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Abstract

The subject of this thesis are electronic properties of isolated quantum dots as
well as transport properties of quantum dots coupled to two electronic reservoirs.
Thereby special focus is put on the effects of Coulomb interaction and possible
correlations in the quantum dot states.

First, the regime where the quantum dot is only weakly coupled to the reser-
voirs is investigated by using a master equation approach with tunneling rates
obtained by Fermi’s Golden Rule. It is shown that in case more than two quan-
tum dot states participate in transport, the resonance positions in the differential
conductance generally depend on temperature and the number of participating
states. Therefore transport spectra generally cannot be interpreted in a straight-
forward manner by the energy levels of the isolated quantum dot. At the same
time it is shown how this effect can be used to directly probe degeneracies in a
quantum dot spectrum. In a spherical quantum dot occupied by two and three
Coulomb interacting electrons, a mechanism is found which leads to a complete
blocking of the quantum dot for transport. This blocking mechanism results in an
enhancement of the Coulomb blockade regime where transport is exponentially
suppressed and is explained by a cascade of transitions which ends in a state
blocked for further transport due to spin-selection rules.

In the second part, the electronic structure of spherical quantum dots is cal-
culated within a particle-in-a-sphere model for interacting electrons. In order to
account for correlation effects, the few-particle Schrodinger equation is solved by
an exact diagonalization procedure. It is shown that the calculated electronic
structure compares to experimental findings obtained on colloidal semiconduc-
tor nanocrystals by Scanning Tunneling Spectroscopy. The electric field induced
by the tunneling tip is studied and it is found that the resulting Stark effect
can lead to a toroidal symmetry of the electronic ground state density which is in
agreement with wave-function mapping experiments. For the five-particle ground
state it is found that the symmetry depends on the nanocrystal radius. This is
explained by a competition between exchange energy and the Stark energy.

Studying the excitation spectrum, it is found that Coulomb interaction can
lead to a reduction of the low lying excitations for increasing number of electrons
occupying the quantum dot which explains recent experimental findings on self-
organized quantum dots.

In the last part, co-tunneling in the Coulomb blockade regime is studied. For
this end the tunneling current is calculated up to the forth order perturbation
theory in the tunnel coupling by a real-time Green’s function approach for the
non-equilibrium case. The differential conductance calculated for a quantum
dot containing up to two interacting electrons shows complex signatures of the
excitation spectrum which are explained by a combination of co-tunneling and
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sequential tunneling processes. Thereby the calculations show a peak structure
within the Coulomb blockade regime which has also been observed in experiment.



Zusammenfassung

Diese Arbeit beschiftigt sich mit den elektronische Eigenschaften von isolierten
Quantenpunkten sowie Transporteigenschaften von Quantenpunkten die mittels
Tunnelbarrieren an zwei elektronische Reservoire gekoppelt sind.

Zundchst wird das Regime schwacher Tunnelankopplung untersucht, welches
mittels einer Master-Gleichung mit Tunnelraten nach Fermis Goldener Regel be-
schrieben wird. Tragen mehr als zwei Quantenpunktzustinde zum Transport
bei, wird gezeigt, dass die Position der differenziellen Leitfihigkeitsspitzen im
Allgemeinen von der Anzahl der beitragenden Zustinde sowie von der Tempe-
ratur abhingt. Dadurch kénnen Transportspektren in der Regel nicht unmit-
telbar mit Hilfe der Energieniveaus des isolierten Quantenpunktes interpretiert
werden. Gleichzeitig wird ein Weg aufgezeigt, der es erlaubt mit Hilfe dieser
Abhé#nigkeiten Entartungen in Quantenpunktspektren direkt zu messen. Deswei-
teren wird ein Mechanismus am Beispiel eines spéarischen Quantuenpunktes der
mit zwei bis drei wechselwirkenden Elektronen besetzt ist, untersucht. Er fiihrt
zu einer Erweiterung des Coulomb-Blockadebereichs, indem der Quantenpunkt
fiir Transport vollstindig blockiert ist. Dieser Mechanismus kann durch eine Kas-
kade von Tunneliibergingen erkldrt werden, die in einem Quantenpunktzustand
endet welche fiir weiteren Transport durch Spinauswahlregeln blockiert ist.

Im zweiten Teil dieser Arbeit wird die elektronische Struktur sphérischer
Quantenpunkte mittels eines effektiven Massenmodells fiir wechselwirkende Elek-
tronen berechnet. Um Korrelationen in den Quantenpunktzustinden zu beriick-
sichtigen, wird die Vielteilchen Schrédinger Gleichung mittels exakter Diagona-
lisierung gelost. Die berechnete elektronische Struktur steht im Einklang mit
Transportexperimenten an Halbleiternanokristallen, die mittels Rastertunnelspek-
troskopie durchgefiihrt wurden. Bei der Berechnung des Starkeffekts aufgrund
des durch die Rastertunnelspitze induzierten elektrische Feldes wird gezeigt, dass
bestimmet Grundzustandsdichten eine torusférmige Symmetrie besitzen. Diese
Symmetrie wurde experimentell in sogenannten Wellenfunktionskartierungsex-
perimenten nachgewiesen. Eine Griéflenabhéngigkeit der Symmetrie gibt es im
Grundzustand fiir fiinf Elektronen aufgrund eines Wechselspiels zwischen Stark-
energie und Austauschenergie.

Des weiteren zeigt die Berechnung der Anregungspektren des isolierten Quan-
tenpunkts, dass die Coulombwechselwirkung zu einer Reduktion der tiefliegen-
den Anregungen als Funktion der Elektronenzahl fithren kann. Diese Reduktion
erkirt aktuelle experimentelle Befunde an selbstorganisierten Halbleiterquanten-
punkten.

Der letzte Teil behandelt die Untersuchung von Co-Tunnel-Prozesse im Be-
reich der Coulomb-Blockade. Dazu wird der Tunnelstrom in vierter Ordnung
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Storungstheorie in der Tunnelankopplung mittels eines Echtzeit-Greensfunktion-
enansatzes im Nichtgleichgewicht berechnet. Fiir einen Quantenpunkt, der mit
bis zu zwei wechselwirkenden Elektronen besetzt werden kann zeigt die berech-
nete differenzielle Leitfahigkeit eine komplexe Struktur des Anregungsspektrums
innerhalb des Coulomb-Blockadebereichs. Dabei zeigen die Rechnungen neben
Stufen insbesondere Spitzen in der differentiellen Leitfihigkeit, die auch experi-
mentell gefunden wurden.
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Chapter 1

Introduction

One of the most interesting questions of topical solid-state research is: What
happens if current carrying devices are reduced in size down to the nanometer
scale? The answer to this question is not only of fundamental interest, but it
is also of great importance for semiconductor industries. The rapid progress in
scaling down the basic building blocks of many electronic devices has already
approached the 100 nm scale and within ten to fifteen years, feature sizes in
production are expected to reach 10 nm [1].

For device sizes in the order of or smaller than the phase-coherence length
quantum effects start to play an important role and the devices have to be treated
as actual quantum systems. The physics of these structures intermediate between
atomic and macroscopic scales, turned out to be so rich that the field got its own
name, nowadays known as mesoscopic physics. A typical property of mesoscopic
systems is a large number of energy-scales and particles leading to the necessity
to develop effective models. Beyond that those quantum systems are usually
not isolated but incorporated in an electrical circuit and therefore coupled to
some macroscopic reservoirs. Such a coupling generally leads to a loss of phase-
coherence in the actual quantum system and touches the question how quantum
effects are observed in the macroscopic world.

The current carrying device subject to this work is a quantum dot coupled by
tunneling barriers to two lead electrodes. A quantum dot is a zero-dimensional
structure in which the electronic motion is confined in all three spatial directions,
which leads to discretized energy levels of the electronic states in the isolated dot
[2]. Due to the coupling to the macroscopically large lead electrodes the elec-
tronic structure of the quantum dot can strongly deviate from the isolated case.
In this work transport properties of quantum dots are investigated analytically
and numerically in the regime of weak and intermediate tunnel coupling to the
connecting reservoirs. Thereby special attention is paid to the effect of electronic
correlations in the quantum dot states on transport properties.

The best understood transport regime so far is the regime where the quantum
dot is only weakly coupled to the environment [3, 4]. In that case the effect of
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the reservoirs can be described in the lowest order perturbation theory using
Fermi’s Golden Rule together with a master equation approach which leads to
the concept of single electron tunneling [5]. Single electron effects are among
the most dramatic new mesoscopic phenomena. The Coulomb energy involved
in adding a single electron to a nanometer-sized quantum dot has been found
to be the dominant energy scale of the system which can result in a gap in the
electronic states of the dot at the Fermi energy such that transport is Coulomb
blocked [6, 7]. This led to the discovery of the single-electron transistor [8], in
which the transistor action is controlled by a single electron added to or removed
from a quantum dot. Open questions still exist also in this regime and some of
them are addressed in this work. They are related to correlations in the quantum
dot states or to the interplay of many dot states participating in transport.

In the regime of intermediate tunnel coupling no powerful theoretical tool
exists to describe coherent transport through a region of interacting electrons for
arbitrary tunneling barriers and temperatures. Scattering formalism, which is
capable to describe coherent transport, is restricted to non-interacting systems
and cannot be applied [9]. On the other hand the master equation approach is
non-perturbative in the interactions within the quantum dot, but perturbative in
the tunnel coupling and hence restricted to the weak coupling regime. A possi-
bility to describe coherent transport through a region of interacting electrons is
to setup a systematic perturbative treatment of the tunneling coupling and to go
beyond the lowest order [10]. It turns out that the second non-vanishing order
can be interpreted as coherent tunneling processes of pairs of electrons called
co-tunneling [11, 12, 13]. Those co-tunneling processes lead e.g. to violation of
the Coulomb blockade, but many untouched questions exist. One of the ques-
tions, related to the interplay between Coulomb interaction and quantum dot
excitations, is studied within this work.

This work is organized as follows:

In Chapter 2 the basic results of the weak coupling regime are reviewed. It will
be shown that most of the experimental finding in the weak coupling regime can
be straightforwardly understood by the energy spectrum of the isolated quantum
dot together with the concept of single electron tunneling. Nevertheless there
are still open questions concerning the interplay of more than two quantum dot
states participating in transport. How this interplay can effect transport at finite
temperature is addressed in the second part of this chapter. In the last part
effects of correlations in the quantum dot states are discussed.

In Chapter 3 a model is developed allowing to describe the electronic prop-
erties of colloidal nanocrystals. Colloidal nanocrystals are spherical quantum
dots built of semiconducting materials. Their transport properties have been ex-
tensively studied by means of Scanning Tunneling Microscopy (STM). It turns
out that the electric field induced by the STM tip can strongly affect the elec-
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tronic states in the quantum dot. Consequences for experiments and the dot size
dependence are discussed.

In Chapter 4 the intermediate coupling regime is addressed by considering
co-tunneling processes. In the first part of this chapter the Real-time Transport
Theory (RTT) developed by SCHOELLER et al. [10] is reviewed, which provides a
systematic perturbation theory in the tunneling coupling to the electronic reser-
voirs for the non-equilibrium case. In the second part the effect of Coulomb
interaction and quantum dot excitations on co-tunneling transport is studied
within the Coulomb blockade regime.

Publications

Some of the main results of this thesis have been published in the following
articles:

e M. Tews and D. Pfannkuche, “Stark effect in colloidal indium arsenide
nanocrystal quantum dots: Consequences for wave-function mapping ez-
periments”, PRB 65, 073307 (2001), (This work has been selected for the
February 11, 2002 issue of the Virtual Journal of Nanoscale Science & Tech-

nology).

e M. Tews and D. Pfannkuche, “Mapping of few-electron wave-functions in
semiconductor nanocrystals - evidence of exchange interaction”, Proceed-

ings of 26th International Conference on the Physics of Semiconductors,
Edinburgh, 2002.

e T. Brocke, M.-T. Bootsmann, B. Wunsch, M. Tews, D. Pfannkuche, Ch.
Heyn, W. Hansen, D. Heitmann, and C. Schiiller, “Inelastic Light Scattering
on Few-FElectron Quantum-Dot Atoms”, Physica E, in press.

e T. Brocke, M.-T. Bootsmann, M. Tews, B. Wunsch, D. Pfannkuche, Ch.
Heyn, W. Hansen, D. Heitmann, and C. Schiller, ”Spectroscopy of Few-
Electron Collective Excitations in Charge-Tunable Artifical Atoms”, PRL
91, 257401 (2003).
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Chapter 2

Sequential Transport in
Semiconductor Quantum Dots

Aim of the first part of this chapter is to review the basic concepts and results of
transport in the weak coupling regime [3, 4], i.e., where the temperature broad-
ening of the Fermi levels in the reservoirs is much bigger than the finite lifetime
broadening of the quantum dot states. It will be shown that in this regime trans-
port is described by sequential tunneling processes where charge is transfered
one by one. Due to the only weak coupling of the quantum dot to the reservoirs
the spectral density of the quantum dot remains unchanged. At zero tempera-
ture this allows a straightforward interpretation of transport data by the isolated
quantum dot spectrum which makes it possible to use transport as a spectroscop-
ical tool. In fact, aside from optical spectroscopy, transport in the weak coupling
regime has become a major tool to probe the electronic structure of quantum
dots [14, 15, 16]. For finite temperatures, the interpretation gets more compli-
cated whenever more than two quantum dot states participate in transport. This
hardly addressed detail is discussed in the second part of this chapter. For a
quantum dot containing some degenerate states a transparent analytical solution
exists which shows a non-trivial dependence of the tunneling characteristic on
temperature and degeneracy. At the same time it is discussed how this might
allow to directly probe degeneracies of quantum dot states. In the last part of
this chapter emphasis will be put on the investigation of correlation effects on the
tunneling characteristics. It is already known that the sequential tunneling rates
are strongly affected by correlations of the dot electrons [17] which can lead to
pronounced phenomena like e.g. spin-blockade [18, 19] and negative differential
conductances [20]. As another example of correlation effects a mechanism is dis-
cussed which leads to a complete blocking of transport through the quantum dot
although tunneling transitions are in principle allowed and energetically possible.
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2.1 Basic Concepts of Sequential Transport

The experimental setup of the system considered throughout the entire work is
sketched in Fig. 2.1. It consists of a quantum dot connected to two electronic
reservoirs via tunneling barriers and possibly some additional gate electrodes.
Those gate electrodes couple only electrostatically to the quantum dot and allow
to tune the electronic dot potential. Applying a transport voltage between the
two reservoirs a tunneling current is driven through the system which strongly

left lead
right lead

Figure 2.1: Schematic picture of the considered system consisting of a quantum dot
in the center connected to two electron reservoirs via tunneling barriers. One or more
gate electrodes in the surrounding of the quantum dot, which couple only capacitively
to the dot, can be used to tune the electronic potential of the quantum dot.

depends on the electronic structure of the quantum dot.

In the following the Hamiltonian used for the theoretical description is intro-
duced and it will be shown that in the weak coupling regime reservoir electrons
are only able to enter the quantum dot if their energy matches the energy needed
to charge the quantum dot by a further electron. This condition allows at zero
temperature a straightforward interpretation of transport data in terms of the
isolated dot spectrum. Knowing the transition rates a master equation can be set
up describing the dynamics of the dot states’ occupation probabilities. Solving
this equation for the steady state allows to calculate the non-equilibrium current
driven through the system for arbitrary transport voltages.

2.1.1 Model Hamiltonian

The model Hamiltonian used in this work in order to study transport through
quantum dots consists of a reservoir part, a part describing the quantum dot,
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and a third part providing the tunneling between dot and reservoirs,

IA{R = Zekra;;ak, + GZV;-NT (22)
k,r r

Hp = Z E,P,, + eVpN (2.3)

Hy = Y Thajc+ (he). (2.4)
k,l,r

Guided by a typical experimental setup where the reservoir leads rapidly broaden
into metallic contacts the reservoir electrons are viewed as non-interacting except
for an overall self-consistent potential [21]. Thus, the reservoir Hamiltonian (2.2)
is described by the single particle term ko ekrazrakr where the electron operator
as;f) annihilates (creates) an electron with wave vector k (in which the electron
spin is included) and energy €g, in reservoir r € {L, R}. Physically, applying a
transport voltage between source and drain contacts corresponds to accumulat-
ing or depleting charge around the central quantum dot region. The resulting
different electrostatic potentials V, in the left and right reservoir lead to an en-
ergetic shift of the reservoir states described by the second term in Hpg, with the
(negative) electron charge e and the number operator of the reservoir electrons
N, =3, af ag.

The quantum dot Hamiltonian (2.3) is assumed to be already solved by the
many-particle states |s) with total energy F;, hence written by means of the cor-
responding projector P, = |s)(s|. Since the electronic motion in a quantum dot
is confined in all three dimensions the energy spectrum E| is discrete. Other than
atoms, the confining potential of a quantum dot can be controlled by the used ma-
terial, size, and shape and it turns out that the actual energy spectrum strongly
depends on those parameters [2]. Nevertheless for the following considerations it
is enough to keep in mind the discrete nature of the energy levels in quantum
dots. The second term in Hp is due to the electrostatic coupling of additional
gate electrodes which is assumed to be described by a constant potential V with
the dot number operator N = ¥, ¢;F¢;. The dot electron operator cl(+) annihilates
(creates) a dot electron in the single particle state |I) (in ! the electron spin is
included). In case there is a considerable electrostatic potential drop across the
quantum dot due to the applied transport voltage the electronic structure of the
dot can be affected in a non-trivial way which cannot be described by a simple
energy shift as for the case of constant potentials. To describe such effects the
quantum dot states |s) need to be calculated as a function of the potential drop
across the quantum dot.

The tunneling Hamiltonian (2.4) with the tunneling matrix elements 7}, trans-
fers electrons from the reservoirs to the dot and vice versa [22] where it is assumed
that the electron spin is conserved during a tunneling process.
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2.1.2 Transition Rates

Considering the tunneling Hamiltonian Hy as a perturbation the transition rates
between the eigenstates of the isolated quantum dot can be calculated to lowest
order by Fermi’s Golden Rule (see e.g. [23])

Posy = 20 |( 5B ) 6 (B~ Ep). (2.5)

The two states |7), |f) and energies E;, E; occurring in this expression belong to
the total unperturbed system with the states given by a product of a dot and the
two reservoir states |i) = |s;) ® |k}') ® |k). Inserting the tunneling Hamiltonian
(2.4) in (2.5) and assuming that the reservoirs are described by grand canonical
ensembles it is possible to trace out the reservoir degrees of freedom leading to
the sequential tunneling rate

2m r r
Fsi—>5f = ; Sk,SiSff (Gk)5 (Esf — Esi — €k + €(VD — V;))
k,r
2T .
+ f Sk: stl( f (ek)) ( - E.S’f — € + e(VD - V;‘)) (26)
k,r

between dot state s; and s; (see e.g. [5, 24, 25]). In this rate the Fermi func-

e—pr -1 . . . .
tion f"(e) = (eT'f_ + 1) with the chemical potential u, of reservoir r, the
temperature 7', Bolzmann’s constant k£, and the spectral weights

ZTkl 5z|cl‘5f

have been introduced. The spectral weights provide transport amplitudes similar
to oscillator strengths in optical transitions. For some fixed reservoir index r the
first term of Eq. (2.6) describes the tunneling of an electron from the reservoir r

into the quantum dot and will be further on denoted as I'}/f, | ; Whereas the second

k:s isf (27)

term is a tunneling out rate and hence is from now on called I~ Looking

Si—+$
at the tunneling rate (2.6) the following observations can be made.fFlrst, due
to the annihilator matrix elements occurring in the spectral weights (2.7) only
transitions between dot states with electron numbers differing by +1 are possible
which means that electrons are transported one by one. Second, a transition is
only possible if the energy difference between initial and final dot state matches
the reservoir electron energy which is expressed by the Dirac d-functions. For
example for the tunneling out process described by the second term of (2.6) the
energy difference between the initial and final dot state is Es, +eVp — Ej,. The
additional potential energy of a single dot electron eVp has to be added since in
this tunneling out rate the initial state has one more electron as compared to the
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Figure 2.2: Example of a possible transition according to Fermi’s Golden Rule shown
in a schematic energy profile of the system. On the left and right the Fermi seas of
the connecting reservoirs with their electrochemical potentials are shown. A sequential
tunneling process is only possible if the energy of the reservoir electron matches the
energy difference between initial and final dot state. Those discrete energy differences
are drawn as red lines in the quantum dot region and are called transport channels.

final state. Since a single reservoir electron has the energy e + eV, a tunneling
out process is only possible if E; +eVp — Ej ;= €t eV, (compare this expression
with the argument of the Dirac J-function occuring in the second term of (2.6)).
Third, a tunneling in (out) process is only possible if an occupied (unoccupied)
state in the corresponding reservoir is available which is accounted by the Fermi
functions. Such a sequential tunneling process is depicted in Fig. 2.2 where the
red lines drawn in the central region are the energy differences of the (N +1) and
N-particle state (e.g. Es, +eVp — Ej f) involved in the transition and are further
on called transport channels. In Fig. 2.2 and all following energy profiles shown
in this work, the electrochemical potential of the two reservoirs is drawn, i.e.,
the potential energy eV, which an electron gains by tunneling through barrier
r has been already added to the chemical potential of the corresponding reser-
voir. Therefore a tunneling in (out) process is only possible if the corresponding
transport channel lies below (above) the highest (lowest) electrochemical poten-
tial. Hence transport channels can be opened or closed by changing the relative
position of the electrochemical potentials in the two reservoirs with respect to
the channel energies (by changing the potentials V, and V) resulting in a change
of the tunneling current. Since the channel energies are directly related to the
discrete energy levels in the dot transport can be used as a spectroscopic tool for
probing the quantum dot energy levels [14, 15, 16].

