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Introduction

The fruitful interplay between topology and algebra has a long tradi-
tion. On one hand, invariants of topological spaces, such as the homotopy
groups, homology groups, etc. carry algebraic structures and the goal of a
systematic understanding of homotopy and homology led to definitions of
categories, functors and natural transformations.

On the other hand, topological methods and principles inspire algebraic
structures; the cobordism hypothesis for example has motivated higher
categorical structures like (∞, n)-categories. Further, topology provides
methods to prove algebraic theorems and explains the appearance of cer-
tain other phenomena; a particular nice example is that the quadruple
dual functor ( )∗∗∗∗ : C → C of a finite tensor category C is monoidally
isomorphic to the functor D ⊗ ⊗D−1 for a distinguished invertible ob-
ject D in C which was proven first by algebraical means in [ENO04] and
reexamined with topological methods in [DSPS13].

The transition from the realm of categories to higher categories poses
the problem of an algebraic description leading to something one might call
’higher algebraic structures’. For example tensor categories are a categori-
cal generalization of algebras and module categories over tensor categories
generalize modules over an algebra.

In this thesis we are concerned with the algebraic understanding of such
higher algebraic structures coming from topological field theories, which
were inspired by mathematical physics.

Topological field theories and generalizations

The topological invariants we are interested in are topological (quantum)
field theories (TFTs). The basic idea of a d-dimensional TFT is that we
assign to a d-dimensional manifold M a number which we can compute by
subdividing M along (d−1)-dimensional submanifolds into smaller pieces.
An abstraction from the Atiyah-Segal axioms for an d-dimensional TFT is
expressed by saying that a TFT is a symmetric monoidal functor Z from
a symmetric monoidal category B of d-dimensional cobordisms, which is
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iv Introduction

of topological or geometrical nature, to another symmetric monoidal cate-
gory C, which is of algebraic nature. Informally speaking, a d-dimensional
cobordism category has as objects manifolds of a fixed dimension d−1 and
morphisms between those are given by equivalence classes of d-dimensional
cobordisms. The monoidal structure of these cobordism categories is given
by the disjoint union of manifolds and the unit object is the empty set
considered as a (d − 1)-dimensional manifold. Manifolds without bound-
ary, seen as cobordisms from the empty set to the empty set, are sent by
the TFT to endomorphisms of the unit object of the target category C.

If C = vectk is the category of vector spaces over a field k and B is
one of the following cobordism categories, TFTs are characterized by well-
understood algebraic structures, see [Koc04, LP08]

• Let B be the category with finite, ordered sets of points signed by
+ or − as objects and diffeomorphism classes of one dimensional,
oriented, compact, smooth manifolds as morphisms. Then a TFT
Z : B → vectk is already determined by the vector space Z(+), which
has to be finite dimensional.

• Let B be the category with objects: one dimensional, compact, ori-
ented, smooth manifolds without boundary and morphisms diffeo-
morphism classes of two dimensional, compact, oriented, smooth
manifolds with boundary. In this case a TFT Z : B → vectk is deter-
mined by a finite dimensional, commutative Frobenius algebra with
underlying vector space A = Z(S1). The Frobenius algebra structure
comes from the images of certain cobordisms under Z.

• Let B be the category with objects: one dimensional, compact, ori-
ented, smooth manifolds (possibly with boundary) and morphisms
given by diffeomorphism classes of two dimensional, compact, ori-
ented, smooth manifolds with corners. In this case a TFT Z : B →
vectk is determined by a knowledgeable Frobenius algebra, i.e. a
pair of Frobenius algebras A = Z(S1) and B = Z([0, 1]) with certain
compatibility conditions, cf. [LP08].

The algebraic structures investigated in this thesis appear naturally in
the context of two possible generalizations of TFTs; these are extended
TFTs on the one hand and homotopy (quantum) field theories on the
other.

Extended topological field theories A d-dimensional TFT Z : B → vectk
assigns to every d-dimensional manifold without boundary an element of
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the endomorphism ring of k, which is isomorphic to k itself. Since Z is a
functor, one can compute the invariants assigned to a d-manifold by cut-
ting along (d−1)-dimensional submanifolds. Extended TFTs are designed
to give the possibility to compute invariants assigned to d-manifolds by
subdividing with submanifolds of higher codimensions than 1. This gives
a hierarchy of notions for locality of an extended TFT: the higher the al-
lowed codimension of allowed submanifolds is, the higher is the knowledge
of the extended TFT about local properties of closed manifolds.
For precise statements about extended TFTs one needs a notion of sym-
metric monoidal n-category. We do not define what an n-category should
be, since already for n = 3 the axioms for a non-strict 3-category are rather
involved [GPS95] and a strictification to a strict 3-category does not exist
in general. Nevertheless, we want to give the reader an intuition of what
features n-categories should provide.
Categories consist of objects, morphisms between objects and an asso-
ciative composition of morphisms. An n-category should consist of ob-
jects, 1-morphisms between objects, 2-morphisms between 1-morphisms,
3-morphisms between 2-morphisms, . . . , n-morphisms between (n − 1)-
morphisms and k ways of composing k-morphisms for each 1 ≤ k ≤ n in
an associative manner. The vague term associative manner means that dif-
ferently composed triples of k-morphism may differ up to a weakly invert-
ible (k+ 1)-morphism fulfilling coherence conditions; the attribute weakly
invertible means invertible up to a weakly invertible (k + 2)-morphism.
One of the easiest examples for non-strictly associative compositions is
the bicategory Algk with objects given by k-algebras A,B,C, etc. 1-
morphisms given by bimodules M = AMB , N = BNC , P = CPD, etc.
and 2-morphisms given by bimodule homomorphisms f : AMB → AM

′
B ,

etc.
Composition of 1-morphisms is then given by the tensor product over the
middle algebra: M ◦ N := M ⊗B N . This composition of 1-morphisms
is not associative, but there is always an invertible 2-morphism between
(M ◦N) ◦ P and M ◦ (N ◦ P ) fulfilling a pentagon identity for the 4-fold
compositions. Bimodule homomorphisms can be composed either by com-
position of morphisms or by tensor product.

We resume our description of extended TFTs: allowing decompositions
of d-dimensional cobordisms by submanifolds up to codimension n leads to
a symmetric monoidal n-category Bn of cobordisms. Objects are (d− n)-
dimensional manifolds and k-morphisms (1 ≤ k ≤ n) are given by (d +
k − n)-dimensional cobordisms with corners; only the n-morphisms, i.e.
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the d-cobordisms are considered up to diffeomorphism.
An n-extended d-dimensional TFT is then a symmetric monoidal n-functor
from such a symmetric monoidal n-category Bn of topological nature into
a symmetrical monoidal n-category of algebraic nature.
Baez and Dolan [BD95] conjectured a statement about fully extended
TFTs, i.e. allowing submanifolds of codimension d. This statement is known
under the name cobordisms hypothesis and was proven by Lurie [Lur09].

We observed above that ordinary TFTs are related to algebraic struc-
tures; for example a commutative Frobenius algebra is the image of a
generating set of a cobordism category. If we have a set of generators and
relations for our cobordism category, extended TFTs yield higher ’alge-
braic structures’. It is commonly believed that a 2-extended 3d-TFT Z
with values in the bicategory of 2-vector spaces gives a modular category
C = Z(S1), see for example the discussion [BK01, Chapter 5]. Modular
categories are a certain class of braided categories and the first construc-
tion of this thesis is related to the existence of a minimal extension of
braided categories to modular ones. Below we will discuss this extension
problem in more detail. A precise definition of modular category is given
in Appendix A.4, for the following discussion it suffices to know that the
attribute modular is a non-degeneracy condition on the braiding.
This non-degeneracy of the braiding is needed in the construction of the
famous Reshetikhin-Turaev invariants of 3-manifolds [RT91] which provide
a (non-extended) 3d-TFT [BK01].

Homotopy field theories Homotopy field theories (HFTs) were intro-
duced in [Tur00], a recent survey on the topic is provided by [Tur10].
While TFTs give invariants of manifolds, HFTs produce invariants of maps
f : M → X, where M is a manifold and X a CW-complex. A particularly
interesting class of CW-complexes are the Eilenberg-MacLane spaces of
type K(Γ, 1) for a discrete group Γ. These are CW-complexes X whose
fundamental group π1(X,x) is isomorphic to the group Γ and all higher
homotopy groups πk(X,x) with k ≥ 2 are trivial. Such an Eilenberg-
MacLane space is unique up to homotopy. If X is a K(Γ, 1), an HFT is
even an invariant of the homotopy class of the map f : M → X.
In analogy to TFTs, an HFT is defined as a symmetric monoidal func-
tor; one fixes a CW-complex X and an object in the source category is a
cobordism together with a map to X. It is not too surprising that for the
investigation of HFTs one is led to algebraic structures again. Describing
HFTs for an Eilenberg-MacLane space of type K(Γ, 1) yielded Turaev’s
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definition of Γ-Frobenius algebras (characterizing HFTs in dimension two)
and Γ-braided modular categories (used to construct three dimensional
HFTs of Reshetikhin-Turaev type) [Tur10].

In this thesis we are mainly concerned with Γ-braided categories. The
word ’modular’ above is again a non-degeneracy condition on the Γ-brai-
ding and the Γ-grading of such a category. Müger showed [Müg04] that
Galois extensions of braided categories obtained from a construction called
de-equivariantization [DGNO10] are Γ-braided categories.

We deal with a natural extension problem related to Γ-braided cate-
gories. This is the problem of extending a braided category with a group
action of the group Γ to a Γ-braided category. The extension problem of
braided categories with a group action is equivalent to the minimal exten-
sion problem of braided categories to modular ones posed in [Müg03b].

Next we will, based on the discussion in [Tur10, Appendix 5], describe
both of these extension problems in more detail and explain which con-
structions relate them.

Extending braided categories

Equivariant extensions A Γ-braided category is a monoidal, k-linear,
abelian category C =

⊕
α∈Γ Cα graded by a discrete group Γ together

with an action Φ = {Φα : C → C}α∈Γ by monoidal autoequivalences and a
Γ-braiding, i.e. natural isomorphisms cX,Y : X ⊗ Y →

⊕
α∈Γ Φα(Y ) ⊗ X

fulfilling several coherence conditions, see Definition 3.3.1 for details.

The axioms of a Γ-braided category imply that the neutral component
C1 ⊂ C is an ordinary braided tensor category together with an action
of Γ by braided autoequivalences. This naturally leads to the following
extension problem: given a braided tensor category D together with an
action Ψ of a group Γ by braided autoequivalences. Does there exist a Γ-
braided category C =

⊕
α∈Γ Cα such that Cα 6= 0 for all α ∈ Γ, the neutral

component C1 is equivalent to D and the action Φ on C restricts to the
action Ψ on D? We call C a Γ-braided extension of D and say that C solves
the Γ-braided extension problem.

In this thesis we answer the existence question of such an extension,
in the special case that D = Z(E) is the Drinfel’d center of a monoidal
category E together with an action of Γ on D that is a distinguished lift
of an action on E .
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Minimal modular extensions It was shown by Müger [Tur10, Appendix
5, Thm. 5.4] that the Γ-braided extension problem for modular categories
is equivalent to the minimal extension problem of premodular categories
which we explain now: premodular categories are k-linear, abelian, braided
categories with finitely many simple objects and a spherical structure.
This allows to speak of the dimension of an object and the dimension
of the category. Let C be a braided category with braiding isomorphisms
cX,Y : X ⊗ Y → Y ⊗X. Denote by Zsym(C) the full subcategory of trans-
parent objects in C, i.e. objects X in C fulfilling cY,X ◦ cX,Y = idX⊗Y
for all Y in C. If C is a premodular category, one associates an element
dim C of the field k, called the dimension of C. Let Γ be a finite group, C a
premodular category over C andM a modular category over C containing
C as a full tensor subcategory. If now Zsym(C) ⊂ C is equivalent to the
symmetric category C[Γ]-mod of finite dimensional representations of Γ,
one can show that the inequality

dimM≥ |Γ| · dim C (0.1)

holds, cf. Proposition 5.1 in [Müg03b]. Call M a minimal modular exten-
sion of C, if (0.1) is an equality.

It is not clear whether this minimal extension problem has a solution.
Even if there is a minimal extension of C, in general there might exist
inequivalent categories providing a solution to the problem: it is demon-
strated in [Müg03b, Remark 5.3] that in the case C = C[Γ]-mod the repre-
sentations of the twisted Drinfel’d doubles Dω(Γ) provide solutions of the
minimal extension problem. Here ω is any 3-cocycle ω : G×3 → C× and
the representation categories of Dω(Γ) and Dω′(Γ) might be inequivalent
braided categories. Theorem 9.4 in [MN01] gives a precise statement, when
the braided categories Dω(Γ)-mod and Dω′(Γ)-mod are equivalent.

Equivalence of the extension problems As mentioned above, the mini-
mal extension problem is equivalent to the problem of extending modular
categories to Γ-braided categories. More concretely, the equivalence of the
problems is provided via the de-equivariantization procedure and taking
the orbifold category. The latter is inverse to the procedure of forming
the de-equivariantization. We sketch this correspondence proven by Müger



Algebraic structures and monoidal categories ix

with the help of the diagram:

Cpre-modular M modular

Dmodular N Γ-braided

mod.

��

orb.

OO

Γ

EE Γ-braided extension
//

Γ

BB

minimal extension //

orb.

OO

de-equi.

��

Here the left-most arrow stands for de-equivariantization, but in the par-
ticular situation it is better known as modularization.
Chapter 4 of this thesis deals with a construction for the arrow from D
to N , for the case that D is a Drinfel’d center and the action of Γ is of a
certain form.

We will now explain the diagram: let C be a finite premodular category
with Zsym(C) ' C[Γ]-mod for some finite group Γ. The category C is mod-
ular, iff Γ is the trivial group. De-equivariantization in the case Zsym(C) '
C[Γ]-mod was described under the name modularization [Bru00] and yields
a modular category D with |Γ| · dimD = dim C and an action of the group
Γ. If we solve the Γ-braided extension problem for D, we get a Γ-braided
category N of dimension dimN = |Γ| · dimD whose orbifold category M
is modular and has dimension dimM = |Γ| · dimN . So M is a modular
category with dimM = |Γ| · dim C; that C embeds into M is shown in
[Tur10, Appendix 5].

Conversely, let D be a modular category with an action of a finite group
Γ. Its orbifold category C, also known as equivariantization [DGNO10],
fulfills Zsym(C) ' C[Γ]-mod. If we find a minimal extension M of C,
we can see C[Γ]-mod as a full subcategory of M and apply the de-
equivariantization procedure. The results in [Tur10, Appendix 5] or [KJ04]
ensure that the category N obtained in this manner, is a Γ-braided cate-
gory with components Nα 6= 0 for all α ∈ Γ. Further, the neutral sector
N1 ⊂ N is equivalent to the initial category D as braided category with
Γ-action.

Algebraic structures and monoidal categories

In the search for extensions of monoidal categories one is led to the inves-
tigation of algebraic structures in monoidal categories. More concretely,
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the homogeneous component Cα of a Γ-graded category C is a bimodule
category over the monoidal subcategory C1 ⊂ C. The notion of bimodule
category over a monoidal category categorifies the notion of a bimodule
over an algebra. Any bimodule category over C1 can be realized as the cat-
egory of modules over an algebra in a certain monoidal category, namely
C1 � C⊗op

1 . We will not follow this line of thoughts, but use the notion of
module category to explain an equivalence relation of monoidal categories.

Recall that two algebras over a field k are called Morita equivalent, if
their categories of modules are equivalent. Seeing monoidal categories as a
categorified version of an algebra one might call two monoidal categories
2-Morita equivalent, if their bicategories of module categories are equiva-
lent. Let C and D be semi-simple tensor categories. It was shown that C
and D have equivalent bicategories of module categories, iff their Drinfel’d
centers Z(C) and Z(D) are equivalent as braided categories [ENO11, Thm
3.1],[Müg03a, Rem. 3.18]. This is analogous to the fact that two semi-
simple algebras A and B have equivalent categories of modules, iff their
centers Z(A) and Z(B) are isomorphic algebras.

It is desirable to get a better understanding of this equivalence relation
for monoidal categories. Let A and B be not necessarily semi-simple Hopf
algebras over the same field. In this thesis we provide a construction that
relates the monoidal categories A-Mod and B-Mod in the sense that their
Drinfel’d centers are equivalent as braided categories.

Outline

The results of this thesis split into two main parts.

Group-braided categories from non-braided monoidal categories with
group action

Chapter 4, based on [Bar13], describes a construction of Γ-braided cate-
gories from the following input data: a monoidal category C together with
an action of a discrete group Γ by monoidal autoequivalences Φα : C → C
for every α ∈ Γ. The Γ-braided category ZΓ(C) constructed from these
data has the neutral component Z(C), the Drinfel’d center of C. The Γ-
action on Z(C) is a distinguished lift of the action Φ on C. In Remark 4.2.6
and Section 4.3 we compare our category ZΓ(C) to other constructions of
Γ-braided categories by Zunino [Zun04] and Virelizier [Vir05].

In Zunino’s work the initial datum is a Γ-graded category with an action
by monoidal autoequivalences by the same group Γ compatible with the
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grading. We discuss in Remark 4.2.6 why our construction is not a special
case of Zunino’s construction.

Another Γ-braided category is obtained from a Hopf-algebraic construc-
tion of Virelizier. In [Vir05] the author starts with a group Γ acting by
Hopf algebra automorphisms on a Hopf algebra H. He defines a Γ-Hopf
coalgebra, whose representation category is a Γ-braided category with neu-
tral component equivalent to the representations of the Drinfel’d double
D(H) of H.
Since the representations of D(H) form a category which is equivalent
to the Drinfel’d center Z(H-mod) of the representation category of H,
it is natural to ask, whether our category ZΓ(C) generalizes Virelizier’s
Hopf-algebraic construction. We give a positive answer to this question in
Proposition 4.3.10. In the investigation of this question we encounter an
algebraic structure, which we call twisted Yetter-Drinfel’d modules. It is
similar to generalized Yetter-Drinfel’d modules, introduced in [PS07].

Partial dualization of Hopf algebras

Chapter 5 is based on [BLS14]. We present a construction called partial
dualization, inspired by the work of Heckenberger and Schneider [HS13] on
reflections of Nichols algebras.

Heckenberger and Schneider start with two Hopf algebras R and R∨ in
the braided category E

EYD of Yetter-Drinfel’d modules over an ordinary
Hopf algebra E. The (monoidal) category of modules over R in E

EYD is
equivalent to the category of modules over an ordinary Hopf algebra RoE,
the bosonization of R. Assume that R and R∨ from above are connected by
a non-degenerate Hopf pairing. Heckenberger and Schneider prove under
the use of the Hopf algebra structures of R o E and R∨ o E that the

categories RoE
RoEYDrat and R∨oE

R∨oEYDrat of rational Yetter-Drinfel’d modules
are equivalent as braided categories, cf. Sections 5-7 in [HS13].

We put this equivalence to the following abstract setting: let A and B
be Hopf algebras in a braided category C together with a non-degenerate
Hopf pairing. We show (directly in the category C) that the braided cate-
gories AAYD(C) and B

BYD(C) of Yetter-Drinfel’d modules in C over A resp.
B are equivalent as braided categories via an equivalence Ω: AAYD(C) →
B
BYD(C). Assuming that H is a finite dimensional Hopf algebra and setting
C = E

EYD we get back the result of Heckenberger and Schneider for finite
dimensional Yetter-Drinfel’d modules, see Remark 2.2.9 for more details.

Now we start to explain the partial dualization of a Hopf algebra: let H
be a Hopf algebra in a braided category C and let A be a Hopf subalgebra
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of H together with a Hopf algebra projection π : H → A. These data allow
to decompose H into a biproduct KoA, where K is a Hopf algebra in the
category A

AYD(C). Let Ω: AAYD(C)→ B
BYD(C) be the braided equivalence

mentioned above. Then Ω(K) is a Hopf algebra in C and the partial dual
of H with respect to A is defined as the biproduct H ′ := Ω(K)oB, which
is a Hopf algebra in C.

Our partial dualization abstracts the following setting of Hopf alge-
bras considered in Section 8 of [HS13]: let C be the category E

EYD of
Yetter-Drinfel’d modules over a Hopf algebra E and let M and N be
objects in C. To each Yetter-Drinfel’d module X over E one associates
a Hopf algebra in C, the Nichols algebra B(X). The projection and in-
jection of the direct sum M ⊕ N induce Hopf algebra homomorphisms
H := B(M⊕N)→ B(N) =: A and B(N)→ B(M⊕N) and the evaluation
N ⊗N∗ → k induces a non-degenerate Hopf pairing between A := B(N)
and B := B(N∗).

The benefits of our abstract approach are

• A simplification of the construction considered by Heckenberger and
Schneider in the case of a finite dimensional Nichols algebra.

• Generalizing the construction of Heckenberger and Schneider to brai-
ded categories that are not given by Yetter-Drinfel’d modules over
some Hopf algebra.

Moreover, our considerations allow to deduce the following connections
between H and its partial dual H ′

• The partial dual of H ′ with respect to the Hopf subalgebra B, is
canonically isomorphic to H.

• The categories HHYD(C) and H′

H′YD(C) are equivalent as braided cat-
egories.

This thesis is based on the following publications:

[Bar13] A. Barvels. Equivariant categories from categorical group actions on
monoidal categories. arXiv preprint arXiv:1305.0679, 2013.

[BLS14] A. Barvels, S. Lentner, and C. Schweigert. Partially dualized Hopf
algebras have equivalent Yetter-Drinfel’d modules. arXiv preprint
arXiv:1402.2214, 2014.
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1. Algebraic structures in
monoidal categories

In this preliminary chapter we give the definitions of common algebraic
structures, such as algebras and modules in a monoidal category. This
allows to express many concepts in a unified language. We will give these
definitions explicitly only for strict monoidal categories. Suitable insertion
of associativity and unit isomorphism is not difficult and can be done by
the skeptical reader.

1.1. Conventions and notations

Before starting, we list our conventions for monoidal categories and func-
tors between them without definitions. For precise definitions we refer to
the appendix or standard literature like [Kas95] and [Mac98].

Monoidal categories and braiding Unless stated otherwise we will as-
sume, without loss of generality, that our monoidal categories are strict,
cf. Remark A.3.6. If C is a (strict) monoidal category, the symbol ⊗ shall
always denote the tensor product functor ⊗ : C × C → C and the symbol 1
always denotes the unit object of C.

The functor ⊗op : C × C → C is given on objects by (X,Y ) 7→ Y ⊗ X.
Recursively we define the functors ⊗2 := ⊗ and ⊗n+1 := ⊗◦ (⊗n× Id) for
n ≥ 2.

Let C be a braided category. We will denote the braiding isomorphism
always by c : ⊗ → ⊗op. By C we mean the mirror category, i.e. the monoidal
category C with inverse braiding cX,Y := c−1

Y,X .

Monoidal functors Given two monoidal categories C and D and functors
F,G : C → D, we write F ⊗G instead of ⊗ ◦ (F ×G).
Let F : C → D be a lax monoidal functor (Definition A.3.2); we denote its
monoidal structure by F2(X,Y ) : FX⊗FY → F (X⊗Y ) and F0 : 1→ F1.
Let F : C → D be an oplax monoidal functor (Definition A.3.2); we denote

1
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its monoidal structure by F 2(X,Y ) : F (X⊗Y )→ FX⊗FY and F 0 : F1→
1. If F 0 and all F 2(X,Y ) are isomorphisms, we consider F as a strong

monoidal functor with monoidal structure F2(X,Y ) :=
(
F 2(X,Y )

)−1
and

F0 :=
(
F 0
)−1

.
Given a lax or oplax monoidal functor F : C → D, an integer n ≥ 3 and

objects X1, X2, . . . , Xn in C, we define recursively the natural transforma-
tion Fn : F ⊗ F ⊗ . . .⊗ F → F ◦ ⊗n by

Fn(X1, . . . , Xn) := F2(X1 ⊗ . . .⊗Xn−1, Xn)

◦ (Fn−1(X1, . . . , Xn−1)⊗ idFXn)
(1.1)

and the transformation Fn : F ◦ ⊗n → F ⊗ F ⊗ . . .⊗ F by

Fn(X1, . . . , Xn) := (Fn−1(X1, . . . , Xn−1)⊗ idFXn)

◦ F 2(X1 ⊗ . . .⊗Xn−1, Xn) .
(1.2)

Let F : C → D be a strong monoidal functor and ϕ : X1 ⊗ . . . ⊗ Xn →
Y1 ⊗ . . . ⊗ Ym a morphism in C (n,m ≥ 1). We define the morphism
F.ϕ : FX1 ⊗ . . .⊗ FXn → FY1 ⊗ . . .⊗ FYm as

F.ϕ := F−1
m (Y1, . . . , Ym) ◦ F (ϕ) ◦ Fn(X1, . . . , Xn) , (1.3)

for n = 1 interpret F1(X1) as the identity morphism idFX1
.

Given morphisms ψ : 1→ Y1 ⊗ . . .⊗ Yn and ψ′ : X1 ⊗ . . .⊗Xn → 1 in C,
define

F.ψ := F−1
n (Y1, . . . , Yn) ◦ F (ψ) ◦ F0 and (1.4)

F.ψ := F−1
0 ◦ F (ψ) ◦ Fn(X1, . . . , Xn) . (1.5)

Rigid categories Let C be a rigid monoidal category and X an object in
C. We write ∨X for the left dual of X, evX : ∨X ⊗ X → 1 denotes the
evaluation and coevX : 1 → X ⊗ ∨X the coevaluation. The right dual of
X is denoted by X∨, it comes with evaluation ẽvX : X ⊗ X∨ → 1 and
coevaluation cõevX : 1→ X∨ ⊗X.

Graphical calculus Let C be a monoidal category. In Figure 1.1 we present
our use of a graphical calculus; diagrams are read from bottom to top. We
represent a morphism f : X → Y as a rectangular coupon labeled by f
with a string attached to the bottom, labeled by X, and a string attached
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to the top, labeled by Y . If X or Y is the unit object, we either omit the
string or draw a dashed line labeled by 1.

