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1 Introduction

The little n-cubes PROP and the corresponding operad were introduced around 1970 in
order to study n-fold loop spaces. In [9] Michael Boardman and Rainer Vogt define a tensor
product and a bar construction for Lawvere theories and and use this to prove iteratively
that a space on which the little n-cubes operad PROP acts can be delooped n times and
that hence the little n-cubes PROP recognizes n-fold loop spaces. Peter May compares
the monad associated to the little n-cubes operad with the monad ΩnΣn and shows that
applied to connected spaces these monads yield weakly equivalent results. He uses the bar
construction for monads to also derive a recognition principle for n-fold loop spaces.
Since then, operads have received a lot of attention in topology, algebra and physics as
a means to encode algebraic structures abstractly. In particular, one can study algebraic
variants of the little n-cubes operad, so called En-operads, in the world of differential
graded k-modules over a commutative unital ring k. Algebras over such an En-operad,
called En-algebras, hence can be thought of as algebraic analogues of n-fold loop spaces.
An En-algebra is a differential graded k-module endowed with a product which is associative
up to a coherent set of all possible higher homotopies for associativity, but commutative
only up to higher homotopies of a certain level, depending on n.
Important examples arise for n = 1 and n = ∞: An E1-algebra is exactly an A∞-algebra,
an algebraic analogue of a space with A∞-structure as introduced by Stasheff in his study
of H-spaces [64]. A result by Kadeishvili (see [39]) shows that A∞-algebras classify quasi-
isomorphism types of differential graded k-algebras over a field k. In [60] Steffen Sagave
proves that if one is willing to work with derived A∞-algebras, which combine projective
resolutions with A∞-structures, similar results can be obtained over any commutative ring.
Derived A∞-algebras have been studied in an operadic context in [42] and [2]. On the other
hand, E∞-algebras are the right notion of commutative algebras up to coherent homotopy.
An important example is given by the singular cochains on a space, with multiplication
giving rise to the cup product on singular cohomology. Michael Mandell showed in [48] that
the E∞-algebra structure on the cochains of a nilpotent space of finite type determines this
space up to weak equivalence. In the world of spectra E∞-algebras, called E∞ ring spectra,
also play an important role.
In the differential graded setting, every operad which fulfills certain cofibrancy conditions
automatically comes with a notion of homology and cohomology specifically suited to alge-
bras over this operad. In particular, we can say what En-homology and En-cohomology of
an En-algebra A with coefficients in a so-called representation of A are. Again, one finds
that the cases n = 1 and n = ∞ yield familiar notions: For n = 1, one can show that E1-
homology coincides with Hochschild homology of A∞-algebras as defined in [25]. If n =∞,
we retrieve the notion of Γ-homology (see [58]). Note that any commutative algebra is in
particular an En-algebra for any n. For commutative algebras and trivial coefficients, En-
homology is known to coincide with Teimuraz Pirashvili’s higher order Hochschild homology
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as defined in [52].
The operadic definition of En-homology and cohomology is given in terms of derived functors
and is a priori difficult to compute. A result making actual computations feasible was given
by Benoit Fresse in [22] and [23]: He shows that En-homology of any En-algebra with
trivial coefficients can be computed via an iterated bar construction. The bar construction
of a differential graded k-algebra was originally defined by Samuel Eilenberg and Saunders
Mac Lane in [17] in their study of K(π, n)-spaces. If the bar construction is applied to a
differential graded commutative algebra, it again yields a differential graded commutative
algebra, hence the construction can be iterated. In [23] Fresse shows that the structure of
an En-algebra is sufficient to define an n-fold bar construction. Moreover, up to suspension
the homology of the n-fold bar construction of an En-algebra computes En-homology with
trivial coefficients. Unpublished work of Benoit Fresse shows that, at least for a commutative
algebra A and coefficients in a symmetric A-bimodule M , one can twist the bar construction
to compute En-homology and En-cohomology with coefficients. We give the details of a
proof of this result sketched by Fresse and use this to show that En-homology as well as En-
cohomology of commutative algebras coincides with higher order Hochschild homology and
cohomology not only for trivial coefficients, but for coefficients in any symmetric bimodule.
In [41], Muriel Livernet and Birgit Richter use that En-homology can be computed via
the iterated bar construction to give an interpretation of En-homology of commutative
algebras with trivial coefficients as functor homology. To be more precise, they show that
En-homology in these cases can be calculated as Tor groups of certain functors with respect
to a category Epin of trees encoding the structure of the n-fold bar complex. There is an
extension of this result to arbitrary En-algebras by Fresse, see [21]. Other interpretations as
functor homology have for example been given for Gamma homology in [53], for Hochschild
and cyclic homology in [54] and for Leibniz homology of Lie algebras in [35]. Depending
on the category, functor homology allows a more combinatorial description of the objects
in question. General constructions for Ext and Tor, like for example the construction of
the Yoneda pairing, can be carried through. In this thesis, we enlarge the category Epin to
incorporate the twist needed to compute En-homology with coefficients. We show that the
functor homology interpretation also holds for En-homology as well as for En-cohomology
of commutative algebras with coefficients in a symmetric bimodule.
Only a few concrete calculations of En-homology and -cohomology have been possible un-
til now. Examples include En-homology of certain free commutative and certain trivial
commutative algebras with trivial coefficients in [23] (based on calculations in [12]) and
a comparison of higher order Hochschild homology with the cohomology of iterated loop
spaces (see [52], [22]). For commutative algebras and over the rationals Pirashvili proved
that En-homology admits a decomposition, called the Hodge decomposition, which gen-
eralizes the well known λ-decomposition of Hochschild homology (see [52]). In [57] Birgit
Richter and the author construct a spectral sequence converging to En-homology with trivial
coefficients. In characteristic zero for all n and for n = 2 in characteristic two the E2-term
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of this spectral sequence can be identified with derived indecomposables with respect to the
n-Gerstenhaber structure on the homology of the En-algebra. In characteristic zero this
spectral sequence allows an identification of the summands of the Hodge decomposition
of En-homology with these derived indecomposables and an interpretation of these sum-
mands as the homology of higher powers of the cotangent complex. The spectral sequence
is also used to calculate the En-homology of free graded commutative algebras and the
E2-homology of certain Hochschild cochain complexes. In [10] En-homology of certain free
graded commutative algebras and of truncated polynomial algebras over the finite field Fp
with coefficients in the algebra itself is calculated.
To make more calculations possible one would like to understand the structure of En-
homology and -cohomology better. A generalized version of the Deligne conjecture says that
for a suitable choice D∗En(A;A) of a chain complex calculating En-cohomology of an En-
algebra A with coefficients in itself, D∗En(A;A) will be an En+1-algebra. The original Deligne
conjecture concentrated on the case n = 1, with the E2-structure on the Hochschild cochains
giving rise to the well known Gerstenhaber algebra structure on Hochschild cohomology.
Proofs have been given, among others, by James McClure and Jeffrey Smith in [51] for n = 1.
The generalized version has for instance been discussed by Po Hu, Igor Kriz and Alexander
Voronov in [37] and by Jacob Lurie in [45, 6.1.4]. Grégory Ginot uses a geometric approach
in [26] to construct corresponding operations on higher order Hochschild cohomology. There
is also a homological variant of the Deligne conjecture which has been proven by Morten
Brun, Zbigniew Fiedorowicz and Rainer Vogt in [11] and by Maria Basterra and Michael
Mandell [5] for higher topological Hochschild homology in the context of spectra.
In this thesis we use the interpretation of En-cohomology as functor cohomology to inves-
tigate whether the Yoneda pairing gives rise to cohomology operations on En-cohomology
which would be part of the induced structure of an En+1-action, like for example a squaring
operation in positive characteristic as discussed by Stefan Schwede in [62] for n = 1. Unfor-
tunately, the representing object has trivial En-cohomology, hence no operations arise this
way. Also part of an En+1-structure are so-called higher cup products ∪0, ...,∪n, with the
zeroth cup product giving rise to the multiplication every En+1-algebra is endowed with,
while ∪i+1 is a homotopy for the commutativity of ∪i. In characteristic two we give an
explicit construction of ∪1 on the cochain complex arising via the n-fold bar construction.

Outline Chapter 2 is an introductory chapter in which we recall the basic concepts we will
use throughout this thesis and fix notation. We discuss operads and algebras over operads
as well as related model structures. We proceed to define representations, the universal
enveloping algebra, derivations and Kähler differentials in the operadic context and then
give the definition of operadic homology and cohomology. Finally, we recollect some basic
material about functor homology.
In chapter 3, we give a proof of an unpublished result by Benoit Fresse which we will need
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in the later chapters. We start with a closer look at En-operads and En-algebras. Then we
recall how one can extend the iterated bar complex to En-algebras to compute En-homology
with trivial coefficients. After that we proof that one can extend this result to En-homology
and En-cohomology of commutative algebras with coefficients in a symmetric bimodule. To
do this, we define a twist on a certain extension of the iterated bar construction associated
to commutative algebras. We mimic methods from [23] to show that this twist lifts to the
iterated bar complex for E∞-algebras and restricts to En-structures. Then we show that
this twisted complex as well as a standard complex computing En-homology both define
cofibrant replacements of the module of Kähler differentials and deduce the results.
Chapter 4 is concerned with functor homology. We recall the definition of the category Epin
encoding the iterated bar construction, the definition of En-homology for functors and the
Tor-interpretation of En-homology with trivial coefficients from [41]. We then construct
a category Epi+n that encodes the twisted variant of the iterated bar construction which
computes En-homology with coefficients in a bimodule. We extend the definition of En-
homology and -cohomology to functors defined on this category. Like in [41] we use the
axiomatic description of Tor and Ext to prove that En-homology and -cohomology coincide
with functor homology and cohomology. We calculate En-homology and -cohomology of a
polynomial algebra as an example.
In chapter 5 we recall the definition of the Yoneda pairing. We investigate whether the
results of chapter 4 allow us to construct cohomology operations via the Yoneda product:
We prove that the En-cohomology of the representing object vanishes, hence no cohomology
operations arise this way.
In chapter 6, we compare En-homology and -cohomology of commutative algebras with co-
efficients in symmetric bimodules with higher order Hochschild homology and cohomology.
After recalling some facts about simplicial structures as well as the relevant definitions,
we compare a simplicial variant of the iterated bar construction with the iterated bar con-
struction for differential graded algebras. We deduce that En-homology and -cohomology
coincides with higher order Hochschild homology and cohomology by using that the rele-
vant complexes coincide for n = 1 and by exploiting the fact that simplicial commutative
augmented algebras form a pointed simplicial model category.
The n-fold bar complex is equipped with a comultiplication giving rise to the cup product
on En-cohomology. The last chapter is dedicated to an explicit combinatorial construction
of a homotopy for this cup product in characteristic two as part of a possible En+1-structure
on the chain complex calculating En-cohomology.
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2 Preliminaries

The goal of this chapter is to recollect the basic concepts that we will need. We start
by introducing operads and algebras over them. After that we discuss how these can be
endowed with model structures, and how one can then define homology and cohomology of
the algebras in question. Finally we recall some facts about homology and cohomology of
small categories.

Conventions: We fix a commutative unital ground ring k. We will mainly work in the
category dg-mod of Z-graded differential graded k-modules. For a graded k-module C we
denote the degree of c ∈ C by |c|. We observe the Koszul sign rule, meaning that for maps
f : A→ B and g : C → D between graded k-modules and a ∈ A, c ∈ C

(f ⊗ g)(a⊗ c) = (−1)|g||a|f(a)⊗ g(c).

For an object X we will denote the identity on X by 1, 1X or X. We set r = {1, ..., r} and
[r] = {0, ..., r} for r ≥ 0.

2.1 Operads and algebras over operads

Operads were defined by Boardman-Vogt [9] and May [50] in their study of iterated loop
spaces. We recall the definition of an operad as a monad in symmetric sequences as well
as an explicit definition. We also recall what an algebra over a given operad is and give
some examples. Then we introduce free operads and cofree cooperads and define left and
right modules over an operad. Unless stated otherwise the material in this section can be
found in [20, ch. 2, ch. 3]. Another important reference is [44]. Information on the history
of operads as well as a comprehensive overview of related results and applications can be
found in [49].
Let (C,⊗, 1C) be a cocomplete symmetric monoidal category with symmetry isomorphisms
τc,d : c⊗d→ d⊗c, such that ⊗ distributes over colimits, e.g. the category Top of topological
spaces or the category dg-mod.

Operads

Definition 2.1. A Σ∗-module M in C is a family (M(r))r≥0 of objects M(r) in C endowed
with a right Σr-action. The object M(r) is said to be the object in arity r. A morphism
f : M → N of Σ∗-modules is a family (fr)r≥0 of Σr-equivariant morphisms fr : M(r) →
N(r). We denote the category of Σ∗-modules in C by CΣ∗-mod.

Proposition 2.2. The category of Σ∗-modules is a symmetric monoidal category with tensor
product

(M⊗N)(r) =
⊔

a+b=r

(M(a)⊗N(b))⊗Σa×Σb Σr
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and unit the Σ∗-module which is zero except in arity 0, where it is k. Here for c an object
in C

c⊗ Σr =
⊔
Σr

c

with the obvious Σr-action and

(M(a)⊗N(b))⊗Σa×Σb Σr

is the coequalizer

(M(a)⊗N(b))⊗ (Σa × Σb)⊗ Σr
//
// (M(a)⊗N(b))⊗ Σr,

where one map is defined via the inclusion Σa×Σb → Σr and the product in Σr and the other
map is given by the Σ∗-structure of M and N. The symmetry isomorphism M⊗N→ N⊗M

is on the component (M(a)⊗N(b))⊗Σa×Σb Σr given by

(m⊗ n)⊗Σa×Σb σ 7→ τM(a),N(b)(m⊗ n)⊗Σb×Σa ωa,bσ,

where ωa,b ∈ Σa+b is the permutation that switches the blocks {1, ..., a} and {a+1, ..., a+b},
i.e.

ωa,b(x) =

{
x+ b x ≤ a,
x− a x > a.

Proposition 2.3. The category of Σ∗-modules in C is equipped with another structure
making it a monoidal category: This product, called plethysm, is given by

M ◦N =
⊔
j≥0

M(j)⊗Σj N
⊗j ,

where Σj acts on N⊗j by permuting the tensor factors. Hence in each arity r

(M ◦N)(r) =
⊔
j≥0

M(j)⊗Σj (
⊔

i1+...+ij=r

(N(i1)⊗ ...⊗N(ij))⊗Σi1×...×Σij
Σr).

The unit object I for this structure is defined by

I(r) =

{
1C, r = 1,

0, r 6= 1.

We also often will drop ◦ from the notation and write MN for M ◦N.
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Definition 2.4. An operad in C is a monoid in the category of Σ∗-modules in C with respect
to the monoidal structure defined in 2.3, i.e. a Σ∗-module P together with morphisms

γ : PP→ P and η : I → P

such that the diagrams

PPP
γP //

Pγ
��

PP

γ

��
PP

γ // P

and P
ηP //

Pη
��

PP

PP

commute, where we keep the associativity isomorphism relating (PP)P and P(PP) as well
as the unit isomorphism implicit. A morphism of operads is a morphism of monoids in
Σ∗-modules. We denote the category of operads in C by OC.

Note that there is also a nonsymmetric version of the notion of operads obtained by consid-
ering sequences in C instead of Σ∗-modules, defining suitable notions of tensor product and
plethysm for such sequences and dropping all equivariance requirements. Nonsymmetric
operads are for example discussed in [44, 5.9]. We will only consider symmetric operads
and hence do not give details about nonsymmetric operads.
Spelling out the above definition yields May’s original definition:

Proposition 2.5. An operad P is a Σ∗-module together with Σi1 × ... × Σir -equivariant
morphisms

γi1,...,ir : P(r)⊗Σr (P(i1)⊗ ...⊗ P(ir))→ P(i1 + ...+ ir)

for all r ≥ 1 and all i1, ..., ir ≥ 0 as well as a morphism

1C → P(1)

satisfying certain relations regarding associativity, unitality and equivariance. We write
γ(p; q1, ..., qr) for γ(p⊗ q1 ⊗ ...⊗ qr) with p ∈ P(r), qj ∈ P(j).

Example 2.6. Standard examples of operads in Top include the operad encoding associative
topological monoids: In arity r the operad AsTop is given by the discrete set

AsTop
+ (r) = Σr

The composition morphism γ is determined by γi1,...,ir(idr, idi1 , ..., idir) = idi1+...+ir together
with the equivariance requirements. Another prominent example is given by the commutative
operad. Its topological version is given by

ComTop
+ (r) = pt.
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Similarly we can consider algebraic versions of these examples in the category dg-mod by
setting

As+(r) = k[Σr]

concentrated in degree zero with composition determined as in the topological case, and

Com+(r) = k

where all composition maps are identities. We will later also need the nonunital variants of
As+ and Com+ given by

As(r) =

{
As+(r), r > 0,

0, r = 0,
and Com(r) =

{
Com+(r), r > 0,

0, r = 0.

Relaxing the notions of associativity and commutativity gives rise to the notion of A∞-
and E∞-operads, see e.g. [49, 1.6,1.7,1.8]. The prototypical example of an A∞-operad is
given by the operad formed by Stasheff’s associahedra. Examples of E∞-operads include the
colimit over the little n-cubes operads as well as the Barratt-Eccles operad. We will discuss
these operads in subsection 3.1.

Remark 2.7. There is a standard method to construct operads in dg-mod from topological
operads (cf. [49, 1.17]): Given an operad P in Top, we obtain an operad C∗(P) by setting

C∗(P)(r) = C∗(P(r))

with C∗ denoting the singular chains functor. The composition in C∗(P) is defined by
applying the Eilenberg-Zilber map

C∗(P(r))⊗ C∗(P(i1))⊗ ...⊗ C∗(P(ir))→ C∗(P(r)× P(i1)× ...× P(ir))

and composing this with C∗(γi1,...,ir).

Example 2.8. A particular important class of examples arises whenever the category C

admits internal hom objects homC(−,−). Then we can define an operad Endc, the endo-
morphism operad associated to c, for every element c of C by setting

Endc(r) = homC(c⊗r, c)

with right Σr-action given by permuting the factors of c⊗r and composition defined by

γi1,...,ir(f ; f1, ..., fr) = f(f1 ⊗ ...⊗ fr)

for f ∈ homC(c⊗r, c) and fj ∈ homC(c⊗ij , c) for 1 ≤ j ≤ r.
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Remark 2.9. Equivalently one can define an operad structure on a Σ∗-module P via spec-
ifying partial composition products

◦i : P(a)⊗ P(b)→ P(a+ b− 1)

for a, b ≥ 0 and 1 ≤ i ≤ a. If P is equipped with an operad structure γ, these are given by

◦i = γ1,...,1,b,1,...,1 : P(a)⊗ I(1)⊗i−1 ⊗ P(b)⊗ I(1)⊗a−i → P(a+ b− 1).

Conversely any set of morphisms ◦i as above satisfying suitable associativity, unitality and
equivariance conditions defines an operad. To construct the full composition morphisms

γi1,...,ir : P(r)⊗ P(i1)⊗ ...⊗ P(ir)→ P(i1 + ...+ ir)

from the partial composition products, set

γi1,...,ir = ◦i1+...+ir−1+1...(◦i1+1 ⊗ P(i3)⊗ ...⊗ P(ir))(◦1 ⊗ P(i2)⊗ ...P(ir)).

For later use we record the following fact, which is proved in [20, 3.1.6]. Recall that a colimit
in a category C is called filtered if it is the colimit over a filtered diagram G : I → C, i.e.
a diagram with I a small category such that for all i, j ∈ I there is l ∈ I with morphisms
i→ l and j → l.

Proposition 2.10. The category of operads is complete and cocomplete. Limits and filtered
colimits are created by the forgetful functor V from operads to Σ∗-modules, i.e.

V (lim JF ) = lim JV F and V (colimIG) = colimIV G

for a diagram F : J → OC and a filtered diagram G : I → OC.

Algebras over operads Operads abstractly encode algebraic structures. Concrete in-
stances of the encoded structure are called the algebras over a given operad.

Definition 2.11. Let P be an operad in C. A P-algebra A is an object A in C together with
morphisms

γA : PA→ A and ηA : A→ PA,

where we consider A as a Σ∗-module concentrated in arity 0, such that the diagrams

PPA
γA //

PγA
��

PA

γA
��

PA
γA // A

and A
ηA // PA

γA
��
A

commute.
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Remark 2.12. Just as for operads from the above description one can derive a hands-on
definition: For A an object of C the structure of a P-algebra is equivalent to giving maps

γA,r : P(r)⊗Σr A
⊗r → A

for r ≥ 0 satisfying certain associativity and unitality conditions.

Example 2.13. Spelling out what consititutes an AsTop
+ -algebra yields that these are exactly

associative unital monoids in topological spaces. Similarly, ComTop
+ -algebras are commuta-

tive associative topological monoids with unit. In the differential graded setting we find that
As+-algebras are differential graded algebras with unit and that Com+-algebras are graded
commutative differential graded algebras with unit, while As- and Com-algebras are differ-
ential graded algebras and commutative differential graded algebras without unit.
As in 2.7, for an operad P in Top applying the singular chains functor to a P-algebra X
yields a C∗(P)-algebra C∗(X).

The importance of the endomorphism operad introduced in example 2.8 lies in the following
proposition.

Proposition 2.14. Let C be a category that admits internal hom objects and let P be an
operad in C. Then there is a bijection between P-algebra structures on an object c in C and
operad morphisms

P→ Endc.

Indexing by finite sets In the above definitions we consider arity graded Σ∗-modules,
where the object in arity r can be thought of as corresponding to operations with r inputs.
Let the category Bij be the category with finite sets as objects and morphisms the bijections
between them. For a finite set e let |e| denote its cardinality. It is also possible to carry
out the constructions above for functors M : Bij→ C, see [23, 0.2, 0.3, 0.5, 0.8], [20, 5.1.6].
More precisely, the tensor product of two such functors M and N is given by

(M⊗N)(e) =
⊔

e=e′te′′
M(e′)⊗N(e′′)

for a finite set e. The plethysm is then defined by

(MN) =
⊔
r≥0

M({1, ..., r})⊗Σr N
⊗r.

We have the following relation between Σ∗-modules and functors from Bij to C, which allows
us to freely switch between these categories.
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Proposition 2.15. There is an equivalence between the category of Σ∗-modules and the
category Fun(Bij,C) defined as follows: For a given Σ∗-module M set

M(e) = M(|e|)⊗Σ|e| Bij(e, {1, ..., |e|})

for any finite set e, with
(m⊗ σ).ω = m⊗ σω

for ω ∈ Bij(e, e′). Conversely, every functor N : Bij→ C defines a Σ∗-module by restricting
N to the sets {1, ..., r} and their endomorphisms Σr. Moreover this equivalence respects the
respective tensor products and plethysms.

Cooperads There is a notion dual to the notion of operad: Cooperads abstractly encode
classes of coalgebras with a certain structure.

Definition 2.16. A cooperad D in C is a comonoid in (CΣ∗-mod, ◦), i.e. D is equipped
with morphisms

∆: D→ D ◦D and ε : D→ I

such that ∆ is coassociative and ε is a counit for ∆. A morphism of cooperads is a morphism
of comonoids in CΣ∗-mod.

Again it is possible to derive a more hands-on definition from this one. One can define coal-
gebras over a cooperad D and for example retrieve the category of coassociative coalgebras
and the category of cocommutative coassociative coalgebras this way. Since we will not be
concerned with coalgebras over a cooperad we refer the reader to [18].

Free operads and cofree cooperads

Definition 2.17. Let M be a Σ∗-module in C. We call an operad P together with a mor-
phism ι : M→ P the free operad generated by M if for every operad O and every morphism
f : M→ O of Σ∗-modules there is exactly one morphism f̄ : P→ O of operads such that the
diagram

M

ι

��

f

  
P

f̄ // O

commutes.

Proposition 2.18. For every M ∈ CΣ∗-mod there exists an operad P and a morphism
ι : M → P such that (P, ι) is the free operad generated by M. Up to a unique isomorphism
the pair (P, ι) is unique. We denote P by F(M).

15



We will not give a formal construction here, but intuitively elements of F(M) are given by
formal composites

(...((m1 ◦i1 m2) ◦i2 ...) ◦ir−1 mr

of elements in M. In particular, F(M) admits a weight grading

F(M) =
⊔
l≥0

F(l)(M)

with F(l)(M) the Σ∗-submodule of F(M) generated by expressions as above with r = l. For
a formal construction we refer the reader to [18, 3.4].
Similarly one can define the cofree cooperad cogenerated by a Σ∗-module M as a cooperad
satisfying an appropriate dual universal property. We denote the cofree cooperad cogen-
erated by M by Fc(M). Again we refer to [18] for an explicit construction and only note
that F(M) and Fc(M) are isomorphic as Σ∗-modules, in particular Fc(M) admits a weight
grading as well.
For Σ∗-modules M and N let (M;N) be the Σ∗-module given by

(M;N) =
⊔
i≥1

⊔
a+b=i−1

M⊗a ⊗N ⊗M⊗b.

Observe that for a third Σ∗-module L

(LL)(M;N) ∼= L(L(M);L(M;N)).

Morphisms f : L→ L′, g : M→ N of Σ∗-modules give rise to a morphism

f ◦′ g : LM→ L′(M;N)

of Σ∗-modules defined by

f ◦′ g|L(j)⊗Σj
M⊗j =

j∑
i=1

f ⊗ (M⊗ ...⊗M⊗ g ⊗M⊗ ...⊗M).

Definition 2.19. • Let P be an operad in graded modules. A morphism f : P → P of
Σ∗-modules is called a derivation of P if the diagram

PP
fP+π(P◦′f) //

γ

��

PP

γ

��
P

f // P

commutes. Here π : P(P;P) → PP is the projection. Denote the derivations on P by
Der(P).
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• Let D be a cooperad in graded modules. A coderivation of D is a morphism g : D→ D

of Σ∗-modules such that the diagram

D
g //

∆
��

D

∆
��

DD
gD+π(D◦′g) // DD

commutes. We denote the coderivations on D by Coder(D).

Example 2.20. If P is an operad in dg-mod, the differential of P is by definition a deriva-
tion of the operad in graded modules underlying P. Similarly, the differential of a cooperad
in dg-mod is a coderivation.

Proposition 2.21. For a free operad F(M) in dg-mod

Der(F(M)) ∼= Homdg-modΣ∗-mod(M,F(M)),

i.e. a derivation of F(M) is determined by its restriction to the generators M. This isomor-
phism is natural in M.
Similarly, for a cofree cooperad Fc(M) there is a natural isomorphism

Coder(Fc(M)) ∼= Homdg-modΣ∗-mod(Fc(M),M).

We denote the derivation of F(M) induced by a map α : M → F(M) by ∂α, and adopt a
similar convention for coderivation of cofree cooperads.

Definition 2.22. An operad P such that P = F(M) as a graded module is called a quasifree
operad. The differential of P is then a sum dP = dF(M) + δ with dF(M) induced by the
differential of M . We write P = (F(M), δ) in this situation and call δ a twisting morphism
or twist. A quasifree cooperad is defined similarly.

Modules over operads

Definition 2.23. Let (P, γ, η) be an operad. A left P-module in C is a Σ∗-module L in C

equipped with a morphism
γL : PL→ L

such that the diagrams

PPL
PγL //

γL

��

PL

γL
��

PL
γL // L

and L ∼= IL
ηL // PL

γL
��
L
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commute. Similarly, a right P-module is a Σ∗-module R with a morphism

γR : RP→ R

such that the diagrams

RPP
γRP //

Rγ

��

RP

γR
��

RP
γR // R

and R ∼= RI
Rη // RP

γR
��
R

commute.

Observe that although the definitions of left and right P-modules look symmetric, they
describe quite different structures since the plethysm is not symmetric: While a left P-
module L admits maps

P(i)⊗Σi L
⊗i → L,

a right P-module structure on R yields maps

R(i)⊗Σi P
⊗i → R.

The following lemma allows us to endow the tensor product of two right P-modules again
with the structure of a right P-module.

Lemma 2.24. Let M,N be right P-modules. Then there is an isomorphism

(M ⊗N)P ∼= (MP)⊗ (NP)

of Σ∗-modules.

Definition 2.25. For right P-modules M and N the tensor product M ⊗N is again a right
P-module, with right P-module structure given by

(M ⊗N)P
∼= // (MP)⊗ (NP) //M ⊗N.

Just as for modules over a ring derivations of free modules are determined by the image of
their generators. The following material can be found in [18].

Definition 2.26. 1. Let L be a left P-module over an operad P in dg-mod. Denote the
differential on P by dP. A map f : L→ L is called a derivation of L if the diagram

PL
dPL+π(P◦′f) //

γL
��

PL

γL
��

L
f // L

commutes, with π : P(L;L) → PL the projection. We denote the derivations of L by
Der(L).
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2. Let R be a left P-module over an operad P in dg-mod. Denote the differential on P

by dP. A map f : R→ R is called a derivation of R if the diagram

RP
fP+π(R◦′dP) //

γR
��

RP

γR
��

R
f // R

commutes, with π : R(P;P) → RP the projection. Denote the derivations of R by
Der(R).

Given a Σ∗-module M , the left P-module PM satisfies the universal property of a free
left P-module. Similarly, MP is the free right P-module associated to M . An important
example arises for an object M in C, i.e. if M is concentrated in arity zero: A left P-module
concentrated in arity zero is exactly a P-algebra, and PM is the free P-algebra generated
by M with structure map

PPM
γPM // PM.

For a map θ : M → L to a left P-module L we denote by ∂θ : PM → L the induced morphism
of left P-modules. We adopt a similar notation for right modules.

Proposition 2.27. 1. For a free left P-module PM in dg-mod there is a natural iso-
morphism

Der(PM) ∼= Homdg-modΣ∗-mod(M,PM).

2. Similarly, for a free right P-module MP in dg-mod there is a natural isomorphism

Der(MP) ∼= Homdg-modΣ∗-mod(M,MP).

In the following we will often abuse notation and, for a map α : M → PM , denote by ∂α
the induced derivation on the left P-module PM . It will be clear from the context whether
∂β denotes the morphism of left P-modules induced by β : M → PM or the associated
derivation. A similar notation will be used for right P-modules.

Definition 2.28. A quasifree left P-module L is a left P-module such that L = PM as a
graded left P-module. In this case the differential of L is of the form dPM + δ with dPM
induced by the differentials of P and M . We write L = (PM, δ) and call δ a twisting
morphism or twist.
A quasifree right P-module R = (MP, δ) is defined and denoted similarly. Note that in this
case dMP is a derivation of right P-modules, while δ is a morphism of right P-modules.

Remark 2.29. Since a P-algebra is precisely a left P-module concentrated in arity zero,
the terminology and results above can in particular be applied to algebras over an operad.
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2.2 Cofibrantly generated model categories

There is a standard way of transporting cofibrantly generated model structures along ad-
junctions, which is frequently used to define model structures in the context of operads. In
the following we recall the relevant definitions which can be found in [20, ch. 11]. As a
general reference for the language of model categories we refer the reader to [36].

Definition 2.30. An ordinal κ is a set such that every element of κ is also a subset of κ
and that is strictly wellordered with respect to the order defined by

I ≤ I ′ ⇔ I ⊂ I ′.

Definition 2.31. Let I be a given set of morphisms in a cocomplete category C.

• A morphism A→ B is called an I-cell attachment if it is obtained by a pushout⊔
αCα⊔

α iα
��

// A

��⊔
αDα

// B

with iα ∈ I for all α.

• A map f : A → B is called a relative I-cell complex if f is a (possibly transfinite)
composite of I-cell attachments over an ordinal κ, i.e. if f is the map A→ colimλ<κBλ
associated to

A = B0 → B1 → ...→ Bλ−1 → Bλ → ...→ colimλ<κBλ = B.