The single particle tunneling matrix elements 7}, occurring in the spectral
weights (2.7) have not been specified so far. Apart from the quantum dot and
reservoir state they generally depend on the actual shape of the tunneling bar-
rier which is not known for most experimental setups. In the following it is
assumed that the absolute value of the tunneling matrix element does only de-
pend on the reservoir index r. The phases of the tunneling matrix elements are
assumed to be random with respect to the direction of the reservoir wave vector
as described in Appendix A. Replacing the summation in k-space of (2.6) by
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Yok — [ deD(e)/4m [ dQ with the reservoir density of states D(e) and following
the steps described in Appendix A the sequential transition rates can be written
as

F:;:Sf = f‘sg sf ( - ESi + e(VD - Vr))

'fr( —E;, +e(Vo—V;)) (2.8)
F:;:)Sf = fsgfs ( - Esf + e(VD - W))

: [1 - fT( si Esf + e(VD - V;))] (29)

with the spectral weights
Stiss |T’"IQZ\ sileilsy)|? (2.10)

Notice that different to Eq. (2.7) the summation of the single-particle states [ in
Eq. (2.10) occurs outside the squared absolute value which is a consequence of
the random phases of the tunneling matrix elements (see Appendix A).

2.1.3 Tunneling Current and Master Equation

Knowing the tunneling in and tunneling out rates the non-equilibrium tunneling
current through one of the tunneling barriers r is given by
=—e» [, Pu(t) =T, Pi(t)] (2.11)

s'—s s—>s’
s,s’
with Ps(t) being the occupation probability of the quantum dot state |s) at time ¢
[5]. In the steady state the current does not depend on time and as a consequence
of charge conservation the current flowing through the left barrier into (out of)
the quantum dot is equal to the current flowing out of (into) the dot through the
right barrier

The steady-state probabilities P; are determined by the steady-state master equa-
tion

d
= 2P = Z [Ty sPy — sy Py =0 (2.13)

where the probabilities obey the normalization condition ) P, = 1. Notice
that the transition rates in (2.13), Ty, = >, (I%7,, + I'%7,,), are the transition
rates (2.6). The first term on the right hand side of (2.13) describes the gain of
probability P by transitions with final state |s), while the second term describes
the loss by transitions out of the initial state |s). In all following investigations

only the steady-state current is considered.
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2.1.4 Coulomb Blockade

The main difference of the transport properties of quantum dots compared to
higher dimensional nanostructures such as quantum wires or wells is that even the
introduction of a single electron is sufficient to drastically change the transport
properties due to the charging energy associated with this extra electron [7].
Considering only many-particle ground states for a moment, the energy needed to
add a further electron to the quantum dot increases with the number of electrons
already occupying the quantum dot since the additional electron has to overcome
the Coulomb interaction of more and more electrons. Throughout this thesis
the transport channel energy which corresponds to the transition between the
ith (M + 1)-particle state and the jth AN -particle state is denoted by u(N +
1,i;N,j) = EN*Tt — E;V . With the ground state energy E} the ground state-
ground state transport channel energy is given by u(N+1,0; N, 0) = EN 1 —EY.
This energy increases with increasing number of electrons N

u(N +1,0;N,0) > (N, 0;N —1,0) (2.14)

as schematically shown in Fig. 2.3. The energy difference between two successive
channels, called addition energy, can easily exceed thermal energy k7" at experi-
mentally realizable temperatures [7]. Therefore a gap in the electronic structure
of the dot can appear at the Fermi energy of the contacts and hence transport
through the quantum dot can be blocked. In the situation depicted in Fig. 2.3,
where the quantum dot is occupied by A electrons, no reservoir electron has

BN +2,0;N 41,0)

mr

u(N,0; N —1,0) MR

wN — 1,0 —2,0)

Figure 2.3: Energy profile of a quantum dot in the Coulomb blockade regime. The
highest ground state channel below the highest electrochemical potential determines
how many electrons occupy the quantum dot. Since no transport channel lies inbetween
the left and right electrochemical potential the quantum dot is blocked for transport.

enough energy to charge the quantum dot by another electron since the only pos-
sible channel to do so is above both electrochemical potentials. On the other hand
no quantum dot electron is able to tunnel out of the dot since the correspond-
ing channel is below both electrochemical potentials such that this transition is
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Pauli-blocked. Therefore the quantum dot of Fig. 2.3 is blocked for transport
and the number of electrons in the quantum dot is fixed. As the reason for this
blocking is the Coulomb interaction together with the quantization of charge this
effect is called Coulomb blockade.

2.1.5 Charging Diagram

Due to the previous discussion of the sequential tunneling rates it is clear that
the tunneling current is expected to change whenever a transport channel with
a non-zero tunneling rate becomes resonant with one of the two electrochemical
potentials in the contacts. In most transport experiments two parameters are
available allowing to change the relative position of the two electrochemical po-
tentials and the transport channels. Applying a transport voltage Vsp =V — Vg
between the contacts one electrochemical potential is raised whereas the other
potential is lowered as compared to the transport channels. The ratio between
the raising and the lowering depends on the involved barrier capacities [26]. A
second parameter arises from applying a voltage V; to some nearby gate elec-
trode which couples only electrostatically to the quantum dot. This electrostatic
coupling allows to change the discrete energy spectrum and in the simplest case
leads to a constant shift eaVp of the energy levels in the quantum dot where
a depends on the capacitance of the gate electrode. Therefore, by applying a

3
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Figure 2.4: Example of a charging diagram calculated for a spherical quantum dot
occupied with up to four electrons in the sequential tunneling approximation (all units
arbitrarily). The dot is Coulomb blocked in the rhombuses around zero transport
voltage Vsp. The white area at the right and left border corresponds to higher particle
fluctuation not included in this calculation.
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gate voltage the transport channels can be shifted with respect to the electro-
chemical potentials of the two reservoirs. The change of the tunneling current,
more precisely the differential conductance dI/dVsp, plotted as function of the
transport voltage Vsp and gate voltage Vi is commonly called charging diagram
[14]. An example of a calculated charging diagram is shown in Fig. 2.4 and in the
following the main features found in such diagrams are briefly reviewed. A more
complete guideline for their interpretation is given e.g. by WEIS and coworkers
(14, 27]. In the central regions of Fig. 2.4 the quantum dot is Coulomb blocked
and transport is not possible. The Coulomb blockade (CB) region is limited by
resonance lines corresponding to transitions between ground states. At those
lines the electrochemical potential of either source or drain is in resonance with a
ground state channel. For higher transport voltages the CB-regime is followed by
the single electron tunneling regime (SET) where dot states with " and N + 1
electrons coexist. In the SET-regime additional resonance lines exist being par-
allel to the ground state resonances with positive or negative slope. Resonance
lines with positive slopes correspond to transport channels in resonance with the
drain electrochemical potential, which are energetically below the ground state
channel. Lines with negative slopes are due to channels aligned with the electro-
chemical potential of the source reservoir, having higher energies than the ground
state channel. Resonances in the SET-regime starting at the border of the CB-
regime correspond to transitions between a ground state and some excited state
whereas channels corresponding to transitions between two excited states lead to
resonance lines starting within the SET-regime.
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2.2 Multi-channel Transport at Finite Temper-
atures

Looking at the sequential tunneling rate (2.6) a tunneling process is only possible
if the reservoir energy of the tunneling electron exactly matches the energy of a
transport channel. Therefore, at zero temperature the tunneling current suddenly
changes whenever one of the electrochemical potentials in the connecting reser-
voirs is in resonance with a transport channel. For example in a linear transport
experiment, i.e., where the current is measured as function of the gate voltage
Vi by applying a small constant transport voltage Vsp, current can only flow as
long as there is a transport channel in between the electrochemical potentials of
source and drain reservoir (see Fig. 2.5). Hence a peak in the current is found as
function of the gate voltage Vi at the energetic position of the transport channel.
It is somehow intuitive that this peak gets broadened at finite temperature due

Mo He
N [T He Hr

Figure 2.5: Left: The electrochemical potentials are below the transport channel so
that no transition is possible. Middle: Electrochemical potentials are at resonance
with the transport channel and current can flow. Right: Although the tunneling in
process is possible the conductance is again zero. The reason is that there are no empty
states available in the reservoirs at the channel energy, hence the tunneling out process
is Pauli-blocked.

to the thermal smearing of the Fermi-distribution with its maximum still at the
channel energy. In the following it will be shown that this intuitive picture is in
general only true if not more than one channel participates in transport. When-
ever more than one channel contributes the position of e.g. the linear transport
resonances can be shifted at finite temperatures. This effect is discussed for the
case of degenerate quantum dot states for which a transparent analytical solution
exists. In that case more than one transport channel exists at a certain energy
and consequently more than one channel contributes to the tunneling current.

2.2.1 Degenerate Quantum Dot States

Consider transport through a quantum dot with n transport channels with the
same energy. The channels correspond to transitions between an A -particle
ground state |0) and one of an n-fold degenerate (N + 1)-particle ground states
|i),i € {1, ...,n} with energy difference E(N +1) — E(N) = e. For simplicity it is
assumed that the many-particle wave-functions are well described by single Slater
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determinants leading to simple spectral weights being either 1 or 0. Furthermore
it is assumed that the tunneling rates of both barriers are equal, which leads to
following transition rates

Toi = T [f*(e) + fe)] (2.15)
Iiso = T [2 — f*(e) — fd(f)] . (2.16)

For simplicity a constant reservoir density of states has been assumed so that
I' = 22D|T|* with the tunneling matrix element 7. Since the transition rates
are independent of the (AN + 1)-particle states the occupation probability of all
(N + 1)-particle states are equal so that the normalization condition is P; =
(1 — Py)/n. Using this relation the steady-state master equation (2.13) can be
solved analytically leading to the steady-state current

n (f*(e) — £(e))

I =—el . 2.17
2+ (n—1) (0 + /%) 247
Linear Transport
For vanishing transport voltage the conductance G' evaluates to
T 2 oBle—n)
G- Y4 _ _rMBU) e (2.18)
dVsp |y p=0 1+ (n—1)f(e)

with 8 = kT~!. An interesting and hardly addressed detail is revealed by looking
at the maximum of the conductance as a function of the electrochemical potential
which is given by

1
pPeak = ¢ — %kT. (2.19)

Hence the peak position does depend on the actual temperature and the degen-
eracy as shown in Fig. 2.6. Only for zero temperature or for the non-degenerate
case (n = 1) the peak position is equals to the energy difference between the
N +1 and N particle state. In case of a degenerate transport channel the linear
conductance peak shifts to lower energies. This shift as function of temperature
is linear with a slope depending logarithmically on the degeneracy. In principle
it should therefore be possible to probe the degeneracy by measuring the slope
of the temperature dependence of some linear conductance peak position. The
reason for this shift is that the occupation of degenerate channels is governed by
the fact that only one additional electron can occupy the quantum dot at a time.
While tunneling in became easier due to the n available transport channels, an
electron already in the dot still has only one channel to get out again. Hence,
the tunneling-out process forms a bottleneck for the tunneling current: to com-
pensate this effect it is possible to enhance the factor (1 — f9(e)) occurring in
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Figure 2.6: Linear conductance G (shown in arbitrary units) as a function of the energy
difference between the transport channel energy € and the electrochemical potential of
the reservoirs p through a non-degenerate and two-fold degenerate transport channel
at finite temperature. Compared to the non-degenerate case the conductance peak is
shifted to lower energies in the degenerate case.

the tunneling out rate (2.16) by moving the transport channel slightly above the
electrochemical potentials in the reservoirs. Although the tunneling-in rate de-
creases at the same time, the total current is increased. Therefore the maximum
current does flow slightly before the electrochemical potentials are in resonance
with the transport channel.

Non-linear Transport

In case of non-linear transport, i.e., when the current is measured as a function of
the applied transport voltage Vsp, degenerate transport channels can also lead to
a shift of the corresponding resonance which has been experimentally observed
for a 2-fold spin-degenerate localized impurity state in a quantum well region
of resonant tunneling diodes by DESHPANDE et al. [28] and by KONIG [29] and
theoretically explained by BONET et al. [30]. In Fig. 2.7 the current through a
non-degenerate and 2-fold degenerate transport channel is shown as a function
of the transport voltage for different temperatures. While in the non-degenerate
case all current traces cross at half the current step height the crossing occurs
above half the step height for the 2-fold degenerate case. In the differential
conductance this would lead to a shift of the resonance to lower energies with
increasing temperature. In the case of high transport voltages where all drain
reservoir states are unoccupied a compact analytical expression for the peak shift
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Figure 2.7: Non-linear transport through a non-degenerate (left graph) and 2-fold
degenerate (right graph) transport channel for different temperatures (all units are
arbitrary). Compared to the non-degenerate case the crossing point of the current
traces is shifted above the half step height. In a differential conductance plot this
would result in a shift of the resonance to lower energies for increasing temperature.

in the differential conductance exists and reads

1
pPe* = ¢ —In <"; ) kT. (2.20)

S
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2.3 Correlation Effects and Spectral Weights

In this section the influence of correlations in the QD states on transport is
discussed. Such correlations can change the spectral weights (2.10) [17] which
govern the amplitude of a transport resonance in a similar way to the oscillator
strength in optical transitions. Moreover, they provide selection rules for the
availability of certain transport channels. A quite obvious selection rule due to
the spectral weights results from spin quantization. Since the incoming (outgoing)
electron carries a total spin S = 1/2, with the two possible polarizations S, =
+1/2, two states |s) and [s') involved in a transitions have to fulfill the spin
selection rules

5S¢ =5+ % and S =8+ % (2.21)
Looking at the matrix elements occurring in the spectral weights (2.10) as the
overlap of the product of the NM-particle bra state and some single particle state
I with the (N + 1)-particle ket state, spectral weights might be interpreted as a
measure of how well a single electron fits in the A-particle state to give the (M +1)
state. For the simplest case where the many-particle states can be described by
a single Slater determinant, as it is e.g. the case for constant-interaction models,
the sum over all those matrix elements is one if the bra and ket Slater determinants
differ by one occupation number. Otherwise the spectral weight is zero.

If the many-particle states are not well described by a single Slater determi-
nant but rather by a superposition of such determinants, i.e., the electrons in the
quantum dot are correlated, the spectral weights get modified [17]. It is found
that the sum over all matrix elements occurring in the spectral weight (2.10) is
generally smaller than one. This can be seen in Fig. 2.8 where the calculated
spectral weights of two spherical quantum dots with different relative dielectric
constants, hence different interaction strength, are shown. It is found that the
biggest spectral weights are generally decreased for the case of strong interactions
as compared to the weakly interacting case. On the other hand some very small
spectral weights are found for the strongly interacting case which are not present
in the situation of weakly interacting electrons. To gain a better understanding
of the correlation dependence of the spectral weights it is useful to express the
spectral weight (2.10) in terms of single-particle state occupation numbers. This
can be achieved by expressing the N -particle bra state as a linear combination

(s = Za;mkﬁm%\/ﬁl TGy (2.22)
J

with the summation running over all possible Slater determinants j (where j;
denotes the single-particle orbital ¢ occupied in Slater determinant j). Inserting
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Figure 2.8: Spectral weights of two spherical quantum dot with different relative
dielectric constants €., hence with two different interaction strengths, as function of
the channel energy. The weights between the single-particle ground state and the first
100 2-particle states are shown. For degenerate channel energies the spectral weights
are summed up so that weights bigger than one are possible.

this expression into (2.10) leads to

:s’ = |TT|2 Z

l

2

D a30lciy, iy -+ il (2.23)

J

Using the anti-commutator relation [¢;, ¢;]+ = 0 the annihilator ¢; can be moved
to the very left and operate on the vacuum state (0| such that

2.

l

(2.24)

ZCL; <l|Cst Cing—1 """ Cj |SI>
J

where the phase factor (—1)V appearing after anti-commuting can be neglected
owing to the absolute value. Writing this expression as

DD araj(s'ch el - o, 1INy, iy - il (2.25)
1 jk

the sum over single particle states [ can be dropped, since ), |[){l| is the unity
operator. Hence expression (2.25) reads

Y akai (sl - oy i Cines e ) (2.26)
ik
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Since every configuration j occurs in expansion (2.22) only once, k has to be
equal to 7 so that the matrix element does not vanish. Next to that the operators
can be reordered without sign change such that the corresponding creator and
annihilator are next to each other

Z ‘a’J‘ |C CJICJQCJZ T c;;\/s Cin, |Sl>' (2'27)

By introducing the number operator n; = cjcj this expression reads

ss’ - |TT|QZ |a.7| § |Hnjz|8 (228)

When a second electron tunnels into a QD already occupied by one electron this
expression is especially simple. The state |s) is a single-particle state so that
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Figure 2.9: Occupation probability of single-particle orbitals ordered by energy for
the 2-particle ground states in a spherical quantum dot shown for two different inter-
action strengths. Strong Coulomb interaction leads to a distribution of the occupation
numbers over several single-particle orbitals. The spectral weight of a transition be-
tween this 2-particle state and a single-particle states is proportional to the occupation
probability of the single-particle state in the shown 2-particle state. For a transition
involving the single-particle ground state the spectral weight is proportional to the
occupation probability of the state 7 = 0 (first bar to the left) in the 2-particle state
which decreases for increasing interaction strength.

g 7=0.1 m—
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(2.22) has only one term with the electron operator ¢,. Therefore the spectral
weight reads

= |T7[*(s'|2s]s"). (2.29)

ss’ -

Now suppose the first electron is occupying the single-particle ground state. The
spectral weight in the transition rate between this state and the 2-particle ground
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state is nothing else but the occupation probability of the single-particle ground
state in the two-particle ground state (see Fig. 2.9). For the case of vanishing
interaction all occupation numbers are either zero or one, leading to spectral
weights of also zero or one. In case of correlations in the quantum dot states
the electrons get “distributed” over the single-particle states as can be seen in
Fig. 2.9. This leads generally to a suppression of allowed transport channels with
increasing correlations.
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2.3.1 Ground State Channel Blocking in Non-linear Trans-
port

Prominent correlation effects in transport are for example occurrences of negative
differential conductances in the non-linear transport regime [20] or blocking of
ground state transitions in linear conductance due to spin selection rules [18, 19].
In the following another mechanism is described leading to a complete disappear-
ance of the ground state-ground state resonance in non-linear transport through
a spherical quantum dot. Coulomb interaction within the quantum dot is fully
taken into account by the method of exact diagonalization. The detailed discus-
sion of this method and also of the electronic properties of spherical quantum dots
is not needed for the following considerations and hence postponed to Chapter 3.
As an example the charging diagram of a spherical quantum dot in the 2-3-particle
SET-regime is studied (see Fig. 2.10). The two resonance lines intersecting at

Vg (arb. units)
(symun -qre) ASpp/p

Vsp (arb. units)

Figure 2.10: Charging diagram for a spherical quantum dot occupied by 2 and 3
electrons shown in arbitrary units. The parameters of the quantum dot are R =100
nm, £ = 120, ¢, =6.67, and m*/m, = 0.0239 with Coulomb interaction taken fully
into account by an exact diagonalization procedure (for a detailed description of the
quantum dot parameter see Chapter 3). Inset: Enlarged part of the charging diagram
with the vanishing ground state-ground state resonance along e.g. trace b. Below the
threshold gate-voltage the ground state-ground state resonance still occurs (e.g. along
trace a).

zero transport voltage correspond to the transition between the 2- and 3-particle
ground states. Notice that this transition line completely vanishes for gate volt-
ages above a certain threshold (see also trace b in the inset of Fig. 2.10) and
transport is only possible at higher source-drain voltages via a different channel
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involving an excited state. It turns out that at the voltages applied in the proxim-
ity of the vanishing resonance line only two 2-particle states and three 3-particle
states are of relevance. The 2-particle ground state with total spin S =0 (|2, 0))
and the first excited state with S = 1 (]2,1)) on one hand and the 3-particle
ground and the first two excited states with S = 1/2 (]3,0)), S = 3/2 (|3,1)),
and S =1/2 (|3,2)) on the other hand. The six possible transport channels de-
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Figure 2.11: Left: For a transport window below the threshold gate-voltage (e.g. trace
a in Fig. (2.10)) only the ground state-ground state channel u(3,0;2,0) can contribute
to the current. The channel ;(3,1;2,0) is spin-blocked and cannot contribute. Right:
Above the threshold (e.g. trace b in Fig. (2.10)) the top most channel (u(3,2;2,0))
does participate. From this channel a cascade to the 3-particle first excited state is
possible. From this state no open channel is within the transport window and hence
the dot is totally blocked for further transport.

noted by wu(3,14;2,7) corresponding to the transition between the 3-particle state
1 and the 2-particle state j are shown in Fig. 2.11. The channel corresponding to
the transition between the 2-particle ground state and the 3-particle first excited
state, u(3,1;2,0), is blocked due to the spin-selection rules. For gate-voltages
below the threshold the ground state resonance is observed when the electro-
chemical potential in the drain reservoir is in resonance with (3,0;2,0). In this
situation depicted on the left hand side of Fig. 2.11 only transitions between the
ground states are possible. All other channels are either energetically blocked or
involve transitions between two excited states. The situation above the threshold
is different (right hand side of Fig. 2.11). In this situation a transition cascade
is possible which ends in in the first excited state of 3 electrons occupying the
dot (see Fig. 2.12). From this state no transition is available allowing an electron
to leave the dot. The channel p(3,1;2,1) lies energetically below both electro-
chemical potentials so that this channel is Pauli-blocked. The only other channel
1(3,1;2,0) containing the first excited 3-particle state is spin-blocked and hence
not available. Therefore at such a gate-voltage sooner or later the quantum dot
will end up in the first excited 3-particle state which leads to a complete block-



Chapter 2. Sequential Transport in Semiconductor Quantum Dots 24

< |3a0> """ =
|3a0>%|2a0>< N |2’0> """ =

s2%
2

Figure 2.12: All possible transitions starting with the 3-particle ground state for the
situation shown on the right hand side of Fig. 2.11. The cascade shown in red ends in
the first excited state for 3-particles. From this state only the channel leading to the
2-particle ground state is energetically possible but this channel is blocked due to spin
selection rules.

ing of the dot for transport. Paying closer attention to the charging diagram of
Fig. 2.10 one might notice that the threshold voltage is below the point where the
electrochemical potentials of source and drain become simultaneously resonant
with u(3,2;2,0) and 1(3,0;2,0). The reason for this behavior is finite temper-
ature where there is a (small) probability to use the channel u(3,2;2,0) already
below that resonance. As soon as this channel is used the transition cascade
which ends in the first excited 3-particle state, shown in Fig. 2.12, is possible.
Whether this transition cascade leads to a blocking depends on how strongly the
channel 1(3,1;2,1) is suppressed compared to the initial transition u(3,2;2,0).
If it is easier to get in than it is to get out this cascade leads to a blocking. This
is the case if, roughly speaking, the source electrochemical potential is closer to
channel 1(3,2;2,0) than the drain potential to the escape channel p(3,1;2,1).
In the other situation when it is more difficult to enter the cascade than to leave
it, no blocking is possible. The threshold occurs roughly where the energetic
distance of the entrance channel to the source electrochemical potential is equal
to the energetic difference of the escape channel to the drain potential.

