 (Eq. (10.45)).
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Figure 10.15: Ground-state correlations between s1 and sL for a two-impurity model
at antiferromagnetic distance (similar to Fig. 10.14(a)) in an homogeneous magnetic
�eld Bhom. Correlations are shown as functions of J and Bhom on a double log scale.
System size L = 6. Results have been obtained by full diagonalisation.

However, a piece is missing, because the degeneracy of both spins at i = 1 and i = L
is not lifted by 〈He�〉0, since He� couples sites adjacent to a particular Kondo singlet.
Fortunately, Fig. 10.14(a) is already suggestive of a resemblance to the ordinary two-
impurity model at weak couplings but here with ferromagnetic local exchange coupling
J ′. We just need to conduct another perturbation theory, but for weak J ′ ∼ α̃ ∼ t4/J3

and He�, i.e. within the low-energy sector of H. In second order, s1 and sL are
then antiferromagnetically coupled via an indirect inverse exchange, comparable to the
RKKY exchange at weak J (Fig. 10.14(b)). This readily suggests the asymptotic form
of the indirect coupling

JIIE ∼ (J ′)
2

(−1)(d−2)/(d− 2), (10.51)

where d denotes the impurity distance d = |i1−i2|. An oscillatory distance dependence
similar to the RKKY interaction is obtained, whereas the 1/d dependence may be
modi�ed due to the strong Friedel oscillations present in the local density of states at
the boundaries i = 3 and i = L − 2 of the intermediate subsystem, to which s1 and
sL are naturally coupled.

In order to observe the energy scale JIIE, we may precede in the same way as in our
discussion of energy scales in the weak-coupling regime in section 6.5: an homogeneous
magnetic �eld Bhom is applied to the system and its ground-state correlations are
analysed (see section 6.5 for details). The J dependence of JIIE is evident from Fig.
10.15, where 〈s1sL〉 is shown for a two-impurity model at antiferromagnetic distance as
a function of J and Bhom. Keeping J > 5 �xed, the IIME energy scale JIIE is exceeded
by Bhom precisely when 〈s1sL〉 turns ferromagnetic. From the slope of the transition
line (Fig. 10.15), one infers that indeed JIIE ∼ 1/J6 = (J ′)2.
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S=0 S=0 S=0

S=0 S=0

Sgs=0

(a)

S=0 S=0 S=0

fm IIE ∼ J′

Sgs=1

(b)

Figure 10.16: Three-impurity models in the deep Kondo regime. Left: "good-bad-
good" case, L = 7. Singlet ground state. Right: "good-good-good" case, L = 5.
Ferromagnetic spin exchange between spins, which are formed close to the central local
Kondo cloud, leads to a triplet ground state.

Our analysis highlights the inverse nature of the indirect exchange: it shares interesting
similarities to the weak-coupling RKKY theory, while the resulting e�ective Hamiltonian
is formulated for conduction electrons instead of impurities. Let us additionally remark
that in principle one may expect an exponential dependence of JIIE on the number of
Kondo singlets between two sites [121].

Not only for the two-impurity model, the inverse exchange might be regarded as a
consequence of the adiabaticity between weak and strong-coupling regime. In order to
motivate this, we turn to the three-impurity models treated in chapter 6 (compare also
Fig. 6.1).

In the "good-bad-good" case (Fig. 10.16(a)), all electron subsystems formed for J →
∞ have vanishing total spin, i.e. the ground state is a singlet state. By contrast, for
a "good-good-good" con�guration, shown in Fig. 10.16(b), ferromagnetically coupled
spins develop next to the local Kondo singlet of impurity S2, leading to Sgs = 1. In
the "bad-good-bad" con�guration, shown in Fig. 10.17(c), two spins are formed at the
chain ends for J →∞, just as in the antiferromagnetic two-impurity model. However,
due to the odd number of intermediate Kondo singlets these are ferromagnetically
coupled. Therefore, a triplet ground state is obtained.

For all considered con�gurations, we obtain complete agreement with the total ground-
state spin of the weak-coupling regime, rooted in the adiabatic ground-state property
of these models at half-�lling. But we can likewise exploit this circumstance to �gure
out how the same total spin develops in the RKKY regime, which has not been treated
so far. Let us take the "bad-good-bad" con�guration as example, where Sgs = 1, as we
know for example from the weak-coupling regime (Fig. 10.17(a)). For J∆,1spin < J <
JD, the three impurities are RKKY-coupled to a total impurity doublet, which may be
screened conventionally by the conduction electrons if ∆ < T

(3spins)
K , see Fig. 10.17(b).

In this case, we must assume a triplet somewhere in the conduction-electron system,
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S=0

S=1

(a)

S=1/2
S=0

fm IIE

(b)

S=0 S=0 S=0

S=0 S=0

fm IIE ∼ (J′)3

(c)

Figure 10.17: Ground-state adiabaticity in the "bad-good-bad" con�guration, which
has a triplet ground state for �nite J . Left: �nite-size Kondo regime (J < J∆,1spin).
The triplet is formed between the impurities at bad sites. Middle: conventional RKKY
regime (J∆,3spins < J). The impurity doublet Stot = 1

2
is screened by conduction

electrons, giving rise to two spins developing at the chain ends. Both spins are coupled
by ferromagnetic spin exchange through the collective Kondo cloud. Right: deep Kondo
regime. The triplet is again formed between spins at the chain ends, as discussed in
the text.

which can only arise from ferromagnetically coupled spins formed at the chain ends due
to symmetry. Hence, we can draw the remarkable conclusion that the inverse exchange
mechanism is also valid with the same qualitative implications for more complex Kondo
singlets, i.e. even in the RKKY regime with its collective screening cloud, and also for
spatially extended Kondo singlets, as was already suggested in the introduction.

10.7 Summary

We have proposed an indirect magnetic exchange mechanism where con�nement of con-
duction electrons due to scattering at Kondo singlets leads to local-moment formation
at a priori uncorrelated sites. This IIME is "inverse" to the conventional RKKY cou-
pling, as it describes weakly magnetic and isospin interactions among the not trapped
electrons in the Kondo regime, mediated by via virtual excitations of Kondo singlets. In
complex impurity constellations, it is found to become oscillatory, depending on impu-
rity distances and the number of intermediate Kondo singlets. Furthermore, by means
of it, we are able to understand the ground-state adiabaticity at half-�lling [47, 48, 72].
The IIME of a single Kondo singlet gives rise to ferromagnetic spin exchange as well
as to antiferromagnetic isospin exchange, which can lead under speci�c conditions to
an additional charge Kondo e�ect in the conduction-electron system with rather small
TK .

The question of magnetic ordering, e.g. due to RKKY exchange or IIME, has been
excluded up to now. However, it shall lead over to the next chapter which is dedicated
to the depleted Kondo lattice model in which impurities are located at every second
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10 Strong-coupling regime

site. At half-�lling and for large L, we can thus expect to �nd a total impurity spin
of macroscopic order; at weak couplings due to the ferromagnetic distance, whereas
ferromagnetic order at strong couplings is provided by the excess electrons via IIME.
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11 Depleted Kondo lattice model

11.1 Introduction

In the course of our study so far, we constructed a rich picture of impurity physics,
which extends from the weak-coupling regime (|J | � t) to the strong-coupling regime
(J � t). The weak-coupling regime is dominated by �nite-size e�ects for TK < ∆,
as discussed in chapters 4, 5, and 6. For TK > ∆ but J < JD, RKKY exchange
wins the competition with the conventional Kondo e�ect, which, in return, governs
the strong-coupling regime. As worked out in chapter 10, for strong J , local Kondo
singlets provide the indirect inverse exchange for the remaining, not trapped conduction
electrons. Furthermore, for certain geometries, the IIME can be understood as evolving
by adiabatic connection from the standard RKKY coupling at weak J . This is ensured
by (i) quantum con�nement due to Kondo singlets and by (ii) exact results [48, 72]
based on Lieb's concept of re�ection positivity in spin space [47], which is applicable
for Kondo systems on bipartite lattices at half-�lling (Sec. 3.5).

