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Abstract

Surface reconstruction traditionally deals with the problem to reconstruct the outer boundary of a real
world object from a set of boundary sampling points. The interior of the object is not relevant. In
case of topology preserving surface reconstruction, the topological equivalence between the outcome
of the method and the original object is guaranteed. The framework on topology preserving surface
reconstruction answers three questions: First, what are the requirements on the shape of the real world
object and how does it have to be sampled? Second, if these requirements are fulfilled, how to define an
algorithm to reconstruct the surface. Third, can it be proved that the outcome of the reconstruction is
topologically equivalent to the original?

Our research question extends the topology preserving surface reconstruction problem by assumption
that several objects of the real world are given, i.e. the interior of the real world objects can consist
of several regions with common boundary, and the sampling conditions of each object and its interior
regions may vary. We generalize the surface reconstruction problem to a reconstruction of non-manifold
boundary of multiple regions with guaranteed preservation of topological properties.

Recently a method called “(α, β)-shape reconstruction” was presented which — given a set of unor-
ganized sample points — results in a topologically correct mesh representation of the original boundary.
However the approach requires globally uniform sampling density for each point of the boundary and
both the sampling density parameters and the maximum sample point deviation have to be known during
the reconstruction process.

In our work we first theoretically and experimentally evaluate “(α, β)-shape reconstruction” and
compare the method with related work.

Our main contribution is a framework for non-manifold boundary reconstruction of multi-regional
real world scene with locally variable sampling conditions which provably preserves original topological
properties. Founded on our new shape descriptor we define for each point of the original boundary a
locally variable feature size which is nonzero even in the non-manifold and non-smooth points. Using
the new feature size we define locally variable sampling conditions. Ths can be seen as an extension
of the reconstruction method “Geomagic WRAP c©”. We prove that our reconstruction method results
in a refinement of the original boundary which can provably be reduced to a topologically correct
reconstruction.

The evaluation of our new framework consists of theoretical proofs, generalizations of sampling criteria
to compare the results with related work, extensive discussion and experimental results on laser range
scanner and computer tomography data. Based on our new shape descriptor we propose a method to
estimate the original feature size on sampling points and use this as a criterion for data set decimation.
The resulting data set is a very sparse, adaptively sampled set of points which is guaranteed to be
correctly reconstructed by our algorithm, while the other related reconstruction methods fail.





Zusammenfassung

Oberflächenrekonstruktion beschäftigt sich traditionellerweise mit der Rekonstruktion der äußeren Hülle
eines realen Objektes. Das Innere des Objektes ist irrelevant. Im Falle der topologieerhaltenden
Oberflächenrekonstruktion wird die topologische Äquivalenz zwischen dem Resultat des Algorithmus
und dem Original garantiert. Es sind drei Fragen im Rahmen der topologieerhaltenden Oberflächenre-
konstruktion zu beantworten. Erstens: Welche Anforderungen an die Form des realen Objektes müssen
erfüllt sein, und wie soll sie abgetastet werden? Zweitens: Wenn diese Anforderungen erfüllt sind, wie
definiert man einen Rekonstruktionsalgorithmus? Drittens: Kann man beweisen, dass das Resultat der
Rekonstruktion topologisch äquivalent zu dem Original ist?

Wir erweitern die Fragestellung der topologieerhaltenden Oberflächenrekonstruktion durch die An-
nahme, dass auch das Innere des Objektes relevant ist, und, dass es aus mehreren aneinandergrenzenden
Regionen bestehen kann. Weiterhin nehmen wir an, dass die Abtastbedingungen lokal variieren können.

Der Hauptbeitrag unserer Arbeit ist die Definition und Evaluation eines Rekonstruktionsverfahrens
und der Abtastbedingungen, unter denen das Ergebnis des Algorithmus nicht-mannigfaltige Oberflächen
von multiplen Regionen rekonstruiert und garantiert, dass ursprüngliche topologische Eigenschaften in
der Rekonstruktion erhalten bleiben.

Unsere neue lokal adaptive Abtastbedingung basiert auf einer Untermenge der medialen Achse, die
wir ”Homotopie Achse” nennen. Das Rekonstruktionsverfahren kann als eine Erweiterung des bekannten
“Geomagic WRAP c©” angesehen werden. Wir beweisen, dass das Resultat unseres Rekonstruktionsver-
fahrens eine Verfeinerung der ursprünglichen Oberfläche ist.
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Chapter 1

Introduction

Dot-to-Dot The game “Dot-to-Dot” is known to us since our childhood. The task is to connect the
numbered dots. The solution is of course to connect each dot with a dot labelled with the subsequent
number. The more challenging question is how to connect the dots if no numbers are given.

The aim of the game is to recognize some underlying shape by drawing its contour. That means
that we assume an object of the real world whose shape is similar to the outline we draw. In geometric
terms, “drawing” or “connecting dots” corresponds to approximation of a contour and “similarity”
implies correspondence of properties. From the geometric point of view such correspondence is given
if the approximated contour does not deviate much from the original. So, e.g. the solid circle is
similar to the broken circle, if the interruptions in the drawing line are small enough. The similarity in
topology stipulates equivalent connectivity of contours. That means that the solid outline of a triangle
is topologically equivalent e.g. to the solid outline of a circle.

In our general case the dots are distributed in space. In geometry the notation for a dot with
coordinates is point. No adjacency relation between points is given. In other words they are unorganized.
But we assume some kind of distribution which allows us to connect the correct points and achieve the
expected similarity. Consequently, we assume the distribution of the points to represent the original
object. In other words the points contain certain information of the original shape. This information is
hidden since only points are given. Our task is to reconstruct this information from a set of points.

The question remains open how to place the points to make it obvious which points to connect. Since
it is the contour we want to draw and recognize or, as we call it now, reconstruct, the points have to be
placed somewhere on or near the contour of the original shape. Obviously, the denser the points and the
less their deviation from the original contour the more accurate is the reconstruction. So, we need to
investigate what minimal density of points is necessary and what maximal deviation from the original
is tolerable to reconstruct the original properties.

Contour Reconstruction In digital geometry contour reconstruction is a well studied subject. The
proposed methods provide good results depending on the density of points and their deviation from
the boundary. But the research question on how to guarantee to preserve the properties of the original
object in the points is still open.

The solutions to the problem on how to preserve topological properties of the original object restrict
the original contour to manifolds. A manifold is a contour which does not touch or cut itself. Furthermore
the connectivity of the contour is often only guaranteed to be preserved if the original contour is smooth

1
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ie. does not contain corners. The topology is only reconstructible under the necessary condition of very
high point density and very small deviation from the original contour.

Further theoretical and computational difficulties occur when the points are scattered in three di-
mensional space. The task here is to reconstruct a surface.

Surface Reconstruction In general the surfaces considered in surface reconstruction are assumed to
be two-manifolds. Simply speaking the surface does not cut or touch itself. In more mathematical terms,
the neighborhood of each point on the original surface has to be continuously deformable to a disc.

The closed two-manifold surface separates the space into foreground and background. The foreground
is the interior of the three dimensional object and the background is the space around it. We speak of
binary partition of the space. Such a restriction ignores the inner structure of the object. For example, the
reconstruction of a human body delivers the geometrical properties on the skin but gives no information
of the interior, e.g. bones. The reconstruction of the human body is then hollow.

Boundary Reconstruction If the interior of the three dimensional object is of interest then it is
assumed that the interior of the object is subdivided into more than one cavity or, in terms of geometry,
region. Since the infinite environment around the considered object can also be seen as an infinite region,
we understand the world as a partition of the space into regions. The task now is to reconstruct the
boundaries between the regions or, more generally, to reconstruct the boundary of the space partition.

In the human body example the boundary reconstruction is thus no longer hollow but additionally
contains the inner structures like representations of skeletal, organ or vascular systems.

Sampling Points In our framework a set of points is the initial state of the reconstruction task. Why
is it justified?

Obviously, our interest is to use a computer to process and analyze objects of the real world. So, the
question is how to transform a physical object into digital data. This is done by some capturing device
which collects sensory data. This process involves sampling of the object and quantizing the continuous
measurement values e.g. intensities. The result is a finite set of sampling points with discrete intensity
values representing some physical property.

The sensor for a three dimensional sampling can be of arbitrary type, e.g. the points could be
acquired directly by a 3D laser range scanner, a time-of-flight camera, or a low-cost 3D scanning device
like “Microsoft Kinect”, but it could also be extracted from multiple 2D images using shape from stereo
and wide baseline matching (see e.g. bundler in [Snavely et al., 2006]), or the points could be extracted
from CT or MRT by using algorithms like the 3D canny edge detector in [Bähnisch et al., 2009].

1.1 Motivation

Depending on the kind of data acquisition different methods have been proposed to digitize the object
properties. We distinguish between surface based and volume base digitization methods.

Surface based digitization methods are used if only the outer surface of the object is of interest. The
corresponding techniques are based on the principle of 3D scene projection onto the image plane of a
camera. Consequently, the data can only be acquired from points where the projection line meets the
scene, or, simply speaking, which can be “seen” by the camera. Since not every point in 3D space can
be sampled the data are said to be two-and-a-half-dimensional (2.5D). The typical sensor technologies
are laser range scanners, structural light scanners and time-of-flight camera systems. But also the data
acquired by multiple 2D images deliver a 2.5D data of the scene. Shape from shading, shape from stereo
or wide-baseline matching are the typical examples of these techniques.

In contrast to surface-based methods, the volume-based methods are able to “see” through the object
and so to sample the scene at any point in space. The 3D interval containing the object of interest is
sampled, for example, with a regular grid. The typical examples are X-ray computed tomography (CT)
and magnetic resonance imaging (MRI). The interior of the object can be subdivided into two and
more regions which can have common boundaries. If three or more regions meet in one point then
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the boundary of at least one of the regions will necessarily have a sharp corner on this point. The
reconstruction methods which are used to find a correct representation of such multiregional objects
must be able to handle non-smooth and non-manifold boundaries.

Digital representations of real world objects become increasingly important in a growing range of
applications like medical science (computer-assisted-surgery), structural biology (protein folding simula-
tion), robotics (navigation planning), engineering (reverse engineering), finite-element-simulation (fiber
segmentation from fiber networks) or human-machine-interfaces (gaming).

The representation, visualization and analysis of the digitized objects is based upon constructing
surfaces from the acquired data. The methods to process the sensory data differ according to the
acquisition methods. Surface-based methods result in surface approximations which separate the interior
of an object from its background. Volume-based methods classify each point of the space as interior
or exterior of the object. In the first case, the reconstruction encloses the interior of the object and,
in the second case, the reconstructed interior is bounded by the object boundary. So, we can infer the
properties of the one from the properties of the other. Therefore, we speak of the duality between the
two reconstruction approaches.

Surface reconstruction approaches from finite point sets have been designed to process scan data
delivering depth information in the form of 3D coordinates. Depth information can also be extracted from
other sensory data like multiple imaging. Because of the duality between the surface-based and volume-
based approaches, surface reconstruction methods can be used to construct an object representation
from volume data.

Early approaches constructed a surface without giving guarantees on correctness of the reconstruc-
tion. The goal of later research was reconstruction methods which under certain conditions guarantee
the result to preserve certain topological properties of original object.

The topological correctness is crucial e.g. in medical applications where the automated or semi-
automated diagnostic system depends on the digital model of the patient, and the further treatment
obviously depends on the quality of diagnosis. For example, a surgeon analyzing the structure of blood
vessels in order to find mechanical damage must rely on the correctness of the model. Another example
is in using finite element methods to simulate surface tension. Topologically incorrect reconstruction
may result e.g in a surface with holes or add non-manifold branches which is fatal for further simulation
of surface tension.

Topological guarantees of early methods could only be given for very densely sampled smooth man-
ifold surfaces. The approaches allowed either no or a very small amount of deviation of the sample
points from the original boundary. We call this deviation noise. The smoothness condition implies that
non-smooth parts of the surface like corners (e.g apex of a pyramid) and edges (e.g intersection of two
faces of a cube) must theoretically be sampled with an infinite number of points which is obviously not
practicable.

Consideration of the real world scene as shape subdivided into multiple regions with non-manifold
boundary or highly noise-corrupted data remained an open problem for a long time. Only recent work on
non-manifold boundary reconstruction (see [Stelldinger, 2008b]) solved the problem. But the topological
correctness of the result can only be proven if the lowest sampling density is bounded by a known constant
value and this value is equal on each point of the surface.

To our knowledge no reconstruction method has been proposed to result under guarantee in a topo-
logically correct non-manifold surface if the sampling densities vary on the surface.

1.2 Research Question

In our research, we extend the surface reconstruction problem to boundary reconstruction (see above for
terminology). In such a way we expand the range of considerable shapes to non-manifold boundaries
of space partitions. To make our statements provable we define sampling conditions depending on an
appropriate feature size. A feature is a distinct property and a feature size is a function mapping every
point on the original boundary to the measurement of this property at this point . Finally we define a
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reconstruction method and prove that the result of this method preserves the topological properties if
the given point set fulfills certain sampling conditions.

Problem Statement
The problem of surface reconstruction is not new and was tackled in numerous related works (i.e. in

[Hoppe et al., 1992]). In our framework we focus on the following research question:
Let the original scene be the whole space and let the space be partitioned into a finite set of open

sets called regions. Let the boundary of the set of regions be a - not necessarily manifold - 2D surface.
Let the boundary be sampled by a finite set of points on or near the boundary. Under which conditions
and with which method the boundary of the computed reconstruction of the original regions preserves
the topological properties?

What is the topologically correct reconstruction? Let us consider a cross like the letter X. The topo-
logically equivalent reconstruction would be again a cross like letter χ. But to guarantee such a recon-
struction without prior knowledge of the shape we need to ensure a sample point exactly in the crossing
point. This requirement is not possible to guarantee in any practical digitization method. So, we define:

Topological Correctness Consider again the space to be partitioned into a finite set of open sets
called regions. Another space partition is topologically correct to the original if and only if its set of open
sets is topologically equivalent to the original regions and the boundary of the second space partition is
homotopy-equivalent to the original.

The definition weakens the condition on boundaries. In such a way the letter H is a topologically correct
reconstruction of X, and B is a topology correct reconstruction of Φ. The space partitioned by the
shape of the letters is in both cases topologically equivalent. But the letters H and B consist of “Y
intersections” only, and X and Φ consist of “X-intersections”, which makes the shapes not topology but
homotopy-equivalent.

Related work on topology preserving surface reconstruction pursues the goal of topological correct-
ness. But under weaker sampling conditions, like very sparse point density or large amount of noise, the
outcome of the reconstruction methods is not predictable. Our interest is to investigate the outcome
depending on sampling conditions and to give provable guarantees even if the result is not topologically
correct. So, we have a weaker requirement on reconstruction. Hence we investigate the reconstruction
result which is under guarantee reducible to a topologically correct object representation.

Reducible Refinement A second space partition is a reducible refinement of the original space parti-
tion if and only if there is a subset of the boundary of the second space partition such that the complement
of the subset is a topologically correct space partition to the original.

An example is the space partition of the letter B. B is the boundary of two smaller regions and the
infinite background. B is a reducible refinement of P. We can remove the bottom loop of B to obtain an
equivalent to P.

Novelty The novelty of our research is the parameter-free reconstruction of non-smooth and even non-
manifold boundaries under the most weak sampling conditions, without any restrictions on the shape.
Additionally, we propose the definition of the simplest representation of topological properties and its
approximation.

1.3 Computational Geometry

The digitization process including the reconstruction step requires deep mathematical and technical
understanding. Since a full coverage of details, e.g. as in a text book, would be beyond the scope of this
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work, we attempt to be as self-contained as necessary.

The mathematical preliminaries required for following our framework can be divided into geometry as
science of shape properties concerning the position in space, and topology as a science which is concerned
with how things are connected. Further we differentiate between the original real world object assuming
its surface and boundaries between its interior regions to be continuous, and the result of switching on
the data acquisition device which we assume to acquire a set of points represented only by positions in
space. As a consequence we have to separate the mathematics required for our work into four issues.

Topology

In Section 2.1 we begin with the topology basics. Here we are interested in the definition of connec-
tivity and neighborhood in and between sets. Topology investigates which shape properties are invariant
under continuous deformation. A continuous deformation can be understood as stretching, bending or
even knotting without tearing apart or sticking together the shape boundary.

Two shapes are topologically equivalent if there is such a deformation function which transforms the
one shape into the other. In our framework we give guarantees on topological preservation. The results
of our statements imply that there exists such a deformation function.

Geometry

Geometry is concerned with the shape of things. The main question here is which shape properties
are invariant under rotation or translation. Since the interior of an object is of interest to us as well
as multiple interconnected objects we can see the boundaries between them as the boundary between a
number of regions including the background as an infinite region. So, the boundary partitions the space
into regions.

The continuous boundary and the Euclidean distance induces a function which maps every point in
space to its smallest distance to the boundary. This function is called distance transform. A distance
transform is not smooth everywhere. So, the common differential methods fail to define the gradient
and with it the steepest ascent on the distance transform. We use an extended version of the gradient
definition first introduced in [Lieutier, 2004].

The gradient definition is crucial for the definition of critical points and the steepest ascend on
the distance transform, which we need to establish a correspondence between the real world and the
reconstructed digital world.

We define sampling conditions for every point on the boundary. Here we are interested in two aspects.
First is the sampling density: according to this point on the boundary how close have to be two closest
sampling points? Second is the sampling point deviation: according to this point on the boundary what
is the greatest tolerable distance to the farthest sampling point? These two values are defined by a
function which maps every point on the boundary to a scalar value which describes the properties of the
shape at this point. This value is called feature size.

Digital Geometry

In our work we expect a set of data points coming from a data acquisition device or some post-
processing step e.g. an edge detector. So, the real world object or - as we see it - the original space
partition is represented by this set of data points which we call sampling points or just sampling.

Again the set of points and the Euclidean distance induces the distance function which maps each
point in space to its distance to the nearest point in the data set. Since the distance transform is defined
on a finite set of points we call it discrete distance transform.

In Section 2.3 we generalize the definition of the gradient to define the set of critical points and
the steepest ascend on the discrete distance transform. The question now is how do we establish the
correspondence between the critical points on the continuous distance transform and the critical points
on the discrete distance transform and prove the equivalent connectivity.

Digital Topology

We defined the critical points on the continuous distance transform in Section 2.2 and found the
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well defined way to connect them, the steepest path. In Section 2.4 we defined the critical points in the
discrete distance transform and here too found the way to connect them.

Our goal is not only to prove the preservation of topological properties but also to construct a method
- an algorithm which computes the result in appropriate time on an appropriate machine.

In Section 2.4 we introduce the combinatorial structure Delaunay triangulation which is preliminary
for our framework to prove the correspondence between the critical points on the continuous distance
transform and the critical points on the discrete distance transform. The Delaunay triangulation consists
of a finite number of elements containing the connectivity information between the points and, if the
sampling conditions are fulfilled, between the corresponding critical points on the discrete and continuous
distance transforms.

Delaunay triangulation connects two nearest points to an edge, three nearest points to a triangle and
four nearest points to a tetrahedron. The condition in 3D is thatbthe circumsphere of each tetrahedron
has to be empty of points.

Specifying the elements of the Delaunay triangulation, the so-called simplices, we also introduce an
analogy to the discrete distance transform, a special ordering between the simplices called flow relation.
Using the flow relation we simulate the distance values on the steepest paths on the discrete distance
transform and so saving us the computation of distance values for each point in space.

The distance value can be understood as a metric for comparing points. A critical point with greater
distance value is greater than the critical point with the lesser distance value. We use the analogy for
simplices. The greater simplex is the one with the greater maximum distance value. Obviously, the flow
relation simulation of the steepest path on the discrete distance transform also creates the ordering in
the size of the simplices. But the new size definition is needed for simplices which do not belong to the
same flow relation or - in analogy - which are not on the same steepest path.

1.4 Related Work

The methods for solving the surface reconstruction problem can be classified by their approach. We
categorize the geometry processing methods resulting in some polygonal approximation under the name
computational geometry. Many three-dimensional approaches may also be applied to the two-dimensional
case: conversely, three-dimensional generalizations or extensions of methods may be proposed from 2D
curve reconstruction approaches. Here we dwell on three dimensional surface reconstruction methods.

Computational Geometry
Reconstructions referable to computational geometry establish neighborhood relations between sam-

ple points and connects them by polygons. The easiest and most common way to do so is to connect
three points to a triangle. In these cases the polygonal approximation of the original surface is some
triangulated surface. The data structure suitable for these reconstruction methods consists of repre-
sentations of edges (convex hull of two points), triangles (convex hull of three points) and tetrahedrons
(convex hull of four points).

Early methods only delivered a reconstructed surface without any guarantee of topological correct-
ness.

Algorithm Citation

Alpha Shapes [Edelsbrunner and Mücke, 1994]

Ball Pivoting [Bernardini et al., 1999b]
Geomagic WRAP [Edelsbrunner, 2003]

One Triangle at a Time [Freedman, 2004]

One data structure for triangulated surface reconstruction is the Delaunay triangulation. Delau-
nay triangulation restricts the construction of tetrahedrons in the three-dimensional case to empty ball
condition: the circumscribing ball of all tetrahedrons must not contain any other point. Under the
assumption of the general position condition, where no four points on a plane are allowed, the Delaunay
triangulation is unique.



1.4. RELATED WORK 7

A Voronoi diagram subdivides the space in convex cells such that each cell is associated with exactly
one sample point. The samples associated with neighboring cells are at the same distance from their
common boundary. There is a duality relation between Voronoi diagram and Delaunay triangulation.
Each element in Delaunay triangulation is the convex hull of two or more points. The dual to this
element is the intersection of the Voronoi cells of these points.

Even though the construction complexity is O(n2), where n is the number of points, the Delau-
nay triangulation is often used as the basis for reconstruction. In many approaches, its mathematical
properties provide the origin for the theoretical framework and the basis for proofs.

Algorithm Citation

r-Regular Shapes, Normalized Mesh [Attali, 1997]

Crust [Amenta et al., 1998]
Cocone [Amenta et al., 2000a]

Lower Dimensional Localized Delaunay Triangulation [Gopiy et al., 2000]

New Technique using Umbrella and Gabriel complex [Adamy et al., 2000]
Power Crust [Amenta et al., 2000b],[Amenta et al., 2001]

Tight Cocone [Dey and Goswami, 2003]

Lipschitz Surfaces [Boissonnat and Oudot, 2006]
Guarantees with Alpha Shapes [Ramos and Sadri, 2007]
r-Stable Reconstruction [Stelldinger, 2008b]

The reconstruction method in [Giesen and John, 2003] does not base its proof on Delaunay triangu-
lation. The guarantee is given that the resulting “Flow Shape” preserves the topological properties if
the original manifold surface is sampled sufficiently dense. In [Dey et al., 2003] it is proven that “Flow
Shape” and “Alpha-Shapes” are homotopy equivalent.

In the theoretical results of [Niyogi et al., 2004] (or newer [Niyogi et al., 2009]) new sampling condi-
tions are defined. The proof is given that under these very sparse sampling conditions the topological
properties are preserved in the point set.

Surface Fitting Another surface-based approach towards surface reconstruction is to algebraically
define a parameterized surface representation approximating the point set in some way. The next step
is to deform the surface by changing the parameters until some termination criterion is achieved.

Algorithm Citation

Adaptive Meshes [Terzopoulos and Vasilescu, 1991]

Balloon Fitting [Chen and Medioni, 1995]

Surface Inferencing [Guy and Medioni, 1997], [Tang and Medioni, 1998]
Moving Least Squares, Mesh Independent [McLain, 1974],[Levin, 2003]

Distance Functions The volumetric methods to reconstruct a surface from sample points compute
for each point of the space the distance to the nearest sample point. If the surface orientation is given
on each sample point the distance value can be signed. The task in this case is then the reconstruction
of a surface where for each point on the surface the distance value is zero. In cases where no surface
orientation is given the surface normals are either computed from the data set or statistically estimated.

Algorithm Citation

Marching Cubes [Lorensen and Cline, 1987], [Stelldinger et al., 2007]

Surfaces from Unorganized Points [Hoppe et al., 1992]

Radial Basis Functions [Carr et al., 2001]
Level Sets [Zhao et al., 2001], [Zhao and Osher, 2002]

FFT-Based Reconstruction [Kazhdan, 2005]

Watertight 3D Models [Hornung and Kobbelt, 2006]

Discussion Our collection of reconstruction algorithms is only a small selection which, in our opinion,
best represents the basic approaches from the great variety of methods. The methods based on surface
fitting and distance functions make strong assumptions about the original shape and the data set.
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In [Stelldinger et al., 2007] the proof is given that Marching Cubes results in a topologically correct
reconstruction of an r-regular surface. To our knowledge all further methods which give guarantees of
topology preservation are based on computational geometry approaches.

In Chapter 3 we focus our attention to related works on reconstruction with topological guarantees
based on computational geometry approaches which are strongly related to our method.

1.5 Evaluation of “Thinned-(α, β)-Shape-Reconstruction”

Our work on non-manifold boundary reconstruction has achieved fundamental results and made con-
tributions to conferences. In Chapter 4 we evaluate the new reconstruction algorithm called “thinned-
(α, β)-shape-reconstruction” [Stelldinger, 2008b].

In [Stelldinger, 2008b] a boundary reconstruction algorithm is presented to reconstruct a non-manifold
boundary of a space partition if the sampling density p and the greatest deviation q of points from the
original boundary do not exceed a certain value. The space partition is assumed to be r-stable, which
ensures that the boundary can be dilated by r without changing its homotopy type. The values p and
q depend in a certain way from r and must be known by the algorithm before reconstruction.

There are two disadvantages of “thinned-(α, β)-shape-reconstruction”. First, the sampling conditions
are defined for the whole shape. In the worst case a shape with a very tight waist needs to be very
densely sampled according to this tightness value. Second, the method is only guaranteed to result in a
topologically correct reconstruction if p and q values are known.

The major contribution of this algorithm is its ability to reconstruct non-manifold boundaries and
to handle highly noisy data sets.

Our work originated from the evaluation of the “thinned-(α, β)-shape-reconstruction”. The exper-
imental part of the evaluation required a robust implementation. So, on the basis of “Computational
Geometry Algorithms Library” (CGAL) a system has been developed to evaluate the algorithm.

The experimental comparison of related surface reconstruction algorithms would require an imple-
mentation with uniform data structure. But the choice of the appropriate data structure for an algorithm
is decisive for memory and processing time management. Therefore, the methods are compared theoret-
ically. The criteria for a qualitative comparison are the sampling criteria. We computed the p, q values
of sampling conditions required by the methods and visualized the sampling density by the number of
required sample points to reconstruct a unit sphere surface. The sampling conditions are subdivided
according to three criteria: global or locally adaptive definition of the sampling conditions on the surface,
sampling density and allowed deviation from the original surface.

1.6 Locally Adaptive Approach

The great disadvantage of the “thinned-(α, β)-shape-reconstruction” is its dependence on known pa-
rameters and the requirement of globally defined sampling conditions. So, the next logical step is to
develop a parameter-free non-manifold boundary reconstruction method the result of which preserves
the topology of the original space partition.

Refinement Reconstruction

In Chapter 5 we introduce and evaluate an algorithm which can be seen as an extension of Geomagic
Wrap c© [Edelsbrunner, 2003]. The new method, called elementary thinning, reconstructs non-manifold
boundaries resulting in a refinement of the original space partition.

Refinement associates the local maxima of the distance transform defined on original space partition
with the maxima of the distance transform defined on the sample points. The computed space partition
is a refinement of the original if and only if the discrete maxima are located in the same region as their
associates. Refinement is a special case of an oversegmentation with the requirement of the correct
separation of the local maxima.
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The next step is to reduce the refinement in such a way that the result is still a refinement. This
is done by undersampled merge which merges two computed regions into one if they are separated by
a boundary component which is too large compared with the distance value of the local maxima of the
computed regions.

The new method is parameter-free and handles locally adaptive samplings of non-manifold bound-
aries. The conditions on the sampling are based on a new locally adaptive feature size called local region
size (lrs). Local region size on a boundary point is the minimal distance value of all local maxima of the
distance transform reachable by steepest ascent. The sampling is stable if and only if the point density
and deviation from the boundary are locally bound by lrs.

Our refinement reconstruction method results under guarantee in a refinement of the original space
partition if and only if the sampling is stable. But a refinement does not guarantee for all shapes
to contain a topologically correct reconstruction. In other words, it is not guaranteed that further
refinement reduction by removing reconstructed boundary components would result in a topologically
correct reconstruction for any shape.

Homotopy Axis The insufficiency of the sampling conditions and with it the proof of correctness
require extended results on sampling criteria. Refinement does not necessarily contain a topologically
correct boundary reconstruction. The goal now is to investigate under which sampling conditions a
refinement can under guarantee be reduced to a correct reconstruction.

Refinement on stable samplings only ensures correct separation of local maxima. But a topologically
correct reconstruction separates all critical points correctly. To define new sampling conditions taking
into account the critical points we define a new subset of the medial axis.

The medial axis is the set of centers of maximal inscribing balls into the shape. Intuitively, medial
axis is the skeleton of a region bounded by a shape. In [Lieutier, 2004] it is shown that the medial axis
is homotopy equivalent to its open set.

We consider only a subset of the medial axis. As introduced in Section 2.2.4, the homotopy axis
is the minimal connected homotopy equivalent subset of the medial axis containing all criticals. The
algebraic construction starts with the set of criticals and then collects all points of the medial axis which
are reachable by a steepest path starting on any already contained element of the homotopy axis. The
steepest path is the set of points reachable by a gradient ascent.

The medial axis transform is a mapping of points on medial axis to their distance values. The
definition of the steepest path on the medial axis transform depends on the gradient. But since the
distance transform is not everywhere smooth the original gradient definition cannot be applied here.
The algebraic framework in [Lieutier, 2004] extends the definition of the gradient. The direction of the
gradient maximizes the growth of the distance transform.

The new locally adaptive feature size called local homotopical feature size (lhfs) (see Section 2.2.5 )
is the minimum between the minimal distance to the homotopy axis and the minimal local maximum
reachable from the boundary point by steepest ascent.

The sampling is said to be local homotopy stable (see Section 5.10) if the sampling density and
deviation from the boundary are bounded by lhfs. In [Tcherniavski et al., 2010a] we prove that under
the condition that the sampling is local homotopy stable the result of the refinement reduction is reducible
to a topologically correct reconstruction of the boundary. Note that in [Tcherniavski et al., 2010a] the
sampling conditions are called locally stable and the parameters are restricted. In Section 5.11 we firstly
prove the equivalent result for a general definition of sampling conditions.

Comparison to Other Approaches

The difficulty of comparing theoretical results on sampling conditions is that the sampling definitions
presume different parameters and limits. In our work the theoretical evaluation consists of two parts.

In Section 5.13.1 we show that the globally set sampling conditions for thinned-(α, β)-shape - recon-
struction in Chapter 4 are a special case of our generally defined locally adaptive sampling conditions.
Using the result we prove for the first time that the equivalent results as produced by thinned-(α, β)-
shape-reconstruction can be achieved with our new locally adaptive refinement reconstruction method.
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The comparison of approaches based on locally adaptive sampling conditions in Section 5.13.2 in-
volves the unified representation of sampling conditions. Using our new definition we can compute the
appropriate parameters of the related definitions and so compare the conditions. Obviously, the weaker
the sampling conditions the greater is the class of shapes and the broader are the limits on the sampling.

Stability of Criticals Our intention is of course to develop a parameter-free method for topologically
correct reconstruction of non-manifold boundaries. In [Tcherniavski et al., 2012] we also recognized the
problem of the local homotopy stable sampling. The condition is not sufficient to distinguish between
two shapes of different topology (see discussion in Section 5.15 ). The new question then is: How to
restrict the conditions on the sampling to ensure the correct reconstruction?

To answer this question we investigate in Section 6.2 the stability of criticals according to perturba-
tions on the surface, and the influence of noise on reconstruction.

In [Tcherniavski et al., 2012] we have already introduced the differentiation between criticals. We
distinguish the criticals which can vanish, newly occur or are stable for each sampling in the reconstruc-
tion.

Point Set Decimation The results of our work contain investigations of sampling conditions based
on certain volume-based feature sizes. Preserving the conditions in the point set ensures also the corre-
sponding guarantees on reconstruction.

The corresponding feature size restricts the lower bound of the sampling density. So, denser sampling
preserves the topological properties. Consequently, using this bound we can reduce the sampling density
under guarantee to preserve the topological properties. The results of the so-called point set decimation
are presented in Chapter 6.

The difficulty here is to estimate the feature size. The feature size is measured by distance values
on certain points on the medial axis. So, a robust medial axis approximation is crucial for feature size
estimation. Consequently, we have to investigate how the approximation of the medial axis can ensure
the estimation error to be bounded by some certain value.

1.7 Structure and Content of Thesis

In Chapter 2 we introduce geometrical as well as topological concepts which are required for our work
on boundary reconstruction with guaranteed preservation of topological properties. The theoretical
concepts among others include:

• Introduction of space partition, distance transform, different axes to describe the homotopy of the
shape and feature sizes.

• Definition of extended gradient and continuous flow on piecewise non-smooth distance transform.

• Introduction of simplicial complex, Delaunay triangulation and Voronoi diagram.

• Definition of alpha-shapes as sub-complex of the Delaunay triangulation.

• Flow relation defined on Delaunay simplices to imitate the continuous flow and the constructive
retraction algorithm known as “WRAP” applied on Delaunay triangulation without inclusion of
infinite simplices, such that the convex hull consists of simple simplices.

• Discussion on how to compare the simplices and introduction of a new size defined by the greatest
distance value in the simplex.

There have been proposed numerous reconstruction methods on topology preserving surface recon-
struction proposed previously. In Chapter 3 we introduce only the computational geometry-based ap-
proaches relevant for our work. The methods are presented in a clearly arranged synopsis for simple
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comparison of requirements on shape and sampling and the guarantees given by the method along with
a short introduction to the method and a brief note on possible extensions.

For the purpose of a better overview and a comparison of reconstruction methods we also introduced
the thinned (α, β)-shape reconstruction and the refinement reconstruction in Chapter 3.

Since the first step in our research was the theoretical and practical evaluation of the thinned-(α, β)-
shape reconstruction, in Chapter 4 we introduce in detail the theoretical concepts of the approach
including:

• Concept of r-stability to classify the shapes.

• Definition of the (p, q)-sampling and the conditions required by the algorithm.

• Differentiation between relevant and not relevant reconstructed regions.

• Detailed description of the proof of the topological correctness of the approach.

• Illustration of the reconstruction results on several examples including the determination of the
algorithm parameters by parameters of the sampling.

The evaluation of the thinned-(α, β)-shape reconstruction has been:

• Comparison to other approaches by unification of the sampling conditions and requirements on
the shape. For better understanding of the sampling conditions we computed the lower bound of
points needed for correct reconstruction of the surface of the unit ball.

• Detailed discussion of the problems of the approach resulting from non-smooth shape assumption
and excessive noise amount.

• Experiments done on well known data sets from the “Stanford 3D Scanning Repository” as well
as on artificially generated data sets for better demonstration of the method’s advantages.

Since our new reconstruction algorithm results in a refinement of a space partition which preserves
topological properties, the correct separation of critical points is of particular interest. So, our framework
in Chapter 5 consists of:

• Introduction of unique mapping called association between the original and the discrete local
maxima. A refinement correctly separates the associated local maxima. A stable refinement
correctly separates the connected components of the smallest superset - the homotopical axis of
the original medial axis containing all critical points. A reducible refinement can be reduced to a
stable refinement by the removal of boundary components.

• Definition of locally adaptive (ψ, ρ)-sampling conditions, where ψ is a parameter to control the
sampling density and ρ is the parameter which influences the sampling density and the maximal
sample point deviation from the boundary. In this way the sampling density depends on noise. The
factors ψ and ρ are used to scale a locally variable feature size. The sampling conditions defined by
local region size preserve the correct separation of local maxima. The refinement reconstruction on
sampling conditions defined by the local homotopical feature size results in a reducible refinement.

• Introduction of a minimal refinement with a boundary consisting of Delaunay simplices being
minimal in the flow relation.

• The proof that application of the constructive retraction (WRAP) [Edelsbrunner, 2003] on all
Delaunay tetrahedrons containing their own circumcenters results in a minimal refinement. We
call this processing step elementary thinning
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• The proof that the boundary simplices of a minimal refinement can be measured according to the
largest circumradius of a Delaunay simplex contained in a reconstructed region. The boundary
simplices exceeding a certain measurement may be deleted from the reconstruction preserving
the minimal refinement conditions. Since the reconstructed regions are merged when boundary
simplices are removed, we call the processing step refinement reduction.

• A demonstration of performance of the algorithm on three examples: almost noise-free and very
sparse sampling, very noisy but dense sampling, and a sampling which does not fulfill our condi-
tions.

The evaluation of our results is done both theoretically and experimentally:

• To compare the sampling conditions we unified the requirements for previous reconstruction meth-
ods and proved that they can be expressed by (ψ, ρ)-sampling conditions.

• We proved that given the sampling parameters for thinned-(α, β)-shape-reconstruction, the refine-
ment reconstruction has an equivalent result.

• The experiments have been done on well-known laser range scan data from the “Stanford 3D
Scanning Repository”: almost noise-free, blurred and corrupted by salt-and-pepper noise. Further
experiments have been done on volume-based samplings resulting from 3D-Canny edge detection
on computer tomography data sets [Bähnisch et al., 2009].

• The discussion concerns also problems due to insufficiency of the sampling conditions - two shapes
with different topology can have equal sampling sets. We also argue that the problems of the
theoretical framework defining refinement are not problems of our reconstruction method.

The evaluation of the refinement reconstruction in Chapter 5 lacks experiments with locally non-
uniform sampling fulfilling our conditions but being too sparse to be handled by previous reconstruction
methods. To our knowledge no data set provably fulfilling the requirements exist. In Chapter 6 we
propose an algorithm and theoretical framework for data set decimation which results in a non-uniform
locally stable (ψ, ρ) sampling. The refinement reduction on locally stable (ψ, ρ) sampling results in a
reducible refinement while the result of decimation is too sparse to be handled by previous reconstruction
methods.

For derivation of the data set decimation constraints we included in Chapter 6 the following:

• Definition of stable critical points in discrete distance transform defined for low-quality data sets
and proof of correct separation by refinement reconstruction.

• Method for discrete homotopical axis computation and local homotopical feature size estimation.

• Usage of the estimated local homotopical feature size for proposed data set decimation algorithm.

• Experiments on decimation of dense laser range scan data and reconstruction.

• Discussion on provability of the results.

The framework introduced in Chapter 6 promises to be a sound basis for future work on homotopy
equivalence of the reconstructed space partition.

1.8 Related Publications

The work contained in this dissertation is partly based on the contribution in [Stelldinger, 2008b] and
has led to several publications. In the following we summarize the correspondences between parts of this
thesis and the publications as well as clarify of the author’s contributions.
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[Tcherniavski and Stelldinger, 2008]: This work consists of the evaluation results of the 3D
“Thinned-(α, β)-Shape-Reconstruction” framework introduced in [Stelldinger, 2008b]. Section 3 (Com-
parison to other Approaches) and section 6 (Conclusions and Future Work) were developed in col-
laboration with the second author, Peer Stelldinger. Section 4 (Implementation and timings) and
section 5 (Experimental Evaluation) together with the computation and visualization of Figure 1,2,3
and 4 as well as the presentation of the experimental results are own contribution and can also be
found in Section 4.9 and Section 4.10. Following an invitation the publication [Stelldinger, 2008b]
was published in the journal “Pattern Recognition”. So, the experimental results are also part of
[Stelldinger and Tcherniavski, 2009c].

The content of the following publications is the basis for Chapter 5. However we generalize the
constant sampling factor ( 1

2 ) introduced in the published results by variable parameters (ψ, ρ).
[Stelldinger and Tcherniavski, 2009a] and [Stelldinger and Tcherniavski, 2009b]: The per-

sonal contribution of the second author, Leonid Tcherniavski, is the first draft of the paper and the
significant contribution to the algorithm development, Lemma 4.1, Definition 4.2, collaboration on Def-
inition 4.4, Observation 4.5, Definition 4.6, Observation 4.7, strong contribution to and first draft of
Lemma 4.8, of Definition 5.2, 5.3 and of Theorem 5.4. These results are also parts of Section 5.2, Section
5.4, Section 5.5, Section 5.6, Section 5.7 and Section 5.8

[Tcherniavski et al., 2010a], [Tcherniavski et al., 2010b]: The personal contributions of the
second and third authors are proofreading of the writing and verification of the mathematical correctness.
In these publications we introduced a new stability criterion and sampling conditions which mainly
contributed to Section 2.2.4, Section 5.11, Section 5.10 and Section 5.11.

[Tcherniavski et al., 2012]: The paper [Tcherniavski et al., 2010a] was published as an extended
version in “Special Issue of Pattern Recognition Letters” [Tcherniavski et al., 2012]. The extension of
the paper contains considerations on stability of criticals which can also be found in Section 6.2. A new
volume-based point set decimation algorithm was proposed which has been used to provide artificial
data for experimental evaluation of the refinement reduction algorithm on locally stable samplings.
The framework of the point set decimation algorithm is also part of Section 6.4 and 6.5. The work
[Tcherniavski et al., 2012] also contains a discussion on the insufficiency of the newly defined sampling
conditions which can also be found in Section 5.15.





Chapter 2

Theoretical Concepts

2.1 Topology

While geometry investigates the real world to describe “how the things look like”. Topology is the
science which is concerned with “how things are connected”. To provide an understanding on topological
properties we start with examples firstly introduced in “Topology for computing” by Afra Zomorodian
[Zomorodian, 2005].

Example Loops and Strings First let us consider a string and a loop (which is a string while the
two ends are stuck together) as they are shown in Figure 2.1 (the curves with scissors). Both consist of
one connected component. To find out the difference in the connectivity we cut the string and the loop.
By cutting a string we change its connectivity since we get two string pieces but we get just one piece
if we cut a loop. The results are different, consequently the original connectivity has been different.

Fig. 2.1: If you cut a string you get two pieces. Cutting a loop results in one piece.

Example Spheres and Donuts Consider now a sphere (i.e. a hollow ball) and the surface of a donut
(i.e. a hollow torus) in Figure 2.2. Now we look at their connectivity. No matter how we cut the surface
of a sphere along a simple closed curve on its surface, we get two pieces. But we can cut the donut in
such a way, that we get one piece only. Somehow the donut imitates the loop.

15
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(a) (b)

Fig. 2.2: (a) No matter how the sphere is cut, we get two pieces. (b) A donut can be cut in
such a way that we still get only one piece.

Consider any point on the loop of our first example. Each point has two neighborhood components.
The same is valid for almost every point on the string but the two end points which have only one
neighbor.

Cutting changes the connectivity of the points. In other words the neighborhood components of the
points can change. Cutting through the neighborhood of two points divides them leaving two points
with one neighborhood component only.

Topology investigates the global connectivity of an object by considering local connectivity of the
object. Topology studies properties that do not change under continuous and continuously invertible
transformations. The neighborhood of a point on the loop consists of two components no matter how
we stretch or deform the loop.

On the other hand topology is concerned with how the object is placed in space. Consider for example
a string again. But before we stick the ends, we put a knot in the string and then stick its ends. No
matter how we stretch and pull on the string we cannot unknot the knot without tearing the string.

2.1.1 Homeomorphism

Topology is concerned with connectivity in continuous spaces and thus with neighborhoods of objects.
In the Euclidean world we know the neighborhood of a point as

Definition 2.1 (Euclidean Neighborhood). Let x ∈ R be a point in Euclidean space R. A neighborhood
of x is the set which is defined as {y ∈ R | ∃ε > 0 : ‖x− y‖ < ε}

We can give the definition on neighborhoods in Euclidean space since we know the distance metric
between points. Using the definition of a neighborhood we can define an open set. A subset U ⊂ R is
open if every point in U has a neighborhood contained in U . But what if no metric is given?

Topology can be defined in several definitions. We use the definition by open sets.

Definition 2.2 (Topology). A topology on a set X is a subset T ⊆ 2X such that:

1. If S1, S2 ∈ T , then S1 ∩ S2 ∈ T

2. If {SJ | j ∈ J} ⊆ T , then ∪j∈JSj ∈ T

3. ∅, T ∈ T .
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Definition 2.3 (Open,Closed). Let X be a set and T be a topology on X. Then every S ∈ T is called
an open set. The complement X \ S of an open set S is closed.

Definition 2.2 implicitly states that only finite intersections and infinite unions of open sets are open.
A topological space is a combination of a set with its topology.

Definition 2.4 (Topological Space). The pair (X,T ) of a set X and a topology T on X is a topological
space X.

(a) (b)

(c) (d)

Fig. 2.3: (a)A set A consisting of four squares and a dot. (b) The closure A of the set A. (c)
The interior Å of the set A. (d) The boundary ∂A of the set A.

Definition 2.5 (Closure, Interior, Boundary). Let A ⊆ X, the closure A of A is the intersection of all
closed sets containing A. The interior Å of A is the union of all open sets contained in A. The boundary
∂A of A is ∂A = A \ Å.

In Figure 2.3, we see a set A consisting of four squares differently related to each other. In (b) we see
its closure, in (c) its interior and in (d) its boundary. Notice, the interior of the set are four disconnected
open squares whereas three of squares are connected in (a) either by a line segment or by a point. The
dot does not have any interior.

The boundary of the set may also be defined as the set of points whose neighborhoods intersect the
set and its complement. The closure of a set A may be seen as minimum closed set which contains the
set A.

Using the open sets we can define following notations:

Definition 2.6 (Neighborhood). Let X = (X,T ) be a topological space. A neighborhood of x ∈ X is
any A ⊆ T such that x ∈ Å.

Definition 2.7 (Continuous Function). A function f : X→ Y is continuous if for every open set A ∈ Y,
f−1(A) is open in X

Definition 2.8 (Homeomorphism). A homeomorphism f : X → Y is a bijective continuous function
with continuous inverse. The inverse of a homeomorphism is again a homeomorphism. Two sets X and
Y are homeomorphic or topologically equivalent if there is a homeomorphism between them.
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2.1.2 Homotopy

We often observe two shapes to be topologically “similar” even if the shapes are not topologically
equivalent. Consider for example Figure 2.4. The letter A drawn with a thick line is also recognizable
as A if it is drawn with a thin line. The shapes are similar. Both enclose one region. In fact we can
imagine different thickness of the line and still have the letter A. Homotopy describes this similarity.

Consider again our example in Figure 2.4. How do we compare the shapes? Starting with the thick
line drawn A we reduce the thickness until it is one point thick. In other words we continuously shrink
the shape into its subset. In the extreme left illustration we denote the direction of this “shrinking” by
arrows towards the thin A. In our case such a shrinking line can be found for every point on the contour
of the thick A such that the lines are not crossing each other and if they intersect they stay intersected.

Fig. 2.4: Deformation retraction of an A shape.

Let us think of the shrinking process as a continuous deformation over time. Let the starting point
on the shrinking line on the contour be the starting time and the ending point on the thin A be the
ending time. We normalize the time line in such a way that the starting time is zero and ending time is
1. So, for every time point in interval between 0 and 1 we observe a thinner version of A as it is shown in
Figure 2.4. At time 1 the shrinking is complete and the deformation process results in thin A. Actually
we can go even further and define such a shrinking on the “legs” of the thin A resulting in a triangular
loop.

Thhe following definitions we adopted from [Hatcher, 2002]:

Definition 2.9 (Deformation Retraction). A deformation retraction of space X onto a subspace A
is a continuous family of maps ft : X → X, t ∈ [0, 1] such that f0 is the identity map, f1(X) = A,
and ft|A is the identity map, for all t. The family is continuous in the sense that the associated map
X× [0, 1]→ X, (x, y) 7→ ft(x) is continuous.

A deformation retraction is a special case of a homotopy. Homotopy relaxes the requirement of the
final space being a subspace.

Definition 2.10 (Homotopy). A homotopy is a family of maps ft : X → X, t ∈ [0, 1] such that the
associated map F : X × [0, 1] → Y given by F (x, t) = ft(x) is continuous. Then f0, f1 : X → Y are
homotopic via the homotopy ft.

Definition 2.11 (Homotopy equivalence). A map f : X→ Y is called a homotopy equivalence if there
is a map g : Y→ X, such that g ◦ f is homotopic to the identity map of X and f ◦ g is homotopic to the
identity map of Y.

If two spaces X and Y are homeomorphic, then they are homotopy equivalent.

Theorem 2.12. Let two spaces X and Y be topologically equivalent. Then X is homotopy equivalent to
Y.

We can rephrase Theorem 2.12 by: if two spaces are not homotopy equivalent, they are not homeo-
morphic. In general, the converse to Theorem 2.12 is not true. We illustrate this statement by examples
adopted from [Hatcher, 2002].
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Fig. 2.5: Deformation retraction of a shape resulting in final subspaces of different topology.

Consider a shape with two holes as in Figure 2.5 . The arrows demonstrate possible retraction
trajectories into subsets which are drawn with thick lines. Since there is a deformation retraction the
final thin shapes are homotopy equivalent to the starting set and homotopy equivalent to each other. But
the sets are not homeomorphic. The two circles in the left illustration do not have common boundary as
is the case in the right. In the middle example there is a point with four componnets in its neighborhood.

However, homotopy equivalence (compare Definition 2.11) between topological spaces implies a
one-to-one correspondence between connected components, cycles, holes, tunnels, cavities, or higher-
dimensional topological features.

Definition 2.13 (Contractible). A space with homotopy type of a point is called contractible.

In Figure 2.5 the starting set is not contractible.

2.1.3 Isotopy

A homeomorphism is a one-to-one function which maps one topological space onto another. A topological
space is a description of a connectivity in a set. So, a homeomorphism maps one-to-one all connectivity
information. If there is a homeomorphism between two topological spaces then the corresponding sets
are equivalently connected - they are topologically equivalent.

Fig. 2.6: Topologically equivalent shapes are not necessarily isotopic .

Homotopy is a family of continuous functions on sets which is itself continuous. We can visualize
this family by time variable as deformation. Obviously, there is a homeomorphism between the thicker
A in Figure 2.4 and the thinner A. But there is no homeomorphism between the thicker A and the
final thin A where the line is one point thick. The neighborhood of an interior point in thicker A is
an open 2-dimensional disk whereas in the thin A no interior points exist. Still there is a continuous
deformation between them which is done in certain time. Each function between a thicker A and a
thinner A is a homeomorphism and corresponds to a point in the time. The time variable is continuous.
Only in the limit the last function which maps the A with infinitesimal thickness to the thin A is not a
homeomorphism but is continuous.

The homotopy which restricts every function in the family to be a homeomorphism is called Isotopy.

Definition 2.14 (Isotopy). Let two continuous functions f, g : X→ Y be homeomorphisms. f is isotopic
to g if there is a homotopy H between f and g such that for every t ∈ [0, 1] H(. , t) is a homeomorphism.
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For example a torus and a trefoil knot as represented in 2D example in Figure 2.6 are homeomorphic
but not isotopic. We cannot deform one to each other without tearing or self-intersection. However
homotopy allows shrinking to a single point, which makes a trefoil homotopy equivalent to the torus.
To see that consider the trefoil knot, where the “trefoil part” is contained in a small region of the knot.
Putting the two ends of it tight shrinks the knotted part to a single point, resulting in a circle which is
homotopy equivalent to the torus.

2.2 Geometry

While topology is concerned with the properties of shapes which are invariant under continuous functions,
geometry is interested in invariants under rotation or translation in space. Following the well known
comparison, the topologist does not see the difference between a cup and a donut because he is only
looking into local environment of points - the geometer does see the difference since the cup cannot be
transformed into a donut neither by rotation nor by translation.

Here we introduce geometrical concepts concerning our work and present a framework which is
suitable to derive the correspondence between the shape descriptors and topological properties. This
framework is then used in the following chapters for reconstruction methods with topological guarantees.

2.2.1 Space Partition

Let us examine the illustration in Figure 2.7. We can recognize a shape of a fish consisting of a fish-eye,
two fins and fish-corpus. Mathematically speaking we see a 2D-space divided or partitioned into five
open regions by a non-manifold boundary. One region corresponds to the infinite background. One
region relates to the fish-eye, two regions which we recognize as fins and an open region with a hole -
the corpus.

In our example the neighboring regions share at least one piece of one dimensional contour. If we
consider a space partition which results by two crossing lines we observe that the resulting diagonally-
placed regions share a boundary which consists of one point only. If there are more than two line
crossing in this point, more than two regions would be sharing this point as common boundary. So in
2D we differentiate the direct neighbors which share a contour piece and so are the only possible regions
adjacent to the common boundary and the neighbors sharing a lower dimensional boundary.

Fig. 2.7: Space partition consisting of 5 open regions. Thick line is the boundary.

Definition 2.15 (Space Partition [Stelldinger and Tcherniavski, 2009b]). A space partition R is a finite
set of pairwise disjoint regions R = {Ri ⊂ Rn} such that each region Ri ∈ R is a connected open set
and the union of the closures of the regions covers the whole space, i.e.

⋃
iRi = R3. The boundary of

the partition is ∂R :=
⋃
i ∂Ri. Two regions Ri, Rj are called m-neighbors if the intersection Ri ∩ Rj

contains an m-dimensional manifold, but no (m+ 1)-dimensional manifold. Two (n− 1)-neighbors are
also called direct neighbors.

The simplest case of a space partition is a binary partition, where the regions can be classified into
foreground (e.g. a contractible solid object) and background (the rest).
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2.2.2 Distance Transform

A space partition together with its boundary covers the whole space. For each point in the space we can
compute the Euclidean distance to the nearest point on the boundary. The function which maps each
point in space to this distance value is called distance transform.

In Figure 2.8 (a) we illustrate the distance transform on the space partition in Figure 2.7 by gray
values. The more distant to the boundary is a point in space the brighter is the gray value. The gray
values are normalized in such a way that the maximum distance value has the gray value 255.

In 2D the distance transform is a function which maps a 2D coordinate to its distance value. In
Figure 2.8 (b) the distance values are additionally represented as height levels.

(a) (b)

Fig. 2.8: Distance Transform

Definition 2.16 (Distance Transform). The distance transform d of a set B ⊂ R3 is defined as d(x) =
miny∈B ‖x − y‖. The distance transform is called continuous if B is infinite, and discrete otherwise.
The reversed distance transform is defined as rd(x) = {y ∈ ∂R | ‖x− y‖ = d(x)}. x is a local maximum
of the distance transform iff ∃ε > 0 ∀x′ : (‖x′ − x‖ < ε)→ (d(x′) < d(x)).

Gradient
The “mountains” in Figure 2.8 (b) motivate the question, how do we climb up? Obviously the

steeper we chose our way to the tip of the mountain the harder it is to climb. The ways leading into the
mountains are usually serpentine to reduce the ascent per step. So, the actual question is, what is the
steepest ascent starting on some point in space?

Standing on this starting point in space the direction of our further way defines the slope. The slope
is negative if we climb down, and positive if we climb up. We may represent the direction and the
hardness to climb the slope as vectors.

The slope is computed on a 1D curve by the first derivative. The second derivative results in the
amount of change of the slope. In 2D we compute the slope by the first derivative in the two basic
directions. The vector consisting of the two directed slopes in the basic directions is called gradient. So,
the function on which the gradient is to be computed must be derivable on each point in the domain.
We call derivable functions smooth.

As we may observe in our example in Figure 2.8 (b) the distance function is not everywhere smooth.
So, the computation of a gradient by derivation cannot be applied in our framework. We use the extended
definition of the gradient firstly introduced in [Lieutier, 2004].

Definition 2.17 (Gradient and Criticals [Lieutier, 2004]). Let Θ(x) be the center of the smallest closed
ball enclosing rd(x). Then the gradient on x is defined as

∇(x) =
x−Θ(x)

d(x)
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and the set of critical points of ∇ is given by F(R) = {x ∈ R | ‖∇(x)‖ = 0}. More generally, Fβ(R) =
{x ∈ R | ‖∇(x)‖ ≤ β}.

d(x)
x

Θ(x)

x′

Θ(x′)

d(x′)
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⊕

⊕

⊕
⊕

⊕
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⊗

⊗

(b)

Fig. 2.9: (a) Distance value and the center of the smallest closing ball of the closest boundary
points. (b) Critical points on the distance transform.

Consider our 2D example of a space partition in Figure 2.9 (a). We want to define the gradient in
point x. The distance value in x is d(x) and is the radius of the maximum inscribing ball centered in
x. This ball touches the boundary in two points. The smallest ball enclosing the two points is centered
in a point denoted by Θ(x). The direction of the gradient as it is defined in Definition 2.17 is given by
the difference vector between x and Θ(x) and the length of the gradient normalizes the difference by the
distance value. Since the distance between x and Θ(x) is less than d(x) the magnitude of the gradient
on the point x is less than 1. In fact, since the maximum inscribing ball is always greater than or equal
to the minimal enclosing ball of the touching points the gradient value never exceeds 1.

Let us consider now the gradient on point x′ in Figure 2.9 (a). The maximum inscribing ball touches
the boundary in one point only. We follow that the minimum enclosing ball of this point has the zero
radius and is centered on the touching point. This touching point is also the nearest neighbor for point
x′. So, the difference (x′ − Θ(x′)) between the point and the center of the minimum enclosing ball of
the touching point is equal to the distance value on the point x′. Consequently the gradient value is 1.

We observe that the extended version of the gradient has the magnitude 1 on every point where
the maximum inscribing ball touches the boundary in one point which are the derivable pieces of the
distance transform - the linear ascends in Figure 2.8 (b). We also notice sharp edges on the “mountains”.
These are the points where the maximum inscribing ball touches the boundary in more than one point.

In Figure 2.9 (b) we specified the points where the center of the minimum enclosing ball of the
touching points overlay the point itself. The gradient has the magnitude zero. The centers of the balls
are the critical points on the distance transform.

The thin circles denote the maximum inscribing balls which touch the boundary in exactly two points.
The thick circles correspond to the maximum inscribing balls touching the boundary in more than two
points. We will see in the following that the centers of thin circles correlate with the saddles and the
centers of the thick circles are the maxima on the distance transform.

The general definition of the β-critical point in the infinitesimal β-environment of a point tends to
the desirable set of critical points: limβ→0 (Fβ(R)) = F0(R) = F(R) and β ≤ β′ ⇒ Fβ(R) ⊂ Fβ′(R).

Flow

The gradient ∇ gives the direction of the steepest ascent. In other words the direction which max-
imizes the growth of the distance transform. But as we may observe in Figure 2.8 (b) the mountains
have sharp ridges. For example in the “eye” the mountain is a cone. The slope being 1 on the sides of
the cone jump to zero on the critical point. The gradient is not continuous. But the path to the tip of
the mountain is continuous.
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In [Lieutier, 2004] the authors prove using the vector field ∇ that Euler schemes converge uniformly
when the integration step decreases. Then integrating the gradient results in a continuous flow which
describes the path to the critical.

