Digital Simulation of Daily
Rainfall in the tropics

Dissertation
Zur Erlangung des Doktorgrades
der Naturwissenschaften im Fachbereich
Geowissenschaften
der Universitat Hamburg

vorgelegt von
Edgar Djoumessi-Tatsangue
aus Dschang, Kamerun

Hamburg
2003



Als Dissertation angenommen vom Fachbereich Geowissenschaften

der Universitat Hamburg
Auf Grund der Gutachten von Prof. Dr. R. Schwarz
und Prof. Dr. H. von Storch

Hamburg, den 19 November 2003

Prof. Dr. H. Schleicher
Dekan
des Fachbereichs Geowissenschaften



Contents

1 GENERAL INTRODUCTION 1
1.1 Problems and objective . . . . . . . . ... Lo Lo 1
1.2 Background of the study . . .. ... ... ... ... L. 3

1.2.1 Precipitation occurrence . . . . . . . . ... ... ... 3
1.2.2 Daily rain amounts . . . . . . .. ... L0 Lo 9

2 THE AREA OF STUDY AND DATA PRESENTATION 15
2.1 Generalities on relief and climate of Cameroon . . . . . . . .. .. ... .. 15
2.2 Data . . ... e 21

2.2.1 Daily rainfall data . . . . . .. ... 21
2.2.2  Classification of daily rainfall data . . . . . .. . ... ... .. .. 22
2.2.3 Spatialdata . . .. ... 23

3 DISTRIBUTION OF MONTHLY MEAN RAINFALL 27
3.1 Spatial distribution of mean rainfall in some significant months . . . . . . . 27
3.2 Rainfall regimes . . . . . . . ... 28

4 MODELLING DAILY RAINFALL OCCURRENCE 39
4.1 Choice of appropriate order of Markov chains . . . . .. ... ... .. .. 39
4.2 Temporal distribution of transition probabilities . . . . . . . . .. ... .. 42

4.3 Spatial distribution of the transition probability parameters: estimation of

parameters of Yii(m) . . . . ..o 45

5 DISTRIBUTION OF RAINFALL AMOUNTS 55
5.1 Fitting of a suitable theoretical distribution function . . . .. .. ... .. 25
5.2 The temporal distribution of parameters . . . . . . . . . ... .. ... .. 63
5.3 Spatial distribution of parameters from predictors . . . . . . ... ... .. 65

6 SIMULATION PROCEDURES AND VALIDATION OF THE RESULTS 69

6.1 Simulating rainfall occurrence . . . . . .. ..o 69
6.2 Simulating daily rainfall amounts . . . . . .. ... ..o 000 70
6.3 Validation of the outcome of rainfall series . . . . . . . . ... .. ... .. 71

6.3.1 Distribution of daily precipitation amounts . . . . . . .. ... ... 71



6.3.2 Test of the seasonal distribution of wet-day series . . . . . . .. ..

6.3.3 Yearly mean and variance of monthly rainfall . . . . .. .. .. ..

6.3.4 Outcome of probabilities

7 CONCLUSION

8 ACKNOWLEDGMENTS

9 ANNEXE -A-

10 ANNEXE -B-

i

83

86

94

98



List of Tables

] O Ot = W N

10

11
12
13

Geographical location of meteorological stations and the presentation of

the time series . . . . . . . . L L 25
The general form of a contingency table . . . . .. .. ... ... .. ... 40
ratio % calculated from the contingency table . . . . .. ... .. 41
Double normal function coefficients for Y;;(m) . . . ... .. ... ... .. 44
Summary of regression coefficients for estimating Y;;(m) parameters . . . . 49
x? - test of Weibull distribution function on daily rainfall . . . . . . .. .. 58

x? - test of Weibull distribution function on daily rainfall after adding the

normal function . . . . . .. Lo 61
Estimated coefficients of the double normal function . . . . . . . .. .. .. 65
Summary of regression coefficients for estimating g(m) and b(m) parameters 66
Test of distribution functions of observed and generated rainfall amounts

in 10" of mm . . ... .. 71
Test of seasonal distribution of wet-day series . . . . . . .. .. ... ... 80
Values of F-test statistic and t-test statistic for the monthly rainfall amount 81

Observed and estimated monthly po;(m) and py;(m) . . . . ... . ... .. 82

il



List of Figures

© o0 N O Ot = W NN

e g ey
Ot = W N = O

16

17

18

19
20
21
22
23
24
25

Scheme of the process followed in this study . . . . ... ... .. ... .. 14
Geographical location of Cameroon . . . . . . ... ... ... ... .... 17
Physical map of Cameroon . . . . . . . . .. ... 18
Centres of action and flow: average situation of January . .. .. ... .. 19
Centres of action and flow: average situation of July . . . . . . .. ... .. 19
Spatial distribution of the mean yearly rainfall . . . . . . . .. ... .. .. 20
Spatial distribution of meteorological stations in Cameroon . . . . . . . .. 26
Spatial distribution of rainfall in January . . . . . . . ... ..o 29
Spatial distribution of rainfall in April . . . . . ... ... ... 30
Spatial distribution of rainfall in July . . . . . . ... ... ... ... .. 31
Spatial distribution of rainfall in October . . . . . . . . . .. .. ... ... 32
Rainfall regimes with four seasons . . . . . . . . .. .. ... ... ... . 35
Rainfall regimes with two seasons . . . . . . . . .. ... ... ... ... . 37
Spatial distribution of rainfall regimes . . . . . . . . . ... ..o 38

Temporal distribution of the logits Yo, (m) of wet/dry transition probability
po1(m) using the double normal function . . . . ... ... ... ... ... 46
Temporal distribution of the logits Y11 (m) of wet/wet transition probability
p11 using the double normal function . . . . ... ... ... ... ..... 47
Spatial distribution of the monthly wet-dry logits Y;;(m) with ¢ = 0 using
the double normal function . . . . ... ... ... 0000 53
Spatial distribution of the monthly wet-wet logit Y;;(m) with ¢ = 1 using
the double normal function . . . . ... .. ... o4

Distribution of observed daily rainfall frequency in wet days (1951-1993) . 56

Frequency distribution of daily rain amounts in Douala . . . . . . . .. .. 60
Monthly distribution of observed and estimated absolute rainy days . . .. 75
Observed and estimated wet/dry probabilities . . . . . .. ... ... ... 78
Observed and estimated wet/wet probabilities . . . . . . .. ... ... .. 79

Transformed wet-dry probability (Yy:(m)) using the double normal function 97

Transformed wet-wet probability (Y71(m)) using the double normal function 101

v



List of symbols

Symbols

a, [1, 81, U1, S1

gy [i1; Si1y H4325 Si2

b(m)

Yir(m)

Meaning

parameters of double normal fonction

spatial parameters of double normal fonction of Y;;(m) i = 0,1
scale parameter of Weibull distribution

error function of z(m) estimating Y;; (m)

error function estimating Weibull parameters

estimated frequency belonging to class j

probability density function

shape parameter of Weibull distribution

horizontal direction

length of a spell

month argument

transition numbers 7,7 = 0,1

observed frequency belonging to class j

arbitrary point in the area of study

transition probability i = 0,1

random number in the interval [0,1]

rain amount on day ¢

overlay normal distribution adds to Weibull distribution
Weibull distribution probability density function of rain amount r
monthly logits of transition probability with ¢ = 0,1
double normal function for month m

chi square statistic

relief gradient in direction hy

error function of parameters g and b

relief exposition

rain exposition at a point P

longitude

mean value

daily rainfall occurrence

altitude



latitude
variance of monthly rain amount

yearly rain amount

vi



Abstract

The generation of rainfall data needs a range of models depending on time and on
spatial scales involved. Cox and Isham (1994) presented three types of rainfall models,
namely, empirical statistical models, models of dynamic meteorology and intermediate
stochastic models, a classification based on the amount of physical realism incorporated
into the model structure. This study is based on the empirical statistical model type,
where empirical stochastic models are fitted to the daily rainfall data range from 1951 to
1993 of 28 stations. The models for generating a long sequence of daily rainfall series are
required increasingly, not only for the hydrological purposes but also to provide inputs
for models for crops growth, landfills, tailing dams, land disposal of liquid waste and
environmentally sensitive projects. It also provides the means of extending the simulation
of rainfall to unobserved locations.

The present study develops models for simulating daily rainfall series i.e. occurrence
processes and rainfall amounts on wet days using the spatially distributed predictors such
as latitude, longitude, altitude, exposition effect etc.

Two-state first-order Markov chain is used to model wet-dry and wet-wet occurrence
processes; transition probability between dry or wet and wet days are calculated. The
Weibull distribution function is used to model the daily rainfall amounts on a wet day. The
seasonal variation in rainfall is an important factor and several approaches have dealt with
the seasonality; in this study, we assume that parameters vary either as a step function
for each month and use a double normal function to describe the seasonal variation of
parameters. The idea behind the double normal function is based on the assumption of
two different rainy seasons during a year, each one with a peak similar to that of a normal
function. If there is only one rainy season, we expected that this could also be represented
by near zero values for one of the two normal distribution. Parameters of double normal
function are estimated by a minimization of errors. Stepwise regression analysis is then
used to approximate parameters of the double normal function from spatially distributed
predictors. As the outcome of the regression analysis, 5 % significance level is chosen
to decide the inclusion or the exclusion of a predictor. Approximated parameters of
the double normal function are used to write the equations of the models allowing the
generation of daily rainfall series (occurrence processes and daily rainfall amounts) by the

following procedures:

vii



e chose an arbitrary location P in Cameroon where you want to simulate daily rainfall

series

e determine the necessary information on P’s position and relief surrounding for input
in equations for estimating wet/dry and wet/wet occurrence processes and the user

will get a time series of daily precipitation occurrence at P.

e determine the necessary information on P’s position and relief surrounding for input
in equations for estimating the Weibull parameters g, b and simulate daily rain
amounts by generating random numbers R from pseudo-random number generator.
Each random number then inserted in equation gives daily rain amount 7 time series

at P using the Monte Carlo method.

Regrettably, we were not able to use the observation data that are independent from
the ones we used for calibration, i.e. estimating all the parameters. The main results
are as follows: The models reproduced well the seasonal variation of dry-wet and wet-wet
transition probabilities at all the stations tested in spite of the gap existing between the
observed and the estimated probabilities. It is also noted that there is a discrepancy
between the month where the maximum (peak) and the minimum of estimated probabil-
ities occurred against the observed ones. The generator seems to be able to generate rain
series (number of wet days) for inland stations with statistics resembling the observations
whereas the coastal area (Douala and Ngambe) shows the contrary. The simulated series
present the same configuration as the observed series with the maximum of wet days oc-
curring in the rainy season. In Douala, Ngambe and Ngaoundere, the maximum number
of wet days occurs in August for the observed series whereas it occurs in September for
the estimated series. The test of the frequency distribution of generated and observed rain
amount series shows that the generator produces good estimate of daily rainfall amounts
in the northern area (Kaele) and in the southern plateau (Sangmelima). Weak rainfall
amounts are generated at the stations situated on highlands (Koundja) and in the coastal
area (Douala and Ngambe). The test of the mean rainfall indicates that the significance
value is above .05 in Kaele, Koundja, Ngambe, Sangmelima for all the 12 months suggest-
ing that there is no difference between the mean of observed and simulated rainfall series.
In Douala, the significance is less than .05 in August; in Ngaoundere the significance is

also less than .05 in December. Both cases suggest a difference between the mean of
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observed and simulated data in these months. The situation is the same when testing
the monthly variance; the value under .05 indicates that there is a difference between the

variance of observed and simulated series in August, October, and November in Douala.
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1 GENERAL INTRODUCTION

1.1 Problems and objective

Stochastic weather generators are tools to create weather inputs for other environmental
and agricultural models. The output of a stochastic weather generator is designed to have
the same statistical properties as the data used to fit it, and consists of a set of sequential
random values of the weather variable of interest. Some of the environmental variables
that have been used by those stochastic weather generators include daily precipitation,
daily temperature, and solar irradiance.

There are several reasons for the development of stochastic rainfall generators and the
use of synthetic rainfall data instead of observed data in human activities.

The first is the provision of rainfall time-series long enough to be used in an assessment
of environmental and agricultural risk. Observed daily rainfall data are major inputs into
agriculture simulation models, but the length of time series is often insufficient to allow
good estimates of the probability of extreme events, such as for example the quantity
of rain that may effect crop yield. Moreover, observed time series represent a single
realization of the climate, whereas a rainfall generator can simulate many ’realizations’,
thus providing a wider range of feasible situations where constructed models need to be
tested.

The second purpose is to provide the means of extending the simulation of rainfall time
series to unobserved locations. Environmental risk assessments are now often made on
high resolution grids or at multiple sites across a region where observed weather records
are not available (Harrison et al. 1995). Several techniques such as kriging (Phillips et al.
1992), thin plate smoothing splines (Hutchinson 1995) or precipitation elevation regres-
sion on independent slope models (PRISM) (Daly et al. 1994) have been developed to
interpolate the monthly means of climate variables, with the emphasis on the estimation
of rainfall in mountainous regions. However, many impact models require daily rainfall
data and so a different approach is required. Rather than estimating the climate variable
(rainfall) directly (see, for example, Running et al. (1987), the parameters of a stochastic
rainfall generator for each of the observed sites can be estimated, with the resulting pa-
rameters being used by the rainfall generator to produce synthetic daily rainfall data for

the unobserved locations. Spatially estimated sets of parameters are available for differ-



ent weather generators and for some countries in the northern hemisphere, for example,
WGEN in the USA (Richardson and Wright 1984; Hanson et al. 1994) and LARS-WG in
the UK (Semenov and Brook 1999).

A third reason for needing stochastic rainfall generators has recently arisen from the
studies of climate change impacts. A weather generator can serve as a computationally
inexpensive tool to produce site-specific climate change scenarios at the time step. The
changes in both climatic means and climate variability predicted by GCM experiments can
be applied to the parameters of the rainfall generator for the current climate at the site in
question. Daily scenario data can then be obtained by running rainfall generators using the
revised set of parameters (Wilks 1992; Semenov and Barrow 1997). To test the reliability
of crop simulation models, sensitivity analyses to climatic variable are required, both to
changes in mean and climatic variability. The relative importance of changes in rainfall
variability on simulated crop yields for example has been demonstrated recently (Semenov
and Brook 1999). Such sensitivity analyses have been done using stochastic weather
generators. Parameters of the weather generator responsible for mean and variability
of weather variables were pertubated and then used to produce time series of synthetic
weather.

Stochastic weather generators are becoming an integral part of decision support sys-
tems. They are used to assess the effects of management decisions for a variety of scenarios
(Tsuji et al. 1998). Usually the decision in question is tested for many possible weather
situations, generated by a stochastic weather generator. A temporal distribution of the
model performance characteristics, such as, for example, yield, is constructed for every
decision. These distributions are compared with one another to select the optimal man-
agement. Stochastic weather generators can also be used in real time simulations.

In many tropical developing countries, rainfall is a major influence on human activity,
particularly agriculture. A number of rainfall parameters, such as amounts over a range
of time periods, frequencies of occurrence of particular amounts, the nature of wet and
dry spells, need consideration in order to fully understand this influence. The general
problem can be summarized as follows: Which future amount of rainfall is to be expected
at a given location within a certain time span and by which probability? How reliable is
the estimation?

Thus, in this work the precipitation series are modeled by a separate process, so that



rainfall is a two-step process:
1. determination of whether precipitation occurs, and
2. if precipitation does occur, determination of how much fell.

This work is focused on the building of simulation models which can be used to digi-
tally generate rainfall series on a daily time scale; the main objective is to develop models
for simulating daily rainfall occurrence processes and the nonzero precipitation amounts
on wet days at a point P in Cameroon using spatially distributed predictors. The ap-
proach here is to estimate parameters of models describing daily rainfall series from the
characteristics of terrain such as latitude, longitude, altitude, relief exposition etc; best

terrain characteristics are chosen for using stepwise regression analysis.

1.2 Background of the study

Most effort in the construction of weather generators has been devoted to daily precip-
itation processes. Not only precipitation is the most critical meteorological variable for
many applications, but the presence or the absence of precipitation also typically affects
the statistics of many nonprecipitation variables to be simulated. Precipitation data are
difficult to be modelled because they exhibit distinctive and difficult characteristics. Most
rainfall generators contain separate treatments of precipitation occurrence and intensity.
The precipitation occurrence process manifests itself in two weather states, wet or dry.
A key aspect of stochastic rainfall models is their representation of the tendency of wet
and dry days to exhibit persistence, or positive serial autocorrelation, so that wet and
dry days tend to clump together in time more strongly than could be expected by chance.
The precipitation intensity pertains to the modelling of nonzero precipitation amounts.
These are typically strongly skewed to the right, with many small values and few but quite
important large precipitation amounts. Although these concepts appear straightforward
it has taken more than a century to formalize many of the processes within stochastic

precipitation models.