We depict the identity morphism of an objectX by a straight line labeled
by X. The composition of f : X → Y and g : Y → Z is given by putting
g on top of f . A morphism h : X1 ⊗ . . .⊗Xn → Y1 ⊗ . . .⊗ Ym is depicted
by a coupon with label h and n lines on the bottom and m on the top
labeled by the objects X1, . . . , Xn resp. Y1, . . . , Ym. The tensor product of
f : X → Y and f ′ : X ′ → Y ′ is drawn by juxtaposition.

Let f : X → Y be morphism in C and let F : C → D be a functor.
We depict the morphism F (f) : F (X) → F (Y ) in D as the morphism
f in a tube labeled by F . If F is lax or oplax monoidal, we depict the
components of the monoidal structure as in Figure 1.2. For another functor
G : C → D and a natural transformation α : F → G we sometimes depict
the component αX as a coupon labeled by α only rather than αX .

For rigid and braided categories we denote the evaluations and coeval-
uations resp. the braiding isomorphisms and their inverses as shown in
Figure 1.3.

1.2. Categories of modules

1.2.1. Algebras and coalgebras

Definition 1.2.1 Let C be monoidal category. An associative algebra in
C is an object A together with a morphism µ = µA : A⊗A→ A, such that

µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ). (1.6)

The algebra (A,µ) is called unital, if there is a morphism η = ηA : 1→ A
obeying

µ ◦ (η ⊗ id) = id = µ ◦ (id⊗ η). (1.7)

The morphism µ is called multiplication and η is called unit of A.

Remark 1.2.2 Although the multiplication µ : A⊗A→ A is an essential
and usually non-unique part of the structure of an algebra, we will omit it
often and only speak about the algebra A. The multiplication will always
be denoted by µ or µA. Further we define recursively the morphisms µ2 :=
µ and µn := µ ◦ (µn−1 ⊗ idA) for n ≥ 3.
As one knows from the theory of ordinary algebras, the unit is unique, if
it exists: let η and η′ be units of an algebra A in a monoidal category C.
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f = f

X

Y

, g ◦ f =

f

g

X

Y

Z

, h = h

X1

Y1

Xn

Ym

. . .

. . .

, f ⊗ f ′ = f

X

Y

f ′

X ′

Y ′

Figure 1.1.: Graphical notation of morphisms

F (f) =

F

X

Y

f F2(X,Y ) = F

X

X Y

Y

F0 =
F

1

1

αX =

F

G

X

X

α =

FX

GY

α F 2(X,Y ) =
F

X

X Y

Y

F 0 =

F

1

1

Figure 1.2.: Graphical notation involving functors and transformations
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Then by using first that η′ is a unit and second that η is one, we see

η = µ ◦ (η ⊗ η′) = η′.

We hid in the above computation that the tensor product is functorial,
which is of course essential for the proof.
The uniqueness of the unit makes it unnecessary to speak of an algebra as
a triple (A,µ, η).

To illustrate the strength of Definition 1.2.1 we present here a list of
important examples:

The unit object For any monoidal category C the unit object 1 is always
an algebra with multiplication given by the unit constraints l1 = r1 : 1 ⊗
1→ 1.

Monoids The category Sets consisting of sets and maps is a monoidal
category together with the cartesian product × of sets. Every one-element
set {∗} is a unit object in Sets. A unital, associative algebra in Sets is
the same thing as a monoid M . The usual axioms for a monoid express
the unit e of M as an element in the set M . The formulation in terms of
morphisms gives back the element formulation by defining e := η(∗).

Algebras over a ring If R is a commutative ring, the category R-Mod
of R-modules is a monoidal category with tensor product ⊗R and unit
object R. The axioms of an algebra A in R-Mod in the sense of Definition
1.2.1 are easily translated into the common textbook definition of an R-
algebra as a ring A together with a unit preserving ring homomorphism
R→ Z(A). In particular for R = Z we get back the definition of a ring.

Monads Let C be a small category and End(C) the category of endofunc-
tors as objects and natural transformations as morphisms. The composi-
tion of morphisms is given by vertical composition of natural transforma-
tions. End(C) is a monoidal category with tensor product given on objects
by the composition of functors and on morphisms by horizontal composi-
tion of natural transformations.
Let now (T, µ, η) be a unital, associative algebra in End(C). This means
that T : C → C is a functor and µ : T 2 → T and η : Id → T are natural
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transformations such that the equalities

µX ◦ T (µX) = µX ◦ µTX
µX ◦ ηTX = idTX = µX ◦ T (ηX)

hold for all objects X in C. These are the usual axioms of a monad on C,
cf. Section A.2.

Coalgebras Let C be a monoidal category, the opposite category Cop is a
monoidal category as well. The algebras in Cop are known under the name
coalgebras:

Definition 1.2.3 An object C in C together with morphisms ∆: C →
C ⊗ C (comultiplication) and ε : C → 1 (counit) is called coalgebra, if

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆ (1.8)

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆ . (1.9)

We introduce in Figure 1.4 standard notations for (co)multiplication and
(co)unit of a (co)algebra in a monoidal category C.

We continue or list of examples for (co)algebras:

Tensor products of algebras and coalgebras Let C be a braided category,
let A and B be algebras in C and let C and D be coalgebras in C. We can
define an algebra structure on the object A⊗B and a coalgebra structure
on C ⊗D by

µA⊗B :=

A

A

A

B

BB

and ∆C⊗D :=

C

C

C

D

DD

The unit of A⊗B is ηA ⊗ ηB , the counit of C ⊗D is εC ⊗ εD.

Coalgebras in cartesian categories Let C be a category which has all
two-fold products and a terminal object, e.g. Sets.
The cartesian category associated to C is the monoidal category which has
the product functor u : C×C → C as tensor product, every terminal object
∗ is a unit object. In a cartesian category C every object has a unique struc-
ture as a counital coalgebra given by the unique morphism ∆: X → XuX
fulfilling p1 ◦∆ = idX = p2 ◦∆. In the case of C = Sets the map ∆ is the
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cX,Y =

X

XY

Y

evX =

∨X X

coevX =

X ∨X

c−1
X,Y =

Y

YX

X

ẽvX =

X X∨

cõevX =

X∨ X

Figure 1.3.: Braidings, evaluations and coevaluations

µ =

A A

A

η =

A

µ3 =

A AA

A

∆ =

C C

C

ε=

C

∆3 =

C CC

C

Figure 1.4.: Multiplication and comultiplication
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diagonal map x 7→ (x, x).

We end this subsection with the following definition.

Definition 1.2.4 Let A and B be associative algebras in C. A morphism
ϕ : A→ B is called algebra homomorphism, if

ϕ ◦ µA = µB ◦ (ϕ⊗ ϕ) .

Let A and B be unital algebras. We call ϕ unital or unit preserving, if

ϕ ◦ ηA = ηB .

1.2.2. Modules and comodules

Definition 1.2.5 Let A be an associative algebra in a monoidal category
C. A (left) A-module or module over A is an object X in C together with
a morphism ρ = ρX : A⊗X → X such that

ρ ◦ (µ⊗ id) = ρ ◦ (id⊗ ρ) . (1.10)

If A is unital, we also require

ρ ◦ (η ⊗ id) = id . (1.11)

Let X and Y be modules over an algebra A. A morphism f : X → Y is
called A-module homomorphism or A-linear morphism, if

f ◦ ρX = ρY ◦ (id⊗ f) . (1.12)

Modules over A and A-linear morphisms in C form a category A-Mod(C).
One defines right A-modules as pairs (X, ρr : X ⊗ A → X) fulfilling

conditions analogous to (1.10) and (1.11). We denote the category of right
modules over A by Mod(C)-A.

Dual to the notion of a module over an algebra is the notion of a comod-
ule over a coalgebra C. These are pairs (X, δ : X → C⊗X) (left comodule)
or (X, δr : X → X ⊗ C) (right comodule) fulfilling the axioms analogous
to (1.10) and (1.11).

A morphism f : X → Y between C-comodules is called C-comodule
homomorphism or C-colinear morphism, if the suitably changed condition
(1.12) holds.

The category of left C-comodules is denoted by C-Cmd(C) and the
category of right C-comodules by Cmd(C)-C.
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ρX =

A X

X
ρrX =

AX

X
δX =

C

X

X
δrX =

C

X

X

Figure 1.5.: Graphical notation of actions and coactions

In the graphical notation for morphisms we denote the action resp. coac-
tion of a module resp. comodule as in Figure 1.5. To improve readability
of the diagrams we will use different colors or thicker lines to distinguish
modules and algebras.

We will now list examples for modules and comodules.

Modules over the unit object In a monoidal category C the unit object
1 is always an algebra and a coalgebra. Every object X is a left module
over 1 via the unit isomorphism lX : 1 ⊗X → X and a comodule over 1
via its inverse l−1

X : X → 1 ⊗X. The category of modules over 1 and the
category C are obviously isomorphic as ordinary categories.

Sets and maps We have seen before that an algebra in the category Sets
of sets and maps is the same thing as a monoid. A module over a monoid
M is the same thing as a set X with an associative action M ×X → X of
M . A module homomorphism is an equivariant map.

We also observed that every set X is a coalgebra in Sets by the diagonal
map. Now let (Y, δ : Y → X×Y ) be a comodule overX. Counitality implies
that δ(y) = (f(y), y) for some f(y) ∈ X, hence δ defines a map f : Y → X.
Conversely, every map f : Y → X defines a comodule structure on Y by
δ(y) := (f(y), y).
Now let Y be an X-comodule via f : Y → X and let Z be an X-comodule
via g : Z → X. An X-morphisms from Y to Z is a map ϕ : Y → Z with
g ◦ ϕ = f .

Regular modules and comodules Every algebra A in a monoidal cate-
gory C is a left, as-well as a right A-module via its multiplication. This
module is called the regular (left/right) module. Similar, every coalgebra
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C is a left and right comodule over C via the comultiplication. It is called
the regular (left/right) comodule.

Modules over a monad Let T be a monad on C. A module over T in
the sense of Definition 1.2.5 is an endofunctor of C together with a natural
transformation plus the suitable axioms. Despite this notion of a module
over T , in this thesis we mean by a T -module an object of the Eilenberg-
Moore category T . These are pairs (X, r) where X is an object in C and
r : TX → X is a morphism compatible with the multiplication µ and the
unit η of T , see Appendix A.2 for a precise definition.
Note that in the literature T -modules are also called T -algebras, which we
will not to since our interest is in the following type of monads:
Given an algebra A in a monoidal category C we get a monad T = A⊗
with multiplication µX := µA⊗ idX and unit ηX := ηA⊗ idX . A T -module
is the same thing as a left A-module. Similarly, an algebra A defines a
monad T ′ := ⊗A whose modules are right A-modules.

Tensor products Let C be a braided category, let A and B be algebras
in C and let C and D be coalgebras in C. Given an A-module resp. C-
comodule X and a B-module resp. D-comodule Y in C. The object X⊗Y
is an A⊗B-module resp. a C ⊗D-comodule with

ρ :=

A B X Y

X Y

resp. δ :=

C D X Y

X Y

(1.13)

1.2.3. Functors related to (co)modules

Lemma 1.2.6 Let A and B be algebras and C and D be coalgebras in a
monoidal category C.

1. If ϕ : A → B is an algebra homomorphism, we get a pull-back or
restriction functor ϕ∗ : B-Mod(C)→ A-Mod(C) by

ϕ∗ :=

{
(X, ρ) 7→ (X, ρ ◦ (ϕ⊗ id))

(X
f−−→ Y ) 7→ (X

f−−→ Y ) .
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2. If ψ : C → D is a coalgebra homomorphism, we get a push-forward
or corestriction functor ψ∗ : C-Cmd(C)→ D-Cmd(C) with

ψ∗ :=

{
(X, δ) 7→ (X, (ψ ⊗ id) ◦ δ)
(X

f−−→ Y ) 7→ (X
f−−→ Y ) .

Proof. Follows directly from the (co)algebra homomorphism axioms.

Let (X, ρrX) be a right A-module and let (Y, ρY ) be a left A-module in a
monoidal category C. Define the object X ⊗A Y as the coequalizer of the
two morphisms ρrX ⊗ idY and id ⊗ ρY ; if it exists, the object X ⊗A Y is
called tensor product of X and Y over A.
Let (X, δrX) be a right C-comodule and let (Y, δY ) be a left C-comodule in
C. Define the object X�CY as the equalizer of δrX ⊗ idY and idX ⊗ δY ; if
it exists, the object X�CY is called cotensor product of X and Y over C.

Definition 1.2.7 Let A and B be algebras in a monoidal category C.
An A-B-bimodule is an object X in C that is a left A-module and right
B-module, such that the left and right actions commute:

ρ ◦ (idA ⊗ ρr) = ρr ◦ (ρ⊗ idB) .

A morphism of A-B-bimodules is a morphism that is A-linear and B-linear.
The category of A-B-bimodules and bimodule morphisms is denoted by the
symbol A-B-Bimod(C). Analogously one defines the category of C-D-bi-
comodules and bicomodule morphisms which we denote by C-D-Bicom(C).
Lemma 1.2.8 Let C be a monoidal category with all coequalizers and let
A,B and C be algebras in C. Every A-B-bimodule X defines functors

X ⊗B : B-C-Bimod(C)→ A-C-Bimod(C)
⊗A X : C-A-Bimod(C) → C-B-Bimod(C) .

If the monoidal product ⊗ of C preserves coequalizers in both variables
and Y is a B-C-bimodule, the composed functor (X ⊗B ) ◦ (Y ⊗C ) is
isomorphic to (X ⊗B Y )⊗C .

Proof. Follows by standard diagram chases.

Corollary 1.2.9 Let C be a monoidal category with all coequalizers and
assume that the product ⊗ preserves coequalizers in both variables. The
category A-Bimod(C) of A-A-bimodules is a monoidal category with ten-
sor product ⊗A and unit object A.
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Of course, there is also a bicomodule version of Lemma 1.2.8 and Corol-
lary 1.2.9, which we do not spell out.

Lemma 1.2.10 Let C and D be monoidal categories, let F,G : C → D be
functors and α : F → G be a transformation.

1. Let A be an algebra in C and let F be a lax monoidal functor with
monoidal structure (F2, F0). The object FA is an algebra in D with
multiplication F (µ) ◦ F2(A,A) : FA ⊗ FA → FA and unit F (η) ◦
F0 : 1→ FA.

2. If X is an A-module with action ρ : A ⊗X → X, the object FX is
an FA-module with action F (ρ) ◦ F2(A,X) : FA⊗ FX → FX.

3. Let F and G be lax monoidal functors C → D and let α : F → G
be a monoidal transformation. The morphism αA : FA → GA is an
algebra homomorphism.

4. Analogous statements to those above hold for coalgebras, comod-
ules, oplax monoidal functors and monoidal transformations between
oplax functors.

1.3. Bialgebras and Hopf algebras

1.3.1. Definitions

Let C be a monoidal category, C a coassociative coalgebra and A an as-
sociative algebra in C. The morphisms C(C,A) form a monoid called the
convolution algebra. If C is a k-linear category, the convolution algebra is
even a k-algebra. The product is the convolution product : Let f, g : C → A
be morphisms in C and define

f ∗ g :=

A

C

f g .

The associativity of ∗ follows from coassociativity of ∆ and associativity
of µ. If C is counital and A is unital, the algebra C(C,A) is unital with
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unit η ◦ ε : C → A.
Note that the object A ⊗ C is a left A-module via µA ⊗ idC and a right
C-comodule via idA ⊗ ∆. We can look at the set resp. k-vector space

A EndC(A ⊗ C) of A-linear and C-colinear morphisms A ⊗ C → A ⊗ C.
The set A EndC(A ⊗ C) is also a monoid with multiplication given by
composition of morphisms. For f : C → A define

FAC (f) :=

A C

A C

f .

One immediately verifies

Lemma 1.3.1 The assignment FAC defines an isomorphism of sets/vector
spaces

C(C,A)→ A EndC(A⊗ C) .

The inverse of FAC is given on ϕ : A⊗ C → A⊗ C by

ϕ 7→ (idA ⊗ ε) ◦ ϕ ◦ (η ⊗ idC) .

Further, FAC is an anti-monoid homomorphism, i.e.

FAC (f ∗ g) = FAC (g) ◦ FAC (f)

for all f, g : C → A.

Definition 1.3.2 Let C be a braided category. A bialgebra in C is an
object A which is a unital, associative algebra and a counital, coassociative
coalgebra in C, such that one of the following equivalent conditions holds:

• The comultiplication ∆: A → A ⊗ A and the counit ε : A → 1 are
unital algebra homomorphisms.

• The multiplication µ : A⊗A→ A and the unit morphism η : 1→ A
are counital coalgebra homomorphisms.

Let A and B be bialgebras in C. A morphism ϕ : A→ B is called bialgebra
homomorphism, if ϕ is a unital algebra and counital coalgebra homomor-
phism.
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We spell out the above definition: a bialgebra is an algebra and a coalge-
bra in C with the following compatibilities of algebra and coalgebra struc-
ture

A A

A A

=

A A

A A

,

A A

=

A A

,

A A

=

A A

,

1

1

=

1

1

.

(1.14)

A special class of bialgebras is related to the convolution algebra C(A,A)
obtained from the underlying coalgebra resp. algebra of A.

Definition 1.3.3 A bialgebra A is called Hopf algebra, if one of the fol-
lowing equivalent conditions holds:

• There is a morphism S = SA : A → A which is convolution inverse
to idA.

• The morphism H = HA := (µ⊗ idA) ◦ (idA ⊗∆): A⊗A→ A⊗A is
composition invertible.

From Lemma 1.3.1 one sees that S and H are related by FAA (S) = H−1.
From the definition it is clear, that the antipode of a Hopf algebra is unique.
We will depict S by a circle as in (1.15). The first condition of Definition
1.3.3 characterizes S : A→ A as the unique morphism fulfilling

A

A

=

A

A

=

A

A

. (1.15)

Many properties of the antipode of a Hopf algebra in a braided category
are analogous to the properties of the antipode of a Hopf algebra over a
field. Proofs can be given in terms of convolution algebras. We list some
examples of such properties:

Lemma 1.3.4 Let A be a Hopf algebra in a braided category C. The
following holds:

1. S ◦ η = η and ε ◦ S = ε.
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2. S ◦ µ = µ ◦ cA,A ◦ (S ⊗ S) and ∆ ◦ S = (S ⊗ S) ◦ cA,A ◦∆.

3. If ϕ : A→ B is a bialgebra homomorphism, then f ◦ SA = SB ◦ f .

Proof. That S preserves the unit follows by

S ◦ η = µ ◦ ((S ◦ η)⊗ η) = µ ◦ (S ⊗ id) ◦∆ ◦ η = η ◦ ε ◦ η = η.

Analogously, we conclude ε ◦S = ε. The proof of S ◦µ = µ ◦ cA,A ◦ (S⊗S)
follows by showing that both sides are convolution inverse to µ ∈ C(A ⊗
A,A) and thus have to be equal. Similarly one shows that ∆ ◦ S and
(S⊗S)◦ cA,A ◦∆ are convolution inverse to ∆ ∈ C(A,A⊗A) and f ◦SA =
SB ◦ f follows, since both are convolution inverse to f ∈ C(A,B).

If A is a bialgebra in C, we can equip the categories of left modules
or comodules over A with a monoidal structure: let X and Y be left A-
modules. Recall that X ⊗ Y is an A ⊗ A-module with the action defined
in (1.13). Using that ∆: A → A ⊗ A is an algebra homomorphism gives,
that

ρX⊗Y :=

A X Y

X Y

(1.16)

is a left A-action on X ⊗ Y ; it is called the diagonal action. Due to the
counit ε : A→ 1, every object X in C becomes an A-module via the trivial
action ρtriv

X := ε⊗ idX .
Analogously, for A-comodules X and Y the morphism

δX,Y :=

A X Y

X Y

(1.17)

is an A-comodule structure on X ⊗ Y , called the diagonal coaction and
the unit η : 1→ A defines on every object X a comodule structure δtriv

X :=
η ⊗ idX .

Proposition 1.3.5 The categories A-Mod(C) and A-Cmd(C) become
monoidal categories with the tensor product of (co)modules defined by the
diagonal (co)action and the unit object given by the unit object 1 of C
seen as the trivial (co)module.
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Proof. Due to coassociativity resp. counitality of ∆ the associator and unit
isomorphisms of C are A-linear. Thus the category A-Mod(C) inherits the
associator resp. the unitators of C. Hence A-Mod(C) is strict, if C is.
The category A-Cmd(C) is monoidal due to associativity and unitality of
of the multiplication µ.

Note that the categories A-mod(C) and A-cmd(C) are in general not
braided although C is braided. Further, A-mod(C) and A-cmd(C) are
rather different categories.

Remark 1.3.6 Of course one can define a diagonal (co)action on two
right modules, as well as a trivial right (co)action on each object of C.
As in the case of left (co)modules, we can see the categories Mod(C)-A
and Cmd(C)-A as monoidal categories, which we will always do, if A is a
bialgebra.
Note that in the definition of ρX⊗Y in (1.16) the choice of the braiding is
not arbitrary: if we use the inverse braiding to define ρX⊗Y , the pair (X⊗
Y, ρX⊗Y ) will not be an A-module in general. This comes from defining
the multiplication on A⊗A with the help of cA,A.
However, there is always a second A-module structure on X ⊗ Y given by
the family

ρ′X⊗Y :=

A X Y

X Y

(1.18)

Why we prefer ρ and not ρ′ is merely a question of convention; in Remark
1.3.8 we will see that ρ′ is the diagonal action of another bialgebra in
another braided category.

The first subtle difficulty, in comparison to the theory of bialgebras
over a field, turns out to be the definition of the opposed and coopposed
bialgebra. Naively, one can try to define the opposed algebra of (A,µ,∆)
as the triple (A,µ+ := µ ◦ cA,A,∆). All axioms of a bialgebra in C hold,
except for the first equality in (1.14). We can repair this flaw by assuming
that A is a bialgebra not in C, but rather in the mirror category C, i.e. C
with the inverse braiding cX,Y := c−1

Y,X . Note that C and C are equal as
braided categories. We arrive at

Definition 1.3.7 Let A be a bialgebra in a braided category C. The op-
posed bialgebra Aop of A is the triple (A,µ− := µ ◦ c−1

A,A,∆), which is a
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bialgebra in C. The coopposed bialgebra Acop of A is the triple (A,µ,∆− :=
c−1
A,A ◦∆), which is a bialgebra in C.

Remark 1.3.8 We said in Remark 1.3.6 that the morphisms (1.16) and
(1.18) both define a left module structure on X ⊗ Y . From the picture of
ρ′ one immediately verifies that this is the diagonal action of Acop in C on
X ⊗ Y . So we loose nothing, when we prefer one of the actions on X ⊗ Y ,
since we can see X ⊗ Y either as an A-module in C or as an Acop-module
in C.

Remark 1.3.9 Let A be a bialgebra in a braided category C. The opposed

bialgebra of the opposed bialgebra of A, i.e. (Aop)op in C = C, is equal to
A itself. Also (Acop)cop is equal to A as a bialgebra in C. In contrast to
that, the bialgebras (Aop)cop = (A,µ−,∆+) and (Acop)op = (A,µ+,∆−)
are usually different as bialgebras in C. Nevertheless, if A is a Hopf algebra,
the antipode provides bialgebra homomorphisms

S : (Aop)cop → A and S : A→ (Acop)op

what we see from Lemma 1.3.4.
Already in classical Hopf algebra theory, the (co)opposite bialgebra of a
Hopf algebra is not necessarily a Hopf algebra; this is precisely the case
when the antipode is not invertible, cf. Lemma 1.3.10. From (1.15) one sees
that the problem, whether Aop is a Hopf algebra depends on the existence
of a morphism T : A→ A, which we depict by a gray circle, obeying

A

A

=

A

A

=

A

A

. (1.19)

Such a morphism is also called a skew-antipode for the bialgebra A; note
that c−1

A,A, and not cA,A, appears in (1.19).

Parallel to classic Hopf algebra theory one has the following result:

Lemma 1.3.10 Let A be a bialgebra in a braided category C, let S : A→
A be an antipode for A and let T : A→ A be a skew-antipode for A. Then
S ◦ T = idA = T ◦ S.
In particular, A is a Hopf algebra with invertible antipode, iff Aop and
Acop are Hopf algebras with invertible antipode.
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If A is a Hopf algebra in C with invertible antipode, and C is rigid then
the modules and comodules over A are also rigid categories: let X be an
object in C with left-dual object ∨X and right-dual object X∨.

1. Given a left module (X, ρ : A ⊗X → X), define ∨(X, ρ) as the pair
(∨X, ∧ρ : A⊗∨X → ∨X) and define (X, ρ)∨ as the pair (X∨, ρ∧ : A⊗
X∨ → X∨) with

∧ρ :=

A ∨X

∨X

and ρ∧ :=

A X∨

X∨

.

2. Given a left comodule (X, δ : X → A ⊗ X), define ∨(X, δ) as the
pair (∨X, ∧δ : ∨X → A⊗ ∧X) and further define (X, δ)∨ as the pair
(X∨, δ∧ : X∨ → A⊗X∨) with

∧δ :=

A ∨X

∨X

and δ∧ :=

A X∨

X∨

.

Lemma 1.3.11 Let C be a rigid, braided category and A a Hopf algebra
in C with invertible antipode S : A → A. Then also the categories of left
A-modules resp. left A-comodules over A are rigid.

Proof. Let (X, ρ) be a left A-modules. One checks that ∨(X, ρ) is a left
A-module and that evX and coevX are A-linear morphisms fulfilling the
rigidity axioms. Thus ∨(X, ρ) is a left dual object for (X, ρ). Similar argu-
ments show that (X, ρ)∨ is a right dual object for (X, ρ) and that ∨(X, δ)
and (X, δ)∨ are left resp. right dual to an A-comodule (X, δ).

1.3.2. Smash products

In this subsection we give a short application of the viewpoint of algebras
in monoidal categories.
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Definition 1.3.12 Let H be a bialgebra in a braided category C. A mod-
ule algebra over H is an algebra in the monoidal category H-Mod(C)
and a comodule algebra over H is an algebra in the monoidal category
H-Cmd(C).
The term module coalgebra over H stands for a coalgebra in the category
H-Mod(C) and the term comodule coalgebra over H for a coalgebra in the
category H-Cmd(C).