At half-�lling, the dense Kondo lattice model is always paramagnetic, while magnetic
ordering may appear away from half-�lling [97]. Another strategy to obtain magnetic
ground states�which we will pursue in the following�is to deplete impurities, so that
the excess conduction electrons at J →∞ can magnetically order [53]. We will work
with the depleted Kondo lattice model where we have an impurity only at every second
site, leading to a large total spin.

The current chapter revolves around the emergence of magnetic order resulting from the
di�erent ordering mechanisms in the weak and strong-coupling regime, which becomes
possible for L,R → ∞. Especially in higher dimensions and away from half-�lling
(chapter 12), this is an important issue as, e.g., predictions of the ordering of the
excess electrons at large coupling strengths become di�cult.

The IIME shows an oscillatory distance dependence. For extended systems, it triggers
long-range magnetic order, which is robust against charge �uctuations at impurity
sites but sensitively depends on the quantum con�nement of the conduction electrons,
e.g., on the geometry of magnetic adatoms in an experimental setup using scanning-
tunneling techniques. We study the magnetic order resulting from IIME by means
of DMRG and R-DMFT which allows to investigate multi-impurity systems in higher
dimensions, being relevant for experiments. Additionally, we will investigate properties
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11 Depleted Kondo lattice model

Figure 11.1: Crossover from the RKKY regime at weak coupling to the IIME regime
at strong coupling. Calculated ordered magnetic moments on di�erent sites of a tight-
binding chain with spin-1/2 Kondo impurities as functions of J (solid lines, �lled sym-
bols) and with Anderson impurities as functions of 8V

2

U
at Hubbard U = 8 (dashed,

open)�see pictogram for system geometry. Symbols: DMRG data for a system with
L = 49 uncorrelated sites (A and B), R = 25 impurities (large symbols at J = 5:
L = 89, R = 45), open boundary conditions. Lines: real-space dynamical mean-�eld
theory (R-DMFT) for L = 100, R = 50, periodic boundary conditions. Figure taken
from Ref. [24].

of the low-energy excitations of the depleted Kondo lattice model. In doing so we will
closely follow the argumentation and ideas given in our paper, Ref. [24].

11.2 Magnetic order

The emergence of magnetic order in condensed-matter systems has three necessary
requirements (i) the existence or formation of local magnetic moments, (ii) a coupling
mechanism favouring a certain alignment of the moments, e.g. ferro- or antiferromag-
netically, and (iii) the stability of long-range magnetic order against di�erent types of
thermal or quantum �uctuations and as well against competing ordering phenomena
such as superconductivity, charge or orbital order.

As we described in section 2.2, local-moment formation typically results from incom-
pletely �lled localised orbitals or from strong local correlations, and can be described in
Hubbard-, Anderson-, or Kondo-type models [55, 126]. Coupling mechanisms can arise
as consequence of di�erent reasons: for example as direct Heisenberg exchange [127],
as indirect Anderson super exchange [128, 129] or as other exchange mechanisms using
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11.2 Magnetic order

intermediate orbitals in insulators [130]. Another possibility is indirect RKKY exchange
[12, 13, 14] in metallic host systems, which provides oscillatory, long-ranged couplings
JRKKY ∼ ±J2/rD between magnetic impurities in a system of dimensionality D.

While magnetic order at weak J due to RKKY exchange has been studied extensively,
this is not the case for strong J . In the preceding chapter, we proposed the inverse
indirect exchange mechanism (IIME) for the deep Kondo regime, where the roles of
conduction electrons and impurities are "inverted". Referring to the requirements for
magnetism listed above, we show that the Kondo e�ect helps (i) to form local moments,
(ii) to couple the moments, and (iii) leads to magnetic order in certain nano-structured
geometries.

We demonstrate that both exchange mechanisms indeed cause ferromagnetic order
for large systems L,R → ∞. As an example we choose a one-dimensional Kondo
lattice model with a certain depletion scheme: impurities are coupled to sites ir =
1, 3, . . . , L − 2, L (B-sites, see inset of Fig. 11.1), i.e. at ferromagnetic distances.
In the following, we numerically study this model for di�erent L and R = 1

2
(L + 1)

impurities (R odd). At half-�lling this model is known to exhibit a ferromagnetic
ground state [48] and for the system shown in Fig. 11.1 (L = 49, R = 25), in fact we
�nd a large spin Sgs = 1

2
(R− 1) in the entire J range.

In the same way as in section 10.2, one can understand the development of ferromag-
netism for large systems. However, the adiabatic connection between RKKY exchange
and IIME is more subtle in this case: in contrast to standard RKKY arguments, for
J → 0 one impurity spin is screened by the single kF conduction electron (see chapter
5 and Ref. [21]). This results in Sgs = 1

2
(R − 1). We �nd that the ground state

for all (�nite but large) systems studied here is a smooth function of J , and hence
the total spin must be the same in both limits. For J → ∞ this large spin must be
a consequence of the ferromagnetic coupling of local magnetic moments at the sites
i = 2, 4, . . . , L− 1 (A-sites), which are formed as result of the increasing con�nement
of electrons due to the more and more local Kondo singlets at B-sites. This view is
supported by the calculations yielding strong antiferromagnetic local spin correlations
〈sirSr〉 → −3

4
, vanishing RKKY correlations 〈SrSr′〉 → 0, and local moment formation

〈s2
i 〉 → 3

4
at A-sites for J →∞.

Fig. 11.1 displays the ordered magnetic moments at special sites in the model system
obtained from the ground state with maxmimum Mgs = Sgs: at the central impurity
mimp = 2〈Sr,z〉, at the B-site below this impuritymB = 〈nir↑−nir↓〉 and a neighbouring
A-site mA = 〈ni↑− ni↓〉. With increasing J , there is a clear crossover from the RKKY
regime with mimp ≈ 1 and mA,mB → 0, to the IIME regime for J → ∞ where the
magnetisation of the system results from ordered moments at A-sites. By comparing
results for L = 49 and L = 89 (see large symbols at J = 5 in Fig. 11.1), it is evident
that the values are characteristic for the in�nite system.

Employing the results of Sec. 10.4 which are based on treating the hopping term ∼ t
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11 Depleted Kondo lattice model

perturbatively, for J > 0 and keeping terms up to O(t4/J3), we get

He� =− α̃
∑
i<j∈A
〈i,j〉

(sisj − titj) + α̃
∑
i∈A

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
(11.1)

− 1

2
α̃
∑
i<j∈A
〈i,j〉

∑
σ

(
c†iσcjσ + H.c

)
(1− ni−σ − nj−σ)

α̃ =
64

3

t4

J3
. (11.2)

As discussed in chapter 10, we obtain ferromagnetic couplings between magnetic mo-
ments at next-nearest neighbouring A-sites i and j (�rst term), which explains the
ferromagnetic nature of IIME through a local Kondo singlet. This ferromagnetism
competes with the formation of a charge-density wave or η pairing [97], as favoured by
the second term, which is written in terms of the local isospin (de�ned in Eq. (10.5)).

An important aspect is that the e�ective isospin interaction is antiferromagnetic. Thus,
it is suppressed by thermal and quantum �uctuations of the order parameter for D = 1
due to the Mermin-Wagner theorem [106]. This is opposed to ferromagnetic spin order
at zero temperature. The necessary formation of local isospin moments in the ground
state is suppressed anyway by the repulsive Hubbard term (third term in Eq. (11.1)),
which favours formation of local magnetic moments.