1.2.1 Precipitation occurrence

Apparently the earliest published work on probabilistic modelling of precipitation occur-

rence was that of Quetelet, who reported in 1852 (Katz 1985) that runs of consecutive
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rainy and dry days at Brussels for 1833-1850 exhibited the persistence. Another expression
of this tendency for wet and dry weather to persist was provided by Newnham (1916), who
used daily rainfall records at Kew, Aberdeen, Valencia and Greenwich, UK, to demon-
strate that the probability of a "rainy day” is greater if the preceding day was wet rather
than dry. These two approaches considering run lengths and day-to-day statistical de-
pendence to describe the temporal dependence of precipitation occurrences were pursued
further by Besson (1924), Gold (1929) and Cochran (1938). Williams (1952) used geo-
metric series to model dry and wet spell (i.e., consecutive runs of dry or wet days) lengths
at Rothamsted Experimental Station, Harpenden, UK. Longley (1953) subsequently im-
proved geometric series fit to observed wet and dry spell lengths in five Canadian cities
by differentiating between the months in which spell fell.

Gabriel and Neumann (1962) are generally credited with presenting the first statistical
model of daily rainfall occurrence. In their work using rainfall data for Tel Aviv, Israel,
the authors recognized that the frequency distributions for wet and dry-days length of
the types identified by Williams (1952) and Longley (1953) may arise from a simple
Markov chain model. In particular, Gabriel and Neumann (1962) proposed the use of
first-order Markov chain for precipitation occurrence, assuming that the probability of
rainfall on any day depends only on whether the previous day was dry or wet. This model
can be fully defined by the two conditional probabilities py; (t) being the probability for
having precipitation on the day ¢ and no precipitation on day ¢_; and py;(¢) being the
probability for having precipitation on the day ¢ and precipitation on day ¢ ; which are
called transition probabilities. Since there are only two possible states on a given day,
the two complementary transition probabilities are pog = 1 — po; dry day following a
dry day and pyg = 1 — py; dry day following by a wet day. It was noted by Gabriel and
Neumann (1962) that this simple model for rainfall occurrence was able to describe closely
the persistent nature of daily precipitation occurrence patterns, and that certain other
properties of the occurrence series could be derived from the transition probabilities.

po1 and pqq illustrate the use of the first-order Markov model to characterize important
aspects of the precipitation occurrence climate. This model also provides a convenient
and efficient means of generating sequences of random numbers that simulate the corre-
sponding real rainfall data. For each simulated day, a random number R is drawn from

the interval [0,1] in such a way that any real number in that interval is equally likely to be



picked. In practice, these are usually produced by widely available computer algorithms
called uniform pseudo-random number generators (Press et al. 1986; Bratley et al. 1987).

Once a random number R has been generated, whether the next day in the sequence
is wet or dry, is determined using pg; and py;. If the previous day (¢ — 1) was dry, then
day t is simulated to be wet if R < pg;, and otherwise it is also dry. If the previous day
was wet, then the current day is simulated to be wet if R < pyy, and is dry otherwise. As
first-order Markov models fit to daily rainfall data, the simulations yield sequences of wet
and dry days that are more persistent than independent draws.

For temperate climates, it has been found that the simple first-order Markov model
generates synthetic rainfall series with too few dry spells (e.g.,Buishand (1977); Buishand
(1978); Racsko et al. (1991); Guttorp (1995); Jones and Thornton (1997); Wilks (1999)
addressed this deficiency by considering Markov chains of higher order. These techniques
increase the length of the Markov model’s “memory” of antecedent wet and dry days.
For example, second-order Markov chains use the wet/dry state on both the preceding
day, and two days prior, such that eight transition probabilities p;;; must be defined.
Here each of the indices i,j,k may be either one (wet) or zero (dry). Hence pio; would
be probability of a wet day given that the previous day was dry, and the day before that
was wet. Third and higher-order Markov chain can be similarly defined, although the
number of transition probabilities required increases exponentially as the order increase,
being 2* for k' -order chain. When only the dry days are not adequately modeled by the
first order Markov model it is possible to improve the statistics of the simulated dry days
using hybrid order Markov models, in which the Markov “memory” extends further back
in time for the dry days only (Stern and Coe 1984; Wilks 1999).

When deciding between models having different degrees of complexity, one must judge
how elaborate a model is justified by the data. Gabriel and Neumann (1962) compared the
first-order Markov model for precipitation occurrence in Tel Aviv with the next simplest
model, namely independent Bernoulli (i.e., binomial) occurrences, using Chi-square tests.
While this is a reasonable approach when only two alternatives are being considered,
ambiguities in such statistical tests arise when multiple comparisons are made, for example
when choosing among Markov models of zeroth (binomial distribution), first and second
orders. The usual approach in circumstances like this is to employ an objective order-

selection criterion such as Akaike’s information criterion AIC (Akaike 1974) or Bayesian



information criteria BIC (Schwarz 1978). Both AIC and BIC are likelihood-based criteria,
in that they choose the model having the largest maximized likelihood, after application
of a penalty that increases with the number of free parameters allowed by each of the
models considered. The likelihood function is notationally analogous to the probability
distribution function or the probability density function; yet, the data are considered
as fixed, while values of the parameters associated with the global maximum of this
function are the fitted maximum likelihood estimates. Gates and Tong (1976) concluded
that second-order Markov dependence was justified according to the AIC for Tel Aviv
precipitation data considered by Gabriel and Neumann (1962). However, Katz (1981)
concluded that first-order dependence for these data was adequate on the basis of the
BIC, which he also showed to be asymptotically consistent (i.e., the BIC is correct on
average for sufficiently large data samples).

An alternative to Markov chain models for simulating precipitation is the use of spell
length models. Rather than simulating rainfall occurrences day by day, spell length mod-
els operate by fitting probability distribution to observed relative frequencies of wet and
dry spell lengths. This kind of model is sometimes called an ’alternating renewal process’
(Buishand 1977; Buishand 1978; Roldan and Woolhiser 1982), in that random numbers
are generated alternately for the wet and dry spell length distributions. That is, a new
spell length L is generated only when a run of consecutive wet or dry days has come to an
end, at which point a new spell of the opposite site is simulated. Of course, if geometric
distributions are used to model the length of wet and dry spells, the resulting synthetic
series will exhibit the same characteristics as the equivalent first-order Markov process.
Higher-order Markov chain have spell length distributions associated with them that are
generalizations of the geometric distribution. Precipitation occurrence sequences with
different statistical characteristics can be obtained using different distributions for the
frequencies of spell lengths. Such distributions include the truncated negative binomial
distribution (Buishand 1977; Buishand 1978; Roldan and Woolhiser 1982), the negative
binomial distribution (Wilks 1999) and the mixed geometric distribution (Racsko et al.
1991). For climates where the above distributions yield very long dry spells with insuffi-
cient frequency, these more elaborate choices for modelling precipitation occurrence have
been found to yield more realistic results (Racsko et al. 1991; Wilks 1999; Buishand 1977;

Buishand 1978). However, this method is susceptible to poor parameter estimates in arid



regions (Roldan and Woolhiser 1982). As part of Cameroon being located in the arid
area, the previous limitation suggests the rejection of the use of spell-length models in
this study.

A number of methods such as Markov chain models, Alternating Renewal Process
(ARP), spell length models are among some approaches that have been used to simulate
daily rainfall occurrence in temperate regions. However, Alternating Renewal Process
presents some limitations (Roldan and Woolhiser 1982): it is susceptible to poor parameter
estimates in wet regions, therefore many years of observations are necessary; dry regions
are mostly found in tropical areas and tropical areas are characterized by the scarcity of
longer observations. Because of these limitations, Alternating Renewal Process and spell
length models are discarded in this study.

The two-state first-order Markov chain model as defined by Gabriel and Neumann
(1962) is used in this study to model daily rainfall occurrence; it provides a convenient
and efficient means of generating sequences of random numbers that simulate the corre-
sponding real rainfall data. The application of Markov chain to study daily dry and wet
sequences in tropics is a way of examining the persistent nature of rainfall patterns of this
area. A two-state first-order Markov chain model is chosen over other stochastic processes
because it is conceptually simple; it has been previously used in the context of analysing
daily rainfall occurrence in most part of the world. Another reason is that the results of
analysis are relevant to management (transition probabilities) and are easy to derive from
successional data.

Comparatively little work on this topic has been carried out in tropical areas but in
view of its significance, inevitably attempts will be made to generalize from one area to
another. Although it is possible to make some broad statements about daily characteris-
tics, the extremely varied mechanisms of tropical rainfall production, the characteristics
of rainfall(large spatial and temporal variability) in the tropics make such generalization
dangerous.

For the world as a whole, the terms “summer” and “winter” are commonly used to de-
note respectively the season of high sun (maximum temperature) and low sun (minimum
temperature) in the tropical area. In middle and high latitudes a traditional four seasons
year of spring, summer, autumn and winter is chiefly based on temperature contrasts and

the length of daylight. However, in the tropics, smaller monthly temperature constract



combined with a more equal length of daylight has made rainfall the most common crite-
rion for seasonal subdivision. On this basis, a distinction is usually made between a wet
season and a dry season, sometimes separated by two transitional seasons. Clearly, previ-
ous temperate area analyses are not necessarily a guide to the tropical situation because of
the differentiation into two seasons. In view of the significance of modelling daily rainfall
series and the potential utility of Markov processes to characterise a variety of wet/dry
situations, modelling rainfall occurrence under the tropical conditions is important.

Technical details in this part of the work consist in

1. computing transition probabilities p1; and pg;
2. using a function to describe the seasonal variation of parameters

3. estimate parameters from the spatially distributed predictors which are latitude,

longitude, altitude, relief position, relief exposition, and mean of yearly rainfall
4. generating the synthetic occurrence series of wet and dry days series,
5. generating synthetic transition probabilities (p11,po1, Poo, P10)

6. compare the generated probabilities series against observed ones.

The scheme of the process followed in this study to analyse and to model the rainfall
data series is presented in figure 1. The first decision taken at this level is to deal with
the occurrence (wet/dry) process and to describe the distribution of rainfall amounts
independently on the wet days. Many studies have examined rainfall occurrence by a
two-state first-order Markov model. But choosing a proper order for the Markov models
is problematic, and has important implications from the stand point of model effectiveness
and parsimony. Following tabulation of frequencies of occurrence within each class and
calculation of probabilities, initial probabilities are plotted as monthly averages for each
of 28 stations. Data are then grouped on this basis for testing dependence/independence.
Contingency tables are used to test a range of hypotheses about the order of Markov chain.
Although later analyses may involve a range of thresholds, the classification methods
presented by Jackson (1981) and Stern et al. (1982) is used. Briefly, for each site each
day is classified as dry (wet) day depending whether the site received less (more) than
Imm of rain. The probability of a day being dry will depend on the state (dry or wet) of
the preceding day.



Transition probabilities p1; and pg; are computed from the historical data. They are
then transformed using a logit function

1

Yii(m) = ln(l — pﬂ(m)o'l%)

i=0,1 (1)

We then obtain the logit Y;;(m) of daily rainfall occurrence. The seasonal variation
Yi1(m) is decribed using a double normal function with five parameters.

Spatial distribution of the probabilities is studied by applying a stepwise regression
analysis of pameters of the double normal function on spatially distributed predictors;
by doing so, we estimate parameters of the double normal function spatially so that we
can use them to write the equations of models needed for generating wet-dry occurrence
and wet-wet occurrence in a point P in Cameroon. The last step consists in estimating

probabilities by inverting Y (m) to Y;;'.

1.2.2 Daily rain amounts

The next necessary element of a rainfall generator is a model for nonzero precipita-
tion amounts on wet days. The most prominent statistical feature of daily precipitation
amounts is that their distribution is strongly skewed. That is, very small daily precipita-
tion amounts are quite common, while the large daily precipitation amounts that are most
important to hydrological, agricultural and engineering impacts are comparatively rare.
Todorovic and Woolhiser (1975) were the first to produce a daily stochastic precipitation
generator by combining the first-order Markov model for daily precipitation occurrence
with a statistical model for daily nonzero precipitation amounts. Their choice for mod-
elling the daily rainfall amounts r was the exponential distribution whose probability
density function with mean p is
1

Jr) = eap [‘7’"1 (2)

The exponential distribution is probably the simplest reasonable model for daily pre-
cipitation amounts, as it requires specification of only one parameter, p , yet reproduces

qualitatively the strong positive skewness exhibited by daily precipitation data. The

2 = 2,

Exponential distributions have also been used by Richardson (1981); Wilby (1994) among

average nonzero precipitation amounts is p , and the corresponding variance o

others.



A number of more elaborate models have also been proposed for the distribution of
daily precipitation amounts given the occurrence of a wet day. The two parameter gamma
distribution has been the most popular choice (Thom 1958; Katz 1977; Buishand 1977;
Buishand 1978; Stern and Coe 1984; Wilks 1989; Wilks 1992), and has the probability

density function
(r/B)*"* exp [—1/p]
AT() ¥

This distribution involves two parameters: the shape parameter o and the scale pa-

fr) =

rameter . Factor I'(«) is the gamma function evaluated at « (see, e.g. Abramowitz and
Stegun (1984); Wilks (1995)). This function has mean p = a3 and variance o? = a3%.
For @ < 1 gamma distributions are qualitatively similar to exponential distribution in con-
centrating most of the probability near zero and producing large precipitation amounts
only rarely. For a@ = 1 gamma distribution reduces to exponential distribution, but in
general the additional parameter allows more flexible accommodation of rainfall amount
frequencies, and thus improves the realism of stochastic precipitation models.

Another natural generalization of the exponential distribution is the mixed exponen-
tial distribution which is simply a probability mixture of two one-parameter exponential
distributions. Its probability density function is

« —r 1 -« —r

fr)=—-ewp [+ —m=eop |7 (4)

Mathematically, this probability density indicates a superposition of two ordinary

exponential distributions whose respective means are p; and py. From the standpoint
of simulation, a natural generalization of exponential distribution is used to generate
the precipitation amounts with probability «, and the second is used with probability
1 — a. The mixed exponential distribution has mean p = ap; + (1 — «)uy and variance
o =api+ (1 —a)ud+a(l —a)(puy — pu2)?. First suggested as a model for daily precipi-
tation amounts by Woolhiser and Pegram (1979), the mixed exponential distribution has
been rarely used comparatively. However, it has been reported to provide substantially
better overall fits to daily precipitation data than the gamma distribution (Roldan and
Woolhiser 1982; Foufoula-Georgiou and Lettenmaier 1987; Wilks 1998; Wilks 1999), and
in particular Wilks (1999) reports better representation of the frequencies of the very
largest precipitation amounts.

Given a distribution to represent the nonzero precipitation amounts, simulations are
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accomplished through computer algorithms (Bratley et al. 1987) that generate random
numbers according to the fitted distribution. For each day the precipitation occurrence
model simulates wet conditions. A new random variate for nonzero precipitation amounts
is generated from the fitted distribution.

Most stochastic rainfall generators make the assumption that precipitation amounts on
wet days are independent, and follow the same distribution. Allowing different probability
distributions for precipitation amounts depending on that day’s position in a wet spell
(e.g., the mean rainfall on a wet day following a wet day might be greater than on a wet
day following a dry day) has been considered by Katz (1977); Buishand (1977); Buishand
(1978); Chin and Miller (1980). Similarly, the autocorrelation between successive nonzero
precipitation amounts in daily series is sometimes statistically significantly different from
zero, but is typically quite small and usually of little practical importance (Katz 1977;
Buishand 1977; Buishand 1978; Foufoula-Georgiou and Lettenmaier 1987). In contrast,
the accounting for serial correlation of nonzero precipitation amounts is essential if the
precipitation model has an hourly(or smaller) rather than a daily time step (Katz 1995).

Another approach to the accounting for correlation in the nonzero precipitation amounts
is the use of multistate (i.e., greater than the 2 states) Markov models. These Markov
models simulate both precipitation occurrence and amounts, by defining different ranges
of precipitation amounts as constituting distinct states. Transition probabilities among
all possible pairs of states are estimated from data, and used in simulation. For example,
for southeast England in spring, Gregory et al. (1993) found that there is a 16 % prob-
ability that a rainfall total of greater than 6.62 mm will be equalled or exceeded on the
following day, but only a 5.7 % chance that such a day will be followed by a dry day. Gre-
gory et al. (1993) also found that first-order Markov models yield smaller discrepancies
in seasonal precipitation total if specified ranges of daily precipitation totals are used to
condition the rainfall amounts on the following day. Haan et al. (1976) followed a similar
approach. The validity of this multistate Markov approach clearly rests on the choice of
the number of states and their ranges (i.e., the upper and lower rainfall thresholds) and
on the distributions used for wet-day amounts in any given state. These models involve
comparatively large numbers of parameters, and thus required quite long data records in
order to be estimated well.

Many probability density functions have been used to simulate nonzero precipitation
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amounts, among them: the exponential distribution, the two-parameter gamma distri-
bution, the mixed exponential distribution, the use of multistate models. These models
involve comparatively large numbers of parameters, and thus require quite long data
records in order to be estimated well (Wilks and Wilby 1999). Such limitations bring us
to use Weibull distribution to simulate nonzero precipitation amounts in this study.