If A is a module algebra over a bialgebra H in C, we can define a mul-
tiplication morphism on A⊗H

µ :=

A H A H

A H

(1.20)

The pair (A ⊗H,µ) is called the smash product of A over H and we will
denote it by AoH.

Lemma 1.3.13 Let H be a bialgebra in a braided category C and let A
be a module algebra over H. The smash product AoH is an associative
algebra in C and the categories (AoH)-Mod(C) and A-Mod(H-Mod(C))
are isomorphic categories.

Sketch of proof. An A-module X in H-Mod(C) with A-action ρA and H-
action ρH becomes an AoH-module with action ρA ◦ (idA ⊗ ρH).

Conversely, an A o H-module X becomes an H-module by composing
the AoH-action with ηA⊗ id and X becomes an A-module in H-Mod(C)
by composing the AoH-action with id⊗ ηH

Remark 1.3.14 Given a comodule coalgebra C over a bialgebra H in C,
one defines the cosmash product C oH as the pair (C ⊗H,∆) with

∆ =

C H C H

C H

. (1.21)

Analogous to Lemma 1.3.13, we have that CoH is a coalgebra in C whose
category of comodules is isomorphic to the category of C-comodules in
H-Cmd(C).
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1.3.3. Functors between modules and comodules

From elementary algebra one knows that for a ring R the categories of
left R-modules and right Rop-modules are isomorphic. For an algebra A
in a braided category we have a similar equivalence, which turns out to be
strict monoidal, if A is even a bialgebra.

Lemma 1.3.15 Let A be a bialgebra in a braided category C and (X, ρ)
a left A-module. The assignment

AT =

{
(X, ρ) 7→ (X, ρ− := ρ ◦ c−1

A,X)(
X

f−→ Y
)
7→
(
X

f−→ Y
)

is a strict monoidal functor AT : A-Mod(C)→Mod(C)-Aop.

Remark 1.3.16 We call the functor AT side switch functor. Similarly, we
have side switch functors for right modules and left and right comodules,
which are also strict monoidal:

AT : A-Cmd(C)→ Cmd(C)-Acop,

TA : Mod(C)-A → Aop-Mod(C)
and TA : Cmd(C)-A→ Acop-Cmd(C) .

They are given on objects by composing the (co)action of a (co)module
with suitable instances of the inverse braiding.

Note that TAop : Mod(C)-Aop → (Aop)op-Mod(C) = A-Mod(C) is inverse
to the functor AT, thus we have an isomorphism of monoidal categories.

A Hopf pairing between two bialgebras allows us to define functors be-
tween the categories of modules and comodules.

Definition 1.3.17 Let A and B be bialgebras in a braided category C. A
morphism ω : A ⊗ B → 1 is called Hopf pairing between A and B, if the
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following equations hold

ω

A A B

=

ω

ω

A A B

ω

B

=

B

(1.22)

ω

BBA

=

ω

ω

BBA

ω

A

=

A

(1.23)

A Hopf pairing is called non-degenerate, if there is an inverse copairing,
i.e. is a morphism ω′ : 1→ B ⊗A, such that

(ω ⊗ idA) ◦ (idA ⊗ ω′) = idA and (idB ⊗ ω) ◦ (ω′ ⊗ idB) = idB .

Lemma 1.3.18 Let A and B be bialgebras in a braided category C and
ω : A⊗B → 1 a Hopf pairing. The following holds

1. The morphism ω is a Hopf pairing between Aop and Bcop resp. be-
tween Acop and Bop.

2. If ω is non-degenerate, the inverse copairing ω′ : 1→ B⊗A is unique
and a Hopf copairing, i.e. ω′ obeys axioms analogous to (1.22) and
(1.23).

3. If A and B are Hopf algebras, the Hopf pairing ω is compatible with
the antipodes:

ω ◦ (SA ⊗ idB) = ω ◦ (idA ⊗ SB) . (1.24)

Proof. The proof consists mostly on checking the claims directly. The last
claim can be shown by proving that ω ◦ (SA ⊗ idB) and ω ◦ (idA ⊗ SB)
are both convolution inverse to ω in the convolution algebra C(A′ ⊗B,1),
where A′ is the coalgebra with comultiplication cA,A ◦∆.

Lemma 1.3.19 Let A and B be bialgebras in a braided category C, let
ω : A⊗B → 1 be a Hopf pairing and let (X, δ) be a left B-comodule. The
assignment

ωD :=

{
(X, δ) 7→ (X, (ω ⊗ idX) ◦ (idA ⊗ δ))
(X

f−−→ Y ) 7→ (X
f−−→ Y )
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is a strict monoidal functor ωD : B-Cmd(C)→ Acop-Mod(C). If ω is non-
degenerate the functor ωD is invertible.

Proof. Remember that A and Acop have the same underlying algebra. That
ωD(X) is an A-module (and thus an Acop-module) follows directly from
the equations (1.22).
Next one checks with the help of the first equality in (1.23) that for every
pair of left B-comodules X and Y the A-module ωD(X ⊗ Y ) is equal to
the A-module ωD(X)⊗ ωD(Y ) equipped with the diagonal action of Acop.
Finally the second equation in (1.23) ensures the equality ωD(1)⊗ωD(X) =
ωD(X) = ωD(X) ⊗ ωD(1) of A-modules. Hence ωD is a strict monoidal
functor.
The last thing to check is the invertibility in the case of a non-degenerate
Hopf pairing: let ω′ be the inverse copairing of ω and define the assignment

ω′D : Acop-Mod(C)→ B-Cmd(C) by

ω′D :=

{
(X, ρ) 7→ (X, (idB ⊗ ρ) ◦ (ω′ ⊗ idX))

(X
f−−→ Y ) 7→ (X

f−−→ Y ) .

That ω′D is indeed a functor follows from the Hopf copairing properties.
Since ω′ is the inverse copairing of ω, we see that ω′D is inverse to ωD.

Example 1.3.20 Let A and B be Hopf algebras in a braided category C.

1. Let A∨ be a right dual object of A. The triple (A∨,∆∨, µ∨) is a Hopf
algebra in C and the evaluation ẽv : A⊗A∨ → 1 is a non-degenerate
Hopf pairing with inverse copairing cõev : 1→ A∨ ⊗A.
Let C be the category of vector spaces. A Hopf algebra A has a dual,
iff it is a finite dimensional.

2. If ω : A⊗B → 1 is a Hopf pairing, then ω+ := ω ◦ (SA ⊗ SB) ◦ cB,A
and ω− := ω ◦ (S−1

A ⊗ S
−1
B ) ◦ c−1

A,B are Hopf pairings B ⊗A→ 1.

If ω is non-degenerate with inverse copairing ω′, then ω+ and ω− are
non-degenerate as well. For instance, the inverse copairing of ω+ is
given by c−1

A,B ◦ (S−1
B ⊗ S

−1
A ) ◦ ω′.

Remark 1.3.21 Let A and B be bialgebras over a field k. The definition
of a Hopf pairing above reads in Sweedler notation as

ω(ab, x) = ω(a, x(2))ω(b, x(1)) and ω(a, xy) = ω(a(1), y)ω(a(2), x)
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for all a, b ∈ A and x, y ∈ B. The usual textbook definition of a Hopf
pairing σ : A⊗B → k is

σ(ab, x) = σ(a, x(2))σ(b, x(1)) and σ(a, xy) = σ(a(1), x)σ(a(2), y) .
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2. Yetter-Drinfel’d modules

Let C be a braided category and A a Hopf algebra in C. We noticed be-
fore that neither the category of modules nor the category of comodules
is a braided category. Nevertheless, there are always braided categories
associated to A, namely the categories of Yetter-Drinfel’d modules over A.
In this section we summarize facts about Yetter-Drinfel’d modules over a
Hopf algebra A in a braided category C as defined by Bespalov [Bes97].
Bespalov’s notion of Yetter-Drinfel’d module generalizes the classical no-
tion of a Yetter-Drinfel’d module over a Hopf algebra over a field as given
in [Mon93] also called crossed module [Kas95, Chapter IX.5].

2.1. Definitions

2.1.1. The category of Yetter-Drinfel’d modules

A Yetter-Drinfel’d module is a module and a comodule, subject to a com-
patibility condition. Actions and coactions can be on the left or right; thus
there are four different types of Yetter-Drinfel’d modules.

Definition 2.1.1 Let A be a Hopf algebra in a braided category C; sup-
pose that X is a module and comodule over A. We call X a Yetter-Drinfel’d
module over A, if the suitable condition depicted in Figure 2.1 is fulfilled.

Example 2.1.2 Let A be a Hopf algebra in a braided category C.

1. The (left) adjoint action adA : A⊗A→ A of A on A is given by the
morphism

A A

A

One can check that the triple (A, adA,∆) is a left Yetter-Drinfel’d
module in C.

25
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A

A X

X

=

A X

A X

left YD-condition

A

AX

X

=

AX

AX

right YD-condition

A X

AX

=

X A

XA

left-right YD-condition

A X

AX

=

X A

XA

right-left YD-condition

Figure 2.1.: Yetter-Drinfel’d conditions

2. Let X be an arbitrary object in C. It becomes a module and comodule
with the trivial action by the counit and the trivial coaction by the
unit of A. One sees that X is a Yetter-Drinfel’d module over A, iff
cX,A ◦ cA,X = id.

2.1.2. Monoidal structure of one-sided Yetter-Drinfel’d
modules

The left Yetter-Drinfel’d modules over A are objects of a category A
AYD(C);

morphisms in A
AYD(C) are morphisms in C that areA-linear andA-colinear.

Moreover, the category A
AYD(C) inherits a monoidal structure from C and

there is a braiding on A
AYD(C): the tensor product of a Yetter-Drinfel’d

module X and a Yetter-Drinfel’d module Y is given by the object X ⊗ Y
with the diagonal action and coaction of A. The unit object is the monoidal
unit 1 of C, together with trivial action given by the counit and trivial
coaction given by the unit of A.
The braiding isomorphism

c
YD
X,Y : X ⊗ Y → Y ⊗X
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and its inverse are given by

c
YD
X,Y :=

X Y

Y X

and (c
YD
X,Y )−1 =

Y X

X Y

. (2.1)

We summarize this structure in the following proposition whose proof
can be found in [Bes97].

Proposition 2.1.3 Let A be a Hopf algebra with invertible antipode in
C. The left Yetter-Drinfel’d modules over A in C have a natural structure
of a braided monoidal category A

AYD(C).

Remark 2.1.4 The definition of Yetter-Drinfel’d module does not require
the existence of an antipode, so Yetter-Drinfel’d modules can be defined
over a bialgebra as well. The braiding cYD as defined above then fails to be
an isomorphism, but still fulfills the hexagon axioms. So A

AYD(C) is only
a prebraided category.
If A is a Hopf algebra, the antipode allows us to reformulate the Yetter-
Drinfel’d condition: a graphical calculation shows that a module and co-
module X is a left Yetter-Drinfel’d module, iff

A X

A X

=

A X

A X

.

This reformulation is useful to prove the following lemma which is proven
by straightforward calculations:

Lemma 2.1.5 Let A be a Hopf algebra with invertible antipode in C. For
a left Yetter-Drinfel’d module X consider the morphism

θX := ρX ◦ (S ⊗ id) ◦ δX ∈ EndC(X).

The following holds

1. θX ◦ ρX = ρX ◦ cX,A ◦ cA,X ◦ (S2 ⊗ id).
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2. δX ◦ θX = (S2 ⊗ id) ◦ cX,A ◦ cA,X ◦ δX .

3. The inverse of θX is given by

ρX ◦ c−1
A,X ◦ (id⊗ S−2) ◦ c−1

X,A ◦ δX .

4. If Y is another Yetter-Drinfel’d module, we have

c
YD
Y,X ◦ θY⊗X ◦ c

YD
X,Y = cY,X ◦ (θY ⊗ θX) ◦ cX,Y .

Remark 2.1.6 Let A be a Hopf algebra with invertible antipode in C.
The right Yetter-Drinfel’d modules also form a braided monoidal category,
which is denoted by YDAA(C). The braiding is given by

c
YD
X,Y := (idY ⊗ ρrX) ◦ (cX,Y ⊗ idA) ◦ (idX ⊗ δrY ).

If C is the category of vector spaces over a field k, we also write A
AYDk or

A
AYD for the category of Yetter-Drinfel’d modules.

Proposition 2.1.7 Let C be a rigid braided monoidal category and let A
be a Hopf algebra with invertible antipode in C. Then the category A

AYD(C)
is also rigid.

Proof. Let (X, ρ, δ) be a Yetter-Drinfel’d module over A. Recall that a
braided category is rigid, if it is left or right rigid. So we only have to show
the existence of a left dual Yetter-Drinfel’d module ∨(X, ρ, δ). Choose as
underlying object the left dual ∨X in C, as left action ∧ρ and as a left
coaction ∧δ from Lemma 1.3.11. The object ∨X is obviously a module and
comodule in such a way that the evaluation and coevaluation are A-linear
and A-colinear morphisms fulfilling the rigidity axioms. The remaining
check that ∨X is a Yetter-Drinfel’d module is a feasible calculation.

2.1.3. Monoidal structure of two-sided Yetter-Drinfel’d
modules

We have seen in the preceding subsection that we always have a braided
monoidal structure on the category of left Yetter-Drinfel’d modules. Be-
fore we discuss, whether left-right Yetter-Drinfel’d modules form a braided
category as well, we pause here and focus our attention on the braiding
isomorphism

c
YD
X,Y = (ρY ⊗ idX) ◦ (idA ⊗ cX,Y ) ◦ (δX ⊗ idY ) .
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The main idea of the braiding isomorphism c
YD
X,Y can be seen as repairing

the flaw of cX,Y being neither A-linear nor A-colinear by involving the Hopf
algebra A via connecting the objects X and Y by an action and coaction

of A. Note that the morphism c
YD
X,Y is reasonably simple in the sense that

we use a minimal amount of braiding isomorphisms from the underlying

category C to form c
YD
X,Y . Further, the hexagon-identity c

YD
X⊗Y,Z = (c

YD
X,Z ⊗

idY ) ◦ (idX ⊗ c
YD
Y⊗Z) is due to associativity of the A-action of Z and the

hexagon-identity c
YD
X,Y⊗Z = (idX ⊗ c

YD
X,Y⊗Z) ◦ (c

YD
X,Y⊗Z ⊗ idZ) is due to

the coassociativity of the A-coaction of X. The last two observations also
manifest in the following fact: denote AM := A-Mod(C) and AM :=
A-Cmd(C). The forgetful functors

AM←−−− A
AYD(C) −−−→ AM

are strict monoidal.

We now turn to left-right Yetter-Drinfel’d modules. For any two Yetter-
Drinfel’d modules over A the endomorphism γX,Y := (idX⊗ρY )◦(δX⊗idY )
of the object X ⊗ Y in C is defined. To turn this family of morphisms
into a candidate for a braiding on the category AYDA(C) of left-right
Yetter-Drinfel’d modules, we have to pre-compose or post-compose it with
instances of the braiding c of C. For reasons, that will become clear in a
moment, we post-compose γX,Y with c−1

Y,X rather than with cX,Y

c
YD
X,Y := c−1

Y,X ◦ γX,Y . (2.2)

As for left Yetter-Drinfel’d modules, the hexagon-identity for c
YD
X⊗Y,Z holds,

since the A-action of Z is associative. Despite the fact, that we do not have
a monoidal structure on the category AYDA(C) yet, we can observe the
following: the forgetful functor AYDA(C)→MA := Cmd(C)-A would be
strict monoidal, if the tensor product X ⊗ Y was equipped with the diag-
onal coaction of A.
Now look at the hexagon-identity for c

YD
X,Y⊗Z . If it holds, we have to

equip Y ⊗ Z with the diagonal action of Acop in C. Denote AcopM :=
Acop-Mod(C). Again ignoring the fact that, so far, we have no monoidal
structure on AYDA(C) we formulate: the forgetful functor AYDA(C) →
AcopM would be strict monoidal, if the tensor product X⊗Y was equipped
with the diagonal action of Acop.
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Post-composing γX,Y with c−1
Y,X seems arbitrary in the sense that also

c̃
YD
X,Y := γY,X ◦ c−1

Y,X (2.3)

seems to be good candidate for a braiding on AYDA(C). Following the dis-

cussions above now for c̃
YD
X,Y would allow strict monoidal forgetful functors

AM←−−− AYDA(C) −−−→MAop

:= Cmd(C)-Aop .

We end our observations with the next proposition, which in particu-
lar states that the above suspected monoidal products of Yetter-Drinfel’d
modules are really Yetter-Drinfel’d modules.

Proposition 2.1.8 Let A be a Hopf algebra in a braided category C. The
category AYDA(C) admits two different structures of a braided monoidal
category: let X and Y be Yetter-Drinfel’d modules over A.

1. The object X ⊗ Y becomes a Yetter-Drinfel’d module with diag-
onal action of Acop and diagonal coaction of A. With this prod-
uct of Yetter-Drinfel’d modules we get a braided monoidal category

AcopYDA(C) with braiding isomorphisms (2.2).

2. The object X ⊗ Y becomes a Yetter-Drinfel’d module with diag-
onal action of A and diagonal coaction of Aop. With this prod-
uct of Yetter-Drinfel’d modules we get a braided monoidal category

AYDA
op

(C) with braiding isomorphisms (2.3).

Remark 2.1.9 1. The monoidal category AcopYDA(C) is not equal to

the monoidal category AYDA
op

(C), nevertheless they are isomorphic.

2. For right-left Yetter-Drinfel’d modules one gets also two monoidal
categories, which we will denote by AopYDA(C) and AYDAcop(C).
These two categories come with strict monoidal forgetful functors

MA ←−−−A
op

YDA(C) −−−→Aop

M
MAcop ←−−−AYDAcop(C) −−−→AM

The category AYDAcop(C) is braided with braiding isomorphisms
given by

c
YD
X,Y := c−1

Y,X ◦ (ρX ⊗ idY ) ◦ (idX ⊗ δY ) . (2.4)

The category AopYDA(C) is braided with braiding isomorphisms given
by

c
YD
X,Y := c−1

Y,X ◦ (ρX ⊗ idY ) ◦ (idX ⊗ δY ) . (2.5)
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2.2. Equivalences of Yetter-Drinfel’d categories

2.2.1. Left and right modules

In this subsection we discuss the side switch functor T : YDAA(C)→ A
AYD(C)

for Yetter-Drinfel’d modules. It turns out that, for our purposes, a non-
trivial monoidal structure T2 : T ⊗ T → T ◦ ⊗ has to be chosen for the
switch functor, even in those cases (for C symmetric) where the identities
provide a monoidal structure on T.

Lemma 2.2.1 The isomorphism AT : Cmd(C)-A→ Cmd(C)-Acop of cat-
egories from Remark 1.3.16 extends to an isomorphism of categories

AT : AAYD(C)→ AcopYDA
cop

(C).

The functor AT is braided and strict monoidal, considered as a functor
between the following monoidal categories:

AT : AAYD(C)→ (Acop)copYDA
cop

(C).

Remark 2.2.2 The equality (Acop)cop = A of Hopf algebras from Remark
1.3.9 might suggest the notation

AYDA
cop

(C) := (Acop)copYDA
cop

(C)

which is not in conflict with other notation used in this thesis. To avoid
confusion with the different monoidal category AYDA

op

(C), we refrain from
using this notation.

Proof. Let X = (X, ρ, δ) be in A
AYD(C). It follows from Remark 1.3.16

that AT(X) = (X, ρ, c−1
X,A ◦ δ) is an Acop-comodule and Acop-module in

C. It remains to be shown that AT(X) obeys the condition of a left-right
Acop-Yetter-Drinfel’d module in C:

A X

X A

=

A

AX

X

=

A X

AX

=

A X

X A

.

One finally verifies that the braiding isomorphisms in the Yetter-Drinfel’d
categories A

AYD(C) and (Acop)copYDA
cop

(C) coincide as morphisms in the
underlying category C.
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Remark 2.2.3 One can show by similar arguments that the isomorphisms

AT,T
A and TA extend to braided and strict monoidal functors

AT : AAYD(C)→ (Aop)op

YDAop(C),
TA : YDAA(C)→ Acop

YD(Acop)cop(C),

TA : YDAA(C)→ AopYD(Aop)op

(C).

Theorem 2.2.4 Let A be a Hopf algebra in a braided category C and
(X, ρr, δr) a right Yetter-Drinfel’d module over A. Consider

T(X, ρr, δr) = (X, ρ− ◦ (S−1 ⊗ idX), (S ⊗ idX) ◦ δ+),

with ρ− := ρr ◦ c−1
X,A and δ+ := cX,A ◦ δr. The functor

T = (TA)A : YDAA(C)→ A
AYD(C)

has a monoidal structure T2(X,Y ) : T(X)⊗ T(Y )→ T(X ⊗ Y ) given by

T2(X,Y ) :=

X Y

X Y

= c
YD
Y,X ◦ c

−1
Y,X . (2.6)

The monoidal functor (T,T2) is braided.

Proof. The functor T : YDAA(C) → A
AYD(C) is defined as the composition

of the functors in the diagram

YDAA(C) T //

TA
��

A
AYD(C)

AopYDA
op

(C) S //
AcopYDA

cop

(C)

(AT)−1

OO

Here S denotes the functor of restriction along S−1 : Acop → Aop and
corestriction along S : Aop → Acop, thus T is a functor.

Since c
YD
Y,X is A-linear and A-colinear, we see from the right-hand side of

(2.6), that the morphism T2(X,Y ) is A-(co)linear, iff c−1
Y,X is A-(co)linear

as a morphism TX ⊗TY → T(Y ⊗X); this is easily checked. Invertibility
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of T2(X,Y ) is clear from (2.6), so it remains to check that T2 is a monoidal
structure, i.e. for all Yetter-Drinfel’d modules X,Y and Z we have

T2(X ⊗ Y,Z) ◦ (T2(X,Y )⊗ idT(Z))

=T2(X,Y ⊗ Z) ◦ (idT(X) ⊗ T2(Y,Z)) .

This is a direct consequence of the Yetter-Drinfel’d condition. We conclude
that (T,T2) is a monoidal functor.
Finally we show that (T,T2) is a braided monoidal functor, i.e. the equality

T(c
YD
X,Y ) ◦ T2(X,Y ) = T2(Y,X) ◦ cYDTX,TY

holds. This is evident from drawing the morphisms.

Remark 2.2.5 The functor T = (TA)A in Theorem 2.2.4 is obtained by
first turning the right action into a left action and then the right coaction
into a left coaction, which shall be suggested by the notation (TA)A.
There is another braided equivalence between the same braided categories
of Yetter-Drinfel’d modules:

T′ = (TA)A : YDAA(C)→ A
AYD(C).

The functor T′ is given on objects by

T′(X, ρr, δr) = (X, ρ+ ◦ (S ⊗ idX), (S−1 ⊗ idX) ◦ δ−).

The monoidal structure T ′2(X,Y ) : T′(X) ⊗ T′(Y ) → T′(X ⊗ Y ) on T′ is
given by

T′2(X,Y ) :=

X Y

X Y

=
(
c
YD
X,Y

)−1

◦ cX,Y .

The two monoidal functors T,T′ : YDAA(C) → A
AYD(C) are isomorphic as

monoidal functors. An isomorphism T→ T′ is given by the family

θTX := ρTX ◦ (S ⊗ idX) ◦ δTX = ρrX ◦ (idX ⊗ S) ◦ δrX .

A right Yetter-Drinfel’d module version of Lemma 2.1.5 implies that θ is
indeed a monoidal isomorphism.
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2.2.2. Dually paired Hopf algebras

In this subsection, we prove that for Hopf algebras A and B that are related
by a non-degenerate Hopf pairing, there is a braided monoidal equivalence
between the categories A

AYD(C) and YDBB(C). This equivalence is a strict
monoidal functor.

Lemma 2.2.6 Let ω : A⊗B → 1 be a non-degenerate Hopf pairing with
inverse copairing ω′ : 1→ B ⊗A. Then

ω′D
ω : AcopYDA(C)→ BYDBcop(C)

(X, ρ, δ) 7→ (X, (id⊗ ω) ◦ (δ ⊗ id), (id⊗ ρ) ◦ (ω′ ⊗ id)) ,

is a strict monoidal braided functor. In particular, the two categories

AcopYDA(C) and BYDBcop(C) are equivalent as braided monoidal cate-
gories.

Proof. Let (X, ρ, δ) be an A-Yetter-Drinfel’d module. From Lemma 1.3.19
it is clear that D(X, ρ, δ) is a B-module and B-comodule. We have to check
the Yetter-Drinfel’d condition. Since X is an A-Yetter-Drinfel’d module,
we have the equality

XB

X B

ω

ω′

=

XB

X B

ω

ω′

.

Using that ω is a Hopf pairing, ω′ is a Hopf copairing and (idB⊗ω)◦ (ω′⊗
idB) = idB we get the equality

ω

ω′

X B

B X

=

ω

ω′

X B

B X
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which is the Yetter-Drinfel’d condition for the B-module and B-comodule
structure on D(X). The functor D is strict monoidal, since the functors

ω′D : Acop-Mod(C) → B-Cmd(C) and Dω : Cmd(C)-A → Mod(C)-Bcop

are strict monoidal. Finally, the braiding is preserved

c
YD
D(X),D(Y ) = c

YD
X,Y =: D(c

YD
X,Y ) .

This follows from (ω ⊗ idA) ◦ (idA ⊗ ω′) = idA.

Corollary 2.2.7 Let ω : A ⊗ B → 1 be a non-degenerate Hopf pairing
with inverse copairing ω′ : 1→ B ⊗A. Then

ω
ω′D : AAYD(C)→ YDBB(C)

(X, ρX , δX) 7→ (X, ρD(X), δD(Y ))

with

ρD(X) = (id⊗ ω) ◦ (c−1
X,A ⊗ S

−1) ◦ (δ ⊗ id)

δD(X) = cB,X ◦ (S ⊗ ρ) ◦ (ω′ ⊗ id)

defines a strict monoidal braided functor.
In particular, the categories A

AYD(C) and YDBB(C) are equivalent as
braided categories.