Definition 2.18 (Flow [Lieutier, 2004]).

C : R+ ×R 7→ R with C(t, x) = x+

∫ t

0

∇ (C(τ, x)) dτ

Notice, that the t variable in Definition 2.18 is no longer the time in the interval [0, 1] as it is
considered for example in the definition of homotopy in Definition 2.10. t is the continuous integration
step such that a critical is reached for limt→∞. Once the critical is reached the gradient becomes zero.
Consequently, for any integration step the additive parameter is zero and the flow stays in the critical
point.

Simple Path The flow is a path with steepest ascent toward a critical point where the gradient
magnitude is zero. So, a flow is a continuous set of points an interval mapped to space. Since the flow
is strictly increasing it is not crossing itself.

Throughout our research, we follow certain paths and investigate the distance values along these
paths. So, we characterize a path - or, as we call it, a simple path to emphasize that it is not crossing
itself - by means of the values of the distance transform along the path:

Definition 2.19 (Simple Path). A continuous map π : [0, 1]→ R3 is also called a simple path. Further,
π is an increasing (strictly increasing, decreasing, strictly decreasing) path on the distance transform if
and only if d ◦ π is increasing (strictly increasing, decreasing, strictly decreasing) on [0, 1] respectively.
π with π(0) = x is a steepest path (starting at x) iff ∀t ∈ [0, 1] ∃t′ ∈ R+ : π(t) = C(t′, x).

2.2.3 Medial Axis

In this section we take a closer look at the ridges of the mountains in Figure 2.8 (b). On these ridges the
regular derivation method fails to define the original gradient. These are the places where the maximum
inscribing balls touch the boundary at least twice and where the magnitude of the extended gradient is
less then 1.

The union of the ridges is called the medial axis and is defined as the union of the centers of maximum
inscribing balls which touch the boundary in at least two points.

Definition 2.20 (Medial Axis [Blum, 1967]). The medial axis of a set B ⊂ R3 is defined as

MA = {x ∈ R3, |rd(x)| > 1}

Let Ω(x, ε) be the intersection of an open ball placed on x with radius ε and MA. x is a local maximum
on MA iff ∃ε > 0 ∀x′ ∈ Ω(x, ε) : d(x′) > d(x).

In Figure 2.10 we illustrate the construction and the definition of the medial axis leaving out the
maximal inscribing balls outside the fish shape. Notice the absence of small circles touching the smooth
pieces of the boundary. The smallest maximum inscribing ball overlays the smooth piece of the boundary
completely. Which means that the smoothness can be measured by the radius of the smallest maximum
inscribing ball.

In cases of sharp edges the maximum inscribing balls tend to disappear, becoming very small. The
maximum inscribing ball in the corner has the radius zero.

Medial axis is also known as a complete shape descriptor since it is homotopy equivalent to its open
set as it is proven in [Lieutier, 2004].

Theorem 2.21 (Homotopy Equivalence of Medial Axis [Lieutier, 2004]). Let O be a bounded open subset
of Rn and MA be its medial axis, then O is homotopy equivalent to MA.
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Fig. 2.10: (a) Construction of medial axis by centers of maximum inscribing balls. (b) The
medial axis (thin line), local maxima (⊕), saddles (⊗).

The maxima on the medial axis - consider for example Figure 2.10 (b) - are considered as points
with maximal distance value in certain environment on the medial axis. The environment of a minimum
on the medial axis is in 2D always one-dimensional. In 3D it can be one-dimensional, then we call it
a 2-saddle, and it can be two-dimensional - homeomorph to a disc - then we call such a minimum a
1-saddle.

In the following, we will see that the maxima on the medial axis are congruent with the maxima
of the distance transform. We will use this fact to show in Theorem 5.19 the relation between stable
and unstable results of our reconstruction algorithm when applied on samplings taken with different
conditions.

Observation 2.22 (Local Maxima on Distance Transform and MA:). x is a local maximum on MAT if
and only if x is local maximum on the distance transform (d).

Proof: I. Let x be a local maximum on the distance transform. Then there is an ε > 0 such that x is
the maximum of all x′ in the open ball Boxε centered on x with radius ε. d(x) is the distance to the
nearest boundary point b, so the maximal closed ball Bmcx centered on x has the radius r = d(x) and
touches the boundary at point b. Let us assume that there is only one boundary point on the boundary
of Bmcx. So r can be increased to r′ such that a closed ball on x′ touches another boundary point. Since
d(x′) = r′ and r′ > r, there must be an increasing path between x and x′, which is a contradiction to
x being a maximum in Boxε. Thus the boundary of Bmcx must touch another boundary point and so
x ∈ MA. Let Ω(x, ε) be an intersection of any surface with Boxε. Since x is maximal for all x′ ∈ Boxε,
x is maximal for all x′′ ∈ Ω(x, ε). Thus x is a local maximum on MA.

II. Let x be a local maximum on MAT. Let us assume the opposite: x is not a local maximum on d.
Then there exists an increasing path πm on d between x and a local maximum on d. Since x is maximum
on MAT and πm is increasing, there is a t′ > 0 and a subpath π ⊂ πm with π(0) = x and π(1) = πm(t′),
such that ∀t ∈ (0, 1] : π(t) /∈ MA. Let t ∈ (0, 1] be a π-coordinate, then the maximal closed ball Bmcπ(t)
touches the boundary in only one point b. The center points of all growing balls touching b construct
an increasing path πt with πt(0) = π(t). The greatest ball on πt touches the boundary in b and an
additional point b′, so πt(1) ∈ MA.

Let fπ : π([0, 1])× [0, 1]→ MA be a function where for all t ∈ [0, 1] the path fπ(π(t), ·) is increasing
with fπ(π(t), 0) = π(t) and fπ(π(t), 1) ∈ MA. Since the distance transform has a locally Libschitz con-
tinuous gradient on R\MA (see for proof [Wolter, 1992]), fπ is continuous. So fπ(π(t), 1) with t ∈ [0, 1]
is an increasing path in MA, which is a contradiction to the assumption π(0) is a local maximum on MA.
Thus, x is a local maximum on d. �

In [Chazal and Lieutier, 2005a] a subset of the medial axis is introduced which remains stable for
certain perturbations on the boundary:
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Definition 2.23. (λ-Medial Axis [Chazal and Lieutier, 2005a] ) Let F(x) be the radius of the smallest
closed ball enclosing rd(x). The λ-medial axis is defined as

MAλ = {x ∈ O, F(x) ≤ λ}

The radius F of the smallest closed ball enclosing the touching points on the boundary is zero for
all points not on the medial axis. The maximum inscribing ball outside the medial axis touches the
boundary in one point only, following F is zero. We imply that the points on the λ-medial axis are also
points on the medial axis.

Consider the set of critical points. The Hausdorff distance between the boundary and the set of
critical points is the smallest distance value on critical points. This value is globally defined for the
open set. We introduce the concept in Definition 2.31. In [Chazal and Lieutier, 2005a] the proof is given
that the λ-medial axis is homotopy equivalent to its open set if λ is smaller than the Hausdorff distance
between the boundary and the set of critical points. Setting λ less than that value we observe that
λ-medial axis is constructed by cutting the ends of the medial axis where the maximal enclosing balls
have the radius greater than λ. Equivalently, we observe that λ-medial axis is the subset of the medial
axis which does not intersect the bouλ-dilation of the boundary. The λ-dilation results by placing a
λ-ball on each point of the boundary.

2.2.4 Homotopical Axis

We introduce an even smaller subset of the medial axis which is homotopy equivalent to the open set.
The drawback of the λ-medial axis is that the Hausdorff distance between the boundary and the set
of critical points has to be known. The definition of our homotopical axis does not depend on any
parameter settings and is a direct property of the medial axis. It is the smallest set of steepest ascents
on the medial axis containing the critical points.
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Fig. 2.11: The dotted line is the medial axis and the dashed line is the homotopical axis

The thick line in Figure 2.11 is the homotopical axis of our fish shape. Notice, even if the smallest
subset of the medial axis which is homotopy equivalent to the corpus is the loop around the eye, the
homotopy axis still contains the extension to the maximum in the fish tail leading though a saddle (⊗).
The homotopy axis of the eye is the local maximum only (⊕).

The gradient in the critical points is zero. So, no ascend can start in a critical point. The β-parameter
denotes the infinitesimal environment around a saddle where the gradient magnitude is greater than zero.
So, the definition of the homotopical axis is given by general definition of the gradient

Definition 2.24 (Homotopical Axis). The homotopical axis(HA) is defined as:

HA = lim
β→0+

Gβ(R) where

Gβ(R) = {x ∈ R| ∃t ∈ R+∃y ∈ Fβ(R) : x = C(t, y)}.
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Gβ(R) is the smallest superset of the set of critical points Fβ . Gβ(R) contains all points reachable
via the flow C; this concept and notation has been introduced in [Chazal and Lieutier, 2005a] where the
proof is given that Gβ((O)) is homotopy equivalent to the open set:

Lemma 2.25 (Homotopy Type of Gβ [Chazal and Lieutier, 2005a]). Let O be a bounded open set. Then
for any β > 0, Gβ(O) has the same homotopy type as O.

Lemma 2.25 states the homotopy equivalence between an open set and the β-superset of the critical
points Gβ(O) which consists of exactly one connected component. The homotopical axis is the subset
of Gβ(R) if β tends to zero. So, to derive the homotopical equivalence of our axis we first imply that
the homotopy equivalence remains if β tends to zero. Then we infer that the result Lemma 2.25 is also
applicable to the set of open sets - the space partition, and finaly proceed with the result again for β
tending to zero.

Corollary 2.26 (Homotopy Type of HA on O). Let HAO be the homotopical axis of a bounded open set
O. Then, since HAO is defined with β > 0, HAO has the same homotopy type as O.

Corollary 2.27 (Homotopy Type of Gβ(R)). Since R is the union of pairwise disjoint bounded open
sets, then for any β > 0, Gβ(R) has the same homotopy type as R

Corollary 2.28 (Homotopy Type of HA). Since HA is defined with β > 0 and Gβ(R) has the same
homotopy type as R (Corollary 2.27), HA has the same homotopy type as R.

The medial axis is also called a complete shape descriptor because it is homotopy equivalent to its
open set. In the last two sections we learned of two further homotopy equivalent subsets of the medial
axis. In fact every deformation step converting the starting shape into its axis has the same result.
There is an infinite class of shapes of equal homotopy type having the same axis.

In the following we use the homotopy equivalent axis to define a function which maps each point of
the boundary to a certain value.

2.2.5 Feature Sizes

The goal of our work is to define sampling conditions and a reconstruction method which preserves
topological properties. We approach this by defining a function which maps each point of the boundary
to a value. This value then serves as a sampling density and maximal sampling point deviation factor.

Local Feature Size
The function called local feature size directly relates to the medial axis and describes for each point

on the boundary the curvature. The local feature size of a boundary point is simply its shortest distance
to the medial axis. The local feature size satisfies the Lipschitz property [Amenta and Bern, 1999].

Definition 2.29 (Local Feature Size). Let b ∈ ∂R be a boundary point of a space partition R and let
MA be the medial axis of R. Then the local feature size (lfs) of a boundary point b is defined as:

lfs(b) = min
y∈MA

‖b− y‖

Since the local feature size is zero at non-smooth boundary points ( e.g. corners ), all reconstruction
algorithms which require a sampling density based on the local feature size can only be applied to smooth
boundaries. Such methods require an infinite number of points to sample a corner.

Local feature size on a boundary point can also be seen as the radius of the maximal inscribing
ball touching the boundary in this point. The class of shapes for which the minimal local feature size
is greater than a certain value r is called r-regular. The equivalent definition given in [Attali, 1997]
states that a 2D shape is r-regular if an open ball of radius r > 0 can be inscribed on both sides of the
boundary.
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Definition 2.30 (r-Regular Shape [Attali, 1997]). Let ∂R be r-regular shape if it is morphologically
open and closed with respect to a ball of radius r > 0.

In [Attali, 1997] 2D reconstruction method is given and it is proven that it results in a topologically
equivalent contour for r-regular shapes if the sampling points lie on the original boundary and the
sampling density is less than 0.5r.

Weak Feature Size
A weaker condition on sampling density has been proposed to recover topological properties of a

bounded set [Chazal and Lieutier, 2005b]. The so-called weak feature size is defined as the distance
between the boundary and the set of criticals. Even though this feature size is suitable for non-smooth
boundaries, the definition is global for the whole boundary.

Definition 2.31 (Weak Feature Size [Chazal and Lieutier, 2005b]). Let F(R) be the set of critical points
of the space partition R, the weak feature size (wfs) of a boundary point b is defined as follows:

wfs(b) = min
y∈F(R)

(dR(y))

For λwfs, the weak feature size can also be seen as the value of the maximal dilation which does
not change the homotopy type of the original boundary. This interpretation is verified by the following
theorem.

Theorem 2.32 (Homotopy Equivalence of λ-Medial Axis [Chazal and Lieutier, 2005a]). Let O be a
bounded open subset of Rn and MAλ be its λ-medial axis with ∀bin∂Oλ < wfs(b), then O is homotopy
equivalent to MAλ.

In Chapter 4 we discuss a related concept of r-stable sets, where the r-value corresponds to wfs. A
shape is then called r-stable if its r-dilation is of the same homotopy type. The reconstruction method
and the proof of its topological correctness( see Definition 2.46 ) based on this globally-set parameter is
given in [Stelldinger and Tcherniavski, 2009c].

Strongly related to the wfs is the homological feature size introduced in [Cohen-Steiner et al., 2007].
Its definition uses homological critical values instead of classical critical values, and in general the
homological feature size is greater than or equal to the weak feature size. Nevertheless, in our case of a
Euclidean distance transform in R3, both types of critical values are identical.

The weak feature size is always greater than or equal to the smallest value of the lfs, which is often
called reach [Federer, 1959]. The reach of the boundary of a set strongly relates to the definition of
r-regular sets [Attali, 1997],[Stelldinger, 2008c].

Reachable Critical Points
Following the steepest path we expect to arrive on the tip of a mountain. In fact the case is more

complex. First, there is no gradient definition for the boundary of the open set. So, how can we ascend
the mountain of the distance transform starting on the boundary? The answer is we follow the steepest
path which starts in the infinitesimal environment of our starting point. Here we face the following
problem: there are two sides of the boundary. Consequently, we can ascend two different paths leading
to at least two different tips of different mountains separated by our boundary.

Even if we decide to follow the path on one side only, we face the next problem: arriving at a saddle
the gradient becomes zero. We have to use the general definition of the β-critical points and look for
the steepest ascend if β tends to zero. Again we face the forking problem. So, we can reach more than
one tip of a mountain following steepest ascends even if we decide to choose one side of the boundary.

In fact on the way to the tip of the mountain we can reach more than one saddle. So, the steepest
ascend to a maximum may consist of numerous critical points. In order to be able to escape critical
points (where the gradient vanishes) and include maxima that can only be reached by passing other
criticals, we use the following recursive definition, starting in the ε environment of an arbitrary point
x ∈ R3:
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Definition 2.33 (Reachable Critical Points). Let x ∈ R ∪ ∂R be a certain point in space. Let

F0
β(R, x) =

{
y ∈ F0(R) | ∀ε ∈ R+ ∃y′ ∈ R3 : ‖y′ − x‖ < ε ∧ y = lim

t→∞
C(t, y′)}

Fiβ(R, x) =
{
y ∈ F0(R) | ∃y′ ∈ Fi−1

β (R, x)∃y′′ ∈ Fβ(y′) : y = lim
t→∞

C(t, y′′)
}

The set of all criticals reachable by steepest paths starting on an arbitrary point x ∈ R3 is given by
F∞(R, x) = limβ→0+ F∞β (R, x).

Notice in Definition 2.33 the set F0
β(R, x) is the first set of reachable critical points in the recursive

definition. The starting points for the steepest paths are in the infinitesimal ε-environment of x. This
is needed for the case if x is in the boundary of the space partition. Some of criticals in F0

β(R, x) may
already be local maxima.

If there are saddles in F0
β(R, x) then a following set of reachable criticals has to be defined starting

in that saddle. Here we need the β-environment. Notice that β is the parameter in the general definition
of a gradient and denotes the gradient magnitude.

Using the set of all reachable critical points we can select only the local maxima and define the set
of reachable maxima:

Definition 2.34 (Reachable Maxima). Let F∞(R, x) be the set of reachable critical points for x ∈
R ∪ ∂R, then the set for f is: H(R, x) ⊆ F∞(R, x) and is called the set of reachable maxima if it
contains all local maxima of F∞(R, x).

The set of reachable local maxima is the basis for the following new feature size which measures the
minimal size of a neighboring region.

Local Region Size
The new feature size is only “quasi”-local. It measures the minimal size of the neighboring region.

The size of a region is defined by the greatest radius of the maximal inscribing balls. In other words the
size of a region is the greatest distance value of the local maxima on the distance transform defined by
the boundary of this region.

The local region size gives the evidence on the minimal neighboring region for a boundary point.
The function was developed for multiregional space partitions to desrcibe the minimal density of points
to enclose a region in such a way that the distance function defined on the sampling points develops a
local maximum inside the region. The goal here is to establish a correspondence between local maxima
on the distance function defined on the continuous boundary and the local maxima defined on the set
of sampling points.

⊕

⊕

⊕
⊕

⊕
⊕

(a)

⊕

⊕

⊕
⊕

⊕
⊕

(b)

Fig. 2.12: (a)Medial axis (dotted line), steepest paths (thick arrows), lrs: distance value of
minimal reachable maximum (radius of dashed circle). (b) Homotopical axis (dotted line),

distance to nearest point on homotopical axis (radius of dashed circles)
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Definition 2.35 (Local Region Size [Stelldinger and Tcherniavski, 2009b]). Let b ∈ ∂R be a boundary
point of R. Let H(R, b) ⊆ F∞(R, b) contain all local maxima of F∞(R, b). Then the local region size
(lrs) of a boundary point b is defined as:

lrs(b) = min
y∈H(R,b)

d(y)

The advantage of the local region size is that it is never zero since no zero maximum exists. The
disadvantage can be observed in Figure 2.12 (a). The thick lined arrows denote the steepest paths to the
minimal reachable local maximum. The minimum maxima for the boundary points on the tail of the
fish is the smaller maximum of the region. So, the local region size does not measure here the absolute
region size.

Obviously, for any boundary point, the local region size is greater than or equal to the local feature
size, since at least one steepest path passes through the nearest point of the medial axis. The weak
feature size never exceeds the local region size, since the smallest value of the local region size relates
to the smallest local maximum of the distance transform, which is greater than or equal to the smallest
distance value of a critical point.

Local region size is strongly related to the watershed transform (see e.g. [Roerdink and Meijster, 2000]).
Taking the positions of the local maxima as seeds, the combined boundary of the resulting regions covers
the boundary of the space partition, and the locally adjacent region with smallest corresponding max-
imum defines the local region size in a boundary point. Simply speaking, the space is then partitioned
into regions containing exactly one maximum of the distance transform each. The size of the regions is
defined by the distance value of the corresponding maximum, and the local region size of a boundary
point is defined as the size of the smallest adjacent region.

Local Homotopical Feature Size
The local region size introduced before has one disadvantage. It loses the volumetric information

between the local maxima of one and the same region. Consider our fish example. The local region size
on the boundary of the tail would be the same even if we separate the tail from the corpus. So, the local
region size is not suitable for regions with saddles. The appropriate shape class for the local region size
is called star-like shapes containing exactly one local maximum in each region.

Here we introduce a locally variable feature size based on the homotopical axis. The homotopical
axis contains all critical points. The feature size based on the homotopical axis has the advantage of
enabling measurements using the connection between the local maxima of a region. In particular, we
take the smallest distance value of the reachable local maxima which - as we learned before - is the local
region size and the distance to the homotopical axis into account:

Definition 2.36 (Local Homotopical Feature Size). Let b ∈ ∂R be a boundary point of R. Then the
local homotopical feature size of a boundary point b is defined as

lhfs(b) = min

(
min
x∈HA

(‖b− x‖), min
y∈H(R,b)

(d(y))

)
The smaller value between the local region size and the distance to the homotopical axis defines the

local homotopical feature size. Consider the illustration in Figure 2.12. The dashed circles in (a) denote
the minimal reachable local maxima. The thick drawn arrows are the steepest paths to the corresponding
minimal reachable maximum. Comparing the results to the figure in (b) where the dashed circles denote
the distance to the homotopical axis, we observe that for the points near the eye the distance to the
homotopical axis is much less than the distance value of the minimal reachable maximum. This is not
the case for the points in the boundary of the fish tail and the fins.

Comparing the Results
In Figure 2.13 we present the distribution of the different feature sizes introduced previously. For

a better illustration we choose the following procedure. Assume that the pen drawing the boundary
has the thickness of the corresponding feature size. Since the local region size is the greatest, and since
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Fig. 2.13: (a) 0.9lfs-distribution. (b) 0.9wfs-distribution. (c) 0.5lrs-distribution. (d)
0.8lhfs-distribution.

taking the pen size as the whole value would oversize the illustration, we uniformly scaled the local
region size by the factor 0.5.

Notice that while the local feature size in (a) and the weak feature size in (b) are continuous, the
local region size and the local homotopical feature size are not. The consequence is, in (c) and (d) the
pen size jumps from thin to thick as for example in the boundary changing from the fins to the corpus.

As discussed before the weak feature size is always greater than or equal to the minimal local feature
size.

∀b ∈ ∂R : wfs(b) ≥ min
b′∈∂R

lfs(b′)

Since the homotopical axis is a subset of the medial axis, and the local homotopical axis is always at
least the distance to the homotopical axis, the local homotopical feature size is always greater than or
equal to the local feature size. Since the criticals are in the homotopical axis, the equivalent statement
can be made: the local homotopical feature size is always greater than or equal to the weak feature size.
To sum up, we get the following hierarchy:

∀b ∈ ∂R : lfs(b),wfs(b) ≤ lhfs(b) ≤ lrs(b)

2.2.6 µ-Critical Point Theory

In [Chazal et al., 2009] the definition of a critical point is extended to µ-critical point which is a point of
a compact set with gradient norm less than or equal to µ. From the gradient definition in Definition 2.17
we recall that the norm of the gradient does not exceed 1.0 and approximates 1.0 outside the medial
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axis. On the medial axis the gradient norm is smoothed and is equal to zero at critical points. In “small”
environments of the critical points the gradient values approximate 0.

The critical function maps a distance value to the infimum of the gradient norm on points at this
distance. We can visualize the critical function as the boundary of a boundary dilation: the value of
the dilation is the distance value, and the gradient values on the boundary of the dilation determine the
value of the critical function. Again, according to Definition 2.17 the critical function has greater values
if the boundary of the dilation does not intersect the medial axis, and lower values if it does. The critical
function is zero if the boundary of the dilation intersects a critical point.

Definition 2.37 (Critical Function [Chazal et al., 2009]). Given a compact set ∂R, its critical function
χ∂R : (0,+∞)→ R+ is the real function defined by:

χ∂R(d) = inf
d−1
∂R(d)

‖∇∂R‖

The function d−1
∂R(d) is the inverse to the distance function and returns the set of points with distance

value d. ∇∂R is the gradient function defined on the distance function of ∂R and ‖∇∂R‖ is its norm.
The µ-reach is the infimum of all distances at which the critical function is less than µ.

Definition 2.38 (µ-Reach [Chazal et al., 2009]). The µ-reach rµ(∂R) of a compact set ∂R is defined
by:

rµ(∂R) =) inf {d | χ∂R(d) < µ}

Setting µ = 0 the µ-reach becomes the weak feature size (see Definition 2.31.). Weak feature size, as
we recall, is the minimal distance value of critical points. So, the µ-reach is some kind of weak feature
size but it investigates the distance values on points around the critical points.

2.3 Digital Geometry

In our framework we assume that there is a process which converts a scene in the real world into a
computer file. The scene in the real world is a space partition. The converting or as we call it digitization
process performs a data acquisition device. The data acquisition device samples the boundary of the
real space partition.

2.3.1 Boundary Sampling Points

The point set resulting from sampling the original boundary may be seen as the starting point for the
reconstruction method. Our investigation starts earlier. As described previously, we can use shape
descriptors like medial axis to determine the homotopy type of the shape. Using the shape descriptor
we can define a function mapping each point on the boundary to a unique value called feature size.
According to the assumed feature size we determine the sampling density and the maximal sample point
deviation from the boundary. Using these limits we can state that the guarantees on the reconstruction
can be given if the sampling conditions do not exceed these limits.

Definition 2.39 (Boundary Sampling Points). Let ∂R be the boundary of a space partition R. Let
f, g : ∂R → R be well-defined functions. The set of points S is called boundary sampling points if

∀b ∈ ∂R∃s ∈ S : ||b− s|| ≤ f(b) and
∀s ∈ S∃b ∈ ∂R : ||b− s|| ≤ g(b)

In our work we investigate the poorest sampling conditions under which the topological guarantees
can be given. Consider our 2D fish example in Figure 2.15. The points illustrate the result of a very
turbulent sampling. We observe that the sampling points deviate from the boundary, building not very
dense clouds of points, some of which build shape-like groups, some of which quite uniformly distributed.
However, we also observe that the points densify the closer they are to the boundary.
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The relative closure between the boundary and the points is measured and limited by the f -function
in Definition 2.39. Phrasing the formula we say, the distance between each boundary point and its closest
sampling is at most f(b). So, f(b) measures the density of sampling points relative to boundary point b.

The maximal deviation from the boundary is measured by g(b). Phrasing the formula, we say, the
distance between each sampling point and its closest boundary point is at most g(b). In our framework
we do not differentiate between the case of sampling point deviation from the boundary and the sampling
points which do not correspond to any point on the boundary. The latter points are known as outliers.
We generalize the two concepts and call the input set as noisy or noise-corrupted if not all sampling
points are on the boundary. So, g measures the maximal amount of noise which a reconstruction method
can handle.

s

b

s

b

Fig. 2.14: Left: for all sampling points the maximal distance to the closest boundary point is
zero. Right: the maximal distance between any boundary point and its closest sampling point

tends to zero.

In Figure 2.14 we illustrate the difference between the measurements f and g. In the left figure
the maximal distance between any sampling point and its closest boundary point is zero. All sampling
points are on the boundary. So, ∀s ∈ S ∃b ∈ ∂R : ||b − s|| = g(b) = 0. But there are no points around
the boundary point b. The closest sampling point for b is s. This distance is ignored by the function g
which measures the sampling points deviation from the boundary.

The right illustration in Figure 2.14 demonstrates a very dense sampling. For each boundary point
there is a sampling point a some close distance: ∀b ∈ ∂R∃s ∈ S : ||b− s|| = f(b)→ r. Here the function
f ignores the fact that there is an outlier s at great distance from the boundary.

2.3.2 Discrete Distance Transform

In Section 2.2.2 we learned the function which maps any point in space to the distance to its closest
boundary point - the distance transform. The distance transform measures the Hausdorff distance
between two sets, the set consisting of the current space point only and the continuous set of boundary
points.

The concept of the distance transform is generalized to Hausdorff distance between a point in space
and any set of points. According to the definition in Definition 2.16 we define the discrete distance
transform as:

Definition 2.40 (Discrete Distance Transform). Let ∂R be a boundary of a space partition R and let
S be a finite set of boundary sampling points. The discrete distance transform dS of a set S ⊂ R3 is
defined as dS(x) = miny∈S ‖x− y‖. The reversed discrete distance transform is defined as rdS(x) = {y ∈
S | ‖x− y‖ = dS(x)}.

Consider the very noisy set of sampling points in Figure 2.15 (a). The points are very dense on some
parts of the boundary and strongly deviate from the boundary at others. Illustration of the discrete
distance transform is given in Figure 2.15 (b). The greater the distance value the brighter is the gray
value. Mapping each coordinate to its gray value we also illustrate in Figure 2.15 (d) the discrete
distance transform as gray value mountains, which corresponds to the illustration of the continuous
distance transform in Figure 2.8 (b).
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(a) (b)

(c) (d)

Fig. 2.15: Boundary sampling points distributed around the original boundary.

Gradient
The gradient notation in Definition 2.17 introduced in [Lieutier, 2004] is based on the center of the

smallest closed ball enclosing the nearest boundary points. In discrete case it is the center of the smallest
ball enclosing the nearest points in the sampling which are given by rdS(x) for any point x in space

Let Θ(x) be the center of the smallest closed ball enclosing rdS(x). Then gradient on x on the
discrete distance transform is defined in the same way as in Definition 2.17, where the set of critical
points is straightforwardly defined by replacing the continuous set of boundary points R by the finite
set of sampling points S: set of critical points of ∇ is given by F(S) = {x | ‖∇(x)‖ = 0} for each point x
in space but not in S. The general definition is then: Fβ(S) = {x | ‖∇(x)‖ ≤ β}.

The discrete distance transform is not everywhere smooth. So ∇ is not continuous, which can be
seen by sharp “ridges” on the gray value “mountains” in Figure 2.15 (d). These sharp ridges are the
points on the distance transform where the gradient value is less than 1. Everywhere else but on the
sampling points the gradient value is 1.

Using the gradient we again know how to “climb the mountains” (compare Section 2.2.2). Gradient
maximized the growth of the distance transform. The flow induced by the gradient is also defined here,
as in [Lieutier, 2004] where the authors prove that using the vector field ∇ Euler schemes converge
uniformly when the integration step decreases. In 3D the definition is then as follows:

C : R+ × R3 \ S 7→ R3 \ S with C(t, x) = x+

∫ t

0

∇ (C(τ, x)) dτ

Starting in any point in space we reach for limt→∞ a critical point on the distance transform. The
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resulting flow line is the steepest increasing path on the discrete distance transform. In Section 2.4.8 we
will use the flow lines to specify elements of a combinatorial structure and in Section 2.4.9 to imitate
the flow using a relation between these elements.

2.3.3 Discrete Medial Axis

Here we introduce for the first time the relation between the distance transform and the combinatorial
structures which will be used for reconstruction in our framework. Consider the construction of the
medial axis for a continuous shape in Section 2.2.3. As introduced in [Blum, 1967] we used the centers of
maximal inscribed balls to define the medial axis. The points on the medial axis are exactly the points
where the gradient value is not 1. In the 2D example in Figure 2.8 the medial axis is the sharp “ridges
on the mountains”.

The radius of the maximum inscribed ball is the distance value of the distance transform on the center
of this ball. So, we obviously can build the medial axis on our set of sample points. If the maximum
inscribed ball touches at least two points we define its center as a point of the discrete medial axis. So,
for a finite set of sample points S the discrete medial axis is defined as

MAS = {x ∈ R3 |rdS(x)| > 1}

The result for our 2D example is illustrated in Figure 2.15 (c). We observe that the lines of the
discrete medial axis correspond to the sharp ridges of the discrete transform mountain in Figure 2.15
(d).

Each point in Figure 2.15 (c) is enclosed by the lines of the discrete medial axis. The seemingly
open cells separate the corresponding points from the others by infinite lines. Such cells are also called
“Voronoi cells” and the union lines of the discrete medial axis is called “Voronoi diagram”. We introduce
this concept in Section 2.4.6.

2.4 Digital Topology

Topological spaces can hardly be used on computers. So, combinatorial structures based on a finite
set of points are used for the representation. Here we introduce the geometric elements that make up
the combinatorial structures. Furthermore we introduce certain special structures Voronoi diagram and
Delaunay triangulation used in our framework.

2.4.1 General Position

Throughout our work we assume that the points of the finite set S are in general position. We mean by
general position that no 3 points lie on a common line, no 4 points lie on a common plane, no 5 points
lie on a common sphere.

The assumption simplifies the coming definitions, considerations and algorithms and relieves us from
dealing with special cases. This is justified since the points can be brought into the general position
by infinitesimal perturbation of the points. The corresponding programming technique to simulate the
perturbation is known as “SoS” and was introduced in [Edelsbrunner and Mücke, 1990].

2.4.2 Simplicial Complex

Before we come to the definition let us undertake some steps to get an intuition. Consider four nonplanar
points in space. A convex hull of the points is a filled tetrahedron. The sides of the tetrahedron are
triangles. Or convex hulls of three nonlinear points. The sides of a triangle are edges which again are
convex hulls of two points. So, a convex hull of a specified number of points which does not contain any
other point is called a simplex. The convex hulls of any subset of points of any simplex is called a face
of the simplex. A complex is a set which collects simplices together with their faces.
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Definition 2.41. Let S ⊂ R3 be a finite set of points. Then the convex hull of n ∈ {1, 2, 3, 4} points
s1, ..., sn ∈ S is called an (n − 1)-simplex with n − 1 being its dimension. Any simplex σ1 based on
the convex hull of a subset of the points defining a second simplex σ2, is called a face of σ2, and σ2

is called a coface of σ1. A face and a coface are called proper if their dimensions differ by exactly 1.
The 3-simplices are called tetrahedra, the 2-simplices are triangles, the 1-simplices are edges, and the
0-simplices are the points of S. Now a (simplicial) complex K is a set of simplices such that any face of
a simplex in K is also a simplex in K, and the intersection of any two simplices in K is also a simplex
in K. A simplicial complex K is called complete, if the union of the simplices |K| := ⋃σ ∈ K equals the
convex hull of S. A subcomplex of a complex is a subset, which itself is also a complex. Let σ be an
(n− 1)-simplex with corner points s1, ..., sn ⊂ S for a finite point set S ∈ R3. Then the smallest sphere
containing all corner points s1, ..., sn is called the circumsphere of the simplex. The interior, the center
and the radius of the sphere are called the circumball , the circumcenter and the circumradius of the
simplex.

2.4.3 Delaunay triangulation

The basis for our framework builds on a special simplicial complex called Delaunay triangulation. A
triangulation is a notation taken from a 2D framework and is used to describe some connectivity of 2D
points in space. Usually, the crucial criterion to build a triangulation is to connect any three points in
such a way that the resulting triangle does not cut any already existing.

A Delaunay triangulation restricts the triangles by empty ball condition: the circumcircle of any
triangle is not to contain further points. We visualise the empty ball condition in Figure 2.16. The
illustrations in (a) and (b) are both triangulation: the build triangles do not cut each other. But in (a)
a circumcircle of the thicker triangle does contain a point whereas in (b) all circumcircles are empty.

The notation triangulation is often carried into the 3D framework and in fact stands for tetrahe-
dralization. The definition of a 3D Delaunay triangulation does not allow the circumsphere of any
tetrahedron to contain further points. Notice, the rule is valid for tetrahedrons only not for triangles.

(a) (b)

Fig. 2.16: (a) Triangulation not fulfilling the empty ball condition. The circumcircle of the
thick triangle contains a point. (b) Delauany triangulation: the circumcircles of all triangles are

empty.

Definition 2.42 (Delaunay triangulation [Delaunay, 1934]). Let P be a subset of S, with |P | = 4 and let
σP be the convex hull of P . σP is a Delaunay cell if and only if the circumsphere of P does not contain
any other point of S. Delaunay triangulation or Delaunay complex of a point set S is the simplicial
complex D where all 3-cells are Delaunay cells.
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2.4.4 Elementary Collapse

A simplicial complex contains the information on connectivity between the points. Obviously, deleting
any simplex changes the neighborhood relation of the corresponding points and so their connectivity.
Here we want to remove simplices from the complex without changing the neighborhood relations between
the connected components of its complement.

In our framework the original scene object is represented by a set of points. In our approach we
carve the Delaunay triangulation to retrieve an equivalent of the original object.

Here we introduce a technique to reduce the given complex to its homotopical equivalent. In other
words we map the existing complex to its homotopy equivalent subset. The goal is to produce a most
simple object representation.

Definition 2.43 (Elementary Collapse). Elementary collapse ( denoted by ↘ ) removes a pair of sim-
plices (σ, τ) from a simplicial complex provided σ is simple and τ is its proper coface. A simplex σ is
simple if and only if there is exactly one simplex τ in the simplicial complex such that σ is a face of τ .

Fact 2.44 (Homotopy Equivalence of the Elementary Collapse). Let D be a simplicial complex and D′

be the result of elementary collapse on D, then D is homotopy equivalent to D′.

Consult [Edelsbrunner, 2003] 7 for the proof of Fact 2.44 and the construction of the deformation
retraction.
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Fig. 2.17: Collapse on simple facet ABC. (a)
{{ABCD},{ABC},{ABD},{ACD},{BCD},{AB},{AC},{AD},{BC},{BD},{CD},{A},{B},{C},{D}}
↘ (b) {{ABCD},{ABD},{ACD},{BCD},{AB},{AC},{AD},{BC},{BD},{CD},{A},{B},{C},{D}}
↘ (c) {{ABD},{ACD},{BCD},{AB},{AC},{AD},{BC},{BD},{CD},{A},{B},{C},{D}}

↘ (d) {{ABD},{ACD},{BCD},{AD},{BD},{CD},{A},{B},{C},{D}}
↘ (e) {{AD},{BD},{CD},{A},{B},{C},{D}} ↘ (f) {{AD},{BD},{CD},{D}} ↘ (g) {{D}}

In Figure 2.17 we see an example of elementary collapse first on the simple triangle {ABC} and its
proper coface the tetrahedron {ABCD} (in (b) notated by shrunk tetrahedron). The result of the first
collapse is in (c). The edges, the three triangles and the vertices of the original tetrahedron remain
constant. Notice, in (a) all triangles of the tetrahedron are simple. The choice of the triangle {ABC} is
arbitrary.

The first collapse results in three simple edges: {AB}, {AC} and {BC}. The next collapses remove
the edges (result in (d) ) and their adjacent triangles. The result of the collapses is in (e). Here the
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vertices {A}, {B} and {C} became simple. The last collapses remove the vertices and the adjacent edges
from the complex. So, the original complex is reduced by a series of collapses to the vertex {D}. Notice,
that the choice of another simple triangle would lead to another result. But the final result on this
complex without any simple simplices is always one vertex.

As an exercise consider a simplicial complex of a filled donut. All faces on the surface are simple.
What remains if we reduce the filled donut by a sequence of elementary collapses as long as simple
simplices can be found? The answer is, a loop, topologically a circle. Or consider the surface of a donut:
no tetrahedron is in the complex. Is there any simple simplex? The answer is no. Consequently, the
surface of the donut is irreducible by elementary collapsing.

2.4.5 Reconstruction

Now, our task is to reconstruct the spatial and topological information from a given set of sampling
points lying on or near the boundary of the original partition. In many applications the given set of
points is considered as the reconstruction. Consider for example the 3D images engraved into a crystal
cube. The spatial and topological similarity is then expected to be done by the observer.

Further, any set of connections can be considered as the reconstruction as long as the user sees any
sense in the result. In our case we develop a method starting with the construction of the Delaunay
triangulation on the set of points. The resulting connections between the points is a result of the convex
hull reconstruction. Further steps intend to carve the Delaunay block into the correct reproduction
of the original scene. Obviously, the carving in our case is a matter of well-defined and reproductive
mathematical procedures. However, the convex hull block is already some reproduction and can be
considered as a result. Then the resulting space partition consists of two regions, the outer infinite space
or background, and the block with the convex boundary between the regions.

Obviously, the result is not guaranteed to generally be spatially very similar to the original. We think
for example of concave shapes. Since in our case the original scene is mostly divided into more than
two regions, and furthermore assuming a non-manifold boundary, the topological correctness is at this
step irrelevant. But any step does retrieve relevant information - i.e. the nearest neighbor connections
between the points - and can be considered as a result.

The carving steps label the Delaunay simplices, resulting in a set of simplices representing the bound-
ary - the remaining simplices - and the set of simplices representing the interiors of the regions - the
removed simplices. The result of the boundary reconstruction is the underlying space of the set of sim-
plices representing the boundary. Any reconstruction step removes more simplices from the remaining
set, reducing the complexity and - as is our target - enhancing the spatial and topological correctness of
the reconstruction. Now the result of a reconstruction can be defined in the following way:

Definition 2.45 (Reconstruction). Let K be a simplicial complex based on a set of points S ⊂ R3. Then
a simplicial complex partition D is a set of disjoint subsets Di of K, such that the regions |D|i covered by
the sets Di define a space partition |D| := {|D|i}. In the case of K being a Delaunay triangulation, the
subcomplex ∂D ⊂ D, ∂D := K \⋃iDi is called the result of a reconstruction. Then, |∂D| is called the
reconstructed boundary, and the pairwise disjoint components Di interiors of reconstructed regions. For
each Di, the underlying space |D|i = |Di| is the reconstructed region. A simplex σ is called a boundary
simplex if at least two of its cofaces lie in different interiors of reconstructed regions.

Given the size size of the greatest simplices τi, τj in the regions |D|i and |D|j we write |D|i < |D|j if
and only if the size of τi is less than the size of τj.

In Definition 2.45 the notation size defines a function which uniquely maps a simplex to a scalar
value. The definition of the size induces an order in the simplices. According to this order the simplices
can be sorted and compared during the reconstruction procedure. This order establishes the relevance
of a simplex or the probability of its belonging to the reconstructed boundary. So, different definitions
of size differently sort the simplices and therefore the reconstructed regions which results in different
reconstructed boundaries. We imply that the choice of the size definition is crucial for our method. In
Section 2.4.11 we discuss this issue more closely.
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Correctness. In our context we deal with discrete representations of the continuous world. The
simplicial complex is abstract and is represented by a data structure holding the topological information.
We often reference the reconstruction to the simplicial complex, but speaking mathematically correctly,
the underlying space of the simplicial complex is the result of reconstruction.

The topological guarantees given by the reconstruction method may differ depending on the approach
and the initial setting in the scene and data. The setting of nonmanifold boundaries makes it impossible
to achieve the boundary of the reconstruction to be topologically equivalent. We make this clear in the
following example.

Consider the letter ’X’. The topologically correct reconstruction must have a point which has four
neighboring points in its infinitesimal environment. To achieve that, the sampling must guarantee to
contain the topological information about the occurrence of such a point. The sampling conditions based
on Hausdorff distance between the original boundary and the points in the sampling set cannot uniquely
be defined to preserve the topological properties for such a point unless it is guaranteed that a sampling
point meets this nonmanifold boundary point. But this restriction requires the sampling to be infinitely
dense in the infinitesimal environment of the nonmanifold points, which is not practicable for any data
acquisition device.

The consequence is, defining the sampling conditions based on Hausdorff distance between the original
boundary and the points in the sampling set, the reconstruction methods cannot result in a topolog-
ically equivalent boundary. The result is then homotopically equivalent only. In the ’X’ example the
reconstruction can only guarantee to result in ’H’ or in ’X’.

So, in our context we have to adapt the concept of guaranteed preservation of topological properties.
We say the reconstruction is topologically correct if the reconstructed space partition - the union of
interiors of the reconstructed regions - is topologically equivalent to the original and the boundary of
the reconstructed space partition is homotopically equivalent to the original.

Definition 2.46 (Topological Correctness). Let D be a simplicial complex partition and |∂D| be the
reconstructed boundary of the boundary ∂R of a space partition R. |∂D| is said to be topolocially correct
reconstruction of ∂R if and only if |D| \ |∂D| is topologically equivalent to R and |∂D| is homotopically
equivalent to ∂R.

Minimal Reconstruction
Given the reconstructed region and the set of points in its boundary, there may be numerous different

boundaries which enclose the region in a topologically correct way. Consider for example a 2D example
illustrated in Figure 2.18. The first example in (a) is a reconstruction of a three-regions boundary -
including the infinite background. Let us assume this reconstruction to be topologically correct. So,
the original space partition also consists of three regions topologically equivalent to the reconstructed
regions and the boundary is homotopy equivalent. Here the boundary is thick - it contains triangles. A
thin boundary consists of edges only.

The example in Figure 2.18 (b) is also a topologically correct reconstruction. The boundary in
(b) is thin. The thinning process removed the greater edge collapsing on the adjacent triangle. The
reconstruction method uses the length of an edge and results in a topologically correct reconstruction
with a thin boundary consisting of edges of minimal length. In Figure 2.18 (c) the topologically correct
reconstruction results in a thin boundary with minimal sum of lengths of boundary edges.

The thin reconstructions in (b) and (c) are topologically correct but differ spatially. However, we
observe some spatial similarity between the results in (a), (b) and (c). In this example the reconstructed
regions in (a) are subsets of reconstructed regions in (b) and (c). The thinning step compares two sets
of boundary simplices and chooses which simplex is going to be removed next. Obviously, if the two
reconstructed boundaries enclose topologically different regions, the comparison becomes senseless. So,
we speak of topological and spatial similarity between the reconstructed regions if their sets of boundary
simplices are to be compared. We call this similarity the compatibility between space partitions. The
comparison criterion such as length of the edge orders the sets of boundary simplices such that one set
becomes minimal. So, for our context we can define:
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(a) (b) (c)

Fig. 2.18: (a) Some boundary reconstruction. The union of thick edges and gray triangles is
the boundary of the reconstructed space partition (the union of white triangles and dashed edges).

(b) Topologically correct reconstruction with boundary thinned according to minimal length of
each edge. (c) Topologically correct reconstruction with boundary thinned according to minimal

length of all edges.

Definition 2.47 (Minimal Reconstruction). Two reconstructed space partitions are called compatible,
if there exists a one-to-one mapping between their reconstructed regions, such that every reconstructed
region is mapped onto a topologically equivalent reconstructed region.

For compatible reconstructions let less (<) be a well-defined ordering relation, then a reconstruction
is called minimal, if there exists no compatible lesser compatible reconstruction.

The ordering relation as it is assumed in Definition 2.47 is defined by edge length in (b) and number
of edges in (c). So, the thinning step in (b) orders the simplices according to their length and removes
the greatest. Consider for example two thinning results if from the thickness in the reconstruction in (a)
two different edges are removed. The boundary set of simplices where the greater edge is removed is the
smaller boundary. In example (c) two boundary simplex sets are compared which enclose the supersets
of reconstructed regions from (a). The boundary set with the lesser number of simplices is the smaller
reconstruction.

In Section 4.7.3 we introduce a minimal reconstruction as a result of “thinned-(α, β)-shape-recon-
struction” where the ordering relation is defined by the circumradius of a simplex. Two α, β-regions are
defined to be compatible if both contain the erosion of the same original region.

In Section 5.6 the minimal reconstruction is defined by the minimum distance value in a simplex.
There is compatibility if two regions contain the same local maxima of a distance transform.

Reducible Reconstruction
Starting with the Delaunay triangulation as a “block” we assume the topologically correct boundary

to be somewhere inside this block. So, with each “carving” step we have to prove that its result contains
a topologically correct boundary. Since each carving step can be seen as a reconstruction we say the
result of any reconstruction step is reducible if it contains a topologically correct boundary.

In our context any reconstruction step is in fact the removal of certain Delaunay simplices. Then,
simply speaking, our goal after each step is to still have a set of simplices where further simplices can
be removed to obtain a topologically correct result.

A counter example in 3D is a reconstruction of a ball from a highly noise-corrupted sampling. Con-
sider a greater accumulation of sample points at one side. Consider further that a reconstruction step
results in two regions - the background is ignored. One of the regions expands over almost all original
interior of the ball. The other has a form of a handle on the greater region. We illustrate the example
in a detailed discussion on results of a reconstruction in Section 5.15.1. Obviously, this boundary can be
reduced to a topologically correct reconstruction by removing the handle region. But by forcing through
the boundary in such a way that the interior of the handle merges with the greater region on both sides,
the resulting interior region becomes topologically a donut. The boundary of a donut cannot be reduced
to a boundary of a ball. We call such boundary to be irreducible.
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2.4.6 Voronoi Diagram

We approach the solution of the reconstruction problem from two points of view: the differential geometry
using the distance transform, and the combinatorial structures built on point sets. The Delaunay
triangulation is a combinatorial structure which can be built on a finite set of points without undertaking
any steps from differential geometry.

Fig. 2.19: Building Vornoi with two (left) and three (right) starting points.

Here we see a combinatorial structure which combines both points of view. Let us begin with intuitive
construction which we know from school geometry. How do we draw a line between two points which
evenly separates them? In other words all points on the line are equidistant to the two given points. We
need compasses for it. Adjusting the compasses to have a greater radius than the distance between the
points (compare Figure 2.19 left), we draw a half circle centered on the first point and without changing
the radius of the compasses draw a second half circle centered on the second point. The half circles
intersect in two points. The line through these two intersecting points is our required line.

Consider an edge between the two starting points. The length of this edge is the smallest diameter
for our compasses and its center is the nearest point with the same distance between the two starting
points. Our newly drawn line also goes through the center of this edge.

The constructed line is the Voronoi diagram (the continuous line in Figure 2.19) for the two starting
points. The Voronoi diagram combines all points which are equidistant to any two points in the starting
set.

To construct a Voronoi diagram for three points (Figure 2.19 right) we need to draw three lines one
between each pair of starting points. The three lines intersect in one point. Now we just remove the
half lines which start in this meeting point and do not intersect the center of the edge between the two
corresponding points of the pair. Notice, somehow this half line corresponds with the edge between the
points of the starting pair. But, we will come to this later.

The Voronoi drawing for greater point sets is a bit trickier. Following the iterative procedure we
consider there is already a drawn Voronoi diagram (the continuous line segments in Figure 2.20) for the
same point set except one last (m) we want to add. First we find the nearest neighbor k to m. In fact
this is the one which is not separated by a line segment from m. Next, we draw a line, as we introduced
in the case of two points, between k and m starting and ending on the intersecting point with the line
segment which separates k from the others. By doing that we find the neighbor l of k, on which we
proceed in the same manner. The drawing is completed when m is separated from all existing points
which is equivalent to stopping if k is reached again.

As we have seen the intention is to separate each given point from the others by a line segment in
such a way that each point on this line segment is equidistant to the point we want to separate and
its neighbor. The result is a set of line segments and the polygons enclosed by these line segments.
The union of the line segments is the Voronoi diagram. The set containing the line segments, their
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Fig. 2.20: (a) Voronoi diagram construction by adding a new point m to the point set. (b)
Duality between Voronoi (dashed lines) and Delaunay (continuous lines)

intersection points and the polygons enclosed by them is again a simplicial complex. Notice, that the
line segments can be seen as intersections of the closures of the polygons.

The 3D Voronoi diagram is the extension of the previous considerations, but the points are elements
of 3D space and planes are needed to separate them.

Definition 2.48 (Voronoi diagram [Voronoi, 1907, Voronoi, 1908]). For a point p ∈ S, define V(p), the
Voronoi cell, as V(p) = {x ∈ R3|∀p′ ∈ S : ‖x− p‖ ≤ ‖x− p′‖}. A Voronoi cell is also called 3-cell. The
intersection of two Voronoi cells is a 2-cell or Voronoi polygon. The intersection of three Voronoi cells
is called 1-cell or Voronoi edge. The Voronoi vertex is the nonempty intersection of four 3-cells.

A Voronoi diagram of S denoted as V is defined as the collection of the Voronoi cells for each point
of S

If the points are in general position two Voronoi cells are either disjoint or the intersection is a two-
dimensional polygon; three Voronoi cells are either disjoint or the intersection is a line segment or half
line. Four Voronoi cells meet either in one or in no point. The nonempty intersection of Voronoi cells is
also called face.

Voronoi cells are convex polyhedrons and since the intersection of convex sets is a convex set, their
intersections or faces are also convex. Voronoi cells have disjoint interiors and the collection of all Voronoi
cells covers R3.

Duality between Delaunay and Voronoi Let us consider again our 2D example construction. We
build the Voronoi diagram in such a way that pairs of neighboring points are considered to draw a line
which is an affine expansion of the corresponding Voronoi edge. The linear connection between these two
points is an edge in the Delaunay triangulation. We imply that at least for each Voronoi edge there is
a corresponding Delaunay edge. Vice versa, each Delaunay edge is the connection of two closest points.
Exactly the points which are needed to construct a Voronoi line. In fact the construction of Delaunay
is equivalent to the construction of the Voronoi diagram. The correspondence between Voronoi and
Delaunay is a one-to-one mapping.

Let V and D be the Voronoi diagram and Delaunay triangulation on S and P be a subset of S, with
d = |P | and 0 ≤ d ≤ 3 and let V(P ) be defined as V(P ) = ∩p∈PV(p) then

σP is a d-simplex of D iff V(P ) is a (3− d)-cell of V

The Voronoi cell V(P ) is called the dual cell to the Delaunay cell σP and vice versa.

Critical Points The duality between Delaunay and Voronoi establishes the connection between the
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combinatorial structures and the differential geometry. As it is stated in [Giesen and John, 2003] the
intersection between a Voronoi cell and its dual Voronoi simplex is the critical point on the distance
transform defined on the data points. Note that this notation of critical point is the same as the one
considered in the setting of nonsmooth analysis [Clarke, 1990] and Riemannian geometry [Cheeger, 1991,
Grove, 1993]

2.4.7 Alpha-Shapes

In our framework we use the term shape to denote the underlying space of a combinatorial structure.
So, a Delaunay 3-cell is an element of 3D Delaunay triangulation while its underlying space is the
tetrahedron.

(a) (b) (c)

Fig. 2.21: (a) Point set. The circles denote the α-ball. (b) The union of gray triangles and
thick line segments is the α-shape which is extended by dashed edges to Delaunay triangulation.

(c) The union of α-balls is homotopy equivalent to α-shape.

The concept of α-shapes generalizes the convex hull of a point set. In [Edelsbrunner and Mücke, 1994]
the authors give an illustration of α-shapes by considering the space to be filled with styrofoam and the
points to be rocks. Then a spherical eraser (the circles in Figure 2.21 (a) ) carves out the styrofoam at
all positions where the rocks allow it. So, the eraser does not pass through the space between two rocks
if their distance is less than 2α or if the maximal inscribed empty ball between more than two points
has the radius less than α. Obviously, the remaining styrofoam is circular between the points where
the eraser did not pass through. The generalized convex hull fills the remaining styrofoam in such a
way that the connection between the rocks where the eraser did not pass is linear (planar in 3D). The
resulting object is the so called α-hull. The α-shape (union of thicker line segments and gray triangles
in Figure 2.21 (b) ) is the underlying space of the α-hull.

α-shapes may be disconnected or concave, may have holes or linear segments. In 3D, α-shapes may
have cavities or tunnels, may consist of two-dimensional surface patches. α-shapes can even contain
single points. I.e. the set of points is an α-shape for a too small α. The α-shape with α equal to the
smallest distance between points adds to the shape only one edge. The increasing α adds further edges,
triangles or tetrahedrons to the shape. The convex hull of the point set is the α-shape for too large α.

For our context we use the definition introduced in [Edelsbrunner and Mücke, 1994] which is based
on the definition of the Delaunay complex. The α-shape is the underlying space of α-complex which is
the subcomplex of Delaunay complex ( the thick continuous line segments extended by the dashed lines
to Delaunay triangulation in Figure 2.21 (b) ).

Definition 2.49 (α-Shape [Edelsbrunner and Mücke, 1994]). Let D be a Delaunay complex of a finite
set of points S. The α-complex Dα is the subset of D for which is valid: σ is a simplex in D, the open
circumball of σ is free of points and the circumradius of σ is less than or equal to α then σ is in Dα The
polytope |Dα|, i.e. the underlying space |Dα| of Dα, is called α-shape and is denoted by Sα. The closed
ball with circumradius α is called α-ball.
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To establish an intuitive correspondence to Delaunay complex let us consider closed balls centered on
points. All balls have the same radius which is continuously increasing up to α-value. Starting with zero
and increasing the radius of balls, one connects two points to an edge, three points to a triangle, and
four points to a tetrahedron if the balls overlap without containing any other point of the point set. The
points connected by this construction are equivalently considered by construction of Voronoi diagram.
So, the construction by increasing ball radii is a subset of Delaunay triangulation and of α-shape.

Notice the difference. In our 2D-example with an eraser and styrofoam the eraser is not allowed to
contain any point. In contrast to that the balls are centered on the points in the other example.

The correspondence between the above construction and the resulting α-shape (see Figure 2.21 (c)
for illustration) is stated by Theorem 2.50 which is proven in [Edelsbrunner, 1995].

Theorem 2.50 (Union of Balls [Edelsbrunner, 1995]). The union of closed α-balls centered at the points
p ∈ S covers the α-shape of S, and the two sets are homotopy equivalent.

Notice here again the correspondence between our combinatorial construction and the differential
geometry: the α-shape changes its topology if the increasing α-value and with it the α-ball achieves a
distance value of a critical on the distance transform.

2.4.8 Specifying the Simplices

In previous sections we learned about simplices - the elements of a Delaunay complex as well as their dual
Voronoi cells. We also learned than the intersections of Delaunay simplices and its duals are the critical
points on distance transform defined on the sampling points. So, using the combinatorial structures we
made implications about local differential properties of a continuous function. The critical points are
the combining link between a continuous function and the combinatorial structure defined on the points.

Here we start with the continuous function and proceed towards the concept of critical points to
make specifications about intersections of Delaunay simplices and their duals and, following, about the
properties of certain simplices.

A gradient of a function defines a first-order differential equation. A solution is a curve whose tangent
vectors agree with the gradient of the function. For each non-critical point x there is a unique solution,
the flow curve that contains x. In our context the flow curve is piecewise linear which justifies the
notation flow line.

Every flow line starts in a critical point and ends in a critical point or in the infinite. We adopt the
notation from [Edelsbrunner, 2003] of the infinite as a critical point with infinitely large distance value.
We call it the infinite maximum.

The distance function on a point set S measures the distance to the nearest point. The flow line
follows the steepest increasing path for every point in space. How do we introduce some intuition towards
the trajectory of a flow line? The distance values increase linearly with the distance to the nearest point.
So, the nearest point or nearest points push the point is space away. The direction of the gradient is
then the vector starting on the nearest point and ending in the point in space - our measuring point. If
more than one point is equidistant to our measuring point then the sum of vectors is the direction of
the gradient.

Let us consider a two-dimensional example as illustrated in Figure 2.22. Let us consider further a
closed ball with steadily increasing radius. If the closed ball centered on a point x4 (compare Figure 2.22
(a) ) in space touches a sample point A but does not contain any other points of S = {A,B,C} then the
sample point A pushes x4 at most and the flow is directed from the sample point through x4 (dashed
arrow).

If the closed ball centered on x4 contains two sample points (A and C) there is to decide which
sample point is nearer. The nearest pushes the most until the distance to both sample points is equal
(the end of the arrow through x4 in Figure 2.22 (a) ). The sum of the pushing vectors results in the new
direction of the flow line (the short arrow starting on the end of the arrow though x4 and ending in O).

If the pushing vectors are of the same length (the distance to the nearest is equal as for example
in the center of AB) and are in opposite directions then the sum is zero and the flow line stays in the
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Fig. 2.22: Flow lines on distance transform defined on points ABC which build (a) an acute
(b) an obtuse triangle.

meeting point. This meeting point is a critical point of the distance function. This is the case for all
flow lines starting on edges opposite to an acute angle. Otherwise the flow then makes a kink (compare
the flow line through x4) and follows the line perpendicular to the line connecting the sample points -
the dual Voronoi edge. This is the case for all measuring points in space not on the edge connecting the
points.