Technical details to be used in this part of the study consist in:
1. setting on some statistical parameters and patterns to nonzero rainfall
2. choosing a suitable distribution to fit the daily rainfall amounts

3. using a function to describe the seasonal variation of parameters of the chosen

distribution function

4. estimating parameters of function describing the seasonal variation from the spa-

tially distributed predictors
5. developing models for simulating daily rainfall amounts
6. generating the synthetic rain amounts on a wet day using Monte Carlo method
7. testing the frequency distribution of generated rainfall series against observed series
8. testing the mean and the monthly variance of the generated rainfall amounts.

The scheme of the process, followed in this study to analyse and to model daily rainfall
amount is presented on the right side of figure 1. The whole data is divided into two parts;
the first part from 1951 to 1993 is used to calibrate the model whereas to test the models,
the series from 1994 to 2000 are used.

Basic statistical parameters (frequencies, monthly and yearly means etc.) and plots
(histograms, curve) are computed followed by the description of patterns in the observed
daily, monthly, seasonal, daily and yearly precipitation series. Histograms of monthly rain-
fall enable us to define the precipitation regimes whereas plots exhibit seasonal variation
of the series.

The seasonal variation of precipitation series throughout the year is an important factor
in the construction of models: we assume that parameters vary as step functions for each

month and we use double normal function to provide daily variation of parameters. It is
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chosen because it can fit both bimodal or unimodal seasonal patterns easily. It has the
advantage that the fitted probabilities at the beginning and end of the year are the same.

The next step deals with the spatial distribution of the daily rain amounts. This is
done by applying stepwise regression analysis to parameters of the double normal function
and spatially distributed predictors. By doing so, we estimate parameters of the double
normal function spatially; the estimated parameters are then used to write equations of
the models necessary for simulating daily rainfall amounts on wet day. The Monte Carlo
method is used to generate a rainfall series.

Another step is the validation of generated precipitation series against observed pre-
cipitation series. The seasonal number of generated and observed wet days on the one
hand, the frequency distribution of generated and observed daily rainfall amounts on the
other hand are compared by using the Chi-square test. The monthly variance and the
mean of the observed and generated rainfall amount are tested using F-test and t-test

respectively.
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2 THE AREA OF STUDY AND DATA PRESEN-
TATION

2.1 Generalities on relief and climate of Cameroon

Cameroon is located in western Africa, bordering the Bight of Biafra between longitude 8°
and 16° East and between latitudes 2° and 13° North of the Equator (figure 2). A look at
the physical map of Cameroon (figure 3) shows that it is a country of varied landscape full
of plains, plateau and highlands. The following major physical units can be distinguished:
coastal plain in the southwest, dissected plateau in the centre, the Adamawa plateau,
mountains in the west, plain in the north. These physical units play an important role
on the climate, particularly in the repartition of precipitation in Cameroon represented
in the figure 6.

By far the highest precipitation totals are those recorded where highlands interrupt
the onshore passage of maritime air, in particular the Cameroon Highlands. Debundscha,
near the base of mount Cameroon records some of the world’s highest annual precipitation
totals. It receives the full force of the moist southwesterlies as they ascend the mount
Cameroon, recording an annual mean as high as more than 10,000 mm. In complete
contrast, Ekona, in the rainshadow on the far side, has a mean of less than 1,500 mm.
High totals are also recorded along the coastal plain (Douala, Kribi). Such high totals on
the low-lying coast are related to the effects of frictional convergence as streams meet and
cross onshore (Buckle 1996). From the coast to inland, rainfall decreases.

Precipitation totals distribution in Cameroon result also from the latitudinal extension
of the country and its location at the Gulf of Guinea. In West Africa the east-west
alignment of the Guinea coast, with the warm equatorial Atlantic to the south, extends
the zone of humid tropical climates much further to Cameroon. Rainfall decreases from
the coast to the interior, both in amount and in duration. At the coast, annual totals can
exceed 4,000 mm (Douala), while in the northern part they drop to less 800 mm (Maroua).
Rainfall, however, remains highly seasonal, the result of the alternating influence of two
contrasting airstreams: humid maritime air from the Atlantic, and dry continental air
from the Sahara.

As the tropical maritime air of the Atlantic draw to the equators it acquires more and

more moisture until eventually it is transformed into the warm, moist, highly unstable
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equatorial air of the Inter-Tropical Convergence Zone (ITCZ). Moving onshore from the
Atlantic, the lower layer of this air is warmed, enhancing thereby its instability still further.
It is an equatorial air that brings the greatest proportion of rain to Cameroon. Within the
body of this unstable airstream, convectional storms develop readily, while wherever it is
forced upwards, such as on Mount-Cameroon and the adjacent offshore islands, rainfall
is extremely heavy. Precipitation here originated from the thermal convection and squall
lines, the most violent of which appears to result from the distortion of the Inter-Tropical
Front under the surge of one of the converging fluxes, before thrusting into the mass of
damp air as back draft of the surface circulation (Suchel 1988).

The great deserts of Sahara and Arabia north of the equator are the source regions of
tropical continental air. The subsidence associated with the high pressure cells of these
regions creates air that is hot, dry, and very stable. The dryness and subsidence limit
cloud development and precipitation. In fact, despite the steep lapse rates and extreme
instability of the lowest layers produced by the intense surface heating in the hottest
months, the extremely low humidities rarely encourage more than dust storms to develop.
Between December and March it is this dry, dusty air that reaches the country as the
Harmattan haze. Tropical continental air brings dry season wherever in the country.

During the northern hemisphere low-sun period (November-March), dry stable Sahara
air, carried equatorwards by tropical easterlies, dominates Cameroon. During this period,
the Harmattan winds become stronger than humid Atlantic air so that the Inter-Tropical
Front is pushed more to the south and is situated around 5°N (figure 4); the entire North
Cameroon is invaded by the Harmattan. The effects of the Harmattan are very drastic
in the north but become less intense as one moves southwards. Rainfall is rare and some
small streams dry up completely while many river sizes reduce.

From April to October, however, when much of the country is overlaid by a wedge
of humid Atlantic air, Cameroon experiences its rainy season. The Inter-Tropical Front
is above Lake Chad and the humid Atlantic air is found practically above all Cameroon
(figure 5). Maximum totals are recorded in July and August, but the nature and the

quantity of rainfall vary significantly with the depth of moist air.
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2.2 Data
2.2.1 Daily rainfall data

Data from 28 meteorological stations, indicated by stars in Figure 7, are used in this study.
All these stations are part of observer networks operated by the national department of
meteorology in Cameroon which reports daily rainfall. For most of these stations, data
from the years 1951 through 2000 are used. The data are taken as is relying on the routine
checks done by the meteorological service; the length of the series varies from one station
to another, with a lot of lacuna within the series as reported in table 1. The frequency
of daily observation is the same throughout the network (twice per day). When rainfall
occurs during the day (6H00:18H00), observations are reported at 18.00H. When it occurs
in the night (18:00H-6:00H), observations are reported at 6H00. The measurements are
carried out with Hellmann rain gauge type at all the 28 stations.

Like all measurements, the measurement of the rain is prone to error. The average
level of urbanization in Cameroon in the years eighties was around 38 % especially in
1985; during the year 1990, it progressed to 42 % and reached 52% in year 2000 (UNEP
2002). The urban population who was 9.8 % in 1950, increased at 44.9 % in 1995 (UNEP
2002). The consequences of the rapid urbanization and urban population growth include
intensifying pressure on natural habitats and resources to satisfy the growing demand
of space and housing. Municipalities are unable to provide space and housing quickly
enough to meet this demand; therefore, unplanned settlements emerged even nearby the
meteorological stations. The construction of the houses nearby the stations is a source of
systematic errors present in rainfall series in the sense that this forms a screen around the
station and thus there is always less rain measured than has fallen.

The observation time is also a significant factor introducing "noise” into both the
occurrence process and in the distribution of rainfall depth; in rain gauges there is always,
a delay between the rain falling, collecting in the gauge, and recording. In Cameroon’s
stations, the observers read the gauge twice a day as stated before. Between the first
(morning) and second observation (evening), some rain may have evaporated because
of the exposition of gauges; the consequence is the series present a reduced number of
wet days or greater mean daily amounts; the latter can be explained by the fact that
an observer has missed making an observation on one day and the total accumulation is

recorded on the following day.
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Another problem is the split phenomenon; when one looks on the synoptic table of
rainfall, there is continuous rain over several days. All these days have high rainfall
amounts of nearly the same order of magnitude. This problem becomes serious when
testing a distribution to describe the daily rainfall amount; the long rain periods overlap-
ping several days to cause the misfit of the Weibull distribution (see chapter 5). Hence,
the distribution predicts much fewer big rain amounts the higher the rainfall is.

In Cameroon the 1987’s economic crisis, lead personal of meteorological service to
a certain "laissez aller” because the government cut down salaries; the qualities of ob-
servations have been deteriorated since then. The effect of these methodological factors
and errors is primarily reflected in the occurrence process and in the smaller amounts of
rainfall. In spite of these problems, daily rainfall data for 28 stations are used in this

study.

2.2.2 Classification of daily rainfall data

Before starting the analysis of daily rainfall data, the first work is to use the existing
literature to define a wet or a dry day according to a certain threshold.

In tropics, because of high evaporative demand, a fairly high threshold might seem
appropriate. However, choice of such threshold is still a problem and it may be unwise
to ignore light rain that may be important for plant survival. Marked spatial variation is
a characteristic of tropical rainfall. Although amounts at one point may be low, a very
short distance away they may be considerable or zero. Particularly in the applied sense,
concern is with rainfall over an area rather a point. This perhaps suggests that choice
of appropriate threshold may not be so critical. Although later analyses may involve a
range of thresholds, in this study we use the method of classification presented by Jackson
(1981) and Stern et al. (1982). Briefly, for each site each day is classified as dry (wet)
day depending whether the site received less (more) than Imm of rain. In general, the
probability of a day being dry will depend on the state (dry or wet) of the preceding
day. If the dependence extends to the two previous days, the process is second order,
etc. Only two states have been specified, but one could divide days into dry and various
states of wetness, with appropriate rainfall amount to separate them. For N years data
having classified each day as dry or wet, they are then relabelled as the case may be as:

dry following dry, wet following dry, dry following wet and wet following wet. For every
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date of the civil calendar year, the number of occurrences i.e. transition numbers of each
combination is tabulated for each month in all the years. We note them ngo(m), ngi(m),

n1o(m), niy(m) respectively.

2.2.3 Spatial data

The geographer main concern is to study the spatial distribution of phenomenon on the
earth surface; spatial distribution of the different seasonal course of rainfall occurrence and
rainfall amount are our main preoccupation in this study. This is why we try to describe
the seasonal variation by time invariant parameters. It’s in order to describe its spatial
variation and for the latter we need the spatial predictors. The study of areal distribution
of rainfall is important especially when physiographic and other factors vary over the same
region causing different rainfall patterns. As the geographical factors are time invariant,
that is their patterns cannot experience any temporal change and are easy to observe, we
use them to predict rainfall in Cameroon. These data are derived from the topographic
maps and/or direct observations in the field. This category of data are time invariant
because their patterns cannot experience any temporal change. Spatially distributed data
in this study are known as predictors. They include latitude, longitude, altitude, local
topography (relief orientation, rain exposition). Mean yearly rainfall amounts are also
used as spatial data.

It is well known that when latitude increases, rainfall decreases; that is the higher the
latitude, the less the rain. The longitude has the same effects as the latitude, with lower
rain when the longitude increases.

As previously stated, the topography of Cameroon is dominated by the chain of high-
lands. The highlands strongly influence precipitation patterns, generating high levels of
orographic rainfall when dominant winds are uplifted as they encounter the relief. Incur-
sion of the moisture from the coastal area, the orientation of the hills are the geographical
factors influencing the spatial distribution of rainfall. The orientation and the altitude
of a station above sea level are the additional factors responsible for exceptional rainfall.
Thus precipitation is highest along the windward whereas the leeward lies in the shadow
with low precipitation. This influence of the topography on rainfall leads us to construct
a measure called “rain exposition” r(P) at the measurement point P in altitude w(P).

By whole numbers from 1 to 8 it measures the degree of rain exposition to k =1,2,....8
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equally distributed wind directions around P. In each of eight directions k we take the

surface point Hj, with altitude w(Hy) where the gradient

w(P) — w(Hy)
d(P, Hy)

6(Hy) =

= max,

related to the distance d(P, Hy) between P and Hj is at maximum.

We define a function Ej, of directional rain exposition.

{0 it §(Hy) >0
=

1 if S(Hy) <0

Then the rain exposition x(P) is defined as the sum of all the eight directions Ej

K(P) =) Ej

(6)

(7)

The selection of good predictors is guided by stepwise linear regression displaying the

strength of a relationship and the direction of this relationship between parameters of

a distribution and the spatially distributed predictors. The dependent variable here are

parameters of functions used to describe daily rainfall series.
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Table 1: Geographical location of meteorological stations and the presentation of the time

series
Latitude | Longitude | Altitude | Length of lacuna | Length of time
N E (m) (Year) Series (Years)
Abong-Mbang 3°58’ 13°12 693 1 42
Akonolinga 3°46’ 12°14° 671 6 37
Bafia 4°44° 11°15 500 5 38
Bamenda 6°13’ 10°07 1239 5 38
Batouri 4°28’ 14°22° 653 complete 43
Bertoua 4°33’ 13°43’ 650 complete 43
Betare 5°36’ 14°04° 815 13 30
Douala 4°00° 9°44’ 5 complete 43
Dschang 5°20° 10°03’ 1407 12 31
Edea 3°46’° 10°04’ 31 3 40
Eseka 3°37 10°44° 228 6 37
Garoua 9°20° 13°23 242 3 40
Kaele 10°05 14°24 389 complete 43
Koundja 5°39’ 10°45° 1208 1 42
Kribi 2°57 9°54’ 10 1 42
Lomie 3°09° 13°37 624 4 39
Maroua 10°27 14°15° 421 4 39
Meiganga 6°32’ 14°22’ 1027 1 42
Nanga-Eboko 4°39’ 12°24° 622 4 39
Ngambe 4°16’ 10°36° 610 1 42
Ngaoundere 7021 13°13’ 1114 1 42
Nkongsamba 4°57 9°56’ 816 2 41
Poli 8°28’ 13°15’ 436 1 42
Sangmelima 2°56’ 11°32’ 712 complete 43
Tibati 6°29’ 12°36’ 873 3 40
Yaounde 3°52’ 11°32’ 759 complete 43
Yokadouma 3°371 15°06’ 534 1 42
Yoko 5°33’ 12°22° 1027 1 42
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3 DISTRIBUTION OF MONTHLY MEAN RAIN-
FALL

3.1 Spatial distribution of mean rainfall in some significant months

The spatial distribution of rainfall in January, April; July and October presents an idea
on the rainfall regime in Cameroon. These months are significative because January
represents the heart of the dry season, April the transitional month between the dry
season and the start of the rain; July represents the rainy season and corresponds also
to the “little dry season” in the southern plateau; October represents the second rainy
season in the southern plateau and is also a transitional month between the end of the
rainy season and the begining of the dry season. The analysis here is based on the maps
drawn by Suchel (1988).

December and January are the months with the least amounts of rainfall in Cameroon.
The distribution of rainfall during the month of January is presented in figure 8. Generally,
rainfall amounts reduce from the south towards the north in the inland regions when the
ITCZ is around the 5 parallel. When the south of the country is fairly dry in January,
in the same month most of Adamawa and the rest of the north are dry.

From figure 9, in April, while the major part of the country receives much rainfall, the
northern part keeps partly dry (less rain). The Douala meteorological station measures
an average rainfall of 236 mm, which is not so much more than that of Eseka (242 mm)
or that of Bamenda (200 mm). The reason is that the thermal depressions are not yet
significantly or fully established. Most of the rains are as a result of frontal activities.
During this time, there is a reduction of rainfall amounts not only from the south towards
the north but from west towards east (Bamenda 200 mm, Betare-oya 131 mm) which is
an indication that the ocean winds have enough power of perturbation over the influence
of altitude. Rainfall distribution in May is relatively stable compared with that of April.
These two months represent a characteristic of the seasonal cycle in most of the major
climatic regions of Cameroon: in the centre-south, this is a season of little rain, in the
littoral and Western Highlands, there is moderate rain which precedes the monsoons; in
the north, it is the beginning of the rainy season; characterized by the fall of isolated
heavy drops of rains which are very violent and sometimes very destructive.