Proof. Note that ω : A⊗B → 1 is a Hopf pairing of the two Hopf algebras
Acop and Bop in C. So we have the following composite of braided, strict
monoidal functors

A
AYD(C) //

AT

��

YD(Bop)cop

(Bop)cop(C) S // YDBB(C)

(Acop)copYDA
cop

(C) ω′D
ω

// (Bop)copYDBop(C)

Bop
T

OO

Here S denotes the functor of restriction along S−1 : B → (Bop)cop and
corestriction along S : (Bop)cop → B. The top line of the above diagram is
the functor ωω′D.

Combining Theorem 2.2.4, Remark 2.2.5 and Corollary 2.2.7, we are
now in a position to exhibit explicitly two braided equivalences

Ω,Ω′ : AAYD(C)→ B
BYD(C).
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The first functor is the composition Ω := T ◦ D with monoidal structure

Ω2(X,Y ) = T(D2(X,Y )) ◦ T2(DX,DY ) = idX⊗Y ◦ (c
YD
DY,DX ◦ c

−1
Y,X)

= c
YD
Y,X ◦ c

−1
Y,X .

The second to last equal sign uses that D is a strict braided functor.
The other functor is Ω′ := T′ ◦ D with monoidal structure

Ω′2(X,Y ) = T′(D2(X,Y )) ◦ T′2(DX,DY ) =
(
c
YD
X,Y

)−1

◦ cX,Y .

Graphically the functors and the monoidal structures are

Ω(X, ρX , δX) =

X,
B X

X
ω

,

X

B X

ω′

 , Ω2(X,Y ) =

X Y

X Y

,

Ω′(X, ρX , δX) =

X,
B X

X
ω

,

X

B X

ω′

 , Ω′2(X,Y ) =

X Y

X Y

.

We summarize our findings:

Theorem 2.2.8 Let ω : A⊗B → 1 be a non-degenerate Hopf pairing. The
categories A

AYD(C) and B
BYD(C) are braided equivalent via the monoidal

functors Ω and Ω′ above.

Remark 2.2.9 We end this subsection by relating the equivalence Ω to
the equivalence ΩHS of rational modules over k-Hopf algebras discussed in
[HS13].

1. Let k be a field and Lk the category of linearly topologized vector
spaces over k. Fix a Hopf algebra E in Lk and two Hopf algebras
(R,R∨) in E

EYD(Lk) that are related by a non-degenerate Hopf pair-
ing. It is then shown in [HS13] that the categories RoE

RoEYDrat and
R∨oE
R∨oEYDrat are equivalent as braided categories. Here, the subscript
rat denotes the subcategory of rational modules.
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The non-degenerate pairing 〈, 〉 : R∨ ⊗ R → k and the structural
morphisms of the bosonized Hopf algebra R o E are used in [HS13,
Theorem 7.1] to construct a functor

(ΩHS,ΩHS
2 ) : RoE

RoEYDrat → R∨oE
R∨oEYDrat .

In detail, the functor ΩHS is constructed as follows: let M be a ratio-
nal (RoE)-Yetter-Drinfel’d module and denote the left R-coaction
by δ(m) = m〈−1〉 ⊗m〈0〉.
The (R∨oE)-Yetter-Drinfel’d module ΩHS(M) is equal to M as an
E-Yetter-Drinfel’d module and has the following R∨-Yetter-Drinfel’d
structure

action: ξm = 〈ξ,m〈−1〉〉m〈0〉

coaction: δΩHS(M) =
(
c
YD
M,R∨ ◦ c

YD
R∨,M

)
(m[−1] ⊗m[0]),

where m[−1] ⊗m[0] is the unique element of R∨ ⊗M such that for
all r ∈ R and m ∈M we have

rm =
〈
m[−1], θR(r)

〉
m[0].

The monoidal structure of ΩHS is given by the family of morphisms

ΩHS
2 (M,N) : ΩHS(M)⊗ ΩHS(N)→ ΩHS(M ⊗N)

m⊗ n 7→ S−1
RoESR(n〈−1〉)m⊗ n〈0〉.

2. In this thesis, we started with a non-degenerate Hopf pairing ω : A⊗
B → 1 and constructed an equivalence

Ωω : AAYD(C)→ B
BYD(C).

Let C be the category of finite dimensional Yetter-Drinfel’d mod-
ules over the finite dimensional Hopf algebra E. Set A = R and
B = R∨ and ω : A ⊗ B → k, such that ω−(b ⊗ a) = 〈b, a〉, cf. Ex-
ample 1.3.20. One can show by straight-forward computations, that
our functor Ωω

−
coincides with the functor ΩHS on the full subcat-

egory RoE
RoEYDfin ⊂ RoE

RoEYDrat of finite dimensional (R o E)-Yetter-
Drinfel’d modules.
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2.2.3. The square of Ω

From a non-degenerate Hopf pairing ω : A⊗B → 1, we obtained an equiv-
alence Ωω : AAYD(C)→ B

BYD(C). As noted in Example 1.3.20, we also have
a non-degenerate Hopf pairing ω− : B ⊗ A → 1 from which we obtain an
equivalence Ωω

−
: BBYD(C)→ A

AYD(C).
Proposition 2.2.10 The braided monoidal functor

Ωω
−
◦ Ωω : AAYD(C)→ A

AYD(C)

is isomorphic to the identity functor.

Proof. A direct computation shows that the monoidal functors

(Ωω,Ωω2 ) ◦
(

(Ω′)ω
−
, (Ω′)ω

−

2

)
and

(
(Ω′)ω

−
, (Ω′)ω

−

2

)
◦ (Ωω,Ωω2 )

are both equal to the identity functor with identity monoidal structure.
Remark 2.2.5 implies that (Ω′)ω

−
is monoidally isomorphic to Ωω

−
.

Alternatively, a concrete calculation shows that Ωω
− ◦Ωω is equal to the

monoidal functor that sends the Yetter-Drinfel’d module (X, ρ, δ) to the
Yetter-Drinfel’d module

(X, ρ ◦ (S−2 ⊗ idX) ◦ c−1
A,X ◦ c

−1
X,A, cX,A ◦ cA,X ◦ (S2 ⊗ idX) ◦ δ).

The monoidal structure of Ωω
− ◦Ωω is given by the family of isomorphisms

c
YD
Y,X ◦ c

YD
X,Y ◦ c

−1
X,Y ◦ c

−1
Y,X .

From this and Lemma 2.1.5 it is clear that θX := ρX ◦ (S ⊗ idX) ◦ δX
defines a monoidal isomorphism

θ : Ωω
−
◦ Ωω → Id.



3. Graded categories and group
actions

3.1. Graded categories and (co)graded
bialgebras

An easy example of a monoidal category we would like to consider as
graded over a group Γ is given by the category Γ-Vectk of Γ-graded k-
vector spaces. An object of Γ-Vect is a vector space X together with a
family {Xα ⊂ X}α∈Γ of vector subspaces fulfilling X =

⊕
α∈ΓXα.

Let X and Y be two Γ-graded vector spaces. A morphisms of graded vector
spaces is a k-linear map f : X → Y preserving the degree, i.e. f(Xα) ⊂ Yα.
The vector space X ⊗ Y becomes graded vector space by defining

(X ⊗ Y )α :=
⊕
βγ=α

Xβ ⊗ Yγ

for all α ∈ Γ. Abstracting this example leads us to

Definition 3.1.1 Let Γ be group, let C be a monoidal category and let
{Cα ⊂ C}α∈Γ be a family of full subcategories with C =

∐
α∈Γ Cα.

1. The family of subcategories is called a Γ-grading, if for any X ∈
Ob(Cα) and Y ∈ Ob(Cβ) we have X ⊗ Y ∈ Ob(Cαβ).

2. The subcategory Cα is called the α-component resp. the neutral com-
ponent for α = 1. An object X in Cα is called homogeneous of degree
α. We also denote α =: |X|.

3. The support of C is the set supp C = {α ∈ Γ | Cα 6= ∅}. The grading
is called trivial, if supp C = 1; it is called full, if supp C = Γ.

4. If C is k-linear we require C =
⊕

α∈Γ Cα instead of C =
∐
α∈Γ Cα.

One easily sees that the unit object 1 of a Γ-graded monoidal category C
is homogeneous of degree 1 ∈ Γ. If C is rigid and X a homogeneous object

39
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of degree α ∈ Γ, then ∨X and X∨ are homogeneous of degree α−1. This
and compatibility of ⊗ and group multiplication shows that supp(C) ⊂ Γ
is a subgroup, if C is left or right rigid.

Algebraic examples of graded categories arise as the categories of mod-
ules over a Hopf Γ-coalgebra or comodules over a Hopf Γ-algebra. These
algebraic structures were introduced by Turaev in [Tur00]; an understand-
ing in terms of bialgebras in certain monoidal categories is presented in
[CDL06].

Definition 3.1.2 Let k be a field and Γ a group. A semi-Hopf Γ-coalgebra
consists of a family A = {Aα}α∈Γ of unital, associative k-algebras, a family
∆ = {∆α,β : Aαβ → Aα ⊗Aβ} of unital algebra homomorphisms and a
unital algebra homomorphism ε = ε1 : A1 → k fulfilling

(∆α,β ⊗ id) ◦∆αβ,γ = (id⊗∆β,γ) ◦∆α,βγ (3.1)

(ε⊗ id) ◦∆1,α = idAα = (id⊗ ε) ◦∆α,1 (3.2)

for all α, β, γ ∈ Γ. We call ∆ the comultiplication and ε the counit of A. A
semi-Hopf Γ-coalgebra is called a Hopf Γ-coalgebra, if it has an antipode,
i.e. a family S = {Sα : Aα → Aα−1}α∈Γ of k-linear maps obeying

µα−1 ◦ (Sα ⊗ id) ◦∆α,α−1 = ηα−1 ◦ ε = µα−1 ◦ (id⊗ Sα) ◦∆α−1,α . (3.3)

Remark 3.1.3

1. To every semi-Hopf Γ-coalgebra, we can associate the algebra

Ã :=
⊕
α∈Γ

Aα

which is unital, iff supp(A) = {α ∈ Γ | Aα 6= 0} is finite. The algebra
Ã becomes a bialgebra with comultiplication

∆̃ :=
∑
α∈Γ

∆α

where ∆α :=
∑
βγ=α ∆β,γ , the counit of Ã is ε1. If A is even a Hopf

Γ-coalgebra the linear map S̃ :=
∑
α∈Γ Sα is an antipode.

Note that the bialgebra Ã comes with unital algebra homomorphisms
πα : Ã → Aα and that the inclusion ια : Aα → Ã is a unital algebra
homomorphism, iff α = 1 and supp(A) = 1. Further the underlying
coalgebra of Ã is Γ-graded, i.e.

∆̃(Aα) ⊂
⊕
βγ=α

Aβ ⊗Aγ . (3.4)
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2. Conversely, given a bialgebra Ã that is Γ-cograded, i.e. there are
unital algebras Aα such that Ã =

⊕
α∈ΓAα as unital algebra (this

implies |Γ| < ∞) and the comultiplication ∆̃ : Ã → Ã ⊗ Ã fulfills
condition (3.4).
One can show that the restriction of the counit ε : Ã→ k toAα is zero
for α 6= 1 and thus the the family of A = {Aα}α∈Γ is a semi-Hopf Γ-

coalgebra with comultiplication given by the maps (πα⊗πβ)◦ ∆̃|Aαβ
and counit given by ε = ε|A1

.

If Ã is even a Hopf algebra the associated semi-Hopf Γ-coalgebra is
of course a Hopf Γ-coalgebra.

Now let Γ be a finite group and consider the (commutative) Hopf alge-
bra kΓ of k-valued functions on Γ. If A is Γ-cograded Hopf algebra with
supp(A) = Γ, we can see kΓ as a Hopf subalgebra of A: the unit of A
is of the form 1 =

∑
α 1α, denote by {eα}α∈Γ the standard basis of kΓ

and identify 1α with eα to obtain an injective bialgebra homomorphism
ι : kΓ → A.
In the following we will always assume that Γ is a finite group, so we can
identify a semi-Hopf Γ-coalgebra A with its associated Γ-cograded bialge-
bra Ã.
This identification helps to see that the category A-Mod of (say left) A-
modules of a Γ-cograded bialgebra is a Γ-graded category: since A is the
direct sum of of the Aα we have

A-Mod =
⊕
α∈Γ

(Aα-Mod)

as abelian categories. The tensor product X ⊗ Y of an Aα-module X and
an Aβ-module Y becomes a Aαβ-module by pulling back the Aα ⊗ Aβ-
module structure along the unital algebra homomorphism ∆α,β .
If A is even a Hopf algebra, the category A-mod of finite dimensional A-
modules becomes a rigid category: given a left Aα-module, the dual space
X∗ = Hom(X,k) is a right Aα and becomes a left Aα−1 -module by the
antipode Sα−1 : Aα−1 → Aα, cf. Lemma 1.3.11.

3.2. Weak group actions

3.2.1. Definition

Let Γ be a group and denote by Γ the discrete monoidal category with
the elements of Γ as objects and the multiplication of Γ as tensor product.
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Further denote for a monoidal category C by Aut⊗(C) the (strict) monoidal
category of monoidal autoequivalences and monoidal isomorphisms with
tensor product given by the composition of monoidal functors.

Definition 3.2.1 A (weak) action of a group Γ on a monoidal category C
is defined to be a monoidal functor

Φ: Γ→ Aut⊗(C) .

An action Φ is called strict, if Φ is a strict monoidal functor. For a braided
category C a weak action Φ of Γ on C is called braided, if each Φα is a
braided monoidal functor.

Remark 3.2.2 We unravel the definition of a weak action: every group
element α ∈ Γ defines a monoidal autoequivalence (Φα,Φα2 ) : C → C, we
will also write αX instead of Φα(X).
Since Φ: Γ → Aut⊗(C) is a monoidal functor itself, we have monoidal
isomorphisms Φα,β : Φα◦Φβ → Φαβ . That Φα,β is a monoidal isomorphism
means that for all objects X and Y in C the equality

Φαβ2 (X,Y ) ◦ (Φα,β,X ⊗ Φα,β,Y ) = Φα,β,X⊗Y ◦ (Φα ◦ Φβ)2(X,Y )

holds, where (Φα ◦ Φβ)2(X,Y ) is the composition

α(Φβ2 (X,Y )) ◦ Φα2 (βX, βY ) .

Moreover, the isomorphisms Φα,β are compatible in the way that the dia-
gram

α(β(γX))
α(Φβ,γ,X) //

Φα,β,γX

��

α(βγX)

Φα,βγ,X

��
αβ(γX)

Φαβ,γ,X // αβγX

(3.5)

commutes for all objects X in C and all elements α, β, γ ∈ Γ.
The above considerations show that we can weaken the definition of a

(weak) action by saying that Φ is a strong monoidal functor with target
End⊗(C): by the monoidal isomorphisms Φα,α−1 and Φα−1,α the compo-

sitions Φα ◦ Φα
−1

and Φα
−1 ◦ Φα are both isomorphic to the functor Φ1

which is isomorphic to IdC . Thus every Φα is an autoequivalence of C. More
precisely, we have the following lemma.
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Lemma 3.2.3 Let Φ be a weak action of Γ on C. If Φ1 is the iden-
tity functor IdC , then, for all α ∈ Γ, the 4-tuples (Φα,Φα

−1

, ηα, εα) are

monoidal adjunctions with unit ηα = Φ−1
α−1,α : Id→ Φα

−1 ◦ Φα and counit

εα = Φα,α−1 : Φα ◦ Φα
−1 → Id.

3.2.2. The orbifold category

Definition 3.2.4 Let C be a k-linear monoidal category with a weak ac-
tion of a group Γ. The orbifold category or category of fixed objects of C
is the category (orb C)Γ

given as follows: objects are pairs (X,uX) con-
sisting of an object in X in C with αX ∼= X for all α ∈ Γ and a family

uX = {uαX : αX
∼=−→ X}α∈Γ of isomorphisms such that

uαβX ◦ Φα,β,X = uαX ◦ α(uβX) for all α, β ∈ Γ. (3.6)

A morphism (X,uX)
f−→ (Y, uY ) in (orb C)Γ

is a morphism X
f−→ Y in C

obeying

f ◦ uαX = uαY ◦ αf for all α ∈ Γ. (3.7)

Remark 3.2.5 The category (orb C)Γ
is also called equivariantization

[DGNO10]. The category (orb C)Γ
is monoidal with tensor product given

on objects by

(X, {uαX})⊗ (Y, {uαY }) = (X ⊗ Y, {uαX⊗Y })

with uαX⊗Y := (uαX ⊗ uαY ) ◦ (Φα2 )−1(X,Y ). If C is a fusion category and
carries the structure of a Γ-braided category as defined in Definition 3.3.1,
then (orb C)Γ

is a braided fusion category containing the symmetric cate-
gory k[Γ]-mod as braided, full subcategory, cf. [DGNO10, Section 4.2.2].

3.2.3. Weak actions on Hopf algebras

The content of this subsection follows [Dav07]. Let A and B be bialge-
bras over a field k and ϕ : A → B a homomorphism of the underlying
algebras. We know from Lemma 1.2.6 that there is a pull-back func-
tor ϕ∗ : B-Mod → A-Mod; if ϕ is even a bialgebra homomorphism,
the functor ϕ∗ is strict monoidal. We also want to describe non-strict
monoidal structures on a pull-back functor ϕ∗ for an algebra homomor-
phism ϕ : A→ B.
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Definition 3.2.6 Let A and B be bialgebras over a field k, ϕ : A → B a
homomorphism of algebras and F ∈ B ⊗B, such that the following holds

F · (ϕ⊗ ϕ)(∆(x)) = ∆(ϕ(x)) · F ∈ B ⊗B for all x ∈ A, (3.8)

(∆⊗ id)(F ) · (F ⊗ 1B) = (id⊗∆)(F ) · (1B ⊗ F ) ∈ B ⊗B ⊗B, (3.9)

(εB ⊗ id)(F ) = 1B = (id⊗ εB)(F ) , (3.10)

εB ◦ ϕ = εA . (3.11)

The pair (ϕ, F ) is called a twisted homomorphism of bialgebras.
Let (ψ,G) : B → C be another twisted homomorphism of bialgebras. We
define their composition (ψ,G) ◦ (ϕ, F ) as the pair

(ψ ◦ ϕ,G · (ψ ⊗ ψ)(F )) . (3.12)

Remark 3.2.7 Let ϕ : A→ B be an algebra isomorphism and F ∈ B⊗B
invertible, such that (ϕ, F ) is a twisted bialgebra homomorphism. Note
that in general (ϕ−1, F−1) is not a twisted bialgebra homomorphism, even
if A = B. In fact F−1 fulfills

(F−1 ⊗ 1) · (∆⊗ id)(F−1) = (1⊗ F−1) · (id⊗∆)(F−1)

rather than (3.9). One could call (ϕ−1, F−1) a quasi-twisted bialgebra
homomorphism. In [Dav07] the above notions of twisted bialgebra homo-
morphism and quasi-twisted bialgebra homomorphism are the other way
around.

Remark 3.2.8 It is common to denote an element F ∈ B⊗B by the sum∑
(F ) F

(1) ⊗ F (2) or just by F (1) ⊗ F (2) omitting the sum symbol. With

this notation condition (3.9) reads

∆(F (1)) · F ⊗ F (2) = F (1) ⊗∆(F (2)) · F .

To deal with several copies of F in one equation, we will introduce ad hoc
notations like F = F (1)⊗F (2) = f (1)⊗f (2). Combining this together with
the Sweedler notation for the comultiplication, we can express (3.9) by

(F (1))(1) · f (1) ⊗ (F (1))(2) · f (2) ⊗ F (2)

=F (1) ⊗ (F (2))(1)f
(1) ⊗ (F (2))(2)f

(2) .

Proposition 3.2.9 Let (ϕ, F ) : A → B and (ψ,G) : B → C be twisted
bialgebra homomorphisms.
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1. The composition (ψ,G)◦(ϕ, F ) is a twisted bialgebra homomorphism
A→ C.

2. The twisted homomorphism (ϕ, F ) defines a lax monoidal functor
(Φ,Φ2) = (ϕ, F )∗ : B-Mod → A-Mod. The functor Φ is given by
the restriction functor Φ := ϕ∗ : B-Mod → A-Mod and the lax
monoidal structure Φ2 is given by the following family of A-linear
maps

Φ2(X,Y ) : Φ(X)⊗ Φ(Y )→ Φ(X ⊗ Y )

x⊗ y 7→ F.(x⊗ y) .

3. We have the following equality of lax monoidal functors C-Mod →
A-Mod

((ψ,G) ◦ (ϕ, F ))
∗

= (ϕ, F )∗ ◦ (ψ,G)∗ .

Proof.

1. It is clear that ψ ◦ φ is a unital algebra homomorphism preserving
the counit. That G · (ψ ⊗ ψ)(F ) fulfills (3.10) follows since ε is an
algebra homomorphism and ψ preserves the counit.
We show that ψ ◦ ϕ and G · (ψ ⊗ ψ)(F ) fulfill (3.8)

G(1) · ψ(F (1)) · (ψϕ)(x(1))⊗G(2) · ψ(F (2)) · (ψϕ)(x(2))

=G(1) · ψ(ϕ(x)(1) · F (1))⊗G(2) · ψ(ϕ(x)(2) · F (2))

=(ψϕ)(x)(1) ·G(1) · ψ(F (1))⊗ (ψϕ)(x)(2) ·G(2) · ψ(F (2)) .

We used that ψ is an algebra homomorphism in both steps. Further
we used (3.8) for F in the first step and for G in the second.
The last thing to show is that G · (ψ ⊗ ψ)(F ) obeys (3.9).
Let F = F (1)⊗F (2) = f (1)⊗ f (2) and G = G(1)⊗G(2) = g(1)⊗ g(2),
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then we have

(G(1)ψ(F (1)))(1)g
(1)ψ(f (1)) ⊗

(G(1)ψ(F (1)))(2)g
(2)ψ(f (2)) ⊗G(2)ψ(F (2))

= (G(1))(1)g
(1)ψ((F (1))(1)f

(1))⊗
(G(1))(2)g

(2)ψ((F (2))(1)f
(2))⊗G(2)ψ(F (2))

= G(1)ψ(F (1)) ⊗ (G(2))(1)g
(1)ψ((F (2))(1)f

(1))

⊗ (G(2))(2)g
(2)ψ((F (2))(2)f

(2))

= G(1)ψ(F (1)) ⊗ (G(2)ψ(F (2)))(1)g
(1)ψ(f (1))

⊗ (G(2)ψ(F (2)))(2)g
(2)ψ(f (2)) .

Here the first and last equal sign follow from ∆ and ψ being algebra
homomorphisms in combination with (3.8) for (ψ,G). The second
equal sign uses (3.9) for (ϕ, F ) and (ψ,G).

2. We know already from Lemma 1.2.6 that Φ = ϕ∗ is a functor, so
we only have to check that Φ2 is indeed a monoidal structure: the
equality (3.8) implies that each Φ2(X,Y ) is an A-linear map, and
(3.9) implies

Φ2(X ⊗ Y, Z) ◦ (Φ2(X,Y )⊗ idΦZ)

= Φ2(X,Y ⊗ Z) ◦ (idΦX ⊗ Φ2(Y, Z))

for all B-modules X,Y and Z. Finally (3.11) gives the equality
Φ(k, εB) = (k, εA) of A-modules and (3.10) the equality

Φ2(X,k) = idΦk = Φ(k, X) .

3. trivial.

Remark 3.2.10 Another interpretation of a twisted homomorphism is the
following: let H a bialgebra and let F ∈ H ⊗H be an invertible element
obeying (3.9) and (3.10). Denote F = F (1)⊗F (2) and F−1 = F (−1)⊗F (−2).
It is well known that there is a bialgebra HF with the same multiplication
as H and comultiplication

∆F (x) := F (−1)x(1)F
(1) ⊗ F (−2)x(2)F

(2) ,
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see for example Chapter XV in [Kas95]. The statement that (ϕ, F ) is
a twisted bialgebra homomorphism, is equivalent to ϕ being a bialgebra
homomorphism ϕ : H → HF .
If H is a Hopf algebra, then HF is as well: the element f := S(F (1))F (2)

is invertible, its inverse is f−1 = F (−1)S(F (−2)) and the antipode of HF

is given by SF (x) := f−1S(x)f .

Definition 3.2.11 Let (ϕ, F ), (ϕ′, F ′) : A → B be twisted bialgebra ho-
momorphisms. An element θ ∈ B is called transformation from (ϕ, F ) to
(ϕ′, F ′), if

ϕ′(x) · θ = θ · ϕ(x) for all x ∈ A (3.13)

F ′ · (θ ⊗ θ) = ∆(θ) · F . (3.14)

We also write (ϕ, F )
θ−→ (ϕ′, F ′) to say that θ is a transformation from

(ϕ, F ) to (ϕ′, F ′).

Lemma 3.2.12 Let θ ∈ B be a transformation (ϕ, F )
θ−→ (ϕ′, F ′), then

the family

θX : X → X, x 7→ θ.x .

indexed byB-modulesX, is a monoidal transformation (ϕ, F )∗ → (ϕ′, F ′)∗.

Proof. Each θX is A-linear due to (3.13) and compatible with the monoidal
structures due to (3.14).

Definition 3.2.13 Let A be a bialgebra and let Γ be a group. A weak
action by twisted bialgebra automorphisms consists of

1. twisted automorphisms (ϕα, Fα) : A→ A for every α ∈ Γ,

2. invertible transformations (ϕαβ , Fαβ)
θα,β−−−→ (ϕα, Fα) ◦ (ϕβ , Fβ),

such that the cocycle condition

ϕα(θβ,γ) · θα,βγ = θα,β · θαβ,γ (3.15)

is fulfilled for all α, β, γ ∈ Γ.

Proposition 3.2.14 Let A be a bialgebra and let Γ be a group. A weak
action (ϕα, Fα, θα,β) of by twisted homomorphisms of Γ on A defines a
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weak action by monoidal functors on the category A-Mod: set (Φα,Φα2 ) :=
(ϕα−1 , Fα−1)∗ and for an A-module X define the isomorphism

Φα,β(X) : (ΦαΦβ)(X)→ Φαβ(X)

x 7→ θ−1
β−1,α−1 .x .

