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Abstract

The thesis at hand presents the development of a new computational target prediction
method. Small molecules are rarely only binding to a single protein, but can interact with
numerous proteins, their targets. Ignorance of molecule-protein interactions can lead to vari-
ous problems, wherein the most dangerous probably are side-effects evoked by drugs binding
to so-far unknown off-targets. Resolving these problems is the aim of target prediction
methods, which try to find all target proteins for small molecules.
The iRAISE method developed in this thesis faces the special requirements of structure-based
inverse screening which in comparison to normal screening (one protein, many ligands) pre-
dicts targets for one small molecule from large protein libraries.
In order to account for the large amounts of protein structural data, iRAISE introduces a
database representation for efficient and consistent handling and storing of protein data.
Further, protein active sites and small molecules are in the first screening step abstracted by
a descriptor representation. The chosen descriptor contains features encoding the interac-
tion pattern and the shape of the active site/molecule. Thus, by matching complementary
descriptors, the need for sequential protein-ligand matching on atomic level is avoided.
Inter-target ranking has been improved compared to standard protein-ligand scoring func-
tions, which mostly contain a bias towards certain protein structures. A multi-step Scoring
Cascade considers the reference ligand as well as the coverage of the ligand and pocket, and
thus allows the scoring of structurally diverse pockets. Moreover, a Gaussian-based scoring
assesses the significance of a score.
Along with the new target prediction method, an evaluation strategy with new data sets
has been developed. The evaluation of binding mode prediction, target ranking and running
time shows promising results for iRAISE.
Further, structure-based computational methods were successfully applied in a biotechno-
logical case study of the development of a synthetic multi-enzyme pathway, highlighting
the application potentials of these methods in areas besides drug design where their use is
already established.





Kurzfassung

Die vorliegende Arbeit präsentiert die Entwicklung einer neuen, computergestützen Methode
zur Zielproteinvorhersage. Kleine organische Moleküle binden nur selten an ein einziges Pro-
tein, sondern interagieren mit einer Reihe von verschiedenen Proteinen, sogenannten Zielpro-
teinen oder Targets. Dies kann zu verschiedenen Problemen führen, wobei vermutlich die ver-
heerendsten die Nebenwirkungen von Medikamenten sind, welche durch Bindung von Wirk-
stoffen an Off-Targets entstehen. Aus diesem Grund versuchen Target-Vorhersagemethoden
alle Zielproteine für kleine Moleküle zu identifizieren.
Die in dieser Arbeit entwickelte Methode iRAISE behandelt die speziellen Anforderungen
an strukturbasiertes inverses Screening, bei welchem im Gegensatz zum normalen virtuellen
Screening (ein Protein, viele Moleküle) potentielle Targets für ein Molekül in großen Mengen
von Proteinen gesucht werden.
Die großen Datenmengen von zehntausenden von Proteinstrukturen werden in iRAISE in
einer neu entwickelten Datenbank effizient und konsistent gespeichert. Außerdem werden
sowohl Protein- als auch Ligandstrukturen im ersten Screening-Schritt durch einen Deskrip-
tor abstrahiert. Der gewählte Deskriptor repräsentiert sowohl das Interaktionsmuster als
auch die Form von Protein und Ligand. Indem die Deskriptoren auf Komplementarität
getestet werden, erübrigt es sich, jeden Ligand sequenziell gegen jedes Protein auf atomarer
Basis zu testen. Des Weiteren wurde das Ranking von Targets durch innovative Maßnahmen
verbessert, um einen Bias bezüglich bestimmter Proteinstrukturen zu beheben, der häufig bei
Bewertungsfunktionen für ’normales’ Protein-Ligand Docking besteht. Die sogenannte Scor-
ing Cascade besteht aus mehreren Bewertungsstufen, welche neben der Berücksichtigung des
Referenzliganden die Abdeckung des Liganden und des aktiven Zentrums betrachtet. Dies
ermöglicht die Bewertung von strukturell diverser Taschen ohne Bias. Zusätzlich wurde eine
Gauß-basierte Bewertung eingeführt, welche die Beurteilung der statistischen Signifikanz
eines Scores erlaubt.
Zusammen mit der inversen Screening-Methode wurden eine neue Evaluierungsstrategie
mit Evaluierungsdatensätzen entwickelt. Insgesamt erzielt iRAISE auf Basis von Binde-
modusvorhersagen, Target-Ranking und Laufzeit vielversprechende Ergebnisse.
Darüber hinaus wurden im Rahmen dieser Arbeit strukturbasierte, computergestützte Metho-
den in einem biotechnologischen Projekt erfolgreich eingesetzt, in welchem ein synthetischer
Multienzym-Stoffwechselpfad entwickelt wurde. Dies hebt die Potentiale der Methode in
einem weiteren Anwendungsfeld neben dem Feld der Wirkstoffentwicklung, in welchem die
Nutzung dieser Methoden schon etabliert ist, hervor.
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1. Introduction

1.1 Motivation

Life is dependent on proteins. The malfunction of a single protein can lead to disease,
disability or death. However, rationally manipulating protein functionality can also cure dis-
eases, alleviate disability and prevent death. Drugs mostly tackle with the functionality of
one or several proteins to show their effects. As a consequence, in drug design the knowl-
edge of target proteins and the understanding of their function is crucial for the rational
development of new pharmaceutically active compounds.
Proteins are functional units in living organisms, responsible for biological processes like
signal transduction, catalysis, molecule transport and gene replication while also having
structural functions e. g. building of organic material (e.g. keratine, a protein responsible
for the structure of the hair). The 3D structure of the protein determines its function, while
the structure of the protein is determined by the sequence of amino acids that it is composed
of. Amino acids are the building blocks of proteins, consisting of a carboxy and an amine
group and a specific side-chain. The sequence of amino acids is coded in the genes of an
organism which encode 20 different natural amino acids.
In order to obtain a certain function, proteins interact with other molecules. These may
be other proteins, nucleic acids or small molecules, which bind to the protein. Medicinal
chemists exploit this effect by specifically designing small molecules as ligands for a protein
target of interest which then alter the natural function of the protein as these ligands com-
pete with the natural ligands for binding to the protein. Small molecules bind to proteins in
specific pockets, often located partially buried within the structure of the protein.
A ligand can only bind to the so-called active site or pocket of a protein if the pocket
and ligand are chemically complimentary. This means that the ligand not only needs to fit
sterically into the binding pocket of the protein, but also needs to form an energetically
favorable interaction pattern with the amino acids of the active site. The concept of the
chemical complementarity is also called lock-and-key concept, as introduced by Fischer (Fis-
cher [1894]). As the term conveys, there is some specificity involved: Not every key can
interact with every lock. Accordingly, specific ligands bind to one protein. The specificity
lies in the interaction pattern between ligand and protein.
The interactions responsible for a binding of a small molecule are mainly of non-covalent
nature. Hydrogen bonds, ionic interactions and the hydrophobic effect are forces that con-
tribute most to the reversible binding. Only rarely binds a ligand covalently to the protein. In
general, a molecule binds to a protein in a biological environment if the interactions between
the molecule and the protein are energetically more favorable than the interactions between
water or solution molecules filling the binding pockets and the protein. The energy gain of

2



1.1 Motivation

the protein-ligand binding also has to compensate for the entropic loss by fixation of degrees
of freedom of the molecule and the protein (Bissantz et al. [2010]). The strength of the
binding of a molecule to a protein varies, depending on the interactions built.
The effects of such a binding are diverse: A small molecule can inhibit or activate a protein.
In case of an enzymatic reaction, the protein can change the structure of the small molecule
or even change with the binding of a molecule its own tertiary structure, e.g., a membrane
protein can open a channel in its midst.
Nature is not very consistent with the selective lock-and-key principle. Rarely does a small
molecule bind only to one specific protein just as rarely as a protein interacts only with
one ligand. A study examining published in-vitro binding assay data from drug discovery
projects even concludes an average of 964 reported active compounds per target (Southan
et al. [2011]), while a drug-target network analysis finds an average number of 6 targets per
approved drug (Vogt and Mestres [2010]).
The reasons why there is promiscuity in nature are manifold, based on evolution, efficiency
and safety. During evolution, mutations of the amino acid sequence of the protein occurred.
If the binding of a molecule is too specific, then even minor structural changes of the binding
pocket would disrupt the binding. Other reasons why compounds are promiscuous in nature
is the catalytic activity of enzymes. A compound may be the substrate for several enzymes
with divers catalytic activity, thus the compound may be for one enzyme the building block
for a larger compound and another enzyme breaks it down into smaller fragments.
Also, the chemical reaction that is catalyzed by an enzyme is not limited to one special
molecule, but many molecules that are chemically similar can function as substrates for the
reaction. Thus some enzymes are not selective in their substrates, but can convert many
similarly composed molecules (Nobeli et al. [2009]). This way, there does not have to be one
enzyme for each substrate, but rather one enzyme for a class of substrates. However, this
means that the active pocket of the enzymes has to be capable of holding slightly different
molecules. As a consequence, sometimes compounds bind to enzymes although they are no
substrates for the catalyzed reaction, but remain in the active site and block it for other com-
pounds, causing inhibition. One example is the compound 6-phospho-D-gluconate, which
inhibits the enzyme phosphoglucose isomerase (EC number 5.3.1.9), but is the substrate
of the enzyme 6-phosphogluconic dehydrogenase (EC number 1.1.1.44) (Schomburg et al.
[2013]).
Furthermore, during evolution, some pathways developed in parallel to guarantee a rescue
path in order to account for the blocking of one pathway by disease or a mutation, or react
to a change in the nutrient supply. This resulted in compound promiscuity towards differ-
ent proteins which are capable of fulfilling the same function. Finally, another reason for
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promiscuity in nature is efficiency: Often one compound is used for several purposes, e.g.,
activating one target and inhibiting another. This is needed due to the complex conditions
that an organism has to react to, e.g., on environmental impacts, where some processes
need to be triggered simultaneously while others need to be inhibited. Using one messenger
compound for both tasks is more efficient in that case.
Next to the question of the reasons for promiscuity, also the question how molecular promis-
cuity is realized on the level of structure and interactions arises. As the lock-and-key principle
discussed above states, protein binding pockets are composed like locks and compounds are
keys. But how can one lock fit different keys? The answer to this is the composition of
binding pockets and the flexibility of the protein and the ligand. Active sites can have very
specific binding regions where hydrophilic amino acids are dominating. Here, the ligand has
to fit in the sense of providing the matching interaction partners. However, there also can be
regions in the binding pockets which are hydrophobic. Here, the ligands which are binding
can be very diverse in structure as long as they fit sterically and have hydrophobic regions
to place there. Finally, also the binding pocket does not have to be occupied completely by
ligands. Therefore, ligands with different size can fit as well.
Next to the composition of the binding pocket, also flexibility of the protein and ligand plays
a role in promiscuity. The protein can adjust the binding pocket to the ligand with rota-
tion of amino acid moieties or protein backbone movements, which lead to larger structural
changes. Gatti-Lafranconi and Hollfelder find that next to the choice of cofactor or metal
involved in the catalysis, the conformational changes of the enzyme are mainly responsible
for substrate promiscuity (Gatti-Lafranconi and Hollfelder [2013]). The ligand can change
its conformation on binding as well. Therefore, the protein and ligand can adjust to each
other, which is a principle known as induced fit (Koshland Jr [1958]). Sturm et al. (Sturm
et al. [2012]) evaluate explicitly the structural basis for ligand promiscuity in a study on lig-
ands that are found to bind to multiple proteins. They conclude that, firstly, binding sites of
different proteins that accommodate the same ligand can be highly similar in structure, even
if the proteins are not related in sequence but also, secondly, that in dissimilar binding sites
the ligand binds in various conformations, adjusting to the proteins. Both studies emphasize
the role which flexibility plays in promiscuity of protein-ligand complexes.
Having discussed how and why there is promiscuity of a ligand or target in nature, the
question arises how these effects can help or hinder natural science like development of
drugs or biotechnological process design. Studying which molecules bind to one target is
of interest in the design of inhibitors as drugs for disease-related targets or in finding sub-
strate efficiently processed by enzymes in biotechnological questions. However, there are
also scientific questions, where the identification of all targets for one molecule is crucial.
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The following scientific applications would profit from a reliable target identification method
for small organic molecules:

Identification of targets...

• ...next to a primary target for side-effect identification of drugs

• ...for a compound with an effect on an organism, where the mechanism of action is
unknown

• ...for a known drug in drug repurposing projects

• ...for the design of multi-target drugs

• ...for substrates in the design of new uses of enzymes in synthetic biotechnological
multi-enzyme pathways for maximizing yield

• ...in selectivity studies, where a compound shall be active on a part of a target class
only, e. g., only on kinases expressed in certain tissues or on targets of special organ-
isms.

Identifying further targets of a drug is helpful in early design steps of the drug design process
such as lead optimization. In the last decades, the number of new drugs introduced to the
market does not reflect the rise in investment on the design of new drugs (Kennedy [1997]).
One problem of the development process is that many leads are developed with much care
and effort but fail in the last steps of the process, the clinical phases. Adverse effects and
toxicity of the agents in humans are revealed in these phases. Roughly 10 percent of all
projects fail due to adverse effects in humans and roughly 11 percent fail due to animal tox-
icity. Added together, a total of 21 percent fail due to unwanted and beforehand unknown
side-effects (Kennedy [1997]). A study of productivity challenges in the pharmaceutical in-
dustry reveals a rise of this number from 11% (percent of reasons for clinical failures) in
1991 to 22% in 2000 (Khanna [2012]).
An early assessment of the specificity would reduce the number of failures in the late devel-
opment steps and save much money and effort. A study of the strategies that were used to
identify potential drug candidates between 1999 and 2008 (Swinney and Anthony [2011])
shows that although in this period the major focus of methods lay on target-based screen-
ings, only 17 drugs were found by this approach, while 28 were found by phenotype screening
which was actually applied in fewer projects. This reveals a major drawback of target-based
approaches: The concentration on only one target of interest leads to high attrition rates
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due to adverse effects. Adding target identification to target-based drug development for
early identification of unwanted side-effects shows promise to lower these high attrition rates.

The study of drugs with unknown mechanisms of action can lead to useful insights for the
development of new drugs or for the optimization of these drugs. An area of interest in this
question is Chinese medicine, where often a phenotypic effect is known, but the mechanism
on target level is not clear. The molecular entities responsible for the phenotypic effect are of
high interest for pharmaceutical companies since the Chinese medicine extracts have already
been applied and tested for a long period of time and, therefore, promise few and non-
harmful side effects. One approach of computational target identification for compounds
extracted from herbal Chinese medicines is published by Fauzi et al. (Mohd Fauzi et al.
[2013]), who in detail look at the targets of extracts from Panax Ginseng. Zhang et al.
use a combination of a computational target-identification approach and enzymatic assays
to determine the targets of natural products of Chinese Medicine used to treat diabetes
and inflammation (Zhang et al. [2011]). Supporting studies like these, Chen compiled a
database of ingredients with compound info for traditional Chinese medicines especially for
the purpose of drug screening (Chen [2011]).
Next to finding the targets for natural traditional medicines, even today not all mechanisms
of action for approved drugs are known in detail. Querying the DrugBank (Wishart et al.
[2006]) for drugs with “Mechanism of Action: Unknown“ yields 80 hits of a total of about
1500 approved drugs (Date of query: September 2013).

Drug repurposing or drug repositioning is the use of drugs in another disease context than
the one where they were developed and approved for (Ashburn and Thor [2004]). The
most known case of successful drug repositioning is sildenafil, which activity as an agent for
erectile dysfunction was discovered only accidentally while it was primarily of interest in a
study concerning blood pressure. In the last years, the number of literature published on
drug repurposing exploded, showing the high interest in this field (Andronis et al. [2011],
Xu and Cote [2011], Moriaud et al. [2011], Swamidass [2011], Loging et al. [2012], Haupt
and Schroeder [2011], Dudley et al. [2011], Muthyala [2012], Reaume [2012], Smith [2012],
Oprea et al. [2012]). The approach of drug repositioning has huge advantages, mainly that
the drugs already passed several toxicity and selectivity tests, even clinical tests and are less
risky to fail due to toxicity issues. Much time and money can be saved, which is of interest
especially in so-called orphan disease projects (Ekins et al. [2011]). Orphan diseases affect
only a small part of the population and are, therefore, not of great interest to pharmaceutical
companies, as the profits of investments into drug development are not expected to be high.
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Already, there are successful applications: Azathioprine as drug for rheumatoid arthritis was
repurposed for renal transplant, Bleomycin, drug for various cancers was repurposed for pleu-
ral effusion, Clycloserine as drug for urinary tract infection was repurposed for Tuberculosis
...among many other examples (FDA [2013]).
Computational methods addressing drug repurposing cover approaches such as literature
mining (Andronis et al. [2011], Loging et al. [2012]), target structure based methods like
comparison of the 3D structure of protein binding sites (Moriaud et al. [2011], Haupt and
Schroeder [2011]) as well as chemical similarity based methods (Dudley et al. [2011]). Re-
cently, databases containing drugs which are interesting for repurposing have been composed.
The NCGC Pharmaceutical Collection by the NIH Chemical Genomics Center is a collection
of clinically approved drugs in electronic and physical form (Huang et al. [2011a]), created
with the purpose of repurposing. The Rare Disease Repurposing Database by Xu et al (Xu
and Cote [2011]) matches drugs approved by the FDA (FDA [2013]) to the orphan des-
ignation database, which defines diseases with orphan status (these diseases have special
conditions concerning tax and market launch). These efforts lead to a rational approach
to drug repurposing, which in the past was dominated by serendipity or clinical observation
(Liu et al. [2012]).

Multi-target drugs are compounds that affect several targets of one disease. While classical
drugs that are designed with regard to one target are called magic bullets, the term magic
shotguns has been used for drugs designed for multiple targets (Roth et al. [2004]). A
multi-target approach has two main advantages: Firstly, the drug is more effective against
the disease if several targets are affected at the same time and, furthermore, the risk of drug
resistance is lowered, since if one target mutates successfully, others are still inhibited by the
drug. For some diseases, e.g., nervous system disorders, the classical one-drug, one-target
approach fails since too many factors are involved (Roth et al. [2004]). However, the design
of multi-target drugs is complex, as the designing steps for the drug have to be addressed
to all targets that shall be affected. Balancing affinities of one compound for several targets
is highly challenging.
Jenwitheesuk et al. (Jenwitheesuk et al. [2008]) published an approach, where they screened
computationally drug-like compounds against all targets known to be connected to Malaria
(Plasmodium falciparum) and HIV-1 infections. The authors found several compounds which
were active against multiple targets. They verified six compounds to be inhibitory on sev-
eral targets of Plasmodium falciparum experimentally. Bottegoni et al. (Bottegoni et al.
[2012]) propose a fragment-based method as a rational approach to computational multi-
target design. Next to first methods approaching the design of multi-target drugs rationally,
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Medina-Franco et al. state that in the past, many drugs -although initially designed for
one target- in reality exhibited their effect by affecting several targets (Medina-Franco et al.
[2013]).

In biotechnology, in the last decades, the design of synthetic enzymatic pathways started to
show promising results (Cho et al. [2010], Li et al. [2004], Wu et al. [2011], Santacoloma
et al. [2010]). These pathways consist of up to dozens of enzymes which transform a sub-
strate to a more profitable product. Here, the challenge lies in finding enzymes for each
degradation step that function under the same conditions, and here the secondary activities
of enzymes are often exploited, meaning that enzymes are used for reactions for which they
were not primarily known. Finding the enzyme that reaches the highest yield among a list
of enzymes from various organisms is one challenge. Further challenges in the setup are
feedback and buffer inhibitions, which can be avoided by an early identification of all targets
for each intermediate in the synthetic pathway.

As the preceding passages show, the reasons for identification of all targets for one compound
are manifold. Various names evolved for methods that predict targets for one compound:
Target-fishing, off-target prediction, polypharmacology prediction, ligand promiscuity iden-
tification, reverse screening, inverse screening. However, all names describe methods which
have one aim: Rationally exploiting the advantages of promiscuous compounds and predict-
ing the disadvantages in a reliable manner. In the past, multi-target drugs or repositioned
drugs merely occurred due to serendipity. Finding such effects with reason will certainly be
a major issue in drug design in the following decades.

1.2 Overview of content

This section shortly summarizes the content of this thesis.
Firstly, the approaches how the scientific field currently identifies or predicts the targets of
a ligand are discussed in detail in chapter 2. The top level abstraction of these methods is
experimental or computational. As will be discussed, there are many different computational
approaches each with its advantages and disadvantages. The description of the state of the
art elucidates current challenges and unresolved problems in target prediction, which are the
issues that shall be studied in the research project of this thesis. Also, the task of target
identification is placed in the huge field of computational structure-based drug design.
Following the state of the art description is a listing and discussion of the aims and objectives
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of this thesis in Chapter 3. The second part of Chapter 3 describes the technical conditions
of this thesis.
Then, in Chapter 4, the computational methods of the in this thesis developed inverse
Screening software iRAISE are described.
Chapter 5 focuses on data used in this thesis. For validation and method development,
different data sets are needed: Small, diverse data sets during method development and
large data sets for statistical performance evaluation. In Chapter 5, it is described which
data sets are used for which purpose and where the development of new validation data sets
was necessary and how these were composed.
Following is the description and discussion of the evaluation strategy based on the evaluation
experiments and performance metrics in Chapter 6.
The results of the target prediction of iRAISE on the previously discussed experiments are
given in Chapter 7. The overall performance is shown and example cases are discussed to
show where iRAISE has potentials and limitations.
In Chapter 8, a case study of structure-based cheminformatic methods on biotechnological
applications is given. Questions and problems which can be studied with computational
methods are elucidated and in an cooperation project, the methods are applied and evaluated
experimentally.
Finally, in Chapter 9, the accomplishments of this thesis are summed up, open problems and
its applicability is discussed. An outlook on following improvements is given as well.
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Figure 2.1: Overview of methods available for protein target identification
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2.1 Computational structure-based methods

The support that computational structure based cheminformatic methods can supply is
currently well-used in drug discovery projects. Whereas in other fields like biotechnology and
biochemistry, first applications started to make use of these methods only recently, in the
drug discovery pipeline (shown in Figure 2.2), cheminformatic methods are well established.
The pipeline consists of the following steps:

• Target-identification
Drugs interact with proteins. Therefore, the target protein has to be identified at
the beginning of each drug discovery project, which is mostly done by experiments.
Computational methods are rarely used in this step so far. Once a target is identified,
it has to be validated whether its modulation changes the disease state and activity
assays have to be established. Not each protein is easily crystallizable but if it is
possible, a 3D structure of the protein is determined by X-ray crystallization, NMR
structure analysis or homology modeling.

• Lead-identification
Once the protein target is identified, a lead, e.g. a substance that binds strongly to
the active site of the protein is searched. This task can be done by looking for natural
ligands, e.g. substrates of enzymes and understanding which functional groups are
essential for binding, i.e., understanding the mechanism of action and the binding
mode. Furthermore, if no ligands are yet known from which conclusions can be derived,
experimental high throughput screenings can be carried out. If a 3D structure of the
target protein is known, molecule libraries can be screened by virtual screening, or
rational de-novo design can be conducted.

• Lead-optimization
Once a lead is found, it has to be optimized with regard to administration, distribution,
metabolism and toxicity (ADME/Tox properties). In this step, its selectivity is further
studied and improved.

• Clinical trials
In animal studies and clinical trials with phases I to III, adverse effects and the efficacy
of the proposed drug are studied.

Often, the use of computational methods during the drug-discovery pipeline depends on the
available data, determining which methods are applicable. The use of structure-based meth-
ods like the inverse screening approach presented in this thesis is reserved to projects where
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Figure 2.2: Steps of the drug discovery pipeline

the 3D structure of the protein is known and available at a sufficient resolution. If this is the
case, structure-based methods can support the drug design pipeline during each step: Eluci-
dation of the binding mode by co-crystallized ligands, analysis of the active site, comparison
of the active site to those of other proteins, lead identification by virtual screening, lead
optimization by protein-ligand docking, de-novo design, pharmacophore-based approaches
and many others.
Inverse virtual screening can be applied mainly in the following steps:
For target-identification: If a drug has an unknown mechanism of action, and for example
its efficacy shall be enhanced, first of all, its target needs to be identified. An off-target
identification of a drug can also turn it into a lead for another drug discovery project, which
is the step lead-identification. In the step lead-optimization the selectivity of the lead can
be evaluated by inverse screening through identification of further targets. This can signifi-
cantly reduce the number of unspecific drugs that go into the last and most expensive step
of the drug pipeline, the clinical trials.

As the term ’inverse virtual screening’ conveys, it means the reverse setup compared to nor-
mal virtual screening, where libraries of millions of substances are screened for one protein
target. In structure-based approaches, docking-based virtual screening dominates nowadays.
The term docking describes the method of predicting the binding mode of a ligand in the
active site of a protein. It consists of the two steps of the placement of a ligand into the
active site of a protein followed by a scoring function predicting the binding affinity. While
the first docking methods were published in the 1980ies and fast virtual screening applica-
tions in the 1990ies (there are numerous recommendable reviews covering the development
of docking and virtual screening: Schneider and Böhm [2002], Pujadas et al. [2008], Kitchen
et al. [2004], Taylor et al. [2002], Yuriev et al. [2011], Tanrikulu et al. [2013]), the method
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of structure-based inverse screening is a decade younger, with the first methods being de-
veloped at the beginning of 2000 (see section 2.2.2).
Although the methods used in protein-ligand docking and virtual screening have been devel-
oped and further improved for over three decades now, there are still many open challenges.
These are found mainly in the aspects of protein flexibility, evaluation of crystal structures,
dependence of the methods on expert knowledge of the user for a reliable outcome, abil-
ity of the scoring functions to predict binding affinities, and the treatment of active site
water (Waszkowycz et al. [2011]). This listing shows that during the development, early
problems like ligand flexibility have already been addressed. This is not the case in inverse
virtual screening. Being still in its very early development stages, the challenges have not
been so clearly defined. So far, the first methods show open problems but very few are
yet addressed by improved follow-on approaches. While the knowledge gathered during the
docking and virtual screening development phases can also be of use in inverse screening,
the open challenges of this field are adopted as well, adding to the new challenges of the
reverse setup.

2.1.1 Screening versus docking

For the ’normal’ setup of identifying a ligand for a protein, the difference between protein-
ligand docking and virtual screening lies in the timescale that is needed to generate a
protein-ligand pose. In docking, where one or some molecules are placed into the active site
of a protein, the task can take minutes per ligand, while in virtual screening, where up to
millions of compounds are screened, the time per ligand should be reduced to seconds or
milliseconds (Waszkowycz et al. [2011]). This means that virtual screening methods employ
algorithms where the processing of one ligand is accelerated by some abstraction. Until now,
this difference is not employed in inverse virtual screening/computational target identification
methods. However, as there are currently not many structure-based approaches published,
this categorization has probably not been necessary. While the term inverse docking has
been used in some publications (Chen and Zhi [2001]), others use the term inverse screening
although their methods are based on simple protein-ligand docking and do not employ
measures for abstraction and speed-up as in ’normal’ virtual screening. As nearly none
of the so far published structure-based computational target-identification methods employ
measures for speed-up and abstraction, these methods are all described in section 2.2.2.4,
without differentiation of inverse docking or inverse screening.
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2.2 State of the art of inverse virtual screening

This section summarizes the current state of research concerning target identification, i.e.,
the methods which are available to determine the target profile for a compound. The aim
of this chapter is to give an overview of the current situation in this field of research with
current open problems and challenges.
First of all, it is elucidated how experimental methods in laboratories are used to identify the
targets a compound binds to. Then, computational methods that are relevant in predicting
polypharmacology at the time of writing this thesis are discussed. These methods are divided
by type, meaning that ligand-based, network-based, side-effect based and structure-based
methods are discussed separately. Representative literature for each method is discussed;
however, the discussed literature does not contain each approach of each method, since
this would go beyond the scope of this overview. Since the method presented in this thesis
is based on the 3D structure of proteins, it is of the type structure-based. Therefore, the
methods of this category are directly comparable with the presented method in this thesis.
For this reason, the main part of this chapter is focused on methods of this type, which are
consequently discussed in detail, while the other methods are mainly discussed in terms of
(dis-)advantages in order to give an overview of their basic ideas. The discussion of the type
structure-based methods is therefore subdivided into several subsections.

2.2.1 Experimental methods

Experimental methods to determine the targets that a compound or drug has an effect on
(activating or inhibiting) are mainly isolated activity assays, cellular screening and pharma-
cogenetic profiling.
Cell-free activity assays are used for high throughput molecular-target screening. These ac-
tivity measurements monitor the activity change in the absence or presence of a compound
of (ideally) a single protein.
Next to single activity assays, a cell-free screening approach for experimental target iden-
tification is affinity chromatography for proteins (Jenkins et al. [2007]). In this approach,
the compound of interest is fixed to the stationary phase while the proteins of interest, e.g.,
in form of a cell extract, are in the mobile phase. This approach is limited concerning the
modus of protein-ligand interaction, since if the ligand needs to migrate deeply into the
protein into the active site, it would not bind if fixed to the solid phase.
Cellular screenings show the phenotypic effect on the cell level but are more complex and
not suitable for high-throughput approaches. Screenings at the whole organism level, like
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in vivo screening using, e.g., the zebrafish as model organism (Zimmermann et al. [2007])
are even higher dimensional. Despite the advantage of showing the phenotypic effect on the
organism, whole organism screenings are even less suited for target identification on protein
level.
So-called high-throughput screening where one target is experimentally screened with thou-
sands of compounds is well established today. In this experimental setup, once an activity
assay is available for a target, it is relatively easy to perform activity experiments with a
huge number of compounds. However, the reverse setup poses many challenges, which is
why there is no high-throughput inverse experimental screening. For this setup, an activity
assay for each target that shall be screened needs to be developed. This task can be very
difficult for some targets and even if activity assays are available, conducting thousands of
different assays is highly complex.

In summary, even today with screening robots and other high-throughput methods, determin-
ing the selectivity of a compound experimentally is not trivial. Questions currently discussed
in literature are: what is a good selectivity measure, how many assays are needed to deter-
mine if a compound is promiscuous and how are the assay results mapped to a numerical
number that can be compared across compound assays (Wang and Greene [2012]). The
fact that even today experimental methods are expensive and time consuming is also crucial.
Furthermore, not each compound or protein is readily available for activity tests, but often
have to be obtained lavishly. Another known problem of experimentally determined activity
is the often problematic comparability of assay data measured in different laboratories under
different conditions. Additionally, another issue is that there are not few compounds which
in some way interfere with the activity measuring methods and lead to misinterpreted results
due to aggregation or solvation effects (Baell and Holloway [2010]).

2.2.2 Computational methods

Computational methods for target prediction are either built on experimental data from which
they derive predictions or use the nowadays established chemical knowledge of protein-ligand
interactions. This section is divided into subsections on the basis of the computational model
used. Since the results of the computational models have to be evaluated, good data sets
are crucial for a reliable evaluation. Therefore, at the end of this section, the data used for
evaluation is discussed as well.
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2.2.2.1 Ligand-based computational methods

Ligand-based methods use known ligand-target binding information, describe the ligands
by descriptors coding, e.g., the shape, topology and functionality and predict with similar-
ity measures unknown ligand-target interactions (Bender and Glen [2004]). The growing
amount of available data of ligand-target activities in databases like PubChem (Wang et al.
[2009]), DrugBank (Wishart et al. [2006]), ChEMBL (Gaulton et al. [2012]) and others is
exploited by these methods. The basic assumption is that similar ligands bind similar tar-
gets, whereby ’similar’ is defined in various ways. An advantage is the independence from
available 3D structure information of the target. Furthermore, descriptor calculations are
relatively fast, meaning the results for predictions for a new ligand are rapidly available. A
disadvantage is the dependency on the available data: if a ligand-target interaction so far
has not been observed, it is not represented in the data and cannot be considered in the
predictions. Furthermore, the reduction of the ligands to descriptors can result in misleading
predictions.
Ligand descriptors can be divided into one-dimensional (1D), two-dimensional (2D) and
three-dimensional (3D) ones. 1D descriptors code molecular properties like molecular weight,
number of rotatable bonds, hydrophobicity and others. 2D descriptors describe the topo-
logical connectivity of the molecule, one example is the Daylight Fingerprints (James and
Weininger [2006]). 3D descriptors consider the shape of the molecule.
Niijima et al. (Niijima et al. [2010]) use a machine-learning method to identify 1D fea-
tures that allow a prediction of unknown ligand-target interactions. Applying their method
to cytochrome P450 enzymes, they rank 1400 features like chemical paths, logP, charge,
rings and bond information by their predictive potential. Keiser et al. use in their Similarity
Ensemble Approach (SEA) (Keiser et al. [2007]) the 2D Daylight Fingerprint (James and
Weininger [2006]) with the Tanimoto Coefficient as similarity measure. With their method,
they are able to predict chemogenomic activity classes assigned with a statistical confidence
value for new ligands. For evaluation of their method, they confirm in-vitro predictions
experimentally (Keiser et al. [2009]).
Koutsoukas et al. use Extended Connectivity Fingerprint (ECFP) descriptors (Rogers and
Hahn [2010]) for molecules. They propose a data set as benchmark set for further stud-
ies, consisting of about 80000 compounds extracted from the ChEMBL database that show
activity against human targets. Based on this data set they compare a Kernel-based and
a Naïve-Bayes based approach for prediction of targets for unknown ligands. Their results
show for both methods good predictions with 80% true targets in the first 3% of the data.
They state that the performance of their methods exhibit large variations depending on the
target class (Koutsoukas et al. [2013]).
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AbdulHameed et al. (AbdulHameed et al. [2012]) use a shape/chemistry overlap as 3D
descriptor by applying the ROCS approach (Rush et al. [2005]) and show a good enrich-
ment of true positives compared to random selections. Another 3D shape overlap method
is the Gaussian Ensemble Screening method introduced by Perez et al. (Perez Nueno et al.
[2012]).
Nettles et al. (Nettles et al. [2006]) critically examine the use of 2D and 3D descriptors for
target-fishing and conclude that 2D descriptors outperform 3D descriptors in correct target
prediction. However, in many cases, a complementary use of both descriptor forms is found
to be worthwhile, especially if no high 2D similarity to the query compound is found in
the available data. Such a complementary 2D/3D approach is applied by Kinnings et al.
(Kinnings and Jackson [2011]) as well. They use 2D descriptors (Daylight Fingerprints) as
a pre-filter to reduce the number of geometric matchings in the following step. Then, the
similarity is calculated considering both, 2D and 3D descriptor-similarity, in combination.
The authors also conclude that a complementary approach of both descriptor types is most
successful.

2.2.2.2 Network-based computational methods

In polypharmacology, networks of a protein-ligand interaction space or a gene-ligand inter-
action space are compiled. This method links chemical structures to biological activity data.
Using experimentally determined activity data from large screening assays or compilations
of data from literature and databases, a network consists of targets or genes as nodes and
interactions (e.g. activity with the same compound) as edges (Hopkins [2008]).
The argumentation for using networks for target prediction is as follows: The compiled net-
works show that there are alternative paths, so-called rescue pathways for all life-essential
paths of an organism. Consequently, inhibiting only one node on one of the pathways will not
have a phenotypic effect. Hopkins (Hopkins [2008]) argues that a one-two punch approach
hitting several parallel pathways with polypharmacological drugs or drug combinations is
needed for a reliable effect. Only networks reveal the parallel pathways, and show where a
target promiscuity of a compound is wanted (when the targets lie on parallel pathways) and
where it is unwanted (when the targets are on totally different pathways in the network).
Arguments against this method are similar to those described above for ligand-based meth-
ods: The prediction relies on the so far discovered data and predictions can only be derived
from the available data. The compiled networks can be used, on the one hand, to identify
promiscuous targets, and, on the other hand, to exploit the available data for new predictions
as described below.
Networks compiled from experimentally determined activity data can be completed by us-
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ing computational prediction methods. As experimental activity determination is expensive
and challenging, the completion of the available data with predicted activities is necessary.
Strategies for the prediction are diverse: often machine learning methods are trained with
the existing data, classifying chemical structures with chemical fingerprints.
Paolini et al. (Paolini et al. [2006]) use data of several sources (in-house screening data,
commercially available screening data and data from literature and patents) to compile a
pharmacological space in form of a data warehouse. The interaction network compiled con-
sists of 486 (human) targets with more than 3500 edges (interactions). With the network,
an assessment of both, compound and target selectivity, is possible. Three methods to
calculate a promiscuity index for the targets are introduced. One considers the number of
connections in the network, a second the proportion of ligands shared with other targets
weighted by the average number of targets the ligands are active against and a third con-
siders the strength of a connection in the network (i.e., the height of an activity measured).
Using the data of the network, Paolini et al. trained a Laplacian-modified Bayesian classifier
to predict polypharmacology. Using part of the data for training and part as test set, their
method shows promising results for new predictions. However, they state that their method
is dependent on their data which unfortunately is sparse in some parts.
A ligand descriptor based method is applied by Mestres et al. to introduce their so-called
in-silico target profiling. Using ligand-target activity data from seven different databases and
in-house screening experiments, ligand activity is mapped with a low-dimensional molecular
topology descriptor. In this way, a network of targets connected by ligand descriptors is
compiled. For the prediction of the activity of a ligand with unknown activity, the Euclidian
distance of this ligand’s descriptor to all descriptors in the network is calculated. The net-
work reveals groups of target and cross-pharmacological connections when, e.g., all targets
are connected that have ten or more shared ligand descriptors. Mestres et al. show with
their target-drug networks, that at the time of writing, the average number of targets per
drug is 6. (Gregori-Puigjane and Mestres [2008], Mestres et al. [2009], Nonell-Canals and
Mestres [2011]).
Yamanishi et al. (Yamanishi et al. [2010]) connect the chemical space, the pharmacological
space and drug-target interaction networks (data collected from various databases) using a
two-step approach of firstly using the chemical structure to predict pharmacological effects
and secondly predicting drug-target interactions with a supervised bipartite graph inference
method. The bipartite graph consists of heterogeneous nodes of drugs or targets and of in-
teractions as edges. Their results show that for their predictions using the pharmacological
effects outperforms using chemical similarity alone.
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2.2.2.3 Side-effect based computational methods

The effect of a drug on a target, e.g., an activity inhibition does not necessarily lead to
the wanted phenotypic effect in the organism. Therefore, in polypharmacology, a significant
challenge is not only to predict a potential target, but also to predict a potential phenotypic
pharmacological effect such as abnormal hepatic function or cardiac dysrhythmia for a drug.
The number of methods so far available for side-effect prediction is limited, but some meth-
ods exploit known side-effects for target predictions. These methods depend on a side-effect
description as in package inserts of drugs, and are therefore limited to the data available
from marketed drugs.
As pioneers of this method, Campillos et al. predict from side-effects extracted from the
package inserts of about 750 drugs, whether two drugs share a target (Campillos et al.
[2008]). Applying a weighting scheme, they account for different occurrence frequency of
the side-effects as well as for the correlation of effects. The probability of two drugs to share
a target is calculated as a combination of a chemical similarity of the drugs (based on a 2D
fingerprint) and the similarity of the side-effect listings.
Using the SEA approach (side-effect approach) introduced in the section ligand-based meth-
ods (see section 2.2.2.1), Lounkine et al. (Lounkine et al. [2012]) map adverse effects of
drugs to targets and are therefore able to predict potential targets together with side-effects
for an unknown drug via its chemical similarity.
Combining side-effect prediction with their previously published network-based pharmaco-
logical effect prediction method (see above, discussed in section 2.2.2.2), Mizutani et al.
(Mizutani et al. [2012], Yamanishi et al. [2012]) correlate drug-protein interaction profiles
with side-effect profiles. Constructing a network of proteins and side-effects connected by
edges, they are able to predict the phenotypic side effects from a protein interaction profile
of a drug.
These methods are useful concerning the prediction of phenotypic pharmacological effects
but are limited concerning predictions for new drugs, since they rely on the sparse available
data. The so far available methods are not able to make predictions if the drug of interest
is very different in structure or in target profile from the drugs that are in the available data
set. Another issue of the approach to predict targets via side-effects is the relatively abstract
description of phenotypic effects in package inserts, which makes it difficult to map effects
to distinct targets. Further, mapping an expressed phenotype to a single target for protein
target prediction on target level is hardly possible.
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2.2.2.4 Protein-structure based computational methods

In contrast to the above discussed methods, the advantage of protein-structure based meth-
ods is that they do not necessarily depend on already available activity data. For example,
the methods based on docking use the chemical knowledge of protein-ligand binding for
predictions. However, the name protein-structure-based instantly reveals the main obstacle
of these methods: They rely on the availability of 3D protein structures. These are deter-
mined experimentally by X-ray crystallography or NMR nuclear magnet resonance structure
determination as well as computationally by modeling. Being the most established and in
comparison with modeled structures more reliable method, many approaches only use struc-
tures determined by X-ray crystallography. The public database Protein Data Bank (Berman
et al. [2000]), available at www.pdb.org, contains all published 3D protein structures. Ad-
ditionally, many companies have their own internal collection of 3D structures which are
not available to the public. However, the number of publicly available 3D protein struc-
tures grows rapidly, with a rise from about 20000 X-ray structures available in the PDB in
2003 to more than 40000 structures in 2008 to more than 82000 structures available in 2013.