A similar blocking mechanism with a spin-blocked transition involved has been
found by WEINMANN et al. [19, 31] in a two dimensional square-shaped quantum
dot. In that work Coulomb interaction in the quantum dot has been treated
within the pocket state approximation [32]. Different to the case discussed within
this work WEINMANN found a transition cascade which ends in a four particle
state within the 3-4 single-electron tunneling regime.

Although the spin selection rule connected to the “escape” channel u(3,1;2,0)
also plays a key role in the here discussed example, the blocking effect still survives
if the spectral weight of this “escape” channel is not zero but small. This is true
as long as the effective rate to reach the blocking state through the cascade is
still much higher than the rate of the “escape” channel. Since channels with
small spectral weights are very likely to occur in correlated systems this effect
is most probably not restricted to spin-blocked channels. This has been checked
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by “artificially” including a non-zero spectral weight for the 1(3,1;2,0) channel
where an effective blocking has still been found for a sufficiently small spectral
weight.
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Chapter 3

Colloidal Semiconductor
Nanocrystals

As discussed in Chapter 2 transport in the weak coupling regime reflects the elec-
tronic structure of the isolated quantum dot. In the following the energy levels
and wave-functions of a spherical quantum dot is studied in detail. Experimen-
tally spherical quantum dots are realized by colloidal semiconductor nanocrystals.
Such nanocrystals are three dimensional structures lying between the molecular
and solid-state regime with the unique feature of properties controlled by size
and shape. Consisting out of a few hundred up to thousands of atoms their typ-
ical sizes range from 2 to 20 nm in diameter. The most reliable and reproducible
methods for producing large amounts of uniformly sized semiconductor nanocrys-
tals involve growth in solution from molecular precursor [33]. Next to spherically
shaped crystals it recently became possible to fabricate quantum cubes, rods, and
quantum wires as long as a few micrometers [34]. Especially rod-shaped nanocrys-
tals recently attracted considerable interest due to their different electronic and
optical properties as compared to the spherical crystals [35]. Apart from a fun-
damental interest in the physics of such mesoscopic structures, nanocrystals are
promising candidates for future applications in the field of nanotechnology. Due
to the controllable optical and electronic properties possible applications range
from light-emitting diodes [36, 37, 38, 39, 40], solar cells [41], and lasers [42, 43],
to biological fluorescence marking [44, 45]. Furthermore the large level spacing
and the extremely small capacitance of these quantized semiconductor dots make
them suitable candidates as active centers in room-temperature single-electron
transistors [46]. Even a very small difference of the gate voltage in the order of a
tenth of a volt can switch the current from off to on.

To probe the electronic structure of semiconductor nanocrystals, size selective
optical techniques, such as photoluminescence excitation spectroscopy (PLE) [47]
has been used, mapping the size dependence of dipole-allowed transitions. An-
other class of experiments is based on tunneling transport yielding complementary
information of the electronic structure. While optical spectra show allowed tran-

27
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sitions between valence band (VB) and conduction band (CB) states, tunneling
transport allows to separately probe CB and VB states. In addition, spectroscopy
of either the single-particle or the few-particle states is possible by controlling the
ratio of the drain and source tunneling rates. In case of probing the few-particle
states single-electron charging effects are observed in those experiments.

At the beginning of this chapter two transport experiments performed on
spherical nanocrystals are reviewed in more detail. The first experiment is the
so-called Scanning Tunneling Spectroscopy (STS) which allows to probe the dis-
cretized energy levels of the quantum dot. The second experiment allows the
direct mapping of the local tunneling density of states of the nanocrystal and is
called wave-function mapping. The main part of this chapter is then dedicated
to the calculation of the energy spectrum of the isolated quantum dot within a
rather simple particle-in-a-sphere model. It will be shown that the STS data can
be at least qualitatively understood by the obtained energy levels. To gain, on
the other hand, an understanding of the wave-function mapping data one has
to take into account the electric field induced by the applied transport voltage
leading to a quantum confined Stark effect.

3.1 Transport Experiments

One of the major obstacles in nanometer-scale electron transport through semi-
conductor nanocrystals is the realization of reliable interfaces between nanocrys-
tals and macroscopic electronic circuits. The many different approaches to ad-
dress this problem can be broadly divided into two categories, one that employs
Scanning Tunneling Microscopy and the other that aims at defining a nanometer-
sized tunnel gap through various novel fabrication methods [46, 48]. The latter
method has the advantage of improved junction stability and therefore, at least
in theory, can provide better energy resolution. On the other hand STM proves
to be a versatile tool for fundamental studies of single-electron transport through
nanocrystals.

Tunneling transport experiments by means of an STM has been, for example,
successfully performed on CdSe [49, 50, 51, 52, 53, 54], CdS [51], InAs [55, 56, 57|
and composite core/shell crystals like InAs/ZnSe [58]. The nanocrystals immo-
bilized by some organic linker molecules on a conducting surface [59] can be
localized by the STM in topography mode. Afterwards the tip is positioned
above the dot, thus forming a tip-dot-substrate double barrier tunnel junction
(DBTJ). In a typical experiment the tunneling current is measured as a function
of the applied tip-substrate voltage. On top of it STM offers the possibility to
tune the properties of the DBTJ by changing the tip-dot distance [52, 57].

In the following two specific Scanning Tunneling Microscopy transport exper-
iments on InAs and InAs/ZnSe nanocrystals are reviewed in greater detail.
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3.1.1 Scanning Tunneling Spectroscopy

A sketch of the experimental setup in an STS experiment on colloidal InAs
nanocrystal quantum dots is shown in Fig. 3.1. To obtain a tunnel spectrum
an STM tip is positioned above a single nanocrystal attached to a gold substrate
via hexanedithiol molecules. Keeping the tip-crystal distance constant the differ-

:

STM

Gold

Figure 3.1: Scanning Tunneling Spectroscopy of a single InAs nanocrystal. The InAs
nanocrystal with a typical radius of a few nanometers is linked to a gold substrate by
1,6-hexanedithiol molecules (HDT). Trioctylphosphin (TOP) molecules form a ligand
shell around the nanocrystal. At 4.2K the tunnel current is measured as a function of
the applied voltage Vsp between tip and substrate.

ential conductance as a function of applied voltage Vsp shows an extended gap
around zero transport voltage followed on both sides by a series of sharp peaks
(Fig. 3.2) [51, 55, 56]. The strongly asymmetric differential conductance with
respect to the gap center indicates strongly different tunneling barriers. In the
experiment the STM tip was retracted from the nanocrystal such that the ap-
plied transport voltage mainly dropped across the tip-crystal barrier. Therefore
the electrochemical potential in the gold substrate stays more or less constant
with respect to the transport channels whereas the electrochemical potential in
the tip is moved up and done by applying a transport voltage. Assuming that
the equilibrium electrochemical potential is somewhere in the nanocrystal’s band
gap tunneling through CB states becomes possible by rising the electrochemical
potential in the STM tip as compared to the transport channels of the nanocrys-
tal. On the other hand lowering the tip potential will eventually allow tunneling
through the lower lying VB states. In the STS data shown in Fig. 3.2 the polar-
ization of the transport voltage was chosen such that tunneling through CB states
occurs for positive transport voltages. The rest of this chapter will focus on the
STS data for positive voltages only and hence on tunneling through CB states.
Paying closer attention to the spectra for positive voltages of Fig. 3.2 one can
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clearly distinguish between two groups of peaks separated by an extended gap.
The first group always consists of two peaks whereas the second group consists
of up to six peaks.

dl/dV (arb.units)
W
N
E

Figure 3.2: Differential conductance of InAs nanocrystals of various radii as a function
of the applied tip-substrate voltage measured by MILLO et al. [55]. Due to asymmet-
ric tunneling barriers capacitances the peaks at positive voltages are associated with
transport through conduction band states.

3.1.2 Wave-function Mapping

Wave-function mapping in semiconductor quantum dots has recently attracted
much interest since it serves as the ultimate tool to study the electronic structure
of those dots [60, 61, 62, 63]. Knowing the actual shape of the electronic density
of states contributes to a better understanding of the QD’s electronic structure.
This knowledge is crucial with respect to the possible importance of semicon-
ductor QDs as the ultimate building blocks of optoelectronic and nanoelectronic
devices. Next to various experimental techniques available for different dot types,
recent STM measurements also allow an imaging of electronic density of states in
colloidal nanocrystals [61]. The experimental setup is similar to the STS experi-
ment shown in Fig. 3.1 but the measurement is performed differently. Other than
in the STS experiment a topographic image was measured in [61] at a transport
voltage above the observed peak structure, Vsp = 2.1 V (see Fig. 3.3), and simul-
taneously the tunneling current. At each point along the topography scan the
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Figure 3.3: Differential conductance as function of the tip-substrate voltage of an
InAs/ZnSe core-shell nanocrystal measured by MILLO et al. [61]. The arrows indi-
cate the voltages at which the current was measured in the wave-function mapping
experiment (Fig. 3.4).

STM feedback circuit was disconnected momentarily, and the current was mea-
sured at three different voltages: Vsp =09 V, Vsp =14V, and Vsp =19V
as indicated in Fig. 3.4 (Notice that in Fig. 3.4 the transport voltage is labeled
as Vp.). Therefore, the topographic and current images are all measured with
the same constant local tip-QD separation. The main factor determining the
current is thus the local density of state in the quantum dot integrated over the
energies within the applied transport window. Interestingly the observed lateral

(€) V5=09V @V STAVI @ E1oN

Figure 3.4: Lateral current distribution for three different tip-substrate voltages in-
dicated in the STS data of Fig. 3.3 measured by MILLO et al. [61]. While there is a
global maximum in the crystal center for voltages associated with the second and last
conductance peak (Vp = 0.9V and Vp = 1.9V, respectively) a local minimum occurs
for the fifth peak (Vg = 1.4V).

current distributions show different symmetries for different transport voltages.
While for the lowest and highest voltages a current distribution with a spherical
symmetry is found, the symmetry of the Vsp = 1.4 V is toroidal. In principal
the symmetry might be broken due to a geometrical deviation from the spherical
shape, but since the exact geometry is not known, in Section 3.3 focus is put on
a less speculative reason for the broken symmetry.
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3.2 Electronic Quantum Dot States

Theoretical models based on effective mass approximation in various degrees
of complexities [64, 65], as well as tight-binding [66, 67] and pseudo-potential
calculations [68] have been performed to obtain the discrete CB and VB states.
In the early work a simple parabolic band approximation was used [69, 70] which
turned out to be a useful approach in order to gain a qualitative understanding.
For a quantitative agreement with experimental data non-parabolicity effects
of the conduction band have to be taken into account [64, 65, 71]. Such non-
parabolic band-structure effects are retained by the multi-band effective mass
approximation proposed by PIDGEON & BROWN [72]. CHEPIC and co-workers
[71] could show that the non-parabolicity of the conduction band can also be
dealt within a single-band approximation by introducing an energy-dependent
electron mass [65]. Non-parabolicity strongly effects the electronic structure of
narrow gap semiconductors such as InAs [73, 74].

In the following sections the calculation of single and many particle CB states
within a single band envelope wave-function approximation is described. It will
be shown that this rather simple model, also called particle-in-a-sphere model,
is able to qualitatively describe the STS data reviewed in the last section. In
order to achieve quantitative agreement with experiments the model is modified
by an energy-dependent effective mass accounting for non-parabolicity effects of
the conduction band.

3.2.1 Single-particle States

The particle-in-a-sphere model of the CB electrons is a single-band envelope
wave-function approximation where the confinement due to the finite crystal size
is modeled by a spherical potential well with finite depth [70]. Within this approx-
imation it is assumed that the influence of the quasi periodic atomic background
potential can still be captured by an effective electron mass. Considering only a
single electron occupying the nanocrystal, Schrodinger’s equation for the envelope
wave-function of a finite spherical quantum well with radius R; reads
o,

_Q—m*v +VO(r — Ry)| ¢¥(r,0,¢9) = EY(r,0, ). (3.1)
Introducing the dimensionless radius = r/R; one finds that the only indepen-
dent parameter is the potential well strength &

[-V24+€0(z—1)] ¢(z,0,6) = E(z,0,0) (3.2)
m -

E = Qm*R%E (3.3)

¢ = 2m*R§V. (3.4
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Here, the subscript on the nabla-operator indicates that the radial coordinate is
replaced by the dimensionless radius . Owing to the spherical symmetry the
solution to this Schrodinger equation separates in spherical coordinates where
the angular part is solved by spherical harmonics

with the principal quantum number n, the angular momentum quantum numbers
[ and m. The radial Schrodinger equation is solved by spherical Bessel functions
inside the well and by spherical Hankel functions of the first kind outside the well
[75]

R(z) = 4j, (\/Ex) (3.6)

R (z) = B (z@x) (3.7)

The usual continuity conditions at the potential step lead to a transcendental
equation for the bound state energy levels

VE Y (z@) s (VE) = 1+ 1jin (VE)] = (3.8)
ie-Ej (VE) [lhl(l)l (z@) — (1 +1)hY) (z@)]

being solely determined by the dimensionless potential well strength £&. The
dimensionless energies solving the transcendental equation are further on called
E..(€) where [ is the order of the Bessel- and Hankel function and n enumerates
the roots the transcendental equation. The normalized coefficients A and B are
also determined by the continuity conditions and evaluate to

1 2
A8 = ' E, 2d
1(€) [/O i ( lfﬂ) x dx
= 2 7%
] En 0o — 2
iy ( l) / hY (z £— Enla:) 22dz (3.9)

h <z £— By 1

Ji ( Enl)
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Figure 3.5: On the left hand side the single-particle energy levels for a potential well
strength ¢ = 40 are shown. Due to the finite well depth only a finite number of states are
bound followed by a continuum of states. On the right hand side the radial part of the
corresponding wave-functions are plotted with the first number of the wave-function
label indicating the principal quantum number followed by the angular momentum
S, P, D, ... in the notation as used in atomic physics. The wave-function penetration
into the potential step at x = 1 can be clearly seen.

3.2.2 Energy-dependent Effective Mass

Calculating the single-particle ground state energy for a dot radius of 3.2 nm and
using the effective mass of InAs it turns out that such a strong confinement leads
to a size quantization comparable to the bulk energy gap of InAs. Hence, for
narrow band semi-conductors such as InAs, non-parabolicity effects of the CB
have to be taken into account which is done in this work by using an energy-
dependent effective mass approach with

m*(E) =m*(0)[1 + E/E| (3.11)

where m*(0) is the bottom CB effective mass and E, the bulk energy gap [76].
The validity of this approach has been approved by Bryant [77] for a dot radius
of 3.2 nm by comparision to a 8 band calculation including CB-VB coupling.
Due to the energy-dependent effective mass, Schrodinger’s equation has to be

| Model | Eip — Eis |
infinite well 1607 meV
finite well (depth = 3eV) 1044 meV
finite well and energy-dependent mass || 319 meV

Table 3.1: Comparison of 15-1P excitation for a 3.2 nm InAs nanocrystal obtained
by the different models. The experimentally observed energy of about 310 meV [56]
compares well with the energy-dependent mass approach.

solved self-consistently until the obtained energy matches the used effective mass.
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The 15-1P excitation energy using the energy-dependent mass is in good agree-
ment with the experimentally obtained value (see Tab. 3.1). This concept of an
energy-dependent mass cannot by generalized to a many-particle Hamiltonian in
a straightforward manner. The reason is that the single-particle energy is not
longer a meaningful quantity such that a constant effective mass is used for the
following few particle calculations.

3.2.3 Few-particle States

In the usual STS experiment the nanocrystals can be charged by more than one
electron. Therefore the so far described particle-in-a-sphere model has to be
extended to a many-particle model including Coulomb interaction. Written for
N electrons the new Hamiltonian reads

N
. ZAvES
H= z_; ( SV ) + Z 47“06”” (3.12)

where the shortcut r;; is introduced for |r; — r;| and with €, being the relative
dielectric constant. For convenience this Hamiltonian can be written again in
dimensionless quantities

Y (V2 4+0@ -1+ > — (3.13)

2mege, hi2 T
i—1 05ri® iy U

N m* R, e’ 1 ]

where the transformation of V2 = R;>V2 has been used.
Neglecting Coulomb interaction leads to a Schrodinger equation solved by a
simple product of N single-particle wave-functions

lp1(r1)) ® |pa(r2)) @ -+ ® [N (rn)) = p1(r1) - - - on(TN))- (3.14)

Here the single-particle wave-functions also include the spin degree of freedom
and they are therefore called spin-orbitals in the following. Due to the fact that
identical particles cannot be distinguished in quantum mechanics, the product
state needs to be symmetrized with respect to the particle permutations. There-
fore, a many-particle state of a non-interacting system is completely described by
the occupied spin-orbitals without any information about which particle occupies
which state. In the following such a state of non-interacting particles is called a
configuration. A fermionic many-particle state has to be anti-symmetric. Such
an anti-symmetric state can be expressed as a so called Slater determinant:

lpi(r1))  lei(r2)) -+ [pi(rn))
[p2(r1))  pa(r2)) -+ [p2(rnN))

|¢(r1,...,rN)<>>:¢% | | | | (3.15)

on () lon(ra)) -+ low(ra))
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where ¢; are the single-particle spin-orbitals with the full set of quantum numbers
t. In order to distinguish between spin-orbitals and Slater determinants the latter
are marked by a minus sign in the superscript |¢{)).