Finally, there is a correlated hopping term in He� (fourth term), which is only active
between a spin at i and an isospin at j or vice versa. It is interesting to recognise that
under certain conditions it gives rise to an e�ective band picture [121]. The question
arises for larger lattices if this situation in combination with the isospin interaction
can be regarded as a seed for superconductivity, established by local Kondo singlets.
This is an appealing idea due to the simultaneous presence of isospin and magnetic
couplings of similar scale, suggesting resemblance to the situation in a great deal of
unconventional superconductors [56, 97].

11.3 Charge �uctuations

As already suggested in section 10.5, the IIME mechanism is robust against charge
�uctuations at the impurity sites, which shall be demonstrated here for the depleted
Kondo lattice model. The spin-1

2
Kondo impurities are replaced by Anderson impurities,

i.e. the coupling term in the Hamiltonian J
∑R

r=1 sirSr is replaced by (Sec. 2.4)

U

R∑
r=1

(
nr↑ −

1

2

)(
nr↓ −

1

2

)
+ V

R∑
r=1

∑
σ

(
d†rσcirσ + H.c.

)
(11.3)
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11.3 Charge �uctuations

(a) (b)

Figure 11.2: Left: charge gap ∆c, as de�ned in the text by Eq. (11.4), for the
depicted depleted Kondo lattice model as functions of the inverse system size 1/L.
Calculated at half-�lling for di�erent couplings J as indicated. Right: the respective
inverse compressibilities 1/κ = L∆c as functions of the inverse system size 1/L.

d†rσ creates an electron at the r-th impurity site, namely a correlated site with Hubbard
interaction U coupled to the conduction electrons by a hybridisation V .

The weak-V limit is the Kondo limit with S = 1
2
-impurities at ferromagnetic distance,

prescribed by the Schrie�er-Wol� transformation [58] (Sec. 2.2). It is indeed seen in
Fig. 11.1 for 8V

2

U
= J � t and that the results of the Kondo model and the Anderson

model (�lled and open symbols) agree. Deviations are found beyond the Kondo limit
and grow with increasing V , since the mapping is not any more reliable. However,
both models show a crossover from RKKY-coupled magnetic moments at the impurity
sites for weak V to IIME-coupled moments formed at the A-sites for strong V . For all
�nite couplings, the ground state is ferromagnetic. For Kondo impurities, the crossover
takes place between J/t = 2 and J/t = 4, while in the Anderson model it is located
around V/t = 2 for the respective D = 1 models. In the Anderson model for strong
V , con�nement of A-site electrons is due to the formation of local and strongly bound
states. The corresponding local states are equal mixtures of spin singlet and isospin
singlet states, and hence display less magnetic correlations between impurity and B-site
than Kondo singlets. It is remarkable that nevertheless we obtain the same physics as
for Kondo impurities. We again note that a strong-coupling perturbation theory for
Anderson impurities could support this conclusion [121].
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11 Depleted Kondo lattice model

Stot=1/2

S=0 S=0 S=0

Figure 11.3: Charge gap ∆c, as de�ned in the text by Eq. (11.4), for the depleted
Kondo lattice model discussed in this chapter. Calculated at quarter-�lling for a system
size L = 21 and shown as a function of J on a double log scale.

11.4 Low-energy spin and charge excitations

The ferromagnetic state of the considered one-dimensional depleted Kondo lattice
model represents a symmetry-broken state. Thus, its low-energy spin exciations are
determined by magnons [61], whose dispersion relation vanishes for decreasing mo-
menta [131]. Consequently, the spin gap between ground state and the respective
one-magnon state vanishes for L→∞.

Furthermore, we �nd that the state is metallic. This is clear for the RKKY limit and
easily veri�ed in the intermediate and strong-coupling case by considering the charge
gap

∆c =
1

2
(E0(N + 2) + E0(N − 2)− 2E0(N)), (11.4)

where E0(N) is the ground-state energy for N electrons in the Mtot = 0 sector.
We have calculated ∆c = ∆c(J, L) for di�erent L = 49, 89, . . . (Fig. 11.2(a)) to
get the charge susceptibility (compressibility) κ via κ−1 = L∆c(J, L) (Fig. 11.2(b))
and extrapolated to the thermodynamic limit. κ is found to be �nite in the entire
J range, indicating metallic behaviour, but decreases with increasing J . For J = 5
(red symbols), we can linearly extrapolate 1

κ
→ 0 for 1

L
→ 0, what suggests strongly

metallic behaviour. Mean-�eld calculations show that this is indeed due to a �at
band mechanism [121]. The metallic behaviour is opposed to a "dense" Kondo lattice
(R = L) at half-�lling, which is a spin-singlet Kondo insulator for any J (see Ref.
[97]).

On the other hand, at quarter-�lling N = R we �nd an insulator in the strong-coupling
regime, since all conduction electrons are localised in Kondo singlets. This is seen in
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11.5 Higher dimensions

Figure 11.4: Magnetic structure of an IIME-coupled system in an arti�cial D = 2
geometry. R = 57 Kondo impurities (�lled and open dots) are placed on an L = 22×18
array of uncorrelated sites and coupled locally (J = 5). Real-space DMFT results for
the ordered magnetic moments (color code) at sites in the uncorrelated layer. Periodic
boundary conditions are used. Figure taken from Ref. [24].

Fig. 11.3, where, for J > 2, the charge gap ∆c becomes a linear function of J ; in
order to obtain free electrons, one has to break a Kondo singlet at an energy cost of
−3

4
J . Contrasted with the metallic ground state at half-�lling, one may consequently

expect a metal-insulator phase transition as a function of N and more generally also
as a function of J away from half-�lling [53, 97].

11.5 Higher dimensions

From section 11.2 and Fig. 11.1 we can infer the magnetic ground state is accessible
to a mean-�eld description. This is seen for the solid and dashed lines, which represent
results of DMFT calculations for Kondo and Anderson impurities, respectively. As an
impurity solver for DMFT (Sec. 3.4), we employ a standard implementation based on
the Lanczos method [22]. In case of the depleted Kondo-lattice model the e�ective
self-consistently determined impurity problem consists of the local spin Sr, the corre-
sponding B-site and up to 8 bath sites. Up to 9 bath sites are used in the Anderson
case. Almost perfect agreement with the DMRG data is found, see Fig. 11.1.

Let us remind ourselves of the R-DMFT results for the two-impurity model in chapter
4, which already showed the reliability of R-DMFT in the strong-coupling regime. The
strongly nonlocal correlations of the metastable paramagnetic state for weak V are not
accessible to DMFT [22] (Sec. 4.6). However, DMFT can describe the symmetry-
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11 Depleted Kondo lattice model

broken ferromagnetic state, which is weakly correlated for V → 0 (Sec. 4.7). On the
other hand, for strong hybridisations V , the essential physics is dominated by local
correlations. While the e�ective spin and isospin interactions in He� are nonlocal, they
take place between degrees of freedom at the a priori uncorrelated A-sites. They are
therefore expected to have a small feedback on the electron self-energy, which can be
nonzero at the impurity sites only. This leads to a weakly k-independent, i.e., almost
local self-energy accessible to DMFT.

In contrast to standard DMRG, DMFT can easily be employed for calculations of
magnetic properties of nanostructure of magnetic atoms on a D = 2 metallic surface
layer. Because of the agreement with DMRG for the symmetry-broken ground state
of the D = 1 bulk system, quantitatively reliable predictions are expected for D = 2.
This can be checked to some extent in case of a bipartite structure, as the total spin
quantum number is �xed by re�ection symmetry in spin space [72, 48] (Sec. 3.5).
An important aspect from a physical point of view, is to con�ne, with the help of the
Kondo e�ect, conduction electrons in certain geometries to avoid a dissipation of the
total spin into a large (bulk) layer.