The category of structure based methods can be subdivided into protein-ligand docking
based, pharmacophore-screening based and binding-site comparison based methods (Rognan
[2010]).

Methods based on protein-ligand docking
In protein-ligand docking, small molecules are placed in protein binding pockets; positions
where the ligand can bind with reversible interactions to the protein are predicted. Docking is
applied traditionally in protein-ligand screening, where a library of small molecules is docked
to one protein in order to find molecules which bind to this protein. Often, docking and
screening are differentiated, with screening being defined as more coarse but much faster
than docking.
For target identification, the inverse method is used: In protein-ligand docking based inverse
screening methods, a docking algorithm is employed to place the one query compound into
a database of 3D protein structure binding pockets. For identification of binding pockets,
either reference ligands bound in protein-ligand complexes or pocket prediction algorithms
are used. Molecule poses generated by the docking algorithms are evaluated with diverse
scoring functions which measure the steric fitting of the ligand in the binding pocket and
the complementarity of possible chemical interactions between protein and ligand. Ranking
of the poses by the values of the scoring function gives a ranking of targets for the query
compound. For evaluation of the methods, the results can be either verified by experimental
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activity assays (prospectively) or if activity data is already available by comparison of the
ranking positions of true targets for the query ligand and the activity data (retrospectively).
Below, inverse screening approaches based on protein-ligand docking are described in detail.
Most of them apply docking algorithms which are not especially adjusted to the inverse
problem of target rather than ligand identification. Nevertheless, the inverse approach has
other requirements than the normal method, which can result in rendering the traditional
approaches of docking or scoring approaches inappropriate for the task of inverse screening.
These are time issues because handling the data for a database of proteins is more challenging
than handling the data for the same number of small molecules, as well as scoring issues,
since the scoring functions used for traditional protein-ligand docking are often unsuitable for
comparing predicted binding strength on the basis of docking scores among different targets
(Kellenberger et al. [2008], Wang et al. [2012]). The discussion of the so far published
approaches shows where adjustments crediting these issues are integrated as well as where
these issues pose problems on the methods.

INVDOCK Chen et al. (Chen and Zhi [2001] and Chen and Ung [2001]) describe IN-
VDOCK as one of the first structure based-inverse screening approaches. Their method is
based on an own implementation of the DOCK protein-ligand docking program (Kuntz et al.
[1982]). Based on geometric algorithms, an active site is represented as a cavity defined
by overlapping spheres, with their own implementation of the method developed by Wang
et al. (Wang et al. [1999]) accounting for ligand flexibility. Ligand poses generated by the
docking algorithm are optimized with respect to the torsion angles applying an energy-based
optimization strategy.
For the optimization as well as for the evaluation of the obtained poses, a scoring function
based on protein-ligand interactions in the AMBER force field is used (Weiner et al. [1984]).
The energy score of the docked pose is related to a threshold energy score, which is the
number of ligand atoms weighted with a constant factor -α, which is close to 1.0 and is
determined by linear regression of the computed energy score of a large set of co-crystallized
protein ligand complexes. The score of the docked ligand has to be lower than the threshold
score to select a structure as a potential target for the ligand. The authors propose to use
more sophisticated weights for the threshold score but do not further evaluate this consid-
eration.
Next to this threshold score, the computed score for the generated pose is also compared
with the score of the ligand in the cavity or, if it is empty, with a ligand in a cavity of
other related protein cavities. In order to save computation time, a cavity is considered a
screening hit, if one pose is found above the threshold scores, and no further search for the
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best binding mode is carried out.
In 2002, Chen et al. compiled a database of pharmacologically relevant protein-ligand com-
plexes for inverse screening called TTD (Therapeutic Target Database) (Chen et al. [2002]).
The authors searched literature for relevant therapeutic targets, stating that at the time of
2002, medical treatment addressed approximately 500 targets. The first published version
of the TTD contained 433 targets, updates in 2010 (Zhu et al. [2010]) and 2012 (Zhu et al.
[2012]) led to 932 targets in the currently available version. The targets contained in TTD
are cross-linked to other databases and annotated with pathway information, known drugs,
disease conditions and related literature and are presented via a web-server to public queries.
Validation studies presented with the above described INVDOCK inverse screening engine
are performed with a pre-version of TTD consisting of 1040 structures of 38 proteins (2700
cavities) connected with toxicity and side effects as stated by the authors.
In a first study, nine protein structures are screened in a re-docking approach, resulting in
RMSD values between 3.65 and 6.55Å (Chen and Zhi [2001]). The relatively high upper
limit of observed RMSDs is according to the authors due to the abortion of the search strat-
egy at the first ’good’ pose. If this aborting is turned off, and the best pose is searched, the
RMSD values range from 0.94 to 2.41Å. For evaluation, INVDOCK is tested with vitamin E
and 4H-tamoxifen. For 4H-tamoxifen, INVDOCK lists 20 potential targets, whereof 10 are
confirmed in the literature as targets, and for 10 no information exists whether 4H-tamoxifen
is binding or not. For vitamin E, two of the 25 predicted targets are confirmed, for four
there is experimental evidence of some effect for vitamin E found in literature and for the
rest there is no data of possible vitamin E binding.
In a following study (Chen and Ung [2001]), Chen et al. use eight compounds for screening
(aspirin, gentamicin, ibuprofen, indinavir, neomycin, penicillin G, 4H-tamoxifen, vitamin C).
The search is restricted to 1425 cavities of the database of human or mammalian proteins.
The average running time of one compound is at the time of publishing 12 days on a 250
MHz SGI R10000 Octane workstation. The results show that the predictions for each com-
pound contain confirmed and not confirmed targets. For all compounds together, only eight
true targets of which there are 3D structures contained in the cavity database are missed.
Of the predicted targets, 29 of 68 do not have any experimental data on binding of the
compounds, thus cannot be classified as true or false targets.
A third study that applies the INVDOCK inverse screening approach is published by Ji et
al. (Ji et al. [2006]) and covers the screening of 11 anti-HIV drugs. The results show that
86-89% of the by INVDOCK identified potential targets are consistent with adverse drug
effects reported on the drugs. 67-100% of the reported adverse effects are covered by the
predicted targets.
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The INVDOCK approach as the first published inverse screening approach reveals the prob-
lems of docking based inverse screening without adjustments to the “inverse“ problem: The
computing time of docking into the targets is relatively high, although in the evaluation
experiments only a small number of targets are screened. The computing time saving mea-
sures which were taken have the disadvantage of significantly worsening the results. Also,
the evaluation of the method is difficult with the data that Chen et al. used since no clear
separation of true and negative targets was available.

TarFisDock A unique feature of the TarFisDock approach published by Li et al. (Li et al.
[2006]) is its web-platform, which allows any scientist to use the application. The method
of Jiang et al. is based on the protein-ligand docking program DOCK (Version 4.0: Ewing
et al. [2001]). The scoring function of protein-ligand interactions of the Amber force field
is used (Weiner et al. [1984]) to rank the generated docking poses. Neither the docking
procedure of DOCK, nor the scoring function are specially adjusted to the challenges of the
inverse screening problem.
The web-platform does not only give access to the TarFisDock screening approach, but also
provides a protein database which can be screened: Gao et al. compiled a database of
3D protein structures named PDTD (Potential Drug Target Database) (Gao et al. [2008]).
Consisting at the time of publishing of 1100 protein entries, the database was compiled
of targets gathered from TTD (Chen et al. [2002], DrugBank (Wishart et al. [2006]) and
Thomson Pharma (www.thomson-pharma.com), following the aim to compile a database of
potential drug targets. The 1100 protein entries represent about 830 potential drug targets
with 3D structures. The entries in the database contain active binding sites, annotation of
related diseases, biological function and associated pathways of the contained targets.
For evaluation of the TarFisDock approach, Li et al. (Li et al. [2006]) screen the PDTD
data set with vitamin E and 4H-tamoxifen and are able to identify 30% and 50% of re-
ported targets, respectively, where for 4H-tamoxifen, 50% of true targets are ranked in the
top 5% of the database. In another application, Cai et al. (Cai et al. [2006]) use the
TarFisDock program to screen the PDTD database with anti-Helicobacter pylori agents to
identify potential targets. They confirm the results with experimental assays and protein
crystal structure determination of two discovered targets. The running time depends on the
flexibility of the screened compound, ranging from 5 to 20 hours on a single CPU at the
time of publishing.
Since no adjustments were implemented to the traditional protein-ligand docking algorithms
or scoring functions, this approach is faced with the issues described above of inverse screen-
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ing.

sc-PDB Inverse Screening Rognan et al. published several papers (Paul et al. [2004]),
(Muller et al. [2006]), (Kellenberger et al. [2008]) on an inverse screening approach which
focuses on the compilation on a sensible 3D structure database of proteins for screening.
Kellenberger et al. (Kellenberger et al. [2006]) published the first version of the so-called
sc-PDB in 2006, and subsequently updated the database, with the currently latest version
published in 2011 (Meslamani et al. [2011]). The data set of protein structures contained in
the sc-PDB consists of ‘druggable’ binding sites extracted out of the Protein Data Bank after
the following criteria: resolution, type of structure and consistency of annotated data. The
binding sites which are represented in the database are annotated with EC number, source
organism, name, and cofactors. Only binding sites containing ligands with pharmacological
potential are selected for the database, meaning that Kellenberger et al. exclude binding
sites with cofactors, sugar-like ligands and crystallization or solution agents as ligands. In
the first version, their database consisted of 6415 binding sites, which increased up to 8166
in the version published 2011.
The first inverse screening approach of the sc-PDB is described in Paul et al. [2004], at which
time a pre-version of the sc-PDB consisted of 2148 structure entries. Their inverse screening
method uses an approach based on the GOLD docking procedure (Verdonk et al. [2003]),
using the virtual screening settings, without any further adjustments to the inverse screening
setup. Their method used 64 cpu-hours per ligand. For validation, the method is applied
for the prediction of targets for four chemically diverse ligands (biotin, 4-hydroxytamoxifen,
6-hydroxy-1,6-dihydropurine ribonucleoside, methotrexate). They compare RMSD values of
the binding mode predicted by GOLD to co-crystallized ligands with the result of an average
of 0.6 Å. Furthermore, they evaluate at which position the GOLD fitness function ranks
known targets for the four ligands, which results in good enrichment rates. However, poor
enrichment rates are obtained for the ligand AMP (adenosine 5’-monophosphate), which
leads the authors to state that inverse screening should be ”reserved to rather selective
ligands”.
A subsequent target identification study (Muller et al. [2006]) also used the sc-PDB as
structure data set. As query five molecules with a 1,3,5-triazepan-2,6-dione scaffold as
representatives of a combinatorial library were used. To identify true targets for these
molecules, rules were composed based on the GOLD fitness score and the fact that proteins
are stored in multiple entities in the sc-PDB data bank: 50% of all target entries had to be
among the top 2% of all entries, a minimum of two entries of the same target had to be
in the top 2% of all entries and the average fitness score of all entries of the same target
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had to be above the value 50. Evaluating their method, experimental inhibition assays of
nine enzymes showed mixed results, with three not showing any inhibition, one showing
ambiguous results and one assay confirming the prediction of an inhibition.
A following publication (Kellenberger et al. [2008]) addresses the ranking of true targets
problem by using the GOLD fitness score and the same four ligands as they were used
in Paul et al. [2004]. They find that a combination of the GOLD fitness score with two
topological molecular interaction fingerprint (IFP) scores leads to the best enrichment.
Another example where the sc-PDB database was screened inversely by a protein-ligand
docking based approach was published by Zahler et al. (Zahler et al. [2007]). The docking
tool GlamDock (Tietze and Apostolakis [2007]) was used to generate poses, with its scoring
function followed by an energy minimization of the ligand torsion angles of the docked
conformation. Zahler et al. aimed to identify targets for four kinase inhibitors. Next to
known targets, they identified further structures of the sc-PDB as potential targets and
conducted kinase activity assays for evaluation. Besides to finding known targets in the
database with an enrichment factor in the first 1% between 16 and 20 for the four inhibitors,
one kinase was predicted to be inhibited selectively by one of the four compounds. For this
kinase, experimental activity assays confirmed the predictions.

Methods based on pharmacophore-screening

Pharmacophore screening based methods use a known cavity of the compound of interest to
derive a 3D pharmacophore describing the chemistry and geometry of the cavity by feature
points. With this pharmacophore, databases of cavities, e.g. from the Protein Data Bank,
are screened.
As one example, the approach of Campagne-Slater et al. (Campagna-Slater et al. [2010])
is discussed here. They use an algorithm that predicts pockets in human proteins in the
Protein Data Bank to compile a cavity database independent from co-crystallized ligands.
First of all, the cavity database is filtered for cavities containing the same amino acid types
as the query cavity. Then, pharmacophores are used to filter for cavities which also have the
correct geometric arrangement of the amino acids. The pharmacophores are derived from
known binding pockets, e.g. in case of the in the paper discussed study several methyl-lysine
binding cavities are used to compile sets of pharmacophores. Therefore, in this approach,
the ligand and known binding pockets are used to derive pharmacophores to search only
those cavities from the database, which already have comparable amino acid compositions.
This reveals one disadvantage of pharmacophore-screening based methods: The possible
hits are limited to very similar binding pockets. Nevertheless, one ligand can bind to very
diverse binding pockets considering amino acid composition. These would be missed by the
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approach of Campange-Slater et al (Campagna-Slater et al. [2010]).
More prominent in pharmacophore screening approaches is to screen the molecule against a
pre-compiled database of pharmacophores of protein binding sites and compare the ligand
to these pharmacophores, as shown by Steindl et al. (Steindl et al. [2006]) or Liu et al. with
the PharmMapper server (Liu et al. [2010]). PharmMapper is available via a web server
and the in-house database of over 7000 pharmacophore-models can be screened within a
few hours. The ligand is placed on the protein pharmacophore models and pharmacophore
features are compared. A scoring of the feature concurrence allows a ranking of matching
pharmocophores, e.g., a ranking of matching protein structures. As an evaluation, tamoxifen
was screened against the pharmacophore database. In the top ranked 100 proteins, four are
known as true targets. 71% of the known targets appear among the top 300 ranked proteins.
Here, as only pharmacophoric feature points are compared, the above mentioned problem is
not encountered, diverse pockets can be found with this method. However, the reduction
to pharmacophoric points is an abstraction which may lead to false positives.
Meslamani et al. (Meslamani et al. [2012]) compare four different pharmacophore-matching
approaches to ligand-similarity and docking-based target prediction. In the applied pharmaco-
phore generation step, only those pharmacophores which are derived form the protein-ligand
complex are selected which promise to be selective, based on a statistical estimate. For
evaluation, the sc-PDB described above is used as protein structure database. 157 diverse
ligands of the reference ligands contained in the sc-PDB are used as queries. The study
concludes that ligand-based similarity based on ECFP (2D) and ROCS (3D) outperforms
pharmacophore- and docking-based methods. However, their study also reveals cases for
which only the pharmacophore or docking-based approaches were successful.

Methods based on binding-site similarity

Another 3D structure-based method is based on the assumption that similar binding pockets
bind similar ligands. It is presumed that based on a known binding pocket of a ligand other
pockets where the ligand binds can be identified by finding similar pockets of the known
binding pocket(s). This method tends to miss potential targets for a ligand since the ligand
can change conformation on binding and, thus, the binding sites where it binds to need not
necessarily be very similar in shape or interaction spot arrangement.
Exemplarily, the approach of Miletti and Vulpetti (Milletti and Vulpetti [2010]) is discussed
here. Their identification of targets for a compound based on pocket similarity consists of
the two steps of creating a database of pocket descriptors and then screening the database
with descriptors generated of the pocket. Miletti and Vulpetti use a fingerprint consisting
of atom types in spheres with increasing radius to describe the pockets. A similarity score
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of the descriptors is completed with a score for the superposition of the two binding sites to
obtain a ranking of pockets from the database for the query pocket. For evaluation, Miletti
and Vulpetti used screening data for kinases from the Ambit panel (Karaman et al. [2008]).
For 17 kinase inhibitors, they obtained ROC AUC values between 0.5 and 0.9 with a median
of 0.63 (ROC and AUC values are described in detail in Chapter 6).

2.2.2.5 Hybrid computational methods

Combining several of the above described computational methods results in hybrid ap-
proaches. Such protocols have the advantage that potential limitations of one method
might be straightened out by other methods. In real applications, the method used is de-
pendent on constitution and amount of available data. Hybrid approaches take over the
choice of method from a user and combine scores originating from various approaches in
one. A disadvantage is that the results are difficult to interpret, since the composition and
meaning of a final score is often not clear.
One example that shall be discussed here, is the approach of Simon et al. (Simon et al.
[2011], Peragovics et al. [2012]), which combines side-effect analysis with protein-ligand
docking to predict new targets for a query compound. In their method called drug effect
profiling, Simon et al. firstly compile an interaction pattern matrix consisting of docking
scores of each drug entry from the DrugBank (Wishart et al. [2006]) to 149 non-target
proteins. Secondly, a so-called binary effect profile matrix is compiled, which lists for each
drug from the DrugBank whether a pharmacological effect of a list of 177 is observed or
not. These two matrices are combined by canonical correlation analysis and linear discrim-
inant analysis into the effect probability matrix (Simon et al. [2011]). This matrix gives a
probability for a drug to have a pharmacological effect.
Next to the prediction of therapeutic effects, Simon et al. extended their method by ex-
changing the effect profile matrix with a target profile matrix, where one row contains the
target profile of a drug as documented in the DrugBank. The statistical combination of
both matrices into the target probability matrix gives probabilities for each drug of binding
to each of 77 proteins of the target profile matrix (Peragovics et al. [2012]). Of the newly
predicted drug-target interactions, the authors focused on antipsychotic drugs for evaluation
and searched the literature for conformations of the predictions. Of 84 drug-target interac-
tions that were not recorded in the DrugBank, 39 were found to be reported in literature.
Another example is the approach of Tian et al. (Tian et al. [2013]) who combine inverse
docking with a pharmacophore mapping in a Bayesian classifier. They find that their classifier
is satisfactory able to classify inhibitors of diabetes type II targets. Subsequently, they apply
their method for predicting targets for compounds found in traditional chinese medicine.
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The hybrid approach introduced by Meslamani et al. (Meslamani et al. [2013]) automat-
ically combines a series of four ligand and two structure-based target prediction methods.
A workflow contains decision conditions for choosing the best method based on the input
data. For a ligand test set of 189 ligands, the primary target was identified for 72%.

2.2.3 Data

For the evaluation of predictions resulting from computational target prediction methods,
data showing the promiscuity of ligands is needed. As computational methods are merely
simplified models of the real situation in nature, evaluation shows to which extend the model
is able to mirror the effects in nature. Therefore, as a validation set, data from experimental
assays which show the binding affinity of a ligand to as many different targets as possible
would be desired. Then, the predictions of a computational model can be divided into true
positives, i.e., correct positive predictions, true negatives, i.e., correct negative predictions,
and false positives and false negatives. However, so far, there is not much data of this
kind available. Often, in experimental setups, one target is screened with thousands of com-
pounds, while the reverse setup where thousands of targets are screened with one compound
is not performed due to the problems discussed in section 2.2.1.
Most difficult to obtain is negative data in this scenario, where it is documented for a
compound that it is not active on a target. This data is often not published, because if
active compounds are wanted in a project only the active compounds found are published.
Therefore, the identification of true negative and false positive predictions of computational
methods is a hardly solved issue. Furthermore, if an activity of a compound on a target is
not documented in literature, it cannot be concluded that the compound is inactive but only
that there has not been an activity test of the compound on that target. With this lack of
data, the validation of computational methods is difficult.
There are few target classes for which the desired data is available. One target class which
is evaluated thoroughly in terms of positive and negative activity of compounds, namely
the selectivity of the tested compounds, are kinases. Kinases are a class of enzymes with
EC number 2.7.1.* which transfer phosphate-moieties to substrates. They are involved in
signal-transduction and are over-expressed in cancer tissues, which is the reason for the in-
terest in selective kinase inhibitors. In the above discussed approaches, Miletti and Vulpetti
(Milletti and Vulpetti [2010]) and Zahler et al. (Zahler et al. [2007]) use kinase data sets
for evaluation.
Table 2.1 shows an overview of data used in the computational structure-based target pre-
diction approaches discussed above in section 2.2.2.4. The overview demonstrates the lack
of negative data points in most of the used data sets.
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2.3 Unsolved challenges

The discussion of the state of the art of structure-based inverse screening methods revealed
three main challenges:
The first is the adjustment of docking methods to the inverse screening setup. Many meth-
ods that use docking in the reverse setup for target identification do not adjust the algorithms
in particular for this problem. These methods are more similar to reverse docking than re-
verse virtual screening. Therefore, for an inverse screening method, many opportunities exist
which could speed up the process.
The second main challenge is the inter-target ranking. Scoring functions for protein-ligand
complex assessment are in general not suited for comparison of different targets. The ab-
solute values of the scores are only capable to rank several ligands in one target. This is
due to the diverse features and structures of each active site and due to the fact that the
scoring functions were not designed for this problem yet.
The final challenge lies in the data for validation, as discussed in the preceding section.
Unlike the DUD (Huang et al. [2006]), which is an evaluation data set for molecular docking
already in the second generation, for inverse screening so far no standard data set which al-
lows statistical evaluation of the performance of target prediction tools is established. While
even for ligand-based inverse screening predictions a benchmark data set has been proposed
in 2013 (Koutsoukas et al. [2013]), no such data set exists for structure-based inverse screen-
ing methods. Therefore, no thorough statistical comparison of different methods is possible.
In addition, further improvement of existing methods proves difficult if the only possible
validation of predictions is by experimental activity assays. There is a lack of a data set with
diverse, high quality protein-ligand complexes and negative data points. A recent review
of Kharkar et al. on reverse docking uses the words “Unlike the benchmarks for traditional
molecular docking [..], there is scarcity of such sets for reverse docking.” (Kharkar et al.
[2014]) They conclude that due to the lack of benchmarks, the effectiveness of strategies
for multiple target identification is unclear.
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Data set Composition True
posi-
tives

True
nega-
tives

Number
of struc-
tures

Avail-
ability

Application in
inverse screen-
ing

sc-PDB
(2012
version)
[1]

’Druggable’ protein-
ligand complexes from
the PDB meeting
quality criteria

yes no 8077
entries
(2377
proteins)

Free ac-
cess

Screened with
4 chemically
diverse com-
pounds [2],[3]

TTD
(2012
version)
[4]

Therapeutic targets,
compiled by search
from textbooks, and
publications

yes no 2025 tar-
gets

Via
web-
server

Pre-version of
1040 entries
screened with
8 compounds
[5],[6]

PDTD [7] Drug targets from
TTD, DrugBank and
Thomson Pharma,
structures from PDB

yes no 1207 en-
tries (841
proteins)

Free ac-
cess

Screened with 2
compounds [8]

Kinase
data [9]

PDB structures with
Kinase activity data
in the Kinase Ambit
Panel

yes yes 189
kinases

Activity
data
pub-
lished

Binding site
similarity study
with 17 kinase
inhibitors [9]

Kinase
com-
plexes of
sc-PDB

Complexes with EC
number 2.7.1.*

yes yes 327 com-
plexes, 84
kinases

yes screened with
3 indirubin
derivatives, true
negatives by
experimental
validation [10]

Table 2.1: Overview of composition and applications of data sets in structure-based
inverse screening approaches. ([1] Meslamani et al. [2011],[2] Paul et al. [2004],[3] Kellen-
berger et al. [2008],[4] Zhu et al. [2012],[5] Chen and Zhi [2001],[6] Chen and Ung [2001],[7]
Gao et al. [2008],[8] Li et al. [2006],[9] Milletti and Vulpetti [2010],[10] Zahler et al. [2007]
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Quality Time

Figure 3.1: The aim of this thesis is a balance between high quality predictions and
reasonable running time of the algorithms for the prediction of protein targets for small
molecules.
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3.1 Aims and objectives

The preceding chapter shows the current state of the art in the field of computational target
identification. Many limitations become obvious when looking at these methods and results.
This section shall define which obstacles shall be faced during this dissertation, and what
the main aim of the project is.

The aim of this dissertation project is the development of a computational structure-based
inverse screening method which manages to balance between a good quality of target pre-
diction and a reasonable time frame of the predictions. Therefore, in contrast to most so
far published approaches, the to be developed method shall regard the ’inverse’ aspect more
thoroughly. The aim of the research project of this thesis is summarized as follows:

The aim of this thesis is the development of a structure-based inverse screening method
that is able to reliably predict protein targets for small organic compounds in a reasonable
amount of time.

The literature analysis of structure based computational target identification methods reveals
weak spots mainly in the following aspects: Consistent and appropriate handling of ten
thousands of 3D protein structures (concerning time as well), capability of the scoring
functions for inter-target ranking and evaluation on suitable and meaningful data.
Thus, these challenges have to be addressed by a new inverse screening method. The
following obstacles are defined for this research project:

• Automatic processing of protein structures: For the large scale analysis of thousands
of protein-ligand complexes, the protein structures and active sites cannot be prepared
one at a time by the user. Therefore, the method has to be able to determine the
active site residues, cofactors and metals in an automatic manner.

• Consistent and efficient storage of protein-ligand complexes: Once processed, the
protein-ligand complexes and the active site must be stored in a form that allows
multiple and consistent access to the data. Since preparation is a time-consuming
step, the storage of this data saves much time and holds information about the active
site used.

• Abstraction of the active sites: Describing the features of the active site in a form
that allows a rapid pre-processing which eliminates protein structures where the query
compound is definitely not binding to.
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• Inter-target ranking: Scoring the poses of one compound in different targets so far
holds a huge challenge since traditional protein-ligand scoring functions are not suited
for comparing the absolute values among different targets.

• Evaluation data: So far, the data sets available for evaluation for computational
target prediction lack true negatives. No standard has been developed, which allows
the comparison of different methods.

• Usability by medicinal chemists: Nowadays, no method should be developed without
keeping in mind what a user wants to do with it, what makes it usable for the user and
how the usage and the results can be presented to the user, e.g., through a graphical
user interface.

• Usability of method in other fields: So far, structure-based methods are mostly used in
drug design. An evaluation shall show how and to what extent inverse virtual screening
and other structure-based methods can be used in a biotechnological case study where
a synthetic enzymatic pathway is developed.

3.2 Preconditions and course of the project

The presented thesis was prepared in the Research Group for Computational Molecular
Design at the Center for Bioinformatics of the University of Hamburg (ZBH) from January
2010 to May 2014.
In this dissertation project, an inverse screening method was realized in form of a new
software ’iRAISE’. As a basis for the inverse screening algorithms, an indexing and screening
method was used similarly to the Trixx BMI method developed by Dr J. Schlosser in his
dissertation (Schlosser and Rarey [2009]). The iRAISE software uses the Naomi-Software
Library of the ZBH and the BioSolveIT (www.biosolveit.de). The algorithms behind the
Trixx BMI software were reimplemented at the beginning of the dissertation, together with S.
Urbaczek and A. Henzler, who also developed the ’Trixx’ software library used in this project
containing functionality for interaction spot assignment, triangle descriptor generation and
the clash score grid. The ComplexDB database which was developed during this dissertation
was supported by S. Urbaczek and S. Bietz. Further, iRAISE uses the software FastBit (Wu
[2005]) und Qt (http://qt-project.org/). The GUI ComplexViewer which was also developed
in this research project is based on Qt and uses the 3D molecule/protein visualization library
developed by the BioSolveIT.
While the iRAISE-software development was the main focus of this thesis, a case study in
a biotechnology project was conducted: As a part of the SynBio-LEXI project with more
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than a dozen project partners from various institutes in Hamburg, molecular docking and
inverse screening were applied and experimentally validated. The results of this case study
was published in the Journal of Biotechnology and presented in form of a talk at two
conferences and in form of a poster at two conferences. The iRAISE inverse screening
approach was published in the Journal of Chemical Information and Modeling (at the time
of writing this thesis, one publication is accepted and one in reviewing status) and in form
of a talk and a poster at two conferences. See Appendix I for a list of the publications, talks
and poster presentations.
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Figure 4.1: An iRAISE pose with the grid representation of the active site and the pocket
atoms which are not covered by the ligand highlighted with pink spheres. Created with
the ComplexViewer.
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In this chapter, the details of the iRAISE inverse screening method are described. Through-
out the chapter, it is focused on those aspects of iRAISE, where special measures where
taken to account for the inverse setup of a protein-ligand screening. These measures differ-
entiate iRAISE from traditional virtual screening methods which search potential ligands for
one protein.
First of all, some basic concepts which are used by iRAISE are given (section 4.1). The
heart of iRAISE’s method is a triangle descriptor representation of the protein and the lig-
and. Therefore, in the following, the concept of the triangle descriptor representation is given
(section 4.2). The special adjustments of the descriptor concepts to the requirements of
iRAISE are shown. Subsequently, the complete workflow of iRAISE is shown in an overview
which demonstrates how the many parts and used technologies are combined into one tool.
Each step of the workflow is described (section 4.3).
The following section focuses on the representation of protein structures in form of a database
(section 4.4). Next, the scoring scheme used by iRAISE is described in a separate section,
presenting special measures applied for ranking proteins (section 4.5). Following, a statistical
assessment of significant scores is shown (section 4.6). Next to these method details, the
parallelization strategy is given (section 4.7). Finally, a graphic user interface for a viewer
of the protein database and the screening solutions of iRAISE is shown (section 4.8). For
a user guide of iRAISE see Appendix C and for implementation details see Appendix A.
Furthermore, in Appendix B, a list of parameters used in iRAISE is given.
The name ’iRAISE’ for the inverse screening method gives credit to the descriptor index-
technology used: inverse RApid Index-based Screening Engine.

4.1 Basics concepts

This section gives basic concepts used by iRAISE. These concepts are used in the later
described approaches and thus shortly explained here.

4.1.1 NAOMI molecule and protein initialization

In the software library used in iRAISE (called NAOMI ZBH library), libraries are available for
molecule and protein initialization from various file formats. These steps are not discussed
in detail here. It shall only be noticed that the NAOMI initialization from file is based on a
very strict chemical model. In order to assure correctness, chemically invalid molecules or
proteins are not corrected but discarded. A limitation of the library is that up to now, it has
no model to handle molecules with covalently bound metals and, therefore, is not able to
initialize such molecules (Urbaczek et al. [2011], Urbaczek et al. [2012]).
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4.2 TrixX triangle descriptor

4.1.2 The MolString

Molecules in NAOMI can be represented by an internal unique string. This string is used
for efficient re-initialization and contains all atom and bond information of the chemical
model used by NAOMI. Further, it can be used as a unique identifier, similar to a USMILES
(James and Weininger [2006]). This string is used exceedingly in the protein structure
database developed for efficient and consistent storage of protein structures (see section
4.4).

4.1.3 Abstraction of proteins and ligands by a descriptor

A descriptor representation of molecules and proteins is an abstraction coding the features
important for the binding between protein and molecule. Due to the simplification of the
molecule and the protein to a few descriptors, huge amounts of protein-ligand combinations
can be evaluated rapidly. However, the protein-ligand binding is estimated only coarsely
by this abstraction. The protein-ligand complex is reduced to complementary descriptors.
Therefore, a post-processing after the abstract match of protein and ligand on descriptor
basis is needed. The abstract representation as a first step discards all obviously not matching
protein-ligand combinations. Thus, only a small amount of the combinations are sent to a
more elaborate and more time-consuming post-processing step which finally decides whether
a ligand can be placed in a protein cavity. In this manner, the descriptor representation breaks
the sequential examination of each protein-ligand combination in detail. These concepts are
valid for both cases, traditional and inverse virtual screening, i.e., if for one protein several
compounds are tested or if for one compound several targets are tested.

4.2 TrixX triangle descriptor

iRAISE is based on the TrixX triangle descriptor, firstly introduced by Schellhammer and
Rarey (Schellhammer and Rarey [2007]) for traditional virtual screening. Schlosser and Rarey
then extended the descriptor by a shape component and a bitmap-based index representation
allowing an efficient storage and query management (Schlosser and Rarey [2009]).

Properties of the triangle descriptor In Figure 4.2A, an exemplary triangle is shown.
The triangle descriptor consists of the following properties for both, ligand and protein
representation:

• Triangle corners: The triangle corners represent interaction spots. An interaction
spot is either a potential hydrogen bond partner (donor or acceptor), a metal inter-
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Figure 4.2: Exemplary triangle descriptor, a list of descriptor properties and hydrophilic
interaction assignment. (A) The red corner spots are hydrogen bond acceptor interaction
points, the gold spot is a hydrophobic interaction point. The arrows at the acceptor spots
indicate the interaction directions. The rays originating from the triangle center map the
shape. (B) The descriptor properties with their minimal and maximal values, the size of
the bins, the data type used and the matching encoding and tolerances. (C) Assignment
of a hydrogen bond acceptor interaction spot with two directions to a carbonyl oxygen.
(D) Assignment of rotatable interaction spots at a hydroxyl group. The blue spots are
hydrogen bond donor interaction points. The dotted lines are interaction directions.

action spot or a hydrophobic interaction spot. In the Schellhammer and Schlosser
version of the TrixX descriptor, the interaction spots were determined by FlexX site
interaction centers (SIACs) and compound interaction centers (CIACs). The interac-
tion spots used in iRAISE are described in section 4.2.1 and 4.2.2. In Figure 4.2, the
triangle has two different interaction types as corners, colored respectively: red spots
are hydrogen bond acceptor interactions and the gold spot is a hydrophobic interac-
tion. Furthermore, blue spots represent hydrogen bond donors. Triangles always need
to have at least one hydrophilic interaction spot. Triangles consisting of hydrophobic
spots at all three corners are not constructed.

• Interaction directions: For the hydrophilic interaction spots, interaction directions
are part of the descriptor. In Figure 4.2, the interaction directions of the two hydrogen
bond acceptors are indicated by arrows at the corners.

40



4.2 TrixX triangle descriptor

• Triangle side length: The side lengths of the triangle are used to describe the
distances between the interaction spots.

• Steric bulk: A canonized representation of 80 bulk rays originating from the center
of the triangle represents the steric properties of a compound or an active site. The
bulk rays are generated by a once refined icosahedron and go through the face of the
80 sub-triangles of the refined icosahedron.
For a compound, the length of the bulk rays represent the shape and are restricted
by the surface of the ligand. For an active site, the bulk rays represent the volume
and reach until the surface of the protein. In Figure 4.2, the rays are shown in gray
originating from the center of the triangle.

• Identifiers: In the original TrixX descriptor, a molecule identifier and a fragment
identifier were part of the descriptor. These identifiers were used to map the descriptors
to their respective molecules and fragments in the matching procedure.

Adjustments to the descriptor for the reverse setup In iRAISE, the triangle
descriptor is used in a reverse fashion: Originally, the descriptors were calculated and stored
for a large number of molecules and then queried with descriptors derived from one protein.
In iRAISE, descriptors are calculated and stored for many proteins and are subsequently
queried with descriptors derived from one molecule. Therefore, two adjustments were made:

• Identifiers: In iRAISE, two identifiers are needed: A pocket and a protein identifier.
One protein can have several binding pockets. Therefore, the two identifiers are needed
to define which distinct pocket the descriptors were derived from.

• Coordinates of the triangle corners: The iRAISE descriptor also contains the trian-
gle corner coordinates. This feature is not needed for matching, but for superposition.
Triangle matches are handled differently in the original TrixX and in the reverse setup.
In the original method, if a descriptor match occurred, the ligand was re-initialized
and the descriptors were recalculated to obtain the triangle corner coordinates needed
for ligand pose generation in the active site of the protein. Since for proteins, the
re-initialization and especially the triangle generation step is much more elaborate and
time-consuming, it is avoided by storing the triangle coordinates. Therefore, accept-
ing larger memory demands for storing the coordinates is rewarded with time-saving
during screening.

In section 4.2.1 and 4.2.2, the assignment of triangle descriptors to the interaction spots is
described.
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Representation of the triangle descriptor in a bitmap index The triangle de-
scriptors are stored in a bitmap index for two reasons: Firstly, descriptors once calculated
are stored consistently for repeated queries. Secondly, a bitmap-based representation allows
efficient queries. Schlosser regarded the FastBit bitmap index developed by Wu et al. (Wu
[2005]) best suited for storing the high-cardinality descriptor data which is accessed mostly
read-only. The FastBit bitmap index has the advantage of applying a compressing scheme
(WAH: Word aligned Hybrid code) exploiting the CPU word size. Defining range and equal-
ity encoding for the descriptor properties as needed renders the queries most efficient.
In order to represent the triangle descriptors in the FastBit bitmap index, special measures
are taken to prepare the descriptor properties. The combination of interaction types at the
triangle corners are mapped into a single number representing the triangle type. The trian-
gle type codes a defined combination: Triangles of type 0 for example have hydrogen bond
donors at all three corners, type 1 triangles have two hydrogen bond acceptor and one donor
and so on. Since a triangle always possesses at least one hydrophilic interaction spot, i.e.,
one hydrogen bond donor or acceptor, there are nine different triangle types. These types
are used to partition the triangles into folders with the respective number. This reduces the
matching queries needed and thus the computing time (see next paragraph).
The side length of the triangles are binned into bins of 0.1 Å length and only triangles with
side lengths in the range between 1 Å and 9.9 Å are constructed.
Further, the interaction directions are stored in one number: An icosahedron is used to map
the direction vector to a single number. A bit string of size 20 is used to represent the faces
of an icosahedron. A bit is set to one if the direction vector passes through the respective
face of the icosahedron, and all others are set to zero. This way, also multiple directions of
one interaction can be represented in a simple fashion (see section 4.2.1). The next para-
graph explains how matching tolerances are stored also in the bit string of the directions.
The bulk rays are binned to bins of 0.5 Å size. Bulk rays are in the range of 1 and 15
Å, therefore 28 bins are needed. The threshold of the maximum ray length was doubled
in iRAISE compared to TrixX, because in parametrization studies (see section 7.9) it was
found that the original length of 7.5 Å was too short and resulted in many clashing poses.
This effect can be explained by the fact that the original TrixX fragmented large ligands,
which is not done in iRAISE.
The coordinates are not binned and stored in float values in the FastBit index.
In the Table shown in Figure 4.2B, the boundaries of the properties and the bin sizes for all
properties are summarized.
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Matching of protein and compound descriptors In iRAISE, protein triangle de-
scriptors are stored in the index and the molecule triangle descriptors are used as queries.
In order to reduce the number of queries, iRAISE takes advantage of the partitioning of
triangles by type, thus only triangles with the correct type are queried. Protein and ligand
features have to be complementary to each other to interact. Therefore, the complemen-
tary type of triangle is calculated for the query triangles for matching. This means that a
hydrogen bond acceptor is turned into a hydrogen bond donor and vice versa. Hydrophobic
points are left as they are.
For the other properties like the bulk rays or the triangle side lengths, matching tolerances
are applied as listed in the Table shown in Figure 4.2B. These tolerances, however, are the
default screening parameters, special parameters can be applied to soften or tighten the
matching. The running time is strongly influenced by these parameters, since they deter-
mine the number of triangle matches which have to be processed.
Concerning the side lengths, a molecule triangle is allowed to be smaller or larger than that
of the protein triangle index within the specified tolerance. Concerning the bulk, however,
a molecule triangle bulk ray has to be truly smaller than the protein triangle bulk plus the
tolerance. This ensures that the molecule fits into the protein, while it does not have to fill
the pocket with its shape completely.
The tolerance of directions is directly encoded in the bit-string coding the faces of the icosa-
hedron. Not only the bit of the face which the direction passes is set to 1, but also the
bits of the faces in an angle of 36 ◦. This angle results from the level of discretization of
rotatable interactions, see section 4.2.1. A bit-wise ’AND’ during descriptor matches then
gives a match if any of the set faces of the icosahedra of index and query triangles match.