Proof. It is clear from Proposition 3.2.9 that Φα is a monoidal functor and
Lemma 3.2.12 and the third part of Proposition 3.2.9 show that Φα,β is
a monoidal transformation Φα ◦ Φβ → Φαβ , since θ−1

β−1,α−1 is a transfor-

mation from ϕβ−1 ◦ ϕα−1 → ϕ(αβ)−1 . Condition (3.15) ensures that the
corresponding diagram (3.5) commutes.

3.3. Equivariant categories and braidings

Let C be a k-linear category with a full Γ-grading. It is easy to argue that C
cannot be equipped with a braiding, if Γ is non-commutative. Nevertheless,
if we assume an action of Γ on C, Turaev introduced a notion of Γ-braiding
on C which we will present now.

Definition 3.3.1 Let Γ be a group.

1. A Γ-equivariant category is a monoidal category C together with a
Γ-grading and a weak Γ-action Φ, such that for homogeneous object
X of degree β ∈ Γ the object αX is homogeneous of degree αβα−1

for all α, β ∈ Γ.

2. A Γ-braided category is a Γ-equivariant category C together with a
Γ-braiding, i.e. isomorphisms cX,Y : X ⊗ Y → αY ⊗ X, where X is
homogeneous of degree α, such that the following three diagrams
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commute for all α, β, γ ∈ Γ, X in Cα, Y in Cβ and Z in C

X ⊗ (Y ⊗ Z)

(X ⊗ Y )⊗ Z αβZ ⊗ (X ⊗ Y )

(αβZ ⊗X)⊗ Y

X ⊗ (βZ ⊗ Y ) (X ⊗ βZ)⊗ Y

(α(βZ)⊗X)⊗ Y

a−1

EE
cX⊗Y,Z //

a−1

��

idX⊗cY,Z

�� a−1
//

c
X,βZ

??

(φα,β,Z⊗idX)⊗idY

OO

(3.16)

(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z) α(Y ⊗ Z)⊗X

(αY ⊗ αZ)⊗X

(αY ⊗X)⊗ Z αY ⊗ (X ⊗ Z)

αY ⊗ (αZ ⊗X)

a

EE

a //

a−1

OO

cX,Y⊗Z //
φα2 (Y,Z)⊗id

__

cX,Y ⊗id

�� id⊗cX,Z

??

(3.17)

γ(X ⊗ Y )

γX ⊗ γY γαγ−1

(γY )⊗ γX

γαY ⊗ γX

γ(αY ⊗X) γ(αY )⊗ γX

(Φγ2 (X,Y ))−1 ??
cγX,γY //

Φγαγ−1,γ,Y ⊗id

��

γ(cX,Y ) �� (Φγ2 (αY,X))−1

//
Φγ,α,Y ⊗id

?? (3.18)

Example 3.3.2 1. One particular class of Γ-equivariant categories is
given by the representations of a crossed Hopf Γ-coalgebra as defined
in [Tur10]. This is a Hopf Γ-coalgebra A = {Aα,∆α,β} in the sense
of Definition 3.1.2 together with a crossing, i.e. a family of algebra
homomorphisms ϕγα : Aα → Aγαγ−1 fulfilling

ϕγβγ
−1

α ◦ ϕγβ = ϕγαβ

(ϕγα ⊗ ϕ
γ
β) ◦∆α,β = ∆γαγ−1,γβγ−1 ◦ ϕγαβ
ε1 ◦ ϕγ1 = ε1
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for all α, β, γ ∈ Γ. Usually we omit the upper index of ϕγα.
Recall from the discussion after Remark 3.1.3 that the monoidal cate-
gory A-Mod is given as the disjoint union of the categories Aα-Mod
and the tensor product is by pulling back along ∆α,β . By the axioms
of a crossing we get a strict action by strict monoidal functors, if we
set Ψβ := (ϕ−1

β )∗.

2. It is well-known that braidings on the representation category of
a Hopf algebra are in one-to-one correspondence with R-matrices.
In more detail, an R-matrix for a Hopf algebra H is an invertible
element R ∈ H ⊗H such that the assignment

x⊗ y 7→ R(2)y ⊗R(1)x

defines the braiding isomorphism cX,Y : X⊗Y → Y ⊗X. One obtains
the R-matrix from the braiding by evaluating the morphism cH,H on
the element 1H ⊗ 1H , here H is the left regular H-module. The pair
(H,R) is called a quasi-triangular Hopf algebra.

3. Generalizing R-matrices of Hopf algebras to R-matrices of crossed
Hopf Γ-coalgebras gives the notion of quasi-triangular Hopf Γ-coal-
gebra. An R-matrix for a crossed Hopf Γ-coalgebra is a family

{Rα,β ∈ Aα ⊗Aβ}α,β∈Γ

satisfying compatibility conditions, see [Tur10, Vir05] for details,
which allow to express the Γ-braiding of the modules X ∈ Aα-Mod
and Y ∈ Aβ-Mod by

cX,Y (x⊗ y) = Rβ .y ⊗Rα.x

where Rα,β = Rα ⊗Rβ is a notation omitting a sum symbol. These
compatibility conditions can be derived by the following observation:
given a crossed Hopf Γ-coalgebra A, a Γ-braiding c on A-Mod is
completely determined by the elements

cAα,Aβ (1α ⊗ 1β) =: Rα,β ∈ Aα ⊗Aβ .



4. Equivariant extension of the
Drinfel’d center

4.1. Half-braidings

To a monoidal category C one associates a braided category Z(C), the
Drinfel’d center of C. Its objects are pairs consisting of an object in C and
a so called half-braiding on this object.
In this section we discuss a generalization of a half-braiding on an ob-
ject X of a monoidal category C. The categories obtained by collecting all
objects of C with a certain kind of half-braiding will provide the homoge-
neous components of a Γ-equivariant category that we will obtain from a
monoidal category C with a (weak) action of a group Γ.

Definition 4.1.1 Let C be a monoidal category, let (F, F 2, F 0) : C → C
be an oplax monoidal endofunctor of C and let X be an object in C. A lax
F -half-braiding on X is a family γFX = γX of morphisms γX,U : X ⊗ U →
F (U)⊗X that is natural in U and obeys

(F 2(U, V )⊗ idX) ◦ (γX,U⊗V ) = (idF (U) ⊗ γX,V ) ◦ (γX,U ⊗ idV ) (4.1)

(F 0 ⊗ idX) ◦ γX,1 = idX (4.2)

for all objects U and V in C. We call γX a strong F -half braiding, if all
γX,U are isomorphisms.

Remark 4.1.2 Let C be a monoidal category and F : C → C an oplax
monoidal functor.

1. Let X be an object such that the functor ⊗ X reflects isomor-
phisms, i.e. a morphism f : U → V in C is an isomorphism, if f⊗ idX
is an isomorphism. Under this assumption we derive from (4.2) that
F 0 is an isomorphism. Further we see from (4.1) that also each
F 2(U, V ) : F (U ⊗ V ) → F (U) ⊗ F (V ) is an isomorphism, thus F
is a (strong) monoidal functor.

2. Let C be a right rigid category and let F be strong monoidal. If γX
is a F -half-braiding on X, then γX,V is automatically strong. The

51
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inverse of γX,V is given by the morphism

γ′X,V := γX

V X

X V

We check that the composition γ′X,V ◦ γX,V is equal to idX⊗V :

γX

V X

X V

γX
= γX

X V

X V

= γX

X V

X V

The first equal sign is a consequence of (4.1). The second equal sign
follows from F2(V, V ∨)◦F−1

2 (V, V ∨) = idF (V⊗V ∨) and the naturality
of γX . Finally the right-hand side is equal to idX⊗V by (4.2) and the
rigidity axiom. We leave it to the reader to show that γX,V ◦ γ′X,V is
equal to idFV⊗X .

For every oplax monoidal endofunctor F of a monoidal category C we
get an ordinary category ZFlax(C). The objects are pairs (X, γX) where
X is an object of C and γX is an F -half-braiding on X. Morphisms in
ZF (C) are morphisms in C that commute with half-braidings: let (X1, γX1

)
and (X2, γX2

) be objects in ZF (C), a morphism f : X1 → X2 is said to
commute with the half-braiding, if

γX2,U ◦ (f ⊗ idU ) = (idFU ⊗ f) ◦ γX1,U (4.3)

holds for all objects U in C. We denote by ZF (C) the full subcategory
of Zlax(C) pairs (X, γX) where γX is a strong half-braiding. For F = Id
the category ZFlax(C) is the lax center Zlax(C) of C which is known to be a
monoidal, and even prebraided, category. For generic F the category ZF (C)
is not monoidal. In special cases it can be equipped with the structure of
a monoidal category, see Remark 4.1.4, which we will not discuss in detail
in this thesis.

Lemma 4.1.3 Let C be a monoidal category and let F,G : C → C be oplax
monoidal functors. Let also (X, γX) and (Y, γY ) be objects in ZGlax(C) and
ZGlax(C), respectively.
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1. The pair (X ⊗ Y, γX⊗Y ) with

γX⊗Y,U := (γX,GU ⊗ idY )(idX ⊗ γY,U ) (4.4)

is an object in ZFGlax (C).

2. Given a monoidal transformation α : F → G, the family γ′X,U :=
(αU ⊗ idX) ◦ γX,U is a G-half-braiding on X.

Proof. We check condition (4.1) for γX⊗Y,V⊗W . By definition the mor-
phism ((FG)2(V,W ) ⊗ id) ◦ γX⊗Y,V⊗W is equal to the left-hand side of
(4.5). Then use naturality of γX . We arrive at the right-hand side by using
(4.1) for γX and γY .

F =

G =

γX

γY

X Y V W

V W X Y

=

γX

γY

X Y V W

V W X Y

=

γY

γY

γX

γX

X Y V W

X YV W

(4.5)

This is by definition equal to (id ⊗ γX⊗Y,W )(γX⊗Y,V ⊗ id). We leave the
easy proof of (4.2) to the reader.
The second part of the lemma follows in an analogous way, by using that
α is a monoidal transformation.

Remark 4.1.4 In [BV12] the category ZFlax(C) is called the F -center of
C. Assume the existence of a monoidal transformation µ : F 2 → F .
From the Lemma 4.1.3 we see that for (X, γX) and (Y, γY ) in ZF (C) we
can equip the object X ⊗ Y with a lax F -half-braiding

(µU ⊗ idX⊗Y )(γX,FU ⊗ idY )(idX ⊗ γY,U ) .

If there is a monoidal transformation η : Id → F , we can equip the unit
object of C with an F -half-braiding γ1,U := ηU ⊗ id1. One easily sees that
ZF (C) becomes a monoidal category in this way, if (F, µ, η) is a monad on
C, cf. Section A.2.
An oplax monoidal functor together with monoidal transformations µ and
η as above is called bimonad. The Eilenberg-Moore category CF becomes
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a monoidal category, see [BV07].

Let C be left-rigid and assume the existence of the coend
∫ U∈C ∨(FU) ⊗

X ⊗ U for every object X ∈ C. Then there is a unique functor ZF : C → C
which is given on objects by

ZF (X) =

∫ U∈C
∨(FU)⊗X ⊗ U .

If F is oplax monoidal, this functor ZF is a monad and the Eilenberg-
Moore category CZF is isomorphic to ZFlax(C), see [BV12, Theorem 5.12].
Moreover, Bruguières and Virelizier proved that ZF is a bimonad, if F
is a bimonad. In this case categories CZF and ZFlax(C) are isomorphic as
monoidal categories.

Let (Ψ,Φ, η, ε) be a monoidal adjunction and Φ: D → C and Ψ: C → D
be strong monoidal functors. Let F be an oplax monoidal endofunctor of
D. Given (X, γX) in ZFlax(D), we define γΦ∗X as the natural transformation
given by the morphisms

γΦ∗X,U := Φ.(γX,ΨU )(idΦX ⊗ ηU ) , (4.6)

with Φ.(γX,ΨU ) := Φ−1
2 (FΨU,X) ◦ Φ(γX,ΨU ) ◦ Φ2(X,ΨU) as in (1.3).

Lemma 4.1.5 The family γΦ∗X, : ΦX ⊗ → ΦFΨ( ) ⊗ ΦX is a ΦFΨ-
half-braiding on the object ΦX in C. In particular the assignment

Φ∗ =

{
(X, γX) 7→ (ΦX, γΦ∗X)

(f : X → Y ) 7→ (f : X → Y )

is a functor Φ∗ : ZFlax(D)→ ZΦFΨ
lax (C).

Proof. We prove that γΦ∗, fulfills (4.1) and leave the check of (4.2) to the
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reader. The following holds

Φ =

Ψ =

F =

X V W

V W X

γX

η

=

X V W

V W X

γX

η

=

X V W

V W X

γX

γX

η η

=

X V W

V W X

γX

γX

η η

The first term is merely the definition of the composition ((ΦFΨ)2(V,W )⊗
idΦX) ◦ γΦ∗X,V⊗W . The first equal sign follows from naturality of γX , the
second follows by (4.1) and since η : Id → ΦΨ is a monoidal transforma-
tion. The last equality is a consequence of (ΦΨ)2(V,W ) being inverse to
(ΦΨ)2(V,W ).

4.2. The main construction

Let C be a monoidal category and Γ a group. In this section we associate
to every weak action of Γ on C a Γ-braided category ZΓ(C). Recall that
a weak action φ on C gives us monoidal autoequivalences φα : C → C and
monoidal isomorphisms φα,β : φα ◦ φβ → φαβ for α, β ∈ Γ; for simplicity
assume φ1 = IdC .
Denote by Zα(C) the category Zφα(C). In the following (X, γαX) will always

be an object in Zα(C). Define (X, γαX)� (Y, γβY ) as the pair (X⊗Y, γX⊗Y )
where γX⊗Y is the natural isomorphism with components

γX⊗Y,U := (φα,β,U ⊗ idX⊗Y )(γαX,βU ⊗ idY )(idX ⊗ γβY,U ) . (4.7)

By Lemma 4.1.3 this is a φαβ-half-braiding on X ⊗ Y .

Lemma 4.2.1 Let C be a strict monoidal category together with a weak
action of the group Γ. The disjoint union ZΓ(C) :=

∐
α∈ΓZα(C) is a Γ-
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graded and strict monoidal category with tensor product � and tensor
unit (1, id).

Proof. The only thing left to check is, that � is indeed associative: let
g, h, k ∈ Γ and let (X, γgX), (Y, γhY ) and (Z, γkZ) be in ZΓ(C).
The object (X � Y )� Z has the half-braiding

(φgh,k,U ⊗ idX⊗Y⊗Z)(φg,h,kU ⊗ idX⊗Y⊗Z)(γg
X,h(kU)

⊗ idY⊗Z)

(idX ⊗ γhY,kU ⊗ idZ)(idX⊗Y ⊗ γkZ,U )
(4.8)

and the object X � (Y � Z) has the half-braiding

(φg,hk,U ⊗ idX⊗Y⊗Z)(γg
X,hkU

⊗ idY⊗Z)(idX ◦ φh,k,U ◦ idY⊗Z)

(idX ⊗ γhY,kU ⊗ idZ)(idX⊗Y ⊗ γkZ,U )
(4.9)

The term (4.9) is seen to equal (4.8) by using naturality of γgX and the
equality

φgh,k,U ◦ φg,h,kU = φg,hk,U ◦ gφh,k,U .

Remark 4.2.2 If C is k-linear, we will denote by ZΓ(C) the category⊕
α∈ΓZα(C) rather than

∐
α∈ΓZα(C).

Remark 4.2.3 In the remainder of this section we will equip the Γ-graded
category ZΓ(C) with a compatible Γ-action Φ and a Γ-braiding.
During this construction we will encounter transformations that are built

from the set
{
φ±1
α,β

}
α,β∈Γ

by horizontal and vertical compositions. In anal-

ogy to (1.1) we define for X in C and α1, α2, . . . , αn ∈ Γ the morphism

φα1,α2,...,αn,X : α1(α2(· · · (αnX) · · · ))→ α1α2···αnX

as φα1,α2,X for n = 2 and for n ≥ 3 recursively by

φα1,α2,...,αn,X := φα1α2···αn−1,αn,X ◦ φα1,α2,...,αn−1,αnX . (4.10)

Given α1, . . . , αn, β1, . . . , βm ∈ Γ such that α1 · · ·αn = β1 · · ·βm, an in-
duction argument and the coherence condition (3.5) show that any natural
transformation ξ : φα1 · · ·φαn → φβ1 · · ·φβm built from the transforma-
tions φα,β resp. their inverses by successive vertical or horizontal compo-
sition, is of the form

ξ = φ−1
β1,...,βm

◦ φα1,...,αn .
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Graphically we will denote φα1,...,αn by the symbol
α1, . . . , αn and the

inverse φ−1
α1,...,αn by the symbol

α1, . . . , αn .

We want to define a Γ-action Φ on ZΓ(C) in such a way that for all α, β ∈
Γ we have the inclusion Φα(Zβ(C)) ⊂ Zαβα−1(C). Recall from Lemma 3.2.3
that the quadruple

(φα, φα
−1

, φ−1
α,α−1 , φα−1,α)

is always a monoidal adjunction. Hence, by Lemma 4.1.3 and Lemma 4.1.5,
there is a functor Φαβ : Zβ(C) → Zαβα−1(C) for all α, β ∈ Γ. The object

(X, γβX) is sent to (φα(X), γαβα
−1

αX ) with

γαβα
−1

αX,U := (φα,β,α−1,U ⊗ idαX) ◦ φα.(γβ
X,α−1U

) ◦ (idαX ⊗ φ−1
α,α−1,U ) .

(4.11)

Here φα.(. . .) is the notation from (1.3).

Lemma 4.2.4 Let α, β ∈ Γ and let (X, γα) and (Y, γβ) be objects in
ZΓ(C). For any g, h ∈ Γ the morphisms φg2(X,Y ) : gX ⊗ gY → g(X ⊗ Y ),
φg0 : 1 → g1, φg,h,X : g(hX) → ghX and γαX,Y : X ⊗ Y → αY ⊗ X are

morphisms in the category ZΓ(C).

Proof. First we show the statement about φg2(X,Y ): by definition, the
morphism (id ⊗ φg2(X,Y )) ◦ γΦg(X)⊗Φg(Y ),V is equal to the left-hand side
of the next line, where αg denotes gαg−1 and g := g−1:

αg,βg

g,α,g

γX

g,g

g,β,g

γY

g,g

X Y V

gαβg−1

V X Y

gV

β(gV )

(βg)V

g((βg)V )

α(g((βg)V ))

αg (β
g
V )

=

g,α,g,
g,β,g

γX

g,g

γY

g,g

X Y V

gαβg−1

V X Y

gV

β(gV )

α(g (g(β(gV ))))
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The above equality uses Remark 4.2.3: use naturality to slide the boxes
labeled by g, α, g−1 and g, β, g−1 to the top left strand. Now we can use
the equality φg,g−1,gU = gφg−1,g,U with U = β(g

−1

V ) to arrive at.

g,α,g,
g,β,g

γX

g,g

γY

g,g

X Y V

gαβg−1

V X Y

gV

β(gV )

α(g (g(β(gV ))))

=

g,αβ,g

γX

α,β

γY

g,g

X Y V

gαβg−1

V X Y

gV

β(gV )

α(β(gV ))

αβ(gV )

The equality follows from invertibility of φ2(X,Y ). Also the right-hand
side is the morphism γΦg(X⊗Y ),V ◦ (φg2(X,Y ) ⊗ id), hence φg2(X,Y ) is a
morphism in ZΓ(C). That φg0 is a morphism in ZΓ(C) is trivial.
Next we come to φg,h,X : spelling out the definition of (id ⊗ φg,h,X) ◦
γΦg(ΦhX),V gives the morphism

g,αh,g−1 g,h

h,α,h−1

γX

h,h−1

g,g−1

X V

ghα(gh)−1

V ghX

=

gh,α

,(gh)−1

h−1,g−1

g,h g,h

γX

g,h

g,h

h−1,g−1

gh,(gh)−1

g(hX) V

ghα(gh)−1

V ghX

g,h

The right-hand side is obtained by a mere application of Remark 4.2.3.
Using naturality, we can cancel out the boxes labeled by h−1, g−1. Using
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that the boxes labeled by g, h represent monoidal transformations all of
them, except for the one bottom left, cancel out. The so obtained morphism
equals γΦgh(X),V ◦ (φg,h,X ⊗ id), thus φg,h,X is a morphism in ZΓ(C).
Finally we show that γX,Y is a morphism in ZΓ(C): the left-hand side of
the next line is by definition the morphism γΦα(Y )⊗X,V ◦ (γX,Y ⊗ id).

αβα−1,α

α,β,α−1

γY

α,α−1

γX

γX

X Y V

αβV Y X

=

αβα−1,α

α,β,α−1

γY

α−1,α

γX

X Y V

αβV Y X

The equal sign follows from (4.1) and φα,α−1,αV = αφα−1,α,V . Now use
invertibility of φα2 (Y, V ) and Remark 4.2.3.

α,β

γY

γX

X Y V

αβV Y X

=

α,β

γY

γX

X Y V

αβV Y X

The last equality comes from naturality of γX . Now use (4.1) to see that
the right-hand side is equal to (id⊗ γX,Y ) ◦ γX⊗Y,V .

Theorem 4.2.5 Let C be a monoidal category with a Γ-action φ. The
monoidal category ZΓ(C) =

∐
α∈ΓZα(C) from Lemma 4.2.1 and the func-

tors Φαβ : Zβ(C)→ Zαβα−1(C) defined by (4.11) fulfill the following:

1. For every α ∈ Γ the endofunctor Φα :=
∐
β∈Γ Φαβ of ZΓ(C) is strong

monoidal.
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2. The assignment α 7→ Φα extends to a Γ-equivariant action by mono-
idal functors on ZΓ(C) in the sense of Definition 3.3.1.

3. The family
{
c(X,γαX),(Y,γβY ) := γαX,Y

}
(X,γαX),(Y,γβY )∈ZΓ(C)

equips the cat-

egory ZΓ(C) with a Γ-braiding.

Proof. It is clear that Φα is a functor. Due to Lemma 4.2.4 the isomor-
phisms Φα2 ((X, γX), (Y, γY )) := φα2 (X,Y ) and Φα0 := φα0 are morphisms in
ZΓ(C). Since the composition of morphisms is inherited from C, the triple
(Φα,Φα2 ,Φ

α
0 ) is a monoidal functor.

The morphisms Φα,β,(X,γX) := φα,β,X are also in ZΓ(C) and thus we see
that we have a Γ-action on ZΓ(C), which is Γ-equivariant by definition.
The conditions (3.16), (3.17) and (3.18) for the family c(X,γX),(Y,γY ) hold
by the definitions of the respectively involved morphisms.

Remark 4.2.6 Another construction of a Γ-braided category coming from
a monoidal category with Γ-action is due to Zunino.

1. Let C =
∐
α∈Γ Cα be a Γ-equivariant category with a strict Γ-action

by strict monoidal functors {φα}α∈Γ. In [Zun04, Section 4] the author
defines for these data a Γ-braided category Z =

∐
α∈ΓZα as follows:

objects of Zα are pairs (X, ξ) where X is an object in Cα and ξ is a
family of isomorphisms (called half-braiding) ξU : X ⊗U → αU ⊗X
natural in U ∈ C and obeying

ξU⊗V = (idαU ⊗ ξV )(ξU ⊗ idV )

for all objects U, V in C. Morphisms in Z are morphisms in C that
are compatible with half-braidings. The tensor product of (X, ξ) and
(Y, ζ) is given by (X ⊗ Y, η) with ηU := (ξαU ⊗ idY )(idX ⊗ ζU ).
The action of Γ on Z is given by the functors Φα that send (X, ξ) in
Zβ to (φα(X), ξα) in Zαβα−1 with ξα being the natural isomorphism
given by

α(ξα−1U ) : αX ⊗ α(α
−1

U)︸ ︷︷ ︸
=U

→ αβα−1

U ⊗ αX .

The Γ-braiding on Z is given by c(X,ξ),(Y,ζ) := ξY . Note that the
neutral component of Z is the Drinfel’d center of C1 ⊂ C. This finishes
our description of Zunino’s category.
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2. Any category C with Γ-action can be seen as a Γ-graded category
with an equivariant Γ-action by choosing the trivial grading C = C1.
If we apply Zunino’s construction in this setting, we obtain a Γ-
braided category Z whose neutral component is the center of C.
In contrast to our category ZΓ(C) the homogeneous components of
Z are all trivial for α 6= 1. Hence our category ZΓ(C) does not reduce
to Zunino’s category, since our Zα(C) is non-trivial: under suitable
finiteness conditions on C the coends from Remark 4.1.4 exist and
Zα(C) is given by the category of modules over a monad. If C is the
category of modules over a Hopf algebra see also Propositions 4.3.5
and 4.3.8 to see that our Zα(C) is non-trivial.

Remark 4.2.7 The following was pointed out to me by Sonia Natale.
Let Γ be a finite group. In [GNN09] the authors construct for a Γ-graded
fusion category D =

⊕
α∈ΓDα a Γ-braided category ZD1

(D). The support
of ZD1

(D) equals the support of D. The construction of the Γ-action on
ZD1(D) relies on D being a semi-simple category.

Let C be a tensor category together with an action by an arbitrary
group Γ. In [Tam01] the author defines a Γ-graded category C o Γ where
the objects of degree α are given by pairs (X,α) with an object X in C.
The tensor product of C o Γ is given by

(X,α)⊗ (Y, β) := (X ⊗ αY, αβ)

and we consider C as the full monoidal subcategory with objects (X, 1).
If C is a fusion category and Γ is finite, then C o Γ is a fusion category

as well and we get by the results of Section 3A in [GNN09] that ZC(CoΓ)
is a Γ-braided category.

In Section 3D of [GNN09] the category ZC(C o Γ) is described as the
category having as objects pairs (X, γ) where γ is a natural isomorphism

X ⊗
∼=−→ ⊗ αX subject to the compatibility condition

γX,U⊗V = (idU ⊗ γ)

This category appears to be closely related to the mirror of our category
ZΓ(C) from Theorem 4.2.5. The mirror of a Γ-braided category with a
strict Γ-action is described in Section 2.5 of [Tur10, Chapter VI].