In Fig. 11.4, the results of a D = 2 calculation using R-DMFT are shown for the
corresponding diluted Kondo lattice model in the symmetry-broken ground state. Elec-
trons in the chain of A-sites 1, 2, . . . , 8 with relative distance 2 are con�ned. Their
moments in fact order ferromagnetically. A-site 9 resides at a distance 4 and is coupled
ferromagnetically, while the local moments at sites 10 and 11 (with distance 3 and 5,
respectively) couple antiferromagnetically to the chain. Note that the local moments
at 10 and 11 are formed by con�nement due to surrounding local Kondo singlets. If
such local monents are weakly coupled to the rest of the system, a tiny Weiss �eld,
produced by the chain, is su�cient to result in an almost full polarisation. |mB| is in
fact found to slightly increase with increasing distance from the chain. We conclude
that the IIME is oscillatory and decreases with distance.

Further e�ects are found, caused by the IIME: neighbouring A-sites with larger e�ec-
tive coordination number mutually support magnetic polarisation, leading to slightly
enhanced mA at and around A-site 12. Con�nement of an even number of electrons,
however, results in no moment at sites 13 and 14, while the structure 15, 16, 17 is
polarised due to an odd number of electrons. Con�nement as such (with respect to
all dimensions) is essential: electrons at 18 or 19 are not con�ned, no local moments
are formed, and thus no polarisation is found. There is a proximity e�ect as can be
seen at 20, 21, or 22. Furthermore, spin-dependent multiple scattering for electrons at
the magnetic structures causes an interference pattern, see sites 23, 24, for example.
R-DMFT is found to give quantitatively reliable results: summing up the local magnetic
moments for the 396 uncorrelated sites and the 57 impurities, we �nd a ground-state
spin moment of mtot = 2Stot,z = 15.13 which is, within numerical uncertainties, equal
to the exact value mtot = 36−21 = 15 which can be obtained analytically [72, 48, 97]
by counting the number of impurities on B (�lled dots) and on A-sites (open dots).

178



12 Doped conduction-electron

systems

12.1 Introduction

The adiabatic property of the ground state in terms of J , justi�ed in section 3.5,
is usually not present anymore in non-bipartite models or systems away from half-
�lling, rendering magnetic phase transitions (or level crossings, respectively) possible
as functions of J or N .

Non-bipartite models can be easily achieved by introducing a next-nearest-neighbour
hopping in the conduction-electron system or periodic boundary conditions for systems
with odd L. Another class of models consists of systems where an impurity is coupled
to more than one site, thus possibly breaking the bipartite structure.1 Note that in
non-bipartite models isospin symmetry is lost (Sec. 10.4). However, we will focus
here on the case of models away from half-�lling, i.e., N 6= L, and leave the other
mentioned cases for future research.

Considering an impurity model at �xed �lling, we may expect two types of magnetic
transitions as functions of J with basically di�erent physical background. The �rst
one is treated in section 12.2 and goes back to the discontinuity between �nite-size
Kondo regime and RKKY regime at weak couplings J . As known from chapter 6,
impurities at good sites are ferromagnetically correlated for ∆ > TK due to "resonant
enhancement", but may be antiferromagnetically RKKY coupled for TK > ∆ and
J < JD. The resulting magnetic "phase transitions" or level crossings, respectively, to
the large-spin regime for J → 0 are of mesoscopic nature, triggered by the �nite-size
Kondo e�ect. Thus, they disappear in the thermodynamic limit. The second type is

1This is of relevance for experiments (and respective theoretical explanations), e.g. considering cobalt
atoms deposited on copper surfaces [132]. Co atoms act e�ectively as S = 1

2 Kondo impurities
with a sometimes complex coupling geometry. In this context, Ref. [132] reports the unexpected,
non-monotone behaviour of the Kondo temperature TK of a single Co atom with increasing
number of surrounding Cu atoms. In this respect, it is helpful to see that the single-impurity RG
�ow equation (2.21) becomes in the most general case: dJ/d lnD = − 1

2 (ρ′(−D)+ρ′(D))J2(D),
where ρ′(E) =

∑
k δ(E−(εk−µ))

∑
mn UmkUnk is the (non)local density of states of all substrate

sites to which the impurity is coupled.
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JRKKY ∼ J2

JDJ∆,1 J∆,2 J∆,3

TK ∼ exp(− 1
J

)

1 2
3∆

J

Figure 12.1: Inhomogeneous conduction-electron systems, e.g. due to open boundary
conditions, may lead to spatially varying local densities of states and consequently to
position dependent Kondo scales. This is indicated by the black, grey and light grey
lines, showing TK,r for three impurities at di�erent sites. In the strong-coupling and
intermediate-coupling regime, the usual competition between Kondo screening and
RKKY interaction (blue) remains mostly unchanged. However, based on the condition
∆ = TK,r, we obtain a di�erent J∆,r for each impurity r. Hence, for J → 0, the
perturbative regime sets in at di�erent J∆,r. Furthermore, away from half-�lling (for
odd N), the weights of the kF state attain non-trivial behaviour as functions of the
position, too. Focusing on the case of impurities only at good sites, one obtains
inhomogeneous linear-in-J Kondo scales J

(1)
r (light green, green, dark green). For

example, for J∆,1 < J < J∆,2 the impurities 2 and 3 are governed by the �nite-size
Kondo e�ect, exhibiting ferromagnetic correlations. On the other hand, impurity 1 is
still dominated by the RKKY interaction.

the transition between RKKY and Kondo regime (Sec. 12.3), which is expected based
on the knowledge that the strong-coupling regime of the dense Kondo lattice away
from half-�lling is ferromagnetically ordered, whereas the RKKY regime may exhibit
paramagnetic behaviour [97].

We take the depleted Kondo lattice model introduced in chapter 11 as example here,
for which we have shown in the previous chapter that it exhibits magnetic order at half-
�lling. Thus, it is an interesting question how this magnetic state extends to parameter
regions away from half-�lling. Our e�ective weak and strong-coupling theories along
with numerical results will permit us to infer a qualitative ground-state "phase diagram"
of this model as a function of J and N at the end of this chapter.
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12.2 Transitions between �nite-size Kondo and

RKKY regime

As we will see in this section, the �nite-size Kondo e�ect has fascinating implications
away from half-�lling, i.e., when the total conduction-electron number N 6= L. How-
ever, N should be odd to avoid "trivial" o�-resonance situations. For the purpose
of disentangling both aforementioned types of magnetic transitions, we concentrate in
this section on quarter-�lling, where only the �rst type is present.

The basic mechanism of the �nite-size Kondo e�ect has been derived without special
assumptions about the �lling. Nonetheless, di�erences between the physics of systems
with di�erent N are expected, since bad sites become rare away from half-�lling: e.g.
at quarter-�lling (here we take N = 1

2
(L + 1)) only systems with L = 5, 13, 21, . . .

have sites where exactly UikF = 0. In the extreme case of just one conduction electron
all sites are good.2 Another characteristic feature is that, in contrast to half-�lling,
U2
ikF

can be strongly inhomogeneous (Fig. 12.1).

In inhomogeneous systems�for example systems with open boundaries�the Kondo
temperature is position dependent (as observed in Sec. 4.5). Based on ∆ = TK , this
circumstance leads to di�erent J∆,r, below which the �nite-size Kondo e�ect sets in,
for impurities at di�erent sites. However, J∆,r is also linked to U2

ikF
, since it can be

also regarded as the coupling where �rst and second order contributions of perturbation
theory become of equal order of magnitude.

Let us for clarity assume that we choose a con�guration in which all impurity sites
are good. A particularly interesting situation arises when the RKKY interaction be-
tween good impurities is antiferromagnetic, in contrast to the usual ferromagnetic inter-
impurity correlations due to "resonant enhancement" in the �nite-size Kondo regime
(chapter 6). Generally, this suggests a complex, multi-stage crossover at weak J away
from half-�lling. For J → 0, one �nds a large-spin regime with Sgs = 1

2
(R − 1), gov-

erned by the �nite-size Kondo e�ect. But when increasing J , as soon as J∆,r < J < JD
for an impurity r with antiferromagnetic RKKY interaction, we will enter a regime with
lower total spin Sgs <

1
2
(R − 1) (Fig. 12.1). It is emphasised that this is not possible

at half-�lling, where good sites are always at ferromagnetic distance (kF = π
2
).