Data partitioning The index is partitioned for two reasons: Firstly, one index partition
needs to fit into the main memory and secondly for parallelization (see section 4.7). The
partitioning is set up in two levels, equally to the original TrixX setup. The first level is
the division of descriptors into types, as described above. The type level can be screened
sequentially, therefore only one type level partition has to fit into the main memory. The
second level is the total number of descriptors in all type levels. This limits the number
of proteins contained in one partition. This level is needed, because during matching, all
matched descriptors need to fit into the main memory, which may be all index descriptors
and all query descriptors in the worst case.
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4.2.1 Ligand triangle descriptor generation

In Figure 4.3, the steps of the molecule triangle descriptor generation are shown. The in-
put is a molecule structure (Figure 4.3A). For this structure, hydrophilic and hydrophobic
interaction spots are calculated (Figure 4.3B). Then, triangle descriptors are derived for all
combinations of three interaction spots Figure 4.3C) if the following criteria are met: The
side lengths are minimally 1 Å and maximally 9.9 Å and at least one interaction spot is
hydrophilic. The first criterion discards triangles which are too pointed, while the second
criterion discards non-specific triangles with only hydrophobic corners.

Figure 4.3: Pipeline of the triangle descriptor generation for a molecule A) The input is
a molecule structure B) The molecule is reduced to interaction spots (red: hydrogen bond
acceptors, blue: hydrogen bond donors, gold: hydrophobic spots) C) For each combination
of three interaction spots, triangle descriptors are generated.

Hydrophilic molecule interactions Hydrophilic interaction spots are either hydrogen
bond donors or hydrogen bond acceptors. Hydrogen bond acceptors are, e.g., the lone pairs
of the oxygen atoms of hydroxyl groups. For these interactions, the spots are placed on the
oxygen atom and the direction of the interaction points to the lone pair.
A hydrogen bond donor is, e.g., the hydrogen of a hydroxyl group. In order to facilitate the
matching of triangle descriptors and to account for the distance between hydrogen bond
donor and acceptor in a hydrogen bond, the spots of a hydrogen bond donor interaction
are placed where an acceptor would be in an optimal hydrogen bond. The spot is therefore
placed 2.8 Å distant from the oxygen atom in direction of the hydrogen atom.
Sometimes it occurs that an interaction spot has multiple directions. For example, carbonyl
oxygen atoms have two free lone pairs and can therefore serve as hydrogen bond acceptors
in two directions (see Figure 4.2C). In order to avoid construction of two triangle descriptors
with the same interaction spot but differing interactions, both directions are represented in
one descriptor. The faces of the icosahedron are set to true for both directions.
In Figure 4.3B, the described interaction spots are shown. The red acceptor spots are placed

44



4.2 TrixX triangle descriptor

directly on the atoms and the blue donor spots distant to the heavy atom.

Representation of flexibility in interaction spots Hydrophilic interaction spots are
used to account for one aspect of molecule flexibility, i.e., rotatable groups. One example
of such groups are the above mentioned hydroxyl groups. These are freely rotatable and in
nature only fixed by an interaction partner. The conformation represented in a protein crystal
structure is, thus, only one of many rotational states of those groups. For rotatable groups,
the interaction spots are sampled in 72 ◦ steps around the rotatable atom, see Figure 4.2D.
In this way, more possible matchings of the protein to the ligand can be derived from the
descriptor representation, but clearly also the number of descriptors is multiplied. Therefore,
only those sampled interactions spots are used, whose directions point into accessible areas.
This means that if a direction of, e.g., a molecule interaction points into its own volume,
then this interaction spot is discarded. This is shown in Figure 4.2D, where only 4 of the 5
possible interaction spots are sampled.

Hydrophobic molecule interaction spots (Placement points) Hydrophobic spots
do not have directions, since chemically hydrophobic contacts are energetically favorable in-
dependent from any directions. For molecules, hydrophobic spots are placed in the middle
of rings and on the bonds between carbon atoms which are not bound to a hetero atom.

4.2.2 Protein triangle descriptor generation

In Figure 4.4, the steps of the protein triangle descriptor generation are shown. The triangle
descriptors are calculated for active sites only, therefore, the first step is to calculate binding
pockets of the protein (Figure 4.4A and B). See section 4.3.1.2 for details on this this step.
Then, the interaction spots are assigned for the atoms of the active site (Figure 4.4C).
This step is divided into two parts: First, hydrophilic interaction spots are assigned and
then hydrophobic spots are located (see below for a detailed description). Finally, triangle
descriptors are derived from the interaction spots following the same criteria as described
above for molecules.

Hydrophilic protein interactions Hydrophilic interaction spots are generated follow-
ing the procedure as described for molecules in section 4.2.1. Further, protein binding sites
may contain metal ions with which a ligand may interact. In such an interaction, metals are
interacting with hydrogen bond acceptors, since the metals are positively charged. In order
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Figure 4.4: Pipeline of the triangle descriptor generation for a protein. A) The input is a
protein structure. B) The protein structure is reduced to one or several active sites C) The
interaction spots are determined for the active site (red: hydrogen bond acceptors, blue:
hydrogen bond donors, gold: hydrophobic spots) D) Triangle descriptors are generated for
each combination of three interaction spots.

to avoid a fourth interaction type, metal interaction spots are represented as hydrogen bond
donor spots.

Representation of protein flexibility in interaction spots For the protein de-
scriptor, the same measures are applied to account for rotatable groups as discussed for
molecules in section 4.2.1.

Hydrophobic protein interaction spots (Placement points) Hydrophobic spots
are placed into the binding site based on a grid representation which is shown in Figure 4.1.
The grid spans around the complete active site (e.g. if the active site was determined
as all atoms around a reference ligand in 6.5 Å, the grid is calculated for 10 Å). All grid
points that are within the protein surface or too near to the protein surface are discarded.
Then, all grid points in the neighborhood of hydrophilic interaction spots are discarded. In
this step, each grid point is assigned with a hydrophobilic score, depending on how many
hydrophilic interaction spots are nearby. The score resulting from flexible interaction spots is
lower than the one resulting from other hydrophilic interaction spots. Then, the grid points
with the highest hydrophilic score are discarded. The remaining grid points are turned into
hydrophobic interaction spots. The final number of points is dependent on the total number
of hydrophobic atoms in the active site and, therefore, maps the hydrophibicity of the active
site.
This procedure leaves a manageable amount of hydrophobic spots which, nevertheless, cover
those parts of the binding site which are not represented by the hydrophilic interactions spots.
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4.3 iRAISE workflow

In Figure 4.5 the total iRAISE procedure is shown. The two main parts are the registration
procedure and the screening procedure. While the preceding sections gave detail on some
main components of iRAISE, the workflow is described now step by step.

Figure 4.5: Schematic representation of the workflow of iRAISE. (This figure was origi-
nally published in Schomburg et al. [2014].)

4.3.1 Registration procedure

In the registration procedure, the protein data is processed. This step has to be done only
once for a set of protein structures since the processed protein data is stored in a database and
the generated triangle descriptors in a bitmap index which can then be accessed repeatedly.
Therefore, the focus of this step is on a consistent and efficient storage of the data while
running times are not overly important.

4.3.1.1 Protein initialization

Proteins have to be provided in PDB file format. The protein is initialized with the NAOMI
protein library (ProLib) which automatically derives the protein structure from the heavy
atom coordinates stored in the PDB file. All other molecules next to the protein are initialized
as well, so that they can be accessed if needed. The result is a complex containing the
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protein, ligands, metals and waters, if contained in the PDB file. Additionally, default
hydrogen coordinates are assigned automatically.

4.3.1.2 Active site determination

In the next step, the protein is reduced to binding sites. Two approaches are supported for
this step:
Either, a reference ligand can be provided by the user which is then used to define the active
site. In this case, all amino acids within a user-provided distance around the reference ligand,
e.g., 6.5 Å are selected.
The active site can also be annotated automatically using the ligands contained in the PDB
file. Each ligand in the PDB file is used to build an active site except ligands which are
cofactors, crystallization or solution agents. An exclusion list contains all these unwanted
ligands for active site determination in two forms: In the form of the HET PDB code and
in the form of a unique SMILES. The HET code is a three letter code used in the PDB
file to uniquely annotate molecules. The second representation as a USMILES is used since
sometimes HET codes are annotated wrongly in the files or the HET codes are changed by
the Protein Data Bank in new releases for some reason. The unique SMILES are used in
combination with the HET codes, since the initialization by NAOMI (Urbaczek et al. [2011])
sometimes identifies a different molecule than annotated by the HET code. One example
is an aldehyde versus an carbonyl. The respective form is determined by NAOMI by the
bond length between oxygen and the carbon atom. Therefore, if the coordinates indicate a
different state of the molecule than the HET code, the unique SMILES is failing, but the
HET code nevertheless identifies the molecule as unwanted for active site determination.
The exclusion list is compiled by joining HET code lists from Strömbergsson (Strömbergsson
and Kleywegt [2009]), Boström (Boström et al. [2006]) and Meslamani (Meslamani et al.
[2011]) and adding further HET codes. This list contains in total 1207 PDB HET codes,
see Appendix F for a list. Next to the list of HET codes of cofactors and solution agents, a
list of HET codes is given as well, which contains ions and one list of ligands with covalently
bound metals. Ligands with covalently bound metals are added to the exclusion list since
NAOMI does not handle such ligands.

4.3.1.3 Storage in protein database and bitmap index

Once the atoms of the active site are determined, the triangle descriptors are calculated (see
section 4.2.2). Then, the protein and the active site information is written to the protein
database (see section 4.4 for details on the protein database) and the triangle descriptors
are stored in the bitmap index.
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4.3.2 Screening procedure

The screening or querying procedure exploits the previously calculated information for fast
matching and pose generation. This step needs to be efficient since thousands of proteins
shall be screened in a reasonable time. Therefore, the procedure applies a filtering procedure
which goes from rough descriptor matching through grid-based pose assessment to detailed
atomic analysis. The amount of proteins and molecule poses per protein is reduced in each
step, guaranteeing that the most time-consuming steps are only conducted on a subset of
reasonable protein-ligand poses. The steps of the screening procedure are now described in
detail.

4.3.2.1 Molecule conformation generation

The flexibility of molecules is modeled by creating conformations. The maximal number
of conformations created per molecule is set by the user. For conformation generation, the
CONFECT module developed by Schärfer (Schärfer et al. [2013]) is used. This conformation
generation procedure has the advantage that the number of conformations needed to sample
a diverse conformational space is lower in comparison to other tools. It is based on a
generalized representation of torsion angles in molecules. For each general torsion pattern,
observed frequency distributions of crystallized molecules are generated. These distributions
are used to incrementally construct and rank the conformations.

4.3.2.2 Unique molecule triangle descriptor generation

For each of the generated conformations, the triangle descriptors are calculated as described
in section 4.2.1. Often, many triangle descriptors are identical for different conformations.
This is the case if, e.g., only a terminal group is rotated in one of the conformations.
Then, the descriptors covering the remaining part of the molecule are identical. In order
to avoid multiple matchings of the same descriptor with the index, duplicate descriptors
are eliminated. The descriptors are only eliminated if all properties as well as the corner
coordinates are identical. The comparison is done on the basis of the binned descriptors,
which is rather time-efficient. For each descriptor a list of conformation identifiers is used for
mapping the descriptors to the respective conformations, which is needed in the matching
procedure.

4.3.2.3 Matching procedure

In the matching procedure, the descriptors are matched sequentially against the protein de-
scriptor index as described in section 4.2. For each match, the transformation is calculated
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which superposes the triangles. This transformation is memorized since it is later used for
calculating the transformation of the ligand into the respective protein active site for pose
generation. In addition, the identifiers are memorized; further information is not needed.
Therefore, a match consists of the transformation, a protein conformation key, a protein
pocket key and a ligand conformation key. These matches are gathered until each descriptor
has been matched against the bitmap index.
Then, the matches are sorted by protein conformation key and then by pocket key. This
allows to sequentially process the matched proteins and pockets. Therefore, each protein of
which a descriptor has been matched has to be re-initialized from the protein database only
once. For each descriptor match, a pose of the matching molecule conformation is created
by applying the transformation of the match to the molecule conformation. Applying the
transformation to the ligand atoms is more efficient than transforming all protein atoms.

4.3.2.4 Scoring

In order to evaluate the quality for the generated poses, for each protein, the protein-ligand
poses obtained from the matching procedure are scored by a five-step Scoring Cascade,
which is in detail described in section 4.5.

4.3.2.5 Solution handling

Once the final protein-ligand poses and their scores are obtained, these results are stored in
a solution SQLite-database. It contains two tables with the following attributes:

• Table Solutionoverview :

– Query key

– Query name

– Query USMILES

• Table Solutiondetails:

– Query key

– Protein conformation key

– Pocket key

– Conformation key

– Coordinates
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– Score

In parallel screening (see section 4.7), a separate solution database is created for each
screened partition to avoid write-locks. In a consolidation step, the databases are then
attached and a single solution database with the content of all parallel screenings is created.
The solution database can contain poses for multiple ligands if the protein data set was
screened with various query molecules. The solution databases contain keys of the protein
database, which allows a join of the data.

4.4 ProteinDB and ComplexDB

Since no efficient and consistent handling of protein structures was established before, a
protein structure database was compiled. This database avoids the use of files and al-
lows to store information calculated in the registration procedure, which speeds up the
re-initialization. A consistent storage of the protein structures exactly as they were used to
calculate the triangle descriptors is needed to guarantee a correct descriptor index-protein
structure mapping. Further, it has to be memorized, how the active site was determined
and which reference ligand was used, since it is needed by iRAISE scoring (see section 4.5).
SQLite was used for the protein structure database since it has the advantages of not needing
a separate server (therefore it is easily portable on different platforms), using the structured
query language (SQL) and storing all information, e.g. tables, indices, etc., in one file.
In summary, the database is used as a consistent data container of the protein structures as
well as for efficient re-initialization of active sites and proteins.
The scheme of the developed database is sketched in Figure 4.6. This scheme shows two
levels of the database: The ProteinDB which stores the residues of a protein and the Com-
plexDB which consists of the ProteinDB tables and adds further tables to store ligands,
waters and metals, thus, everything that is contained in a PDB file of a protein-ligand com-
plex. The division into two databases allows the use of only the ProteinDB if needed, but
also to easily add the information of a complex. In SQLite, all the tables are added to a
single file, therefore, the separation does not produce any hindrance on using them together.
In the database scheme in Figure 4.6, the blue headed tables code the information of the
protein. The red tables code the information which is needed to store a complex as it is
contained in a PDB file, with ligands and waters. Purple headed tables store the information
which is gathered in the pre-calculation step about the active site.
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Figure 4.6: Schematic representation of the database tables of the ProteinDB and the
ComplexDB. The blue tables code the information of the protein. The red tables code all
information of small molecules like ligands, cofactors, metals and water. The purple tables
code the information of the active site.

ProteinDB The ProteinDB contains three tables, the mainprotein table, the residue tem-
plates table and the residue coordinates table.
The mainprotein table contains a protein key and a conformation key, which is the primary
key. Therefore, one protein can have several conformations. The protein key can be set from
the outside if the user provides several conformations of the same protein. Providing several
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conformations -also called ensembles- is one way of handling protein flexibility. Next to the
keys, the mainprotein table contains the protein name as a combination of the name in the
PDB file and the file name since a non-speaking name like ’protein’ is often used in the
files. Further, it contains three strings used for re-initialization: A list of residue template
keys, a list of residue conformation keys and a connections string. The residue template
in combination with a residue conformation gives an amino acid with coordinates and the
connections string stores the information on how the residues are connected.
The residue templates table contains unique amino acid templates. Each amino acid is
stored only once in this table, the first time it is encountered in a set of proteins added to
the database. So for the first protein added to the database, at the beginning many tem-
plates are added to this table until no new amino acid is encountered. The unique amino
acids contain the 22 natural amino acids, modified amino acids (e.g. with covalently bound
ligands) and terminal amino acids. The residue templates table contains two attributes next
to the primary key: The unique SMILES which is used as unique identifier to compare if the
current amino acid already exists as a template or not. The MolString is a string represen-
tation of atoms, bonds and valence states needed to reconstruct the amino acid by NAOMI.
The residue coordinates table contains the coordinates of the amino acid templates. It con-
tains as many entries as the sum of all amino acids of the proteins added to the database.
Further, it contains a primary key and the residue template key of its template. Additionally,
this table stores the name of the residue, the type, the chain character and the sequence ID.
This information is added from the PDB file.
With the lists from the mainprotein table the residues can be connected easily to re-initialize
a protein.

ComplexDB The ComplexDB is composed of all tables of the ProteinDB, which store
the protein information. Further, tables are added for small molecule storage (ligands, ions,
waters, metals) and for active site information (pockets).
Ligands from a complex are stored in a similar way as amino acids. The ligands table con-
tains only a primary key, a USMILES as unique identifier and the MolString. This table
serves as a ligand template table, while coordinates matching the templates are stored in
the ligands instances table. The ligands table, therefore, contains only as many rows as
there are topological different ligands in the set of complexes added to the database. The
ligand instances table has as many rows as the sum of all ligands in the set of complexes
added. Thus, the storage of duplicate information is avoided.
Next to the coordinates, the ligands instances table contains a primary key, the matching
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Number of proteins Size sum of PDB files Size ComplexDB

100 63 MB 36 MB
1000 558 MB 333 MB
10000 5.7 GB 3.4 GB
56779 32 GB 19 GB

Table 4.1: Comparison of space requirements of proteins stored in PDB files and stored
in a ComplexDB.

ligand foreign key, the protein foreign key, the name and a type. The type is a number coding
of which type the small molecule is: Ligand, ion, metal or reference ligand. If the molecule
is of type ’reference ligand’, then this ligand was added only for active site determination
and is not part of the protein-ligand complex when re-initialized.
For waters, a separate table was added. This table contains a primary key, a protein key and
the coordinates.
With the so far mentioned tables, all information contained in a PDB file needed to recon-
struct a protein-ligand complex with all small molecules is stored in the ComplexDB.
The remaining tables contain information of active sites/pockets of the proteins. The pock-
ets table contains a primary key, the protein key as foreign key, the radius which was used
for calculating the active site around a reference ligand, the ligand instance key of the ligand
which was used to determine the active site and a string of the residue coordinate keys which
are part of the active site. One protein can have several pockets if several active sites are
calculated. The two tables pocket ligands and pockets water store foreign keys of other
ligands and waters which are part of the active site.

Space and time requirements The size of a ComplexDB is about half of the size
needed to store the raw PDB files. Table 4.1 compares the space requirements of raw files
and the database for random subsets of 100, 1000 and 10.000 PDB files and for all protein-
ligand complexes available from the PDB (56779 files). The table shows that the respective
databases need only about 60 percent of the space of the files. Reading a protein and the
annotated active site from the database only takes 0.06 seconds on average, independent
from the database size, as long as the database fits into working memory.
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4.5 Scoring Cascade

Figure 4.7: The five steps of the Scoring Cascade start with the target matches from the
descriptor matching. A clash test discards clashing poses, then a simple interaction score
is calculated followed by the reference score cutoff. The pose and pocket coverage account
for diverse shapes of protein pockets. The result of the Scoring Cascade is a ranked list of
proteins.

Since standard protein-ligand scoring functions are not well suited for inter-target ranking
(Kellenberger et al. [2008], Wang et al. [2012]), special measures have to be taken to im-
prove the ranking of proteins. Such measures are applied in the iRAISE-Scoring Cascade
consisting of five consecutive scoring steps.
The Scoring Cascade is invoked once all descriptor matches are obtained from the index
matching. Therefore, it starts with all poses of the ligand in all proteins resulting from the
matches. The aim is to further reduce the number of matches with each step until only rea-
sonable poses remain. While the number of poses needed to process is thus reduced in each
step, the scoring steps can become more and more elaborate since the most time-consuming
steps are applied to the lowest number of poses.
The measures that the Scoring Cascade takes to improve the inter-protein ranking are based
on learning from the co-crystallized ligand and accounting for diverse shapes of protein pock-
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ets. It is assumed that a ligand which is co-crystallized with a protein is a true binder and,
thus, contains information which can be exploited. The shape of pockets may vary in size
and buriedness and the scoring must not reward any shape of the pocket, but a good binding
of a ligand to that pocket.
In total, the Scoring Cascade consists of five steps, see Figure 4.7 for an overview of the
individual steps. The steps are applied to the poses of the query molecule for one protein
after another to avoid multiple re-initialization of a protein.
Each step is now explained in detail. The final score resulting from the Scoring Cascade is
called the sc-score.

4.5.1 1. Clash test

The clash test is used to rapidly discard poses which do not fit sterically into the protein
pocket. Reasons why poses are not fitting although the descriptor maps the shape by the
bulk are either that the bulk rays are not long enough, or that the sampling of the 80 bulk
rays is not fine enough or that the tolerance of the matching of the bulk rays was too soft.
The clash test is based on a grid representation of the active site atoms, shown in Figure 4.8
as yellow dots. If an atom of the ligand pose covers a grid point or gets too close to one,
the pose is discarded. The clash test is rather soft, nevertheless, about two thirds (64%) of
the ligand poses are discarded in this step. The grid calculation is relatively time-consuming
(see section 7.10), but once calculated, the clash test on hundreds of poses is performed
rapidly. The grid of 10 Å around the active site is calculated with a spacing of 0.8 Å.
Following the coarse-grained grid clash test is an atom-based clash test.

4.5.2 2. Interaction score

The interaction score is relatively simple compared to other elaborate protein-ligand scoring
functions. It estimates the binding of protein and ligand on the basis of Lennard-Jones poten-
tials with different parameters for hydrophilic interactions, metal-contacts and hydrophobic
contacts. In Figure 4.9, the different potentials are sketched. For scoring mismatches of
hydrophobic and hydrophilic atoms, a penalty based on the positive part of a Lennard-Jones
potential is used. Each pose passing the grid clash test is scored with the interaction score.
Before the score is calculated for a pose, the hydrogen atom positions of the protein-ligand
complex are adjusted to form the optimal hydrogen bond network. This is done with PRO-
TOSS (Lippert and Rarey [2009],Bietz et al. [2014]), an algorithm calculating the optimal
positions, protonation and tautomeric states of the protein-ligand complex of the active site.
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Figure 4.8: Abstraction of the active site with a grid representation for rapid clash tests
of ligand poses.

Figure 4.9: Lennard-Jones potentials for scoring hydrophilic interactions, metal- and
hydrophobic contacts and penalizing mismatches.
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4.5.3 3. Reference score

Besides each pose, the reference ligand used to determine the active site is also scored with
the interaction score. The assumption is that being co-crystallized with the protein, the
reference ligand is truly binding to the protein and its score is a good estimate of the score a
ligand can achieve when binding to this active site. Therefore, the interaction score of each
pose is compared to that of the reference ligand. If the score of the pose is less than 75%
of the score of the reference ligand, the pose is discarded. This step discards inselective,
low-scored poses and on average 50% of all target matches are discarded here.

4.5.4 4. Pose coverage

The fourth step of the Scoring Cascade is the ligand pose coverage score. In this step, the
account to which the pose of the ligand is buried in the active site is assessed. Usually,
if a ligand is truly binding to a protein, it is well-covered by the protein in the active site.
However, often artificial poses at the outer rim of the pocket can also be obtained in the
descriptor matching step. Such poses are unwanted and have to be discarded. Nevertheless,
these artificial poses protruding into the solvent have to be differentiated from poses in
shallow pockets. Therefore, the challenge in comparing the poses among various proteins
lies in the diversity of pocket shapes. In Figure 4.10A-D, two scenarios are sketched: In A
and B, a buried pocket is shown, whereas in C and D a shallow pocket is shown. In order to
be able to compare the coverage in both pockets, again the reference ligand is considered.
First, the ligand coverage is calculated for the pose as well as for the reference ligand with
the following formulas:

LigandCoverage =
1

|A|
∑

a∈A
Coverage(a) (4.1)

Coverage(a) =

{
1, if (nearproteinatoms(a) + 1

|N(a)|
∑

b∈N(a) nearproteinatoms(b)) > 3

0, otherwise
.

(4.2)
The ligand coverage is calculated as the part of the atoms which are covered. In the Ligand
Coverage formula, A is the set of heavy atoms of the ligand. In the Coverage formula, the
nearproteinatoms-parameter is the number of all atoms of the active site located in a radius
of 4.5 Å around a ligand atom a. Further, the coverage of the neighboring atoms is added
(N(a) = set of bound atoms to atom a) divided by the number of neighboring atoms. This
sum has to be greater than three, meaning that more than three receptor atoms have to be
near the ligand atom and/or each of its neighboring atoms for an atom to count as covered.
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The neighboring atoms are incorporated into the formula to account for accumulated un-
covered atoms. Thus, a molecules of which connected atoms are not covered get a lower
pose coverage score than a molecule where the same number of unconnected-atoms are not
covered.
The calculated ligand coverage for each pose is compared to the coverage of the reference
ligand. If the score of a pose is less than the reference ligand coverage times 1.2, the pose
is discarded. Also, a pose is discarded if less than 10% of the ligand atoms are covered,
independent from the coverage of the reference ligand.
In Figure 4.10A, a buried pocket with its reference ligand is shown. All atoms are covered.
In B, a pose on the rim of the pocket is shown, protruding with a large part into the solvent
and consequently many uncovered atoms are detected (indicated by pink dots in the sketch).
Since the coverage of the pose is much less than that of the reference ligand, this pose would
be discarded.
In Figure 4.10C, a shallow pocket with a reference ligand is shown, of which some atoms are
not covered. In Figure 4.10D, a pose of a ligand is shown, which also has some uncovered
atoms, but fewer compared to the reference ligand. Therefore, this pose is further processed
in the next scoring step.

Figure 4.10: Schematic representation of the ligand coverage. Uncovered atoms are
highlighted in pink. (A) A reference ligand in a buried pocket with no uncovered atoms.
(B) A docking pose protruding into the solvent with seven uncovered atoms. This pose
would be discarded by the ligand coverage criterion. (C) A shallow pocket with a reference
ligand with seven not covered atoms. (D) A docking pose in the shallow pocket with also
four uncovered atoms. This pose would not be discarded by the ligand coverage criterion.
(E) A protein-ligand complex where the active site is open to one side and parts of the
ligand are not covered.

In Figure 4.10E, the protein-ligand complex of a penicillin acylase with penicillin G is shown
as an example. The ligand atoms which are not covered are marked with pink spheres. The

59



4. Methods

pocket is open to one side and, hence, the ligand is partly uncovered.

4.5.5 5. Pocket coverage

The final step of the Scoring Cascade is the pocket coverage score. The pocket coverage
scoring improves the ranking of true targets for small molecules. It assesses how well a
pocket is occupied by a ligand. This score is not used as a cutoff like the third and fourth
step, but is applied as a weighting function. By down-weighting the interaction score if a
pocket is not well-covered by a pose in comparison to the reference ligand, pockets which
are better fitting to the ligand are preferred. The pocket coverage is calculated with the
following formulas:

The Pocket Coverage is calculated as the number of covered pocket atoms divided by the
total number of pocket atoms (|P|), with P as the pocket atoms. The Coverage of a pocket
atom (a) is set to 1 if a ligand atom is located within a distance of 4.5 Å to a pocket atom,
otherwise to 0. Scores of poses which result in a pocket coverage of less than 80% of the
reference ligand pocket coverage are weighted down with a factor of 0.8.
Figure 4.11A and B show a sketch of the pocket coverage as well as protein-ligand complex
examples. In Figure 4.11A, a pocket is filled well with a reference ligand. Few pocket atoms
are not covered, indicated by pink dots. In comparison, in Figure 4.11B, the pocket is filled
with a smaller ligand which occupies only part of the pocket resulting in many not covered
pocket atoms.
In Figure 4.11C-E, real screening results are shown. In Figure 4.11C, the small ligand
(pantothenoic acid) of the PDB-complex 1SQ5 (pantothenate kinase) is shown in its co-
crystallized target with only a few not-covered pocket-atoms shown by pink spheres. A pose
of the same ligand is shown in a larger pocket of the PDB-complex 1OWE (urokinase) in
Figure 4.11D. Here, only part of the pocket is filled by pantothenoic acid and, thus, a large
amount of the pocket atoms are uncovered. In comparison, the pocket coverage of the pose
of the ligand of the 1owe PDB-complex in the 1owe-pocket shown in 4.11E is much higher.
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Thus, the score of the pose in 4.11D would be weighted down.
The pocket coverage score is only used to weigh the scores and not to discard poses since
a small ligand can be able to bind to a spacious pocket, the binding is just not as selective
as in the case of a ligand filling a pocket well.

Figure 4.11: Schematic representation of the pocket coverage. Not covered pocket atoms
are highlighted in pink. (A) A reference ligand pocket fills the pocket well and only the
atoms of the outer rim of the pocket are uncovered. (B) A small ligand does not cover the
pocket as well as the reference ligand and many more pocket atoms are uncovered. (C)
Pose of a small ligand in its true target (1sq5), with only uncovered atoms at the rim of
the pocket. (D) Pose of the small ligand (1sq5) in a spacious pocket (1owe) with many
uncovered pocket atoms. (E) The spacious pocket (1owe) with its true ligand and less
uncovered atoms in the pocket.

4.5.6 Measures not enhancing ranking of true targets

During the development of the Scoring Cascade, also some approaches were tested which did
not result in an improvement of true target ranking. For completeness and as information
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source for further developments, a list of these measures is given here:

• Increased weight of repulsive score contribution

• Decreased weight of metal score contribution

• Increased or decreased weight of hydrophobic score contribution

• Selectivity score based on the number of poses per pocket with similar score

• Inclusion of saturation of interactions spots of pocket into score

4.6 Gaussian-based weighting and cutoff

After the five steps of the Scoring Cascade, a Gaussian-based cutoff is used to assess if a
score is statistically significant for a protein. The cutoff is based on the average score of the
84 chemically diverse ligands of the Astex Diverse Set (see Chapter 5).
For calculating the cutoff, an iRAISE screening project, i.e., each protein, is screened with
all 84 ligands. For each of the 84 ligands the sc-score is calculated without using step three
of the Scoring Cascade -the reference score cutoff- in order to get a full spectrum of scores,
not only those which are in a comparable range to the reference ligand. Therefore, for each
protein target up to 84 scores are calculated. If a ligand cannot be placed into a pocket of
an active site at all, no score is calculated.
These scores are used to calculate a normal distribution of scores for each target. As the
exemplary score distributions of three targets in Figure 4.12 show, the scores indeed are
almost normally distributed, allowing this approach.
The cutoff score (=gs-score) is then defined as the average score of all (for which a pose
could be generated) 84 sc-scores. A cutoff at the average score plus one standard deviation
was found to be too restrictive. This cutoff score is on the one hand used as a weight for the
scores assessed in a screening. The iRAISE Gauss-weighted score (gsw-score) is thus the
iRAISE Scoring Cascade score (sc-score) of a pose of the query ligand in a protein weighted
with the Gauss cutoff score (gs-score):

gsw − score = sc− score
gs− score

Subsequently, poses are ranked by the gsw-score. On the other hand, the gsw-score can
also be used to decide up to which point of a ranked list of proteins for a query ligand the
scores still show true targets. Considering all proteins with gsw-scores greater than 1.0 as
potential targets is a better way to assess, e.g., which targets to test in experiments than
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using a hard cutoff of testing the first 10% of the ranked proteins.

Figure 4.12: Examples for sc-score distributions of three targets screened with all 84
Astex Diverse Set ligands.

In Figure 4.13, the distribution of gs-scores is shown for a large set of nearly 8000 protein
structures (sc-PDB, see chapter 5). Also, pockets of gs-scores at the lower bound, the
middle and the upper bound of the distribution are shown.
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Figure 4.13: Distribution of target-specific gs-scores. The complex 3S0B with a minor
gs-score of -21 is highly hydrophobic. The complex 2ZNP with an average gs-score of -39 is
a larger pocket containing many hydrogen bond partners. The complex 4EWV with a high
gs-score of -60 is hydrophilic and contains a metal ion. (#HB donors = number of hydrogen
bond donors, #HB acceptors = number of hydrogen bond acceptors, hydrophobicity=
number of hydrophobic amino acids of active site divided by total number of amino acids
of active site).(This figure was originally published in Schomburg et al. [2014]).
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4.7 Parallelization

Parallelization of iRAISE is realized on two levels. Data parallelization is in the scenario of
iRAISE favored over task parallelization since the data (different protein targets and protein
descriptors) is independent in itself and easily separable. The gain of parallelization of the
computing tasks is not as beneficial.
The first parallelization level is the initial separation of data, i.e., protein structure data sep-
aration before the preprocessing procedure. The separated data can then be preprocessed in
parallel, and several screening projects with separate descriptor indices and protein databases
are created. These can then also be screened in parallel.
The second level of parallelization is realized during the preprocessing step on protein de-
scriptor level. The bitmap index is partitioned during the descriptor calculation phase in
order to follow FastBit’s requirements of fitting one partition into working memory on the
level of descriptor type partitioning and to reduce the number of matches which are kept in
memory as well as on the level of protein structures. On average, about 100 proteins are
stored in one protein structure partition.
In Figure 4.14, the parallelizations levels are shown in an overview. The screening part can
be parallelized by screening several protein structure partitions concurrently. Each process
creates a separate solution database in order to avoid write-locks. iRAISE therefore pro-
vides a method to consolidate all created solutions databases in one after all partitions are
screened (see Appendix C).

Figure 4.14: Overview of iRAISE’s parallelization levels: (A) The first level is the separa-
tion of protein structure files, which are then preprocessed into separate screening projects.
The second level is the separation of the descriptors into index partitions on about 100
protein structures. (B) The index partitions are further separated into descriptor type
indices.
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4.8 Graphic user interface: The ComplexViewer

iRAISE is a command line tool and does not provide a graphic user interface for the tasks of
indexing (dataset preprocessing) and screening. See Appendix C for a user guide. However,
a graphic interface for viewing the protein database content and browsing the solutions of
iRAISE, named ComplexViewer, is provided (user guide: Appendix D).
A use case of viewing the content of a protein database with the ComplexViewer is shown
in Figure 4.15. The content of the database is displayed as a list (Figure 4.15A). The
ComplexViewer allows to select individual entries for a detailed view with a 2D structure
diagram of the reference ligand and properties of the active site (protein name, reference
ligand name, number of amino acids, number of atoms of pocket, number of hydrogen
bond acceptors of the pocket, number of hydrogen bond donors of the pocket and the
hydrophibicity). The pocket can also be assessed by a double click on the protein entry in
a 3D-visualization in a separate window (Figure 4.15B). Per default, the reference ligand is
shown with the residues of the active site. The display can be changed to also show water
molecules, the protein backbone or the van-der-Waals spheres of the reference ligand.
In Figure 4.16, the second use case of the ComplexViewer, i.e., displaying screening solutions
is shown.

Figure 4.15: The ComplexViewer as a graphic viewer for protein database content. (A)
The complex pockets tab shows the content of the protein database. The reference ligand
and several pocket properties of a selected pocket are shown on the left. (B) The 3D
visualization displays the pocket amino acids with the reference ligand. In the left panel,
the options of showing waters, the protein backbone and the van-der-Waals spheres of the
ligand are given. Here, the ligand is shown in the van-der-Waals sphere-mode.
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Figure 4.16: The ComplexViewer as a graphic viewer for browsing screening solutions of
iRAISE. (A) The screening results tab contains two tables: A table containing all ligands
with which the screening project was already queried, and on the right, the list of predicted
targets of the selected ligand. (B) In the 3D window, the pose of a ligand in a selected
target is shown. In the left panel, the options of showing waters, the protein backbone,
van-der-Waals spheres for the ligand, the active site atoms, the uncovered ligand atoms,
the uncovered pocket atoms and the grid (from top to bottom) are given. The slider at
the bottom provides a switch between different ligand poses in the same protein. At the
top, the name of the current protein, the score and ranking of the current pose is given. A
button labeled PROTOSS allows to align the hydrogen atoms of the current pose optimally.
Further the option to simultaneously display the reference ligand is given.