Increasing the radius of the ball centered on x4 until it contains a third sample point, and connecting
the three sample points with edges, we construct a Delaunay triangle (ABC). The flow line from our
previous construction with two sample points in the ball only follows the line perpendicular to the
edge connecting the sample points until the circumcenter of the triangle is reached. If the triangle is
acute (Figure 2.22 (a)) then the circumcenter is contained in the triangle’s interior and the flow cannot
leave. The circumcenter is equally pushed by points and in the case of an acute triangle the sum of
pushing vectors is zero. In the case of an obtuse triangle (Figure 2.22 (b)) the flow does not end in the
circumcenter. The sum of pushing vectors results in a vector in the direction perpendicular to the edge
(AC) opposite to the obtuse angle away from the sample points.

In Figure 2.22 (b) x3 is a point on the edge AC. But there is a sphere centered on x3 containing
further sample point B. This sample point B pushes x3 the most and so the flow line on x4 breaks adrift
towards the circumcenter of the triangle and so the point which is equidistant to AC. The flow does
not end in the center but the distance values increase along the dual Voronoi line to AC away from the
sample points.

The simplices which contain the endpoint of the flow line are called centered and the simplices which
do not contain its flow are equivocal . In 2D equivocal edges are opposite obtuse angles. The opposite
sample point is too close to the sample points such that it pushes the flow away from the edge. This is
the case if the circumsphere of the edge contains another sample point.

Let us extend our example to 3D. The radius of the ball centered on x is increased until it contains
the fourth sample point. The convex hull of the four sample points is a Delaunay tetrahedron. If the
circumsphere of three sample points of the tetrahedron does not contain any further sample point, or -
as we call it now - the vertex of the tetrahedron, then there are two cases to consider. The triangle built
of these three sample points is acute - then it again is called centered. If the triangle is obtuse, then the
flow is contained in the affine hull of the triangle but not the triangle itself. In such a case the triangle
is called confident .

If the circumsphere of the triangle does contain the further vertex of the tetrahedron then we again
have the case where the vertex pushes the flow away from the simplex. Such a triangle is equivocal.

In [Edelsbrunner, 2003] the specifications are summed up under the following properties:

Fact 2.51 (Centered Simplex [Edelsbrunner, 2003]). A Delaunay simplex σ with its dual Voronoi cell ν
is centered if and only if the intersection of σ and ν is not empty. The intersection is a critical point of
fε and its index is the dimension of σ.
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In our 2D example in Figure 2.22 (a) the triangle and its edges are centered. The triangle contains
its own circumcenter which is its dual Voronoi 0-cell. The half-lines starting in the circumcenter and
going through the centers of the edges are the dual Voronoi 1-cells of the edges. Since the intersection
is not empty, the edges are centered.

Fact 2.52 (Equivocal Simplex [Edelsbrunner, 2003]). A Delaunay simplex σ with its dual Voronoi cell
ν is equivocal if and only if the intersection of ν and the affine hull of σ is empty.

The 2D example in Figure 2.22 (b) illustrates the triangle with one equivocal edge AC. Its dual
starts in the circumcenter O of the triangle and extends perpendicularly away from the center of the
edge AB. The intersection is empty even if we expand the edge to a line.

The flow starting inside a Delaunay simplex necessarily crosses the circumcenter of its greatest
dimensional coface. The flow starting inside a tetrahedron of a 3D Delaunay complex ends or crosses the
circumcenter of the tetrahedron. The affine expansion of a triangle divides the space into the half-space
containing the tetrahedron and the half-space not containing any point of the tetrahedron. Equivalent
consideration is valid in 2D. Since the flow is pushed through the equivocal triangle and necessarily
intersects the circumcenter of the tetrahedron we conclude that the circumcenter is on the other side of
the plane containing the triangle:

Corollary 2.53 (Equivocal Separates the Simplex from its Circumcenter). Let σ be a n− 1-dimenional
equivocal proper face of τ in n-D Delaunay complex. Then the affine expansion of σ divides the n-
dimensional space into a half-space containing the τ and a half-space containing the circumcenter of
τ .

We use the result of Corollary 2.53 as intuition in the following 3D examples. For example in
Figure 2.23 (a,b) the triangle ABD is equivocal.

Fact 2.54 (Confident Simplex [Edelsbrunner, 2003]). A Delaunay simplex σ with its dual Voronoi cell
ν is confident if and only if the intersection of σ and ν is empty and the intersection of ν and the affine
hull of σ is not empty.

The greatest-dimensional Delaunay simplex is never equivocal since its affine expansion covers the
whole space and, so, its dual Voronoi. The triangle in Figure 2.22 (b) is not centered since it does
not contain its own circumcenter: consequently, the triangle is confident. The lower-dimensional 2D
Delaunay simplices cannot be confident. This property occurs first in higher dimensions.

In the following we are going to investigate the possible constellations and relations of different
Delaunay simplices. In Figure 2.23 (a) for example we observe a lower-dimensional 2-simplex ( the
triangle ABC in 3D Delaunay triangulation ) whose affine expansion, denoted by the gray circumcircle,
contains its circumcenter, denoted by a small opaque ball. Notice, the dual of the triangle is the half-line
starting in the circumcenter of the tetrahedron ( the small opaque ball in the center of the wired ball
) and going through the circumcenter of the triangle. The dual Voronoi half-line does not intersect the
triangle: consequently, the triangle is confident.

The dual Voronoi half-lines are included into Figure 2.23 (b). The bottom triangle is acute but
neither the triangle nor its affine expansion intersects its dual. We conclude that the bottom triangle is
equivocal.

Observation 2.55 (In a Cell with One Equivocal All Triangles can be Acute). Let τ be a Delaunay
triangle and σ be its only proper equivocal face. All proper faces of τ may be acute triangles.

Not-Gabriel Simplices
In the context of Delaunay triangulation the concept of Gabriel graph originally introduced in

[Gabriel and Sokal, 1969] plays an important role and is the basis for our further investigations.

Definition 2.56. Let D be a nD Delaunay complex and σ ∈ D be a m < n dimensional simplex. Let
σ be the convex hull of {p1, . . . , pm} ⊂ D points. σ is called Gabriel or is said to have the Gabriel -
property if its circumball does not contain any further points D but {p1, . . . , pm} otherwise σ is called
not-Gabriel
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(a) (b)

Fig. 2.23: (a) ABD is the only proper equivocal face of the cell. ABC is confident. BC is
equivocal but not a face of ABD. (b) Equivocal ABD is the only face of tetrahedron ABCS. All

proper faces of ABCD are acute triangles.

The edge AC in Figure 2.22 (b) does contain the point B. We observe that the point B is the one
point which pushes the flow on the points on the edge away from the triangle. In fact, we may observe
that if a circumball of a simplex contains a further point, this point will be nearer to the circumcenter
than the vertices of the simplex and consequently will push the flow away from the circumcenter before
it can reach it. It wollows that the simplex can neither be centered nor confident. In Theorem 2.57 we
prove that the not-Gabriel property is given if and only if the simplex is equivocal.

Theorem 2.57 (Equivocal is equivalent to Not-Gabriel). Let τ be a Delaunay simplex. σ is its proper
equivocal face if and only if the circumsphere of σ contains a further vertex of τ (not-Gabriel).

Proof: I τ is a 3-simplex (tetrahedron) and σ is a 2-simplex (triangle).
If equivocal then not-Gabriel: The dual Voronoi ν to σ is an edge between the circumcenter of τ

and the circumcenter of the neighboring proper coface of σ. The affine hull of σ divides the space into a
half-space containing τ and a half-space not containing any point of τ . If ν does not intersect the affine
hull of σ, then the circumcenter of τ is separated by the affine hull of σ from τ . It follows τ does not
contain its own circumcenter.

The intersection of the affine hull of σ and the circumsphere of τ is the circumcircle of σ. Let the
distance between the circumcenter cσ of σ and the circumcenter cτ of τ be p and the circumradius of τ
be r. Let α be the angle between cσ, cτ and one of the vertices of σ. Since the edge between cσ, cτ is
orthogonal to the circumcircle of σ, α = p

r .
Let the vertex opposite to σ be v and let the angle between v, cτ and cσ be α′. Since the affine hull

of σ separates τ from cτ : 0 ≤ α′ < α. Then the squared distance between v and cσ is r2− 2rp cosα+ p2

which is maximized by α′ → α, and since limα′→α(r2−2rp cosα+p2) = r2−p2 which is the circumradius
of σ, σ contains τ .

If not-Gabriel then equivocal: The circumsphere of σ contains the vertex v opposite to σ. The
distance d between the circumcenter cσ of σ and v is less than the circumradius rσ of σ. Since rσ ≤ rτ ,
it follows d < rτ . Since the convex hull of σ separates the space into a half-space completely containing
τ and the half-space not containing any point in τ and d < rτ , it follows that cτ is not in the same
half-space as τ and the dual to σ cannot intersect the affine hull of σ. �
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2.4.9 Flow Relation

The Voronoi diagram is computed by using a distance function. The distance function induces a flow
with steepest increasing paths. The Delaunay triangulation is dual to Voronoi diagram. We conclude
that the Delaunay simplices can be ordered according to the behavior of the distance function defined
on points.

The distance function is not everywhere smooth and, so, does not qualify as a Morse function, and so
no gradient field can be defined. In the [Edelsbrunner, 2003] a function fε is used to imitate the distance
function. fε smoothes the distance values on edges - the intersections of Delaunay tetrahedrons. So, the
notions of a gradient, critical point and flow line can be defined. The limit curves approximate for each
point in space the flow lines for sufficiently small environment tending to zero. We claim that the flow
defined in [Lieutier, 2004] is the union of the limit curves. So, instead of using the notation limit curve
as it is done in [Edelsbrunner, 2003] we use in following our established notation flow curve. By a flow
curve we understand the steepest increasing path induced by the gradient introduced in [Lieutier, 2004]
(see Definition 2.17).

The paths along the flow curves are strictly increasing and pass uniquely through the Delaunay
simplices. So, starting on some point in the interior of a Delaunay simplex and following the flow curve we
at some point leave the simplex and enter its adjacent neighbor. Since the distance values increase along
the flow curves the sequence of visited simplices is acyclic. This fact is proven in [Edelsbrunner, 2003]
Claim 9.

According to the infinite critical point which was introduced in Section 2.4.8, we also adopt the
notion of an infinite Delaunay tetrahedron which represents the complement of the convex hull of the
sample points. The sequences of simplices which are visited by following the flow curves construct the
flow relation, ≺⊆ D × D, (compare [Edelsbrunner, 2003]) to “mimic” the behavior of flow curves. I.e.
τ ≺ σ ≺ τ ′ if σ is a proper coface of τ and τ ′ and the flow curve starting in the interior of τ passes
through σ to interior of τ ′. The set of all visited simplices before the flow curve passes through a simplex
σ is called descendents and the set of all visited simplices visited by a flow curve after passing though σ
is called ancestors. So, τ ′ is an element of ancestors of σ and is also called the successor of σ, and τ is
the predecessor of σ.

Inconsistent Cell A triangle can only have one obtuse angle, so, only one edge can be opposite the
obtuse triangle. Consider the line segment connecting two points of a circle and crossing its center.
The triangle which results by connecting the two endpoints of the edge and any further point on the
circle is perpendicular. So, pushing the point on the perpendicular angle inside the circle increases the
angle, becoming obtuse, and pulling the point away results in an acute angle. We imply that the edge
is not-Gabriel or contains a further point in its circumball if and only if it is opposite an obtuse angle.
Consequently, a triangle may have at most one equivocal edge.

In 3D, the case is more complicated. Any tetrahedron has triangles and edges as faces which can be
equivocal.

A not centered tetrahedron, as for example illustrated in Figure 2.24 (a), consists of two equivocal
faces ACB and ADB. The dual Voronoi line segments end in the circumcenter of the tetrahedron (the
most left small ball) and do not cut the affine extensions of the triangles. We denote the affine extensions
of the equivocal triangles by their circumcircles. The triangles do not contain their circumcenters. The
circumsphere of each equivocal face contains the fourth vertex of the tetrahedron. The flow lines pass
through both equivocal faces. Whereas in 2D there is only one possible direction for the flow to go
and so, starting with the obtuse triangle, the set of following ancestors in the flow relation is unique, in
3D we observe the flow relation forking. Starting with such a tetrahedron we have two different sets of
ancestors.

A 2D projection of the tetrahedron along the AB edge is in Figure 2.24 (b) with two directions of the
flow. The edge AB - the intersection of the equivocal faces - is also equivocal. Consequently the flow is
passing through the edge too. In our framework as well as in [Edelsbrunner, 2003] these Delaunay cells
are called inconsistent cells.

We call the equivocal faces of an inconsistent cell τ containing τ in its circumsphere the inconsistent
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Fig. 2.24: (a) Inconsistent cell: a tetrahedron with two equivocal faces (ABC and ABD). (b) A
2D projection of (a) along the AB edge. The arrows illustrate the two flow directions.

faces.

Fact 2.58 (Only two Inconsistent Triangles). A Delaunay cell has at most two inconsistent proper faces.

In Figure 2.24 (b) the dashed lines denote the affine expansions of the simplices ABC and ABD
(triangles projected along the edge AB). Notice again, the affine expansions of the triangles ABC and
ABD, which are illustrated now as edges both separate the tetrahedron from its circumcenter. This is
the hint to construction of the inconsistent cell. O is always in the empty “quarter-ball” which is the
intersection of half-balls resulting from cutting the circumball of the tetrahedron with affine extensions
of the equivocal triangles.

We constructed our example by leaning one obtuse triangle on another obtuse triangle in such a
way that the planes containing them both separate the tetrahedron from its circumcenter. In the
construction, the obtuse triangles share the edge which in both triangles is opposite to the obtuse angle.
In the following we prove that this observation is generally valid.

Claim 2.59 (Two Obtuse Triangles sharing an Equivocal Edge are Equivocal). Let τ be a Delaunay
triangle and σ and σ′ be its proper obtuse faces. Let ρ be their proper common face opposite the obtuse
angle in σ and σ′. Then σ and σ′ are equivocal.

Proof: Since σ is obtuse the circumsphere of ρ contains σ and respectively σ′. Since the circumsphere
of ρ contains σ, σ cannot be centered. If σ is confident then the dual of σ intersects the affine hull of
σ. The affine hull of σ divides the circumsphere of ρ into two half-spheres. One half-sphere contains
the vertex of σ′ opposite to ρ. Since the distance between the circumcenter of ρ and the vertex of σ′

opposite to ρ is less than the circumradius of ρ, the circumcenter of τ cannot be in the same half-sphere.
It follows, that σ is equivocal. The equivalent construction is valid for σ′. �

Obviously, in the construction as it is valid for Claim 2.59, the common edge of the two equivocal
triangles is also equivocal for both triangles. So, the circumball of the edge contains the third vertex
of both triangles. In other words, the circumball of the edge contains both further vertices of the
tetrahedron. It follows, that the circumball of the edge contains the tetrahedron.

Claim 2.60 (Circumsphere of an Equivocal Edge contains Inconsistent Cell). Let ρ be an edge of a
tetrahedron τ . If the circumsphere of ρ contains τ , then τ is inconsistent.
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(a) (b)

Fig. 2.25: (a) Inconsistent cell: a tetrahedron with two equivocal faces (ABC and ABD). ABD
is acute. (b) (a) ABC and ABD are obtuse equivocal faces but BD the opposite the obtuse angle
in ABD and AB is opposite obtuse angle in ABC. ABC and ABD do not share an equivocal edge.

Proof: The circumsphere of ρ contains τ , then it also contains its proper cofaces σ and σ′. It follows
that σ and σ′ are obtuse and ρ is their common equivocal edge. Then by Claim 2.59 σ and σ′ are
equivocal and consequently τ is inconsistent. �

The construction of an inconsistent cell by joining two obtuse triangles on their equivocal edge is not
the general case. As can be seen in Figure 2.25 (b) the equivocal edge of one of the inconsistent obtuse
triangles may not be an equivocal of the other.

Observation 2.61 (Obtuse Equivocal Triangles May Not Share an Equivocal Edge). Let τ be a Delau-
nay triangle and σ and σ′ be its proper obtuse equivocal faces. Let ρ be their proper common face. Then
ρ is not necessarily equivocal.

In our previous example in Figure 2.23 (a) we observe an equivalent result for two obtuse triangles
one of which is confident. The tetrahedron is not inconsistent. Observe, though faces ABC and DBC
are obtuse the affine expansion of triangle ABC denoted by its circumcircle does not separate the
tetrahedron from its circumcenter.

Observation 2.62 (Equivocal and Confident May not Share an Equivocal Edge). Let τ be a Delaunay
tetrahedron and σ 6= σ′ be its faces. Let σ be equivocal and σ′ be confident. Let ρ be the equivocal edge
of σ′, then ρ is not necessarily a face of σ.

In Figure 2.25 (a) we see further that the inconsistent faces need not be obtuse. The triangles ABD
and ABC are equivocal but the triangle ABD contains its own circumcenter and consequently is acute.

Observation 2.63 (Inconsistent Cells can have an Acute Equivocal). Let τ be inconsistent and σ and
σ′ be its proper equivocal faces which share an edge ρ. The circumsphere of ρ does not necessarily contain
τ . It follows that one of equivocal faces can be acute.

2.4.10 Wrapping Surface

The existence of inconsistent cells troubles the analogy between the ancestor sets and stable manifolds.
The stable manifolds which are unions of flow lines ending in the same critical point are pairwise disjoint.
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In contrast to stable manifolds the ancestor sets may overlap in inconsistent cells. So, the ancestor sets
are too large to represent stable manifolds.

Conservative ancestor sets introduced in [Edelsbrunner, 2003] contain only the simplices whose co-
faces have descendent sets contained in ancestor set. The inconsistent cell has descendents which are
not necessarily in the ancestor set. Consequently, the conservative ancestor set would not contain any
inconsistent cell.

The boundaryW of the smallest subcomplex Ω containing the conservative ancestor set of the infinite
cell is the wrapping surface. The complement X = D \ Ω is the union of closures of ancestor sets of all
finite centered cells.

Constructed Retraction (WRAP) The construction of X is done by collapsing on a pair of simplices
which admit the following conditions:

Definition 2.64 (Collapsible Pair [Edelsbrunner, 2003]). An l-simplex σ ∈ DX ⊂ D is free if there is a
k > l and a k-simplex τ ∈ DX such that all cofaces of σ in DX are faces of τ .

A pair σ, τ is collapsible if:

1. σ is free, σ is equivocal and

2. τ ≺ σ, τ is the highest-dimensional coface of σ in DX , σ is the lowest-dimensional successor of τ .

The deletion of the collapsible pair from the subcomplex is an extension of elementary collapse. It
collapses on equivocal simplices only. The notion simple is extended to free such that the collapsible
higher-dimensional coface does not have to be a proper coface. So, a collapse on an edge is possible if
it is on the boundary and its adjacent tetrahedron is the only tetrahedron left in the subcomplex. The
same is possible on a vertex if there is only one adjacent tetrahedron left in the subcomplex. Notice, the
collapses on inconsistent cells are also possible if all descendents are in the same conservative ancestor
set of the infinitive cell.

The WRAP or constructive retraction algorithm starts with Delaunay triangulation D which is con-
structed without including infinite simplices and ends if no collapsible pair can be found in the subcom-
plex DX . So, the convex hull is the boundary of the D. The triangles of the convex hull are free and can
be considered as candidates for a collapse.

At some step of the constructive retraction algorithm there might be more than one collapsible pair.
But in [Edelsbrunner, 2003] proof is given that the result of the algorithm is independent of the order
of collapses.

Theorem 2.65 (Constructed Retraction Correctness [Edelsbrunner, 2003]). DX = X for every con-
structed retraction.

2.4.11 Comparing Simplices by Distance Values

The flow relation as it is introduced in Section 2.4.9 orders the Delaunay simplices using the flow curves.
A simplex σ′ is said to be the successor of σ if there is a flow line staring in σ and ending in σ′. Since
the distance values on the flow lines continuously increase we may say that the successor contains points
with greater distance values. But how do we compare simplices which are not in the same ancesstor set?

Why not Circumradius?
In 2D the greatest distance value of a triangle ( Delaunay 2-cell ) is in its circumcenter. If the

triangle is acute than it contains its own circumcenter and, so, the point with the greatest distance
value. Acute triangles may be compared by their circumradius. Obtuse triangles do not contain their
circumcenter. The flow lines starting in the triangles are pushed away through the equivocal edge
towards the circumcenter of the triangle. We conclude that the point with the greatest distance value
of an obtuse triangle is somewhere on the equivocal edge. So, we may say, the equivocal edge is greater
than its obtuse triangle and consequently the both other edges.
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Fig. 2.26: 4ABC is equivocal. The circumsphere of ABC contains D. The circumsphere of
4ABD is greater than circumsphere of 4ABC

However the circumradius of the equivocal edge is not the value to compare equivocal edges. Consider
for example an obtuse triangle. The circumcircle of the equivocal edge contains the third vertex of the
triangle. Leaving the edge length constant but moving the third vertex closer towards the center of the
edge, the distance value in the edge’s center decreases.

In 3D the assumption that the equivocal face is greater than non equivocal faces of the same tetrahe-
dron (Delaunay 3-cell) is no longer valid. In Figure 2.26 we demonstrate the counter example. The left
wired ball is the circumball of the confident face whereas the smaller right wired ball is the circumball
of the equivocal face ( in this example the base triangle of the tetrahedron ). The circumball of the
confident face has a greater circumradius. But the equivocal face is the successor of the tetrahedron and
so contains points with greater distance values where the flow lines are passing through. We conclude,
that the simplex comparison by their circumradius is not adequate to the flow relation.

Observation 2.66 (Circumradius of an Equivocal is Not necessarily Greater). Let τ be a Delanay
tetrahedron and σ 6= σ′ be its faces. Let σ be equivocal and σ′ be not equivocal. If the σ′ > σ then it is
obtuse.

Why not α-Value?
The “filtration” in α-shape construction in [Edelsbrunner and Mücke, 1994] sorts the Delaunay sim-

plices by their α-value. So, the simplices are compared by the α-value. The α-value is the radius of a
maximal ball which can be inscribed into the simplex without containing its vertices.

Consider an obtuse triangle. The circumball of the edge opposite to the obtuse angle contains the
third point of the triangle. To make the ball free of points we need to move the center of the ball away
from the third point of the triangle. The radius of the ball increases until it overlaps the circumball of the
triangle. The center of the ball moves towards the circumcenter of the triangle, continuously increasing
its radius. So, the maximal inscribing ball into the edge is the circumball of the triangle. The closer the
third point is to the edge the greater is the circumball of the triangle and the greater the α-value of our
equivocal edge. But the closer the third point is to the edge the smaller are the distance values on the
edge.

The equivalent consideration is valid for 3D. Consider now the inconsistent cell. How do we compare
its equivocal faces? Using the filtration the greater triangle has the greater α-value but according to
our previous considerations lesser distance values. If we are looking for flow lines with minimal distance
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values the filtration method would not suit the condition. The α-shape would remove the triangle with
greater α-value but leave the triangle with greater distance values.

Furthermore consider an equivocal and a centered triangle with the same α-value. Obviously, the
greatest distance value of the centered triangle is in its circumcenter. The circumcenter of the maximal
empty ball inscribed into the equivocal triangle is not in the triangle. It follows that two triangles with
the same α-value may have different maximal distance values.

Obviously, considering an equivocal triangle with its corresponding empty maximal inscribing α-ball,
we may move the fourth vertex of the tetrahedron on the surface of the ball and so vary the closeness of
the point to the triangle. We imply, that equal triangles with equal α-values may have different maximal
distance values.

Nevertheless the property of the α-ball inscribed into the simplex to be maximal and empty implies
that only the points on the ball’s surface influence the distance values inside it and consequently on
the simplex itself. Since the inscribing α-ball of an equivocal triangle is the same as the circmball of
its proper coface the tetrahedron, and under assumption of general position and since the circumball
of Delaunay tetrahedron is empty, we imply that the α-ball is touched only by the vertices of the
tetrahedron. However to compute the maximal distance value on a simplex we need all points which are
closer to the simplex than its vertices. In other words we compute which further points of the data set
are in the circumball of the simplex. The equivalent question is, which are the intersecting points of the
Voronoi diagram and our particular simplex?

Maximal Distance Value
The maximal distance value in a simplex is a well-defined value which allow us to compare and sort

Delaunay simplices. Furthermore this criterion corresponds to the criterion in the flow relation which
orders simplices according to the trajectory of the flow lines which are increasing paths on discrete
distance transform. Using the maximal distance value we are able to compare the simplices in different
ancestor sets which is the case for inconsistent

As discussed earlier the computation of the maximal distance value in a simplex is realized by similar
procedure to finding the intersections between the simplex and the complete Voronoi diagram. Obviously,
this approach is very resource-consuming. In the following we investigate which triangles have greater
distance values and how to compute them without the complicated computations.

Obviously, centered triangles contain their own circumcenter and the distance values on such triangles
are not troubled since the circumsphere of centered triangles does not contain any further points. So,
we compare the centered triangles by their circumradius.

Fact 2.67 (Maximum Distance Value on Centered). The greatest distance value of a centered Delaunay
triangle is its circumradius.

The circumsphere of a confident triangle does not contain any further points and so the distance
values on the triangle are computed by considering the vertices of the triangle only. Since the confident
triangle is the unique predecessor of the equivocal edge, and consequently for every point in the triangle,
there is a flow line starting on this point which intersects the equivocal edge. It follows that for every
point in the confident triangle there is a point in the equivocal edge with a greater distance value than
on the starting point. Thus, we compute the size of a confident triangle by the distance values on the
equivocal edge by using the following statement:

Fact 2.68 (Maximum Distance Value on Confident). The greatest distance value of a confident triangle
is the greatest distance value of its equivocal edge.

Why not α-Ball?
The “filtration” in α-shape construction in [Edelsbrunner and Mücke, 1994] maps to each simplex in

the Delaunay triangulation the radius of the maximal empty ball containing the vertices of the simplex
in its boundary. The circumradius of an equivocal simplex is less than its α-value. So, to compare the
simplices a proposition can be made to use the α-ball.
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Fig. 2.27: The greatest distance value on AC is not its circumcenter.

Consider for example Figure 2.27. The edge AC is equivocal. The α-ball of AC is the circumball
of the triangle ABC which is the proper coface of AB. The value to compare the simplices is then the
point on AC which has the greatest distance to the boundary of the α-ball. In our example it is the
circumcenter (×) of AC.

The distance between the point B and the circumcenter of AC is less than the radius of AC. Conse-
quently, the point with greatest distance values moves to the right such that the distance between new
point (�) is equidistant to B and C.

Consider now a further point D. D fulfils the Delaunay condition and is closer to the new point than
B or C. So, the greatest distance value on AC is again reduced and the corresponding point moved to
the intersection of the Voronoi edge dual to BD. The distance value on the simplex AC depends on the
points with dual Voronoi cells intersecting the simplex.

Computing Distance Value
According to previous considerations we propose to compare the simplices by the greatest distance

value. The distance values in the simplex are influenced by other points of the Delaunay triangulation.
The Voronoi cells dual to the influencing points intersect the simplex. The intersection between a Voronoi
cell and a Delaunay simplex is a planar polygon.

Let us first assume that the set of intersections between Voronoi diagram and the Delanay simplex is
given. Obviously, since the Voronoi cells are disjoint a point in the Delaunay triangle can only be within
one Voronoi cell or in its faces. The distance function is piecewise linear and increases monotonously
on linear paths towards the faces of the Voronoi cell. Since intersection between a Voronoi cell and a
Delaunay triangle is a planar polygon, it follows that the distance values increase monotone within the
intersection polygon. Consequently, the greatest value is measurable in the corners of the intersection
polygon. Notice that the corners of the polygon are not necessarily on the faces of the Voronoi cell but
may be linear pieces of Delaunay edges. So, the greatest value on the vertices of the intersections is the
resulting maximum of the triangle.

We propose the following algorithm to compute the maximal distance value by a given set of influ-
encing points and the intersections of their dual Voronoi cells with the given simplex.

Algorithm 2.69 (Greatest Distance by Given Intersections). Let σ be a triangle in a 3D Delaunay
triangulation D on a point set S. Let V be the Voronoi complex dual to D, then:

1. Compute the set of intersections E between the 2-simplices of V and σ.

2. Let x be any point in σ. Until E is not empty:

(a) Let e be the top element of E. Pop E.
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(b) If e is a point and dS(e) > dS(x) then x = e

(c) Else if e is a line segment with end points p1 and p2. Let p = p1 if dS(p1) > dS(p2) else
p = p2. Then if dS(p) > dS(x) then x = p.

(d) Continue with 2.

3. Return dS(x).

Simply speaking, Algorithm 2.69 checks, for all the intersection polygons, the distance value in their
corners and saves the maximum value which is then returned if all polygons have been considered. The
more challenging task is to determine the points whose dual Voronoi cells intersect the given simplex. In
the worst case, all points of the Delaunay triangulation can be considered as candidates for influencing
the distance points. The task then is to select the Voronoi cells which intersect the simplex. But the
intersection between the complete Voronoi diagram and the one given simplex is very resource-intensive.

Increasing Efficiency
The centered simplices intersect their dual. The intersection is the point with the greatest distance

value. The confident simplices do not intersect their dual and the maximal distance value is on their
equivocal face. In the latter case we would need to find the intersections on the equivocal face and not
on the simplex itself. Even though the equivocal triangles in 3D Delaunay triangulation have a unique
successor - the neighboring tetrahedron, the equivocal edges may have arbitrary number of successors.
In both cases there might be arbitrary number of Voronoi cells which intersect the simplices.

The simplex vertices are separated by their dual Voronoi cells. So, their dual Voronoi cells cut the
simplex. Consider an equivocal edge. The edge veritices are equidistant to the center of the edge. If the
edge were not equivocal the both vertices would be the closest to the center and be the only two points
which influence the distance values on the edge. But the circumsphere of the equivocal edge contains
the third vertex of the corresponding triangle. So, this third vertex is closer to certain points on the
edge than the edge vertices and consequently influences the distance values more than the edge vertices.
We conclude that the influencing points have to be closer to the points in the edge than its vertices.
Following this, the influencing points have to be contained in the circumsphere of the edge.

Consider now a triangle. The influencing points for the edges are in their circumspheres. Since only
one edge in a triangle can be equivocal and none is confident, two circumspheres are empty. In 3D,
the influencing points for a Delaunay triangle can be in the circumsphere of the triangle and in the
circumsphere of its edges.

In the worst case we would need to check for all points in the Delaunay triangulation if a point is
contained in a sphere. Using the connectivity information of the Delaunay triangulation we can minimize
the number of candidates.

Claim 2.70 (Influencing Neighboring Point is Opposite to an Equivocal). Let τ be a Delaunay cell and
σ be its proper equivocal face. Let v be a vertex of σ and τ ′ be a neighboring Delaunay cell opposite to
v. Let v′ be a vertex of τ ′ opposite to the common proper face σ′ between τ and τ ′. If the Voronoi cell
ν′ dual to v′ intersects σ then the circumsphere of σ′ contains v′.

Proof: The affine hull of σ′ separates τ ′ from τ and σ. If τ ′ contains its own circumcenter c′, the affine
hull of σ′ separates ν′ from τ . Which is a contradiction to the assumption. σ′ cannot be confident,
because otherwise the circumcenter of τ ′ and τ are on the same side of affine hull of σ′ which implies
that ν′ does not intersect the affine hull of σ′ and consequently σ. It follows that c′ is separated from τ ′

by the affine hull of σ′ and so, the circumsphere of σ′ contains v′. �

According to Claim 2.70 a Voronoi cell can intersect the triangle only if the dual point is opposite to an
equivocal. So, to find influencing points for an equivocal Delaunay triangle we inspect the corresponding
Delaunay tetrahedron first. The tetrahedron has to be contained in the circumsphere of the triangle.
If there are no other equivocal triangles in the tetrahedron, the fourth vertex in the tetrahedron is the
single point influencing the distance values in the triangle. If the tetrahedron contains further equivocal
triangles the forth point of the neighbor is a candidate.
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The affine expansion of the equivocal triangle divides the space into two half-spaces. The influencing
points are in the same half-space as the corresponding confident tetrahedron. So, we directly imply the
vice-versa statement:

Corollary 2.71. Let τ be a Delaunay cell and σ be its proper equivocal face. Let v be a vertex of σ and
τ ′ be a neighboring Delaunay cell opposite to v. Let v′ be a vertex of τ ′ opposite to the common proper
face σ′ between τ and τ ′. If the Voronoi cell ν′ dual to v′ intersects σ then the circumsphere of σ does
not contain v.

Proof: According to Claim 2.70 σ′ is equivocal and contains v′. But according to empty sphere condi-
tion of Delaunay triangulation the circumsphere of a triangle cannot contain both adjacent tetrahedrons.
�

The result in Corollary 2.71 is in so far relevant that a statement can be made about a cell with two
equivocal faces containing the same confident tetrahedron - the inconsistent cell.

Corollary 2.72 (The Equivocals of an Inconsistent Cell are Not Influenced by Neighbors sharing In-
consistent Faces). Let τ be an inconsistent Delaunay cell and σ and σ′ be its proper equivocal faces. Let
v be a vertex opposite to σ′ and τ ′ be a neighboring Delaunay cell opposite to v. Let v′ be a vertex of τ ′

opposite to the common proper face σ′ between τ and τ ′. Then the Voronoi cell ν′ dual to v′ does not
intersect σ.

Proof: Since the circumsphere of σ′ does contain v, so, according to Corollary 2.71 ν′ cannot intersect
σ. �

According to Corollary 2.72 we know that in inconsistent cells the in-sphere test does not need to be
performed on neighboring cells sharing the second inconsistent face.

Assume again an equivocal triangle σ. Its affine expansion divides the space into a half-space con-
sisting of the confident tetrahedron τ - the coface of our triangle - and the second half-space contains
the circumcenter of the tetrahedron τ .

Let us assume further some point v′ which is not a vertex of τ and let ν′ be its dual Voronoi cell. The
duality between Delaunay and Voronoi states that the faces of the Voronoi cell ν′ are dual to Delaunay
simplices with a vertex v′. The Voronoi vertices of the Voronoi cell ν′ are the circumcenters of the
Delaunay tetrahedrons sharing v′.

If the Voronoi cell ν′ intersects our initial equivocal Delaunay triangle σ, then there has to be a
Voronoi face of ν′ which intersects σ such that the Voronoi vertices of this intersecting Voronoi face are
in different half-spaces of the affine expansion of σ. It follows that there has to be a Voronoi vertex
of ν′ which is separated from v′ and τ by affine expansion of σ. This separated Voronoi vertex is the
circumcenter of some of Delaunay tetrahedron. We summarize:

Corollary 2.73 (The Circumcenter of the Cell and of an Influencing Neighboring Cell are on the Same
Side). If a Voronoi cell ν′ dual to v′ intersects a Delaunay triangle σ, ν′ has a vertex separated from v′

by the affine expansion Aσ of σ.
Equivalently: if a Voronoi cell ν′ dual to v′ intersects a Delaunay triangle σ, then there is a Delaunay

tetrahedron with vertex v′ separated from its circumcenter by Aσ.

So, searching for candidates for the intersection between Voronoi diagram and a Delaunay simplex
can be reduced to the traversing through the Delaunay triangulation starting in the confident cell (
tetrahedron ) with the given equivocal simplex ( triangle ) crossing equivocal faces and testing if the
circumcenter of the visited Delaunay cell is on the other side of the affine extension of the given triangle.

Algorithm 2.74 (Computing the Candidates). Let τ be a confident Delaunay tetrahedron and σ be its
equivocal triangle and let Aσ be the affine extension of σ. Let C = ∅ be a set of Delaunay tetrahedrons
and F = {σ} be a set of Delaunay triangles. Let τ ′ be τ

1. For all equivocal proper faces σ′ of τ ′ not in F let τ ′ be the neighbor of τ ′ adjacent to σ′.
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2. Push σ′ into F.

3. If the circumcenter of τ ′ is on the same side of Aσ as the circumcenter of τ then push (τ ′, v′) into
C.

4. Continue with 1.

Return C;

Notice, the candidates found in Algorithm 2.74 are dual to Voronoi cells intersecting the affine
extension of the given Delaunay triangle but nor necessarily the triangle itself.

Computing Intersection
Let τ be a confident Delaunay triangle with an equivocal triangle σ. Let v be the vertex of τ opposite

to σ. Since σ is equivocal and v is a vertex of τ the Voronoi cell dual to v intersects σ. The Voronoi
cells dual to vertices of σ necessarily intersect σ.

The Voronoi edge dual to a certain proper face σ′ ( triangle ) of τ joins two Voronoi vertices dual
to the circumcenters of τ and its neighbor adjacent to σ′. According to previous considerations, if the
neighbor’s circumcenter is on the other same side as the circumcenter of τ then the Voronoi edge dual
to σ′ cuts the affine extension (Aσ) of σ.

According to previous consideration the found candidates are vertices of tetrahedrons with circum-
centers on the other side of the affine extension of σ. So, our task to find the intersections is to start
with the candidates and traverse to their neighbors with circumcenters not on the other side of affine
extension of σ. The Voronoi faces dual to Delaunay faces of the candidate tetrahedron and adjacent
to its non-candidate neighbor intersect the Aσ. So, the next step is to compute the intersection and
determine if the intersection is in σ.

Algorithm 2.75 (Computing the Intersections). Let τ be a confident Delaunay tetrahedron and σ be
its equivocal triangle and let Aσ be the affine extension of σ. Compute the set of candidates C. Let E be
a set of Delaunay edges. Let I = ∅ be a set of intersections.

1. While C is not empty:

(a) Let τ ′ be the first candidate in C.

(b) For all edges σ′ of τ ′ not in E and adjacent to Delaunay tetrahedrons not in C: push σ′ into
E and compute the dual Voronoi polygon µ. Push the intersection between µ and σ into I.

(c) Remove the first candidate from C.

(d) Continue with 1.

2. Return I.

The distance values on points in the triangle are always influenced by certain input points of the
triangulation. The influencing points push the flow line starting in a Delaunay cell through the triangle.
This is the property of an equivocal simplex. Since all points on the flow line are pushed by one and
the same input point of the triangulation, all Delaunay simplices passed by the flow curve are equivocal.
This agrees with our Claim 2.70. The predecessors of equivocal simplices are unique. We conclude, if
we follow the equivocal simplices of neighboring cells starting on our triangle σ we find all influencing
points.

Claim 2.76. Algorithm 2.75 results in all intersections between the input Delaunay triangle and the
Voronoi diagram.

Proof: The limit curves ending on the equivocal triangle start on input points of the triangulation. The
flow relation imitates the behavior of the limit curves. Since the points in the intersection of the Voronoi
cell ν and the triangle are in ν the limit curve connecting the triangulation point dual to ν and the
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point in the intersection is a line segment. It follows that all simplices intersected by the limit curve are
equivocal. The equivocal simplices have unique predecessors. The claim follows since by construction of
the algorithm all equivocals and its predecessors are processed. �

Notice, we do not claim Algorithm 2.75 to be the most efficient. In fact the computation of an
intersection between a Voronoi polygon and a Delaunay triangle may have an empty result because the
Voronoi polygon which intersects the affine extension of a triangle does not necessarily intersect the
triangle itself.

We use an abstract definition of an intersection in the set returned in Algorithm 2.75. The set of
intersections may be differently defined. An intersection may be the intersection between a Voronoi cell
and the triangle. In such a case, the union of intersections would result in the given triangle. The set of
intersections defined in such a way is expected in Algorithm 2.69. But Algorithm 2.75 may also return
the corners of the intersection saving us the steps done in Algorithm 2.74 and allowing us the direct
computation of maximal distance values.

2.5 Summary: From Geometry to Topology and Back Again

Geometry describes how objects are placed and shaped in space and what is invariant under rotation
and translation. Topology is concerned with how the objects are connected. Our task is, without
knowledge of the placement, or shape, or topological properties of the object, to give guarantees that
these geometrical and topological properties are preserved during the digitization process. But what we
require is that certain conditions on geometry are fulfilled. The more general these conditions are the
more general is the class of shapes we can reconstruct under guarantee.

There are two points of view. In our framework we derive the conditions on the shape and define the
reconstruction method. To do so, we start with an object in the real world. We consider the interior
of the object to be of relevance and generalize the scene by partition R of the whole space into regions.
These regions are interconnected in certain ways which we intend to preserve in our result.

We have conditions on the space partition. To investigate if the conditions are fulfilled, we make
geometrical measurements on the shape. We measure the feature size (i.e. lhfs) on the continuous
boundary between the regions. According to the feature size the limits are given on sampling density
and deviation from the boundary. These measurements are made by terms of differential geometry in
continuous space.

The second step in the digitization process is the result of a sampling of the continuous boundary:
a data set S. The point set and the Euclidean distance induce the discrete distance transform dS. We
expect certain association between the critical points on the continuous distance transform and the
discrete distance transform.

Using the feature size measured previously we can state if the sampling conditions are fulfilled. The
set of sampling points is finite. All knowledge on original scene which we can use for reconstruction is
now contained in the point set.

Given the points, we generalize the connectivity information contained in the point set by building a
combinatorial structure named Delaunay triangulation D. So, the topological properties are contained
in an abstract structure consisting of abstract elements like simplices. The discrete distance transform
dR is then imitated by the flow relation ≺⊆ D × D.Which is then used to carve the regions from the
convex hull of the Delaunay triangulation.

The reconstruction method carves regions from the convex hull of the Delaunay triangulation resulting
in a simplicial complex corresponding to the boundary DR and the complementary set of simplices
corresponding to the set of interiors of the regions. The boundary DR of the reconstructed regions
contains the connectivity information of the regions and so corresponds to topology.

The underlying space of the set of reconstructed regions is a subset of real space and again a space
partition. The continuous boundary of the space partition - a polytop - is the underlying space of the
simplicial complex corresponding to the boundary of the reconstructed regions.
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Summarizing the reconstruction procedure, we obtain the following activity diagram: continuous
boundary → sampling points → vertices → Delaunay subcomplex → shape of the subcomplex. Where
the vertices are the sample points representation in the combinatorial structure, the Delaunay complex
represents the boundary of the set of reconstructed regions and the shape of the subcomplex is the
continuous boundary of the reconstructed space partition.

Continuous Topology Discrete

distance transform dR Simplex specification distance transform dS

Flow on dR Flow relation Flow on dS

Continuous boundary ∂R Boundary of the set of reconstructed regions DR Underlying space of |DR|
Space Partition R Set of reconstructed regions D \ DR Underlying space of |D \ DR|



Chapter 3

Previous Reconstruction Algorithms

3.1 Introduction

The previous work on surface reconstruction can be classified into at least three approaches. Compu-
tational geometry based approaches connect the points in the underlying set by polygons. The surface
fitting approach defines a parameterized algebraic surface model. Iteratively adjusting the surface pa-
rameters the resulting surface approximates the point set. The volume based approach using computes
for each point in space the distance to the dearest data point. The task here is to find a surface where
for each point on the surface the distance value is zero.

Our framework is based on computational geometry approach and is based on Delaunay triangulation.
So, here we present a selection of well-known reconstruction methods with guarantees on topological
preservation which are based on Delaunay triangulation. The computation of 3D-Delaunay triangulation
is of worst case complexity O(n2) where n is the number of sample points. So, the complexity of post-
processing steps in the presented algorithms as well as in our reconstruction method is dominated by
the complexity of the Delaunay triangulation.

For better comparison the approaches are presented in a synopsis. First we extract which conditions
on the shape and the sampling are required to obtain the promised results. The prerequisites on the
original shape limit the reconstruction on the most algorithms to smooth manifold surfaces of contractible
objects. The reconstruction has in all cases the guaranteed result if certain sampling conditions are
fulfilled. We classify the approaches into two classes according to the requirements on the sampling: the
methods which handle locally adaptive sampling densities and the algorithms which require the sampling
with a globally uniform density. Further we indicate if the reconstruction method requires some known
parameters.

Second we retrieve which guarantees are given by the reconstruction method and under which pa-
rameter setting the guaranteed result is achieved. We give our comments to the approach to outline the
characteristics of the framework. Third we outline the idea, i.e. we give a summary of the approach to
explain why and how the reconstruction works. The algorithm steps are given in note form to indicate
the main reconstruction steps. In the final point we report if and which extensions on the method are
proposed.

Our research results which we present in this work consist of evaluation of the theoretical framework
originally introduced in 3D domain in [Stelldinger, 2008b] and the introduction of a new framework and
reconstruction method called “Refinement Reconstruction”. We include the synopses to both methods
in this chapter to enable the reader to simply compare the results.

59
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3.2 Locally Adaptive Sampling Conditions

3.2.1 Crust

[Amenta et al., 1998]

(a) (b) (c)

Fig. 3.1: (a) Two dimensional point set and its Voronoi diagram. The sample points are
notated as dots and the voronoi vertices are squares (b) “Crust”: heavier edges connect sample

points. (c) In three dimensions the voronoi vertices may lie near the boundary - the squared
vertex in the center. The figures are redrawn according to Figure 5 and 6 in [Amenta et al., 1998]

Prerequisites:

• Shape: twice differentiable orientable manifold surface embedded in Rn

• Parameter: parameter free

• Sampling: locally adaptive, no noise, r-sampling with r ≤ 0.06

Definition 3.1 (r-Sampling). Let ∂R be the boundary of a space partion R and S ⊂ ∂R be a finite set
of points. Then S is said to be an r-sampling of ∂R, if

∀b ∈ ∂R : ∃s ∈ S : ||b− s|| ≤ rlfs(b)

Guaranties: Given an r-sampling of a smooth surface, with r ≤ 0.06, then the crust of the sample
contains a set of triangles forming a mesh topologically equivalent to the original surface.

Comments: The result of the algorithm is not necessarily the topologically equivalent reconstruction.
It only contains the correct mesh.

In case of manifold surface an additional step is required to remove simplices. This is done by
elementary collapse (see Definition 2.43)T

Idea: The sampling conditions are defined in such a way that the distance between adjacent sample
points is much smaller than the distance to the medial axis. In such a way the circumcircle of the edge
connecting the adjacent points does not cut the medial axis and does not contain any other point of the
sampling set. The goal of the method is to construct a set of such edges. The 2D method first computes
the Voronoi Diagram on the sampling points (see Figure 3.1 (a)) and then computes the Delaunay
triangulation on both the sample points and vertices of the Voronoi diagram. The crust is the set of
Delaunay edges which connect the sample points (see Figure 3.1 (b)).

In 2D all Voronoi vertices are near the medial axis. This property is no longer true in 3D. Indepen-
dently on sampling density Voronoi vertices can appear near the boundary (see Figure 3.1 (c)). But
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since the sampling is very dense compared with the distance to the medial axis the Voronoi cell which
correspond to the sampling points are very long and thin. The idea is to mark two vertices of the
Voronoi cell which approximate the medial axis on different sides of the boundary. The first marked is
the farthest vertex of the Voronoi cell from the sample point. The second marked is the farthest vertex
on the other side of the boundary. The two marked vertices are called poles. The further procedure is
then like in 2D.

Algorithm: Please notice, we use our notations for point set (S), poles (P) and the Delaunay D.

1. Compute the voronoi diagram on the set of sample points S.

2. Compute the poles P of the Voronoi diagram.

3. Compute Delaunay D on S ∪ P.

4. Keep only the triangles of D with all vertices in S.

Extensions: Using the fact that the the line connecting the poles of a sample point is nearly orthogonal
to the original surface further simpleces can be deleted. In [Amenta and Bern, 1999] the proof is given
that the remaining set of simpleces still contains the topologically correct surface reconstruction

3.2.2 Power Crust

[Amenta et al., 2000b, Amenta et al., 2001]

Prerequisites:

• Shape: twice differentiable manifold surface

• Parameter: parameter free

• Sampling: locally-adaptive, no noise, r-sampling (Definition 3.1) with r ≤ 0.1

Guaranties: Given an r-sampling with r ≤ 0.1 of a smooth manofild surface the method approximates
the surface with a topologically correct mesh.

Comments: The regular triangulation faces connecting the interior poles approximate the medial axis.

Idea: The algorithm is an extension of the previously introduced crust-method. The idea here is based
on the assumption of a sufficiently dense sampling which for each sample point guarantees long and thin
Voronoi cells nearly perpendicular to the original surface. By using this fact first pole can be found as
the farthest Voronoi vertex from the sample point. The pole builds together with the sample point a
vector nearly collinear with the surface normal. The second pole is the farthest Voronoi vertex which
together with the sample point builds a negatively directed vector to the other pole vector.

The second idea used in this approach is that the ball centered on the poles with pole-sample distance
as the radius (polar balls) are either almost contained in the interior of the original surface or entirely
in the exterior. Then the interior and exterior polar balls intersect only “shallowly” (see section 4 in
[Amenta et al., 2001]). Figure 3.2 demonstrates the labeled power balls. The algorithm labels the poles
either as interior or as interior by traversing the cells which share a two-dimensional face.

The polar balls approximate the maximal inscribing balls in the interior and exterior of the surface.
So, the radii of the polar balls are used to define the weights of the poles and with it the power distance
to the poles. The power diagram of the poles approximates then the inverse medial axis transform. The
set of two-dimensional polygonal faces of the power diagram dividing the power diagram into the interior
and the exterior is called the power crust. The power shape is the connection of interior poles according
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Fig. 3.2: Labeled polar balls on the poles. The grey balls are labeled as interior. White balls
denote exterior poles. Notice, the intersection between interior and exterior polar balls is only

“shallowly”.

to the connectivity given by the power diagram. The power shape is the approximation of the interior
medial axis.

Algorithm:

1. Compute the Voronoi diagram on the set of sample points.

2. Compute the poles of the Voronoi Diagram.

3. Construct the power diagram on the power balls of the poles.

4. Label the poles either as interior or exterior.

5. Output the faces of the power diagram separating the power cells of differently labeled poles as
power crust.

Extensions:

• The labeling algorithm is proposed to be extended to handle data sets which do not meet the
sampling conditions. The implementation uses values of “certainty” and processes the poles in
a priority queue. The uncertain poles are processed by the algorithm as late as possible. The
algorithm then labels the poles with the highest priority i.e. the most certain as interior or
exterior. The new label is then used to recompute the priorities of the unprocessed poles.

• A processing step with variable value of “skinnyness” (see section 6.1 in [Amenta et al., 2001]) is
proposed to hande noisy data. The output is no longer guaranteed to be topologically correct
reconstruction but the authors claim to get watertight models. The “skinnyness” test can also
indicate the presence of sharp corners.

• The large holes in the model which do not need to be filled can be detected by test of intersection
of the polar balls.

• Increasing the radius of the polar balls by small value and using the medial axis transform approx-
imation results in a watertight offset surface of the original.

• The medial axis simplification is done by assumption that the each sample point is perturbed from
the surface by at most some constant value.
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3.2.3 Modified Power Crust

[Mederos et al., 2005]

Prerequisites:

• Shape: twice differentiable manifold surface

• Parameter: smallest local feature size of the surface.

• Sampling locally-adaptive, noisy r-sampling (see Definition 3.3) with r ≤ 0.1

Definition 3.2 (Point Set Projection). Let S ⊂ R3 be a point set, then projection S′ of S onto ∂R ⊂ R3

is defined as S′ = {s′ ∈ ∂R| ∃s ∈ S : ‖s− s′‖ = d∂R(s)}.

Definition 3.3 (Noisy ε-Sampling). Let the projection S′ of S onto ∂R be an ε-sampling and let k be a
constant. S ⊂ R3 is the noisy ε-sampling of ∂R iff

∀s ∈ S∃s′ ∈ S′ : ‖s− s′‖ ≤ krlfs(s′)

Guaranties: Let lfsmin be the minimal lfs for all points on the boundary and lfsmax be the maximal.
Given a noisy r-sampling with r ≤ 0.1 ∧ r ≤ lfsmin/lfsmax of a smooth manifold surface the method
approximates the surface topologically correct.

Comments: This method is an extension of power crust [Amenta et al., 2000b]. The algorithm
requires a known parameter for the minimal local feature size. since no such parameter can be given in
general case, the estimation is done by trial and error.

Idea: The “skinnyness” test on Voronoi cells (compare section 6.1 in [Amenta et al., 2000b]) is no
longer in this context since the sample points are not necessarily on the boundary. But the idea is based
on the fact that some polar balls contain points of medial axis. The corresponding poles build a vector
with the sampling point which is nearly collinear to the surface normal. Assuming the sufficiently dense
sampling the radius of such polar balls exceed some value. The polar balls not containing the points of
medial axis must not be considered in the power diagram and the corresponding pole is to be deleted.

The key to the algorithm is this minimal polar ball size, which is some fraction of minimal local
feature size and must be known before processing the data.

Algorithm:

1. Compute the Voronoi diagram on the set of sample points.

2. Compute the poles of the Voronoi Diagram.

3. Delete poles with the radius of the corresponding polar ball is less than 1
c lfsmin for some constant

c > 1.

4. Construct the power diagram on the power balls of the poles.

5. Label the poles either as interior or exterior.

6. Output the faces of the power diagram separating the power cells of differently labeled poles as
power crust.

Extensions: No extensions are given in [Mederos et al., 2005].
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~v

~n

Fig. 3.3: If the angle between the estimated surface normal ~n and the vector ~v from the sample
point (apex of cones) to a Delaunay vertex intersects the intevall [π/2− θ, π/2 + θ] the edge is
marked. If all Delaunay edges of a triangle are marked the algorithm marks the triangle as a

candidate for the reconstruction.

3.2.4 Cocone

[Amenta et al., 2000a]

Prerequisites:

• Shape: smooth manifold surface

• Parameter: parameter free

• Sampling: locally-adaptive, no noise ε-sampling (see Definition 3.4) with ε ≤ 0.06

Definition 3.4 (ε-Sampling). Let ∂R be the boundary of a space partition R and S ⊂ R3 be a finite set
of points. Then S is said to be an ε-sampling of ∂R, if

∀b ∈ ∂R : ∃s ∈ S : ||b− s|| ≤ εlfs(b)

Guaranties: Given an ε-sampling of a smooth manifold surface with ε ≤ 0.06 then the method results
in a piecewise-linear 2-manifold homeomorphic to the original surface.

Comments: The co-cone algorithm was developed by Amenta et al. [Amenta et al., 2000a] as suc-
cesor of the crust [Amenta et al., 1998] method. Co-cone improves crust by computational power and
simplicity of development.

Idea: The sampling conditions depend on the local feature size and so on the curvature of the original
surface. The sample points are assumed to lie on the surface and the distance to the nearest sample
depends on some factor less than one of local feature size. So, the vector to the nearest sample point
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is approximately orthogonal to the surface normal and its length is much less than the distance to the
medial axis. So, the idea is to use these facts for the algorithm.

Correspondingly to crust algorithm [Amenta et al., 1998], the surface normal is estimated by pole
computation. The vector from sample point to its pole approximates the direction of the surface normal.
See ~n in Figure 3.3 for illustration. The rotating opening angle around the normal shapes a cone. The
negatively directed normal and the rotating opening angle shapes another cone with apex on the same
sample point. The complement of this double cone is the co-cone as it is demonstrated in Figure 3.3.

In [Amenta et al., 2000a] is is stated that the Delaunay triangle is the candidate for the reconstruction
if its dual Voronoi edge intersects the co-cone. The intersection test can be done on Delaunay edges
checking if the angle between the the edge and the estimated surface normal on edges vertices is in
co-cone. A Delaunay triangle is the candidate if all its edges pass the cocone test.

The resulting set of Delaunay triangles is not necessarily homeomorphic to the original surface but
contains under guarantee the one. So, a cleaning step removes triangles on edges with only one adjacent
triangle.

Algorithm:

1. Compute the Delaunay triangulation D and V on the the point set.

2. Compute poles for every sample point.

3. Mark all Delaunay edges if angle the estimated surface normal (vector from vertex to pole) and
the vector to the another vertex is in range [π/2− θ, π/2 + θ].

4. For all Delaunay triangles: if all edges are marked, mark the triangle as a candidate.

5. Remove all edges with only one adjacent triangle.

6. Remove all edges with no adjacent triangles.

Extensions: In [Dey and Giesen, 2001] the authors propose a method to detect undersampled 2D-
regions on the surface. This extension leaves holes in the surface in the environment of sparse sampling.
The detection is done by two tests which checks the “skinniness” of Voronoi cells and the normal
condition. The Voronoi cells in the undersampled environment are no longer long and thin. The
estimated normal differs greatly from the neighbor normals.

3.2.5 Tight Cocone

[Dey and Goswami, 2003]

Prerequisites:

• Shape: robust results on smooth manifold surface

• Parameter: parameter free

• Sampling: locally-adaptive almost noise-free, not necessarily ε-sampling but mostly on surface

Guaranties: No guarantees.

Comments: The method relies on the fact that the points in the undersampled areas are still dense
enough. To great undersampled areas or to sparse sampling lead to an empty result. The output is
a “2-complex embedded in R3 whose underlying surface is same as the boundary of the closure of a
3-manifold in R3.” (Definition of water-tight surface in [Dey and Goswami, 2003]).
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Idea: It is assumed that the surface is mostly well sampled but may contain areas on the surface
which are sparsely sampled. This areas are detected using the result of co-cone extension proposed
in [Dey and Giesen, 2001]. The method uses in and out labeling to mark the appropriate Delaunay
tertrahedra. The estimated normals on points in densely sampled surface areas approximate the original
surface normal. If the sampling conditions defined for co-cone are met, the normal estimation is accurate.
The points with accurate normal estimation are called good. The set of surface triangles on good points
is called umbrella.

So, the task of the first step is to traverse trough the Delaunay triangulation without crossing the
umbrella on good points and to mark the tetrahedra. The consequence is, because of undersampling not
all tetrahedra which should be marked are marked. Not all points are good.

The second step is to “peel” out all marked tertraedra and detect the out tetraehdra which have
not been marked leaving the in tetrahedra whose boundary is the water-tight surface. The peeling is
based on the observation that in undersampled surface areas the Delaunay tetrahedra are small. This
observation is based on the assumption, that all points of such tetraedra are contained in the same
undersampled surface area. The small tetrahedra can be seen as thick triangles of the umbrella. So, to
erroneously delete any of in tetrahedra the peeling must pass through small tetrahedron which can be
detected.

Algorithm:

1. Compute the Delaunay triangulation D on the the point set.

2. Mark tetrahedra in D beginning with infinite tetraedra as out. Mark the nonmarked tetrahedra as
in.

3. On all triangles σ ∈ D:

(a) if the adjacent tetrahedron τ is marked in push σ into output set

(b) else if τ is marked out or all vertices of τ are not good and σ is not the smallest in τ , peel τ
and push the triangles of τ but not σ into output set.