In Fig. 12.2 the numerical results of the depleted Kondo lattice model are shown
for L = 9 and quarter-�lling N = R in the electron system. The �lling implies

2This follows from simple geometric arguments. For open boundary conditions, the n-th conduction-
electron state has n−1 nodes (n integer). Adding two sites, one at each chain end with an in�nite
on-site energy, is equivalent to these boundary conditions. If the distance between two nodes,
(L+ 1)/n, or a multiple of it coincidences with a lattice site, a bad site is produced there. On the
other hand, the �lling determines the kF state with kF = π/(L+ 1)nF by N = 2(nF − 1) + 1.
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12 Doped conduction-electron systems

Figure 12.2: Results for a depleted Kondo lattice model with L = 9, as depicted in
the pictogram, at quarter-�lling. R = 5 Kondo impurities are placed at sites ir =
1, 3, 5, 7, 9. We show the total spin Sgs (orange symbols, right scale) and impurity-
electron correlations (black symbols, left scale). 〈S1stot〉 = 〈S5stot〉: circles, 〈S2stot〉 =
〈S4stot〉: squares, 〈S3stot〉: diamonds. Inter-impurity correlation functions between
impurities at distance d = 4, 8 (red symbols, left scale): 〈S1S3〉 = 〈S3S5〉: �lled
circles, 〈S1S5〉: open circles, 〈S2S4〉: �lled squares. The same correlations for d = 2, 6
(green symbols, left scale): 〈S1S2〉 = 〈S4S5〉: �lled circles, 〈S1S4〉 = 〈S2S5〉: open
circles, 〈S2S3〉 = 〈S3S4〉: �lled squares.

kF = π
4
, which leads to ferromagnetic RKKY couplings for distances d = 4 and

d = 8 (corresponding 〈SiSj〉: red symbols) and antiferromagnetic ones for distances
d = 2 and d = 6 (corresponding 〈SiSj〉: green symbols). In total, we obtain an
antiferromagnetic pattern for the correlated impurity system in the RKKY regime,
resulting in a total impurity spin Stot = 1

2
. Together with the Kondo e�ect, which

screens the total impurity doublet for T 1spin
K > ∆, one obtains a spin-singlet ground

state, Sgs = 0 (orange symbols). From 〈SiSj〉, it can be inferred that the RKKY
regime is reached around JD = 1 − 2 and is immediately in�uenced by the �nite-size
Kondo e�ect due to the small system size, i.e. JD ≈ J∆,5spins. This is apparent for
〈S2stot〉, which exhibits a sign change for J∆,2 < J < JD. As consequence of the small
residual couplings to the conduction electrons, i.e., U2

i2kF
� U2

i1kF
, U2

i3kF
, S2 (and S4)

appears approximately as bad impurity.

However, when the �nite-size Kondo regime is reached for all impurities at J < 0.25,
we observe a sudden jump in the inter-impurity correlations for those correlations which
change from antiferromagnetic to ferromagnetic values. Consequently, for J < 0.25
the total spin increases to the expected value in the �nite-size Kondo regime Sgs =
1
2
(R− 1) = 2. As is visible, 〈SiSj〉 do not converge for J → 0 due to inhomogeneous

J
(1)
r (Fig. 12.1).

Furthermore, all impurities have 〈Sistot〉 < 0 (black symbols) for J < 0.25. Note
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12.3 Transitions between RKKY and Kondo regime

S=0

Stot,2...L=1
2
(R − 1)

(a)

Stot=1/2

(b)

S=0 S=0 S=0

(c)

Figure 12.3: Depleted Kondo lattice model as discussed in chapter 11, where all
impurities are at good sites for quarter-�lling N = R. We show the di�erent emerging
regimes: (a) �nite-size Kondo regime, resulting in a large Sgs = 1

2
(R − 1). Sub�gure

(b) depicts the RKKY regime, where the antiferromagnetic pattern of inter-impurity
couplings leads to a total impurity doublet. This is completely screened, either by sF
in case of intermediate system sizes (T

(Rspins)
K < ∆ < T

(1spin)
K ) or in a conventional way

in case of larger system sizes (∆ < T
(Rspins)
K ). In both cases, we �nd Sgs = 0. In the

strong-coupling regime (c) all conduction electrons are trapped in local Kondo singlets
and therefore Sgs = 0.

that this is not the case for S2 and S4 above this regime, i.e., J & 0.25, where
〈S2stot〉 > 0. While one thus can easily read o� J∆,2 = J∆,4 = 0.25 from Fig. 12.2,
it is di�cult to infer from the displayed correlation functions on J∆,1 = J∆,5 and
J∆,3. Nevertheless, one may assume that they are considerably larger than J∆,2 since
U2
i2kF

/U2
i1kF
≈ U2

i2kF
/U2

i3kF
≈ 1/10.

Except of the large-spin regime (TK < ∆, left panel in Fig. 12.3), Sgs = 0 is ob-
tained for all considered couplings J (blue symbols in Fig. 12.2). In the RKKY
regime, this is caused by the antiferromagnetic pattern of couplings among the impu-
rities in cooperation with the Kondo e�ect (middle panel in Fig. 12.3), while in the
strong-coupling regime all conduction electrons are caught in Kondo singlets, leaving
a vanishing ground-state spin (right panel in Fig. 12.3).

12.3 Transitions between RKKY and Kondo

regime

Despite the failure of the generalised Lieb theorem (Sec. 3.5), the concept of in-
verse indirect magnetic exchange as well as the e�ective theories for the weak and
intermediate-coupling regimes, presented in this work, remain valid also away from
half-�lling. Hence, we can apply them to understand the magnetic ground-state prop-
erties of the depleted Kondo lattice model, but for N < L. In Fig. 12.4, the total
ground-state spin Sgs is shown as a function of J for di�erent N and system size
L = 49. Note that the large-spin regime, discussed in the previous section, is located
at smaller J as compared to Fig. 12.2 due to the larger system size, and hence is not
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12 Doped conduction-electron systems

Figure 12.4: Total ground-state spin Sgs of the depleted Kondo lattice model depicted
in the pictogram as functions of J on a log scale. Calculated for di�erent �llings N as
indicated. The system size is L = 49 and the number of impurities R = 25. Note that
non-integer values of Sgs may have several reasons: they may be due to a degenerate
ground state or due to numerical inaccuracy of DMRG at crossovers.

visible in Fig. 12.4.

Based on the numerical results of Fig. 12.4, a qualitative "phase diagram"3 as a
function of N ≤ L and J > 0, Fig. 12.5, can be constructed. Note that, acoording
to our previous conclusions in section 12.2, the electron system with L = 49 contains
only good sites.

As a consequence of the special impurity depletion scheme, the phase diagram is ap-
proximately symmetric if mirrored at the line of quarter-�lling N = R, for which we
have discussed results above. At half-�lling N = L (chapter 11), we observe the adi-
abatic behaviour of the ground state with a large spin of Sgs = 1

2
(R − 1) for all J , as

enforced by the generalised Lieb theorem.

Furthermore, following the results of the previous section, a total spin of the same size
could be found for all �llings N in the �nite-size Kondo regime, T (1spin)

K < ∆. On
the other hand, only one electron prepared in the conduction-electron system (N = 1)
occupies the lowest one-particle state with �nite weights Uik at all sites. Therefore,
it gives rise to ferromagnetic correlations among the impurities, since they are all
interacting with the same electron ("spin-polaron" [97, 61]). Interestingly, this setting
for N = 1 at �nite J shows basic similarities to the �nite-size Kondo regime, where all
impurities at good sites couple to the kF electron, resulting in a large total spin, too.