Definition 2.32. We say that the small object argument holds for a set of morphisms I of
C if the following conditions are satisfied: There exists an ordinal ω such that, for all κ ≥ ω
and for all f : A → B in C with 0 → B = colimλ<κBλ a relative I-cell complex and A the
domain of a map in I, the morphism f admits a factorization

A

  

f // B

Bλ

i

OO

for some λ < κ, where i : Bλ → B is the canonical map into the colimit B.

Definition 2.33. A model category C is called cofibrantly generated if there are two sets
I and J , called the set I of generating cofibrations and the set J of generating acyclic
cofibrations such that
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• the small object argument holds for I and for J ,

• a map is a fibration if and only if it has the right lifting property with respect to the
maps in J ,

• a map is an acyclic fibration if and only if it has the right lifting property with respect
to the maps in I.

Theorem 2.34. [20, 11.1.13] Let C be a cofibrantly generated model category with gen-
erating cofibrations I and generating acyclic cofibrations J , D a complete and cocomplete
category and let

F : C
//
D : Goo

be an adjunction. Assume that the following conditions hold:

• The small object argument holds for the sets FI and FJ .

• For every relative FJ-cell f the map G(f) is a weak equivalence.

Then D is a cofibrantly generated model category with generating cofibrations FI and acyclic
generating cofibrations FJ . The weak equivalences and fibrations are created by G, i.e. a
map f in D is a weak equivalence (fibration) if and only if G(f) is a weak equivalence
(fibration).

If we endow D with this model structure, the functors F and G form a Quillen adjunction.

2.3 Model structures on operads and algebras over operads

In the following we recall the model structure on the category of operads and on the category
of algebras over operads in differential graded modules as defined by Hinich in [32] and [31],
see also [20, ch. 11, 12, 14].
We will focus our attention on the case C = dg-mod. Recall that dg-mod is a model
category with weak equivalences the quasiisomorphisms and fibrations given by degreewise
surjections. This model structure is cofibrantly generated: Let Dl be the chain complex
with one generator xl in degree l, one generator xl−1 in degree l−1 and differential mapping
xl to xl−1. Let Sl be the chain complex with one generator in degree l. Then the generating
cofibrations in dg-mod can be chosen to be the inclusions Sl−1 → Dl, while the generating
acyclic cofibrations are the maps 0→ Dl.
There is an adjunction between the category of Σ∗-modules in a given model category C and
the category CN of collections of objects in C indexed by N, given by forgetting the action
of the symmetric groups in one direction and by associating to c in C the free Σn-object
tΣnc in the other direction. Applying Theorem 2.34 to this adjunction yields the following
model structure on CΣ∗-mod.
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Proposition 2.35. Let C be a cofibrantly generated model category. Then the category of
Σ∗-objects in C inherits a model structure with weak equivalences and fibrations given by
degreewise weak equivalences and degreewise fibrations.

We call Σ∗-modules which are cofibrant Σ∗-cofibrant. A Σ∗-module M in C is called C-
cofibrant if it is a cofibrant object in C in each arity. We use a similar terminology for mor-
phisms of Σ∗-modules. We apply theorem 2.34 to the free-forgetful adjunction between the
category CΣ∗-mod and the category of right P-modules. The condition that P is C-cofibrant
ensures that the free functor maps (acyclic) C-cofibrations to (acyclic) C-cofibrations, which
facilitates checking the requirements of Theorem 2.34.

Theorem 2.36. Let P be C-cofibrant. The category MP of right P-modules is a cofibrantly
generated model category with

• weak equivalences the maps which are levelwise quasiisomorphisms in C,

• fibrations the maps which are levelwise fibrations in C.

The generating (acyclic) cofibrations are given by the maps

i⊗ Fr ◦ P : C ⊗ Fr ◦ P→ D ⊗ Fr ◦ P

where i : C → D is a generating (acyclic) cofibration in C and

Fr(l) =

{⊔
Σr

1C, l = r,

0, l 6= r.

Unfortunately we need to proceed with more care if we want to define a model structure
on the category of operads in C or the category of algebras over a given operad. Not only
do we need to assume that the model structure on C respects the symmetric monoidal
structure, but the category of algebras over operads indeed only forms a so called semi-
model category: In general, the right lifting properties for (acyclic) fibrations as well as the
factorization axioms only hold if the domain of the map in question is cofibrant, see [20, ch.
12].

Definition 2.37. Let C be a complete and cocomplete category with inital object ∅. We say
that C is a semi-model category if there are three distinguished classes of morphisms, called
weak equivalences, fibrations and cofibrations, satisfying the following properties. As for
model categories, we call an object c of C cofibrant if the morphism ∅ → c is a cofibration.
We also call a fibration (cofibration) acyclic if it is a weak equivalence.

• The initial object ∅ is cofibrant.
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• If f and g can be composed and if two out of the three morphisms f , g and fg are
weak equivalences, then so is the third.

• The distinguished classes of morphisms are closed under retracts.

• Every cofibration has the left lifting property with respect to acyclic fibrations. Every
acyclic cofibration has the left lifting property with respect to fibrations.

• Every fibration has the right lifting property with respect to acyclic cofibrations with
cofibrant domain. Every acyclic fibration has the right lifting property with respect to
cofibrations with cofibrant domain.

• Every morphism f with a cofibrant domain can be factored as f = pi with p an acyclic
fibration and i a cofibration. The morphism f can also be factored as f = qj with q a
fibration and j an acyclic cofibration.

Since we will later define operadic (co)homology as derived funtors, for our purposes it is
important to note that since the initital object is cofibrant, we can cofibrantly replace any
object c of C in a semi-model category, and that there always is a weak equivalence from
one cofibrant replacements of c to another.
Again the semi-model structure on the category of algebras over a given operad P is con-
structed using the free-forgetful adjunction between the category of P-algebras in C and C

itself, see [20, Theorem 12.1.4]. As before, the adjunction we use to construct the semi-model
structure becomes a Quillen adjunction of semi-model categories, see [20, 12.1.8].

Proposition 2.38. Let P be a Σ∗-cofibrant operad in the cofibrantly generated symmetric
monoidal model category C. Then the category of P-algebras forms a semi-model category.
A morphism of P-algebras is a fibration (respectively a weak equivalence) if it is a fibration
(respectively a weak equivalence) in C.

Examples include P = As, which is clearly Σ∗-cofibrant. In this case, the semi-model struc-
ture given by proposition 2.38 is indeed a model structure, it coincides with the model
structure on differential graded algebras exhibited by Jardine in [38]. On the other hand,
if we consider P = Com over k = Z, one easily sees that there can be no semi-model struc-
ture on Com-algebras such that the free-forgetful adjunction between Com-algebras and
Z-modules is a Quillen adjunction: Consider the acyclic complex D2 of free abelian groups
with one generator x in degree 1 and one generator y in degree 2, with differential sending y
to x. Then Com(H∗(D

2)) = 0, while H∗(Com(D2)) does not vanish. But a Quillen adjunc-
tion between semi-model categories would preserve acyclic cofibrations between cofibrant
objects. One way to deal with this problem is to replace Com by a Σ∗-cofibrant weakly
equivalent operad, see for example [47, §2].
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2.4 Homology and cohomology for algebras over operads

From now on we work with the category C = dg-mod as a ground category. Since for a
Σ∗-cofibrant operad P we know what cofibrant replacements in the category of P-algebras
are, we can define their homology and cohomology as appropriate derived functors

HP
∗ (A;M) = H∗(DerP(QA,M)) and H∗P(A;M) = H∗(M ⊗UP(QA) Ω1

P(QA)).

Hence every Σ∗-cofibrant operad comes with a suitable notion of homology and cohomol-
ogy of algebras over this operad. Note the similarity of these definitions with the classi-
cal definitions of André-Quillen homology and cohomology. In particular, if A is concen-
trated in degree zero H0

P(A;M) = DerP(A;M), while for algebras augmented over k the
P-homology with coefficients in k computes the P-indecomposables of A in degree zero.
The P-cohomology group H1

P(A;M) is connected to abelian extension of A by M (see [44,
12.4.3]). The P-cohomology of A is also related to deformation theory (see [44, 12.2]) and
obstruction theory ([34], [13]).
In this section we will give a brief overview of the objects involved in the above constructions
and state the definition of homology and cohomology of an algebra over an operad. The
material in this section stems from [20, ch. 4, ch. 10, ch. 13]. We fix a Σ∗-cofibrant operad
P.

Definition 2.39. Let (A, γA) be a P-algebra, M ∈ dg-mod. Then M is called a represen-
tation of A over P if there is a map

γM : P(A;M)→M

such that the diagrams

P(P(A);P(A;M)) ∼= (PP)(A;M)

P(γA;γM )
��

γP(1A;1M ) // P(A;M)

γM

��
P(A;M)

γM //M

and M
ηP // P(A;M)

γM
��
M

commute. A chain map f : M → N between representations of A is called a morphism of
representations if

fγM = γN (idA; f).

We denote the category of representations of A by RP(A).

Example 2.40. For P = As+ a representation of the associative algebra A is the same as
an A-bimodule. For P = Com+, we can identify representations with left modules over a
commutative algebra or equivalently with symmetric bimodules. Representations of algebras
over As and Com correspond to their nonunital versions. The operadic and the traditional
notion of representations of Lie algebras agree as well.
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Like for P = Lie there is an associative algebra such that representations of A correspond
to left modules over that algebra.

Definition 2.41. Let L be a left and R be a right P-module. The Σ∗-module R ◦P L is the
coequalizer of

R ◦ P ◦ L
γRL //

RγL
// R ◦ L,

i.e. the quotient of R ◦ L by the relation generated by

r(l1, ..., li−1, γL(p; li, ..., li+j), li+j+1, ..., ls)− γR(r; 1, ..., 1, p, 1, ..., 1)(l1, ..., ls).

Note that for right P-modules R,R′ and a left P-module L

(R⊗R′) ◦P L ∼= (R ◦P L)⊗ (R′ ◦P L).

Definition 2.42. Let P[l] be the right P-module with P[l](i) = P(l + i), with the action of
Σi induced by {1, ..., i} ∼= {l + 1, ..., i + l} ⊂ {1, ..., i + l}. The right P-module structure is
given by

γ(p; p1, ..., pi) = γP(p; 1, ..., 1, p1, ..., pi).

Definition 2.43. The universal enveloping algebra UP(A) associated to the P-algebra A is
the associative algebra

UP(A) = P[1] ◦P A.

The multiplication is induced by⊕
r,s≥0(P(r + 1)⊗ P(s+ 1))⊗k[Σr]⊗k[Σs] A

⊗r+s

◦1⊗k[Σr ]⊗k[Σs]A
⊗r+s
//
⊕

r,s≥0 P(r + s+ 1)⊗k[Σr]⊗k[Σs] A
⊗r+s

//
⊕

t≥0 P(t+ 1)⊗k[Σt] A
⊗t.

Proposition 2.44. The category RP(A) of A-representations over P is isomorphic to the
category of left UP(A)-modules.

Lemma 2.45. Set UP = P[1]. This is an associative algebra in right P-modules with
multiplication

P[1]⊗ P[1]→ P[1]
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restricted to

(P[1]⊗ P[1])(l) =
⊕
a+b=l

(P[1](a)⊗ P[1](b))⊗k[Σa]⊗k[Σb] k[Σl]

given by equivariantly extending

◦1 :
⊕
a+b=l

P(a+ 1)⊗ P(b+ 1)→ P(a+ b+ 1).

Then for any P-algebra A we have that UP(A) = UP ◦PA with the induced algebra structure.
Denoting the right P-module structure map of P[1] by γP[1], we will often write

p(p1, ..., pi−1, x, pi, ..., pl−1)

for the element γP[1](p.(1....i); p1, ..., pl−1) ∈ P[1].

There also is an operadic generalization of the module of Kähler differentials, i.e. a repre-
sentation that is a representing object for derivations.

Definition 2.46. For a P-algebra A and a representation M a map f : A→M is called a
P-derivation if the diagram

P(A)

γA
��

P◦′A // P(A;A)
1P(1A;f) // P(A;M)

γM
��

A
f //M

commutes. We denote the k-module of derivations A→M by DerP(A,M).

Definition 2.47. Let A be a P-algebra. The module of Kähler differentials Ω1
P(A) is the

differential graded module generated as a k-module by expressions

p(a1, ..., dai, ..., an), p ∈ P(n), a1, ..., an ∈ A

with equivariance relations

(p.σ)(a1, ..., dai, ..., an)− p(σ.(a1, ..., dai, ..., an)),

for all σ ∈ Σn, where

σ.(b1, ..., bn) =

 ∏
1≤i<j≤n:σ(i)>σ(j)

(−1)|bi||bj |

 (bσ−1(1), ..., bσ−1(n)),
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and further relations

p(a1, ..., aj−1, γA(q; aj , ..., aj+m−1), aj+m, ..., dai, ..., am+n−1)

− (−1)|q|(|a1|+...+|aj−1|)(p ◦j q)(a1, ..., am+n−1) for j 6= i,

p(a1, ..., ai−1, dγA(q; ai, ..., ai+m−1), ai+m, ..., am+n−1)

−
m−1∑
l=0

(−1)|q|(|a1|+...+|ai−1|)(p ◦i q)(a1, ..., dai+l, ..., an+m−1)

with q ∈ P(m). The differential on Ω1
P(A) is induced by the differentials of P and A. The

k-module Ω1
P(A) is a representation of A with left UP(A)-action given by

q(x, an+1, ..., an+m) · p(a1, ..., dai, ..., an) = (q ◦1 p)(a1, ..., dai, ..., an+m)

for p ∈ P(n), q ∈ P[1](m), aj ∈ A.

Proposition 2.48. Up to isomorphism the module of Kähler differentials ΩP(A) is deter-
mined by being a representation of A such that there is a natural isomorphism

DerP(A,−) ∼= HomUP(A)(ΩP(A),−).

In the following proposition we assume that P(i) is a k-module to avoid additional signs.

Proposition 2.49. Let P(i) be concentrated in degree zero for each i ≥ 0. There is a right
P-module Ω1

P such that for all P-algebras A

Ω1
P(A) = Ω1

P ◦P A.

More precisely Ω1
P is as a k-module generated by expressions

p(xi1 , ..., dxij , ..., xin)

with p ∈ P(n), {i1, ..., in} = n and indeterminates x1, ..., xn. The equivariance relations are
generated by

(p.σ)(x1, ..., dxi, ..., xn)− p(σ.(x1, ..., dxi, ..., xn))

for all σ ∈ Σn. The right Σ-action is defined by

(p(x1, ..., dxi, ..., xn)).σ = p(xσ(1), ..., dxσ(i), ..., xσ(n))

and the right P-module structure is determined by

p(x1, ..., dxi, ..., xn) ◦l q =


(p ◦l q)(x1, ..., dxi+m−1, ..., xn+m−1), l < i,

(p ◦l q)(x1, ..., dxi, ..., xn+m−1), l > i,∑m−1
j=0 (p ◦l q)(x1, ..., dxi+j , ..., xn+m−1), l = i.
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for p ∈ P(n), q ∈ P(m). The left UP-module structure is given by

q · p(x1, ..., dxi, ..., xn) = (p ◦1 q)(x1, ..., dxi, ..., xn+i)

for q ∈ P(i+ 1) = P[1](i).

Lemma 2.50. Let A = (P(Y ), ∂α) be a quasifree P-algebra with differential induced by
α : Y → P(Y ). Then

ΩP(A) = (UP(A)⊗ Y, ∂′α)

as a UP(A)-algebra with differential

∂′α(u⊗ y) =
∑
j

n∑
i=1

(−1)|y
(j)
i |(|y

(j)
i+1|+...+|y

(j)
n |)u · p(j)(y

(j)
1 , ..., y

(j)
i−1, x, y

(j)
i+1, ..., y

(j)
n )⊗ y(j)

i ,

where α(y) =
∑

j p
(j)(y

(j)
1 , ..., y

(j)
n ).

Proof. The isomorphism is induced by

UP(P(Y ))⊗ Y → ΩP(P(Y )), p(x, y2, ..., yn)⊗ y 7→ (−1)|y|(|y2|+...+|yn|)p(dy, y2, ..., yn).

A calculation shows that this is a morphism of UP(A)-modules and that the map respects
the differentials, see [33, 2.1.1].

After defining representations, derivations, the enveloping algebra and the module of Kähler
differentials we are finally in the position to talk about operadic homology and cohomology.

Definition 2.51. Let A be a P-algebra, M a representation of A over P. Then the P-
homology of A with coefficients in M is given by

HP
∗ (A;M) = H∗(M ⊗UP(QA) Ω1

P(QA))

for a cofibrant replacement QA of A as a P-algebra.
Similarly, the P-cohomology of A with coefficients in M is given by

H∗P(A;M) = H∗(DerP(QA,M))

where QA is again a cofibrant replacement of A as a P-algebra.

Remark 2.52. That these definitions are indeed independent of the choice of a specific
cofibrant replacement is proved in [20, 13.1.2]. Furthermore, one easily sees that P-homology
and P-cohomology are functorial in A and M and that a weak equivalence A → B of P-
algebras induces isomorphisms

HP
∗ (A;M)→ HP

∗ (B;M) and H∗P(B;M)→ H∗P(A;M).

In [33, Theorem 2.5] it is shown that a quasiisomorphism P → Q of Σ∗-cofibrant operads
induces a natural isomorphism between P- and Q-homology.
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Example 2.53. For the classical case P = As+ we retrieve Hochschild (co)homology up
to suspension. If char(k) = 0 the operad Com+ is Σ∗-cofibrant and the (co)homology of
commutative algebras defined this way is, again up to suspension, Harrison (co)homology.

2.5 Homological algebra for small categories

Let C be a small category and consider the category Fun(C, k-mod) of covariant functors
from C to k-mod. We recall the construction of Ext and Tor in this context, which can be
for example found in [66, ch. 2] or [52]. The category of functors C→ k-mod is an abelian
category: All limits and colimits exist and are formed objectwise, a natural transformation
η : F → G is a monomorphism (respectively an epimorphism) if ηc is injective (respectively
surjective) for each object c ∈ C.
The category Fun(C, k-mod) has enough injectives and projectives since k-mod has enough
injective and projective objects and the abelian structure is defined objectwise. More pre-
cisely, by the Yoneda lemma, natural trandsformations η : k[C(c,−)] → F correspond to
a choice of η(idc) ∈ F (c) for any c ∈ C and any F ∈ Fun(C, k-mod). Similarly a natu-
ral transformation F → Homk(k[C(−, c)], k) corresponds to choosing a value for F (c)(idc).
Hence k[C(c,−)] is projective, and every functor from C to k-mod receives a surjection
from a sum of these representables. Seeing that Fun(C, k-mod) has enough injectives is
more involved, cf. [66, 2.3.13]. For this reason we will restrict ourselves to the case that
C(c, d) is a finite set for all c, d in C. Under these assumptions, the observation about
Nat(F,Homk(k[C(−, c)], k)) we made above yields that the functor Homk(k[C(−, c)], k) is
injective (cf [52]) and that hence Fun(C, k-mod) has enough injectives. The same holds for
the category of contravariant functors from C to k-mod if we consider the contravariant
representables k[C(−, c)].
In particular we can talk about projective and injective resolutions of such functors: Given
a covariant functor F : C→ k-mod a projective resolution of F is an exact sequence

...→ Pi → Pi−1 → ...→ P1 → P0 → F → 0

such that all the Pi are projective. Analogously, an injective resolution of F is an exact
sequence of functors

0→ F → I0 → I1 → ...→ Ii → Ii+1 → ...

with all Ii injective. Projective and injective resolutions of contravariant functors are defined
similarly.
Hence we can define derived functors in this setting. We will stick to the cases we need to
define the derived functors we will use later.

Definition 2.54. Let F : Fun(C, k-mod) → k-mod be a covariant right exact functor and
F ∈ Fun(C, k-mod). Then

F(P ) = (...→ F(Pi)→ F(Pi−1)→ ...→ F(P1)→ F(P0)→ 0)
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with F(Pi) in degree i is a chain complex in the abelian category Fun(C, k-mod). The left
derived functors of F are defined as

(LF)s(F ) = Hs(F(P )).

Similarly, for a left exact functor G : Fun(C, k-mod) → k-mod we define the right derived
functors of G to be

(RG)s(F ) = Hs(G(I))

for an injective resolution I of F. For a left exact contravariant functor H from the category
Fun(C, k-mod) to k-mod we define its right derived functor applied to F ∈ Fun(C, k-mod)
as

(RH)s(F ) = Hs(H(P )),

where P again is a projective resolution of F .

Remark 2.55. As usual one can show that, up to isomorphism, derived functors are inde-
pendent of the choice of projective or injective resolution.

We now define Tor and Ext for functors from C to k-mod by deriving the tensor prod-
uct functor and the functor of natural transformations. That these functors satisfy the
appropriate exactness requirements follows for example from [61, ch. 16].

Definition 2.56. For F ∈ Fun(C, k-mod) and G ∈ Fun(Cop, k-mod) we define G ⊗C F as
the k-module given by

G⊗C F =
⊕

c∈Ob(C)

G(c)⊗ F (c)/ ∼

with the relation ∼ defined by (x, F (f)(y)) ∼ (G(f)(x), y) for f ∈ MorC(c, d), y ∈ F (c), x ∈
G(d). We set

TorC∗(G,F ) = (L(G⊗−))∗(F ).

Similarly, for F,H ∈ Fun(C, k-mod) we set

Ext∗C(F,H) = (RNat(F,−))∗(H).

Remark 2.57. As in the classical setting, one can compute Tor and Ext as

TorC∗(G,F ) ∼= (L(−⊗ F ))∗(G)

and
Ext∗C(F,H) ∼= (RNat(−, H))∗(F )

as well.
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3 En-homology and cohomology

In [23] Benoit Fresse proves that the n-fold bar construction for commutative algebras can
be extended to En-algebras, and that one can calculate En-homology with trivial coeffi-
cients up to a shift as the homology of this iterated bar construction. Muriel Livernet and
Birgit Richter use this in [41] to prove that one can interpret En-homology as functor ho-
mology. There is also an extension of Fresse’s result to En-homology and cohomology of a
commutative algebra A with coefficients in a symmetric A-bimodule M , which we will use
in section 4 to extend the results of Livernet and Richter. The goal of this chapter is to
give the details of the proof of Fresse’s unpublished result, based on a sketch of the proof
provided by Benoit Fresse to the author. The ideas of this section mostly stem from [20]
and [23], but the arguments for this extension to the non-trivial coefficient case have not
been written down yet.
We first define En-operads and En-algebras, then recall the constructions of [23]. Finally
we give a proof of the unpublished result by Fresse for coefficients in M .

3.1 En-algebras

The interest in En-structures originated from the study of n-fold loop spaces. Around 1970
Boardman-Vogt [9] and May [50] showed that under some conditions n-fold loop spaces
correspond to algebras over a certain operad. We will define this operad and then describe
the algebraic analogue of n-fold loop spaces, En-algebras.

En-operads

Definition 3.1. ([9, Example (2.49)],[50, Definition 4.1]) Let 1 ≤ n <∞ and let I = [0, 1]
denote the unit interval. As a set the little n-cubes operad Cn is given in arity r by linear
embeddings with parallel axes of r n-dimensional cubes In into an n-cube such that the
images of the interiors of the r embedded cubes are disjoint. This set is endowed with the
topology inherited from being a subspace of Top((In)tr, In). The operad structure is defined
as follows: Let f = f1 + ... + fr : (In)tr → In and g = g1 + ... + gs : (In)ts → In be
embeddings as above. Then for 1 ≤ i ≤ r we define the partial composition ◦i by

f ◦i g = f1 + ...+ fi−1 + fi ◦ (g1 + ...+ gs) + fi+1 + ...+ fr.

The symmetric group Σr acts on Cn(r) by permuting the embedded n-cubes.
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The following picture illustrates the composition for n = 2.

2

1

3
◦2 1

2
=

1

2 3

4

Define an operad morphism Cn → Cn+1 as the morphism induced by interpreting In as a
fixed face of In+1. More precisely, map a little n-cube f1 + ...+fr : (In)tr → In to the little
n+ 1-cube

f1 × idI + ...+ fr × idI : (In+1)tr → In+1.

We set C∞ = C = colimiCi.
The reason for the interest in Cn lies in the following example and theorem.

Example 3.2. Let X be a topological space. Then ΩnX is a Cn-algebra: For

γ1, ..., γr : (In, ∂In)→ X

and a little n-cube f1 + ...+ fr : (In)tr → In let

γΩnX(f1 + ...+ fr; γ1, ..., γr)(x) =

{
γi(y), x = fi(y) for some i,

∗, otherwise.

Theorem 3.3 ([50, Theorem 1.3], see also [9, Theorem 6.31, Theorem 6.24]). For 1 ≤ n ≤
∞, a connected space has the weak homotopy type of an n-fold loop space if and only if it
is a Cn-algebra.

By remark 2.7 we pass from the topological to the algebraic world via the singular chains
functor C∗.

Definition 3.4. We call an operad P in dg-mod an En-operad if there is a zig-zag of
quasiisomorphisms connecting P and the operad C∗(Cn), i.e. if there are operads P1, ...,Pk
and quasiisomorphisms

P P1
∼oo ∼ // ... Pk

∼oo ∼ // C∗(Cn).

Example 3.5. Since C1 is homotopy equivalent to AsTop
+ , an operad P is an E1-operad if

it is connected to As+ by quasiisomorphisms. In the other extreme case, n = ∞, one can
show (see e.g. [50, 4.8]) that each C(r) is contractible. Hence in the terminology above an
operad P is an E∞-operad if it is connected to Com+ by quasiisomorphisms. Note however
that E∞-operads are often assumed to be Σ∗-cofibrant or even Σr-free in each arity r.
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The Barratt-Eccles operad The Barratt-Eccles operad was originally introduced as a
simplicial operad EΣ by Barratt and Eccles in [3, §3]. In arity r

EΣ(r) = EΣr

is the nerve of the translation category associated to Σr, i.e. the nerve of the category with
objects the elements in Σr and with exactly one morphism from one object to another. The
operation of Σr on EΣr is the diagonal one. Composition in the simplicial Barratt-Eccles
operad is defined as follows: For σ ∈ Σr and τ ∈ Σs the ith composite σ ◦i τ ∈ Σr+s−1 is
given by

σ(1,...,1,s,1,...,1)(id{1,...,i−1} ⊕ τ ⊕ id{i+s,...,r+s−1}),

where σ(1,...,1,s,1,...,1) permutes the r blocks {1}, ..., {i−1}, {i, ..., i+s−1}, {i+s}, ..., {r+s−1}
like σ permutes {1, ..., r}, and

(id{1,...,i−1} ⊕ τ ⊕ id{i+s,...,r+s−1})(l) =


l, l < i,

τ(l − i+ 1) + i− 1, i ≤ l ≤ i+ s− 1,

l, l ≥ i+ s.

The partial composition

◦i : (EΣ(r)× EΣ(s))l → (EΣ(r + s− 1))l

of EΣ is then given by

(ω0, ..., ωl) ◦i (τ0, ..., τl) = (ω0 ◦i τ0, ..., ωl ◦i τl)

for ω0, ..., ωl ∈ Σr and τ0, ..., τl ∈ Σs.
Recall that for a simplicial k-module K : ∆op → k-mod with face maps di : Kl → Kl−1 and
degeneracies si : Kl → Kl+1 the normalized Moore complex NK of K is the chain complex
with

(NK)l = Kl/
l−1∑
i=0

si(Kl−1)

and differential
l∑

i=0

(−1)idi : (NK)l → (NK)l−1.

This gives rise to the following differential graded version.

Definition 3.6. The Barratt-Eccles operad E is in arity r given by

E(r) = N∗(k[EΣr]).
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Hence E(r)l is k-free with a basis given by l+1-tuples (σ0, ..., σl) ∈ Σl+1
r such that σi 6= σi+1,

and the differential is given by

d(σ0, ..., σl) =

l∑
i=0

(−1)i(σ0, ..., σi−1, σi+1, ..., σl).

The action of σ ∈ Σr on E(r) is the diagonal one, i.e.

(σ0, ..., σl).σ = (σ0σ, ..., σlσ).

The composition induced by the composition in EΣ is then

◦i : E(r)l ⊗ E(s)m → E(r + s− 1)l+m,

(σ0, ..., σl) ◦i (τ0, ..., τm) =
∑

(x0,...,xl+m),
(y0,...,yl+m)

±(σx0 ◦i τy0 , ..., σxl+m ◦i τyl+m),

where the sum is taken over all paths (x, y) from (0, 0) to (l,m), i.e. sequences x =
(x0, ..., xl+m) and y = (y0, ..., yl+m) in [l+m] = {0, ..., l+m} with xj ≤ xj+1, yj ≤ yj+1 and
xj − xj+1 + yj − yj+1 = −1. The concrete signs are described in [8, 1.1.3].

In particular, E(r) is obviously a Σr-free simplicial set. Since EΣr is the nerve of a category
with a terminal object, the maps EΣr → ∗ induce isomorphisms on homotopy groups.
Hence it is clear that the map

N∗(k[EΣr])→ Com

sending Nl(k[EΣr]) to 0 for l > 0 and given on N0(k[EΣr]) = k[Σr] by σ 7→ 1 is a Σr-
equivariant quasiisomorphism. We see that E is a Σ∗-cofibrant E∞-operad.
In [63] Smith defines a filtration

EΣ(1) ⊂ EΣ(2) ⊂ ... ⊂ EΣ(n) ⊂ EΣ(n+1) ⊂ ... ⊂ EΣ

of the simplicial Barratt-Eccles operad by suboperads EΣ(n). The simplicial operad EΣ(n)

consists in arity r of simplices (ω0, ..., ωl) ∈ (EΣr)l such that for all 1 ≤ i, j ≤ r the sequence

((ω0)ij , ..., (ωl)ij)

has at most n− 1 variations, where for ω ∈ Σr we define ωij to be id(2) ∈ Σ2 if ω(i) > ω(j)
and (12) ∈ Σ2 otherwise.
This filtration gives rise to the following filtration of E by En-operads, see [7, 1.13].
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Proposition 3.7. Let En be the suboperad of E which in arity r and degree l is as a k-module
generated by sequences (ω0, ..., ωl) ∈ Σl+1

r such that

((ω0)ij , ..., (ωl)ij)

has at most n− 1 variations for all i, j ∈ r. This defines a filtration

As = E1 ⊂ E2 ⊂ ... ⊂ En ⊂ En+1 ⊂ ... ⊂ E

of E by suboperads such that En is an En-operad.

En-algebras We give some examples of En-algebras. The obvious class of examples arises
from the original motivation for studying En-algebras in the topological world.

Example 3.8. Let X be an arbitrary topological space. Then by example 3.2 the space ΩnX
is a Cn-algebra, and consequently C∗(Ω

nX) is an algebra over C∗(Cn).

Example 3.9. Let A be an algebra over an E∞-operad E admitting a filtration

E1 ⊂ ... ⊂ En ⊂ En+1 ⊂ ... ⊂ E

by En-operads, e.g. E = C∗(C) or E = E. Then A is an En-algebra for any 1 ≤ n ≤ ∞ by
restricting the given E-algebra structure.

Example 3.10. Often E∞-operads E are not only connected to Com via a zig-zag of quasi-
isomorphisms, but indeed admit a morphism

E → Com.

Examples include C∗(C) and E. Then every commutative algebra is an E-algebra as well.

Example 3.11. Another important example arises for n = 1: Algebras over an E1-operad
are A∞-algebras. A cofibrant (nonsymmetric) E1-operad A∞ is given by the operad formed
by the cellular chains on the topological operad of Stasheff’s associahedra ([49, 1.8]).