August has a very different distribution of rainfall. The contrast is remarkable espe-
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cially in the western part of the country. The coastal region is the Cameroonian ”ridge ”
(High pressure ridge) which experiences strong monsoon during this time. The moisture-
trade winds are very heavy around the littoral regions, which reach high level of hu-
midity(Douala 760 mm). This heavy rains resulting from the monsoon winds continue
till October. It is in the month of July (figure 10) and August that the western edge
of south Cameroon acts as a boundary between southwest monsoon and the Northeast
trade winds. This zone is relatively stable and cool provoking a ”small dry season” in the
centre-south. While the August rainfall is still as high as 520 mm in Ngambe, rainfall in
Akonolinga does not measure more than 108mm. In North Cameroon, it is a full rainy
season. Maximum rainfall occurs in the month of August in this region.

In October (figure 11), the distribution of rainfall presents original characteristics and
seems to resemble that of the month of April. Traits of the ITCZ indicating the end of
the rainy season present a transitional situation similar to that of April. However, the
month of October has much rain wherever compared with April. The differences in the
distribution of rainfall during these months are more distinct. In the humid air, the storms
are concentrated in the coastal areas where raindrops intervene in the last monsoons. This
is the period of high rainfall and of a peak in the rainy season in the entire Centre South
plateau from the Adamawa to the Eastern boundaries. Yaounde, Lomie, Nanga-Eboko

etc. collect more than 300 mm of rainfall.

3.2 Rainfall regimes

This section is not an exhaustive description of rainfall regimes in Cameroon. This has
been well developed by Suchel (1988). It is however important to identify some important
points for better understanding of rainfall patterns in Cameroon. The focal interest is to
have a general idea on monthly distributions of rainfall in Cameroon.

The study of rainfall regimes (figure 12) shows two maximums and two minimums of
rainfall records during a year in Yaounde, Sangmelima, Lomie, Bertoua, Abong-Mbang,
Akonolinga, Bafia, Eseka, Betare Oya, Nanga-Eboko, Yoko, Kribi and Batouri. The main
maximum occurs during the principal rainy season with the peak occurring in October.
The secondary maximum, which is longer than the first but less intensive, occurs in
May and sometimes in April and exceptionally in June; it occurs during the small rainy

season. Between these two maximums, there is an intermediary season linking the two.
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Figure 8: Spatial distribution of rainfall in January
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Distribution of mean rainfall of July (mm)
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Figure 10: Spatial distribution of rainfall in July

31




Distribution of mean rainfall in October (mm)
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Figure 11: Spatial distribution of rainfall in October
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It is usually called a ”"small dry season” and extends from July to August.

Douala and Nkongsamba (figure 13) have a common regime with maximum rainfall in
August. From November to January, there is a decrease in the rainfall depth. Koundja,
Bamenda, Edea, Meiganga, Ngambe and Tibati, have also a unimodal distribution but
the maximum occurs in the month of September. Less rainfall amount during the months
of May and June gives rise to ’stairs’ shape distribution. December to February is marked
by a substantial fall in rainfall.

The five months (November to March) period of dry season at Ngaoundere is a char-
acteristic of the Sudanese humid climate. The distribution of rainfall has a dome-shaped
profile with a maximum occurring in August. The ”frank” Sudanese climate type imposes
at the Garoua and Poli a profile which is more vigorous (inselberg) with maximum rainfall
occurring in August. The rainfall regime presents six wet months from May to August
and six dry months from November to April.

At Kaele and Maroua, the rainy months are reduced to 5 against 7 dry months where 5
months record a zero amount of rainfall. It is from July to August that these two stations
collect 37% of their rainfall; maximum rainfall occurs in August.

An analysis of spatial distribution of rainfall regimes (figure 14) shows two contrast-
ing areas in the distribution of rainfall regimes in Cameroon. In a general view, from far
north near lake Chad to the southern boundaries of the country there are zones of regimes
conforming in its major aspects to a classical schema of gradation of Africa inter-tropical
climate, from sahelian climate to equatorial climate, passing through Sudanese and sube-
quatorial types. The second area is limited to the littoral area and western highlands,
where oceanic monsoon effects and relief cause considerable instability. The regimes in
these zones are not only complex in nature but there is a lot of variation on it.

The motivations for building a digital simulation model for daily rainfall, the area
of study, the description of the necessary data are presented in the previous sections, as
well as the spatial and temporal distribution of the monthly mean rainfall. It is obvious
that for simulating daily rainfall series, we need first of all to build specific models; thus
developping models for simulating dry-wet occurrence and wet-wet occurrence is the main

preoccupation in the next section of this study.
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Figure 12: Rainfall regimes with four seasons
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Figure 13: Rainfall regimes with two seasons
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4 MODELLING DAILY RAINFALL OCCURRENCE

A rainfall generator uses information about the observed weather statistics at the site
of interest to parameterise a stochastic tool that can generate sequences of daily rainfall
data, all consistent with the statistics of the target site. A typical daily rainfall generator
is often rooted in a Markov Chain model. The Markov Chain is a widely-used statistical
technique to describe rainfall time-series. For a rainfall generator, we define two states:
either the day is classified as dry (no rain) or rainy. The Markov Chain model considers
that the likelihood of a particular state on any given day is determined by the states taken
in the previous day or sequence of days. Therefore, the likelihood of any given day being
rainy is conditioned only by whether the previous day or sequence of days were rainy.
For estimating transition probabilities however some previous work has to be carried out

before.

4.1 Choice of appropriate order of Markov chains

Following tabulation of frequencies of occurrence, we constructed contengency tables of
observed and expected numbers of occurrence in order to test a range of hypotheses
about the order of Markov chain. The following hypotheses are formulated for chosen the

appropiated order of Markov chain to be used
1. Ho: the weather on day ¢ is independent of weather on day ¢t — 1
2. Ho: the weather on day ¢ is independent of weather on days ¢ — 2
3. Ho: the weather on day ¢ is independent of weather on days ¢t — 3
4. Ho: the weather on day t is independent of on weather on days ¢t — 4
5. Ho: the weather on day ¢ is independent of on weather on days ¢t — 5

The x? test is used for this purpose. It compares the observed and the expected
data and tell us whether they are significant or not. The first hypothesis is a test of
independence of days. Rejection of the null hypothesis implies that the situation on any
day is not independent of the situation on previous days (i.e. at least a first order Markov

chain). Rejection of the second hypothesis implies that the order is at least two and the
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Table 2: The general form of a contingency table

Ty
Ti_p w d Total
w i fo1 fi1 + for
d fio foo Jio + foo
Total | fi1+ fio | for + foo | fi1 + fio + for + foo

rejection of the third hypothesis implies that the order of the chain is at least three. The
general form of a contingency table is presented in 2.

where

0 dry at day t
t_{ 1 wet at day t
Used in this form, with n = 1, tests hypothesis 1. Two tables are used in separate tests
of hypothesis 2, with n = 2. One table involves occurrences when (¢t — 1) is dry, the other
when (t—1) is wet. They provide independent tests of the same null hypothesis which can
be stated as follows (Feyerherm and Bark 1967): Given the weather dry or wet on day (¢),
the weather on day ¢ (dry or wet) is independent of the weather on day (¢ — 1. In the same
way, with n = 3, there are four independent tests, one for each combination of weather
(dry or wet) on days (¢t — 1), (t — 2) to determine if weather on day ¢ is independent of
weather on day (¢ — 3) etc.

In these tests, choice of an appropriate significance level for acceptance or rejection
of the null hypothesis is the subject of some debate. Gabriel and Neumann (1962), in
analysing Tel Aviv data, used 5 % significance level and found that a first order chain
was adequate. However, Gates and Tong (1976) point out that if the 10 % level had
been adopted, this would not have been the case and using a different method they found
that a chain of at least second order should have been used. Feyerherm and Bark (1967)
amongst others, adopted a 10 % significance level which, by increasing the likelihood of
rejection of null hypothesis, serves as more stringent test of acceptance of a particular
order model. In this study, results are presented for 5 % significance levels.

The contingency table analysis shows the rejection of our null hypotheses. Hence,
for deciding which order of Markov chain to use, it is necessary to determine how much

information is included in any model-given order and compare this with other model

40



orders. The most stringent method consists to weigh calculated x? from contingency

table against its critical value using the relation —

presented in table 3.

Table 3: ratio 2)(72

critical value

X2

for each order.

criticalvalue

calculated from the contingency table

First order | Second order | Third order | Fourth order | Fifth order

AbongMbang 148.3 120.6 83.9 52.2 33.2
Akonolinga 132.5 99.3 69.4 44.6 28.0
Bafia 123.6 123.7 90.72 57.4 35.5
Bamenda 533.6 358.2 224.0 130.5 74.4
Batouri 125.0 98.0 714 49.0 30.3
Bertoua 133.0 108.5 84.0 53.4 32.7
Betare-oya 226.3 161.7 118.1 71.6 44.2
Douala 450.0 323.4 214.6 131.5 79.4
Dschang 449.0 325.1 206.8 124.8 714
Edea 262.7 193.3 125.2 77.0 44.9
Eseka 280.5 195.4 127.3 81.1 48.6
Garoua 112.4 41.6 95.1 63.5 21.0
Kaele 167.5 135.3 133.3 92.32 57.5
Koundja 539.2 404.9 273.39 162.1 93.5
Kribi 234.3 144.1 92.6 59.8 37.2
Lomie 67.8 64.4 48.2 34.0 21.9
Maroua 140.0 70. 8 114.4 76.9 19.9
Meiganga 480.0 367.2 243.5 150.9 86.7
Nanga Eboko 148.2 116.2 80.9 49.5 29.6
Ngambe 739.7 514.5 332.9 198.8 116.3
Ngaoundere 626.0 459.8 296.8 176.8 101.2
Nkongsamba 594.9 441.2 290.2 173.4 102.4
Poli 335.6 317.1 222.3 137.9 81.3
Sangmelima 129.6 113.3 79.1 514 31.7
Tibati 457.8 357.8 240.2 145.5 84

Yaounde 214.4 160.7 109.5 67.5 41.9
Yokadouma 60.9 60.3 50.9 35.2 23.3
Yoko 255.6 222.2 162.3 101.3 59.6

41

Results are




The analysis of table 3 shows that the amount of information decreases from first-
order to fifth order. Thus, for all the orders weighed, the first-order chain presents more
information than others; i.e. the first-order chain is satisfactory than other orders to
model daily rainfall in Cameroon. The second, third, and greater orders are less likely to
be satisfactory. This leads to the conclusion that when the weather is dry, the following
day is more likely to be dry than rainy, and vice versa so that the probability that it rains

is conditional in the past.

4.2 Temporal distribution of transition probabilities

To carry out a Monte-Carlo simulation of rain occurrence, probability density functions
are needed; that is why transition probabilities p1; and pg; are computed in this study.
Having hypothesized that the state (dry or wet) of a day depends on the state of the
previous day, we are interested in calculating the probability wet to wet. The transition
probabilities are estimated for each month m of the whole series of years in order to
represent the seasonal changes. Consider for instance the transition from wet on day ¢ —1
to wet on day ¢ and the transition from dry on day ¢t — 1 to dry on day ¢t. There were
n11(m), cases respectively of wet following wet, ngo(m) dry following dry in the data. The
total number of the year when it rained on day t is nio(m) +mnq;(m) and the total number
of the year where is no rain on day t is ng; (m) + nge(m). The required probability is the

ratio of the two quantities, noted py;(m):

. nu(m)
Pu(m) = no1(m) + nq1(m) (8)

Likewise, the dry to wet transition pg;(m) is given by:

. No1 (m)
Por (m) N Nno1 (m) + Moo (m) (9)

It is only necessary to compute the transition probabilities for pg;(m) and py;(m) and use
those values to derive the other two probabilities, i.e poo(m) = 1 — pgi(m) and pio(m) =
1 — p11(m) for dry to dry and wet to dry transition probability respectively.

The temporal distribution z(m) of monthly transition probabilities which means its
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seasonal variation over the year is described by a double normal function (Schwarz 1980)

2(m)=a (ezp<—<m P 4 cap(— (P “2)2)) (10)

S1 S9
where

a is a scale parameter,

17 is the first mean belonging to the first normal distribution function,

1o is the second mean belonging to the second normal distribution function

s1 is the standard deviation of the first normal distribution function

$9 is the standard deviation of the second normal distribution function.

The idea behind the double normal function is based on the assumption of two different
rainy seasons within the year, each one with a peak similar to that of a normal function.
But if there is only one rainy season, we expected that this could also be represented by
nearly identical values of the two parts of a normal distribution.

Double normal function values are not probabilities needed for the Monte-Carlo simu-
lation of daily rainfall occurrence as previously stated. Such probabilities needed for the
Monte-Carlo simulation of the daily rainfall occurrence are computed by transforming the
transition probabilities p;;(m) into values Y;;(m) using a logit function i.e. we estimate
the Y;1(m) by z(m), and transform the estimations back to probabilities by inverse of the

logit function. The logit function used in this context is as follows:

Y, (m)zln( ! ) i=0.1 (11)

1— Pit (m)0.125

By this method, we only approximated the logits by the double normal function and
not the transition probabilities. Once over our model is ready, the inverse probabilities

are calculated by inverting Y;; to

pa(m) = (1 - m>8 i=0,1 (12)

Coefficients of the double normal function are estimated by a minimization of errors.
i.e. there is one error function e; for the set of all five parameters a;, 1, Si1, fi2, Sio

12
2

ei( @i, i1, Si1, Mo, Siz) = Z (2(m) = Yia(m)) i =0,1 (13)
m=1

The parameters we are looking for, are the ones which minimize the function e;. The

estimated parameters of Yj;(m) are presented in table 4.
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Table 4: Double normal function coefficients for Y;;(m)

01(m) 11(m)
Station a M1 S1 U2 So a M1 S 2 So
AbongMbang | 2.4 | 10.1 | 2.0 | 47 | 39 | 23 | 106 | 2.8 | 4.2 | 5.1
Akonolinga 23 110119 | 47 | 41 | 22 | 105 | 26 | 43 | 5.3
Bafia 22 199 |19 |50 | 42|21 | 105 | 28 | 41 | 5.8
Bamenda 27192 | 23 | 51 | 3.7 | 24 9.0 34 | 41 | 6.7
Batouri 22 1101} 21 | 48 | 43 | 2.1 | 103 | 29 | 3.9 | 5.7
Bertoua 22 (101 | 20 | 48 | 43 | 21 | 104 | 28 | 39 | 5.9
Betare-oya 23 | 97 120 |51 |39 |23 | 102 | 29 | 45 | 49
Douala 25 | 95 | 2.7 | 46 | 44 | 2.2 81 | 11.1 | 6.2 | 24
Dschang 25 193 | 26 | 46 | 34 | 25 9.5 31 | 44 | 51
Edea 25| 98 | 21 | 49 | 44 | 2.2 94 29 | 48 | 6.3
Eseka 26 [100| 1.9 | 49 | 44 | 25 | 100 | 26 | 45 | 5.5
Garoua 1.7 1 90 | 24 | 54 | 33 | 1.8 9.1 1.5 | 5.6 | 2.9
Kaele 16 | 87 | 25 | 5.7 | 3.3 | 1.8 9.2 23 | 54 | 29
Koundja 25 |94 | 22 | 51| 37 | 21 9.5 36 | 3.7 | 7.9
Kribi 24 1102 | 21 | 44 | 52 | 25 | 100 | 25 | 44 | 59
Lomie 24 1102 21 | 46 | 41 | 22 | 103 | 26 | 3.9 | 5.3
Maroua 1.7 | 86 | 21 | 56 | 3.0 | 1.8 8.7 1.8 | 5.0 | 2.8
Meiganga 24 | 94 | 23 | 5.2 | 34 | 23 9.8 3.2 | 45 | 48
Nanga Eboko | 2.3 | 100 | 2.0 | 46 | 3.8 | 23 | 104 | 25 | 4.1 | 4.9
Ngambe 271 94 | 1.8 | 55 | 47 | 2.6 8.5 1.8 | 69 | 86
Ngaoundere 20 | 88 | 28 | 51 | 35 | 1.7 | 100 | 7.1 | 4.8 | 64
Nkongsamba | 2.5 | 9.2 | 2.5 | 5.1 | 44 | 2.2 8.4 2.5 | 6.0 | 88
Poli 22 190 | 22 | 54 | 29 | 2.3 9.1 21 | 53 | 29
Sangmelima 25 (102 | 20 | 45| 39 | 23 | 105 | 26 | 41 | 54
Tibati 25|94 |21 |53 | 34| 26 | 101 | 3.0 | 49 | 3.7
Yaounde 25 (110119 | 46 | 3.8 | 24 | 103 | 24 | 4.1 | 5.2
Yokadouma 23 101 23 | 46 | 41 | 2.1 | 10.2 | 3.1 | 4.0 | 5.0
Yoko 22319.712.0(5.214.0(2.1]10.2{2.9(4.3|6.3

The estimated parameters are then used to compute the monthly Y (m) for all the
twenty-eight stations. The demonstration of the fit achieved is done by plotting the

observed and transformed proportions in figure 24 and figure 25 at the sample stations
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for wet-dry Yp;(m) ¢ = 0 and for wet-wet Y3;(m) i = 1 respectively; the rest of the figures
are presented in annexe A for Yy (m) and B for Y7;(m) of this study.