3.2.4 Exact Diagonalization

Since it is possible to expand any wave-function in a complete basis the desired
few-electron wave-function describing a system with Coulomb interaction can be
written as

T(re, e rn)) = D 0 @i, ) O)) (3.16)

where the summation index 7 stands for a certain configuration. Inserting this
expansion in a many-particle Schrédinger equation leads to a matrix eigenvalue
equation where the eigenvalues are the desired total energies

> (e

2

H

1

gaz(-_)> af) = E; a,(cj). (3.17)

The eigenvectors a¥’) are the expansion coefficients of the searched many-particle
wave-function in the occupation number representation. The main task in this
approach is to calculate the matrix elements of the many-particle Hamiltonian
in the chosen basis and to diagonalize the obtained matrix. Approximations
enter this approach due to the computational necessity to keep the basis size
limited. One possibility to define a suitable finite basis set is to order the basis
states according to their energy, e.g., in the absence of Coulomb interaction, and
impose a certain energy cut-off on the basis state. More generally, if # is the
Hamiltonian to which the chosen basis states are eigenstates, the ordering of the
basis states can be formulated as

Hiol Ny =&lel ) with & < & (3.18)

Generally it is assumed that the contribution of a basis state \(pg_)> decreases for
increasing energy such that one can limit the basis size by introducing a cut-off
energy. An indication of the accuracy of the calculated many-particle energies
using a particular basis can be obtained by successively increasing the cut-off
energy and following the change in the obtained low lying energies.

Beyond that the basis size can be strongly reduced by using present symme-
tries. For example the many-particle Hamiltonian (3.13) is invariant with respect
to spatial and spin rotations, i.e., it commutes with the total angular momentum
operator and the total spin operator. Therefore the Hamiltonian can be diago-
nalized in a subspace to given quantum numbers of L,, L?, S,, and S2. This can
be done easily for L, and S, since the Slater determinants are already eigenstates
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to those operators. Different to that the Slater determinants are generally not
eigenstates to L? and 5?2 which leads to the necessity to change to the correspond-
ing basis. For the results presented in this work only the L, and S, symmetry
was used.

Since the chosen basis already solves the non-interacting Schrodinger equation
only the Coulomb operator matrix elements have to be evaluated which is subject
of the following section.

3.2.5 Coulomb Matrix Elements

The most convenient way to deal with matrix elements using many particle Slater
determinants is to write the operators in second quantization. The reason for
this is that the fermionic annihilation or creation operators operating on a Slater
determinant lead again to a Slater determinant with one less or one more particle,
respectively. A two particle operator, such as Coulomb interaction, reads in
second quantization

G =Ygli,9) = 5 3 Gidlo(1,2)ik) af a} axan (3.19)

i<j iyjokyl
Diagonal Matrix Elements

The diagonal matrix elements of (3.19) in the Slater determinant basis are
_ _ 1 . _ _
(@ONG1eD) =5 D (ila(1,2)lk) (¢ af af arar [¢7) . (3.20)

1,5,k
There are two possibilities for the last matrix element on the right hand side
of (3.20) to be non-zero, either (i = k,j = 1) or (i = l,j = k). Therefore the
diagonal matrix elements are

G

N
MAL 1 .. . .. g
(DG ) =5 > [idla(1, 2)lig) - (ilg(1,2)15)] (3.21)
()
The first term is called direct term, the second term has its origin in the anti-
symmetric nature of the fermionic many-particle state and is called exchange
term.

One different Spin-orbital
If the bra and ket state differ by one spin-orbital

(PG J00) = 3 7 Gila(1,2)liky

63,k
x o1 0, ¢ a; af agay [y -y - - @b)(_) (3.22)

G
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with o, €{t1,....,¢¥n} and 1, ¢{¢1, ..., on}, there are two cases were the second
matrix element on the right is equals 1, (I = ¥y, = @y, k = j) and (k = ¥y, j =
©u, % = 1) and two other cases,(l = 1,,] = pu, k = 1) and (k = ¥y, 1 = @y, J = 1),
were the matrix element is —1. In all other cases the matrix element vanishes.
Therefore, the matrix element (3.22) is given by

N

(NG WD) = ()" > [(kpulg(1,2) k)
ke{‘ﬂa#u}
- <k90u‘g(1a 2)‘ka>] . (323)

Two different Spin-orbitals
If the bra and ket state differ by two spin-orbitals

(G [v) = 2 3 Gidlg(1, 2) ) (3:24)

i7j7kil

(_) <(‘01 PR ()Dul PP (PU2 PR SDN| a/;i—a/;—a/kal |¢1 PR wvl « .. wUQ “ .. wN>(_)

with ©u,, 0u, {01, .., ¥n} and ¥y, 0y, €{¢1,...,on}, there are again four
possibilities where the matrix element is non zero. For the case where (I =
wvuk = wvwi = 90’1115.7' = (puz) or (l = wvz’k = ¢v1>i = (pumj = (pul) the
matrix element is +1, and where (I = ¥y, k = Yy, i = Yuyy ] = Quy) OF
(I = Yy, k = Yy, 1 = Yu,J] = Pu,) the matrix element is —1. This leads
to

G

<<P(_)

PN = (L) (04, 00,9 (1, 2) [0 )
- <§0u190u2|g(17 2)\%2%1)) : (325)

Coulomb Matrix Elements

In the system considered the spin-orbitals can be written as a product of spherical
harmonics, a radial part, and the spin function

Pnimm, (T, 0, 0) = Ry (x)Y,™ (0, d)om, (3.26)

with the spin quantum number m,. The basic quantity needed, in order to calcu-
late the Coulomb matrix elements, is (ij|1/z12|kl). By expanding the Coulomb
operator in spherical harmonics the angular degrees of freedom can be integrate
analytically

1 l

Ly e S L)W ) (820
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with z. (z>) being the smaller (larger) of z; and z,. Inserting (3.27) into
(17]1/x12|kl) leads to

y 2. 4x S
<U T1p kl> :5mswms;c5mswmsz;2l+1 <R ity l+1 R”klkR””l>
3 O ) (] v ). s

m=—I

Now the integration over the spherical harmonics can be carried out analytically
and yields [78]

< Y
x\/ (2L + )20+ )(lo é 3) <_i{ﬁj Tln 75;) (3.29)

The arguments of a 3j-symbol have to satisfy m; + ms + m3 = 0 otherwise the
value of the 3j-symbol is zero. This condition is already fulfilled for the first
3j-symbol but requires m = m; —my for the second 3j-symbol. Therefore the last
equation can be written as

(i

2[+1

Y|y = (—1)™

VP V) = Gy g (Y [ Y™ [V (3.30)

On the other hand this means that the summation over m has at most one non-
zero term. Thus this summation can be dropped and all m’s can be replaced
by m; — my; as long as this value is bigger as or equal to —/ and smaller as or
equal to [. However this condition is anyway fulfilled due to another condition on
the arguments of the 3j-symbols: The coefficients have to fulfill j; > |m;| which
means [ > |m; — my| for the second 3j-symbol. Introducing the coefficients

4 ms
c (b, mus 1, my) = \/ﬁ@fzﬂ
= ()™ + D@+ 1)
P EANYANE L
(0 00 (—mj m; — my ml) (3:31)

with the symmetry relation ¢ (I, m;l',m') = (=1)™"™ (I, m';1, m) one can show
that

v )

X

4
! mg—m;
79 i1 Uk = -1 k ‘
¢ (L, mg; U, mg) (-1) ST
x (Y| Y [y e (3.32)
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The radial integral is called Slater integral and is usually abbreviated by R! so
that the desired matrix element reads

ol

xij

kl> = 5msi,msk 5msj ,mslém,-—kmj ;M +my

x ) e (lma; lgmy ) (s 1ymy) R (i k). (3.33)
=0

The c¢'’s can be either calculated or found tabulated in SLATER’S book [78]. For-
tunately, only few [-values in the last summation occur since the the coefficients

c(l,m;l',m') can be non-zero only if the triangle relations for both 3j-symbols
are fulfilled,

V+l>1 & 1>1-1 (3.34)
I+1>0 & 1>1—1 (3.35)
I+0>1 & 1<+l (3.36)

Relation (3.34) and (3.35) can be combined to [ > |l — I'| and since this relation
has to be fulfilled for both ¢!’s in Eq. (3.33) the only [-values which can lead to
non-zero terms are

The left over double integral in the radial coordinates
R'(abjcd) = / / l+1 2222 RY (21) Ry (22) Ro(1) Ry (22) dzy iy
- [ R@k@ [ [ R0 R
+gtt? /00 y~ Ry (y)f%d(y)dy] dz (3.38)

has to be calculated numerically.

3.2.6 Shell-tunneling and Shell-filling Spectroscopy

The number of channels contributing to transport generally increases with in-
creasing transport voltage (see Chapter 2). Especially for tip-substrate voltages
far beyond the single-electron tunneling regime, where particle fluctuations be-
tween zero and up to eight electrons are possible, the number of transport chan-
nels will be tremendous. On the other hand how many channels significantly affect
the tunneling current depends on the ratio between the tunneling rates through
the two barriers. Especially if the tunneling rates differ strongly the number
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of important channels can be dramatically reduced [52]. In the so called shell-
tunneling regime, where the tunneling in rate is much smaller than the tunneling
out rate (', < Tyy), the probability of the nanocrystal being empty is almost
unity independent of the applied transport voltage. Therefore only transitions
between the unoccupied dot and the various single-particle states, calculated in
Section 3.2.1, contribute considerably to the tunneling current. KATZ et al. [57]
and also BAKKERS et al. [52, 53] could show that the single-particle spectrum is
indeed measured and charging does not occur when the STM tip is retracted from
the nanocrystal. Since for positive voltages electrons tunnel from the STM tip
to the nanocrystal, a retraction of the tip results in a reduction of the tunneling
in rate as compared to the tunneling out rate.

The opposite regime where I';, > T’y is called shell-filling regime. In this
regime the probability of finding the maximum possible number of electrons in the
dot is almost unity such that signatures of excited states are strongly suppressed
[52]. Therefore the few-particle ground state-ground state channels dominate the
tunneling current and the corresponding channel energies are discussed in the
following section. From the experimental findings obtained by varying the tip-
crystal distance it can be concluded that the STS data shown in Fig. 3.2 fall into
shell-filling regime.

Charging Energy

An InAs nanocrystal with a radius of about 3 nm is a quantum dot in the strong
confinement regime, i.e., the confinement energy dominates as compared to the
Coulomb energy. In this regime the first two channels available by applying a
transport voltage correspond to ground state-ground state transitions as will be
pointed out in the following. Starting with an unoccupied dot at zero transport
voltage it is clear that the first channel available for transport belongs to the
transition between the empty dot and the single-particle ground state. Denoting
the transport channels between the ith excitation of the (N + 1)-particle state
and the jth excitation of the N-particle state by u(N + 1,4; N, ) this channel
is called 1(1,0;0,0), where the ground state being the Oth excitation. The next
possible transport channel available is either the transition between the empty
dot state and the first excited state for one electron in the dot (x(1,1;0,0)) or the
ground state-ground state transition between one and two electrons (u(2,0; 1, 0)).
Since the single-particle ground state is 2-fold degenerate due to the electron spin,
the ground state-ground state channel is expected to have the lower energy since
the confining energy dominates compared to the Coulomb energy in the strong
confinement regime (see Fig. 3.6). Beyond that in the shell-filling regime, where
the tunneling out process forms a bottleneck for the current, an additional chan-
nel which allows a higher particle fluctuation leads to a considerable increase
of the tunneling current and therefore to a strong resonance in the differen-
tial conductance. Hence the first two differential conductance peaks at positive
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Figure 3.6: The three lowest transport channels available in a 3.2 nm InAs nanocrystal.
The first and second transport channel correspond to the first two ground state-ground
state transitions.

voltages in Fig. 3.2 correspond to the ground state-ground state transitions be-
tween the empty-single and single-double occupied quantum dot, respectively.
The energy difference between those peaks is given by the ground states energies
Ey(N = 2)—2Ey(N = 1). Calculating this charging energy for an InAs nanocrys-
tal of radius R; = 3.2 nm using the bulk dielectric constant €7, 4, = 15.15 leads
approximately 50 meV ! which is about half the experimentally observed value
[56]. There are different possible reasons for the discrepancy between the mea-
sured and theoretically obtained charging energy. On one hand the electronic
wave-functions leak out of the nanocrystal considerably due to the finite po-
tential well depth (see Fig. 3.5). Outside the nanocrystal the relative dielectric
constant is one and hence Coulomb interaction is enhanced. Also the nanocrystal
surface becomes polarized due to the electrons already occupying the dot. Hence
an entering electron has to pay additional energy by overcoming the interaction
with those polarization charges [79]. In order to account for those effects one
needs to replace the Coulomb operator by the proper Green’s function. On the
other hand mirror charges induced in the nearby metallic reservoirs generally lead
to a screening of the Coulomb interaction and hence to a reduction of the charg-
ing energy [80]. Whether the proper Green’s function together with the mirror
charges would lead to a better value for the charging energy will be investigated
in future work.

Within this work the relative dielectric constant is used as a fitting parameter
to compensate for the neglected polarization charge and screening effects. The
experimentally observed charging energy of about 100 meV for a 3.2 nm InAs
nanocrystal (see Fig. 3.2) is obtained for a relative dielectric constant of about
€ = T7.6.

!In this calculation the potential well depth has been chosen to be 5 eV which is approx-
imately the work function of InAs bulk material. The effective mass used is 0.0545m,; this
value has been obtained self-consistently for the single-particle ground state using the energy
dependent mass (3.11).
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Ground State Channels

In Fig. 3.7 the ground state channel energies for up to eight electrons are shown.?

Qualitatively those transport channels reflect the experimentally observed reso-

Figure 3.7: Ground state channel energies for up to eight electrons. The quantum
dot parameters are Ry = 3.2 nm, £ = 56.84, m*/m, = 0.0705, and ¢, = 7.62. The
gap indicated by the arrow is due to Hund’s rule slightly enhanced as compared to the
other gaps within this group of six transport channels.

nance sequence in the differential conductance shown in Fig. 3.2. The six peaks
corresponding to the filling of the 1P-shell fall into two equal peak groups sep-
arated by an slightly extended gap (indicated by the arrow in Fig. 3.7). The
reason for this gap is that exchange energy is saved by aligning spins following
Hund’s rule. Notice that Hund’s rule cannot be observed in the STS data shown
in Fig. 3.2. The reason might be the electric field induced by the tip-substrate
voltage. It will be shown in the subsequent sections that such an external field
strongly influences the electronic structure.

3.2.7 Excitation Spectra

An interesting effect of the strong confinement regime is related to the excita-
tion energies as a function of the number of electrons occupying the quantum
dot. In Fig. 3.8 the lowest excitations conserving the total spin are shown for a

2The ground state-ground state channel energies are calculated using the relative dielec-
tric constant of €, = 7.6, the effective mass m*/m, = 0.0705 which has been obtained self-
consistently for the single-particle 1P-state using the energy-dependent mass (3.11). This ef-
fective mass is chosen since at least for the higher particle numbers most electrons occupy the
1P-levels.
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spherical quantum dot, where it is found that the lowest excitation energy gener-
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Figure 3.8: Calculated ground state excitation spectra for the low lying excitations in
a spherical quantum dot for different number of electrons. Only excitations conserving
the total spin are shown which corresponds to the selection rule in the resonant inelastic
light scattering experiment performed by BROCKE et al. [81, 82]. The parameters of
the quantum dot are £ = 40, R = 10 nm, m* = 0.0293m,., and ¢, = 8.33. For increasing
number of electrons occupying the quantum dot the lowest excitation is shifted to lower
energies.

ally decreases with increasing number of electrons. A qualitative understanding
of this excitation energy reduction with increasing number of electrons can be
gained by first order perturbation theory in the Coulomb operator V.. In the
non-degenerate case the first order energy correction is given by

o) = ;i [(i3IVe(1.2) i) = (iiIVe(1,2)lji)]  (3.39)

2y

EW = (o],

which is the sum over the Coulomb operator expectation values of all possible
anti-symmetric electron pair states. Calculating the energy correction (3.39) of
the ground and first excited states for up to 6 electrons in the quantum dot only
the matrix elements in Tab. 3.2 occur. Notice that the Coulomb interaction is
strongest if both electrons occupy a s-type orbital and generally decreases if one
or both electrons occupy a p-type orbital. This can be understood by the larger
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‘ Matrix element H opposite spin H parallel spin ‘
(15 15]V,|15 18) 2.0227 -
(18 1P,|V,[1S 1P,,) 1.8214 1.4202
(1P, 1Py, |V,|1P,, 1Py, 1.8675 -
(1P41 1Py |V,[1Pz; 1Ps,) 1.7468 1.5054
(1Py 1P |V,[1P) 1Py4) 1.6261 1.5054

Table 3.2: Matrix elements of anti-symmetric two-particle states occuring in the first
order energy correction of the ground and first excited state of up to 6 electrons. The
energies are given in units of 4/2m* R? where the same parameters as in Fig. 3.8 have
been used.

spatial extension of the p-orbitals compared to the s-orbitals which is typical for
the strong confinement regime [83].

The lowest excitation for up to six electrons is obtained by transferring an
s-electron to a p-state. On one hand this excitation cost the energy difference
between the single-particle s- and p-state but on the other hand the Coulomb
energy between this “transfered” electron and all others gets generally reduced.
First of all, the contribution of the two s-electrons to the few-electron ground
state is in the excited state replaced by an energetically lower s-p contribution
(compare first and second row in Tab. 3.2). Second, all s-p terms contributing
to the ground state in which the “transfered” electron is involved are in the
excited state replaced by p-p terms which have on average a smaller contribution
to the energy (three last rows of Tab. 3.2). While the number s-s interaction
terms is one for all ground states between two and six electrons, the number of
s-p interaction terms increases with increasing number of electrons. Therefore
the number of s-p contribution getting replaced by the energetically lower p-p
contributions increases with increasing occupation. This is the reason for the
reduction of the lowest excitation energy with increasing number of electrons
occupying the quantum dot. Most states shown in Fig. 3.8 are degenerate which
requires a diagonalization in the degenerate subspace. This leads to a more
complex perturbative analysis which does not lead to further insights.

In principal this reduction of the lowest excitation energy can be observed in
the single-electron tunneling regime found in a charging diagram. Unfortunately
charging diagrams cannot be obtained using an ordinary STM due to the lack
of a gate electrode. Nevertheless the reduction of the lowest excitation energies
has been recently measured by BROCKE et al. [81, 82] using resonant inelastic
light scattering on self-organized InGaAs quantum dots [84, 85]. Although the
geometric shape of self-organized quantum dots is not spherical but rather pyra-
midal the energy reduction of the lowest excitation seems to be a rather general
effect of quantum dots in the strong confinement regime. The same effect was
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found in the calculated excitation spectra of a two-dimensional quantum dot with
harmonic confinement potential [82].
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3.3 Quantum Confined Stark Effect

While the experimental data obtained in an STS experiment could be understood
by the introduced particle-in-a-sphere model a discrepancy occurs in the inter-
pretation of the wave-function mapping experiment: It was found that tunneling
through a p-type orbital can lead to a non-spherical symmetry of the electronic
density (Fig. 3.4). The particle-in-a-sphere model introduced reveals completely
degenerate 1P-states due to the spherical symmetry of the confining potential.
This implies a spherically symmetric local density of states (LDOS) due to the
superposition of degenerate transport channels. Since this was not observed the
spherical symmetry was broken in the experiment. In the following section it
is shown that the tip-induced electrostatic field results in a lifting of the 1P
degeneracy in such a way that agreement with experiment is achieved [86, 87].

The quantum confined Stark effect presented in the following sections is cal-
culated for InAs nanocrystals which is in contrast to the wave-function map-
ping experiment which was performed on InAs/ZnSe core-shell systems. Those
compound nanocrystals still obey a spherical symmetry such that the results pre-
sented will still hold qualitatively. Quantitatively the electric field strength inside
the quantum dot might change due to the different dielectric constants and also
the wave-functions will change and energy levels will shift due to the different
effective masses and band gaps in InAs and ZnSe.

3.3.1 Tip-induced Electrostatic Field

In the STS setup of Fig. 3.1 with voltages up to Vsp =~ 2 V [61, 56] applied
on a tip-substrate distance of a few nanometers, the nanocrystal is exposed to a
considerable electric field. While an STM tip has to terminate in a single atom in
order to achieve atomic resolution, the macroscopic tip size is usually about one
order in magnitude larger than the nanocrystals studied here [88]. In contrast to
a macroscopic metallic tip, a single terminating atom is not able to substantially
focus the electric field. Therefore a homogeneous field between tip and substrate
is assumed in absence of the QD. Since the considered InAs nanocrystals are
surrounded by ligands with a quite different relative dielectric constant compared
to InAs, the QD is modeled as a jacketed dielectric sphere (Fig. 3.9). Extending
the text book calculation of the electric potential ¢y, 4, inside a dielectric sphere
placed in a homogeneous field &y [89] to such a structure leads (in spherical
coordinates) to:

9¢5ELomT cos 0

¢1(r,0) =
1(r,6) 262 + €169 + dez + 261 + 2(%)3[6162 + e — € — €3]

(3.40)

with €, = 15.15 [90] and e; = 2.1 [91] being the relative dielectric constants
of InAs and the ligands, respectively. R; is the InAs core radius and R, the
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Figure 3.9: Left: Sketch of the dielectric core shell sphere exposed to a homogeneous
electric field. Right: Electrostatic potential through the center of sphere along the
field direction calculated for a 3.2 nm InAs nanocrystal.

total radius including the ligand shell (see Fig. 3.1 and 3.9). As in the case of a
dielectric sphere without a shell [89] the core potential ¢y, 45 is still the potential of
a homogeneous field. The field &,y occurring in (3.40) is not directly accessible.
It is obtained by equating the voltage Vsp with the potential drop between tip and
substrate of the inhomogeneous field outside the QD. Furthermore the knowledge
of the total potential drop between tip and substrate also allows for the direct
calculation of the lever arm needed to find the actual energies from the measured
transport voltages (see right hand side of Fig. 3.9).