Example 3.12. The famous Deligne conjecture (see [49, 1.19] for an overview) states that
the standard cochain complex C∗HH(A;A) computing Hochschild cohomology of an associa-
tive algebra (or more generally an A∞-algebra ) A is an algebra over a suitable E2-operad.
In particular, the Gerstenhaber algebra structure on Hochschild cohomology stems from an
action of the operad H∗(E2) governing Gerstenhaber algebras. A proof has been given,
amongst others, by McClure and Smith in [51]. The E2-operad acting on C∗HH(A;A) ex-
hibited by them is in fact up to signs a quotient of the suboperad E2 of the Barratt-Eccles
operad (see [8]).

Example 3.13. There is also a generalized version of the Deligne conjecture, stating that
for a suitable cochain complex D∗(A;A) computing En-cohomology H∗En(A;A) for an En-
algebra A, the complex D∗(A;A) is an En+1-algebra. A construction of such a complex
D∗(A;A) is discussed in [37] and [45, 6.1.4].
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3.2 En-homology with trivial coefficients via the iterated bar construction

We will discuss the iterated bar complex constructed in [23] and its relation to En-homology
with trivial coefficients in this subsection. To simplify matters, we restrict our attention to
the Barratt-Eccles operad and set E = E and En = En for the rest of this chapter, although
the results in [23] are proved for a more general class of En-operads. Furthermore, we will
work with nonunital En-algebras and hence only consider operads P with P(0) = 0. The
trivial action of an En-algebra A on k is given by setting

En(r)⊗Σr (A;M)⊗r →M

to be zero for all r ≥ 2 and to be the identity on En(1)⊗ (A;M) ∼= M . We will still denote
this reduced version of En by En. We will also frequently switch between considering Σ∗-
modules and functors defined on the category Bij of finite sets and bijections as explained
in proposition 2.15.
Observe that working with the reduced variant of En does not affect En-homology and
-cohomology. Indeed, there is a Quillen equivalence between the category of nonunital En-
algebras and augmented En+-algebras, where En+(0) = k: Every augmented En+-algebra
can be interpreted as a En-algebra, while on the other hand to an En-algebra A we can
associate the augmented En+-algebra A+ = A ⊕ k. This is an En+-algebra if we set
p(a1, ...ai−1, 1k, ai+1, ..., al) = (p ◦i η)(a1, ..., ai−1, ai+1, ..., al) for p ∈ En, with 1k denoting
the unit of A+ and η denoting the generator of En+(0). Also each representation of A is a
representation of A+ as well. Using that (QA)+ is a cofibrant replacement of A+, if QA is
a cofibrant replacement of the En-algebra A, and that

DerEn(QA,M) ∼= DerEn+
((QA)+,M),

we see that for example H∗En(A;M) ∼= H∗En+
(A+;M).

The iterated bar complex associated to E-algebras The (unreduced) bar construc-
tion was defined bei Eilenberg-MacLane in [16, II.7]. We recall the definition of the nonuni-
tal reduced bar construction, which we will be working with. For a ∈ A we denote the
corresponding element in ΣA by sa.

Definition 3.14. Let A be a nonunital differential graded k-algebra. The reduced bar con-
struction BA is the differential graded k-module

(T
c
(ΣA) =

⊕
i≥1

(ΣA)⊗i, ∂s).

The twist ∂s is given by

∂s(sa1 ⊗ ...⊗ sal) =

l−1∑
i=1

(−1)i+|a1|+...+|ai|sa1 ⊗ ...⊗ saiai+1 ⊗ ...⊗ sal.
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If A is graded commutative, BA is a differential graded commutative algebra as well, with
product given by the shuffle product

sh(sa1 ⊗ ...⊗ sap, sap+1 ⊗ ...⊗ sap+q) =
∑

σ∈sh(p,q)

(−1)εsaσ−1(1) ⊗ ...⊗ saσ−1(p+q),

where sh(p, q) ⊂ Σp+q denotes the set of permutations σ such that σ(1) < ... < σ(p) and
σ(p+ 1) < ... < σ(p+ q). The sign ε is determined by picking up a factor (−1)(|ai|+1)(|aj |+1)

whenever i < j and σ(i) > σ(j). In particular we can then iterate the construction and
define an n-fold bar complex Bn(A).

Remark 3.15. The bar construction BA is the augmentation ideal of the normalized Moore
complex associated to a simplicial differential graded algebra whose l-simplices are given by
(A+)⊗l, face maps defined similar to the summands of the differential ∂s and degeneracies
given by inserting the unit of A+. The construction originally given in [16, II.7] corresponds
to the unnormalized Moore complex associated to this simplicial differential graded algebra.
There also is a reduced bar construction with coefficients in a nonunital right A-module M
and a nonunital left A-module N , as well as an unreduced version. The case discussed above
corresponds to the reduced bar construction with coefficients in M = N = k.

Definition 3.16. Let P be an operad in differential graded modules and let R be an As-
algebra in right P-modules. Just as for usual algebras the bar construction associated to R
is the right P-module given by BR = (T

c
(ΣR), ∂s) with

T
c
(ΣR) =

⊕
i≥1

(ΣR)⊗i.

and twist defined for

sr1 ⊗ ...⊗ srl ∈ ΣR(e1)⊗ ...⊗ ΣR(el) ⊂ (ΣR)⊗l(e1 t ... t el)

by

∂s(sr1 ⊗ ...⊗ srl) =

k−1∑
i=1

(−1)i+|r1|+...|ri|sr1 ⊗ ...⊗ sγ(id2; ri, ri+1)⊗ ...⊗ srl.

Here the tensor product is the tensor product of right P-modules and id2 ∈ As(2).
If R is commutative, i.e. if the action of As on R factors through Com, then BR is a
Com-algebra in right P-modules with multiplication again given by the shuffle product.

Applying this to Com itself we define the commutative algebra Bn
Com in right Com-modules

by
Bn

Com := Bn(Com).
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According to [23, 2.7, 2.8] the iterated bar module Bn
Com is a quasifree right Com-module

Bn
Com = (TnCom, ∂γ).

with Tn = (T
c
Σ)n(I) a free Σ∗-module. Recall that, for a free right P-module KP and

a morphism f : K → R with target a right P-module, ∂f : KP → R denotes the induced
morphism of right P-modules.
By [23, 2.5] it is possible to lift ∂γ to a twisting differential

∂ε : T
nE → TnE

and set Bn
E = (TnE, ∂ε). For an E-algebra A we call

Bn
E(A) = Bn

E ◦E A

the n-fold bar complex of A.

The complete graph operad To prove that it is possible to extend the definition of
the n-fold bar complex from E-algebras to En-algebras, Fresse shows that ∂ε : T

nE → TnE
restricts to

∂ε : T
nEn → TnEn.

To do this one uses that E is equipped with a cell structure indexed by complete graphs.
Since we will need the complete graph operad K in subsection 3.3 to prove a similar result
for En-homology and -cohomology with coefficients, we revisit the relevant definitions and
results. The complete graph operad and its relation to En-operads has been discussed by
Berger in [6].

Definition 3.17. Let e be a finite set with r elements. A complete graph κ = (σ, µ) on e
consists of an ordering σ : {1, ..., r} → e together with a symmetric matrix µ = (µef )e,f∈r
of elements µef ∈ N0 with all diagonal entries 0. We think of σ as a globally coherent
orientation of the edges and of the matrix µ as the weights of the edges.

Example 3.18. The complete graph

���� ��������
-

4
�
�� 0

@
@I

3
g f

e

on the set {e, f, g} corresponds to

σ : {1, 2, 3} → {e, f, g}, σ(1) = g, σ(2) = f, σ(3) = e

and µef = 0, µeg = 4, µfg = 3.
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Definition 3.19. The set of complete graphs on e is partially ordered if we set

(σ, µ) ≤ (σ′, µ′)

whenever for all e, f ∈ e either µef < µ′ef or (σef , µef ) = (σ′ef , µ
′
ef ). The poset of complete

graphs on e is denoted by K(e).

Proposition 3.20. [6] The collection K = (K(e))e of complete graphs forms an operad in
posets: A bijection ω : e→ e′ acts by relabeling the vertices. The partial composition

◦e : K(e)×K(f)→ K(e t f \ {e})

is given by substituting the vertex e in a complete graph (σ, µ) ∈ K(e) by the complete
graph (τ, ν) ∈ K(f), i.e. by inserting (τ, ν) at the position of e, orienting the edges between
g ∈ e \ {e} and g′ ∈ f like the edge between g and e and giving them the weight µge.

Definition 3.21. [23, 3.4,3.8] Let (P(e))e be a collection of functors K(e)→ dg-mod. Such
a collection is called a K-operad if for all finite sets e and all bijections ω : e → e′ there is
a natural transformation P(e)→ P(e′) with components

Pκ → Pκ.ω

for κ ∈ K(e), as well as partial composition products given by natural transformations

◦e : P(e)⊗ P(f)→ P(e \ {e} t f)

for e ∈ e with components
◦e : Pκ ⊗ Pκ′ → Pκ◦eκ′ ,

satisfying suitable associativity, unitality and equivariance conditions. A morphism P→ P′

consists of natural transformations with components Pκ → P′κ commuting with composition
and the actions of bijections.
Similarly, a right K-module R over a K-operad consists of collections (R(e))e together with
natural transformations Re → Re′ for all bijections ω : e→ e′ with components

Rκ → Rκ.ω,

as well as natural transformations

◦e : P(e)⊗R(f)→ R(e \ {e} t f)

with components
◦e : Rκ ⊗ Pκ′ → Rκ◦eκ′

for e ∈ e satisfying again suitable associativity, unitality and equivariance conditions.
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Remark 3.22. [23, 3.4,3.8] There is an adjunction

colim: Odg-mod
//
KO : constoo

between the category Odg-mod of operads in differential graded k-modules and the category

KO of K-operads defined as follows: For a given K-operad P let

(colimP)(e) = colimκ∈K(e)Pκ,

while for an ordinary operad Q we set

const(Q)κ = Q(e)

for κ ∈ K(e). We say that an operad Q has a K-structure if Q = colimP. A similar
adjunction exists between the category of right K-modules over a K-operad P and the cat-
egory of right modules over colimP, and we call right modules of the form colimR right
colimP-modules with K-structure.

Example 3.23. [23, 3.5] Besides considering constant K-operads the main example we are
interested in is the Barratt-Eccles operad E. For κ = (σ, µ) ∈ K(r) the k-module Eκ is
generated by l-tuples

(ω0, ..., ωl) ∈ Σl+1
r

such that for all i, j ∈ r the sequence

((ω0)ij , ..., (ωl)ij)

has either less than µij variations or has exactly µij variations and (ωl)ij = σij. It is
obvious that the differential of E respects the K-structure, that κ ≤ κ′ induces an inclusion
Eκ → Eκ′ and that the action of τ ∈ Σr restricts to Eκ → Eκ.τ . Furthermore

colimκ∈K(r)Eκ = E(r).

To check that the composition in the Barratt-Eccles operad restricts to morphisms

◦a : Eκ ⊗ Eκ′ → Eκ◦aκ′

for 1 ≤ a ≤ r, observe that for (ω0, ..., ωl) ∈ Eκ and (τ0, ..., τm) ∈ Eκ′ and a path (x, y) from
(0, 0) to (l,m) the sequence

(ωx0 ◦a τy0 , ..., ωxl+m ◦a τyl+m)

has the same number of variations restricted to vertices i, j of κ as (ω0, ..., ωl). A similar
statement holds for vertices i, j of κ′. Also ωxl+m ◦a τyl+m = ωl ◦a τm and

(ωl ◦a τm)ij =

{
(ωl)ij , i, j vertices of κ,

(τm)ij , i, j vertices of κ′.
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For i a vertex of κ and j a vertex of κ′ the corresponding weight and orientation in the
graph (κ ◦a κ′) = (σ̃, µ̃) is

µ̃ij = µia and σ̃ia = σia.

Also the variations of i and j in (ωx0 ◦a τy0 , ..., ωxl+m ◦a τyl+m) are in bijection with the
variations of i and a in (ω0, ..., ωl), while (ωl ◦a τm)ij = (ωl)ia. Hence E is equipped with a
K-structure.

Definition 3.24. Let Kn(r) be the poset of complete graphs κ = (σ, µ) such that µij ≤ n−1
for all pairs i, j ∈ r. This defines a filtration

K1 ⊂ ... ⊂ Kn ⊂ Kn+1 ⊂ ... ⊂ K = colimnKn

of K by suboperads.

Remark 3.25. Considering K-structures allows more control over the operads in question.
A closer look at the K-structure of E yields that colimκ∈KnEκ = En: If x = (ω0, ..., ωl) ∈
Σl+1
r is in En, then ((ω0)ij , ..., (ωl)ij) has at most n − 1 variations for all i, j ∈ r. Hence

x ∈ Eκ for κ = (ωl, µ) with µef = n− 1 for all i, j ∈ r. This will allow us to show that the
differentials we are interested in restrict to En.

The n-fold bar complex for En-algebras and En-homology Recall that Tn =
(T

c
Σ)n(I) and hence has an expansion

Tn(e) =
⊕

e=e1t...tel

ΣTn−1(e1)⊗ ...⊗ ΣTn−1(el)

with
T 1(e) = (I⊗s)(e) =

⊕
σ : s→e

k · σ

for |e| = s. Elements in Tn(e) correspond to n-level trees with leaves decorated by e:

Definition 3.26. A planar fully grown n-level tree is a sequence of order-preserving sur-
jections

t = [rn]
fn // ...

f2 // [r1] .

We call the elements in [ri] the vertices in level i. The elements of [rn] are also called the
leaves of t. A decoration of t by a finite set e is a bijection e→ [rn].

For n = 1 it is obvious that Tn(e) has generators corresponding to decorated 1-level trees.
For n > 1, let sx1⊗ ...⊗ sxl ∈ ΣTn−1(e1)⊗ ...⊗ΣTn−1(el). Then the corresponding n-level
tree is the n-level tree with l vertices in level 1 such that the ith vertex is the root of the
n− 1-level tree defined by xi.
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To show that ∂ε restricts to Σ−nTnEn Fresse shows that Tn can be interpreted as a K-
diagram and that hence Σ−nTnE is a right E-module with K-structure. Since we will
use the same decomposition in 3.3 we recall the relevant definition. For a complete graph
κ = (σ, µ) ∈ K(e) and f ⊂ e let

κ|f = (σ′, µf×f )

be the complete subgraph of κ with vertices f , with σ′ : {1, ..., |f |} → f defined as the
composite

{1, ..., |f |}
∼= // σ−1(f)

σ // f.

Proposition 3.27. [23, 4.2] There is a K-diagram associated to Tn defined as follows: For
n = 1 and κ = (σ, µ) ∈ K(e) set Tnκ = k · σ ⊂ T 1(e). For general n and κ = (σ, µ) ∈ K(e)
an element

sx1 ⊗ ...⊗ sxl ∈ ΣTn−1(e1)⊗ ...⊗ ΣTn−1(el) ⊂ T
c
(ΣTn−1)(e)

is in Tnκ if the following conditions hold:

1. For 1 ≤ i ≤ l we have that xi is an element of Tn−1
κ|ei

.

2. If e, f ∈ e with µef < n− 1 then there exists i such that e, f ∈ ei.

3. If e, f ∈ e with µef = n− 1 and with e ∈ ei, j ∈ ej with i < j then σef = id.

Remark 3.28. The idea behind this definition is the following [19]: Interpreting t ∈ Tn(e)
as a tree, the smallest complete graph κ with t ∈ Tnκ has vertices ordered like the inputs of
t and weights µef such that n− 1− µef equals the level on which the paths from e and f to
the root first join.

For a K-operad P let (TncolimP)κ for κ a complete graph be generated as a k-module by
elements t(p1, ..., pl) ∈ TncolimP such that t ∈ Tnκ′ , pi ∈ Pκi with

κ′(κ1, ..., κl) ≤ κ.

This endows TnP with the structure of a right P-module with K-structure. Having decom-
posed TnE in this way, Fresse proves in [23, 5.3] that

∂ε((T
nE)κ) ⊂ (TnE)κ.

From this one deduces that the twist ∂ε : T
nE → TnE restricts to En, i.e. satisfies

∂ε(T
nEn) ⊂ TnEn.
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Hence we can set
Bn
En = (TnEn, ∂ε)

and define the n-fold bar construction

Bn(A) = Bn
En ◦En A

for any En-algebra A [23, 5.4, 5.5].
As a quasifree right En-module in nonnegatively graded chain complexes Bn

En
is a cofibrant

right En-module. The augmentation of the desuspended n-fold bar complex is defined as
the composite

ε : Σ−nBn
En → Σ−nTnI → Σ−nΣn(I) = I

with the first map induced by the operad morphism En → Com → I and the second
map an iteration of the projection T

c
(ΣI) → ΣI. In [23, 8.21] Fresse shows that ε is a

quasiisomorphism, hence Σ−nBn
En

is a cofibrant replacement of I. This yields the desired
result:

Theorem 3.29. [23, 8.22] Let A be an En-algebra which is degreewise k-projective. Then

HEn
∗ (A; k) = H∗(Σ

−nBn
En(A)).

3.3 En-homology and En-cohomology of commutative algebras via the
iterated bar construction

After sketching the construction of the iterated bar complex for En-algebras and the proof
that one can calculate En-homology with trivial coefficients via the iterated bar complex, we
are now in the position to generalize this result to coefficients in a symmetric A-bimodule for
a nonunital commutative algebra A. This is done by twisting the differential on UCom⊗Bn

Com,
lifting this twist to UCom ⊗ Bn

En
and comparing UCom ⊗ Bn

En
endowed with this twist to a

complex which can be used to compute HEn
∗ (A;M). This comparison will be a comparison

of left UCom-modules in right En-modules, hence we start with discussing this category and
its model structure. After that we define the needed twist on UCom ⊗ Bn

Com and show that
it lifts to UCom ⊗ Bn

En
. Then we define the complex we will compare to UCom ⊗ Bn

En
and

finally deduce the result. The result and the outline of this proof is due to Benoit Fresse.

The model category of left U-modules in right P-modules Let (U, µU , 1U ) be an
associative unital algebra in right P-modules with P-action γU : UP→ U . In particular, the
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diagram

(U ⊗ U)P
µUP //

∼=
��

UP

γU

��

UP⊗ UP

γU⊗γU
��

U ⊗ U µU // U

commutes.

Definition 3.30. The category UMod(MP) of left U -modules in right P-modules consists
of

• objects right P-modules (M,γM ) with a left U -action µM : U ⊗M → M which is a
morphism of right P-modules, i.e. the diagrams

(U ⊗M)P

∼=
��

µMP //MP

γM

��

UP⊗MP

γU⊗γM
��

U ⊗M µM //M

and U ⊗ U ⊗M µU⊗M//

U⊗µM
��

U ⊗M
µM
��

U ⊗M µM //M

commute,

• morphisms which are morphism of right P-modules and respect the U -action.

Example 3.31. Let P be an operad. Then the right P-module UP modeling universal
enveloping algebras is an algebra in right P-modules and the Kähler differentials Ω1

P form a
left UP-module in right P-modules.

Proposition 3.32. Let M be a Σ∗-module. The free object in UMod(MP) generated by M
is

U ⊗MP

with U -action µU⊗MP given by

U ⊗ U ⊗MP
µU⊗MP // U ⊗MP

and right P-module structure γU⊗MP defined by

(U ⊗MP)P
∼= // UP⊗MPP

γU⊗MγP // U ⊗MP .
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Proof. A calculation shows that U ⊗MP is an object in UMod(MP). For a map f : M → N
of Σ∗-modules to (N, γN , µN ) ∈ UMod(MP) define

f̂ : U ⊗MP→ N

by
f̂(u⊗ (m; p1, ..., pr)) = u · γN (f(m); p1, ..., pr),

where we abbreviate µN (u ⊗ n) by u · n. This is obviously the only choice possible if we
want to define a morphism in UMod(MP). For v ∈ U

f̂(v · (u⊗ (m; p1, ..., pr))) = f̂(vu⊗ (m; p1, ..., pr))

= (vu) · γN (f(m); p1, ..., pr)

= v · (u · γN (f(m); p1, ..., pr))

= v · f̂(u⊗ (m; p1, ..., pr)).

For suitable p1, ..., pr, q1, ..., qs ∈ P, u ∈ U(a) we have

f̂(γU⊗MP(u⊗ (m; p1, ..., pr); q1, ..., qs))

= (−1)εf̂(γU (u; q1, ..., qa)⊗ (m; γP(p1; qa+1, .., qa+b1), ..., γP(pr; qa+b1+...+br−1+1, ..., qs)))

= (−1)εγU (u; q1, ..., qa) · γN (f(m); γP(p1; qa+1, .., qa+b1), ..., γP(pr; qa+b1+...+br−1+1, ..., qs)))

= (−1)εγU (u; q1, ..., qa) · γN (γN (f(m); p1, ..., pr); qa+1, ..., qs)

= γN (u · γN (f(m); p1, ..., pr); q1, ..., qs)

= γN (f̂(u⊗ (m; p1, ..., pr)); q1, ..., qs)

with (−1)ε the sign acquired by applying the isomorphism (U ⊗MP)P ∼= UP⊗M(PP).

Remark 3.33. One could also guess that the free object in UMod(MP) generated by a
Σ∗-module M is given by

(U ⊗M)P

with U -action

U ⊗ (U ⊗M)P �
� // (U ⊗ U ⊗M)P

(µU⊗M)P // (U ⊗M)P

and right P-module structure

(U ⊗M)PP
(U⊗M)γP // (U ⊗M)P.

But this is not an object in UMod(MP) because the U -action is not a right P-module mor-
phism. As an example consider M = I, P = Com, U = UCom. We denote the generator of
Com(j) = k by µj and the corresponding element in UCom(j) = Com[1](j) by µUj . Then for

x = (µU2 ⊗ (µU2 ;µ1)⊗ µ1;µ2, µ1, µ1) ∈ (UCom ⊗ UComCom⊗ Com)Com.
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we have
γUCom⊗Com(µUCom⊗ComCom)(x) = (µU3 ;µ2, µ1)⊗ µ1,

while

µUCom⊗Com(γUCom
⊗ γUCom⊗Com)((µU2 ;µ2)⊗ ((µU2 ;µ1);µ1)⊗ (µ1;µ1)) = (µ4;µ1, µ1, µ1)⊗ µ1.

In subsection 2.3 we discussed the standard method to transport cofibrantly generated
model categories along adjunctions and recalled the definition of the model structure on
right P-modules. We will define a model structure on UMod(MP) by applying theorem 2.34
to the adjunction

F = U ⊗− : MP
//
UMod(MP) : Voo

with V the corresponding forgetful functor. As we explained in subsection 2.2 the generating
cofibrations in dg-mod are of the form Sn−1 → Dn and the generating acyclic cofibrations
are of the form 0 → Dn. We start by determining the FI- and FJ-cell complexes, where
FI (respectively FJ) is the set of maps

U ⊗ (i⊗ FrP) : U ⊗ (C ⊗ FrP)→ U ⊗ (D ⊗ FrP)

with i : C → D a generating cofibration (respectively a generating acyclic cofibration) in
dg-mod and Fr is as in theorem 2.36.
Note that the underlying differential graded module of the direct sum of left U -modules in
right P-modules is the direct sum of their underlying differential graded modules.

Proposition 3.34. A FI-cell attachment in UMod(MP) is an inclusion K → (K ⊕ G, ∂)
with G = U⊗MP for a free Σ∗-module M with trivial differential and ∂ : G→ K. A FJ-cell
attachment in UMod(MP) is an inclusion K → K ⊕G′ with G′ = U ⊗ (

⊕
αD

nα ⊗ FrP).

Proof. The second claim is obvious. To see that the first claim holds, consider a FI-cell
attachment ⊕

α U ⊗ (Snα−1 ⊗ FrαP)

∑
fα //

⊕
α U⊗(iα⊗FrαP)

��

K

⊕
α U ⊗ (Dnα ⊗ FrαP).

This diagram is isomorphic to

U ⊗ (
⊕

r≥0

⊕
α∈Ir S

nα−1 ⊗ FrP)

∑
fα //

U⊗(
⊕
iα⊗FrP)

��

K

U ⊗ (
⊕

r≥0

⊕
α∈Ir D

nα ⊗ FrP).

46



Let en be the generator of degree n of Dn and sn the generator of degree n of Sn. Then
with M(r) =

⊕
α∈Ir S

nα and ∂(enα) = fα(snα−1) the FI-cell attachment is exactly of the
form above. Conversely one easily shows that each inclusion like above can be constructed
as an FI-cell attachment.

Corollary 3.35. A relative FI-cell complex in UMod(MP) is an inclusion

K → (K ⊕ (U ⊗MP), ∂)

with M a Σ∗-free Σ∗-module with trivial differential, such that K ⊕ (U ⊗MP) is filtered
by Gλ, λ < κ for a given ordinal κ, with ∂(Gλ) ⊂ Gλ−1 and G0 = K. A relative FJ-cell
complex in UMod(MP) is the same as a FJ-cell attachment.

Now we are in the position to prove that the adjunction between UMod(MP) and the
category of right P-modules gives rise to a model structure on UMod(MP).

Theorem 3.36. Let P be cofibrant in dg-mod. Let UMod(MP) be the category of left U -
modules in right P-modules. Then UMod(MP) is a cofibrantly generated model category with
weak equivalences and fibrations created by V : UMod(MP)→MP. The generating (acyclic)
cofibrations FI and FJ are of the form

U ⊗ (C ⊗ FrP)→ U ⊗ (D ⊗ FrP)

with C → D a generating (acyclic) cofibration in dg-mod.

Proof. The category UMod(MP) is complete and cocomplete with limits and colimits created
by UMod(MP) → MP. Let f be a relative FJ-cell complex. Since V creates colimits, we
have that f = F (g) for a relative J-cell complex g, which is an acyclic cofibration by [20,
11.1.8]. But the functor F sends acyclic cofibrations to weak equivalences by [4, Lemma
5.6]. The small object argument holds trivially for FJ since the domains of FJ are all 0.
The domains of FI are of the form U ⊗ (Dl ⊗ FrP), hence a morphism to K ∈ UMod(MP)
is equivalent to picking an element x ∈ K(r) of degree l. If K = colimλ<κLλ is a relative
FI-cell-complex, it is clear that x ∈ Lλ for some λ < κ. But since Lλ ∈ UMod(MP) we see
that U ⊗ (Dl ⊗ FrP) as a whole gets mapped to Lλ. Hence by theorem 2.34 the category

UMod(MP) is a model category with the properties stated above.

By [20, 11.1.8] corollary 3.35 implies:

Corollary 3.37. Let (U⊗MP, ∂) be a quasifree object in UMod(MP) such that M is Σ∗-free
and such that there is an ordinal κ and a filtration (Gλ)λ<κ of U⊗MP with ∂(Gλ) ⊂ Gλ−1.
Then (U ⊗MP, ∂) is cofibrant. In particular such quasifree objects in UMod(MP) which are
bounded below as chain complexes are cofibrant.
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Finally we examine how an operad morphism Q→ P allows us to compare left modules in
right Q-modules and in right P-modules. First we record the following fact, which can be
directly calculated.

Proposition 3.38. Given a morphism Q → P of operads, let (V, µV , ηV ) be an algebra
in right Q-modules and (N,µN , γN ) ∈ V Mod(MQ). Then V ◦Q P is an algebra in right
P-modules with multiplication

V ◦Q P⊗ V ◦Q P
∼= // (V ⊗ V ) ◦Q P

µV ◦QP// V ◦Q P

and unit defined via the inclusion V → V ◦QP. Furthermore, N ◦QP is a left V ◦QP-module
in right P-modules with structure maps

V ◦Q P⊗N ◦Q P
∼= // (V ⊗N) ◦Q P

µN◦QP// N ◦Q P

and

(N ◦Q P)P ∼= N ◦Q (PP)
N◦QγP// N ◦Q P.

For categories of right modules a morphism of operads gives rise to a Quillen adjunction,
see [20, Theorem 16.B]. In our setting we find a similar result:

Proposition 3.39. Let V be an algebra in right Q-modules. A morphism Q→ P of operads
gives rise to an adjunction

− ◦Q P : V Mod(MQ)
//
V ◦QPMod(MP) : res,oo

where for M ∈ V ◦QPMod(MP) the structure maps of res(M) are defined by restricting the
right P-module structure to Q and via the inclusion V → V ◦Q P.

Proof. For a morphism f : N → res(M) of left V -modules in right Q-modules define the
corresponding map from N ◦Q P to M as

N ◦Q P
fP //M ◦Q P

γM //M.

This is a welldefined map since f is a morphism of right Q-modules and due to the associa-
tivity of the right P-action on M , and defines a morphism in V ◦QPMod(MP). Conversely,
for g : N ◦Q P→M a given morphism in V ◦QPMod(MP), define a morphism in V Mod(MQ)
as

N // N ◦Q P
g //M.

This correspondence defines a natural bijection between Mor
V ◦QPMod(MP)(N ◦Q P,M) and

Mor
V Mod(MQ)(N, res(M)).
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Proposition 3.40. Let P,Q be cofibrant as differential graded modules in each arity. Let
Q → P be a morphism of operads. Then the adjunction described in proposition 3.39 is a
Quillen adjunction.

Proof. Since both in V Mod(MQ) and V ◦QPMod(MP) fibrations and quasifibrations are cre-
ated by the forgetful functor to arity-graded differential graded modules, it is clear that the
adjunction is a Quillen adjunction.

Twisting the n-fold bar complex: We now define the twist ∂θ on M ⊗ Σ−nBn
Com(A)

which will incorporate the action of the nonunital commutative algebra A on the symmetric
A-bimodule M . As we will see later the general case follows from the case of universal
coefficients M = UCom(A) = A+.
Recall from lemma 2.45 that for an operad P there is an associative algebra UP in right
P-modules such that

UP ◦P A = UP(A)

for any P-algebra A. For P = Com we have

UCom = Com+,

see e.g. [20, 10.2.1]. Set e+ = e t {+}. Denote the generator µe+ ∈ UCom(e) = Com(e t+)

by µUe . Then

µUe · µUf = µUetf ,

with right Com-module structure given by

µUe ◦e µf = µU(etf)\{e}

for e ∈ e.
Since

UCom(A)⊗ Σ−nBn(A) = (UCom ⊗ Σ−nBn
Com) ◦Com A

we only need to define

∂θ : UCom ⊗ Σ−nBn
Com → UCom ⊗ Σ−nBn

Com.

Recall that as a k-module Bn
Com = (TnCom, ∂α) is generated by planar fully grown n-level

trees in Tn with leaves labeled by elements in Com. In the following, for a map f : M → N
from a Σ∗-module M to N ∈ UMod(MP) we will denote by

∂f : U ⊗MP→ N

the associated morphism in UMod(MP). The same notation has already been used (and
we will continue to use it) for induced morphisms and derivations defined on free right
P-modules. Which version applies will be clear from the context.
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Definition 3.41. The morphism ∂θ in UCom
Mod(MCom) is defined on the generators Σ−nTn

of Σ−nBn
Com by

θ : Σ−nTn → UCom ⊗ Σ−nBn
Com.

The map θ sends s−n(t, σ) ∈ Σ−nTn(e) with t = [rn]
fn // ...

f2 // [r1] labeled by σ : [rn]→
e to ∑

0≤l≤rn−1,

|f−1
n (l)|>1,

x=min f−1
n (l)

(−1)sn,x−1µU{σ−1(x)} ⊗ s
−n(t \ x, σ′σ−1(x))

+
∑

0≤l≤rn−1

|f−1
n (l)|>1,

y=max f−1
n (l)

(−1)sn,yµU{σ−1(y)} ⊗ s
−n(t \ y, σ′σ−1(y)).