The screening result tab contains two lists: Firstly, the list of ligands with which the iRAISE
project has already been screened (Figure 4.16A), and secondly for one chosen ligand its
list of predicted protein results with the name, IDs and score of the best scored pose. A
selection of an entry of this result list with a double click shows a 3D presentation of the
selected protein with the ligand pose (Figure 4.16B) in a separate window.
The display per default shows the best pose of the ligand with the pocket atoms. The name
of the protein, the score of the pose and the number of the pose are given in the header
line. Several options are available for changing the displayed complex: At the top, it can
be selected whether the reference ligand is shown as well or not. A PROTOSS button can
be used to optimally align the hydrogen atoms of the currently shown complex. At the left,
the view can be changed by adding waters, the protein backbone, the van-der-Waals spheres
of the ligand, the active site atoms, the uncovered ligand or pocket atoms and the grid. A
slider at the bottom can be used to browse through the poses of the ligand in this protein,
ordered by score.
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5
Data Sets

3 proteins
9 structures
5 ligands

Trypsin/
Thrombin/
Factor Xa

Astex Diverse Set

Iridium HT

Drugs/sc-PDB

85 protein-ligand
complexes

121 protein-ligand
complexes

3126 proteins
7992 structures
72 ligands

Figure 5.1: Overview of data sets with different sizes used for inverse screening. (Astex
Diverse Set: Hartshorn et al. [2007], Iridium-HT: Warren et al. [2012]
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The development of computational models depends highly on available experimental data.
Data is needed for understanding the concepts of nature. In structure-based computational
methods, the binding of a small molecule to the active site of a protein is the center of
attention. 3D structures of proteins, ligands and protein-ligand complexes help to gain in-
sights into the mechanism of complex formation. For the development of structure-based
target identification methods, ideally, a data set with 3D structures of different proteins
bound to the same ligand is available. Furthermore, experimentally determined activity data
is required to show which proteins a ligand has an effect on and also on which it has none.
3D structures of protein-ligand complexes are experimentally determined by X-ray crystal-
lography or Nuclear Magnet Resonance (NMR) analysis. In general, it is assumed that if an
experimentally determined structure of a protein-ligand complex exists, the ligand binds to
this protein. Binding affinity measurements support this thesis.
Since computational concepts are based on the knowledge derived from protein-ligand com-
plexes, this data needs to be reliable. Nowadays, structures determined by X-ray crystal-
lography are still preferred to those solved by NMR. NMR structures of proteins are still
limited in the size of proteins that can be solved, but more importantly, the quality of NMR
structures still is debatable in some cases as the assessment of the quality of these structures
is not easy (Spronk et al. [2003], Nabuurs et al. [2003]).
There are several factors which help to estimate the quality of a 3D protein-ligand complex
which was solved by X-ray crystallography. In X-ray crystallography, the electron density
of the atoms is experimentally measured. The quality of the electron density varies in the
protein-ligand complex, depending on the quality of the protein-ligand crystal, the experi-
mental setup and type of X-ray and internal movements of parts of the protein.
It is often assumed that less ordered parts of the protein, e.g., not stabilized loops, lead
to poorly resolved electron density. The less clearly resolved density around some atoms is
mapped in a factor for each atom, describing the vibration energy of these atoms. Then
there is a factor which rates the agreement of the model of the structure and the measured
electron density in total. Another factor that can be used as quality criterion is the resolution
of the structure. This factor illustrates up to which distance two points can be distinguished
from each other. Therefore, a smaller resolution indicates a better structure; however, since
the resolution is averaged over the complete structure, no direct conclusion can be derived
for the active site of a protein-ligand complex.
The review of Davis, Teague and Kleywegt discusses these terms and highlights the use of X-
ray crystallographic data in structure based computational approaches (Davis et al. [2003]).
Errors and challenges of structure determination by X-ray crystallography are discussed with
focusing on the ligand by Malde and Mark (Malde and Mark [2011]). Stereochemistry, orien-
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tation, tautomeric state, protonation and conformation are not always clearly resolved in the
available structures. For proteins, these problems arise in determining the states of amino
acids. Also, the positions of water molecules are usually not clear. Another factor that has
to be considered concerns the crystallization conditions, which are often very different to
the biological conditions, where the protein-ligand complex is formed.
The fact that 3D structures of proteins and ligands are only models themselves and have
many limitations has to be considered whenever using these structures. However, keeping
the problems in mind, protein-ligand complex data is still the best data available when de-
signing and evaluating computational structure-based methods.

Next to the quality of the data, the composition has to be considered. In structure-
based computational approaches, the requirements for data vary with different purposes
and steps during the development of a new approach. The needs for data range from data
for method development over validation data sets to applications of the method. In com-
putational structure-based inverse screening method development, protein-ligand complex
data is needed for the purposes listed below:

• Method development
During method development, concepts and theories are derived from data. Theories on
how the formation of protein-ligand complexes can be modeled computationally, how
the strength of the binding of a ligand to the active site of a protein can be estimated
and where the limitations of the model are found are evaluated on experimental data.
For this purpose, a small data set is suitable which is in the best case very diverse in
chemical composition. A small data set allows manual evaluation of each case and a
rapid testing during method development. However, as the data set has to represent
the huge chemical space, it has to be very diverse. Even if the chemical space is
sampled diversely in the set, it, though, can never cover each property occurring in
the space. Nevertheless, if each data point represents another chemical class, many
important features can be assessed with the data set. In this dissertation project for
immediate evaluation during method development, the Astex diverse data set was used
(see section 5.1).

• Parametrization
Once concepts are developed and implemented, the parameters of the model need
to be evaluated. Each computational model has parameters, as it is only a model,
and often the parameters determine the level of abstraction. The requirements of
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5. Data Sets

a data set for parametrization are similar to the requirements for data for method
development. The data set needs to be chemically diverse to sample the chemical
space reasonably. The size of the data set can be larger, since parametrization is done
automatically with scripts and not each data point is evaluated manually.
For this research project, parametrization was conducted on the Iridium data set (see
section 5.2).

• Proof of concept
The aim of inverse virtual screening is the identification of targets for a compound.
As a proof of concept that the computational model is capable of correct predictions,
a data set is required, where each protein is annotated as target or no target for a
compound. Since true negatives are often problematic in the available data as has
been discussed before, this data set is crucial for evaluation if the method is not only
capable to predict true positives, but also if it is able to predict true negatives. At
the time of this dissertation project, no data set was available for this purpose, which
is why the small data set "TTFXa" was composed during the dissertation project.
Section 5.4 describes its composition and creation.

• Validation
The validation of inverse screening methods has to show two aspects: Firstly, the
performance and quality of the method has to be validated, meaning that the ability
of the method to find true targets for a compound in a large protein structure data
set has to be evaluated. In order to show statistical relevance, this evaluation has to
be done for a suitable amount of diverse ligands.
Secondly, since inverse screening methods are designed for screening large numbers
of proteins in a reasonable amount of time, experiments on large data sets need to
show the time requirements of the method. A data set suited for these purposes
did not exist prior to this dissertation project, either. Therefore, for validation the
"Drugs/sc-PDB data set" was constructed, as will be described in section 5.5.

• Comparison to other methods
A new method should be compared to other methods of the field for showing the
impact of the differences in the method on results and performance. Therefore, if
other published methods used available data for their validation, new methods should
also run the experiments on this data to allow a comparison. The Astex Diverse
Set was used for comparison to reverse classic docking. The sc-PDB Diverse Set
(see section 5.3) was used for comparing the method developed in this thesis to a
pharmacophore-based method by Meslamani et al. (Meslamani et al. [2012]) as well
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Name Number of
complexes

Source Composition

Astex Diverse Set 85
Hartshorn et al.
[2007]

diverse high quality
complexes

Iridium-HT 121
Warren et al. [2012]

high quality complexes,
redefined

Drugs/sc-PDB 7992 own development
based on the sc-PDB
(Meslamani et al.
[2011]) and the
DrugBank (Wishart
et al. [2006])

large data set for sta-
tistical validation of in-
verse screening on drug-
like ligands

Trypsin/Thrombin/
Factor Xa

9 own development small data set for proof
of concept studies

Table 5.1: Overview of data sets

as to two classic docking approaches. The newly developed Drugs/sc-PDB data set
was used for comparison to a sequence-based target prediction method.
Other structure-based approaches like TarFisDock or Invdock compiled own structure
data sets of which the structures of the proteins were not made publicly available,
which renders them infeasible for comparison. In Section 2.2.3 the problems with the
so far used data sets are discussed.

• Application examples of the method
Once a new method is developed and validated, it can be applied to ’real world
problems’. This dissertation investigates how inverse screening and structure-based
computational methods in general are applicable to biotechnology for the construction
of a synthetic multi-enzyme pathway. The description of the data used for this study
can be found in chapter 8.

Table 5.1 gives an overview of the data sets discussed above. The next sections shortly
describes the mentioned data sets and in detail discusses the compilation of the data sets
that were newly created during the course of this thesis.
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5. Data Sets

5.1 Astex Diverse Set

This data set was composed by Hartshorn et al. in 2007 (Hartshorn et al. [2007] as an
evaluation test set for docking. It consists of 85 high-resolution crystal protein-ligand com-
plexes. Hartshorn et al. used protein-ligand complexes of proteins thought to be relevant
in pharmaceutical research and of ligands which are drug-like. They clustered structures by
sequence and chose high quality structures as representatives of the clusters. They manually
curated the data set, i.e., assigned protonation states. In the 85 protein-ligand complexes,
twice the ligand trypsin is contained (in 1OF6 and 1X8X), thus the number of unique ligands
is 84.

5.2 Iridium Data Set

The Iridium data set was composed by Warren et al. in 2012 (Warren et al. [2012]). Sources
for complexes were four different data sets which are used to validate docking studies, one of
which was the above described Astex Diverse Set. The 728 complexes of all four data sets
were redefined, i.e., the structure model was newly built based on the electron density. Then
the complexes were divided into three categories based on quality criteria of the protein and
the ligand structure. Only 121 structures with complete density for the ligand were classified
as highly trustworthy. The others were classified as mildly trustworthy or not trustworthy.
In this thesis, only those complexes that were classified as highly trustworthy were used.

5.3 sc-PDB Diverse Set

The sc-PDB Diverse Set (Meslamani et al. [2012]) consists of the sc-PDB protein structures
data set and 157 diverse ligands. The ligands are a diverse subset of the co-crystallized
ligands of the sc-PDB. During the creation of the ligand set, the sc-PDB version 2010 was
used. Since this version was no longer available during the time of writing this thesis, the
sc-PDB version of 2012 was used instead. Since this version though does not contain all
the complexes of all the 157 ligands, a subset of 117 ligands was used in this thesis (see
Appendix H for the list of 117 HET codes).
For true positive assignment, two approaches were followed: Firstly, as proposed by Mesla-
mani et al., true positives were assigned via the UniProtID. For this approach, the UniPro-
tIDs were mapped to PDB codes following the list published together with the sc-PDB
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5.4 Trypsin/Thrombin/Factor Xa–Data set

2012 (http://cheminfo.u-strasbg.fr:8080/scPDB/2012). Proteins that were co-crystallized
with the ligand or had the same UniProtID as a co-crystallized target were defined as true
positives. Secondly, additionally to the UniProtID-based true positives, protein structures
with the same EC number were defined as true positives. In contrast to the UniProtID, the
EC number is not organism specific, but does nevertheless classify the same protein.

5.4 Trypsin/Thrombin/Factor Xa–Data set

As proof of concept data set and for a detailed study of the capabilities of a new method, a
tiny data set with defined true negatives and true positives was compiled. For this data set,
serine proteases were used as target class. Serine proteases are a protein class functioning
as protein-cleavage enzymes. They have a serine amino acid in the catalytic triad of the
active site in common, which is essential for the catalytic reaction.
For the data set, three proteins from the sub-class of trypsin-like serine proteases were cho-
sen. Enzymes from this subclass are found in digestive processes, blood coagulation and
immune responses. The three enzymes chosen are trypsin (EC 3.4.21.4), thrombin (EC
3.4.21.5) and factor Xa (EC 3.4.21.6). Trypsin is an enzyme found in the digestive system
for cleaving proteins which were ingested by food. Thrombin (also called blood-coagulation
factor IIa) is a protein of the coagulation cascade and converts fibrinogen to fibrin, next
to activating other blood-coagulation factors. Therefore, it is a key player in inflammation
reactions and wound healing. Factor Xa (also called Stuart-Prower Factor) plays a major
role in the early stages of the coagulation cascade, where it activates thrombin, next to
other effects.
These three proteins were chosen for several reasons: First of all, they have the same overall
structure. If structurally aligned, the structure of the protein backbone is nearly identical,
with only a loop of thrombin burying the active site deeper than in the structures of factor
Xa and trypsin. Figure 5.2 shows the alignment of three structures of each protein, with
an ellipse highlighting the differing loop region. Sequence-based methods have proven to
perform poorly on this protein class (Glinca and Klebe [2013]). However, the amino acid
composition of the active sites differ among the three proteins. All have the same amino
acids of the catalytic triad (Asp102, His57, Ser195), but of the other amino acids of the
active site, about 6 are varying in the three proteins. There are many studies which in detail
elucidate the similarities and differences of trypsin, thrombin and factor Xa structures and
describe the design of selective inhibitors (Czodrowski et al. [2007], Di Fenza et al. [2007],
Nar et al. [2001], Böhm et al. [1999], Stubbs et al. [1995]). The reader is referred to these
studies, since the data set is only used for retrospective studies in this context and the details
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5. Data Sets

Figure 5.2: Alignment of nine serine protease structures, three structures per protein:
Thrombin structures are shown in differing shades of blue (PDB codes: 3RM2, 2BVR,
3SI4), trypsin structures in differing shades of gray (PDB codes: 3GY2, 2G8T, 2G5N) and
factor Xa structures in differing shades of pink (PDB codes: 2JKH, 2Y5F, 3KL6). The
thrombin-specific loop is highlighted with an ellipse.

for designing selective ligands are not essential. The differences in active site amino acids
and general structure is shown by Böhm et al. in a 2D sketch (Böhm et al. [1999]).
With this setup, using the data set in docking studies is not trivial, as the proteins are
structurally highly similar. Furthermore, the relevance of these proteins in drug discovery
also supports their use in validation studies. The design of selective inhibitors of thrombin
or factor Xa which do not target trypsin is of high interest. Thirdly, some inhibitors with
well defined activities are known for these proteins, which is needed to complement the data
set with ligands.
Five ligands with differing activities were chosen for the data set: Benzamidine (benzenecar-
boximidamide) and Pefabloc (4-(2-aminoethyl)benzenesulfonyl fluoride) as general serine
protease inhibitors, Apixaban (1-(4-methoxyphenyl)-7-oxo-6-[4-(2-oxopiperidin-1-yl)phenyl]-
4, 5-dihydropyrazolo[3,4-c]pyridine-3-carboxamide) and Rivaroxaban (5-chloro-N-[[(5S)-2-
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5.4 Trypsin/Thrombin/Factor Xa–Data set

oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1, 3-oxazolidin-5-yl]methyl]thiophene-2-carboxamide)
as specific factor Xa inhibitors and Melagatran (2-[[(1R)-2-[(2S)-2-[(4-carbamimidoylphenyl)
methylcarbamoyl]azetidin-1- yl]-1-cyclohexyl-2-oxoethyl]amino]acetic acid) as specific throm-
bin inhibitors. The inhibitors were obtained by querying the drug bank for inhibitors of the
three proteins. The structures of the ligands were collected from PubChem (Bolton et al.
[2008]). Figure 5.3 shows the structure diagrams of the five ligands.
The structures for the proteins were collected from the Protein Data Bank. For each protein,
three structures were chosen to account for protein flexibility in the data set. The structures
were chosen for resolution and co-crystallized ligand: The protein had to be crystallized in a
protein-ligand complex, but the ligand was not allowed to be one of the five inhibitors used
for screening in the data set. For trypsin, the structures 3GY2, 2G8T, 2G5N, for thrombin
the structures 3RM2, 2BVR, 3SI4 and for factor Xa the structures 2JKH, 2Y5F and 3KL6
were chosen.

Figure 5.3: Inhibitors of serine proteases used in the TTFXa-Data set as ligands. Two
inhibitors are general serine protease inhibitors, two are factor Xa inhibitors and one is a
thrombin inhibitor.
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5.5 Drugs/sc-PDB

Since no established standard data set was available for large scale statistical validation of
structure-based computational target prediction methods, the creation of a new set was
necessary. The requirements for a large-scale validation set for target prediction methods
are the following:
The data set has to contain complexes covering diverse ligands, diverse targets, high reso-
lution structures, true negatives and true positives. The numbers of targets and ligands has
to be sufficient to allow statistical evaluation.
The validation of current state of the art methods was mainly done on data that contains no
reliably assigned true negatives since this data is not easily available for most compounds.
As a consequence, an expensive experimental validation subsequent to the predictions was
necessary. The challenge in compiling a data set with determined true positives and true
negatives lies in the determination of true negatives. In many activity studies, only data
is reported, on which proteins a compound has an effect, and not, on which it has none.
Especially if huge sets of proteins shall be screened with one compound, the information if
a protein is a target for that compound is only available for a small set of these proteins.
However, using only a few determined data points for the validation of a method is not
sufficient. Therefore, the composition of a data set with true negatives was necessary.
For the compilation of such a data set, the fact that drugs are well-studied in selectivity was
exploited:
It was assumed that since drugs have to pass several stages of selectivity and toxicity tests,
they are rather selective and their true targets are better known than for any other com-
pound class. Clearly, as the drug repositioning projects show, not each target is known for
each drug. However, next to the well studied selectivity of drugs, the usage of drugs in a
data set also has the advantage that the method is tested on compound classes, which are
relevant in pharmaceutical research.
With drugs as compounds, the target data set has to contain proteins which are targeted by
the compounds next to not-targeted proteins. Furthermore, the data set shall not be biased
towards special target classes. Therefore, instead of compiling a data set of the targets
of the drugs and enriching it with target decoys, the sc-PDB was used as target data set
(Meslamani et al. [2011]).
This data set has several advantages. Firstly, it represents publicly available structures since
it was composed from the Protein Data Bank. Secondly, it contains high quality data, as
the authors applied filters for resolution and quality of the complexes. Thirdly, the number
of targets is sufficiently high for a validation set with about 8000 or 9000 targets, depending

78
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on the version of the sc-PDB data set. And finally, the targets are, as the authors state,
’druggable’ since the authors applied drug-like filters to the co-crystallized ligands. There-
fore, it seems reasonable to use this data set as a source for the protein target structures.

Figure 5.4: Composition and creation of the Drugs/sc-PDB data set. (This figure was
originally published in Schomburg and Rarey [2014].)

Figure 5.4 shows how the Drugs/sc-PDB data set is composed. The targets’ origin is the
sc-PDB data set. The version of 2012 originally contained 8077 protein-ligand complexes.
The original PDB files were downloaded from the PDB (Berman et al. [2000]) instead of
using the prepared sc-PDB files. Of the 8077 complexes, 7992 were chosen for the target
database. The remaining 85 were discarded due to obsolete PDB codes in the Protein Data
Bank (9), errors in the reference ligand (25) and problems during initialization with NAOMI
which can be due to wrong chemical composition of the reference ligand or to rare metals
bound to the ligand, which cannot be initialized by NAOMI (51). NAOMI is the chemical
library used (see section 4.1 for further details) for compound initialization with strict chem-
ical rules (Urbaczek et al. [2011]).
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The ligands are selected by the following steps:

1. Firstly, sets of unique ligands of approved drugs from the DrugBank (Wishart et al.
[2006]) and the ligands of the sc-PDB are built. The number of unique approved
drugs from the DrugBank is 1455 while there are 5223 unique ligands in the sc-PDB
data set.

2. Secondly, the intersection of the compound set of unique approved drugs and the
unique ligands of the sc-PDB is built. Ligands are considered equal even if they differ
in tautomeric or protonation state. The intersection results in 145 ligands.

3. Thirdly, the resulting ligands are filtered. Lipinski’s rule of 5 leaves 81 ligands. Further,
thiamine and biotin are excluded since they function as cofactors. Therefore, for many
true targets for these compounds, the ’wrong’ pocket would be presented in the data
set, as not the cofactor, but the substrate binding site was chosen. Therefore, a
definition of true targets would be difficult. Furthermore, 6 ligands are excluded since
the targets which are listed in the DrugBank are DNA or RNA. This procedure leaves
72 ligands.

4. Finally, since some of the ligands are structurally highly similar and only vary in sub-
stituents, the ligands are clustered with ECFP fingerprints. ECFP fingerprints are
circular topological fingerprints (Rogers and Hahn [2010]). They describe molecules
on the substructural level. Each atom gets a descriptor of its substructural neighbor-
hood, with a given diameter of atoms. For this clustering, a diameter of 3 was chosen.
The similarity of two molecules was calculated using the Tanimoto coefficient. As a
similarity threshold 0.2 was chosen, since manual evaluation showed that this threshold
gave results, which resemble chemical similarity as a chemist would expect. In Figure
5.5, all 38 molecules are shown, which build single clusters. In Figure 5.6 the clusters
of molecules with 2 or more members are shown.

For filtering, intersectioning and unifying, MONA (Hilbig et al. [2013]) was used.

Finally, for completion of the data set, for each of the drug ligands, all the 7992 protein
structures have to be annotated as true or false targets. A structure of the sc-PDB is clas-
sified as a true target if it meets one of the following criteria:

• The protein structure is co-crystallized with the drug compound.
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• The protein structure has the EC number of a target of the drug compound listed in
the DrugBank

• The protein structure has the name of a target of the drug compound listed in the
DrugBank

• The protein structure has the UniProtKB ID of a target of the drug listed in the
DrugBank

In order to be able to classify the protein structures via UniProtKB ID, a mapping of the
PDB code and UniProtKB ID had to be assigned. This mapping was conducted using the
SIFT structure annotation service (Velankar et al. [2013]). The true target lists of PDB
codes for each drug can be found in Appendix E. In Figure 5.7 an overview of the number
of different proteins and number of true positive structures for each ligand is given.
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Figure 5.5: Part 1 of the ligands of the Drugs/sc-PDB data set
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Figure 5.6: Part 2 of the ligands of the Drugs/sc-PDB data set: Clusters of two or more
drugs
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Figure 5.7: List of true protein targets and number of true protein structures for the 72
ligands of the Drugs-sc-PDB data set. In shades of purple, drug clusters are highlighted.
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Figure 6.1: Evaluation strategies cover enrichment metrics, RMSD calculations and rank
evaluation.
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In this chapter, the evaluation strategy is described. So far, no standard evaluation strat-
egy has been established for inverse virtual screening. Therefore, the evaluation strategy
consisting of the evaluation experiments, data sets and choice of performance metrics was
newly compiled. While the data has been described in the previous chapter (5), here the
experiments and evaluation parameters are discussed.
The aim of the experiments is to thoroughly evaluate the two distinct features of inverse
screening: Binding mode prediction and target ranking. In addition, the experiments shall
evaluate the performance of iRAISE compared to classic docking, pharmacophore-screening
and sequence-based target prediction.
In total, the evaluation consists of six experiments:

1. Experiment: Binding mode prediction

2. Experiment: True-target Ranking

3. Experiment: Sensitivity versus selectivity

4. Experiment: Early enrichment

5. Experiment: Comparison of ranking capability with classic docking

6. Experiment: Comparison of enrichment to sequence-based method

7. Experiment: Comparison of enrichment to pharmacophore-based method

In this chapter, initially, the evaluation criteria and performance metrics are introduced and
discussed. Then, the evaluation experiments are described. For results and discussion of the
experiments, see Chapter 7.

6.1 Evaluation criteria and measures

Evaluation criteria and measures need to assess two points: Firstly, the ability of the method
and its limitations need to be monitored in an objective, reproducible way, preferably in com-
parison to other methods. Secondly, the evaluation has to show to potential users in which
case they benefit from using the method but also where the limitations of the model are.
Therefore, the evaluation is conducted on both, on artificial experiments solely usable to
compare methods among each other (e.g. re-docking experiments) and on experiments
which resemble real use cases (e.g. finding off-targets of approved drugs, see enrichment
experiments).
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Two capabilities of iRAISE need to be covered by experiments: Firstly, the ability of pre-
dicting binding modes need to be shown. The simultaneous prediction of protein targets
with the binding modes of the query ligand is one great advantage of structure-based inverse
screening methods. Secondly, the ability of ranking true targets to the early positions of
large protein sets, also called early recognition needs to be assessed.

Binding mode evaluation measures For evaluation of the correct binding mode,
calculating the RMSDs of re-docking experiments is an established measure. In re-docking
experiments, predicted poses are compared concerning the atom coordinates with the co-
crystallized position of the ligand in its target. An established cutoff of successful binding
mode prediction is an RMSD below 2 Å.

Enrichment evaluation measures For evaluation of the enrichment power of virtual
screening methods, several metrics exist. Here, the use of several metrics was chosen for
evaluation, since each has its own advantages and disadvantages. Furthermore, recently,
concern has been raised in the chemical computing community on the thoroughness of eval-
uation concerning the use of metrics and data sets (Jain and Nicholls [2008], Kirchmair
et al. [2008]), calling for the use of more than one metric.
Established is the use of Enrichment Factors and the AUC (=Area under the ROC curve),
which are easily interpretable. For the assessment of the very-early recognition problem, the
BEDROC and the NSLR were chosen additionally since they are based on different weighting
schemes (exponential versus logarithmic).
Following is a list of all metrics chosen for evaluation of enrichment capability and their
definition:
(a = actives found at considered fraction of data set,
A=total number of actives in data set,
n=Number of data points at fraction of data set (actives+inactives) screened,
N=total number of data points,
ri = rank of ith active. )

• EF (Enrichment Factor)

EF (α) =
a

n
× N

A
(6.1)

The Enrichment Factor is a measure of the fraction of actives found in a fraction of
the database. The fraction (α) is e.g. 1%, 2%, 10% of the data set. The EF has
three main disadvantages: The EF is dependent on the fraction of actives and decoys
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and thus cannot be compared for different experiments. Also, the need to set a factor
leads to different reported EFs in publications, dependent on the choice of authors.
Further, the EF is not bound in its values. An advantage is its straightforward concept.
For iRAISE’s evaluation, the EF at 1%, 2% and 5% is used.

• AUC (Area under the ROC curve)
The ROC curve (=Receiver operator characteristics) is the number of found actives
plotted against the number of decoys. The AUC is calculated as the area under this
curve.

AUC =
1

nN

N∑
i=2

Ai(Ii − Ii−1) (6.2)

Ai = found actives at rank i
Ii = found inactives at rank i
The AUC has the advantages of being parameter-free and being bound by 0 and 1.
An AUC of 0.5 means random performance. The AUC has the disadvantage that it
does not assess early enrichment.

• BEDROC (Boltzmann-enhanced discrimination of ROC) (Truchon and Bayly [2007])

BEDROC(α) =

∑n
i=1 e

(−αri/N)

n
N ( 1−e−α

eα/N−1)

n
N e

αn/N (eα − 1)

(eα − eαn/N )(eαn/N − 1)
+

1

1− eα(1−
n
N
)

(6.3)

The BEDROC metric weights the ranks of true positives exponentially decreasing and
therefore can be used to evaluate the early recognition capability of a method. It is
bound by 0 and 1 while 0 corresponds to random performance. The disadvantage is
its factor α, which determines how much weight is put on the first ranks. Comparing
the BEDROC to the EF, Riniker and Landrum found, that the BEDROC-parameter α
corresponds reversely to the EF-α, i.e. α(EF ) = 1

α(BEDROC) (Riniker and Landrum
[2013]).
For evaluation of iRAISE, an BEDROC-α of 2 was chosen.

• NSLR (Normalized Sum of Logarithmic Ranks) (Venkatraman et al. [2010])
The Normalized Sum of Logarithmic Ranks is calculated by dividing the Sum of Log-
arithmic Ranks (SLR) by the maximum SLR:

SLR = −
A∑
i=1

log(
ri
N

) (6.4)
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SLRmax = −
A∑
i=1

log(
i

N
) (6.5)

NSLR =
SLR

SLRmax
(6.6)

The NSLR uses a logarithmic weight to consider the early recognition problem. It has
the advantages of being bound by 0 and 1 and being truly parameter-free.

Enrichment classification These metrics were further used to classify enrichments
into easily interpretable categories of excellent, good, medium and bad enrichment. The
following criteria were used for classification:

• Excellent enrichment: AUC > 0.7 and BEDROC > 0.6 and EF1% > 3

• Good enrichment: AUC > 0.6 and BEDROC > 0.6 and EF1% > 3 (two out of the
three conditions have to be fulfilled)

• Medium enrichment: BEDROC > 0.4

• Bad enrichment: all others

Thus, excellent enrichments show good overall performance as well as early enrichment.
Good enrichment still has a good overall performance and at least one good metrics mea-
suring the early enrichment. For medium enrichments, the BEDROC is still significantly
better than random, thus the very early enrichment is better than random. For bad enrich-
ments, the predictions failed completely.

6.2 Evaluation experiments

6.2.1 Binding mode prediction

For the binding mode prediction study, the Astex Diverse Set is used (see section 5.1). In
this experiment, each Astex ligand is screened against its true target and the pose of this
ligand generated by iRAISE is compared to the co-crystallized ligand position, evaluated by
the RMSD. Standard parameters of iRAISE are used and for each Astex ligand maximally
200 conformations are sampled.
The Astex Diverse Set is a set of high-quality protein-ligand complexes. In order to compare
the binding mode prediction on this set to a set representing the average quality of complexes
from the PDB in a better way, the same experiment is performed on the Drugs/sc-PDB data
set (see section 5.5).
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6.2.2 True-target ranking

For evaluating iRAISE’s ability to rank first targets to the beginning of a score-ordered list
of a set of targets, also the Astex Diverse Set was used (see section 5.1). Screening each
of the 84 ligands against all 85 targets results in a score-ordered list of targets. For this
experiment also 200 conformations were maximally sampled for each ligand.
This experiment was performed with two ranking strategies: Firstly, the simple interaction
score (see section 4.5) was used for ranking, i. e. only step 1 and 2 of the Scoring Cascade
were applied. Secondly the score of the full Scoring Cascade was used.
The number of ligands for which the true target was ranked at position 1 and the first 5%,
10%, 20%, 30% and 50% are used as performance measure.

6.2.3 Sensitivity versus selectivity

The TTFXa data set (section 5.4) is used to study sensitivity versus selectivity since it
contains reliable true negative annotation for its five ligands. Therefore, the experiment on
this data set is to screen all different serine protease structures with all five ligands and
evaluate if the correct proteins were hit, and especially if the correct structures were not hit.
For this experiment, also maximally 200 conformations were generated for each ligand.

6.2.4 Early enrichment

For the enrichment experiment, the Drugs/sc-PDB data set was used (see section 5.5). For
each of the 72 ligands, the enrichment performance is evaluated using the metrics proposed
in section 6.1: The EF1%, EF2%, EF5%, AUC, BEDROC and NSLR.
For this experiment, also maximally 200 conformations were generated for the ligands.

6.2.5 Comparison of ranking capability with classic docking

Experiment number two (section 6.2.2) was also conducted with a classic docking approach
for comparison to iRAISE. As classic docking approach, the FlexX docking algorithm (Rarey
et al. [1996]) together with HYDE scoring (Schneider et al. [2012]) was used. The LeadIt
software suite (version 2.1) of the BioSolveIT (www.biosolveit.de) was used for this experi-
ment. The FlexX docking algorithm is an incremental construction docking algorithm. The
HYDE scoring function aims at predicting binding affinities by a strict hydrogen bond model
and inclusion of solvation and desolvation effects.
FlexX does not need conformations, therefore it was started with a Corina-generated confor-
mation of the Astex ligand (Sadowski et al. [1994]). The HYDE scoring was conducted on
maximally 30 FlexX-poses of each ligand in each protein. Each pose was optimized firstly
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with Protoss (Bietz et al. [2014]), which optimizes the hydrogen bond network and secondly
geometrically for minimizing clashes and conformation strains and optimizing hydrogen bond
geometries (Schneider et al. [2012]). For ranking, the best HYDE score was used.

6.2.6 Comparison to sequence-based method

The same enrichment experiment with the Drugs/sc-PDB data set described in section
6.2.4 was used for comparison to the performance of a sequence-based method. As a
sequence-based target prediction method, protein-BLAST (Altschul et al. [1997]) from the
NCBI/BLAST-server (http://blast.ncbi.nlm.nih.gov/) was used. Default parameter settings
were applied for the protein-BLAST algorithm, with exception of the number of results
returned, which was set to maximum. The complete PDB was chosen as sequence database.
The hits returned were then filtered for those PDB codes which are also contained in the
Drugs/sc-PDB data set.
As sequence query, the FASTA-sequence from the PDB was used of those proteins which
were co-crystallized with the ligands of the data set: Each of the 72 ligands of the Drugs/sc-
PDB data set has at least one co-crystallized protein in the data set. If there are several
structures available, the one with the alphabetically first PDB code was chosen. Of the 72
ligands, one had only one true positive, i.e., the protein it was co-crystallized with in the
data set. This ligand was omitted from the experiment.
The score returned from the protein-BLAST server was then used to rank the proteins in an
ordered list.

6.2.7 Comparison to pharmacophore-based method

For the comparison of iRAISE’s performance to a pharmacophore-based method, the sc-
PDB Diverse Set was used (see section 5.3). This data set was used by Meslamani et al.
(Meslamani et al. [2012]) for the evaluation of their pharmacophore-based target predic-
tion method in comparison to two classic docking approaches. The pharmacophores used
by Meslamani are generated from co-crystallized protein-ligand complexes. The number is
reduced to 10 pharmacophores per pocket with a statistic-based selectivity score.
For comparison to iRAISE, the results of Meslamani et al. were extracted from the Support-
ing Information of Meslamani et al. [2012]. Comparing their approach to classic docking,
Meslamani et al. used the Surflex (Jain [2007]) and the Plants (Korb et al. [2009]) docking
algorithms. These results were also extracted.
The screening of the sc-PDB Diverse Set with iRAISE was conducted in two modi: Firstly,
ligand conformations were sampled, with maximally 200 conformers per ligand. Secondly,
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no conformations, but the co-crystallized ligand was used for screening.
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Figure 7.1: Poses of the general serine protease inhibitor pefabloc in the active site of a
factor Xa (PDB code 2JKH), a trypsin (3GY2) and a thrombin (3SI4) protein structure.
The superposition of the backbone atoms of the three protein structures is shown in the
left corner (magenta=2JKH, blue=3GY2, turquoise=3SI4)
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This chapter shows and discusses the results of the experiments which were conducted to
evaluate iRAISE‘s performance. Firstly, iRAISE’s capability of binding mode prediction is
shown. Then, iRAISE’s ranking capabilities are evaluated and compared to those of classic
docking methods. Next, the enrichment experiments are discussed, and iRAISE’s perfor-
mance is compared to a pharmacophore- and a sequence-based target prediction method. A
discussion of case studies of unknown target prediction follows. Finally, a short paragraph
gives details on parametrization of iRAISE and its running time is analyzed.

7.1 Binding mode prediction

The evaluation of iRAISE’s binding mode prediction capabilities shall display its ability of
generating poses resembling the natural bioactive binding mode of the ligand in the active
site. The experiment is described in section 6.2.1. RMSD calculations between the poses
generated by iRAISE and co-crystallized ligands were performed on two data sets, the Astex
Diverse Set and the Drugs/sc-PDB data set.
In Table 7.1, the minimal, maximal, average and median RMSDs for both data sets are
listed. For the Astex Diverse Set, the numbers were differentiated between the best scored
pose, the 30 best scored poses and the 100 best scored poses.

RMSDs Astex Diverse Set Drugs/sc-PDB
best pose within 30 poses within 100 poses within 30 poses

Minimal 0.41 Å 0.26 Å 0.26 Å 0.45 Å
Maximal 8.28 Å 6.8 Å 5.2 Å 7.55 Å
Average 1.2 Å 1.0 Å 0.99 Å 1.57 Å
Median 1.55 Å 0.86 Å 0.79 Å 1.13 Å

Table 7.1: Overview of maximal, minimal, average and median RMSD values for the
Astex Diverse Set and the Drugs/sc-PDB data set.

In Figure 7.2, a bar-chart of the sum of ligands with a pose below selected cutoff RMSDs are
shown. For the Astex Diverse Set, the RMSDs are given for the best ranked pose, the best
RMSD among the first 30 ranked poses and the first 100 ranked poses. For the best RMSD
in 30 poses, which is a reasonable amount of poses to generate, more than 80% of the poses
get a RMSD lower than 2 Å which is considered as a successful binding mode prediction.
This number is comparable to classic docking methods which do not apply post-optimization
of the poses, e.g. the Glide docking function was recently evaluated on the same data set
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7.1 Binding mode prediction

Figure 7.2: Sum of RMSDs of iRAISE’s re-docked poses of the Astex Diverse Set and
the Drugs/sc-PDB data set below the threshold values.

with only 57 of the 85 ligands below 2 Å, i.e. 67% (Wang et al. [2012]).
For the Drugs/sc-PDB data set, which was not manually curated like the Astex Diverse Set,
the percentages of low RMSDs are below those of the Astex Diverse Set, hinting that either
iRAISE predictions are data dependent or that the data set is not as suited for this test as
the high-quality one.
The diagrams show that for neither of the data sets, binding modes were predicted for 100%
of the ligands. Not all ligands could be placed into their co-crystallized binding pocket. For
the Astex Diverse Set, these were about 10%, i.e., 10 of the 85 complexes. These cases
were studied further in order to evaluate the reason why iRAISE fails here.

In Table 7.2, the ligands are listed, for which no poses were created in their true target
applying the default screening settings. Firstly, it was tested, whether a poses was created,
if the conformation of the co-crystallized ligand was used. For nine out of the ten ligands,
indeed the true target was found in this mode. This means that in the 200 conformations
used per default for screening, no conformation close enough to the bioactive one was found
and thus the ligand could not be placed in the active site. Next, the maximum number of
conformations was set to 500, instead of the per default used 200. With this settings, three
out of the ten ligands could be placed in their true targets.
One example where the correct conformation is missing in those generated by default is

now shown in detail for PDB complex 1PMN of an imidazole-pyrimidine (see Figure 7.3A)
bound to a protein kinase. In Figure 7.3B, the ligand of 1PMN is shown in its co-crystallized
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Astex ligand (PDB
code of true target)

Pose created with
crystal ligand?

Pose created with
500 conformations?

1hvy yes yes
1kzk yes no
1oyt yes yes
1pmn yes no
1r1h yes no
1t46 no no
1xoz yes no
1y6b yes no
1ygc yes no
1yqy yes yes

Table 7.2: List of Astex Diverse Set cases of which no pose in the co-crystallized pocket
was generated by iRAISE with the default settings.

conformation (blue) and in the generated conformations (gray). In Figure 7.3C, the active
site of 1PMN with the co-crystallized ligand shows that the generated conformations would
clash with the protein since the moiety with the three-membered ring is not bent enough.
The ligand of the complex 1t46 is the only one, for which even with the co-crystallized

conformation no pose could be created in its true target by iRAISE. Further analysis shows
that the index matching results in 50 poses in its true target, of which, however, 49 are
discarded due to clashes and the last one is discarded since it protrudes with more than two
thirds into the solvent.
With one exception, the evaluation thus showed that the reason for failure is mainly due to
conformations differing too much from the bioactive conformations. Even if the number of
conformations is set to 500, for some ligands the bioactive conformation was not generated.
These results clearly show the limitation of iRAISE in its dependence on the generated or
provided conformations of the query molecule.
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Figure 7.3: (A) 2D structure diagram of ligand 1pmn of the Astex Diverse Set. (B) 3D
conformations generated in gray, crystal conformation in blue (C) Active site of 1PMN
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7.2 Ranking capability

iRAISE’s ability to rank true targets to the beginning of a score-ordered list was evaluated
on the rank of the co-crystallized targets of the Astex Diverse Set (see section 6.2.2 for the
experiment description). The results are summarized in Figure 7.4. This experiment high-
lights two aspects: Firstly, the measures applied by the Scoring Cascade for selectivity like
the reference score cutoff and the ligand and pocket coverage improve the ranking capability
significantly. By using the Scoring Cascade, the ranking is improved, e.g., from fewer than a
tenth of the ligands at rank 1 with the interaction score to more than one third of the ligands
with rank 1 with the Scoring Cascade. The second aspect has already been discussed be-
fore: The Scoring Cascade selectivity measures lead to a loss of the total true positives found.

Figure 7.4: Ranking of true target for each of the 85 ligands of the Astex Diverse Set,
summed at position 1, the first 5, 10, 20, 30 and 50%. The yellow bars show the ranks for
the interaction score and the turquoise bars show the ranks for the full Scoring Cascade

7.3 Comparison to classic docking

The ranking capability of iRAISE was also compared to classic docking studies on the same
experiment as used in the preceding section for assessing the gain of the Scoring Cascade
(see section 6.2.5 for the experiment description). In Figure 7.5, the results of the ranking
based on the FlexX/Hyde combination and of iRAISE are juxtaposed. The rank sums show
that the selectivity measures applied by iRAISE in the Scoring Cascade lead to superior
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performance in true target ranking at the first percentages of a score-ordered list. While
iRAISE ranks for about a third of the ligands the true target to the first position of the
score-ordered list, the FlexX/Hyde approach only achieves this rank for true targets for a
fourth of the ligands, although complex optimization strategies are applied to the poses (see
section 6.2.5). The amount of ligands for which the true targets are ranked to the beginning
of the score-ordered list is higher for the Scoring Cascade up to a tenth of the list. For
later ranks in the target-list, the percent of ligands is higher for the FlexX/Hyde approach.
However, in real applications on large datasets, the enrichment of true targets at about 1%
is crucial.