Assuming continuity, in the RKKY regime Sgs is expected to decrease for increasing

3We only show the results for N ≤ L, since, due to the bipartite lattice, the physics for N > L is
the same as for N < L (particle-hole symmetry).
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Figure 12.5: Qualitative ground-state "phase diagram" of the depleted Kondo lattice
model depicted in the pictogram, as a function of J and the (odd) number of conduction
electronsN ≤ L. It is based on the conclusions for the weak and strong-coupling regime
drawn in preceding chapters as well as on the numerical results shown in Fig. 12.4.
For TK < ∆ (i.e. J < J∆), a large-spin regime, where Sgs = 1

2
(R − 1), can be found

in the weak-coupling regime for all �llings N (red lower area). On the other hand, for
J∆ < J < JD we expect an RKKY regime with �lling dependent total ground-state spin
(grey middle areas). In the strong-coupling regime, J > JD, and above quarter-�lling
(L+R ≥ N ≥ R) the inverse indirect magnetic exchange (IIME) leads to a magnetic
ground state due to ferromagnetically-ordered conduction electrons (red-greenish upper
right area). At half-�lling N = L, we can apply the generalised Lieb theorem (Sec.
3.5, red right line). Note that in practice JD and J∆ may be non-constant functions
of N .

N , until it is vanishing at quarter-�lling due to the antiferromagnetic pattern of RKKY
couplings (kF = π

4
). Above quarter-�lling, it increases towards the maximal value at

half-�lling. From the numerical results of Fig. 12.4, we �nd a large region, where RKKY
exchange leads to a paramagnetic or low-spin ground state at weak and intermediate
J , comparable to the situation in the dense Kondo lattice model. Due to the one-
dimensionality of the substrate, one may think of the system as an "RKKY Tomonaga-
Luttinger liquid" [97].

The strong-coupling regime above quarter-�lling, L + R ≥ N ≥ R can be well-
described by the IIME concept. Starting at quarter-�lling with a vanishing number of
excess conduction electrons, i.e. electrons which are not trapped in Kondo singlets, their
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12 Doped conduction-electron systems

number grows with increasing N . Likewise increases the total spin Sgs = 1
2
(N − R),

since the excess electrons are ferromagnetically coupled through IIME. However, this
needs analytical con�rmation, as less polarised ground states appear also possible.

Further work is also demanded to clarify the precise reasons for the observed ferromag-
netic ordering below quarter-�lling for J > JD (see e.g. results for N = 13 at J ≥ 2
in Fig. 12.4), where correlations among unscreened impurities, i.e. 〈SiSj〉 6= 0 for
J →∞, are caused by an exchange mediated by holes instead of electrons. However,
rough motivations for the ferromagnetic ground state can be drawn from results of the
strong-coupling pertubation theory for the dense Kondo lattice model [97], based on a
double-exchange like mechanism [130] which allows electrons to gain kinetic energy.

Although we obtained deep insights in the physics of this one-dimensional model, it
will be also interesting to explore higher-dimensional variants of it, which allow for a
larger set of emerging orders [106].
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13 Exhaustion problem and heavy

fermions

Before concluding our work, we want to resume the discussion about the number of
screening channels, raised in chapter 9. While it is often obvious how large the number
of channels is in the limits J → 0 and J → ∞, for a large number of impurities,
it becomes in general di�cult to �nd enough screening channels to ensure separate
screening of each impurity. For this problem, the term "exhaustion problem" has been
coined [107, 108]. Within the energy range TK one �nds Ne� ≈ ρTK electrons available
for screening (ρ is the conduction-electron density of states). Ne� can be much smaller
than the number of impurities R, leading to a potential underscreening situation if we
assume a screening in a similar way as for a single impurity.

However, experiments on respective materials, such as intermetallic compounds con-
taining rare-earth1 (e.g. CeAl3, CeCu2Si2, CeCu6, . . . ) or actinide elements (e.g.
UPt3, U2Zn17, UBe13,. . . ), reveal a (heavy) Fermi liquid state for low temperatures
[8]. The corresponding small energy scale is re�ected in the speci�c heat and the spin
susceptibility [97]. In the following, we present some general ideas for dense impurity
lattice models to illuminate this contradicting situation.

In contrast to materials with a dilute concentration of magnetic impurities, where the
RKKY interaction may lead to frustrated, glassy states ("spin glass"), in dense Kondo
lattice systems the RKKY exchange gives rise to magnetic order [56]. Even though the
RKKY interaction may, as we know from preceding chapters, play an important role by
correlating the impurities and thereby in�uencing the interplay with the Kondo e�ect,
we will neglect it in our considerations to reduce complexity.

For strong exchange couplings, it becomes unrealistic, regarding typical materials, to
exclude charge �uctuations from our considerations. Thus, let us concentrate on a
periodic Anderson model (R = L). Already for U = 0, one can study the major

1In "normal" rare earth compounds the f levels are strongly separated from the Fermi level, favouring
the ferromagnetic direct exchange term of the Coulomb interaction between c and f electrons [8].
These materials may e�ectively be described by a Kondo lattice model with ferromagnetic exchange
coupling [133, 18]. On the other hand, if the f levels lie nearer the Fermi energy, virtual excitations
into the conduction band may result in a dominant antiferromagnetic exchange interaction (Sec.
2.2).
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13 Exhaustion problem and heavy fermions

Figure 13.1: Heavy-fermion bands Ek± (red lines) according to Eq. (13.4) as func-
tions of the momentum k. For a one-dimensional system, εf = −0.5, and V 2 = 0.25.
The conduction-electron dispersion εk in the absence of impurities is shown as black
line. The presence of impurities leads to a hybridisation gap between Ek− and Ek+,
close to the atomic f levels εf .

e�ects due to the hybridisation of impurity subsystem ("f states") and conduction-
electron subsystem by an analytical diagonalisation of the Hamiltonian. This results in
a spectrum Ek± for quasi-particles de�ned by a†kσ± with two separated hybridisation
bands (Fig. 13.1)

a†kσ+ = ukc
†
kσ + vkf

†
kσ (13.1)

a†kσ− = −vkc†kσ + ukf
†
kσ (13.2)

|uk|2 + |vk|2 = 1 (13.3)

Ek± =
1

2

(
εk + εf ±

√
(εk − εf )2 + 4V 2

)
. (13.4)

εf is the on-site energy at impurity sites and εk the conduction-electron dispersion
at V = 0 with momentum k. The gap between both bands is small and given by
E0+ − EQ−, where Q = (π, . . . , π). As is seen in Fig. 13.1, it is located close to εf .

When U becomes �nite, two energy scales emerge: one is connected to charge degrees
of freedom, which are high-energetic at large U . Another one is found at low energy
scales and is due to the scattering of conduction electrons at impurity states. For
temperatures above this small energy scale T ∗ the localised spins are only weakly
coupled to the conduction electrons, to which they become strongly entangled for
temperatures below this scale [97].

Diverse methods such as the Gutzwiller approach, slave boson methods, or the large-
N approximation have been developed to quantify e�ects from correlations arising
from a �nite U , usually based on renormalising the U = 0 Anderson Hamiltonian
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[97]. Of particular interest is the small energy scale T ∗, which is related to the spin
degrees of freedom. However, it has to be distinguished from the single-impurity Kondo
temperature TK , since it is rather associated to the physical picture of a collective
Kondo e�ect. It is found that T ∗, which is for a dense Kondo lattice model, is larger
than the single-impurity TK ("lattice enhancement") [97]. Another fundamental �nding
consists in a characteristically large density of states at the Fermi level, generated by
the mixing of c states with f states

ρe�(εF ) ∼ ρ(εF )
TF
T ∗
, (13.5)

where TF is the Fermi temperature. Due to the large contributions of f states near the
Fermi energy, the quasi-particles attain a strongly localised character. The e�ective
massm∗ of these quasi-particles, compared with the bare massm, is likewise quite large
m∗/m = TF/T

∗ ∼ 1000 [56]. Therefore, the term "heavy fermions" has been coined.
Below the e�ective Fermi temperature, heavy-fermion systems display ordinary Fermi-
liquid properties such as a sharply de�ned Fermi surface and small inverse quasi-particle
lifetime.