Here for s ∈ [rn] such that s is not the only element in the 1-fiber of t containing s we let
(t \ s, σ′σ−1(s)) be the tree obtained by deleting the leaf s. To be more precise,

t \ s = [rn − 1]
f ′n // [rn−1]

fn−1 // ...
f2 // [r1]

with

f ′n(x) =

{
fn(x), x < s,

fn(x+ 1), x ≥ s,

and σ′σ−1(s) : [rn − 1]→ e \ {σ−1(s)} defined similarly by

σ′σ−1(s)(x) =

{
σ(x), x < s,

σ(x+ 1), x ≥ s.

The sign (−1)sn,i is determined by counting the edges in the tree t from bottom to top and
from left to right. Then sn,i is the number assigned to the edge connected to the ith leave.
We will discuss the reason for introducing this sign in definition 4.4.

Remark 3.42. On

M ⊗ Σ−nBn(A) = M ⊗UCom(A) ((UCom ⊗ Σ−nBn
Com) ◦Com (A))
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the map ∂θ induces

m⊗ s−nt(a0, ..., arn) 7→
∑

0≤l≤rn−1,

|f−1
n (l)|>1,

x=min f−1
n (l)

(−1)sn,x−1max ⊗ s−n(t \ x)(a0, ..., âx, ..., arn)

+
∑

0≤l≤rn−1

|f−1
n (l)|>1,

y=max f−1
n (l)

(−1)sn,yaym⊗ s−n(t \ y)(a0, ..., ây, ..., arn)

for a tree t = [rn]
fn // ...

f2 // [r1] labeled by a0, ..., arn ∈ A.

Let ηU : k → UCom(0) denote the unit map of UCom. We want to lift

∂θ+ηU⊗γ = ∂θ + UCom ⊗ ∂γ

to UCom ⊗ Bn
E . To achieve this we mimic the construction that is used in [23, 2.4] to lift

∂γ : Bn
Com → Bn

Com to Bn
E .

Recall from proposition 2.15 that there is an adjunction between Σ∗-modules and functors
Bij→ dg-mod given by extending a Σ∗-modules M to a functor M : Bij→ dg-mod by

M(e) = M(r)⊗Σr Bij(e, r)

for a finite set e with r elements.
In particular, the Barratt-Eccles operad has an extension to finite sets and bijections given
by

E(e)l = k < Bij(e, r)l+1 > .

In our constructions we often need to choose a distinguished element in Bij(e, r) for all e,
corresponding to an ordering of e. We fix a choice of a family (τe)e∈Fin such that for e ⊂ N0

the element τe corresponds to the canonical order.

Proposition 3.43. [23, 1.4] The quasiisomorphism between the commutative operad Com
and the Barratt-Eccles operad E takes the following form: Not only is there a quasifibration

ψ : E → Com

of operads given by

E(e)l 3 (σ0, ..., σl) 7→

{
1, l = 0,

0, l 6= 0,

but also a section
ι : Com→ E,Com(e) 3 1 7→ τe
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which is a morphism of arity-graded differential graded modules, and a k-linear homotopy
ν : E → E between ιψ and idE given by

E(e)l 3 (σ0, ..., σl) 7→ (σ0, ..., σl, τe)

such that in addition ψν = 0. Note that this is not a homotopy retract of operads since ι is
not a morphism of operads.

For a map f : C → D of degree p between chain complexes (C, dC) and (D, dD) let
δ(f) : C → D be

δ(f) = dDf − (−1)pfdC .

The following proposition extends [23, 2.5].

Proposition 3.44. Let U be an algebra in right R-modules and let R,S be operads equipped
with differentials dR and dS. Suppose there are maps

Rν 88

ψ //
S

ι
oo

such that ψ is a morphism of operads, ι is a chain map and

ψι = id, dRν − νdR = id− ιψ and ψν = 0.

Let K = G⊗ Σ∗ be a free Σ∗-module and

β : G→ U ⊗KS

a twisting morphism which additionally satisfies

δ(β) = dU⊗KSβ + βdG = 0 and ∂ββ = 0

with dU⊗KS and dG denoting the differentials on U ⊗ KS and G. If K,U and S are
nonnegatively graded there always exists a twisting morphism α : K → U ⊗KR such that

U ⊗KR
U⊗Kψ
��

∂α // U ⊗KR
U⊗Kψ
��

U ⊗KS
∂β // U ⊗KS.

Proof. Extend the homotopy ν : R→ R to R⊗l by setting

ν̂(l) =

l∑
i=1

(−1)i−1(ιψ)⊗i−1 ⊗ ν ⊗ id⊗l−iR
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and extend ι to ι̃ : S⊗l → R⊗l by
ι̂(l) = ι⊗l.

Since K is Σ∗-free and hence KR =
⊕

i≥0G(i)⊗R⊗i and similarly KS =
⊕

i≥0G(i)⊗S⊗i
we can then define

ν̃ : U ⊗KR→ U ⊗KR and ι̃ : U ⊗KS → U ⊗KR

as ν̃ = idU ⊗
⊕

l≥0G(l)⊗ ν̂(l) and ι̃ = idU ⊗
⊕

l≥0G(l)⊗ ι̂(l). Note that with this definition

(U ⊗Kψ)ι̃ = id, δ(ν̃) = idU⊗KR − ι̃(U ⊗Kψ) and (U ⊗Kψ)ν̃ = 0.

We define α : G→ U ⊗KR by setting α0 = ι̃β,

αm =
∑

a+b=m−1

ν̃∂αaαb

and
α =

∑
m≥0

αm.

Observe that β : K → U ⊗KS lowers the degree in K by at least 1, hence αm lowers the
degree in K by m+ 1. Since K is bounded below, α is well defined. Then for m ≥ 1

(U ⊗Kψ)αm = (U ⊗Kψ)
∑

a+b=m−1

ν̃∂αaαb = 0,

while (U ⊗Kψ)α0 = β, hence
(U ⊗Kψ)α = β

and the diagram above commutes.
To show that ∂α is indeed a twisting differential we proceed by induction to show that

δ(αm) =
∑

a+b=m−1

∂αaαb,

which then yields the claim for α. For m = 0 observe that

δ(α0) = ι̃δ(β) = 0.

For m > 0 we calculate

δ(αm) =
∑

a+b=m−1

dU⊗KRν̃∂αaαb +
∑

a+b=m−1

ν̃∂αaαbdG

=
∑

a+b=m−1

(−ν̃dU⊗KR + idU⊗KR − ι̃(U ⊗Kψ))∂αaαb +
∑

a+b=m−1

ν̃∂αaαbdG.
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But ψ is a morphism of operads, hence

ι̃(U ⊗Kψ)∂αaαb = ι̃∂(U⊗Kψ)αa(U ⊗Kψ)αb.

Since

(U ⊗Kψ)αj =

{
β, j = 0,

0, j > 0,

we find that ι̃(U ⊗ Kψ)∂αaαb = 0 for all a, b ≥ 0. It is well known that δ is a derivation
with respect to the operation defined by f ? g = ∂fg, hence using the induction hypothesis
we see that∑
a+b=m−1

(dU⊗KR∂αaαb − ∂αaαbdG) =
∑

a+b=m−1

δ(∂αaαb)

=
∑

a+b=m−1

(δ(∂αa)αb − ∂αaδ(αb))

=
∑

a+b=m−1

(
∑

r+s=a−1

∂αr∂αs)αb − ∂αa(
∑

r+s=b−1

∂αrαs))

= 0

which concludes the proof.

Proposition 3.45. There is a map λ : Σ−nTn → UCom ⊗ Σ−nTnE such that

UCom ⊗ Σ−nTnE
∂λ //

UCom⊗Σ−nTn(ψ)
��

UCom ⊗ Σ−nTnE

UCom⊗Σ−nTn(ψ)
��

UCom ⊗ Σ−nTnCom
∂θ+UCom⊗∂γ // UCom ⊗ Σ−nTnCom

commutes and such that ∂2
λ = 0.

Proof. We know that Tn is Σ∗-free. We need to show that the maps
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Com

ι
oo

discussed in proposition 3.43 and the map θ + ηU ⊗ γ fulfill the requirement of proposition
3.44. Since the differential of UCom ⊗ Σ−nTnCom is zero, it is trivially true that

dUCom⊗Σ−nTnCom(θ + ηU ⊗ γ) + (θ + ηU ⊗ γ)dΣ−nTn = 0.

Hence we only need to show that

(∂θ + UCom ⊗ ∂γ)(θ + ηU ⊗ γ) = 0.
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Since we already know that γ defines a differential, this amounts to proving that

∂θθ + ∂θ(UCom ⊗ γ) + (UCom ⊗ ∂γ)θ = 0.

We omit the proof since it will be carried out in detail in lemma 4.14, with UCom ⊗ ∂γ
corresponding to ∂̃(n) +

∑n−1
i=1 ∂

(i) and ∂θ corresponding to δmin + δmax.

Lemma 3.46. The twist ∂θ satifies

∂θ((Σ
−nTnCom)κ) ⊂

⊕
e∈e

UCom({e})⊗ (Σ−nTnCom)κ|(e\{e})

for κ = (σ, µ) ∈ K(e).

Proof. We proceed by induction. For n = 1 we see that x ∈ T 1
κ if and only if x corresponds

to the 1-level tree tr(e1, ..., er) with r leaves decorated by e1, ..., er, where σ−1(i) = ei. If
r > 1 the map θ sends s−ntr(e1, ..., er) to

−µU{e1} ⊗ s
−ntr−1(e2, ..., er) + (−1)rµU{er} ⊗ s

−ntr−1(e1, ..., er−1).

Denote by ∂
(a)
θ the morphism ∂θ defined on T aCom. For n > 1 observe that

∂
(n)
θ (s−n(sx1 ⊗ ...⊗ sxr)) =

∑
j

±τjs−n(sx1 ⊗ ...⊗ s∂(n−1)
θ (xj)⊗ ...⊗ sxr)

for sx1 ⊗ ...⊗ sxr ∈ (ΣTn−1)⊗r, where τj is the isomorphism

(Σ−nΣTn−1 ⊗ ...⊗ Σ(UCom ⊗ Tn−1)⊗ ...⊗ ΣTn−1)→ UCom ⊗ Σ−n(ΣTn−1)⊗r.

Let xi ∈ Tn−1
fi

. By the induction hypothesis

∂θ(xi) ∈
⊕
e∈f

i

UCom({e})⊗ Σn−1(Tn−1Com)κ|f
i
\{e},

which yields the claim.

The K-structure on E can be extended to finite sets and bijections. Concretely, for a finite
set e with r elements and κ = (σ, µ) ∈ K(e) an element (ω0, ..., ωl) ∈ Bij(r, e) is in Eκ if for
all e, f ∈ e the sequence

((ω0)ef , ..., (ωl)ef )

has either less than µef variations or has exactly µef variations and (ωl)ef = σef . Observe
that in

Eν 88

ψ //
Com,

ι
oo

55



the map ψ respects the K-structures on E and Com and that for κ = (τe, µ)

ι(Comκ) ⊂ Eκ and ν(Eκ) ⊂ Eκ.

We already noted that Tn is Σ∗-free: There are graded modules G(e) with

Tn(e) ∼= G(e)⊗ Σe.

The functor G is defined inductively by

G0(e) =

{
k, |e| = 1,

0, |e| 6= 1,

and by

Gn =
⊕
i≥1

(ΣGn−1)⊗i.

Intuitively, G associates to a finite set e the set of trees with |e| leaves with a tree t ∈ G(r)
having degree equal to the number of its edges. The inclusion Gn(e) → Tn(e) is given by
mapping a tree t to the tree with leaves labeled by e according to the chosen order τe.
We now deduce from proposition 3.46 that ∂λ restricts to UCom⊗Σ−nTnEn. Note that the
lemmata 3.47, 3.48 and proposition 3.49 are completely analougous to [18, 5.2], [18, 5.3]
and [18, 5.4].
For a complete graph κ denote by Gnκ the arity-graded k-submodule of Gn generated by
elements g ∈ Gn with g ∈ Tnκ .

Lemma 3.47. The map λ0 satisfies

λ0(Σ−nGnκ) ⊂
⊕

e=e′te′′
UCom(e′)⊗ Σ−n(TnE)κ|e′′

for κ = (τe, µ) ∈ K(e) with e ⊂ N0.

Proof. We know that λ0 = ι̃(θ + ηU ⊗ γ) and that

θ(Σ−nTnκ ) ⊂
⊕
e∈e

UCom({e})⊗ Σ−n(TnCom)κ|e\{e} ,

while according to [23, 4.6]

(ηU ⊗ γ)(Σ−nGnκ) ⊂ UCom(∅)⊗ Σ−n(TnCom)κ.

But by [23, 4.5] (TnCom)κ is spanned by elements t(c1, ..., cl) with t ∈ Tnκ′ , ci ∈ Comκi such
that κi is also of the form (τe(i) , µ

(i)) for some e(i) ⊂ N0. Hence we find that

(Tnι)((TnCom)κ) ⊂ (TnE)κ.

56



Observe that κ|e\{e} = (τe\{e}, µ
′). Hence

(UCom ⊗ Σ−nTnι)(
⊕
e∈e

UCom({e})⊗ Σ−n(TnCom)κ|e\{e})

⊂
⊕
e∈e

UCom({e})⊗ Σ−n(TnE)κ|e\{e}

as well. This proves the claim.

Lemma 3.48. The twist ∂λ satisfies

∂λ(UCom ⊗ Σ−n(TnE)κ) ⊂
⊕
e′⊂e

UCom ⊗ Σ−n(TnE)κ|e′

for all κ ∈ K(e) with e ⊂ N0.

Proof. We show by induction that

∂λm(UCom ⊗ Σ−n(TnE)κ) ⊂
⊕
e′⊂e

UCom ⊗ Σ−n(TnE)κ|e′

for all m. Let t(e1, ..., el) ∈ (TnE)κ. Then t ∈ Tnκ′ and ei ∈ Eκi with

κ′(κ1, ..., κl) ≤ κ.

Note that (TnE)(e) =
⊕

i≥1 T
n(i) ⊗Σi (E⊗i(e)), hence we can assume that κ′ = (idl, µ

′)
and t ∈ Gnκ′ . Writing down the definition of ∂λ0 and using 3.47 yields that ∂λ0 maps
UCom ⊗ Σ−n(TnE)κ to UCom ⊗

⊕
{i1<...<ij}=e′⊂l Σ

−n(TnE)κ′|e′ (κi1 ,...,κij ). Since

κ′|e′(κi1 , ..., κij ) ≤ κ|e′

the claim holds for n = 0. For m > 0 recall that

∂λm =
∑

a+b=m−1

ν̃∂λa∂λb .

The induction hypothesis yields that

∂λa∂λb(UCom ⊗ Σ−n(TnE)κ) ⊂
⊕
e′⊂e

UCom ⊗ (TnE)κ|e′ .

Since

ν̃(u⊗ s−nt(e1, ..., el)) =
∑
i

±u⊗ s−nt(ιψ(e1), ..., ιψ(ei−1), ν(ei), ei+1, ..., el)

for ξ ∈ Tn and yr ∈ E the same reasoning as in lemma 3.47 together with our assumptions
on the interaction between ψ, ι, ν and the K-structure yields the claim.
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Proposition 3.49. We have

∂λ(UCom ⊗ Σ−nTnEn) ⊂ UCom ⊗ Σ−nTnEn.

Proof. We need to show that ∂λ(Σ−nTn) ⊂ UCom⊗Σ−nTnEn. Observe that for every r ≥ 0
and ξ ∈ Tn(r) there is a complete graph κ = (σ, µ) with ξ ∈ Tnκ such that µef ≤ n− 1 for
all vertices e, f . Hence

∂λ(Σ−nTn(r)) = ∂λ(colimκ∈Kn(r)T
n
κ ) = colimκ∈Kn(r)(

⊕
e′⊂r

UCom ⊗ Σ−n(TnE)κ|e′).

But

colimκ∈Kn(r)(
⊕
e′⊂r

UCom ⊗ Σ−n(TnE)κ|e′)

= UCom ⊗
⊕
e′⊂r

colimκ∈Kn(r)Σ
−n(TnE)κ|e′

⊂ UCom ⊗
⊕
e′⊂r

(Σ−nTnEn)(e′),

since κ(κ1, ..., κl) ∈ Kn implies κ1, ..., κl ∈ Kn.

The bar construction with coefficients and Kähler differentials We now intro-
duce the operadic bar construction with coefficients and use it to construct an object in

UCom
Mod(MEn) which can be used to calculate HEn

∗ (A;A+). We then show that this
object admits a quasifibration to Ω1

En
, which will allow us to compare it with (UCom ⊗

Σ−nTnEn, ∂λ).

Definition 3.50. ([18, 3.1.9]) Let P be an operad with composition γP. Let P̄ be the
augmentation ideal of P. The reduced bar construction B̄(P) is the quasifree cooperad

B̄(P) = (Fc(ΣP̄), ∂B)

with
∂B : Fc(ΣP̄)→ Fc(ΣP̄)

the coderivation of cooperads corresponding to the map

Fc(ΣP̄)→ P̄

of degree −1 given by

Fc(ΣP̄) // // Fc(2)(ΣP̄)
∼= // Σ2P̄(I; P̄)

Σ2γP // Σ2P̄
∼= // ΣP̄.

Here Fc(2)(ΣP̄) denotes the summand ΣP̄(I; ΣP̄) of weight 2 in the decomposition Fc(ΣP̄) =⊕
i≥0 F

c
(i)(ΣP̄) of the cofree cooperad.
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Set B̄(i)(P) = Fc(i)(ΣP̄). Note that this weight grading is not respected by the differential

of B̄(P).

Definition 3.51. ([18, 4.4]) The differential graded P-bimodule

B(P,P,P)

is given by
B(P,P,P) = (PB̄(P)P, ∂L + ∂R)

The twisting differentials are defined as follows: The left and right P-module derivation

∂L : PB̄(P)P→ PB̄(P)P

is induced by the map

B̄(i)(P) // // B̄(i−1)(P)(I; ΣP̄)
∼= // B̄(i−1)(P)(I; P̄) �

� // B̄(P)P.

Here the first map sends an element x ∈ B̄(P) of the form x = (b; p1, ..., pr) with pi ∈ ΣP̄

and b ∈ B̄(P) to

r∑
j=1

±((b; p1, ..., pj−1, 1, pj+1, ..., pr); 1, ..., 1, pj , 1, ..., 1).

The left and right P-module derivation

∂R : PB̄(P)P→ PB̄(P)P

is induced by the map

B̄(P) // PB̄(P)

which maps (p; b1, ..., bs) ∈ B̄(P) with p ∈ ΣP̄ and bi ∈ B̄(P) to (s−1p; b1, ..., bs). For the
exact signs see [18, 4.4.3].

Definition 3.52. ([18, 4.4]) Let P be an operad, L a left P-module and R a right P-module.
The differential graded Σ∗-module

B(R,P, L)

is given by
B(R,P, L) = R ◦P B(P,P,P) ◦P L.

Denote by εB the augmentation

εB : B(R,P, L)→ R ◦P L.
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The object B(R,P, L) inherits a grading by weight components B(i)(R,P, L) from B̄(P).
The summand B(i)(R,P, L) corresponds to expressions in RFc(ΣP̄)L with i occurences of
elements in P̄.

Lemma 3.53. Let εCom denote the map En → Com. Given b ∈ B(I, En, I) considered as
an element of B(En, En, En), assume that ∂R(b) has an expansion

∂R(b) =
∑
i

e(i)(b
(i)
1 , ..., b

(i)
ki

) ∈ B(En, En, I)

with e(i) ∈ En, b
(i)
1 , ..., b

(i)
ki
∈ B(I, En, I). Consider the element∑

i

e(i)(b
(i)
1 , ..., b

(i)
j−1, x, b

(i)
j+1, ..., b

(i)
ki

)

in UEn(B(I, En, I)). We define

∂θB : UCom ⊗B(I, En, En)→ UCom ⊗B(I, En, En)

to be the morphism in UCom
Mod(MEn) induced by

θB(b) =
∑
i,j

εCom(e(i))(εComεBb
(i)
1 , ..., εComεBb

(i)
j−1, x, εComεBb

(i)
j+1, ..., εComεBb

(i)
ki

)⊗ b(i)j

Then
(UCom ⊗B(I, En, En), θB) ◦En A ∼= UCom(A)⊗UEn (QA) Ω1

En(QA)

with QA = B(En, En, A)).

Proof. This follows from lemma 2.50 and from UCom ◦En A = UCom(A).

Since (UCom⊗B(I, En, En), ∂θB ) is quasifree in UCom
Mod(MEn) we know from corollary 3.37

that:

Proposition 3.54. The object (UCom ⊗B(I, En, En), ∂θB ) is cofibrant in UCom
Mod(ME).

Recall that there is a left UP-module Ω1
P in right P-modules introduced in lemma 2.49 such

that
Ω1
P ◦P A = Ω1

P(A)

for A a P-algebra. Applied to P = Com we have that

Ω1
Com(e) = k < µe(dxe, x, ..., x)|e ∈ e > .
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The morphism induced by a bijection φ : e→ f maps µe(dxe, x, ..., x) to µf (dxφ(e), x, ..., x).
The right Com-module structure is given by

µe(dxe, x, ..., x) ◦g µf =

{
µ(etf)\{g}(dxe, ..., dx, ..., x), g 6= e,∑

f∈f µ(etf)\{e}(dxf , x, ..., x), g = e

for e, g ∈ e. The UCom-module structure is given by

µUe · µf (dxf , x, ..., x) = µetf (dxf , x, ..., x).

Proposition 3.55. We define a morphism

ev : (UCom ⊗B(I, En, En), ∂θB )→ Ω1
Com

of left UCom-modules in right En-modules as follows: Restricted to B(I, En, I) the map ev
is

B(I, En, I) // // B(0)(I, En, I) = I // Ω1
Com

where the last map sends 1 ∈ I({e}) to µ{e}(dxe). This yields a well defined morphism in

UCom
Mod(MEn).

Proof. By definition ev maps B(i)(I, En, I) to zero for i ≥ 1. The internal differential in-
duced by the differential of En respects the weight splitting. The differential onB(I, En, I) ⊂
B(I, En, En) is the sum of the differential ∂B of B̄(En) and the twist ∂L. They both map
B(i)(I, En, En) to B(i−1)(I, En, En). In addition the complex (UCom ⊗B(I, En, En), ∂θB ) is
twisted by θB. Since B(I, En, En) is a quasifree right En-module it suffices to show that

ev(∂B + ∂L + θB) = 0

on B(1)(I, En, I) ⊂ B(I, En, En). Let a ∈ Ēn(e) = (IĒnI)(e) = B(1)(I, En, I)(e). Note that
∂B vanishes on B(1)(I, En, En). On the other hand ∂L maps a to the element â represented
by e in IIEn = B(0)(I, En, En) with

ev(â) = ev(1I(1) ◦1 â) = µ{1}(dx1) ◦1 a = µ{1}(dx1) ◦1 εCom(a).

This is ∑
e∈e

εCom(a)(dxe, x, ..., x).

Let ã be the element in EnII represented by a. Then the map evθB maps a to the element

−
∑
e∈e

εCom(a) · µ{e}(dxe) = −
∑
e∈e

εCom(a)(dxe, x, ..., x)

(see [18, 4.4.3] for the sign).
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Lemma 3.56. ([20, 10.3]) There is an isomorphism

UP ⊗ I → Ω1
P

of left UP-modules given by mapping 1 ∈ I({e}) to µ{e}(dxe).

Proposition 3.57. The morphism

(UCom ⊗B(I, En, En), ∂θB )→ Ω1
Com

is a weak equivalence.

Proof. Filter (UCom ⊗B(I, En, En), ∂θB ) by

F p =
⊕
i≥p

UCom(i)⊗B(I, En, En)

and Ω1
Com by

Gp =
⊕
i≥p

Im(UCom(i)⊗ I)

where Im(UCom(i) ⊗ I) is the image of UCom(i) ⊗ I under the isomorphism UCom ⊗ I →
Ω1
Com defined in lemma 3.56. The morphism ev respects this filtration. We consider the

associated spectral sequences. Observe that the only part of the differential of (UCom ⊗
B(I, En, En), ∂θB ) that maps F p to F p+1 is the part induced by θB. Hence the E1-term of
the spectral sequence associated to the filtration F is given by

E1
p,q = UCom(p)⊗Hq(B(I, En, En)).

But the map E1(ev) coincides with the tensor product of the identity and the augmentation
B(I, En, En) → I composed with the isomorphism defined in lemma 3.56 . According to
[18, 4.1.3] this is a quasiisomorphism.

The iterated bar module and Kähler differentials We defined a twisting morphism
∂θ on Bn

Com in definition 3.41 and showed in proposition 3.49 that the sum of ∂θ and the
differential ∂γ of Bn

Com can be lifted to a differential

∂λ : UCom ⊗ Σ−nTnEn → UCom ⊗ Σ−nTnEn.

We will construct a quasifibration

(UCom ⊗ Σ−nTnEn, ∂λ)→ Ω1
En

which will then allow us to compare (UCom⊗Σ−nTnEn, ∂λ) and (UCom⊗B(I, En, En), ∂θB )
and deduce that (M⊗A+A+⊗Σ−nBn(A), ∂θ) computes En-homology of A with coefficients
in M .
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Definition 3.58. We define a morphism

Φ: (UCom ⊗ Σ−nTnEn, ∂λ)→ Ω1
Com

in UCom
Mod(ME) as follows: Restricted to the generators Σ−nTn let Φ be the map

Σ−nTn // I // Ω1
Com

with the first map given by mapping the trunk tree [0]→ ...→ [0] labeled by e to 1 ∈ I({e})
and the second map sending 1 ∈ I({e}) to µ{e}(dxe).

Lemma 3.59. The map Φ is well defined.

Proof. Observe that Φ is zero on Σ−nTn(e) unless e is a singleton. Also note that Φ factors
as

(UCom ⊗ Σ−nTnEn, ∂λ)
U⊗Σ−nTnεCom// (UCom ⊗ Σ−nTnCom, ∂θ + UCom ⊗ ∂γ)

Φ′ // Ω1
Com

with Φ′ the morphism in UCom
Mod(MCom) induced by Φ|Σ−nTn . The map θ maps Σ−nTn(e)

to ⊕
e∈e

UCom({e})⊗ Σ−nTn(e \ {e}),

while γ maps Σ−nTn(e) to

Σ−nTn(e)⊕
⊕

e,f∈e,e 6=f
Σ−nTn(e \ {e, f} t {h}) ◦h Com({e, f})

with ◦h denoting the formal partial composite with respect to h. Also observe that γ is zero
restricted to Tn(e) for |e| = 1. Hence we only have to check that

Φ(θ + ηQ ⊗ γ) = 0

restricted to Σ−nTn(e) for e = {e1, e2} containing 2 elements. Consider the decorated tree
t(e1, e2) ∈ Tn({e1, e2}) with t = [1] → [0] → ... → [0] decorated by e1 and e2. Denote the
trunk tree [0]→ ...→ [0] decorated by e in Tn({e}) by r(e). Then

γ(s−nt(e1, e2)) = (−1)ns−nr(h) ◦h µ{e1,e2} ∈ T
n({h}) ◦h Com({e1, e2}) ⊂ (TnCom)({e1, e2})

with ◦h again denoting the formal composite. On the other hand,

θ(s−nt(e1, e2)) = (−1)n−1(µU{e1} ⊗ s
−nr(e2)) + (−1)n+1(µU{e2} ⊗ s

−nr(e1)).
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Hence

Φ(ηU ⊗ γ)(s−nt(e1, e2)) = (−1)nµ{h}(dxh) ◦h µ{e1,e2}
= (−1)nµ{e1,e2}(dxe1 , x) + (−1)nµ{e1,e2}(dxe2 , x),

while

Φθ(t) = (−1)n−1Φ(µU{e1} ⊗ s
−nr(e2)) + (−1)n+1Φ(µU{e2} ⊗ s

−nr(e1))

= (−1)n−1µU{e1} · µ{e2}(dxe2) + (−1)n+1µU{e2} · µ{e1}(dxe1)

= (−1)n−1µ{e1,e2}(dxe2 , x) + (−1)n+1µ{e1,e2}(dxe1 , x).

For all other trees t ∈ Tn({e1, e2}) the differential ∂θ + UCom ⊗ ∂γ has no summand with
nontrivial image in Tn(e) for |e| = 1.

Proposition 3.60. The morphism

Φ: (UCom ⊗ Σ−nTnEn, ∂λ)→ Ω1
Com

is a weak equivalence.

Proof. Recall from the proof of proposition 3.44 that λ =
∑

m≥0 λm with

λ0 = ι̃(θ + ηUCom
⊗ λ)

and
λm =

∑
a+b=m−1

ν̃∂αaαb.

Hence ∂λ = UCom ⊗ ∂ε + ∂′ with ∂ε the differential of Bn
E and such that ∂′ lowers the arity

of UCom. Filter (UCom ⊗ Σ−nTnEn, ∂λ) by the subcomplexes

F p =
⊕
i≥p

UCom(i)⊗ Σ−nTnEn

and filter Ω1
Com by

Gp =
⊕
i≥p

Im(UCom(i)⊗ I).

Here Im(UCom(i) ⊗ I) again is the image of UCom(i) ⊗ I under the isomorphism given in
lemma 3.56. The morphism Φ respects these filtrations. The spectral sequence associated
to the filtration F has E1-term

E1
p,q = UCom(p)⊗Hq(Σ

−nBn
En).
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Let ε denote the quasiisomorphism

Σ−nBn
En → I

exhibited in [23, 8.1]. The map Φ factors as the map UCom⊗ ε followed by the isomorphism
from lemma 3.56, hence induces an isomorphism at the E1-stage of the spectral sequences.

En-homology and En-cohomology with coefficients

Theorem 3.61. For a k-projective nonunital commutative algebra A

HEn
∗ (A;UCom(A)) = H∗(A+ ⊗ Σ−nBn(A), ∂θ).

Proof. By definition HEn
∗ (A;UCom(A)) is the homology of

UCom(A)⊗UEn (QA) Ω1
En(QA)

for a cofibrant replacement QA of A as an En-algebra. Pick QA = B(En, En, A) as a
cofibrant replacement. There exists a lift f such that

(UCom ⊗B(I, En, En), ∂θB )

∼ ev
����

(UCom ⊗ Σ−nTnEn, ∂λ)
Φ
∼

// //

f
44

Ω1
Com

commutes since (UCom⊗Σ−nTnEn, ∂λ) is cofibrant according to proposition 3.37. The map
f is a quasiisomorphism of left UCom-modules in right En-modules. But note that while
these are cofibrant objects in UCom

Mod(MEn) they are not cofibrant as right En-modules,
hence we can not deduce from [20, 15.1.A] that f ◦En B is a quasiisomorphism for any
En-algebra B.
However, consider f ◦En Com and note that − ◦En Com is the left adjoint in the Quillen
adjunction discussed in 3.40. Hence −◦En Com preserves cofibrant objects and weak equiv-
alences between between them, and therefore f ◦En Com is a weak equivalence. Now

(UCom ⊗B(I, En, En), ∂θB ) ◦En Com ∼= (UCom ⊗B(I, En,Com), ∂θB )

and
(UCom ⊗ Σ−nTnEn, ∂λ) ◦En Com ∼= (UCom ⊗ Σ−nTnCom,UCom ⊗ ∂γ + ∂θ)

are quasi-free right Com-modules because UCom is a free right Com-module generated by µU1
in arity zero and µU2 in arity one. Therefore, according to Theorem [20, 15.1.A.(a)], for a
commutative algebra A the map f ◦En Com ◦Com A is a quasiisomorphism as well. But for
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commutative A we have f ◦En Com ◦Com A = f ◦En A and UCom ◦En A = UCom(A) = A+.
Since

(UCom ⊗ Σ−nTnEn, ∂λ) ◦En A = (A+ ⊗ Σ−nTnA, ∂θ + idA+ ⊗ ∂γ),

while we know from lemma 3.53 that

(UCom ⊗B(I, En, En), ∂θB ) ◦En A = UCom(A)⊗UEn (QA) Ω1
En(QA),

this yields an isomorphism

HEn
∗ (A;UCom(A)) ∼= H∗(A+ ⊗ Σ−nTn(A), ∂θ + idA+ ⊗ ∂γ).