Figures 24 for Yy, (m) and figure 25 for Yi;(m) show that the double normal function
provides a good fit to data at many stations despite a few gaps. Gaps can be explained
by the fact that sometimes a misbalance exists between estimated and observed values
and the associated errors, which should add to zero over the year. This is induced by
applying the error minimizing procedure to the Y;;(m)’s and not to probabilities. Monthly
variation of Yj;(m) and Y3;(m) are described above using the double normal function. It
is concluded that the double normal function well represents the monthly variation of
the transition probabilities. As we are interested in spatial prediction of daily rainfall
occurrence processes in Cameroon, we need to estimate the parameters of the double

normal function by spatial predictors.

4.3 Spatial distribution of the transition probability parame-

ters: estimation of parameters of Y;;(m)

In order to describe the spatial variation of rainfall occurrence, we try to describe its
seasonal variation by time invariant parameters and for the latter we need the spatial
predictors. With the aim of building simulation models of rainfall occurrence, we want
to estimate the parameters of the double normal function by spatially distributed data
so that one can use these parameters to simulate rainfall occurrence at a point P within
the area of study. The selection of a predictor to be included or to be excluded in this
process is done by a stepwise regression analysis between the parameters of Y;;(m) and
the predictors. Parameters of Y;;(m) are dependent variable whereas the latitude, the
longitude, the altitude, the relief orientation, the rain exposition are the independent
variables known as predictors. Our objective is to find the best predictors well describing
the rainfall occurrence process anywhere in the country; as outcome of stepwise regression,
5 % significance level is chosen to decide about the inclusion or exclusion of a independent

variable. By best predictors, we mean them to
e be easy to observe

e explain a good deal of the (spatial) variance of the parameters.
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Figure 15: Temporal distribution of the logits Yy;(m) of wet/dry transition probability

Po1(m) using the double normal function
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Stepwise regression analyses are applied to parameters of Y;;(m) and spatially dis-
tributed data. The latitude, the longitude, the altitude, the relief orientation, and the
rain exposition are independent variables or predictors (see the section about data descrip-
tion). We got them from topographic maps and from field works. These are geographical
factors thought to have an influence on rainfall distributions in Cameroon. As indepen-
dent spatial variable are used, they include latitude ¢, longitude A, altitude w, relief
orientation 1) and rain exposition .

The dependent variables are parameters a;, ft;1, Si1, M2, Si2 of the double normal
function used to describe the seasonal variation of Y;;(m) with ¢ = 0, 1;

a; is a constant which allows the superposition of the double normal function on the
observed data curve.

Parameter p;; represents the first peak i.e. first maximum or “little”rainy season.
Parameter s;; is the width of the first season; it the standard deviation.

Parameter p;5 represents the second peak i.e. second maximum or second rainy season.
Parameter s;, is the width of the second rainy season; it the standard deviation.

Estimated parameters of Y;;(m), independent variables selected for the estimation of
coefficients, unstandardized coefficient B , standardized Beta coefficient as well as the

t-value and significance level are summarized in table 5.
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Table 5: Summary of regression coefficients for estimating Y;;(m) parameters

parameters variable coefficients (B) | Beta coefficients t significance value
constant —38.86 5.81 .000
cos(p) 43.00 .631 6.33 .000
0 A —.06 —.368 -3.69 .001
w .00018 —.256 2.82 .010
constant 11.78 70.91 .000
In(p) —1.22 —.871 —11.66 .000
ot U —.08 —.193 —2.54 018
K —.0019 —.194 —2.48 .021
constant 2.02 27.90 .000
o K .0028 467 2.69 .012
constant 3.61 21.19 .000
o In(p) .084 .848 8.15 .000
constant 6.26 19.59 .000
502 @2 -.93 —.758 —6.79 .000
w —.00034 —.257 —-2.30 .000
constant -31.07 —3.50 .002
“ cos(p) 33.45 .592 3.75 .001
constant 9.95 44.08 .000
H11 w —.0007 —.360 2.30 .000
K —.01 —.700 —4.47 .030
constant 2.02 6.23 .000
o w .0018 .482 2.80 .009

H12 4.639

constant —148.46 —-2.13 .043
512 cos(p) 161.31 .362 -3.09 .005
A —.52 —.479 —2.34 .028

From table 5 for i = 0, the t-values show that cos(p), A and, w are the best predictors

The t-value suggests that In(¢), ¥, k are the best predictors to be used when estimating
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for describing parameter ag. The regression model of parameter ag with cosine of latitude,
the longitude and the altitude produced R? = .806. The latitude has a bigger Beta
coefficient than longitude and altitude; i.e the latitude has strength of influence on the

dependent variable ay than other independent variables used to estimate aq.

parameter fo;. The regression model of parameter pp; with the logarithm of latitude, the




relief orientation, and the rain exposition produced R? = .947. All the Beta coefficients
are negative. The latitude has a higher Beta coefficient than relief orientation and relief
exposition; that means the latitude is the variable which influences strongly the dependent
variable 191 .

The t-value suggests that only x can be used to estimate parameter sg;. The Beta
coefficient is not too high. Nevertheless, the rain exposition has an influence on the depen-
dent variable sg;. The regression model of parameter so; with rain exposition produced
R? = 218.

According to the t-values, In(p) is the best predictor to be used when estimating
parameter jge. The Beta coefficient is comparatively high; the logarithm of the latitude
has a strong influence on the dependent variable jipo. The regression model of parameter
flo2 with the logaritm of latitude produced R? = .718.

The t-value suggests that ¢? and w are the best predictors to be used for representing
parameter sgo. The predictor ¢? has higher Beta coefficient than w; the square of latitude
has a strength of influence on the dependent variable sy, than altitude. The regression
model of parameter sg; with square of latitude and altitude produced R? = .694.

For i = 1, the t-value shows the cosine of latitude cos(¢) to be the best variable for
estimating parameter a;. It has a strength of influence on the dependent variable a,
because of the high value of Beta coefficient. The regression model of parameter a; with
the cosine of latitude produced R? = .351.

The t-value suggests that the altitude w and the rain exposition x are the best vari-
ables for predicting parameter u;;. The rain exposition has comparatively higher Beta
coefficient than the altitude; the rain exposition has stronger influence on parameter i1,
than altitude. The regression model produced R? = .454.

The altitude w is the best variable for estimating parameter s;; as suggested by t-value.
It has a positive regression weight represented by the Beta coefficient. The altitude has a
strength of influence on the dependent variable s;;. The regression model with altitude
produced R? = .232.

There is no linear relation between parameter j15 and all the predictors. We consider
parameter j1o to be constant for all stations, its value being the mean value of all pq5.

The cosine of latitude cos(y) and longitude A are found to be the best variables for

predicting parameter si5 as suggested by the t-value. The longitude has comparatively
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higher Beta coefficient than cosine of the latitude; this means that the longitude has a
stronger influence on parameter s;5 than the cosine of the latitude. The regression model
produced R? = 511.

In general for 7+ = 0 and + = 1, the t-value suggests that latitude ¢, longitude A,
rain exposition k, relief orientation and altitude w are the best predictors well describing
Yii(m).

Estimated parameters of Y;;(m) are:

for i = 0, we get spatial parameters of Yy;(m) as follows:

ap = —38.86+ 43.00cos(¢) — .06\ + .00018w
por = 11.78 —1.221In(¢) — .089 — .0019x

So1 = 2.024 .0028k
poo = 3.61+.0841n(¢p)

sp2 = 6.26 — .93p* — .00034w (14)
for i = 1 we get spatial parameters of Y1;(m) as follows:

ar = —31.07+ 33.45 cos(y)
p = 9.95—0.0007x

si1 = 2.023+.0018w

[y = ¢=4.639

s;p = —148.46 + 161.31 cos(¢) — 0.524) (15)

By this way, equations (14 ) and (15 ) are used for describing the spatial distribution
of logit Y;1(m) as follows:

Resulting values of Y;;(m) at some stations have been plotted in figure 17 for ¢ = 0
and in figure 18 for 7 = 1. It is noted that the model fits well at some stations whereas
at others there is a gap between observation and estimation. As previously stated, the

discrepancy is explained by the fact that the peaks don’t look like bell shaped normal
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distribution but rather resemble shield volcanoes; because of such a form, they cannot be
well represented by a normal function. Sometimes a misbalance exists between estimated
and observed values and the associated errors, which should be added to zero over the
year. This is induced by the fact that the error minimizing procedure is applied to Y;;(m)
and not to probabilities. The bias occurred when inverting Y;;(m) to Y1 (m)™" is carried
out in order to get probabilities again.

First-order Markov chain model is used to model the daily rainfall series. The double
normal function is used to describe the temporal variation of the parameters. Stepwise
regression analysis is used to estimate parameters of the double normal function from the
spatial predictors. Estimated parameters are used to build input models which will be
latter used for simulating daily rainfall occurence process using the Monte Carlo simulation
methods. The next step consits to study the temporal and spatial distribution of daily
rainfall amount; our goal is to develop an independent model for simulating the rainfall

amounts on a wet day.
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5 DISTRIBUTION OF RAINFALL AMOUNTS

5.1 Fitting of a suitable theoretical distribution function

The idea to fit a suitable theoretical distribution function follows from the fact that we
need a “good” distribution which has to be simple and heuristically convincing. “Simple”
means that the chosen distribution is simply measured by a less number of parameters.
To date, there is no general rule for chosing the type of distribution function (Sevruk and
Geiger 1981) when fitting curves to a set of data. There is also no universally accepted
method concerning the selection of a distribution function and according statistical tests
used to this purpose (Kite 1977). In this study, to find out a “good”distribution, we first
of all represent the distribution of daily rain amount r on wet days graphically, with data
grouped in intervall of 10t of mm; this allows us to have a general idea on how the curves
look. For this purpose, only few stations are used. The chosen station represents a typical
rainfall regime.

From figure 19, it can be seen that the distribution is unimodal and asymetric, which
is in agreement with the Weibull distribution. We then formulate the null hypothesis that
“Weibull distribution function fits the daily rain amount on wet days”. Weibull distri-
bution has an advantage that it is integrable i.e. there is possibilities getting probability
which useful in Monte Carlo simulation methods. Its probability density function is as

follows:

w(r) = % [i]g_l exp

b N [g] 9} (17)

where ¢>0, 0>0, r>0.

For Monte Carlo simulation of rain amount 7 using a random number R € [0, 1] equally
distributed in the interval [0,1] as generated by pseudo-random number generator, we take

the probability distribution D(r) belonging to w(r)

D(r):/OT w(z)dzzl—exp[— [%Hg (18)

The substitution of D(r) with any random number R gives

Rzl—exp[—[%”g (19)

95



Maroua Garoua

3000 —| 3000 —|
2 2y
€ 2000 | $ 2000
g =]
o o i
o 1 £
= 000 1000
g , i rain [mm]
rain [mm]
0 _—
O ISR T\ A TN O\ I\ A
N o > © S A £
NS N {1:\0’ N N 9;\%’ N /\,\Q <$‘Q
Betare-Oya Bamenda
3000 | 3000 |
3 z
S 2000 S 2000
e =]
o 4 o i
9] g
‘OE Y
1000 | 1000 —
rain [mm] rain [mm]
Douala Yaounde
3000 —| 3000 —|
2y 2y
S 2000 S 2000
> >
o i o i
@ g
Y- Y-
1000 — 1000 —
i rain [mm] rain [mm]
0 —
SIS S S I S I O R S R S S O SO RSO SN
S A e
NI DN KON 0T AT T N \0\0\\%\&\@\\6\\\&\

Figure 19: Distribution of observed daily rainfall frequency in wet days (1951-1993)

o6



To produce the corresponding rain amount r, one has to solve the equation (19) for r

= b (l"(1_13)>; (20)

To simulate rain amounts that follow the Weibull distribution is to generate random
numbers R, each random number then inserted in the equation (20) gives rain amount r.

The use of Weibull distribution in this study follows some major steps. These steps
are carried out for every month m. At the first step, we adapted a Weibull distribution
to the observed frequencies, using a random search algorithm for the parameter g(m) and
b(m) as in the equations (21) and (22). Data are grouped in intervals i.e. classes j of 10
of mm. The equation (21) is used to compute an error ¢ from expected frequencies E; as

follows:

(21)

where
j is the intervals i.e. classes of daily rainfall amounts in 10t of mm
O; is the number of observed frequency belonging to class j

E; is the number of expected frequency belonging to class j

The parameters g(m) and b(m) we are looking for, are the ones which minimize the

error €

e(g(m),b(m)) = Minimum (22)
we then decide on the goodness of fit x? statistics by calculating x? statistics

2

(23)

N (m) =

i(m)
Equation (23) yields the x? contribution. We compare it to the critical value at 5 %

significance level and the result is presented on table 6 for all the 28 stations under study.
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Table 6: x? - test of Weibull distribution function on daily rainfall

Stations J F M A M J J A S O N D
x2 344 719 3.561 7.627 4.103 7.607 2.645 4.811 7.546 9.880 16.14 | 6.335
AbongMban df 3 4 6 6 7 6 6 6 9 8 4 4
cv 7.81 9.49 12.59 12.59 14.07 12.59 12.59 12.59 16.92 15.51 9.49 9.49
x2 .010 .017 11.979 | 5.087 4.335 3.588 2.197 7.192 6.209 5.636 1.689 .807
Akonolinga df 2 2 6 5 6 5 5 6 7 7 4 3
cv 5.99 5.99 12.59 11.07 12.59 11.07 11.07 12.59 14.07 14.07 9.49 7.81
x? .008 1.997 1.466 1991 3.064 919 3.577 6.396 5.587 6.072 415 .005
Bafia df 1 3 5 5 6 5 6 5 7 7 4 1
cv 3.84 7.81 11.07 11.07 12.59 11.07 12.59 11.07 14.07 14.07 9.49 3.84
x? .005 .308 7.026 6.695 6.088 2.664 20.12 8.375 8.117 5.098 .009 .003
Bamenda df 1 3 4 6 5 6 7 7 7 5 2 1
cv 3.84 7.81 9.49 12.59 11.07 12.59 14.07 14.07 14.07 11.07 5.99 3.84
x2 | 2.709 153 6.171 3.988 1.777 5.656 2.857 7.853 3.346 12.676 2.184 275
Batouri df 3 3 5 6 6 6 6 8 6 7 5 3
cv 7.81 7.81 11.07 12.59 12.59 12.59 12.59 15.51 12.59 14.07 11.07 7.81
x?2 .393 2.321 3.407 2.490 3.055 3.923 3.486 2.902 4.201 4.241 4.673 .105
Bertoua df 3 3 5 5 6 6 6 7 7 7 6 3
cv 7.81 7.81 11.07 11.07 12.59 12.59 12.59 14.07 14.07 14.07 12.59 7.81
x? .047 .015 6.364 1.755 2.644 20.09 1.735 3.084 8.044 6.702 .018 .0004
Betare-oya df 1 2 4 5 5 3 6 7 6 5 3 1
cv 3.84 5.99 9.49 11.07 11.07 7.81 12.59 14.07 12.59 11.07 7.81 3.84
x2 | 2.909 .298 5.381 2.258 6.509 8.350 32.54 | 35.65 | 14.667 | 17.660 | 3.391 .036
Douala df 4 4 7 7 8 12 19 13 14 9 7 3
cv 9.49 9.49 14.07 14.07 15.51 21.03 30.14 22.36 23.68 16.92 14.07 7.81
x2 .002 3.903 381 5.553 1.512 19.54 5.536 1.240 5.546 13.73 .004 .0004
Dschang df 1 3 4 5 4 4 5 6 6 4 2 1
cv 3.84 7.81 9.49 11.07 9.49 9.49 11.07 12.59 12.59 9.49 5.99 3.84
x2 .948 .466 3.254 4.595 7.202 9.335 12.163 4.874 2.508 10.391 .688 8.961
Edea df 3 3 6 7 7 9 8 8 10 8 6 3
cv 7.81 7.81 12.59 14.07 14.07 16.92 15.51 15.51 18.31 15.51 12.59 7.81
x? .876 2.243 | 35.50 | 17.85 | 12.404 5.193 5.035 1.461 4.097 18.20 4.329 1.059
Eseka df 4 4 5 8 8 6 5 5 7 8 5 3
cv 9.49 9.49 11.07 15.51 15.51 12.59 11.07 11.07 14.07 15.51 11.07 7.81
x? 0 0 .0004 2.279 9.005 11.407 7.743 15.954 | 10.781 8.259 0 0
Garoua, df 0 0 1 4 6 6 8 9 7 5 0 0
cv 0 0 3.84 9.49 12.59 12.59 15.51 16.92 14.07 11.07 0 0
x?2 0 0 0 .003 1.196 2.123 2.768 4.951 5.238 3.247 0 0
kaele df 0 0 0 2 5 5 8 7 5 4 0 0
cv 0 0 0 5.99 11.07 11.07 15.51 14.07 11.07 9.49 0 0
x?2 .006 .002 4.621 7.592 1.958 5.272 2.056 5.612 28.66 2.365 4.457 | .0004
Koundja df 1 2 5 5 5 6 7 7 8 5 4 1
cv 3.84 5.99 11.07 11.07 11.07 12.59 14.07 14.07 15.51 11.07 9.49 3.84

to continue. ..
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continuation. ..