Figure 7.5: Ranking of true target for each of the 85 ligands of the Astex Diverse Set,
summed at position 1, the first 5, 10, 20, 30 and 50%. The purple bars show the ranks for
docking and scoring with FlexX and Hyde and the turquoise bars show the ranks for the
Scoring Cascade of iRAISE.

The same experiment has been conducted with the docking program Glide (Friesner et al.
[2004]) see Schomburg et al. [2014]. Glide achieves about the same amount of true targets
on the first rank. However, only 50% of the true targets are ranked among the first 5%,
while iRAISE achieves this for more than 60%.
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Inhibitor Thrombin Factor Xa Trypsin
3RM2 2BVR 3SI4 2JKH 2Y5F 3KL6 3GY2 2G8T 2G5N

Benzamidine
sc-score – – -30.8 -23.7 -28.5 – -33.6 -33.4 -34.6
gsw-score – – 0.73 0.69 0.80 – 0.84 0.93 0.97
Pefabloc
sc-score -51.5 -29.0 -54.3 -40.3 -37.3 -54.3 -34.4 -33.3 -33.9
gsw-score 1.1 0.99 1.28 1.14 0.88 1.20 0.84 0.93 0.97
Apixaban
sc-score – – – – -32.3 – – – –
gsw-score – – – – 0.88 – – – –
Rivaroxaban
sc-score – – -28.5 -31.5 39.5 -60.0 – – –
gsw-score – – 0.69 1.14 0.88 1.33 – – –
Melagatran
sc-score – – – – -33.7 – – – –
gsw-score – – – – 0.93 – – – –

Table 7.3: iRAISE scores on the TTFXa data set consisting of three structures for each
serine protease thrombin, factor Xa and trypsin. For all structures, true targets of the
inhibitors are marked by highlighting the entry in green. A hyphen indicates that iRAISE
did not predict the structure as a target.

7.4 Sensitivity versus selectivity

The experiment on the TTFXa data set containing nine structures of three serine proteases
shall show if the method is able to selectively identify correct targets. Not only true positives
have to be found but also true negatives must be classified correctly. A matrix of scores for
each ligand of the data set for each structure is shown in Table 7.3. Only the scores for those
structures for which iRAISE produces a binding pose are listed in the table. Optimally, the
iRAISE procedure would create only poses for the proteins which are highlighted in green
as true targets. Since the protein structures of the same proteins have slightly different
conformations because they were co-crystallized with different ligands and in iRAISE protein
flexibility is not considered internally, it is expected that not each structure of each protein is
hit. Therefore, success for a ligand is defined if at least one structure of the correct protein
was found.
In Table 7.3, for each inhibitor the sc-score of the Scoring Cascade is given as well as the
gsw-score. While the gsw-score is easily interpretable (all scores greater than 1.0 are higher
than an average score for that pocket), the absolute numbers of the sc-score are harder to
interpret.
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Benzamidine and pefabloc are general serine protease inhibitors. For these two inhibitors,
iRAISE produces correct results with benzamidine-poses for at least one structure of each
protein and poses for each protein structures for pefabloc.
Apixaban is a factor Xa inhibitor, for which iRAISE also correctly predicts one structure
of the correct protein as a target. Rivaroxaban is a factor Xa inhibitor as well. For this
inhibitor, the iRAISE screening results in poses for all factor Xa structures and one thrombin
structure, which is no target of rivaroxaban. However, all factor Xa structures are scored
better than the thrombin structure, and the best score for a factor Xa structure is with 1.33
significantly higher than average score of the pocket in contrast to the score of 0.69 for the
thrombin structure.
Melagatran is a thrombin inhibitor. For this inhibitor, iRAISE only produces a pose for a
factor Xa structure, which is not correct. This case was thus analyzed further.
A thrombin structure co-crystallized with melagatran from the PDB (PDB code 4BAH) was
superposed with the thrombin structures from the TTFXa data set. Thus, the conformations
of the active sites of the structures from the data set could be compared to the protein
conformation with bound melagatran. In Figure 7.6, the superposition of 4BAH with 3SI4 is
shown as an example. The superposition shows clearly that the binding mode of melagatran
from 4BAH would not fit into 3SI4, since the rotated Ile174 would produce a clash. In the
4BAH structure iRAISE is able to produce a binding pose with a score of 1.22.
These results show a negative and a positive aspect of the predictions of iRAISE: iRAISE
dependents on conformational protein samples to predict the correct target and produces only
poses for correct protein conformations. However, with respect to selectivity, the experiment
demonstrates that iRAISE is able to predict mostly only true positive targets on the class
of serine proteases which are structurally and sequentially highly similar.
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Figure 7.6: Alignment of the two thrombin structures 4BAH in purple and 3SI4 in pink
with melagatran as co-crystallized in 4BAH. Melagatran cannot be placed in the active
site of 3SI4 in the same binding mode as in 4BAH due to a different conformation of Ile174
which would create a clash with the inhibitor. (This figure was originally published in
Schomburg and Rarey [2014].)
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7.5 Enrichment experiments

Figure 7.7: Boxplots of (A) the enrichment metrics AUC, BEDROC, NSLR and the
specificity and sensitivity (B) the Enrichment Factors at 1%, 2% and 5%. The median
is shown with a green line and is printed with numbers into the diagram. The mean is
shown in form of a diamond. The blue area shows the area between the first and the third
quartile, the lines indicate the minimum and the maximum.

The Drugs/sc-PDB data set was used for enrichment experiments, see section 6.2.4 for the
experiment description. The metrics described in section 6.1 were used for evaluation along
with the classification scheme of ’excellent’, ’good’, ’medium’ and ’bad’ enrichment.
The evaluation metrics map the performance of the inverse screening onto ’one number’ and
thus allow fast comparison of overall performance among different methods. Since the data
set was developed in this thesis, no data of other state-of-the-art methods was available
for comparison. Therefore, here the metrics were only be assessed to evaluate the gain of
iRAISE over random performance.
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In Figure 7.7, the metrics AUC, BEDROC, NSLR, EF1%, EF2%, EF5% and the statistical
measures Specificity and Sensitivity are shown in form of a boxplot. The metrics for all 72
ligands are used here.
In Figure 7.7A, the boxplot of the AUC shows that with a value of 0.67 the median is well
above random (random=0.5) and that also the maximal 1.0 is reached (which is equal to
perfect performance) but also that the minimum is even below random. The median of the
BEDROC, which is a better metric for the assessment of the early enrichment (see section
6.1) is with 0.54 well above random (=0.0) and also the maximum almost reaches perfect
enrichment (1.0). The NSLR, which also weights the early enrichment is with 0.28 also
above random (=0.0) but does not reach perfect enrichment.
The specificity, which is also called true-negative rate, shows which part of the true nega-
tives are truly identified as negatives. The sensitivity, also called true-positive rate, shows
which part of the true positives are truly identified as positive. The medians of 0.54 for
the specificity versus 0.7 of the sensitivity shows that more positives are identified as true
positives than negatives are correctly classified. The low rate of the sensitivity is due to the
fact that these numbers are calculated on the level of protein structures and not proteins.
As will be shown later in sections 7.5.3 and 7.5.4, often not all structures of a protein in the
data set are hit in the iRAISE screening, due to e.g., protein flexibility. The low specificity is
due to the fact that iRAISE merely ranks protein targets. The method was not developed to
be able to classify clearly between true negatives and true positives, but the ranking rather
says that the first ranked targets bind the query ligand better than the later ranked. Here,
true negatives are only those protein structures, in which no binding pose was created and
thus no score was obtained as well as protein structures which are scored by the gsw-score
lower than 1.0.
In Figure 7.7B, the Enrichment Factors are shown at 1%, 2%, and 5% respectively. The
EF1% has a median of 3.34 which means that the enrichment is 3.34 better than random.
The medians of EF2% and EF5% show a 3.64 and 2.8 times better enrichment than ran-
dom.
The discussed metrics and numbers only allow a general assessment of iRAISE’s perfor-
mance, but provide no detailed identification of limitations and potentials. Therefore, the
metrics of each of the 72 ligands were used to classify the enrichment into excellent, good,
medium and bad enrichment following the classification scheme given in section 6.1.
In Figure 7.8, the distribution of the 72 classified enrichments in the four categories are
shown. Excellent and good enrichment with a percentage of 28 each cover in total 40 lig-
ands, which is more than half of all ligands. Medium enrichments are achieved for 29% -
here improvements are necessary. The part of bad enrichments shows that for 15% of the
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ligands, the iRAISE target prediction failed.
For further discussion and assessment of limitations, now each category is shown in detail.

Figure 7.8: Distribution of categorized enrichment for target prediction for the 72 ligands
of the Drugs/sc-PDB data set in percent.

7.5.1 Excellent enrichments

The predictions of iRAISE are classified as ’excellent’ if the following three criteria are
fulfilled: AUC > 0.7 and BEDROC > 0.6 and EF1% > 3 (see section 6.1). In Figure 7.9,
the metrics for the 20 ligands with excellent enrichments are shown. In the top line, the
medians of all 72 ligands are given for comparison. In Figure 7.10, as an example, the three
ROC plots for the ligands varenicline, meclofenamic acid and estradiol are shown.
For varenicline, only one true protein structure is contained in the complete data set, which
is ranked by iRAISE on rank 55 of 7915 and thus an almost perfect ROC curve is reached.
Meclofenamic acid binds to prostaglandin G/H synthases 1 and 2, of which 22 structures
are contained in the data set. The first structures are ranked at the very high ranks of
5, 19 and 22. The other structures are also all hit consecutively resulting in excellent
enrichment. Estradiol binds to the estrogen receptor, to sex-hormone-binding globulin and
to beta-hydroxysteroid dehydrogenase. Of these targets, 80 structures are contained in the
protein data set. In total, iRAISE identifies 74 of these 80 as true targets and the first
ranks of true targets are at position 8, 36 and 41. Even if not every structure is hit, the
enrichment is excellent.
For the ROC curves of all 20 ligands categorized as ’excellent’, see Appendix G, Figure G.1.
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Figure 7.9: Metrics for the 20 ligands of the Drugs/sc-PDB data set classified with
excellent enrichment.

Figure 7.10: ROC plots for 3 ligands categorized as ’excellent’ enrichment. Thick blue
lines show the true positives found. If not all true targets were identified, a thin line
is drawn from the last found positive on assuming random distribution from there on.
TP=Number of true positives.
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7.5.2 Good enrichments

Figure 7.11: Metrics for the 20 ligands of the Drugs/sc-PDB data set classified with good
enrichment.

As criterion for ’good’ enrichment, two out of three conditions have to be fulfilled: AUC >
0.6 and BEDROC > 0.6 and EF1% > 3 (see section 6.1).
In Figure 7.11, the metrics for the 20 ligands with good enrichments are shown. For these
ligands, the enrichment is not classified as ’excellent’, since either the early enrichment or
the total enrichment is not perfect.
This becomes obvious in Figure 7.12, where the ROC plots for the ligands cocaine, galan-
tamine and efavirenz are shown (for ROC plots of all ligands of this category, see Appendix
G, Figure G.2).
Several transporter and receptor proteins are targets for cocaine. In the protein structure
data set, two structures of the target protein muscarinic acetylcholine receptor are present.
These are ranked by iRAISE at positions 577 and 1624 of the 7915 targets. Thus, no true
target is found until more than 7 percent of the data has been screened leading to improvable
early enrichment.
For galantamine, the data set contains 37 protein structures of its true targets acetyl-
cholinesterase, cholinesterase and acetylcholine receptor. The first structure of a true target
is ranked by iRAISE to position 6. Of the 37 true targets, 3 are not identified by iRAISE.
In total, the enrichment is rather good, only the BEDROC with 0.57 is slightly below the
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threshold for excellent enrichment.
In the case of efavirenz, iRAISE shows excellent early enrichment but hits less than half of
the true target structures in the database. Of 114 protein structures of reverse transcriptase
of the human immunodefficiency virus in the structure data set, 60 are not identified as true
targets. The early enrichment is very high, with the first 4 ranks occupied with structures of
true targets and in the first 50 ranks 25 true target structures. Thus, the enrichment would
be usable in real applications, where the first percentages of the rank ordered list are tested
experimentally, but the overall performance needs to be improved.
An evaluation of those true target structures to which iRAISE could not create a binding
mode for efavirenz showed various reasons for the failure: Mostly, the protein conforma-
tion was different compared to a structure co-crystallized with efavirenz with respect to the
backbone and/or the side chains, highlighting the methods incapability of internally han-
dling flexibility. Another aspect was the mislabeling of the structures as ’true targets’: In
the true target assignment stage, proteins with the same name, as e.g. a co-crystallized
protein are considered as true positives. In this case, a protein labeled with ’pol polyprotein’
is considered as true target, which is a collective term for HIV reverse transcriptase and
other enzymes like the polymerase, integrase or protease. Thus, here a weakness of the
automatic true positive assignment is revealed. A third influencing effect arises from the
frequent mutations found in reverse transcriptases. Although mutations are not considered
during the true-target assignment method, they certainly have an influence on the binding
of the compound. Thus, for some of the mutated structures it cannot be concluded if they
still bind efavirenz or not.

Figure 7.12: ROC plots for 3 ligands categorized as ’good’ enrichment. Thick blue lines
show the true positives found. If not all true targets were identified, a thin line is drawn
from the last found positive on assuming random distribution from there on. TP=Number
of true positives.
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7.5.3 Medium enrichments

Figure 7.13: Metrics for the 21 ligands of the Drugs/sc-PDB data set classified with
medium enrichment.

If an enrichment was not classified with ’good’ or ’excellent’ and still has a BEDROC greater
4.0, then it is classified as medium (see section 6.1).
In Figure 7.13, the metrics for the 21 ligands with medium enrichments are shown. As
examples, in Figure 7.14, the ROC plots for ethacrynic acid, penicillin V and imipramine are
shown (for ROC plots of all ligands of this category, see Appendix G, Figure G.3).
Ethacrynic acid binds to gluthathione S-transferase A2 and serum albumin, for which there
are 15 true target structures in the data set. All of these are recovered by iRAISE screening,
but the first is not found before more than 10% of the data has been screened. Thus the
early enrichment is poor while the total AUC is nevertheless good with 0.7. For penicillin
V, the structure data set contains 36 true target structures of penicillin acylase and beta-
lactamase. Of these, 11 are not identified as true targets, but the early enrichment is good
with an EF1% of 2.87. Imipramine binds to the androgen receptor, the adrenergic receptor
and the muscarinic acetylcholine receptor of which there are 31 structures in the data set.
Only 7 of these are recognized as true targets but with high early enrichment as the ranks
of the first true targets are 21, 43 and 95 of the 7915 target structures, respectively. The
AUC is low with 0.54 but the EF1% is 6.46.
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Figure 7.14: ROC plots for 3 ligands categorized as ’medium’ enrichment. Thick blue
lines show the true positives found. If not all true targets were identified, a thin line
is drawn from the last found positive on assuming random distribution from there on.
TP=Number of true positives.

7.5.4 Bad enrichments

Figure 7.15: Metrics for the 11 ligands of the Drugs/sc-PDB data set classified with bad
enrichment.

In total, eleven of the 72 ligands of the data set cannot be classified with excellent, good
or medium, but are classified as ’bad’. For these ligands, the target predictions by iRAISE
failed.
In Figure 7.15 the metrics for these ligands are listed. In Figure 7.16, the example ROC plots
of phenylbutazone, captopril and trifluoperazine are shown (for all ROC plots of ligands of
the category ’bad’ enrichment, see Appendix G, Figure G.4).
Phenylbutazone is the ligand for which iRAISE performs worst. Of 22 true positive structures
of its targets prostaglandin synthase, only one is identified as true positive at rank 1352.
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Captopril binds to angiotensin converting enzyme, collagenase 3 and matrix-metalloprotease,
of which 31 structures are contained in the data set. The iRAISE screening finds 25 of the
31 true targets structures, but the ranks of these structures are almost randomly distributed
among the data set, no enrichment can be observed. In the true target structures found
as well as in those not found, all three target classes are present, thus no bias of iRAISE
towards one of the classes is observed. As targets for trifluoperazine 42 structures for tro-
ponin C, androgen receptor, calmodulin, xanthine dehydrogenase and adrenergic receptor
are contained in the data set. Of these, less than a fifth are identified correctly as true
targets and the ranking of the ones found is almost randomly distributed among the first
ten percent of the structure data.
As iRAISE performs worst on phenylbutazone, this case was further studied. Firstly, lit-
erature and database study revealed serum albumin and lipoxygenase as further targets of
phenylbutazone (Günther et al. [2008]). For serum albumin, the iRAISE screening finds 9 of
10 structures at ranks 139, 182, 536, 574, 627, 924, 978, 1099, 1476, 1531, 1626, and 1740.
Thus the first structure is found before 2% of the data has been screened. For the enzyme
lipoxygenase, one structure is found at rank 270 and two structures are not identified as
true targets. Thus, firstly it can be concluded that the ligand in general is not the problem,
since for serum albumin the predictions of the screening were correct.
Secondly, it was studied, at which step of iRAISE the true targets are discarded. In total,
there are 22 true target structures of prostaglandin synthase, i.e., cyclooxygenase. In the
default iRAISE screening setup, only one was found, at rank 1352 (PDB code 3B99). As
a first step, the screening was repeated with 500 conformations of phenylbutazone instead
of 200. With this setup, only one further structure (of a cyclooxygenase 2) was identified
as true target (PDB code 3MQE). Therefore, it does not seem to be only a problem of the
limitation of the conformations. Thus the iRAISE procedure was studied step by step. In
the index matching step (where descriptors of the ligand and the targets are matched), all
true targets get a match. The following step is a coarse (grid-based) clash test. Here, for
five of the 22 structures all matches are discarded. Following is a detailed atom-based clash
test. In this step, of the remaining 18 structures 14 are discarded. Two more structures are
then discarded due to insufficient ligand coverage. Of the remaining two, one is discarded
by the reference score cutoff. Thus only one structure remains.
Therefore, in this case, probably not enough poses are generated by iRAISE, or the clash
tests are too strict or not enough ligand conformations sampled. Also, it is possible that
protein flexibility is the problem.
Another aspect might also be the reason for failure: Cyclooxygenases have two binding sites,
a substrate-binding and an allosteric site, where the second part of the natural reaction takes
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place. Literature study did not reveal whether the inhibition of cyclooxygenases by phenylbu-
tazone is due to competitive inhibition of the first reactive center, or the second. In the
structure data set, only the first binding site is represented. Although the missing of the true
targets is probably due to a limitation of iRAISE and its inability to induce conformational
changes which may be necessary for the binding of phenylbutazone, it is also possible that
the inhibition is allosteric and thus cannot be found in this screening setup.

Figure 7.16: ROC plots for 3 ligands categorized as ’bad’ enrichment. Thick blue lines
show the true positives found. If not all true targets were identified, a thin line is drawn
from the last found positive on assuming random distribution from there on. TP=Number
of true positives.
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median AUC median NSLR median BEDROC

pBLAST 0.56 0.14 0
iRAISE 0.67 0.28 0.54

Table 7.4: Median metrics for sequence-based target prediction by pBLAST and for
iRAISE on 71 ligands of the Drugs/sc-PDB data set.

7.6 Comparison to sequence-based target prediction

Sequence-based methods are rapid and easy to perform. A starting sequence of a protein
to which the ligand of interest is known to bind to is compared against the sequences of
other proteins. The advantage is that since only sequences of proteins are needed and not
structures, much more proteins can be assessed than in structure-based methods. A dis-
advantage is that a starting sequence is needed, thus if no protein is known to which the
ligand binds, this method cannot be used.
The experiment of sequence-based target prediction is described in section 6.2.6. The same
data has been used as in the enrichment experiments described in the preceding sections.
The sequence-based experiment was conducted to compare iRAISE’s performance to this
method and to see if the Drugs/sc-PDB data sets contains examples which are not pre-
dictable with straight forward sequence comparisons. In real applications, sequence-based
methods will always be used if possible. Using structure-based methods needs vindication
since they are much more time consuming.
For the evaluation of the sequence-based target prediction capability, the same metrics were
calculated as used for assessing iRAISE’s performance on this data set. For comparison
of the overall performance, in Table 7.4, the medians for pBLAST and iRAISE are shown
opposite to each other. These metrics are the medians for 71 of the 72 ligands of the
Drugs/sc-PDB because one ligand was excluded from the sequence-experiment (see section
6.2.6).

The comparison of the median metrics shows that iRAISE outperforms pBLAST concerning
the total performance. However, for a more detailed evaluation, these metrics are plotted for
pBLAST and iRAISE for all 71 ligands in Figure 7.17. The plots of the AUC (Figure 7.17A),
the BEDROC metric (Figure 7.17B) and the NSLR (Figure 7.17C) for all ligands show two
aspects: For a part of the ligands, the metric values of pBLAST are very high, corresponding
to perfect enrichment and target predictions. iRAISE does not reach as high values in the
performance metrics. However, for more than half of the 71 ligands, the sequence-prediction
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fails while iRAISE’s performs well on most of those cases. Two conclusions can be drawn
from these observations: Firstly, the data set indeed contains entries which are not solvable
with sequence-based target prediction and is thus appropriate for evaluating structure-based
target prediction methods. Secondly, iRAISE is able to predict targets which are not found
by sequence-based target predictions methods and are therefore not trivial.
In Figure 7.17D, the number of different protein targets for each ligand is plotted to assess if
the sequence-based methods or iRAISE’s performance is correlated with this number. Most
of the ligands for which pBLAST’s performance is best have only one true protein target.
Nevertheless, there is also a ligand (dichlorphenamide) with 4 different protein targets and
another (imitinib) with 10 different targets on which pBLAST performs well. However, the
targets for dichlorphenamide are 4 different carbonic anhydrases and the targets for imatinib
belong to the kinase enzyme family. Both protein sets exhibit high sequence similarity.
Clearly, the sequence-based methods performance is highly dependent on the input sequence.
If other input sequences had been chosen, the performance would be different. One example,
where iRAISE performs very well and pBLAST fails is prazosin (fifth data point from the
left). Prazosin only has adrenergic receptors annotated in the DrugBank as true targets,
however, in the data set, it was co-crystallized with a quinone reductase and thus the correct
targets could not be found. One example where pBLAST has a perfect AUC of 1.0 and
iRAISE’s predictions fail with an AUC of 0.5 is sitagliptin, which only has dipeptidyl peptidase
4 as a target in the structure data set and the sequence prediction was also started with the
sequence of this enzyme.

114



7.6 Comparison to sequence-based target prediction

Figure 7.17: Results of pBLAST sequence-based target prediction in comparison to
iRAISE’s plotted for 71 ligands of the Drugs/sc-PDB data set. All plots are sorted by
AUC values of pBLAST predictions. A) AUC values . B) BEDROC values. C) NSLR
values D) Number of different true targets for each ligand contained in the structure data
set. (This figure was originally published in Schomburg and Rarey [2014].)
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Method Median rank of first
TP on 2556 distinct
proteins (percent)

Median rank of first
TP on 2879 distinct
proteins (percent)

Median rank first of TP
on 2879 distinct proteins
with EC-TP (percent)

pharm-rigid1 4 (0.16%)
pharm-rigid2 4 (0.16%)
pharm-flex1 6 (0.23%)
pharm-flex2 4 (0.16%)
Surflex1 65 (2.5%)
Plants1 113 (4.4%)
iRAISE-flex 33 (1.15%) 8 (0.28%)
iRAISE-crystal 2 (0.07%) 2 (0.07%)

Table 7.5: Medians of ranks of first true target of 117 ligands of the sc-PDB Diverse
Set for pharmacophore-based methods (rigid1, rigid2, flex1, flex2), two docking methods
(Surflex and Plants), for iRAISE with conformations (iRAISE flex) and for iRAISE with
the crystallized ligand (iRAISE crystal). EC-TP = annotation of true positives (TP) with
EC numbers.

7.7 Comparison to pharmacophore-based target prediction

For the comparison of iRAISE to a pharmacophore-based target prediction method, the
results and evaluation experiment of Meslamani et al. were used (see section 6.2.7 for the
experiment). For the 117 ligands of the sc-PDB Diverse Set, the rank of the first true positive
target (=FTP) in the score-ordered list was evaluated, based on four varying pharmacophore-
based approaches of Meslamani, two classic docking approaches (Surflex and Plants) and
two iRAISE approaches, one with ligand conformations (iRAISE flex) and one with the
crystal ligand conformation (iRAISE crystal). The ranks for the four pharmacophore-based
approaches and of the two classic docking approaches were extracted from the Supporting
Information of Meslamani et al. [2012]. For the ranks of iRAISE for each of the 117 ligands,
see Appendix H.

In Table 7.5, the medians of the first true positives of all methods are listed. Since the tar-
get prediction with iRAISE was done on a more recent version of the sc-PDB with a higher
number of distinct proteins (2556 versus 2879), the absolute numbers are not comparable.
Therefore, the percentages are given in the table as well. Next to the true-positive assign-
ment after Meslamani, true positives were also assigned via the EC number. Median FTPs
for iRAISE for both approaches - screening with up to 200 conformations and screening
with the crystal conformation - are listed. The median rank of the FTP of iRAISE-flex is
with 1.15% superior to both docking methods, and with true positive assignment via EC
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numbers with 0.28% comparable to the pharmacophore-based methods.
The median FTP of iRAISE-crystal is only comparable to the pharmacophore-based meth-
ods. This experiment is artificial, since the binding conformation of a ligand would in a real
scenario not be known beforehand. Since in the pharmacophore-based methods, though,
the pharmacophores are derived from the co-crystallized complexes, preliminary information
is exploited here as well. For the docking-based methods, however, the results were not
available for comparison. The median FTP of iRAISE-crystal is at 0.07% of the target list
even superior than all pharmacophore-based methods.
Next to the total performance, the performance at several percentages of the data set is
assessed. In Figure 7.18, the FTP ranks for the four pharmacophore-based approaches, the
two classic docking approaches, iRAISE-flex and iRAISE-crystal are summed for position
1 and the first 1%, 2%, 5%, 10%, 20%, 30% and 50% of the data set. Here again the
percentages are calculated for the two iRAISE approaches on 2879 distinct proteins and for
the other methods on 2556 distinct proteins. iRAISE-crystal outperforms all other meth-
ods till 5% of the database and iRAISE-flex outperforms the classic docking methods at
all percentages. Since in experiments only the first percentages of the ranked lists can be
screened, the performance of the methods at the first percentages is the most important.

Figure 7.18: Ranking of true target for each of the 117 ligands of the sc-PDB Diverse
Set, summed at position 1, the first 5, 10, 20, 30 and 50%. The blue bars show the
ranks of four pharmacophore-based methods, the red bars the ranks of the two classic
docking approaches and the green bars the ranks of iRAISE with flexible ligands and the
co-crystallized ligand.

In Figure 7.19, for all 117 ligands, the FTP is plotted on logarithmic scale for one pharmacophore-
based approach, the two classic docking approaches, iRAISE-flex and iRAISE-crystal. This
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Figure 7.19: Distribution of ranks of first true positives for the 117 sc-PDB Diverse
Set ligands by a pharmacophore-based method (Rigid2), two classic docking approaches
(Plants1 and Surflex1) and the iRAISE-flex and iRAISE-crystal screening.

plot shall show, if the predictions of the four methods are correlated, i.e., if all approaches
perform well or poor on the same ligands. The vast scattering of the FTP ranks for the
five methods indicates that this is not the case. Each method has obviously difficulties with
different ligands.
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7.8 Prediction of unknown targets

In this section, iRAISE’s ability of predicting unknown and off-targets for a compound is
evaluated. Firstly, the clustering of drugs by ECFP of the Drugs/sc-PDB data set is studied
for finding so far not-annotated targets. Secondly, the capability of iRAISE to predict
different binding modes for one drug in several targets is evaluated. Thirdly, iRAISE is used
to study drugs with unknown mechanism-of-action.

7.8.1 Analysis of drug clusters

During development of the Drugs/sc-PDB data set, the drugs were clustered with a simi-
larity measure (see section 5.5) for two reasons: Firstly, the number of different molecule
clusters (38 singletons and 14 clusters of two to four molecules, Figure 5.5 and Figure 5.6)
shows how diverse the set is. Secondly, the clusters can be exploited for target analysis.
The target annotations by the DrugBank are only for three of the 14 clusters for all drug
members identical. These are the clusters of hydrochlorothiazide and hydroflumethiazide,
of linagliptin and alogliptin and of vardenafil and sildenafil. For the other 11 clusters the
target annotations from the DrugBank are differing among the members of a cluster.
There are two reasons why target annotations may differ for structurally highly similar
molecules: Firstly, they bind to different targets in spite of their similarity, which is an
not uncommon effect called an activity cliff (see Stumpfe and Bajorath [2012]). Secondly,
the annotation of the compounds in the DrugBank may be incomplete. The molecules of a
cluster might bind to the same targets while not all interactions are yet observed or reported.
With iRAISE, these effects can be studied and it can be hypothesized which case holds true
for the clusters of this data set. As an experiment, the target annotations for all molecules
of one cluster were combined, and the enrichment was calculated as if these combined tar-
get structures were all true positives. The ROC plots of this experiment for the clusters
are shown in Appendix G, Figure G.5 for the clusters with three and four molecules and in
Appendix G Figure G.6 for the clusters with two drugs.
As an example, the cluster of progesterone, testosterone and spironolactone is discussed.

For the structure diagrams of these molecules see Figure 5.6 on page 83. In Figure 7.20,
the ROC curves for the three drugs with both true target annotation strategies are shown
and the targets are listed.
For progesterone, the DrugBank annotation labels the progesterone receptor, the estrogen
receptor and the mineralcorticoid receptor as true tagets. Of these, there are 90 structures
in the data set, of which 36 structures (of all three targets) are not found. Combining the
true targets with the others of this cluster adds the structures of the androgen receptor,
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Figure 7.20: ROC curves of the three drugs progesterone, testosterone and spironolactone
which are members of the same cluster. Comparison of ROC curves for true positive targets
based on the annotation by DrugBank (blue lines) and by combination of the true targets
for all three drugs (red lines). ITP = individual true positive annotation, CTP= combined
true positive annotation

amino oxidase and serum albumin to the total of 137 true target structures. The ROC
curves show that the total enrichment gets worse with the added true positives. Looking
into details shows that iRAISE suggests that indeed, the androgen receptor and serum al-
bumin are targets for progesterone while amine oxidase is not. Of the androgen receptor,
nearly each structure is hit in the iRAISE screening and the first ranks are at positions 2
and 4 of the iRAISE-score ordered list of all 7915 structures. All serum albumin structures
are also identified as true targets, but no amine oxidase structures is hit.
For testosterone, the added true positives are the progesterone receptor, the estrogen re-
ceptor and the mineralcorticoid receptor. The screening by iRAISE suggests that all three
receptors are also targets for testosterone: The first estrogen receptor structure is hit at
rank 9, the first progesterone structure at rank 61 and the first mineralcorticoid receptor
structure at rank 82.
For spironolactone only the mineralcorticoid and the androgen receptor are annotated as
targets in the DrugBank. The iRAISE screening predicts for this drug the estrogen receptor
as true target with the first structure ranked to position 10. Serum albumin structures and
progestrone structures are also identified as true targets but not ranked very high. Amino
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oxidase is not predicted as target for spironolactone.
Of these predictions, literature search confirms the following interactions: spironolactone-
progesterone receptor (Fernandez et al. [1983]), spironolactone-estrogen receptor (Meyers
et al. [2010]), progesterone-serum albumin (Andre et al. [2003]), testosterone-estrogen re-
ceptor (Huang et al. [2011b]), testosterone-progesterone receptor (ChEMBL Gaulton et al.
[2012]).
For those interactions of which no literature reporting could be found, the question whether
the prediction is correct remains unanswered. However, with this experiment, it could be
shown that the predictions of iRAISE on the Drugs/sc-PDB data set contain true targets
which are yet not listed in the DrugBank. By joining ligand-based similarity with structure-
based target prediction the suggestions based on ligand similarity can be further studied and
examined.

7.8.2 Analysis of capability to predict diverse binding modes

For a structure-based target prediction method it is essential that it is capable of predicting
ligands in various binding modes. Molecules may bind to structurally diverse proteins and
exhibit different binding modes. Thus, the method should not be biased towards any binding
mode. The Drugs/sc-PDB data set contains several ligands which bind to as much as 5
to 10 different proteins. In order to evaluate iRAISE’s capability to predict diverse binding
modes for one ligand, the example of diclofenac was consulted (see Figure 5.6 on page 83
for the 2D structure diagram of diclofenac).
Diclofenac is a drug used as anti-inflammatory and pain suppressor. According to DrugBank,
it binds to six different targets: The primary targets are prostaglandin G/H synthases 1 and
2 (also known as cyclooxygenases 1 and 2). Next to these, diclofenac binds to phospholipase
A2, transthyretin and serum albumin and is a substrate of UDP glucuronosyltransferase. Of
these proteins, there are 71 structures in the structure data set of the Drugs/sc-PDB data
set. The iRAISE screening successfully identifies all proteins as true targets.
In Figure 7.21 in the left column the best iRAISE-scored poses in the active sites of all five
targets are shown. In the right column, the complete proteins are shown in ribbon style. This
column shows how structurally diverse the proteins are, with prostaglandin G/H synthase
containing a heme, phospholipase A2 as a rather small protein, transthyretin dominated by
β-sheets and serum albumin with mainly α-helices.
Representatively for the binding to prostaglandin G/H synthases, in Figure 7.21A, the binding
to a prostaglandin G/H synthase 1 is shown. The carboxy-group of diclofenac is contribut-
ing most to its hydrophilic interactions. In 1HT5, iRAISE predicts a pose where this group
interacts with a serine and a tyrosine. In Figure 7.21B, the binding to UDP glucurono-
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syltransferase is shown for which diclofenac is a substrate. Here, iRAISE predicts a pose
where the carboxy-group interacts with a tyrosine and a backbone amide. The binding of
diclofenac to a phospholipase structure is shown in Figure 7.21C where the carboxy-group
gets protonated and interacts with an aspartate and the calcium ion of the active site. In
Figure 7.21D the binding of diclofenac to transthyretin, which is a hormone carrier protein,
is shown. Here the active site is located between two protein domains and the carboxy-group
interacts with several serine amino acids. Finally, in Figure 7.21E, the pose predicted by
iRAISE in serum album is drawn, where the carboxy-group interacts with arginine.
In this study no conclusion can be drawn if the by iRAISE predicted binding modes are
correct, since the structures do not contain diclofenac as co-crystallized ligand. However, it
can be concluded that iRAISE is able to predict diverse binding modes and is able to identify
diverse protein structures as true targets for a ligand.
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Figure 7.21: Poses of diclofenac in five of its target proteins. A) prostaglandin G/H syn-
thase 1 (PDB code 1HT5) B) UDP glucuronosyltransferase (PDB code 3CV3) C) phosholi-
pase (PDB code 1FDK) D) transthyretin (PDB code 1KGJ) E) serum albumin (PDB code
2BX8)
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7.8.3 Unknown mechanism-of-action

The prediction of targets for drugs with unknown mechanism of action is another applica-
tion of inverse virtual screening. For such compounds, the phenotypic reaction is known
but not the responsible mechanism on protein level. Inverse virtual screening can aid in
identification of the targets on protein level. For many drugs with unknown mechanism of
action registered in the DrugBank, the mechanism of action is completely unknown yet. One
example is Clioquinol, which is anti-fungal but was removed from the market in 1983 due to
neurotoxicity. For this compound, DrugBank states "Clioquinol is bacteriostatic, however,
the precise mechanism of its action is unknown." (Wishart et al. [2006], accession number
DB04815). Target predictions for such drugs could aid tremendously in drug design, since if
the primary target of the drug would be found, rational design on basis of the target could
be conducted. Further, by predicting the side-effect causing targets, the selectivity of the
drug could be increased with rational drug design and thus new powerful drugs developed.
For this thesis, however, the evaluation of predicted targets is difficult, since the results
would need to be tested experimentally to prove the predictions of iRAISE. Therefore, the
DrugBank was searched for drugs of which the mechanism of action is yet not unambigu-
ously clarified, but for which already targets are suspected to be the cause of the observed
phenotype. It was then evaluated if the result of an iRAISE screening on basis of the struc-
tures of the sc-PDB supports the hypothesis stated in the DrugBank or not.
Of this type, sulindac (see Figure 7.22 for the 2D structure diagram) was chosen as an ex-
ample, since it fulfills the above described condition and the sc-PDB structure data contains
the necessary structures.
Sulindac is an anti-inflammatory drug, for which is stated in the DrugBank "The exact
mechanism of its NSAIA [nonsteroidal anti-inflammatory agent] properties is unknown, but
it [sulindac] is thought to act on enzymes COX-1 and COX-2, inhibiting prostaglandin syn-
thesis." (Wishart et al. [2006], accession number DB00605). Therefore, it was evaluated
if the iRAISE screening finds COX-1 and COX-2 (=prostaglandin G/H synthases) as true
targets from the sc-PDB for this drug.
Both targets were indeed identified by iRAISE as true targets. The best ranked structure of
COX-2 (3LN1) is scored with -1.36 (gsw-score) and the best ranked COX-1 structure (2OYE)
with -1.11, which is clearly above average and thus considered as a target by iRAISE.
In Figure 7.22, the poses are shown for both cyclooxygenases. The co-crystallized ligand
of COX-2 (shown on the left side) is rather similar to sulindac and the pose predicted for
sulindac covers the same part of the active site. The ligand of the COX-1 complex is much
smaller than sulindac and thus the pose of sulindac protrudes into another subpocket of the
active site.
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In summary, the iRAISE screening supports the hypothesis that COX-1 and COX-2 are tar-
gets for sulindac.

Figure 7.22: Poses of sulindac (pink) and 2D structure diagram A) prostaglandin G/H
synthase 2 (PDB code 3LN1) B) prostaglandin G/H synthase 1 (PDB code 2OYE). Co-
crystallized ligand of the shown complexes colored in blue.

7.9 Parametrization

In Appendix B, a list of iRAISE‘s parameters is given. For parameter setting studies, the
Iridium-HT data set (see Chapter 5) was used. The running time and the rank of the
true target for the 121 ligands were monitored in the parametrization experiment. The
parametrization was a balancing act between improving the ranking of the true target, i.e.
increasing the specificity, versus finding for each ligand still its true target at all, i.e. not
decreasing the sensitivity.
The selectivity/sensitivity balance is mainly influenced by scoring parameters. Next to the
ranking of true targets, the binding mode can be assessed via RMSD calculation of the ligand
to the crystal pose in its true target of the Iridium targets. The parametrization of tuning
iRAISE to produce good binding modes was not on the level of scoring parameters, but on
the level of data amount. The more conformations are created per ligand and the softer the
triangle matching parameters are set and the higher the number of poses allowed to pass
the Scoring Cascade, the better the binding mode prediction, i.e. the smaller the RMSDs.
The compromise between running time and precision of binding mode can be dependent on
the number of proteins to be screened in a project. Best parameters for a good binding
mode/running-time compromise are set as defaults.
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7.10 Running time evaluation

The running time of iRAISE is evaluated for iRAISE‘s registration procedure and for the
screening procedure separately. The running time was averaged over the Astex Diverse Set
84 times 85 (84 ligands against 85 targets). Here, the Iridium-HT set was not used on pur-
pose, since in the Iridium data set several pockets per protein are used. In this evaluation,
however, the running time per protein structure was assessed in the default case that for each
pocket a new protein has to be evaluated. This way, the worst case that for each pocket a
separate protein has to be loaded from the database was assessed. The Astex Diverse Set is
also especially suited for this evaluation, since the protein triangle descriptors of the Astex
proteins nearly fill one partition and are therefore a good estimation of the running time if
each partition is screened in parallel.
The running time evaluations were performed on a Suse 12.2 workstation with Intel R© CoreTM

i5/3570 CPU@3.4GHz, 4 cores and 8GB RAM, single threaded.