Theorem 3.62. Let A be a k-projective nonunital commutative algebra and M a symmetric
A-bimodule. Then

HEn
∗ (A;M) = H∗(M ⊗ Σ−nBn(A), ∂θ).

Proof. For QA a cofibrant replacement of A as an En-algebra HEn
∗ (A;M) is the homology

of the complex
M ⊗A+ A+ ⊗UCom(QA) Ω1

En(QA).

Again, we set QA = B(En, En, A) and see that this equals

M ⊗A+ (A+ ⊗B(I, En, A), ∂θB ).

Since both A+⊗B(I, En, A) as well as (A+⊗Σ−nBn(A), ∂θ) are A+-free in each degree and
all our objects are concentrated in nonnegative degrees, the result follows directly from the
quasiisomorphism exhibited in the proof of theorem 3.61 via the Künneth spectral sequence,
see e.g. [59, 10.90].

Theorem 3.63. Let A be a k-projective nonunital commutative algebra and M a symmetric
A-bimodule. Then

H∗En(A;M) = H∗(HomA+((A+ ⊗ Σ−nBn(A), ∂θ),M).

Proof. By definition H∗En(A;M) = H∗(DerP(QA,M)) for a cofibrant replacement QA of A
as an En-algebra. Choose QA = B(En, En, A). Since B(En, En, A) is quasifree,

DerEn(QA,M) = (Homk(B(I, En, A),M), ∂)

with ∂(f) the composite

B(I, En, A)
∂R // EnB(I, En, A)

En◦′B(I,En,A) // En(B(I, En, A);B(I, En, A))

En(ε,f) // En(A;M)
γM //M
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for f : B(I, En, A) → M , where the first map is defined by using that B(I, En, A) ⊂
B(En, En, A), the map ε : B(I, En, A) ⊂ B(En, En, A) → A is the standard augmenta-
tion and γM is the structure map of the En-representation M of A. There is a commuting
diagram of differential graded modules

En(B(I, En, A);B(I, En, A))

∼=
��

En(ε,f) // En(A;M)
γM //

∼=
��

M

UEn(B(I, En, A))⊗B(I, En, A)
UEn (ε)⊗f // UEn(A)⊗M // UCom(A)⊗M µM //M

with µM defined by M being an En-representation of A. The vertical isomorphisms are
given by identifying

p(x1, ..., xi−1, y, xi+1, ..., xl) ∈ P(X;Y )

with
p(x1, ..., xi−1, x, xi+1, ..., xl)⊗ y ∈ UP(X)⊗ Y

for p ∈ P, x1, ..., xl ∈ X and y ∈ Y . Note that

(Homk(B(I, En, A),M), ∂) ∼= (HomUCom(A)(UCom(A)⊗B(I, En, A),M), ∂̃)
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with ∂̃(f) the left vertical map in the commutative diagram

UCom(A)⊗B(I, En, A)

UCom(A)⊗∂R
��

UCom(A)⊗ EnB(I, En, A)

UCom(A)⊗En◦′B(I,En,A)
��

UCom(A)⊗ En(B(I, En, A);B(I, En, A))

∼=
��

UCom(A)⊗ UEn(B(I, En, A))⊗B(I, En, A)

UCom(A)⊗UEn (ε)⊗f

��

UCom(A)⊗ UEn(B(I, En, A))⊗B(I, En, A)

UCom(A)⊗UEn (ε)⊗B(I,En,A)

��
UCom(A)⊗ UEn(A)⊗B(I, En, A)

��
UCom(A)⊗ UEn(A)⊗M

��

UCom(A)⊗ UCom(A)⊗B(I, En, A)

µUCom(A)⊗B(I,En,A)

��
UCom(A)⊗ UCom(A)⊗M

UCom(A)⊗µM
��

UCom(A)⊗B(I, En, A)

UCom(A)⊗f
��

UCom(A)⊗M
µM
��

UCom(A)⊗M
µM
��

M M

Calculating the composite

UCom(A)⊗B(I, En, A)→ UCom(A)⊗B(I, En, A)

of the maps in the diagram above shows that this coincides with the map ∂θB . Since
both (A+⊗B(I, En, A), ∂θB ) and (A+⊗Bn(A), ∂θ) are quasifree A+-modules, the universal
coefficients spectral sequence (see e.g. [40, 2.3]) yields that the quasiisomorphism exhibited
in the proof of theorem 3.61 induces a quasiisomorphism from

HomA+((A+ ⊗B(I, En, A), ∂θB ),M)

to
HomA+((A+ ⊗Bn(A), ∂θ),M).
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4 En-homology and cohomology as functor homology and co-
homology

4.1 The category Epin and En-homology with trivial coefficients as functor
homology

In [41] Livernet and Richter use that En-homology with trivial coefficients can be calculated
via the iterated bar complex to give an interpretation of En-homology as functor homology.
They encode the information necessary to define an iterated bar complex in a category
Epin of trees. This enables them to define En-homology for arbitrary functors from this
category to k-modules, and they proceed to prove that En-homology of these functors can
be calculated as certain Tor-groups. We recall the relevant definitions and results in order
to fix notation and to give the reader the necessary background to understand in what sense
the results in the rest of this chapter are analogous to the results of Livernet-Richter.
In the following we assume that 1 ≤ n < ∞, that A is a commutative nonunital k-algebra
over the commutative unital ring k and that M is a symmetric A-module. We start by
fixing some terminology regarding trees and defining the category Epi+n .

Definition 4.1. A planar fully grown n-level tree t is a sequence

t = [rn]
fn // ...

f2 // [r1]

of order preserving surjections. The element i ∈ [rj ] is called the ith vertex of the jth level,
the elements in [rn] are also called leaves. The degree of a tree t is given by the number of
its edges, i.e. by

d(t) =
n∑
j=1

rj + 1.

For a given vertex i ∈ [rj ] the subtree tj,i is the (n− j)-level subtree of t with root i, i.e.

tj,i = [|f−1
n ...f−1

j+1(i)| − 1]
gn // [|f−1

n−1...f
−1
j+1(i)| − 1]

gn−1 // ...
gj+2 // [|f−1

j+1(i)| − 1]

with gl the map making the diagram

[|f−1
l ...f−1

j+1(i)| − 1]

∼=
��

gl // [|f−1
l−1...f

−1
j+1(i)| − 1]

∼=
��

f−1
l ...f−1

j+1(i)
fl // f−1

l−1...f
−1
j+1(i)

commute.
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Definition 4.2. The category Epin is given by the following data:

• The objects are planar fully grown trees with n levels.

• A morphism from [rn]
frn // ...

fr2 // [r1] to [sn]
fsn // ...

fs2 // [s1] consists of surjec-

tions hi : [ri]→ [si], 1 ≤ i ≤ n such that the diagram

[rn]
frn //

hn
��

[rn−1]
frn−1 //

hn−1

��

...
fr2 // [r1]

h1

��
[sn]

fsn // [sn−1]
fsn−1 // ...

fs2 // [s1]

commutes and such that hi is order-preserving on the fibers (f ri )−1(l) of f ri for all
l ∈ [ri]. For i = 1 the map h1 has to be order-preserving on [r1].

The composite of two morphisms (gn, ..., g1) : tq → tr and (hn, ..., h1) : tr → ts is given by
(hngn, ..., h1g1).

Remark 4.3. The connection between planar fully grown n-level trees and the n-fold bar
construction that we already sketched in subsection 3.2 is easy to see: A typical element in
the bar complex B(A) defined in 3.14 is a tensor power of elements in ΣA, hence can be
thought of as a 1-level tree whose leaves are labeled by elements in A:

S
SS
�
��

a0 a1 a2

With the same reasoning a typical element in B2(A) is a 1-level tree labeled with elements
in ΣB(A). But these are 1-level trees with leaves labeled by elements in A, hence a typical
element in B2(A) is a labeled 2-level tree as in the following example:

@
@@

�
��

S
SS
�
��

a0 a1 a2

A
AA
�
��

a3 a4

Iterating this description we see that a typical element in Bn(A) is a tensor power of el-
ements in ΣBn−1(A), hence can be described as a 1-level tree whose leaves are labeled by
elements in ΣBn−1(A), i.e. by n− 1-level trees with leaves labeled by elements in A.
Observe that since A is concentrated in degree zero, the degree of a labeled tree viewed as
an element in Bn(A) is given by the number of edges of the tree. Lemma 3.5 in [41] says
that the maps in Epin decreasing the number of edges by one are exactly the summands of
the differential of Bn(A).
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Hence the category Epin encodes precisely what is needed to make sense of an n-fold bar
construction: the trees correspond to elements in Bn(A) while a closer inspection reveals
that the morphisms are generated by the summands of the differential of Bn(A). Since the
n-fold bar construction computes En-homology with trivial coefficients up to suspension we
can hence define En-homology for functors from Epin to k-modules.

Definition 4.4. Let F : Epin → k-mod be a covariant functor. Let C̃En(F ) be the Nn0 -
graded k-module with

C̃En(rn,...,r1)(F ) =
⊕

t= [rn]
fn // ...

f2 // [r1]

F (t).

For 1 ≤ j ≤ n let ∂̃j : C̃En → C̃En be the following map lowering the jth degree by one:

• For j = n define ∂̃j restricted to F (t) as∑
0≤i<rn,

fn(i)=fn(i+1)

(−1)sn,iF (di, id[rn−1], ..., id[r1])

with di : [rn]→ [rn − 1] the order-preserving surjection which maps i and i+ 1 to i.

• For 1 ≤ j < n let ∂̃j be the map which restricted to F (t) equals∑
0≤i<rj ,

fj(i)=fj(i+1)

∑
σ∈sh(f−1

j+1(i),f−1
j+1(i+1))

ε(σ; tj,i, tj,i+1)(−1)sj,iF (hi,σ),

with h = hi,σ the unique morphism of trees exhibited in [41, Lemma 3.5] with hj =
di : [rj ]→ [rj − 1] and hj+1 restricted to f−1

j+1({i, i+ 1}) acting like σ.

The signs are determined by the number of suspensions the degree −1 map di has to be
switched with before we actually apply it as well as by the graded signature of the permutation
σ in the cases j < n.
To be more precise, for any j we number the edges in the tree t from bottom to top and
from left to right. Then for j < n we aquire a sign (−1)sj,i where sj,i is the number of the
rightmost top edge of the n− j-level subtree tj,i. For j = n we set sn,i to be the label of the
edge whose leaf is the ith leaf for 0 ≤ i ≤ n.
For j < n the map F (hi,σ) is not only decorated by (−1)sj,i but also by a sign associated
to σ ∈ sh(f−1

j+1(i), f−1
j+1(i + 1)): Let t1, ..., ta be the n − j − 1-level subtrees of t above the

j-level vertex i, i.e. the n− j−1-level subtrees forming tj,i, similarly let ta+1, ..., ta+b denote
the n − j − 1-level subtrees above i + 1. Then σ determines a shuffle of {t1, ..., ta} and
{ta+1, ..., ta+b}. The sign ε(σ; tj,i, tj,i+1) picks up a factor (−1)(d(tx)+1)(d(ty)+1) whenever
x < y and σ(x) > σ(y).
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Lemma 4.5. For any functor F : Epin → k-mod the Nn0 -graded module C̃En(F ) together
with ∂̃1, ..., ∂̃n forms a multicomplex which we again denote by C̃En(F ), i.e. the identities

∂̃i
2

= 0 and ∂̃i∂̃j = −∂̃j ∂̃i

hold for all 1 ≤ i, j ≤ n.

Definition 4.6. We call the homology

HEn
∗ (F ) = H∗(TotC̃En(F ))

of the total complex associated to C̃En(F ) the En-homology of F : Epin → k-mod.

After establishing this generalization of En-homology and showing that there is a Loday
functor

L(A; k) : Epin → k-mod

associated to every k-projective nonunital commutative algebra A such that

HEn
∗ (L(A; k)) = HEn

∗ (A; k),

Livernet and Richter prove that En-homology of functors is indeed functor homology.

Theorem 4.7. Let b̃ : Epiop
n → k-mod be the functor given by

b̃(t) =

{
k, t = [0]→ ...→ [0],

0 else.

Then for F : Epin → k-mod

HEn
∗ (F ) = Tor

Epin
∗ (b̃, F ).

Remark 4.8. The proof relies on the axiomatic description of TorEpin which we will recall
in 4.27: Livernet-Richter show that short exact sequences of functors give rise to long exact
sequences of homology groups, that HEn

∗ vanishes on projectives and construct b̃ so that

HEn
0 = Tor

Epin
0 (b̃,−).

4.2 The category Epi+n and En-homology and cohomology of functors

We would like to establish a functor homology interpretation not only for En-homology of a
commutative algebra A with trivial coefficients but for arbitrary coefficients in a symmetric
A-bimodule M as well as for En-cohomology. We know from 3.62 that to compute En-
homology with coefficients we need to twist the chain complex M ⊗ Bn(A) by a twisting
cochain

δ : M ⊗Bn(A)→M ⊗Bn(A).

To model En-homology with coefficients as functor homology we hence have to enlarge the
category Epin to incorporate the summands of this twisting cochain.
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Definition 4.9. The objects of the category Epi+n are given by planar fully grown trees with

n levels. A morphism from tr = [rn]
frn // ...

fr2 // [r1] to ts = [sn]
fsn // ...

fs2 // [s1] is

represented by a sequence of maps (hn, ..., h1), where

• for i = 2, ..., n − 1, the map hi : [ri] → [si] is a surjection which is order-preserving
on the fibers f−1

i (l) for all l ∈ [ri−1]. For i = 1 we require h1 : [r1] → [s1] to be
order-preserving.

• The map hn is a map
hn : [rn]→ [sn]+ := [sn] t {+}

such that [sn] lies in the image of hn and such that the restriction of hn to h−1
n ([sn])

is order-preserving on the fibers of fn. Furthermore the intersection of h−1
n ([sn]) with

a fiber f−1
n (l) is a (potentially empty) interval for all l ∈ [rn−1], i.e. is of the form

{a, a+ 1, ..., a+ l} with l ≥ −1.

• The diagram

h−1
n ([sn])

frn //

hn
��

[rn−1]

hn−1

��

// ... // [r2]

h2

��

fr1 // [r1]

h1

��
[sn]

fsn // [sn−1] // ... // [s2]
fs1 // [s1]

commutes.

Finally we identify certain morphisms by imposing the following equivalence relation on the
set of morphisms from tr to ts: We identify morphisms h and h′ if

• hn−1(+) = h′n
−1(+) and

• hi and h′i coincide if restricted to f ri+1...f
r
n([rn] \ h−1

n (+)).

The composition of two morphism (gn, ..., g1) : tq → tr and (hn, ..., h1) : tr → ts is defined by
composing componentwise and sending + to +, i.e.

(hn, ..., h1) ◦ (gn, ..., g1) := ((hg)n, hn−1gn−1, ..., h1g1)

with (hg)n(x) =

{
+, gn(x) = +,

hngn(x), otherwise.

Lemma 4.10. Composition in Epi+n is well defined and associative.
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Proof. It is easy to check that the relation defined above is indeed an equivalence relation
and that the composition is associative. To show that composition is well defined, consider
morphisms g : tq → tr and h : tr → ts as above and another morphism g′ equivalent to g.
Then g−1

n (+) = g′−1
n (+) and hence (hg)i and (hg′)i agree on f qi+1...f

q
n([qn] \ (hg)−1

n (+)) ⊂
f qi+1...f

q
n([qn] \ g−1

n (+)) because gi and g′i do. Since gn and g′n coincide on f qi+1...f
q
n([qn] \

g−1
n (+)) we see that (hg)−1

n (+) = (hg′)−1
n (+) as well, hence hg and hg′ are equivalent.

If h is equivalent to h′, then

(hg)−1
n (+) = g−1

n (+) ∪ g−1
n (h−1

n (+)) = g−1
n (+) ∪ g−1

n (h′
−1
n (+)) = (h′g)−1

n (+).

If x ∈ [qi] with x ∈ f qi+1...f
q
n([qn] \ (hg)−1

n (+)) we find that gi(x) ∈ f ri+1...f
r
n([rn] \ h−1

n (+)),
hence higi(x) = h′igi(x).

Remark 4.11. 1. It is clear that Epin is a subcategory of Epi+n and that both categories
share the same objects. Intuitively the category Epi+n is built from Epin by adding
morphisms of the form

[rn]
fn //

δi
��

[rn−1]

id
��

fn−1 // ...
f2 // [r1]

id
��

[rn − 1]
f̂n // [rn−1]

fn−1 // ...
f2 // [r1]

and adding all newly arising compositions with such morphisms. Here δi is the map

δi(x) =


x, x < i,

+, x = i

x− 1, x > i

with i the minimal or maximal element of a fiber f−1
n (l) containing at least two ele-

ments, and

f̂n(x) =

{
fn(x), x < i,

fn(x+ 1), x ≥ i.

The requirement that the elements of a fiber of fn that get not mapped to + form an
interval reflects the fact that we have only added morphisms of the aforementioned
kind.

2. Our motivation for defining Epi+n is to model the complex calculating En-homology
of A with coefficients in M . Hence imposing the equivalence relation is necessary
because it should not matter what precisely happens to a subtree of a tree t if all its
leaves get mapped to +, i.e. in which order and on what side a family of elements of
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A acts on an element of M . Otherwise we would encounter pathologies, for example
the composition of

[2] //

��

[2]

07→0;1,2 7→1

��
[2]

07→0;1,27→1

// [1]

with [2]

07→0;17→+;27→1

��

07→0;1,27→1

// [1]

��
[1] // [1]

and the composition of

[2] //

��

[2]

0,17→0;27→1

��
[2]

07→0;1,27→1

// [1]

with [2]

07→0;17→+;27→1

��

0,17→0;27→1

// [1]

��
[1] // [1]

would not coincide, which is not in accordance with what we try to model: In M ⊗
B2(A) the first composite corresponds to the map sending m ⊗ [[a0]|[a1]|[a2]] to m ⊗
[[a0]|[a1|a2]] and then to a1m ⊗ [[a0]|[a2]], while the second composite corresponds to
mapping m ⊗ [[a0]|[a1]|[a2]] to m ⊗ [[a0|a1]|[a2]] and then to ma1 ⊗ [[a0]|[a2]]. Hence
the two compositions should coincide.

After defining a category which also models the summands of the twisting cochain δ we can
proceed to define En-homology of a functor.

Definition 4.12. Let F : Epi+n → k-mod be a functor. As in 4.4 set

Crn,...,r1(F ) :=
⊕

t=[rn]→...→[r1]

F (t).

Define maps ∂j lowering the jth degree by one by

∂j = ∂̃j for i < n, ∂n = ∂̃n + δmin + δmax,

with
δmin =

∑
0≤l≤rn−1,

|f−1
n (l)|>1

(−1)
s
n,min f−1

n (l)
−1
F (δmin f−1

n (l), id, ..., id)

and
δmax =

∑
0≤l≤rn−1

|f−1
n (l)|>1

(−1)
s
n,max f−1

n (l)F (δmax f−1
n (l), id, ..., id).

Here δi is as in remark 4.11.
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Example 4.13. Let t be the 2-level tree

@
@@

�
��

S
SS
�
��

0 1 2 3

A
AA
�
��

4 5

Then δmin is the sum of the morphism induced by mapping the leaf labeled 0 to +, equipped
with the sign (−1)1, and the morphism induced by mapping 4 to +, decorated by (−1)7. The
map δmax is induced by sending 2 to + with sign (−1)4 and by mapping 5 to + which yields
the sign(−1)9.

Now we face the task of proving that (CEn , ∂1, ..., ∂n) is in fact a multicomplex. Since we
already know from [41, Lemma 3.8] that (CEn , ∂̃1, ..., ∂̃n) is a multicomplex it suffices to
prove the following lemma.

Lemma 4.14. The differentials defined above satisfy the identities

δmin∂j + ∂jδmin = 0 for j < n,

δmax∂j + ∂jδmax = 0 for j < n,

δminδmax + δmaxδmin = 0,

δ2
min + ∂̃nδmin + ∂̃nδmin = 0,

δ2
max + ∂̃nδmax + ∂̃nδmax = 0.

We will frequently encounter notational difficulties during this proof, since for example in
the first identity above the two maps δmin are not equal. In particular the trees defining the
occuring signs do not coincide. We will try to circumvent defining a new galaxy of notation
by sticking to the following rule: We examine each summand in the identity above one by
one and then compare them, and while investigating the composition f ◦g we will always use
the undecorated notation introduced above to denote anything having to do with g, while
signs, trees, etc. ocurring in the evaluation of f will be decorated with a ”ˆ”. Note that the
trees on which for example ∂j in δmin∂j and δmin in ∂jδmin are defined coincide, while this
does not need to be the case for the other two maps, although according to our convention
we will denote their signs by the same symbol. We will solve this notational problem by
always comparing the signs equipped with a ”ˆ” with signs in the original source tree.
We also will frequently refer to morphisms in Epi+n instead of the parts of the differentials
they induce, including the signs they carry.

Proof. Let t = [rn]
fn // ...

f2 // [r1] be a given tree. Let us start with proving the first

identity. Fix l ∈ [rn−1] with |f−1
n (l)| > 1 and set i := min f−1

n (l). Consider a ∈ [rj ]
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with fj(a) = fj(a+ 1) and fix a shuffle τa,jj+1 ∈ sh(f−1
j+1(a), f−1

j+1(a+ 1)), defining a morphism

(τa,jn , ..., τa,jj+1, da, id, ..., id) as explained in [41, Lemma 3.5]. We distinguish a couple of cases:

• If the ith leaf is to the right of the leaves of the subtree tj,a+1, first applying

(τa,jn , ..., τa,jj+1, da, id, ..., id)

and then deleting the ith leaf results in a sign

(−1)s̃n,i−1(−1)sj,aε(τa,jj+1; tj,a, tj,a+1)

with (−1)s̃n,i−1 = (−1)sn,j−2 since two edges left and below of i got merged. If we
first delete the ith leaf and then apply the corresponding shuffle and merge maps we
get a sign

(−1)s̃j,aε(τ̃a,jj+1; t̃j,a, t̃j,a+1)(−1)sn,i−1.

But since deleting a leaf right of tj,a+1 does nothing to the signs associated with the

shuffle and merge operation this is (−1)sj,aε(τa,jj+1; tj,a, tj,a+1)(−1)sn,i−1 and the two
operations anticommute. The following picture illustrates this for n = 2, j = 1, a = 0
and i = 3 together with the signs the operations produce:

@
@@

�
��

A
AA
�
��

0 1 2

A
AA
�
��

3 4
� (−1)6

//

_

(−1)3·(−1)1·1

��

@
@@

�
��

A
AA
�
��

0 1 2

�
��

4

_

(−1)3·(−1)1·1

��

@
@@

�
��

A
AA
�
��

0 2 1

A
AA
�
��

3 4
� (−1)5

//

@
@@

�
��

A
AA
�
��

0 2 1

�
��

4

• The same holds if the ith leaf is left to tj,a, with the difference that here the sign
associated to deleting the leaf stays the same and the signs (−1)sj,a and (−1)s̃j,a differ
due to one edge getting deleted left of the rightmost leaf of tj,a.
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• Now let us consider the case where the ith leaf is actually a leaf of the subtrees that
get shuffled. We have to distinguish the cases j = n− 1 and j < n− 1. Start with the
latter and assume that i is a leaf of tj,a. If we first want to apply the merge and shuffle
operation and then delete what was the ith leaf in the original tree we have to delete
the τa,jn (i)th leaf, which is a suitable minimum again since j < n− 1. The difference
in sign between deleting this leaf and deleting the ith leaf is determined by how many
subtrees tp+1, ...., tp+q of tj,a+1 get moved past the subtree tc of tj,a containing i, hence
changing the labeling. For each of these subtrees s̃

n,τ j,an (i)
gains d(td) + 1 compared to

sn,i. On the other hand there clearly exists a τ̃a,jn such that

(τ̃a,jn , τa,jn−1, ..., τ
a,j
j+1, da, id, ..., id)(δi, id, ..., id)

= (δ
τ j,an (i)

, id, ..., id)(τa,jn , ..., τa,jj+1, da, id, ..., id).

The sign associated to (τ̃a,jn , ..., τa,jj+q, da, id, ..., id) differs from the one associated to

(τa,jn , ..., τa,jj+1, da, id, ..., id) in two aspects: First, we apply the former after the ith leaf
has been deleted, and this leaf sits left to the rightmost leaf of tj,a. Hence s̃j,a =
sj,a − 1. On the other hand all subtrees of t̃j,a and tj,a are equal except for the
subtree tc containing the ith leaf: t̃c has one edge less. Hence d(t̃c) = d(tc)− 1 and so
ε(τa,jj+1, t̃j,a, t̃j,a+1) picks up a sign (−1)(d(tc)−1+1)(d(td)+1) for d ∈ {p+ 1, ..., p+ q} with

τa,jj+1(c) > τa,jj+1(d), whereas ε(τa,jj+1, tj,a, tj,a+1) gains a sign (−1)(d(tc)+1)(d(td)+1) in the

same case. Hence the two shuffle signs compare to each other just like (−1)
s̃
n,τ

j,a
n (i) to

(−1)sn,i , and since s̃j,a = sj,a − 1 the desired anticommutativity is proven. We give
an example for n = 3, j = 1, a = 0 and i = 1.

@
@@

�
��

A
AA
�
��

A
AA
�
��

0

A
AA
�
��

1 2 3 4

� (−1)6·(−1)3·2
//

_

(−1)4

��

Q
Q
QQ
A
AA
�
��

�
�
��

0 3

A
AA
�
��

1 2 4

_

(−1)6

��

@
@@

�
��

A
AA
�
��

A
AA
�
��

0 2 3 4

� (−1)5·(−1)2·2
// Q

Q
QQ
A
AA
�
��

�
�
��

0 3 2 4
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• If i is a leaf of tj,a+1, the same argument holds, just that in this case s̃j,a and sj,a
coincide while the difference between s̃

n,τ j,an (i)
and sn,i increases by one since an edge

got merged left to τ j,an (i).

• Now let j = n − 1 and let the ith leaf be a leaf of tn−1,a. Since tn−1,a = f−1
n (a) this

is the leftmost leaf of tn−1,a. Consider deleting the ith leaf first and then applying a
merge and shuffle operation (σ̃, da, id, ..., id). The shuffle σ̃ is a shuffle of f−1

n (a) \ {i}
and f−1

n (a+ 1). There is exactly one corresponding shuffle σ ∈ sh(f−1
n (a), f−1

n (a+ 1))
fixing i, and if we apply (σ, da, id, ..., id) first and then delete the ith leaf the result
coincides with the operation considered first, up to sign. Since the position of i did not
change and no edge to the left of i got merged or deleted, the signs associated to the
deletion operations coincide. The same is valid for the shuffle signs, since the ith leaf
is fixed by σ and hence does not contribute any inversions. On the other hand sn−1,a

and s̃n−1,a differ by one due to the deleted leaf. Hence the operations anticommute.
An example for n = 2, j = 1 and i = 0 is shown in the following picture:

@
@@

�
��

A
AA
�
��

0 1

A
AA
�
��

2 3
� (−1)1

//

_

(−1)3·(−1)1·1

��

@
@@

�
��

1

A
AA
�
��

2 3

_

(−1)2·(−1)1·1

��

Q
Q
QQ
A
AA
�
��

�
�
��

0 2 1 3
� (−1)1

// @
@
�
�

2 1 3

• If i is a leaf of tn−1,a+1, we can identify exactly one shuffle σ ∈ sh(f−1
n (a), f−1

n (a+ 1))
which sends i to the minimum of tn−1,a, and the same reasoning as above holds, with
the following modifications: s̃n,σ(i) and sn,i now differ by (−1)d(tn−1,a)+1, whereas

ε(σ; tn−1,a, tn−1,a+1) and ε(σ̃; tn−1,a, t̃n−1,a+1) differ by (−1)d(tn−1,a), while s̃n−1,a and
sn−1,a coincide.

Similar arguments hold when we consider deleting a rightmost leaf, hence the first two
identities hold.
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Considering the last three identities note that all the operations merge or delete one edge.
So whenever the operations in question are operating on different fibers of fn it is obvious
that the operations commute up to sign, and that applying the operation acting further
to the left after the operation acting further to the right yields exactly the sign opposite
to that of applying the right one after the left one, picking up the merging or deletion of
edges. Hence we only need to prove the identities for operations acting on the same 1-level
subtree and may assume without loss of generality that we are considering a tree of the
form t = [r] // [0] // ... // [0] for r > 1.
The third identity is easy to see: deleting the leftmost leaf and then the rightmost leaf
yields the sign (−1)sn,r−1(−1)sn,0−1, whereas performing these operations in the opposite
order yields (−1)sn,0−1(−1)sn,r .
To prove the fourth identity fix a ∈ {0, ..., r − 1}. Assume first that a 6= 0. Then

(δ0, id, ..., id)(da, id, ..., id) = (da−1, id, ..., id)(δ0, id, ..., id).

The first composition induces maps decorated with the sign (−1)sn,0−1(−1)sn,a , while the
other yields (−1)sn,a−1(−1)sn,0−1. Since sn,a−1 = sn,a − 1 the induced maps anticom-
mute. Hence all terms except those originating from δ2

min and those which are of the form
(δ0, id, ..., id)(d0, id, ..., id) cancel out. But it is clear that

(δ0, id, ..., id)(d0, id, ..., id) = (δ0, id, ..., id)(δ0, id, ..., id),

the first yielding the sign (−1)sn,0−1(−1)sn,0 , the latter giving (−1)sn,0−1(−1)sn,0−1. We
give an example for n = 1 and a = 0:

@
@
�
�

0 1 2
� (−1)1

//

_

(−1)0

��

@
@
�
�

01 2

_

(−1)0

��

@
@
�
�

1 2 � (−1)0

//
2

Similar arguments prove the last identity.

After establishing that CEn(F ) is in fact a multicomplex we can define En-homology:

Definition 4.15. Let F : Epi+n → k-mod be a functor. The En-homology of F is

HEn
∗ (F ) = H∗(TotCEn(F )).
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Remark 4.16. Given a functor F̃ : Epin → k-mod, we can extend F̃ to F : Epi+n → k-mod
by setting F (h) = 0 for every morphism h : tr → ts in Epi+n such that h([rn]) ∩ {+} 6= ∅.
With these definitions HEn(F ) coincides with the En-homology of F̃ as defined in 4.6. In
this sense the definition of En-homology we just gave extends the definition given in [41,
Definition 3.7].

We are specifically interested in calculating En-homology of commutative algebras, which
is the En-homology of the following functors.

Definition 4.17. The Loday functor

L(A,M) : Epi+n → k-mod

is the following functor: For a given tree t = [rn]
fn // ...

f2 // [r1] set

L(A,M)(t) = M ⊗A⊗rn+1.

If (hn, ..., h1) : tr → ts is a morphism let

L(A,M)(hn, ..., h1) : M ⊗A⊗rn+1 →M ⊗A⊗sn+1

be given by

m⊗ a0 ⊗ ...⊗ arn 7→

m · ∏
i:hn(i)=+

ai

⊗
 ∏
i:hn(i)=0

ai

⊗ ...⊗
 ∏
i:hn(i)=sn

ai

 .

Observe that L(A,M) could also be considered as a functor from finite pointed sets and
surjections to k-modules: The values and induced morphisms really only depend on the
leaves of the trees we consider. We will encounter this point of view later in our discussion
of higher order Hochschild homology in 6.3.