Stations J F M A M J J A S O N D
X2 2.501 6.609 4.502 | 6.823 1.326 3.437 7.419 16.37 8.929 17.201 7.389 2.951
Kribi df 5 7 8 9 10 10 7 8 11 10 9 5
cv 11.07 14.07 15.51 16.92 18.31 18.31 14.07 15.51 19.68 18.31 16.92 11.07
X2 2.559 2.537 | 2.752 .891 2.746 8.745 4.022 6.546 1.139 3.423 3.672 77
Lomie df 3 3 6 5 6 6 7 7 7 7 6 2
cv 7.81 7.81 12.59 11.07 12.59 12.59 14.07 14.07 14.07 14.07 12.59 5.99
x2 0 0 0 .206 2.840 7.697 | 3.219 2.906 5.096 4.044 0 0
Maroua df 0 0 0 2 4 5 7 7 6 3 0 0
cv 0 0 0 5.99 9.49 11.07 | 14.07 14.07 12.59 7.81 0 0
x2 .001 .002 .066 1.286 | 10.270 | 1.485 | 3.806 4.529 16.60 2.841 2.953 | .0003
Meiganga df 1 1 3 4 5 5 7 7 7 5 3 1
cv 3.84 3.84 7.81 9.49 11.07 11.07 14.07 14.07 14.07 11.07 7.81 3.84
x2 .031 .288 7.661 | 2.892 3.424 .339 4.718 3.796 16.101 9.159 7.983 .024
Nanga-Ebok df 2 4 6 6 6 5 5 6 10 8 5 2
cv 5.99 9.49 12.59 12.59 12.59 11.07 11.07 12.59 18.31 15.51 11.07 5.99
x2 .010 841 3.677 | 5.655 4.940 6.931 | 95.67 | 49.38 9.829 3.055 7.048 .089
Ngambe df 2 3 6 6 6 7 5 6 9 8 5 2
cv 5.99 7.81 12.59 12.59 12.59 14.07 11.07 12.59 16.92 15.51 11.07 5.99
X2 0 0 .248 2.195 1.063 2.013 15.92 1.306 2.749 3.182 .030 0
Ngaoundere df 0 0 3 5 5 5 7 7 6 5 1 0
cv 0 0 7.81 11.07 11.07 11.07 14.07 14.07 12.59 11.07 3.84 0
X2 .042 .383 2.310 1.645 3.084 2.358 19.83 21.01 11.847 6.227 .798 011
Nkongsamba df 2 3 5 5 5 5 9 9 8 7 4 2
cv 5.99 7.81 11.07 11.07 11.07 11.07 16.92 16.92 15.51 14.07 9.49 5.99
X2 0 0 .055 1.212 14.02 5.881 7.868 12.821 12.796 7.881 .002 0
Poli df 0 0 1 5 7 7 8 8 7 6 1 0
cv 0 0 3.84 11.07 14.07 14.07 15.51 15.51 14.07 12.59 3.84 0
X2 3.921 .0621 4.871 3.591 .793 8.540 1.543 7.273 3.894 10.786 1.555 .063
Sangmelima df 4 4 6 6 6 5 5 6 7 8 5 2
cv 9.49 9.49 12.59 12.59 12.59 11.07 11.07 12.59 14.07 15.51 11.07 5.99
x2 0 .005 3.362 | 1.685 2.159 2.806 623 2.342 6.882 10.017 .435 0
Tibati df 0 2 4 3 5 6 7 7 7 5 3 0
cv 0 5.99 9.49 7.81 11.07 12.59 14.07 14.07 14.07 11.07 7.81 0
x2 .443 1.501 | 7.217 | 7.833 910 .519 2.415 4.982 3.733 12.009 967 .0020
Yaounde df 3 3 6 6 6 6 4 5 7 8 5 2
cv 7.81 7.81 12.59 12.59 12.59 12.59 9.49 11.07 14.07 15.51 11.07 5.99
X2 10.69 .662 3.733 | 5.476 3.641 947 16.24 3.385 15.170 2.755 1.372 114
Yokadouma df 4 3 5 5 6 6 8 6 9 7 5 4
cv 9.49 7.81 11.07 11.07 12.59 12.59 15.51 12.59 16.92 14.07 11.07 9.49
x2 .0002 242 1.018 | 5.437 | 4.770 3.452 | 4.586 1.143 3.029 4.906 .586 .008
Yoko df 1 3 4 5 5 5 6 6 7 7 4 1
cv 3.84 7.81 9.49 11.07 11.07 11.07 12.59 12.59 14.07 14.07 9.49 3.84

The high x? contribution means the rejection of the null hypothesis at 5% level at

some months at some stations i.e. November in Abong-Mbang, July in Bamenda, June in

Betare-Oya, July, August and October in Douala, May and October in Dschang, October
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in Eseka, September in Koundja, September in Lomie, July and August in Ngambe and
Nkongsamba. The numbers in fat in the table indicate the high x? contribution against
the critical value (see table 6). It is noted that the high x? contribution mostly occurs
in the heart of the rainy season. This might be explained by the fact that these months
experience continous rain over several days each of them with the biggest possible daily
rain amount. Accordingly, all these days have biggest rainfall amounts of nearly the same
order of magnitude which cause a lump in the frequency distribution in figure 20. The
Weibull distribution predicts much fewer big rain amount the higher the rain amount is.
Thus we can expect high y? contribution at high rain amounts, especially if we enlarge

the span of big rainfall class, in order to get an expected frequency higher than 5.
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Figure 20: Frequency distribution of daily rain amounts in Douala

To correct the misfit of Weibull distribution, we represent the lumped part of the curve
by overlay of normal distribution. The new function v(r) to be used for computing the
new expected frequencies includes four parameters, g and b of Weibull distribution and

the mean and standard deviation of the overlay normal distribution

B O e C
(1 + 3% V2 cf>
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cf is a correction factor to be used for the probability distribution property and is defined

as follows

2a _ 2
cf = / exp| — 2 ar (25)
0 s

The newly computed x? contributions fitting four parameters (two of Weibull distribu-
tion and two of the overlay normal function) is presented in table 7. This is done for every

month m troughout the years; we do this without argument m for the sake of simplicity.

Table 7: x? - test of Weibull distribution function on daily rainfall after adding the normal

function
Stations J F M A M J J A S O N D
x2 .018 1.971 1.764 7.939 | 7.258 | 10.007 1.250 3.567 10.528 9.506 15.29 | 5.952
AbongMban df 3 4 6 6 7 7 6 6 10 7 6 5
cv 7.81 9.49 12.59 12.59 | 14.07 14.07 12.59 12.59 18.31 14.07 12.59 11.07
x2 .046 .0008 9.922 4.391 | 1.584 3.376 1.965 2.374 1.735 3.267 977 .599
Akonolinga df 2 2 6 5 7 6 5 6 7 7 5 3
cv 5.99 5.99 12.59 11.07 | 14.07 12.59 11.07 12.59 14.07 14.07 11.07 7.81
x2 1.497 | 1.082 1.215 2.848 | 4.557 | 10.115 426 8.083 4.663 8.807 .006 .005
Bafia df 2 3 5 5 6 6 5 6 7 7 3 1
cv 5.99 7.81 11.07 11.07 | 12.59 12.59 11.07 12.59 14.07 14.07 7.81 3.84
X2 .005 .093 1.991 4.099 | 5.275 2.858 10.720 | 11.495 8.364 5.235 .016 .000
Bamenda, df 1 3 4 5 5 6 8 7 7 5 2 1
cv 3.84 7.81 9.49 11.07 | 11.07 12.59 15.51 14.07 14.07 11.07 5.99 3.84
X2 .0968 136 4.615 2.511 | 3.542 3.590 4.653 8.971 5.521 14.061 .028 .078
B . df 3 3 5 6 6 6 7 8 7 7 4 3
atouri
cv 7.81 7.81 11.07 12.59 | 12.59 12.59 14.07 15.51 14.07 14.07 9.49 7.81
x2 | 2.299 .006 6.764 .659 7.985 1.869 5.937 3.972 1.511 7.874 5.919 .655
B df 3 3 5 5 6 6 6 8 7 7 5 3
ertoua
cv 7.81 7.81 11.07 11.07 | 12.59 12.59 12.59 15.51 14.07 14.07 11.07 7.81
x2 0 .041 4.450 .449 8.677 5.678 5.189 4.934 7.016 5.614 067 .0001
Betare-Oya df 0 2 4 4 5 5 6 7 6 7 3 1
cv 0 5.99 9.49 9.49 11.07 11.07 12.59 14.07 12.59 14.07 7.81 3.84
x2 | 3.772 175 20.70 | 4.424 | 6.758 8.138 52.94 | 15.310 7.443 10.646 2.737 522
Douala df 4 4 9 8 10 13 21 16 14 9 7 3
cv 9.49 9.49 16.92 15.51 | 18.31 22.36 32.67 26.30 23.68 16.92 14.07 7.81
x2 .0007 | 6.189 1.394 4.489 | 1.959 7.432 5.494 1.766 7.698 6.399 3.735 .0003
Dschang df 1 3 4 6 5 5 5 6 6 6 3 1
cv 3.84 7.81 9.49 12.59 | 11.07 11.07 11.07 12.59 12.59 12.59 7.81 3.84
x2 1.931 271 1.532 4.404 | 5.698 4.707 12.279 4.074 1.578 5.856 2.491 4.829
Edea df 3 3 6 7 7 9 8 8 10 8 6 3
cv 7.81 7.81 12.59 14.07 | 14.07 16.92 15.51 15.51 18.31 15.51 12.59 7.81

to continue. ..
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continuation. ..

Stations J F M A M J J A S O N D
X2 1.983 1.776 8.808 16.27 9.443 3.014 6.884 1.931 4.046 22.07 | 4.088 .243
Fseka df 4 4 6 7 8 6 5 6 7 8 6 3
cv 9.49 9.49 12.59 14.07 15.51 12.59 11.07 12.59 14.07 15.51 12.59 7.81
x2 0 0 .0004 .593 10.791 | 13.13 | 10.413 | 10.928 | 12.011 5.305 0 0
Garoua df 0 0 1 4 6 6 8 8 7 4 0 0
cv 0 0 3.81 9.49 12.59 12.59 15.51 15.51 14.07 9.49 0 0
x2 0 0 0 .003 .816 2.535 3.130 3.681 1.407 .834 0 0
Kaele df 0 0 0 2 5 5 8 7 6 3 0 0
cv 0 0 0 5.99 11.07 11.07 15.51 14.07 12.59 7.81 0 0
x2 .003 .040 1.779 | 10.189 .520 4.356 1.905 7.126 21.80 6.411 6.193 | .0004
Koundja df 1 2 5 6 6 6 7 7 8 6 4 1
cv 3.84 5.99 11.07 12.59 12.59 12.59 14.07 14.07 15.51 12.07 9.49 3.84
x2 | 4.405 | 8.908 | 5.439 2.767 3.469 5.035 6.125 12.078 6.632 11.660 | 9.392 | 3.514
Kribi df 5 7 8 9 10 11 7 8 12 11 8 5
cv 11.07 14.07 15.51 16.92 18.31 19.68 14.07 15.51 21.03 19.68 15.51 11.07
x2 174 .029 1.960 2.156 3.135 19.61 3.386 10.875 3.283 755 124 .012
Lomie df 3 3 6 6 6 7 7 7 7 7 5 2
cv 7.81 7.81 12.59 12.59 12.59 14.07 14.07 14.07 14.07 14.07 11.07 5.99
X2 0 0 0 .031 1.050 11.047 2.959 2.483 1.467 1.671 0 0
M df 0 0 0 2 4 5 7 7 6 3 0 0
aroua
cv 0 0 0 5.99 9.49 11.07 14.07 14.07 12.59 7.81 0 0
X2 .003 .001 212 2.619 2.839 .103 4.253 14.322 9.115 2.676 1.612 .0003
Mei df 1 1 3 4 6 5 7 9 7 5 3 1
eiganga
cv 3.84 3.84 7.81 9.49 12.59 11.07 14.07 16.92 14.07 12.59 7.81 3.84
X2 .003 3.147 | 5.501 6.706 1.980 1.843 591 7.247 15.699 13.629 8.978 .0002
Nanga-Ebok df 2 3 6 6 6 5 5 6 10 9 5 2
cv 5.99 7.81 12.59 12.59 12.59 11.07 11.07 12.59 18.31 16.92 11.07 5.99
X2 .010 1.343 3.752 6.645 8.511 7.680 16.41 26.39 5.852 2.148 3.736 .081
Ngambe df 2 3 6 6 7 7 8 12 9 8 5 2
cv 5.99 7.81 12.07 12.07 14.07 14.07 15.51 21.03 16.92 15.51 9.49 5.99
x2 0 0 199 2.903 .403 4.155 11.986 913 725 10.615 | .0004 0
Ngaoundere df 0 0 3 5 5 6 7 7 6 5 1 0
cv 0 0 7.81 11.07 11.07 12.59 14.07 14.07 12.59 11.07 3.84 0
X2 .0003 .098 2.812 151 4.223 3.106 22.46 26.12 16.952 8.831 .546 .024
Nkongsamba df 2 3 5 5 6 6 10 11 9 7 4 2
cv 5.99 7.81 11.07 11.07 12.59 12.59 18.31 19.68 16.92 14.07 9.49 5.99
X2 0 0 .034 1.192 13.456 4.770 12.949 17.94 11.660 9.252 .002 0
Poli df 0 0 2 5 8 7 9 9 7 6 1 0
cv 0 0 5.99 11.07 15.51 14.07 16.92 16.92 14.07 12.59 3.84 0
x2 | 6.088 427 5.642 3.293 2.843 5.432 .555 10.831 7.046 13.258 | 1.520 | .0004
Sangmelima df 4 4 6 6 7 6 5 5 7 7 5 2
cv 9.49 9.49 12.59 12.59 14.07 12.59 11.07 11.07 14.07 14.07 11.07 5.99
X2 0 1.158 2.273 .703 6.790 2.827 1.912 5.182 5.024 16.25 .003 0
df 0 2 4 4 6 6 7 7 7 7 3 0

to continue. ..
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continuation. ..

%t%tipns J F M A M J J A S O N D
iBati
cv 0 5.99 9.49 9.49 12.59 12.59 14.07 14.07 14.07 14.07 7.81 0
x2 .025 964 | 6.353 | 2.369 .548 1.078 2.821 3.230 2.479 15.078 | 1.219 .001
Yaounde df 3 4 6 6 6 6 4 5 7 8 5 2

cv 7.81 9.49 | 12.59 | 12.59 12.59 12.59 9.49 11.07 14.07 15.51 11.07 5.99

x2 | 8.154 | .097 | 2.421 681 15.251 | 2.183 | 10.412 | 8.457 | 13.409 3.591 1.541 .106

df 4 4 5 6 8 6 8 7 9 7 5 3

Yokadouma
cv 9.49 9.49 | 11.07 | 12.59 15.51 12.59 15.51 14.07 16.92 14.07 11.07 7.81
x2 | .0006 | .223 157 5.949 6.401 .350 4.761 3.542 3.099 6.242 3.655 | .0004
df 1 3 4 5 6 5 6 6 7 7 4 1
Yoko

cv 3.84 7.81 9.49 11.07 12.59 11.07 12.59 12.59 14.07 14.07 9.49 3.84

The addition of an overlay normal distribution to the Weibull distribution shows a
better fit, characterized by a reduction of x? contribution at some stations. The better
fit is the proof for our hypothesis the long rain periods overlapping several days to cause
the misfit of the Weibull distribution. The equation (24) would be a better distribution
for simulating daily rainfall amounts; but we are not able to use it for simulation because
we cannot integrate it as we did in equation (20). We are not able to invert it in order to

use Monte Carlo simulation of daily rainfall amounts.

5.2 The temporal distribution of parameters

In Cameroon an understanding of the seasonal variation of precipitation throughout the
year is important for its influence on the economic activities of the population and in the
construction of models. Several approaches have been used to deal with the seasonality.
In this study, we assume that parameters g(m) and b(m) of Weibull distribution vary as
step functions for each month and we use the double normal function (see, equation (10))
to describe the seasonal variation of parameters. We use a double normal function here
because it describes the two rainy seasons and their interaction with big and small dry
season. However, if there is only one rainy season, we expected that this could also be
represented by near identical values of the two part of the normal distribution.