Extensions: The marking and peeling steps can be modified to reconstruct the boundary of internal
voids. The method can be iteratively applied in the interior of the object marking a tetrahedron adjacent
to the reconstructed bpundary as out.

3.2.6 Robust Cocone

[Dey and Goswami, 2004]

Prerequisites:

• Shape: compact smooth surface without boundary

• Parameter: k is taken in range [3, 5], θ measures the deepness of ball intersection and is set to
be θ = 15◦, ratio between the Delaunay ball the k-nearest neighbor.

• Sampling locally adaptive density and noise deviation. “ε, k-sampling” see Definition 3.5. The
orthogonal projection of the sample points is assumed to be an ε-sampling. The minimal distance
between a sample point and its nearest sample point is locally adaptive but limited by a positive
factor.
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Fig. 3.4: Robust Co-cone: Polar balls on noisy sampling. Assuming sufficient sampling
density and small sampling point deviation there is a definite difference between the minimal

radius of the interior (light gray) or exterior (white) balls and the maximal radius of balls in the
dilation of the boundary (dark gray).

Definition 3.5 (Noisy ε, k-sampling). Let f : R3 → ∂R map any point in R3 to its nearest point in ∂R.
Let S ⊂ R3 be a point set and S′ ⊂ ∂R = {f(p)| p ∈ S} be an ε-sampling of ∂R. Let nk : S → S map a
point in S to its k-nearest neighbor in S. S is a noisy (ε, k)-sample of ∂R for two positive constants k1

and k2 iff:
S′ is an ε-sampling of ∂R
∀s ∈ S : ‖s− f(s)‖ ≤ k1εlfs(f(s))
∀s ∈ S : ‖s− nk(s)‖ ≥ k2εlfs(f(s))

Guaranties: Assuming the sampling conditions to be fulfilled, the result of the method is homeomor-
phic to the original surface.

Comments: The method is not an extension of the original co-cone [Amenta et al., 2000a] method.
The name in Definition 3.5 is modified: κ is replaced by k because of unambiguity with the name in

Definition 3.6
In the work [Dey and Goswami, 2004] the authors derive up to nine new ε-parameters for the proof

and requires four k parameters for the sampling condition and further proof steps. The final sampling
conditions depend on at least two further k parameters and the algorithm expects at least three param-
eters k, one of the k’s and a crucial angle parameter θ. On θ depends the separating between inner and
outer Delaunay balls.

The sampling is required to be “sufficiently dense”, i.e. the guarantee holds if ε is assumed to be
“sufficiently small” and the distance to the k-nearest neighbor is “sufficiently large”.

Idea: The method is based on the idea of power crust [Amenta et al., 2000b]. In power crust it is
assumed that the inner and outer Delaunay balls intersect only shallowly. In presence of noise however
the assumption does not hold. But, there are still relatively big Delaunay balls in the interior and
exterior of the original surface.

Here the method first detects the big Delaunay balls (white and light gray balls in Figure 3.4) from
small ones (dark gray balls in Figure 3.4) contained in the thin but locally adaptive surface dilation
containaing all sample points. This is done by ratio between the radius of the Delaunay ball and the
distance to k-nearest neighbor on the vertices.

The second step is to separate the balls into inner and outer. This is initiated on infinite balls. The
further procedure marks the balls which deeply intersect. The intersection is measured by an angle θ,
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which is assumed to be small.
The boundary of the outer balls and the boundary of the inner Delaunay balls is respectively proven

to be the homotopy correct reconstruction.

Algorithm:

1. Compute the Delaunay triangulation D on the the point set.

2. Mark tetrahedra in D as big if the circumradius of corresponding Delaunay ball is greater than
k-times the distance to the k-nearest neighbr.

3. Beginning with infinite tetraedra mark the big Delaunay tertrahedra as out if the corresponding
Delaunay ball intersects the neighboring marked ball by an angle less than θ.

4. Mark the not marked big Delaunay tetrahedra as in.

5. Output the restricted Delaunay triangulation on points touched by outer Delaunay balls.

6. Output the restricted Delaunay triangulation on points touched by inner Delaunay balls.

Extensions: No extensions introduced.

3.2.7 Reconstruction from Noisy and Non-Uniform Sampling

[Chazal and Lieutier, 2006, Chazal and Lieutier, 2008]

Prerequisites:

• Shape: smooth manifold surface

• Parameter: 0 < ε < 0.1, κ and wfs

• Sampling locally adaptive density and noise deviation, noisy non-uniform ε, κ-sampling, see Def-
inition 3.6

Definition 3.6 (Noisy, non-uniform ε, κ-sampling). Let S′ be an ε-sampling of ∂R. Given κ > 0, S ⊂ R3

is the noisy non-uniform ε, κ-sampling of ∂R iff

S′ is an ε-sampling of ∂R
∀b ∈ ∂R ∃s ∈ S : ‖b− s‖ < εlfs(b)
∀s ∈ S ∃s′ ∈ S′ : ‖s− s′‖ ≤ κεlfs(s′)

Guaranties:

1. Global: The boundary of the union of balls is two connected components each isotopic to the
original surface.

2. Locally adaptive: The original surface is a deformation retract of the union of balls.

Comments: No algorithm for surface reconstruction is given. The sampling conditions extend the
bounds assumed for co-cone method [Amenta et al., 2000a].

Notice, in [Chazal and Lieutier, 2006, Chazal and Lieutier, 2008] the authors use the term “approx-
imation” for “sampling”.

Idea: The implication of the results in [Chazal and Lieutier, 2005a] is that the dilation of a compact
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(a) (b)

(c) (d)

Fig. 3.5: (a) Uniform sampling, thick gray line is the ε-dilation of the boundary and medial
axis. The critical points (contained in Voronoi) are in the ε-dilation. (b) Union of balls (dark

gray) is homotopy equivalent to the surface ε-dilation. (c) Non-uniform sampling and the union of
balls. (d) Light gray levelset intervalls contain the boundary of the union of balls

manifold surface is homotopy equivalent to the surface if the dilation value is less than weak feature
size (wfs) of the surface. Simply speaking, wfs is radius of the greatest ball inscribed into the tightest
narrowing or neck of the region bounded by the surface.

Global sampling conditions: The idea here is to use this result for definition of new sampling
conditions and for guarantees. Here the authors first define uniform sampling conditions which bound
the sampling density and maximal sample point deviation from the boundary for all points on the surface
by a fraction of the wfs. The consequence is that all sample points are in the dilation of the surface
which is homotopy equivalent to the surface.

The key then is the guarantee that the criticals of the distance transform dS on the sample points
S are either very close to the surface or very close to the medial axis. In Figure 3.5 (a) the thick light
gray line is the dilated surface and the medial axis. The critical points are the intersections between the
Delaunay and Voronoi (gray lines).

The consequence is that dS is strictly increasing along the surface normals outside the dilation (The
white space in Figure 3.5) of the surface and the dilation of the medial axis. Using this fact the authors
define a homotopy to prove that the boundary of the union of balls centered on sample points of a certain
radius is two connected components each of which is isotopic to the surface. The radius of balls depends
on the sampling density (in particular the parameter ε) and the weak feature size. The consequence is
the union of balls (see Figure 3.5 (b)) is homotopy equivalent to the ε-dilation of the boundary.

Locally adaptive sampling conditions: Assuming the sampling conditions to be non-uniform,
the homotopy equivalent surface dilation does no longer contain all sample points. and so the homotopy
definition using the boundary of the dilation is no longer valid. The goal is to define a homotopy between
a union of non-uniform balls and the surface. The solution is done by usage of level sets defined as inverse
of a function which maps points in space to the ratio between the distance value on these points and the
local feature size of point projection onto the surface.

The first key step of the proof is to show that the level set of a certain value is isotopic to the boundary
of the homotopy equivalent dilation of the surface with a uniform value. The second key argument is
that the distance values along the surface normals starting on the boundary of the union of balls (dark
gray in Figure 3.5 (c) ) and ending on a level set of a certain value (b′) are strictly increasing. The
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fact that the boundary of the union of balls is enclosed between two sublevel sets (light gray 2-intervalls
between levelsets in Figure 3.5 (d)) uniquely determines the value b′ for the level set. The third key step
to complete the well-formed definition of a homotopy is that the surface normals cut the boundary of
the union of balls in a unique point.

Algorithm: According to homotopy equivalence between the union of balls and its dual α-shape in
[Edelsbrunner, 1993], the appropriate algorithm for globally set conditions is α-shape.

Extensions: The work also presents proofs on topology guaranteeing approximations of the medial
axis for noisy uniform sampling conditions.

3.3 Globally Uniform Sampling Conditions

3.3.1 Sampling Conditions for Nonsmooth Manifolds by Critical Points The-
ory

[Chazal et al., 2009]

Prerequisites:

• Shape: nonsmooth manifold surface

• Parameter: κ and µ-reach of the boundary: the distance of µ-critical points to the boundary.
The norm of the gradient on µ-critical points is µ.

• Sampling globally uniform, noisy, κ, µ-sampling where the Hausdorff distance between the sample
points and the boundary is less than κ times the µ-reach (see Section 2.2.6) of the boundary. For
the definition if µ-reach consult

Definition 3.7 (Noisy, uniform κ, µ-sampling). Given κ ≥ 0, µ ≥ 0, S ⊂ R3 is the κ, µ-sampling of ∂R
iff the Hausdorff distance between ∂R and S does not exceed κ times the µ-reach of ∂R.

Guaranties: Let the union of balls be the union of α-balls with 1
µ4dH ≤ α < rµ − 3dH , where

dH is the Hausdorff distance between the point set and the boundary and rµ is the µ-reach (compare
Definition 2.38). Then, given κ and µ such that the critical point stability holds, the complement and
respectively the of the union of balls is homotopy equivalent to the sufficiently small dilation of the
boundary and respectively its complement.

Comments: The paper states the homotopy equivalence between the dilation of the sample points
by the certain parameter and the dilation of the boundary by certain values computed by κ and µ.
Our interpretation of the guarantee follows from the homotopy equivalence between the dilation and the
boundary [Chazal and Lieutier, 2005b] and the homotopy equivalence between the α-shape and its dual
shape [Edelsbrunner, 1993].

Idea: The main idea here is based on the critical point stability theorem which states that the critical
points of the one compact set is not more than a certain value distant from the critical point of the other
compact set if the Hausdorff distance between the two surfaces of the compact sets are not greater than
another certain value. The two surfaces may be for instance the original and the approximated one. So,
having the critical points of the one we can know the interval where the critical points of the other are
to find.

Using the result of the theorem, perturbations on the surface may be assumed which do not change
the intervals where the new critical points are. The deviation of sample points from the boundary can
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be seen as perturbation of the approximated surface from the original. The trick here is to bound the
maximal perturbation in such a way that the critical point stability holds.

This is done first by bounding the maximum perturbation uniformly for each point on the surface.
Second, to ensure the Hausdorff distance between the surfaces not to exceed a certain fraction of the
weak feature size of the original compact set.

Algorithm: α-shape.

Extensions: The authors propose a method to estimate the input parameter by analyzing the critical
function. The critical function maps a certain distance from the boundary to the infimum of the gradient
norm on points at this distance.

3.3.2 Reconstructing r-Regular Manifold Contours with α-Shapes

[Bernardini and Bajaj, 1997]

• • • • • • • • •••
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•
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•

(b) (c)

Fig. 3.6: Sampling construction and conditions for 1-manifold (a) The sampling density does
not allow the disc to “fall” through the contour. (b) The disc radius is chosen in such a way that
the intersection between the disc and the contour is either empty or one point or one connected

component the counterexample in (c)

Prerequisites:

• Shape: 2D only. smooth, r-regular manifold

• Parameter: r

• Sampling: globally uniform, noise-free

Guaranties: The contour approximation homeomorphic to the original boundary.

Comments: The construction of the proof assumes a disc such that the intersection of the disc and the
boundary is exactly one connected component. The condition on both sides of the contour is equivalent
to the definition of the r-regularity. Notice, disc radius is less than r.

The authors state a conjecture with equivalent conditions for 3D reconstruction of a 2-manifold. But
as it is shown in [Stelldinger, 2008c] this conjecture is not true. The counter example can be constructed
by placing four nearly coplanar points on the surface in a concavity such that they build almost a
square. By construction the all points lie on the surface of the α-ball and the reconstruction method
leaves the tetrahedron in the surface. Consequently, the surface is not everywhere thin and cannot be
homeomorphic to the original.

Idea: Here the proof is based on the idea to construct a set of points such that the α-shape is
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homeomorphic to the original. To do that one can think of a disc (2D reconstruction) of certain radius.
First point can be placed arbitrary on the contour. The second one is place onto the contour in such
a way that the disc touches the both but does not “fall” through the contour. So, the center of the
disc must always be on the same of the contour, while the distance between the points is less than the
diameter of the disc. The successive placement of sample points onto the boundary is illustrated in
Figure 3.6 (a).

Second, the intersection between the disc and the contour must be either empty or one connected
component (see Figure 3.6 (b) and the counterexample in Figure 3.6 (c)). Third the placing the next
point and the disc between the points the disc is not allowed to cover any other point.

The proof the authors show that for each intersection of the disc with the boundary there is a
hoeomorphic component in the α-shape.

Algorithm: α-shape

Extensions: Finding an optimal α-value in [Bernardini et al., 1999a]

3.3.3 α-Shapes, Normalized Mesh and Ball Pivoting

[Stelldinger, 2008c]

(a) (b)

(c) (d) (e)

Fig. 3.7: (a) Four nearly coplanar points on the surface with circumradius less than α. (b)
noise-free α-sampling. (c) “Normalized mesh” in [Attali, 1997]. (d) and (e) outer and inner

boundary of the α-shape.

Prerequisites:

• Shape: smooth r-regular manifold

• Sampling: global, no noise, α-sampling: the greatest distance between a boundary point and the
nearest sample points is less α

• Parameter: α
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Guaranties: If 2α < r then the the reconstructed polytope is homotopy equivalent to the original
boundary, the outer and the inner boundary of the polytope are homeomorphic to the original surface.

Comments: The authors present a counterexample to prove that the conjecture for 3D reconstruction
in [Bernardini and Bajaj, 1997] is not true.

With permission of the author, the illustrations in Figure 3.7 are taken from [Stelldinger, 2008a].

Idea: The author describes a correspondence and guaranteed topological expectations on algorithm
result between the “normalized mesh” in [Attali, 1997], the “ball pivoting” in [Bernardini et al., 1999b]
and the “α-shape” in [Edelsbrunner and Mücke, 1994] on noise free α-samplings.

The normalized mesh consists of Delaunay simplices whose dual Voronoi simplices intersect the
original boundary. Since any simplex of the normalized mesh has an empty circumball less than α,
the normalized mesh is a subset of the α-shape on α-samplings. In Figure 3.7 the insufficiency of the
normalized mesh in 3D is demonstrated. The normalized mesh in (c) on α-sampling results in a hole in
the boundary.

The correspondence between the α-shape and the “ball pivoting” method is given by two proven
properties. First, for a r-regular set (see Definition 2.30) and an α-sampling on it, the α-shape triangle
normals build with the surface normals on surface points in the projection of the triangle onto the surface
an angle not greater than π/6. Second the α-shape edges have at least two adjacent triangles. These
two properties are use by ball pivoting to build the mesh.

Since the α-balls cannot break through the boundary without touching a sample point of an α-
sampling the pivoting ball always stays on the same side of the α-shaoe and, consequently, reconstructs
the outer boundary of the α-shape.

The next trick to prove the correctness o the algorithm results is to show that the outer and the
inner boundary of the α-shape on an α-sampling of an r-regular shape with 2α < 2 is homeomorphic to
the original boundary.

Algorithm: α-shape and ball pivoting.

Extensions: The drawbacks of normalized mesh are holes in the reconstruction which develop in
exactly the cases if four almost planar points lie on the surface of an α-ball. The α-shape closes such
holes which can be used for detection of such cases.

3.3.4 Finding Homology

[Niyogi et al., 2008]

Prerequisites:

• Shape: smooth manifold, r-regular

• Sampling: noise-free (p, q)-sampling mit p < 0.48r and q = 0, noisy (p, q)-sampling mit p < 0.172r
and q < 0.172r

• Parameter: p, q, r, α

Guaranties: For p < 0.48r, q = 0 the union of balls deformation retracts to the original smooth
manifold. Therefore homology of the union of balls equals to the homology of the manifold.

For p < (
√

9−
√

8)r < 0.172r and q < (
√

9−
√

8)r < 0.172r the union of balls deformation retracts
to the original smooth manifold. Therefore homology of the union of balls equals to the homology of
the manifold.
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Comments: Recommended reading on concept of homology can be found in [Hatcher, 2002] and
[Munkres, 1984]. In [Dey et al., 1998], [Dumas et al., 2003] and in [Kaczyński et al., 2004] is the sec-
ondary literature on omputing homology from simplicial complexes.

The compact manifold in this work is a smooth manifold surface (limited maximal curvature). The
conditional number τ defined for each manifold relates to the maximal curvature of the surface and
corresponds to r-value in case of r-stability.

The authors give the lower bound for the number of sampling points. The guarantees are given
first, for assumed sampling conditions and second, for the probability of fulfilled sampling conditions for
rising number of sample points. Above, we mention only the guaranteed result for assumed sampling
conditions.

Notice, we use the notations from our framework for simpler results comparison. The correspondence
between our work notations and the notations in [Niyogi et al., 2008] are α ∼ ε, r ∼ τ , p ∼ s, q ∼ r

Idea: Here is the intention to prove the homotopy equivalence between the union of balls placed on
sample points of a certain radius and the manifold. The deformation retract of the union of balls is
proven by fibers. Fiber connects any point of the surface with the boundary of the union of balls by a
subset of the normal space on this point. The fibers correspond to the inverse distance transform for
the boundary points on the union of balls and are defined as the intersection of union of balls with the
normal space and a closed r-Ball on any boundary point. Under the assumption of the fulfilled sampling
conditions the fibers do not intersect and contract uniquely to their boundary point.

In case of noise-free sampling, the union of balls is a simple expression of union of α-balls with 2p <
α < 0.96r. In case of a noise sampling the union of balls is a simple expression of union of α-balls with α ∈(

1
2

(
(q + r)−

√
q2 + r2 − 6r

)
, 1

2

(
(q + r) +

√
q2 + r2 − 6r

))
. In limit: α ∈

(
(2−

√
2)r, (2 +

√
2)r
)
.

Here the centers of the balls are not necessarily on the surface.

Algorithm: According to homotopy equivalence between the union of balls and its dual α-shape in
[Edelsbrunner, 1993], the appropriate algorithm is α-shape

Extensions: The authors give probability statements in cases if the sampling conditions are not
guaranteed. So, the authors compute the probability for the sampling to fulfill the conditions for a rising
number of sample points.

In noise-free case the points are sampled from the uniform probability distribution on the surface. In
case of noisy sampling Here the probability measure has to satisfy two regularity conditions. First, the
probability is not zero only in the r-dilation of the manifold. Second, the probability for a sample point
to occur in a q′-ball (0 < q′ < r) around a boundary point depends on value q′ only, not the boundary
point. The second condition ensures the probability measure to be independent on curvature or manifold
conditions like surface narrowing. The distance to the boundary determines the probability measure.

Given the sampling criteria for the guaranteed deformation retract of the union of balls and the
confidence that the sampling criteria are met, the authors prove the homology equivalence between the
union of balls and the manifold under the confidence that the sampling conditions are fulfilled. So, the
proof is valid without the assumption on the sampling conditions but its probability.

3.3.5 Thinned-(α, β)-Shape-Reconstruction

[Stelldinger and Tcherniavski, 2009c], see also Chapter 4

Prerequisites:

• Shape: “r-stable” space partition with nonmanifold boundary (The thin line in Figure 3.8(a) ). r
is the greatest value by which the boundary can be dilated without to change the homotopy type.
Each region contains a γ-ball.
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r

(a) (b)

Fig. 3.8: (a) r-stable space partition. (b) The union of thick edges, black and dark gray
triangles is (α, β)-shape reconstruction. The thin line segments are Delaunay edges.

• Sampling: globally uniform density and noise. “(p, q)-sampling” with sampling density p less
than 0.5 of the radius r and maximal deviation of sample points q less than r − 2p.

• Parameter: The parameters α and β are computed depending on given r, γ, p, q.

Guaranties: If the p < 0.5r, q < r − p and the parameter α is chosen such that p < α ≤ r − q and
each region contains an open γ-ball with γ ≥ p + α + 2q than the resulting reconstruction preserves
connectivity and neighbourhood relations of reconstructed regions and defines a one-to-one mapping of
reconstructed and original regions.

Comments: The maximal sampling deviation is the difference between the radius of the tightest
narrowing in the shape and the sampling density. Consequently, the denser the sampling the greater can
the points deviate from the boundary and the closer the points are to the boundary the sparser can be
the sampling.

The reconstructed boundary may consist of chains of edges without any adjacent triangles.

Idea: The value r can equivalently be seen as the radius of the maximal inscribing ball into the tightest
narrowing in the shape (the radius of the circle in Figure 3.8 (a) ) or the Hausdorf-distance between the
boundary and the set of critical points on the distance transform, or the smallest distance value on the
critical points of the distance transform. It can also be seen as the value of the greatest dilation ( gray
thick line in Figure 3.8 (a) ) of the boundary which does not change the original homotopy type.

The trick here is to know the tightest narrowing (the r-parameter) and the size of the smallest region
(the γ-parameter) in the original shape as well as the sampling parameters p and q. Then the minimal
sampling density p can be limited in such a way that connecting the points at distance greater than p
somehow encloses the regions. Which is possible because the sampling conditions do not change on the
boundary.

Of course if we connect the points at too great distance the regions will be completely covered. So,
the other trick is to limit the maximal distance of connected sample points such that the regions are
enclosed by edges or triangles but still recall the shape of the origonal region. This is done by limiting
the maximal sample point deviation q to be less than r− p and setting the connecting parameter α less
than or equal to r − q.

The union of connections between points consisting of triangles and edges leaves spaces which are
not covered by any edge or triangle. These free spaces are called holes. The next trick here is to set up
a parameter to distinguish between too great holes (union of white triangles in Figure 3.8 (b)) which
correspond to original regions and the too small holes (union of gray triangles in Figure 3.8 (b)) which
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are result of noise. The limitation which guarantees this differentiation is beside r the of the size of
minimal orignal region (the γ). If the minimal region is big enough the too small holes are less than the
β-parameter.

The last step is intuitive. It is to remove the too small reconstructed regions. This is done by
elementary collapse after filling the too small regions with Delaunay simplices.

Extensions: Under assumption that the edges of the resulting reconstructed boundary have at least
two adjacent triangles the set of singular edges may be removed from the reconstruction.

Minimal extension of reconstructed boundary fills the chains of singular edges with Delaunay triangles
less than β. The subsequent elementary collapsing on simple edges removes the topological distortion.

Extended β-Filling fills the boundary with Delaunay tetrahedrons such that non-orientable surface
patches contain simple boundary triangles.

3.4 Refinement Reconstruction

[Stelldinger and Tcherniavski, 2009b], , see also Chapter 5
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Fig. 3.9: (a) Space partition consisting of 4 regions and the background. Thick line is the
boundary, ⊕ denotes the local continuous maxima, ⊗ denotes a saddle, the dashed line is the

homotopical axis and the dotted line is the medial axis extension. (b) The results of refinement
reconstruction.

Prerequisites:

• Shape: Nonmanifold, non-smooth boundary of multi-regional objects.

• Parameter: Parameter free. The parameters can be set by upper bound of sampling conditions.

• Sampling: Region Stable (ψ, ρ)-Sampling Definition 5.4, Local Homotopy Stable (ψ, ρ)-Sampling
Definition 5.17

Guaranties: The result of reconstruction on region stable (ψ, ρ)-sampling is a correct separation of
local maxima. The result of reconstruction on local homotopy stable (ψ, ρ)-sampling is reducible to a
correct separation of connected components of the homotopical axis and one-to-one mapping between
original regions and the reconstruction.

Comments: Further knowledge and processing steps may be required to reduce the reconstructed
boundary to a homotopy equivalent of the original.
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Idea: The idea of refinement reconstruction is to define relevant parts of the object which has to be
reconstructed and to ensure the sampling to be denser around these parts than in the interior of them.
The homotopy of the relevant parts are here represented by the subset of the medial axis. So, we ensure
by the sampling conditions that the steepest increasing paths on the discrete distance transform starting
on the relevant parts of the medial axis not to leave the interior of the regions. The steepest increasing
paths do not cross the original boundary.

Star-like shape have only one local maximum. The homotopy type is the same as of a ball. So, we
only need to ensure the discrete distance value on the original local maximum to be greater than the
discrete distance values on the original boundary. This is done by the locally adaptive sampling scaled
by a fraction of the local region size.

The homotopy type of more complex shapes (i.e. Figure 3.9 (a)) with more than one local maximum
is represented by homotopical axis (dashed line in Figure 3.9 (a) and (b)). The locally adaptive sampling
conditions scaled by the local homotopical feature size ensure that the steepest increasing paths starting
on the homtopical axis do not cross the original boundary. Observe the sample point density on the
dashed line in Figure 3.9 (b) and the density on the thin line ( corresponds to the heavier line in Figure 3.9
(a) ).

Since the steepest increasing paths staring on the original local maxima stay in the original regions,
we can uniquely associate the discrete local maxima reachable by steepest ascent on discrete distance
transform with the original maxima. So separating the discrete local maxima we already correctly
separate the original local maxima and so the corresponding original regions.

The first step of the reconstruction step is deletion of Delaunay tetrahedrons containing their own
circumcenter. This is due to the fact that the reachable discrete local maxima correspond to Delaunay
Delaunay tetrahedrons containing their own circumcenter. So, deleting them we hit each original region
at least once.

Using the fact that the steepest increasing paths starting on local maxima stay in the local region we
use the “flow relation” which imitates the continuous flow on the discrete distance transform. According
to the flow relation between Delaunay simplices we descend on th ediscrete distance transform deleting
the Delaunay simplices. The result is the set of reconstructed regions with one discrete maximum and
the boundary consisting of smallest Delaunay simplices due to the flow relation.

Obviously, we most probably hit each regions a number of times. The result is there are several
reconstructed regions which correspond to the same original region. We call this phenomenon a re-
finement. The next reconstruction step bases again on the sampling conditions which ensure that the
steepest increasing paths do not cross the original boundary. So, the steepest increasing paths starting
in the reconstructed boundary have to be small enough to separate different regions. The ratio between
the appropriate boundary simplex and the size of the region is given by the sampling parameters. So,
the boundary simplices which exceed this ratio cannot separate different regions and correspondingly
the adjacent regions correspond to the same original regions. The simplices exceeding the ratio are
called undersampled simplices. On the other hand, the reconstruction step which deletes such boundary
simplices is called undersampled merge.

Algorithm: According to Definition 5.10 a boundary simplex is ψ-undersampled if its size is greater
than ψ times the smaller circumradius of the grestest cells in the adjacent regions.

1. Compute Delaunay triangulation.

2. Delete all Delaunay tetrahedrons which contain their own circumcenter.

3. Perform constructive retraction ( “WRAP” see Section 2.4.10) on all Delaunay tetrahedrons which
have been deleted in 2.

4. Merge regions on undersampled simplices lexicographically sorted in decreasing order according to
their size. Collapse on all simple simplices.
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Extensions: We propose to extend the sampling conditions and the definition of the homotopy axis to
enable the sampling to be uniquely mapped to the shape. Consult dissolution problem in Section 5.15.1.

3.5 Conclusion

In this chapter we analyzed the properties and procedure of surface reconstruction methods based on
computational geometry approach. The presented algorithms are a close selection of numerous previously
proposed reconstruction methods. The description of the algorithms is given in form of a synopsis for
better comparison of the requirements and results of the methods. The reconstruction algorithms are
classified into two groups according to the sampling conditions: the reconstruction methods based on
locally adaptive samplings and globally approaches assuming globally uniform sampling conditions.

We also added the synopsis of the thinned-(α, β)-shape-reconstruction and the refinement reconstruc-
tion. The thinned-(α, β)-shape-reconstruction is the initial point for our work and will be introduced
and evaluated in the next chapter. Refinement reconstruction is the result of this theses and will be
introduced and evaluated in Chapter 5.

As it can be seen in this chapter, the refinement reduction has the weakest requirements on the
original shape and the sampling conditions.



Chapter 4

Thinned-(α, β)-Shape-Reconstruction

4.1 Introduction

Various applications motivate a globally uniform sampling setting for the whole shape. For instance, a
laser scan projects equidistant lines onto the surface and samples these at nearly equidistant points. In
computer tomography, the sampling is done in equidistant layers where each layer is a rigid lattice of
sampling points.

The α-shape concept ([Edelsbrunner and Mücke, 1994]) introduced in Section 2.4.7 takes advantage
of globally uniform sampling density. This algorithm uses the sampling density for establishing an
internal parameter (α). Using this parameter, the method may be implemented by Delaunay complex
where the Delaunay simplices are deleted from the complex if their empty circumball is of greater radius
than α. The union of remaining simplices is the surface reconstruction. For the case in which the
global sampling parameter is unknown, an approach for estimating the optimal α-value is presented in
[Edelsbrunner and Mücke, 1994].

The surface reconstruction with α-shapes results in a polytope which approximates the original
surface, but does not give guarantees on topology preservation. In [Bernardini and Bajaj, 1997] the
authors prove the correctness of the α-shape-reconstruction for smooth shapes.

“Ball pivoting” [Bernardini et al., 1999b] is another well-known reconstruction algorithm which takes
advantage of a globally uniform sampling parameter. The method builds a mesh if the “pivoting ball” of
certain size meets the points at certain angle to the previous position. As proven in [Stelldinger, 2008c]
the “ball pivoting” algorithm is related to α-shapes.

Research on global sampling parameters extends to deriving proofs for weaker sampling conditions
under which well-established reconstruction methods are guaranteed to preserve the topological prop-
erties of the original surface. In [Chazal et al., 2009] the sampling conditions also cover non-smooth
manifold surfaces. Comparing the sampling density by number of points required to reconstruct the
surface of a unit ball, in [Stelldinger, 2008c] the global parameter is weakened to half of the radius.
In [Niyogi et al., 2008] the authors approach an equivalent result and give weakened density for noisy
sampling of smooth manifold surfaces.

The combination of noisy sampling and non-manifold, non-smooth surfaces was first tackled in
[Stelldinger and Tcherniavski, 2009c], which gives appropriate sampling conditions and guarantees on
preservation of topological properties. The idea is to repair the topology broken by α-shape reconstruc-
tion in a thinned-(α, β)-shape-reconstruction method. The algorithm contains a post-processing step
which fills the holes in the α-shape, such that the resulting shape preserves the original connectivity of

79
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the regions enclosed by the non-manifold surface.
The aim of this chapter is to evaluate the results in [Stelldinger and Tcherniavski, 2009c]. Stability is

a widely used word which stands for numerous different concepts. In [Stelldinger and Tcherniavski, 2009c]
shapes are divided into classes by a scalar value r. This value represents the thickness of the boundary
dilation which preserves the homotopy type of the original. That means, the original surface homotopy
remains stable under dilation by value r (Section 4.2).

This r-stability defines the limits for globally set sampling conditions which we introduce in Section
4.3. The homotopy equivalence between the α-shape and the union of α-balls [Edelsbrunner, 1993] is
the key prerequisite for theoretical framework in [Stelldinger and Tcherniavski, 2009c]. These concepts
are introduced in Section 4.4. As already mentioned the α-shape is not suitable for reconstruction of
non-manifold non-smooth surfaces. The approximation consists of additional regions which are called
holes in this framework. In Section 4.5 we define how to classify relevant or non-relevant holes.

Filling irrelevant holes in the reconstructed boundary already results in a reconstruction that under
certain conditions preserves the original connectivity of the regions. In Section 4.6 we describe in depth
the proof which can originally be found in [Stelldinger, 2008b]. The reconstruction by α value with post-
processing filling of irrelevant regions results in a surface reconstruction which contains tetrahedrons, so,
is not thin. The last step in the thinned-(α, β)-shape-reconstruction is the topology-preserving thinning
which we introduce in Section 4.7.

In Section 4.8 we visualize the reconstruction on three 2D examples: sparsely noise-free sampling,
very noisy sampling and insufficient sampling.

The evaluation of the results of the thinned-(α, β)-shape-reconstruction is done in three ways. In
Section 4.9 we compare the sampling conditions of well-known related methods with topological guar-
antees by computing the minimal number of required points to reconstruct the surface of a unit ball.
Then Section 4.10gives experimental results by applying the reconstruction methods on well-known
datasets as well as on artificially constructed data sets. Section 4.11 discusses open problems of the
thinned-(α, β)-shape-reconstruction method, the defined sampling conditions and for future work.

In summary, the algorithm presented in this chapter is a solid and fundamental result from both a the-
oretical as well as an experimental perspective. It has advantages over all related Delaunay triangulation-
based methods known to us; it extends the limits of admissible shapes to non-manifolds and handles great
amounts of noise. Remaining problems of the approach are based on too large sample point deviation
from the boundary. In practice, we expect extra computation steps to be a solution.

4.2 r-Stability

Stability is a widely-used term and stands for a lot of roughly and subtly different concepts in mathe-
matics, engineering, natural and social sciences, sports, medicine or even entertainment. We can find the
following simple examples. In engineering we may hear: ”The vehicle is stable”, if this vehicle preserves
its direction and road contact in cases of environmental disturbances like wind, curve radius or road sur-
face. The stability of a chemical substance is its ability not to react across a variety of chemical systems.
The ecological stability is the measure of probability of a population to return to its previous state or
not to extinct. Numerical stability describes error propagation through the algorithm procedure. In
discrete geometry we may refer to the instability of the medial axis against perturbations on the shape.

Here we introduce the concept of a stability of a shape which refers to its homotopy type. Simply
speaking we want to replace an infinitely thin boundary with a strip such that the resulting shape is of
the same homotopy type as the original. In particular we want to preserve the number and enclosure
hierarchy of the resulting regions. The maximal thickness r of the strip is the value of the stability.

Consider Figure 4.2 (a). The space is divided or, as we say, partitioned by the black line into five
regions. The black line is the boundary between the four inner regions and the infinite space. To find
the maximal thickness value we inspect the shape for waists. The tightest waist determines our stability
value r. In Figure 4.2 (a) we denoted the waist by a circle r. The radius of this circle is our desired
value of the maximal thickness of the implied strip. We can also say the black line can be dilated up to
value r without changing the original homotopy type. The r-stability is defined as follows:
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Definition 4.1 (r-Stable Space Partition[Stelldinger, 2008b]). A space partition R is r-stable when its
boundary ∂R can be dilated with a closed ball of radius s without changing its homotopy type for any
s ≤ r.

The center of the maximal inscribing ball in the tightest waist is a critical of the distance transform
defined on the shape. So, our simple description “tightest waist” refers to the smallest distance value
on the criticals, or, in other words, the “Hausdorff distance” between the shape and the set of critical
points of the distance transform. The value r is also known as “weak feature size” (Definition 2.31 or
[Chazal and Lieutier, 2005b]).

r-regular sets independently introduced in [Pavlidis, 1982] and [Serra, 1982] require for every point
on the boundary a tangential ball with radius r. Consequently, a tangential r-ball can also be centered
on any critical point. It follows that any r-regular shape is r-stable.

1

(a)

1

(b)

1

(c)

Fig. 4.1: Koch snowflake fractal (a) after two iterations (b) after three iterations (c) after four
iterations.

In [Stelldinger, 2008a] a detailed study on sets generalized by the concept of r-stability is given. In
particular, the generalization to r-sets allows consideration of nonsmooth and/or nonmanifold shapes.

In [Stelldinger, 2008a] it is stated that the fractal “Koch snowflake” Figure 4.1 with the side length
1 of the base triangle is r-stable for any r < 1√

3
. This can easily be seen, since the distance transform

of the “Koch snowflake” consists of one critical point only. That is the local maximum and is located in
the center of the base triangle.

The radius of the inscribing ball in any other triangle is smaller than the side length of the triangle.
So, there is a strictly increasing simple path starting in the center of the maximal inscribing ball of any
triangle and the center of the open side. The distance value in the center of the side with the recursively
next triangle is only one-third of the original length and is less than the radius of the inscribing ball. It
follows that there also is a strictly increasing path starting in the center of the triangle side where the
fractal recursively grows and ending in the center of the inscribing ball. This is valid for all triangles
but the base triangle since all its sides are closed - starts for further recursive fractal growth.

Back in our example in Figure 4.2 (a) we additionally see that r-stability generalizes shapes with
crossings or junctions which are the necessary result if three or more regions meet in one boundary point.

The next question we are going to answer is, how to sample the boundary of an r-stable space
partition to fulfill the preconditions for the thinned-(α, β)-shape-reconstruction method?

4.3 Sampling Conditions for r-Stable Sets.

The uniformly defined sampling conditions limit the minimal sampling density and the maximal sampling
point deviation from the boundary by a globally set scalar parameter. The (p, q)-sampling uses two scalar
parameters to control sampling density independently from the maximal sampling point deviation. The
p parameter is a value which is defined for each boundary point. p is the maximal distance between each
boundary point and the nearest sampling point. q defines the maximal sampling points deviation from
the boundary and is defined for each sampling point. Each sampling point is at most at distance q from
the boundary.
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Fig. 4.2: (a) r-stable space partition. The boundary (black line) partitions the space into five
regions: the environment region and four interior regions. The boundary is continuous: consists of
one connected line component only. The boundary can be dilated (the gray strip around the black
line) by the value r. The value r is also the radius of the smallest maximal inscribing ball (circle)
into the regions. (b) Illustration of the sampling modeling. Every region (white space) contains a
γ-ball (dashed circle). The circles in the center of the illustration and in the bottom left region

represent the choice of the parameters to model the sampling conditions.

The p, q values ensure that all relevant sampling points are in the p-dilation and that all sampling
points are in q-dilation.

Definition 4.2 (pq-Sampling). Let R be a r-stable space partition and S be a point set, then S is a
(p, q)-sampling if following is valid:

∀b ∈ ∂R∃s ∈ S : ||b− s|| ≤ p
∀s ∈ S∃b ∈ ∂R : ||b− s|| ≤ q

Further it is required for thinned-(α, β)-shape-reconstruction that each original region contains a
γ-ball. During the thinned-(α, β)-shape-reconstruction the parameters r, p, q and γ have to be known
during the reconstruction process to compute the intervals for the choice of α and β-parameters which
are also visualized in Figure 4.3

p < α ≤ r − q, β = α+ p+ q, γ ≥ β + q > 2(p+ q)

The parameter r is measured on the original shape and represents the level of detail the reconstruction
has to guarantee. In Figure 4.2 (a) the definition of an r-stable space partition is illustrated. The gray
strip is the maximal boundary dilation which does not change the homotopy type of the space partition.
r is the maximal value by which the boundary can be dilated. The center and the radius on the r-ball
on the tightest narrowing illustrates the location of the critical point on the distance transform with the
smallest distance value which is the radius of this maximal inscribing ball. On this critical point the
dilation intersects if the dilation value is greater than r.

In Figure 4.2 (b) the r-ball is used to model the sampling conditions with very high noise corruption.
The radius of the left and right q-balls represents the maximal sample point deviation from the boundary.
Since the condition p < r − q has to be valid in the sampling, the inner ball with radius less than r − q
models the p-value. The interval for the α value is illustrated by the dilated circle with p-ball as inner
circle and the r − q-ball as outer circle.

In Figure 4.3 (a) the equivalent illustration is given. Here again the q-ball is chosen to model large
amount of noise. In our sampling example the data acquisition device guarantees a dense sampling, so
we model the p-value by a small p-ball. The algorithm sets the α-value in the interval (p, r− q] (the gray
circle in Figure 4.3 (a) ).

The α-value has a further dependency and, so, a further condition has to be taken into account.
The regions must be “big” enough. Regions are the connected components enclosed by the boundary
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Fig. 4.3: Sampling conditions for thinned-(α, β)-shape-reconstruction. (a) Dependency between
r, p, q and the choice of α with p = 0.22r, q = 0.6r and α = 0.29. The interval p < α ≤ r − q for

the arbitrary choice of α is gray. (b) β and γ dependency from the choice of α. β = p+ α+ q and
γ ≥ β + q

of the space partition. In our example regions are the white spaces in Figure 4.2 (b). We choose the
parameters in such a way that a great amount of noise can be modeled. The sampling condition restricts
the smallest size of a region to γ. It means that every region encloses a ball with radius at least γ.
Consequently, the sampling parameters p and q as well as the γ-value restrict the choice of α according
to sampling condition 3: γ ≥ β + q = α+ p+ 2q or α ≤ γ − p− 2q.

The γ-value as composition of p, q and α parameters is illustrated in the smallest region in Figure 4.2
(b). The equivalent illustration is also given in Figure 4.3 (b): γ = p + α + 2q. The α-parameter is
given again as interval. We see that here the interval is limited to (p, γ − 2q], where the upper bound
is less than r − q in Figure 4.3 (a). So, this condition determines the choice of the α-parameter and,
consequently, the β-parameter.

Now, we summarize: in our example there is a shape or as we call it in our context the boundary
∂R of a space partition (∂R is the thick line in Figure 4.2 (b)). The shape is r-stable and each region
enclosed by the shape contains a γ-ball, with γ = 1.42993r (see Figure 4.2 (b) for illustration). We want
to digitize the shape with a data acquisition device which delivers very noisy data but still guarantees
a sampling dense enough to the boundary ∂R. We model the parameters of the data acquisition device
with p = 0.16r and q = 0.53r and ensure that the sampling conditions are fulfilled. So, we choose the
the α in the interval (0.16r, 0.20993r] with α = 0.20493r.

4.4 Sampling Points, the Union of Balls and its Dual Shape.

In Figure 4.4 (a) we demonstrate the set of sampling points taken by our modeled acquisition device as
well as the set of α-balls where an α-ball is a ball centered on a sample point with radius α. According
to the sampling conditions for every boundary point there has to be a sample point at distance less than
or equal to p. In the illustration we differentiate between the α-balls (gray) centered on such sample
points and the α-balls (dark gray) centered the sample points which deviate from the boundary more
than p but less than q. The union of gray balls completely cover the boundary ∂R. We call the union
of all α-balls simply union of balls. So, the union of balls completely cover the boundary ∂R.

Since α is chosen such that p < α ≤ r − q, the α + q-dilation ∂R⊕ of the boundary is homotopy
equivalent to the original boundary ∂R. In Figure 4.4 (a) ∂R⊕ is the light gray strip. The complement
of the ∂R⊕ (white space in Figure 4.4 (a) ) is topology equivalent to the original space partition. So,
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(a) (b)

Fig. 4.4: (a) The α+ q-dilation ∂R⊕ (light gray) of the space partition covers the union of
α-balls U (the union of gray and dark gray balls). U covers ∂R (black curve), ∂R has the same

number of components as U (one connected component only in this case; but a circle is one
connected component too). (b) U (union of gray balls) is homotopy equivalent to the α-shape

(union of black edges and dark gray triangles).

the question arises under which conditions the union of balls preserves the topological properties of the
original boundary and how to reconstruct them?

Given the union of balls it is easy to construct its dual α-shape. To do so, we connect the centers of
the intersecting balls. Two intersecting balls result in such a way in an edge. Three intersecting balls
develop three edges and the triangle which is completely covered by the intersection balls. Consequently
in 3D, four intersecting balls with nonplanar centers develop six edges, four triangles and one tetrahedron,
all completely covered by these four intersection balls. The duality between the union of α-balls and the
α-shape is stated by the following theorem and is proven in [Edelsbrunner, 1993].

Theorem 4.3 (Homotopy Equivalence of α-Shape and the Union of Balls [Edelsbrunner, 1993]). Let S
be a set of points and Sα be an α-shape constructed on S. The union of closed α-balls centered on points
in S covers Sα, and the two sets are homotopy equivalent.

We see the duality between the union of α-balls and the α-shape in our example in Figure 4.4 (b).
The union of dark gray triangles and black edges is the α-shape and the union of gray filled circles is the
union of α-balls. Notice, three intersecting balls correspond to three edges but, if there is no common
intersection between those three balls, there will be no dual triangle.

In [Bernardini and Bajaj, 1997] the authors use the α-shapes with α < r to construct a homeomorphic
2D boundary approximation from a noise-free (q = 0) sampling of an r-regular shape and describe in
[Bernardini and Bajaj, 1997] a practical method to select an optimal α-value to fit a piecewise smooth
algebraic surface to the sample points which do not fulfill the sampling conditions.

r-regular shapes are shapes of everywhere smooth surfaces such that on both sides of the surface one
can find a tangential ball with radius r. Consider the opposite case - a corner of a nonsmooth surface.
If we place a tangential ball into the corner, the corner is not going to be completely filled. We will find
some space behind the ball. So, we need a smaller ball to make the space behind the ball smaller. But
the space remains. So, we take even smaller ball and so on. The consequence is, if we want to fill out the
corner by a ball, we need take an always smaller ball, which then converges to a ball with zero radius.

In [Stelldinger, 2008c] the authors derived an analog result for 3D under equal conditions. The
guaranteed homeomorphic surface approximation is the outer boundary of the α-shape. The outer
boundary of an α-shape is then defined as the union of the triangles of the corresponding α-complex,
which can be seen from the outside.

Why do the results in [Bernardini and Bajaj, 1997] and [Stelldinger, 2008c] work? The trick is to set
the α-value small enough in reference to the r-value. Consider a sample point an r-circle. If we assume
the nearest two different sample points on the circle near enough to the first, and connect them by edges
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then the angle between those edges is obtuse and the edge opposite to the first point is then very long,
in comparison to the edges to the nearest points. In this way we ensure that only the relevant edges are
small enough to be counted to the contour reconstruction.

The same trick does not work for nonsmooth boundaries because no r-value can be given and so no
α-value can be set. Noisy sampling of a smooth boundary brings additional sample points which deviate
from the boundary. So, the condition of an obtuse and, so, too long edge is destroyed.

If we consider again our noisy example of a nonmanifold contour in Figure 4.4 (b) and gaze at the α-
shapes with slitted eyes we might think then the α-shape already does what we want. The reconstructed
contour encloses in some way the same regions and corresponds in some way to the original contour.
However, if we examine the α-shape we observe, that even if the α-shape does not connect different
regions it does enclose smaller regions all of which are covered by the α, q-dilation (the thick gray
strip) of the original boundary. We detect certain correspondence between the α-shape and the original
boundary. In the following we examine, which further steps are needed to recover the homeomorphic
approximation from the correspondence we recognized before.

In 2D this problem of small regions or holes in the α-shape has been solved in [Stelldinger et al., 2006]
by filling the small holes. The method leads to a homeomorphic reconstruction if the sampling conditions
are the same as for the actual method.

In the following section we will go into this step similarly crucial for actual 3D extension of the
results introduced in [Stelldinger et al., 2006]. In 3D the problem extends to handling of artifacts on
the reconstructed boundary which do not enclose any further small regions and, consequently, cannot
be filled.

4.5 (α, β)-Hole

An α-shape (Sα) is the underlying space of an α-complex Dα which is a subset of Delaunay complex
(D). An α-shape consists of points in space. An α-complex is a set of Delaunay simplices. Now we
introduce the complement (Hα = S c

α) of the α-shape which is again a subset of space and, so, a set of
points. Hα is the union of connected components in S c

α.

We combine the connected components in S c
α in a set Hα and denote each element in Hα as an

α-hole Hα. We may also say: “an α-hole is an element in the set of connected components Hα” which
is equivalent to the statement: “an α-hole is one connected component in the complement (Hα = S c

α)
of the α-shape”. The corresponding subset of the Delaunay complex is Dα. Notice that either for each
simplex σ ∈ Dα there is another simplex σ′ ∈ Dα which is adjacent to σ, or Dα consists of exactly one
component. Consequently, we have the correspondence: the underlying space |Dα| of Dα is Hα.

β

β

β

β

(a) (b)

Fig. 4.5: (a) black lines and polygons: α-shape (b) α-holes: light gray (α, β)-holes, gray
not-(α, β)-holes
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As mentioned before, under certain sampling conditions the 2D-α-shape is the topologically correct
contour reconstruction [Bernardini and Bajaj, 1997]. In 3D the topologically correct reconstruction is
the outer boundary of the 3D-α-shape [Stelldinger, 2008c]. However, the reconstruction methods in
[Bernardini and Bajaj, 1997, Stelldinger, 2008c] require noise-free sampling of smooth manifolds. What
happens, if the original boundary is not smooth or nonmanifold or the sampling is noise corrupted as in
our example in Figure 4.4? The α-shape contains artifacts. The artifacts can be regarding the r-value
small holes in the α-shape or in 3D small voids or regions as well as tails of linked edges or thickenings of
α-contiguous simplices. In 3D a great amount of noise leads to topological and/or geometrical distortions
of the α-shape boundary like tunnels, loops or knots which do not separate different regions.

In this section we deal with α-holes in the α-shape or holes consisting of contiguous Delaunay simplices
with circumradius greater than α completely enclosed by simplices of the α-shape. Thus, deleting them
from the Delaunay triangulation results in holes in the underlying space which we call α-holes. In
Figure 4.5 (a) the α-holes are the white space, the whole space without the α-shape. We notice a great
difference between the α-holes containing the β-ball and the remaining much smaller α-holes.

In the further context we distinguish between the α-holes containing a Delaunay simplex with cir-
cumradius greater than β and call such α-holes the (α, β)-holes and the remaining not-(α, β)-holes.

Definition 4.4 (Stelldinger). Let Dα be the α-complex and Sα = |Dα| be its α-shape. Then the α-holes
of Sα are the components of S c

α. The (α, β)-holes of Sα are the set of α-holes Hα, where the largest
radius of some n-cell in H is at least β ≥ α. The union of the α-shape |Dα| with all α-holes of Dα that
are not α, β-holes is called the (α, β)-shape-reconstruction (D⊕α,β).

An α-hole in the Delaunay complex means that a connected group of simplices greater than α are
enclosed by simplices less than or equal to α. The α, β-hole Dα contains a simplex which is even greater
than β. So, we may have the intuition that there is a point x in Dα such that the distance to the nearest
sample point is greater than β. In other words, the α, β-hole is thick enough to contain a β-ball free of
sample points. In [Stelldinger, 2008c] this correspondence is proven to be an equivalence by:

Lemma 4.5 (Stelldinger). An α-hole Hα is an (α, β)-hole if and only if it contains a point whose
distance to the nearest sampling point is at least β.

I, simplex ← point: if an α-hole contains a point x with distance to the nearest sample point greater
than β then the α-hole is an (α, β)-hole. Consider first that the point x is outside the α-shape somewhere
in the infinitive space. Then the claim follows immediately. Otherwise the α-hole is a union of simplices
greater than α. It follows that the point x is in some simplex σ greater than α. The circumball of this
simplex is free of sample points except for the vertices of σ. Consequently, the nearest sample point
from x is one of the vertices of σ. Since by assumption the distance between x and its nearest sample
point is greater than β we conclude that the distance between a point in σ and one of the vertices of σ
is greater than β. Since the point x is in σ then its distance to the vertices is less than the circumradius
of σ. It follows that the circumradius of σ is greater than β.
II, simplex → point: if an α-hole is an (α, β)-hole then it contains a point whose distance to the
nearest sample point is at least β. The proof of this implication in [Stelldinger, 2008c] does not use
the fact that the adjacent simplex opposite to an obtuse angle has a greater circumradius. The face
opposite the obtuse angle is called not-Gabriel face and has the property to include in its circumball the
remaining vertex of the simplex. The same is valid in nD.

Considering a simplex σ in an α-hole whose circumradius is greater than β we do not know if this
simplex contains its own center and, so, we do not know if there is any point whose distance to any
vertex of σ is inside σ and so inside the (α, β)-hole. So, if σ contains its own circumcenter then the claim
follows.

Otherwise σ has at least one not-Gabriel face and the neighboring simplex which shares this not-
Gabriel face has a greater circumradius. Proceeding with this consideration moving to next greater
neighboring simplex we reach a simplex containing its own circumcenter.

The sequence of simplices with monotone growing circumradii is part of the flow relation presented
in [Edelsbrunner, 2003]. Without loss of generality let us assume the addition of an adjacent simplex to
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the sequence if the sharing not-Gabriel face is the greatest. Then the sequence of not-Gabriel faces we
pass through is also monotone increasing.

By Definition 2.49 (compare [Edelsbrunner and Mücke, 1994]) the circumball of an α-face only con-
tains the vertices of the face in its boundary and is empty elsewhere. So, an α-face cannot be not-Gabriel.
It follows, that the sequence of growing simplices and not-Gabriel faces is part of the same α-hole and
the last simplex containing its own circumcenter is in the same α-hole too.

Since the last simplex σ′ is greater than σ the circumradius of σ′ is greater than β, and since the
circumcenter of σ′ is in σ′ and σ′ is in the α-hole, the circumcenter of α′ is in an α-hole and is the point
whose distance to the nearest sample point is greater than β. �

Our aim in a further section is to establish a correspondence between the union of α-holes and the
original space partition. In fact Theorem 4.6 proves that the homotopy equivalent boundary reconstruc-
tion can be achieved by construction of the α-shape and by subsequent filling of the not-(α, β)-holes.

4.6 (α, β)-Shape-Reconstruction

In Section 4.3 we learned how to sample a boundary of a space partition to preserve the topological
properties for the thinned-(α, β)-shape-reconstruction method. First step was to construct an α-shape,
with p < α < r− q. The (p, q)-values depend on the r-value of the space partition and the conditions of
the data acquisition device.

In Section 4.4 we learned the homotopy equivalence between the union of α-balls and the α-shape
and discussed why the α-shape is not a sufficient reconstruction in our weakened assumptions on original
boundary and sampling conditions.

In Section 4.5 we learned one kind of distortion on the α-shape, the α-holes, and distinguished them
by size.

In this section we discuss the results in [Stelldinger, 2008c] on sampling conditions and, so, value
settings for building a superset of the α-shape such that the resulting thick boundary preserves connec-
tivity and neighborhood relations and bijectively maps the original to the reconstructed regions. The
superset of the α-shape is the (α, β)-shape-reconstruction, the union of the α-shape and the not-α-beta
holes. The remaining (α, β)-holes correctly reconstruct the original regions.

Theorem 4.6 (Topology Preserving (α, β)-Shape-Reconstruction [Stelldinger and Tcherniavski, 2009c]).
Let P be an r-stable partition of the space Rn, and S be a (p, q)-sampling of P’s boundary B. Then
the (α, β)-shape-reconstruction R preserves connectivity and neighborhood relations and defines a one-to
one-mapping of the (α, β)-holes of R to the regions ri of P, if (1) p < α ≤ r− q, (2) β = α+ p+ q and
(3) every region ri contains an open γ-disc with γ ≥ β + q > 2(p+ q).

I. Union of balls has as many connected components as the original boundary.
The first step in the proof is to show that the number of connected components of the union of α-balls

U is equal to the number of connected boundary components. In Figure 4.4 (a) the union of gray and
dark gray balls illustrate U . U has holes but is one connected component in our example.

All sample points are at lesser distance to the boundary than q. It follows that the q-dilation of
the boundary covers the points and α + q-dilation ∂R⊕ covers U . Every connected component of the
boundary dilation contains at least one connected component of the boundary and, consequently, at
least one sample point and its α-ball. Therefore, the number of connected components of ∂R⊕ is less
than or equal to the number of connected component of U .

Let # denote a function which maps a set to its number of connected components. Then the dilation
has #∂R⊕ connected components, the union of balls has #U connected components and according to
previous implication the following is valid: #∂R⊕ ≤ #U . The union of balls completely covers the
boundary, so, U has less or equal connected components than ∂R: #U ≤ #∂R (See Section 4.11.1 for
discussion).

Since ∂R⊕ is homotopy equivalent to ∂R, the number of connected components of ∂R⊕ and ∂R is
equal, #∂R⊕ = #∂R. It follows, that the number of connected components of the union of balls is
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equal to the number of connected components of the boundary: #∂R⊕ ≤ #U ≤ #∂R = #∂R⊕ ⇒
#U = #∂R.

According to Theorem 4.3 an α-shape is homotopy equivalent to the union of balls. It follows
that the α-shape has the same number of connected components as the union of balls: #U = #Sα.
Consequently, α-shape and the boundary have the same number of connected components: #Sα = #∂R.

II. Each erosion of an original region is contained in a single α-hole

In Figure 4.4 (b) the union of balls U is illustrated as the union of gray balls. The complement of
U is the space without U and can also be considered as a set of connected components. The union
of balls U completely covers the α-shape. Consequently the connected components of the complement
of the union of balls are completely contained in the connected components of the complement of the
α-shape. The connected components of the complement of the α-shape are called α-holes. In Figure 4.4
(b) the α-holes are regions surrounded by black edges and/or dark gray triangles but not the unions of
dark triangles.

The white spaces in Figure 4.4 (b) are the connected components of the complement of ∂R⊕ and
are called erosions of the regions. We denote them by R	. The boundary dilation by a value less than
r does not change the homotopy type of the boundary and the topology type of the regions. So, the
erosions of regions are topologically equivalent to the regions of the original space partition.

Since U is completely contained in ∂R⊕ (light gray strip in Figure 4.4 (b)) and the erosions of the
regions do not intersect ∂R⊕, each erosion of a region is contained in a single connected component of
U and, consequently in a single α-hole (darkened region on Figure 4.6 (b)).

III. α-hole containing erosion of an original region is an (α, β)-hole

α-holes are the connected components of the complement of an α-shape. As we may see in Figure 4.4
(b), not all α-holes correspond to an original region (α-holes without any white spaces).

An α-hole is the underlying space of Delaunay simplices which have been deleted during the α-
shape construction. So, we can say an α-hole is an (α, β)-hole if the corresponding set of Delaunay
simplices contains a simplex with circumradius greater than β ≥ α. According to Lemma 4.5 (compare
[Stelldinger and Tcherniavski, 2009c]) we also can say that an α-hole is an (α, β)-hole if and only if it
contains a point whose distance to the nearest sample point is at least β. Example (d) in Section 4.8
demonstrates the consequences of insufficient sampling if γ-ball is not contained in a region.

γ

β
α

q

(a) (b)

Fig. 4.6: (a) Light gray q + α-dilation. Gray q-dilation. Each region contains the γ-ball, with
γ = β + q and β = p+ q + α. The inner circle in the bottom region illustrates the distance

(γ − q − α) between the center of the γ-ball and the boundary of the α+ q-erosion R	 (boundary
of the white space). (b) α-hole (for example the right darkened region) containing the erosion of

an original region contains a γ-ball. The greatest inscribing ball (dashed circle) contains the γ-ball
as in (a). If the radius of the greatest inscribing ball is greater than γ and γ ≥ β + q then the

α-hole is an (α, β)-hole.
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(α, β)-shape-reconstruction requires that every original region contains an open γ-ball with γ ≥ β+q
and β = α + p + q. This means that the distance between the center of the γ-ball and its nearest
boundary point is γ. Consider for example in Figure 4.6 (a) the region on the extreme right. It contains
a γ-ball with γ = β + q.