Remark 4.18. It is easily seen that Tot(CEn(L(A,M))) = Σ−n(M ⊗Bn(A), ∂θ) as defined
in 3.42: That

Σ−nBn(A) = Tot(CEn(L(A, k)))

has already been noted in [41, 3.1]. Hence Σ−n(M ⊗ Bn(A)) = Tot(M ⊗ CEn(L(A, k))).
But M⊗CEn(L(A, k)) and CEn(L(A,M)) coincide as graded modules and their differentials
only differ by δmin + δmax, the part of the differentials actually incorporating the action of
A on the coefficient module. The twist δmin + δmax on CEn(L(A,M)) corresponds to ∂θ on
Σ−n(M ⊗Bn(A)). In particular,

HEn
∗ (L(A,M)) = HEn

∗ (A;M)

if A is k-projective.
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We now consider En-cohomology.

Definition 4.19. Let G : Epi+n
op → k-mod be a functor. The En-cohomology of G is defined

as
H∗En(G) = H∗(Tot(CEn(G))),

where CEn(G) is the multicomplex with

Crn,...,r1En
(G) =

⊕
t= [rn]

fn // ...
f2 // [r1]

G(t)

and differentials ∂j : Crn,...,r1En
(G) → C

rn,...rj+1,...,r1
En

(G) raising the jth degree by one defined
as follows:

• For j = n define ∂n restricted to G(t) as∑
0≤i<rn,

fn(i)=fn(i+1)

(−1)sn,iG(di, id[rn−1], ..., id[r1])

+
∑

0≤l≤rn−1,

|f−1
n (l)|>1

(−1)
s
n,min f−1

n (l)
−1
G(δmin f−1

n (l), id, ..., id)

+
∑

0≤l≤rn−1

|f−1
n (l)|>1

(−1)
s
n,max f−1

n (l)G(δmax f−1
n (l), id, ..., id).

• For 1 ≤ j < n the map ∂j restricted to F (t) is given by∑
0≤i<rj ,

fj(i)=fj(i+1)

∑
σ∈sh(f−1

j+1(i),f−1
j+1(i+1))

ε(σ; tj,i, tj,i+1)(−1)sj,iG(hi,σ),

with h = hi,σ again denoting the unique morphism of trees exhibited in [41, Lemma
3.5] with hj = di : [rj ]→ [rj−1] and hj+1 restricted to f−1

j+1({i, i+ 1}) acting like σ.

Remark 4.20. With the same reasoning as in the homological case one sees that CEn(G)
is in fact a multicomplex.

As was the case for En-homology this definition generalizes En-cohomology of commutative
algebras with coefficients in a bimodule:
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Definition 4.21. Let
Lc(A,M) : Epi+n

op → k-mod

be defined on a tree t = [rn]
fn // ...

f2 // [r1] as

Lc(A,M)(t) = Homk(A
⊗rn+1,M).

If (hn, ..., h1) is a morphism from tr to ts define

Lc(A,M)(hn, ..., h1) : Homk(A
⊗sn+1,M)→ Homk(A

⊗rn+1,M)

by

Lc(A,M)(hn, ..., h1)(f)(a0⊗...⊗arn) =

 ∏
i:hn(i)=+

ai

·f(

 ∏
i:hn(i)=0

ai

⊗...⊗
 ∏
i:hn(i)=sn

ai

).

Then Tot(CEn(Lc(A,M))) coincides with the complex computing En-cohomology of A with
coefficients in M introduced in 3.63, in particular

H∗En(Lc(A,M)) = H∗En(A,M)

if A is k-projective.

Remark 4.22. For n = 1 the category Epi+1 can be identified with the image of the semisim-
plicial part of the simplicial circle C : ∆op → Fin∗ in the category Fin∗ of finite pointed
sets up to a shift: In the terminology of [54] the tree [r] corresponds to the finite pointed
set [r + 1] with 0 as basepoint, the morphisms δ0 and δr correspond to d0 and dr+1, while
the merging operation di on the tree [r] is the counterpart to the map di+1 in the simpli-
cial circle. Hence E1-homology agrees with Hochschild homology for functors from Fin∗ to
k-mod as defined by Pirashvili and Richter up to a shift. As we will see later there is a
Loday functor L+(A,M) : Fin∗ → k-mod which is an unreduced version of L(A,M). This
yields in particular that

HE1
∗ (L(A,M)) = HH∗+1(A+,M)

if A is k-projective, where HH∗+1(A+,M) denotes classical Hochschild homology of the
commutative unital algebra A+ with coefficients in the symmetric A-bimodule M . Similar
considerations hold for E1-cohomology.

Every functor F : Epi+n → k-mod gives rise to a functor F ∗ : Epi+n
op → k-mod, its dual, by

setting F ∗(t) = Homk(F (t), k). The following universal coefficient spectral sequence relates
En-homology with En-cohomology.
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Proposition 4.23 ([40, Theorem 2.3]). If F (t) is k-free for every t ∈ Epi+n , there is a first
quadrant spectral sequence

E2
p,q = Extqk(H

En
p (F ), k)⇒ Hp+q

En
(F ∗).

In particular whenever k is injective as a k-module, En-homology of F and En-cohomology
of its dual are dual to each other.

Examples of commutative self-injective rings include fields, group algebras of finite commu-
tative groups over a self-injective ring, quotients R/I of a principal ideal domain R with
I 6= 0 and commutative Frobenius rings [1, ch.5, §18]. The product of self-injective rings is
again self-injective.

4.3 En-cohomology as functor cohomology

In [41, Theorem 4.1] Livernet and Richter show that En-homology with trivial coefficients
can be interpreted as functor homology. We want to extend this result to En-homology
with arbitrary coefficients.
To prove that En-homology coincides with functor homology we first show that certain
projective functors are acyclic. For t ∈ Epi+n set

Pt = k〈Epi+n (t,−)〉 : Epi+n → k-mod and P t = k〈Epi+n (−, t)〉 : Epi+n
op → k-mod.

In the proof of the following lemma, we will consider trees obtained by restricting a given
tree to certain leaves.

Definition 4.24. Let t = [rn]
fn // ...

f2 // [r1] be a tree. For fixed I ⊂ [rn] set rIi =

|fn...fi+1(I)| − 1. Define a tree tI as the upper row in

[rIn]

��

fIn // [rIn−1]

��

fIn−1 // ...
fI2 // [rI1]

��
I

fn // fn(I)
fn−1 // ...

f2 // f2...fn(I)

Here the vertical morphisms are determined by requiring that they are bijective and order-
preserving, while the maps f In are given by requiring that all squares commute. Intuitively
tI is the subtree of t given by restricting t to edges connecting leaves labeled by I with the
root.
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Lemma 4.25. Let t and I be as above. Then we can define a morphism hI : t→ tI in Epi+n
as the vertical maps in

[rn]

hIn
��

fn // [rn−1]

hIn−1
��

fn−1 // ...
f2 // [r1]

hI1
��

[rIn]
fIn // [rIn−1]

fIn−1 // ...
fI2 // [rI1],

where the hIi are defined as follows: The map hIn maps all x ∈ [rn] \ I to + and is an order-
preserving bijection restricted to I. For i < n we require that hIi restricted to fi+1...fn(I) is
the order-preserving bijection to [rIi ] and that hIi be order-preserving on the whole set [ri].

Proof. Since I = [rn] \ (hIn)−1(+) this determines hI up to equivalence. The maps hIi
assemble to a morphism in Epi+n since they are chosen to be order-preserving and the
squares

fi+1...fn(I)
fi //

hIi
��

fi...fn(I)

hIi−1
��

[rIi ]
fIi // [rIi−1]

commute by definition of f Ii . Furthermore (hIn)−1(+)∩ f−1
n (i) = I ∩ f−1

n (i) is an interval if
DI 6= ∅.

Now we are in the position to compute the En-homology of the representable projectives.

Lemma 4.26. Fix a tree t = [rn]
fn // ...

f2 // [r1] . Then

HEn
∗ (Pt) =

{
0, ∗ > 0,⊕

i∈[rn] k, ∗ = 0.

Proof. Set C := CEn(Pt). We filter C by the submulticomplexes

F pCsn,...,s1 :=
⊕

ts= [sn]
fsn // ...

fs2 // [s1]

k[{(hn, ..., h1) ∈ Pt(ts)||h−1
n ([sn])| ≤ p+ 1}].

so that F pC is generated by morphisms that map at least rn − p leaves to +. This defines
an ascending filtration of C by subcomplexes and therefore yields a first quadrant spectral
sequence

E1
p,q = Hp+q(Tot(F pC/F p−1C))⇒ Hp+q(TotC).
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The quotient F pC/F p−1C can be identified with the free k-module generated by morphisms
(hn, ..., h1) ∈ Pt(ts) with |h−1

n ([sn])| = p+ 1. The differentials δmin and δmax vanish on the
quotient. The remaining summands of ∂n and the differentials ∂n−1, ..., ∂1 do not change
the number of leaves that get mapped to +. We conclude that F pC/F p−1C is isomorphic
to D as a multicomplex, where

Dsn,...,s1 =
⊕

ts= [sn]
fsn // ...

fs2 // [s1]

k[{(hn, ..., h1) ∈ Pt(ts)||h−1
n ([sn])| = p+ 1}]

with differentials ∂1, ..., ∂n−1, ∂̂n, where ∂̂n = ∂n− δmin− δmax. The multicomplex D can be
decomposed further: The remaining differentials do not only respect the number of deleted
leaves but the set of deleted leaves itself. Hence D is the direct sum of submulticomplexes
DI with

DI
sn,...,s1 =

⊕
ts= [rn]

fn // ...
f2 // [r1]

s

k[{(hn, ..., h1) ∈ Pt(ts)|h−1
n ([sn]) = I}]

such that I is a subset of [rn] of cardinality p+ 1.
Notice that the differentials of D and DI look like the differentials used in 4.4 to define En-
homology of functors from Epin to k-mod. We will show that DI in fact can be identified
with the multicomplex associated to such a functor. More precisely, DI is the multicom-
plex computing En-homology of the representable functor P t

I
: Denote by hI : t → tI the

morphism defined in lemma 4.26. We define

Ψ: C̃En(Epin(tI ,−))→ DI

by mapping j ∈ Epin(tI , ts) to Ψ(j) = j ◦ hI . Since j does not delete any leaves this yields
an element of DI . We define an inverse Φ to Ψ by mapping h ∈ DI to the composite of the
columns in

[rIn]
fIn //

��

[rIn−1]
fIn−1 //

��

...
fI2 // [rI1]

��
I

��

fn // fn(I)

��

fn−1 // ...
f2 // f2...fn(I)

��
[rn]

hn
��

fn // [rn−1]

hn−1

��

fn−1 // ...
f2 // [r1]

��
[sn]

gn // [sn−1]
gn−1 // ...

g2 // [s1]
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Here the upper vertical maps are order-preserving bijections while the vertical maps in
the middle are inclusions. We see that Φ(h)i only depends on hi|fi+1...fn(I), i.e. Φ is well
defined on equivalence classes. It is obvious that each Φ(h)i is surjective and that the usual
requirements on commutativity are satisfied. Consider a fiber (f Ii )−1(l): The map Φ(h)i
first sends it order-preservingly and surjectively to fi+1...fn(I) ∩ f−1

i (j) ⊂ [ri], where j
denotes the image of l under the map [rIi−1] → fi...fn(I). Since hi preserves the order on
fibers of fi we see that Φ(h)i is order-preserving on the fibers of f Ii . Finally we note that
obviously Φ ◦ Ψ is the identity. To show that Ψ is a left inverse for Φ one writes down
Ψ◦Φ(h) for a given h and uses that Ψ◦Φ(h)i only needs to coincide with hi on fi+1...fn(I).
The maps Φ and Ψ commute with composition, hence also with applying the differentials.
Since the signs in the differentials applied to a morphism h are determined by the target
tree ts of h there is no trouble with signs either. Hence we have constructed an isomorphism

DI ∼= CEn(Epin(tI ,−))

of multicomplexes. We know from [41] that H∗(TotC̃En(Epin(tI ,−))) = 0 for ∗ > 0 and
that

H0(TotC̃En(Epin(tI ,−))) =

{
k, tI = [0]→ [0]→ ...→ [0],

0, else.

Since tI = [0] → [0] → ... → [0] implies p + 1 = |I| = 1 we see that the E1-term of our
spectral sequence is

E1
p,q = Hp+q(Tot(F pC/F p−1C)) =

{⊕
i∈[rn] k, p = q = 0,

0, else.

The spectral sequence collapses at E1 and the claim follows.

Having proved that HEn
∗ (Pt) is acyclic we can use the axiomatic decription of Tor (see e.g.

[29, ch. 2], [46, III.10]).

Proposition 4.27. Let Ei : Fun(Epi+n , k-mod) → k-mod, i ≥ 0 be a sequence of functors
with the following properties:

1. For every short exact sequence

0 // F1
f // F2

g // F3
// 0

of functors from Epi+n to k-mod there are natural k-linear maps

δ : Ei+1(F3)→ Ei(F1)
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for all i ≥ 0 such that the sequence

...
g // Ei+1(F3)

δ // Ei(F1)
f // Ei(F2)

g // Ei(F3)
δ // ...

g // E0(F3) // 0

is exact.

2. The k-modules Ei(P ) are zero for all i ≥ 1 whenever P : Epi+n → k-mod is projective.

3. There exists G : Epi+n
op → k-mod such that there is a natural isomorphism

E0
∼= G⊗Epi+n

−.

Then E is naturally isomorphic to Tor
Epi+n
∗ (G,−).

Theorem 4.28. Denote by b : Epi+n
op → k-mod the functor given by the cokernel of

(δ0, id, ..., id)∗ − (d0, id, ..., id)∗ + (δ1, id, ..., id)∗ : P [1]→[0]→...→[0] → P [0]→...→[0].

Then for any F : Epi+n → k-mod

HEn
∗ (F ) ∼= Tor

Epi+n
∗ (b, F ),

and this isomorphism is natural in F .

Proof. We apply the axiomatic description of Tor. A short exact sequence of functors

0→ F → G→ H → 0

yields a short exact sequence of chain complexes

0→ CEn(F )→ CEn(G)→ CEn(H)→ 0

and therefore gives rise to the desired long exact sequence. We already showed that HEn
∗ (Pt)

is zero in positive degrees. Every projective functor from Epi+n to k-mod receives a surjection
from a sum of functors of the form of Pt and hence is a direct summand of this sum. Hence
HEn
∗ (P ) vanishes in positive degrees for all projective functors P . Finally the zeroth En-

homology of a functor F is given by the cokernel of

(−1)n−1F (δ0, id, ..., id) + (−1)nF (d0, id, ..., id) + (−1)n+1F (δ1, id, ..., id).

Using the natural isomorphism P t ⊗Epi+n
F ∼= F (t) of k-modules this is the cokernel of(

(−1)n−1(δ0, id, ..., id)∗ + (−1)n(d0, id, ..., id)∗ + (−1)n+1(δ1, id, ..., id)∗
)
⊗Epi+n

idF :
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P [1]→[0]→...→[0] ⊗Epi+n
F → P [0]→...→[0] ⊗Epi+n

F.

But tensor products are right exact, and hence this cokernel coincides with the tensor
product of F with the cokernel of

(−1)n−1(δ0, id, ..., id)∗ + (−1)n(d0, id, ..., id)∗ + (−1)n+1(δ1, id, ..., id)∗,

hence with b⊗Epi+n
F .

Theorem 4.29. Suppose that k is injective as a k-module and let G : Epi+n
op → k-mod be

a functor. Then there is an isomorphism

H∗En(G) ∼= Ext∗
Epi+n

(b,G).

This isomorphism is natural in G.

Proof. There is an axiomatic description of ExtEpi+n
(b,−) which is analogous to the descrip-

tion of Tor in proposition 4.27, see [29, ch. 2], [46, III.10]. That H∗En maps short exact
sequences to long exact sequences follows as in the homological case. Since the projective
functor Pt is finitely generated and k-free, the functor P ∗t is injective. The universal co-
efficient spectral sequence 4.23 yields that these modules are acyclic. But then all other
injective modules are acyclic, too, since they are direct summands of products of these.
Finally let G : Epi+n

op → k-mod be an arbitrary functor. Then the zeroth En-cohomology
of G is by definition the kernel of

(−1)n−1G(δ0, id, ..., id) + (−1)nG(d0, id, ..., id) + (−1)n+1G(δ1, id, ..., id).

The Yoneda lemma identifies this with the kernel of

(−1)n−1((δ0, id, ..., id)∗)
∗ + (−1)n((d0, id, ..., id)∗)

∗ + (−1)n+1((δ1, id, ..., id)∗)
∗ :

NatEpi+n
(P [0]→...→[0], G)→ NatEpi+n

(P [1]→[0]→...→[0], G).

Since the functor NatEpi+n
(−, G) is left exact it takes finite colimits to limits, and in particu-

lar maps cokernels to kernels. Hence the above kernel is the result of applying NatEpi+n
(−, G)

to the cokernel of

(−1)n−1(δ0, id, ..., id)∗ + (−1)n(d0, id, ..., id)∗ + (−1)n+1(δ1, id, ..., id)∗,

i.e. to b.
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4.4 Spectral sequences and examples

We need methods to calculate En-homology and -cohomology. First we record the following
universal coefficient spectral sequence from [20, Proposition 13.2.2]

Proposition 4.30. Let A be a commutative nonunital k-algebra and M a symmetric A-
bimodule. There are spectral sequences

E2
p,q = TorA+

p (HEn
q (A;A+),M)⇒ H

A+
p+q(A;M)

and
Ep,q2 = ExtpA+

(HEn
q (A;A+),M)⇒ Hp+q

A+
(A;M).

There also is the following generalization of the spectral sequence in [41, Proposition 3.13]
which allows to compute En-homology iteratively for even n.

Proposition 4.31. For even n let 1 ≤ j < n. Let A be k-projective. If H
Ej
∗ (A;A+) is

A+-flat then there is a spectral sequence of A+-modules with

E1
p,q =

⊕
T an n− j-level tree with s+ 1 leaves,

d(T )=q+n−j

(Σsj(HEj (A;A+)⊗A+
s+1))p ⇒ HEn

p+q(A;A+).

The differential d1 is induced by ∂1 + ...+ ∂n−j.

Proof. We can write Tot(CEn(A;A+)) as the total complex associated to the bicomplex

Da,b(A;A+) =
⊕

a=rn+..+rn−j+1

⊕
b=rn−j+...+r1

Crn,rn−1,...,r1(A;A+)

with horizontal differential ∂n−j+1 + ... + ∂n and vertical differential ∂1 + ... + ∂n−j . Thus
we get a spectral sequence with

E1
p,q =

⊕
q=rn−j+...+r1

Hp(C∗,...,∗,rn−j ,...,r1(A;A+), ∂n−j+1 + ...+ ∂n)⇒ HEn
p+q(A;A+).

Now observe that a n-level tree t = [rn]
fn // ...

f2 // [r1] is built from the (n − j)-level

tree T = [rn−j ]
fn−j // [rn−2] // ... // [r1] and the j-level trees t0, ..., trn−j over the

leaves of T . We will write t = ((t0, ..., trn−j ), T ) to indicate this. Observe that applying
∂n−j+1 + ...+ ∂n does not change the associated (n− j)-tree, i.e. we can decompose D into
the subcomplexes

DT
a =

⊕
t=((t0,...,trn−j ),T ),

d(t0)+...+d(trn−j )−j=a

L(A;A+)(t)
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as
Da,b =

⊕
d(T )−n+j=b

DT
a .

To understand the grading, recall that elements in Tot(CEn(L(A;A+))) corresponding to a
tree t have degree d(t)− n. Hence

E1
p,q =

⊕
deg(T )=q

Hp(D
T , ∂n−j+1 + ...+ ∂n).

To identify this last term consider

Tot(C
Ej
∗ (A;A+))⊗A+ (Tot(C

Ej
∗ (A;A+)))⊗A+

rn−j → (Σ−rn−jjDT , ∂n−j+1 + ...+ ∂n)

given by identifying the summand

L(A;A+)(t0)⊗A+ L(A;A+)(t1)⊗A+ ...⊗A+ L(A;A+)(trn−j )

of ((Tot(CEj (A;A)))⊗rn−j+1)d(t0)+...+d(trn−j )−rn−j(j+1) with

L(A;A+)(t) ⊂ DT
d(t0)+...+d(trn−j )−j .

To see that this is coherent with signs, we make the following comparison for 0 ≤ i ≤ rn−j
and 1 ≤ l ≤ j: In L(A;A+)(t) ⊂ CEn∗ (L(A;A+)) the signs associated to the summands of
∂n−j+l applied to the j-level subtree ti differ from the signs of the corresponding differential

∂l on L(A;A+)(ti) ⊂ C
Ej
∗ (L(A;A+)) by (−1)n−j+

∑i−1
x=0(d(tx)+n−j). On the other hand, we

pick up a factor (−1)
∑i−1
x=0(d(tx)−j) if we want to apply ∂l to the (i + 1)th tensor factor of

L(A;A+)(t0)⊗A+ L(A;A+)(t1)⊗A+ ...⊗A+ L(A;A+)(trn−j ). Since n is even, the difference
in signs does not depend on t. Under the conditions stated in the theorem this yields the
result.

We use this result to compute E2-homology and cohomology of a polynomial algebra.
Hochschild homology of polynomial algebras is well known, see [43, 3.2].

Proposition 4.32. The E1-homology of k[x] with coefficients in itself is concentrated in
degree zero, where it is

HE1
0 (k[x], k[x]) = k[x].

The following result agrees with the calculations in characteristic 0 and 2 in [57] and with
the results for k = Fp in [10].

Proposition 4.33. The E2-homology of k[x] with coefficients in k[x] is given by

HE2
l (k[x], k[x]) =

{
k[x], l even,

0, l odd.
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Proof. We find that for the spectral sequence 4.31 applied to n = 2 and j = 1

E1
p,q =

⊕
T a 1-level tree with s+ 1 leaves,

deg(T )=q

(Σsk[x])p.

But if deg(T ) = q then T has q + 1 leaves. Hence we see that

E1
p,q =

{
k[x], p = q ≥ 0,

0, p 6= q

and the spectral sequence collapses.

Since HE2
∗ (k[x], k[x]) is k[x]-free, the universal coefficient spectral sequences allows more

general calculations.

Corollary 4.34. Let M be a symmetric k[x]-module. Then

HE2
l (k[x];M) =

{
M, l even,

0, l odd

and similarly

H l
E2

(k[x];M) =

{
M, l even,

0, l odd.

Remark 4.35. Let us exhibit explicit generating cycles in CE2
∗ (k[x], k[x]): Consider the

fork tree Fl = [l]
id // [l] and

1⊗ x⊗l+1 ∈ L(k[x], k[x])(Fl).

This is a cycle. An element in L(k[x], k[x])(Fl) can only be hit by the differential of an

element in L(k[x], k[x])( [l + 1]
fi // [l] ) with

fi(j) =

{
j, j ≤ i,
j − 1, j > i.

A calculation shows that no such element gets mapped to 1 ⊗ x⊗l+1. Since we know that
HE2

2l (k[x], k[x]) is k[x]-free, we see that the above cycle is a k[x]-generator. It follows that

if we endow HE2
∗ (k[x], k[x]) with the shuffle product (see lemma 6.10) arising from the bar

construction, it is the augmentation ideal of the shifted k[x]-algebra k[x] ⊗ Σ−2Γ(y) with
|y| = 2.
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5 Functor cohomology and cohomology operations

We recall the definition of the Yoneda pairing on Ext. The Yoneda pairing is usually defined
in the context of modules over a ring (see e.g. [46, III.5, III.6]), but is well known to be easily
generalized to suitable abelian categories with enough projectives and injectives. Since we
are interested in En-cohomology we assume that k is k-injective in this section.

Definition 5.1. Let F,G and H be functors from Epi+n
op

to k-mod. Let PF denote a
projective resolution of F and IH an injective resolution of H. There is a pairing

µ : Ext∗
Epi+n

(G,H)⊗ Ext∗
Epi+n

(F,G)→ Ext∗
Epi+n

(F,H),

defined as the composite

Extm
Epi+n

(G,H)⊗ Extn
Epi+n

(F,G)

Hm(NatEpi+n
(G, IH))⊗Hn(NatEpi+n

(PF , G))

��
Hn+m(NatEpi+n

(G, IH)⊗NatEpi+n
(PF , G))

��
Hn+m(NatEpi+n

(PF , IH)) = Extn+m
Epi+n

(F,H).

Here the second map is induced by composing natural transformations. This pairing is
associative, i.e. the diagram

Ext∗
Epi+n

(G,H)⊗ Ext∗
Epi+n

(F,G)⊗ Ext∗
Epi+n

(E,F )
µ⊗Ext∗

Epi+n
(E,F )
//

Ext∗
Epi+n

(G,H)⊗µ
��

Ext∗
Epi+n

(F,H)⊗ Ext∗
Epi+n

(E,F )

µ

��
Ext∗

Epi+n
(G,H)⊗ Ext∗

Epi+n
(E,G)

µ // Ext∗
Epi+n

(E,H)

commutes. The pairing is called the Yoneda pairing.

Example 5.2. Similarly one can define a Yoneda pairing for the Ext-groups associated to
modules over a unital ring R. In particular, if R is a projective k-algebra, we can define
the cup product on Hochschild cohomology via the Yoneda product. Recall that since R is
k-projective we can calculate its Hochschild cohomology as

HH∗(R;R) = Ext∗R⊗Rop(R;R)
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with Rop the opposite of R. The usual cup product on Hochschild cohomology and the
Yoneda product coincide ([62]).

In particular there is a natural action of Ext∗
Epi+n

(b, b) = H∗En(b) on En-cohomology. To

identify H∗En(b) we first examine b and its dual b∗. For the remainder of this section we will
denote b : Epi+n → k-mod by bn since we will have to consider trees of varying levels.

Proposition 5.3. The representing functor bn can be identified with the functor mapping a

tree t = [rn]
fn // ...

f2 // [r1] to the free k-module k〈[rn]〉 generated by the set [rn]. Denote

the generators of k〈[rn]〉 by 0, ..., rn. Then with respect to this identification the functor bn
induces the following morphisms:

bn(τn, ..., τj+1, di, id, ..., id) : k〈[rn]〉 → k〈[rn]〉, m 7→ τ−1
n (m)

for permutations τj+1, ..., τn,

bn(di, id, ..., id) : k〈[rn]〉 → k〈[rn + 1]〉, m 7→


m, m < i

m+m+ 1, m = i,

m+ 1, m > i,

,

bn(δi, id, ..., id) : k〈[rn]〉 → k〈[rn + 1]〉, m 7→

{
m, m < i,

m+ 1, m ≥ i.

Proof. The k-module bn(t) is generated by elements that can be represented by a map from
t to [0] → .... → [0]. Such morphisms are completely determined by which interval in [rn]
is mapped to 0 ∈ [0]. In the same manner a morphism from t to [1] → [0] → ... → [0] can
be identified with two disjoint intervals in [rn], and such a pair of subsets (A,B) is sent to
A−A ∪B +B by the map

(δ0, id, ..., id)∗ − (d0, id, ..., id)∗ + (δ1, id, ..., id)∗

of which bn is the cokernel. In particular, if M = {m1 < ... < ml} ⊂ [rn] represents a
morphism to the tree with a single leaf and if l > 1, there is a morphism to the palm tree
[1] // [0] // ... // [0] with two leaves represented by ({m1}, {m2, ...,ml}). Hence

M and the formal sum {m1}+ {m2, ...,ml} coincide in bn(t). Iterating this we see that M
is equivalent to {m1}+ ...+ {ml}. On the other hand every singleton {m} for 0 ≤ m ≤ rn
represents the following map from t to the tree with one leaf:

[rn] //

m 6=x 7→+,m 7→0

��

[rn−1] //

x 7→0
��

... // [r1]

x 7→0
��

[0] // [0] // ... // [0]
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Hence all sets {m} do indeed represent a morphism. Since all of the imposed relations
in the cokernel consist of splitting up a set into two subsets, bn(t) can be identified with
k〈[rn]〉, with m representing the morphism above for m ∈ [rn]. Using this the induced
maps are easily calculated to be the ones above. For example, precomposing the morphism
represented by m with (δi, id, ..., id) and evaluating this on x ∈ [rn] yields

m ◦ (δi, id, ..., id)(x) =


m(x), x < i

m(+), x = i,

m(x− 1), x > i.

=



+, x < i and m ≥ i,
+, x < i and m < i and x 6= m,

0, x < i and m < i and x = m,

+, x = i,

+, x > i and m ≥ i and x− 1 6= m,

0, x > i and m ≥ i and x− 1 = m,

+, x > i and m < i.

=

{
m(x), m < i,

m+ 1(x), m ≥ i.

Since we are going to work homologically we determine b∗n as well.

Corollary 5.4. The dual b∗n of bn assigns k〈[rn]〉 to the tree t = [rn]
fn // ...

f2 // [r1] .

Denoting the generators of k〈[rn]〉 by α0, ..., αrn, it induces the maps

b∗n(τn, ..., τj+1, di, id, ..., id) : k〈[rn]〉 → k〈[rn]〉, αm 7→ ατ−1
n (m)

for permutations τj+1, ..., τn,

b∗n(di, id, ..., id)∗ : k〈[rn + 1]〉 → k〈[rn]〉, αm 7→

{
αm, m ≤ i,
αm−1, m > i,

b∗n(δi, id, ..., id)∗ : k〈[rn + 1]〉 → k〈[rn]〉, αm 7→


αm, m < i,

0, m = i,

αm−1, m > i.

We start with calculating the E1-cohomology of b1 and then deduce the general result from
this calculation.
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Proposition 5.5. For n = 1 we have

Hr
E1

(b1) ∼= HE1
r (b∗1) = 0

for r > 0 and
H0
E1

(b1) ∼= HE1
0 (b∗1) = k.

Proof. Since the complex calculating HE1
∗ (b∗1) is k-free, the result for cohomology follows

from the homological result via the universal coefficient spectral sequence 4.23. Let us
determine the differentials of the homological chain complex CE1

∗ (b∗1): The rth differential
is

d(r) := δ0 − d0 + ...+ (−1)r+1dr + (−1)r+2δr+1 : r〈α0, ..., αr+1〉 → r〈α0, ..., αr〉.

For m ∈ [r + 1] this yields

d(r)(αm)

= δ0(αm)−
m−1∑
i=0

(−1)iαm−1 −
r∑

i=m

(−1)iαm + (−1)rδr+1(αm)

=


−
∑r

i=0(−1)iα0 + (−1)rα0, m = 0,

αm−1 −
∑m−1

i=0 (−1)iαm−1 −
∑r

i=m(−1)iαm + (−1)rαm, 0 < m < r + 1,

αr −
∑r

i=0(−1)iαk, m = r + 1,

=


−δr,evenα0 + (−1)rα0, m = 0,

αm−1 − δm−1,evenαm−1 − δr−m,even(−1)rαm + (−1)rαm, 0 < m < r + 1,

αr − δr,evenαr, m = r + 1.

Hence for r even we get

d(r)(αm) =


0, m = 0,

αm−1, 0 < m < r + 1,m even,

αm, 0 < m < r + 1,m odd,

0, m = r + 1,

whereas for r odd we get

d(r)(αm) =


−α0, m = 0,

αm−1 − αm, 0 < m < r + 1,m even,

0, 0 < m < r + 1,m odd,

αk, m = r + 1.
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Accordingly the kernel of d(2l) is generated by α0, α2l+1 and elements of the form α2j−1 −
α2j , j = 1, ..., l, which is exactly the image of d(2l+1). On the other hand, the image of

d(2l+2) is generated by those αm with m ∈ [2l + 2] odd, while
∑2l+1

i=0 λiαi is an element of
the kernel of d(2l+1) if and only if λ2m = 0 for all m. Hence the complex in question is
acyclic, with Im(d(0)) = 0 and hence H0(CE1

∗ ) = b∗1([0]) = k as claimed.