Registration procedure Like discussed before, the running time for creating a iRAISE
project with indexed descriptors and the protein database is not as critical as the running
time for screening this project, since the registration procedure needs to be executed only
once for a set of proteins. In Figure 7.23, a distribution of the steps of the registration pro-
cedure is shown. The highest running time is required by the triangle descriptor calculation
and only a fraction is used by binning the triangle descriptors and writing them to the bitmap
index (=Indexing descriptors). Initialization of the protein-ligand complex from a PDB file
and calculation of the active site (=Initialization from file) requires the second-least time
while writing the protein to the database barely contributes to the total time. Averaging
the 622 seconds needed in total over the 85 proteins results in averagely 7.3 seconds for one
protein.

Screening In Figure 7.24 A, the overall time distribution of the screening procedure and
in B in detail the time distribution for the most time-consuming steps of the Scoring Cascade
is shown. The first steps of molecule conformation generation, triangle descriptor generation
and unique descriptor calculation (=Descriptor generation) all do not contribute much to
the overall running time. The most time-consuming step is the querying of the FastBit
descriptor index with all query triangle descriptors. The following steps then only have to
be executed for targets, for which a match occurred. Reading the protein from the database
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Figure 7.23: Distribution of running time of iRAISE’s registration procedure on the
Astex Diverse Set.

is comparably fast, while the re-initialization of the protein with the grid and further score
information needed later takes a greater part of the running time. The next step, the grid-
based clash-test and prescoring is the second-largest part of the running time and the last
step, the Scoring Cascade the third largest parts.
This last step, the Scoring Cascade is further evaluated in Figure 7.24 B. The most time-
consuming step is Protoss, followed by the atom-based clash test, the interaction score and
the pose coverage. The pocket coverage as last step is applied to the fewest poses, since the
Scoring Cascade acts as a filter reducing the number of poses from step to step. Therefore
this step is not significantly contributing to the overall running time.
In total, averaged over all 84 Astex ligands and averaged over the 85 targets, the screening
procedure takes 7.1 (median 5.1) seconds for screening one protein structure. The time
needed is highly dependent on the ligand: descriptors of small, hydrophilic ligands match
many target descriptors and almost each protein has to be re-initialized, while for large
ligands only a small number of proteins is matched in the descriptor step and thus the
following steps after matching need only be applied to few proteins. In the 84 ligands
of the Astex Diverse Set for example, the time to screen all 85 targets ranges between
82.4 seconds (indirubin-3’-monooxmine, ligand of the complex 1Q41) and 3259.1 seconds
(pantoate, ligand of the complex 1N2J).

Comparison to inverse docking The running time of iRAISE on the Astex Diverse
Set with an average of 7.3 seconds for the preprocessing procedure and 7.1 (median 5.1)
seconds for the screening procedure were compared to the running time of FlexX-docking
and HYDE scoring in the LeadIT-Suite of the BioSolveIT (www.biosolveit.de).
The LeadIT-suite also has a mode of scripting protein preparation, therefore, the initializa-
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Figure 7.24: Distribution of running times of iRAISE screening (A) and in detail of the
most time-consuming steps of the Scoring Cascade without the grid-clash test (B) on the
Astex Diverse Set.

tion did not have to be done manually with the GUI. On average, this protein preparation
took 26 seconds per protein. The screening then took on average 113 seconds for pose
generation with FlexX and scoring with HYDE.
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Figure 8.1: Computational methods like protein-ligand docking can support biotechno-
logical experiment setup, e.g., the choice of buffers.
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In order to understand the nature of questions and problems in biotechnological contexts,
a case study in this field was conducted. The aim was to gather an understanding of how
computational structure-based methods may support biotechnological method development,
of what requirements computational methods have to fulfill to be able to answer biotech-
nological questions and last but not least, of how biotechnological scientists see and use
structure-based computational methods to support their work.
In this chapter, first the biotechnological project is described, then the identification of ques-
tions where computational methods may support the project is discussed, and finally, the
computational assessment of the identified questions is described.

8.1 Project description

The project on which the case study was conducted was part of one of Hamburg’s Excel-
lence Cluster projects. Its title is ’Fundamentals for Synthetic Biological Systems (SynBio)’.
Twelve academic groups from various institutes and universities in Hamburg joined their
expert knowledge to work on a specific synthetic multi-enzyme pathway for learning and
developing methods which support similar approaches in future.
Synthetic multi-enzyme pathways are used for high-yield biotechnological productions of
chemicals which have higher economic value than the substrates. Since enzymes catalyze
chemical reactions and, thus, the energy needed to turnover a substrate in a product is
rather low, they are used systematically in biotechnology. Relatively new, however, is the
concept of joining several enzyme reactions subsequently in a reaction chain which is not
found in nature. This way, the turnover of substrates to products is possible in a way that
does not occur in nature. Such reaction chains can consist of more than a dozen different
enzymes.
Multi-enzyme pathways show much promise as they allow new chemical reactions to be
processed entirely by enzymes, however, they also pose many challenges. Enzymes have
different reaction optima with respect to reaction solution, temperature and pH, may need
cofactors and can be inhibited by intermediates of the reaction pathway. These factors have
to be evaluated during the setup of a multi-enzyme pathway. Optimally, if all enzymes are
active and stable at the same conditions, the complete reaction pathway may be carried out
in one single reaction container, called one-pot reaction.
The subject of the SynBio project was the synthetic multi-enzyme reaction pathway for H2

production from starch presented by Zhang et al. (Zhang et al. [2007]). The synthetic path-
way consists of 13 different enzymes, partly from the pentose-phosphate pathway. On the
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basis of this pathway, the partners of the SynBio project studied the design of multi-enzyme
pathways.
There are already some computational approaches supporting the design of multi-enzyme
pathways: Prediction of possible enzymatic pathways (Arita [2000], Cho et al. [2010], Li
et al. [2004], McShan et al. [2003], Wu et al. [2011]), assessment of enzyme stability in non-
aqueous solutions with Molecular Dynamic studies (Lousa et al. [2012]) or identification of
enzymes by reaction intermediate-docking (Hermann et al. [2006], Hermann et al. [2007]).
The following tasks were identified to be addressed computationally for yield-optimization
in the multi-enzyme pathway of H2-production:

• Prediction of inhibitory potential of buffer agents

• Analysis of feedback-inhibition

• Identification of enzyme structure with highest activity

The first two tasks were addressed with protein-ligand docking and the third was addressed
with the inverse screening tool iRAISE developed during this thesis. All three tasks are
discussed in detail in the following sections. The assessment and results of the first task
have been published in Schomburg et al. [2012] in collaboration with partners from the
SynBio project.

8.2 Prediction of inhibitory potential of buffer agents

If several enzyme reactions shall be highly efficient in one reaction pot, the enzymes all
have to be reactive at the same reaction conditions. One factor of the reaction conditions
are buffer agents. These agents keep the pH value of the reaction medium stable, even if
hydroxyl or oxonium ions are released during the reaction. Buffering agents are chosen after
the pH range which they are able to buffer. However, for a pH range several possible buffer
agents exist. Often, the buffer is chosen after habit, although rational selection promises
higher enzyme activity. A buffer agent can compete with reaction substrates for the active
site and therefore competitively inhibit the enzyme reaction. Such effects lower or even stop
the substrate turnover completely. Therefore, a rational selection is needed to avoid such
effects.
With a standard protein-ligand docking approach adapted to this problem, a prediction of
the inhibitory potential of a buffer compound is possible. Here, the classic protein-ligand
docking approach was adapted to be able to to classify a buffers as inhibiting, potentially
inhibiting and not inhibiting for one enzyme. In the evaluation, the approach was tested
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on buffer inhibition examples reported in literature (retrospective validation) as well as on
five of the 13 enzymes from the multi-enzyme pathway of the SynBio project (prospective
validation).

8.2.1 Method

The workflow of the method is shown in Figure 8.2. Firstly, the 3D structures of the proteins
were collected from the Protein Data Bank. The protein structures were chosen with respect
to resolution, organism (the organism that was used in the collaborative working groups of
the SynBio project was preferred), and co-crystallized ligand. See Figure 8.4 for the PDB
codes used.

Figure 8.2: The workflow of the computational classification of the inhibitory potential
of buffer compounds is divided into the five steps 3D structure preparation, compound
preparation, docking pose generation, scoring and analysis.

Then, the 3D structures of the buffer agents which should be tested were collected. Buffer
agents were chosen after the buffering range which had to cover the pH optimum of the
enzymes and for the literature cases the buffer agents for which an inhibition was reported
were used. For the prospective study, 14 buffers were chosen; a 2D visualization is shown
in Figure 8.3. The 3D structures of the buffers were collected from the PubChem database
(Bolton et al. [2008]). Each protonation state was sampled with the Naomi software library
of the ZBH (Urbaczek et al. [2011]). Further, the 3D structures of the substrates and prod-
ucts were collected and processed the same way.
Then, the proteins were prepared for docking by active site identification with a co-crystallized
reference ligand or by catalytic residues described in the literature.
For protein preparation and the succeeding docking procedure, the LeadIT software suite
from the BioSolveIT was used (www.biosolveit.de/leadit).
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BICINE BIS-TRIS-propanediglycine

HEPES MES MOPSPIPES

TRIS

phosphate

carbonateTRICINE

CHES

TEA

EPPS

Figure 8.3: Structure diagrams of the buffers compounds. Abbreviations: PIPES
(1,4-piperazinediethanesulfonic acid), CHES (2-(cyclohexylamino)ethanesulfonic
acid), HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid), MES (2-(N-
morpholino)ethanesulfonic acid), MOPS (3-morpholin-4-ylpropane-1-sulfonic acid),
EPPS (3-[4-(2-hydroxyethyl)piperazin-1-yl]propane-1-sulfonic acid), TRICINE (2-
[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]acetic acid), TRIS (2-amino-
2-(hydroxymethyl)propane-1,3-diol), BICINE (2-[bis(2-hydroxyethyl)amino]acetic
acid), TEA (Triethanolamine), BIS-TRIS-propane (2-[3-[[1,3-dihydroxy-2-
(hydroxymethyl)propan-2-yl]amino]propylamino]-2-(hydroxymethyl)propane-1,3-diol)

The LeadIT suite uses the FlexX docking algorithm (Rarey et al. [1996]) for pose genera-
tion. The integrated Protoss tool (Lippert and Rarey [2009]) automatically optimizes the
hydrogen network of the protein-ligand pose. For each docking, 100 poses of the ligand were
generated. For the prospective experiments, poses for each of the five enzymes of a library
of all protonation states of the buffers and the substrate and the product were generated.
For the retrospective cases, the reported inhibitory buffers, not inhibitory buffers and the
substrates and products were docked.
For scoring, the HYDE scoring function was used (Schneider et al. [2012]). It is suited for
this problem for two reasons. Firstly, it focuses on hydrogen bond formation and dehydra-
tion. Since buffer compounds are highly hydrophilic and can therefore form many hydrophilic
interactions in a protein active site, they might be over-scored by some scoring functions.
HYDE, however, penalizes dehydration and non-perfect hydrogen bonds and is thus capable
of generating sensible scores even for very hydrophilic compounds as buffers. Secondly, the
HYDE scoring function is not biased to scoring large compounds higher, as many scoring
functions tend to (Pan et al. [2003]). As buffer compounds highly differ in size as well as
compared to substrates and products of the enzymatic reaction, this feature is essential for
the experiments conducted here.
For classification of the buffer compounds into the categories inhibiting, potentially inhibit-
ing and not inhibiting, the scores of the buffer compounds were compared to that of the
reaction substrate. If the score of a buffer was higher than 90% of the substrate score, the
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buffer was categorized as inhibiting. A score between 90% and 75% of the substrate was
categorized as potentially inhibiting and all lower scores as not inhibiting.
For the prospective experiments, enzyme activity assays were conducted for validation of the
predictions by the collaborators of the SynBio project. For details on the experiment setup,
see Schomburg et al. [2012].

8.2.2 Retrospective experiments

The retrospective experiments cover four cases from the literature where an effect on an
enzymatic reaction by a buffer compound was reported. Of the four evaluated cases, three
inhibitions are due to competitive inhibition of the active site, while in the fourth case the
enzyme reaction is enhanced by the buffer due to transphosphorylation by the buffer agents.
In the following, the results are discussed for each enzyme separately.

Amylosucrase, EC 2.4.1.4 MacKenzie et al. (MacKenzie et al. [1977]) report an
inhibition of amylosucrase by TRIS buffer. Fortunately, crystal structures of both, the protein
in complex with the substrate sucrose (PDB code 1JGI) and in complex with the TRIS buffer
compound (PDB code 1G5A) are available, rendering these complexes suitable for scoring.
Further, the cacodylate buffer used by MacKenzie was docked. The sucrose complex is
scored with -26kJ/mol, the TRIS complex with -28kJ/mol and the docked cacodylate with
-17kJ/mol. Docking TRIS even results in a higher score of -31kJ/mol. As the score for
the TRIS buffer is higher than the substrate score, the inhibition is successfully recovered
by the docking approach. Furthermore, the not inhibiting buffer cacodylate is also correctly
classified.

Exopolyphosphatase, EC 3.6.1.11 For the enzyme exopolyphosphatase, Wurst and
Kornberg showed an inhibition by the buffer compounds CHES and MES (Wurst and Korn-
berg [1994]). The substrates of the ester hydrolysis are poly-phosphates of variable length.
For docking, triphosphate was used. The score for the substrate triphosphate is -19 kJ/mol,
for the CHES buffer compound the score is -39 kJ/mol and for the MES buffer compound
-30 kJ/mol. Therefore, these buffer compounds are classified as inhibiting by our method,
in agreement with the experimental observation by Wurst and Kornberg.

Creatine Kinase, EC 2.7.3.2 Several buffer compounds were reported to have an
inhibitory potential on the enzyme creatine kinase. Gerhardt shows inhibition by phosphate
buffer, PIPES buffer, sulfate buffer, MOPS buffer and BIS-TRIS-propane buffer (Gerhardt
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Buffer compound Active site Cofactor binding site
HYDE
score in
kJ/mol

Classification HYDE
score in
kJ/mol

Classification

BIS-TRIS-propane -47 inhibiting -45 inhibiting
MOPS -32 inhibiting -24 potentially

inhibiting
PIPES -31 inhibiting -25 potentially

inhibiting
TRIS -28 inhibiting -29 inhibiting
phosphate -19 potentially

inhibiting
-21 not inhibit-

ing
sulfate -19 potentially

inhibiting
-23 potentially

inhibiting
creatine (substrate) -24
ATP (cofactor) -29

Table 8.1: HYDE scores and categorization of buffer compounds docked into the active
site and cofactor binding site of creatine kinase

[1983]). The enzyme creatine kinase catalyzes the reaction from creatine to phospho-creatine
utilizing ATP as cofactor. Therefore, the inhibition can be caused by either occupation of
the cofactor binding site or the substrate binding site. Consequently, we docked all the
buffer compounds into the substrate binding site as well as into the cofactor binding site.
In addition, we docked an imidazole buffer since this buffer was recommended by Gerhardt.
Table 8.1 shows the scores and the categorization of all compounds. For the co-factor binding
site, only BIS-TRIS-propane gets a significantly higher score than the substrate ATP. For the
active site, however, phosphate and sulfate buffer are categorized as potentially inhibiting
and all other buffers are categorized as inhibiting. Only the recommended imidazole buffer
is categorized as not inhibiting.

Alkaline phosphatase, EC 3.1.3.1 For alkaline phosphatase, buffers can enhance
the activity by acting as transphosphorylating agents. McComb and Bowers studied the
enzyme’s activity at differing conditions and found an activity increase in buffers able to
transphosphorylate (McComb and Bowers [1972]). Fortunately, a structure of a transition
state of the enzyme is available in the Protein Data Bank (PDB code 3MK0). In this
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Buffer compound HYDE score Experimental activity
in kJ/mol increase (in percent)

triethanolamine -39 51
D-mannitol -39 12
TRIS -27 55
diethanolamine -26 62
2-amino-2-methyl-1,3-propandiol -26 21
2-isopropylaminoethanol -26 16
2-methylaminoethanol -25 42
glycerol (substrate) -24

Table 8.2: HYDE scores of buffer compounds docked into a transition state structure
and into a basic state structure of the enzyme alkaline phosphatase. The percental activity
increase was reported by McComb and Bowers (McComb and Bowers [1972])

structure, a serine amino acid in the active site is phosphorylated. This phosphate group will
in the following step be accepted by a buffer compound. Therefore, docking to this structure
with buffers able to transphosphorylate should reveal buffers increasing the activity. On the
other side, docking to the active site of a structure in the basic state of the enzyme should
reveal inhibitors. Table 8.2 shows the scores for buffers with higher scores than the substrate
glycerol docked to the transition state enzyme and the basic state. All buffer compounds
that are scored higher than the substrate in the transition state enzyme structure can act
as transphosphorylators and have a phosphate-accepting hydroxyl group near the covalently
bound phosphate of the active site in the docking pose.
In Table 8.2 the percental activity increase reported by McComb and Bowers is shown.
It does not correlate completely with the ranks of the buffers by the score. The rank of
the score of D-mannitol does not correlate with the percental activity increase. However,
D-mannitol is the only buffer scored higher than the substrate in the basic state enzyme
structure. Therefore, it may also inhibit the enzyme, which could be the reason why the
activity is lower than in the other buffers, which are not predicted to bind to the active site.

8.2.3 Prospective experiments

For five of the 13 enzymes of the SynBio project which were available in the laboratories of
the collaborators, predictions were made for a library of 14 buffers. In enzyme activity assays
then the buffers available in the laboratories were tested by always choosing a low-scored, a
high-scored and a middle-scored buffer for the experiments, if possible.

136



8.2 Prediction of inhibitory potential of buffer agents

In Figure 8.4 the results of the study are shown. In A to D, each enzyme is listed with its
systematic name, the PDB code of the protein structure used and a structure diagram sketch
of the catalyzed reaction. The bar diagrams show the relative enzyme activity measured in
different buffer compounds. The relative activity is calculated by normalizing all activities
by the highest measured activity. The color of the bars shows the category into which the
buffers where categorized: Green is classified as not inhibiting, yellow as potentially inhibit-
ing and red as inhibiting. The plots on the left show the relative score correlated with the
relative activity. The relative score is the score of the buffer compound normalized with the
score of the substrate (therefore, the relative score can be greater than 1).
The bar diagrams show that the experimental measurements confirm the trend of the pre-
dictions for propanediol-oxidoreductase isoenzyme, phosphoglucose isomerase and alcohol
dehydrogenase A. For these enzymes, the activity trend follows the ranking of the buffers.
For fructose 1,6-bisphosphate aldolase, two buffers are predicted to be inhibiting, but almost
no activity decrease is observed in the experiments. Here, it is possible that an inhibitory
effect occurs only at higher buffer concentrations. For glucose-6-phosphate dehydrogenase,
all buffer compounds are predicted to be inhibiting, and except the MOPS buffer, the activity
trend follows the ranking of the predictions. As no buffer of the buffer library is classified
as not inhibiting, the validation of the predictions is difficult. Furthermore, this enzyme is
known to be highly flexible and the protein structures available are all in the ’open’ form of
the enzyme, while a hinge movement on substrate binding closes the active site. Therefore,
the score of the substrate might be underestimated since the correct structure of the bound
substrate cannot be assessed with the score.
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Figure 8.4: Results of the buffer activity screenings. (A) 1,3-Propanediol oxidoreduc-
tase isoenzyme (B) Fructose 1,6-bisphosphate aldolase (C) Phosphoglucose isomerase (D)
Alcohol dehydrogenase A (E) Glucose-6-phosphate dehydrogenase. Enzymatic reaction di-
agrams of the reactions used to monitor activity and results are shown. The histograms in
the middle show the relative activity of the enzyme normalized with the highest activity in
different buffers. Red bars show inhibiting compounds, yellow bars potentially inhibiting
compounds and green bars not inhibiting compounds. The bars show the relative activity
of the enzyme in the different buffers (normalized by the highest activity in the experiment)
and are sorted on the abscissa by HYDE score. The numbers written on the bars indicate
the rank of the buffer in the buffer library of 14 buffers. The correlation diagrams on the
right show a correlation between the relative activity and the relative docking score. These
contain only the buffers that could be docked and therefore get a score.
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8.3 Prediction of feedback inhibition

The method described in the previous section was also used to predict feedback or crossover
inhibitions. This term is used for describing the inhibition of an enzyme in the pathway
caused by a product or substrate of another enzyme in the pathway. The detection of feed-
back inhibitions is important for the pathway reaction setup. Enzymes whose substrates or
products inhibit others should be placed in a separate reaction container to avoid a reduction
of activity.
In the SynBio project, a sub-pathway of four of the thirteen enzymes was studies for feed-
back inhibitions. The collaborators studied the setup of the pathway from enzyme 9 to 12
(triose-phosphate isomerase, aldolase, fructose-bisphosphatase, phosphoglucose-isomerase)
by evaluating if a one-pot approach is feasible for these four enzymes.
By predicting inhibitions of these four enzymes by substances present in the total pathway,
the evaluation can be supported by protein-ligand docking.

8.3.1 Methods

The protein-ligand docking approach discussed in the previous section could be applied for
this problem as well. A ligand library consisting of all substrates and products and cofactors
of the four enzymes was compiled (see Zhang et al. [2007] for a list of the enzymes and the
reaction description with substrates and products), following the protocol described above.
For collecting the protein structures of these four enzymes, the same protocol as described in
8.2.1 was used. See Tables 8.3 to 8.6 for a list of the substances contained in the compound
library and the PDB codes of the enzymes used for docking.

8.3.2 Results

The scores of all the ligands of the library docked into the four enzymes are shown in Tables
8.3 to 8.6.
For the enzyme triose-phosphate isomerase, only 6-phospho-D-gluconate is scored higher
than the substrate. However, the score is much higher, which means that inhibition can
already occur at low concentration. For the enzyme fructose-bisphosphatase, more com-
pounds are scored better than the substrate. Among the potentially inhibiting compounds,
the cofactor NAD+ is found as well. For aldolase, also many compounds are scored higher
than the substrates. However, since both substrates get connected during enzyme reaction,
calculating the score by docking them one at a time might underestimate the binding affinity.
For phosphoglucose isomerase, three compounds are scored better than the substrate.
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Compound HYDE score in kJ/mol for docking into 1HTI

6-phospho-D-gluconate -45
glyceraldehyde 3-phosphate (substrate) -36
D-ribulose 5-phosphate -35
D-xylulose 5-phosphate -34
sedoheptulose 7-phosphate -34
dihydroxyacetone phosphate (product) -33
D-fructose 6-phosphate -33
D-fructose 1,6-diphosphate -31
erythrose 4-phosphate -31
D-glucose 6-phosphate -30
NAD+ -29
D-ribose 5-phosphate -28
D-glucose 1-phosphate -27
NADP+ -26
phosphate -12

Table 8.3: HYDE scores of library compounds docked into triose-phosphate isomerase,
sorted by best score.

Compound HYDE score in kJ/mol for docking into 3DR1

NAD+ -52
D-fructose 6-phosphate (product) -51
D-glucose 1-phosphate -50
6-phospho-D-gluconate -48
D-xylulose 5-phosphate -45
D-fructose 1,6-diphosphate (substrate) -44
sedoheptulose 7-phosphate -42
D-ribulose 5-phosphate -39
D-ribose 5-phosphate -38
D-erythrose 4-phosphate -38
D-glucose 6-phosphate -38
NADP+ -35
glyceraldehyde 3-phosphate -33
dihydroxyacetone phosphate -27
phosphate -20

Table 8.4: HYDE scores of library compounds docked into fructose-bisphosphatase, sorted
by best score.
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Compound HYDE score in kJ/mol for docking into 1ADO

6-phospho-D-gluconate -39
D-ribulose 5-phosphate -36
sedoheptulose 7-phosphate -35
D-xylulose 5-phosphate -33
D-glucose 6-phosphate -32
dihydroxyacetone phosphate (substrate) -32
glyceraldehyde 3-phosphate (substrate) -31
NAD+ -26
D-ribose 5-phosphate -26
D-glucose 1-phosphate -23
NADP+ -22
D-fructose 1,6-diphosphate (product) -22
D-fructose 6-phosphate -21
D-erythrose 4-phosphate -19
phosphate -11

Table 8.5: HYDE scores of library compounds docked into aldolase, sorted by best score.

Compound HYDE score in kJ/mol for docking into 1HOX

sedoheptulose 7-phosphate -39
D-fructose 1,6-diphosphate -38
6-phospho-D-gluconate -37
D-fructose 6-phosphate (substrate) -37
D-glucose 1-phosphate -33
D-erythrose 4-phosphate -32
D-ribulose 5-phosphate -32
D-glucose 6-phosphate (product) -32
D-xylulose 5-phosphate -31
glyceraldehyde 3-phosphate -31
D-ribose 5-phosphate -30
dihydroxyacetone phosphate -28
phosphate -15
NAD+ 0
NADP+ 0

Table 8.6: HYDE scores of library compounds docked into phosphoglucose isomerase,
sorted by best score.
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Protein-ligand docking is known to predict more false positives than false negatives. There-
fore, the results can be used to test only the predicted inhibitors in the experiments and thus
reduce the number of experiments in comparison to testing all compounds.

Figure 8.5: Experimental activity test of the enzyme phosphoglucose isomerase in pres-
ence of other substances from the multi-enzyme pathway. Abbreviations= w/o: activity
without other substance, 6PG: 6-phosphogluconate, FDP: fructose-1,6-disphosphate, G1P:
glucose-1-phosphate, G3P: glyceraldehyde-3-phosphate, DHAP: dihydroxyacetone phos-
phate, PI: phosphate

In the SynBio project, the inhibition prediction could only be tested experimentally for phos-
phoglucose isomerase by the collaborators. The result of an activity assay (assay for this
enzyme as described by Sigma-Aldrich Co. LLC.) where the inhibitor was added in the same
concentration as the substrate are shown in Figure 8.5. For 6-phospho-D-gluconate, which
is scored as high as the substrate, the experiment indeed shows an inhibition. For D-fructose
1,6-disphosphate, this inhibition is not as high, although it gets a similar high score. Glucose-
1-phosphate also scored lower than the substrate, but still gets a good score. This compound
also leads to an inhibition. Glyceraldehyde 3-phosphate and dihydroxyacetone phosphate get
comparable scores, but dihydroxyacetone phosphate is the second highest inhibition, which
is not represented by the scores. The inhibition by phosphate is not predicted and not high
with an activity of about 85%.

8.4 Identification of enzyme structure with highest activity

The third task that was studied in the biotechnological case study was how computational
methods may support the choice of an enzyme with highest activity. Often several enzymes
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are known to catalyze a reaction with varying efficiency. The same enzymes originating from
different organisms show high activity differences and often have different reaction optima.
Also, they may be more or less selective, depending on the evolutionary path the enzyme
followed. Therefore, it may be crucial for yield optimization in a multi-enzyme pathway to
choose the best available enzyme. Further, it may be helpful to mutate amino acids of an
enzyme for, e.g., increasing selectivity.
The structures of enzymes contained in the Protein Data Bank can be supportive for the
choice of an enzyme. Often enzyme structures of different organisms and also mutated struc-
tures are available. With molecular modeling, mutated structures can be created in-silico.
For a single enzyme, a large number of structures may be available for studying. Therefore
for a complete multi-enzyme pathway, it is infeasible to manually study all structures and
an automatic, computational process is needed.
Docking one substrate into many different enzyme structures is the reverse problem to the
normal protein-ligand docking which could be used in the previous two tasks. Therefore, for
assessing this task the inverse screening software iRAISE was used which was developed in
this thesis. See Chapter 4 for the iRAISE method description.
As an exemplary use case, we studied structures of the enzyme phosphoglucose isomerase
(enzyme number 12 of the multi-enzyme pathway studied in the SynBio-project) for their
selectivity for the substrate D-fructose 6-phosphate over the known inhibitor 6-phospho-D-
gluconate.
For the screening experiment, all enzyme structures from the Protein Data Bank with the
EC number 5.3.1.9 which were co-crystallized with a ligand were collected. 36 structures
from 14 different organisms were available. An analysis of the active site properties showed
that for this enzyme, the active site composition is in fact varying: The number of amino
acids varies between 19 and 34 and the number of hydrogen bond donors and acceptors
varies as well although the co-crystallized ligands are highly similar. In the 36 structures,
only 14 different ligands are found.
All 36 protein structures were screened with iRAISE with the substrate D-fructose 6-
phosphate and the known inhibitor 6-phospho-D-gluconate. In Table 8.7, the resulting
scores are listed. The results can now be interpreted by looking for structures which have a
high score for the substrate and a low score for the inhibitor.
The substrate and inhibitor can be docked to all structures, therefore both fit in all active
sites. The score of the substrate is a little bit higher for most organisms than that of the
inhibitor. The scores of the substrate in the structures of Trypanosoma brucei, Thermococ-
cus litoralis and Staphylococcus aureus are only slightly higher, therefore enzymes of these
organisms should not be chosen. Many structures of the enzyme from Mus musculus are
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available. In most of them, the substrate is scored better than the inhibitor. Since the
structures are conformations of the same enzyme, the next step would be the experimental
evaluation, whether certain reaction conditions can stabilize an enzyme conformation which
prefers binding of the substrate.

8.5 Summary

The biotechnological case study revealed several aspects in the design of synthetic multi-
enzyme pathways which can be supported by structure-based computational methods. All
of them concerned the activity increase of enzymes. With protein-ligand docking, assess-
ing the negative effects of buffer compounds supports the compilation of optimal reaction
solutions and assessing feedback inhibitions help in the reaction container setup. With in-
verse screening, proteins with best substrate specificity can be predicted from all available
structures. The weakness of these methods is that they are dependent on the available
enzyme structures. As more and more enzyme structures become available, these methods
are even more promising in future, though. In the SynBio project, the predictions of the
first and part of the second tasks were evaluated experimentally. The third task was so far
not evaluated but shows a potential application for inverse screening in the biotechnological
design of multi-enzyme pathways.
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Organism PDB code Score for
fructose-6-
phosphate

Score for 6-
phosphogluconate

FRANCISELLA TULARENSIS
3M5P -93 -82
3Q7I -101 -88
3Q88 -83 -73

HOMO SAPIENS
1IRI -98 -84
1NUH -111 -97

LEISHMANIA MEXICANA 1T10 -76 -62
PLASMODIUM FALCIPARUM 3PR3 -92 -80

PYROBACULUM AEROPHILUM
1TZC -107 -95
1X9H -118 -102
1X9I -92 -93

TRYPANOSOMA BRUCEI 2O2C -96 -91
THERMOCOCCUS LITORALIS 1J3R -79 -74

MUS MUSCULUS

1U0F -123 -87
1U0G -107 -70
2CXO -95 -70
2CXP -97 -89
2CXQ -114 -84
2CXR -119 -118
2CXS -98 -99
2CXT -102 -105

STAPHYLOCOCCUS AUREUS 3FF1 -55 -52
SUS SCROFA 1GZV -123 -111
TOXOPLASMA GONDII 3UJH -91 -77

ORYCTOLAGUS CUNICULUS

1DQR -90 -106
1G98 -84 -100
1HOX -94 -82
1KOJ -124 -106
1XTB -97 -93

PYROCOCCUS FURIOSUS

1QXR -79 -86
1QY4 -87 -87
1X7N -68 -58
1X82 -62 -56
2GC0 -81 -71
2GC2 -72 -73

Table 8.7: Results of screening various structures of phosphoglucose isomerase from dif-
ferent organisms with iRAISE for the substrate fructose-6-phosphate and the inhibitor
6-phosphogluconate.
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9. Conclusion

9.1 Overview

In this thesis, a new approach for inverse virtual screening has been realized in the software
iRAISE. The method development was focused in large parts on handling large amounts of
protein structures efficiently and addressing the problem of inter-protein scoring. Next to
the method development, a main part of this thesis was the evaluation of iRAISE which
included the development of new data sets and an evaluation strategy. Along with the
main command line tool iRAISE, a viewer of the solutions in form of a GUI was created.
In the following, the achievements and limitations of the developed methods are discussed.
Further, areas of possible improvements are highlighted.

9.2 Achievements

The achievements are discussed on the basis of the in Chapter 3 defined aims and objectives.
In the field of structure-based target prediction the method is outstanding compared to
current state of the art methods concerning measures applied to handle large numbers of
protein targets, to overcome the linear one ligand-one protein matching by using descriptor
representations and to improve inter-target ranking.

Automatic processing of protein structures

iRAISE handles protein structures fully automated. On the basis of PDB protein files the
method can automatically detect active sites based on co-crystallized ligands. Thus, as
input solely protein-ligand complexes in form of the prevalent PDB file format are needed.
This overcomes the need of manual protein preparation steps as they are common in var-
ious protein-ligand docking tools. Nevertheless, on small amounts of proteins, using the
knowledge of a user as assistance in active site determination is reasonable, which is why in
iRAISE it is possible to provide reference ligands by the user. For large amounts of protein
structures, however, the automatic mode evades the need for manual annotation.

Consistent and efficient storage of protein-ligand complexes

The consistent and efficient storage of protein-ligand complexes as well as of the annotation
of active sites is crucial in inverse screening approaches. Active site definition has to be stored
consistently to allow multiple screening under the same conditions. The efficient handling
of protein-ligand complexes requires a memory-saving representation which can be accessed
rapidly. With the ComplexDB and the ProteinDB, a database representation has been
developed in iRAISE which stores the protein-ligand complexes with all information necessary
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for screening as well as the active site definition. Thus, time-consuming initializaton steps
from the PDB file have to be done only once in the preprocessing step, which stores the
information readily accessible in the database. The choice of an SQLite database combines
the advantages of using database technology with easy portability and no need of setting
up a server.

Abstraction of active sites

A descriptor representation of the active sites as well as of the query ligand breaks the
linear screening sequence, since no one to one matching of ligand and protein active site on
atomic basis is required. Testing complementarity on descriptor level is much faster and only
those structures which match on descriptor basis then need to be processed on atomic level.
The triangle descriptor used here was already successfully applied in classic virtual screening.
Some adjustments were necessary for the inverse setup like storing further information which
is needed to avoid re-calculation of the descriptors during screening. Using a bitmap-index
for storing the descriptors allows fast querying and due to binning of the descriptor values
efficient memory usage.
Since the descriptor contains information about interactions, their geometric arrangement,
their directions and a shape representation, the protein-ligand binding is abstracted on a
high level. Thereby, a reasonable estimation of a binding is possible and allows immediate
discarding of proteins as targets for a ligand if no match occurred.

Inter-target ranking

In general, inter-target ranking of proteins poses a problem to ’normal’ protein-ligand scoring
functions used in docking contexts. Often certain proteins are biased with higher scores
than others, an effect called inter-protein scoring noise (Wang et al. [2012]). These scoring
functions were not developed for inter-target but for inter-molecule ranking, i.e., for ranking
different molecules for one protein. Thus, measures have to be taken to avoid this bias.
Further, in inverse screening, false positives have a worse effect than in normal docking,
since nowadays it is still more expensive to test a long list of proteins for one ligand than
to test many ligands for one protein in activity assays. For each predicted target more, a
separate activity assay has to be conducted which is time- and cost-consuming.
Facing these challenges, a five-step Scoring Cascade has been developed which step-wise
applies more detailed scoring measures. The steps contain coarse and detailed clash tests
and exploit information available by evaluation of the co-crystallized ligand. By considering
the ligand coverage as well as the pocket coverage on the basis of a co-crystallized ligand
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the scoring is capable of dealing with pockets with diverse shapes. Large or small and buried
or open pockets can be scored without preferring any shape. Next to the Scoring Cascade,
as a further measure, an average score for each pocket was calculated and successfully used
to assess which scores are statistically significant for a pocket and which are not.

Performance evaluation

The field of inverse virtual screening method-development is still in its fledgling stage, com-
pared to the about one decade older normal virtual screening. Far fewer evaluation data sets
and methods are yet established for inverse virtual screening. Since no standard evaluation
strategy existed, a new strategy has been developed based on data sets used commonly in
evaluation of ’normal’ docking. Further, two new data sets have been created for evaluation
purposes, a small one for studying selectivity/sensitivity in detail and a large one which
allows statistical evaluation.
The performance of iRAISE was compared to state of the art docking, to sequence-based
and pharmacophore-based target prediction methods. Concerning the target ranking, iRAISE
has shown good performance, superior to classic docking. Its performance was comparable
to the pharmacophore-based method and if taking into account the same amount of input
information even superior. Concerning the comparison to sequence-based target prediction,
it was shown that iRAISE is able to perform better on those cases which are not trivial, i.e.,
where several diverse targets existed for one ligand.
With on average a screening time of 7.1 seconds per protein and available parallelization on
data level, large amounts of targets can be screened rapidly.

Usability by medicinal chemists

The iRAISE inverse screening tool has been thoroughly tested on pharmacological data
with drugs as compounds and drug targets as proteins. Successful predictions on this data
could be observed, with only few examples where iRAISE failed in predicting correct targets
completely.
Next to the performance in target prediction, however, the usability by medicinal chemists
which are no computer scientists is important for a software to be of use in real world
applications. Since the iRAISE software is a bare command line tool, also a graphic interface
for assessing the screening solutions in form of the ComplexViewer has been developed. This
viewer allows the browsing of proteins contained in a screening project and a 3D visualization
of the pockets. Further, it allows to browse through screening solutions and provides a 3D
graphic representation of the predicted binding poses. For medicinal chemists it may be
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crucial to investigate not only the ranked list and scores of predicted targets, but also the
predicted binding mode which they are able to revalue with their expert knowledge.

Usability of method in other fields

A thorough evaluation of the potentials and limitations of structure-based computational
methods on the basis of classic docking and inverse virtual screening has been conducted
in a synthetic multi-enzyme pathway development project. It has been found that docking
methods can aid in predicting competitive inhibition of enzymes by buffer solution agents and
thus support the composition of buffer solutions supporting enzyme activity and maximizing
yield. An application of inverse virtual screening is the prediction of feedback inhibition and
selecting the best source organism of an enzyme.

9.3 Limitations

Although several of the open challenges of inverse virtual screening could be faced in the
work of this thesis, still areas of improvements and limitations of its usability exist. First
of all, the limitations of the evaluation strategy are highlighted followed by the areas of
improvements for the inverse screening approach iRAISE.

In the development of the Drugs/sc-PDB data set focus has been laid on automatic true-
positive annotation of structures based on the target information of drugs contained in the
DrugBank. By the automatic true positive annotation based on EC number, protein name
and UniProtID, however, errors are unintentionally introduced.
Reasons are misleading names of proteins in the PDB-file header or multi-enzyme constructs
which are then labeled with several EC numbers of which it is not automatically possible to
decide which is the correct one for the calculated active site. Further, source organism or
mutations are not taken into account. Nevertheless, same proteins from different organisms
or mutated proteins not necessarily bind the same compounds and thus the assumption that
they are targets for a compound might be false. However, the automated annotation is
human bias-free and allows to easily create newer versions of the data set on the basis of
newer versions of the DrugBank and the sc-PDB.
Another limitation is that definitely not all true targets for the drugs are yet known/annotated
in the DrugBank. Therefore, the sensitivity/specificity assessment of a screening tool on
this data is not totally correct.