The parameters g(m) and b(m) of Weibull distribution vary from month to month;
therefore, double normal function (see equation (10)) is used to describe the monthly
variation of g(m) and b(m). Its coefficients are estimated by a minimization of errors e,

and ey
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eq(ag, tig1 Sg1. g2 52) = Y (2(m) — g(m))” (26)

m=1

12

€b(ab,ub1, Sb1s Hb2, Sb2) = Z (z(m) - b(m))2 (27)

m=1

where
g(m) is the shape parameter for a month m
b(m) is the scale parameter for a month m

The parameters we are looking for, are the ones which minimize the error functions e,
and ey.

We have applied the above techniques to the data. Table 8 presents estimated coef-
ficients of double normal function for g(m) and b(m). It is shown that coefficients vary

from station to station.
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Table 8: Estimated coefficients of the double normal function

g(m) b(m)
Station Qg | Mgl | Sg1 | Hg2 | Sg2 | @b | Mb1 | Se1 | Me2 | Sb2
AbongMbang | 0.9 | 2.7 | 4.2 | 10.8 | 5.1 | 139.0 | 3.6 | 4.8 | 10.7 | 3.1
Akonolinga 09|35 |36 |11.3|5.7|143.0| 3.5 | 4.0 | 10.0 | 3.1
Bafia 1.0 31 (31| 98 | 45| 1480 | 3.8 | 41| 103 | 2.5
Bamenda 092742 |108|51]133.0| 33 |46 | 106 | 4.0
Batouri 09|27 |49 |11.6| 57 | 1200 | 3.2 | 55| 12.2| 6.0
Bertoua 1.0] 25 |36 | 11.1 | 58 | 1290 | 1.6 | 5.3 | 10.0 | 4.9
Betare-oya 1.0]1.0 (32| 92 |61 1290 |15 | 9 | 82 | 95
Douala 09|33 |46 |11.2| 3.7 |1250| 64 | 9.1 | 80 | 2.4
Dschang 09|27 |43 |11.0 |52 |139.0| 3.6 | 4.8 | 10.7 | 3.1
Edea 1.0| 3.4 | 3.6 | 11.0 | 4.0 | 143.0 | 3.5 | 4.5 | 106 | 3.2
Eseka 09|39 |42 108 |28 | 1420 | 3.5 | 4.6 | 10.6 | 3.1
Garoua 0925|3095 |55 |1450 (16| 3 | 7.0 | 119
Kaele 1.1 1.0 | 6.3 | 116 | 47 | 133.0 | 3.3 | 46 | 10.6 | 4.2
Koundja 09106010367 151026 | 3 | 72| 7.0
Kribi 0.8 11|48 |105| 58 |143.0 | 3.5 | 45| 106 | 3.2
Lomie 1.1 32|54 |119| 3.0 | 1220 | 29 | 41| 107 | 5.3
Maroua 1.0 27 15| 87 | 6.6 | 1320 | 3.2 | 4.5 | 10.6 | 4.2
Meiganga 09129 |50|119 |54 |1140 | 75| 4 | 6.6 | 89
Nanga-Eboko | 0.9 | 1.5 | 48 | 11.0 | 29 | 133.0 | 3.3 | 4.6 | 10.6 | 4.0
Ngambe 1.0 1.0 | 65| 9.1 | 43 | 1460 | 3.2 | 28| 94 | 4.0
Ngaoundere 1.1 35|61 |129| 40| 1440 | 3.1 | 3.5 | 10.1 | 4.0
Nkongsamba | 1.0 | .8 | 5.5 | 106 | 6.6 | 113.0 | 3.6 | 5.5 | 9.2 | 4.5
Poli 1.0(1.0|31| 88 | 6.1 | 1180 | 3.3 |6.0]| 126 | 6.5
Sangmelima 9 123 |44|11.0| 35 |129.0 | 22 | 3.6 | 102 | 5.7
Tibati 10|36 | 31| 9.7 | 40 | 1410 |24 | 5 | 71 | 53
Yaounde 9 121 |44 |11.0| 6.5 | 1220 | 22 | 43| 9.6 | 4.8
Yokadouma 9130|3196 |53 |119.0|29 45| 9.8 | 45
Yoko 1.0| 1.0 | 46 | 10.0 | 5.3 | 1380 | 3.6 | 49 | 10.7 | 3.1

5.3 Spatial distribution of parameters from predictors

In this part of the study, our main concern is the spatial distribution of different seasonal

course of rain amounts. This is why we try to describe the seasonal variation by time
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invariant parameters. It’s in order to describe its spatial variation and for the latter, we
need the spatial predictors.

Like in the case of probability estimation, stepwise regression analysis is also applied
to parameters of g(m), b(m) and spatially distributed data. The square of the latitude
©?, logarithm of the latitude In(y), and its cosine cos(y), the longitude A, the altitude w,
the relief orientation 1, the rain exposition x, and yearly rain amount # are independent
variables or predictors whereas parameters ag, fig1, Sq1, [4g2, Sg2 Of g and ap, i1, Sp1, ts2, Sp2
of b of the double normal function used to describe the seasonal variation of g(m) and
b(m) are dependent variables.

As outcome of stepwise regression, 5 % significance level is chosen to decide about
the exclusion of an independent variable. Estimated parameters of g(m) and b(m), inde-
pendent variables selected for the estimation of coefficient, unstandardized coefficient B,

Beta coefficient as well as the t-values and significance value are summarized in table 9.

Table 9: Summary of regression coefficients for estimating g(m) and b(m) parameters

parameters variable coefficients (B) | Beta coefficient t 5 % significance value

constant 795 10.92 .000
o 02 069 399 9.92 036
Hg1 constant
Sg1 constant
Hg2 constant

constant 4.42 11.04 .000
o A 011 401 2.23 035
Qap constant

constant 1.85 2.82 .009
= 0 .0008 414 2.32 .028

constant 1.77 2.80 .008
" 0 .0012 397 2.20 .036
b2 constant

constant —-2.35 11.04 .000
" A 588 451 2.57 .016

From table 9 for g, the t-values show that only the square of latitude ¢? and rain

exposition x are included in the equations whereas the logarithm of latitude, the cosine
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of latitude, the longitude, the altitude, the relief orientation and the yearly rain amount
are excluded. The square of latitude ¢? is the only spatial predictor which is able to be
used for predicting parameter a,. On the other hand, the rain exposition x appears to be
a good spatial predictor for approximating parameter sg.

There are no independent variables to be used for predicting parameters p41, 541, and
[tg2. We then consider fi41, 541, and ji49 to be constant and we estimate them by calculating

their mean value. Parameters of g(m) are summarized in equations (28) below

a, = .795+ .0697¢>

fg1 = 2.346

s = 4.325

g2 = 10.596

Spp = 4.424 4 .0109x (28)

For b, the t-values show that only longitude and yearly rain amounts are included in
the equations whereas other independent variables are excluded. The yearly mean rainfall
amount 6 is found to be a good predictor to be used for approximating parameters ji;
and sp; of b(m). On the other hand, the longitude A is found to be a good predictor to
be used for approximating parameters sp;. No dependent variable is found to be used
for estimating parameters a;, and . We estimated a;, and py by computing their mean

value. Parameters of g(m) are summarized in equations (29) below

a, = 133.321
= 1.85+.00080
s, = L.774.00120
iy = 9.768

Sp2 = —2.35+ .588) (29)

Equations (28) and (29) are then used to spatially describe the seasonal variation of

parameter g(m) and b(m) as follows
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g(m) = a (exm—(w)?) s ezp(—(m)%) (30)

bm) = (ean(—(" L) ep(—(" L) @)

g(m) is fixed by five parameters namely a,, ftg1, Sq1, fg2, Sg2-

b(m) is fixed by five parameters namely ay, fip1, Sp1, [p2, Spo-

Thus, the Weibull distribution is used to model the daily rainfall amounts, the double
normal function is used for modelling the monthly variation of Weibull parameters over
the year. By stepwise regression analysis we estimate the parameters of double normal
function from the spatial predictors describing the conditions of location. Estimated
coefficients are then used to develop models for simulating daily rainfall amounts » on a

wet day, using a pseudo random number generator and Monte Carlo simulation methods.
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6 SIMULATION PROCEDURES AND VALIDATION
OF THE RESULTS

Simulation procedures use models constructed in chapter 4 and 5 for generating daily

rainfall occurrence and daily rainfall amounts on wet days.

6.1 Simulating rainfall occurrence

Be r the rain amount falling on day ¢. Then rainfall occurrence probability v(¢+1) on the
next day is modelled by first order Markov chain; with m = 1, ..., 12, monthly transition

probabilities po;(m) and pi1(m) depend from r:

V(t+1):{p01(m) if Tﬁlmm. (32)

pu(m) if 7> 1lmm

Transition probabilities p;; (m) were transformed into logits Y;;(m) (see equation (12))
approximated by z(m) (see equation (10)). This method only approximates logits; There-
fore, transition probability need for Monte Carlo simulation is determined for month m

by inverting the logit functions ¥;;(m) again to probability as follows
pu(m) = (1 —exp(=Yi(m)))* i=0,1 (33)

Now knowing the transition probability wet-dry and wet-wet (see equation (33)), we
can easily derive the dry-wet pio(m) and dry-dry pgo(m) transition probabilities from the
latters pio(m) =1 — pia(m), (i =0,1).

As proposed by Schwarz (1980), the function Y;;(m) describing the seasonal distribu-
tion of rainfall is chosen to be the double normal functions each fixed by five parameters
i, flit, Sits fig, Si2 - (1= 0,1).

a;, [hi1, Si1, [hio, Si2 represent the spatial distribution of rainfall regime in Cameroon.
Accordingly, they are estimated by variables describing the condition of location. Thus
the models for simulating daily rainfall occurrence wherever in Cameroon by the help of

spatially distributed data are sumarized by equation (16).
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6.2 Simulating daily rainfall amounts

Be W (r), the Weibull density distribution of daily rain amount r

W(r) = 9(m) { r r(m)_l * exp {_ [Lm] g(m)} (34)

The functions g(m) and b(m) ( see equations (30) and (31)) describing the seasonal vari-
ation of Weibull parameters are chosen to be the double normal function (Schwarz 1980)
each fixed by five parameters.

The parameters represent the spatial distribution of rainfall regime in Cameroon.
Accordingly, they are estimated by variables describing the condition of location.

For Monte Carlo simulation of rain amount r using a random number R € [0, 1] equally
distributed in the interval [0,1] as generated by pseudo-random number generator, we take
the probability distribution D(r) (see equation (18)) belonging to w(r) (equation (34)).
The substitution of D(r) with any random number R yields the equation (19) and from

it, we can derive the rainfall amount r as follows:

r=b(m) * (— InR) 50 (35)

We then use the random number R to produce Weibull distributed rainfall 7.

Models for simulating daily rainfall occurrence on the one hand and models for in-
dependently simulating daily rainfall amounts on wet day wherever in Cameroon by the
help of spatially distributed data have been constructed. At this step of the study, we can
now apply the Monte-Carlo simulation methods and pseudo random number generator
for generating the daily rainfall series.

If computers were able to produce true random numbers, you could not use them.
No computer can work randomly. The main problem of generating uniformly distributed
random numbers in [0,1] is that computers can only produce pseudo-random numbers;
therefore for this study, we use pseudo-random numbers. Constructing pseudo-random
numbers is an art. A lot of methods exist for this purpose. For our study, we used a
multiplicative congruential method with sequence repetition of not less than 23' — 1.

Conditions are combined to “let it rain” and to determine “if it rain”, how much rain?.
Regrettably, we were not able to use the observation data that are independent from the

ones we used for calibration, i.e estimating all the parameters.

70



6.3 Validation of the outcome of rainfall series

The purpose of the stochastic generator is to produce data which are statistically similar
to the observed series. In other words, the statistics including means, variances, relative
frequency of occurrence, correlations, and lag correlations between variables derived from
synthetic data should be statistically insignificantly different from those derived from the
observed data. In validating our generator, time series of 100 years are generated. The
synthetic series are analysed and resultant statistics are compared with those derived
from the observed series. The time series from 1951-1993 are used for calibrating the
models whereas time series from 1994-2000 available at some stations (Douala, Kaele,
Koundja, Ngambe, Ngaoundere and Sangmelima) are used to test the observed against

the estimated series.

6.3.1 Distribution of daily precipitation amounts

Equation (35) is used to produce Weibull distributed rain amounts r. The distribution
of daily rain amounts is tested by comparing the frequency distribution of observed and
estimated daily rainfall amounts. Generated and observed daily rainfall totals are grouped
into classes of 10 mm intervals, beginning with 1 mm and tested using x? . The frequency
classes and the results of the test are presented in table 10. For carrying out x? tests,
classes with expected frequencies less than 5 are joined to a new combined class. By
combining two classes to one we have one degree of freedom less; this explains the reduction

of degrees of freedom in the table.

Table 10: Test of distribution functions of observed and generated rainfall amounts in

10" of mm

Stations X2 degrees of freedom | critical value
Douala 53.87 10 18.31
Kaele 5.79 4 9.49
Koundja 70.60 6 12.59
Ngambe 19.58 6 12.59
Ngaoundere | 7.91 6 11.07
Sangmelima | 11.00 5 11.07

The analysis of table 10 shows the high y? contribution in Douala, Koundja and
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Ngambe. This suggests a difference between the frequency distribution of the generated
and the observed daily rainfall amount series. In others words, the frequency distribu-
tion of the generated daily rainfall amount is not resembling the ones of the observed
series. In Kaele, Ngaoundere, and in Sangmelima, the low value of x? contribution indi-
cates the resemblance between the two frequency distributions. The generator produces
good estimate of daily rainfall amount in the northern area (Kaele) where the climate is
generally dry, and in the southern plateau (Sangmelima) which is characterized by four
seasons. Weak rainfall amounts are generated by the generator, at the stations situated
on highlands (Koundja) and in the coastal area (Douala and Ngambe); the latter regions

experience high rainfall amount during the rainy season.

6.3.2 Test of the seasonal distribution of wet-day series

The rainfall occurrence probability v(¢ 4+ 1) on day ¢ 4 1 is modelled by first-order two-
state Markov chain with m = 1,...,12 monthly transition probabilities pg; (m) and pyq(m)
depending from r as defined in equation (32). Using the latter equation, we simulate rain-
fall occurrence series. From the simulated series, we then compute the frequency of wet
days for each month. This frequency distributions of observed and simulated series are
compared using y? test and the results are presented at 5 % significance level. Data are
divided into classes j, with 10" of mm interval between classes. Chi square test requests
expected frequencies above 5. To deal with this problem, the classes with expected fre-
quencies less than 5 are joined to a new combined class and counts of both classes are
added. Thus, by combining two classes to one we have one degree of freedom less. Results
of statistical tests comparing the observed data for six sites with synthetic data generated

by our simulator for the seasonal distribution of wet series are presented in table 11.

The analysis of table 11 shows that the x? contribution is very high in Douala and
Ngambe; i.e. the distribution frequency of the generated series do not resemble the distri-
bution frequency of the observed series in Douala and Ngambe. The low x? contribution
suggests that the statistics of the generated series and the ones of the observed series are
considered to be the same; this is the case in Kaele, Ngaoundere, Koundja, and Sangme-
lima. Overall the generator seems to be able to generate rain series for inland stations

with statistics resembling the observations. For the coastal areas (Douala and Ngambe),
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it seems that other factors than the chosen predictors may well explain the behaviour of
daily rainfall; Cameroon’s coastal climate is of an equatorial type and is influenced by the
meteorological equator, being the meeting point between the anticyclone of Azores (North
Atlantic) and that of Saint Helen (South Atlantic). This climate results from the com-
bined effect of convergence of the tropical oceanic low-pressure zone and the inter-tropical
front within the continent. South-westerly monsoon winds predominate, modified by land
sea breezes causing humidity values to almost saturation point. Wind speeds exception-
ally reach values of 18 m sec™! (April, 1993) with average values recorded over a period
of 10 years (1983 - 1993) varying between 0.5-2.5 m sec™!. Thus, the dynamics of the
monsoon circulation, the surface wind and the sea surface temperatures are factors that
mostly influence rainfall in the coastal area and should be taken into account as predictor
variables when simulating rainfall in this area. Another reason is that of the split of rain
over many days in this area (see figure 20). The monthly distribution of observed and
simulated wet-days series is plotted in figure 21.

In general, the simulated series present the same configuration as the observed series.
The maximum of wet days occurs during the rainy season. In Douala, Ngambe and
Ngaoundere, the maximum wet days occurs in August for the observed series whereas it
occurs in September for the estimated series. At Kaele and Koundja, the maximum of
both observed and estimated occurs in the month of August. Sangmelima presents the

maximum of both observed and estimated in the month of October.