To prove the result for n > 1 we first show that H∗(C(∗,rn−1,...,r1)(b
∗
n), ∂n) vanishes whenever

rn−1 ≥ 1. For this we need the following lemma.

Lemma 5.6. Let F : Epi+n → k-mod be a functor and r1, ..., rn−1 ≥ 0. Then

Σ−r1−...−rn−1(CEn(∗,rn−1,...,r1)(F ), ∂n)

is isomorphic to the total complex associated to the rn−1-fold multicomplex

Da0,...,arn−1
(F ) =

⊕
t= [rn]

fn // ...
f2 // [r1] ,

|f−1
n (0)|=a0+1,|f−1

n (i)|=ai

F (t)

with ith differential di the part of ∂n induced by morphisms operating on the fiber f−1
n (i).

Furthermore we can split D into submulticomplexes corresponding to the underlying (n−1)-
level tree, i.e.

Da1,...,arn−1
(F ) =

⊕
T= [rn−1]

fn−1 // ...
f2 // [r1]

(DT
a1,...,arn−1

, d0, ..., drn−1)

with
DT
a1,...,arn−1

=
⊕

t= [rn]
fn // ...

f2 // [r1] ,

|f−1
n (0)|=a0+1,|f−1

n (i)|=ai

F (t).

Proof. The differential ∂n is the sum of the maps di acting on one of the fibers f−1
n (i).

Two such differentials di and dj commute except for their signs: Since di deletes an edge
left of f−1

n (j) for i < j, we find that didj = −djdi. Hence it is clear that up to a shift
we can interpret CEn(∗,rn−1,...,r1)(F ) as a total complex as above. Let us check that we chose

the right shift of degrees: If t = [rn]
fn // ...

f2 // [r1] such that |f−1
n (0)| = a0 + 1 and

|f−1
n (i)| = ai for i > 0 then rn = a0 + ... + arn−1 . The summand F (t) has total degree

r1 + ...+ rn − (r1 − ...− rn−1) = rn in Σ−r1−...−rn−1CEn(∗,rn−1,...,r1)(F ) and hence this degree

and the total degree in D of elements in F (t) coincide. Since all the differentials di leave
the lower levels of a tree t as they were it is clear that the splitting above holds, allowing
us to consider one (n− 1)-tree shape at a time.
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Theorem 5.7. For all n ≥ 0

HEn
s (b∗n) =

{
k, s = 0,

0, s > 0.

Proof. Fix rn−1 ≥ 1, rn−2, ..., r1 ≥ 0. We will prove that H∗(C
En
(∗,rn−1,...,r1)(F ), ∂n) vanishes.

Let T be a (n − 1)-level tree T = [rn−1]
fn−1 // ...

f2 // [r1] . Consider the corresponding

summand DT of the multicomplex D(b∗n). According to lemma 5.6 it suffices to show that
the homology of the total complex associated to DT is trivial for all trees T as above.
Let us start by calculating the homology of DT in the zeroth direction, i.e. for each given
a1, ..., arn−1 ≥ 1 we consider the complex

(DT
∗,a1,...,arn−1

, d0) = (
⊕

t= [rn]
fn // ...

f2 // [r1] ,

|f−1
n (0)|=∗+1,|f−1

n (i)|=ai

F (t), d0).

Since we fixed T there is exactly one tree t = [rn]
fn // ...

f2 // [r1] with |f−1
n (0)| = p+ 1

and |f−1
n (i)| = ai for each p. Let p + q = rn. The differential d0 maps αj ∈ b∗n(t) =

k〈α0, ..., αp+q〉 to

(−1)n−1b∗n(δ0, id, ..., id)(αj)

+

p−1∑
i=0

(−1)n+ib∗n(di, id, ..., id)(αj)

+ (−1)n+pb∗n(δp, id, ..., id)(αj).

Applied to elements with j ≤ p this coincides up to a sign (−1)n−1 with the image of
αj ∈ b∗1([p]) under the differential dHH of CE1

∗ (b∗1) calculated in proposition 5.5. If j > p
all the induced morphisms are the identity. One easily checks that those add up to 0 if p is
even and that αj is sent to (−1)n−1αj−1 if p is odd. Hence (DT

∗,a1,...,arn−1
, d0) is isomorphic

to

...
dHH⊕0// b∗1([3])⊕ kq d

HH⊕id// b∗1([2])⊕ kq d
HH⊕0// b∗1([1])⊕ kq d

HH⊕id// b∗1([0])⊕ kq

and Hp(D
T
∗,a1,...,arn−1

, d0) is concentrated in degree p = 0 where it is k. We showed in

proposition 5.5 that HE1
0 (b∗1) = b∗1([0]), hence a cycle in H0(DT

∗,a1,...,arn−1
, d0) is given by

α0 ∈ b∗n(t0,a1,...,arn−1 ) where t0,a1,...,arn−1 is the tree extending T with top fibers of arity
1, a1, ..., arn−1 .
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We now determine how d1 acts on these cycles. The differential d1 is induced by morphisms
acting on leaves in the second to left top fiber. All of these leave the leftmost leaf invariant
and hence each of the induced maps sends α0 to α0. Hence for fixed a2, ..., arn−1 ≥ 1 the
chain complex (H0(DT

∗,∗,a2...,arn−1
, d0), d1) is one-dimensional on the generator α0 in each

degree r with differential

d1(α0)

= (−1)n(−1)n−1b∗n(δ1, id, ..., id)(α0) + (−1)n(−1)n
r−1∑
i=1

(−1)i−1b∗n(di, id, ..., id)(α0)

+(−1)n(−1)n+r−1b∗n(δr, id, ..., id)(α0)

= (−1)2n−1
r∑
i=0

(−1)iα0.

Hence the homology of (H0(DT
∗,∗,a2...,arn−1

, d0), d1) vanishes completely and the homology of

the total complex of DT is zero. This holds for all trees T = [rn−1]
fn−1 // ...

f2 // [r1] with

rn−1 ≥ 1. Hence (CEn(∗,rn−1,...,r1)(b
∗
n), ∂n) has trivial homology as well, whenever rn−1 ≥ 1.

If rn−1 = 0 this forces rn−2, ..., r1 = 0 . But one easily sees that (CEn(∗,0,...,0)(b
∗
n), ∂n) is

isomorphic to CE1
∗ (b∗1), hence has homology concentrated in degree zero where it is k.

Since En-homology is the homology of the total complex associated to a multicomplex with
(CEn(∗,rn−1,...,r1)(b

∗
n), ∂n) the complex in nth direction, a standard spectral sequence argument

yields the result.

Corollary 5.8. En-cohomology of bn is trivial in positive degrees and equals k in degree
zero. In particular no nontrivial cohomology operations arise on En-cohomology via the
Yoneda pairing defined in 5.1.

Remark 5.9. One possible explanation for the vanishing of H∗En(bn) = Ext∗
Epi+n

(bn, bn) is

that bn : Epi+n → k-mod might be injective, but we were not able to verify this.
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6 Higher order Hochschild homology

Higher order Hochschild homology is a generalization of Hochschild homology based on
the observation that Hochschild homology can be computed as the homotopy groups of a
simplicial k-module obtained by evaluating the Loday functor on a sphere. In [41, 3.1] it is
shown that En-homology of a commutative algebra coincides with higher order Hochschild
homology of that algebra up to a shift in degree. In this section we establish that this
comparison also holds for arbitrary coefficients and for cohomology.

6.1 Definition of higher order Hochschild homology

Higher order Hochschild homology has been introduced by Teimuraz Pirashvili in [52, 5].
Pirashvili defines higher order Hochschild homology HH [n] and proves that over the ra-
tionals HH [n] has a decomposition, called the Hodge decomposition, which generalizes the
well known λ-decomposition for ordinary Hochschild homology (see e.g. [43, 4.5]). In [26]
Grégory Ginot defines higher order Hochschild cohomology HH[n] and uses a geometric
approach to study additional structures on HH[n] like Adams operations and a Lie bracket.
Higher order Hochschild homology is also related to factorization homology, see [27].
Let A be a nonunital algebra and M a symmetric A-bimodule. It is well known (see e.g.
[54, 1.5]) that Hochschild homology of A+ = A⊕ k with coefficients in M can be computed
as

HH(A+;M) = π∗(L+(A,M)(S1))

where we need to consider an unreduced version L+(A,M) of L(A,M) in order to get a
functor from the category ∆+ of finite pointed sets and order preserving pointed maps to
k-modules. Indeed, if A is commutative, L+(A,M) is a functor from finite pointed sets
Fin∗ to k-mod. This observation led to defining higher order Hochschild homology as the
homotopy groups of L+(A,M) evaluated on a higher dimensional sphere.
For the rest of this chapter we fix a commutative nonunital algebra A and a symmetric
A-bimodule M . We first recall some basic facts about simplicial and cosimplicial k-modules
and then give the definitions of higher order Hochschild homology and cohomology. Back-
ground on the following simplicial constructions can be found in [28, III.2].

Definition 6.1. For a cosimplicial k-module C : ∆ → k-mod with coface maps δi and
codegeneracies σi the associated normalized Moore cochain complex N(C) is given by

N(C)l =
l−1⋂
i=0

ker(σi) ⊂ C l

and differential
l+1∑
i=0

(−1)iδi : N(C)l → N(C)l+1.
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Lemma 6.2 ([28, p.153, p.393]). For any simplicial k-module K there is a natural isomor-
phism

π∗(K) ∼= H∗(N(K))

between the homotopy groups of K and the homology of the normalized Moore chain complex
N(K) associated to K. Similarly, the cohomotopy groups of a cosimplicial k-module C can
be computed as

π∗(C) ∼= H∗(N(C))

and this isomorphism is natural.

We need versions of L(A,M) and Lc(A,M) which are defined on Fin∗, hence we need to
work with A+ rather than with A as in definition 4.17.

Definition 6.3. Consider r+ = {1, ..., r} t {+} as a finite pointed set with basepoint + for
r ≥ 0. The functors

L+(A,M) : Fin∗ → k-mod and Lc+(A,M) : Finop
∗ → k-mod

are defined on the skeleton r+, r ≥ 0 by setting

L+(A,M)(r+) = M ⊗A⊗r+

and
Lc(A,M)(r+) = Homk(A

⊗r
+ ,M).

A basepoint-preserving map f : r+ → s+ induces maps given by

(L+(A,M)(f))(m⊗ a1 ⊗ ...⊗ ar) =

m · ∏
i:f(i)=+

ai

⊗
 ∏
i:f(i)=1

ai

⊗ ...⊗
 ∏
i:f(i)=s

ai


and

(Lc+(A,M)(f))(g) =

a1 ⊗ ...⊗ ar 7→

 ∏
i:f(i)=+

ai

 · g(
∏

i:f(i)=1

ai, ...,
∏

i:f(i)=s

ai)


where g ∈ Homk(A

⊗s
+ ,M) and

∏
∅ ai = 1 ∈ A+.

Definition 6.4 ([52, 5.1]). Denote by L+(A,M)(Sn) : ∆op → k-mod the simplicial k-
module obtained by composing a simplicial n-sphere Sn with L+(A,M). The Hochschild
homology of order n of A+ with coefficients in M is

HH
[n]
∗ (A+;M) = π∗(L+(A,M)(Sn)).
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Similarly, let Lc+(A,M)(Sn) : ∆ → k-mod be the cosimplicial k-module obtained by com-
posing a simplicial n-sphere with the contravariant functor Lc+(A,M). The Hochschild
cohomology of order n is given by

HH∗[n](A+;M) = π∗(L
c
+(A,M)(Sn)).

Remark 6.5. The higher order Hochschild homology and cohomology groups are indepen-
dent of the choice of a concrete model for Sn, see [52], [26].

In the rest of this section we will prove a generalization of the following result.

Proposition 6.6 ([41, 3.1]). For a k-projective nonunital k-algebra A and trivial coefficients
En-homology coincides with higher order Hochschild homology up to a degree shift, i.e.

HEn
∗ (A; k) ∼= HH

[n]
∗+n(A+; k)

for ∗ ≥ 0.

6.2 Simplicial commutative algebras

Denote by sS the category of simplicial sets and by sS∗ the category of pointed simplicial
sets. The category sS is a simplicial model category by [55, II.3]. Hence sS∗ is what one
might call a pointed simplicial model category, see e.g. [36, Proposition 4.2.9]. In particular
there is an operation

∧ : sS∗ × sS∗ → sS∗, (K,L) 7→ K ∧ L

and an internal hom object

HomsS∗(K,L)i = HomsS∗(K o ∆i, L),

as well as an adjunction

HomsS∗(K ∧ L,M) ∼= HomsS∗(K,HomsS∗(L,M)).

Here ∆i is the simplicial i-simplex with ∆i(a) = ∆([a], [i]) and for pointed simplicial sets
K and L we set

K o L = K × L/ ∗ ×L.

A corresponding structure is present for the category sAlgk of simplicial commutative aug-
mented k-algebras by [55, II.4]: We define an action of sS∗ on sAlgk by

⊗ : sAlgk × sS∗ → sAlgk, (X,K) 7→
⊗
Kn\∗

Xn,
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using that the tensor product is the coproduct in the category of commutative augmented
k-algebras. We will also write ⊗k for ⊗ to indicate the ground ring we are working with.
The simplicial mapping space HomsAlgk is given by

HomsAlgk(X,Y )i = HomsAlgk(X ⊗∆i, Y ),

where (X ⊗ ∆i)m =
⊗

α∈∆i(m)Xm. The simplicial set HomsAlgk(X,Y ) is pointed with
basepoints given by the composite ηε of the augmentation ε of X ⊗ ∆i and the unit η of
Y . According to [36, 4.2.19] these definitions make sAlgk a sS∗-model category, which in
particular implies the following adjunction:

Proposition 6.7. There is an adjunction

HomsAlgk(X⊗K,Y ) ∼= HomsS∗(K,HomsAlgk(X,Y )).

We will also need the following result stating that sS∗ indeed acts on sAlgk, which also
follows from [36, 4.2.19].

Proposition 6.8. For any simplicial commutative augmented k-algebra X

(X⊗kK)⊗kL ∼= X⊗k(K ∧ L)

as simplicial commutative augmented k-algebras.

6.3 Higher order Hochschild homology and cohomology coincides with
En-homology and cohomology

We want to compare higher order Hochschild homology and cohomology with En-homology
and cohomology. Our approach, especially the proof of proposition 6.13, is based on ideas
contained in recent work by Bobkova-Lindenstrauss-Poirier-Richter-Zakharevich. In [10,
Corollary 8.4] they establish a comparison of higher order Hochschild homology and an
iterated bar construction in a simplicial setting.
For X,Y ∈ sAlgk we denote by X ⊗ Y the bisimplicial augmented commutative algebra
with

(X ⊗ Y )a,b = Xa ⊗ Yb.

For a bisimplical object Z let d(Z) be its diagonal. Recall that the shuffle map

∇ : N(X)⊗N(Y )→ N(d(X ⊗ Y ))

is defined by

∇(x⊗ y) =
∑

σ∈sh({0,...,p−1},{p,...,p+q−1})

sgn(σ)sσ(p+q−1)...sσ(p)x⊗ sσ(p−1)...sσ(0)y
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for x ∈ Np(X) and y ∈ Nq(Y ). The shuffle map makes N a lax symmetric monoidal functor
from the category of simplicial k-modules to nonnegatively graded chain complexes. Hence
N maps a simplicial augmented commutative k-algebra to a differential graded commutative
augmented k-algebra. More precisely for X ∈ sAlgk with product µ : d(X ⊗ X) → X we
can make N(X) into a differential graded commutative augmented k-algebra if we define
the product as

N(X)⊗N(X)
∇ // N(d(X ⊗X))

N(µ) // N(X) ,

see [17, II.7], see also [56].
We will be using several variants of the bar construction in this subsection. Recall that the
bar construction B(M,A,N) can be defined in any monoidal category for a monoid A, a
right module M over A and a left module N over A. The cases we will be interested in are
the following:

1. We will use the bar construction B(k,X, k) of a simplicial commutative augmented
k-algebra X with coefficients in k. This is the bisimplicial commutative augmented
k-algebra with

Bi,j(k,X, k) = X⊗ij

with multiplication
X⊗ij ⊗X

⊗i
j
∼= (Xj ⊗Xj)

⊗i → X⊗ij

induced by the multiplication of X.

2. We will also need the bar construction B(k,C∗, k) associated to a differential graded
commutative augmented algebra C∗. This is the simplicial differential graded com-
mutative augmented algebra with

Bi(k,C∗, k)j = (C⊗i∗ )j

with multiplication again induced by the multiplication of C∗. By Tot(N(B(k,C∗, k)))
we denote the total complex of its normalization with respect to the simplicial struc-
ture, this is then again a differential graded commutative augmented k-algebra via
the shuffle map.

3. We denote by B(D∗) the reduced bar construction as defined in definition 3.14 associ-
ated to a nonunital differential graded commutative algebra D∗. The shuffle product
makes B(D∗) a (nonunital) differential graded commutative k-algebra. Note that
B(D∗) is the augmentation ideal of Tot(N(B(k, (D∗)+, k))).

Hence (see also [41, 3.1]) for a commutative nonunital k-algebra A the n-fold bar construc-
tion Bn(A) can be expressed via the simplicial bar construction as the augmentation ideal
of

Tot(N(B(k,N(B(k, ..., N(B(k,A+, k)), ..., k)), k))),
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which implies that

HEn
∗ (A; k) = H∗(Σ

−nTot(N(B(k,N(B(k, ..., N(B(k,A+, k)), ..., k)), k))))

if A is k-projective. On the other hand,

HH
[n]
∗ (A+; k) = H∗(N(L+(A, k)(Sn))).

We will compare both N(B(k,N(B(k, ..., N(B(k,A+, k)), ..., k)), k)) and N(L+(A, k)(Sn))
with the normalized Moore complex

N(d(B(k,B(k, ...B(k,A+, k)..., k), k)))

of the diagonal of the n-fold simplicial k-algebra B(k,B(k, ...B(k,A+, k), k), k)). The key
to this comparison is the following lemma.

Lemma 6.9. Let X be an augmented simplicial commutative k-algebra. Then there is a
quasiisomorphism

Tot(N(B(k,N(X), k)))→ N(d(B(k,X, k)))

of commutative differential graded augmented k-algebras.

Before we prove the lemma, let us recall the following correspondence between compositions
and shuffles. A (p, q)-composition consists of two disjoint subsets P and Q of {0, ..., p+q−1}
with |P | = p and |Q| = q. There is a bijection between the set of shuffles of {0, ..., p − 1}
with {p, ..., p+ q− 1} and the set comp(p, q) of (p, q)-compositions given by identifying σ ∈
sh({0, ..., p− 1}, {p, ..., p+ q− 1}) with the composition (P,Q) with P = {σ(0), ..., σ(p− 1)}
and Q = {σ(p), ..., σ(p+ q − 1)}. The signum of σ can be calculated from (P,Q) by noting
that it picks up a factor −1 for every pair x, y ∈ {0, ..., p + q − 1} with x < y, but x ∈ Q
and y ∈ P . We set sgn(P,Q) = sgn(σ).
Generalizing this we call pairwise disjoint subsets A(1), ..., A(s) of {0, ..., j1 + ...+ js − 1} a
(j1, ..., js)-composition if |A(i)| = ji for all 1 ≤ i ≤ s. The signum of (A(1), ..., A(s)) picks up
a factor −1 for every pair x, y ∈ {0, ..., j1 + ...+js−1} such that x < y but x ∈ A(a), y ∈ A(b)

with b < a. The set of (j1, ..., js)-compositions can be identified with the set of shuffles of
{0, ..., j1 − 1},...,{j1 + ...+ js−1, ..., j1 + ...+ js − 1}.
Using this we can write the shuffle map ∇ : N(X)⊗N(Y )→ N(d(X ⊗ Y )) as

∇(x⊗ y) =
∑

(P,Q)∈comp(p,q)

sgn(σ)sQx⊗ sP y

with sI = sit ...si1 for a set I = {i1 < ... < it} of nonnegative integers.
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Proof. Let Y be a bisimplicial commutative augmented algebra with horizontal and vertical
degeneracies s′i and s′′i and horizontal and vertical face maps d′i and d′′i . Then the associated
normalized total complex Tot(Y ) is the total complex associated to the bicomplex B∗,∗ given
by

Bp,q = Yp,q/Z

with Z =
∑p−1

i=0 Ims′i +
∑q−1

i=0 Ims′′i and differentials

dh =

p∑
i=0

(−1)pd′i and dv =

q∑
i=0

(−1)qd′′i .

Consider the bisimplicial shuffle map ∇bi : Tot(Y ) → N(d(Y )) given by mapping y ∈ Yp,q
to

∇bi(y) =
∑

(P,Q)∈comp(p,q)

sgn(P,Q)s′Qs
′′
P (y).

Then ∇bi is a quasiisomorphism, see e.g. [15, Satz 2.9]. On the other hand, the complex
Tot(N(B(k,N(X), k))) is the total complex associated to the double complex

Cp,∗ = N(X)⊗p/

p−1∑
i=0

ImsBi

with sBi the degeneracies of the bar construction B(k,N(X), k) and differentials induced by
the differential of N(X) and by the face maps of B(k,N(X), k). Now let Y = B(k,X, k).
For every l ≥ 0 there is a quasiisomorphism

∇(l) : N(X)⊗l → N(d(X⊗l))

given by iterated application of ∇X : N(X)⊗N(X)→ N(d(X ⊗X)). Since ∇X is strictly
associative (see [14, Exercise 12.2]) the concrete choices made for ∇(l) do not matter and
we see that

∇(l)(x1, ..., xl) =
∑

(A(1),...,A(l))∈comp(j1,...,jl)

(sX
A(2)t...tA(l)(x1), ..., sX

A(1)t...tA(l−1)(xl))

for (x1, ..., xl) ∈ Xl1⊗ ...⊗Xjl . Applying ∇(p) to the pth column in the double complex C∗,∗
yields a map from C∗,∗ to B∗,∗. Since this map induces a quasiisomorphism on each column
it induces a quasiisomorphism Tot(C∗,∗)→ Tot(B∗,∗), see [59, Exercise 10.12]. Hence

Tot(N(B(k,N(X), k)))
∇(∗)

// Tot(Y )
∇bi
// N(d(B(k,X, k)))

is a quasiisomorphism.
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To see that this quasiisomorphism respects products, observe that the shuffle map with
respect to the simplicial structure of the bar construction

∇B : N(B(k,N(X), k))⊗N(B(k,N(X), k))→ N(d(B(k,N(X), k)⊗2))

is a morphism of bicomplexes. We will denote the induced map Tot(N(B(k,N(X), k))) ⊗
Tot(N(B(k,N(X), k)))→ Tot(N(d(B(k,N(X), k)⊗2))) by ∇B as well. The product sh on
Tot(N(B(k,N(X), k))) is given by

Tot(N(B(k,N(X), k)))⊗ Tot(N(B(k,N(X), k)))
∇B // Tot(N(d(B(k,N(X), k)⊗2)))

∼= // Tot(N(B(k,N(X)⊗2, k)))
Tot(N(B(k,∇X ,k))) // Tot(N(B(k,N(d(X⊗2)), k)))

Tot(N(k,N(µ),k)) // Tot(N(B(k,N(X), k)))

with µ denoting the multiplication of X. The product on N(d(B(k,X, k))) is defined via
the shuffle map ∇diag with respect to the diagonal simplicial structure of d(B(k,X, k)) and
the bisimplicial commutative algebra structure

(Xq)
⊗p ⊗ (Xq)

⊗p ∼= (Xq ⊗Xq)
⊗p → (Xq)

⊗p

on B(k,X, k) induced by µ. We will denote the multiplication on d(B(k,X, k)) also by µ.
We need to show that the diagram

Tot(N(B(k,N(X), k)))
⊗Tot(N(B(k,N(X), k)))

sh

��

∇(∗)⊗∇(∗)
// Tot(Y )⊗ Tot(Y )

∇bi⊗∇bi// N(d(Y ))⊗N(d(Y ))

∇diag

��
N(d(d(Y )⊗ d(Y )))

N(µ)

��
Tot(N(B(k,N(X), k)))

∇(∗)
// Tot(Y )

∇bi // N(d(Y ))

commutes. Let d⊗(Y ⊗ Y ) be the diagonal bisimplicial set obtained by taking the diagonal
with respect to the tensor product, i.e.

d⊗(Y ⊗ Y )pq = Ypq ⊗ Ypq.
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Since µ : d⊗(Y ⊗ Y )→ Y is a morphism of bisimplicial sets the diagram

Tot(N(B(k,N(d(X⊗2)), k)))
∇(∗)

//

Tot(N(B(k,N(µ),k)))

��

Tot(d⊗(Y ⊗ Y ))
∇bi //

Tot(µ)

��

N(d(d⊗(Y ⊗ Y )))

N(µ)

��
Tot(N(B(k,N(X), k)))

∇(∗)
// Tot(Y )

∇bi // N(d(Y ))

commutes due to naturality of the occuring shuffle maps. Hence it suffices to show that the
diagram

Tot(N(B(k,N(X), k)))
⊗Tot(N(B(k,N(X), k)))

∇B
��

∇(∗)⊗∇(∗)
// Tot(Y )⊗ Tot(Y )

∇bi⊗∇bi// N(d(Y ))⊗N(d(Y ))

∇diag

��
Tot(N(d(B(k,N(X), k)⊗2)))

∼=
��

N(d(d(Y )⊗ d(Y )))

Tot(N(B(k,N(X)⊗2, k)))

Tot(N(B(k,∇X ,k)))
��

Tot(N(B(k,N(d(X⊗2)), k)))
∇(∗)

// Tot(d⊗(Y ⊗ Y ))
∇bi // N(d(d⊗(Y ⊗ Y )))

commutes. We first show that

(Xr)
⊗a ⊗ (Xs)

⊗b∇bi⊗∇bi//

∇B,Tot

��

(Xa+r)
⊗a+r ⊗ (Xb+s)

⊗b+s

∇diag

��

(Xr ⊗Xs)
⊗a+b

∇X
��

(X⊗a+b
r+s )⊗2 ∇bi // (X⊗a+b+r+s

a+b+r+s )⊗2

commutes for all a, b, r, s ≥ 0, where for (x1, ..., xa+b) ∈ (Xr)
⊗a⊗ (Xs)

⊗b the map ∇B,Tot is
defined by

∇B,Tot(x1, ..., xa, xa+1, ..., xa+b) =
∑

σ∈sh(a,b)

sgn(σ)σ.(x1⊗1s, ..., xa⊗1s, 1r⊗xa+1, ..., 1r⊗xa+b)

with 1r the unit element of Xr, 1s the unit of Xs and the usual left action by the symmet-
ric group given by σ.(y1, ..., ya+b) = (yσ−1(1), ..., yσ−1(a+b)). A quick calculation shows that

∇X∇B,Tot defines a map

Tot(Y )⊗ Tot(Y )→ Tot(d⊗(Y ⊗ Y )).
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We denote the degeneracies originating from the bar construction B(k,X, k) by sB and the
degeneracies of X by sX . The maps in the diagram are

∇diag(∇bi ⊗∇bi)(x1, ..., xa, xa+1, ..., xa+b)

= ∇diag

 ∑
(A,R)∈comp(a,r)
(B,S)∈comp(b,s)

±sXA sBR(x1, ..., xa)⊗ sXB sBS (xa+1, ..., xa+b)


=

∑
(U,V )∈comp(a+r,b+s)

(A,R)∈comp(a,r)
(B,S)∈comp(b,s)

±sXV sBV sXA sBR(x1, ..., xa)⊗ sXU sBU sXB sBS (xa+1, ..., xa+b)

and

∇bi∇X∇B,Tot(x1, ..., xa, xa+1, ..., xa+b)

= ∇bi

 ∑
(A,B)∈comp(a,b)
(R,S)∈comp(r,s)

±sXS sBB(x1, ..., xa)⊗ sXR sBA(xa+1, ..., xa+b)


=

∑
(I,J)∈comp(a+b,r+s)

(A,B)∈comp(a,b)
(R,S)∈comp(r,s)

±sXI sBJ (sXS s
B
B(x1, ..., xa)⊗ sXR sBA(xa+1, ..., xa+b)).

Here the summands of the first map are decorated by

sgn(U, V )sgn(A,R)sgn(B,S),

while those of the second map carry the sign

sgn(I, J)sgn(A,B)sgn(R,S).

The degeneracies originating from the bar construction and from X commute, hence the
two maps above are given by∑

(U,V )∈comp(a+r,b+s)
(A,R)∈comp(a,r)
(B,S)∈comp(b,s)

±sXV sXA sBV sBR(x1, ..., xa)⊗ sXU sXB sBU sBS (xa+1, ..., xa+b)

and ∑
(I,J)∈comp(a+b,r+s)

(A,B)∈comp(a,b)
(R,S)∈comp(r,s)

±sXI sXS sBJ sBB(x1, ..., xa)⊗ sXI sXR sBJ sBA(xa+1, ..., xa+b).
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We claim that both of these terms equal∑
(A,R,B,S)∈comp(a,r,b,s)

±sXAtBtSsBBtRtS(x1, ..., xa)⊗ sXAtBtRsBAtRtS(xa+1, ..., xa+b).

Since the arguments are analogous we will only consider the first map in question. Note
that

comp(a+ r, b+ s)× comp(a, r)× comp(b, s) ∼= comp(a, r, b, s).

The bijection is given concretely by assigning to compositions

(U = u1 < ... < ua+r, V = v1 < ... < vb+s),

(A = a1 < ... < aa, R = r1 < ... < rr),

(B = b1 < ... < bb, S = s1 < ... < ss)

the composition

(Ã = ua1 < ... < uaa , R̃ = ur1 < ... < urr , B̃ = vb1 < ... < vbb , S̃ = vs1 < ... < vss).

Observe that sgn(U, V )sgn(A,R)sgn(B,S) = sgn(Ã, R̃, B̃, S̃). We need to show that

sXV s
X
A = sX

ÃtB̃tS̃

and that similar identities hold for the other degeneracies in question. Let

αV (aj) = |{i|vi ≤ aj + i− 1}|,

i.e. αV (aj) equals the number of degeneracies the degeneracy saj has to be switched with
in order to write sXV s

X
A as a product sta+b+s

...st1 with t1 < ... < ta+b+s. Observe that
aj + αV (aj) /∈ V. Hence

{t1 < ... < ta+b+s} = {v1, ..., vr, a1 + αV (a1), ..., aa + αV (aa)}
= B̃ t S̃ t {a1 + αV (a1), ..., aa + αV (aa)}

Since ai + αV (ai) 6= rj + αV (rj) for all i, j the same argument also yields that

U = {a1 + αV (a1), ..., aa + αV (aa), r1 + αV (r1), ..., rr + α(rr)}.

Since the map a+ r → U, x 7→ x + αV (x) is clearly order-preserving, it coincides with
a+ r → U, y 7→ uy. Therefore aj + αV (aj) = uaj and hence

sXV s
X
A = sX

ÃtB̃tS̃ .