Concerning the iRAISE screening approach, its main limitation is its dependence on the
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input data which influences several layers of its performance:
Firstly, the performance evaluation has shown that iRAISE is highly dependent on the input
ligand conformations. Often the bioactive conformation has internal strains and is energet-
ically not favored and thus occurs only by interacting with the protein. Such energetically
unfavored conformations are not taken into account by conformational sampling tools – at
least if more favored conformations can be build. Therefore, a post-optimization step or
a different ligand conformation generation strategy (like the fragment based conformation
construction used in FlexX (Rarey et al. [1996]) would be needed to overcome this problem.
However, if the final ligand conformation is not known from the start of the screening, then
the matching of descriptors would need to be much more tolerant or the descriptor would
have to be calculated based on ligand fragments. In both cases, the method would have to
deal with many more protein matchings from the descriptor index and possibly more false
positives.
Secondly, the method does not handle protein flexibility internally - except for rotatable
terminal groups. Thus it is dependent on the input of protein conformations. The perfor-
mance evaluation has shown that due to the strict scoring in iRAISE, not all true targets
are hit even if only small conformational changes of the protein would be necessary. One
possibility would be to sample the protein conformations beforehand, which however is a
very difficult task and nowadays is yet not feasible for large numbers of proteins. While
amino acid conformations might be sampled, taking into account backbone flexibility such
as hinge movements is still not predictable. Another possibility would be to post-optimize
the protein together with generated ligand poses to remove clashes. In this case, also the
descriptor matching and clash tests would need to be less strict and more protein-ligand
combinations would need to be evaluated. Post-optimization based, e.g., on force fields is
computing time expensive. Thus, either the time for screening would increase immensely
or a pre-scoring able to reduce the large number of matches to a sensible amount for post-
optimization would be needed.
Thirdly, the Scoring Cascade is in large parts dependent on a co-crystallized ligand of the
screened protein. It is assumed that a co-crystallized ligand binds to a protein. However,
in the Protein Data Bank also protein-ligand complexes exist where the binding is artificial,
if, e.g., the experimental method soaking has been used, it may occur that a ligand is only
placed in a protein pocket but would not bind in solution. Using such ligands as references
falsifies the scoring result.
In summary, it would be desirable for iRAISE to be less dependent on the input data and
that the flexibility (protein and ligand) would be handled better internally.
A further area of improvement is the handling of apo protein structures, i.e., structures
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not co-crystallized with a ligand. These structures are also of high interest since for many
proteins, no crystallized complexes exist. Using a pocket detection algorithm like DogSite
(Volkamer et al. [2010]) for active site definition would be easily integrable, but the loss of
information derived from the co-crystallized ligand for scoring would need to be compen-
sated.
Concerning the design of the method, one limitation are its many parameters. Many hard
cutoff values are used to make decisions, like do descriptors match, when is a pose clashing,
when is a pose discarded due to insufficient coverage and others. Here more dynamic deci-
sions would be desirable, reacting to the current screening situation instead of hard-coded
cutoffs.
So far, the parallelization takes place solely on the data level. Thus, the running time could
be improved by threaded parallel computing exploiting the nowadays standardly available
multi-core architectures.

In the application study of structure-based computational prediction methods in a biotechno-
logical context, it became clear that the computational methods yet are limited concerning
the integration of external experiment parameters like temperature and pH value. The
models of the computational methods are build on physiological data. However, in biotech-
nological experiments changes of pH and temperature are important issues. However, the
underlying theories of the computational models do not hold true at pH value-changes or
extreme temperatures.
Lastly, the applicability of the approach could be improved, since so far only a command
line interface exists and the user has to use scripts to regulate parallel screening. The
ComplexViewer-GUI provides only basic utility of assessing screening solutions and could be
extended significantly.

9.4 Outlook

The limitations discussed in the preceding section lead to ideas on next steps of improving
the method:

• Integration of sampling of amino acid side chains. This step would be a first assessment
of protein flexibility and could be easily integrated. The developed ProteinDB is setup
in a way that several conformations for one residue could be stored without duplicating
the complete protein data for each sampled amino acid.

• Task parallelization next to data parallelization for further running time improvement.
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• Joining the screening with a pose post-optimization strategy. Currently, only hydrogen
atoms are relocated for each pose. Optimization of protein and ligand poses before
final scoring would certainly improve the results especially in those cases for which
the true targets could not be identified. This step would be mandatory if amino acid
conformations are introduced, since the active site would need to be optimized with
the respective conformations of the amino acids.

• Combination of iRAISE screening with other target-prediction approaches like ligand-
similarity in a so called hybrid target prediction tool. Recently a method by Mesla-
mani et al. (Meslamani et al. [2013]) was found to be quite successful by combining
four ligand-based and two structure-based (docking and pharmacophore-matching)
approaches. The predictions of two off-targets were confirmed experimentally. Hy-
brid approaches have the advantage that the limitations of the methods are often
straightened out by other approaches since they are not necessarily overlapping.

• Inclusion of the possibility to use apo protein structures by integration of a pocket
detection algorithm, and re-structuring of the Scoring Cascade to render the use of a
reference ligand optional.

• Integration of user-defined filters like properties of active sites or user generated phar-
macophores. Such constraints are of help if the user looks for a certain class of
proteins, e.g., if an enzyme shall be found to which a compound functions as a sub-
strate. In those cases, not only the binding of the ligand to the protein is important,
but also the location of certain ligand moieties in vicinity to catalytic amino acids.
Such filtering steps currently have to be done manually on the generated results.

• Experimental validation. For many predictions in the evaluation studies it was not
possible to conclude if they were correct or false positives. Therefore studying iRAISE’s
predictions by experiments would be a next step to give further insights.

Finally, there are many interesting application scenarios of structure-based target identifica-
tion, in which it would be interesting to apply iRAISE screening:

• Identification of targets for metabolites with unknown function.

• Identification of enzymes catalyzing given substrates.

• Identification of off-targets for so-called orphaned drugs. These drugs have already
passed several tests but did not exhibit high enough efficacy against the targeted
proteins. Thus, already much money has been send on these drugs without any
positive venue.
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• Identification of side-effect causing targets for withdrawn drugs.

• Target identification for natural compounds used in medicinal applications like tradi-
tional chinese medicine.
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A
Implementation

During the course of this dissertation project, the software tools iRAISE and ComplexViewer
were developed. This Appendix gives an overview of the implementation details.
All software was implemented in C++ and next to some external software libraries, the
libraries of the NAOMI software library developed at the Center for Bioinformatics in the
Working group of Algorithmic Molecular Design were used. In Figure A.1, the dependencies
of iRAISE and the ComplexViewer are shown. The coloring scheme highlights the origin of
the libraries: Red libraries are external libraries, yellow libraries are internal NAOMI-libraries
and blue libraries were programmed during this dissertation project.
The ComplexViewer uses Qt, boost and SQLite as external libraries and of the interal libraries
ComplexDB, ProteinDB, Visualization3dLib, sdf, MolLib, ProLib, ComplexLib and Proto-
ssLib. iRAISE uses of the external libraries additionally FastBit. Of the internal libraries it
used the ComplexDB, ProteinDB, MolLib, ProLib, ComplexLib. ProtossLib, Geometry3d,
Trixx, Interactions, Conformations and the iRAISE-Index.

External libraries

• boost (www.boost.org) is a C++ library with efficient algorithms, data structures and
program options
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A. Implementation

Figure A.1: Dependencies of the ComplexViewer and iRAISE. Libraries highlighted in
red are external libraries, in yellow are internal Naomi-libraries and in blue are libraries
developed in this dissertation project.

• Qt (qt-project.org) is used mainly for file-handling and GUI-design

• SQLite (www.sqlite.org) is used as SQL database engine.

• FastBit (https://sdm.lbl.gov/fastbit/) is used for storage and querying of the descrip-
tors in a bitmap index.

Developed libraries

• ComplexDB contains functions for storing and accessing a protein-ligand complex in
a ComplexDB.

• ProteinDB contains functions for storing and accessing a protein in a ProteinDB.

• iRAISE-Index contains interface functions to the FastBit external library.

Internal NAOMI libraries

• Visualization3dLib contains functions for displaying proteins and ligands in 3D.

• sdg contains functions for 2D coordinate generation for ligands and displaying struc-
ture diagrams.

• MolLib contains functionality for reading/writing molecules from/to files, initializing
and handling of molecules.
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• ProLib contains functionality for reading and initializing proteins from files.

• ComplexLib contains the classes Complex and ActiveSite and functionality to handle
a protein-ligand complex.

• ProtossLib is the library of Protoss, which automatically places hydrogen coordinates
in a protein-ligand complex for an optimal hydrogen-bond network.

• Geometry3d contains utilities and functions for objects in 3-dimensional space.

• Trixx contains functionality for triangle descriptor calculation and for the grid scoring.

• Interactions is used to assign interaction spots to a protein or molecule.

• Conformations contains the utilities to create conformations for a small molecule.

Since FastBit is only available for Linux-based operating systems, therefore iRAISE also is
only available for Linux. Additionally, iRAISE is only available as a command-line tool. The
ComplexViewer is a viewer for the content of the protein database of a iRAISE project and
of the solutions. It cannot be used for starting the pre-processing or the screening of iRAISE.
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B. Parameters

Parameter Default value User setable?

Triangle descriptor parameters
Descriptor side length minimum (maximum) 1Å(9.9Å) no
Number of descriptor bulk rays 80 no
Descriptor bulk ray minimum (maximum) 1Å(15.0Å) no
Descriptor side length matching tolerance 1.2Å no
Descriptor bulk matching tolerance 0.75Å no
Descriptor direction matching tolerance in degree 36 no
Index partition maximum number of type descriptors 400.000 no
Index partition maximum number of total descriptors 1.800.000 no

Scoring parameters
Lennard-Jones terms repulsion (r) and attraction parameters (a)
-Hydrogen bonds a=8, r=10 no
-Metal contacts a=4, r=6 no
-Hydrophobic contacts a=3, r=12 no
-Mismatches a=6, r=12 no
Reference score cutoff 75% no
Pose coverage reference cutoff 80% no
Pocket coverage reference cutoff 80% no
Pocket coverage weighting factor 0.8 no
Contact distance atom-atom 4.5Å no

Screening parameters
Size of active site around reference 6.5Å yes
Grid spacing active site grid 0.8Å no
Number of conformations of molecule 200 yes
Number of poses passing clash grid filter 500 no
Number of poses written to solution databse 10 no

Table B.1: List of parameters used in iRAISE and their default-values
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C.1 About iRAISE

iRAISE is a structure-based inverse screening tool which predicts targets for small molecules.
It is developed at the Center for Bioinformatics of the University of Hamburg (www.zbh.uni-
hamburg.de). The software is still in a development status. For conditions of use please see
www.zbh.uni-hamburg.de/raise.

This User Guide contains instructions on how to use the software. iRAISE is a command
line tool restricted to the use on Linux operating systems. It is recommended to be used
on a computing cluster in parallel for large amounts of target structures. This User Guide
is structured as follows: First of all, the command line options and the folder structure are
explained. Then the usage of iRAISE is shown for the most common use cases. Finally, the
limitations of the software are listed.

179



C. iRAISE Userguide

C.2 Using iRAISE

C.2.1 Folder of the iRAISE-package

After extracting the files from the tar-Archive with
tar xfvz i RAISE.tar.gz

the iRAISE folder with several subfolders is available. Table C.1 gives an overview of the
subfolders and their content.

Folder Content

bin iRAISE executable and needed software libraries
Scripts Example shell scripts for usage of the iRAISE-executable
ExampleData Some example protein structures and ligands

Table C.1: Overview of the folders of the iRAISE-package

The example protein structures and ligand files found in the ExampleData are taken from the
Astex Diverse Set developed by Hartshorn et al. (Hartshorn, MJ, Verdonk, ML, Chessari,
G, Brewerton SC, Mooij WT, Mortenson PN, Murray CW. (2007) Diverse, high-quality test
set for the validation of protein-ligand docking performance. J Med Chem, 50(4), 726-741).

C.2.2 Starting iRAISE

For starting the iRAISE software, change into the iRAISE directory and type

./bin/iRAISE_release --help

into your command line. This will start the program and list the command line options.
These are also listed in this User Guide in Table C.2. In this table, the first column shows the
available command line options with the respective arguments, the second column specifies in
which use case an option may be used and the right column gives a more detailed explanation
of the option. The following use cases of the iRAISE program are possible (abbreviations
as used in the table are given in brackets):

• Create a project (C). This use case is needed to set up the screening project for all
other use cases. The given proteins are processed and stored in a database and the
descriptor index is calculated.

• Screening with a molecule (S). This use case screens the generated structure
database for potential targets for a query molecule. It can be carried out repeat-
edly on a screening project.
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• Evaluation of solutions (E). This use case processes generated screening results.
The results of several screening runs are gathered and predicted poses can be written
to an output file.

Table C.2: Overview of command line options for the iRAISE_release executable

Command line option Use case Explanation
-h,- -help all Shows a list of command line options with ex-

planations
-v,- -version all Print the version
-o,- -output-level <num-
ber>

all Level of information printed during execution.
0=only errors are printed, 1=warnings and errors
are printed, 2=Next to warnings and errors, the
workflow information is printed.

-n,- -name <string> all Name of the screening project. The name can
be chosen by the user, but the name must only
contain characters which can be used for a folder
name. The name is then used to name the folder
of the screening project, with the prefix “raise_-
resources_”. As an example, if you type -n
Trypsin, then the project data will be put in a
folder with the name raise_resources_Trypsin.
If this is option is omitted, an automatic name
is generated. For screening, use this option to
give the project that shall be screened.

-I, - -Index <string> all Path, where the screening project will be cre-
ated/is located. If no path is given, the screen-
ing project is created at the location where the
iRAISE-executable has been called.

-C,- -Create <file-name> C First use case of iRAISE: Create a screening
project from a protein list. This option cannot
be combined with the -S use case. The argu-
ment of -C needs to be a file which contains a
list of protein pdb files with full path. See -r
for how to provide the reference ligands. If no
reference ligands are given, the active sites are
determined automatically from the ligands in the
pdb file.

...continues below
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Table C.2: Overview of command line options for the iRAISE_release executable (con-
tinued)

Command line option Use case Explanation
-r, - -refs <file-name> C File that contains the reference ligands as list

of molecule files with full path. This list has
to be complementary to the list given to the -C
option, in a way that the line number of the refs-
file contains the reference ligand for the protein
of the same line number as in the protein file
provided.

-a,- -active-site <double> C Radius for active site determination, if this argu-
ment is not given, a radius of 6.5 Å is used.

-S, - -Screen <file-name> S Second use case of iRAISE: Screening of the tar-
get database with a small molecule. As input
this option requires a molecule file in .sdf, .mol2
or .pdb format.

-c, - -conformations <num-
ber/level>

S Generate conformations for the input molecule
for screening. Either maximal number of confor-
mations or three different levels, Q1, Q2, or Q3
can be given. If this option is not given, only
the input conformation is used.

-w,- -write-confs S Write conformations. If this option is given,
the generated conformations of the screening
molecule are written in an sdf file to the solu-
tion folder in the project folder.

-E,- -Evaluate E Third use case of iRAISE: Use this option to con-
solidate solution databases, for example if the
screening was executed in parallel.

-e,- -export <number> E Export predicted ligand poses as sdf file of the
ligand. The number argument specifies, for how
many targets (starting with the best ranked tar-
get) poses of the ligand are written to the solu-
tions folder of the project folder. If a screening
project has been screened with several ligands,
poses are written for each ligand. .

- -screen-start <number> S Only for expert users for parallel screening: If
partitions shall be screened in parallel, this op-
tion specifies, which partition is screened with
the query molecule

...continues below
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Table C.2: Overview of command line options for the iRAISE_release executable (con-
tinued)

Command line option Use case Explanation
- -screen-no <number> S Only for expert users for parallel screening: If

partitions shall be screened in parallel, this op-
tion specifies, how many partitions are screened,
started at the partition which was given with the
- -screen-start option.

C.2.3 Structure of a screening project

Once a screening project has been created (see section C.3.1 for how to to this), a project
folder with the following structure has been created:

• raise_resources_givenname*

– idx This folder contains the generated index of protein descriptors. It is needed
for screening. The file cataloging.log in this folder contains log information
about the indexing.

– data This folder contains the proteins stored in a database in the file complex.db.
After a screening run, here solution databases for the query compounds are also
located. If a consolidation (with option -E) has been carried out, this folder also
contains the complex solutions database file SolutionsComplete.db

– solutions Here the solutions of iRAISE screenings are found. For each query
molecule which has been used to screen the database, a text file with the scores
is written to this folder. If no screening has been carried out, this folder is empty.
If the same molecule is screened multiple times against the project, the results
are appended to that file. The name of the solution file is a combination of the
molecule name and the corresponding molecule file name. Also, if the poses of a
ligand have been written, a subfolder named poses has been created here, which
contains the sdf files of ligand poses for each target separately.

*The givenname can be supplied by the user with the -n option of the iRAISE tool.
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C.3 Example use cases

Together with the iRAISE executable, example data and scripts are provided in the iRAISE
package. This data shall demonstrate how the iRAISE tool shall be used. In the first script,
a project is created from a list of proteins and reference ligand. Another script shows, how
to create a project from proteins without reference ligands. Then, the created project is
screened with a ligand. Finally, the results of this screen are consolidated and poses of the
ligand are extracted which can then be further examined or used in other tools.
As example data, the 85 complexes of the Astex Diverse Set are used.

C.3.1 How to create a screening project with reference ligands

The script for an example of how to create a screening project can be found in the Scripts
folder of the iRAISE package. The script is called
CreatingScreeningProject.sh. It can be used to create a screening project with the
example Astex Data. The script has to be called from the iRAISE folder since it contains
relative paths:

#!/bin/bash

# input variables

your_path=.

proteins=${your_path}/ExampleData/pdb.list

referenceligs=${your_path}/ExampleData/lig.list

executable_path=${your_path}/bin/

projectpath=${your_path}

projectname=AstexTest

#call of iRAISE tool with creating a project option

${executable_path}/iRAISE_release \

-C ${proteins} \

--refs ${referenceligs} \

--name ${projectname} \

-I ${projectpath}

The pdb codes for the proteins as are the reference ligands are given by a list (For the lists
see folder ExampleData). The project was named ’AstexTest’ and because the project path
was given as “.”, the project with the name ’raise_resources_AstexTest’ was stored in the
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iRAISE folder from which the script was called. After calling this script, the project is ready
for screening. The project contains now all 85 targets of the Astex Diverse Set. For creating
own projects, the user only has to exchange the projectname, give the lists of the proteins
and the reference ligands that shall be used in the screening project.

C.3.2 How to create a screening project without reference ligands

The script for an example of how to create a screening project with pdb files only without
a reference ligand list can be found in the Scripts folder of the iRAISE package. The script
is called CreatingScreeningProject2.sh. It also uses the AstexData, but this time only
the pdb-files of the proteins. The script has to be called from the iRAISE folder since it
contains relative paths:

#!/bin/bash

# input variables

your_path=.

proteins=${your_path}/ExampleData/pdb.list

executable_path=${your_path}/bin/

projectpath=${your_path}

projectname=AstexTest2

#call of \textit{i}RAISE tool with indexing option

${executable_path}/iRAISE_release \

-C ${proteins} \

--name ${projectname} \

-I ${projectpath}

This time, only the list is given which contains the proteins. The iRAISE tool now on itself
generates active sites, wherever it finds a ligand in the pdb file which is no buffer or cofactor
or crystallization agent. Since a new project name ’AstexTest2’ was given, a separate project
will be created.
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C.3.3 How to screen a project with a query molecule

For screening a project with a molecule, the prepared screening project is necessary as well
as a file which contains the query molecule with 3D coordinates. A script which screens the
previously created project with the name “AstexTest” with a ligand from the Astex Diverse
Set, can be found in the Scripts folder with the name Screening.sh. The script needs the
pdb code of the ligand that shall be screened in lowercase as a command line argument.
One example call of that script would be
./Scripts/Screening.sh 1g9v

The script also has to be called from the iRAISE folder since it contains relative paths:

#!/bin/bash

# input variables

your_path=.

library=${your_path}/ExampleData/cryst_ligs/

executable_path=${your_path}/bin/

projectpath=${your_path}

projectname=AstexTest

#call of \textit{i}RAISE tool with screening option

${executable_path}/\textit{i}RAISE_release \

-S ${library}/$1_crysth.mol2 \

--name ${projectname} \

-I ${projectpath} \

-c 200

In this script, the number of conformations that shall be generated are limited to 200 by
the option -c which creates conformations. The solutions of the screening can be found in
text form in the solutions-folder of the screening project. See the next paragraph for how
to extract the ligand poses from the solutions.
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C.3.4 How to extract ligand poses from a screening project

The script ConsolidateAndWritePoses.sh shows, how poses can be exported to sdf files
for further use, e.g. binding mode evaluation. The script first of all gathers all so far avail-
able screening results in a database. The number of solutions that shall be exported can be
given with the option -e. The given number decides, for how many targets for each ligand
poses are written. For example, if the option -e 5 is given, the poses for the 5 best scored
targets are exported. The poses are then written to the solution folder of the project. For
one target, all poses (maximally 10) are written to a separate multi-sdf file. The file is
named after the following scheme:

lignd-name_target-rank_pocket-ID_protein-name.sdf

Example: The file name 1g9v_1_2h_1HVY.sdf indicates, that the file contains poses of the
molecule with the name 1g9v for the first ranked target with the name 1HVY in pocket ID
2 (only of relevance if proteins with several pockets are contained in the screening project).

#!/bin/bash

# input variables

your_path=.

executable_path=${your_path}/bin/

projectpath=${your_path}

projectname=AstexTest

#call of iRAISE tool for exporting poses

${executables}/iRAISE_release \

-E \

--name ${projectname} \

-I ${projectpath} \

-e 5

The -E and -e options can be combined together with the -S option, then the consolidation
and export is done immediately after screening. However, if several screening partitions are
screened in parallel, the -E option should be called only after all screening runs are finished.
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C.4 Limitations

Note the following limtations of the iRAISE software

• Covalently bound metals: Ligands with covalently bound metals can currently not be
handled by the tool.

• The iRAISE concept cannot handle query molecules which contain no hydrogen ac-
ceptors or donors at all.

• Huge amounts of proteins are stored in the data partitions of the project . One data
partition contains about 100 proteins, depending on the size of the active site. For
parallel screening, thus it is recommended to screen several of these data partitions
in parallel (see command line options). The results however, are stored in separate
solution text files for each partition, meaning that the user has to merge the solutions
manually e.g. by joining the text files containing the scores.

• Since the project is still in development status, no recommendations on computing
capabilities are made, however, for each partition that is screened in parallel, it is
assumed that 8GB Ram are available.
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D.1 About ComplexViewer

The ComplexViewer is a viewer for the protein database content of an iRAISE project and
the solutions of an iRAISE screening. It is a basic graphic user interface in development
status and developed for usage in combination with an iRAISE project only. Its functionality
is therefore limited to this application.
This user guide contains instructions how to use the ComplexViewer. First, it is explained
how to browse the proteins contained in an iRAISE project. Subsequently, it is shown,
how solutions of an iRAISE screening can be viewed by browsing targets with the predicted
binding modes.

D.2 Starting ComplexViewer

The ComplexViewer is currently available for Linux-operated systems only. For starting the
GUI, type

./bin/ComplexViewer_release

into the command line.
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D.3 Browsing iRAISE proteins

The first use case of the ComplexViewer is the browsing of the protein content of an iRAISE
project. Firstly, the database file has to be loaded. Choose the Load Database option
from the Menu. In the now popping up dialog, choose the complex.db file of your iRAISE
project located in the data folder of the project.

Figure D.1: Screenshot of the ComplexViewer with explanatory text.

In Figure D.1, the ComplexViewer is shown after a database has been loaded. In the complex
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pockets tab, the content of the protein pocket database of the current iRAISE project is
shown in form of a table. It lists a pocket id (in case one protein is registered with several
pockets), the protein name and the name of the reference ligand which was used to determine
the active site. A single click on a row of this table updates the details section (see Figure
D.1), where the reference ligand is depicted in form of a 2D structure diagram as well as
some properties of the active site are listed.
The proteins contained in the loaded database are organized on pages, with 100 proteins
per page. Next and previous buttons and a page number input allows to browse through
all proteins.

D.3.1 3D viewer of pockets

A double click on a row of the protein pocket table opens a 3D viewer in a separate window.
This viewer depicts the amino acids of the active site and the reference ligand in 3D (see
Figure D.2). The content of the 3D viewer is updated every time a new pocket is selected by
a double click on the respective row. The following options are available for the 3D display
of a pocket:

• Showing water molecules

• Displaying the protein backbone as chain trace

• Showing the ligand in a sphere representation of the van-der-Waals radii of its atoms
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Figure D.2: Screenshot of the 3D viewer with explanatory text.

D.4 Inspecting iRAISE screening solutions

The ComplexViewer can further be used for browsing the solutions of an iRAISE screening.
In Figure D.3, the screening results tab of the ComplexViewer is shown. This tab is
only filled with data if the iRAISE project from which the database has been loaded was
already screened with one or several ligands. A table on the left side of the view contains the
names of these ligands and the number of target matches which were found in the screening.
Details of a screening run are displayed in the target solution table after the respective row
has been selected in the left table by a double click. The target solution table is located at
the right side of the screening results tab (see Figure D.3). It contains the name of the
query ligand, the name of the protein, the ID of the pocket (for identification if one protein
was registered with several pockets) and the number of ligand poses, of which maximally 10
are shown, sorted by score.
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Figure D.3: Screenshot of the screening results tab of the ComplexViewer with ex-
planatory text.
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D.4.1 3D viewer of solutions

A double click on a row of the target solutions table opens the 3D viewer in a separate
window. In Figure D.4, a screenshot is shown. The top panel of the window shows the
name of the currently shown protein pocket, the score of the current pose and the number
of the current pose. The generated poses can be browsed by the scrollbar at the bottom,
which changes the pose of the ligand and updates the score and the number. A checkbox
in the top panel allows to include the reference ligand into the viewer. A button labeled
PROTOSS can be used to align the hydrogen atoms of the currently shown complex after the
best hydrogen bond network calculated with Protoss. This step has to be initiated manually
with the button and is not re-calculated automatically with each pose.

Next to the same viewing options as contained in the pocket 3D viewer, the list of available
options is expanded in the solution viewer with the following options:

• Showing the reference ligand of the current pocket.

• Showing all atoms which are accessible to the ligand, i. e., located near a ligand atom.
This feature helps in studying with which atoms the ligand may interact.

• Highlighting of not-covered ligand atoms with pink spheres.

• Highlighting of not-covered pocket atoms with pink spheres (i.e. atoms which have
no pocket or ligand atom in a radius of 4.5 Å in their neighborhood)

• Showing a grid representation of the active site.
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Figure D.4: Screenshot of the 3D viewer of a target solution with explanatory text.
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E
Drugs/sc-PDB data set

E.1 Discarded structures from the sc-PDB

1adb, 1a46, 1aqx, 1e5o, 1esm, 1etr, 1jk3, 1k4y, 1kgi, 1m2p, 1m2q, 1mf4, 1o2w, 1od1, 1osh,
1pxo, 1zrb, 2e14, 2j3q, 2jji, 2nsd, 2qnn, 2r3y, 2uwu, 2wu3, 2x6o, 2x9d, 2xb5, 2xd6, 2xh1,
2xpw, 2xui, 2xx2, 2xx4, 2xx5, 2y6q, 2znn, 3a7d, 3ebo, 3eq0, 3fk7, 3fl5, 3fp0, 3gh8, 3h6l,
3hat, 3inw, 3inx, 3ktj, 3mhn, 3mz6, 3n3v, 3nsq, 3nzi, 3oe4, 3oe5, 3osi, 3osw, 3ozs, 3ozt,
3pba, 3pwd, 3q07, 3q9y, 3ql8, 3r2a, 3rtu, 3rzq, 3sfd, 3sin, 3sqp, 3sz1, 3tfy, 3tiy, 3tvq, 3tvs,
3ut5, 3v8p, 3vgn, 3zz2, 4aux, 4dgn, 4ef7, 4eha, 4enx, 4frs

E.2 True positive structures for the 72 ligands

1 Dorzolamide (DB00869)
1a42, 1bn1, 1bn3, 1bn4, 1bnn, 1bnq, 1bnt, 1bnu, 1bnv, 1bnw, 1cil, 1cim, 1cin, 1cnw, 1cnx,
1eou, 1g45, 1g48, 1g4o, 1g52, 1i8z, 1i90, 1i91, 1i9l, 1i9m, 1i9n, 1i9o, 1i9p, 1i9q, 1if7, 1if8,
1if9, 1kwq, 1okl, 1okm, 1okn, 1oq5, 1ttm, 1xpz, 1xq0, 1ze8, 2h15, 2hd6, 2hkk, 2hoc, 2nn7,
2nnv, 2pou, 2pow, 2q1q, 2qo8, 2wd2, 2weh, 2wej, 2x7s, 2x7t, 2x7u, 3b4f, 3bet, 3bl1, 3c7p,
3d8w, 3d9z, 3da2, 3dbu, 3dcc, 3dd8, 3eft, 3f4x, 3f7b, 3f8e, 3hku, 3hlj, 3hs4, 3iai, 3ibl, 3ibn,
3igp, 3k2f, 3k34, 3kig, 3kne, 3l14, 3lxe, 3m04, 3m14, 3m2n, 3m2x, 3m3x, 3m40, 3m5e,
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3m67, 3m96, 3m98, 3mdz, 3mhc, 3mhi, 3mhl, 3mhm, 3mho, 3ml5, 3myq, 3nb5, 3ni5, 3oik,
3oil, 3oim, 3oku, 3okv, 3oy0, 3oyq, 3oys, 3p25, 3p29, 3p4v, 3p58, 3p5a, 3p5l, 3po6, 3qyk,
3r16, 3r17, 3ryj, 3ryv, 3ryx, 3ryy, 3ryz, 3rz0, 3rz1, 3rz5, 3rz7, 3rz8, 3s71, 3s72, 3s73, 3s74,
3s8x, 3s9t, 3sap, 3sax, 3sbh, 3sbi, 3t5z, 3t82, 3t84, 3t85, 3ucj, 3v5g, 3v7x, 3vbd, 4e3d,
4e3f

2 Lovastatin (DB00227)
1hw8, 1hw9, 1hwi, 1hwk, 1hwl, 1rd4, 1xdd, 1xdg, 1xuo, 2ica, 2o7n, 2q6c, 3bgl, 3bqm,
3bqn, 3cct, 3ccw, 3cd0, 3cd5, 3cd7, 3cda, 3cdb, 3e2m, 3m6f, 3mz4, 3rqd, 3sff, 3sfh

3 Estradiol (DB00783)
1d2s, 1e6w, 1fds, 1l2i, 1l2j, 1lhn, 1lho, 1lhu, 1lhv, 1lhw, 1n6a, 1qkm, 1r5k, 1sj0, 1tw4, 1u3r,
1u3s, 1uom, 1x76, 1x78, 1x7b, 1x7e, 1x7r, 1xp1, 1xp6, 1xp9, 1xpc, 1xqc, 1yim, 1yin, 1yy4,
1yye, 1zaf, 1zky, 2ayr, 2i0g, 2i0j, 2iog, 2iok, 2j7x, 2jfa, 2jj3, 2nv7, 2ouz, 2p15, 2pog, 2q70,
2qab, 2qe4, 2qgt, 2qgw, 2qr9, 2qtu, 2r6w, 2r6y, 2yat, 2yjd, 2z4b, 3akm, 3cbp, 3cv3, 3dt3,
3erd, 3ert, 3hlv, 3l03, 3m58, 3oll, 3omo, 3omp, 3omq, 3os5, 3os9, 3osa, 3uu7, 3uua, 3uuc,
3uud, 4dma, 4e47

4 Efavirenz (DB00625)
1a30, 1ajv, 1ajx, 1c0t, 1c0u, 1c1b, 1c1c, 1d4h, 1d4i, 1dmp, 1ebw, 1eby, 1ebz, 1ec0, 1ec1,
1ec2, 1eet, 1ep4, 1fk9, 1hbv, 1hih, 1hpz, 1hvh, 1hwr, 1hxb, 1ikx, 1iky, 1jla, 1jlc, 1jlq, 1klm,
1npa, 1npw, 1odw, 1odx, 1qbr, 1qbs, 1qbu, 1rev, 1rt1, 1rt3, 1rt5, 1rt6, 1rt7, 1rth, 1rti,
1s1t, 1sbg, 1t7k, 1tkt, 1tkx, 1tkz, 1tl1, 1tl3, 1tv6, 1vrt, 1vru, 1w5v, 1w5w, 1w5x, 1w5y,
2b6a, 2fde, 2ic3, 2ops, 2rf2, 2rki, 2uxz, 2uy0, 2vg5, 2vg7, 2won, 2ykm, 2zd1, 3di6, 3dle,
3dlg, 3dmj, 3dok, 3dol, 3dox, 3drp, 3dya, 3e01, 3ffi, 3gga, 3i0r, 3i0s, 3irx, 3is9, 3k4v, 3lak,
3lal, 3lam, 3lan, 3lp1, 3m8q, 3mec, 3med, 3mee, 3meg, 3n3i, 3nbp, 3nu3, 3ok9, 3psu, 3qaa,
3t1a, 3tam, 3tl9, 3tlh, 3tof, 3toh, 3v81

5 Delavirdine (DB00705)
1a30, 1ajv, 1ajx, 1c0t, 1c0u, 1c1b, 1c1c, 1d4h, 1d4i, 1dmp, 1ebw, 1eby, 1ebz, 1ec0, 1ec1,
1ec2, 1eet, 1ep4, 1fk9, 1hbv, 1hih, 1hpz, 1hvh, 1hwr, 1hxb, 1ikx, 1iky, 1jla, 1jlc, 1jlq, 1klm,
1npa, 1npw, 1odw, 1odx, 1qbr, 1qbs, 1qbu, 1rev, 1rt1, 1rt3, 1rt5, 1rt6, 1rt7, 1rth, 1rti,
1s1t, 1sbg, 1t7k, 1tkt, 1tkx, 1tkz, 1tl1, 1tl3, 1tv6, 1vrt, 1vru, 1w5v, 1w5w, 1w5x, 1w5y,
2b6a, 2fde, 2ic3, 2ops, 2rf2, 2rki, 2uxz, 2uy0, 2vg5, 2vg7, 2won, 2ykm, 2zd1, 3di6, 3dle,
3dlg, 3dmj, 3dok, 3dol, 3dox, 3drp, 3dya, 3e01, 3ffi, 3gga, 3i0r, 3i0s, 3irx, 3is9, 3k4v, 3lak,
3lal, 3lam, 3lan, 3lp1, 3m8q, 3mec, 3med, 3mee, 3meg, 3n3i, 3nbp, 3nu3, 3ok9, 3psu, 3qaa,
3t1a, 3tam, 3tl9, 3tlh, 3tof, 3toh, 3v81
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6 Niflumic acid (DB04552)
1db4, 1fdk, 1ht5, 1fv0, 1jq8, 1kqu, 1kvo, 1oxl, 1pxx, 1q7a, 1skg, 1td7, 1tg4, 1tj9, 1tk4,
2arm, 2b04, 2b17, 2gns, 2oye, 2oyu, 2pws, 2qhw, 2que, 2qvd, 2wm3, 2wq5, 3cv3, 3fo7,
3g8f, 3kk6, 3l30, 3ln0, 3ln1, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3nju, 3nt1, 3ntb, 3ntg, 3osh,
3q7d, 3qmo, 3rr3, 4cox, 4dbk, 4fga, 4fm5, 4gld, 6cox

7 Nevirapine(DB00238)
1a30, 1ajv, 1ajx, 1c0t, 1c0u, 1c1b, 1c1c, 1d4h, 1d4i, 1dmp, 1ebw, 1eby, 1ebz, 1ec0, 1ec1,
1ec2, 1eet, 1ep4, 1fk9, 1hbv, 1hih, 1hpz, 1hvh, 1hwr, 1hxb, 1ikx, 1iky, 1jla, 1jlc, 1jlq, 1klm,
1npa, 1npw, 1odw, 1odx, 1qbr, 1qbs, 1qbu, 1rev, 1rt1, 1rt3, 1rt5, 1rt6, 1rt7, 1rth, 1rti,
1s1t, 1sbg, 1t7k, 1tkt, 1tkx, 1tkz, 1tl1, 1tl3, 1tv6, 1vrt, 1vru, 1w5v, 1w5w, 1w5x, 1w5y,
2b6a, 2fde, 2ic3, 2ops, 2rf2, 2rki, 2uxz, 2uy0, 2vg5, 2vg7, 2won, 2ykm, 2zd1, 3di6, 3dle,
3dlg, 3dmj, 3dok, 3dol, 3dox, 3drp, 3dya, 3e01, 3ffi, 3gga, 3i0r, 3i0s, 3irx, 3is9, 3k4v, 3lak,
3lal, 3lam, 3lan, 3lp1, 3m8q, 3mec, 3med, 3mee, 3meg, 3n3i, 3nbp, 3nu3, 3ok9, 3psu, 3qaa,
3t1a, 3tam, 3tl9, 3tlh, 3tof, 3toh, 3v81

8 Galantamine (DB00674)
1dx4, 1e3q, 1e66, 1eve, 1gpn, 1h22, 1h23, 1j07, 1n5r, 1odc, 1q83, 1q84, 1qon, 1u65, 1ut6,
1w4l, 1w6r, 1zgb, 1zgc, 2cmf, 2gyu, 2gyw, 2ha6, 2jez, 2ph9, 2w6c, 2wu4, 2xi4, 2xud, 2xuf,
3i6m, 3i6z, 3uon, 3zv7, 4a16, 4a23, 4b0o

9 Sitagliptin (DB01261)
1rwq, 1wcy, 1x70, 2aj8, 2bgr, 2bub, 2buc, 2hha, 2i3z, 2i78, 2iit, 2iiv, 2jid, 2oae, 2oag, 2ogz,
2ole, 2onc, 2oph, 2oqi, 2qjr, 2qoe, 2qt9, 2qtb, 2rgu, 2rip, 3ccc, 3d4l, 3eio, 3f8s, 3g0b,
3g0c, 3g0d, 3g0g, 3h0c, 3hab, 3hac, 3kwf, 3kwj, 3o95, 3o9v, 3oc0, 3opm, 3qbj, 3sww,
3sx4, 3vjm, 4a5s

10 Tadalafil (DB00820)
1ptw, 1ro6, 1ro9, 1ror, 1so2, 1t9s, 1tbb, 1tbf, 1uho, 1xlx, 1xlz, 1xm4, 1xm6, 1xmu, 1xom,
1xoq, 1xor, 1xos, 1xot, 1xoz, 1xp0, 1y2e, 1y2h, 1y2k, 2h42, 2h44, 2o8h, 2oun, 2ouq, 2our,
2ovv, 2ovy, 2pw3, 2qyn, 2y0j, 3bjc, 3d3p, 3dba, 3dy8, 3dyl, 3frg, 3g3n, 3g45, 3g4i, 3g4k,
3g58, 3gwt, 3hmv, 3hqw, 3hqy, 3hqz, 3hr1, 3i8v, 3iad, 3iak, 3ib8, 3itu, 3jsi, 3jsw, 3jwr,
3k3e, 3k3h, 3k4s, 3kkt, 3lxg, 3o56, 3o57, 3qi4, 3qpn, 3qpo, 3qpp, 3shy, 3shz, 3sie, 3sl4,
3sl5, 3sl6, 3sl8, 3sn7, 3sni, 3snl, 3tge, 3tgg, 3tvx, 3ui7, 3uuo, 3v94, 3v9b, 4ael, 4ddl, 4dff