3.3.2 Single-particle Calculation

The single-particle Hamiltonian including the tip-induced electrostatic field reads

2m* R3e

H=-V2+£60(z—1)+ =

€ x cosb. (3.41)
Since a homogeneous electric field along the z-axis does not destroy the azimuthal
symmetry m is still a good quantum number. Mathematically this can be seen
most conveniently by expressing the Hamiltonian using the angular momentum
operator
gL _0(.9 2m” Rje
x? | h? Ox ox

+E0( - 1)+ =

Excosl (3.42)
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with
A 1 0 0 1 02
L*= | — = (sinf=:) + —5—=— A4
[sin 590" 39) * 57 8¢2] (343)
A 0
L, =—ih— 44
i (349
[P,ﬁz] = 0. (3.45)
Starting from this Hamiltonian it can be easily seen that
[HL} —0  and [ﬁ[,f}} £0 (3.46)

where L? does not commute with H due to the f-dependent electrostatic poten-
tial.

Matrix Elements

Looking at the matrix elements of the electric field operator in the basis of the
single-particle states (3.5) it turns out that the angular degrees of freedom can
be again integrated analytically,

(20 + 1)(20; + 1) (1; — my)!(l; — my)!
(l; +mi)'(l; + my)!

(l; +my)!

(2L; + 1)(20; + 1)(l; — my)!

(61, -1, (i + M) + 6,41, (I — mi + 1)]

/ PR (@) Ry, (2)d2. (3.47)
0

Those matrix elements are non-zero only if m; = m; and [l; — [;| = 1. The
remaining radial integration can be calculated numerically without any problems.

(il cos O [yp;) = 5mi,mj\/

Perturbation Theory

Ordinary perturbation theory yields for the energy

Imao|€ u cosb|n'I'mao)|?
E~ E [ . 3.48
nimo T y l’.lZ:H:l E, — E,p ( )

Notice that the 1st order correction vanishes since the electric field couples only
states with I’ = [ £+ 1 (3.47). Hence, in contrast to the hydrogen atom there is
no first order Stark effect. The linear Stark effect in hydrogen is caused by the
degeneracy between states with different angular momenta (for example the first
excited states 2s and 2p). Although the 1.5 state also shows a Stark effect focus
is put here on the first excited 1P state, with regard to the experimental results
obtained by MILLO et al. [61].
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Figure 3.10: Quantum confined Stark effect for the ground (left graph) and first excited
1P-states (right graph). The Stark effect partly lifts the degeneracy of the 1P-states.
In the right graph the perturbative results calculated for an infinite quantum well are
compared to the results of the exact diagonalization.
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Figure 3.11: Electronic density of the 1P envelope wave-functions calculated within
a particle-in-a-sphere model. The densities illustrate qualitatively the different Stark
effect on the 1P state, although they were calculated in an infinite spherical well and
neglecting the non-parabolicity of the conduction band. Top and bottom show the
1P(m = 0) and 1P(m = %1) densities. Without electric field all 1P-states are degener-
ate as shown on the left hand side. Applying electric field of 0.18 V/nm the degeneracy
is lifted in such a way that the toroidal 1P(m = +1) states are energetically lowered
(right hand side).
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The 1P degeneracy is lifted by the quadratic Stark effect (see Fig. 3.10), so
that the energy of the 1P(m = +1) wave-functions oriented perpendicular to the
field (bottom right in Fig. 3.11) are lowered compared to the 1P(m = 0) wave-
function oriented along the field (top right in Fig. 3.11). This behavior can be
qualitatively understood by looking at the electronic densities. In an electric field
energy is gained by moving the electronic densities opposite to the field direction.
The 1P(m + 1) densities shown in the bottom row of Fig. 3.11 can move quite
freely in that direction with only a small increase in confinement energy. Hence
a strong dipole moment is induced leading to a pronounced Stark effect. On the
other hand the cost in potential energy for the 1P(m = 0) density when moving
into the same direction is much higher due to the close confinement potential
step. This leads to a smaller induced dipole moment as can be seen in the top
row of Fig. 3.11, and therefore to a smaller quadratic Stark effect.

Consequences for the Experiment

Calculating the 1P-state splitting for a 3.2 nm InAs nanocrystal shows that the
degeneracy is lifted by about 15 meV which should be experimentally observable
(see Fig. 3.12). Therefore the third and fourth electron entering the nanocrystal
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Figure 3.12: Stark splitting of the 1P, level in a 3.2 nm radius InAs nanocrystal as
a function of the applied tip-substrate voltage. For calculating the QD potential the
ligand shell was taken to be Ry — R; = 0.5 nm thick whereas the tip-shell distance
was taken as another d = 0.5 nm (see Fig. 3.1). 3 eV was used for the depth of the
confining potential and to get the energy-dependent mass, the InAs bulk energy gap
E, =0.42 eV [90] and the effective mass m*(0)/m, = 0.0239 [90] were used.

will occupy the energetically lower 1P(m = £1) state with a toroidal symmetry.
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The more subtle case of the fifth electron will be discussed in detail in the following
section.

3.3.3 Few-particle Calculations: Stark versus Exchange

The many-particle Hamiltonian (3.13) extended by the electric field operator
reads

l 2m* R3e
H = - E |:Vil+f®($z—1)+Tlg$1 COSGZ'
i=1
m* Rie? 1
—_— —. 3.49
2mepe 2 — xij (3.49)
1<]
Writing the electric field operator in second quantization
h?  2m*ae€ , _
He = T E (i| cos 0z |7) a;f a; (3.50)

ij
the Slater determinant matrix elements can be calculated similarly as the Coulomb
matrix elements. For the diagonal matrix elements one obtains

2 * 3
n th‘; © S (il cos b i) (3.51)

i

(0 e [07) =

2m*a?

In case the bra and ket configurations differ by one spin-orbital, the electron
operators a; and a; occuring in (3.50) have to operate on the corresponding
spin-orbital in the bra and ket configuration, respectively. Otherwise the term
is zero due to the orthogonality of the spin-orbitals. If ¢, and v, are the two
different spin-orbitals in the bra and ket state, the matrix elements evaluate to

B2 2m*ale€
2m*a? h?

<¢(_)| Hg ‘(p(_)> = (=1)"t {pu| cosbx |1hy) . (3.52)
Knowing all matrix elements the Hamilton matrix including both Coulomb in-
teraction and the influence of the tip-induced electric field can be calculated and
Schrdodinger’s equation can be again solved by the exact diagonalization proce-
dure.

Five Electrons Ground State

An interesting situation arises for the fifth electron tunneling through the nanocrys-
tal, since a competition between Stark energy on one hand and exchange energy
on the other hand arises. Depending on how strong the splitting of the 1P states
is, two different ground states are possible. For a small splitting the configura-
tion with all three p-type orbitals, 1P(m = +1) and 1P(m = 0), occupied each
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by one electron with their spins aligned will be favored (see configuration A in
Fig. 3.13c). In this configuration the fifth electron has to pay some Stark energy
but gains exchange energy. On the other hand if the splitting becomes too big it
is energetically more favorable for the fifth electron to occupy also a 1P(m + 1)
state, thereby saving Stark energy. Due to the necessary spin flip, however, it has
to pay exchange energy (see configuration B in Fig. 3.13c). This competition be-
tween Stark and exchange energy leads to a ground state crossing with increasing
electric field strength (see Fig. 3.14). The interesting point is that this crossing

(a) (b) (©)
1P 1P 1P 1P
El +—~ gl ++7 g ++ -+ |l 4+
m 1 -1 0 m 1 -1 0 m 1 -1 0 ml -1 0
415 415 418 4+ 18

Configuration A Configuration B

Figure 3.13: (a) Leading ground state configuration for three electrons. (b) Ground
state configuration according to Hund’s rule for 4 electrons occupying the nanocrystal.
(c) Two possible ground state configurations for five electrons.

also corresponds to a change in the LDOS symmetry from spherical to toroidal
by increasing the electric field. In contrast to the 3- and 4-electron channel the
LDOS symmetry of the 5-electron channel can be controlled by the electric field
applied to the nanocrystal.

Unfortunately, the electric field strength applied to the nanocrystal is de-
termined by the resonance condition for tunneling. Therefore, it is experimen-
tally not straightforward to switch the LDOS symmetry forth and back between
toroidal and spherical in a wave-function mapping experiment. For a 3.2 nm InAs
nanocrystal the 5-electron channel is available at a tip-substrate voltage of about
1.5 V leading to an electric field of about 0.1 V/nm. As indicated by the vertical
arrow in Fig. 3.14 the LDOS symmetry of the ground state is still spherical at
this field strength. On the other hand the STS peak positions depend on the
QD radius such that the question is stressed how the LDOS symmetry of the
5-electron ground state changes with the nanocrystal radius.

In order to answer the question how the ground state symmetry depends on
the crystal size the scaling behavior of the Coulomb operator versus the electro-
static potential in (3.49) with respect to the dot radius is studied. Whereas it is
clear that the Coulomb operator scales with R; ' the scaling of the electrostatic
potential is not easily foreseen. As shown in Eq. (3.40) the electrostatic potential
&, x Epom(R1) - Ry scales linearly with the dot radius and electric field strength.
This field also depends on the dot size, but in a different way than in a parallel
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Figure 3.14: Ground and first excited state energies of five electrons versus the electric
field strength inside a 3.2 nm radius InAs nanocrystal. The found ground state crossing
corresponds to a change in the LDOS symmetry. For a 3.2 nm dot the 5-electron channel
is available at a tip-substrate voltage of about 1.5 V leading to an electric field strength
indicated by the vertical arrow.

plate capacitor: It scales roughly with Ehom o Vsp(Ry) - Ry %% The reason for
this peculiar scaling behavior is mainly caused by the fact that the tip-crystal
distance is kept constant while varying the crystal size. Last but not least the
applied tip-substrate voltage Vsp depends on the energy needed to add a further
electron to the crystal which is again a function of the dot radius. In an infi-
nite potential well the single-particle energy levels scale with R; % but due to the
finiteness of the studied potential well and the fact that the effective mass in-
creases with increasing energy, leads to a scaling of roughly Vsp o< R;*. Putting
all together it is found that the electrostatic potential scales with ®, oc Ry %*.
Therefore, the LDOS symmetry changes from spherical to toroidal with increas-
ing crystal radius, since Stark energy becomes in bigger crystals more important
than exchange energy.

Especially the scaling of the electrostatic potential is not straightforward and
therefore it is necessary to check this result by a full calculation. To this end, the
charging energy needed to add the fifth electron to the QD has to be calculated
in the first step. In the second step the tip-substrate voltage needed to open this
5-electron channel has to be calculated. This voltage is found by multiplying the
charging energy by the pre-factor obtained from the electrostatic potential drop
along z-direction (see Fig. 3.9). Knowing the applied tip-substrate voltage, the
electric field strength in the QD can be calculated by Eq. (3.40) in the last step.
Since the charging energy calculated in the first step also depends on the electric
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Figure 3.15: The energy difference between the 5-electron ground state and first ex-
cited state is shown as a function of nanocrystal radius. For an energy difference greater
than zero, configuration B shown in Fig. 3.13c is the new ground state which has a
toroidal LDOS symmetry.

field, the whole cycle is repeated until self-consistency is obtained. Now knowing
the electric field strength the ground state configuration for the considered QD
size and therefore the LDOS symmetry can be determined by going back into
Fig. 3.14. This calculation has been done for six InAs crystals with radii between
about 2 and 6 nm and the energy difference between configuration A and B
versus the dot radius is shown in Fig. 3.15. In this plot a number smaller than
zero corresponds to a spherical and a number bigger than zero to a toroidal
ground state symmetry. As already predicted by the scaling considerations it is
found that the LDOS symmetry changes from spherical to toroidal by increasing
the crystal radius. Using the material constants for InAs this transition occurs at
a dot radius of about 4 nm. In Fig. 3.16 the electronic density integrated along
the z-axis is shown right before and right after the ground state crossing occurs.
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Figure 3.16: Five-particle density integrated along the tip direction for a radius of
4 (left hand side) and 4.3 nm (right hand side), just before and after the crossing,
respectively. The qualitative change of the symmetry from spherical to toroidal can be
clearly seen.



Chapter 4

Co-tunneling Effects in Charge
Transport

According to the results obtained by the master equation approach with transition
rates obtained by Fermi’s Golden Rule described in Chapter 2, transport through
a quantum dot can be understood as sequential processes of single electrons
tunneling through either the left or right barrier. This leads for example to
the consequence that zero-temperature transport is only possible if one or more
transport channels are energetically inbetween the electrochemical potentials of
the source and drain reservoir. Otherwise the quantum dot is completely blocked
for transport. In contrast to that one might also look at the barrier-dot-barrier
structure as a single, more extended, tunneling barrier connecting directly the
left and right reservoir. From this point of view one would conclude that in
principle tunneling from the left to the right reservoir should be possible for any
energy. Although the tunneling rate of such a process is expected to be small
due to the extended barrier, it might play a dominant role whenever sequential
tunneling is suppressed. And indeed calculating the second order contribution to
the Golden Rule rate [5] reveals off-resonant tunneling which is commonly called
co-tunneling. It turns out that co-tunneling is the dominant transport process
whenever sequential tunneling is suppressed by the Coulomb blockade and leads
to a current leakage which might be of importance for single electron devices such
as, e.g., the single electron transistor.

It seems to be plausible to treat co-tunneling similar to the sequential case
described in Chapter 2 where the tunneling rates, calculated using Fermi’s Golden
Rule, are used to set up a “classical” master equation. AVERIN et al. [11, 12]
have calculated the co-tunneling rates using Fermi’s Golden Rule and found two
different co-tunneling processes. In the case of elastic co-tunneling the energies of
the initial and final dot state are equal, whereas for inelastic co-tunneling those
energies differ. While the Golden Rule approach proved to give good results
deep within the Coulomb blockade regime problems occur in the vicinity of the
first order resonances [5]. SCHOELLER et al. [10] were able to derive a formally

o7
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exact kinetic equation of the reduced dot density operator for the non-equilibrium
situation which can be systematically set up in perturbative orders in the tunnel
coupling. They could show that this kinetic equation reveals in lowest order
the result of the Fermi’s Golden Rule rates together with the master equation
reviewed in Chapter 2. Other than that, the next higher order differs from Fermi’s
Golden Rule in 2nd order which leads especially in the vicinity of the first order
resonances to new results [92, 93].

Electron co-tunneling has received considerable attention over the last decade
and various experiments have been performed mostly on metallic and large semi-
conductor quantum dots with essentially continuous excitation energies. Inelas-
tic co-tunneling in normal-metal junctions was first experimentally observed by
GEERLIGS et al. [13] and elastic co-tunneling by HANNA et al. [94]. GLAT-
TLI et al. [95, 96] as well as PASQUIER et al. [97, 98] observed co-tunneling within
the Coulomb blockade regime in a 2-D electron island formed by a lateral confined
2-D electron gas of a GaAs/GaAlAs heterostructure by means of Schottky gates.
An advantage of this kind of devices is the tunability of the tunneling barriers. It
allowed the authors to show that the current within the Coulomb blockade regime
shows a quadratic dependence on the tunnel barrier conductance indicating a sec-
ond order process. Non-linear transport measurements deep inside the Coulomb
blockade regime revealed a cubic dependence of the tunnel current on the applied
voltage which was in agreement with earlier results on metallic dots. A linear
current voltage characteristic, existing for higher temperatures was measured in
smaller silicon based dots [99, 100] with higher charging energy. Most recently
co-tunneling was measured in the strong confinement regime [101], i.e., in dots
where the excitation energies are in the order of the charging energy. Transport
measurements in such dots, formed from a deep etched rectangular heterostruc-
ture, show a clear transition between elastic and inelastic co-tunneling.

In the first part of this chapter the perturbative approach to electron tun-
neling through quantum dots is reviewed in detail. It is shown how the kinetic
equation of the reduced dot density matrix is derived and a systematic pertur-
bative approximation is obtained. After explicitly showing how this formalism
leads in lowest order to the Golden Rule results of Chapter 2, the co-tunneling
contributions are explicitly discussed. In the second part results of the steady
state tunneling current including co-tunneling are presented for an experimen-
tally relevant system [101] of a quantum dot containing two states with finite
Coulomb interaction. It is found that in such a system co-tunneling leads to
a complex signature of the quantum dot’s excitation spectrum even within the
Coulomb blockade regime.
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4.1 Real-time Transport Theory

In the following section the Real-time Transport Theory (RTT) developed by
SCHOELLER et al. [10, 102] is reviewed with respect to the quantum dot system
considered in this work. This transport theory is based on a real-time diagram-
matic approach which is formulated for the non-equilibrium situation. As in the
usual perturbation theory, the basic idea is to integrate out all reservoir degrees
of freedom and set up a formally exact kinetic equation for the reduced density
matrix of the dot. The kernel of this integro-differential equation can be written
as a sum of diagrams and can be calculated in a systematic perturbation expan-
sion in the tunnel coupling. Similar to the calculation of the reduced density
matrix any expectation value can be calculated, where the tunneling current is
of major interest in this chapter.

4.1.1 Hamiltonian

The Hamiltonian considered is again the Hamiltonian (2.1) of Section 2.1.1. Since
the time-evolution operator will play a key role in the subsequent considerations
an useful unitary transformation is introduced which allows to write the time-
evolution operator in a very compact form. Applying the unitary transformation

U (t, ty) = 'F (3 Vet Vo R) t—to) (4.1)
to the time-evolution operator of some Hamiltonian H leads to
Ut t0)To {eH10-0 L U (8, 10) = Tpe# I 470 (4.2

Here, Dyson’s time-ordering operator Tp orders according to the mnemonic rule
“later goes to left” without any sign changes. The “new” Hamiltonian H ap-
pearing in the exponent of the transformed time-evolution operator is given by
the transformation H = UTHU — ihU™" (2U) (see Appendix B). Following the
steps of Appendix B.1 this leads for the Hamiltonian (2.1) to

H(t) = Hr+ Hp+ Hr(t)
Hy = ) ewra ap
k,r

Hp = Y E,P, (4.5)
Hrp(t) = ZT;l(t)a;:rcl—l—(h.c.) (4.6)
k,l,r

with the transformed tunneling matrix element

TL(t) = Tge (Vo Voli-to), (4.7)
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4.1.2 Formalism and Diagrams

Due to the tunnel coupling of the quantum dot to two electronic reservoirs, which
are assumed to be each in thermal equilibrium at the same temperature but with
different electrochemical potentials, the quantum dot system will be driven out of
equilibrium. In order to treat this non-equilibrium problem, the basic idea is to
introduce an additional “artifically” time-dependence of the tunnel Hamiltonian
in such a way that the coupling does vanish for times ¢ < #:

= H({t) = Hgx+Hp+Hy(t) and Hp(t)=0fort <ty  (4.8)

Therefore, the total density operator factorizes into a reservoir and a dot part for
times prior to %

plt)=p= Py pe for t <t (4.9)

with the grand canonical reservoir density operators p¢? = e A(Hr=2, mlNe) /7 (7,
being the product of the partition sums of the left and right reservoir) and the
initial dot density operator 150. Now, by utilizing the time-evolution operator in
the interaction picture Uy (t,to) = TDef% Jio @ HE(E) (see Appendix D) the density
operator can be obtained at any time later than ¢,

p1(t) = Ur(t, to) pr(to)U; (2, to) (4.10)

with the subscript ; indicating that the operators are written in the interaction
picture. The main advantage of the time-evolution operator is that this operator
can be systematically expanded in orders of the perturbation in a straightforward
manner. Knowing the total density operator the quantum statistical expectation
value of some operator A(t) can be written as

(A = Tr (p()Ar(t))
= Tr (Pl(to),a‘ng;’(t,to)fh(t)UI(t,to)> (4.11)

where the invariance of the trace under even permutations has been used. Choos-
ing ¢y as the point in time where the states in the Schrodinger picture and inter-
action picture coincide the dot density operator can be written as Py(ty) = F.

Reduced Density Operator

A similar expression as (4.11) can be derived for the reduced dot density operator

A

P(t) = Trg[p(t)] and its matrix elements,

Py(t) = (s|P(t)]s'). (4.12)
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Here, Trr denotes the trace over the reservoir degrees of freedom only. A matrix
element of the reduced density operator can be written as

Py(t) = (s|Trr[p(t)]]s")
= ) (slsi)(s1|Trr[p(1)] |s")

S1

= S (s Tralp(e)] 1) slsa)

= Y i Tra p(0)] Pasls)

S1

Py(t) = Tr [ﬁ(t)ﬁs,s] (4.13)

which means that a matrix element of the reduced density operator is the quan-
tum statistical expectation value of the projector Py,. Therefore the same math-
ematical transformations as for the operator A can be applied leading to

Po(t) = Tr (Poﬁng;(t, to)PL ($)Us(t, to)) . (4.14)

For the sake of simplicity, in the following focus will be put on the explicit ex-
pression for the reduced density matrix. Anyway, obtaining the corresponding
expression for an arbitrary quantum statistical expectation value is straightfor-
ward due to the similarity of Eq. (4.11) and (4.14).