Since the original region R completely contains its erosion R	 (the white space in Figure 4.6 (a)),
the distance between the center cγ of the γ-ball and the boundary of R	 is greater than γ −α− q. The
distance is illustrated as the radius of the inner circle in Figure 4.6 (a) in the bottom region.

Since an α-hole completely contains R	 (illustrated by the darkened region in Figure 4.6 (b)) and
all sample points have the distance to the boundary of R	 greater than α, the distance between cγand
its nearest sample point is γ − q ≥ β. It follows that the α-hole containing R	 is an (α, β)-hole.

IV. Every original region can be mapped to exactly one (α, β)-hole

II states that each erosion of an original region is completely contained in a single α-hole. It follows
that each original region can be mapped to exactly one α-hole, and according to III α-hole containing an
erosion of an original region is (α, β)-hole. Consequently, each original region can be mapped to exactly
one (α, β)-hole.

V. An α-hole that does not intersect any erosion of an original region is completely con-
tained in the α, q-dilation ∂R⊕ and cannot be an (α, β)-hole.

Erosion of regions contains all points of space which are at greater distance to the boundary of the
space partition than some value. In our case the value is α + q. If an α-hole does not intersect any
erosion of an original region, then there is no point in the α-hole with distance to the boundary greater
than or equal to α + q. In other words, all points of the α-hole are at lesser distance to the boundary
than α+ q and, consequently, the α-hole must be completely contained within the α+ q-dilation ∂R⊕.

All points in the α + q-dilation ∂R⊕ of the boundary are at lesser distance to the boundary than
α + q. The sampling conditions on the data set require for each point on the boundary the distance to
the nearest sample point to be less than p. Consequently, the distance between any point in the dilation
∂R⊕ and its nearest sample point is less than β = α+ q + p.

Now, first, we know that if an α-hole does not intersect any erosion of an original region then the
α-hole must be completely contained within the α+ q-dilation ∂R⊕. Second, we know that the distance
between any point in the dilation ∂R⊕ and its nearest sample point is less than β = α + q + p. Third,
according to Lemma 4.5 an α-hole is an (α, β)-hole if and only if it contains a point whose distance from
the nearest sampling point is at least β. It follows that if an α-hole does not intersect any erosion of
an original region then the distance between any point in the α-hole and its nearest sample point is less
than β = α+ q + p and, consequently, cannot be an (α, β)-hole.

VI. The correspondence between (α, β)-holes and original regions is 1-to-1.

We have two kinds of α-holes: those which do not intersect erosions and are not (α, β)-holes (V) and
those which do intersect erosions and necessarily are (α, β)-holes (III). According to IV each original
region can be mapped to exactly one (α, β)-hole.

Can each (α, β)-hole be mapped to exactly one region? Let us consider the opposite. There is an
α-hole which cannot be uniquely mapped to exactly one original region.

We consider only α-holes which intersect erosions of original regions and according to III are (α, β)-
holes. So, using II the erosions are completely contained in (α, β)-holes, consequently one (α, β)-hole
must either not contain any erosion which is a contradiction of III or contain more than one erosion.

Consider an α-hole that contains more than one erosion. The two corresponding original regions are
separated by at least one boundary point. Consequently the erosions are separated by at least one open
α+ q-ball. Since both erosions are completely contained in the α-hole the boundary of the α-hole does
not intersect the α+ q-ball. It follows that the α-balls placed on the sample points in the α+ q-ball do
not intersect. This implies that there has to be a point in the α + q-ball which is not contained in the
union of balls and thus has a distance to the nearest sample point greater than α

But according to the sampling conditions the distance between each boundary point and its nearest
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sample point is at most p < α. Since the original shape is assumed to be embedded into a continuous
space two different regions cannot be separated by one point only. The boundary point which corresponds
to the α+ q-ball has a neighbor at infinitesimal distance. The sample points of the two boundary points
are at distance p and, consequently, the α-balls placed on those sample points would intersect and this
contradicts the assumption.

From the previous consideration we conclude that each (α, β)-hole can be mapped to exactly one
region and together with IV we establish a 1-to-1 correspondence between (α, β)-holes and original
regions. The boundary of the space partition and the (α, β)-shape-reconstruction (union of edges, gray
and dark gray triangles in Figure 4.7 (a)) enclose the same number of regions.

VII The original boundary has the same number of connected components as the (α, β)-
shape-reconstruction.

β

β

β

β

Fig. 4.7: (α, β)-shape-reconstruction is the α-shape (union of edges and dark gray triangles)
with filled not-(α, β)-holes (union of thin edges and gray triangles). (α, β)-holes are α-holes with

the greatest inscribing ball (circles in the illustration) greater than a β-ball (circle with the
β-notation)

The (α, β)-shape-reconstruction is the union of the α-shape (union of thick edges and dark gray
triangles in Figure 4.7) and the not-(α, β)-holes (union of thin edges and gray triangles in Figure 4.7).

According to V all not-(α, β)-holes are contained in the α, q-dilation ∂R⊕ of the boundary. The
union of not-(α, β)-holes is the difference between the (α, β)-shape-reconstruction and the α-shape. So,
all differences between (α, β)-shape-reconstruction and the α-shape are confined within ∂R⊕. This
implies that the number of connected components ∂R⊕ is less than or equal to the number of connected
components in (α, β)-shape-reconstruction (D⊕α,β) (#∂R⊕ ≤ #D⊕α,β).

The α-holes are bounded by elements of the α-shape, so, a union of the α-shape and not-(α, β)-holes
does not increase the number of connected components of the α-shape. It only fills the holes of the
α-shape. This implies that (α, β)-shape-reconstruction (D⊕α,β) has not more connected components than

the α-shape (Sα) (#D⊕α,β ≤ #Sα)

According to I, the α-shape has as many connected components as the boundary. Consequently, the
same is valid for the α, q-dilation (∂R⊕) of the boundary: #Sα = #∂R = #∂R⊕.

Hence, the original boundary and the (α, β)-shape-reconstruction have the same number of connected
components: #∂R⊕ ≤ #D⊕α,β ≤ #Sα = #∂R = #∂R⊕.

VIII The complement of any region has the same number of connected components as the
complement of the corresponding (α, β)-hole.

Erosion R	 of a region R is by definition contained in the region itself. According to II+III the
erosion is also contained in a single (α, β)-hole Hα,β and according to VI the correspondence between
Hα,β and R is 1-to-1.

Consider the components of the complement (R	)c of an erosion of an original region R.
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(a) (b)

Fig. 4.8: (a) Noisy sampling of a contour. The complement of the light gray region consists of
three connected components: two white circles and the surrounding region. (b) Light gray is the
boundary α+ q-dilation, white space is the complement of the erosion of the light region in (a).

Dark gray is the (α, β)-shape-reconstruction. Gray region is the (α, β)-hole (Hα,β) corresponding
to the gray region in (a) The complement of Hα,β also consists of three connected components.

Notice that (R	)c can have more connected components than one. Consider, for example, a space
partition divided by a smaller ball which is inside a greater ball. We have a boundary of the space
partition consisting of two connected components (the inner ball and the outer ball) and we have three
regions (the background or the infinitive region, the region between the greater ball and the smaller ball
and the inner region of the inner ball). So, the complement of the second region consists of the union
of the boundary (the two balls), the outer region and the inner region, which results in two connected
components. The complement of the inner region of a greater ball with two smaller balls side by side
inside the greater one results in three connected components (see Figure 4.8 for illustration).

So, the complement of a region is everything else but the region itself.We want to show that the
complement of an original region (white space in Figure 4.8 (a)) and the complement of the corresponding
(α, β)-hole (union of white space, light gray space and the dark gray α-shape in Figure 4.8 (a) ) have
the same number of connected components (in our example three).

Consider two original regions whose boundaries are not connected and the two original regions are
adjacent to R (the two white circles in Figure 4.8 (a) ). The corresponding (α, β)-holes are then expected
to be two unconnected components of Hc

α,β (in Figure 4.8 (a) each α-hole is the union of the white erosion
and the light gray part of the boundary dilation).

Let us assume the opposite. The two implied different components of Hc
α,β are connected. Then

there has to be a sequence of cells in the boundary of Hc
α,β which connects the boundaries of two different

(α, β)-holes. The boundary of any (α, β)-hole is a subset of the (α, β)-shape-reconstruction D⊕α,β and,
consequently, is completely contained in the α, q-dilation of the boundary. Consequently, the sequence
of connecting cells is in the α, q-dilation. It follows that the α, q-boundary dilations of the two implied
different regions are connected which is a contradiction to the r-stability of the original shape.

Is it possible for the boundary of an (α, β)-hole to be inappropriately disconnected? According to
VI the correspondence between the (α, β)-holes and the regions of the space partition is 1-to-1, and, as
we have seen before, the regions cannot be connected, consequently, the 1-to-1 mapping cannot result.
The result is then the subdivision of one region and equivalently the merge of two neighboring regions.

The question is, can the 1-to-1 mapping between regions and (α, β)-holes be preserved but the
topological properties of a region be destroyed during the reconstruction process? There are two cases
to consider.

First, two different regions only touch, so, the intersection of their boundaries is not empty. The
reconstructed boundaries of the corresponding (α, β)-holes must be connected too. The destroyed con-
nection between the region boundaries does not increase or decrease the number of (α, β)-holes but
changes the topology of the boundary and the (α, β)-hole containing the two regions. In this case, the
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number of connected boundary components increases.

Consider for example two equal cones one opposite to the other touching at the end. The space
partition consists of the two enclosed regions and the infinite background region. The boundary is only
one connected component. Each cone encloses an open ball whose radius determines the value r. The
boundary of corresponding (α, β)-holes is one connected component.

Let in our first example the boundaries of the (α, β)-holes not intersect. Recall that the boundary
of an (α, β)-hole is the union of simplices adjacent to the (α, β)-hole. But the boundary can have
artifacts which are adjacent to the boundary but not adjacent to the interior of the (α, β)-hole. Such
cells are on the other “side” of the boundary. So, we consider a connection which is on the other side of
both (α, β)-holes. Removing the connection between the boundaries preserves the 1-to-1 correspondence
between regions and the (α, β)-holes but not the 1-to-1 correspondence between the connected boundary
components.

Is it possible that such a connection is deleted during the reconstruction process? The union of
α-balls completely covers the original boundary and is homotopy equivalent to the α-shape. It follows
that there is a subset of the union of α-balls which completely covers the original boundary including
the touching points of the implied regions. Then the corresponding subset of the α-shape consists of
the boundaries of the two (α, β)-holes and the connection between them. Consequently, the connection
could not have been removed in the α-shape construction.

The (α, β)-shape-reconstruction does not delete any simplices but fills not-(α, β)-holes with cells
which are greater than α. Consequently, the connection is preserved in the (α, β)-shape-reconstruction.

The second case in which the 1-to-1 mapping between regions and (α, β)-holes is preserved but the
topological properties of a region could be destroyed is if a region is touching itself. Here the boundary
of the corresponding (α, β)-hole could have adjacent simplices which are not adjacent to the (α, β)-hole
itself. In such a case we would have the same consideration as in the first case. Or the boundary could
have simplices which have the same adjacent (α, β)-hole on both sides.

This can occur in 3D but not in 2D. Consider for example a donut but let the hole of the donut be
closed by a membrane. This membrane is a boundary which has the same infinite region on both sides.
Forcing through the membrane does not destroy the 1-to-1 mapping between regions and (α, β)-holes
and does not change the number of connected boundary components but destroys the topology of the
original infinite region. Forcing through the membrane in the α-shape would need a hole in the union of
α-balls. But sampling conditions ensure the union of α-balls to cover the membrane, consequently, the
membrane is also preserved in the (α, β)-shape-reconstruction. �

4.7 Thinned-(α, β)-Shape-Reconstruction

The (α, β)-shape-reconstruction is a thick shape of a simplicial subcomplex of the Delaunay triangulation.
Consider the (α, β)-shape-reconstruction of our 2D example in Figure 4.9. The corresponding (α, β)-
complex - the union of α-shape (black in Figure 4.9) and the not-(α, β)-holes (gray in Figure 4.9) -
contains triangles. The original contour is a thin line, i.e for all points of the boundary there is no
δ ∈ R+ such that the δ-neighborhood of the point is topologically equivalent to a 2D-ball (disc). The
neighborhood of any inner point of a triangle in the 2D-reconstruction is topologically equivalent to a
disc. Our aim in 2D is to find a contour reconstruction topologically equivalent to the original contour.
In 3D we consider the thin boundary between regions, consequently, for every point on the boundary
there is no δ ∈ R+ such that the δ-neighborhood of the point is topologically equivalent to a 3-ball.

To achieve our aim we need to thin out the shape by preserving its original homotopy type. The
homotopy-type-preserving deformation retraction on simplicial complexes can be done by elementary
collapse (see Definition 2.43, compare with [Dey et al., 1998]) on simple simplices, i.e. simplices which
have only one coface of any higher dimension.
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(a) (b)

(c) (d)

Fig. 4.9: (a) (α, β)-shape-reconstruction is the α-shape (union of edges and dark gray triangles)
with filled not-(α, β)-holes (union of thin edges and gray triangles) (b) result of collapse on all
simple edges of the (α, β)-shape-reconstruction. (c) thinned-(α, β)-shape-reconstruction (Sα,β)

(d) original boundary (∂R)

4.7.1 Thinning in 2D

Returning to our 2D example, the (α, β)-shape-reconstruction Figure 4.9 (a) is partially thick. It contains
plane components (gray and dark gray polygons). Polygons are unions of Delaunay triangles. Some of
such triangles are on the boundary of the shape. In our illustration these triangles have white space on
at least one side. The edge between a gray triangle and the white space is simple. This edge has on one
side a triangle of the (α, β)-shape-reconstruction and on the other side a triangle of an (α, β)-hole.

The (α, β)-shape-reconstruction contains tails as well. Tails are sequences of linked edges having at
least one edge which is linked on one side only. We say one of its vertices is simple, i.e. the simple vertex
has only one incident simplex (the edge in the tail).

The next step of the algorithm is to perform the elementary collapse until no simple simplex can
be found. Notice that by deleting the pair consisting of the simple simplex and of its coface from the
reconstructed complex the adjacent not deleted simplices may become simple.

Deleting an edge and its adjacent triangle leaves the two other edges of the triangle in the complex.
If one of the remaining edges has been adjacent to two triangles of the (α, β)-shape-reconstruction then
by deleting one of them the edge is simple. Otherwise if the remaining edge has had only the one triangle
then by deleting it the edge becomes thin or as we call it singular. Singular edges may be parts of the
reconstructed contour or parts of tails.

The result of thinning on simple edges in our 2D example is illustrated in Figure 4.9 (b). The gray
plane parts are not completely enclosed by edges. The result of thinning on simple vertices is shown in
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Figure 4.9 (c). We notice a great amount of free vertices not linked by the reconstructed contour. Such
singular vertices are artifacts of the noise corruption of the sampling. The concurrent effect of noise
is the distorted contour which seems to have lost its smooth pieces. But as Theorem 4.6 states and
the deformation retraction of elementary collapse implies the contour in Figure 4.9 (c) is topologically
equivalent to the original contour in Figure 4.9 (d).

4.7.2 Thinning in 3D

The (α, β)-shape-reconstruction in three-dimensional cases already correctly separates different regions
from each other. The not-(α, β)-holes are filled and can be thinned out to result in a thin boundary.
However the boundary (α, β)-shape-reconstruction in three-dimensional cases may consist of topologi-
cal noise which does not contribute to separate different three-dimensional regions. These topological
artifacts are also the result of noise corrupted sampling but cannot be completely deleted by thinning.

Fig. 4.10: α-shape of a unit surface. Marked are some irregularities of the α-shape: concavities
(C), tunnels (T), bridges (B).

In Figure 4.10 we illustrate the topological distortions on the surface of a ball. For illustration the
thinning on simple edges was not performed so we differentiate the tunnels (T) from bridges (B) and
discover cavities (C) which are not completely enclosed by triangles. Considering for example a tunnel
we observe simple edges, so the thinning step removes these simple edges and the adjacent triangle. The
result is a sequence of linked edges. This sequence is connected on both ends to the boundary, such that
no vertex is simple.

Under assumption that no such sequences of edges are in the reconstruction the algorithm can be
extended to get rid of such distortions on the surface. The simple sequences of edges are then removed
in the last step of the reconstruction algorithm.

4.7.3 Minimal Reconstruction

The new reconstructed regions which result from thinning the (α, β)-shape-reconstruction are (α, β)-
holes. In Section 2.4.5 we discussed how the boundary of the reconstructed regions may differ depending
on the order in which the simple simplices are chosen in thinning steps. The illustrations in Figure 2.18
demonstrate the difference. Here we intend to derive a minimal reconstruction as the thinning result of
the (α, β)-shape-reconstruction.

We propose to reconstruct the boundary with the smallest triangles possible. So, we compare the
reconstructions by the size of Delaunay simplices which are needed for topologically correct reconstruc-
tion.
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Definition 4.7 (Minimal reconstruction). Let Hα,β be an (α, β)-hole and let ∂Hα,β be its boundary.
Let R	 be the erosion of an original region completely contained in Hα,β. An (α, β)-hole H ′α,β is said

to be compatible to Hα,β if and only if R	 is completely contained in H ′α,β.
Let Hα,β and H ′α,β be compatible and let D and respectively D′ be the corresponding subsets of

Delaunay triangulation. We have the following correspondence Hα,β = |D| and H ′α,β = |D′| Let ∂D and
∂D′ be the boundaries of D and D′ respectively. So, ∂D and ∂D′ are subsets of Delaunay complex. Let
T := (σ0, σ1, . . . , σn) with T ′ := (σ′0, σ

′
1, . . . , σ

′
m) be the lists of all simplices of ∂D and ∂D′ respectively

ordered descending by their size. Then we say ∂D is smaller than ∂D′ (∂D < ∂D′) if and only if T < T ′

regarding lexicographic order. The boundary ∂D is minimal, if there exists no compatible boundary ∂D′′

such that ∂D′′ < ∂D.

Notice, that we compare ordered sets of simplices of different length. The first occurrence of a
different element in the tuple decides the order (compare lexicographic order in numbers: . . . {1, 1, 2} <
{1, 2} < {2}).

The implementation of the thinning step is done by a priority queue. A thinning step deletes the
greatest simplex in the queue and its adjacent coface. The new simple simplices are then pushed into the
queue. The thinning process proceeds until the queue is empty and no new simple simplices are in the
boundary. Obviously, the thinning terminates since only a finite number of simplices is in the boundary.

Corollary 4.8 (Minimal (α, β)-shape-reconstruction). The result of thinning of (α, β)-shape-recon-
struction is minimal if the thinning is performed in descending order regarding the circumradii of simple
simplices.

Proof: Consider the opposite: there is a thin boundary reconstruction ∂DR which is smaller than
the thinned-(α, β)-shape-reconstruction. Consider the list of simplices in the assumed lesser boundary
reconstruction sorted in increasing order and consider the first simplex σ which is not in the boundary
of the thinned-(α, β)-shape-reconstruction. This simplex must have been deleted in the thinning process
before a greater simplex σ′ became simple.

Consider the not-(α, β)-holes in the boundary of the (α, β)-shape-reconstruction containing σ. σ′ is
in the not-(α, β)-hole and is greater than σ. It follows that there is an increasing flow starting in σ into
the interior of the not-(α, β)-hole. The not-(α, β)-hole must contain a local maximum. If there is no
further neighboring not-(α, β)-holes then the boundary is already minimal according to flow relation in
the interior of the not-(α, β)-hole and the assumption leads to a contradiction.

So, there have to be adjacent not-(α, β)-holes, and σ′ and σ is in their boundary. Consider the
boundary of all the neighboring not-(α, β)-holes. σ is the greatest in this boundary. All remaining sim-
plices in the boundary are lesser than σ. So, all new simple simplices are either greater and are removed
before the aforesaid remaining simplices or are lesser than the implied remaining simplices. It follows
that σ′ is either lesser or is removed before the smallest simplex in the said remaining simplices which
is a contradiction to the assumption. �

Consider a boundary as a result of thinning an (α, β)-shape-reconstruction with topological noise on
the boundary. Let one of these topological distortions be a tunnel. The thinning process removes all
simple simplices, so a chain of singular edges remains after thinning process. Comparing this boundary
and the boundary without this chain, we notice that the compatible regions are equivalently separated
from each other but the boundary with the chain is smaller.

In [Stelldinger, 2008c] it is assumed that the reconstructed boundary consists only of simplices which
contribute to separate the regions. So, the chain of singular simplices - in 3D, edges - is removed in the
extended step.

4.8 Algorithm

In this section we summarize the algorithm steps derived in the sections above. For illustration we
choose three samplings of one and the same space partition. Two of them fulfil the required sampling
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conditions and one does not. The example used in the above sections illustrates a very noisy but very
dense sampling. With the second example we demonstrate the algorithm performance on very rough
sampling but which does not permit great amounts of noise. The last example demonstrates the result
of the algorithm on an insufficient sampling.

4.8.1 Sampling Parameters.

The first step in the reconstruction procedure is to determine the sampling parameters. The parameters
r and γ are given by the original shape. We assume for all three examples the values in proportion to
r. So, we may say r = 1 and γ = 1.42993r or simply γ = 1.42993.

The reconstruction requires the following conditions to be fulfilled to result in correct shape.

1 : p < α ≤ r − q ∧ 2 : β = α+ p+ q ∧ 3 : γ ≥ β + q > 2(p+ q)

The next example illustrates a very sparse sampling with p = 0.16, q = 0.53. According to first
condition 0.16 < α ≤ 1− 0.53 = 0.47. According to the third condition α ≤ 0.20993. So, we choose for
the first example α = 0.20493. The union of α-balls and the sampling is illustrated in Figure 4.11 (b).

At first we take our example from previous sections with p = 0.4512, q = 0.08939. According to first
condition 0.4512 < α ≤ 1 − 0.08939 = 0.91061. According to the third condition α ≤ 0.79996. In this
example we set α = 0.5. The sampling is demonstrated in Figure 4.11 (c).

Our last 2D-example demonstrates the consequences of an insufficient sampling. In this example the
data acquisition device delivers only very noisy data with q = 0.54607 and is not able to ensure a dense
boundary sampling. The only possible density is p = 0.3765. Here we badly choose α = 0.5684 (see
Figure 4.11 (d) ). So, we break the first condition 0.3765 < α ≤ 1 − 0.54607 = 0.45393. The third
condition requires α ≤ −0.0387 and, consequently, is not possible to be met.

4.8.2 (α, β)-Shape-Reconstruction.

The first step of the algorithm is to compute the α-shape on the sample points. The α-shape is a subset
of Delaunay triangulation and as we introduced in Section 4.4 the α-shape is dual to the union of α-balls
shown in Figure 4.11 as union of gray balls.

An α-shape (thick black edges and dark gray triangles in Figure 4.12) is a subcomplex of the Delaunay
triangulation (light gray edges). Once the Delaunay triangulation is computed the construction of the α-
shape is done by selecting the Delaunay simplices which, first, are less than α and, second, the circumball
does not contain any other vertex. The second condition is easily checked since only vertices on adjacent
simplices have to be tested and the neighborhood relation is already given by Delaunay construction.

Building the (α, β)-shape-reconstruction is the second step of the algorithm. The greatest simplex
in the not-(α, β)-hole is less than β. So, the construction can be done by sorting the simplices in
decreasing order. Starting with the greatest simplex greater than β the first greatest simplex of the
greatest (α, β)-hole is found. In 2D the greatest simplex is a triangle and in 3D it is a tetrahedron.

A simplex of the same dimension as the greatest one is in the same (α, β)-hole if the incident simplex
of the same dimension is in the (α, β)-hole and the intersection of the two simplices is not in the α-shape.
The intersections of simplices - the faces of simplices - are in the same (α, β)-hole if they are not α-shape.

In fact we described the traversal though the Delaunay triangulation starting in the greatest simplex
greater than β and ending on the bounds of the α-shape. All simplices we pass through are in the same
(α, β)-hole.

The (α, β)-shape-reconstruction is then the Delaunay trinagulation without the (α, β)-holes. The
(α, β)-holes are illustrated as white spaces in Figure 4.12 and the (α, β)-shape is then the union of gray
polygons (not-(α, β)-holes) and dark gray polygons and thick black edges (α-shape).

If we compare the results of the (α, β)-shape-reconstruction we notice that the not-(α, β)-holes are
the consequence of great amounts of noise or, more precisely, the great ratio between the noise q and
the chosen α.

In the first example the ratio is 0.53/0.20493 which allows more α-holes to hide inside the q-dilation.



4.8. ALGORITHM 97

(a) (b)

(c) (d)

Fig. 4.11: (a)original space partition (b) The α+ q-dilation ∂R⊕ (light gray) of the space
partition covers the union of α-balls U (the union of gray and dark gray balls). U covers ∂R

(black curve), ∂R has the same number of components as U (one connected component only in
this case; but a circle is one connected component too).

Whereas in the second example the q-dilation with q = 0.08939 is too thin to include α-holes with
α = 0.5.

The third example demonstrated consequences of two problems. First the α-value has been overes-
timated. The consequence is, too great alpha balls intersect more than allowed which results in more
connections between vertices in the α-shape. In the center of the example in Figure 4.12, the narrowing
of the middle region develops a connection which in our 2D example divides the (α, β)-hole in two. So,
the one-to-one mapping between the (α, β)-holes and the original regions is no longer valid.

In 3D there are two different ways in which a narrowing can develop in the boundary. First is the
“bottle neck”. The result of insufficient sampling or overestimated α-value would close the narrowing
with a surface membrane and divide the corresponding region in two.

The other kind of a narrowing in 3D develops if the circular surface of a disc is pressed together.
Invalid reconstruction of such a narrowing results in a connection, a chain of singular simplices in such
a narrowing which connects the upper surface with the bottom one and does not divide the inner region
in two but destroys the topology of the inner region and the surface. The reconstructed surface is then
a nonmanifold and the inner region is a donut.

The second problem in the third example is the too great amount of noise. According to the parameter
values the γ-value has to be γ = p + α + q + q = 0.3765 + 0.5684 + 0.54607 + 0.54607 = 2.03703 but
the greatest inscribing ball in the bottom region has the radius 1.42993. Consequently, the computed
β-value is too great and the bottom α-hole is computed to be a not-(α, β)-hole and is filled in the
(α, β)-shape-reconstruction (greatest of gray polygons in Figure 4.12 (d) ).
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(a) (b)

(c) (d)

Fig. 4.12: (a)original space partition. (b,c,d) Gray thin edges: Delaunay triangulation. Dark
gray polygons and thick edges: α-shape. Gray polygons: not-(α, β)-holes. Union of thick edges,
gray and dark gray polygons: (α, β)-shape-reconstruction. (b) Small α, highly noise corrupted
sampling (c) very sparse sampling density, almost no noise (d) Overestimated α, insufficient

sampling density, highly noise corrupted sampling.

4.8.3 Topology Preserving Thinning

The original boundary is assumed to be infinitely thin. So, to achieve the topologically correct recon-
struction the (α, β)-shape-reconstruction has to be thinned. Homotopy preserving thinning is done by
elementary collapse (see Definition 2.43).

Elementary collapse removes a simple simplex and its proper coface from the reconstructed simplicial
complex. The (α, β)-shape-reconstruction infills the not-(α, β)-holes. So, it adds the interiors to the holes
until it touches the boundary. Consequently, the filling elements are bound by the α-shape and cannot
be simple. It follows that the first simple candidates to be collapsed on are simplices of the α-complex.
This fact can effectively be used in the implementation since only a subset of simplices needs to be
checked for the property to be simple.

Thinning vs. Merging Consider a singular simplex which bounds a not-(α, β)-hole. After the filling
this simplex becomes simple. The elementary collapse on the simplex deletes it and the first element of
the interior of the hole, a Delaunay simplex greater than α. So, the new simplices which become simple
are in the interior of the not(α, β)-hole.

The elementary collapse does not change the homotopy type. So, proceeding on simple simplices
inside the not-(α, β)-hole is homotopy equivalent to any other collapsing order. The thinning on simplices
in the not-(α, β)-hole completely contracts its interior leaving the boundary, and as we concluded before
the boundary is in the α-complex.
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We notice that the thinning on simple simplices inside the not-(α, β)-hole can be seen as the merging
of two reconstructed regions on their boundary simplex. In this case one of the reconstructed regions
is the not-(α, β)-hole. We use this observation to compare the (α, β) reconstruction algorithm with the
algorithm in the following chapter. (See in Section 5.13.1, Theorem 5.25)

Thinning Order

(a) (b)

Fig. 4.13: (a)original space partition. (b) (α, β)-shape-reconstruction thinned in increasing
order - on a smaller simple simplex first.

If more than one simple simplex is to be deleted the order determines the geometrical properties of
the outcome. The topological properties are preserved in any case.

The result of elementary collapse in increasing order is demonstrated in our first example in Fig-
ure 4.13 (b). The thinning on the same (α, β)-shape-reconstruction in decreasing order is presented in
Figure 4.14 (b).

The choice of the thinning order may depend on the difference between the sampling density in closer
environment of the boundary compared with the sampling density at farther distance. In cases of laser
range scanners the sampling points are very close to the boundary. The sampling points at greater
distances from the boundaries are outliers and are great deal less probable. In this case the decreasing
thinning is preferable. The algorithm prefers to connect vertices near the boundary and by doing so to
approximate the boundary geometrically more precisely. Since the number of simplices connecting the
more distant points is minimized the reconstructed boundary is smoother.

The volume based digitization methods based for example on edge detection may deliver samplings
where the density in the p-environment of the boundary does not differ from the sampling density in the
q-environment of the boundary. In such case the difference between the greatest simplex and the smallest
simplex is not sufficient. The result of thinning in decreasing order is then hardly distinguishable from
the thinning in increasing order. Such consequence may be observed on the boundary reconstruction of
top left region in Figure 4.13 (b) and in Figure 4.14 (b).

4.8.4 Thinned-(α, β)-Shape-Reconstruction Method.

Summarizing the previously derived and discussed reconstruction steps into one method we obtain the
following algorithm:

1. Reconstruction Parameters: Given the set of sample points S and the sampling parameters
r, γ, p and q, choose α such that p < α ≤ r − q ∧ α ≤ γ − p− 2q

2. (α, β)-Shape-Reconstruction

• Compute the Delaunay triangulation D and α-complex Dα on S



100 CHAPTER 4. THINNED-(α, β)-SHAPE-RECONSTRUCTION

(a) (b)

(c) (d)

Fig. 4.14: (a)original space partition. (b,c,d) Thinned-(α, β)-shape-reconstruction. (b) Small
α, highly noise corrupted sampling (c) very sparse sampling density, almost no noise (d)

Overestimated α, insufficient sampling density, highly noise corrupted sampling.

• Compute the not-(α, β)-holes - the connected components of D\Dα with the greatest Delaunay
simplex greater than β, with β = p+ α+ q.

• The (α, β)-Shape-Reconstruction D⊕α,β is the union of Dα and the not-(α, β)-holes.

3. Homotopy Preserving Thinning. Put all simple simplices - simplices in D⊕α,β with only one

adjacent proper coface in D⊕α,β - in priority queue Q in increasing order according to their circum-
radius. Until Q is not empty do:

(a) σ = Top element of Q.

(b) Pop Q.

(c) If σ is not simple, continue.

(d) Else remove σ and its proper coface τ from D⊕α,β
(e) Add all simple simplices adjacent to τ to Q.

Extension: If it is assumed that the reconstructed boundary consists only of simplices which contribute
to separate regions as it is in [Stelldinger, 2008c], then remove all singular edges from Dα.

Resulting Reconstruction. Let us observe now the result of the thinning. Notice that it is not the
aim of the algorithm to connect all sample points. In very noise corrupted cases connecting all sample
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points would result in outrageously disturbed boundary reconstruction. In Figure 4.14 (b) we notice
that our guaranteed topologically correct boundary reconstruction leaves nearly every second sample
point not connected to the boundary approximation. The resulting reconstruction compresses the input
data which makes the possible postprocessing steps less computationally consuming.

The built-in problems of the third example in Figure 4.14 (d) demonstrate the consequences on the
resulting reconstruction. Since the (α, β)-shape-reconstruction is homotopy equivalent to the thinned
result the consequence of additional connections remains. The connection in the narrowing in the
middle region still divides the originally one region into two reconstructed regions. The completely
filled reconstructed region contracts to a point and, so, one of the original regions disappears in the
reconstruction. Even so in our case the one-to-one mapping between the reconstructed regions and the
original ones can still be established accidentally.

4.9 Comparison to Other Approaches

In this section we compare the related work with the result of thinned-(α, β)-shape-reconstruction using
the sampling requirements, conditions on the shape and the guaranteed preservation of topological
properties. To illustrate the differences in the sampling density we compute the lower bound of needed
sample points to correctly reconstruct the surface of a unit sphere.

4.9.1 Points on Sphere

The sampling requirements in related results on uniformly sampled boundary reconstruction vary de-
pending on parameter settings and frameworks of the corresponding theorems. To compare the results
we have to generalize the conditions for guaranteed reconstruction. To do that we choose the following
aspects: the sampling density (p), the maximal deviation of sample points from the boundary q.

Using the sampling density we can compute a more intuitive measure: the number N of sampling
points one needs in order to reach such a density in case of a unit sphere. To compute this number is
commonly known as the sphere covering problem and there exist very tight lower bounds for estimating
this minimal number of sampling points for a given p, e.g. following [Fejes, 1948] we get:

N ≥ 2 + 2π/

(
6 arccot

(√
3

2
(2− p2)

)
− π

)
.

We denote this computed number in Table 4.1 by # which means that the method and the guaranteed
result require more than this number of points to correctly reconstruct the boundary of a unit sphere.
The correctness also varies between the methods and is discussed below.

4.9.2 Sampling Conditions

In [Bernardini and Bajaj, 1997] a noise-free sampling is assumed to reconstruct a smooth 1-manifold - a
contour. This contour may partition the plane into multiple regions but the boundaries of these regions
may not intersect. The construction of the sampling described by the authors for the proof ensures a
ball which intersects the boundary in no or one point, or the intersection is one connected component.
This corresponds to the requirement for an empty tangential ball for each boundary point which is the
definition of r-regular set (compare Definition 2.30). We imply the sampling density p to be less than r
which corresponds to p < 1 and q = 0 parameters for the unit sphere sampling.

The 3D generalization of the result in [Bernardini and Bajaj, 1997] is not valid as proven by coun-
terexample in [Stelldinger, 2008c]. Nevertheless, with p < 0.5r and q = 0 the α-shape on the sampling
is proven in [Stelldinger, 2008c] to be homotopy equivalent to the original 2-manifold.

The authors in [Niyogi et al., 2008] present sampling conditions for noise-free and noisy cases. The
sampling density in noise-free cases has to be less than 0.48τ . The conditional number τ controls the
curvature of the manifold and corresponds to the value r for r-regular sets. So, we have for a noise-free
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sampling of unit sphere p < 0.48 and q = 0. The noisy sampling is modeled by a probability distribution
with support less than (

√
9 −
√

8)τ < 0.172τ . Since the density and noise are modeled by the support
we have the sampling with p, q < 0.172 for the unit sphere.

The result on uniform noisy sampling in [Chazal and Lieutier, 2006] is guaranteed, if the Hausdorff
distance between the sampling points and the original surface is less than 1/8 of the weak feature size
of the manifold. For the unit sphere sampling we imply p, q < 0.125.

The reconstruction in [Chazal et al., 2009] preserves the topological properties of the original, if the
point set taken from the original boundary - not neccessarily a smooth 2-manifold - is a κ, µ-sampling
(in Definition 3.7) with

κ =
µ2

5µ2 + 12

The sampling condition requires the maximal Hausdorff distance between the sampling and the
original boundary of κ times the µ-reach of the surface. We recall that the results in [Chazal et al., 2009]
are based on µ-critical point theory, where a µ-critical point is a point at which the gradient norm does
not exceed µ. The µ-reach (compare Definition 2.38) is the infimum of all distance values at points with
gradient norm less than µ.

Consider the gradient values for the surface of a sphere. The norm of the gradient is 1 at all points
except on the boundary and the center of the sphere which is a critical point with zero gradient norm.
We set µ = 1. There is only one point with gradient norm less than 1 and this is the center of the sphere
with gradient norm zero. Its distance value is 1, so, the µ-reach and the weak feature size are equal for
the sphere.

We compute κ with µ = 1 and obtain κ = 1/17. The sample points may deviate by 1/17 from the
boundary. It follows that a unit sphere can be reconstructed by p = q < 1/17.

The thinned-(α, β)-shape-reconstruction in [Stelldinger and Tcherniavski, 2009c] requires p < 0.5r
and q < r − p. The maximal deviation of sample points from the original boundary depends on the
sampling density p. In fact we have even more conditions on the sampling depending on the space
partition and the size of the regions (compare Section 4.3). In case of the unit sphere γ is equal 1.
According to third condition, following is valid γ ≥ β+ q > 2(p+ q). So, if we choose to sample the unit
sphere with p ≈ 0.5r the sampling conditions would not allow any noise.

In the noise-free case the number of required points to correctly reconstruct the surface of a unit sphere
is 22. Allowing for example the same amount of noise as the sampling density we obtain p, q ≈ 0.25r.
In this case the lower bound of needed sample points is 78.

4.9.3 Comparing Results

We order the relevance of the requirements in following way. The condition to reconstruct a 2-manifold
is weaker than the restriction to 1-manifold. Nonsmooth manifold generalizes the reconstruction of a
smooth manifold. The extension of the shape to be nonmanifold has obviously the highest priority. We
use these priorities to sort the related work in Table 4.1 in increasing order.

The methods we consider for the comparison differ in the definition of the correct reconstruction. The
weakest equivalence between the reconstruction and the original boundary is the homotopy equivalence.
Homotopy equivalence allows the reconstruction to be thick.

In [Stelldinger, 2008c] the reconstruction (α-shape) is homotopy equivalent to the original boundary.
Union of balls in [Chazal et al., 2009] is homotopy equivalent to the sufficiently small dilation of the
boundary. The Union of balls in [Niyogi et al., 2008] is homotopy equivalent to the manifold.

The 2D reconstruction in [Bernardini and Bajaj, 1997] is homeomorphic to the original contour. The
homeomorphic reconstruction does not allow thickness. So, the homeomorphic reconstruction is infinitely
thin if and only if the original contour is thin.

In [Chazal and Lieutier, 2006] the boundary of the union of balls is two connected components each
of which is proven to be isotopic to the original surface. The isotopy is the strongest equivalence here.
Simply speaking, two sets are isotopic if they can be deformed one into the other without tearing or
self-intersection.
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method p q # comments

Bernardini and Bajaj 1 0 4 2D smooth manifold contour
[Bernardini and Bajaj, 1997] 4 points for circle, α-shape

Niyogi at al. 0.48 0 22 smooth manifold
[Niyogi et al., 2008] homotopy by α-shape

Stelldinger 0.5 0 22 smooth manifold
[Stelldinger, 2008c] homotopy by α-shape
Chazal and Lieutier 0.1 0.1 484 smooth manifold, λ-medial axis

[Chazal and Lieutier, 2006] homotopy by α-shape
Niyogi at al. 0.172 0.172 164 smooth manifold

[Niyogi et al., 2008] homotopy by α-shape
Chazal and Lieutier 0.059 0.059 1390 nonsmooth manifold
[Chazal et al., 2009] homotopy by α-shape

thinned-(α, β)-shape-reconstruction 0.5 1− p 22 22 points for q = 0, 78 points for p, q < 0.25
[Stelldinger and Tcherniavski, 2009c] nonsmooth nonmanifolds

Table 4.1: Comparison of different surface reconstruction algorithms. The values p, q and the
number of sample points # refer to the correct reconstruction of a unit sphere. The p, q and #

values are considered to be less than the given number.

(a) (b) (c) (d)

Fig. 4.15: Surface of a unit sphere. The data set consists of 1001 nearly evenly distributed
sample points with p, q < 0.45

The result of thinned-(α, β)-shape-reconstruction is a space partition which is proven to preserve
connectivity and neighborhood relations and to define a one-to-one mapping of the reconstructed and
original regions.

We notice that the related works do not always present an algorithm and the correct reconstruction is
only a union of balls of a certain radius centered on sample points. Fact is that by [Edelsbrunner, 1993]
the union of balls is homotopy equivalent to its dual α-shape. so, for any result on union of balls with
equal radius (like [Chazal and Lieutier, 2006, Niyogi et al., 2008, Chazal et al., 2009]) the reconstruction
with α-shape and α equal to the radius of the balls is homotopy equivalent to the original.

4.10 Experiments

In the previous sections we already used real sampling examples for illustrations and evaluated the
algorithm on three 2D-examples in Section 4.8. The demonstrated 2D results can be directly generalized
to 3D.

The homotopy-preserving thinning step has more to do in 3D. To illustrate the additional steps we
use the surface of a unit sphere and expose the sampling of the surface to a great amount of noise. In
Figure 4.15 (a) the original not disturbed sampling is shown as black surface mesh, while the disturbed
triangulation demonstrates the result of noise corruption. The sphere surface is sampled by 1001 sample
points. The maximal sample point deviation from the boundary is p, q < 0.45.
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(a) (b) (c)

Fig. 4.16: (a)Surface reconstruction of a sufficiently sampled cube containing 8 regions. (b)
(α, β)-shape-reconstruction of an undersampled cube. (c) result of thinning

Although the geometrical distortion is relatively high due to the linear dependence on the amount of
noise, the reconstruction is topologically correct and it lies geometrically inside the dilation of radius q
of the original surface (which is approximated in (b)). The (α, β)-shape-reconstruction is shown in (c).

As we discussed in Section 4.7.2 the surface of the (α, β)-shape-reconstruction may contain cavities,
tunnels, knots or even “Klein bottles” on the reconstructed surface. Here we understand “Klein bottles”
as non-manifold surfaces without boundary (simple edges) with the same regions adjacent to both sides
of the surface. This understanding is in fact only a 3D projection of the 4D “Klein bottle” where the
surface is manifold.

In our example we take advantage of knowing that the original shape did not contain touching regions
or surfaces with one and the same region on both sides, and extend the homotopy-preserving thinning
by deletion of singular simplices and “Klein bottles”. The result of the extended reconstruction as
demonstrated in (d). The reconstruction is very distorted but topologically correct surface.

Nonmanifold Example The novelty of the thinned-(α, β)-shape-reconstruction algorithm is the han-
dling of non-manifold boundaries. Nonmanofold boundaries develop if the surface touches itself. The
reconstruction of such boundary would contain edges with more than two adjacent triangles. Here we
constructed an intuitive example of a multi-regional space partition with a non-manifold boundary. The
interior of a cube is subdivided into four chambers. The topologically correct reconstruction of the
example is demonstrated by the transparent approximated boundary in Figure 4.16.

Inadequate Parameter Values. The previous nonmanifold example also demonstrates the effect
of undersampled boundary or underestimated α-value. The (α, β)-shape-reconstruction in Figure 4.16
(b) exposes a hole in the boundary. The thinning procedure detects the edges of this hole as simple
edges and contracts the whole region as it is demonstrated in Figure 4.16 (c). The reconstruction of an
originally 8-region cube consists of 7 regions only - the infinite space is not counted.

The built-in problems of the third example in Section 4.8 have equivalent effects in 3D. The overes-
timated α-value has two effects on the reconstruction result since there are two cases of a narrowing in
3D. A “waist” is a narrowing like in a dumbbell and corresponds to a 2-saddle on the distance transform.
A “dell” or a two-sided dell is a narrowing like in a disc where the centers of the circular surfaces are
pressed together. A dell corresponds to a 1-saddle on the distance transform. So, an overestimated
α-value closes the narrowing in a waist and divides the original region in more than one reconstructed
region. Whereas in a dell the pressed surfaces are connected by a chain of singular edges such that the
interior of the original disc becomes a topological donut.

Real Data Sets from Laser Range Scanner The results of the thinned-(α, β)-shape-reconstruction
algorithm on real data sets coming from laser range scanner are demonstrated in Figure 4.17. In Table 4.2
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we show the breakup of the timings of the thinned-(α, β)-shape-reconstruction algorithm for the data
sets on PC with 2000Mhz “Intel Centrino Duo” CPU and 2GB memory. The data sets “Skeleton hand”
and “Dragon” are taken from “The Stanford 3D Scanning Repository”1. The data set “Knots” is taken
from data base “3D Model Retrieval”.2

data set points α q α-shape (s) reconstruction (s)

Skeleton hand noise-free 29176 0.045 0 33.83 18.86
Skeleton hand noise-corrupted 0.047 0.01 36.92 18.45
Knots noise-free 23232 0.013 0 25.14 10.97
Knots noise-corrupted 0.015 0.012 25.32 18.64
Dragon noise-free 28395 0.0026 0 32.26 13.39
Dragon noise-corrupted 0.0026 0.0011 25.58 20.30

Table 4.2: Parameter Settings and timings of the thinned-(α, β)-shape-reconstruction. α is the
estimated absolute value. q is the absolute maximal sample point deviation estimated according to

α. The first step of the algorithm is the computation of an α-shape. The second step of
(α, β)-shape reconstruction and subsequent thinning is denoted by “reconstruction” in the right

column.

We subdivided the algorithm into two steps. The computational run-time of Delaunay triangula-
tion and the α-filtration construction is presented in column “α-shape” in Table 4.2. The run-time of
subsequent (α, β)-shape reconstruction step and topology preserving thinning is given in column “recon-
struction” in Table 4.2.

Since the actual r-values for these data sets are unknown, the α-value had to be estimated. According
to the estimated algorithm parameters we computed maximal sample point deviation and added noise
to the data sets (right column) in Figure 4.17 and column q in Table 4.2.

The parameter estimation has been carried out empirically. To do so, we computed a filtration
on the data sets. Filtration is a sorted list of α-values computed for every simplex in the Delaunay
triangulation.Since the data set is finite, the Delaunay triangulation contains finite number of elements
and, consequently, the list of α-values is finite. Consequently, the filtration arranges the Delaunay
simplices according to their belonging to the actual α-shape.

So, we may just iterate on the list of α-values and see the changes of the α-shape for the current α.
In this way we adjusted an α-value for each dataset.

As we can see in Figure 4.17 thinned-(α, β)-shape-reconstruction results in topologically equivalent
components of the boundary even in cases where the amount of noise is greater than any previous ap-
proach can deal with. Although in most of our experiments we had to estimate the method’s parameters
empirically, the algorithm resulted in a correct reconstruction even if sampling conditions for γ-value
were not fulfilled. Nevertheless thinned-(α, β)-shape-reconstruction is not robust to undersamplings,
since the thinning algorithm strictly requires a sufficiently dense sampling of the whole surface.

In the following section we discuss the problems of the thinned-(α, β)-shape-reconstruction and give
propositions for future work.

4.11 Discussion and Future Work

The aim of the work introduced in this section is to define the most weak sampling conditions for
a reconstruction method. The weaker the sampling conditions the more topological and geometrical
artifacts the reconstruction method has to handle. Here we list and discuss three kinds of topological
noise which results from excessive amounts of noise. The handling of these problems includes limitations
of the sampling conditions - particularly on the deviation of sampling points from the boundary - or
extensions of the reconstruction method.

1Stanford University Computer Graphics Laboratory in http://graphics.stanford.edu/data/3Dscanrep/
23D Model Retrieval in http://3d.csie.ntu.edu.tw/∼dynamic/cgi-bin/DatabaseII v1.8/index.html
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.17: Noise-free and noise-corrupted reconstruction
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(a) (b)

Fig. 4.18: (a) The α+ q-dilation ∂R⊕ (light gray) of the space partition covers the union of
α-balls U (the union of gray and dark gray balls). U covers ∂R (black curve), ∂R has the same

number of components as U (one connected component only in this case; but a circle is one
connected component too). (b) (α, β)-shape-reconstruction is the α-shape (union of edges and

dark gray triangles) with filled not-(α, β)-holes (union of thin edges and gray triangles)

4.11.1 Connected Components Problem

According to Theorem 4.6 the (α, β)-shape-reconstruction preserves connectivity and neighborhood rela-
tions and defines a one-to one-mapping between original regions and the reconstructed space partition if
(1) p < α ≤ r−q, (2) β = α+p+q and (3) every region ri contains an open γ-disc with γ ≥ β+q > 2(p+q).

Consider a very dense and very noisy (p, q)-sampling as shown in Figure 4.18 (a) and let r be 1. The
sampling allows very great sampling point deviation i.e. q = 0.53. Since the sampling is very dense
p < 0.1r, we can chose α-value according to (1) α = 0.21r. Then β is equal to (0.21 + 0.1 + 0.53)r and
the sampling conditions are valid since every original region contains a γ-ball with γ > 1.4.

We observe that there can be α-balls at greater distance than α from the boundary, but be still
contained in α + q-dilation of the boundary. It follows that the corresponding α-balls do not intersect
the boundary and therefore do not necessarily intersect any other α-ball connected to the boundary.
Such a constellation is demonstrated in Figure 4.18 (a) (a group of points with corresponding α-balls
enclosed in a circle). The consequence is: this group of points results in a connected component in
the (α, β)-shape-reconstruction which is not connected to the shape which overlays the boundary. It
follows that (α, β)-shape-reconstruction has more connected components than the original boundary
which disagrees with statement I in the proof of Theorem 4.6.

Definition 4.9 (Connected Components Problem). Let S be a (p, q)-sampling of a r-stable space parti-
tion R. Let D⊕α,β be the (α, β)-shape-reconstruction of R such that (1) p < α ≤ r− q, (2) β = α+ p+ q

and (3) every region ri contains an open γ-disc with γ ≥ β + q > 2(p+ q). If α < q then D⊕α,β can have
more connected components than ∂R.

In Figure 4.18 (b) we notice that the (α, β)-shape-reconstruction consists of two connected compo-
nents but the original boundary is only one connected component. The consequence is, there is a string
of edges in the reconstruction which does not contribute to the division of different regions and which is
completely contained in the q-dilation of the boundary. Since it is a string but not a region, the filling
of not-(α, β)-holes has no effect on it. The thinned-(α, β)-shape-reconstruction preserves this string. In
step 4 of the algorithm all simple cells, which will include this string, are deleted.

The additional connected components problems are generally covered by the q-dilation of the bound-
ary. Since the distance values around the boundary are less than or equal to p, the greatest cell in regions
covered by q-dilation will not exceed the size of q + p < β. It follows: if such a problematic additional
component encloses a region then it is a not-(α, β)-hole which is filled in the (α, β)-shape-reconstruction
and thinned in the post-processing step.



108 CHAPTER 4. THINNED-(α, β)-SHAPE-RECONSTRUCTION

Fig. 4.19: 3D Projection of a 4D “Klein Bottle”

4.11.2 “Klein Bottle” Problem

The (α, β)-shape-reconstruction fills the too small holes in the α-shape resulting in a shape which is a
one-to-one mapping to the original space partition. The consequence of a very great amount of noise is
the topological artifacts which are either the not-(α, β)-holes or, in 3D, sets of simplices which do not
separate two different reconstructed regions. We introduced the later topological distortions in Section
4.7.2 as tunnels, handles or cavities.

In fact different topological distortions can occur in the q-dilation of the boundary if q is great and
the sampling is dense enough. One problem, which we observed on the reconstructed boundary, can only
be descriptively introduced here since any illustration is only schematic and, from our point of view, not
helpful. This problem is known as a 3D projection of a 4D “Klein Bottle”.

A 4D “Klein Bottle” is a non-orientable 2D manifold surface which does not enclose any region. On
both sides of the surface is the same adjacent region. The 4D “Klein Bottle” is the equivalent of the
“Möbius strip”. The 3D projection of the “Klein Bottle” is not manifold. The surface intersects itself.
But in the 3D projection the thinner “pipe” goes through the surface of the thicker part of the “bottle”.
So, the pipe is closed. We remove this surface part which closes the thinner “pipe”. The result is: on
both sides of the “Klein bottle” surface is now the same region. The surface of the 3D “Klein bottle”
became non-orientable nonmanifold. In the following we call such construction simply “Klein bottle”.

The surface of a “Klein Bottle” does not have a boundary. The corresponding simplicial approxima-
tion does not have any simple simplex and since the surface does not enclose any 3D region, it cannot be
filled by (α, β)-shape-reconstruction. Consequently, the problem remains even after topology preserving
thinning.

Definition 4.10 (“Klein Bottle” Problem). Let S be a (p, q)-sampling of an r-stable space partition R
and ∂R be its boundary. Let each point in ∂R be a boundary point for at least two different regions of
R.

Let Dα,β be the result of thinned-(α, β)-shape-reconstruction method. If there is a Delaunay triangle
in Dα,β which has the same adjacent reconstructed region on both sides, then we say Dα,β has a “Klein
Bottle” problem. For p < 3q, Dα,β can have a “Klein Bottle” problem.

There are different ways to detect a “Klein bottle” in our combinatorial structure. Consider one of
the examples illustrated in Figure 4.19. The boundary is broken through by a “pipe”. The α-shape has
to leave the boundary but carve out the “interior” of the “Klein bottle”. So, the radius of the “pipe”
and around it has to be greater than α. The surface may be shared with the surface of an (α, β)-hole.
Consequently, the development of a “Klein Bottle” is possible if q > 3α.

The parameters depending on the sampling density and sampling points deviation to detect a “Klein
bottle” are not investigated further in this work and remain a question for future work.
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How can we solve the “Klein bottle” problem? To detect the “Klein bottle” problem we use the
fact that its surface is non-orientable. So, starting with any Delaunay triangle and its adjacent region
and traversing to the neighbors of the triangle, we sooner or later will have to return to the starting
triangle. If such a case occurs then the reconstructed boundary has a “Klein bottle” problem, and the
set of neighbors of the starting triangle having the same region on both sides is the surface of the “Klein
bottle”.

Further we use the fact that the “Klein bottle” is a topological artifact and is covered by q-dilation
of the boundary. The filling of the (α, β)-shape-reconstruction does not help since a “Klein bottle” is
not a hole. But starting on the detected surface we can fill it out with Delaunay tetrahedrons less than
β and their faces. The result is then thinned by the topology-preserving step of the algorithm.

Conjecture 4.11 (“Klein Bottle” Detection). Let Dα,β be the result of thinned(α, β)-shape-reconstruction
method and let σ be a boundary triangle with the same reconstructed region on both sides. Let a neighbor
be the first boundary triangle which can be reached by circulating on one of the edges of the triangle.
Further, let neighbor be a neighbor of a neighbor. Let Dσ be the set of all neighbors of σ having the
same adjacent region on both sides. If Dσ contains σ, then Dα,β has a “Klein bottle” problem and Dσ is
the surface of the “Klein bottle”.

Filling by values less than β is safe for not-(α, β)-holes since it is known that they are covered by
q-dilation of the boundary. However, a “Klein bottle” is not a region. “Filling” the “Klein bottle” means
to extend the surface by tetrahedrons on both sides of the surface triangles. Which results in a “region”
with a greatest tetrahedron of size less than β but envelopes an underlying space of up to 2β. What we
need to ensure is the resulting region has to be contractible. We assume that this is the case for β less
than r.

Definition 4.12 (Extended β-Filling). Let Dα,β be the result of thinned-(α, β)-shape-reconstruction
method. Let Dα,β have a “Klein bottle” problem and Dσ be the surface of the “Klein bottle”. Then the
post-processing β-Filling is defined as enriching Dσ by neighboring simplices with circumradius less than
β, where a neighboring simplex is also a neighbor simplex of a neighbor.

Conjecture 4.13 (Contractible Extended β-Filling). Let S be a (p, q)-sampling of an r-stable space
partition R. Let Dα,β be the result of thinned-(α, β)-shape-reconstruction method with a “Klein bottle”
problem and Dσ be the surface of the “Klein bottle”. Let D⊕βσ be an extended β-Filling. Then D⊕βσ is
contractible if β is less than r

The last step to remove the “Klein bottle” problem is to contract the extended β-filling by elemen-
tary collapse. Notice that the contractible extended β-filling is enclosed by simple triangles since the
circumradius of a triangle is less than or equal to the circumradius of its adjacent tetrahedrons.

4.11.3 Singular Edges Problem

Thinning on simple simplices results in a reconstruction where all triangles have no adjacent tetrahedron
and edges have either zero or at least two adjacent triangles. A hole in the surface, being a removed set
of triangles, leaves the boundary of the hole in the reconstructed surface as a set of simple edges. The
thinning then collapses the whole surface such that no corresponding region remains.

Another case develops if a surface has more than one hole. The thinning will at some step meet a
triangle with two simple edges. A collapse on such a triangle leaves one singular edge. So, after the
thinning procedure we expect at least one chain of linked singular edges. In case of three holes, the
resulting chain of singular edges would intersect in one vertex.

The chains of linked singular edges are either attached to the boundary of a reconstructed region
developing an “ear” on the boundary, or can “hover” in space. In any case the chain of singular edges is
the boundary of some set of triangles. What we need to investigate now is, if this chain of singular edges
is the result of correct reconstruction, or an artifact. Correct reconstruction may develop such a chain
for example in the case of two cones touching at their ends. No sampling known to us can guarantee
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to place a point exactly on the peak of the cones. So, most probably the reconstructed surfaces of the
cones will be connected by one or a chain of edges which are crucial for the correct topology.

While the “ear” on the boundary is the topological noise the connection between two reconstructed
cones is essential for correct reconstruction. Removing the chain of singular edges results in first case in
a correct 2D boundary but in the second destroys the topology. We call this the singular edges problem.

Definition 4.14 (Singular Edges Problem). A reconstructed boundary has the singular edges problem
if the reconstructed boundary contains singular edges with non-simple adjacent vertices.

Taking (α, β)-shape-reconstruction as an example we propose to fill the chains of singular edges by
a set of triangles in such a way that no additional singular edges occur and all singular edges become
simple. Obviously, we want the smallest triangles possible.

Definition 4.15 (Minimal Expansion). Let Dα,β be the result of thinned-(α, β)-shape-reconstruction
method with singular edges problem and D0 be the set of singular edges. Then minimal expansion of
Dα,β is the minimal reconstruction which does not contain any singular edges and all simple edges are
in D0.

We expect the minimal extension of the boundary to fill the boundary “ears” with triangles less
than β, and relevant connections between reconstructed regions by triangles greater than β since this
extension would have to cross the erosion of the original region. So, the next thinning step is to collapse
on simple edges if the extension consists of triangles less than β and to drop the extension in other cases.

Conjecture 4.16 (Contraction on Minimal Expansion). Let D+
α,β be the minimal expansion of a result of

thinned-(α, β)-shape-reconstruction method. If all simplices in D+
α,β are less than β then D+

α,β is covered
by q-dilation of the original boundary.