110



Repeated application of this argument yields the desired commutativity of the diagram
above.
Finally we consider the diagram

(Xr1 ⊗ ...⊗Xrl)⊗ (Xrl+1
⊗ ...⊗Xrl+k)

∇B

��

∇(l)⊗∇(k)
// (Xr1+...+rl)

⊗l ⊗ (Xrl+1+...+rl+k)⊗k

∇B,Tot

��⊕
σ∈sh(l,k) σ.(Xr1 ⊗X0, ..., Xrl ⊗X0,

X0 ⊗Xrl+1
, ..., X0 ⊗Xrl+k)

N(B(k,∇X ,k))

��

(Xr1+...+rl ⊗Xrl+1+...+rl+k)⊗l+k

∇X

��⊕
σ∈sh(l,k) σ.(X

⊗2
r1 , ..., X

⊗2
rl
, X⊗2

rl+1
, ..., X⊗2

rl+k
) ∇(l+k)

// (X⊗l+kr1+...+rl+k
)⊗2

Fix an (l, k)-shuffle σ corresponding to (L,K) ∈ comp(l, k). We can restrict our attention
to showing that the diagram

(Xr1 ⊗ ...⊗Xrl)⊗ (Xrl+1
⊗ ....Xrl+k)

s̃BK⊗s̃
B
L

��

∇(l)⊗∇(k)
// (Xr1+...+rl)

⊗l ⊗ (Xrl+1+...+rl+k)⊗k

sBK⊗s
B
L

��σ.(Xr1 ⊗X0, ..., Xrl ⊗X0,
X0 ⊗Xrl+1

, ..., X0 ⊗Xrl+k)

N(B(k,∇X ,k))

��

(Xr1+...+rl ⊗Xrl+1+...+rl+k)⊗l+k

∇X

��
σ.(X⊗2

r1 , ..., X
⊗2
rl
, X⊗2

rl+1
, ..., X⊗2

rl+k
) ∇(l+k)

// (X⊗l+kr1+...+rl+k
)⊗2

commutes. The maps s̃Bi denote the degeneracies of the bar construction B(k,N(X), k).
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Computing the two maps yields that

∇X(sBK ⊗ sBL )(∇(l) ⊗∇(k))(x1, ..., xl+k)

= ∇X
( ∑

(R1,...,Rl)∈comp(r1,...,rl)
(Rl+1,...,Rl+k)∈comp(rl+1,...,rl+k)

±sBK(sXR2t...tRl(x1), ..., sXR1t...tRl−1
(xl))

⊗sBL (sXRl+2t...tRl+k(xl+1), ..., sXRl+1t...tRl+k−1
(xl+k))

)
=

∑
(R1,...,Rl)∈comp(r1,...,rl)

(Rl+1,...,Rl+k)∈comp(rl+1,...,rl+k)
(U,V )∈comp(r1+...+rl,rl+1+...+rl+k)

±sBK(sXV s
X
R2t...tRl(x1), ..., sXV s

X
R1t...tRl−1

(xl))

⊗sBL (sXU s
X
Rl+2t...tRl+k(xl+1), ..., sXU s

X
Rl+1t...tRl+k−1

(xl+k))

and

∇(l+k)N(B(k,∇X , k))(s̃BK ⊗ s̃BL )(x1, ..., xl+k)

=
∑

(R1,...,Rl+k)
∈comp(r1,...,rl+k)

±(sBK ⊗ sBL )(sXR2t...tRl+k(x1), ...., sXR1t...tRl+k−1
(xl+k)).

As before a longish calculation shows that these maps are equal. Since we also saw that

∇bi∇X∇B,Tot = ∇diag(∇bi ⊗∇bi)

the two maps from Tot(N(B(k,N(X), k)))⊗ Tot(N(B(k,N(X), k))) to N(d(d⊗(Y ⊗ Y )))
exhibited in the main diagram above coincide. This yields the claim.

For a simplicial commutative augmented A+-algebra X let BA+(A+, X,A+) denote the bar
construction of X with coefficients in A+ with respect to A+ as a ground ring, i.e.

BA+(A+, X,A+)i = A+ ⊗A+ X
⊗i ⊗A+ A+.

Denote by N̄(X) the augmentation ideal of N(X).

Lemma 6.10. Let ∂
(n)
θ denote the twist on A+ ⊗ Bn(A) defined in definition 3.41. The

shuffle product sh on Bn(A) induces a differential graded A+-algebra structure on (A+ ⊗
Bn(A), ∂θ) via

(A+ ⊗Bn(A))⊗A+ (A+ ⊗Bn(A)) ∼= A+ ⊗Bn(A)⊗Bn(A)
sh // A+ ⊗Bn(A).

We again denote this product by sh.
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Proof. We only need to check that the shuffle product respects ∂
(n)
θ . We define a map

i : Bn(A)⊗Bn(A)→ Bn+1(A)

by identifying an n-level tree t(a1, ..., al) and an n-level tree s(al+1, ..., al+m) labeled by
elements ai ∈ A with the (n+ 1)-level tree (t, s)(a1, ..., al+m) with two vertices in level one
and whose subtrees above these vertices are t and s. Similarly we define a map j : Bn(A)→
Bn+1(A) as the composite

Bn(A)
∼= // ΣBn(A) �

� // Bn+1(A) .

Then idA+ ⊗ j maps sh((a′ ⊗ t(a1, ..., al))⊗A+ (a′′ ⊗ s(al+1, ..., al+m))) to

(−1)d(t)+1∂1(idA+ ⊗ i)(a′a′′ ⊗ t(a1, ..., al)⊗ s(al+1, ..., al+m))

with ∂1 as defined in 4.12. We already know from 4.14 that ∂1 and ∂
(n+1)
θ anticommute.

Furthermore we have
∂

(n+1)
θ (idA+ ⊗ j) = −(idA+ ⊗ j)∂

(n)
θ

and

(idA+ ⊗ i)(∂
(n)
θ ⊗A+ idA+⊗Bn(A) + idA+⊗Bn(A) ⊗A+ ∂

(n)
θ ) = ∂

(n+1)
θ (idA+ ⊗ i).

This yields that ∂
(n)
θ is a derivation with respect to sh.

Lemma 6.11. We have

(A+ ⊗Bn(A), ∂
(n)
θ ) ∼= Tot(N̄(BA+(A+, (A+ ⊗Bn−1(A), ∂

(n−1)
θ ), A+)))

as differential graded A+-algebras for n ≥ 2.

Proof. By definition

A+ ⊗Bn(A) = Tot(N̄(A+ ⊗Bk(k,Bn−1(A)+, k)))

with Nj(A+ ⊗ (Bk(k,Bn−1(A)+, k)) = A+ ⊗Bn−1(A)⊗j . On the other hand,

Nj(B
A+(A+, A+ ⊗Bn−1(A), A+)) = (A+ ⊗Bn−1(A))⊗A+

j ∼= A+ ⊗Bn−1(A)⊗j ,

and under this isomorphism ∂
(n−1)
θ induces ∂

(n)
θ . This identification also respects the cor-

responding signs.

Since d(B(k,X, k)) = X⊗S1 for a simplicial commutative augmented algebra X, we get
the following result.
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Proposition 6.12. There is a quasiisomorphism

(A+ ⊗Bn(A), ∂θ)→ N̄(L+(A;A+)(S1)⊗A+S
n−1)

of differential graded A+-algebras.

Proof. For n = 1, that (A+ ⊗B(A), ∂θ) = N̄(L+(A;A+)(S1)) can be checked directly. For
n > 1 we know from proposition 6.8 that

N(L+(A;A+)(S1)⊗A+S
n−1) ∼= N((L+(A;A+)(S1)⊗A+S

n−2)⊗A+S
1).

We know from lemma 6.9 that there is a quasiisomorphism of algebras from

Tot(N(BA+(A+, N((L+(A;A+)(S1)⊗A+S
n−2), A+)))

to
N((L+(A;A)(S1)⊗A+S

n−2)⊗A+S
1).

A quasiisomorphism C → D of augmented differential graded degreewise A+-projective A+-
algebras yields a quasiisomorphism Tot(N(BA+(A+, C,A+)))→ Tot(N(BA+(A+, D,A+)))
of augmented differential graded A+-algebras (see [30, 1.8, A.8]) which are again A+-
projective. Hence by induction we get a quasiisomorphism from

Tot(N(BA+(A+, (A+ ⊗Bn−1(A)+, ∂θ), A+)))

to
N(L+(A;A+)(S1)⊗A+S

n−1).

By lemma 6.11

Tot(N̄(BA+(A+, (A+ ⊗Bn−1(A)+, ∂θ), A+))) ∼= (A+ ⊗Bn(A), ∂θ)

as differential graded algebras.

Proposition 6.13. For a nonunital k-projective commutative k-algebra A

HEn
∗ (A;A+) ∼= HH

[n]
∗+n(A+;A+)

in nonnegative degrees.

Proof. By 6.12 we know that HEn
∗ (A;A+) ∼= H∗(Σ

−nN̄(Lk+(A;A+)(S1)⊗A+S
n−1)). Note

that
Lk+(A;A+) = L

A+
+ (A+ ⊗A+;A+)

as functors from the category of finite sets to the category of A+-modules. Here A+ ⊗A+

denotes the augmentation ideal of A+ ⊗ A+. The A+-module structure is in both cases
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given by the action on the coefficient copy of A+ and the A+-module structure of A+⊗A+

is given by multiplication on the right factor. We know that

L
A+
+ (A+ ⊗A+;A+)(S1) = (A+ ⊗A+)⊗A+S

1

and hence
Lk+(A;A+)(S1)⊗A+S

n−1 = (A+ ⊗A+)⊗A+S
n,

which again by the comparison above is Lk+(A;A+)(Sn). Since

H∗(N∗+n(Lk+(A;A+)(Sn))) = π∗(L
k
+(A;A+)(Sn)),

which is by definition HH
[n]
∗+n(A+;A+), the result follows.

Theorem 6.14. For a nonunital k-projective commutative k-algebra A and a symmetric
A-bimodule M

HEn
∗ (A;M) ∼= HH

[n]
∗+n(A+;M)

in nonnegative degrees.

Proof. Proposition 6.12 and the arguments used in the proof of 6.13 yield a quasiisomor-
phism

(A+ ⊗Bn(A), ∂θ)→ N̄(L+(A;A+)(Sn))

of differential graded A+-algebras. Note that (M ⊗Bn(A), ∂θ) ∼= M ⊗A+ (A+⊗Bn(A), ∂θ).
There is a quasiisomorphism given by the Alexander-Whitney map

N(L+(A;M)(Sn)) = N(M ⊗A+ L+(A;A+)(Sn))→M ⊗A+ N(L+(A;A+)(Sn)).

Since (A+⊗Bn(A), ∂θ) as well as N(L+(A;A+)(Sn)) are A+-free as A+-modules the claim
follows from the Künneth spectral sequence [59, 10.90].

Theorem 6.15. For a nonunital k-projective commutative k-algebra A and a symmetric
A-bimodule M

H∗En(A;M) ∼= HH∗+n[n] (A+;M)

in nonnegative degrees.

Proof. Observe that

C∗En(A;M) = HomA+((A+ ⊗ Σ−nBn(A), ∂θ),M).

Consider the quasiisomorphism of A+-modules

(A+ ⊗Bn(A), ∂θ)→ N̄(Lk+(A;A+)(Sn))
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exhibited in 6.12 and 6.13. Since this is a quasiisomorphism between chain complexes of
A+-free A+-modules the universal coefficient spectral sequence (see e.g. [40, Theorem 2.3])
yields that we get a quasiisomorphism

HomA+(N∗+n(Lk+(A;A+)(Sn)),M)→ C∗En(A;M).

One calculates that

HomA+(N∗+n(Lk+(A;A+)(Sn)),M) ∼= N∗+n(HomA+(Lk+(A;A+)(Sn),M)).

But
HomA+(Lk+(A;A+)(Sn),M) = HomA+(Lk+(A;A+),M)(Sn),

with HomA+(Lk+(A;A+),M) = Lc+(A;M) being precisely the contravariant Loday functor
associated to A and M as defined in 6.3.

Remark 6.16. The complex N∗(L+(A;A+)(Sn)) is trivial in degrees 0 < ∗ < n and is k

in degree zero. In particular Hochschild homology HH
[n]
s (A+;A+) of order n is trivial in

degrees s with 0 < s < n and is k for s = 0, see [52, 5.1], and hence higher order Hochschild
homology can be reconstructed from En-homology.
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7 An explicit homotopy for the commutativity of the cup
product

Let A be a nonunital commutative k-algebra. It is classical that Hochschild cohomology
HH∗(A+;A+) is a Gerstenhaber algebra (see [24]), i.e. is a graded commutative k-algebra
equipped with a Lie bracket of degree 1 satisfying a Poisson relation. Gerstenhaber algebras
are governed by H∗(E2), the operad formed by taking the homology of an E2-operad. The
Deligne conjecture, proven amongst others by McClure and Smith in [51], states that the
Gerstenhaber structure on HH∗(A+;A+) indeed stems from an action of an E2-operad on
the Hochschild cochain complex C∗HH(A+, A+). There is a generalized version of the Deligne
conjecture, for example discussed in [37] and [45, 6.1.4], which states that for a suitable
choice of a complex D∗En(A+;A+) calculating En-cohomology of A+ with coefficients in A+

this complex is an En+1-algebra.
In this section we show that C∗En(A;A+) exhibits at least a small part of the structure of
an En+1-algebra. We start by recalling the definition of the cup product on C∗En(A;A+) in
terms of trees. The cup product is induced by the comultiplication of the tensor coalgebra.

Definition 7.1. For a graded nonunital noncounital A+-bialgebra C write [c0|...|cl] for
c0 ⊗A+ ....⊗A+ cl ∈ (ΣC)⊗A+

l ⊂ BA+(C). We define

∆0 : BA+(C)→ BA+(C)⊗A+ ⊗BA+(C)

by

∆0([c0|...|cl]) =
l−1∑
j=0

[c0|...|cj ]⊗A+ [cj+1|...|cl].

It is classical that the map ∆0 is a chain map. We show that for C = A+ ⊗ Bn−1(A) the
map ∆0 also respects the twist on Bn(A).

Lemma 7.2. The map ∆0 yields a morphism

∆0 : (A+ ⊗Bn(A), ∂θ)→ (A+ ⊗Bn(A), ∂θ)⊗A+ (A+ ⊗Bn(A), ∂θ)

of chain complexes.

Proof. We will not distinguish morphisms of trees and the maps they induce on CEn∗ (A;A+)
in our notation used in this proof. For n = 1, that ∆0 respects the differential is a standard
computation, see [24, §7]. For n > 1, we proved in lemma 6.11 that

(A+ ⊗Bn(A), ∂
(n)
θ ) ∼= BA+(A+ ⊗Bn−1(A), ∂

(n−1)
θ ),

with BA+ the bar construction as defined in 3.14 with respect to A+ as a ground ring. Since
∆0 is induced by the comultiplication of the tensor coalgebra, it is a chain map.
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Corollary 7.3. The map ∆0 induces an associative product ∪ = ∪0 of degree n on the
cochain complex C∗En(A,A+) given by

(C∗En(A;A+))⊗A+
2 = HomA+(CEn∗ (A;A+), A+)⊗A+

2

��
HomA+⊗A+

A+((CEn∗ (A;A+))⊗A+
2, A+ ⊗A+ A+)

��
HomA+((CEn∗ (A;A+))⊗A+

2, A+)

∆∗0
��

HomA+((CEn∗ (A;A+), A+) = C∗En(A;A+).

For differential graded k-modules C and D let

T : C ⊗D → D ⊗ C

be the twist T (c⊗ d) = (−1)|c||d|d⊗ c making the category of differential graded k-modules
a symmetric monoidal category. It is well-known that the product ∪0 is commutative up to
homotopy. Part of the structure of an En+1-algebra is a sequence ∪1, ...,∪n of higher cup
products such that

∪i ◦ (id + T ) = δ(∪i+1)

for 0 ≤ i ≤ n − 1. Hence the generalized Deligne conjecture implies that for a suitable
choice of a complex D∗En(A+;A+) calculating En-cohomology, these higher cup products
exist. We will now construct an explicit possible choice for ∪1 for the complex CEn(A;A+).
We assume that we are working in characteristic two to avoid dealing with signs.

Definition 7.4. Let the characteristic of k be two and let C be a graded nonunital noncouni-
tal A+-bialgebra with comultiplication ∆. We will use an abbreviated Sweedler notation and
denote ∆(c) by c(1) ⊗A+ c(2). Let C+ denote the unital augmented counital coaugmented
A+-bialgebra obtained by setting C+ = C ⊕A+. Extend ∆ to a map

∆+ : C → C+ ⊗A+ C

by setting ∆+(c) = 1⊗A+ c+ ∆(c) and write ∆+(c) = c′ ⊗A+ c
′′. We define a map

∆1 : BA+(C)→ BA+(C)⊗A+ B
A+(C)

of degree 1 by setting

∆1([c0|...|cl]) =
∑

0≤i≤i+j≤l
[c0|...|c′i...c′i+j |...|cl]⊗A+ [c′′i |...|c′′i+j ],
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where we set [c0|...|1|...|cl] = 0, i.e. project from the unnormalized to the normalized bar
construction.

Lemma 7.5. In characteristic two, the map ∆1 is a homotopy for the cocommutativity of
the map ∆0, i.e.

δ(∆1) = (T + id)∆0.

Proof. Decompose ∆1 by setting

ρi,j([c0|...|cl]) = [c0|...|c′i...c′i+j |...|cl]⊗A+ [c′′i |...|c′′i+j ]

for 0 ≤ i ≤ i + j ≤ l. We first determine how the simplicial differential ∂ of the bar
construction and ∆1 interact. Recall that the simplicial part of the differential of the bar
construction is given by

∂([c0|...|cl]) =
l−1∑
r=0

[c0|...|crcr+1|...|cl].

Denote the summand [c0|...|crcr+1|...|cl] by dr([c0|...|cl]). Let 0 ≤ r ≤ l − 1 and 0 ≤ i ≤
i+ j ≤ l − 1. Then

ρi,jdr([c0|...|cl]) =

{
(dr ⊗A+ id)ρi+1,j([c0|...|cl]), r < i,

(dr−j ⊗A+ id)ρi,j([c0|...|cl]), r > i+ j.

Now let 0 ≤ i ≤ r < i+ j ≤ l. Then

ρi,j−1dr([c0|...|cl])
= ρi,j−1[c0|...|crcr+1|...|cl]
= [c0|...|ci−1|c′i...(crcr+1)′...c′i+j |ci+j+1|...|cl]⊗A+ [c′′i |...|(crcr+1)′′|...|c′′i+j ].

From our definition of ∆+ we calculate that

(crcr+1)′ ⊗A+ (crcr+1)′′ + c′rc
′
r+1 ⊗A+ c

′′
rc
′′
r+1

= crc
(1)
r+1 ⊗A+ c

(2)
r+1 + cr+1 ⊗A+ cr + cr ⊗A+ cr+1 + c(1)

r cr+1 ⊗A+ c
(2)
r .

Hence

ρi,j−1dr([c0|...|cl])
= [c0|...|ci−1|c′i...c′i+j |ci+j+1|...|cl]⊗A+ [c′′i |...|c′′r−1|c′′rc′′r+1|c′′r+2|...|c′′i+j ]

+ [c0|...|ci−1|c′i...c′r−1crc
(1)
r+1c

′
r+2...c

′
i+j |ci+j+1|...|cl]⊗A+ [c′′i |...|c′′r−1|c

(2)
r+1|c

′′
r+2|...|c′′i+j ]

+ [c0|...|ci−1|c′i...c′r−1cr+1c
′
r+2...c

′
i+j |ci+j+1|...|cl]⊗A+ [c′′i |...|c′′r−1|cr|c′′r+2|...|c′′i+j ]

+ [c0|...|ci−1|c′i...c′r−1crc
′
r+2...c

′
i+j |ci+j+1|...|cl]⊗A+ [c′′i |...|c′′r−1|cr+1|c′′r+2|...|c′′i+j ]

+ [c0|...|ci−1|c′i...c′r−1c
(1)
r cr+1c

′
r+2...c

′
i+j |ci+j+1|...|cl]⊗A+ [c′′i |...|c′′r−1|c(2)

r |c′′r+2|...|c′′i+j ].
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The first summand equals (id ⊗A+ dr−i)ρi,j . Summing over all r with i ≤ r ≤ i + j and
using that

c′ ⊗A+ c
′′ = 1⊗A+ c+ c(1) ⊗A+ c

(2)

we see that the other summands cancel each other except for r = i and r = i+ j, leaving

i+j∑
r=i

ρi,j−1dr([c0|...|cl])

=

i+j∑
r=i

(id⊗A+ dr−i)ρi,j +

i+j∑
r=i

[c0|...|cic′i+1...c
′
i+j |...|cl]⊗A+ [c′′i+1|...|c′′i+j ]

+

i+j∑
r=i

[c0|...|c′i...c′i+j−1ci+j |...|cl]⊗A+ [c′′i |...|c′′i+j−1].

But the last two summands equal

min(l−1,i+j)∑
r=i

(di ⊗A+ id)ρi+1,j−1 +

min(l−1,i+j)∑
r=i

(di+1 ⊗A+ id)ρi,j−1

+

min(l−1,i+j)∑
r=i

[c0|...|ci|ci+j+1|...|cl]⊗A+ [ci+1|...|ci+j ]

+

min(l−1,i+j)∑
r=i

[c0|...|ci−1|ci+j |...|cl]⊗A+ [ci|...|ci+j−1].

If we sum over all 0 ≤ r ≤ l − 1 and all 0 ≤ i ≤ i+ j ≤ l − 1 we hence see that

∂ρi,j + ρi,j(∂ ⊗A+ id + id⊗A+ ∂) =

l−1∑
r=0

[c0|...|ci]⊗A+ [ci+1|...|ci+j ].

Finally, consider the differential δ of C. For r < i it is clear that

ρi,j(id
⊗A+

r ⊗A+ δ ⊗A+ id⊗A+
l−r) = (id⊗A+

r ⊗A+ δ ⊗A+ id⊗A+
l−r−j)ρi,j .

Similarly for r > i+ j

ρi,j(id
⊗A+

r ⊗A+ δ ⊗A+ id⊗A+
l−r) = (id⊗A+

r−j ⊗A+ δ ⊗A+ id⊗A+
l−r)ρi,j .

Finally, let i ≤ r ≤ i+ j. Since δ is a coderivation,

(δ(cr))
′ ⊗A+ (δ(cr))

′′ = δ(c′r)⊗A+ c
′′
r + c′r ⊗A+ δ(c

′′
r).
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Hence we see that

ρi,j(id
⊗A+

r ⊗A+ δ ⊗A+ id⊗A+
l−r)([c0|...|cl])

= (δ(cr))
′ ⊗A+ (δ(cr))

′′ = δ(c′r)⊗A+ c
′′
r + c′r ⊗A+ δ(c

′′
r).

Recall from lemma 6.10 that with the shuffle product (A+⊗Bn−1(A), ∂θ) is a k-algebra. It
is well known, see for example [65, 0.6], that the shuffle product and the coproduct derived
from the tensor coalgebra structure turn Bn−1(A) into a differential graded k-bialgebra,
hence (A+⊗Bn−1(A), ∂θ) is an A+-bialgebra. Setting C = (A+⊗Bn−1(A), ∂θ) in definition
7.4 yields

∆1 : (A+ ⊗Bn(A), ∂θ)→ (A+ ⊗Bn(A), ∂θ)⊗A+ (A+ ⊗Bn(A), ∂θ)

for n ≥ 2. An example of the summand ρi,j of ∆1 defined in the proof of lemma 7.5 is
shown in the following picture, for n = 2, l = 3 and i = j = 1.
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We can construct ∪1 in a fashion similar to the construction of ∪0 from ∆0 in corollary 7.3.

Corollary 7.6. For n ≥ 2 the map ∆1 induces a map

∪1 : C∗En(A;A+)⊗A+ C
∗
En(A;A+)→ C∗En(A;A+)

of degree n− 1 such that
δ(∪1) = ∪0 ◦ (T + id).
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in collaboration with Teimuraz Pirashvili.

[44] Jean-Louis Loday and Bruno Vallette. Algebraic operads, volume 346 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer, Heidelberg, 2012.

[45] Jacob Lurie. Higher algebra. 2012. Available online at
http://www.math.harvard.edu/∼lurie/papers/HigherAlgebra.pdf.

[46] Saunders Mac Lane. Homology. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
Reprint of the 1975 edition.

[47] Michael Mandell. E∞ algebras and p-adic homotopy theory. Topology, 40(1):43–94,
2001.

[48] Michael Mandell. Cochains and homotopy type. Publ. Math. Inst. Hautes Études Sci.,
(103):213–246, 2006.

[49] Martin Markl, Steve Shnider, and James Stasheff. Operads in algebra, topology and
physics, volume 96 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI, 2002.

[50] Peter May. The geometry of iterated loop spaces. Springer-Verlag, Berlin, 1972. Lectures
Notes in Mathematics, Vol. 271.

[51] James McClure and Jeffrey Smith. A solution of Deligne’s Hochschild cohomology
conjecture. In Recent progress in homotopy theory (Baltimore, MD, 2000), volume 293
of Contemp. Math., pages 153–193. Amer. Math. Soc., Providence, RI, 2002.

[52] Teimuraz Pirashvili. Hodge decomposition for higher order Hochschild homology. Ann.
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Summary

This thesis studies En-homology and En-cohomology. These are invariants associated to
algebraic analogues of n-fold loop spaces for 1 ≤ n ≤ ∞: Iterated loop spaces can be
described via topological operads, from which one can construct corresponding operads in
differential graded modules. Algebras over such an algebraic operad are called En-algebras.
More concretely, an En-algebra is a differential graded module equipped with a product
which is associative up to a coherent system of higher homotopies for associativity, but
commutative only up to homotopies of a certain level, depending on n. In particular, every
commutative k-algebra over a commutative unital ring k is an En-algebra.
Using the operadic description, one can construct suitable homological invariants for En-
algebras, called En-homology and -cohomology. For n = 1 and n = ∞ this gives rise
to familiar invariants: E1-homology and -cohomology coincide with Hochschild homology
and cohomology, while for n = ∞ one retrieves Γ-homology and -cohomology. Note that
in characteristic zero Γ-homology and -cohomology equal André-Quillen-homology and -
cohomology.
Although Hochschild homology and André-Quillen-homology are classical invariants and
have been extensively studied, very little is known in the intermediate cases 1 < n < ∞.
In this thesis we extend results known for special cases of En-homology and -cohomology
to a broader context. We use these extensions to examine En-cohomology for additional
structures.
In [23] Benoit Fresse proved that En-homology with trivial coefficients can be computed via
a generalized iterated bar construction. By unpublished work of Fresse, if one assumes that
the En-algebra in question is strictly commutative, this is also possible for cohomology and
for coefficients in a symmetric bimodule. We give the details of a proof of this result based
on a sketch of a proof by Benoit Fresse.
Hochschild homology and cohomology can be interpreted as functor homology and coho-
mology. In [41] Muriel Livernet and Birgit Richter prove that this is always possible for
En-homology of commutative algebras with trivial coefficients. We extend the category
defined by Livernet and Richter in their work to a category which also incorporates the
action of a commutative algebra A on a symmetric A-bimodule M . We then show that
En-homology as well as En-cohomology of A with coefficients in M can be calculated as
functor homology and cohomology, i.e. as derived functors Tor and Ext.
Hence En-cohomology of such objects is representable in a derived sense. In this case the
Yoneda pairing yields a natural action of the En-cohomology of the representing object
on En-cohomology. We prove that En-cohomology of the representing object is trivial,
therefore no operations arise this way.
Livernet and Richter showed in [41] that En-homology of commutative algebras with trivial
coefficients coincides with higher order Hochschild cohomology. We extend this result to
cohomology and to coefficients in a symmetric bimodule.
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It is well known that for a suitable choice of a chain complex calculating En-cohomology
of an algebra with coefficients in the algebra itself, this chain complex is an En+1-algebra.
For n = 1 this is the classical Deligne conjecture. For n > 1, the constructions of the En+1-
action given so far have not been very explicit. We show that in characteristic two the chain
complex defined via the n-fold bar construction admits at least a part of an En+1-structure,
namely a homotopy for the cup product, and give an explicit formula for this homotopy.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit En-Homologie und En-Kohomologie. Dies sind
Invarianten, die einem algebraischen Analogon n-facher Schleifenräume zugeordnet sind,
wobei 1 ≤ n ≤ ∞ ist. Es gibt topologische Operaden, die n-fache Schleifenräume mod-
ellieren. Diese Operaden lassen sich in den algebraischen Kontext differentiell graduierter
Moduln übertragen, und Algebren über einer solchen Operade heißen En-Algebren. Eine
En-Algebra ist ein differentiell graduierter Module mit einem Produkt, welches assozia-
tiv bis auf ein kohärentes System aller höherer Homotopien für Assoziativität ist, aber
kommutativ nur bis auf Homotopien eines bestimmten Levels, abhängig von n. Insbeson-
dere ist jede kommutative k-Algebra über einem kommutativen unitären Grundring k eine
En-Algebra. Die auf En-Algebren zugeschnittenen homologischen Invarianten sind En-
Homologie und -Kohomologie. Bekannte Spezialfälle treten für n = 1 und für n = ∞ auf,
in diesen Fällen stimmen En-Homologie und -Kohomologie mit Hochschildhomologie und
-kohomologie beziehungsweise mit Γ-Homologie und -Kohomologie überein. In Charakter-
istik null ist Γ-Homologie gleich André-Quillen-Homologie.
Obwohl Hochschildhomologie und André-Quillen-Homologie klassische, viel studierte Invari-
anten sind, ist für 1 < n < ∞ nur wenig über En-Homologie und -Kohomologie bekannt.
Inhalt dieser Dissertation ist, für Spezialfälle bekannte Resultate zu erweitern und diese zu
nutzen, um En-Kohomologie auf zusätzliche Struktur zu untersuchen.
Benoit Fresse hat in [23] gezeigt, dass En-Homologie mit trivialen Koeffizienten sich über
eine verallgemeinerte n-fache Bar-Konstruktion berechnen lässt. Ein unveröffentlichtes
Resultat von Fresse besagt, dass dies auch für En-Homologie sowie für En-Kohomologie
gewöhnlicher kommutativer Algebren mit Koeffizienten in einem symmetrischen Bimodul
möglich ist. Wir geben einen Beweis dieses Resultats basierend auf einer Beweisskizze von
Benoit Fresse.
Hochschildhomologie und -kohomologie lassen sich als Funktorhomologie und -kohomologie
berechnen. In [41] beweisen Muriel Livernet und Birgit Richter, dass dies auch für En-
Homologie kommutativer Algebren mit trivialen Koeffizienten gilt. Wir erweitern die hierzu
von Livernet und Richter definierte Kategorie zu einer Kategorie, die die Wirkung einer
kommutativen Algebra A auf einem symmetrischen Bimodul M mit einbezieht und zeigen,
dass sich sowohl En-Homologie als auch En-Kohomologie von A und M als abgeleitete
Funktoren Tor und Ext bezüglich dieser Kategorie interpretieren lassen.
Als Funktorkohomologie ist En-Kohomologie darstellbar in einem abgeleiteten Sinne. Daher
gibt es eine natürliche Wirkung der En-Kohomologie des darstellenden Objektes auf En-
Kohomologie, definiert über die Yoneda-Paarung. Wir zeigen, dass En-Kohomologie des
darstellenden Objektes trivial ist und folglich keine Kohomologieoperationen auf diese Weise
entstehen.
Für die En-Homologie kommutativer Algebren mit trivialen Koeffizienten haben Muriel
Livernet und Birgit Richter in [41] gezeigt, dass En-Homologie mit höherer Hochschildho-
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mologie übereinstimmt. Wir zeigen, dass auch dieses Resultat für En-Kohomologie und für
Koeffizienten in einem symmetrischen Bimodul gilt.
Es ist bekannt, dass füer Koeffizienten in der Algebra selbst und für eine geeignete Wahl
eines En-Kohomologie berechnenden Kettenkomplexes dieser Kettenkomplex eine En+1-
Algebra ist. Für n = 1 ist dies der Inhalt der klassischen Deligne-Vermutung, für n > 1
sind die bisher gegebenen Konstruktionen dieser Struktur nicht sehr explizit. Wir zeigen,
dass zumindest ein Teil einer solchen En+1-Struktur, nämlich eine Homotopie für das cup-
Produkt, in Charakteristik zwei auch auf dem über den iterierten Barkomplex definierten
Kettenkomplex vorhanden ist und geben eine explizite Formel für diese Homotopie an.
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