Keldysh Contour

Looking at Eq. (4.14) it is found that the trace contains two time-evolution
operators

U (t,t0) Pl () Ur(t, 1) =
To {e*%ff‘j dt’ﬁ%@’)} P (Tp {e‘%ffo '“’F’W)} (4.15)

where Tp is the time-ordering operator which orders the other way round as
compared to Tp since this operator originates from the adjoint time-evolution
operator. For a systematic perturbative expansion it is useful to rewrite this
expression such that only one exponential occurs. This can be achieved by intro-
ducing the so called Keldysh integration contour and the Keldysh time-ordering
operator Tk (see Appendix E) such that

UF (t,0) PE (U1 (8. to) = Tic {e i I W HHOPE (1)} (4.16)

The integration contour is an integration forward in time from ¢y to ¢ followed
by the corresponding integration backward in time [, = ftz + f:o. The Keldysh
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time-ordering operator T orders in such a way that the operator with the later
time along the Keldysh contour appears to the left without any sign change.
Returning to (4.14) the reduced density matrix can be written as

Py (t) = Tr (Poﬁ;qTK {e—%fx dt’H%<t’>Psf,s(t)}) -

S° (ks Bk (RS T {e R e PO, ()} Iks)  (417)

s k! o
k,5,k',s

and with (k5| Py|k'5'") = 8y P, this is found to be

Py (t) = Tr (Popf Ty { e Ix V1O P] (1)]) =
- Ph(®|Tra (§iTic {e M “HORL @) }) 5. (418)

Expanding the Keldysh ordered time-evolution operator the matrix elements of
the reduced dot density operator read

Peg ( Z o —(——) /dt1 /dt
g\TrR(ﬁRTK [H%(u) HG)PL0])| 5 @a9)

The next task is to insert the explicit tunnel Hamiltonian and to perform the trace
over each term in the expansion. As shown in Appendix F the reservoir operator
can be separated from all other operators without catching a phase factor,

(/| Tra (PT |[Hi(0) - Hi ) Ph(8)] ) 5) =

SN SN T 0T t) -

k1,k2,... l1,l2,... 71,72,

Trg (,0 Tk [a’klrl(tl)akzrz (t2)ak3r2 (t3)ak47"4 (t ) : ])

(' Tic [ (b)ei (t2)ers (ta)ei () - - Po(1) -] 15)
~+all other terms. (4.20)

All other terms not explicitly written in Eq. (4.20) lead to the same contribution
as the first term since it is summed over all indices and integrated over all times ¢;.
Therefore it is sufficient to treat this first term only and multiply at the end with
the number of occuring terms. Since the number of creation and annihilation

operators need to be equal in order to get a non-zero trace, the reader might

convenience himself that there are altogether (E) non-vanishing terms. At this
2

point the first steps towards a diagrammatic language can be introduced. The
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Figure 4.1: The directed line stands for the Keldysh time-integration contour running
from ¢y to ¢ and back. At the actual value of each integration variable ¢; an internal
vertex (black dot) is drawn. Notice that since every time ¢; is integrated along the
whole Keldysh contour the vertices will eventually occur in any possible order along
the contour.

integration along the Keldysh contour is symbolized by a directed time line with
internal vertices at the actual integration times ¢; (see Fig. 4.1). In case the
operator A of Eq. (4.11) contains a reservoir electron operator a)(,;f), as it is e.g.
the case for the current operator, an additional external vertex is drawn at time
t. A directed line is attached to each vertex where a incoming line symbolizes an
annihilation reservoir operator and an outgoing line a creation reservoir operator
at the corresponding vertex time. Since the reservoir Hamiltonian is quadratic
in the electron operators Wick’s theorem holds and the corresponding operators
are contracted in pairs. Due to the fact that the Keldysh time-ordering operator
does not induce any sign changes, it can be for the following assumed that the
lead operators are already time-ordered without loss of generality. Therefore

Trr (PR kyr, (81) hors (82) g, (83) Olar (£4) - )

= a;:l?"l (tl)ak2r2 (tZ)a/;ci—:g’r‘z (t3)a/k47‘4 (t4) e

+a;:1r|1 (tl)akw? (tQ)a;:STzI (t3)ak4r4 (t4). R
= {total pairing} (4.21)

where the contractions are given by the equilibrium distribution functions

gy (t)af,, () = Tre (P35 Tk [akr (t1)af,,, (t2)])

- 5k1k25T1T2€h elk)(E2—t) [1 f7"1 (G(kl))] (4'22)
CL;:”.I (tl)ak27-2 (tg) = TT‘R (p}gTK [akm akm (tg)])
= 6k1k257‘17“2 %C(kl)(tl t2)f (e(kl)) (423)

In the diagrammatic language Wick’s theorem is realized by connecting pairs of
vertices (internal or external) with an outgoing and incoming line attached to it,



Chapter 4. Co-tunneling Effects in Charge Transport 64

respectively, with directed reservoir lines and sum over all m?' possibilities to do
so (see Fig. 4.2). The fact that operators which are contracted need to be next
to each other might lead to a phase factor due to the fermionic statistic. In the
diagrammatic language a minus sign occurs whenever two reservoir lines cross
each other. In such a case one needs an odd number of transpositions to bring
those electron operators next to each other, hence collecting a minus sign. For the

Figure 4.2: Example of the time evolution from time ¢y to ¢ of the reduced density
operator. The upper and lower line represent the forward and backward time branch,
respectively. The directed lines connecting always two vertices represent tunneling
events where the dot state changes.

electrons in the quantum dot Wick’s theorem does not hold since the Coulomb
interaction is quartic in the dot electron operators. Therefore the product of
those operators needs to be treated explicitly. Looking at that part of Eq. (4.20)
containing the dot electron operators

(5'|Tx | ey (t1)cf (ta) iy (t3) i (ta) - - - PLy(2) - ] 5) (4.24)

and focusing on some sequence of two dot electron operators following each other
due to the Keldysh time ordering it is found

C?;(tQ)clg(t?)) = U(;r(tmto)ClJ;Uo(tQ;to)USL(ts,to)Clg(ts)Uo(t&to)
= > Uf(t,to)ls2)(salch|ss)(ss|Un(ta, ts)]5a)

§2,53,54,55

X (s4ci|s5) (s5|Uo(ts, to)- (4.25)

The first matrix element on the right hand side of this equation is the spectral
amplitude of the transition from the dot state s3 to sy and can be assigned to
the vertex at t,. Similar the last matrix element is the spectral amplitude of the
other vertex at t3. The middle matrix element is simply the free propagation of
a dot state between time ¢3 and ¢, which can be evaluated to

(s3|Uo(t2, t3)] 54) = 5s354€_%E53(t2_t3)- (4.26)
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In the diagrammatic language this means that a certain dot state |s;) and the
propagator matrix element (s;|Uy(t1,t2)|s;) is assigned to each time segment con-
necting two vertices. Introducing the shortcuts

e = Y Tlslals) (4.27)
l

Tt _ *,T T —i(e(k)+e(Va—V; t1—t
7515’1,325’2(t1’t2) — E Tks’lslTkSQS’Qe 2 (e(k)+e(Vr—VD))(t1—t2)
k

(4.28)

y { £ (e(k)) for ¢, < to,
[1— f, (e(k))] fort; >k to,

the diagrammatic rules can be formulated in a rather compact way. In Eq. (4.28)
— corresponds to t; >k to and + corresponds to t; <k to, where the lesser
(greater) symbol <y, (>g) along the Keldysh contour has been introduced.

Diagrammatic Rules

To obtain the mth order contribution draw the Keldysh integration contour run-
ning form ¢ to ¢ and back and place arbitrarily m vertices onto it. Connect pairs
of vertices with directed reservoir lines and assign to each line a wave vector k;
and a reservoir index r;. To every time segment connecting two vertices assign a
quantum dot state s; and to each vertex a tunneling time ¢;.

1. Each occurring reservoir line running from vertex 1 to vertex 2 gives rise to
7;’;;,2 515t (to,t1). r is the index of the reservoir, + corresponds to t; >y t3
and — corresponds to t; <g t5. S12 (5'1,2) are the outgoing (incoming) dot
states at each vertex. At vertex 1 where the line starts a particle has to be
annihilated on the dot. To each vertex at most one reservoir line can be
attached.

2. Each element of the Keldysh contour running from vertex 1 to vertex 2
gives rise to (sy |Uy(ta,11)| s1) where s; is the outgoing dot state at vertex
1 and s the incoming dot state at vertex 2.

3. The pre-factor is given by (—1)¢ (—%)m L where m is the number of internal
vertices and ¢ the number of crossings of fermionic reservoir lines.

Now integrate over all vertices times ¢; along the Keldysh contour, sum over all
reservoir indices r; and dot states s;. The mth-order contribution is than given
by the sum over all possible ways to connect m/2 pairs of vertices with directed
reservoir lines.
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4.1.3 Kinetic Equation

Formulating the diagrammatic rules as described in the last sections there are

m ) m)
m .
7 2

Eq. (4.20) and %! diagrams from the contractions) all leading to the same con-
tribution since it is summed over all indices and integrated over all times ¢;. The
integration along the Keldysh contour has the disadvantage that the integrands
change whenever the time order along the contour changes. From a practical
point of view it would be better to find a formulation with diagrams having a
unique mathematical expression. This can be achieved by restricting the time-
integrals such that the integrands do not change, paying the price of getting a
larger total number of diagrams. Looking at the diagrammatic rules one finds
that this is achieved by keeping the absolute time ordering, i.e., the time order-

diagrams ((Z) from the product of the m tunnel Hamiltonians of
2

t

Figure 4.3: The 2nd order diagram in Hr written by using a kernel. Where in the
left diagram over both times ¢; and to is integrated along the whole Keldysh contour,
in the right diagram a more restricted integral, fti dty ftz dt1, occurs. The price payed
for this simplification is a kernel consisting of a larger sum of diagrams.

ing independent of the time branch, of all vertices but leaving each vertex on its
corresponding time branch. The restricted time-integration limits are of the form
fti dt,, f:;n dty,_1.... For the 2nd order the contribution of the diagram shown on
the left hand side of Fig. 4.3 is given by the eight 2nd order diagrams shown
in Fig. 4.4 with the restricted time integration ftz dts fti dt, plus the propagator
segments containing no reservoir lines, running from time t; to ¢, and from %,
to t. Such a sum as shown in Fig. 4.4 is further on called kernel. Notice that
in contrast to the Keldysh integrals the new integrals are always integrated for-
ward in time leading to an additional minus sign for every vertex on the lower
time branch. Therefore the phase factor (—1)° has to be added to the third di-
agrammatic rule, with b being the number of vertices on the lower time branch.
Expressing a diagram of arbitrary order by such a kernel leads to a further kernel
pre-factor %7!. The reason is that for an arbitrary mth order diagram there exist
%! transformations which leave the diagram unchanged. Those transformations
are found by simply interchanging the internal vertices (which can be done since
all internal vertices are integrated along the whole Keldysh contour). Each of this
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Figure 4.4: Kernel 3, 5 5, (t1,12) for the 2nd order diagram in Hy. In kernel diagrams

the time integration is restricted such that the absolute time ordering, i.e., the time
ordering irrespective on which time branch the vertices are, is left unchanged.

diagram is represented by the same kernel leading to the additional pre-factor %!.
The diagrammatic rules for the kernel diagrams therefore read:

Diagrammatic Rules for the Kernel Diagrams

To obtain the mth order contribution to the kernel %, o sys'2(t1, t2) draw two time
branches running form %, to ¢; and back and place arbitrarily m vertices onto
it, where the vertices with the smallest and largest times, regardless on which
time-branch they are, have the times ¢, and t;, respectively. Connect pairs of
vertices with directed reservoir lines and assign to each line a wave vector k;
and a reservoir index r;. To every time segment connecting two vertices assign a
quantum dot state s; and to each vertex a tunneling time ¢;.

1. Each occurring reservoir line running from vertex 1 to vertex 2 gives rise to
7;’;[,2 518, (ta,t1). r is the index of the reservoir, + corresponds to t; >y t3
and — corresponds to t1 <k tz. S12 (s],) are the outgoing (incoming) dot
states at each vertex. At vertex 1 where the line starts a particle has to be
annihilated on the dot. To each vertex at most one reservoir line can be

attached.

2. Each element of the Keldysh contour running from vertex 1 to vertex 2
gives rise to (sy |Uy(t2,11)| s1) where s; is the outgoing dot state at vertex
1 and s, the incoming dot state at vertex 2.

3. The pre-factor is given by (—1)°*¢ (—%)m where m is the number of internal
vertices, b the number of vertices on the lower time branch, and c the
number of crossings of fermionic reservoir lines.

Now integrate over all vertex times ¢; without changing their time ordering, re-
gardless on which time branch they are ( ft'; dtp, ‘l:m dtm_1...) and sum over all
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reservoir indices r; and dot states s;. The mth order contribution is than given
by the sum over all topologically different diagrams. Topologically different dia-
grams are diagrams which cannot be transformed into each other by moving the
vertices along their time branches under following conditions: First, the vertices
have to keeping their time order regardless on which time branch they are, sec-
ond, vertices are not allowed to change their time-branch, and third, all reservoir
lines have to be attached to their original vertices with the original direction.

Dyson like Equation

If the diagrams included in the kernel are restricted to irreducible diagrams, i.e.,
diagrams where it is not possible to draw any vertical line without crossing a
reservoir line, but any number of reservoir lines occur in this kernel, the sum off
all possible diagrams is given by the diagrammatic sequence shown in Fig. 4.5.
Such a summation of sequences of kernels with free parts in between, containing
no reservoir lines, can be performed by an iteration in the style of a Dyson
equation. The corresponding algebraic expression for the reduced dot density

IR NP REIER PP
B Rac)

Figure 4.5: Dyson like equation. The expression within the brackets is again the
reduced density matrix element at an earlier time.

matrix therefore reads

Pu(t) = D Taysw (t:to) Pow (to)

58’

t t1
+ Z ‘/t dtl /t dtZHss’ss’ (t, tl)zss’szs’2 (tla t2)Pszs’2 (tQ) (429)
0 0

s28h
with the propagator of the free segments

I, 51555 (t1, t2) = (51 |Uo(t1, )| s2) (85 [Us (22, t1) | 57)- (4.30)
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Differentiating with respect to time ¢ leads to the kinetic equation of the reduced
density matrix

d ,
L plt) + h(E ~E)Pu(t) =Y / QS ogsrey (£, 8) o, (). (4.31)

8252

The second term on the left hand side describes the time evolution of the reduced
density operator without coupling to the reservoir. The right hand side is due
to the coupling where it can be seen that the reduced density matrix depends
on the density matrix at all times prior to ¢, hence the “full” kinetic equation
is of a non-Markovian form. Notice that Eq. (4.31) is a formally exact equation
although in order to solve this equation one usually has to approximate the kernel
by calculating it in some finite order.

4.1.4 Mirror Symmetry

A useful symmetry of the kernel diagrams for the following considerations is the
so called mirror symmetry. Moving in an arbitrary diagram (calling it diagram
a) every vertex on the other time branch keeping its time and reversing all reser-
voir lines one gets a diagram (in the following called diagram a,,) which is the

tg S t4 s,

Figure 4.6: Some co-tunneling diagram and its mirror symmetric counterpart having
all vertices on the opposite time branch and reversed reservoir lines.

complex conjugate to the original diagram. This is illustrated in Fig. 4.6 and can
algebraically be written as

Egazs 151 (t4’ tl) (ng 335 (t4’ tl)) . (432)

The reason for this symmetry is that the tunneling and time lines of any vertex
still have the same indices but with different direction. Looking at the diagram-
matic rules one finds that the reversed direction only leads to a sign change in the
occurring phases. Furthermore the direction of the reservoir lines with respect to
the Keldysh contour is still the same and hence the mirror diagram leads to the
complex conjugate result as compared to the original one. This relation reduces
the number of diagrams needed for some finite order by a factor of two.
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4.1.5 Current

Introducing the current operator between the quantum dot and the reservoir r,

. d

I, = N,:i—e

e - [H NT] . (4.33)

the desired current expectation value can be calculated. Using the commutators
[C.4], [C.6] and [C.14] expression (4.33) yields

~ e e -
I, = - ZT,:la:Tcl -3 Ty agy. (4.34)
k.l k.l

Transforming this operator with the unitary transformation (4.1) leads to
)

. .
I, = = E Twt)af e+ (h.c.).
k.l

Therefore, the current operator has the same structure as the tunnel Hamiltonian.
This means for the diagrams that the current operator is described by an external
vertex with a reservoir line connected to it. Since the current operator is taken
at time ¢, this vertex is the right most one. Again considering a sequence of
kernels as shown in Fig. 4.7 an iteration in style of a Dyson equation can be

>+ X >+ Xz >T )+

= >'

Figure 4.7: Dyson like equation for the expectation value of the current operator. The
expression within the brackets is again the reduced density matrix element at an earlier
time.

again calculated. The corresponding algebraic expression is

(L)) ==Y | d'Si (1) Py (t) (4.35)
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where the kernel X7 . (t,#) is that part of ¥, ¢ (¢,%) where the reservoir line

8881 S
attached to the right most vertex (which is the external one) corresponds to

reservoir r and where this reservoir line is an outgoing (incoming) line if the right
most vertex lies on the upper (lower) time branch.

4.1.6 Stationary Density Matrix and Current

The stationary non-equilibrium state of the quantum dot system is given by

P = lim Puy(0). (4.36)

to——0o0

Choosing an adiabatic switching on of the tunnel Hamiltonian

Hy(t) = lim e”* Hy (4.37)

v—0

the kinetic equation for the stationary non-equilibrium state (4.31) reads

0
F BB P =3 Py [ S 0) (138)

s18)

and the stationary current (4.35) is given by

0
(I = —e Y P, / dt's] 4 (0,1). (4.39)

ss18)

The only task left, is to calculate the time-integral over a proper approximation of
the kernel X, ¢4, (¢, ). The system of linear equations for the reduced density
matrix (4.38) and the current (4.39) can then be solved by standard numerical
tools.

4.1.7 Sequential Tunneling

In the sequential tunneling approximation for the case of a diagonal reduced den-
sity matrix the RTT leads to the same result as the master equation approach
together with transitions calculated by Fermi’s Golden Rule (see Chapter 2). To
show this explicitly the kernel of Eq. (4.38) in the sequential tunneling approx-
imation is needed. The occurring diagrams are shown in Fig. 4.4 where two
of them are explicitly shown in Fig. 4.8. Applying the diagrammatic rules the
mathematical expression

0
/ dt'sSD . (0,¢) =

) i
1 o 4.40
hzzk:I s f(e’“)Esl—Es—e(VD—W)+6k+i0+ (4.40)
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S S
0 0
S S

Figure 4.8: Two diagrams entering the kernel in the sequential tunneling approxima-
tion for the diagonal reduced density matrix. The left diagram is further on called C'1
and the right one C2. Notice that C2 is the mirror symmetric diagram of C'1.

is found for diagram C'1, where the time integration has already been performed
by the usage of the general expression

0 0 0
/ dtl/ dtg R / dtmile*’twltle*m,‘ztz .. eflwm—ltm—le'/(tl"'tm—l)
—00 tl tm—2
1

1 1

—m . . —.  (4.41)
T1+w T+ X+ T1+ T+ F Ty + 0
Similarly one finds for the diagram C'2
0
/ dt's2 . (0,¢) =

1 1

- T |%f, 4.42

DD ey e A e T

which is the complex conjugate of diagram C1 since those two diagrams are
mirror symmetric with respect to each other. Hence, the sum of those diagrams
entering the kernel is twice the real part of diagram C'1 or C'2. Since there is a
continuum of states in the electronic reservoirs the sum over k is replaced by an
integration such that Dirac’s identity — +£0 T = P% — imd(z) can be used for the
integrand with P denoting the principal value. In the sum of diagram C'1 and
C?2 only the term with the delta-function occurs such that

0
C
[ G0, 0.0) + 542, 0,0) =

—0o0

2m -
- D) T PLr(er)d(Bs = By +e(Vo = Vi) — ). (4.43)
r k
Together with Eq. (4.27) the Golden Rule transition rate

, 27 I
I, = fZTki Ty (sl [s1)(s1]c;ls)
kil,j
fr(Gk)é(Es — Esl + E(VD - V;) — Gk). (444)
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is found. Similarly all other rates can be obtained by summing the three left over
pairs of diagrams. Therefore, the kinetic equation in the sequential tunneling
approximation is exactly the classical master equation used in the first chapter
with rates obtained by Fermi’s Golden Rule.