4.3. The Hopf algebra case

In the rest of this chapter H will always be a Hopf algebra with invertible
antipode over a field k. Let C be the monoidal category H-Mod of H-
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modules together with a Γ-action coming from a weak action by twisted
automorphisms of H as in Proposition 3.2.14. We will describe the cate-
gory ZΓ(C) as twisted Yetter-Drinfel’d modules, see Definition 4.3.1. For
a finite dimensional Hopf algebra H and C = H-mod the finite dimen-
sional modules over H we can describe ZΓ(C) also as the modules over a
quasi-triangular Hopf Γ-coalgebra defined by Virelizier [Vir05].

4.3.1. Twisted Yetter-Drinfel’d modules

Let (ϕ, F ) : H → H be a twisted automorphism and Φ = (ϕ, F )∗ the
monoidal pull-back functor as in 3.2.9. Set C = H-Mod and consider H
as the regular H-module. The comultiplication of H equips the module
H with the structure of a coalgebra in H-Mod, and since Φ: C → C
is a strong monoidal functor we see that ∆F : H → H ⊗ H given by
a 7→ F−1.(a(1) ⊗ a(2)) is a coassociative comultiplication on H. We will
denote this coalgebra by HF . Note that HF is in general not a bialgebra,
but a module coalgebra over H. We are now ready to define the algebraic
structure which describes the category ZΦ(C).

Definition 4.3.1 Let H be a Hopf algebra over a field k and (ϕ, F ) a
twisted automorphism of H.

1. A vector space X together with a left H-action and a left HF -
coaction is called (ϕ, F )-Yetter-Drinfel’d module or simply ϕ-Yetter-
Drinfel’d module, if the equality

ϕ(a(1))x(−1) ⊗ a(2)x(0) = (a(1).x)(−1)a(2) ⊗ (a(1).x)(0) (4.12)

holds for all a ∈ H and x ∈ X.

2. A morphism of ϕ-twisted Yetter-Drinfel’d modules is a map f : X →
Y that is H-linear and HF -colinear. We denote the category of
(ϕ, F )-Yetter-Drinfel’d modules by H

HYD
F
ϕ

Remark 4.3.2 1. For the twisted automorphism (id, 1⊗1) we get back
the definition of a usual Yetter-Drinfel’d module.

2. Condition (4.12) is equivalent to

(a.x)(−1) ⊗ (a.x)(0) = ϕ(a(1))x(−1)S(a(3))⊗ a(2)x(0) (4.13)

holding for all a ∈ H and x ∈ X.
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Lemma 4.3.3 Let C be the category of H-modules and let Φ be the
monoidal autoequivalence of C given by the pull-back functor associated
to the twisted automorphism (ϕ, F ) of H. Let X be a ϕ-Yetter-Drinfel’d
module and U an H-module. Define the k-linear map γU : X ⊗ U →
Φ(U)⊗X by

γU (x⊗ u) := x(−1).u⊗ x(0) .

This defines a natural isomorphism γ : X ⊗ → Φ( ) ⊗ X and the pair
(X, γ) is an object in ZΦ(C).

Proof. For any H-module U the map γU is H-linear: for all a ∈ H,x ∈ X
and u ∈ U we have

γ(a.(x⊗ u)) = (a(1).x)(−0)a(2)u⊗ (a(1).x)(0)

(4.12)
= ϕ(a(1))x(−1)u⊗ a(2)x(0)

= a.γU (x⊗ u)

Given an H-linear map f : U → V we have the equality

γV ◦ (idX ⊗ f) = (Φ(f)⊗ idX) ◦ γU

thus we have a natural transformation γ. The inverse of γU is given by

γ−1 : u⊗ x 7→ x(0) ⊗ S−1(F (2)x(−1))F
(1)u

We see this as follows: write F−1 = F (−1)⊗F (−2). Since X is a comodule
over HF we have the equality

x(−1) ⊗ (x(0))(−1) ⊗ (x(0))(0)

=F (−1)(x(−1))(1) ⊗ F (−2)(x(−1))(2) ⊗ x(0) .
(4.14)

We have for all x ∈ X and u ∈ U the equality

γ−1 ◦ γ(x⊗ u) = (x(0))(0) ⊗ S−1(F (2)(x(0))(−1))F
(1)x(−1)u

(4.14)
= x(0) ⊗ S−1(F (2)F (−2)(x(−1))(2))F

(1)F (−1)(x(−1))(1)u

= x(0) ⊗ S−1((x(−1))(2))(x(−1))(1)u

= x(0) ⊗ ε(x(−1))u = x⊗ u .
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Recall from Remark 3.2.10 that the elements a := F (−1)S(F (−2)) ∈ H and
b := S(F (1))F (2) ∈ H are inverse to each other. In particular we have the
equality

1 = S−1(a)S−1(b) = F (−2)S−1(F (−1))S−1(F (2))F (1) (4.15)

and thus for all x ∈ X and u ∈ U the equality

γ ◦ γ−1(u⊗ x) = (x(0))(−1)S
−1(F (2)x(−1))F

(1)u⊗ (x(0))(0)

(4.14)
= F (−2)(x(−1))(2)S

−1(F (2)F (−1)(x(−1))(1))F
(1)u⊗ x(0)

= F (−2)ε(x(−1))S
−1(F (−1))S−1(F (2))F (1)u⊗ x(0)

(4.15)
= u⊗ x .

Now we show that γ is indeed a Φ-half-braiding, i.e. the equalities

(Φ−1
2 (U, V )⊗ idX) ◦ γU⊗V = (idΦ(X) ⊗ γV ) ◦ (γU ⊗ idV )

γk = idX

hold for all H-modules U and V . The second equality follows, since the
H-action on k is given by ε, which is the counit of the coalgebra HF . The
first equality is equivalent to say that for all x ∈ X,u ∈ U and v ∈ V we
have the equality

F (−1)(x(−1))(1)u⊗ F (−2)(x(−1))(2)v ⊗ x(0)

= x(−1)u⊗ (x(0))(−1)v ⊗ (x(0))(0)

which follows by (4.14).

The proof of the following Lemma is similar to the one of Lemma XIII.5.2
in [Kas95].

Lemma 4.3.4 Let C and Φ be as before and see H as H-module via left
multiplication. For (X, γ) in ZΦ(C) define the k-linear map

δ : X → H ⊗X
x 7→ γH(x⊗ 1H) .

The H-module X becomes a ϕ-Yetter-Drinfel’d module with coaction δ.
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Proof. Note that the comultiplication ∆: H → H⊗H is a homomorphism
of left H-modules. Thus for every x ∈ X we have

(F−1 ·∆⊗ idX) ◦ γH(x⊗ 1H)

=(Φ−1
2 (H,H)⊗ idX) ◦ γH⊗H(x⊗ 1H ⊗ 1H)

=(idH ⊗ γH)(γH ⊗ idH)(x⊗ 1H ⊗ 1H)

and so X is a comodule over HF . For an H-module V and v ∈ V denote
by v the H-linear map H → V given by 1H → v and define write x(−1) ⊗
x(0) := δ(x). Since γV is H-linear we get for x ∈ X and v ∈ V the equality

γV (x⊗ v) = (γV ◦ (id⊗ v))(x⊗ 1H)

= (Φ(v)⊗ id) ◦ γH(x⊗ 1H) = x(−1).v ⊗ x(0)

(4.16)

Using H-linearity of γV we derive for all a ∈ H

(a(1).x)(−1)a(2)v ⊗ (a(1).x)(0) = γV (a.(x⊗ v))

=a.γV (x⊗ v) = ϕ(a(1))x(−1).v ⊗ a(2)x(0) .

Specializing to V = H and v = 1H we get condition (4.12).

Proposition 4.3.5 Let H be a Hopf algebra with invertible antipode and
let (ϕ, F ) be a twisted bialgebra automorphism of H, set C := H-Mod and
Φ := (ϕ, F )∗. The k-linear categories HHYD

F
ϕ and ZΦ(C) are isomorphic.

Proof. The assignments from Lemma 4.3.3 and Lemma 4.3.4 define func-
tors. We show that they are inverse to each other.
Let X be a ϕ-Yetter-Drinfel’d module. The half-braiding γV (x ⊗ v) :=
x(−1)v ⊗ x(0) from Lemma 4.3.3 specialized to V = H and v = 1H is ob-
viously equal to the coaction of X.
Conversely, let (X, γ) be an object in ZΦ(C). By (4.16) we see that the
coaction γH(x⊗ 1H) determines the whole half-braiding.

4.3.2. Virelizier’s Hopf coalgebra

Let ϕ be a Hopf algebra automorphism. We want to compare the linear
category H

HYDϕ := H
HYD

1⊗1
ϕ with the category of representations of an

algebra defined in [Vir05].
Let A and B be Hopf algebras and σ : A⊗B → k a Hopf pairing, i.e. the
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equations

σ(ab, x) = σ(a, x(2))σ(b, x(1))

σ(a, xy) = σ(a(1), x)σ(a(2), y)

σ(1, x) = ε(x) σ(a, 1) = ε(a)

hold for all a, b ∈ A and x, y ∈ B, cf. Remark 1.3.21. Virelizier showed for
any bialgebra automorphism ψ of A, that A ⊗ B becomes an associative
algebra with multiplication

(a⊗ x)(b⊗ y) := σ(ψ(b(1)), S(x(1)))σ(b(3), x(3))ab(2) ⊗ x(2)y .

Assume that H is finite dimensional. In this case H∗ is also a Hopf algebra
with (f ·g)(a) = f(a(1))g(a(2)) and (f(1)⊗f(2))(a⊗b) = f(ab); the antipode
is S := S∗. Then, by definition, the linear map ev : H⊗ (H∗)cop → k given
by ev(a, f) := f(a) is a non-degenerate Hopf pairing:

ev(ab, f) = f(1) ⊗ f(2)(a⊗ b) = ev(a, f(1))ev(b, f(2)) (4.17)

ev(a, fg) = f(a(1))g(a(2)) = ev(a(1), f)ev(a(2)g) . (4.18)

Given a Hopf algebra automorphism ϕ of H. Virelizier’s construction gives
the algebra Dϕ(H) with the underlying vector space H ⊗ H∗ and the
multiplication of two elements in H ⊗H∗ is given by

(a⊗ f)(b⊗ g) : = ev(ϕ(b(1)),S(f(3))ev(b(3), f(1))ab(2) ⊗ f(2)g

= f(3)((S
−1ϕ)(b(1))) · f(1)(b(3)) · ab(2) ⊗ f(2)g

= ab(2) ⊗ f(b(3)·? · (S−1ϕ)(b(1)))g .

This explicit formula for the multiplication of Dϕ(H) helps to prove the
following two lemmas by straightforward calculations

Lemma 4.3.6 Let X be a ϕ-Yetter-Drinfel’d module. The linear map
ρ : H ⊗H∗ ⊗X → X defined by

ρ(a⊗ f ⊗ x) := (fS−1)(x(−1))ax(0)

is a Dϕ(H) action on the vector space X.

Lemma 4.3.7 Let X be a Dϕ(H) module and {ai} ⊂ H a basis of H with
dual basis {ai} ⊂ H∗. The vector space X becomes a ϕ-Yetter-Drinfel’d
module over H with

action: a.x : = (a⊗ ε).x

coaction: δ(x) : =
∑
i

S(ai)⊗ (1⊗ ai).x .
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One checks that these two assignments define k-linear functors and are
inverse to each other. Hence we get

Proposition 4.3.8 Let H be a finite dimensional Hopf algebra and ϕ a
Hopf algebra automorphism of H. The categories Dϕ(H)-Mod and H

HYDϕ
are isomorphic k-linear categories.

Corollary 4.3.9 The category H
HYDϕ of ϕ-Yetter-Drinfel’d modules is

abelian, if H is a finite dimensional.

Let Γ be a group and H a finite dimensional Hopf algebra. In [Vir05] the
author starts with a group homomorphism φ : Γ→ AutHopf(H). This gives
a family Dφ(H) = {Dφα}α∈Γ of associative algebras. It can be equipped
with the structure of a Hopf Γ-coalgebra, cf. Thm. 2.3 in [Vir05], by defin-
ing the comultiplication

∆α,β(a⊗ f) = (φβ(a(1))⊗ f(2))⊗ (a(2) ⊗ f(1)) .

Further, it is shown that ϕα(a⊗f) := (φα(a)⊗f ◦φα−1) defines a crossing
on Dφ(H).
Let A = (Aα,∆α,β , ϕβ)α,β∈Γ be a crossed Hopf Γ-coalgebra. The mirror
A of A is the following crossed Hopf Γ-coalgebra, cf. Section VIII.1.6 in
[Tur10]: set Aα := Aα−1 and ϕβ := ϕβ and define ∆α,β as

∆α,β(a) := (ϕβ ⊗ id)∆β−1α−1β,β−1 ∈ Aα−1 ⊗Aβ−1 .

We define the Γ-equivariant category V =
∐
α∈Γ Vα as the representation

category of the mirror of Virelizier’s crossed Hopf Γ-coalgebra. We spell out
the structure of this category in more detail: the homogeneous component
Vα is the category Dϕ−1

α
-Mod. Let X ∈ Vα and Y ∈ Vβ .

Since ∆α,β(a⊗ f) = (a(1) ⊗ f(2) ◦ φ−1
β )⊗ (a(2) ⊗ f(1)), the element a⊗ f ∈

Dϕ−1
αβ

acts on X ⊗ Y as follows

(a⊗ f).(x⊗ y) = (a(1) ⊗ f(2) ◦ φ−1
β ).x⊗ (a(2) ⊗ f(1)).y .

The action on V is given by the functors Ψβ := (ϕ−1
β )∗, hence the element

a⊗ f ∈ Dφ−1
α

acts on the module Ψβ(X) as

(a⊗ f).βx = (φ−1
β (a)⊗ f ◦ φβ).x .

Now let C be the monoidal category H-Mod equipped with the Γ-action
φ̃α := φ∗α−1 by pull-back functors. We want to show that in this case the
category ZΓ(C) is isomorphic to V. To this end we first give a description
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of Z := ZΓ(C) in terms of φα-Yetter-Drinfel’d modules: the homogeneous
component Zα is given by the category H

HYDφ−1
α

. Given X ∈ Zα and
Y ∈ Zβ , their tensor product X ⊗ Y ∈ Zαβ has

action: a.(x⊗ y) = a(1)x⊗ a(2)y

coaction: δ(x⊗ y) = φ−1
β (x(−1))y(−1) ⊗ x(0) ⊗ y(0)

and the object Φβ(X) ∈ Zβαβ−1 has

action: a.βx = φ−1
β (a).x

coaction: δ(x) = φβ(x(−1))⊗ x(0) .

Now denote by Fα : Zα → Vα the functor we get from Lemma 4.3.6, i.e.
we map a φ−1

α -Yetter-Drinfel’d module X to the Dϕ−1
α

(H)-module X with
action given by

(a⊗ f).x = (fS−1)(x(−1))⊗ x(0)

We will show that F :=
∐
α Fα : Z → V defines a strict monoidal functor,

that commutes with the respective Γ-actions on Z and V.
From the preceding discussion we easily see that the following diagrams of
functors commute for every α, β ∈ Γ

Zα ×Zβ Zαβ

Vα × Vβ Vαβ

⊗ //

⊗ //
Fα×Fβ

��
Fαβ
��

and Zα Zβαβ−1

Vα Vβαβ−1

Φβ //

Ψβ //
Fα
��

Fβαβ−1

��

This proves the claims about F. We summarize the content of this subsec-
tion in the following proposition:

Proposition 4.3.10 Let H be a finite dimensional Hopf algebra and let
φ : Γ → AutHopf(H) be a group homomorphism. The category ZΓ(C) as-

sociated to the Γ-action φ̃α := φ−1
α on C = H-Mod is isomorphic, as a

Γ-equivariant category, to the representations of the mirror of Virelizier’s
crossed Hopf Γ-coalgebra Dφ(H).

On the Γ-braiding of V and Z The crossed Hopf Γ-coalgebra Dφ(H) has
also an R-matrix given by the family

Rα,β =
∑
i

(ei ⊗ ε)⊗ (1⊗ ei) ∈ Dφα(H)⊗Dφβ (H)
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where {ei} and {ei} are dual bases of H and H∗. Its inverse is given by

R−1
α,β =

∑
i

(S(ei)⊗ ε)⊗ (1⊗ ei) ∈ Dφα(H)⊗Dφβ (H) .

Following Section VIII.1.6 in [Tur10], the R-matrix of the mirror Dφ is
given by the family

Rα,β =
∑
i

(1⊗ ei)⊗ (S(ei)⊗ ε) ∈ Dφ−1
α

(H)⊗Dφ−1
β

(H) .

Thus the braiding of the Dφ-modules X ∈ Vα and Y ∈ Vβ is the morphism

cVX,Y (x⊗ y) =
∑
i

(S(ei)⊗ ε).y ⊗ (1⊗ ei).x .

The image of X under F−1
α is the vector space X together with

action: (a⊗ f).x = (a⊗ ε).x

coaction: δ(x) =
∑
i

S(xi)⊗ (1⊗ ai).x .

So the braiding of F−1
α (X) and F−1

β (Y ) is given by the morphism

cZ
F−1
α (X),F−1

β (Y )
(x⊗ y) = x(−1)y ⊗ x(0)

=
∑
i

∑
i

(S(xi)⊗ ε).y ⊗ (1⊗ ei).x

which in particular means that F is an isomorphism of Γ-braided categories.
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5. Partial dualization of Hopf
algebras

5.1. Radford biproduct and projection theorem

The following situation is standard: let A be a Hopf algebra over a field k.
LetK be a Hopf algebra in the braided category A

AYD of A-Yetter-Drinfel’d
modules.

The category of Yetter-Drinfel’d modules over K in A
AYD can be de-

scribed as the category of Yetter-Drinfel’d modules over a Hopf algebra
K oA over the field k. The Hopf algebra K oA is called Majid bosoniza-
tion or Radford’s biproduct. The definition of the biproduct KoA directly
generalizes to the description of Yetter-Drinfel’d modules over a Hopf al-
gebra K in the braided category A

AYD(C), where C is now an arbitrary
braided category. The biproduct of K and A is the smash product and the
cosmash product of the underlying module algebra resp. comodule coalge-
bra. We collect in this subsection results from [Bes97] that will be needed
in the construction of the partially dualized Hopf algebra in Section 5.2.

Definition 5.1.1 (Radford biproduct) Let C be a braided category
and let A ∈ C and K ∈ A

AYD(C) be Hopf algebras. The Radford biproduct
K o A is defined as the object K ⊗ A in C together with the following
morphisms:

µKoA :=

K A K A

K A

, ∆KoA :=

K A K A

K A

, SKoA :=

K A

K A

.

Proposition 5.1.2 The Radford biproduct KoA is a Hopf algebra in C.

Definition 5.1.1 and a proof of Proposition 5.1.2 can be found in [Bes97,
Subsection 4.1].

71
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Remark 5.1.3 If K is a Hopf algebra in the category A
AYD of Yetter-

Drinfel’d modules over a k-Hopf algebra A, the Radford biproduct is
given by the following formulas for multiplication and comultiplication,
cf. [Mon93, Section 10.6]:

(h⊗ a) · (k ⊗ b) = h · (a(1).k)⊗ a(2) · b
∆(h⊗ a) = h(1) ⊗ (h(2))(−1) · a(1) ⊗ (h(2))(0) ⊗ a(2).

This is a special case of the formulas which we expressed graphically in
Definition 5.1.1.

Theorem 5.1.4 (Radford projection theorem) Let H and A be Hopf
algebras in a braided category C. Let π : H → A and ι : A → H be Hopf
algebra morphisms such that π ◦ ι = idA. If C has equalizers and A ⊗
preserves equalizers, there is a Hopf algebra K in the braided category
A
AYD(C), such that

H = K oA.

Proof. For a complete proof we refer to [AAFV00].

Remark 5.1.5 To illustrate the situation, we discuss the case when C is
the braided category of k-vector spaces and π : H → A is a projection onto
a Hopf subalgebra A ⊂ H. The vector space underlying the Hopf algebra
K in A

AYD is then the space of coinvariants of H:

K := Hcoin(π) :=
{
r ∈ H | r(1) ⊗ π(r(2)) = r ⊗ 1

}
.

One easily checks that K is a subalgebra of H and K is invariant under
the left adjoint action of A on H.
The subspace K is also a left A-comodule with coaction δK(k) := π(k(1))⊗
k(2). The fact that H is a left H-Yetter-Drinfel’d module with the adjoint
action and regular coaction implies that K is even an A-Yetter-Drinfel’d
module. The comultiplication of K is given by the formula

∆K(k) := k(1)π(SH(k(2)))⊗ k(3)

and the antipode is SK(k) = π(k(1))SH(k(2)).

Theorem 5.1.6 (Bosonization theorem) Let A be a Hopf algebra in
C and K a Hopf algebra in A

AYD(C). There is an obvious isomorphism of
braided categories

KoA
KoAYD(C) ∼= K

KYD(AAYD(C)).

For a proof, we refer to [Bes97, Proposition 4.2.3].
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5.2. The partial dual

We start with some definitions:

Definition 5.2.1 Let C be a braided monoidal category. A partial dual-
ization datum A = (H

π→ A,B, ω) for a Hopf algebra H in C consists
of

• a Hopf algebra projection π : H → A onto a Hopf subalgebra A ⊂ H,

• a Hopf algebra B with a non-degenerate Hopf pairing ω : A⊗B → 1C .

Given a partial dualization datum A for a Hopf algebra H in C, the
partial dualization rA(H) is the following Hopf algebra in C:
• By the Radford projection theorem 5.1.4, the projection π : H → A

induces a Radford biproduct decomposition of H

H ∼= K oA ,

where K := Hcoin(π) is a Hopf algebra in the braided category
A
AYD(C).

• The non-degenerate Hopf pairing ω : A⊗B → 1 induces by Theorem
2.2.8 a braided equivalence:

Ω: A
AYD (C)

∼=−−→ B
BYD (C) .

Thus, the image of the Hopf algebra K in A
AYD(C) under the braided

functor Ω is a Hopf algebra L := Ω (K) in the braided category
B
BYD (C).

• The Radford biproduct from Definition 5.1.1 of L over B allows us
to introduce the partially dualized Hopf algebra,

rA(H) := LoB ,

which is a Hopf algebra in C. As a Radford biproduct, it comes with
a projection π′ : rA(H)→ B.

We summarize:

Definition 5.2.2 For a partial dualization datum A = (H
π−→ A,B, ω),

we call the Hopf algebra rA(H) in C the partial dual of H with respect to
the partial dualization datum A.

Our construction is inspired by the calculations in [HS13] using smash-
products. In Section 5.3.3, we explain the relation of these calculations to
our general construction.
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5.2.1. Involutiveness of partial dualizations

The Hopf algebra rA(H) comes with a projection onto the subalgebra B.
The two Hopf pairings ω± : B ⊗ A → 1C from Example 1.3.20 yield two
possible partial dualization data for rA(H):

A+ = (rA(H)
π′→ B,A, ω+)

A− = (rA(H)
π′→ B,A, ω−) .

Recall from Subsection 2.2.3 the natural isomorphism

θ : Ωω
−
◦ Ωω ∼= IdA

AYD(C) .

In a similar way, one has a natural isomorphism

θ̃ : Ωω ◦ Ωω
+ ∼= IdB

BYD(C).

Corollary 5.2.3 The two-fold partial dualization rA−(rA(H)) is isomor-
phic to H, as Hopf algebra in the braided category C. A non-trivial iso-
morphism of Hopf algebras is

rA−(rA(H)) = Ωω
−

(Ωω(K)) oA
θK⊗idA−−−−−−→ K oA = H,

with θK = ρK ◦ (SA ⊗ idK) ◦ δK as in Lemma 2.1.5.

5.2.2. Relations between the representation categories

It is natural to look for relations between categories of representations of
a Hopf algebra H in C and its partial dualization rA(H):

Theorem 5.2.4 Let H be a Hopf algebra in a braided category C, let
A = (H

π→ A,B, ω) be a partial dualization datum and rA(H) the partially
dualized Hopf algebra. Then the equivalence of braided categories

Ω: AAYD(C)→ B
BYD(C)

from Theorem 2.2.8 induces an equivalence of braided categories:

H
HYD (C) ∼= K

KYD
(
A
AYD (C)

) Ω̃−−−−→ L
LYD

(
B
BYD (C)

) ∼= rA(H)
rA(H)YD (C) .
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Proof. The Hopf algebra L ∈ B
BYD(C) was defined as the image of K ∈

A
AYD(C) under the functor Ω, i.e. L = Ω(K). The braided equivalence Ω
induces an equivalence Ω̃ of Yetter-Drinfel’d modules over the Hopf algebra
K in the braided category A

AYD(C) to Yetter-Drinfel’d modules over the
Hopf algebra L = Ω(K) in B

BYD(C)

K
KYD

(
A
AYD (C)

) Ω̃−−−−→Ω(K)
Ω(K)YD

(
B
BYD (C)

)
=: LLYD

(
B
BYD (C)

)
.

By Theorem 5.1.4, the source category of Ω̃ is

K
KYD

(
A
AYD (C)

) ∼= KoA
KoAYD (C) = H

HYD (C) .

Similarly, we have for the target category of Ω̃

L
LYD

(
B
BYD (C)

) ∼= LoB
LoBYD (C) =

rA(H)
rA(H)YD (C) .

Altogether, we obtain a braided equivalence

H
HYD (C) ∼= K

KYD
(
A
AYD (C)

) Ω̃−−→ L
LYD

(
B
BYD (C)

) ∼= rA(H)
rA(H)YD (C) .

If C is the category of vector spaces over a field k, Yetter-Drinfel’d mod-
ules over a Hopf algebra H can be described as modules over the Drinfel’d
double D(H). For a Hopf algebra H in a general braided category C, a
notion of a Drinfel’d double D(H) has been introduced in [BV13] in a way
such that there exists a braided equivalence D(H)-Mod(C) ∼= H

HYD (C).
Hence Theorem 5.2.4 implies

Corollary 5.2.5 The categories of left modules over the Drinfel’d double
D(H) of a Hopf algebra H and over the Drinfel’d double D(rA(H)) of its
partial dualization rA(H) are braided equivalent.