Another astounding feature represents their large Fermi surface, which has been con-
�rmed by experiments [56, 97]. We may employ the Luttinger sum rule, which states
that the volume VFS, enclosed by the Fermi surface, counts the number of fermions. At
U = 0 this is exactly the conduction electrons (Nc) along with all electrons at impurity
sites (Nf )

2
VFS

(2π)3
= Nc +Nf . (13.6)

When U becomes large, charge �uctuations at impurity sites become suppressed and
local moments develop at impurity sites (Sec. 2.2), i.e. Nf → R in Eq. (13.6). It
implies that the large Fermi surface, build up by conduction electrons as well as localised
moments, may also be found in Kondo impurity systems, as long as we can assume
adiabatic connection to U = 0, i.e. provided that heavy fermions are stable. This is
not the case, for example, when the system undergoes a magnetic phase transition at
weak J , driven by the RKKY interaction.

Heavy-fermion materials may exhibit a plethora of fascinating states, such as antiferro-
magnetically ordered states, unconventional superconductivity, and Kondo insulators.
The (tiny) excitation gaps (meV instead of eV) in Kondo insulators such as YB12,
CeNiSn, or Ce3Bi4Pt3 are stabilised by the presence of impurities, since the electron
system would be metallic if the local coupling vanished. A Kondo insulator arises for
a half-�lled Kondo lattice model, where the chemical potential lies within the hybridi-
sation gap at �nite J (Fig. 13.1). However, away from half-�lling we usually �nd
a metallic ground state, which has to be contrasted to the increasing resistance of a
single-impurity model due to spin scattering at decreasing temperatures (Kondo e�ect,
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13 Exhaustion problem and heavy fermions

chapter 2). Further interesting e�ects are caused by multi-orbital impurities, which
may lead to a large impurity spin and additional orbital ordering mechanisms.

The discovery of superconductivity in heavy-fermion materials (Steglich et al in 1979 in
CeCu2Si2 [8]) was surprising, since superconductivity is highly sensitive to the presence
of magnetic impurities, which break time-reversal symmetry, what is an essential ingre-
dient for s-wave pairing [56]. Superconductivity appears in the vicinity of the critical
point or crossover region, respectively, which separates the magnetic phase from the
paramagnetic heavy fermion phase at low temperatures.

Furthermore, if the dense Kondo lattice model (R = L) is studied by a mean-�eld ap-
proach, the resulting U(1) gauge invariance allows to discover a couple of close analogies
between Cooper pairing in superconductivity and the Kondo e�ect [56]. However, while
Cooper pairs are extended in space at a scale of ξC ∼ vF/TC (TC : critical tempera-
ture), the mean-�eld theory characterises the Kondo e�ect as local in space but highly
nonlocal in time τK ∼ 1/TK .

The underlying reason is that heavy fermions are explained in this approach as admix-
ture of conduction-electrons with non-trivial, entirely local composite f electrons. The
composite f electron is made of a localised conduction electron bound to a spin-�ip of
the local moment at the same site. It obtains contributions from high energy electron
states instead of just from the low-energy electrons as in the single-impurity Kondo ef-
fect. In this manner, the exhaustion problem can be avoided, giving rise to a collective
Kondo e�ect in form of the emerging heavy Fermi liquid at low energy scales.

However, many questions remain open: how does the heavy-fermion state arise in a
�nite-size system and in depleted impurity models? How does it compete or cooperate
in this case with IIME (Sec. 10.5)? How robust is the large Fermi surface for interme-
diate and strong U , and in particular for Kondo impurity models ("Kondo breakdown"
[134])? What happens at magnetic phase transitions, when, e.g., the RKKY exchange
drives the system to magnetic order for decreasing J? Do we obtain non-Fermi liquid
physics when the heavy-fermion concept breaks down? These questions propose fur-
ther investigations in this �eld, which could be addressed also in DMRG due to the
local character of the Kondo interaction. However, non-local correlations, arising from
the coherent scattering of composite f electrons and conduction electrons, can be a
drawback. Informations about the heavy-fermion state can likewise be obtained by
investigation of spectral properties of the considered model [135, 78].
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14 Summary and outlook

14.1 Summary

Let us summarise the results of this work in which we put forward a rich and consistent
concept of impurity physics in �nite-size systems, which goes beyond existing works in
this �eld.

We �rst turned to the obvious questions related to in�uences of �nite-size e�ects. These
result from a combination of spatial con�nement of the conduction-electron system and
Friedel oscillations due to open boundary conditions. An important result represents
the conclusion that impurities can be correlated in the �nite-size regime in basically
di�erent ways with each other and with the conduction electrons in a way that is
di�erent from customary belief. The renormalisation group (RG) methodology supplies
us with an established framework to connect our results to conventional theories. As
was pointed out in the introductory chapter 2, when the �nite-size gap ∆ becomes
the leading energy scale (∆ > TK), the traditional Kondo cloud picture collapses,
accompanied by a regularisation of the corresponding divergencies of the e�ective local
Kondo coupling Je� in terms of RG. In this situation, one may think of the system
remaining at the local-moment �xed point and being described by residual impurity
couplings to the conduction electrons and RKKY couplings between the impurities.

In "o�-resonant models" (chapter 4) the chemical potential lies between empty and
doubly-occupied conduction-electron states. For ∆ > TK , we �nd that residual cou-
plings of impurities to the electrons vanish and the system is governed by RKKY
exchange. This is just as in the standard picture of the competition between Kondo
e�ect and RKKY exchange for J < JD [22].

On the other hand, in "on-resonant" one-dimensional models, a single electron resides
in the highest occupied one-particle state εkF . The central quantity turns out to be
the residual coupling to this electron state, which is determined by its weight at a
particular site. Thus, the set of sites in the electron system can be subdivided into
good (�nite weight) and bad sites (vanishing weight). As presented in-depth in chapter
5, this results in a subtle interplay between Kondo screening and RKKY exchange even
in the limit J → 0, where the symmetry of the ground state crucially depends on the
geometrical position of the impurities. As demonstrated using the example of a "bad-
good-bad" three-impurity model, for su�ciently large systems (JD > J∆), an increasing
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J drives the system from Kondo screening on a linear-in-J scale to conventional RKKY-
coupled moments, until the Kondo e�ect takes over again for large J [21]. This scheme
is con�rmed by weak-coupling perturbation theory.

Further profound consequences are found for ∆ > TK and models with a larger group
of impurities at good sites, as they exhibit, e.g., ferromagnetic inter-impurity corre-
lations and enhanced RKKY couplings, what we refer to as "resonant enhancement"
(chapter 6). Though seemingly contradicting our previous considerations by suggest-
ing an RKKY regime for J → 0, these �ndings are inescapable implications of our
concept of the "�nite-size Kondo e�ect" and can be unambiguously explained by the
joint coupling in linear order in J of multiple impurities to the kF electron ("central-
spin model"). We emphasise that the ferromagnetic inter-impurity correlations occur
just due to the presence of this linear-in-J scale without any need for an additional
ferromagnetic exchange interaction.

Periodic systems (chapter 7) allowed us to clarify the decisive role of the boundaries
which induce Friedel oscillations, regulating the spatial variation of �nite-size e�ects.
Additionally, the physics of models with higher-dimensional host systems became ev-
ident, as we could obtain two separate screening channels for the �nite-size Kondo
e�ect in a periodic one-dimensional substrate. This results in two fully compensated
impurities for J → 0 if they are at odd distance ("multi-channel �nite-size Kondo
e�ect").