4.1.8 Diagrammatic Rules in Energy Space

With relation (4.41) the time integrals occurring in the stationary state can easily
be calculated for diagrams of any order. Hence the rules for the kernel diagrams
can also be formulated in energy space. For this purpose the new shortcut

_r:I: *,T f"" (6) for +,
T T
5151,5252 Z ks s1 k5252 {[1 — fr (6)] for —

is introduced.

1. Draw all topologically different diagrams with fixed ordering of the vertices
along the real axis, i.e., irrespective on which branch they are. The vertices
are connected by reservoir lines as in time space. In addition to the energy
E; assigned to the propagators, assign an energy € + e(V, — Vp) to each
reservoir line.

2. Write for each segment derived from ¢; < ¢ < ¢;;; aresolvent 1/ [AE; + i07]
where AFE} is the difference of the left going minus the right going energies
(including the energies of the reservoir lines)

3. For each reservoir line running from #; to t, write 7525 syt T is the index
of the reservoir, + corresponds to t; > to and — corresponds to t1 <k to.
s1,2 (s12) are the outgoing (incoming) dot states at each vertex.

4. The pre-factor is given by (—1)**¢(—%) where b is the number of vertices
on the lower part of the Keldysh contour and ¢ the number of crossings of
fermionic reservoir lines.

5. Sum over all reservoir indices and quantum dot states.
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4.2 Co-tunneling

4.2.1 Diagrams

It turns out that there are 128 topologically different irreducible 4th-order di-
agrams contributing to the kernel Es o 535 / (t,1"). One possibility to obtain all
topologically different diagrams is to draw all diagrams which cannot be trans-
formed into each other by arbitrarily moving the four vertices on their time branch
and keeping the reservoir lines attached and directed as in the original diagram.
It turns out that there are 10 such diagrams which are shown in Fig. 4.9. All

1

2 3 4 1 2 3 1 4
1 2 3 4 4 4 2 3 1 2 3

Dlagram A Dlagram B Dlagram C Dlagram D Dlagram E

Diagram F Diagram G Diagram H Diagram I Diagram J

Figure 4.9: Shown are the 10 co-tunneling diagrams which cannot be transformed into
each other by arbitrarily moving the four vertices on their time branch and keeping the
reservoir lines attached and directed as in the original diagram.

topologically different diagrams are then found by realizing any possible time
order of the four vertices along their time branch, as long as the diagrams are
still irreducible. Reducible fourth order diagrams are already accounted for by
the second order diagrams due to the Dyson like sequence (see Fig. 4.5). Gen-
erally each diagram of Fig. 4.9 can lead to 4! topologically different diagrams
with the time ordering shown in Tab. 4.1. where some combinations are actually

1234 | 2134 | 1243 | 4231 | 1324 | 2143
2341 | 1342 | 2431 | 2314 | 3241 | 1432
3412 | 3421 | 4312 | 3142 | 2413 | 4321
4123 | 4213 | 3124 | 1423 | 4132 | 3214

Table 4.1: All possible time orderings of the four vertices occurring in co-tunneling
diagrams. The time orderings shown in red color are reducible diagrams and already
included within the Dyson sequence of the 2nd order.

reducible diagrams. Therefore every topologically different diagram has 16 co-
tunneling contributions where some have to be subtracted, since diagram A,B,I
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and J are invariant under interchanging reservoir lines. Therefore, 128 different
co-tunneling diagrams enter the kernel. This number further on reduces to 64
due to the earlier discussed mirror symmetry.

4.2.2 Example of a Co-tunneling Contribution

As an example of a co-tunneling contribution the mathematically expression of
the left hand diagram shown in Fig. 4.6 is in the following explicitly treated
starting form the diagrammatic rules in time space. This diagram for example
enters Eq. (4.38) of the stationary reduced density matrix. According to the
diagrammatic rules it is found,

/_0 dtr Xy, (0,41) = _,,ll,%hﬁZZZ/_ dtl/ dtQ/ dts (4.45)

o0 $283 kika r172

1,7+ 2, i, (t—ta) i Egty i Eeyts — 3By (t3—11) _u(t:+ta+ts)
r}/s 838182(0 )7338 825(t3’t2)6 E ? e g eh 8 € ! € ’

Inserting (4.28) and (4.7) in order to write down the explicit time dependence of
the integrand leads to

0
(a) _ y T T2, r
/ dtlzs sshs1 (0 tl) - = Vll)%l+ ﬁ Z Z Z Téisgs’Tkisszkzs 53Tk§szs

> 8283 kika 172

0 0 0 .
fn (6(k1))f7"2 (E(kg)) / dt, / dt, / dt?’e—ﬁ(Esz—ES,l —e(k1)+e(Vp—Vey ) )ta
) e

¢ (BamBoy —c(ka)+e(Vo—Vi))ta o~ (Bt ~Fag +elke) (Vo =Vio)la ot +ta+ta) (4 46)

The time integrations are straightforwardly treated with Eq. (4.41). Therefore,
this specific co-tunneling diagram leads to

0
/ dtlzg 35 31(0 tl) = — lim — Z Z ZTIZ;ss Tl::sszIZ;s* 53T£382s

o v—0+ B
s283 kika T17T2
1
T k T2 k )
Fri(e(k1)) fra (e 2))E52 — By —e(ky) +e(Vp —V;,) +iv
1

E; — Ey — e(k2) — e(k1) +e(2Vp = V,, = V;,) +iv

1

; 4.47
E;—E;, —e(k)+e(Vp—=V,,) +iv ( )

Similar to Chapter 2 it is assumed that the absolute value of the tunneling matrix
element does only depend on the reservoir index r and the phases of the tunneling

matrix elements are random with respect to the direction of the reservoir wave
vector as described in Appendix A. Replacing the summation in k-space of
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(4.47) by >°p, — [ deD(€)/4m [ d with the reservoir density of states D(e) and
following the steps of Appendix A the co-tunneling contribution of Eq. (4.47) can
be written as

- —UILISI_'_% Z |:T;nsls’slsz7—;’lzssszs/delD(el)/de?D(GZ)fTI(e(kl))fT2(€(k2))

§283T17T2

1
E,,— Ey —e(ki) +e(Vp — V) + v
1
E, — Es’l - G(kz) - G(kl) + €(2VD e Vh) + v

1
4.48
Es — E’s3 — G(kl) + e(VD — V"l) + ’Ll/:| ( )

where the shortcut

T = S st 54" (52w ) (4.49)
U

has been introduced. The energy integrals occurring are all well defined due to
the regularized poles and can be, e.g., treated numerically. Generally there are
two different integral types, where the first type can be written such that the inner
energy integral has only one pole. Those integral types are found for all diagrams
with one reservoir line starting before and ending after the other reservoir line,
regardless on which time-branch the vertices are. All other diagrams lead to inner
integrals with two poles. In Appendix G it is explicitly shown how both kind of
occurring integrals are written in terms of principal value integrals and residua
which is useful for a numerical treatment.
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4.3 Signatures of the Excitation Spectrum in
the Coulomb Blockade Regime

In the Coulomb blockade regime sequential tunneling is exponentially suppressed
and co-tunneling becomes the leading contribution to the current. For metallic
dots, i.e., the regime where the interaction energy U is much bigger than the
typical excitation energy § (U > §), it has been found that the co-tunneling
current shows for low temperatures a cubic dependence on the applied transport
voltage (see e.g. [13, 95]). In the regime where U and § are of the same or-

H(2,0,1,0)
uE0LY) §5

U

M.

Ky

M (1,1,0,0)
1 (L00,0)15

Figure 4.10: Shown are the four transport channels of a quantum dot with two single-
particles states energetically split by the excitation energy §. The interaction energy
U has to be payed in case of double occupation.

der, the tunnel current can show more complex signatures of the quantum dot’s
excitation spectrum even within the Coulomb blockade regime. This is in con-
trast to the sequential tunneling approximation where excited states influence
transport only beyond the Coulomb blockade regime. The simplest quantum dot
showing signatures of excited states within the Coulomb blockade regime is a
dot containing two single-particle states separated by a finite energy difference 9.
The additional interaction energy U has to be payed whenever both states are
occupied. The four quantum dot states are labeled as: |0,0) empty dot, |1,0)
single-particle ground state, |1, 1) single-particle excited state, and |2,0) denotes
the doubly occupied quantum dot state. Hence altogether four transport chan-
nels exist which are schematically sketched in the energy profile of Fig. 4.10. For
the forthcoming considerations it is useful to discuss the charging diagram in
the sequential tunneling approximation first. In the central region of Fig. 4.11
transport is Coulomb blocked and the quantum dot is occupied by one electron.
The two resonance lines limiting the Coulomb blockade regime in the lower half
correspond to the opening of the lowest transport channel x(1,0;0,0). Similarly
the limiting resonances of the upper half correspond to the ground state-ground
state channel p(2,0;1,0).
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Figure 4.11: Charging diagram calculated in the sequential tunneling approximation.
The tunneling current within the central Coulomb blockade regime is exponentially
suppressed. Signatures of the excited single-particle state |1,1) are only found beyond
the Coulomb blockade regime close to the corners of the diagram. The parameters used
for calculating the charging diagram are: I' = 0.1kT, § = 14.67kT, and U = 52kT.
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Figure 4.12: Co-tunneling signatures within the Coulomb blockade regime. Shown

is the differential conductance versus the applied transport voltage for three different

gate voltages eaVg/kT = 26.7, 29.3, and 33.3 corresponding to the traces a,b, and ¢

in Fig. 4.11, respectively. The parameters used for this calculation are: T' = 0.1kT,
0 = 14.67kT, and U = 52kT.
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Signatures of excited states are only found beyond the Coulomb blockade
regime which is the region in the vicinity of the corners of Fig. 4.11. Calculating
the differential conductance, including the co-tunneling contributions of Section
4.2, leads to a qualitatively different result. As an example three traces within
the Coulomb blockade regime, marked in Fig. 4.11, are shown in Fig. 4.12. For
small voltages all three differential conductances start with the same value and at
least the traces for eaVg/kT = 29.3 and eaVg/kT = 33.3 stay constant for small
transport voltages. This constant and finite differential conductance is due to
elastic co-tunneling by virtually tunneling through either the vacuum or the two-
particle state. Additionally for all three traces a peak is found which shifts with
increasing gate voltage linearly to higher source-drain voltages. In contrast to
the traces at lower gate-voltages, the differential conductance of the highest gate-
voltage (eaVg/kT = 33.3) shows an additional step emerging at the source-drain
voltage eVsp/kT ~ 15 which corresponds to the excitation energy 6. This step is
strongly smeared due to temperature and especially due to the overlap with the
peak occuring at higher voltages. On the left hand side of Fig. 4.13 the relative

1 (2.0,1,0) 1 (2,0,1,0)
1 (20,L,1) U (2,0,L,1)
m s i pe VI TIe—— O S 5] e
\v M (11,00) 11100 o] [ [ oo 0
1 (1,0:00) 1 (1,0:0,0) He

Figure 4.13: Left: At a high gate voltage the transport channel p(1,1;0,0) is still
below the transport window for eVsp = §. Hence the quantum dot can be excited by an
inelastic co-tunneling process but the excited electron is not able to leave the quantum
dot by a sequential tunneling process. Right: Eventually, by further increasing Vsp,
the electrochemical potential of the drain reservoir becomes resonant with the transport
channel containing the excited state. Therefore an electron occupying the first excited
state is able to tunnel out of the quantum dot by a sequential process with a higher
tunneling rate as compared to co-tunneling processes.

position of the transport channels with respect to the electrochemical potentials
in the reservoirs is shown at the parameters where the step occurs (eVsp =
and eaVi/kT = 33.3). In this situation inelastic co-tunneling becomes possible
in which the quantum dot becomes excited during the tunneling process. This
additional (to the elastic co-tunneling) co-tunneling process leads to a step in the
differential conductance [103]. Eventually, by further increasing the source-drain
voltage eVsp > ¢, the electrochemical potential of the drain reservoir becomes
resonant with the transport channel p(1,1;0,0) (sketched on the right hand side
of Fig. 4.13). Other than in the sequential tunneling approximation, where the
|1,1) state cannot be occupied due to the Coulomb blockade effect, inelastic co-
tunneling allows to occupy this excited state and the resonant channel leads to a
peak in the differential conductance. The peak is, due to the smaller co-tunneling
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Figure 4.14: For low gate voltages the transport channel p(1,1;0,0) is already within
the transport window at eVgp = §. The situation depicted is the gate voltage where
eVsp = d coincides with the point where the electrochemical potential of the drain
reservoir becomes resonant with the transport channel p(1,1;0,0).

rate, lower as compared to the corresponding peak beyond the Coulomb blockade
regime. For lower gate voltages the peak moves to lower source-drain voltages
and eventually merges with the step at eVsp = § (see Fig. 4.14). For even lower
gate voltages the channel u(1,1;0,0) is already within the transport window at
the source-drain voltage eVsp = 0 needed to allow for the inelastic co-tunneling
process. Therefore the peak stays at the step position eVsp = & by further

elastic co—tunneling

eVg

eVsp 25

Figure 4.15: Schematic picture of the various tunneling regimes within the Coulomb
blockade. By applying the gate voltage Vg the transport channel energies are shifted
with respect to the electrochemical potentials in the reservoirs by AE = eaVg.

decreasing V.
Combining all these processes various tunneling regimes within the Coulomb
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blockade can be identified as sketched in Fig. 4.15. For transport voltages
smaller than the excitation energy eVsp < § transport is dominated by elastic
co-tunneling leading to a constant offset of the differential conductance. For gate-
voltages in the vicinity of the Coulomb blockade center and eVsp > 0 a regime
where elastic and inelastic co-tunneling occurs is found. In the remaining outer
regime also sequential tunneling through the excited single-particle state is pos-
sible. At the border of this regime a peak occurs in the differential conductance.
All described features are also found in the calculated charging diagram includ-
ing co-tunneling (shown in Fig. 4.16). The onset of the inelastic co-tunneling

1
0.9
0.8 3
07 &
0.6 ‘5
05 &
04 %
03 E
02 &
0.1
0

-40 -20 0 20 40

eVSD/kT

Figure 4.16: Calculated charging diagram within the Coulomb blockade regime includ-
ing the co-tunneling contribution. The peak conductances due to resonant sequential
tunneling have been “cut” from the color scale (white regions).

has been experimentally observed by FRANCESCHI et al. [101] in a quantum dot
formed from a deep etched rectangular heterostructure. The authors found an
additional peak on top of the measured steps similar to the one obtained by the
calculations presented in this section.

A diagram describing an inelastic co-tunneling process is shown in Fig. 4.17.
Applying the diagrammatic rules the following mathematical expression is found

0
| ansinon «

- D)) (1 = fale) D(e) fuler)
(E — €+ i0+)2 /d62 €y — (61 + 5) + 120t

Re {z de; } (4.50)
with the state s = |1,0). Since the case discussed lies within the Coulomb
blockade regime, the p(1,0;0,0) channel energy E is below both electrochemical
potentials of the reservoirs and one can argue that for sufficiently low tempera-
tures the nominator of the first term in Eq. (4.50) vanishes at ¢, = E. Hence
the main contribution originates from the Cauchy principal value €;-integral. In
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Eq. (4.50) only the real part enters and therefore only the residuum of the inner
integral needs to be considered. Therefore the integral of expression (4.50) yields

0
/ dtlzgﬁil) (0, tl) X

T D) (1= Fale) D(e)) fule 4 6)

d
“ (E — 61)2

. (4.51)

Due to the product of the two Fermi functions in Eq. (4.51) this diagram con-
tributes to transport only if the applied source-drain voltage is bigger than or
equal to the excitation energy (eVsp > d). Due to the involved excitation of

L |0,0> L |1,1> L 0,0> Ly
[1,0> v |1,0>
P
L

11,0> 1,0>

Figure 4.17: Shown is an example of a co-tunneling diagram describing a process which
involves the single-particle ground and first excited state. Such a co-tunneling process
is called inelastic.

the quantum dot this process is called inelastic co-tunneling and is schematically
sketched in Fig. 4.13.



Chapter 5

Conclusions

In this thesis the electronic structure of isolated quantum dots as well as transport
through dots coupled to two electronic reservoirs has been studied. Thereby
special attention has been paid to the dependence of the tunneling current on
Coulomb interaction and possible correlations in the quantum dot states.

In Chapter 2 transport in the weak coupling regime has been studied. While it
is generally assumed that in this regime transport data can be straightforwardly
interpreted in terms of energy differences of the isolated quantum dot states,
it could be shown within this work that at finite temperature this is only true
for non-degenerate energy levels. In case of degeneracy the resonance positions
in the differential conductance generally depend on temperature and the level
of degeneracy. On one hand this complicates the interpretation of transport
data but, on the other hand, it allows to directly probe the degeneracy within a
quantum dot.

One of the most prominent indicators for correlations in quantum dot states
are negative differential conductances. Usually the negative differential conduc-
tance is caused by a partial reduction of the tunneling current by further in-
creasing the applied transport voltage. In this thesis a mechanism is discussed
which leads to a complete blocking of transport through a spherical quantum dot
occupied by two and three Coulomb interaction electrons. This blocking mech-
anism leads to an enlargement of the regime where transport is exponentially
suppressed and could be explained by the existence of a transition cascade, in-
volving several dot states, which ends in a state blocked for further transport due
to spin-selection rules.

In Chapter 3 the energy spectrum of an isolated spherical quantum dot has
been studied in a particle-in-a-sphere model. Experimentally, spherical quantum
dots are realized by colloidal nanocrystals which have been extensively probed
by Scanning Tunneling Spectroscopy. In this work it could be shown that in such
experiments the spherical symmetry of the electronic structure is broken due to
the electric field induced by the tunneling tip. Calculating the quantum confined
Stark effect on the electronic structure showed that the tip-induced electric field
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can explain the broken symmetry found in wave-function mapping experiments.
For the five-particle ground state it was found that exchange energy, caused by
Coulomb interaction, is in competition to Stark energy. It could be shown that
this competition leads to a transition of the symmetry of the ground state density
as function of the nanocrystal radius.

Furthermore the effect of Coulomb interaction on the excitation spectrum of
quantum dots in the strong confinement regime, i.e., the regime where a typical
excitation energy is larger than the Coulomb energy, has been studied. It has
been found that the lowest excitation energy generally decreases with increasing
number of electrons occupying the dot. This effect has been recently measured
in an inelastic light-scattering experiment performed on self-organized quantum
dots which allowed to probe the excitation spectrum of the quantum dot for a
varying number of dot electrons.

In Chapter 4 the influence of co-tunneling processes within the Coulomb block-
ade have been investigated by systematically calculating the tunneling current in
fourth order perturbation theory in the tunnel coupling using a real-time Green’s
function approach for the case of non-equilibrium. A quantum dot with Coulomb
interacting electrons was studied in the regime where the charging energy is big-
ger than the excitation energy. For such a dot a complex differential conductance
pattern within the Coulomb blockade regime caused by a mixture of various co-
tunneling and sequential tunneling processes has been found. The sequential
tunneling is found to be possible even within the Coulomb blockade regime due
to a preceding inelastic co-tunneling process. In particular the calculations pre-
sented in this work show a peak structure at the onset of sequential tunneling
which has also been experimentally observed.

It seems inevitable in the treatment of such a wide subject that many ques-
tions remain open. In the following only two points will be mentioned that might
be worth further considerations. One question mark concerns the channel block-
ing effect in the weak coupling regime. Although the reason for this blocking
mechanism is connected to spin-selection rules it seems plausible that a similar
blocking occurs if the spectral weight of the corresponding channel is not zero
but small compared to the weights of the other channels participating in the
transition cascade. Such small spectral weights are very likely in strongly cor-
related systems and hence such an “orbital” blocking mechanism could occur.
Another question concerns possible correlation effects on the co-tunneling cur-
rent. In the last part of this work a complex differential conductance pattern
caused by the excitation spectrum of the quantum dot has been found within the
Coulomb blockade regime and it seems plausible to ask if correlations would lead
to as strong modifications of the tunneling current within the Coulomb block-
ade as, e.g., negative differential conductances in sequential transport outside the
Coulomb blockade regime.