5.3. Examples

We illustrate our general construction in three different cases:

5.3.1. The complex group algebra of a semi-direct product

For the complex Hopf algebra associated to a finite group G, we take

C = vectC H = C[G].
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To get a partial dualization datum for H, suppose that there is a split
extension N → G → Q, which allows us to identify Q with a subgroup
of G, i.e. G = N o Q. We then get a split Hopf algebra projection onto
A := C[Q]:

π : C[G]→ C[Q].

The coinvariants of H with respect to π, which by Theorem 5.1.4 have the
structure of a Hopf algebra K ∈ A

AYD(C), turn out to be

K := Hcoin(π) = C[N ] .

The A-coaction on the A-Yetter-Drinfel’d module K is trivial, since the
Hopf algebra H is cocommutative. The A-action on K is non-trivial; it
is given by the action of Q ⊂ G on the normal subgroup N . Because of
the trivial A-coaction, the self-braiding of K in A

AYD is trivial; thus K is
even a complex Hopf algebra. Writing H as in Theorem 5.1.4 as a Radford
biproduct, we recover

H = K oA = C[N ] o C[Q].

Since the A-coaction on K is trivial, the coalgebra structure is just given
by the tensor product of the coalgebra structures on the group algebras.

As the dual of A, we take the commutative Hopf algebra of functions on
Q, B := CQ; we denote its canonical basis by (eq)q∈Q; the Hopf pairing ω
is the canonical evaluation. This gives the partial dualization datum

A = (C[G]
π−→ C[Q],CQ, ω) .

Since the coaction of A on K is trivial, the morphism Ω2(K,K) from the
monoidal structure on Ω is trivial. Hence the functor Ωω maps K to the
same complex Hopf algebra

L := Ωω(K) ∼= C[N ] ,

which, however, has now to be seen as a Yetter-Drinfel’d module over CQ,

i.e. L ∈ CQ

CQYD: L has trivial action of B = CQ and the coaction is given
by the dualized action of Q on N

n 7−→
∑
q∈Q

eq ⊗ q−1nq.

The partial dualization rA(H) is, by definition, the Radford biproduct

rA(H) = LoB = C[N ] o CQ.
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In this biproduct, the algebra structure is given by the tensor product of
algebras.

An H-module is a complex G-representation. To give an alternative
description of the category rA(H)-Mod, we make the definition of rA(H)-
modules explicit: an rA(H)-module V , with rA(H) = C[N ] o CQ has
the structure of a CQ-module and thus of a Q-graded vector space: V =⊕

q∈Q Vq. Moreover, it comes with an action of N denoted by n.v for n ∈ N
and v ∈ V . Since the algebra structure is given by the tensor product of
algebras, the N -action preserves the Q-grading. The tensor product of two
rA(H)-modules V and W is graded in the obvious way,

(V ⊗W )q =
⊕
q1q2=q

Vq1 ⊗Wq2 .

The non-trivial comultiplication

∆C[N ]oCQ(n) =
∑
q∈Q

(n⊗ eq)⊗ (q−1nq ⊗ 1)

for the Radford biproduct implies a non-trivial N -action on the tensor
product: on homogeneous components Vq1 and Wq2 , with q1, q2 ∈ Q, we
have for n ∈ N

n.(Vq1 ⊗Wq2) = (n.Vq1)⊗ ((q−1
1 nq1).Vq2).

We are now in a position to give the alternative description of the cat-
egory rA(H)-Mod. We denote by vectG the monoidal category of G-
graded finite-dimensional complex vector spaces, with the monoidal struc-
ture inherited from the category of vector spaces. Representatives of the
isomorphism classes of simple objects are given by the one-dimensional
vector spaces Cg in degree g ∈ G. Given a subgroup N ≤ G, the object
C[N ] := ⊕n∈NCn has a natural structure of an associative, unital algebra
in vectG. It is thus possible to consider C[N ]-bimodules in the monoidal
category vectG; together with the tensor product ⊗C[N ], these bimodules
form a monoidal category C[N ]-Bimod(vectG). In this setting, we have
the following description of the category rA(H)-Mod:

Lemma 5.3.1 The monoidal category rA(H)-Mod is monoidally equiv-
alent to the category of C[N ]-Bimod(vectG).

The braided equivalence of Yetter-Drinfel’d modules over H and rA(H)
established in Theorem 5.2.4, more precisely the braided equivalence of
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the categories of modules over their Drinfel’d doubles from Corollary 5.2.5,
implies the braided equivalence

Z(C[G]-Mod) ∼= Z(vectG) ∼= Z(C[N ]-Bimod(vectG))

which has been shown in [Sch01, Theorem 3.3] in a more general context.

Proof. It suffices to specify a monoidal functor

Φ: C[N ]-Bimod(vectG)→ rA(H)-Mod

that is bijective on the spaces of morphisms and to give a preimage for
every object D ∈ rA(H)-Mod. Suppose that B is a C[N ]-bimodule in the
category vectG, i.e. B =

⊕
g∈GBg, with C[N ]-actions denoted by arrows

⇀,↼.

To define the functor Φ on objects, consider for a bimodule B the Q-
graded vector space Φ(B) := ⊕q∈QBq ⊂ B, obtained by retaining only
the homogeneous components with degree in Q ⊂ G. A left N -action is
defined for any homogeneous vector vq ∈ Φ(B)q by

n.vq := n ⇀ vq ↼ (q−1n−1q).

Moreover,

n.vq = n ⇀ vq ↼ (q−1n−1q) ∈ Φ(B)nq(q−1n−1q) = Φ(B)q ,

since ⇀,↼ are morphisms in vectG. Thus the N -action preserves the
Q-grading; we conclude that Φ(B) is an object in rA(H)-Mod.

On the morphism spaces, the functor Φ acts by restriction to the vector
subspace Φ(B) ⊂ B. We show that this gives a bijection on morphisms:
suppose Φ(f) = 0, then f(vq) = 0 for all vq with grade q ∈ Q. For an
arbitrary vg ∈ B with grade g ∈ G, we may write g = nq with n · q ∈
N o Q and get an element n−1 ⇀ vg of degree q. Using that f is a
morphism of C[N ]-bimodules, we find f(vg) = n ⇀ f(n−1 ⇀ vg) = 0. Thus
Φ is injective on morphisms. To show surjectivity, we take a morphism
fΦ : Φ(B)→ Φ(C); writing again g = nq, we define a linear map f : B → C
on vg ∈ Vg by f(vg) := n ⇀ fΦ(n−1 ⇀ vg). This linear map is, by
construction, a morphism of left C[N ]-modules in vectG. It remains to
verify that f is also a morphism of right C[N ]-modules. We note that
for g ∈ G, the decomposition g = nq with n ∈ N and q ∈ Q implies
gm = (nqmq−1)q with nqmq−1 ∈ N for all m ∈ N . We thus find:
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f(vg ↼m) = (nqmq−1) ⇀ fΦ((nqmq−1)−1 ⇀ vg ↼m)

= (nqmq−1) ⇀ fΦ((qm−1q−1) ⇀ (n−1 ⇀ vg) ↼m)

= (nqmq−1) ⇀ fΦ((qm−1q−1).(n−1 ⇀ vg))

= (nqmq−1) ⇀ (qm−1q−1).fΦ((n−1 ⇀ vg))

= (nqmq−1) ⇀ (qm−1q−1) ⇀ fΦ(n−1 ⇀ vg) ↼m

= n ⇀ fΦ(n−1 ⇀ vg) ↼m

= f(vg) ↼m

In the forth identity, we used that fΦ is rA(H)-linear.
Next we show that Φ has a natural structure of a monoidal functor.

Recall that the tensor product V ⊗W in vectG (resp. vectQ) is defined
as the tensor product of vector spaces with diagonal grading Vg ⊗Wh ⊂
(V ⊗W )gh. Furthermore, the tensor product in C[N ]-Bimod(vectG) is
defined by ⊗C[N ]. On the other side, the tensor product ⊗ in rA(H)-Mod
is the tensor product of modules over the Hopf algebra rA(H) = C[N ]oCQ

with diagonal grading and action

n.(Φ(B)q1 ⊗ Φ(B)q2) = (n.Φ(B)q1)⊗ ((qnq−1).Φ(B)q2).

We now show that the canonical projection of vector spaces B ⊗ C →
B ⊗C[N ] C gives rise to a monoidal structure on Φ:

Φ2 : Φ(B)⊗ Φ(C)→ Φ(B ⊗C[N ] C).

It is clear that this map is compatible with the Q-grading. The compatibil-
ity with the N -action is calculated as follows: for n ∈ N, b ∈ Bq1 c ∈ Cq2 :

(n.(b⊗ c)) = n.b⊗ (q−1
1 nq1).c

φ7−→ (n.b)⊗C[N ] (q−1
1 nq1).c

= (n ⇀ b ↼ (q−1
1 n−1q1))⊗C[N ] ((q−1

1 nq1) ⇀ c ↼ (q−1
2 q−1

1 nq1q2))

= (n ⇀ b ↼ (q−1
1 n−1q1q

−1
1 nq1))⊗C[N ] (c ↼ (q−1

2 q−1
1 nq1q2))

= (n ⇀ b)⊗C[N ] (c ↼ ((q1q2)−1n(q1q2))

= n.
(
b⊗C[N ] c

)
.

Moreover, Φ2 is clearly compatible with the associativity constraint. We
now show Φ2 is bijective by giving an explicit inverse: consider an element
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v ⊗ w ∈ B ⊗C[N ] C which is in Φ(B ⊗C[N ] C) ⊂ B ⊗C[N ] C. Restricting to
homogeneous elements, we take v⊗w ∈ (B⊗C[N ]C) with v of degree g ∈ G
and w of degree h ∈ G. Since v⊗w is even in the subspace Φ(B⊗C[N ] C),
we have q := gh ∈ Q. Writing h = n′q′ with n′ ∈ N and q′ ∈ Q, have in
the tensor product over C[N ] the identity v⊗w = (v ↼ n′)⊗((n′)−1 ⇀ w)
with tensor factors both graded in Q, hence in Φ(B)⊗Φ(C). We may now
define the inverse Φ−1

2 (v ⊗ w) := (v ↼ n) ⊗ (n−1 ⇀ w), which is a left-
and right-inverse of Φ2. Finally the monoidal units in the categories are
C1, 1 ∈ Q resp. C[N ]; then N ∩Q = {1} implies that there is an obvious
isomorphism C1

∼= Φ(C[N ]). Hence Φ is a monoidal functor.
To verify that Φ indeed defines an equivalence of tensor categories, it

remains to construct an object D ∈ C[N ]-Bimod(vectG) for each module
V ∈ rA(H)-Mod, such that Φ(D) and V are isomorphic.

The following construction could be understood as an induced corepre-
sentation via the cotensor product, but we prefer to keep the calculation
explicit: for V =

⊕
Vq consider the vector space

D :=
⊕
q∈Q

C[N ]⊗ Vq.

Since G = NQ, the vector space D is naturally endowed with a G-grading.
Left multiplication on C[N ] gives a natural left N -action ⇀ via left-multi-
plication on C[N ], which is clearly a morphism in vectG. We define a right
N -action on D by

(n⊗ vq) ↼m := n(qmq−1)⊗ (qn−1q−1).vq.

Since the left action preserves the Q-grading, the vector (n⊗ vq) ↼m has
degree n(qmq−1)q = (nq)m; thus also the right action ↼ is a morphism
in vectG.

We finally verify that Φ(D) ∼= V : the homogeneous components of D
with degree in the subgroup Q only are spanned by elements 1⊗ vq, hence
we can identify Φ(D) with V . We check that the N -action defined on Φ(D)
coincides with the one on V we started with:

n.(1⊗ vq) = n ⇀ (1⊗ vq) ↼ (q−1n−1q)

= n(q(q−1n−1q)q−1)⊗ (q(q−1n−1q)−1q−1).vq

= 1⊗ n.vq.
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5.3.2. The Taft algebra

Fix a natural number d and let ζ ∈ C be a primitive d-th root of unity.
We consider the Taft algebra Tζ which is a complex Hopf algebra. As an
algebra, Tζ is generated by two elements g and x modulo the relations

gd = 1, xd = 0 and gx = ζxg.

A coassociative comultiplication on Tζ is defined by the unique algebra
homomorphism ∆: Tζ → Tζ ⊗ Tζ with

∆(g) = g ⊗ g and ∆(x) = g ⊗ x+ x⊗ 1.

Lemma 5.3.2 Let ζ and ξ be primitive d-th roots of unity. If there exists
an isomorphism ψ : Tζ → Tξ of Hopf algebras, then ζ = ξ.

Proof. The set {xngm | 0 ≤ n,m < d} is a C-basis of Tξ consisting of
eigenvectors for the automorphisms

adh : Tξ → Tξ, a 7→ hah−1,

with h = gc for c ∈ {1, 2, . . . , N − 1}.
Suppose that ψ : Tζ → Tξ is a Hopf algebra isomorphism. Then the

image h := ψ(g) of the generator g of Tζ is equal to gc ∈ Tξ for some
c ∈ {1, 2, . . . , d − 1}. The generator x of Tζ is mapped by the algebra
homomorphism ψ to an eigenvector y := ψ(x) of adh to the eigenvalue ζ:

hyh−1 = ψ(gxg−1) = ζy.

Since ξ is a primitive root of unit, we find 0 < n < d such that ζ = ξn.
Thus y is an element of the C-linear subspace 〈xngm | 0 ≤ m < d〉C of
Tξ. This implies that yk = 0 for k the smallest number such that kn ≥ d.
Since ψ is an isomorphism, n has to be 1 and hence ζ = ξ.

Denote by A the Hopf subalgebra of Tζ generated by g. We will deduce
from Proposition 5.3.5 that the partial dual of Tζ with respect to A is
isomorphic to Tζ . Hence, to get a non-trivial behavior of the partial dual
we have to look at a class of complex Hopf algebras which is more general
than Taft algebras.

Let N be a natural number and let d be a divisor of N . Now let ζ be
a primitive d-th root of unity and q a primitive N -th root of unity. Let
c + NZ be the unique residue class such that ζ = qc. Define T̂ζ,q as the
C-algebra

T̂ζ,q := 〈x, g | gN = 1, xd = 0, gx = ζxg〉
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and define Ťζ,q as the C-algebra

Ťζ,q := 〈x, g | gN = 1, xd = 0, gx = qxg〉.

Both algebras are finite-dimensional of dimension Nd.
One checks the following

Lemma 5.3.3 Let T̂ζ,q and Ťζ,q be the algebras from above. The unique

algebra homomorphisms ∆̂ : T̂ζ,q → T̂ζ,q ⊗ T̂ζ,q and ∆̌: Ťζ,q → Ťζ,q ⊗ Ťζ,q
defined on the generators by

∆̂(g) := g ⊗ g ∆̂(x) := g ⊗ x+ x⊗ 1

∆̌(g) := g ⊗ g ∆̌(x) := gc ⊗ x+ x⊗ 1

give the structure of an coassociative counital Hopf algebra on T̂ζ,q and
Ťζ,q, respectively.

Furthermore, we have exact sequences of Hopf algebras, with k := N
d

C[Zk] // T̂ζ,q // Tζ

Tζ // Ťζ,q // C[Zk] .

The Hopf subalgebra A ⊂ T̂ζ,q generated by the grouplike element g
and the Hopf subalgebra B ⊂ Ťζ,q generated by g are both isomorphic to
the complex group Hopf algebra C[ZN ]. To apply a partial dualization, we
need a Hopf pairing; it is given by the following lemma whose proof we
leave to the reader:

Lemma 5.3.4 Let q be an N -th primitive root of unity and let g ∈ C[ZN ]
be a generator of the cyclic group ZN .

1. The bilinear form ω : C[ZN ]× C[ZN ]→ k given by ω(gn, gm) = qnm

is a Hopf pairing.

2. The linear map ω′ : k→ C[ZN ]⊗ C[ZN ] with

ω′(1k) =
1

N

N∑
k,`=1

q−k`gk ⊗ g`

is the inverse copairing of ω.

The partial dual of T̂ζ,q with respect to A and ω is isomorphic to Ťζ,q:
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Proposition 5.3.5 Let N be a natural number and d be a divisor of N .
Let ζ be a primitive d-th root of unity and q a primitive N -th root of unity
with qc = ζ. Let A ⊂ T̂ζ,q and B ⊂ Ťζ,q be as above and ω : A ⊗ B → k
the non-degenerate Hopf pairing from Lemma 5.3.4.

1. The algebra homomorphism π : T̂ζ,q → A which sends g to g and x
to 0 is a Hopf algebra projection onto A.

2. The partial dualization of T̂ζ,q with respect to the partial dualization

datum (T̂ζ,q
π−→ A,B, ω) is isomorphic to Ťζ,q.

In particular, for N = d, we have T̂ζ,q = Ťζ,q.

Proof. The space of coinvariants K := T̂
coin(π)
ζ,q = {a ∈ T̂ζ,q | ∆̂(a) = a⊗1}

equals the C-linear span of {1, x, x2, . . . , xd−1}. Remark 5.1.5 implies that
K is a Yetter-Drinfel’d module with A-action ρ : A ⊗ K → K and A-
coaction δ : K → A⊗K given by

ρ : g ⊗ x 7→ gxg−1 = ζx,

δ : x 7→ π(g)⊗ x = g ⊗ x = x(−1) ⊗ x(0).

Moreover, K has the structure of a Hopf algebra in A
AYD with multiplica-

tion and comultiplication given by

µ : x⊗ x 7→ x2,

∆: x 7→ 1⊗ x+ x⊗ 1 .

The dualization functor (Ω,Ω2) from Section 2.2.2 for the Hopf pairing
ω : A⊗ A→ k yields the A-Yetter-Drinfel’d module L = 〈1, x, . . . , xd−1〉C
with action ρ′ : A⊗ L→ L and coaction δ′ : L→ A⊗ L given by

ρ′ : g ⊗ x 7→ ω(x(−1), g)x(0) = qx,

δ′ : x 7→ 1

N

N∑
k,`=1

q−k·`gk ⊗ ρ(g` ⊗ x) =
1

N

N∑
k,`=1

(q−kqc)`gk ⊗ x = gc ⊗ x.

The Yetter-Drinfel’d module L has a natural structure of a Hopf algebra
in A

AYD with multiplication µ′ = µ ◦ Ω2(K,K) and comultiplication ∆′ =
Ω−1

2 (K,K) ◦∆

µ′ : x⊗ x 7→ ζx2,

∆′ : x 7→ 1⊗ x+ x⊗ 1 .
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As an algebra, L is generated by x, so the biproduct rA(T̂ζ,q) = Lo B

is generated by x ∼= x ⊗ 1 and g ∼= 1 ⊗ g. In the biproduct rA(T̂ζ,q), the
relations

gN = 1, xd = 0 and gx = ρ′(g ⊗ x)g = qxg

hold. This gives a surjective algebra homomorphism ψ : rA(T̂ζ,q) → Ťζ,q;

since Ťζ,q and rA(T̂ζ,q) have the same complex dimension, ψ is an isomor-
phism.

The map ψ also respects the coalgebra structures, since

∆rA(T̂ζ,q)
(x) = 1 · x[−1] ⊗ x[0] + x⊗ 1 = gc ⊗ x+ x⊗ 1 .

5.3.3. Reflection on simple roots in a Nichols algebra

We finally discuss the example of Nichols algebras [HS13]. We take for C
the category of finite-dimensional Yetter-Drinfel’d modules over a complex
Hopf algebra h with bijective antipode, e.g. the complex group algebra of a
finite group G. Let M ∈ C be a finite direct sum of simple objects (Mi)i∈I ,

M =
⊕
i∈I

Mi .

Thus, M is a complex braided vector space. The Nichols algebra B(M)
of M is defined as a quotient by the kernels of the quantum symmetrizer
maps Qn

B(M) :=
⊕
n≥0

M⊗n/ ker(Qn).

The Nichols algebra B(M) is a Hopf algebra in the braided category C. If
M is a direct sum of n simple objects in C, the Nichols algebra is said to
be of rank n.

Each simple subobject Mi of M provides a partial dualization datum:
denote by M∗i the braided vector space dual to Mi. Denote by B(Mi) the
Nichols algebra for Mi. The fact that Mi is a subobject and a quotient
of M implies that B(Mi) is a Hopf subalgebra of B(M) and that there

is a natural projection B(M)
πi−→ B(Mi) of Hopf algebras. Similarly, the

evaluation and coevaluation for M induce a non-degenerate Hopf pairing
ωi : B(Mi) ⊗ B(M∗i ) → C on the Nichols algebras. We thus have for each
i ∈ I a partial dualization datum

Ai := (B(M)
πi−→ B(Mi),B(M∗i ), ωi)
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We denote by ri(B(M)) := rAi(B(M)) the partial dualization of B(M)
with respect to Ai. As usual, we denote by Ki the coinvariants for the
the projection πi; Ki is a Hopf algebra in the braided category of B(Mi)-
Yetter-Drinfel’d modules.

We summarize some results of [AHS10],[HS10] and [HS13]; for simplicity,
we assume that the Nichols B(M) algebra is finite-dimensional. To make
contact with our results, we note that the i-th partial dualization

ri(B(M)) := Ω(Ki) o B(M∗i ) ,

as introduced in the present paper, coincides with the i-th reflection of
B(M) in the terminology of [AHS10].

Theorem 5.3.6 Let h be a complex Hopf algebra with bijective antipode .
Let Mi be a finite collection of simple h-Yetter-Drinfel’d modules. Consider
M :=

⊕n
i=1Mi ∈ h

hYD and assume that the associated Nichols algebra
H := B(M) is finite-dimensional. Then the following assertions hold:

• By construction, the Nichols algebras B(M), ri(B(M)) have the same
dimension as complex vector spaces.

• For i ∈ I, denote by M̂i the braided subspace

M̂i = M1 ⊕ . . .⊕Mi−1 ⊕Mi+1 ⊕ . . .

of M . Denote by adB(Mi)(M̂i) the braided vector space obtained as

the image of M̂i ⊂ B(M) under the adjoint action of the Hopf sub-
algebra B(Mi) ⊂ B(M). Then, there is a unique isomorphism [HS13,

Prop. 8.6] of Hopf algebras in the braided category
B(Mi)
B(Mi)

YD
(
h
hYD

)
:

Ki
∼= B(adB(Mi)(M̂i))

which is the identity on adB(Mi)(M̂i).

• Define, with the usual convention for the sign,
aij := −max{m | admMi

(Mj) 6= 0}. Fix i ∈ I and denote for j 6= i

Vj := ad
−aij
Mi

(Mj) ⊂ B(M) .

The braided vector space

Ri(M) = V1 ⊕ · · ·M∗i · · · ⊕ Vn ∈ h
hYD
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is called the the i-th reflection of the braided vector space M . Then
there is a unique isomorphism [HS13, Thm. 8.9] of Hopf algebras in
h
hYD

ri(B(M1 ⊕ · · · ⊕Mn)) ∼= B(V1 ⊕ · · ·M∗i · · · ⊕ Vn)

which is the identity on M .

• With the same definition for aij for i 6= j and aii := 2, the matrix
(aij)i,j=1,...n is a generalized Cartan matrix [AHS10, Thm. 3.12].
Moreover, one has r2

i (B(M)) ∼= B(M), as a special instance of Corol-

lary 5.2.3, and the Cartan matrices coincide, aMij = a
ri(M)
ij . In the

terminology of [HS10, Thm. 6.10], one obtains a Cartan scheme.

• The maps ri give rise to a Weyl groupoid which controls the structure
of the Nichols algebra B(M). For details, we refer to [AHS10, Sect.
3.5] and [HS10, Sect. 5].

We finally give examples that illustrate the appearance of Nichols al-
gebras as Borel algebras in quantum groups. We end with an example in
which a reflected Nichols algebra is not isomorphic to the original Nichols
algebra.

The first example serves to fix notation:

Example 5.3.7 Let n > 1 be a natural number and q be a primitive n-th
root of unity in C. Let M be the one-dimensional complex braided vector
space with basis x1 and braiding matrix q11 = q. As a quotient of the
tensor algebra, the associated Nichols algebra B(M) inherits a grading,
B(M) = ⊕k∈NB(M)(k). As a graded vector space, it is isomorphic to

B(M) ∼= C[x1]/(xn1 )

and thus of complex dimension n. The Hilbert series is

H(t) :=
∑
k≥0

tk dim
(
B(M)(k)

)
= 1 + t+ · · · tn−1.

The next example exhibits the role of Nichols algebras as quantum Borel
parts.

Example 5.3.8 Let g be a complex finite-dimensional semisimple Lie
algebra of rank n with Cartan matrix (aij)i,j=1...n. Let (αi)i=1,...,n be a
set of simple roots for g and let di := 〈αi, αi〉/2. We construct a braided
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vector space M with diagonal braiding as a Yetter-Drinfel’d module over
an abelian group: fix a root q 6= 1 of unity and consider the braiding matrix

qii = q2di qij = qdiaij , i 6= j.

The associated Nichols algebra B(M) is then the quantum Borel part of the
Frobenius-Lusztig kernel uq(g). In this case, all Nichols algebras ri(B(M))
obtained by reflections are isomorphic as algebras. As Hopf algebras, they
are isomorphic up to a Drinfel’d twist. The isomorphisms give rise to the
Lusztig automorphisms Tsi of the algebra uq(g) for the simple root αi.
These automorphisms enter e.g. in the construction of a PBW-basis for
U(g).

In the following example [Hec09], the two Nichols algebras describe two
possible Borel parts of the Lie superalgebra g = sl(2|1); they also appear
in the description [ST13] of logarithmic conformal field theories. In this
example, non-isomorphic Nichols algebras are related by reflections.

Example 5.3.9 Let q 6= ±1 be a primitive n-th root of unity. Find
two two-dimensional diagonally braided vector spaces M,N , with bases

(x
(M)
1 , x

(M)
2 ) (x

(N)
1 , x

(N)
2 ) respectively, such that

q
(M)
11 = q

(M)
22 = −1 q

(M)
12 q

(M)
21 = q−1

q
(N)
11 = −1 q

(N)
22 = q q

(N)
12 q

(N)
21 = q−1.