We motivated that our theory of �nite-size e�ects is robust (chapter 8), if the system
is weakly coupled to a larger environment. An interesting insight is that the standard
Kondo cloud picture does not collapse for ∆nano > TK (as in case of an isolated �nite-
size system), because the impurity is in this case strongly entangled with a collection
of low-energy electrons penetrating the walls of the nano box. For J → 0, the �nite-
size regime is replaced by an RKKY regime. The �nite-size governed Kondo e�ect is
experimentally accessible by studying magnetic �eld dependencies [43]. The relevant
parameter range can be estimated roughly by setting TK ∼ ∆ ∼ JRKKY: RKKY
couplings in the range of 0.1 − 10meV correspond to Kondo temperatures of 1 −
100K and, in a free-electron model [19], to system volumes of (11.6 nm)3− (2.5 nm)3.
However, we also stated that spatial con�nement is merely one representative of an
origin of the energy gap ∆ at the Fermi energy, which underlies the special physics.
Conceivably, additional interactions among the conduction electrons may constitute it
as well.

Returning to systems without environment, we gave an idea of how the system proper-
ties cross over to those conventionally expected, when the system size increases (chapter
9). This concerns, e.g., the number of screening channels in the weak-coupling regime
as well as reminiscences of the phase transition between Kondo and RKKY regime for
a two-impurity model at antiferromagnetic distance. However, we also realised that
�nite-size e�ects can be active over a considerable large parameter regime due to RKKY
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interaction, which indirectly couples impurities and may lead to smaller Kondo tem-
peratures for the resulting RKKY-correlated impurity compound. The corresponding
Kondo cloud turns out to be much larger than the single-impurity Kondo cloud and is
thus readily cut by the system size, i.e., J∆,RKKY ≈ JD. This circumstance can be an
obstacle for recovering ordinary screening physics for systems of the order of L ≈ 200.
Likewise it may be regarded as a strong argument for the signi�cance of �nite-size
related e�ects�also in experiments. In real materials the expansion of Kondo clouds
is expected to be easily interfered for example with non-magnetic impurities, disorder,
or even crystal defects.

Surprisingly, even the strong-coupling regime, in which traditional Kondo physics takes
place, is in�uenced by �nite-size e�ects which may cut the low-energy physics of the
remaining weakly-interacting electrons. In chapter 10, we studied the case of strong
J , in which local Kondo singlets evolve, allowing for a perturbative treatment in terms
of small hopping amplitudes. This results in the novel "inverse indirect magnetic
exchange" (IIME), which constitutes, among others, ferromagnetic magnetic coupling
and antiferromagnetic isospin coupling between adjacent sites of a local Kondo singlet.
These are mediated by virtual excitations of the magnetically inert Kondo singlet [24].
We may even understand IIME as complementary counterpart of the �nite-size Kondo
e�ect as it builds on the presence of Kondo clouds.

The developed seamless net of weak and strong-coupling results sparked the investi-
gation of a depleted Kondo lattice model at half-�lling in chapter 11, based on the
idea that the normal state of the remaining conduction electrons in the strong-coupling
regime is instable against ferromagnetic order due to IIME. One could have suspected
this from the generalised Lieb theorem (Sec. 3.5), which enforces an adiabatic con-
nection to the weak-coupling regime, in which impurity spins are (in this case) ferro-
magnetically ordered, driven by RKKY exchange. However, we could show that the
same ordering mechanisms are present in host systems away from half-�lling (chapter
12), where Lieb's theorem does not apply, and in higher-dimensional models. Our
conclusions for the depleted Kondo lattice model have been condensed in a qualitative
ground-state "phase diagram". Regarding multi-impurity systems, the question has
been raised how IIME is in�uenced by heavy-fermion physics.

14.2 Outlook

Let us �rst turn to possible experimental exploration and application of the discussed
impurity physics. We suggest to employ quantum-con�ned systems at surfaces by
means of scanning-tunnelling techniques with the objective to construct nanospintron-
ics devices bottom-up [42]. Con�nement normal to the surface can be achieved, e.g.,
by insulating spacers [136], and lateral con�nement will lead to strong variations in the
local density of states as is known from quantum corrals, for example [137], but also
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from non-magnetic adatoms, step edges, etc. Even if the con�nement is not perfect,
the strong spatial dependence of the Kondo temperature is su�cient, if combined with
an atomically precise positioning of atoms, to utilise the Kondo-vs-RKKY physics in a
quantum box. Di�erent magnetic ground states for di�erent spatial con�gurations of
magnetic adatoms can be studied in real space as a function of an external magnetic
�eld by means of single-atom magnetometry using spin-resolved scanning-tunnelling
spectroscopy [43]. Regarding the inverse indirect exchange, the oscillatory distance de-
pendence can be utilised to construct nanostructures with tailored magnetic properties,
e.g., by placing magnetic atoms in certain geometries on a metallic layer, similar to
RKKY-based arti�cial structures [42, 43]. Another promising �eld represent cold atom
experiments which try to emulate impurity systems [138, 139, 140].

What is left to be done theoretically? At several occasions, we clari�ed that our
concept is by no means �nished and that open issues remain, directing the route
for future research. Further attention may be attracted, e.g., by the emerging band
picture for J →∞ (Sec. 11.2), the strong-coupling perturbation theory for Anderson
impurities (Sec. 10.5), and metal-insulator transitions as functions of J or N in the
discussed depleted Kondo lattice model (Sec. 11.4). Furthermore, a great deal of
extensions appears interesting, now that the basic principles of �nite-size e�ects have
been successfully put on a �rm footing. Exploring the physics of higher dimensions just
has been started in section 11.5 and in parts in chapter 7. However, two-dimensional
systems and one-dimensional models with �nite next-nearest neighbour hopping are
also appealing due to the possibility of frustration at low temperatures [53], either due
to RKKY exchange or IIME.

Future theoretical work may explore systems with correlated conduction electrons and
preformed local moments, IIME in ferromagnetic (J < 0) multi-impurity Kondo models,
and in spin-only, e.g., Kondo necklace models. DMFT and DMRG studies of �lling
dependencies are accessible to quantum Monte-Carlo techniques on bipartite lattices
at half-�lling [53]. Another branch of activities could be constituted by the investigation
of impurity models with correlated one-dimensional electron systems [114], which brings
about the emergence of the Tomonaga-Luttinger liquid [4, 5]. The next step would
be ferromagnetically ordered conduction-electron systems, what has been extensively
discussed in the literature [141, 142, 143]. We may achieve this by introducing a
�nite next-nearest-neighbour hopping along with su�ciently strong local interactions
[144, 77].

In recent years, the study of topologically ordered systems with impurities emerged
as an very active �eld with promising prospects [145], which can be also brought in
contact with our ideas.

The investigation of non-equilibrium physics is another interesting but demanding task
due to the exponential nature of the Kondo energy scale. Modi�ed mean-�eld ap-
proaches may be regarded as appropriate starting points for such discussions [97].
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14.2 Outlook

Aiming at realistic models and engineering spintronic devices, it appears necessary to
gain more understanding of the interplay of the Kondo e�ect with orbital degrees of
freedom which still represents in large parts an uncharted territory, e.g. in regard to
local moment formation. Despite the heavy numerical requirements, Ref. [146] shows
that this problem can been tackled successfully within sophisticated density-functional
theory techniques.

Finally, let us pick up the introductory thoughts of our work and summarise that the
vitality of condensed matter physics is proven by the exciting wealth of concepts and
ideas along with their persistent renewal. As demonstrated in many di�erent ways in
this work, this important branch of physics is still open to novel discoveries. This even
includes such established �elds as impurity physics, where our work introduced a new
perspective with fascinating possibilities of realisation.
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