Appendix A

Spectral Weights

A.1 Sequential Tunneling

In a homogeneous reservoir the electronic energy does not depend on the direction
of the corresponding wave vector such that the summation in k-space of (2.6) can
be replaced by Y°, — [ deD(e)/4m [ d2 with the reservoir density of states D(e).
Furthermore assuming that the absolute values of the single particle tunneling
matrix elements are also independent of the wave vector direction the summation
over the wave vectors occurring in (2.6) reads

T D(e) T T
S Sy = /deF ST < silalsy >< sfletls: > -
k l,j
/dQe_i(q):Ql_q):Qj)_ (A.l)

For simplicity the Fermi functions and the Dirac delta functions which only de-
pend on the reservoir and quantum dot energies are not written explicitly in
(A.1). For those terms in Eq. (A.1) where the single-particle indices [ and j are
equal the phases will add constructively and the integration over €2 yields 47. For

the other terms where [ # j it is assumed that e (®cu~®:;) is a random function
with respect to €2 and hence

/ dde " ®ear= %) = 4rgy;. (A.2)
For those randomly distributed phases the spectral weights read

Stsy =T Y| < sileils; > (A.3)
1

where the reservoir energy and dot state dependence of the tunneling matrix
elements have been neglected for simplicity. Notice that the spectral weight (A.3)
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also ensures that the electron spin is conserved during the tunneling process.
Inserting this expression into (2.6) the sequential tunneling rates read

It = hs;"sf (Bu; — By, — e(Vp — V) f" (B, — By, — (Vo ~ Vi) (Ad)
Moy = orStuD(Es — Byt eVo — V) [L— f7(By, — Buy + eV~ Vi)

A.2 Co-tunneling

As in the case of sequential tunneling the summations of the k-space is replaced
by >, — [ deD(e)/4m [ df, assuming that the energy of a reservoir electron does
only depend on the absolute value of the wave vector k. Also assuming that the
absolute values of the single-particle tunneling matrix elements are independent
of the wave vector direction an arbitrary co-tunneling contribution to the kernel
can be written as

/O dtl 555151 0 tl ZZ/d61D D

§283 T1T2
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(A.5)
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where in the energy dependent integrand is not explicitly written in order to focus
on the angular integration. Using expression (A.2) only those terms of Eq. (A.5)
where [y = j; and [y = j5 contribute such that
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Neglecting the reservoir energy dependence of the tunneling matrix elements and
introducing

sls 1 525h Z ‘Tﬁ 81‘011‘51> <82|cll|812> (A7)
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this expression reads
0
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which also ensures spin-conservation during a tunneling process.



Appendix B

Transformed Time-evolution
Operator

In the theoretical treatment of quantum mechanical problems it often proofed
to be useful to apply some unitary transformation to the quantum states and
operators in such a way that the observable quantities are left unchanged. The
transformation rule of the time-evolution operator is in the following explicitly de-
rived for an arbitrary time-dependent unitary transformation. If the Schrodinger
equation reads

(1) = H 1) (1) (B.1)

the time-evolution operator transforming a certain state from one point in time
t' to another time ¢ is known to be

Tpe i Ju 4" A", (B.2)

Dyson’s time-ordering operator Tp orders according to the rule last goes left
without any sign changes [104]. Transforming the time-dependent Schrédinger
equation (B.1) by some unitary transformation U(t, %)

L0 o A _
ZHEU (t,20)U(t, to) () =

U (t,10)U (¢, to) H(OU™* (8, 10)U (¢, o) [ (1)) (B.3)

and introducing the transformed state |1(t)) = U(t,to)[¥(t)) expression (B.3)
can be written as

ifi <%U+(t, t0)> + ihU™* (L, 1)

t
U*(t,10)U (1, to) H()U™ (2, 10) [9 (1)) (B.4)
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Multiplying from left with U(t,to) the transformed Schrédinger equation

S0} = [0 AT (110 - it ,10) (5,070 0) | 060 (B9

is of the same form as the original Eq. (B.1) and therefore the operator occurring
in the exponent of the transformed time-evolution operator is

H(t) = Ut to) H(t) U (t, to) — ihU (, 1) (%fﬁ(t, t0)> : (B.6)

B.1 Transport Hamiltonian

In the following (B.6) is explicitly applied to the transport Hamiltonian

H = Hp+Hp+ Hy (B.7)
Hp = Z ekTa,wakr +e Z V.N, (B.8)
Hp = Y EP,+eVpN (B.9)
Hy = ZT,:laZrcl + (h.c.) (B.10)

k,l,r

using the unitary transformation

Ut to) = e (T VNtV N)(t—to), (B.11)
Inserting (B.7) in (B.6) leads to
H=UHRU* + UHpU" + UH;U T — iU <§tU+> (B.12)

In the following the four terms on the right hand side of Eq. (B.12) are calculated:

Transformation —ihl (%U )

The derivative of (B.11) with respect to the time ¢ can be easily calculated and
leads to

9 ., ie - - n
— = —— ; B.1
8tU - (% V,.N, -I-VDN) U (B.13)

Since the operator in the exponent of the unitary transformation is the same as
the operator within the brackets on the right hand side of (B.13) those two terms

commute ([A,e?] = 0) and the desired transformation yields

(D . .
—ihU ( atU*) = —e (Z VN, + VDN> . (B.14)
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Transformation UHRU™

For the following transformations the fact that the commutator [121, e? | does van-
ish if [A, B] = 0 (see Appendix C) can be use. Writing the transformed reservoir
Hamiltonian as

UHRU' = Hp+U [Hg, U] (B.15)

and looking at the commutator

[HR, —e (Z V. N, + VDN>

it is found that this commutator is zero since both number operators commute
with Hg. Hence the reservoir Hamiltonian is invariant under the transformation
(B.11):

=0 (B.16)

UHRU' = Hp. (B.17)

Transformation UH U+

Similarly to the reservoir Hamiltonian it can be shown that the dot Hamiltonian
is also invariant under the unitary transformation U(t,%y) and therefore

UHDU+:HD. (B18)

Transformation UHU™

In contrast to Hg and Hp the tunnel Hamiltonian (B.10) does not commute
with the unitary transformation (B.11). Therefore this transformation has to be
discussed in more detail. Writing the transformed Hamiltonian as

UHrUY = Hr+U [Hr,U"] (B.19)

the right hand side commutator reads

n 21 e ~ - "

[Hy, U] = ;E [HT,{—E (ZTjVTNWVDN) (t—to)}]
1 [ e [ e . . !
- Z;E [HT(),{—ﬁ (ZTIVTNWVDN) (t—to)}]

+ZZ% [H;"(O), {_% (ZVTNTJrVDN) (t—to)} ] :

' n=0
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In this expression the tunneling-in operator H;’(i) = Y i Thi'c/ ar, and the

(o)

tunneling-out operator Hp"" =3, zTIZla:,rCl have been introduced. The com-

mutators
Hp®, 2 (SOVR, 4+ Vol tot| = W) (1) HIO
T 7 . riVy % r T
Hp O~ (SN, + VN tot| = W vy ) B
T 3 7 . riVy 7 r T

are obtained by using Appendix C. Combining those commutators with the
relation > " ) L [A, B"] = e”(e* — 1)A which holds as long [A4, B] = £A (see
Appendix C) it is found that

[HT, UﬂL ZU+ ( E(Vp—Vi)(t—to) _ 1) H;:(i)

n ZU+ ( E(Vp—Vi)(t—to) _ 1) H;’(O)_ (B.20)

Hence by introducing the transformed tunneling matrix element
Ti(t) = Tige™* #(Vo-Wi)(t—to) (B.21)
the desired transformation reads

k,l,r
Transformed Transport Hamiltonian

Adding all transformed terms it is found that the constant potentials V, and Vp
are transformed into the tunneling matrix elements

I:IR = ZQ‘,TU,};CL}M (B23)
Hp = ) E,P, (B.24)
Hy = Y Ti(t)aga+ (h.c). (B.25)

k,l,r
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Commutators

In the following some frequently used commutators involving parts of the trans-
port Hamiltonian

Hp = Zek,«a;@akr—i-eZVrNT (C.1)
k,r T

Hp = Y E,P,+eVpN (C.2)

Hy = ) Tyaba+ (hc) (C.3)
k,l,r

are calculated.

Commutator [H R ]\Afr]

[HRa Nr] = Zzekr [a;;-a'kraa;:'rlak'r’} +€ZV;-' [NT’7N’I":|

ko k! r’

=0 (C.4)

Commutator [H R, N }

[HR,N} = Zzﬁkr [af, akr, ¢ ] +€ZVT [N'F’N]
kr 1 r!

-0 (C.5)
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Commutator [H D, NT]

[Hp, N, | = ZZE [P, afyane | + eV [N, N ] =0 (C.6)

The commutator involving the projection operator P,, is zero because a diagonal
projection operator does conserve the number of particles.

Commutator [H D, N ]
[HD, ] ZZE [Ps,cl c,} +eVp [NN] ~0 (C.7)

Commutator [HT, er]

Introducing the tunneling-in operator H;’(i) = ki Tr*e; ag,r and the tunneling-

out operator Ho, rio) _

as

= > 1 Thay ¢ the tunnel Hamiltonian (C.3) can be written

Hyp = ZH + =YD (C.8)

and hence

[HT,NT,] -y [H;":(O),NT/] n [H;(i),er] . (C.9)

The commutator of the introduced tunneling-out operator with the reservoir num-
ber operator is

[H;’(O),NT:} = Z Ty [akc, af apy] - (C.10)
k' ki

Using the commutator relation [AB, C| = A[B, C] + [4, C]B the commutator of
the right hand side of (C.10) reads

oo _ ot at + +
[aky,-cla a/k’rla’k’T’] = QppQpr, [cla ak'r’] + g, [Cl: a’k',,-li| Q'

+ o+ + [+
[a’kzr’ a’k’r’} a/r G+ Oty [a’kr’ ak’T'} G
= 6k,k’67',7"a/;:’,,.lcl (Cll)
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where in the last step the relation [A, B] = [A, B]. — 2BA was used. Inserting
expression (C.10) into (C.11) leads to

[er:(o)’ eri| = 57",7"/ Z T,Zlazrcl
k,l

= 6, HJ. (C.12)
Similarly one can show that
[H}’(i),Nr,} = 6, HRO (C.13)
leading to the desired commutator
[HT, N} = {0 g, (C.14)
Commutator [HT, N ]
[H;’(o), N} = Z Tw laf.a, cfer] (C.15)

kLU

Using the commutator relation [AB, C| = A[B, C] + [A, C]B the right hand side
of Eq. (C.15) yields

[a;ci—rcla Cl—il_cll:| = a;ci_rc?’— [Cl, Cll] -+ a,;:r [cl: Cl'il':| cy
[a';:?"? C?,—] cre + C;— [CL;:T, Cll] C
~ ~duaf c16)

where in the last step the relation [A, B] = [A, B]; — 2BA was used. Inserting
expression (C.16) into (C.15) leads to

[0 8] = Y Thae
k.l
= —HM (C.17)
Similarly one can show that
[H}’(i),]ﬂ = g (C.18)
leading to the commutator

[HT, N] =3 =Y — B (C.19)
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Commutator » >~ [A, B"]

The commutator

i[A,B"] - i(—B"A—}-AB”) (C.20)

can be further simplified if the relation [A, B] = £A holds with £ being a complex
number. Then

AB" = BAB"“ '+ [A B]B" ! with [A,B] =
= BAB" ' +¢AB™!
(B+¢) AB™!
(B+¢)(B+¢)AB™ 2
= (B+&9"A (C.21)

can be inserted into Eq. (C.20) leading to

YA B =

= (—eB + eB+§) A (C'22)

—B"A+ (B+&)" A)

zmg

and therefore

f:[A,B”] = e (ef — 1) A (C.23)

Commutator (A, B"]

By successively expanding the commutator [A, B"| one obtains

[A,B"] = B"'[A,B]+[A,B"'|B (C.24)
B"'[A,B]+ B"?[A,B] B+ [A,B"*| B? (C.25)

[A,B"] = nZB”‘l‘m[A,B]Bm. (C.26)

This relation is e.g. useful if the commutator

o

Z% A, B"] (C.27)

n=0
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is considered. Inserting (C.26) into (C.27) yields
e8] 1 n—1
[4,eP]=>" - B"~'"™[A, B] B™. (C.28)

n=0 0

3
Il

being zero whenever the operators A and B commute.
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Interaction Picture

Having a Hamiltonian of form
H(t) = Hy+ V(¢) (D.1)
the interaction picture is defined by
[¥r(t)) == Uy (¢, to) [1bs (¢)) (D.2)
with the unitary transformation
Us(t, to) := e~ nHoli=to), (D.3)

where the subscript ¢ stand for the usual Schrodinger picture and the subscript ;
for the interaction picture. Note that £, is the point in time where the Schrodinger
and interaction picture coincide, |1;(t9)) = |¥s(to)), and can be chosen arbitrar-
ily. Inserting (D.2) and (D.3) in

[hs(t)) = Us(t,t')[1hs(t') (D.4)
[r(t)) = Uy (t,t0)Us(t, ') [s(t')) (D.5)
(1)) = Ug (t,t0)Us(t, ') Uo(t', to) [9r(t)) (D.6)
i) = Ui(t,t) [¢u(t)) (D.7)

leads to the time-evolution operator in the interaction picture
Ur(t,¢') = Tp e~ Jir d"Vit") (D.8)

with Dyson’s time-ordering operator T, ordering the operators in the exponen-
tial in such away that operators at later times occur first [104]. The required
transpositions to achieve such an ordering are performed without sign changes.
By requiring that the expectation value of some observable A is independent of
the chosen picture one finds that an operator transforms in the following way:

Ar(t) = Ug(t,t0)AsUs(t, to) (D.9)
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Keldysh Contour

The aim of this appendix is to show how one can write following expression

U (t,t0) Ar()Ur (1, to) =
Tp {e—% Ji° dt’ﬁ%m} Ar(H)Tp {e—%ﬁfo dt’ﬁr‘?(t')} (E.1)
as a single exponential operator function. This is rather useful in order to write

down a systematic perturbative expression in as straight forward manner. Ex-
panding both exponentials this formula reads

5 (1) [ ]

- ATy { [ / t dt’H%(t’)] m} | (E.2)

to

In order to write this expression as one single exponential function one has to
collect all terms of order n = [ + m. Since there are n + 1 terms of order n the
sum over [ and m can be rewritten into one sum over all orders n and a second
sum running from 0 to n. The denominator {!m! transforms to k!(n — k)! and
hence this expression reads

1 (1) St { [ amnoo]

AOTp { [ /t: dt’fﬁ(t')r_k} . (E3)

Introducing the Keldysh time-ordering operator Tk ordering those operators on
the forward integration path from %, to ¢ according to Tp and those operators on
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the backward path the other way round it is possible to write

[/tto dt’ﬁ%(t')} k [ /t : dt’ﬁ%(t')] ” Al(t)} . (E4)

Hence the sum over k is nothing else than the binominal formula such that

gzo % (—%)n Tx { [/tto dt' HL(t') + /t: dt’ﬁ%(t’)} ' AI(t)} _ (E.5)

Introducing the Keldysh integration contour [, = ft’; + ftto this operator can be
written as a single exponential operator function

Uf (t,t0) Ar()Us (t,t0) = Tic {6‘% I« dt'@(t')z‘if(t)} : (E.6)



Appendix F

Separation of Reservoir and Dot
Operators

In calculating a quantum statistic expectation value as in Eq. (4.19) following
sequence of lead and dot operators occur

T {a, (b)en (1) (), (12) - - . (), (t) A1) } (F.1)

In order to apply Wick’s theorem to the reservoir operators it is necessary to
separate those operators form the rest of this sequence. Since the a;’s are reservoir
and the ¢;’s are dot operators the following anti-commutator relations hold

lag, a1 . = [a;ﬁ,ci’h = [ak,cﬂ+ = [a:,clh =0. (F.2)

Looking at a specific time-ordering of Eq. (F.1) one notices that there have to be
always as many annihilator as creator operators otherwise the trace performed
in (4.19) would be zero. Therefore a phase-factor (—1)"/2 is caught by ordering
reservoir and dot operators of the same time ¢; such that the reservoir operator
occurs always first

(=D % af (tr)en (t)any (b)cf - - A(t) - - an, (ta) <, (t)- (F.3)

In the case of the reduced density matrix A(t) = P,y (t) the reservoir operators
do commute with /Al(t) Moving the second reservoir operator next to the first
one leads to a minus sign since this operator had to interchange place with one
dot operator. The third reservoir operator needs to interchange twice its place
with a dot operator in order to get separated and so on. Therefore an additional
phase of (—1)'+2+3-n=1 — (_1)n=1)/2 ig caught leading to

(=1)" af (t)ag, () - - ag, (ba)en, (B)cf - - A(t) - - - (). (F.4)

Since only even orders n have non-zero contributions this phase factor is always
+1 and can be dropped. Note that the time-ordering within each type of operators
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did not change such that one can write for the general case

Tre {aif (t) e, (1) (1) ana () - - . (), (82)A(E) } =
Tre {af (t1)agy (t) - - - ag, (tn) } Tic {cll(tl)cZ(tQ) e (tn)A(t)} . (F.5)
In the case of calculating the tunneling current the operator fl(t) has the same

structure as the tunneling Hamiltonian and the reader might easily verify that
the separation does again lead to no additional phase factor.



Appendix G

Co-tunneling Energy Integrals

In order to numerically treat the energy integrals occurring for the co-tunneling
diagrams it is useful to write them in terms of residua and Cauchy principal
value integrals. Fortunately it turns out that there are only two different kind
of integrals occurring. The first kind can be written such that the inner integral
has only one pole. Those integrals appear for all diagrams with a reservoir line
starting before and ending after the second reservoir line, irrespective one which
time branch the vertices are. All other diagrams lead to inner integrals with two
poles. Those integrals are further on called integrals of second kind. Beyond
that, each integral type is in the following subdivided into four different types
which differ only by some signs.

G.1 Integrals of 1st Kind

The first two integrals of 1st kind look like

> f(z) > 9(y)
/_oo 200 b=z 1 i07) /_oo W (@) = y) + 0% (G-1)
Using Dirac’s identity
Vli)rglJr N %dm =P i af(_—xldx — i f(a) (G.2)

and rewriting the integrand in partial fractions

1 1 1 1
(a—z+i0*)(b—z+i0*) b—a [(a—x+z‘0+) ~ (b—xz +1i0%) (G-3)
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this integral reads for the case a # b
S Y P
+7°f(b)g(a(b)) — 7 f(a)g(a(a))
cip [ 000 [ felae)

b—x a—z
+im f(b)xg(q(b)) F im f(a)x,(q(a))].-

In case a = b one can integrate by parts

/°° : f(=) f(z)

P L

x_i
a—x+10t)? a—x+i07|__ o @— T +107F

leading to following expression

- :Fp/w il X (a(®)) :Fp/_"" @) @)xe (a(@))

—o a—2x a—z

+7%f(a)q' (a)g'(q(a)) + *f'(a)g(q(a))

+im P / " g /D) G p / " gl @ela@)

a—2x a—x

+im f(a)q' (a)xg (¢(a)) + i f'(a)x4(q(a))
where the following function has been introduced

Xg(u) = P/_oo dy&-

u—y

The other two types of integrals of the 1st kind are

> f () > 9(y)
/_oo dz (x —a+1i0t)(x —b+107T) /oo dyi(q(x) —y) + 10+
Similarly to the previous two integrals it is found that for a # b
_ 1 > f@)xe(q(x)) > f@)xe(q(=))
R B I
—m2f(b)g(a(b)) + 7 f(a)g(q(a))

+im P /_00 dxw —imP /oo dxM

Fim f(0)X4(q(b)) £ imf(a)xy(g(a))].

(G.7)
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and for the case of a = b

= FP /OO dww = P/OO dxf(i)q,(x)Xg’(Q(iC))

0 a—x a—x

—7*f(a)¢ (a)g'(a(a)) — 7*f'(a)g(q(a))

a—x a—x

+Z-7TP/°° 4o @) (@)g'(a(x)) +in/00 1 (@)9(a(2))

Fim f(a)q' (a)xy (¢(a)) F imf'(a)x4(q(a)).

G.2 Integrals of 2nd Kind

The first type of an integral of 2nd kind reads

@[ o)
/_oodxm /_oo W a2y 10 )byt

After substituting z = d — = one can write this integral as

- r [ eI - o

d—a—z

. > fd—2)pu(2)
+i [P /_OO dz————= +7f(a)é(d — a)

d—a—z

where the functions &,(2)

i Ixe(2) = xg(B)] for z # b,
&(2) = {—ng(b) for 2 — b

and ¢y (2)

_ ) o l9(b) —g(z)] for 2 #0b,
@b(z) - {ng(b) for » — b.

have been introduced. The other types of integrals of 2nd kind are

> f(=z) = 9(y)
/_oodxa—x+z'o+ /_oody(y—x—d+z‘0+)(y—b+z'o+)

YL R

i [P/: dz%—kwf(a)&,(a%—d) ,

(G.10)

(G.11)

(G.12)

(G.13)

(G.14)
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> f(z) > 9(y)
/ood‘rx —a+i0+ /oody(x+y—d+i0+)(y—b+i0+)
——r [ U2 a0

. d—a—z

+i [P/_Oo i L4=20C) | rvei—a)] . (Gas)

. d—a—z

> f(z) > 9(y)
/_wd% —ati0r /_wdy(dm Z 00 (b= y £ i07)
= —P/ dZ—f(aZ;j)_&iZ) + 7f(a)pp(a+ d)

—i [P / h dz% trf)&a+d)|.  (G.16)

— 00

Notice that the only difference between the 1st and 3rd as well as between the
2nd and 4th integral type is a sign change of the real part.
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