We describe a PBW-basis of the Nichols algebras B(M) and B(N) by
isomorphisms of graded vector spaces to symmetric algebras. To this end,

denote for a basis element x
(M)
i of M the corresponding Nichols subalgebra

by B(x
(M)
i ), and similarly for N . (We will drop superscripts from now on,

wherever they are evident.) A PBW-basis for the Nichols algebra B(x
(M)
i )

has been discussed in Example 5.3.7. Moreover, we need the shorthand
x12 := x1x2−q12x2x1. One can show that the multiplication in the Nichols
algebras leads to isomorphisms of graded vector spaces:

B(M)
∼← B(x1)⊗ B(x2)⊗ B(x1x2 − q12x2x1)

∼= C[x1]/(x2
1)⊗ C[x2]/(x2

2)⊗ C[x12]/(xn12),

B(N)
∼← B(x1)⊗ B(x2)⊗ B(x1x2 − q12x2x1)

∼= C[x1]/(x2
1)⊗ C[x2]/(xn2 )⊗ C[x12]/(x2

12).

Both Nichols algebras B(M) and B(N) are of dimension 4n and have a
Cartan matrix of type A2. Their Hilbert series can be read off from the
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PBW-basis:

HB(M)(t) = (1 + t)(1 + t)(1 + t2 + t4 · · · t2(n−1)),

HB(N)(t) = (1 + t)(1 + t+ t2 + · · · tn−1)(1 + t2).

The two Hilbert series are different; thus the two Nichols algebras B(M)
and B(N) are not isomorphic. The Nichols algebras are, however, related
by partial dualizations:

r1(B(M)) = B(N) r2(B(M)) ∼= B(N)

r1(B(N)) = B(M) r2(B(N)) = B(N)

where ri is the partial dualization with respect to the subalgebra B(Cxi).
For the isomorphism indicated by ∼=, the generators x1 and x2 have to be
interchanged.



A. Category theory

For the reader’s convenience we list in this chapter the definitions of cat-
egorical notions, that appear throughout the text. For further details we
refer the reader to [Kas95] and [Mac98].

A.1. Basic notions

Categories Recall that a category C consists of objects, morphisms and
a unital, associative composition law. We say that a A is an object in C
or simply write A ∈ Ob(C) even when the objects of C form a proper class
and not a set. If Ob(C) is a set, the category C is said to be a small cat-
egory. Denote the set of morphisms from an object A to an object B by
C(A,B),HomC(A,B) or Hom(A,B) and write idA, id or A for the identity
morphism of A. If C contains only identity morphisms, it is called a dis-
crete category.

If we write f : A → B or A
f−−→ B, we mean f ∈ C(A,B), i.e. f is a

morphism from A to B. By g ◦ f = gf or
(
A

f−−→ B
g−→ C

)
we mean the

composition of f ∈ C(A,B) and g ∈ C(B,C).
A morphism f : A → B is called isomorphism, if there is a morphism
g : B → A with f ◦ g = idB and g ◦ f = idA.
A morphism f : A→ B is called monomorphism, if for any two morphisms
g1, g2 : X → A the equality f ◦ g1 = f ◦ g2 implies g1 = g2. A morphism
f : A→ B is called epimorphism, if for any two morphisms h1, h2 : B → Y
the equality h1 ◦ f = h2 ◦ f implies h1 = h2.

For a category C we denote by Cop the opposite category with the same
objects as C, morphism sets Cop(A,B) := C(B,A) and composition

◦ : Cop(B,C)× Cop(A,B)→ Cop(A,C) ,

(g, f) 7→ g ◦op f := f ◦ g .

The direct product of a category C and a category D is the category
C × D; it has as objects pairs of objects (C,D) with C ∈ Ob(C) and

89
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D ∈ Ob(C) and a morphism form (C,D) to (C ′, D′) is a pair (f, g) =
(f : C → C ′, g : D → D′). The composition of morphisms (f, g) and (f ′, g′)
is given by (f ′, g′) ◦ (f, g) := (f ′ ◦ f, g′ ◦ g).

Let I be an index set and let {Ci}i∈I be a family of categories. The
disjoint union

∐
i∈I Ci is the following category: objects are pairs (Xi, i)

with Xi an object in Ci and i ∈ I, a morphisms are pairs (fi, i) with fi
a morphism in Ci and i ∈ I, the composition of morphisms is given by
composition in the first entry, i.e. (fi, i) ◦ (gi, i) := (fi ◦ gi, i).

Functors Let C and D be categories. A functor F from C to D consists
of an object function, assigning an object F (A) in D to each object A in
C, and a morphism function, assigning to each morphism f : A → B in
C a morphism F (f) : F (A) → F (B), such that F (idA) = idF (A) for all
A ∈ Ob(C) and F (g ◦ f) = F (g) ◦ F (f) for all morphisms in C. Write

F : C → D or C F−−→ D to express, that F is a functor from C to D. The
identity functor IdC = Id: C → C of C maps an object A to A and a mor-
phism f to f .

Let C,D and E be categories; the composition of a functor C F−−→ D
and a functor D G−−→ E is the functor G ◦ F = GF : C → E which assigns
G(F (A)) to an object A in C and G(F (f)) to a morphism f in C.

Transformations Let F,G : C → D be functors. A natural transforma-
tion or simply a transformation α from F to G consists of a family
α = {αA : F (A)→ G(A)}A∈Ob(C) of morphisms in D that is natural in A,

i.e. for all morphisms f : A→ B in C the equality G(f) ◦ αA = αB ◦ F (f)
holds. The morphisms αA are called the components of the transformation
α and we also say, by abuse of language, that αA : F (A) → G(A) is a

natural transformation. Notations like α : F → G or F
α−−→ G are used to

express that α is a transformation from F to G.
A transformation α : F → G is called natural isomorphism, if each compo-
nent is an isomorphism.

Let F,G,H : C → D be functors and let α : F → G and β : G → H be
transformations. The vertical composition of α and β is the transforma-
tion β • α : F → H given by the components (β • α)A := βA ◦ αB .

Let F,G : C → D and H,K : D → E be functors and let α : F → G
and β : H → K be transformations. The horizontal composition of α and
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β is the transformation β ◦ α : H ◦ F → K ◦ G with the components
(β ◦ α)A := K(αA) ◦ βFA = βGA ◦H(αA).

Equivalences of categories We say that F : C → D is an isomorphism of
categories, if there is an inverse functor G : D → C, i.e. G ◦ F = IdC and
F ◦G = IdD.
Let F : C → D be a functor. We say F is an equivalence of categories,
if there is a quasi-inverse functor G : D → C, i.e. there are natural iso-

morphisms η : IdC
∼=−→ GF and ε : FG → IdD. A quasi-inverse functor is

unique, up to a natural isomorphism.

A.2. Adjunctions and monads

Adjoint functors Let L : C → D and R : D → C be functors. The functor
L is called left-adjoint to R resp. the functor R is called right-adjoint to
L, if there are transformations η : IdC → RL and ε : LR→ IdD, such that
the compositions

L(C)
L(ηC)−−−−→ LRL(C)

εLC−−−→ L(C) and

R(D)
ηR(D)−−−−→ RLR(C)

R(εD)−−−−−→ R(D)

are identity morphisms. We write L a R and say that (L,R, η, ε) is an
adjunction, the transformation η is called unit of the adjunction and ε is
called counit of the adjunction.
If R and R′ are right-adjoint to a functor L, then there is a unique natu-
ral isomorphism ϕ : R → R′ compatible with the units and counits of the
corresponding adjunctions.

We say that (L,R, η, ε) is an adjoint equivalence, if η and ε are natural
isomorphisms. The functor R is then a quasi-inverse of L; every equivalence
of categories is part of an adjoint equivalence.

Monads Let T : C → C be a functor and let µ : T ◦T → T and η : IdC → T
be natural transformations. The triple (T, µ, η) is called a monad on C, if
the equalities

µA ◦ T (µA) = µA ◦ µTA and

µA ◦ ηTA = idTA = µA ◦ T (ηA)
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hold for every object A in C. We also say that T is a monad without
mentioning the transformations µ and η, called multiplication and unit
respectively.

A module over T or T -module is a pair (A, r) consisting of an object A
in C and a morphism r : TA→ A, such that

r ◦ µA = r ◦ T (r) and

r ◦ ηA = idA .

If (A, rA) and (B, rB) are T -modules a morphism f : A → B is called
T -linear, if

f ◦ rA = rB ◦ T (f) .

The Eilenberg-Moore category CT of a monad T has as objects T -modules
and as morphisms T -linear morphisms; the composition of morphisms is
inherited from C.

Monadic functors The forgetful functor UT : CT → C sending (A, rA) to
A is part of an adjunction (UT ,FT , ηT , εT ).
The right-adjoint functor of UT is the free functor FT : C → CT , which
sends an object A to the T -module (TA, µA) and a morphism f to the
T -linear map T (f). The unit of T defines the unit ηT of the adjunction
and the counit ηT has the components εT(A,rA) = rA.

The monad of an adjunction (L,R, η, ε) is given by the functor T :=
RL with multiplication µA := R(εLA) : RLRL(A) → RL(A) and unit
ηA : A→ RL(A).

Let G : D → C be a functor, that is part of an adjunction (F,G, η, ε)
and by T its associated monad on C. The comparison functor K : D → CT
is given by K(D) := (G(D), G(εD)).
A functor G : D → C is called monodic, if it has a left-adjoint F : C → D
and the comparison functor K : D → CT is an equivalence of categories.

A.3. Monoidal categories

Definition A.3.1 A monoidal category is a 6-tuple (C,⊗,1, a, l, r) con-
sisting of a category C, a functor ⊗ : C×C → C (tensor product), an object
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1 in C, a natural isomorphism a : ⊗ ◦(⊗× IdC)→ ⊗ ◦ (IdC ×⊗) (associa-
tor), a natural isomorphism l : 1⊗ → IdC (left unit isomorphism) and a
natural isomorphism r : ⊗ 1 → IdC (right unit isomorphism), such that
the following diagrams commute for all objects U, V,W and X in C:

((U ⊗ V )⊗W )⊗X

(U ⊗ V )⊗ (W ⊗X)

U ⊗ (V ⊗ (W ⊗X))

(U ⊗ (V ⊗W ))⊗X U ⊗ ((V ⊗W )⊗X)

aU⊗V,W,X 44 aU,V,W⊗X

**

aU,V,W⊗idX �� aU,V⊗W,X //
idU⊗aV,W,X
GG

(U ⊗ 1)⊗ V U ⊗ (1⊗ V )

(U ⊗ 1)⊗ V

aU,1,V //

rU⊗idV )) idU⊗lVuu

The category is called strict, if a, l and r are the identity transformations.

Definition A.3.2 Let C and D be monoidal categories, let F : C → D
be a functor, let F 0 : F1C → 1D and F0 : 1D → F be morphisms and
F 2 : F ◦ ⊗ → F ⊗ F and F2 : F ⊗ F → F ◦ ⊗ transformations.

1. The triple (F, F2, F0) is called lax monoidal functor and F2 and F0

are called the monoidal structure of F , if for all objects U, V,W in C
the diagrams

(FU ⊗ FV )⊗ FW FU ⊗ (FV ⊗ FW )

F (U ⊗ V )⊗ FW FU ⊗ F (V ⊗W )

F ((U ⊗ V )⊗W ) F (U ⊗ (V ⊗W ))

aFU,FV,FW //

F (aU,V,W ) //

F2(U,V )⊗idFW ��

F2(U⊗V,W ) ��

idFU⊗F2(V,W )��

F2(U,V⊗W )��

F (1⊗ U) FU F (U ⊗ 1)

F1⊗ FU 1⊗ FU FU ⊗ 1 FU ⊗ F1

F (lU ) // F (rU )oo

F2(1,U)
OO

F0⊗idoo
lFU

??
rFU

__

id⊗F0 //
F2(U,1)
OO

commute. The monoidal functor is called strong monoidal or simply
monoidal, if F2 and F0 are isomorphisms. It is called strict, if F2 and
F0 are identities.

2. The triple (F, F 2, F 0) is called oplax monoidal functor and F2 and
F0 are called the (op)monoidal structure of F , if the diagrams above
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commute after changing F2 to F 2 and F0 to F 0 (and of course chang-
ing the direction of those arrows). If is called strong (op)monoidal
resp. strict, if F 2 and F 0 are isomorphisms resp. identities.

3. Let F and G be lax monoidal resp. oplax monoidal functors. If de-
fined, the composition F ◦ G is an (op)lax monoidal functor with
monoidal structure

(FG)2(U, V ) := F (G2(U, V )) ◦ F2(GU,GV ) and

(FG)0 := F (G0) ◦ F0

resp. opmonoidal structure

(FG)2(U, V ) := F 2(GU,GV ) ◦ F (G2(U, V )) and

(FG)0 := F 0 ◦ F (G0) .

Definition A.3.3 Let F and G be (op)lax monoidal functors and let
α : F → G be a natural transformation. If the equalities

αU⊗V ◦ F2(U, V ) = G2(U, V ) ◦ (αU ⊗ αV ) and α1F0 = G0 (A.1)

hold for all objects U and V in C we say that α is a monoidal transforma-
tion. We call α an opmonoidal transformation, if the equalities

(αU ⊗ αV ) ◦ F 2(U, V ) = G2(U, V ) ◦ αU⊗V (A.2)

hold for all objects U and V in C. By abuse of language we call opmonoidal
transformations sometimes also monoidal.

Lemma A.3.4 Let (F,G, η, ε) be an adjunction. The following statements
hold, as well as the dual statements, i.e. exchange F and G and the words
lax and oplax.

1. If G is a lax monoidal functor there is an oplax monoidal structure
on F .

2. If F and G are lax monoidal functors and η and ε are monoidal
transformations, then F is a strong monoidal functor.

3. If F is strong monoidal, there is a unique lax monoidal structure on
G, such that η and ε are monoidal transformations.

Sketch of proof.
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1. The morphism set Hom(X⊗Y,G(FX⊗FY )) contains the morphism
f := G2(FX,FY ) ◦ (ηX ⊗ ηX). Define F 2(X,Y ) as the image of f
under the isomorphism

Hom(X ⊗ Y,G(FX ⊗ FY )) ∼= Hom(F (X ⊗ Y ), FX ⊗ FY ) ,

i.e. F 2(X,Y ) = εFX⊗FY ◦ F (f). Define F 0 := ε1 ◦ F (G0).

2. Under the additional assumptions on F, η and ε one proves that F 2

is inverse to F2 and F 0 is inverse to F0.

3. Assume that G2(X,Y ) defines a monoidal structure on G. Since
η and ε are monoidal transformations we conclude from 2. that
G2(X,Y ) defines an oplax monoidal structure F 2(X,Y ), whose com-
ponents are inverse to F2(X,Y ). Hence F 2(X,Y ) = F−1

2 (X,Y ) and
G2(X,Y ) is the monoidal structure obtained from the dual statement
of 1.

Corollary A.3.5 Let (F,G, η, ε) be an adjoint equivalence. The functor
F is strong monoidal, iff G is strong monoidal.

Remark A.3.6 Usually one can assume, without loss of generality, that
one works in a strict monoidal category due to the fact that every monoidal
category C is equivalent, as a monoidal category, to a strict monoidal cat-
egory Cstr. See for example Section XI.5 in [Kas95].

Definition A.3.7 Let C be a strict monoidal category and let X be an ob-
ject in C. A left dual object for X is an object ∨X together with morphisms
evX : ∨X ⊗X → 1 (evaluation) and coevX : 1→ X ⊗ ∨X (coevaluation),
such that

(evX ⊗ id∨X)(id∨X ⊗ coevX) = id∨X and

(idX ⊗ evX)(coevX ⊗ idX) = idX .

Analogously one defines a right dual object as an object X∨ together with
morphisms ẽvX : X ⊗X∨ → 1 and cõevX : 1→ X∨ ⊗X fulfilling

(idX∨ ⊗ ẽvX)(cõevX ⊗ idX∨) = idX∨ and

(ẽvX ⊗ idX)(idX ⊗ cõev) = idX .

If every object X in C has a left resp. right dual, the category is called left
rigid resp. right rigid. The category C is called rigid, if it is left and right
rigid.
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If X ′ and X ′′ are both left or right dual to X, there is a unique isomor-
phism X ′ → X ′′ compatible with evaluation. Let C be (say) right rigid.
If we choose exactly one dual object for each object X, we get a functor
( )∨ : Cop → C by defining for f : X → Y the morphism

f∨ := (id⊗ ẽvY )(id⊗ f ⊗ id)(cõevX ⊗ id) .

Similarly, one defines a functor ∨( ) : Cop → C. The functors ∨( ) and
( )∨ are strong monoidal Cop → C⊗op where C⊗op denotes the monoidal
category with opposed tensor product X ⊗op Y := Y ⊗X.

Definition A.3.8 Let C be a rigid category and α : ∨( ) → ( )∨ a nat-
ural isomorphism. It is called pivotal structure on C, if it is a monoidal
isomorphism. For an endomorphism f : X → X in a pivotal category C
one defines the left trace tr`(f) and the right trace trr(f) as

tr`(f) := evX ◦ (α−1
X ⊗ f) ◦ cõevX

tr`(f) := ẽvX ◦ (f ⊗ αX) ◦ coevX .

A pivotal structure is called spherical, if left and right trace coincide for
all endomorphisms of C.
Definition A.3.9 Let C be a monoidal category and cX,Y : X⊗Y → Y⊗X
a family of morphisms, natural in X,Y ∈ Ob(C). The family cX,Y is called
prebraiding, if the following two hexagons commute for all X,Y, Z ∈ Ob(C)

X ⊗ (Y ⊗ Z)

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

(Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

a−1
??

cX⊗Y,Z //
a−1

��

id⊗cY,Z �� a−1
//

cX,Z⊗id

??

(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

a
??

cX,Y⊗Z //
a

��

cX,Y ⊗id �� a //
id⊗cX,Z

??

If c is a natural isomorphism the category C is called a braided category
with braiding c.
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Let C and D be braided categories. A monoidal functor F : C → D is called
braided, if

F (cX,Y ) ◦ F2(X,Y ) = F2(Y,X) ◦ cFX,FY .

Definition A.3.10 Let C be a braided category. The symmetric center of
C or the subcategory of transparent objects Zsym in C is defined as the full
subcategory of C containing the objects X, such that cY,X ◦ cX,Y = idX⊗Y
for all Y ∈ Ob(C).

A.4. Modular categories

Let k be a field. We call a category C k-linear, if C has a zero object, all
finite sums and every Hom set is a k-vector space such that the composition
◦ of morphisms is k-linear in each variable.

Let I be an indexing set and {Ci}i∈I a family of k-linear categories. The
direct sum

⊕
i∈I Ci is defined as the following category: objects are families

(Xi)i∈I where Xi is an object in Ci and only finitely many Xi are not the
zero object, the morphism set Hom((Xi)i∈I , (Yi)i∈I) is given by the vector
space

⊕
i∈I Hom(Xi, Yi).

An object X in a k-linear category is called simple, if the Hom-space
C(X,X) is one dimensional.

A k-linear abelian category is called finite, if

• there are, up to isomorphism, only finitely many simple objects,

• every Hom space C(X,Y ) is finite dimensional,

• every object has finite length,

• the category C has enough projectives.

A tensor category is a rigid, monoidal category C which is k-linear, the
unit object 1 is simple and the functor ⊗ is k-linear in each variable.

A finite tensor category C is called fusion category, if every object is
isomorphic to a finite sum of simple objects.

A premodular category is a braided fusion category together with a
spherical structure.

A premodular category C is called modular, if Zsym(C) is equivalent to
the category vectk of finite dimensional vector spaces.



98 A. Category theory



References

[AAFV00] J. N. Alonso Alvarez and J. M. Fernández Vilaboa. Cleft exten-
sions in braided categories. Comm. Algebra, 28(7):3185–3196,
2000.

[AHS10] N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider.
The Nichols algebra of a semisimple Yetter–Drinfeld module.
Amer. J. Math., 132(6):1493–1547, 2010.

[BD95] J. Baez and J. Dolan. Higher-dimensional algebra and topolog-
ical quantum field theory. J. Math. Phys., 36(11):6073–6105,
1995.

[BK01] B. Bakalov and A. A. Kirillov. Lectures on tensor categories
and modular functors, volume 21 of University Lecture Series.
American Mathematical Society Providence, 2001.

[Bar13] A. Barvels. Equivariant categories from categorical group ac-
tions on monoidal categories. arXiv preprint arXiv:1305.0679,
2013.

[BLS14] A. Barvels, S. Lentner, and C. Schweigert. Partially dualized
Hopf algebras have equivalent Yetter-Drinfel’d modules. arXiv
preprint arXiv:1402.2214, 2014.

[Bes97] Y. N. Bespalov. Crossed modules and quantum groups in
braided categories. Appl. Categ. Structures, 5(2):155–204,
1997.

[Bru00] A. Bruguières. Catégories prémodulaires, modularisations
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Zusammenfassung

Monoidale Kategorien treten auf als Darstellungskategorien von Hopf-
Algebren und anderen algebraischen Strukturen. Sie spielen unter anderem
eine zentrale Rolle in Darstellungstheorie und topologischer Feldtheorie. In
dieser Dissertation werden zwei verschiedene Konstruktionen durchgeführt,
die aus diesen Zusammenhängen heraus motiviert sind. Im Besonderen
spielen dabei algebraische und darstellungstheoretische Strukturen inner-
halb dieser monoidalen Kategorien eine wichtige Rolle. Über diese gibt das
erste Kapitel einen kurzen Überblick.

Kapitel 2 beschäftigt sich mit Yetter-Drinfel’d Moduln über Hopf-Alge-
bren in verzopften Kategorien und stellt neue Resultate für die folgenden
Kapitel bereit. Ein besonderer Schwerpunkt liegt dabei auf der Beschrei-
bung eines Isomorphismus Ω: AAYD(C) → A∨

A∨YD(C) von verzopften Kate-
gorien, wobei, falls existent, A∨ die duale Hopf-Algebra von A bezeichnet.

Im dritten Kapitel erinnern wir, für eine diskrete Gruppe Γ, an die
Definition einer Γ-verzopften Kategorie und einer quasi-triangulären Hopf
Γ-Koalgebra.

Im vierten Kapitel wird die erste Konstruktion dieser Arbeit vorgestellt:
Zu einer beliebigen monoidale Kategorie C mit schwacher Gruppenwirkung
durch eine Gruppe Γ, konstruieren wir eine Γ-verzopfte Kategorie ZΓ(C),
deren neutrale Komponente das Drinfel’d Zentrum von C ist. Ist C die
Kategorie von Moduln über einer Hopf-Algebra H, so lassen sich die ho-
mogenen Komponenten von ZΓ(C) als getwistete Yetter-Drinfel’d Moduln
über H beschreiben. Für eine endlich-dimensionale Hopf-Algebra H ver-
allgemeinert unsere Kategorie ZΓ(C) eine Hopf-algebraische Konstruktion
von Virelizier.

Das letzte Kapitel behandelt die zweite Konstruktion dieser Arbeit. Mo-
tiviert durch Arbeiten von Heckenberger und Schneider führen wir den Be-
griff einer partiellen Dualisierung von Hopf-Algebren in verzopften Kate-
gorien ein. Eine wichtige Idee in dieser Arbeit ist es, im Rahmen verzopfter
Kategorien algebraisch aufwändige Rechnungen mit Smash-Produkten kon-
zeptionell zu vereinfachen. Ausgehend von einer Hopf-Algebra H in einer
verzopften Kategorie C mit einer Hopf-Unteralgebra A und einer Hopf-
Algebraprojektion π : H → A konstruieren wir die partielle Dualisierung
H ′ von H bezüglich A. Die Hopf-Algebren H und H ′ sind im Allgemeinen
weder isomorph noch Morita-äquivalent. Wir zeigen aber, dass die Kat-
egorien H

HYD(C) und H′

H′YD(C) immer isomorph als verzopfte Kategorien
sind. Darüber hinaus ist die partielle Dualisierung von H ′ bzgl. der Unter-
algebra A∨ wieder isomorph zu H.



Summary

Monoidal categories appear as representation categories of Hopf algebras
and other algebraic structures. Among other things they play a central
role in representation theory and topological field theory.

In this dissertation we consider two constructions which are motivated
from these theories. Algebraic and representation-theoretical structures
internal to monoidal categories play an important role for these construc-
tions. The first chapter gives a short overview of them.

Chapter 2 deals with Yetter-Drinfel’d modules over Hopf algebras in a
braided category and supplies new results used in the following chapters.
The main goal is to describe an isomorphism Ω: AAYD(C) → A∨

A∨YD(C) of
braided categories, where, if it exists, A∨ denotes the Hopf algebra dual
to A.

In the third chapter we remind the reader of the definitions of Γ-braided
categories and quasi-triangular Hopf Γ-coalgebras for a discrete group Γ.

Chapter 4 deals with the first construction of this thesis. Given a mono-
idal category C with a weak action by a group Γ, we construct a Γ-braided
category ZΓ(C) whose neutral component is the Drinfel’d center of C. If C
is the category of modules over a Hopf algebra H, we describe the homo-
geneous components of ZΓ(C) as twisted Yetter-Drinfel’d modules over H.
For a finite dimensional Hopf algebra H our category ZΓ(C) generalizes a
Hopf-algebraic construction of Virelizier.

Chapter 5 deals with the second construction in this thesis. Motivated
by work of Heckenberger and Schneider, we introduce the notion of a par-
tial dualization for Hopf algebras in a braided category. One of the basic
ideas of this thesis is to give, using the framework of braided categories, a
conceptual simplification of algebraically involved calculations with smash
products. Starting with a Hopf algebra H in a braided category C together
with a Hopf subalgebra A and a Hopf algebra projection π : H → A we
construct a Hopf algebra H ′, the partial dual of H with respect to A. In
general the Hopf algebras H and H ′ are neither isomorphic nor Morita
equivalent, but we show that the categories HHYD(C) and H′

H′YD(C) are al-
ways isomorphic as braided categories. Moreover, the partial dual of H ′

with respect to A∨ is isomorphic to H.
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