Notice that the “ears” on the boundary may be knotted. The minimal expansion of the chain of sin-
gular edges is then a non-manifold 2D surface. Contraction of the minimal expansion does not necessarily
solve all problems discussed previously. So, we do not state in Conjecture 4.16 that topologically-correct
reconstruction results. In fact the expected result is a reducible reconstruction. Consult Section 2.4.5 for
introduction.

4.12 Conclusion

The framework introduced for thinned-(α, β)-shape-reconstruction defines classes of shapes which can
be handled by the algorithm in terms of a value (r), which stands for the maximum dilation radius of
the boundary which does not change the original homotopy type. This value is called “weak feature
size” [Chazal and Lieutier, 2005b].

On the basis of the class of the shape the sampling conditions are defined and conditions on the inner
parameter settings of the algorithm are given.

Thinned-(α, β)-shape-reconstruction is based on α-shapes and can therefore handle data sets which
fulfill a uniform sampling criterion for each point of the surface. The post-processing steps handle
topological noise of the α-shape and result in a correct one-to-one mapping between the original and
reconstructed regions if the original was r-stable.

The approach does not handle excessive sample point deviation from the boundary. We propose
to tackle the problems by extra computational steps or to limit the noise - the maximal sample point
deviation from the boundary. Reducing the allowed noise amount is a justified step in real applications,
since the assumed amount is only a theoretical worst case.

Experiments were performed both on well-known real data sets and on artificially made data sets,
comparing and visualizing the performance of various methods which underlined the advantages of the
method.

The presented algorithm is theoretically and experimentally a solid and fundamental result which to
our knowledge outperforms all related Delaunay triangulation-based methods. The theoretical framework
extends the limits of admissible shapes to non-manifolds and handles great amounts of noise.
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In the next chapter we introduce locally adaptive sampling criterion as a generalization of the sam-
pling conditions defined for thinned-(α, β)-shape-reconstruction as well as a new reconstruction method
to handle this new sampling condition.





Chapter 5

Refinement Reconstruction

5.1 Introduction

In real data sets, the sampling density often varies spatially. For instance, a laser scan captures data
only where the laser “touches” the object’s surface. Which means that this data acquisition device does
not “see” the concavities in the surface. It follows that, even though the sampling density is globally-set,
the resulting data set will have gaps in concavities of the original surface.

The thinned-(α, β)-shape-reconstruction introduced in Chapter 4 extends the concept of α-shapes in
order to result in a one-to-one mapping between reconstructed regions and the original space partition.
The underlying sampling conditions are expected to be globally uniform. This condition is necessary
to guarantee a correct parameter-setting for the reconstruction. The provided sampling parameters are
used to set up the size of the boundary simplices as well as the minimal region size.

Our new reconstruction method is based on the 3D extension of the “Gabriel graph” first introduced
in [Gabriel and Sokal, 1969]. The Gabriel graph can be computed by removal of edges from the Delaunay
complex if their circumcircle contains further Delaunay vertices. As shown in [Edelsbrunner, 2003] this
imitates the “flow curves”. The resulting set of Delaunay edges separates all discrete distance maxima.
As described in Section 2.4.10, the “Geomagic WRAP c©” algorithm [Edelsbrunner, 2003] results in the
3D extension of the Gabriel graph. Originally, the method separated the infinite background from
the interior of the original shape, assuming that the original surface is manifold. The result of the
algorithm is the set of minimal boundary triangles. In [Edelsbrunner, 2003] no guarantees on original
topology preservation are given, but it is proven that the result is manifold and the reconstructed shape
is contractible.

Methods like “Crust” [Amenta et al., 1998] or “Cocone” [Amenta et al., 2000a] or any of their deriva-
tives use the fact that the sampling is very dense and the maximal sample point deviation from the
boundary is very low for proving topology preservation. The required sampling conditions may vary
according to the curvature of the original surface, but the ratio between the sampling density and the
distance to the medial axis is constant and positive. Taking a small fraction of this ratio ensures all
sampling points to lie very much closer to and much denser around the boundary than their distance to
the original medial axis. This is only possible for smooth shapes.

Although the medial axis is a complete shape descriptor, only a subset of it is required to preserve
topological properties. For local maxima separation (cf. WRAP), the relevant subset is the set of local
maxima. For homotopy preservation, the subset is the homotopy axis. The local region size and local
homotopical feature size ( as introduced in Section 2.2.5 ) are greater than zero even for non-smooth
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surfaces. Now, in order to ensure the sampling density and maximal sampling point deviation to be
smaller than the distance values in the region’s interior, we relate the sampling conditions to a feature
size which is strictly greater than zero. So, in Section 5.3 we define locally variable sampling conditions
which are finite for non-smooth surfaces.

In Section 5.2, we introduce the local maxima separation as a refinement. A refinement correctly
separates the original local maxima on the continuous distance transform. We apply the WRAP algo-
rithm to all discrete local maxima. If the underlying sampling ensures the sampling density to be less
than the distance value of the nearest local continuous maximum, the outcome of the WRAP algorithm
is a refinement.

We define corresponding sampling conditions in Section 5.4. These new sampling conditions require
that the original local maxima are surrounded by sampling points in such a way that The sampling density
between the points is demanded to be higher than the continuous distance values on the original local
maxima. This guarantees that, starting on original local maxima and following the steepest ascends on
the discrete distance transform, we reach local discrete maxima without crossing the original boundary.
We call these discrete maxima associated. Our new sampling conditions ensure the associated maxima
to be correctly separated, which - as we prove in Section 5.5 - is equivalent to the statement: each
original maximum is associated with a centered Delaunay cell and the circumcenter of this cell is inside
the original region. So, deleting centered cells from the Delaunay complex we hit each original region at
least once.

There are different ways to correctly separate the local maxima. For our framework we require the
boundary of the refinement to be minimal.As we define in section Section 5.6, a minimal refinement
separates the local maxima by smallest boundary simplices. In Section 5.7, we prove that the WRAP
applied on every discrete local maximum results in minimal refinement.

In our framework the reconstruction is a refinement of the original space partition. A refinement
is a special case of oversegmentation which preserves the correct local maxima separation. Still, the
reconstruction may be an oversegmentation. Consider a shape with a narrowing: The interior consists
of two local maxima in the same original region. The refinement reconstruction subdivides the space
separating the associatives of these maxima. In Section 5.8 we introduce a criterion which rejects
boundary simplices which are inappropriate to separate regions. Deleting such edges results in merging
reconstructed regions and - as we prove - still in minimal refinement. We call this region-merging step
the refinement reduction.

The sampling conditions defined according to local region size may lose the information which local
maxima belong to the same region. Furthermore, the sampling is too sparse to guarantee that removal
of certain boundary simplices reduces the refinement to a topological equivalent of the original space
partition. In Section 5.9 we introduce a new stability definition. A refinement is stable if its boundary
does not intersect the original homotopical axis. A refinement is reducible if it is a superset of a stable
refinement.

In Section 5.11, we prove that refinement reconstruction results in reducible refinement if the sampling
is defined using the local homotopical feature size. We introduce the new sampling conditions in Section
5.10. In Section 5.12, we undertake the particular reconstruction steps on three different samplings of
the same 2D shape.

The evaluation of the new reconstruction method is done in three steps. In Section 5.13, we compare
the sampling conditions and the underlying shapes. The experimental results are presented in Section
5.14. We evaluate the new reconstruction method on well-known laser range scan data from “The
Stanford 3D Scanning Repository” and on data sets resulting from X-ray computed tomography imaging
(using 3D Canny edge detection to extract a point cloud). In Section 5.15, we discuss the effects of the
very sparse sampling conditions and too large amounts of noise which can be handled by our algorithm
and make propositions for future work and in Section 5.16, we summarize our new results.

Refinement reconstruction is both theoretically and experimentally solid and gives a fundamental
result which has advantages even over thinned-(α, β)-shape-reconstruction. The underlying shapes are
assumed to be non-manifold multiregional surfaces. The method results under guarantee in reducible
refinement, even if the sampling is very sparse and noise corrupted. The approach expects sampling
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parameters which are required for internal settings. However, the reconstruction with estimated sampling
parameters covers all sampling conditions defined in related work.

5.2 Refinement

In Section 4.2, we introduced a new class of shapes called r-stable shapes. r-stability is defined by
homotopy preserving dilation of the boundary, where the dilatation value does not exceed r. The result
of the reconstruction is a one-to-one mapping between reconstructed regions and the original. The
reconstructed boundary is homotopy equivalent to the original.

A topologically correct space partition does not require the regions to be geometrically similar to
the original ones. The famous example of topological equivalence between a coffee cup and a donut
demonstrates this with two objects of completely different geometry.

In the case of reconstruction, one expects the reconstructed region to lie somewhere where the original
region is and most probably to overlap it in some definite common interior points. The set of such
invariant common points is interesting for our new framework. The equivalent expectation is also given
for boundary reconstruction. Even if the boundary of the reconstructed regions deviates from the original,
one again expects it to lie in some certain environment of the original. The reconstructed boundary of
the thinned-(α, β)-shape-reconstruction necessarily lies inside α+ q-dilation (compare Section 4.6).

In [Dey et al., 2005] the authors formalize these expectations by requiring the reconstruction to
separate the critical points of a shape. Critical points are the points in space where the gradient value -
defined on distance function to the sample points - is zero. The separation ensures the critical points to
lie either near the boundary or near the original medial axis. So, the computed interior critical points
are clearly separated from the critical points of the background region as well as from the boundary
representing critical points.

What does that have to do with boundary or surface reconstruction and topological properties of
the shape? The critical points belong to the medial axis. The medial axis is homotopy-equivalent to its
open set or, as we call it, the region (proof in [Lieutier, 2004]). So, proving the homotopy equivalence
between the medial axes suffices as the proof for the homotopy equivalence between the corresponding
regions and their boundaries.

Here we investigate the stability of reconstruction in cases of very sparse and non-uniform sampling
conditions. The aim is again to separate the regions by preserving the neighborhood relations and topo-
logical properties. If the reconstruction problem is scaled down to critical points separation the question
arises, what is the relation between the reconstructed critical points and what is the correspondence to
the original?

Consider for example two non-intersecting balls (2D illustration in Figure 5.1). The centers (⊕)
of these balls are also the maxima of the distance function. The critical point separation ensures the
separation of these two maxima, which can be done by a plane dividing the space into two half-spaces
each containing a maximum. The criticals are correctly separated but the reconstructed boundary is
never our wanted boundary of two balls.

Here we ignored the maximum which corresponds to the infinite region. So, to separate these two
maxima from the infinite one we need to envelope the two maxima and then to separate them from each
other. Now the result is three regions correctly separated from each other with intersecting boundary of
the balls.

The simplest geometrical primitive to envelope a point in 3D, separating it from its environment, is
a tetrahedron. Consequently, we need at least four non-planar sample points to separate one maximum
from the infinite space and at least two tetrahedrons to correctly separate two maxima in space. Obvi-
ously, these tetrahedrons may have one, two or three points common corners. This means that we would
need at least five sample points to separate two maxima in space.

However, how do we compute the correspondence between the original maxima and the tetrahedrons.
Obviously, the correspondence is given if the tetrahedrons contain the original maxima. In cases of very
noisy sampling conditions this expectation cannot be fulfilled. We need to establish a correspondence
between the circumcenter of the tetrahedrons and the maxima.
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⊕ ⊕� �

Fig. 5.1: The thick line is the boundary of the original space partition R: two 2D balls and the
background. The triangles separate the centers of the 2D balls from each other and the

background.

Associated Discrete Maximum

In our framework, we require the sample points to be placed in such a way that the circumcenter
of the corresponding tetrahedron is reachable by a simple increasing path on the distance transform of
the sample points. But following the increasing path we do not necessarily stop in the circumcenter of
the tetrahedron, because it is not necessarily a local maximum of the distance function. A tetrahedron
which does not contain its own circumcenter is such a case. Here, the increasing path passes though
the circumcenter in the direction of an infinite maximum ( compare the introduction in Section 2.4.8 ).
To avoid this problem, we also require the corresponding tetrahedron to contain its own circumcenter
which is then a local maximum. This requirement establishes a correspondence between the original
local maxima and the local maxima of the distance transform defined on the sample points. We call
the discrete local maximum reachable by steepest path starting on an original maximum the associated
maximum:

Definition 5.1 (Associated Discrete Maximum). Given the space partition R, the continuous distance
transform dR on R, the set of points S, and the discrete distance transform dS on S, let x be the
local maximum of dR and H(S, x) be its set of reachable local maxima on dS. Then, we call y =
arg maxy′∈H(S,x) dS(y′) the associated discrete maximum of x.

The associated maximum is the greatest reachable maximum, where the set of maxima reachable by
steepest paths is given by Definition 2.33.

Now, let us consider our original scene containing two balls in space. The reconstruction is said to
separate the local maxima correctly, if for any two originally separated local maxima their associated
maxima are also separated. We call such reconstruction a refinement.

Definition 5.2 (Refinement). Given two space partitions R and R′ with two distance transform func-
tions dR and dR′ defined respectively on R and R′. R′ is called a refinement of R, if for any two
local maxima xi, xj of dR lying inside different regions Ri, Rj of R, the discrete maxima x′i, x

′
j being

associated to xi, xj lie in different regions R′i, R
′
j of R′.

According to the new defined notation, the original space partition consists of three regions: two
open balls and the infinite background space. The boundary of the two tetrahedrons which envelopes
the original maxima partitions the space into three regions, too. The associates of the original maxima
are correctly separated, so, the new space partition is a refinement of the original.
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Fig. 5.2: The thick line is the boundary of the original space partition R. The edges of the
triangles divide the space into a refinement of R. The two most left continuous maxima are

associated with the same discrete maximum. The maxima corresponding to the dotted circles are
not associated with any continuous maximum.

The definition of refinement does not make any statements about the possibility of regions with
two or more local maxima. Let us extend our scene for example by adding a new local maximum and
connecting the balls to a simplified shape of a “barbell”.

In the 2D illustration presented in Figure 5.2 the thick line is the boundary of the original scene.
The boundary divides the space into two regions: the interior of the barbell and the infinite background.
The distance transform defined on the boundary has three local maxima denoted by ⊕ and, obviously,
the maximum of the infinite background. The edges of the triangles divide the space into a refinement
of the original space partition. The distance transform defined on the points has four local maxima
denoted by � plus the infinite maximum. The two left continuous maxima ⊕ are associated with the
same discrete maximum. The discrete maxima corresponding to the dotted circles are not associated
with any continuous maximum.

We notice, that by Definition 5.2 for each continuous maximum there exists exactly one discrete
maximum, but this mapping is neither injective nor surjective.

5.3 (ψ, ρ)-Sampling

In the previous chapter on thinned-(α, β)-shape-reconstruction we introduced sampling conditions based
on globally set parameters p and q (compare Definition 4.2). The parameters p and q control sampling
density and maximal sample point deviation from the boundary. p is the maximal distance between
any boundary point and its nearest sampling point, and, q is the maximal distance between any sample
point and its nearest boundary point.

Here we generalize the concept for locally adaptive sampling conditions. Analogously to (p, q)-
sampling we want parameters to control density and noise amount, but now they should be locally
adaptive. The local adaptation is done by a feature size (f(.)) defined for every point of the boundary.
The feature size may vary depending on curvature, size of the adjacent regions or a metric of a shape
descriptor like distance to the medial or homotopical axis. Notice, the distance to the homotopical axis
is another measure of curvature for smooth shapes. This property is partly lost for non-manifold shapes,
see Section 2.2.5.

The feature size is scaled by parameters which correspond to p and q. The maximal sample point
deviation depends on the sampling density. The greater the sample point deviation the denser has
to be the sampling. This dependence is modeled by scaling parameter ρ. The greater ρ the sparser
is the sampling and the less noise is allowed. The ψ parameter is an auxiliary parameter for the
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Fig. 5.3: Dependency between the ψρ-sampling parameters with r as the local feature size. The
sample points are in the (1− ρ) dilation of the r-circle. The maximal distance values on the

boundary of the r-circle are ψρr.

sampling density only and lies in the interval (0, 1). ψ is used in our reconstruction method for definition
of simplices which are too great to belong to the boundary, which we call undersampled (compare
Definition 5.10).

Definition 5.3 (Non-Uniform (ψ, ρ)-Sampling). Let ∂R be the boundary of a space partition R and let
f : ∂R → R be a function which maps any point on the boundary to its feature size. Let S ⊂ R3 be a
finite set of points. Then S is said to be a (ψ, ρ)-sampling of ∂R, if

∀b ∈ ∂R : dS(b) ≤ ψρf(b) and
∀s ∈ S ∃b ∈ ∂R : ||b− s|| = dR(s) ≤ (1− ρ)f(b)

Notice, in the definition Definition 5.3 dS(b) is the distance between a boundary point b and the set
of sample points S, whereas dR(s) is the distance between a sample point s and the continuous boundary
of the space partition ∂R.

In Figure 5.3 we find an equivalent illustration to Figure 4.3 introduced for (p, q)-sampling. Here we
see again an r-ball (thick circle). We simplify the shape to a ball, so the feature size is r for each point
of the boundary. The r-ball is dilated (gray in the illustration) by the maximal sampling point deviation
(1− ρ)r defined by f(b) = r for each boundary point b.

For two points on the boundary we visualize the maximal distance to the nearest sampling point.
The distance is ψρr and is also visualized in the center of the r-ball. The maximal distance to the nearest
sampling point ψρr necessarily is less than ρr. The circumcenter of the r-ball is the local continuous
maximum of the region. The ψρr ball is inscribed into the (1− ρ)r-dilation of the r-ball.

The consequence of the (ψ, ρ)-sampling conditions is, the discrete distance value on the local maxi-
mum is enveloped by lesser distance values in the dilation. This is the quintessence of our work and the
basis for the guarantees of the reconstruction method.

5.4 Sampling Conditions for Refinement Reconstruction

As introduced in Section 5.2 a refinement correctly separates the associatives of the local maxima. The
concept generalizes the shapes. The regions are represented by their greatest maximum. This concept
can also be used for reconstruction if the result of maxima separation is the aim of the reconstruction
i.e. if the regions provably contain one local maximum each.

An illustration of a shape with exactly one maximum (⊕) for each region is given in Figure 5.4. The
feature size, which measures for every boundary point the adjacent region size, is the local region size (lrs
compare Definition 2.35). The local region size for a boundary point is defined as the minimal distance
value of all reachable maxima starting on this point.

Now, our intention is to separate the local maxima correctly. Using the local region size we can
measure the maximum which we are going to separate from the rest. So, we define the sampling density
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Fig. 5.4: (a) Space partition consisting of 15 regions and the background as the result of five
intersecting circles. Each resulting region consists of one local maximum only. The local region
size for every point on the boundary is the smallest maximum value of the adjacent regions.The
sampling points fulfill the conditions of the region stable sampling with ψ = 0.5 and ρ = 1 the
corresponding ψρlrs-balls are centered on sample points. (b) Fish, region stable sampling with
ψ < 0.5, ρ < 0.5. The union of balls contains ψρlrs-balls with radius ≈ 0.25lrs and (1− ρ)lrs-balls

with radius ≈ 0.5lrs.

for each point on the boundary in such a way, that the discrete distance values around the boundary
are less than the discrete distance values on the minimal reachable maximum. To do so we use the
(ψ, ρ)-sampling with local region size.

(ψ, ρ)-sampling implements the (p, q)-sampling conditions for locally adaptive cases. The idea is to
make the sampling density around the boundary dependent on the maximal sample point deviation, the
noise. The more noise is expected, the denser must be the boundary sampling. Or vice versa, the sparser
the sampling density is, the less noise can be handled. In our case the feature size varies from point to
point so we use non-uniform definition of sampling conditions induced by local region size:

Definition 5.4 (Region Stable (ψ, ρ)-Sampling). Let ∂R be the boundary of a space partition R and let
lrs be the local region size defined on ∂R. Let S ⊂ R3 be a finite set of points. Then S is said to be a
region stable (ψ, ρ)-sampling of ∂R, if S is a (ψ, ρ)-sampling with ∀b ∈ ∂R : f(b) = lrs(b)

The sampling conditions defined in [Stelldinger and Tcherniavski, 2009b] for guaranteed refinement
reconstruction are a special case of a region stable (ψ, ρ)-sampling with ψ ≈ 1 and ρ ≈ 0.5. Even if
the noise amount does not depend on sampling density, the sampling conditions can be expressed by
(ψ, ρ)-sampling conditions. The locally adaptive noise free sampling with ψ ≈ 0.5 and ρ ≈ 1 is illustrated
by dots in Figure 5.4 with corresponding ψρlrs-balls centered on sample points.

In Figure 5.4 (b) we illustrate region stable sampling on a more complicated example “fish”. In this
case the sampling is highly noise-corrupted with ψ ≈ 0.5 and ρ ≈ 0.5 which results in maximal sample
point deviation from the boundary of (1 − ρ)lrs ≈ 0.5lrs. The union of balls is divided into ψρlrs balls
and (1 − ρ)-balls to illustrate the sampling conditions. The nearest boundary point of the center of a
(1 − ρ)-ball dictates the local region size and so the maximal distance to the boundary. We observe
that some of (1− ρ)-balls are as distant from the boundary as possible but still do not contain any local
maximum. Notice, the ψ, ρlrs-balls do not have to completely cover the boundary. This is due to the
fact that even so a boundary point b is sampled by a sampling point s but the nearest boundary point
b′ to s is not b. The local region size on b′ could then be less than the local region size on b.
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5.5 Centered Tetrahedron Condition

In Section 5.2 we introduced a local maximum separation called refinement The boundary of the refine-
ment correctly separates the local maxima associated with the local maxima of different regions of the
original space partition. In Section 5.4 we defined sampling conditions to envelope the local maxima
with sample points. Now we establish a correspondence between the local maxima of the space partition
and the local maxima of discrete distance transform defined on the sample points.

Our sampling conditions ensure the discrete distance values in closer environment of the local maxima
to be greater than around the boundary which results in elevations on discrete distance transform in the
interior of the continuous region. Consult Figure 2.15 for illustration. As introduced in Section 2.4.9,
due to the duality to the Voronoi graph, the Delaunay triangulation reproduces the properties of the
distance transform. The maxima of the distance transform are circumcenters of Delaunay cells which
intersect their dual Voronoi cells. We call them the centered Delaunay cells (see Section 2.4.8.

Notice, we use the term cell for the simplex of greatest dimension. In our case of 3D reconstruction
we have the 3D Delaunay triangulation. A Delaunay cell corresponds to a Delaunay tetrahedron - the
3-simplex.

The first step of the new reconstruction algorithm is adjusting the correspondence between the local
continuous maxima and the maxima of elevations of the distance transform which, as we prove, are the
circumcenters of centered Delaunay cells.

Lemma 5.5 (Centred Simplex Condition for Region Stable (ψ, ρ)-Sampling). Let R ∈ R be a region of
a space partition R. Let S be a region stable (ψ, ρ)-sampling of the boundary ∂R with 0 ≤ ψ < 1 and
0 < ρ ≤ 1, and let D be the Delaunay triangulation of S. Then there exists at least one centered simplex
of D with its center lying inside R.

Proof: Due to the definition of the local region size, there exists a point x inside R, where the continuous
distance transform (dR) is greater than or equal to r = dR(x) ≥ lrs(b) for all b ∈ ∂R. Let dS be the
discrete distance transform built on S. According to the definition of region stable (ψ, ρ)- sampling,
dS(x) ≥ r − (1− ρ)r = ρr.

By ascending the discrete distance transform starting in x one finally arrives in a local maximum of the
discrete distance transform with distance value greater than or equal to dS(x). The traversed path can not
intersect ∂R, since ∀b ∈ ∂R : dS(b) ≤ ψρlrs(b) ≤ ψρr and ∀ψ ∈ [0, 1), ρ ∈ (0, 1] : ψρr < ρr ≤ dS(x). Thus
the discrete distance transform admits a local maximum inside R. This maximum is the circumcenter
of a Delaunay tetrahedron τ .

To show that this tetrahedron is centered, let us assume the opposite: the circumcenter m lies outside
τ . Then there exists a plane containing m, such that τ lies completely on one side of this plane. Then
by moving m along the orthogonal away from the plane by a sufficiently small distance, the value of
the discrete distance transform increases, which is in contradiction to the assumption of being a local
maximum. �

In Figure 5.5 (a) we illustrate on our fish example the associated discrete maxima on a highly noisy
region stable sampling from Figure 5.4 (b). Recall, the region stable sampling is induced by local region
size. The Delaunay triangulation in Figure 5.5 (a) lacks in centered triangles (white) associated with
local continuous maxima. The associated triangles accidentally contain their corresponding continuous
maxima but this is not always the case.

Associated Centered Cells Due to Lemma 5.5 and the general position assumption, a local continuous
maximum can uniquely be mapped to a centered Delaunay cell - not necessarily the cell which contains
the local maximum. This centered cell is located in such a way that its circumcenter is necessarily in the
same original region as the continuous maximum. So, the associatives of the local continuous maxima are
circumcenters of central Delaunay cells. Deleting centered cells from the Delaunay triangulation leaves
a space partition with thick boundary and regions of shape of centered cells. The centered cells contain
their own cirumcenter which are local maxima of the discrete distance transform. So, the resulting
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Fig. 5.5: (a) Delaunay triangulation (gray triangles and thin edges). The white triangles are
associated to the local continuous maxima (⊕). Notice the associated triangles or their circumballs
do not always contain the corresponding continuous maxima. (b)Delaunay triangulation without

centered (acute) triangles. By deleting all centered triangles we necessarily hit the associated ones.

regions contain either exactly one associated discrete maximum or none. It follows that deleting all
centered cells from Delaunay triangulation results in a refinement of the original space partition.

The local maxima are not known in the reconstruction process, but by deleting all centered cells we
necessarily hit the associated ones and, consequently, we hit each region at least once. The Delaunay
triangulation without centered cells (triangles) is shown in Figure 5.5 (b). But deleting all centered cells
from the boundary results in a space partition which consists of too many regions which correspond to
the same original region. Lemma 5.5 guarantees that, if two or more continuous maxima are associated
with the same discrete maximum, all continuous maxima lie inside the same continuous region. We call
the oversegmentation., which correctly separates the associated maxima, a refinement. The question
now is how to thin the reconstructed boundary preserving the topology and how to appropriately merge
the reconstructed regions?

5.6 Minimal Elementary Refinement

As we discussed earlier, deleting centered cells from Delaunay triangulation guarantees to hit a region
at least once and if two or more continuous maxima are associated with the same discrete maximum
and consequently with the corresponding centered cell, then these continuous maxima lie in the same
continuous regions. Deleting the centered cells as illustrated in Figure 5.5 (b) results in a space partition
with thick boundary (gray polygons containing Delaunay cells). The original boundary is thin. In 3D it
is a 2D surface embedded in 3D space. In 2D it is a contour. Our aim is to reconstruct a thin boundary.
In 3D it is a union of triangles. In 2D it is a union of edges.

Consider such a point b on the original boundary that its three nearest sampling points are equidistant
to b. Let the three sampling points build a triangle. The line through b and the circumcenter of the
triangle contains a Voronoi Edge dual to this triangle. Consequently, this triangle is a Delaunay triangle.
The normalized mesh ( [Attali, 1997]) is the union of all such triangles. It defines a thin boundary which
separates different regions from each other. According to the definition of the normalized mesh, and
since sampling of each boundary point defines a minimal density, we state that the simplices in the
reconstructed boundary do not exceed some definite size. We say, the simplices have to fulfill the locally
required sampling density.

Obviously the boundary is not known in the reconstruction process and therefore we can not derive
the normalized mesh by just knowing the sampling points, as is possible for 2D [Attali, 1997]. In 3D the
normalized mesh fails even for smooth surfaces [Attali, 1997, Stelldinger, 2008c]. So, our aim is to get a
boundary reconstruction with its triangles being as small as possible. In order to mimic the behavior of
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Fig. 5.6: (a) Elementary refinement resulting by region growing on smallest edge. (b) Minimal
elementary refinement resulting by region growing on not Gabriel edge.

the discrete distance transform, the size of a simplex is measured by maximal distance value . Consult
Section 2.4.11 for discussion and size computation .

.

Definition 5.6 (Minimal Elementary Refinement). Given a space partition R and a set of points S.
Let the underlying space R of a complex partition D built on S be a refinement of R. Then R is called
elementary refinement if every reconstructed region of R contains exactly one local maximum of the
discrete distance transform built on S.

Two refinements R,R′ are called compatible, if there exists a one-to-one mapping of their recon-
structed regions, such that every reconstructed region is mapped onto a reconstructed region containing
both local maxima of the discrete distance transform which are associated to exactly the same local max-
ima of the continuous distance transform.

For compatible refinements R,R′ we define an ordering relation < in the following way: Let T :=
(τ1, τ2, . . . τm) and T ′ := (τ ′1, τ

′
2, . . . τ

′
n) be the lists of all boundary triangles of R, resp. R′, ordered

descending by their size. Then we say R is smaller than R′, R < R′ if T < T ′ regarding lexicographic
order. A refinement R is called minimal, if there exists no compatible refinement R′, such that R′ < R.

According to Definition 5.6, a refinement is defined by discrete local maxima. It follows that the
definition of a refinement assumes a construction on a set of points. This limitation is suitable for our
framework, but the definition obviously can be generalized to local maxima of any distance transform.

Consider again the result of centered cells (triangles in 2D) deletion from the Delaunay complex in our
2D example in Figure 5.5 (b). The gray polygons separate the reconstructed regions (white triangles).
Between some regions there is more than just one edge. The boundary is thick. It contains triangles.
There are several possibilities to thin out the boundary between two neighboring regions. Nevertheless
in each case the resulting refinement correctly separates the local maxima.

According to Definition 5.6, the thinned boundaries are compared by ordered lists of the simplices
contained in the reconstructed boundary. The minimal refinement minimizes the size of the simplices
in the boundary. Notice, the compatible refinements are compared by lists of simplices which separate
two different regions. Two compatible refinements have a “head” - or a sublist - of simplices, which is
equal for both, and a “tail” of simplices, which starts with first occurrence of a different simplex. The
refinement is smaller if its first simplex in the tail is smaller. Notice that the tail may contain simplices
which are not compared at all.

In Figure 5.6 two different elementary refinements demonstrate maxima separation with thin bound-
aries. In (a) the regions of Figure 5.5 (b) are expanded on smallest edge first. In (b) the originally thick
boundary is thinned on edges which are opposite to an obtuse angle. The circumball of such edges is not
free of points. Simplices with no point-free circumsphere are called equivocal or not Gabriel. (compare
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Definition 2.41). Both refinements correctly separate the local maxima. The regions of both refinements
contain one local maximum each. But only the elementary refinement in Figure 5.6 (b) is minimal. In
the following we prove the result.

5.7 Elementary Thinning

The minimal elementary refinement correctly separates the associated local maxima. The separation of
local maxima is already done by deletion of centered cells. As we have seen in Figure 5.6 the order of
simplex removal affects the underlying space of the resulting region. Now we introduce the boundary
thinning procedure which results in the same local maxima separation but the refinement boundary is
thin and minimal.

The result of reconstruction depends on the quality of the sampling, and the sampling conditions
depend on the geometrical and topological properties which have to be preserved in the digitization
process. If the input of the reconstruction is a region stable sampling ( Definition 5.4 ) then it is
assumed that the correct local maxima separation is of interest and not the correct homotopy of the
regions.

Region stable sampling guarantees the discrete distance values on the original local maxima to be
greater than the discrete distance values on the boundary. The original local maxima lie in the mountains
of the discrete distance transform whereas the original boundary is the valley. The associated local maxim
is one of the nearest peaks of the mountains which is reached without descending. The steepest path is
given by flow curves on the distance transform.

“Flow relation” (compare Section 2.4.9) imitates the behavior of flow curves. “Constructive retrac-
tion” (“WRAP”) algorithm, as introduced in Section 2.4.10, collapses on equivocal simplices removing
its unique predecessor. So, the constructive retraction algorithm follows the flow relation.

Equivocal simplices have a unique predecessor (compare [Edelsbrunner, 2003] Claim 8.). The distance
values on the predecessor are less than on its successor. So, following the flow relation starting on an
equivocal and ending on its unique predecessor, we follow the flow curve on the steepest path uphill.

WRAP step removes in each step an equivocal simplex and its predecessor in such a way descending
in the flow relation. According to Theorem 2.65, the order in which the equivocals are chosen for deletion
is irrelevant. It follows that the result of constructive retraction is minimal and, since no reconstructed
regions are merged, the result is also elementary.

The WRAP algorithm ensures each step to result in the homotopy equivalent open set. So, after
performing the WRAP on each reconstructed region we obtain a set of homotopy equivalent reconstructed
regions. Since all centered cells have been removed in the first step of the algorithm, no further regions
can be contained in the thick boundary surrounded by the faces of inconsistent cells.

WRAP stops on inconsistent cells. As introduced in Section 2.4.9 inconsistent cells consist of two
equivocal faces such that the cell has more than one successor. That means that removing the equivocals
merges two ancestor sets. The ancestor sets of a centered cell correspond to reconstructed regions.
Merging two ancestor sets implies the possibility of merging two different regions. So, to undergo the
inconsistency but to achieve the thin boundary we, in contrast to WRAP, perform the collapsing step
on the greater inconsistent face and then resume the algorithm procedure.

Algorithm 5.7 (Elementary Thinning). Let D be a Delaunay triangulation. Let DE = D.

1. Remove all centered cells from DE.

2. If possible perform any constructed retraction on DE. Continue with 2.

3. Else if there are simple inconsistent simplices in DE collapse on the greatest. Continue with 2.

4. Return DE.

Lemma 5.8. The result DE of elementary thinning algorithm is a minimal elementary refinement.



124 CHAPTER 5. REFINEMENT RECONSTRUCTION

Proof: Let x1, x2 be two maxima of the continuous distance transform lying inside different continuous
regions R1 ∈ R and R2 ∈ R and let y1, y2 be their associated maxima of the discrete distance transform.
Due to Lemma 5.5, it follows that y1 6= y2. Thus y1 and y2 are circumcenters of different centered tetra-
hedra, which implies that they lie inside different reconstructed regions. Thus DE is a refinement. Since
each centered tetrahedron defines a separate region, DE is an elementary refinement. Thus it remains to
show that DE is minimal. Let us now assume the opposite. Then it follows that there is a compatible
refinement D′E < DE which is minimal, ie.T ′ < T , where T, T ′ are the corresponding lists of boundary
triangles σ′i respectively σi ordered descending by their size. Let i be the position on which the first
difference between T ′ and T appears: σ′i < σi. Without loss of generality let σi be the boundary triangle
between two reconstructed regions |D|′1, |D|′2 with their central tetrahedra τ1, τ2. Then σi is smaller than
all triangles lying on a collapsing path from τ1 or τ2 to a coface of σ1. Since every elementary refinement
separates the centered tetrahedra from each other, the triangle σ′i must lie on one such collapsing path,
which is in contradiction to the assumption σ′i < σi. Thus DE is a minimal elementary refinement. �

In 3D a tetrahedron either contains its own circumcenter and is by definition centered, or it does
not contain its own circumcenter and is confident. In the latter case there is a proper face - a triangle -
of the tetrahedron whose affine expansion separates the tetrahedron from its circumcenter. This face is
equivocal. It follows that the Delaunay tetrahedrons are either deleted in the first step of the elementary
thinning algorithm, or they have at least one proper equivocal face and are deleted in step two or
three. So, the elementary thinning algorithm processes all tetrahedrons of the complex. Due to this, the
subcomplex remaining after the elementary thinning algorithm is thin, i.e. it contains no tetrahedrons.

5.8 Refinement Reduction

To reduce a given refinement means to merge the reconstructed regions which are associated with the
same original region or are not associated with any original region at all. The merge is done by deletion
of a boundary triangle and is then followed by collapsing on simple edges. How do we know which
boundary triangle is appropriate for deletion? The answer can be given if the underlying sampling
conditions are region stable. In such a case a triangle may be too big. Which means the ratio between
the size of the triangle and the reconstructed region is too great. The size of a reconstructed region
is the circumradius of its greatest centered tetrahedron. The size of a triangle is its maximal distance
value.

The region stable sampling conditions ensure the sampling points near the boundary to be much
denser than in the interior of the original region. Simply speaking each original maximum is surrounded
by very small distance values around the boundary and correspondingly by small triangles. The maximal
sample point deviation reduces the possible minimal discrete distance values on original maxima to ρr,
if r is the continuous distance value on a maximum. In such a way the original maximum is surrounded
by distance values around the original boundary which are less than ρr. The ψ-value gives the upper
bound for maximal distance value. So, the original maximum is surrounded by boundary points with
discrete distance values less than ψρr. It follows that the corresponding triangles are less than ψρr with
ψ < 1.

Obviously, the original maxima and their distance values are not known during the reconstruction
process. But, if a discrete local maximum m′ is associated with an original one and since we know that
its discrete distance value r′ is greater than r we can conclude the maximum size of boundary triangles.
r′ is greater than ρr then ψr′ is greater than ψρr. It follows that knowing the greatest distance value r′

of a reconstructed region we also know that it can be correctly separated by boundary triangles smaller
than ψr′.

Well, it is almost as easy as that. Before the merge of reconstructed regions can be performed it has
to be ensured that such boundary triangles are still in the reconstruction. Consider our 2D example
in Figure 5.6 (a). The reconstructed eye is a triangle bounded only by edges which are greater than
at least half of the circumradius of the triangle. By previous considerations this region can be merged
to its neighbor if ψ ≈ 0.5 which would destroy the original neighborhood relation. The reason is, the
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Fig. 5.7: (a)Minimal elementary refinement resulting from Elementary Thinning. (b)
Refinement Reduction in lexicographically increasing order: the greatest undersampled in the

smallest region first.

refinement although elementary is not minimal. The reconstructed eye could be separated by edges
in the denser sampled environment of the original boundary but the edges have been removed in the
previous procedure.

To ensure that the reconstruction contains the boundary simplices which are small enough to correctly
separate the associated regions we demand the reconstruction to be a minimal refinement. Elementary
thinning results in minimal elementary refinement and so is the appropriate preprocessing step.

Constructed retraction in the elementary thinning algorithm as well as the collapsing on an incon-
sistent simplex removes an equivocal face and its unique predecessor. The procedure follows the flow
curves uphill. Thus by construction, there are monotonically increasing paths starting on remaining
boundary triangles and ending in circumcenters of centered tetrahedrons without passing through fur-
ther boundary simplices. Consequently, finding a simplex in the boundary which is greater than ψ of
the greatest distance value in the region, we also find a path of distance values too great to pass through
the original boundary. So, merging the reconstructed regions we connect two discrete maxima which are
either associated with the same region or not associated at all.

Lemma 5.9 (On Simplex Deletion in Minimal Refinement). Let DR be a minimal refinement constructed
on a region stable (ψ, ρ)-sampling of a space partition R. Let σ be in the boundary between two recon-
structed regions Ri and Rj. Let Ri be less than Rj and let ri be the radius of the greatest simplex in Ri.
Ri and Rj are associated with the same continuous region if the circumradius of σ is greater than ψri.

Proof: If there is no continuous maximum associated with any maximum in Ri or Rj then the proof is
trivial, σ can be deleted and Ri and Rj can be merged.

Let xi ∈ Ri ∈ R and xj ∈ Rj ∈ R be the continuous local maxima respectively associated with the
greatest discrete local maxima yi, yj in Ri and Rj . According to the definition of (ψ, ρ)-sampling and
the construction in Lemma 5.5, ri = dS(yi) > dS(xi) > dR(xi)− (1− ρ)dR(xi) = ρdR(xi).

Since by construction of minimal refinement all previously deleted simplices are greater than σ, there
exists a path between yi yj and, according to Lemma 5.5, a path π between xi and xj through σ, which
is everywhere greater than or equal to the greatest distance value in σ. Consequently, ∀t ∈ [0, 1] :
dS(π(t)) ≥ ψri.

Let us consider π intersects the boundary in b, then dS(b) ≥ ψri > ψρdR(xi). Then from definition of
(ψ, ρ)-sampling ∀b′ ∈ ∂R : dS(b′) < ψρlrs(b′) follows ψρlrs(b) > ψri > ψρdR(xi) which is a contradiction
since xi is maximal for Ri: ∀b′ ∈ ∂Ri : lrs(b′) ≤ dR(xi). �

According to Lemma 5.9 a boundary simplex is too great if its distance values exceed ψ of the
circumradius of the greatest simplex in the region. The underlying space of such a simplex is not
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supported by enough sample points, or in other words, is sampled with insufficient density. So, we
introduce the following definition:

Definition 5.10 (ψ-Undersampled). Let R be a reconstructed region and σ be in its boundary. Let rR

be the circumradius of the greatest simplex in R and rσ be the circumradius of σ. Then σ is called a
ψ-undersampled simplex of region R if rσ ≥ ψrR

We call the processing step which merges two reconstructed regions by removing the undersampled
simplex the ψ-undersampled merge.

Definition 5.11 (Top ψ-Undersampled Merge). The ψ-undersampled merge is a processing step which
deletes a simplex σ fulfilling the following properties: there exists a reconstructed region R with at least
one ψ-undersampled simplex of region R, and σ is the greatest boundary simplex of R.

The top ψ-undersampled merge is a ψ-undersampled merge on the greatest ψ-undersampled simplex.

According to Lemma 5.9 the result of ψ-undersampled merge is still correct separation of original local
maxima. The aim of the algorithm is to result in a boundary reconstruction which correctly separates
the local maxima and which oversegments the regions as little as possible. In other words we want to
merge as many reconstructed regions as possible preserving the correct separation. The precondition for
ψ-undersampled merge is a minimal refinement.

Theorem 5.12 (Result of Top ψ-Undersampled Merge is Minimal Refinement). Let DR be a minimal
refinement and let σ be the greatest ψ-undersampled simplex. Let D′R be the result of top ψ-undersampled
merge on σ then D′R is minimal refinement.

Proof: According to Lemma 5.9 D′R is a refinement. Assume D′R is a not minimal. Then there is a
compatible refinement D′′R which is minimal. But D′′R contains σ in its boundary, so D′R is less than D′′R
which is a contradiction. �

Using the construction of top ψ-undersampled merge we propose the following algorithm.

Algorithm 5.13 (Sorted Refinement Reduction). Let DE be the result of elementary thinning. DR =
DE. Let Q∂DR be a priority queue of pairs of ψ-undersampled simplices and their smallest adjacent
regions lexicographically sorted in decreasing order according to the size of ψ-undersampled simplices.

1. While Q∂DR is not empty:

(a) Let (σ, τ) be the top element of Q∂DR . Pop Q∂DR .

(b) If σ is deleted or is not ψ-undersampled on smallest adjacent region, then continue with 1.

(c) If τ is not the greatest cell of the adjacent region, then push τ ′, σ into Q∂DR where τ ′ is the
greatest cell of the smallest adjacent region of σ, then continue with 1.

(d) Perform the ψ-undersampled merge on σ.

(e) Collapse on all simple simplices, then continue with 1.

2. Return DR.

In refinement reduction the ψ-undersampled merge is performed on one boundary simplex only.
After deletion of that simplex the adjacent regions are merged and the boundary may consist of simple
simplices. The subsequent elementary collapsing on all simple simplices deletes among others the ψ-
undersampled simplices. So, we need to check in Algorithm 5.13 1.b if the current ψ-undersampled
simplex is still in the boundary.

Merging regions means to join one reconstructed region with a greater one. The greatest cell of
the first region is updated to the greatest cell of the second. So, the ψ-undersampled condition for the
simplices of the first region is no longer valid. Therefore in step 1.b the test is performed if the simplex
is ψ-undersampled according to the smallest adjacent region. The smallest adjacent region might have
been merged to a greater on which would change its size.
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(a) (b)

Fig. 5.8: (a) Refinement Reduction in lexicographically increasing order: the greatest
undersampled in the smallest region first. (b) Refinement Reduction in arbitrary order: the

greatest undersampled with respect to any region. The empty boxes are vertices of the merging
graph. Each empty box is the greatest maximum of a reconstructed region after elementary

thinning. The connecting edges through a thin Delaunay edge demonstrate a merge of
reconstructed regions on the undersampled edge (the Delaunay edge crossing the graph edge). The

brighter the color of the edge the earlier the merge was performed. The black box is the root of
the graph.

Notice, the refinement reduction algorithm is order-independent according to the choice of the re-
constructed region. The priority queue is sorted according to the size of the undersampled simplices
only to ensure the result to be minimal refinement. The undersampled merge connects two regions on
an undersampled simplex. Considering the elementary regions as knots, and the pairs of connected
elementary regions as edges, we obtain a graph. The graph is a set of trees with the greatest region cells
after refinement reduction as roots and the elementary regions as leaves.

Since the initial boundary for each ψ-undersampled merge is the minimal refinement, we can consider
the ψ-undersampled merge as joining of two trees. Since the root and the greatest undersampled simplex
in the corresponding region are unique there is only one possibility for the merge. So, the reconstruction
graph is unique for any choice of join of trees.

In Figure 5.8 we demonstrate the different orders of refinement reduction by a reconstruction graph.
The resulting boundary reconstruction is the thick line corresponding to Figure 5.7.

The thin lines are the boundary simplices of elementary thinning. The empty boxes are the maxima
of elementary regions. The black boxes are the greatest maxima of resulting reconstructed regions after
refinement reduction. The black boxes are the roots of the graph trees.

The graph edges between the boxes are Voronoi edges dual to simplices in the unique flow relation be-
tween the nearest maximum and the undersampled edges. Since for any reconstructed region the greatest
undersampled edge is unique, the construction of a merge in a graph requires for any undersampled edge
only the connection of the nearest reachable maxima.

The graph edges in Figure 5.8 are colored according to the order in the sequence of the undersampled
merges. The earlier the undersampled merge is, the lighter is the gray color of the graph edge. In
Figure 5.8 (a) the undersampled edges are lexicographically sorted in increasing order according to
the circumradii of the smallest adjacent region and in decreasing order according to the size of the
undersampled edge. So, the greatest undersampled of the smallest region is processed first. The lighter
graph edges start on smaller regions. The darker graph edges connect greater regions. In Figure 5.8 (b)
the choice of a region is random. The lighter graph edges demonstrate earlier merges.

The condition of the minimal refinement is proven by top undersampled merge. The list of simplices
to delete is already sorted to ensure minimal result. According to this construction the proof is straight
forward. But the undersampled merge is a merge of two trees. The smaller root becomes a branch
of a greater tree. For this root the undersampled simplex is unique, as we indicated previously, so we
conjecture that the refinement reduction results in minimal refinement order independently.
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(a) (b) (c)

Fig. 5.9: (a): original surface; (b): irreducible refinement; (c): stable refinement

Conjecture 5.14 (Result of Order Independent ψ-Undersampled Merge is Minimal Refinement). Let
DR be a minimal refinement and let σ be the greatest ψ-undersampled simplex. Let D′R be the result of
ψ-undersampled merge on σ then D′R is minimal refinement.

Assuming Conjecture 5.14 to be true, the refinement reduction allows highly parallel implementation
of the algorithm.

5.9 Reducible Refinement

As we may see in Figure 5.2 even if the boundary does separate the associated maxima correctly the
resulting space partition is not homotopy-equivalent to the original. Furthermore the regions containing
maxima associated with continuous maxima of one and the same region cannot be joined without loosing
the refinement property. Opening any triangle by deletion of an edge joins the regions and the infinite
maximum is no longer separated from the maximum of the triangles.

In Figure 5.9 we see the problem in 3D. The original shape (a) is a donut with one swallowed and
one shrunk side. The original shape has only one local maximum in its interior as well as the refinement
in (b). But the refinement in (b) is not homotopy-equivalent to the original and any further deletion of
edges or triangles either destroys the refinement property or the connectivity of a region. The refinement
in (c) is homotopy and even topology-equivalent space partition.

Separating maxima only is not enough for shapes with necks or narrowings. Neck or narrowing corre-
sponds to a saddle on the distance transform. Our next aim is the correct separation of all criticals. The
criticals which belong to the same original region are then associated with discrete criticals which belong
to the same reconstructed region. The minimal homotopy equivalent subset of the medial axis containing
all criticals and the steepest paths connection them is the homotopical axis (see (see Definition 2.24)).
. So we demand from the refinement to preserve the connectivity of the homotopical axis.

Definition 5.15 (Stable Refinement). Given a space partition R, let R′′ be the refinement of R. Let
HA be the homotopical axis of R. Then R′′ is called a stable refinement of R, if the underlying space of
its boundary ∂R′′ does not cut HA.

Definition 5.16 (Reducible Refinement). Let R′ be a refinement of R. R′ is a reducible refinement if
there is a stable refinement R′′ of R such that the boundary of R′′ is a subset of the boundary of R′.

A stable refinement of our barbell example in Figure 5.10 now divides the space in such a way that
the homotopical axes of different original regions are separated. The refinement containing the dashed
edge is reducible to a stable refinement by joining the regions by deletion of the dashed edge. Obviously
the topological equivalent in Figure 5.9 (c) is a stable refinement.

Reduction vs. Enhancement to a Topological Equivalent Notice, that a donut is a stable
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Fig. 5.10: The thinner line is the boundary of the original space partition R. The thick line
connecting ⊕ is the homotopical axis of R. The union of thick edges the space into a stable
refinement of R. The union of thick edges with the dashed edge partitions the space into a

refinement which can be reduced to a stable refinement.

refinement of a ball but is not reducible to the topological equivalent by deletion of some subsets of
its boundary. In this case the loop of the donut must be cut. In other words we have to enlarge the
boundary to cut the interior region or to reduce the interior region and simplify its topology.

To reduce a refinement we delete some boundary subset. This boundary subset is a connected
component resulting from boundary intersection. Deletion of this boundary intersection joins the regions
and the boundary subset becomes subset of their interior. Obviously in cases of a region whose boundary
intersects itself (compare Figure 5.9 (b)) no regions are joined, but the intersection becomes a subset of
the region’s interior.

The region reduction like in case of a donut does not lead to refinement reduction. In fact by deletion
of interior subsets we enlarge the boundary and/or add new regions to the space partition. Which means
that we enhance the refinement instead of reducing it.

5.10 Sampling Conditions for Reducible Refinement

The boundary of a stable refinement does not intersect the homotopical axis. The homotopical axis is
homotopy-equivalent to its open set and contains all critical points of the continuous distance transform
but also all the steepest paths connecting them. Reconstructing the homotopical axis, we reconstruct
the homotopy type of the space partition.

Let us consider a non-smooth non-manifold shape of a multi-regional space partition in Figure 5.11
(a). The contour of a fish is one of the simplest examples to demonstrate a region with at least two local
maxima and a saddle between them. The two fins are two further regions as well as the eye of the fish.
This shape illustrates also a saddle of even lesser distance value between the fish and the eye boundary.
Between the bottom fin and the fishtail the distance value of the maximum is only slightly greater than
of the neighboring saddle. The tips of the fins and the fishtail are non-smooth points on the boundary
as well as the meeting points between the fin, the background and the fish contour.

The homotopical axis (dashed line in Figure 5.11 (a)) of the whole space partition consists of five
connected components. The connected components, or in other words the homotopical axis, in the
fins and the eye consist of one single local maximum. Obviously we illustrate only a cutout of the
homotopical axis corresponding to the infinite background containing the infinite maximum and the
connection between the saddle and the maximum between the bottom fin and the tail. The homotopical
axis in the fish interior consists of two maxima connected by steepest paths starting on the saddle and
a loop which are two steepest paths starting on the smallest saddle and ending in the same greatest
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Fig. 5.11: (a) Space partition consisting of 4 regions and the background. Thick line is the
boundary, ⊕ denote the local continuous maxima, ⊗ denotes a saddle, the dashed line is the

homotopical axis and the dotted line is the medial axis extension. (b) Local homotopy sampling
with ψ = 0.5 and ρ = 1

maximum.
Our aim now is to define the sampling conditions in such a way that the homotopical axes of different

regions are separated by an envelope with lesser discrete distance values than in the close environment
of the homotopical axis. In fact we define the sampling conditions to obviate the possibility of starting a
steepest increasing path on the homotopical axis and pass through the boundary of a stable refinement.

The local homotopical feature size (lhfs compare Definition 2.36) measures for every point the distance
to the homotopical axis and compares it to the local region size on this point. The lesser value is the local
homotopical feature size. If we consider a very thin and high pyramid we notice that the homotomopical
axis consists of one local maximum only. But the distance between the tip of the pyramid and the
maximum is inappropriately large to be used for sampling conditions.

We use again the idea of the (p, q)-sampling and define non-uniform sampling conditions induced by
local homotopical feature size:

Definition 5.17 (Local Homotopy Stable (ψ, ρ)-Sampling). Let ∂R be the boundary of a space partition
R and let lhfs be the local homotopical size defined on ∂R. Let S ⊂ R3 be a finite set of points. Then S is
said to be a region stable (ψ, ρ)-sampling of ∂R, if S is a (ψ, ρ)-sampling with ∀b ∈ ∂R : f(b) = lhfs(b)

A noise free local homotopy stable sampling (dots) of the fish example is presented in Definition 2.36
(b). The corresponding circles demonstrate the ψρlhfs-balls with ψ ≈ 0.5 and ρ ≈ 1.

The sampling conditions defined for refinement reconstruction in [Tcherniavski et al., 2012] are a
special case of a local homotopy stable (ψ, ρ)-sampling with ψ ≈ 1 and ρ ≈ 0.5.

Local homotopical feature size is the smaller value between the distance value of the minimal reachable
local maximum which is the local region size, and the distance to the homotopical axis. It follows that
the local homotopical feature size is always less than or equal to the local region size and implies:

Corollary 5.18 (Local Homotopy Stable (ψ, ρ)-Sampling is Region Stable). Let ∂R be the boundary of
a space partition R and let lhfs be the local homotopical size and lrs be the local region size defined on
∂R. Let S ⊂ R3 be local homotopy stable (ψ, ρ)-sampling of ∂R. Then S is region stable (ψ, ρ)-sampling

Proof: Since ∀b ∈ ∂R : lhfs(b) ≤ lrs(b) is valid it follows:

∀b ∈ ∂R : dS(b) ≤ ψρlhfs(b) ≤ ψρlrs(b) and
∀s ∈ S∃b ∈ ∂R : dR(s) ≤ (1− ρ)lhfs(b) ≤ (1− ρ)lrs(b)

�
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For simplicity in following we call a sampling which is a region stable (ψ, ρ)-sampling a region
stable sampling, and a sampling which is local homotopy stable (ψ, ρ)-sampling a local homotopy stable
sampling. Obviously, since Corollary 5.18 is valid all further statements and guarantees proven for a
region stable sampling also hold for a local homotopy stable sampling.

5.11 Reducible Refinement Reconstruction

The aim of our work is to investigate the sampling conditions and to present methods for reconstruction
of topological properties. In this chapter, we assume multi-regional space partitions. In this way the
refinement reconstruction algorithm is a method which results in a space partition which, under guar-
antee, separates the local continuous maxima. But the separation of local maxima is insufficient for
objects consisting of waists or narrowings in their boundary. In this section, we prove that the result of
refinement reduction on homotopy stable sampling is a reducible refinement.

The main idea of the proof is based on two facts. First, according to Corollary 5.18 the homotopy
stable sampling is region stable. So, the result of the refinement reconstruction is a minimal refinement.
In other words, all maxima are correctly separated and all decreasing paths starting on the homotopical
axis meet the reconstructed boundary. Second, increasing paths starting in the homotopical axis stay in
the homotopical axis. So after we have outlined the arising trivial cases in I, in II we cover the case of
the homotopical axis cutting the reconstructed boundary. We show that all increasing paths from the
cutting point to maxima of different reconstructed regions belong to the homotopical axis of one original
region.

So, removing the cutting simplex will preserve the topological properties of the original region.
Assuming the opposite will lead to a contradiction. The result of III is that every path to the different
original region goes through the boundary and needs to be partly decreasing. In contradiction, IV shows
that there is an increasing path between the cutting point and the maximum of the neighboring region,
which falsifies the assumption.

Theorem 5.19 (Stability of the Minimal Refinement on (ψ, ρ)-Locally Stable Sampling). Let DR be
a minimal refinement constructed on (ψ, ρ)-locally stable sampling of a space partition R. Then the
boundary ∂DR of DR contains the boundary of a stable refinement.

Proof: We need to show that removing all simplices of ∂DR which cut or touch the homotopical axis
results in a space partition which is still a refinement.

I Obviously, if DR is a stable refinement, the theorem holds. So let DR not be a stable refinement. Let
|∂DR| be the underlying space of ∂DR and HA be the homotopical axis of ∂R, then |∂DR|∩HA = X 6= ∅.

Let Ri and Rj be two reconstructed regions such that there is an x ∈ X in the common boundary of Ri

and Rj . There are two cases to consider: First, at least one reconstructed region contains no continuous
maximum: then merging the reconstructed regions does not destroy the refinement condition. Thus,
we only have to consider the second case: each reconstructed region contains at least one continuous
maximum.

II All continuous local maxima are also local maxima of MAT (Observation 2.22) and so are in HA.
Let xi ∈ Ri and xj ∈ Rj be two nearest local maxima on HA reachable by steepest paths starting on x.
We have to show that there is a path πi in Ri between x and xi and a path πj in Rj between x and xj
with πi, πj entirely contained in HA.

III Let us assume that there is no such path πi. Since for each continuous region R the intersection
HA ∩ R is continuous (Corollary 2.28), x and xi must belong to different continuous regions. It follows
that any path between x and xi must cross ∂R. Therefore, for all paths π′ between x and xi there is a
t such that π′(t) = b ∈ ∂R and by definition of (ψ, ρ)-locally stable sampling dS(b) < ψρlhfs(b).

IV Let b be the nearest boundary point to x, then, since x ∈ HA, dR(x) ≥ lhfs(b) and dS(x) ≥
lhfs(b) − (1 − ρ)lhfs(b) = ρlhfs(b). But by construction of the refinement reduction algorithm, the
circumradius of the previously deleted simplices in DR are greater than dS(x), and so there exists a
path π between x and xi through the circumcenters of the deleted simplices which fulfills ∀t ∈ [0, 1] :
dS(π(t)) ≥ dS(x) ≥ ρlhfs(b), which contradicts the previous paragraph.



132 CHAPTER 5. REFINEMENT RECONSTRUCTION

⊕

⊕

⊕

⊕

⊕
⊕⊗

⊗

⊗

(a)

⊕

⊕

⊕

⊕

⊕
⊕⊗

⊗

⊗

(b)

Fig. 5.12: (a) Space partition consisting of 4 regions and the background. Thick line is the
boundary, ⊕ denotes the local continuous maxima, ⊗ denotes a saddle, the dashed line is the
homotopical axis and the dotted line is the medial axis extension. (b) Dots are the noise-free
homotopy stable sampling with ψ = 0.5 and ρ = 1, the thick line is the result of refinement

reconstruction.