6.3.3 Yearly mean and variance of monthly rainfall

Monthly rainfall of a certain month for various years are tested. i.e. we make tests for
each month of a yearly rainfall of month m with m = 1,2,...,12. Yearly means p are
tested using the t-test whereas the F-test is used to test the variance o2. Table 12 gives
the values of the F-test statistic and t-test statistic comparing synthetic and observed
series. The significance of F values indicate that all values are above .05 over all months
in Kaele, Koundja, Ngambe, Ngaoundere, Sangmelima; this suggests that there is no
difference between the variance of observed and simulated series at 5 % significance level.
In Douala, the significance of F values are above .05 in January, February, March, April
May, June, July, September and December whereas in August, October, and November

these values are less than .05. This suggests that there is no difference between the variance
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Figure 21: Monthly distribution of observed and estimated absolute rainy days
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of observed and simulated series at 5 % significance level during the months of January,
February, March, April May, June, July, September and December. The values under .05
indicate that there is a difference between the variance of observed and simulated series
in August, October, and November.

The test of the mean rainfall indicates that the significance value is above .05 in Kaele,
Koundja, Ngambe, Sangmelima for all the 12 months suggesting that there is no difference
between the mean of observed and simulated rainfall series. In Douala, the significance
is less than .05 in August. In Ngaoundere the significance is less than .05 in December.
The significance value under .05 suggests a difference between the mean of observed and

simulated data in the later months.

The generator is considering to simulate the wet days series for inland stations with
statistics resembling the observations. This is not the case in the coastal areas represented
by Douala and Ngambe stations. That can be interpreted by the fact in the coastal
area south-westerly monsoon winds predominate, modified by land sea breezes causing
humidity values to almost the saturation point, bringing thus the region more rain than
the inland stations. There is sometimes continuous rain over several days especially during
wet months; by splitting over few days, all these days have high rainfall amounts of nearly
the same order of magnitude. Thus, when fitting a distribution to the daily rainfall
amounts, the chosen distribution could predict much fewer big rain amounts, the higher
the rain is. The effect of these methodological factors and errors is primarly reflected in the
occurrence process and in the smaller amounts of rainfall. The generator produces good
estimate of daily rainfall amounts in the northern area where the climate is generally dry,
and in the southern plateau which is characterized by four seasons. The underestimation
of rainfall amount in coastal and highland region can be explained by the fact that these
regions are under the influence of monsoon winds, see breeze which have to be taking
in account as predictors when estimating the rainfall in coastal region. The result also
suggests that the far distance from the ocean, we have good estimation; we have then to
include the distance from the sea as another predictor.

The result of the present study exhibits no difference between the monthly mean of
rainfall, excepted Douala which presented a difference between the mean of the generated

and observed rainfall series in August, which corresponds to its wettest period of the year.
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The situation is the same when testing the monthly variance; the values under .05 indicate
that there is a between the variance of observed and simulated series in August, October,

and November in Douala.

6.3.4 Owutcome of probabilities

Equation (33) is used to compute the wet-dry and wet-wet transition probabilities and
the results are presented in table 13. The validation here consists in graphically compare
the estimated probabilities against the observed ones. This comparison is presented in
figure 22 and figure 23 for wet-dry and wet-wet transition probabilities respectively.

The models reproduced well the seasonal variation of wet-dry and wet-wet transition
probabilities at all the stations tested in spite of the gap existing between the observed
and the estimated probabilities. It is also noted that there is a discrepancy between the
month where the maximum (peak) and the minimum of estimated probabilities occurred
against the observed ones. The difference can be explained by the fact that the peaks
do not look like bell shaped normal distribution but rather resemble shield volcanoes or

matterhorus; because of such form, they cannot be well represented by a normal function.
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Table 11: Test of seasonal distribution of wet day series

JIF | M|A| M| J J | A| S| O|N|D/|df| x? CVv
observed | 0 | 0 | 1 |21 |42 | 53| 8 | 92|61 |27 |00

Kaele estimated | 0 | 0 | 3 | 17| 44 | 58 | 75 | 82 | 73 | 28 | 1 | o | O | >3 | 1259
observed | 0 | 1 |17 |57 | 85 | 78 | 83 | 96 | 88 | 57 | 7 | 1

Negaoundere | . ated | 0 | 2 |18 |51 | 71 | 71 | 78 | 91 | 98 | 76 | 13 | 0 | & [ 1205 | 1551
observed | 0 | 4 (33|68 | 80 | 93 | 114|127 | 103 | 105 | 33 | 0

Koundja 1 iated | 1| 9 |34 |67 | 84 | 85 | 104 | 115 | 113 | 97 |28 | 1 | 8 | 638 | 1951
observed | 19 [ 24 | 72| 95| 98 | 81 | 55 | 84 | 114 | 144 | 88 | 24

Sangmelima | ated | 13 | 40 | 67 | 82| 88 | 79 | 72 | 93 | 120 | 134 | 95 | 22 | 11 | 1942 | 19:68
observed | 3 | 5 (29|50 | 63 | 69 | 100|117 | 110 | 86 | 30 | 3

Ngambe estimated | 4 | 16 | 38 | 48 | 54 | 52 | 69 | 73 | 85 | 86 |52 | 4 | O | 122 | 16:92
observed | 15 | 27 | 80 | 96 | 105 | 136 | 168 | 195 | 164 | 147 | 78 | 23

Douala estimated | 13 | 36 | 91 | 81 | 115 | 114 | 128 | 172 | 165 | 155 | 75 | 16 | 1 | 3090 | 1968




I8

Table 12: Values of F-test statistic and t-test statistic for the monthly rainfall amount

J F M A M J J A S 0 N D
F | 0.588 | 1.315 | 0.364 | 1.971 | 2.604 | 2.859 | 3.092 | 15.915 | 0.419 | 7.976 | 11.341 | 2.470
% [Sig | 0.444 | 0.252 | 0.546 | 0.161 | 0107 | 0.091 | 0.079 | 000 | 0.518 | 0.005 | 0.001 | 0.119
Douala t | -0.548 | 0.228 | -0.531 | 0.440 | 0.540 | -1.681 | 1.068 | 2.917 | -0.429 | 1.237 | 1.354 | 1.948
Pl sig | 0584 | 0.820 | 0.595 | 0.660 | 0.589 | 0.093 | 0.285 | 0.004 | 0.668 | 0.216 | 0.176 | 0.054
F | - ; - | 0.001 | 0.185 | 2.423 | 0.481 | 2.100 | 1.932 | 0.074 | - ;
“ eg | - ] -1 0.973 | 0.668 | 0.120 | 0.488 | 0.148 | 0.165 | 0.786 | - ]
Kaele t : ~ 1 -0.376 | 0.199 | -0.043 | -1.850 | -0.213 | -0.677 | -1.246 | -1.108 | - :
lgig| - =1 0709 | 0.843 | 0.965 | 0.071 | 0.831 | 0.499 | 0.213 | 0.269 | - :
F | - |0597 | 1.618 | 1.870 | 2.165 | 3.277 | 2.459 | 1.860 | 1.887 | 2.975 | 2.899 | -
o Isig| - | 0441 | 0204 | 0.172 | 0.141 | 0.070 | 0.117 | 0.173 | 0170 | 0.085 | 0.089 | -
Koundja t ~ 1 0.058 | -0.915 | -0.677 | -0.447 | -0.582 | -0.685 | 0.530 | -0.358 | -0.628 | -0.749 | -
Folsig| - | 0954 | 0.360 | 0.498 | 0.655 | 0.561 | 0.494 | 0.596 | 0.720 | 0.530 | 0.454 | -
F | 0987 | 0985 | 1.311 | 0.486 | 0.606 | 0.792 | 3.538 | 2.069 | 0.314 | 0.076 | 0.036 | 1.046
7 Isig | 0323 | 0321 | 0252 | 0486 | 0437 | 0.373 | 0.060 | 0151 | 0.575 | 0.783 | 0.850 | 0.306
Ngambe t | -0.664 | -0.334 | -1.623 | -0.032 | 0.262 | -0.970 | -1.502 | 0.834 | -0.670 | -0.086 | -0.252 | -0.087
H 1 sig | 0508 | 0.738 | 0.105 | 0.975 | 0.793 | 0.332 | 0.133 | 0.404 | 0.503 | 0.932 | 0.801 | 0.931
| F |- - | 2.006 | 0.862 | 2472 | 1.646 | 2.450 | 3.548 | 1.730 | 0.064 | 0.096 | -
” oe | - ~ 1 0.089 | 0.353 | 0.116 | 0.200 | 0.118 | 0.060 | 0.189 | 0.800 | 0.758 | -
Ngaoundere t - | -0.432 | -1.094 | -0.117 | -1.237 | -0.964 | -1.286 | -1.165 | -1.718 | -0.362 | -0.282 | -30.60
Polsig| - | 0671 | 0272 | 0.907 | 0.216 | 0.335 | 0.199 | 0.244 | 0.086 | 0.717 | 0.778 | 0.020
| F | 0069 | 0.227 | 0.209 | 1.309 | 0.162 | 0.466 | 0.076 | 0.682 | 0.167 | 1.189 | 0.423 | 1.355
7 [Sig | 0793 | 0.634 | 0.648 | 0253 | 0.723 | 0495 | 0.783 | 0409 | 0.683 | 0.276 | 0.515 | 0245
Sangmelima t | -0.435 | 0.320 | -0.063 | -0.742 | -0.097 | -0.942 | 0.091 | 0.678 | -0.573 | -0.095 | 0.122 | -0.422
Bl sig | 0.663 | 0.749 | 0.950 | 0.458 | 0.923 | 0.346 | 0.928 | 0.498 | 0.577 | 0.924 | 0.903 | 0.673
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Table 13: Observed and estimated monthly pg; and py;

J F M| A | M| J J | A|] S| O]|N D
observed | .095 | .192 | .365 | .529 | .560 | .595 | .615 | .739 | .739 | .691 | .292 | .099
POl 1 estimated | .053 | .184 | .356 | .468 | 501 | .477 | .482 | .598 | .719 | 675 | .341 | .023
Douala observed | .240 | .239 | .366 | .406 | .540 | .706 | .848 | .912 | .854 | .714 | .426 | .243
PI | estimated | .323 | .372 | 407 | 427 | 438 | 475 | 609 | 798 | .882 | .834 | 577 | 223
observed | 0 | .0008 | .009 | .079 | .213 | .304 | .453 | .525 | .423 | .094 | .006 | .0008
Po1 | estimated | 0 | .0005 | .015 | .095 | .223 | .336 | 437 | .494 | .339 | .136 | .005 | 0©
Kaele observed | 0 0 |.067|.165 | .162 | 237 | .341 | 446 | .356 | .139 | .167 | ©
P1 | estimated | 0 007 | .087 | .236 | .294 | 251 | .229 | .288 | .324 | .209 | .040 | .0007
observed | .013 | .049 | .214 | 438 | .519 | .575 | .565 | .653 | .750 | .591 | .123 | .019
Po1 | estimated | .005 | .062 | 242 | 439 | 549 | .602 | .668 | .743 | .737 | .537 | .139 | .003
Koundja observed | .261 | .302 | 429 | .447 | 496 | .536 | .709 | .763 | .748 | .718 | .520 | .355
P\ etimated | 177 | .278 | .377 | A71 | 5685 | .670 | .758 | .808 | .806 | .732 | .539 | .244
observed | .049 | .105 | .324 | .496 | .567 | .607 | .625 | .753 | .877 | .774 | .228 | .032
Po1| estimated | .032 | .151 | .332 | 468 | .508 | 471 | 443 | 537 | .680 | .666 | .358 | 0.027
Ngambe observed | .213 | .283 | .340 | 411 | 472 | .624 | .856 | .946 | .939 | .809 | .494 | .220
P estimated | 244 | .325 | .387 | 428 | 461 | 516 | .622 | .748 | .823 | .815 | .683 | .369
oberved | .0002 | .009 | .089 | .279 | .487 | .536 | .609 | .571 | .579 | .311 | .026 | .005
Pot | estimated | .0002 | .0106 | .097 | .271 | 401 | .430 | .505 | .602 | .612 | .382 | .051 | .0002
Ngaoundere observed | .020 | .188 | .391 | .528 | .587 | .635 | .622 | .646 | .623 | .559 | .325 | .400
P1| estimated | 081 | .181 | .288 | .373 | 432 | 484 | 547 | 614 | .653 | .623 | 487 | 245
observed | .074 | .147 | .346 | .507 | .506 | .393 | .226 | .187 | 507 | .671 | .338 | .105
POl 1 estimated | .084 | .238 | .399 | 492 | 495 | 421 | .332 | .355 | .534 | .657 | 531 | .144
Sangmelima observed | .256 | .284 | .337 | 417 | 495 | 428 | .344 | .396 | .565 | .638 | .532 | .266
P1| estimated | .118 | .244 | .364 | 445 | 490 | 531 | .602 | .604 | .746 | .707 | 513 | .182




7 CONCLUSION

The Markov chain model is used on daily precipitation in 28 sites in Cameroon. A two-
state first-order model was found to be applicable to daily rainfall occurrence of the rain.
Transition probability between dry or wet and wet days are calculated and fitted with
double normal function to describe its seasonal variation. Weibull distribution function is
fitted to daily rainfall amount; the seasonal variation of its parameters is also described
by the double normal function. Parameters of double normal function are estimated
by minimizing errors and are approximated from spatially distributed predictors such as
latitude, longitude, altitude, relief exposition, using a stepwise regression analysis. As the
outcome of regression analysis, 5 % significance level was used to decide of the inclusion
or the exclusion of a predictor.

The results reveal that latitude (cosine, square and logarithm of it), longitude, alti-
tude, rain exposition and relief exposition are found to be ”good” variables to describe
the dry-wet and wet-wet transitions. The outcome of the simulation reveals that our
simulation models present many deficiency in representing the observed and simulated
probability, in spite of the fact that in both series the seasonal variation are considering
to be preserved. The deficiency can be explained by the quality of our data; in fact, it
has been well documented that the time of observation is a significant factor influencing
the occurrence process as defined by first-order Markov and in the distribution of rainfall
depth; this is attributed to the diurnal variation of rainfall and to the evaporation of small
rainfall amounts for gauges read in the afternoon. In Cameroon gauges are read twice a
day (morning and evening); during the gap between the first and second read the latter
problem could happen.

This study also reveals that square of latitude, rain exposition, longitude and the
mean of yearly rainfall are found to be ”good” variables to describe the parameters of
Weibull distribution function fitting to daily rainfall amounts. New methods to improve
the derivation of spatial predictors are suggested; these include the use of digital topo-
graphic analysis techniques with which it is possible to derive all necessary physiographic
outputs (surface gradients, mean elevation, land cover, distances to ocean or streams)
rapidly and accurately.

The generator is considering to simulate the wet days series for inland stations with

statistics resembling the observations. This is not the case in the coastal areas represented
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by Douala and Ngambe stations. In the coastal area south-westerly monsoon winds pre-
dominate, modified by land sea breezes causing humidity values to almost the saturation
point, bringing thus the region more rain than the inland stations. There is sometimes
continuous rain over several days especially during wet months; by splitting over few
days, all these days have high rainfall amounts of nearly the same order of magnitude.
Thus, when fitting a distribution to the daily rainfall amounts, the chosen distribution
could predict much fewer big rain amounts, the higher the rain is. The effect of these
methodological factors and errors is primarly reflected in the occurrence process and in
the smaller amounts of rainfall.

The study shows that the frequency distribution of the generated daily rainfall amounts
is not resembling the ones of the observed series in Douala, Koundja and Ngambe whereas
simulated and observed daily rainfall series of Kaele, Ngaoundere, and Sangmelima indi-
cate the resemblance between the two frequency distributions. The generator produces
good estimate of daily rainfall amounts in the northern area where the climate is generally
dry, and in the southern plateau which is characterized by four seasons. The underes-
timation of rainfall amount in coastal and highland region can be explained by the fact
that these regions are under the influence of monsoon winds, see breeze which have to be
taken into account as predictors when estimating the rainfall in coastal region. The result
also suggests that the far distance from the ocean, we have good estimation; we have then
to include the distance from the sea as another predictor.

The result of the present study exhibits no difference between the monthly mean of
rainfall, excepted Douala which presented a difference between the mean of the generated
and observed rainfall series in August, which corresponds to its wettest period of the year.
The situation is the same when testing the monthly variance; the values under .05 indicate
that there is a between the variance of observed and simulated series in August, October,
and November in Douala.

The improving of our simulation models using time invariants predictors means the
search of predictors using new techniques for deriving physiographic parameters of the
area of study such as the digital topographic analysis techniques, and/or remote sensing.
These techniques are tools providing relevant landscape data. As Cameroon is situated
in the Gulf of Guinea, it will be interesting to investigate the influence of the West Africa

monsoon and of the squall lines on the rainfall series in the country, and then use both
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also as predictors in the possible future projects. Improving our simulation models also
suggests the use of daily rainfall series measured automatically; Automated stations will
measure exactly the quantity of rain which has really fallen. This is costly but would

provide good quality data, and accordingly better results .
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9 ANNEXE -A-

This annexe shows the absolute wet-dry probability using the double normal function for

the rest of stations.
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Figure 24: Transformed wet-dry probability using from the double normal function
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10 ANNEXE -B-

This annexe shows the absolute wet-wet probability using the double normal function for

the rest of stations.
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Figure 25: Transformed wet-wet probability using from the double normal function

101