Obviously the same is valid for πj and for all x ∈ X which are also in the boundary of Ri and
Rj . Since πi and πj exist, there is a continuous path between xi and xj in HA. Consequently, the
local maxima of the continuous distance transform lying inside Ri and Rj lie in the same continuous
region. Then, after removing the simplex containing x, no local maxima lying in different continuous re-
gions will lie in one reconstructed region, and the resulting discrete space partition is still a refinement. �

The refinement reconstruction is a method to separate the original local maxima, not to separate the
connected components of the original homotopical axis. With the result of Theorem 5.19, we guarantee
that the outcome of the algorithm on homotopy stable samplings can be reduced to a boundary which
correctly separates the connected components of the homotopical axis.

The result of the refinement reconstruction on noise-free homotopy stable sampling is presented in
Figure 5.12 (b). The reconstructed contour (thick line) correctly separates the local maxima. The
contour also contains an edge which cuts the original homotopical axis. We observe, that removing the
edge does not destroy the property of refinement. The increasing paths on discrete distance transform
starting in the cutting point stay in the interior region.

5.12 Algorithm

In this section, we summarize the reconstruction steps and illustrate the results of the algorithm on three
examples. Each example is a sampling of our non-manifold 2D example “fish” (see Figure 5.13 (a)). In
(b) we demonstrate a very sparse noise-free homotopy stable sampling. The example in (c) is a very
dense homotopy stable sampling which has been corrupted by high amounts if noise without losing the
sampling stability conditions. The sparse sampling in the last example (d) lost its stability conditions
as the consequence of noise.

5.12.1 Sampling Conditions

Obviously, the sampling sets in Figure 5.13 are artificial and the sampling parameters are known. In
real applications, the sampling parameters are not always known in the reconstruction procedure and
have to be determined or estimated.

Consider the illustration of noise-free sampling conditions in Figure 5.13 (b). The sampling points
are on the boundary. The dark gray balls surrounding the sample points represent the ψρlhfs value on
this point. So, we want to assume that for each boundary point in this ball the nearest sample point is
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Fig. 5.13: (a) Space partition consisting of 4 regions and the background. Thick line is the
boundary, ⊕ denotes the local continuous maxima, ⊗ denotes a saddle, the dashed line is the

homotopical axis and the dotted line is the medial axis extension. (b) Noise-free homotopy stable
sampling with ψ < 0.5. (c) Homotopy stable sampling with ψ < 0.5 and ρ < 0.2. (d) Homotopy
stable sampling (centers of dark gray circles) with ψ < 0.6, ρ < 0.8 which has been corrupted by

huge amount of noise (ρ < 0.2). (b,c,d) the gray circles represent the ψρlhfs on the boundary point
where the center is the corresponding sample point. (c,d) the gray dilation is the

(1− ρ)lhfs-dilation of the boundary.

the center of this ball and since the distance to it is less than ψρlhfs, then the sampling conditions are
fulfilled. But the local homotopical feature size (lhfs) is not constant on the boundary. So, taking for
our consideration the greatest dark gray ball we conclude that the lhfs on boundary points to the right
of the sampling point is decreasing and is increasing to the left of the sample point. The ball containing
the boundary points for which the center is the nearest sample point fulfilling the sampling conditions
should actually be an “egg” shape. However, for simplified illustration we chose the circular balls with
variable radius. In our illustration the union of balls covers the boundary and is covered by the ψρlhfs
boundary dilation. In such a way we ensure the sampling conditions to be fulfilled. Notice, that in the
examples (c) and (d) the irregular light gray envelope of the boundary is not the (1−ρ)lhfs-dilation, but
the illustration of the lhfs distribution.

So, the first example is noise-free. That implies that ρ = 1. Observing the radii of the gray balls,
we state that the radii are less than 0.5lhfs. So, we estimate ψ ≈ 0.5. The second example (c) is highly
noise corrupted. But there is a dense point set around the boundary such that the distances between
the boundary points and the nearest sample points are less than 0.1lhfs. The sample point deviation
from the boundary is in the 0.8lhfs-dilation of the boundary. So, we estimate the parameters with
ρ < 0.2, ψ < 0.5.

The last example is a sparse sampling which has been corrupted by noise in the same way as in
the previous example. The ψρlhfs balls have the radii of 0.5lhfs with estimated ψ-value of 0.5 and,
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Fig. 5.14: (a) Space partition consisting of 4 regions and the background. Thick line is the
boundary, ⊕ denotes the local continuous maxima, ⊗ denotes a saddle, the dashed line is the

homotopical axis and the dotted line is the medial axis extension. (b,c,d) The results of
elementary thinning (thick line).

consequently ρ ≈ 1 which does not allow any sample point deviation from the boundary. But the balls
overlap and their centers are not exactly on the boundary. Furthermore the local homotopical feature
size is equal to the distance to the nearest maximum in only a few points. The maximal deviation
on such points is critical for reconstruction. The initially sparse sampling denoted by dark gray balls
might have been fulfilling the sampling conditions but is now corrupted by huge amount of noise with
maximal deviation of 0.8lhfs. So, we expect the reconstruction to lose topological properties. We observe
furthermore that the regions which correspond to “fins” are represented by a soup of almost uniformly
distributed sample points.

5.12.2 Elementary Thinning

The first step of our method is to build a refinement on the Delaunay triangulation by deleting all centered
cells. The holes in the triangulation are the reconstructed regions of the first step. The boundary
between the regions may be thick and consist of further Delaunay cells. The constructive retraction
method applied on the simple simplices thins the boundary leaving the compatible reconstructed regions
bounded by minimal simplices.

As stated previously the reconstructed regions contain at this step of the algorithm one discrete
local maximum which makes the refinement elementary. It follows that since maxima are separated by
minimal simplices the refinement is minimal.

The results of elementary thinning on our three examples is presented in Figure 5.14. The recon-
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struction is an oversegmentation which correctly separates the local maxima. The reconstructed contour
in (a) is a good approximation of the original boundary especially in curve segments with low curvature.
Unintentionally the sampling met the corners of “fins”, so, the contour is less erroneous in the sharp
angles.

The results in (c) and (d) are built on point sets consisting of equal subsets. So, the reconstruction
may consist of equal structures and, so, look similar. But in (c) the points near the boundary are much
denser than in (d). Both reconstructions seem to consist of a soup of triangles especially in the areas of
fins and the fishtail. But the ratio between the greatest triangles inside the fins and the edges around
the original boundary is much higher in (c) than in (d). In (d) the size of triangles inside the fins and the
fishtail is the same as the size of triangles around the boundary. That means that the distance values
along the paths through the original region do not change significantly, which makes the separation
between the maxima impossible.

5.12.3 Refinement Reduction

The last step of our algorithm reduces the oversegmentation by appropriate merging of reconstructed
regions. Appropriate regions for a merge are reconstructed regions which belong to the same original
region. Consider for example the two greatest empty areas in Figure 5.14 (c) or (d). The two areas
belong to the same original region - the interior of the fish - and are separated by a slim triangle which
for itself is a reconstructed region of the same original region. Breaking through the slim triangle and
so to join the three areas into one is the appropriate merging.

The results of refinement reduction on our three examples are presented in Figure 5.15. In all exam-
ples we see, why the reconstruction is only a refinement and cannot guarantee the topological correctness.
The narrowing between the eye and the fish boundary is a saddle on the distance transform. The re-
finement reconstruction algorithm was built to separate the local maxima, but not all critical points.
The guarantee of homotopical stability in the sampling ensures that the simplices cutting the homo-
topical axis (dashed line) may be removed from the reconstruction without destroying the topological
correspondence. In our example we observe an edge cutting the dashed line. The circumcenter of that
edge is a saddle point on the discrete distance transform. Deleting the edge results in a loop in the
reconstructed region which corresponds to the loop of the original homotopical axis.

In (b) we observe that even though the sampling achieved data points on the sharp tips of the
corners the reconstruction cut them off. Let us consider the reconstructed region containing the tip in
its boundary. The sharp corner is a tip of a triangle with nearly equal sides and a very small angle
between them. The edge opposite the acute angle is the smallest. Since the method pursues smaller
boundary simplices, the smallest edge of the triangle is preferred to separate regions. So, merging of
reconstructed regions containing this triangle in the boundary results in deleting the greater edge and,
so, in cutting off the sharp tip of the region. The goal of our reconstruction method is the simplest
way and conditions for preservation of topological properties. The result with cut off sharp tips and the
result with sharp corners in the boundary are topologically equivalent, so the reconstruction problem is
solved in both cases.

The result in (c) demonstrates the stability of the algorithm on a highly noisy data set. In (d),
as already presumed, some of the reconstructed regions are lost in the reconstruction. Since the ratio
between the local maximum of the reconstructed region and its boundary simplices is too small, the
regions are assumed to belong to the same original region and, so, are merged in the reconstruction
process. The interior of the fish does contain a discrete local maximum with distance value which is
much greater than the sampling rate on the boundary. The result is, the interior region is surrounded by
small enough simplices and, so, the reconstructed region is recognized as a discrete region corresponding
to a different original region.

In (d) we also illustrated the result of the reconstruction (thin line) on a data set before it was
corrupted by high amounts of noise as in (c). The boundary is sampled such that the distances between
the boundary and the sample points are less than 0.5lhfs. The sampling is done with ψ ≈ 0.6 and
1 > ρ > 0.8. Here we also demonstrate robustness of the algorithm due to the choice of the reconstruction
parameter ψ. The sampling parameter ψ is expected to be passed to the reconstruction method. But it is
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Fig. 5.15: (a) Space partition consisting of 4 regions and the background. Thick line is the
boundary, ⊕ denotes the local continuous maxima, ⊗ denotes a saddle, the dashed line is the

homotopical axis and the dotted line is the medial axis extension. (b,c,d) The results of
refinement reduction with ψ = 0.5 (thick line). (d) The refinement reconstruction on data set

(with ψ < 0.6, ρ < 0.8) which was not corrupted by noise with ρ < 0.2

not always exactly measurable. Here the original parameter was ψ = 0.6. In the reconstruction method
the parameter was set to ψ = 0.5. In this case the underestimated parameter delivers a refinement with
a reduced oversegmentation. The result is a correct separation of the local maxima. Why is that so?

The minimal density of the points depends on the maximal sample point deviation from the boundary.
Consider the sampling of a circle. If the maximal sample point deviation is allowed to be up to 0.8r where
r is the radius of the original circle then the points might be placed so unfortunately that inside the
circle develops the greatest triangle with circumradius approximately 0.2r. Our reconstruction method
requires then the local maximum to be surrounded by simplices less than ψ times 0.2r.

Such an unfortunate constellation does not occur in our case. The maximum inscribing ball corre-
sponding to the greatest continuous local maximum of the interior region touches the boundary in three
points only. The distance to the homotopical axis at these points is less than the distance value of the
maximum. So, even with the sample point deviation of 0.2lhfs the points do not land too close to the
local maximum. The greatest inscribing balls in the fins and the fishtail also touch the boundary in
three points each. But the sample points do not reach the 0.2 closure of the maxima and so, the greatest
sample point deviation is less than 0.2. Summing up, even if, the sampling simulation parameters are
set to ψ < 0.6, ρ < 0.8 the resulting data set can be modelled with ψ ≈ 0.5 and ρ ≈ 0.9.
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5.13 Comparison to Other Approaches

The methods used for surface reconstruction which are relevant for our context are based on Delaunay
triangulation. So, the worst case complexity is O(n2). The results of the reconstructions are different
and depend on the sampling conditions required to guarantee the outcome. We use the (ψ, ρ)-sampling
parameters as a unique measure for all approaches for appropriate comparison of the sampling conditions.

The uniform sampling conditions can be represented by (p, q)-sampling parameters as it is done in
Section 4.9. In the following we express the global (p, q)-sampling parameters by locally adaptive (ψ, ρ)-
sampling parameters and use the result to unify the results of thinned-(α, β)-shape-reconstruction with
an extension of our refinement reconstruction. Equivalently we approach the locally adaptive sampling
conditions for manifold surface reconstruction methods to compare the results and the requirements.

5.13.1 Uniform on (p, q)-Sampling Sets

The refinement reconstruction method is developed to handle locally adaptive sampling sets. The
thinned-(α, β)-shape-reconstruction method is distinguished by its guarantee to result in a one-to-one
mapping between the original and the reconstructed regions. Our algorithm lacks this ability. In this
section we investigate the result of refinement reconstruction on uniformly parameterized (p, q)-sampling
sets and discuss the extension of the algorithm if the parameters also required by thinned-(α, β)-shape-
reconstruction method are known during the reconstruction process.

Lemma 5.20 ((p, q)-Sampling is Local Homotopy Stable). Let S be a (p, q)-sampling of a r-stable space
partition with p < 0.5r and q < r − 2p, then S is a (ψ, ρ)-sampling with ψ = p

r−q and ρ = 1 − q
r such

that ρ > 2p
r and ψρ < 0.5.

Proof: The (p, q)-sampling conditions for r-stable space partition R are

∀b ∈ ∂R∃s ∈ S : ||b− s|| ≤ p < 0.5r
∀s ∈ S∃b ∈ ∂R : ||b− s|| ≤ q < r − 2p

Let ψρ = p
r and (1− ρ) = q, then ρ = 1− q

r which implies ψ = p
r−q . It follows that:

∀b ∈ ∂R∃s ∈ S : ||b− s|| ≤ p = ψρr < 0.5r ≤ 0.5lhfs(b)
∀s ∈ S∃b ∈ ∂R : ||b− s|| ≤ q = (1− ρ)r < r − 2p = (1− 2p

r )r ≤ (1− 2p
r )lhfs(b)

�

According to Lemma 5.20 the sampling conditions required for correct thinned-(α, β)-shape-recon-
struction are local homotopy stable which implies that the result of refinement reconstruction algorithm
on a (p, q)-sampling is a minimal reducible refinement. In the following we call the data set which
fulfills the sampling conditions for correct thinned-(α, β)-shape-reconstruction (consult Section 4.3) the
(p, q)-sampling.

Corollary 5.21 (Refinement Reconstruction on a (p, q)-Sampling is a Minimal Reducible Refinement).
Let S be a (p, q)-sampling of an r-stable space partition R with p < 0.5r and q < r− 2p. Then the result
of refinement reconstruction on S is a minimal reducible refinement of R.

Proof: The proof follows from Lemma 5.20 and Theorem 5.19. �

Let us consider the result of refinement reconstruction on a (p, q)-sampling of an r-stable space
partition. As discussed previously the algorithm is developed for locally adaptive sampling methods
and, so, chooses a boundary simplex for deletion and resulting merge of reconstructed regions by ratio
between the size of the region and the size of the boundary simplex. The size of a reconstructed region
is the circumradius of its greatest simplex. A boundary simplex is deleted by refinement reduction if its
size is greater than ψ times the size of the adjacent region. Obviously, since the refinement reduction is a
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locally adaptive method, the region’s size may be much greater than r. Consequently, the ψ-fraction of
that region’s size may be greater than α-parameter of the thinned-(α, β)-shape-reconstruction method.
We conclude that our algorithm in its original form does not recognize all undersampled simplices in the
boundary and so leaves some reconstructed regions unmerged.

Furthermore, consider boundary simplices corresponding to saddles - as the edge in the reconstruction
of our 2D example in Figure 5.15, between the eye and the boundary of the interior of the fish. An
equivalent example is in the boundary of a 3D donut reconstruction in Figure 5.9 (c). The illustration
demonstrates the boundary after the boundary inside the donut was reduced by breaking through the
set of simplices inside the donut building a “membrane” in the tightest narrowing of the donut. The
result is, the interior of the donut became a loop. Such a membrane in the donut or the edge in the fish
is the consequence of reconstruction built on a ratio between the region size and the size of boundary
simplices. The too great regions may be separated even by too great boundary simplices.

In the case of a uniform sampling, such a disadvantageous choice of a boundary simplex can be
recognized since all boundary simplices do not exceed a global parameter α.

According to Theorem 4.6 (α, β)-shape reconstruction is a correct one-to-one mapping between the
original regions and (α, β)-holes. The thinned-(α, β)-shape-reconstruction uses the fact that the distance
values in p-dilation of the boundary are less than the value α but the values outside the p-dilation are
greater than α. It follows that the holes in the α-shape which correspond to the original regions are
surrounded by distance values less than α. Using this fact and according to the duality between Voronoi
and Delaunay the simplices separating the holes have lesser size than α.

α-exposed simplices have greater circumradius than α and empty circumballs. Deletion of α-exposed
simplices results in holes in the α-shape. Since all holes in the α-shape are surrounded by simplices
which are not α-exposed the α-holes correspond to local maxima and so to reconstructed regions in
our context. Notice, α-holes may contain several discrete local maxima. The corresponding elementary
regions in our context are separated by α-exposed simplices.

Lemma 5.22 (α-shape is a stable refinement). Let R be r-stable and S be a (p, q)-sampling of the
boundary of R with p < 1

2r and q < r − 2p. Then the α-shape Sα with p < α < r − q is a stable
refinement of R.

Proof:
Refinement Let U be the union of α-balls centered on points in S. Since α > p and ∀b ∈ ∂R∃s ∈

S : ||b− s|| < p < α, U covers ∂R. Consequently, the continuous local maxima are correctly separated
by U . By definition of a (p, q)-sampling for each point b on a boundary: dS(b) < p, consequently no
increasing path starting on a continuous local maximum intersects ∂R, and since the discrete distance
values on the associates is greater than or equal to the discrete distance values on the continuous local
maxima, the continuous local maxima and their associates are in the same components of U c and
according to Theorem 2.50 in the same α-holes. So Sα is a refinement

Stability By definition of r-stability r is the distance between the boundary of R and the set of
criticals on the distance transform. So, r is the smallest distance between boundary and criticals and so
the smallest distance to the homotopical axis HA. Since α + q < r no α-ball centered on any point in
S intersects HA. So, the union of balls does not touch or intersect HA. According to Theorem 2.50 the
Sα is homotopy equivalent to the union of α-balls centered on points in S. It follows, that Sα does not
touch or intersect HA �

According to Lemma 5.22 the α-shape is a stable refinement. So, there is a reconstruction without
α-exposed simplices which correctly separates local maxima and does not cut the homotopical axis. We
want to use the α-parameter to achieve an equivalent result. Obviously, the simplices with size greater
than or equal to α are α-exposed., and since the distance values in the p-boundary are smaller than α
the minimal boundary simplices are smaller than α. It follows that the simplices with size greater than
α correctly separate reconstructed regions.

Lemma 5.23 (Reducible Refinement without Simplices greater than α is Stable). Let R be an r-stable
space partition and S be an (p, q)-sampling of its boundary with p < 1

2r and q < r − 2p. Let DR be the
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result of refinement reconstruction on S. Let Dcα be the subset of DR consisting of simplices less than α.
Then DR \ Dcα is a stable refinement.

Proof:
Refinement The boundary simplices of DR are minimal. It follows that for every boundary simplex

there are increasing paths on the discrete distance transform starting in the points with greatest distance
value on the simplex and ending in the local maxima of the adjacent reconstructed regions. So, if a
boundary simplex is greater than α then there are paths starting on that simplex with distance values
on all points of the paths greater than α. This implies that the paths do not intersect the p-dilation of
the boundary and the adjacent reconstructed regions correspond to one original.

Stability According to Corollary 5.21 DR is reducible. Due to Lemma 5.22 not α-exposed simplices
do not cut HA. It follows that DR \ Dcα does not cut HA. �

Using the result of Lemma 5.23, we can achieve a stable reconstruction which is already an advantage
compared to the guaranteed results on locally adaptive (ψ, ρ)-samplings. However the reconstruction
does not cut the homotopical axis, it still contains to many regions which do not correspond to original
ones. In the discussion on thinned-(α, β)-shape-reconstruction method the complement of an α-shape is
divided into components which are either big enough to correspond to original regions or small enough
to correspond to topological artefacts in the q-dilation of the boundary. The measure taken into account
for this separation is the β-parameter. An α-hole corresponds to an original region if and only if the
α-hole is greater than β. Compare Theorem 4.6. The deletion of not (α, β)-holes ensures the one-to-one
mapping between the reconstructed and original regions.

Lemma 5.24 (Deletion of not-(α, β)-Holes results in Stable Refinement). Let R be an r-stable space
partition and S be a (p, q)-sampling of its boundary with p < 1

2r and q < r − 2p. Let p < α ≤ r − q
and β = α + p + q. Let each region of R contain a γ-ball with γ ≥ β + q. Let DR be a minimal stable
refinement of R and ∂DR be its boundary without simplices greater than or equal to α. Let ∂Dα,β be the
subset of ∂D which partitions the space into a set Dα,β of reconstructed regions greater than β. Then
Dα,β is a stable refinement.

Proof:
Refinement Since all original regions contain a γ-ball and each erosion of an original region is

contained in a single α-hole, for each continuous local maximum there has to be a path with discrete
distance value greater than r−q ending in a local discrete maximum with discrete distance value greater
than or equal to γ − q ≥ β.

Consider a reconstructed region whose greatest local discrete maximum has the distance value less
than β. The reconstructed region is separated by boundary simplices less than α. So, there are no paths
inside the reconstructed region with discrete distance values greater than r − q which end in a discrete
local maximum greater than β. It follows that there is not a continuous local maximum associated with
the reconstructed region and any merge of it results in a refinement.

Stability The stability of DR is preserved since no simplices have been added to the boundary which
cut the homotopical axis. �

The (α, β), p, q and γ parameters are assumed to be known during the (α, β)-reconstructed. So, the
requirement for Lemma 5.24 is justified as an appropriate extension of refinement reconstruction.

Now, knowing the parameters, the result of refinement reconstruction can be reduced even further to
a stable reconstruction containing only such reconstructed regions which are big enough to correspond
to original ones. Since all sampling points are in the q-dilation of the boundary, we infer that there is no
reconstructed region which does not correspond to an original. It follows that all reconstructed regions
necessarily contain a connected component of the original homotopical axis and the reconstruction is
not only a stable refinement but is also a one-to-one mapping between the original and reconstructed
regions.

Theorem 5.25 (Stable Refinement is a One-To-One Mapping). Let R be an r-stable space partition and
S be a (p, q)-sampling of its boundary with p < 1

2r and q < r− 2p. Let p < α ≤ r− q and β = α+ p+ q.
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Let each region of R contain a γ-ball with γ ≥ β + q. Let DR be a minimal stable refinement of R and
∂DR be its boundary without simplices greater than or equal to α and no reconstructed region is less than
β. Then there is a one-to-one mapping between the reconstructed regions of DR and original regions of
R.

Proof: The proof follows from Lemma 5.23 and Lemma 5.24 and since all sampling points are in the
q-dilation of the boundary of R. �

As a result of Theorem 5.25, it follows that knowing the parameters of thinned-(α, β)-shape-recon-
struction we can extend the refinement reconstruction such that the result is equivalent to the result
of thinned-(α, β)-shape-reconstruction. The extension requires only a further check of the size of the
boundary simplices and a further check of the size of regions and can be done in linear time.

5.13.2 Methods using Locally Adaptive Sampling Conditions

The well-known surface reconstruction algorithms such as “crust” [Amenta et al., 1998], “power crust”
[Amenta et al., 2000b, Amenta et al., 2001] or “co-cone” [Amenta et al., 2000a] result in a guaranteed
outcome if the underlying point set is a locally adaptive ε-sampling. Compare Definition 3.4. There
are numerous derivatives of the methods weakening the requirements or extending the results which are
based on ε-sampling conditions or some diversion of it.

Finding Common Notation To compare the results on ε-sampling we first show that the ε-sampling
conditions are local homotopy stable. The consequence is, the guaranteed results of refinement recon-
struction are also valid on ε-sampling.

Corollary 5.26 (ε-Sampling is a Local Homotopy Stable (ψ, ρ)-Sampling). Let S be an ε-Sampling then
S is a (ψ, ρ)-Sampling with ρ < 1, ψ > ε

ρ , so S is (ψ, ρ)-locally stable.

Proof: Since ∀b ∈ ∂R : lfs(b) ≤ lhfs(b) and ∀b ∈ ∂R∃s ∈ S : dS(b)‖b − s‖ ≤ εlfs(b), it follows that
∀b ∈ ∂R : dS(b) ≤ ‖b − s‖ ≤ εlfs(b) ≤ ε

ρρlhfs(b) < ψρlhfs(b). Since all sample points are in ∂R,

∀s ∈ S∃b ∈ ∂R : dR(s) = 0 < (1− ρ)lhfs(b). �

The “Modified Power Crust” method results in a correct reconstruction on noisy sampling points.
The definition of ε-sampling conditions is extended to handle sample point deviations from the boundary
by an ε-fraction of the local feature size.

Corollary 5.27 (Noisy ε-Sampling by [Mederos et al., 2005] in “Modified Power Crust” is (ψ, ρ)-Locally
Stable). Let S be a noisy ε-sampling as defined in Definition 3.3, then S is (ψ, ρ)-locally stable for all

ρ < (1− kε) and ψ > (1+k+kε)ε
ρ .

Proof: Let S′ be the projection (see Definition 3.2) of S onto ∂R and let S′ be an ε-sampling of ∂R such
that ∀s ∈ S∃s′ ∈ S′ : ‖s− s′‖ ≤ kεlfs(s′). Since S′ ⊂ ∂R, ∀s ∈ S∃b ∈ ∂R : ‖s− b‖ ≤ kεlfs(b). ρ < (1−kε)
implies kε < (1− ρ). It follows ∀s ∈ S∃b ∈ ∂R : ‖s− b‖ ≤ kεlfs(b) < (1− ρ)lfs(b) ≤ (1− ρ)lhfs(b).

Since S′ is an ε-sampling of ∂R: ∀b ∈ ∂R∃s′ ∈ S′ : ‖b − s′‖ ≤ εlfs(b). s′ is a projection of a sample
point s ∈ S onto ∂R, then ‖s−s′‖ ≤ kεlfs(s′). It follows that ∀b ∈ ∂R∃s ∈ S : ‖b−s‖ ≤ εlfs(b)+kεlfs(s′),
where s′ denotes the projection of s onto ∂R.

Since lfs is 1-Lipschitz, ∀b, s′ ∈ ∂R : |lfs(b) − lfs(s′)| ≤ ‖b − s′‖ ≤ εlfs(b). It follows ∀b, s′ ∈ ∂R :
lfs(s′) ≤ (1 + ε)lfs(b) and ∀b ∈ ∂R∃s ∈ S : ‖b− s‖ ≤ εlfs(b) + kε(1 + ε)lfs(b) = (1 + k + kε)εlfs(b).

∀ρ < (1 − kε), ψ > (1+k+kε)ε
ρ : (1 + k + kε)ε < ψρ. It follows: ∀ρ < (1 − kε), ψ > (1+k+kε)ε

ρ :

(1 + k + kε)εlfs(b) < ψρlfs(b) ≤ ψρlhfs(b) �

Let’s consider an example for Corollary 5.27. The bound for k is for example given by condition ψ < 1

( in case of ψ ≥ 1 undersampled merge see Definition 5.11 is trivial) and consequently (1+k+kε)ε
1−kε < 1. The

resulting bound for given ε is then k < 1−ε
ε2+2ε . So, let ε = 0.1 and k = 2 < 4.2857, then ρ < (1− kε) ⇒
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ρ ≤ 0.8 and ψ > (1+k+kε)ε
ρ ⇒ ψ > 0.32

ρ . So, a not very noisy sampling is i.e (ψ = 0.46, ρ = 0.7)-locally
stable.

The condition on ψ requires ρ to be greater than (1 +k+kε)ε, so, for ε = 0.1 and k = 2 the following
is valid: 0.32 ≤ ρ ≤ 0.8. Consequently, the most tolerable amount of noise is ρ = 0.32 and the most
noisy sample is (1, 0.32)-locally stable.

The results in [Dey and Goswami, 2004] limit the noisy ε-sampling conditions. So, it follows from
Definition 3.3 that the noisy ε, k-sampling conditions are also local homotopy stable.

Corollary 5.28 (Noisy ε, k-Sampling by [Dey and Goswami, 2004] in “Robust Co-Cone” is (ψ, ρ)-Locally
Stable). Let S be a noisy ε, k-sampling as defined in Definition 3.5, then S is (ψ, ρ)-locally stable for all

ρ < (1− kε) and ψ > (1+k+kε)ε
ρ .

Proof: Since the first two conditions in Definition 3.5 correspond to the conditions in Definition 3.3 and
the third condition is only limiting, the proof follows from Corollary 5.27. �

Notice, that the original definition of noisy ε, k-sampling in [Dey and Goswami, 2004] uses instead of
our k the notation κ.In our context we exchanged the notations to avoid ambiguity with the definition
in [Chazal and Lieutier, 2008].

Corollary 5.29 (Noisy ε, κ-Sampling by [Chazal and Lieutier, 2008] in “Noisy, Non-Uniform Approxi-
mation” is (ψ, ρ)-Locally Stable). Let S be a noisy ε, κ-sampling as defined in Definition 3.6, then S is

(ψ, ρ)-locally stable for all ρ < (1− κε) and ψ > (1+κ+κε)ε
ρ .

Proof: Since κ > 0 and ∀b ∈ ∂R∃s ∈ S : ‖b− s‖ < εlfs(b) < (1 + κ+ κε)εlfs(b), S is noisy ε, k-sampling
with k = κ as defined in Definition 3.5 and the proof follows from Corollary 5.27 �

Listing the Results The result of previous considerations brings the sampling conditions to a com-
mon notation of a local homotopy-stable (ψ, ρ)-sampling which in our context guarantees the reducible
refinement reconstruction. Obviously, further limitations on the sampling conditions or the assumed
shapes allow the underlying algorithms to guarantee further topological results.

We collected some of the well known methods in Table 5.1. Notice, that the sampling conditions
required for topological guarantees are based on ε-sampling. The methods in question are the first five
which guarantee a topologically correct reconstruction of an originally smooth manifold surface. The
numbers in the columns “ψ” and “1 − ρ” show the upper bounds. The approaches limit the sampling
density or the maximal sampling point deviation by further parameters which have to be known during
the reconstruction process. In [Mederos et al., 2005] the authors introduced further parameters which
limits the maximal curvature. Nevertheless the upper bounds of the ε-sampling are also valid for the
method, which justifies our simplification.

The framework in [Chazal and Lieutier, 2008] is only theoretical. The interior and the exterior bound-
aries of the union of balls are proven to be topologically equivalent to the original smooth manifold sur-
face. The proof of homotopical equivalence of the union of balls and its dual shape is successfully used to
prove the results of (α, β)-shape reconstruction. Even though the results in [Chazal and Lieutier, 2008]
are not used in our framework, they present a significant intermediate step towards the topologically
equivalent reconstruction.

Obviously, the sampling density in our framework depends on the maximal sampling point deviation.
The upper bounds of our sampling conditions serve only for demonstration. For specific values consult
Section 5.10.

Result of the Comparison We defined the sampling conditions in such a way that limitations weaken
with the increasing values. The approaches which guarantee the topologically equivalent outcome require
the highest sampling density. The results on noise-corrupted point sets limit the maximal curvature and
require the appropriate parameter settings.
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method ψρ 1 − ρ comments

topologically equivalent smooth manifold reconstruction

“crust” 0.06 0 parameter free
[Amenta et al., 1998]

“power crust” 0.1 0 parameter free
[Amenta et al., 2000b, Amenta et al., 2001]

“co-cone” 0.06 0 parameter free
[Amenta et al., 2000a]

“Modified Power Crust” 0.1 0.1 parameter: smallest lfs
[Mederos et al., 2005]

“Robust Co-Cone” 0.1 0.1 not parameter free
[Dey and Goswami, 2004]

topologically equivalent

“Noisy, Non-Uniform Approximation” 0.1 0.1 wfs, not parameter free
[Chazal and Lieutier, 2008] no reconstruction method

proof for union of balls only

limited topological guarantees

“Refinement Reconstruction” < 1 < 1 refinement reconstruction,
[Stelldinger and Tcherniavski, 2009b] topologically correct on (p, q)-sampling sets

[Tcherniavski et al., 2012] the greater noise, the denser sampling

Table 5.1: Comparison of different surface reconstruction algorithms based on locally adaptive
sampling conditions

Our method also requires the ψ-parameter to be set. However for higher sampling densities or lower
amounts of noise the parameter may arbitrarily be set to a guaranteed overestimated value and so ensure
the guaranteed outcome. The usual value in our practical experiments is ψ = 0.5. The setting limits the
sampling density but is still a great advantage over the results in related work.

5.14 Experiments

The experimental evaluation of the refinement reconstruction algorithm is performed in three steps. First
we present the results on well-known data sets coming from a dense 3D scanner. Second we evaluate
the algorithm on volumetric data sets which are products of X-ray computed tomography imaging with
post-processing 3D Canny edge detection to produce point sets. The experiments on sparse locally
adaptive sampling sets require a new theoretical framework and are presented in Chapter 6.

5.14.1 Real Data Sets from Laser Range Scanner

Following the experiments in Section 4.10 we present here the results of refinement reconstruction on two
well known data sets: “Armadillo” and “Dragon” taken from “The Stanford 3D Scanning Repository”1.

The presented illustrations in Figure 5.16 demonstrate the power of the method on dense data sets
taken from smooth manifold shapes. The reconstructions in the two top illustrations are the expected
results. Notice in (b) the opening between the tail of the dragon and its body is closed. This is the
oversegmentation effect of a refinement. The triangles in this membrane are small enough for the adjacent
regions. Both adjacent regions are the same infinite background space. To break through the membrane
the reconstruction method would need additional information of the original shape.

1Stanford University Computer Graphics Laboratory in http://graphics.stanford.edu/data/3Dscanrep/
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The results in (c) and (d) demonstrate the advantage of refinement reconstruction over related
methods. The data sets are here corrupted by outliers: the salt-and-pepper noise. More than 10%
of points in the armadillo data set are outliers. In the dragon data set more than 20% are salt-and-
pepper noise. The number of points and times are collected in Table 5.2. Time in sec. is the elapsed time
including loading of points, reconstruction and saving the mesh into a text-file. Notice, no α-shape-based
method is able to obtain a comparative result as is demonstrated in (c) and (d).

data set points noise time (s) comments

Armadillo 172974 0 30.43 smooth manifold reconstruction
Armadillo 192974 > 10% 31.91 more than 10% outliers
Armadillo 34006 0.361r 6.81 globally set density and sample point deviation
Dragon 437645 0 118.58 smooth manifold reconstruction
Dragon 528575 > 20% 119.77 more than 20% outliers
Dragon 28395 0.12r 3.86 globally set density and sample point deviation

Table 5.2: Comparison of reconstruction parameters on “Armadillo” and “Dragon” data sets.
(See Figure 5.16 for illustration) First is a very dense noise-free sampling. Second is

salt-and-pepper noise-corrupted sampling. Third is a sampling with globally set minimal density
and maximal sampling point deviation.

The last experiment in (e) and (f) serve as comparison to the result of thinned-(α, β)-shape-recon-
struction. The data sets are sparse and the sampling points deviate from the boundary. The density and
the maximal sample point deviation are uniformly set for the whole shape according to the r-stability
value.

5.14.2 Volume-Based Sampling Sets

Volume-based methods enable insight into the object. The data acquisition device samples the scene at
any point. The result is a sampled 3D interval, for example, with a regular grid. The typical examples
are X-ray computed tomography (CT) and magnetic resonance imaging (MRI). The interior of the object
can be subdivided into two or more regions which can have common boundaries.

We present our results on two similar data sets. Two different walnuts are scanned by computed
topography resulting in a sequence of 2D gray color images. Using the 3D Canny edge detection algo-
rithm2 (compare [Bähnisch et al., 2009]), point sets are extracted which contain volumetric information
on outer surface as well as boundaries between interior regions.

data set points ψ ρ time (s) comments

Sparse Walnut 156198 0.5 0.5 39.26 arbitrary set (ψ, ρ)-parameters
Dense Walnut 2362275 0.5 0.5 824.86 arbitrary set (ψ, ρ)-parameters

Table 5.3: Comparison of reconstructions of two similar shapes. (top) Sparsely and nearly
noise-free sampling of a walnut. (bottom) Dense and noise-corrupted sampling.

In Figure 5.17 (a) and (e) we illustrate the data sets. The first line demonstrates results of refinement
reconstruction on a sparse nearly noise-free data set illustrated in (a). The example in (e) is a very dense
strongly noise-corrupted data set. The second image in the set demonstrates the outer shell of the walnut.
The third image is the combination of the underlying point set and the extracted kernel. The extracted
kernel, which is one of the interior regions of the walnut, is presented in the image on the extreme right
of the sequence. In Table 5.3 we give the running time parameters. Notice that we assumed the (ψ, ρ)
parameters to be unknown for both reconstructions. The default setting is ψ = ρ = 0.5.

The reconstruction on walnut data sets results in 8 regions on sparsely sampled walnut and 21 regions
on dense data set. The reconstructed regions are the thin outer shell ( the boundary between the walnut
and the infinite background ), the kernel, the thick outer shell ( the walnut shell has certain spatial

2Implementation in the scope of Deutsche Forschungsgemeinschaft (DFG) project STI 147/2-1
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.16: Noise-free, “salt-and-pepper-corrupted” and noise-corrupted reconstruction. Left:
Armadillo. Right: Dragon. Compare the reconstruction parameters in Table 5.2
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.17: Refinement Reconstruction of two different walnut shapes. (top) sparse nearly
noise-free data set. (bottom) dense noise-corrupted data set. (a) (e) sampling points. (b) (f)

reconstruction of the outer shell. (c) (g) combination of points and kernel. (d) (h) kernel
reconstruction

expansion ), the seed coat ( interior layer which envelopes the kernel preventing rancidity ), and the
region corresponding to the hollow of the walnut. The specified regions are subdivided. The kernel
consists of two regions in the sparse data set and of three regions in dense data set. The seed coat
consists of the most regions and is not reconstructed properly since the sampling is insufficient. In
Figure 5.17 we extracted the most relevant to us and most illustrative boundary reconstructions.

The dense sampling of a walnut in the bottom illustration in Figure 5.17 is very noisy. The data set
consists of a great amount of outliers as well as of sampling point displacements. The reconstruction
performs excellently on outliers ( see the kernel extraction and the outer shell ) but the systematic
sample point displacements result in inaccurate constructions.

Observe the kernel boundary illustration in Figure 5.18. The left image shows salient spurious
features. The displaced points correspond to the sampling of the seed coat. The density of displaced
points is higher than the density of sample points near the boundary. The corresponding but even more
illustrative spurious feature is demonstrated in the right image. The kernel is merged with a part of
the seed coat. The narrowing between the kernel and the seed coat itself is insufficiently sampled. The
sample points of the seed coat are dense enough to build a boundary. However the size of boundary
triangles is related to the size of the kernel which results in satisfactory ratio. The narrowing is tighter
than the sampling density of the boundary. Since the reconstruction is minimal we obtain an equivalent
result for different (ψ, ρ) settings.

In Figure 5.19 we demonstrate the refinement reconstruction result on volume-based sampling of an
orange. The reconstruction consists of 17 regions: 10 slices ( two of them are merged couples as can be
seen in the right image ), two seeds and the rind. The rind is not sufficiently sampled and consequently
is subdivided into several regions. The transparent outer boundary of the orange and the reconstructed
slices - one of the slices is selected - are illustrated in the right image.

data set points ψ ρ time (s) comments

Orange 260215 0.5 0.5 84.35 arbitrary set (ψ, ρ)-parameters

Table 5.4: Reconstruction settings on orange data set.

The presented experiments enable us to compare the results of the refinement reconstruction to the
thinned-(α, β)-shape-reconstruction as well as to present advantages over related methods. The great



146 CHAPTER 5. REFINEMENT RECONSTRUCTION

(a) (b)

Fig. 5.18: Effects of insufficient sampling on dense walnut data set. Parts of the seed coat
region is merged to the kernel.

(a) (b) (c)

Fig. 5.19: Reconstruction on “orange” data set. (a) point set (b) surface of the orange slices.
(c) transparent boundary between the rind and slices.

amount of the salt-and-pepper noise is not processable by thinned-(α, β)-shape-reconstruction, and no
surface-based method results in the reconstruction of the interior regions of the object.

However the samplings used for experiments are uniform, i.e. the density does not vary on the
boundary. The locally adaptive samplings, known to us from related works, are very dense ε-samplings
of smooth surfaces with ε < 0.1. To demonstrate the advantage of refinement reconstruction over related
results we need to ensure the data set to be sufficiently sparse. In Chapter 6 we introduce new criteria
for data set decimation, according to which the resulting data set preserves topological properties and
is local homotopy stable.

5.15 Discussion and Future Work

In this section we discuss open problems in solving the reconstruction problem and briefly outline possible
ideas how this can be tackled in future work.

In Section 5.15.1 we discuss the insufficiency of the sampling conditions defined for our framework.
The one data set is a valid local homotopy sampling for two shapes with completely different topology.
The consequence is, the refinement cannot be reduced to stable refinement without further knowledge
of a shape. This information is not contained in the data set. We propose a combination of homotopical
axis extension introduced in Section 5.15.2 and a global limitation of noise introduced in Section 5.15.3
to overcome the problem.
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In Section 5.15.4 we discuss the definition of the refinement property. We show that a donut shape
can be regarded as a stable refinement of a ball while the surface of a donut cannot be reduced to
the surface of a ball. So, we imply that the refinement property can be insufficient for homotopy type
preserving surface reconstruction. However in Section 5.15.4 we argue that there is no consequence for
our method since the outcome is always reducible.

5.15.1 Insufficiency of the Sampling

To solve the reconstruction problem as defined in our framework we define sampling criteria and an
algorithm, which reconstructs a topologically equivalent space partition.

In Section 5.11 we have shown that our new sampling criterion based on the homotopical feature
size enables us to use the refinement reduction algorithm to get a reconstruction which is reducible to
a space partition which correctly separates the connected components of the original homotopical axis.
However in general, the result is still the problem of oversegmentation.

So, the question arises whether it is possible to use the local homotopy stable sampling criterion in
order to reconstruct the true topology of the shape by adequately changing the reconstruction algorithm.
Unfortunately, it is easy to show that relevant topological information can be lost in the sampling.

In Figure 5.20, two shapes with different topology are given, together with a set of sampling points
that is local homotopy stable for both. So, both shapes are not distinguishable from this sampling. We
call the inability to distinguish between the shapes by the local homotopical axis the dissolution problem:
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Fig. 5.20: A manifold shape (a) and a non-manifold shape (c). Shape (c) differs from (a) only
by a contour segment which bridges the narrow part of the contour in the middle of the shape. In

(a) the homotopical axis is the thin line connecting its criticals. The distance values b of the
maxima (⊕) in (a) are denoted by circles with the radius b. The distance value a of the saddle ⊗ in
(a) is denoted by the smaller circle with the radius a. In (c) the homotopical axis is only the union
of the two maxima (⊕). For both shapes the set of sampling points (b) is local homotopy stable.

Definition 5.30 (Dissolution Problem). Let R and R′ be two space partitions with different topological
properties. If there is a sampling set S which is (ψ, ρ) local homotopy stable for both R and R′ then we
call the problem of differentiating the shapes by the point set S as dissolution problem.

One may argue, that this problem can be fixed by increasing the sampling density, i.e. by using
γ · lhfs for locally stable sampling with γ > 0 being a sufficiently small factor. However, it is also easy to
show that for any such γ it is always possible to find two shapes and a corresponding set of points which
is again a local homotopy stable sampling for both. For any given γ > 0 choose either a > 0 sufficiently
small or b > 0 sufficiently great for the two shapes given in Figure 5.20. Then, a sufficiently dense set
of sampling points lying on the boundary of the shape (a) is again a locally stable sampling for both
shapes.

Notice, in Figure 5.20 sampling points lie on the boundary of the shapes. Which implies that this
problem occurs even in the absence of noise. We conclude that the restriction of the maximal sample
points deviation to a global parameter or even 0 does not necessarily solve the dissolution problem.

Corollary 5.31 (No Solution with Noise-Free Sampling). The dissolution problem cannot be solved by
restricting the maximal sample points deviation to a > 0.
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Further note that the two shapes can be distinguished by using data sets based on global parameter
settings such as is the case in samplings based on the weak feature size or r-value in r-stable sets. The
shape in (a) has smaller r-value than in (c). So, using the r-value for (p, q)-sampling to digitize the
shape (a), the sampling with equal parameters would place sample points onto the line segment which
makes the shape different from (c). On the other hand the r-value in case (c) is too great to be used for
sampling the shape in (a).

It appears as if the homotopical axis does not deliver enough information to handle the problem in
cases of non-manifold shapes.

⊕
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Fig. 5.21: (a): shape with its critical which also forms the homotopical axis. (b): placing a
small circle in the dilation of (a) already forms a shape which cannot be distinguished from (a) if

the shown set of sampling points is given.

However, we can show that in general a topologically correct reconstruction is not possible even if
only manifold shapes are allowed. Figure 5.21 gives an illustrative counterexample. Left shape is a
circle. The right shape is two circles. The sampling is noisy. Local homotopy stable sampling conditions
restrict the sample points to be enveloped by the dilation denoted by thick gray line in both illustrations
(a) and (b) in Figure 5.21. Notice that the dilation in (a) encloses the group of points corresponding in
(b) to the smaller circle. In (a) the group of points is noise. But in both cases the sampling points lie
in the ψρlhfs-dilation with ψ = 0.5 and ρ < 0.9.

The sampling points are taken by an even more restricted global condition based on the stability
r-value of the right shape. The sampling is then still local homotopy stable for both shapes and with
the same (ψ, ρ)-parameters. The two shapes are still not distinguishable if the r-value is not given.

The 3D extension of the dissolution problem can be seen on a sampling of a ball and topologically a
donut geometrically similar to the ball: one side is greatly swollen. In Figure 5.22 (a) we illustrate this
example. The outer dark gray ball partly contains the ball with a handle. The handle is hollow. We
call the ball with the handle shape the donutball.

The dark gray ball and the donutball are the two shapes with the same local homotopy stable
sampling. The refinement reconstruction of this sampling is the boundary of the donutball in Figure 5.22
(a). Notice, for simplicity the original donutball shape is not illustrated.

This example is the 3D extension of the example in Figure 5.21. The sampling points corresponding
to the tighter side of the donut (in our example a “handle”) are effects of the noisy local homotopy stable
sampling of the ball shape.

In Figure 5.22 (b) we zoomed the handle to illustrate the result of refinement reconstruction. For
better illustration we cut the reconstructed boundary in the direction of handle’s expansion and then
zoomed it.

Let us consider the infinite space to have one infinite point only such that all paths extending into
infinity end in this point. Then the homotopical axis of the interior and the exterior of the donutball are
two chain links. Each is topologically equivalent to a circle. So, the donutball is topologically a donut.
In other words, we can push a finger through the handle as we know it from the cut and we can push
a finger through the interior of the handle as we know it from a tunnel. To avoid disambiguation let
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(a) (b)

Fig. 5.22: Donutball reconstruction. (a) The greater transparent ball is the original shape of a
ball. The inner ball with a handle is the reconstructed boundary of both: noisy sampled ball and

donutball. (b) The zoomed cutout of the handle in donutball shape. The dashed edged
membranes ensure the interior of the shape to be homotopically equivalent to a ball. The

boundary is not reducible to a topological equivalent of a ball.

us call the inside of the handle reachable from the interior of the ball the handle tunnel (dashed edged
ellipse in Figure 5.22 (b)) and the inside of the handle reachable from the infinite space the handle bridge
(dashed edges half-ellipse in Figure 5.22).

Since the donutball interior as well as the infinite point have considerably greater distance values
than the distance values inside the handle, the discrete distance transform has two saddles in the handle:
in the tunnel and in the bridge. The elementary thinning step leaves the tunnel and the bridge closed
by a group of Delaunay simplices forming a membrane. Since the membranes are in the dilation of the
ball the corresponding simplices are not undersampled. It follows that the refinement reconstruction
necessarily results in a boundary which cuts the original homotopy axis. But as we know from Theorem
5.19 the reconstruction can be reduced to a stable refinement.

The boundary reconstruction as it is shown in Figure 5.22 (b) is a reducible refinement for both
initial shapes with different topology. Since the given sampling did not contain the crucial information
to differentiate between the two shapes, obviously, the information is lost for the reconstruction.

5.15.2 Extended Homotopical Axis

As we have seen in Figure 5.21 the sampling loses crucial topological information. In Figure 5.23
we reintroduce the 2D-illustration of the barbell example. Simply speaking the shape consists of two
connected circles. In our example the connection is a small linear edge between the two circles. The
ends of this edge are non-manifold.

In Figure 5.23 we also show the medial axis schematically illustrated by dashed line. The homotopical
axis, as it is defined in our framework, only consists of two local maxima of these two circles. The
consequence is the local homotopical feature size on non-manifold points as well as on the edge which
divides the circles is too high.

The solution of the dissolution problem ( compare Definition 5.30 ) is to ensure that the sampling
places data points on or close to the common boundary of the two circular regions. Let us call this
linear part of the common boundary the “edge”. To achieve this result the homotopical axis has to be
extended by a further subset of the medial axis.

Consider in our example ( Figure 5.23 ) the medial axis ( dashed line ) and its subset ( continuous
line ) which does not extend to the corners. Since the example is symmetrical consider only one of the
dotted circles. This circle is centered on the meeting point of two steepest paths starting in the two
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Fig. 5.23: Proposition for new subset of medial axis to define locally adaptive boundary feature
size

non-manifold contour points. This circle is the first maximum expanding circle on the descending path
on the medial axis starting in the local maximum which touches the contour in three points. The center
of that circle is the non-manifold point in the medial axis.

We propose to extend the current homotopical axis definition by the steepest increasing paths starting
on non-manifold points in the medial axis.

Proposition 5.32 (Extended Homotopical Axis). Let X be a set of non-manifold points in the me-
dial axis. The Extended Homotopical Axis is then the union of the homotopical axis and all steepest
increasing paths starting in X.

The local homotopical feature size measured using the extended homotopical axis is significantly
lower on the edge. It does carry the topological information needed to partly solve the dissolution
problem as it was described in Figure 5.23. The sampling conditions based on the extended homotopical
axis necessarily increased density on the common boundary between the two circular regions and placed
data points on it. So, the sampling of the shape with two circular regions with common boundary differs
from the sampling of the shape with one region with waist.

5.15.3 Local Homotopy Stable q-Sampling

The dissolution problem is not generally solved by the extended homotopical axis as it was proposed in
the previous section. Consider the second example in Figure 5.21. There are no non-manifold points
in the medial axis of both shapes. To differentiate the original shapes by the data sets, an additional
knowledge of the maximum sampling point deviation is required. Here the dissolution problem is an
effect of noise. Limiting noise by a global parameter sorts out all regions less than this global parameter.

The 3D example in Figure 5.22 can also be considered as an effect of topological noise. The irre-
ducible non-manifold boundary reconstruction is a topological artifact based on a too great amount of
noise. Notice, the interior of the ball is homotopically equivalent to a sphere and so is a correct recon-
struction. Limiting here the absolute bound for the maximal point deviation removes the possibility
of such topological noise for a donutball: the boundary is a donutball if the maximal sampling point
deviation is nearly 0.

As we concluded in Section 5.15.1 limiting the noise amount by a global parameter does not generally
solve the dissolution problem either. So, for a general reconstruction problem we propose a combination
of sampling density based on extended homotopical axis and limitation of maximum sampling point
deviation.

Proposition 5.33 (Local Homotopy Stable q-Sampling). Let lhfsEHA be local homotopical feature size
measured on extended homotopical axis EHA. Then local homotopy stable q-sampling with globally set
maximal sampling points deviation q is defined as follows:

∀b ∈ ∂R∃s ∈ S : dR(s) < ψρlhfsEHA(b)
∀s ∈ S∃b ∈ ∂R : dR(s) < min

(
(1− ρ)lhfsEHA(b), q

)
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The refinement reconstruction results in a minimal refinement which is reducible to a stable refine-
ment. The method, as it was originally defined, does not consider global noise limitation and conse-
quently stops without guarantee of a one-to-one mapping between regions. The involvement of a global
noise limit sorts out the spurious regions. So, we conjecture that there is a one-to-one mapping between
the original regions and the resulting space partition of refinement reduction on local homotopy stable
q-sampling without regions less than q.

Conjecture 5.34. Minimal Refinement with One-To-One Mapping to Original Space Partition
Let DR be the result of refinement reduction on local homotopy stable q-sampling of a space partition

R. Let DR not contain any region less than or equal to q. Then there is a one-to-one mapping between
the reconstructed regions and R.

Notice, the post-processing removal of regions less than q does not necessarily result in a stable
refinement with stability defined by extended homotopical axis. The measure of the region size during
the reconstruction is obviously insufficient to enable us to decide whether a boundary simplex cuts the
axis. This question is partially answered by local homotopical feature size estimation in Chapter 6.

5.15.4 Insufficiency of the Refinement

Here we discuss two problems. First we introduce the problem resulting from refinement reconstruction
method. Then we state the problem of the concept and mathematical framework “refinement”.

Let us consider again the example in Figure 5.22 (b) discussed above and let us assume that the
original shape is a ball denoted by the dark gray circle in Figure 5.22 (a) which partly envelopes the
donutball. The vertices of the donutball are the noisy local homotopy stable sampling. Which implies
that the result of the refinement reconstruction is a reducible refinement. Furthermore we previously
observed that the boundary of the donutball closes the handle tunnel and bridge. The resulting space
partition is homotopy equivalent to the original. The interior of the donut ball with the membranes
(darkened surface patches denoted by dashed contour) closing the tunnel and the bridge is topologically
a ball as well as the exterior infinite region.

But the membranes which close the handle tunnel and the bridge are orthogonal. The reconstructed
boundary is not manifold and cannot be reduced to a topological equivalent of the original boundary
of a ball. Deletion of any further simplex of the boundary destroys the refinement property and the
topology of the reconstruction. According to this example we state the following problem:

Definition 5.35 (Boundary Reduction Problem). Let the reducible refinement DR be a result of refine-
ment reconstruction of the original space partition R. The boundary of DR is not necessarily reducible
to a topological equivalent of the boundary of R.

Consider further we would push through the tunnel membrane. The outer region does not change.
The inner region is topologically a donut. The boundary of a donut is not reducible to a boundary of
a ball. The interior correctly separates the local maxima and even the connected components of the
homotopical axis. Which implies that the donut is a stable refinement of a ball.

In contrast to the boundary reduction problem where the stable refinement was homotopically equiv-
alent to the original, we have here a stable refinement with not reducible boundary, and furthermore the
associated regions are not necessarily homotopically equivalent.

Definition 5.36 (Refinement Problem). Let R be a space partition and R′ be its stable refinement. R′
is not necessarily homotopy equivalent to R.

However the refinement problem only occurs if no restrictions on the refinement are given. In our
framework the result of reconstruction is restricted by the sampling which carries certain topological
information. In the example of the donut and a ball there is no way for our method to result in a donut
shape if the original shape is the ball. Assuming general position, the distance transform on a sampling
taken from a ball boundary leads to saddles. Corresponding to these saddles, the elementary thinning
necessarily divides the reconstructed regions.
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Claim 5.37. The result of refinement reconstruction is not a refinement problem.

We conclude that the formal definition of the refinement is not an equivalence relation to reducibility
condition but an implication: If a reconstruction is reducible then it is a refinement.

The boundary reduction problem is an effect of noise and cannot be handled by our algorithm without
fundamental changes on the framework. The minimality condition has to be reconsidered in order to
obtain a manifold boundary in the case of a donutball instead of a non-manifold minimal refinement as
is the outcome of our method.

5.16 Conclusion

The framework of this chapter defines classes of space partitioning which result from our algorithm.
The new sampling conditions are based either on local region size or on local homotopical feature size.
The reconstruction method results in an oversegmentation of the original space partition preserving
correct separation of local maxima or is reducible to an oversegmentation preserving correct separation
of connected components of the original homotopical axis.

The new sampling conditions combine and extend the locally adaptive sampling conditions based on
local feature size with the uniform (p, q)-sampling conditions defined for r-stable sets. However the new
sampling conditions present insufficiency in non-manifold noise-free case and in manifold multiregional
noisy cases: the sampling is equal for shapes with different topology. The propositions are made to
resolve the problem.

The reconstruction method applies the WRAP algorithm ([Edelsbrunner, 2003]) on each previously
deleted Delaunay tetrahedron containing its own circumcenter and proceeds with region merging on
measurably undersampled simplices. The undersampled simplices are measured according to the ra-
tio between the simplex size and the size of the minimal adjacent region. The algorithm steps are
experimentally demonstrated on an illustrative 2D example.

The evaluation shows that the refinement reconstruction results in an equivalent space partition on
a (p, q)-sampling if the parameters provided for thinned-(α, β)-shape-reconstruction are given. Further-
more the theoretical evaluation shows that the new sampling conditions cover the existent definitions,
and so uniform factors can be computed for comparison.

Refinement reconstruction is theoretically and experimentally a solid and fundamental result which
has advantages over related works and thinned-(α, β)-shape-reconstruction. The underlying shapes are
assumed to be non-manifold multiregional surfaces. The method results under guarantee in reducible
refinement even if the sampling is very sparse and noise-corrupted. The approach expects sampling
parameters which are required for internal settings. However the reconstruction with estimated sampling
parameters covers all sampling conditions defined in related works and even so delivers correct results.

The experiments are done on well known points sets “Armadillo” and “Dragon” which are uni-
form very dense and nearly noise-free samplings. To compare the results to the thinned-(α, β)-shape-
reconstruction the data sets are enhanced by salt-and-pepper noise, are decimated and the resulting
points replaced to model sample points deviation from the boundary. Furthermore the experiments are
done on volume-based data sets which result from 3D Canny edge detection [Bähnisch et al., 2009]. The
original shapes are multiregional with non-smooth boundary. The data sets are noise-corrupted.

The known locally adaptive sampling sets fulfill conditions based on medial axis and local feature
size. We want to evaluate the refinement reconstruction on sparser local homotopy stable sampling sets.
In the next chapter we present a framework for data set generation which is under guarantee too sparse
to be an ε-sampling but dense enough to fulfill local homotopy stable sampling conditions.



Chapter 6

Experiments on Decimated Point
Sets

6.1 Introduction

Most of our examples used until now are 2-dimensional. This simplifies the illustration of notations
as well as the consequences of the algorithm steps. However, our goal is the reconstruction in the 3-
dimensional domain. The result of reconstruction in our framework is a 2-dimensional non-manifold
surface embedded into a 3-dimensional space. The surface is the boundary of a space partition which
consists of more than two regions. Consequently, the boundary may consist of more than one connected
component.

We use Delaunay triangulation as the combinatorial structure to imitate the behavior of continuous
flow on the distance transform. Although in 3 and higher dimensions there is a very intriguing phe-
nomenon which makes the correspondence not possible. So, the abstraction from 2D into 3D is not
sufficient for evaluation of our algorithm.

In Section 5.14 we presented the results of refinement reconstruction on real data sets acquired from
very dense laser range scanners as well as volume-based sampling sets. The volume based point sets
result from 3D interval scanning with a regular grid followed by 3D edge detection algorithm to obtain
a point cloud.

The results on laser scan data demonstrate the performance of the algorithm on very dense sampling
sets and the advantage of the method on very noise-corrupted data sets. The results on volume-based
data illustrate the ability of the algorithm to reconstruct multi-regional space partitions with non-
manifold boundary. In this chapter, we demonstrate the advantage of the refinement reduction over the
thinned-(α, β)-shape-reconstruction handling samplings with locally variable density.

The known locally adaptive point sets are the results of mesh simplification algorithms which reduce
the density of the point set and enlarge the size of polygons connecting them. The criterion to preserve
the topology and geometrical properties is the curvature or the local feature size. The methods as in-
troduced for example in [Lindstrom and Turk, 1998], [Garland and Heckbert, 1997] or [Dey et al., 1999]
iteratively delete one point and all its adjacent simplices of the mesh and rebuild the mesh without that
point.

In this chapter, we derive an approach similar to the method proposed in [Dey et al., 2001]. We
assume a function which maps each point to a value of maximal distance to the nearest neighbor and
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delete all points having a distance smaller than that value. The deletion is performed on the list of
points sorted in increasing order according to the mapping value.

The function estimates the local homotopical feature size. So, the resulting data set is local homotopy
stable. In Section 6.3, we propose a computation method which approximates the discrete homotopical
axis defined on discrete critical points.

The stability of critical points is a research subject dual to surface reconstruction and has been
studied in numerous related works. We introduce the subject in Section 6.2 and present our results on
stability of critical points on low quality sampling sets.

In Section 6.6, we present arguments for the assumption that a subset of the discrete homotopical
axis is homotopy equivalent to the original. Whereas the computed homotopical axis is homotopy
equivalent to the discrete. According to these statements, and using a scaling factor derived in Section
6.4, we argue that the estimated local homotopical feature size underestimates the original in worst case.
Consequently, the point set decimation in worst case is oversampled but local homotopy stable.

We also discuss the feature size estimation on not stable critical points and steepest paths connecting
them. The computation overestimates the feature size. However, we claim that the overestimation is
done on not relevant parts of the homotopical axis such that the homotopical axis without these parts
is homotopy equivalent to the original. So, we claim the result of the reconstruction to be a refinement
reducible to a space partition which is homotopy equivalent to the original.

In Section 6.7 we demonstrate the power of the refinement reconstruction algorithm on sparse locally
adaptive sampling sets.

6.2 Stability of Critical Points

Our intention in this chapter is to decimate a point set. Decimation is done by feature size which is
defined on sample points. We assume that the feature size in the original boundary is not known during
the reconstruction, so, the value has to be estimated.

The local feature size is estimated by local maxima. Refinement reconstruction correctly separates
the local maxima. So, using the reconstructed regions we can measure the local region size. The
measurement can be overestimated and has to be scaled.

The local homotopical feature size depends on the homotopical axis. The homotopical axis is the
smallest set of steepest paths between critical points on the medial axis. So, to measure the local
homotopical feature size we have to compute the medial axis. However, the correct discrete medial
axis computation is not trivial and can be seen as a reconstruction problem dual to correct surface
reconstruction.

In the following we investigate the relation between the reconstructed medial axis and the original
by given sampling conditions. In [Dey et al., 2005] the relation is proven by unique separation of the
discrete critical points: the critical points are either very close to the original medial axis or to the
original boundary. In [Chazal et al., 2009] it is proven that for small perturbations on the surface the
discrete critical points are in the small environment of the original ones.

Our research extends the bounds of sampling conditions. We require the reconstruction to guarantee
the preservation of topological properties on samplings of low quality. Here we investigate how we can
imply the location and the distance value of the original critical points by discrete critical points which
do not correspond to the given reconstructed boundary.

Critical Points Separation
In [Dey et al., 2005] the critical points are correctly separated if the criticals may be uniquely mapped

either to the criticals on the discrete medial axis or to the criticals on the surface reconstruction. The
proof for ε-sampling (compare Definition 3.4) is given by stating that the critical points are either in ε/3-
neighborhood of the smooth manifoldoriginal surface or in the ε/3-neighborhood of the original medial
axis. Then a critical point c belongs to the discrete medial axis if the angle between the vector between
c and the sample point s whose dual Voronoi cell contains c, and the estimated normal on s is less than
π/4 or greater than 3π/4. The normal on a sample point is computed by poles.
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The argumentation in [Dey et al., 2005] is intuitively followed from the co-cone ( compare Figure 3.3
in Section 3.2.4 and originally in [Amenta et al., 2000a]) statement since the computed normal is nearly
collinear to the original and the nearest sample points are in the co-cone of the current sample point. So,
the vector to nearest sample points is almost orthogonal to the normal. It follows that since the criticals
of the medial axis are much farther away from the sample point, the angle between the direction to the
medial axis critical and the normal is highly acute.

Stability of Criticals for Small Perturbations on the Surface

The results presented in [Chazal et al., 2009] use the points in space where the norm of the gradient
does not exceed µ: ‖∇K(x)‖ ≤ µ. Such points are called µ-critical points. In this framework it is proven
that for two compact sets, with Hausdorff distance less than a scalar value ε between them, in a small
environment of each µ-critical point of the first compact set there is a µ′ critical point of the other
compact set. In other words, for small perturbations on the surface the critical points stay in a small
certain environment of the original.

The stability of criticals in [Chazal et al., 2009] implies the convergence of the µ-medial axis which
is a set of all points with gradient norm less than µ. Which means that small perturbations on the
surface do not change the topology of the medial axis and decreasing perturbations on the surface result
in decreasing perturbations on the medial axis. The results are valid for noisy, uniform κ, µ-sampling
(compare Definition 3.7) of a not necessarily smooth manifold surface.

There are related results on λ-medial axis in [Chazal and Lieutier, 2005a]. Let the reversed distance
function map any point of an open set to the boundary points which are touched by the maximal
inscribing ball centered on this point. Then the function which maps any point of an open set to the
radius of the minimal ball enclosing the touching points defines the λ-medial axis. The λ medial axis
is the subset of the open set on which this function is greater than λ (compare Definition 2.23). Since
the reversed distance function maps any point not on the medial axis to one single boundary point, the
minimal enclosing ball of this point has a zero radius. It follows that λ-medial axis is a subset of the
medial axis.

According to Theorem 2 in [Chazal and Lieutier, 2005a] the λ-medial axis has the same homotopy
type as the open set if λ is less than weak feature size which is the Hausdorff distance between the
boundary and the critical points. The λ-medial axis remains stable under small perturbation on the
boundary as stated in Theorem 3 in [Chazal and Lieutier, 2005a]. For each point on the deviating λ′-
medial axis, at a certain distance there is a point on the original medial axis if the boundaries deviate
by a value significantly smaller than λ. So, the deviating λ′-medial axis is in a homotopy equivalent
dilation of the original. This implies the stability and separation of critical points of the open set.

There is a one-to-one mapping between the critical points of the open sets. Further, since only a thin
dilation of the original λ-medial axis is considered, the critical points of the boundary approximated by
sample points are correctly separated. The sampling is then required to be a noisy ε-sampling of the
original boundary. By this condition the approximated boundary does not deviate from the original by
a greater value than ε.

As stated in Lemma 5.2 in [Chazal and Lieutier, 2005a] the approximated λ-medial is contained in
the Voronoi diagram. The 2D λ-medial algorithm adds a Voronoi cell to the result if its dual Delaunay
cell has a greater circumradius than λ. The λ-medial axis approximation converges toward the original
for a series of noisy ε samplings with decreasing Hausdorff distance.

Low Quality Sampling Sets

In cases of low quality sampling sets there is no guarantee that the reconstruction is topologically
correct. However, using the framework developed for refinement reconstruction, we can make certain
statements. Here we assume that the sampling sets are local homotopy stable.

Consider Figure 6.1. The continuous line represents a cut-out of the original boundary. The dots
are the sample points. Gray thick line denotes the (1 − ρ)lhfs-dilation with ρ ≈ 0.5. The sampling is
local homotopy stable. In the left picture the cut-out of the homotopical axis is a thin line containing
one maximum (⊕) and one saddle (⊗). Obviously, there is a “bottle neck”, a narrowing in the original
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Fig. 6.1: left: unstable maximum, right: pseudo-maximum

boundary. However, the conditions of the sampling device did not establish the equivalent bottle neck
in the data points. The discrete distance transform continuously increases and, so, the cut-out does
not contain any discrete critical points. The continuous local maximum ⊕ cannot be reached by an
increasing path on continuous distance transform starting on its associate. Anticipatory, we can say
that the discrete maximum associated with ⊕ is an associate of several continuous maxima. The original
maximum seems to vanish. We call such continuous local maxima unstable. So, we can define a stable
continuous local maximum by:

Definition 6.1 (Stable Maximum). Let R be a space partition, dR be the continuous distance transform
on R and x be a local maximum on dR. Let S be a point set and dS be the discrete distance transform
defined on S. Let x′ be a discrete local maximum on dS associated with x. x is stable for point set S if
and only if x is reachable by an increasing path on dR starting on x′.

In the right picture, on the other hand, the continuous distance function continuously increases inside
the contour. So, no continuous critical points are visible in the cut-out. However, the sample points
develop a discrete local maximum (�) in the discrete distance transform and a discrete saddle (�). The
discrete local maximum � is not reachable on any increasing path on the continuous distance transform
starting on any point of the original homotopical axis. So, we call a discrete maximum, which is not
associated with any original maximum, the pseudo-maximum. Notice, the notation stable and unstable
maximum are referred to continuous local maximum, whereas the notation pseudo-maximum denotes a
discrete local maximum.

Definition 6.2 (Pseudo-Maximum). Let R be a space partition, HA be its homotopical axis. Let S be
a point set and dS be the discrete distance transform defined on S. Let x′ be a discrete local maximum
on dS. For all points x on HA: x′ is called a pseudo-maximum if and only if x′ is not reachable by an
increasing path starting on x.

In the following we prove that a local continuous maximum is stable for all local homotopy stable
samplings if this is the only maximum in the continuous region or if the distance value of the corre-
sponding saddles is sufficiently small. According to Definition 2.17, we recall that Fβ(R) is the set
of points of a space partition with gradient value less than β and, correspondingly, F0(R) is equal to
limβ→0 (Fβ(R)). As defined in Definition 2.33, F∞(R, x) is the set of all critical points reachable by
steepest paths starting on an arbitrary point x.

Claim 6.3 (Stable Maxima). Let xm be a local maximum on a continuous distance function dR and
X ⊆ F0(R) be the set of all critical points such that ∀x ∈ X : xm ∈ F∞(R, x).

xm is a stable maximum for all locally stable (ψ, ρ)-samplings if ∀x ∈ X : F∞(R, x) = {xm} or
for all increasing paths π consisting of sequences of steepest paths starting and ending in F∞(R, x) with
π(1) = xm: ∃t ∈ R : (2− ρ)dR(π(t)) < ρdR(xm)

Proof: Consider the opposite. There is a locally stable sampling S with the associate discrete maximum
x′m on dS to xm such that there is no increasing path between xm and x′m. Since the local maxima are
correctly separated by refinement, so xm and x′m are in the same continuous region. Consequently, the
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local continuous maximum ym 6= xm reachable by steepest path starting on x′m is in the same continuous
region too. It implies that there has to be a saddle xs between ym and xm on dR. Since a saddle is a
minimum on two steepest paths between criticals the following is valid: (2− ρ)dR(xs) < ρdR(xm).

Since x′m is the associated maximum there is a steepest increasing path π′ in dS with π′(0) = xm
and π′(1) = xm.

Starting in each point of the path π′ there has to be a steepest path on dR to HA. Since the steepest
paths starting on π′(0) and π(1) end in different maxima, there has to be a t, such that a steepest path
starting on π′(t) ends in xs.

Since ∀t ∈ (0, 1] : dS(π′(t)) ≥ dS(xm) it follows that (2 − ρ)dR(xs) > dS(xs) > dS(xm) > ρdR(xm),
which is a contradiction. �

The union of steepest paths ending in a local maximum is its corresponding stable manifold. The
saddles, from which the local maximum is reachable, are on the boundary of this stable manifold. The
saddles are also minima on the boundary of the stable manifold. Consequently, if the possible maximal
discrete distance values on the minima on the boundary of the stable manifold are even smaller than
minimal discrete distance value on the local maximum, then the associated discrete maximum will lie
in the stable manifold. It will not be possible for the increasing path on the discrete distance transform
starting on the local continuous maximum to pass through the boundary of the stable manifold.

According to this argumentation, it follows that, if the discrete distance values on the boundary of
the stable manifold are less than the discrete value of the corresponding continuous local maximum,
then no increasing path on the discrete distance transform passes though the boundary of the stable
manifold.

Corollary 6.4 (Stable Maximum for a Point Set). Let xm be a local maximum on a continuous distance
function dR and X ⊆ F0(R) be the set of all critical points such that ∀x ∈ X : xm ∈ F∞(R, x).

xm is a stable maximum for a locally stable (ψ, ρ)-sampling S if ∀x ∈ X : F∞(R, x) = {xm} or
for all increasing paths π consisting of sequences of steepest paths starting and ending in F∞(R, x) with
π(1) = xm: ∃t ∈ R : dS(π(t)) < dS(xm)

Consider now a simple homotopical axis consisting of two local maxima connected by two steepest
increasing paths starting on a saddle. This is the homotopical axis of a barbell shape. The saddle is a
2-critical point corresponding to the neck in the barbell. If the distance values of the saddle do not differ
much from the distance values of the maxima, the local maxima are unstable. The consequence is, the
reconstruction may consist of one maximum only. The second continuous local maximum is associated
with the same discrete maximum as the first. The second local maximum and the saddle seem to vanish.
So, we can say, the saddle is unstable. To generalize the stability concept for all critical points we define:

Definition 6.5 (Stable Saddle). Let R be a space partition, dR be the continuous distance transform
on R and x be a saddle on dR. Let S be a point set and dS be the discrete distance transform defined
on S. x is stable for point set S if and only if all reachable maxima on dR are stable for S.

The homotopical axis is the union of critical points and the minimal set of steepest paths connecting
them. If all critical points are stable, we imply that all associated discrete local maxima are in the stable
manifolds of the original maxima. Furthermore, the local homotopy stable sampling restricts the discrete
distance values on the boundary to be less than ψρlhfs, with ψ < 1. Let b be the boundary point touched
by the maximal inscribing ball centered on the local continuous maximum. Since the discrete distance
value on the continuous maximum is at least ρlhfs(b), and the discrete distance value on its associate
is necessarily greater than ρlhfs(b), the steepest path between the local continuous maximum and its
associate does not cross the ρlhfs-dilation of the boundary. Since the equivalent consideration is valid for
stable saddles too, we conclude that the associated critical points and the steepest increasing paths on
the discrete distance transform between them are in an envelope (HA⊕) of the original homotopy axis
which does not intersect the ρlhfs-dilation of the original boundary.

The envelope HA⊕ of the original homotopical axis is the union of steepest increasing paths on the
discrete distance transform starting in the original homotopical axis. Since HA⊕ does not cross the



158 CHAPTER 6. EXPERIMENTS ON DECIMATED POINT SETS

ρ-dilation of the original boundary, there is an increasing path between the original saddle and each of
the associated maxima of all its reachable continuous maxima. Consequently, HA⊕ cannot have more
connected components than the original homotopical axis.

The refinement reconstruction guarantees correct local maxima separation. According to previous
consideration we also know that the stable saddles are correctly separated too. So, no different original
regions are joined in the reconstruction and, consequently, no corresponding different components of the
original homotopical axis can be connected. We imply, that the number of connected components of
the original homotopical axis and its envelope HA⊕ is the same. In the following we use this result to
compute for point set decimation.

The point set decimation, as we use it for evaluation, requires for each sample point the estimated
feature size of the corresponding boundary point. The feature size estimation is done on the homotopical
axis which is a subset of the medial axis. For dense samplings the reconstructed medial axis is in the
dilation of the original. Consequently, the discrete distance values on the reconstructed medial axis
deviate by a fraction of the original. The fraction is computable by given sampling density and sampling
point deviation.

The low quality sampling sets cause pseudo and unstable critical points. The associates of stable
critical points and the corresponding subset of the homotopical axis are in an envelope of the original
homotopical axis. The envelope encloses the steepest increasing paths which start on the stable subset
of the original homotopical axis. So, here again the discrete distance values are a fraction of the original.

The computation of the medial axis is not the subject of this work and is assumed as given in following
sections. However the stability of the reconstructed medial axis can be investigated by results of this
section.

6.3 Homotopical Axis Approximation

The data set decimation is done on sample points for which the local homotopical feature size is known.
The question is, how do we measure the local homotopical feature size by given sample points? The
definition given in Definition 2.36 is done on boundary points in a continuous domain. Assuming the
sample points to lie on the boundary, the continuous local homotopical feature size on sample points
is the value on the underlying boundary point. But in our framework the sample points deviate from
the boundary. However, the sample points are taken from the boundary points and we assume that
the sampling conditions are fulfilled for each boundary point. So, we have to estimate the original
homotopical feature size on boundary points by their given discrete representatives.

Let us first assume that the sample points lie on the boundary and that the topology is given by a
polygonal approximation of the original boundary. The local homotopical feature size is defined by the
homotopical axis of the space partition. In our case a polygonal approximation separates the space into
polytopes. The polygonal approximation is done on sample points. The homotopical axis is a subset
of the medial axis. The medial axis on sample points is the Voronoi diagram. So, the medial axis of
the polytopes is a subset of the Voronoi diagram and so is the homotopical axis. So, the definition and
implementation of the homotopical axis in the discrete domain is done using the discrete medial axis
which is a subset of the Voronoi diagram on the sample points. We follow the Definition 2.24 to define
the discrete homotopical axis:

Definition 6.6 (Discrete Homotopical Axis). Let S be a set of points and ∂DR be the boundary of a
discrete space partition with S ⊂ ∂DR. Let MAR be the medial axis of DR. Let FR be the set of critical
points such that FR ⊆ MAR with FR = F0(DR) and Fβ(DR) = {x ∈ DR | ‖∇(x)‖ ≤ β} such that
limβ→0 (Fβ(DR)) = F0(DR). The discrete homotopical axis HAR is then defined as

HAR = lim
β→0+

Gβ(DR) where

Gβ(DR) = {x ∈ DR| ∃t ∈ R+∃y ∈ Fβ(DR) : x = C(t, y)}.
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In Definition 6.6 we again use the extended definition of the gradient ∇ as it is introduced in
[Lieutier, 2004] (compare also Definition 2.17). In addition now, ∇ is defined on the polygonal ap-
proximation of the original boundary. ∇ gives the direction of the steepest ascent, i.e. the direction
which maximizes the growth of discrete distance transform dDR . The steepest ascent is a curve of the
continuous flow C which is the result of the gradient integration. So, the discrete homotopical axis is
the union of critical points and the set of points reachable by steepest ascent starting on critical points
on the discrete medial axis.

In our framework we assume that the discrete medial axis is given. For secondary literature consult
[Amenta et al., 2001], [Dey and Zhao, 2002], [Dimitrov et al., 2003] or [Sud et al., 2007]. The discrete
medial axis MAR is a subset of the Voronoi diagram and consequently can be represented by a set of
dual Delaunay simplices DMA.

According to Section 2.4.9 (compare: [Edelsbrunner, 2003]) the Delaunay simplices can be ordered in
a strict relation (≺⊆ D×D) which imitates the behavior of the flow lines. A critical point on the medial
axis corresponds to the intersection point between a Voronoi simplex and its dual Delaunay simplex. It
implies that the Delaunay simplices corresponding to criticals are centered. Centered Delaunay simplices
have no successors in the flow relation ({σ | σ ∈ DMA ∧ ¬∃σ′ ∈ DMA : σ ≺ σ′}).

The homotopical axis is the union of steepest increasing paths - the flow lines - on the medial axis
starting on critical points. Correspondingly, in the set of Delaunay simplices DMA dual to the discrete
medial axis we follow the flow relation starting on centered Delaunay simplices. The discrete homotopical
axis is the join of ancestor sets of centered simplices.

We propose to construct the discrete homotopical axis equivalently to “Elementary Thinning” in
Section 5.7. We delete the centered cells from DMA and perform elementary collapsing on equivocal
simplices.

Elementary collapsing on equivocal simplices defines a tree with a centered cell as the root, the
equivocal facets as the edges and the visited Delaunay cells as knots and leaves. The Delaunay simplices
in the tree are the descendant set of the centered cell. We call a path starting in the root of the tree and
ending in a leaf, such that each simplex in the path has exactly one successor or none, a deletion path.

Definition 6.7 (Deletion Path). Let πMA(τ0) = τ0 ≺ σ0 ≺ τ1 . . . σn−1 ≺ τn be a path in flow relation
consisting of cells and facets in DMA such that τ0 is centered and each facet in πMA(τ0) is equivocal. Let
τn be a Delaunay cell in DMA such that there is no equivocal facet σn with τn ≺ σn. Then we call πMA(τ0)
a deletion path.

We delete the simplices of two deletion paths if their leaves share a Delaunay triangle in DMA. Then
we perform elementary collapsing on simple edges in DMA and subsequently remove all singular edges
in DMA. The set of Voronoi simplices dual to deleted Delaunay simplices is the computed homotopical
axis.

Algorithm 6.8 (Homotopical Axis Approximation). Let DR be a reconstructed space partition. Let
MAR ⊂ V of DR be the discrete medial axis, where V is the Voronoi diagram and let D be the Delaunay
complex dual to V.

1. Compute set DMA ⊂ D of Delaunay simplices dual to MAR.

2. Compute all deletion paths on centered cells in DMA.

3. For each pair πi, πj of deletion paths: delete the simplices in πi and πj if the last cells in πi and
πj share a Delaunay triangle in DMA.

4. As long as a simple edge υ DMA can be found perform elementary collapsing on υ.

5. Delete all singular edges in DMA.

6. Return the set HAR of Voronoi simplices dual to the deleted simplices in DMA.
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The Homotopical Axis Approximation in Algorithm 6.8 terminates since there is only a finite number
of deletion paths and the already delete simplices are not deleted again.

Consider now four nearly coplanar points. The tetrahedron with these four points as vertices is called
flat. Consider a flat tetrahedron which contains its own circumcenter. This flat tetrahedron is centered
and corresponds to a local maximum on the discrete distance transform.

Unfortunately, flat tetrahedrons are a frequent phenomenon in surface reconstruction especially on
dense noise-free samplings. The circumcenter of a flat tetrahedron is a critical point and consequently
a point on a homotopical axis. The associated discrete local maximum is always greater than the
original. Since we assume the sampling to be at least local homotopy stable (ψ, ρ)-sampling (compare
Definition 5.17), the boundary simplices are at most ψ, ρlhfs. The local homotopical feature size in the
case of the flat tetrahedron is at most the continuous distance value on the original local maximum and
consequently less than the discrete distance value of its associate.

In our case we assume the sampling even for noise-free cases (ρ = 1) to be dense enough: ψ < 0.5.
However, at least one triangle of the flat tetrahedron is greater than half of its circumradius. It follows
that the flat tetrahedron cannot be associated with an original and so is a pseudo-maximum.

Knowing ψ and ρ parameters we can sort out pseudo-maxima. Consider a deletion path, which is
not necessarily in the discrete medial axis. Let τ0 be the starting centered cell and let τi be the last
simplex in the path in the discrete medial axis and let a leaf of the path contain a boundary simplex.
This boundary simplex has to be less than ψρlhfs. The local homotopical feature size is defined by a
distance value on a point x on the original homotopical axis. The discrete distance value on x is at least
(1 − ρ)lhfs. The associated point in the discrete homotopical axis has a greater distance value than x.
It follows that the circumradius of the boundary simplex has to be less than ψρ

1−ρ of the circumradius of
τi otherwise the circumcenter of τ0 is a pseudo-maximum.

6.4 Feature Size Estimation

In Section 6.2 we learned that stable points on the original medial axis have an associate on the discrete
medial axis. In Section 6.3 we proposed an algorithm to approximate the discrete homotopical axis. So,
for each sampling point we can compute the reachable discrete maxima in the discrete distance transform
and the nearest point on the discrete homotopical axis. These points are associates of points on the
original homotopical axis.

In this section we assume that all points on the original medial axis are stable and learn how to
estimate the position and distance value of points on the original homotopical axis by their discrete
associatives. So, for each sampling point we estimate the local homotopical feature size on their corre-
sponding boundary point.

Consider a boundary point b. The local homotopical feature size is defined either by a distance value
on minimal reachable maximum or by distance to the homotopical axis. Let x be the point on the
homotopical axis with distance value which minimizes these two values. So, the distance value on x is
the local homotopical feature size lhfs(b) on b. The sample points of b are distributed around it by at
most (1 − ρ)lhfs(b). The same is valid for all boundary points with the same local homotopical feature
size. It follows that the maximal inscribing ball touching at least one of the sample points of b has a
radius in the interval dS(x) ∈

(
ρlhfs(b); (2 − ρ)lhfs(b)

)
. The circumcenter of the maximal ball inscribed

into the sample points is a point on the discrete homotopical axis reachable by steepest path from x.
We conclude that, knowing the circumradius of the maximal inscribing ball touching a sample point, we
can estimate the bounds of the local homotopical feature size of the corresponding boundary point:

Corollary 6.9 (lhfs-Estimation on Stable Homotopical Axis). Let b be a boundary point and s ∈ S be
its sample point of a local homotopy stable sampling. Let the nearest point x on the homotopical axis be
stable. Let y be the first point on the approximated homotopical axis reachable by steepest path on discrete
distance transform starting on x. Then the local homotopical feature size on b is less than 1

2−ρdS(y)

The given boundary reconstruction defines the discrete homotopical axis. The distance between each
sample point and the discrete homotopical axis, as well as the distance value of the minimal discrete
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maximum define the discrete local homotopical feature size. This value is the discrete distance value
of the first point reachable by steepest path starting on a point which defines the continuous local
homotopical feature size on a boundary point. So, using the result in Corollary 6.9 we can associate
each sample point with a boundary point and estimate the original local homotopical feature size.

6.5 Point Set Decimation

Point Set Decimation is a process to reduce the point density while preserving the topological prop-
erties of the data set. The advantage in this context is that we do not need to preserve the topology
of the mesh but the topology of the point set. The mesh construction on the decimated point set is
then the reconstruction of the original mesh. Related mesh decimation procedures iteratively delete
one point and subsequently re-establish the connections in the resulting data set by newly generated
simplices. Each iteration guarantees the correct topology of the resulting mesh. For secondary litera-
ture consult [Lindstrom and Turk, 1998], [Garland and Heckbert, 1997], [Dey et al., 1999]. We skip that
procedure and concentrate our attention on the density of the points. A similar procedure is proposed
in [Dey et al., 2001].

Using the result of Corollary 6.9 we can estimate the original local homotopical feature size on the
boundary by given sample points even for low quality and highly noise-corrupted data sets as long as
the input is local homotopy stable (compare Definition 5.17). The result is a function which maps each
sample point to an estimated local homotopy feature size.

Here we assume that the local homotopical feature size is known. Further, we consider the original
mesh to represent the continuous boundary. Then the vertices of the mesh are considered as boundary
points and the data set is assumed to be dense enough to contain “almost” every boundary point.

Consider a ball centered on a boundary point b with radius plhfs(b) such that the boundary points in
the ball have the local homotopical feature size greater than or equal to the local homotopical feature
size on b. Consider further a sample point in the center of this ball, in other words a sample point on b.
Then the distance between any boundary point b′ in the ball and the sampling point is less than or equal
to plhfs(b), which is less than p times the local homotopical feature size on b′. So, leaving the sample
point in b, we may delete all sample points in the ball, preserving for all boundary points in the ball the
property of minimal distance to the nearest sample point. We do not need to be concerned about the
second condition on maximal sample point deviation since no new points are added to the data set and
original points are assumed to be on the boundary. In the following we call the deletion of points under
such conditions the local homotopy stable decimation step.

Definition 6.10 (Local Homotopy Stable Decimation Step). Let R be a space partition and ∂R be its
boundary. Let S be a local homotopy stable sampling of R such that for |S| → ∞, S→ ∂R. Let s ∈ S be a
sampling point and b be its nearest boundary point such that ‖s−b‖ → 0 and let ∀s′ ∈ S : lhfs(s) ≤ lhfs(s′).
Let ρ → 1. Let Bo be an open sphere centered on s with radius ψlhfs(b). Then S′ = S \ S ∩ Bo ∪ {s} is
a local homotopy stable sampling and the procedure which reduces S to S′ is the local homotopy stable
decimation step.

The Decimation algorithm reduces the originally oversampled data set to a point set preserving the
local homotopy properties. In other words, the algorithm performs the local homotopy decimation step
until no such steps are possible. The straightforward implementation is to perform the decimation step
on the list of points sorted in increasing order according to its local homotopical feature size.

Algorithm 6.11 (Local Homotopy Stable Point Set Decimation). Let S be a noise-free local homotopy
stable (ψ, ρ)-sampling set. Let L be a list containing S sorted in increasing order according to the local
homotopy feature size on the points in S.

1. Let S′ be an empty set of points.

2. Let s be the first sampling point in L.

3. Push s into S′.
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4. In L delete all sample points with distance less than ψlhfs(s) to s.

5. If L is not empty go to 2.

6. Else return S′

The Algorithm 6.11 terminates since in 4. the number of elements in the list of points is decreased
by at least one and the algorithm stops with an empty list. One of the possible implementations of step
4. is the range search on a kD-tree [Bentley, 1975]. A kD-tree uses O(dn) space for the data structure

and solves a d-dimensional range query in worst case time of O(n1− 1
d + m), where m is the number of

output points. In a 3-dimensional case the worst case complexity of a query is then O(n
2
3 +m).

The construction of Algorithm 6.11 implies:

Fact 6.12 (Decimation Correctness). The output of the local homotopy stable point set decimation is
a local homotopy stable sampling.

The occurrence of unstable critical points (compare Definition 6.5) in low quality data sets causes
underestimation of local homotopy feature size. The consequence for the decimation is undersampling
of the boundary with the resulting reconstruction intersecting the original homotopical axis. It follows
that the result of reconstruction on a decimated data set is a refinement of the original space partition.

Corollary 6.13 (Result of Decimation is a Refinement). Let S be a local homotopy stable sampling set of
the space partition R and let DR be a stable refinement reconstruction of R. Let SR be the result of data
set decimation with estimated local homotopical feature size. Then the result of refinement reconstruction
on SR is a refinement.

However, we expect the result of reconstruction on a decimated set to preserve certain original
topological properties. Consider a torus. The homotopical axis is a ring consisting of non-stable critical
points only. Consider further the boundary of the torus to be sampled according to local homotopy stable
sampling conditions. Then according to Theorem 5.19 the result of refinement reconstruction is reducible
to a stable refinement. It follows that the homotopical axis of the stable refinement preserves the original
homotopy. We imply that even though the original critical points are unstable the discrete homotopical
axis preserves the topological properties. So, the computation of the local homotopical feature size and
consequently the point set decimation considers the correct homotopy. We conclude that the refinement
reconstruction may cut the homotopical axis, but there is a subset of the reconstructed boundary with
a discrete homotopical axis which is homotopy equivalent to the original.

6.6 Discussion and Future Work

The aim of the framework in this chapter is to produce data sets with variable density for evaluation of
our refinement reconstruction algorithm. So, the intention is to experimentally show the stability of the
algorithm on sparse locally adaptive sampling sets.

The first experimental framework presents most interesting insights into and questions on stability
and reconstruction of critical points on low quality data sets. Many of the insights we give in this chapter
are not yet proven, however, do propose arguments and ideas to prove the statement made on stability
of critical points and data set decimation.

As introduced in Section 6.3 we differentiate between the discrete homotopical axis and the computed
homotopical axis. The discrete homotopical axis is defined by continuous flow on discrete distance
transform. The computed homotopical axis is the result of an algorithm. The algorithm uses the flow
relation to imitate the continuous flow. The computed homotopical axis approximates the discrete
homotopical axis.

We discuss the topological correspondence between the discrete homotopical axis and the original
homotopical axis defined on the continuous boundary in Section 6.6.1 and argue in Section 6.6.2 that the
approximated homotopical axis is homotopy equivalent to the discrete homotopical axis. In Section 6.6.3
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we use the arguments together with the results of feature size estimation made in Section 6.4 to derive
an expectation on homotopy equivalence between the result of refinement reconstruction on decimated
point sets and the original space partition.

6.6.1 Homotopy Type of Discrete Homotopical Axis

The results on critical points separation on dense sampling sets and stable critical points deliver an
envelope of the original homotopical axis which necessarily contains the discrete homotopical axis. So,
feature size can be estimated using the bounds of this envelope. In Section 6.2 we also propose an
argumentation that there is a one-to-one mapping between the connected components of the discrete
homotopical axis and original. Here we discuss the homotopy type of the discrete homotopical axis on
low quality data set.

Not stable critical points disappear on discrete distance transform. Consider for example a cone shape
but let the tip be swollen. This swelling corresponds to a local maximum on the distance transform which
is much less than the local maximum corresponding to the ground of the cone. The homotopical axis
is a line segment connecting these two local maxima passing through a 2-saddle. Let the distance value
on this saddle be not much greater than the distance value of the small maximum. Then the small
maximum is unstable.

Consider a noisy local homotopy stable sampling such that the data set contains one local maximum
only. The associates of the small and great continuous maxima is this one great discrete maximum.
Consequently the discrete homotopical axis consists of this great maximum only. Now, assuming the
distance between the original maxima to be arbitrary great, the associate of the small original maximum
is then arbitrary far away. But the discrete homotopical axis is homotopy equivalent to the original.

Consider now a donut shape. The homotopical axis is a circle. Consider further three local maxima
on the homotopical axis. Let the three local maxima have nearly equal distance values. Assume two of
them to be unstable. There is a saddle between these two maxima. Since all reachable local maxima
are unstable the saddle is not stable.

According to Theorem 5.19 the refinement reconstruction on a local homotopy stable sampling is
reducible. So, the reconstructed boundary can be reduced to a boundary which does not intersect the
original homotopical axis. The result is a stable refinement.

Consider such reduction step. The boundary of the reducible reconstruction contains a simplex
which intersects the original homotopical axis. The reduction step connects the ends of the approx-
imated homotopical axis by steepest path crossing the circumcenter of the simplex. It follows that
the continuous saddle can uniquely be mapped to a discrete saddle. The discrete homotopical axis is
homotopy equivalent to the original.

According to the previous examples and using the result of Theorem 5.19 we have an argument to
conjecture:

Conjecture 6.14 (Homotopy Type of Discrete Homotopical Axis). Let S be a local homotopy stable
sampling of a space partition R and let HAR be the homotopical axis of R. Let DR be a stable refinement
of R built on S. Then there is a subset HA′DR ⊆ HADR of the homotopical axis HADR of DR which is
homotopy equivalent to the original homotopical axis HAR.

To compute the discrete homotopical axis we use an equivalent procedure as for refinement recon-
struction in Section 5.12. In the following section we use again the result of Theorem 5.19 to argue that
the computed homotopical axis is homotopy equivalent to the discrete homotopical axis. Then using
Conjecture 6.14 we imply that the computed homotopical axis contains a subset which is homotopy
equivalent to the original.

6.6.2 Homotopy Type of the Approximated Homotopical Axis

The discrete homotopical axis is a subset of the discrete medial axis which is a subset of Voronoi
diagram. The discrete homotopical axis is defined by steepest ascents on the discrete distance transform
which start on critical points. The discrete homotopical axis is the union of stable manifolds of the
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critical points. The result in Lemma 2.25 (compare [Chazal and Lieutier, 2005a]) implies the homotopy
equivalence between the discrete homotopical axis and the discrete medial axis.

The ancestor sets defined by the flow relation (compare Section 2.4.9) of centered cells imitate the
stable manifolds. In contrast to stable manifolds the ancestor sets may have a non-empty intersection.
In the intersection the flow relation forks. However, refinement reconstruction solves the problem. So,
we expect the approximation of the discrete homotopical axis to be homotopy equivalent to the discrete
medial axis.

Conjecture 6.15 (Homotopy Type of the Approximated Homotopical Axis). The result of homotopical
axis approximation in Algorithm 6.8 is homotopy equivalent to the discrete medial axis.

The algorithm operates only on Delauanay simplices which correspond to medial axis. So, assuming
the opposite, the approximated homotopical axis is not homotopy equivalent to the discrete medial axis,
then there has to be a simplex which is not visited or not deleted by the algorithm. In other words, there
has to be a simplex which is not reachable by elementary collapsing on equivocal simplices starting on
deleted centered simplices. We expect this assumption to lead to a contradiction.

6.6.3 Stability of Reconstruction on Decimated Point Sets

For the point set decimation in 6.5 we assumed the local homotopical feature size on sample points to
be known. Assuming the given values to be the local homotopical feature size of the corresponding
boundary points, the result of decimation is a local homotopy stable sampling.

As discussed in Section 6.6.1 we expect the discrete homotopical axis to contain a subset which is
homotopy equivalent to the original. In Section 6.6.2 we argued that the computed homotopical axis is
homotopy equivalent to the discrete homotopical axis. We imply that the computed homotopical axis
contains a subset which is homotopy equivalent to the original homotopical axis.

In Section 6.4 we discussed how the local homotopical feature size can be estimated on stable critical
points and the steepest paths connecting them. But according to previous considerations certain unstable
critical points are preserved in the homotopy equivalent subset of the computed homotopical axis. So,
there is a guarantee that the homotopy equivalent subset of the computed homotopical axis is in the
envelope of the original. Which means that following the steepest path on the discrete distance transform
starting on the original homotopical axis, the first point on the computed homotopical axis has the
discrete distance value not greater than (2 − ρ) of the original. The factor (2 − ρ) results from the
bounds in Corollary 6.9.

Using the bounds of feature size estimation and the arguments for the homotopy equivalence of
the subset of the computed homotopical axis, we infer that, though the refinement reconstruction on a
decimated point set does intersect the original homotopical axis, the boundary is reducible to a subset
with a discrete homotopical axis which is homotopy equivalent to the original. Simply speaking, the
point set decimation is too sparse on certain sampling points but preserves the correct homotopy type
of the reconstruction.

Conjecture 6.16. The result of refinement reconstruction on a decimated point set is reducible to a
space partition which is homotopy equivalent to the original.

An interesting experiment to evaluate the stability of decimation is to apply the decimation algorithm
a number of times on a decimated point set. We expect the outcome to be the same point set as the
original decimated set.

6.7 Experiments

The point set decimation, as we introduced it in this chapter, results in a very sparse data set with
locally variable point density. The aim is to evaluate the refinement reconstruction algorithm. Notice,
point set decimation is not an issue of this work and so, we deal with the results only experimentally.
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(a) (b)

Fig. 6.2: (a) nonmanifold shape; (b) Refinement reconstruction on decimated data set

In Section 5.14 we have already presented the results of refinement reconstruction on real data sets.
The results demonstrate the performance of the algorithm on very dense or highly noise-corrupted
sampling sets as well as the ability of the algorithm to reconstruct multi-regional space partitions with
non-manifold boundary. Here we demonstrate the advantage of the refinement reconstruction to handle
samplings with locally variable density.

Reconstruction of Nonmanifold Shape on Locally Adaptive Sampling

Using the results of this chapter we created a non-manifold shape in Figure 6.2 (a) consisting of two
donuts stuck together. Each donut was initially compressed on one side to obtain one stable maximum.
The transparent illustration in Figure 6.3 (a) shows the interior of the shape. The space partition consists
of three regions. The data set is noise-free with sample point density of 0.5lhfs.

In Figure 6.2 (b) we see a decimated mesh reconstruction with locally variable density. The density
and consequently the size of triangles depends on the distance to the computed homotopical axis. We may
also infer that the computed homotopical axis needs further pruning: the surface around the inclusion
of the donuts is densely sampled, which is explained by its close proximity to the homotopical axis. The
computed homotopical axis extends too far to the boundary.

The mesh in Figure 6.2 (b) is the result of refinement reconstruction on a decimated point set. As
we can observe on the transparent mesh in Figure 6.3 (d) the reconstruction is a reducible refinement
of the original space partition. Unfortunately not evident in the illustration is the membrane in the
compressed side of the donuts. This narrowing corresponds to a stable saddle. Removing the membrane
we obtain a surface reconstruction topologically equivalent to the original shape.

No method depending on global parameter setting like “α-shapes”-based algorithms, or approaches
based on a globally set sampling density, like λ-medial axis, can cope with this data set. Since the
original shape in Figure 6.2 is nonmanifold and the sampling is very sparse, no locally adaptive methods
based on lfs or assuming r-regular shapes can reconstruct a nonmanifold surface. So, we present here a
fundamental result and show the advantage of the refinement reconstruction over all methods known to
us.

Well Known Data Set Decimation

As the final experiment we apply the decimation procedure onto well known data sets “Stanford
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(a) (b)

Fig. 6.3: (a) nonmanifold shape; (b) Refinement reconstruction on decimated data set

Bunny” and “Angel”. In Figure 6.4 we present the results of refinement reconstruction on both data
sets: the original very dense sampling and the decimated locally adaptive point set.

“Stanford Bunny” data set with originally 34824 points was reduced to a set of 1972 points. “Angel”
was reduced from 237018 points to 3902. Notice that the resulting point density depends on the quality
of homotopical axis approximation. The less is the difference between the computed homotopical axis
and the discrete homotopical axis the greater is the distance between the points and the axis, and the
smaller is the resulting data set.

According to the argumentation in Section 6.6.2 the computed homotopical axis is homotopy equiv-
alent to the discrete homotopical axis. It follows that, since the discrete homotopical axis is the minimal
set of steepest paths between the critical points, the computed homotopical axis is in the worst case the
superset of the discrete. Consequently, in the worst case we have an oversampled but local homotopy
stable boundary.

6.8 Conclusion

In this chapter we successfully completed the evaluation of the refinement reconstruction. The exper-
iment requires a local homotopy stable sampling set which is sparser than the local feature size based
ε-samplings provided by related algorithms. To provably meet the demands on the sampling we derived
a stability criterion on the critical points and discrete homotopical axis.

The computation of the discrete homotopical axis is derived from the flow relation framework which
is also an underlying step in refinement reconstruction. The stability of the computed homotopical axis
provides feature size estimation on data points and consequently the lower bounds for the sampling.
The estimated feature size defines the maximum distance to the nearest neighbor, so all points with
lesser distance are not required in the data set. Successive deletion of points sorted in increasing order
according to the estimated value provably results in a local homotopy stable sampling.

The framework on stability of critical points and homotopical axis experimentally developed in this
chapter extends the results on boundary reconstruction and offers a basis for further research on homo-
topy equivalence of reconstructed space partitions. We provided arguments for homotopy type preser-
vation in the discrete homotopical axis computation deriving the stability of the reconstruction on
decimated data sets.



6.8. CONCLUSION 167

(a) (b)

(c) (d)

Fig. 6.4: left: original mesh, right: reconstruction from the decimated local homotopy stable
point set

The experiments provide a nonmanifold multi-regional shape which is non-uniformly sampled ac-
cording to the framework on data set decimation derived in this chapter. The underlying shape is
nonmanifold, not smooth and multi-regional which makes reconstruction with all related computational
topology based approaches known to us not possible. The thinned-(α, β)-shape-reconstruction handles
nonmanifold multi-regional shapes but does not process locally adaptive samplings which is successfully
carried out by refinement reconstruction. So, we developed an experiment which shows the advantage of
refinement reconstruction over thinned-(α, β)-shape-reconstruction and all related computational topol-
ogy based approaches known to us.





Chapter 7

Conclusion and Outlook

The main goal of this work was to define locally variable sampling conditions and a reconstruction
method which results in a digital representation of a given real world scene provably preserving original
topological properties. The starting point for our research was theoretical framework and reconstruction
method for non-manifold 3D-surface reconstruction originally introduced for 3d in [Stelldinger, 2008b].
This framework requires the sampling parameters to be globally set for the whole scene.

The real world scene in [Stelldinger, 2008b] is divided into a set of disjoin open regions called space
partition. It is assumed that the space partition consists of more than two regions and that the boundary
of more than two regions can intersect. It follows that the boundary of the assumed space partition is a
non-manifold 2D-surface embedded into a 3D Euclidean space. The research aim in [Stelldinger, 2008b]
is then the topology preserving reconstruction of the non-manifold 2D-boundary. This research on
sampling fosters questioning what the most sparse sampling conditions are and which amount of noise
can be handled by the reconstruction method.

The sampling conditions are defined in such a way that the homotopy-equivalent and geometrically
similar subsets of the original regions are enveloped by sampling points denser than the tightest narrowing
in the subsets. In other words the discrete distance value on the original boundary is always less than
the discrete distance value on the critical point with smallest continuous distance value.

The sampling density serves as a parameter to adjust the α-parameter of the reconstruction algorithm.
The α-shape already separates the relevant homotopy-equivalent regions correctly but contains spurious
holes. The maximal sample point deviation is then used to detect the holes which do not correspond
to any original regions. The regions less than the internal parameter β, which is computed using
the maximal sample point deviation, are filled and the resulting thick boundary is then thinned by a
topology-preserving post-processing step.

The sampling conditions defined in [Stelldinger, 2008b] ensure even the tightest narrowing to be
sufficiently sampled. But the sampling density is then constant for the whole boundary. In our framework
we explore the idea of limiting the sampling density and - depending on the sampling density - to limit
the maximal sample point deviation. But our requirement for the sampling is to ensure all steepest
increasing paths on discrete distance transform - starting in the relevant subsets of the original regions
- to stay in these relevant parts. This renders possible to define locally adaptive sampling conditions.

The framework developed in [Edelsbrunner, 2003] defines a strict relation called “flow relation” on
Delaunay simplices which mimics the steepest increasing paths. The result of the reconstruction method
called “Geomagic Wrap c©” (applied on each Delaunay tetrahedron containing its own circumcenter) is
the 3D extension of the Gabriel graph [Gabriel and Sokal, 1969]. We call this reconstruction step on

169
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samplings fulfilling our conditions the Elementary Thinning.

The result of elementary thinning is a correct separation of local maxima, where the discrete local
maxima are uniquely associated with continuous local maxima. The separation is called correct if the
associated discrete local maxima of the continuous local maxima being in different original regions are
in different discrete regions.

The original regions may contain more than one local maximum. But the result of elementary
thinning is the separation of all maxima. Such separation corresponds to an oversegmentation of the
original scene. Since the oversegmentation naturally carries boundary elements which may be removed
to merge different regions while preserving correct separation, we call such separation a refinement.

The Wrap algorithm follows the steepest decreasing path in the discrete distance transform and
successively deletes Delaunay simplices from the complex which it passes through. The remaining De-
launay simplices have then the smallest discrete distance values in the relation. We call such boundary
reconstruction minimal refinement.

The medial axis [Blum, 1967] is a complete shape descriptor, but only a subset of the medial axis is
necessary to represent the homotopy type of the shape or, as we call it, the region. Contractible regions
have star-like medial axes. The homotopy type can be represented by one point only. The local region
size measures for each point on the boundary the minimal distance value of the local maxima reachable
by steepest ascent on the continuous distance transform. This value gives the lower bound of the largest
inscribing ball of the region. Thus the local maxima only are relevant for definition of the local region
size.

Our new sampling conditions limit the ratio between the discrete distance value on the boundary
and the local region size. The result is, the discrete distance value on the associate local maximum is at
least a fraction of the continuous distance value on the original local maximum. Since the reconstructed
boundary is minimal, by scaling the discrete distance value by the reciprocal of the fraction we obtain
a value of the maximal boundary simplex. Thus all boundary simplices which exceed this value cannot
separate different regions and can be deleted. We call such region merging on too large simplices the
refinement reduction.

In this work we show that the sampling conditions defined by local region size are insufficient in
order to obtain a reconstruction which can be reduced by further deletion of boundary simplices to a
homotopical equivalent of the original space partition. So, we defined a new subset of the medial axis
- the minimal superset of all discrete critical points. As proven in [Chazal and Lieutier, 2005a], this
subset of the medial axis, in our framework called the homotopical axis, is homotopy-equivalent to the
medial axis and, as we implied, the homotopical axis is homotopy-equivalent to the space partition.

The local homotopical feature size is the minimum between the local region size and the distance to the
homotopical axis. The local homotopical feature size measures the distance to the critical points and to
the steepest paths between the critical. So, the sampling conditions defined by local homotopical feature
size ensure a denser sampling in narrowings. The result of refinement reduction is then a boundary
reconstruction which is reducible to a space partition with a boundary which does not cut the original
homotopical axis. So, the result is reducible to the correct separation of connected components of the
original homotopical axis.

As we have shown, the our algorithm for refinement reconstruction has advantages over all recon-
struction methods based on a computational geometry approach known to us, including the “Thinned-
(α, β)-Shape-Reconstruction” published in [Stelldinger, 2008b]. In summary:

• The class of shapes which can be handled by our new refinement reconstruction has been ex-
tended to space partitions consisting of multiple regions with non-manifold boundary. So, the
assumed shapes generalize r-regular, r-halfregular, non-smooth and r-stable objects. ( Note that
in [Stelldinger, 2008b] the multi-regional space partitions with non-manifold boundary are classified
by the value of maximal boundary dilation which does not change the homotopy type. )

• The assumption of multi-regional space partition enables the reconstruction for volume-based sam-
plings such as in computer tomography or magnet resonance imaging.
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• The refinement reconstruction handles locally non-uniform and highly noisy sampling. To our
knowledge the sampling conditions generalize the requirements made in [Stelldinger, 2008b] as
well as the sampling conditions defined for all topology preserving reconstruction methods based
on a computational geometry approach.

• The method handles noise arising from blurring which is here defined as excessive sample point
deviation from the boundary, as well as a large amount of outliers (over 20% in our experiments).

• Given the sampling conditions and parameters as defined in [Stelldinger, 2008b], the refinement
reconstruction results in an equivalent boundary approximation.

However our method reconstructs a reducible refinement only. The result preserves the original topo-
logical properties but needs further processing and knowledge to be reduced to a homotopy-equivalent
space partition.

7.1 Contributions

In our ambition to make this work self-contained lucid we achieved theoretical, experimental and empir-
ical contributions. In the introduction of theoretical concepts we presented:

• The proof that the local maxima of the distance transform are the local maxima of the correspond-
ing medial axis.

• The definition of the homotopical axis as the smallest superset of critical points and steepest
increasing paths between them and derivation of the homotopical equivalence to the space partition.

• The definition of the local region size as a function which maps each boundary point to the smallest
distance value of the local maxima reachable by steepest increasing paths.

• The definition of the local homotopical feature size as the minimum between the local region size
and the distance to the homotopical axis.

• The proof of equivalence between the concepts of equivocal and “Not-Gabriel” simplices which is
needed to combine the concepts in the framework of refinement reconstruction.

• Observations and proved claims for geometrical dependence between certain Delaunay simplices.

• A discussion on comparison of Delaunay simplices and introduction of a new size of a simplex as
the largest distance value in the simplex which corresponds to the flow defined on discrete distance
transform.

• A proposition on how to compute the size of a simplex and a discussion when the computation is
necessary.

The evaluation of the framework developed for thinned-(α, β)-shape-reconstruction contributed in
the following respect:

• Unification of sampling conditions and comparison to other approaches showed that the thinned-
(α, β)-shape-reconstruction has advantages over all other reconstruction methods known to us
before we developed refinement reconstruction.

• Experiments on laser range scan data sets with nearly noise-free dense as well as blurred data,
which demonstrate equivalent results achievable with previous reconstruction methods as well as
the advantage and robustness of the algorithm on blurred data sets with excessive sample point
deviation.
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• Experiments with samplings taken from non-manifold boundary of multi-regional space partitions
demonstrating the ability of the method to reconstruct homotopy-equivalent surfaces.

• Discussion of problems of thinned-(α, β)-shape-reconstruction due to excessive noise corruption
and propositions to overcome these. The excessive noise corruption causes topological distortions
on the reconstructed boundary which can be removed only under further assumptions. We propose
an extension of the algorithm to detect certain topological artifacts such as chains of singular edges
or surface patches without boundary which do not separate two different regions and have the same
region on both sides.

Taken together the main contribution of our work is the introduction of the theoretical framework,
the derivation of guarantees or, respectively, proofs, and the evaluation of the refinement reconstruction.
The theoretical framework includes:

• Introduction of unique association between local maxima on distance transform defined on original
boundary and the local maxima on distance transform defined on sample points.

• Definition of a refinement as the correct separation of associated local maxima.

• Definition of a minimal refinement consisting of minimal Delaunay simplices according to steepest
decreasing paths starting on local maxima.

• Definition of locally adaptive sampling conditions which generalize all sampling conditions known
to us and contain information on local homotopy.

• Proof that application of the constructed retraction algorithm on Delaunay tetrahedrons containing
own circumcenter results in a minimal refinement.

• Proof that minimal refinement can be reduced by merging of regions on boundary simplices which
exceed a certain value. This value can be computed by the largest circumradius of all Delaunay
simplices in the region.

• Proof that the result of refinement reconstruction is reducible to a stable refinement which correctly
separates the connected components of the homotopical axis.

The evaluation of the reconstruction algorithm resulted in the following new results:

• Given the sampling parameters as required for thinned-(α, β)-shape-reconstruction, the result of
refinement reconstruction is homotopy-equivalent.

• The sampling conditions defined for refinement reconstruction generalize all sampling conditions
defined for previous reconstruction methods known to us.

• Refinement reconstruction handles the most sparse sampling and the largest amount of noise of all
methods known to us.

• Refinement reconstruction results in a reducible refinement on samplings of non-manifold bound-
aries of multi-regional space partitions.

• Our method handles large data sets from laser range scanners. Even if we cannot guarantee that
the result is homotopy-equivalent, in practice for very dense sampling sets we observed no need of
reduction.

• Our new method reconstructs the non-manifold boundary of a multi-regional space partition which
has been sampled by a volume-based approach such as computer tomography post-processed by
3D Canny edge detection algorithm for point cloud extraction.
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To experimentally demonstrate the advantage of the refinement reconstruction over thinned-(α, β)-
shape-reconstruction we introduced a framework for data set decimation which results in a local homotopy
stable sampling set. The sampling is local homotopy stable if it is a (ψ, ρ)-sampling based on local
homotopical feature size. For the resulting data set we required the most sparse sampling density to
additionally show the superiority of refinement reconstruction over reconstruction methods based on
ε-samplings. The contributions from the evaluation on locally non-uniform very sparse data sets are:

• Stability of critical points in low quality data sets. Here we introduced a new definition on stability.
A continuous local maximum is stable if the distance value on the discrete distance transform on
the discrete local maximum reachable by steepest ascent on the discrete distance transform is
guaranteed to be whithin a certain interval of the original continuous distance value. A saddle is
stable if all reachable local maxima are stable.

• Proof that a continuous local maximum is stable if the distance values on all saddles reachable by
steepest ascent are sufficiently small.

• Definition of the discrete homotopical axis based on extended gradient and the continuous flow
defined on discrete distance transform.

• Proposition to compute the homotopical axis which approximates the discrete homotopical axis.

• Local homotopical feature size is estimated on data points given the discrete homotopical axis.

• The definition of a data set decimation method which results in a local homotopy stable sampling.

• The experiments demonstrate refinement reconstruction results on sparse local homotopy stable
data sets. The underlying data sets are laser range scan data from “Stanford 3D Scanning Repos-
itory” as well as artificially generated data sets to demonstrate the strength of the reconstruction
and the decimation methods on the non-manifold boundary of a multi-regional object.

However this work has left open questions and issues which motivate further research.

7.2 Future Work

Extensions for Thinned-(α, β)-Shape-Reconstruction The evaluation of the thinned-(α, β)-shape-
reconstruction indicated some open problems according to excessive amount of noise. The reconstruction
method results in a homotopy-equivalent boundary only under the assumption that the boundary cannot
consist of singular edges and does not contain non-orientable 2D surface patches on the boundary which
we call “Klein bottle” surfaces. We propose several ways to overcome the topological artifacts:

• Limiting the internal parameter α to be less than the largest sample point deviation promises to
solve the problem of surface patches which do not correspond to the original boundary.

• The processing step to detect non-orientable surface patches and the reconstruction step to fill
them. The final topology preserving thinning which is already a processing step of the algorithms
removes the distortion.

• The chains of singular edges connected to the boundary enclose surface patches which are covered
by q-dilation of the boundary with q being the maximum sample point deviation. The expan-
sion containing the smallest Delaunay triangles according to their circumradii results in a surface
without singular edges chains. The final contraction on simple simplices contracts the distorted
surface.
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Topologically Correct Boundary Reconstruction The ambition of our work has been to find both
the weakest conditions on the sampling and the most effective method to reconstruct the topology of
the original object. Even though in our research we succeeded in presenting results on locally adaptive
boundary reconstruction the defined conditions are too weak to find an unique object representation.

As we have seen in the evaluation, sampling based on the homotopical axis loses relevant topological
properties. Differentiating between shapes of different topology can become impossible. So, we propose
to:

• Extend the definition of the homotopical axis which respects the non-manifold boundary points
and

• Limit the upper bound of the sample point deviation from the boundary.

The two extensions strengthen the sampling conditions, but first, the resulting sampling conditions
still generalize the requirements of previously proposed methods known to us, and second, we expect
this to solve the problem of shape dissolution in the sampling.

Parallelization The construction of the first step of our algorithm and the property of strict relation
between Delaunay simplices specified in [Edelsbrunner, 2003] enables parallel thinning processing. Each
thinning process performes “Geomagic WRAP c©” on deleted Delaunay tetrahedrons which contain their
own circumcenters.

The refinement reduction step as introduced in our work is performed on a sorted list of bound-
ary simplices. However we expect the process to be order-independent which again enables parallel
implementation of the algorithm.

Application to Shape Matching The medial axis together with the distance values uniquely describes
a shape. Consequently, two shapes with equal medial axes and corresponding distance values are equal.
Two shapes with equal medial axes but different distance value mapping on the medial axis are homotopy-
equivalent. Two shapes with homotopy-equivalent medial axes are also homotopy-equivalent.

In [Chazal and Lieutier, 2005a] a homotopy-equivalent subset of the medial axis is presented called
λ-Medial axis. Two shapes with homotopy-equivalent λ-medial axes are homotopy-equivalent.

The homotopy axis is a homotopy-equivalent subset of the medial axis and is a subset of λ-medial
axis. Two shapes with homotopy-equivalent homotopy axes are homotopy-equivalent. So, using the
robust approximations of homotopy axes shapes can be compared.

Finding similar shapes in a data base is a resource consuming procedure. Since the homotopy axis
is a very reduced form of a topologically similar shape we propose to use it to simplify the search. The
representation of the homotopy may then be computed and coded in the most simple way. We propose to
compute the homotopy by the method of topological persistence introduced in [Edelsbrunner et al., 2002]
and already successfully applied in [Chazal and Lieutier, 2005b] for computation of homology groups.
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