11 Imatinib (DB00619)
1agw, 1fgi, 1fpu, 1ht5, 1m52, 1pkg, 1pxx, 1xbb, 2e2b, 2f4j, 2fgi, 2g2f, 2hen, 2hiw, 2hyy,
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2hz4, 2hzi, 2hzn, 2i0v, 2i1m, 2itp, 2itx, 2ivs, 2ivt, 2ivv, 2oh4, 2oye, 2oyu, 2p0c, 2p2h, 2p2i,
2pvf, 2qoh, 2qu5, 2qu6, 2r4b, 2rfn, 2rfs, 2rgp, 2rl5, 2v7a, 2vwu, 2vwv, 2vww, 2vwx, 2vwy,
2vwz, 2vx0, 2vx1, 2wd1, 2wgj, 2wkm, 2wqb, 2x2k, 2x2l, 2x2m, 2x9f, 2xb7, 2xba, 2xir, 2xvd,
2xyu, 2y6o, 2yfx, 2zm3, 3a4p, 3aox, 3b2t, 3b8q, 3b8r, 3be2, 3bea, 3bel, 3bpr, 3brb, 3bu5,
3ce3, 3cjf, 3cjg, 3cp9, 3cpb, 3cpc, 3cth, 3ctj, 3d94, 3dk3, 3dko, 3dpk, 3dtw, 3dzq, 3efj,
3efk, 3efl, 3ekk, 3ekn, 3eta, 3ewh, 3f5p, 3f66, 3f82, 3fxx, 3g0e, 3gqi, 3gql, 3hng, 3i5n, 3js2,
3kf4, 3kfa, 3kk6, 3l8p, 3l8v, 3lcd, 3lcs, 3lct, 3lmg, 3ln0, 3ln1, 3lq8, 3lvp, 3lw0, 3lzb, 3mqe,
3ms9, 3n8w, 3n8x, 3n8y, 3n8z, 3nt1, 3ntb, 3ntg, 3nw5, 3nw6, 3o23, 3oxz, 3oy3, 3pls, 3poz,
3pp0, 3pyy, 3q6w, 3q7d, 3qmo, 3qqu, 3qrj, 3qrk, 3qti, 3qup, 3r7o, 3rgz, 3rhx, 3ri1, 3rr3,
3tcp, 3tt0, 3u6h, 3u6i, 3u6j, 3ue4, 3ug2, 3uim, 3v5q, 3vhe, 3vid, 3vjn, 3vnt, 3zxz, 3zze,
4aoj, 4at3, 4at4, 4at5, 4aw5, 4cox, 4dce, 4deg, 4deh, 4dei, 4f63, 4f64, 4f65, 4fm5, 4fny,
4fnz, 4fob, 4foc, 4fod, 6cox

12 Succhinylcholine (DB00202)
2ha6, 3uon, 4b0o

13 Apixaban (DB06605)
1ezq, 1f0r, 1f0s, 1fjs, 1g2l, 1ioe, 1iqg, 1iqh, 1iqi, 1iqj, 1iql, 1iqm, 1iqn, 1ksn, 1lpg, 1lqd,
1mq5, 1mq6, 1nfu, 1nfw, 1nfx, 1nfy, 1v3x, 1xka, 1z6e, 2bmg, 2boh, 2bok, 2bqw, 2ei6, 2ei7,
2ei8, 2j2u, 2j34, 2j38, 2j4i, 2j94, 2j95, 2jkh, 2p16, 2p3t, 2p3u, 2p93, 2p94, 2p95, 2phb,
2pr3, 2q1j, 2ra0, 2uwl, 2uwo, 2uwp, 2vh0, 2vh6, 2w3i, 2w3k, 2wyg, 2wyj, 2xbv, 2xbw, 2xbx,
2xc0, 2xc4, 2xc5, 2y5f, 2y5g, 2y5h, 2y7x, 2y7z, 2y80, 2y81, 2y82, 3cen, 3cs7, 3ffg, 3kl6,
3kqb, 3kqc, 3kqd, 3kqe, 3m36, 3m37, 3q3k, 3sw2, 3tk5, 3tk6, 4a7i

14 Cocaine (DB00907)
2pgz, 3uon

15 Dichlorphenamide (DB01144)
1a42, 1bn1, 1bn3, 1bn4, 1bnn, 1bnq, 1bnt, 1bnu, 1bnv, 1bnw, 1cil, 1cim, 1cin, 1cnw, 1cnx,
1eou, 1g45, 1g48, 1g4o, 1g52, 1i8z, 1i90, 1i91, 1i9l, 1i9m, 1i9n, 1i9o, 1i9p, 1i9q, 1if7, 1if8,
1if9, 1kwq, 1okl, 1okm, 1okn, 1oq5, 1ttm, 1xpz, 1xq0, 1ze8, 2h15, 2hd6, 2hkk, 2hoc, 2nn7,
2nnv, 2pou, 2pow, 2q1q, 2qo8, 2wd2, 2weh, 2wej, 2x7s, 2x7t, 2x7u, 3b4f, 3bet, 3bl1, 3c7p,
3d8w, 3d9z, 3da2, 3dbu, 3dcc, 3dd8, 3eft, 3f4x, 3f7b, 3f8e, 3hku, 3hlj, 3hs4, 3iai, 3ibl, 3ibn,
3igp, 3k2f, 3k34, 3kig, 3kne, 3l14, 3lxe, 3m04, 3m14, 3m2n, 3m2x, 3m3x, 3m40, 3m5e,
3m67, 3m96, 3m98, 3mdz, 3mhc, 3mhi, 3mhl, 3mhm, 3mho, 3ml5, 3myq, 3nb5, 3ni5, 3oik,
3oil, 3oim, 3oku, 3okv, 3oy0, 3oyq, 3oys, 3p25, 3p29, 3p4v, 3p58, 3p5a, 3p5l, 3po6, 3qyk,
3r16, 3r17, 3ryj, 3ryv, 3ryx, 3ryy, 3ryz, 3rz0, 3rz1, 3rz5, 3rz7, 3rz8, 3s71, 3s72, 3s73, 3s74,
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3s8x, 3s9t, 3sap, 3sax, 3sbh, 3sbi, 3t5u, 3t5z, 3t82, 3t84, 3t85, 3ucj, 3v5g, 3v7x, 3vbd,
4e3d, 4e3f

16 Proflavine (DB01123)
1a2c, 1a4w, 1a5g, 1a61, 1ae8, 1afe, 1b5g, 1bhx, 1c4u, 1c4v, 1c5n, 1ca8, 1d3d, 1d3p, 1d3t,
1d4p, 1d6w, 1d9i, 1eb1, 1ets, 1ett, 1fpc, 1g30, 1g32, 1ghv, 1ghx, 1gj4, 1gj5, 1h8d, 1jwt,
1k21, 1k22, 1kts, 1ktt, 1mu6, 1mu8, 1mue, 1nm6, 1nrs, 1nt1, 1ny2, 1nzq, 1o0d, 1o2g,
1o5g, 1oyt, 1riw, 1rkw, 1rpw, 1sb1, 1sl3, 1t4u, 1t4v, 1ta2, 1ta6, 1tom, 1uvt, 1vzq, 1way,
1ype, 1ypg, 1ypj, 1ypk, 1ypl, 1ypm, 1z71, 1zgi, 1zgv, 2fes, 2g0e, 2gby, 2hgt, 2jh0, 2jh5,
2jh6, 2r2m, 2uuj, 2uuk, 2v3h, 2v3o, 2v57, 2zc9, 2zda, 2zdv, 2zf0, 2zff, 2zfp, 2zfq, 2zfr,
2zg0, 2zgb, 2zgx, 2zhe, 2zhf, 2zhw, 2zi2, 2ziq, 2znk, 2zo3, 3biu, 3bqz, 3br2, 3bti, 3bv9,
3c27, 3da9, 3dhk, 3egk, 3f68, 3hth, 3ldx, 3p17, 3p70, 3pm1, 3po1, 3qdz, 3qto, 3qtv, 3qwc,
3qx5, 3rlw, 3rly, 3rm0, 3rm2, 3rml, 3rmm, 3rmn, 3rmo, 3sha, 3shc, 3si3, 3si4, 3sv2, 3t5f,
3tu7, 3utu, 4ax9, 4ayv, 4ayy, 4az2, 4e7r

17 Phenylbutazone (DB00812)
1ht5, 1pxx, 2oye, 2oyu, 3b99, 3kk6, 3ln0, 3ln1, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3nt1, 3ntb,
3ntg, 3q7d, 3qmo, 3rr3, 4cox, 4fm5, 6cox

18 Minocycline (DB01017)
1gkc, 1gkd, 2ovx, 2ovz, 2ow0, 2ow1, 2ow2

19 Indomethacine (DB00328)
1bh5, 1db4, 1fdk, 1fro, 1hk1, 1hk3, 1ht5, 1i7i, 1jq8, 1k7l, 1kkq, 1knu, 1kqu, 1kvo, 1nyx,
1oxl, 1pxx, 1q7a, 1skg, 1td7, 1tg4, 1tj9, 1tk4, 1v3t, 1zeo, 1zgy, 2arm, 2b04, 2b17, 2bx8,
2bxf, 2g0g, 2gns, 2h7c, 2hwq, 2hwr, 2i4j, 2i4p, 2jez, 2npa, 2om9, 2oye, 2oyu, 2p4y, 2p54,
2pob, 2pws, 2q5p, 2q61, 2q6s, 2q8s, 2qhw, 2que, 2qvd, 2rew, 2vna, 2vue, 2w4q, 2w98,
2wq5, 2xvq, 2xvu, 2y05, 2yfe, 2za0, 2zb3, 2zb4, 2zb7, 2zb8, 2zno, 2zvt, 3a73, 3adt, 3adv,
3adw, 3adx, 3an3, 3an4, 3b0q, 3b1m, 3b3k, 3b9l, 3cdp, 3cds, 3cs8, 3cv3, 3cwd, 3d6d, 3et1,
3et3, 3fei, 3fej, 3fo7, 3fur, 3g8f, 3g8i, 3g9e, 3gbk, 3h0a, 3ho0, 3hod, 3ia6, 3k8s, 3kdt, 3kdu,
3kk6, 3kmg, 3l30, 3lmp, 3ln0, 3ln1, 3lu7, 3lu8, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3nju, 3noa,
3nt1, 3ntb, 3ntg, 3ogw, 3osh, 3q7d, 3qmo, 3qt0, 3r5n, 3r8a, 3r8i, 3rr3, 3s9s, 3sp6, 3t03,
3tdl, 3ty0, 3v9t, 3v9v, 3v9y, 3vi8, 3vjh, 3vji, 3vn2, 4cox, 4dbk, 4e99, 4f9m, 4fga, 4fm5,
4gld, 4prg, 6cox

20 Pentoxifylline (DB00806)
1ptw, 1q91, 1ro6, 1ro9, 1ror, 1so2, 1t9s, 1tbb, 1tbf, 1uho, 1xlx, 1xlz, 1xm4, 1xm6, 1xmu,
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1xom, 1xoq, 1xor, 1xos, 1xot, 1xoz, 1xp0, 1y2e, 1y2h, 1y2k, 2h42, 2h44, 2o8h, 2oun, 2ouq,
2our, 2ovv, 2ovy, 2pw3, 2qyn, 2y0j, 2ydo, 2ydv, 3arr, 3bjc, 3d3p, 3dba, 3dy8, 3dyl, 3eml,
3frg, 3g3n, 3g45, 3g4i, 3g4k, 3g58, 3gwt, 3hmv, 3hqw, 3hqy, 3hqz, 3hr1, 3i8v, 3iad, 3iak,
3ib8, 3itu, 3jsi, 3jsw, 3jwr, 3k3e, 3k3h, 3k4s, 3kkt, 3lxg, 3o56, 3o57, 3qak, 3qi4, 3qpn,
3qpo, 3qpp, 3shy, 3shz, 3sie, 3sl4, 3sl5, 3sl6, 3sl8, 3sn7, 3sni, 3snl, 3tge, 3tgg, 3tvx, 3ui7,
3uuo, 3v94, 3v9b, 4ael, 4ddl, 4dff, 4fe3

21 Chlormaphenicol (DB00446)
1c1y, 1csn, 1di8, 1di9, 1dm2, 1eh4, 1g5s, 1grq, 1grr, 1gua, 1h1r, 1h1s, 1jnk, 1kv1, 1kv2,
1m7q, 1mru, 1p2a, 1p5e, 1pkd, 1pme, 1pmn, 1pmu, 1pxl, 1pxm, 1pxn, 1pye, 1q23, 1q97,
1q99, 1qca, 1r78, 1unl, 1v0o, 1xjd, 1zrz, 2a19, 2a2d, 2cch, 2csn, 2p0e, 2qt1, 2uxp, 3cla,
3cr3, 3erk, 3gbu, 3ih0, 3lij, 3u9f, 4erk

22 Finasteride (DB01216)
3bur, 3buv, 3caq, 3cas, 3cav, 3g1r, 3uzw, 3uzx, 3uzy

23 Topiramate (DB00273)
1a42, 1bn1, 1bn3, 1bn4, 1bnn, 1bnq, 1bnt, 1bnu, 1bnv, 1bnw, 1cil, 1cim, 1cin, 1cnw, 1cnx,
1eou, 1g45, 1g48, 1g4o, 1g52, 1i8z, 1i90, 1i91, 1i9l, 1i9m, 1i9n, 1i9o, 1i9p, 1i9q, 1if7, 1if8,
1if9, 1kwq, 1okl, 1okm, 1okn, 1oq5, 1ttm, 1xpz, 1xq0, 1ze8, 2h15, 2hd6, 2hkk, 2hoc, 2nn7,
2nnv, 2pou, 2pow, 2q1q, 2qo8, 2wd2, 2weh, 2wej, 2x7s, 2x7t, 2x7u, 3b4f, 3bet, 3bl1, 3c7p,
3d8w, 3d9z, 3da2, 3dbu, 3dcc, 3dd8, 3eft, 3f4x, 3f7b, 3f8e, 3hku, 3hlj, 3hs4, 3iai, 3ibl, 3ibn,
3igp, 3k2f, 3k34, 3kig, 3kne, 3l14, 3lxe, 3m04, 3m14, 3m2n, 3m2x, 3m3x, 3m40, 3m5e,
3m67, 3m96, 3m98, 3mdz, 3mhc, 3mhi, 3mhl, 3mhm, 3mho, 3ml5, 3myq, 3nb5, 3ni5, 3oik,
3oil, 3oim, 3oku, 3okv, 3oy0, 3oyq, 3oys, 3p25, 3p29, 3p4v, 3p58, 3p5a, 3p5l, 3po6, 3qyk,
3r16, 3r17, 3ryj, 3ryv, 3ryx, 3ryy, 3ryz, 3rz0, 3rz1, 3rz5, 3rz7, 3rz8, 3s71, 3s72, 3s73, 3s74,
3s8x, 3s9t, 3sap, 3sax, 3sbh, 3sbi, 3t5z, 3t82, 3t84, 3t85, 3ucj, 3v5g, 3v7x, 3vbd, 4e3d,
4e3f

24 Papaverine (DB01113)
1ptw, 1ro6, 1ro9, 1ror, 1so2, 1t9s, 1tbb, 1tbf, 1uho, 1xlx, 1xlz, 1xm4, 1xm6, 1xmu, 1xom,
1xoq, 1xor, 1xos, 1xot, 1xoz, 1xp0, 1y2e, 1y2h, 1y2k, 2h42, 2h44, 2o8h, 2oun, 2ouq, 2our,
2ovv, 2ovy, 2pw3, 2qyn, 2y0j, 3bjc, 3d3p, 3dba, 3dy8, 3dyl, 3frg, 3g3n, 3g45, 3g4i, 3g4k,
3g58, 3gwt, 3hmv, 3hqw, 3hqy, 3hqz, 3hr1, 3i8v, 3iad, 3iak, 3ib8, 3itu, 3jsi, 3jsw, 3jwr,
3k3e, 3k3h, 3k4s, 3kkt, 3lxg, 3o56, 3o57, 3qi4, 3qpn, 3qpo, 3qpp, 3shy, 3shz, 3sie, 3sl4,
3sl5, 3sl6, 3sl8, 3sn7, 3sni, 3snl, 3tge, 3tgg, 3tvx, 3ui7, 3uuo, 3v94, 3v9b, 4ael, 4ddl, 4dff
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25 Balsalazide (DB01014)
1ht5, 1i7i, 1k7l, 1kkq, 1knu, 1nyx, 1pxx, 1zeo, 1zgy, 2g0g, 2hwq, 2hwr, 2i4j, 2i4p, 2npa,
2om9, 2oye, 2oyu, 2p4y, 2p54, 2pob, 2q5p, 2q61, 2q6s, 2q8s, 2rew, 2yfe, 2z98, 2zno, 2zvt,
3adt, 3adv, 3adw, 3adx, 3an3, 3an4, 3b0q, 3b1m, 3b3k, 3cdp, 3cds, 3cs8, 3cwd, 3d6d, 3et1,
3et3, 3fei, 3fej, 3fur, 3g8i, 3g9e, 3gbk, 3h0a, 3ho0, 3hod, 3ia6, 3k8s, 3kdt, 3kdu, 3kk6,
3kmg, 3lmp, 3ln0, 3ln1, 3lt5, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3noa, 3nt1, 3ntb, 3ntg, 3q7d,
3qmo, 3qt0, 3r5n, 3r8a, 3r8i, 3rr3, 3s9s, 3sp6, 3t03, 3ty0, 3v9t, 3v9v, 3v9y, 3vi8, 3vjh, 3vji,
3vn2, 4cox, 4f9m, 4fm5, 4prg, 6cox

26 Ethoxzolamide (DB00311)
1a42, 1bn1, 1bn3, 1bn4, 1bnn, 1bnq, 1bnt, 1bnu, 1bnv, 1bnw, 1cil, 1cim, 1cin, 1cnw, 1cnx,
1eou, 1g45, 1g48, 1g4o, 1g52, 1i8z, 1i90, 1i91, 1i9l, 1i9m, 1i9n, 1i9o, 1i9p, 1i9q, 1if7, 1if8,
1if9, 1kwq, 1okl, 1okm, 1okn, 1oq5, 1ttm, 1xpz, 1xq0, 1ze8, 2h15, 2hd6, 2hkk, 2hoc, 2nn7,
2nnv, 2pou, 2pow, 2q1q, 2qo8, 2wd2, 2weh, 2wej, 2x7s, 2x7t, 2x7u, 3b4f, 3bet, 3bl1, 3c7p,
3d8w, 3d9z, 3da2, 3dbu, 3dcc, 3dd8, 3eft, 3f4x, 3f7b, 3f8e, 3hku, 3hlj, 3hs4, 3iai, 3ibl, 3ibn,
3igp, 3k2f, 3k34, 3kig, 3kne, 3l14, 3lxe, 3m04, 3m14, 3m2n, 3m2x, 3m3x, 3m40, 3m5e,
3m67, 3m96, 3m98, 3mdz, 3mhc, 3mhi, 3mhl, 3mhm, 3mho, 3ml5, 3myq, 3nb5, 3ni5, 3oik,
3oil, 3oim, 3oku, 3okv, 3oy0, 3oyq, 3oys, 3p25, 3p29, 3p4v, 3p58, 3p5a, 3p5l, 3po6, 3qyk,
3r16, 3r17, 3ryj, 3ryv, 3ryx, 3ryy, 3ryz, 3rz0, 3rz1, 3rz5, 3rz7, 3rz8, 3s71, 3s72, 3s73, 3s74,
3s8x, 3s9t, 3sap, 3sax, 3sbh, 3sbi, 3t5z, 3t82, 3t84, 3t85, 3ucj, 3v5g, 3v7x, 3vbd, 4e3d,
4e3f

27 Gefitinib (DB00317)
1xkk, 2hen, 2i0v, 2i1m, 2itp, 2itx, 2ivs, 2ivt, 2ivv, 2oh4, 2p0c, 2p2h, 2p2i, 2pvf, 2qu5, 2qu6,
2r4b, 2rfn, 2rfs, 2rgp, 2rl5, 2vwu, 2vwv, 2vww, 2vwx, 2vwy, 2vwz, 2vx0, 2vx1, 2wd1, 2wgj,
2wkm, 2wqb, 2x2k, 2x2l, 2x2m, 2x9f, 2xb7, 2xba, 2xir, 2xvd, 2xyu, 2y6o, 2yfx, 2zm3, 3a4p,
3aox, 3b2t, 3b8q, 3b8r, 3be2, 3bea, 3bel, 3bpr, 3brb, 3bu5, 3ce3, 3cjf, 3cjg, 3cp9, 3cpb,
3cpc, 3cth, 3ctj, 3d94, 3dko, 3dpk, 3dtw, 3dzq, 3efj, 3efk, 3efl, 3ekk, 3ekn, 3eta, 3ewh,
3f5p, 3f66, 3f82, 3fxx, 3g0e, 3gql, 3hng, 3i5n, 3js2, 3l8p, 3l8v, 3lcd, 3lcs, 3lct, 3lmg, 3lq8,
3lvp, 3lw0, 3lzb, 3nw5, 3nw6, 3o23, 3pls, 3poz, 3pp0, 3q6w, 3qqu, 3qti, 3qup, 3r7o, 3rgz,
3rhx, 3ri1, 3tcp, 3tt0, 3u6h, 3u6i, 3u6j, 3ug2, 3uim, 3v5q, 3vhe, 3vid, 3vjn, 3vnt, 3zxz,
3zze, 4aoj, 4at3, 4at4, 4at5, 4aw5, 4dce, 4deg, 4deh, 4dei, 4f63, 4f64, 4f65, 4fny, 4fnz,
4fob, 4foc, 4fod

28 Prazosin (DB00457)
2rh1, 3d4s, 3ny8, 3ny9, 3owx
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29 Pyrimethamine (DB00205)
1dr2, 1dr7, 1dyh, 1dyj, 1e26, 1hfr, 1jom, 1ly3, 1ly4, 1mvt, 1ohk, 1s3v, 1s3w, 1s3y, 1u70,
1u71, 2ano, 2bla, 2cd2, 2dhf, 2oip, 2qk8, 2w3a, 2w3b, 2w3m, 2w3v, 2w3w, 2w9g, 2w9s,
2zza, 3cd2, 3clb, 3cse, 3d80, 3d84, 3dau, 3dga, 3e0b, 3eej, 3eek, 3eel, 3eem, 3eig, 3f0b,
3f0q, 3f0s, 3f0u, 3f0v, 3f0x, 3fl8, 3fl9, 3fq0, 3fqc, 3fqf, 3fqo, 3fqv, 3fqz, 3fra, 3frb, 3frd,
3frf, 3fy8, 3fy9, 3fyv, 3fyw, 3ghv, 3ghw, 3gi2, 3hbb, 3i8a, 3ia4, 3inv, 3irm, 3iro, 3ix9, 3jsu,
3jvx, 3jwf, 3jwk, 3k45, 3k47, 3kfy, 3kjs, 3m09, 3ntz, 3nu0, 3nxo, 3nxt, 3nxv, 3nxx, 3oaf,
3qfx, 3qg2, 3qgt, 3ql0, 3ql3, 3qlx, 3qly, 3qlz, 3r33, 3rg9, 3ro9, 3roa, 3s3v, 3s7a, 3s9u, 3sa1,
3sa2, 3sai, 3sgy, 3sh2, 3sqy, 3sr5, 3srr, 3srs, 3sru, 3srw, 3td8, 3tq8, 3tq9, 3tqb, 3um5,
3um6, 3um8, 4dfr

30 Tolmetin (DB00500)
1ht5, 1pxx, 2oye, 2oyu, 3e08, 3kk6, 3ln0, 3ln1, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3nt1, 3ntb,
3ntg, 3ogw, 3q7d, 3ql6, 3qmo, 3rr3, 3s3g, 4cox, 4fm5, 6cox

31 Thiabendazole (DB00730)
3sfe

32 Ethacrynic acid (DB00903)
1hk1, 1hk3, 2bx8, 2bxf, 2vct, 2vue, 2xvq, 2xvu, 3a73, 3b9l, 3lu7, 3lu8, 3n9j, 3tdl, 4e99

33 Abacavir (DB01048)
1a30, 1adb, 1ajv, 1ajx, 1b14, 1b15, 1b16, 1c0t, 1c0u, 1c1b, 1c1c, 1cdo, 1d1t, 1d4h, 1d4i,
1dmp, 1e3e, 1ebw, 1eby, 1ebz, 1ec0, 1ec1, 1ec2, 1eet, 1ep4, 1fk9, 1hbv, 1hdz, 1hih, 1hpz,
1hso, 1hsz, 1hvh, 1hwr, 1hxb, 1ikx, 1iky, 1jla, 1jlc, 1jlq, 1klm, 1mc5, 1mg5, 1mp0, 1npa,
1npw, 1odw, 1odx, 1qbr, 1qbs, 1qbu, 1rev, 1rt1, 1rt3, 1rt5, 1rt6, 1rt7, 1rth, 1rti, 1s1t, 1sbg,
1t7k, 1tkt, 1tkx, 1tkz, 1tl1, 1tl3, 1tv6, 1u3w, 1vrt, 1vru, 1w5v, 1w5w, 1w5x, 1w5y, 2b6a,
2eer, 2fde, 2ic3, 2jhf, 2ops, 2rf2, 2rki, 2uxz, 2uy0, 2vg5, 2vg7, 2won, 2xaa, 2ykm, 2zd1,
3cv3, 3di6, 3dle, 3dlg, 3dmj, 3dok, 3dol, 3dox, 3drp, 3dya, 3e01, 3ffi, 3gga, 3i0r, 3i0s, 3irx,
3is9, 3k4v, 3lak, 3lal, 3lam, 3lan, 3lp1, 3m8q, 3mec, 3med, 3mee, 3meg, 3n3i, 3nbp, 3nu3,
3ok9, 3oq6, 3ox4, 3psu, 3qaa, 3qj5, 3rj5, 3t1a, 3tam, 3tl9, 3tlh, 3tof, 3toh, 3v81, 3vrj

34 Varenicline (DB01273)
4afg
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35 Captopril (DB01197)
1gkc, 1gkd, 1xuc, 1xud, 1xur, 1you, 2oc2, 2ovx, 2ovz, 2ow0, 2ow1, 2ow2, 2ozr, 2xhm, 2yig,
3bkk, 3bkl, 3elm, 3i7g, 3i7i, 3kec, 3kej, 3kek, 3kry, 3lus, 3o2x, 3tvc, 456c, 4a7b, 4exs, 830c

36 Celecoxib (DB00482)
1h1w, 1hk1, 1hk3, 1ht5, 1oky, 1oq5, 1pxx, 1uu3, 1uu7, 1uu8, 1uu9, 1z5m, 2bx8, 2bxf, 2oye,
2oyu, 2pe1, 2pe2, 2r7b, 2vue, 2xch, 2xck, 2xvq, 2xvu, 3a73, 3b9l, 3h9o, 3hrc, 3ion, 3iop,
3kk6, 3ln0, 3ln1, 3lu7, 3lu8, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3nt1, 3ntb, 3ntg, 3nun, 3nuy,
3orz, 3q7d, 3qc4, 3qcq, 3qcs, 3qcx, 3qcy, 3qd0, 3qd3, 3qd4, 3qmo, 3rr3, 3rwp, 3rwq, 3sc1,
3tdl, 4cox, 4e99, 4fm5, 6cox

37 Levonorgestrel (DB00367)
1a28, 1e3k, 1gs4, 1i38, 1l2i, 1l2j, 1lhv, 1n6a, 1qkm, 1r5k, 1sj0, 1sqn, 1sr7, 1t65, 1u3r, 1u3s,
1uom, 1x76, 1x78, 1x7b, 1x7e, 1x7r, 1xnn, 1xow, 1xp1, 1xp6, 1xp9, 1xpc, 1xqc, 1yim, 1yin,
1yy4, 1yye, 1z95, 1zaf, 1zky, 2ax6, 2ax8, 2ax9, 2ayr, 2hvc, 2i0g, 2i0j, 2ihq, 2iog, 2iok, 2jfa,
2jj3, 2nv7, 2nw4, 2ouz, 2ovh, 2oz7, 2p15, 2pnu, 2pog, 2q70, 2q7i, 2q7k, 2qab, 2qe4, 2qgt,
2qgw, 2qr9, 2qtu, 2r6w, 2r6y, 2w8y, 2yat, 2yjd, 2z4b, 3b5r, 3b65, 3b66, 3b67, 3b68, 3cbp,
3d90, 3dt3, 3erd, 3ert, 3g0w, 3g8o, 3hlv, 3kba, 3l03, 3l3x, 3m58, 3oll, 3omo, 3omp, 3omq,
3os5, 3os9, 3osa, 3rlj, 3rll, 3uu7, 3uua, 3uuc, 3uud, 3zr7, 3zra, 4a2j, 4apu, 4dma, 4e47

38 Zonisamide (DB00909)
1a42, 1bn1, 1bn3, 1bn4, 1bnn, 1bnq, 1bnt, 1bnu, 1bnv, 1bnw, 1cil, 1cim, 1cin, 1cnw, 1cnx,
1eou, 1g45, 1g48, 1g4o, 1g52, 1i8z, 1i90, 1i91, 1i9l, 1i9m, 1i9n, 1i9o, 1i9p, 1i9q, 1if7, 1if8,
1if9, 1kwq, 1okl, 1okm, 1okn, 1oq5, 1ttm, 1xpz, 1xq0, 1ze8, 2bxr, 2h15, 2hd6, 2hkk, 2hoc,
2nn7, 2nnv, 2pou, 2pow, 2q1q, 2qo8, 2v5z, 2v60, 2v61, 2vvl, 2wd2, 2weh, 2wej, 2x7s, 2x7t,
2x7u, 2xfn, 3b4f, 3bet, 3bl1, 3c7p, 3d8w, 3d9z, 3da2, 3dbu, 3dcc, 3dd8, 3eft, 3f4x, 3f7b,
3f8e, 3hku, 3hlj, 3hs4, 3iai, 3ibl, 3ibn, 3igp, 3k2f, 3k34, 3kig, 3kne, 3l14, 3lxe, 3m04, 3m14,
3m2n, 3m2x, 3m3x, 3m40, 3m5e, 3m67, 3m96, 3m98, 3mdz, 3mhc, 3mhi, 3mhl, 3mhm,
3mho, 3ml5, 3myq, 3nb5, 3ni5, 3oik, 3oil, 3oim, 3oku, 3okv, 3oy0, 3oyq, 3oys, 3p25, 3p29,
3p4v, 3p58, 3p5a, 3p5l, 3po6, 3po7, 3qyk, 3r16, 3r17, 3ryj, 3ryv, 3ryx, 3ryy, 3ryz, 3rz0,
3rz1, 3rz5, 3rz7, 3rz8, 3s71, 3s72, 3s73, 3s74, 3s8x, 3s9t, 3sap, 3sax, 3sbh, 3sbi, 3t5z, 3t82,
3t84, 3t85, 3ucj, 3v5g, 3v7x, 3vbd, 4a79, 4a7a, 4e3d, 4e3f

39 Ampicillin (DB00415)
1hk1, 1hk3, 1ikg, 1nx9, 1pw1, 2bx8, 2bxf, 2vue, 2xvq, 2xvu, 3a73, 3b9l, 3lu7, 3lu8, 3ndv,
3tdl, 4e99
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40 Penicillin V (DB00417)
1a8t, 1dd6, 1gm7, 1gm9, 1ikg, 1jje, 1jjt, 1kr3, 1l2s, 1pw1, 1pzo, 1pzp, 1xgi, 2aio, 2doo,
2r9x, 2wzz, 2z71, 3g2z, 3gqz, 3iof, 3iog, 3ly4, 3m8t, 3pag, 3q6x, 3sh7, 3sh8, 4ddy, 4de0,
4de1, 4de3, 4exs, 4ey2, 4eyb, 4eyf

41 Meticillin (DB01603)
1ikg, 1pw1, 3kp4,

42 Penicillin G (DB01053)
1gm7, 1ikg, 1pw1

43 Progesterone (DB00396)
1a28, 1e3k, 1l2i, 1l2j, 1mrq, 1n6a, 1qkm, 1r5k, 1sj0, 1sqn, 1sr7, 1u3r, 1u3s, 1uom, 1x76,
1x78, 1x7b, 1x7e, 1x7r, 1xp1, 1xp6, 1xp9, 1xpc, 1xqc, 1y9r, 1yim, 1yin, 1yy4, 1yye, 1zaf,
1zky, 2a3i, 2aa6, 2aax, 2ab2, 2aba, 2ayr, 2hzq, 2i0g, 2i0j, 2iog, 2iok, 2jfa, 2jj3, 2nv7, 2ouz,
2ovh, 2p15, 2pog, 2q70, 2qab, 2qe4, 2qgt, 2qgw, 2qr9, 2qtu, 2r6w, 2r6y, 2w8y, 2yat, 2yjd,
2z4b, 3cbp, 3d90, 3dt3, 3erd, 3ert, 3g8o, 3hlv, 3kba, 3l03, 3m58, 3oll, 3omo, 3omp, 3omq,
3os5, 3os9, 3osa, 3uu7, 3uua, 3uuc, 3uud, 3vhv, 3zr7, 3zra, 4a2j, 4apu, 4dma, 4e47

44 Testosterone (DB00624)
1afs, 1gs4, 1hk1, 1hk3, 1i38, 1j96, 1jtv, 1q13, 1t65, 1xnn, 1xow, 1z95, 2ax6, 2ax8, 2ax9,
2bx8, 2bxf, 2bxr, 2hvc, 2ihq, 2ipf, 2ipj, 2nw4, 2oz7, 2pnu, 2q7i, 2q7k, 2v5z, 2v60, 2v61,
2vue, 2vvl, 2xfn, 2xvq, 2xvu, 3a73, 3b5r, 3b65, 3b66, 3b67, 3b68, 3b9l, 3bur, 3g0w, 3l3x,
3lu7, 3lu8, 3po7, 3rlj, 3rll, 3tdl, 4a79, 4a7a, 4e99

45 Spironolactone (DB00421)
1gs4, 1i38, 1t65, 1xnn, 1xow, 1y9r, 1z95, 2a3i, 2aa6, 2aax, 2ab2, 2ax6, 2ax8, 2ax9, 2hvc,
2ihq, 2nw4, 2oz7, 2pnu, 2q7i, 2q7k, 3b5r, 3b65, 3b66, 3b67, 3b68, 3g0w, 3l3x, 3rlj, 3rll,
3vhv

46 Diazepam (DB00829)
1hk1, 1hk3, 2bx8, 2bxf, 2vue, 2xvq, 2xvu, 3a73, 3b9l, 3lu7, 3lu8, 3tdl, 4e99

47 Midazolam (DB00683)
3cv3, 3u5k
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48 Diclofenac (DB00586)
1db4, 1fdk, 1hk1, 1hk3, 1ht5, 1ict, 1ie4, 1jq8, 1kgj, 1kqu, 1kvo, 1oxl, 1pxx, 1q7a, 1skg,
1sn0, 1td7, 1tg4, 1tj9, 1tk4, 1tz8, 2arm, 2b04, 2b17, 2bx8, 2bxf, 2gns, 2oye, 2oyu, 2pws,
2qhw, 2que, 2qvd, 2vue, 2wek, 2wq5, 2xvq, 2xvu, 3a73, 3b9l, 3cv3, 3fo7, 3g8f, 3ib0, 3kk6,
3l30, 3ln0, 3ln1, 3lu7, 3lu8, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3nju, 3nt1, 3ntb, 3ntg, 3osh,
3q7d, 3qmo, 3rr3, 3tdl, 4cox, 4dbk, 4e99, 4fga, 4fm5, 4gld, 6cox

49 Mefenamic acid (DB00784)
1ht5, 1pxx, 2oye, 2oyu, 2xn3, 3kk6, 3ln0, 3ln1, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3nt1, 3ntb,
3ntg, 3q7d, 3qmo, 3r43, 3rr3, 4cox, 4fm5, 6cox

50 Meclofenamic acid (DB00939)
1ht5, 1pxx, 2oye, 2oyu, 2xn3, 3kk6, 3ln0, 3ln1, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3nt1, 3ntb,
3ntg, 3q7d, 3qmo, 3rr3, 4cox, 4fm5, 6cox

51 Methotrexate (DB00563)
1an5, 1axw, 1dr2, 1dr7, 1dyh, 1dyj, 1e26, 1f4e, 1f4f, 1f4g, 1hfr, 1jg0, 1jom, 1jtq, 1juj, 1jut,
1lce, 1ly3, 1ly4, 1mvt, 1ohk, 1p33, 1s3v, 1s3w, 1s3y, 1syn, 1tsd, 1tsn, 1u70, 1u71, 1vzc,
2ano, 2bla, 2cd2, 2dhf, 2oip, 2qk8, 2tsr, 2vf0, 2w3a, 2w3b, 2w3m, 2w3v, 2w3w, 2w9g,
2w9s, 2zza, 3apy, 3b5b, 3b9h, 3bgx, 3bhl, 3bnz, 3byx, 3c06, 3cd2, 3clb, 3cse, 3d80, 3d84,
3dau, 3dga, 3e0b, 3eej, 3eek, 3eel, 3eem, 3eig, 3f0b, 3f0q, 3f0s, 3f0u, 3f0v, 3f0x, 3fl8, 3fl9,
3fq0, 3fqc, 3fqf, 3fqo, 3fqv, 3fqz, 3fra, 3frb, 3frd, 3frf, 3fsu, 3fy8, 3fy9, 3fyv, 3fyw, 3ghv,
3ghw, 3gi2, 3hbb, 3i8a, 3ia4, 3ijz, 3ik0, 3ik1, 3inv, 3irm, 3iro, 3ix9, 3jsu, 3jvx, 3jwf, 3jwk,
3k2h, 3k45, 3k47, 3kfy, 3kjs, 3m09, 3n2a, 3nrr, 3ntz, 3nu0, 3nxo, 3nxt, 3nxv, 3nxx, 3oaf,
3ob7, 3pyz, 3qfx, 3qg2, 3qgt, 3qj7, 3ql0, 3ql3, 3qlx, 3qly, 3qlz, 3r33, 3rg9, 3ro9, 3roa, 3s3v,
3s7a, 3s9u, 3sa1, 3sa2, 3sai, 3sgy, 3sh2, 3sqy, 3sr5, 3srr, 3srs, 3sru, 3srw, 3td8, 3tq8, 3tq9,
3tqb, 3um5, 3um6, 3um8, 4dfr, 4dq1, 4e5o, 4eb4, 4f2v, 4gev

52 Raltitrexed (DB00293)
1an5, 1axw, 1f4e, 1f4f, 1f4g, 1jg0, 1jtq, 1juj, 1jut, 1lce, 1syn, 1tsd, 1tsn, 1vzc, 2oip, 2tsr,
2vf0, 3b5b, 3b9h, 3bgx, 3bhl, 3bnz, 3byx, 3c06, 3clb, 3dga, 3hbb, 3ijz, 3ik0, 3ik1, 3inv,
3irm, 3iro, 3jsu, 3k2h, 3kjs, 3n2a, 3nrr, 3ob7, 3pyz, 3qg2, 3qgt, 3qj7, 3um5, 3um6, 3um8,
4dq1, 4e5o, 4eb4, 4f2v, 4gev

53 Clomipramine (DB01242)
18gs, 1aqv, 1hk1, 1hk3, 2bx8, 2bxf, 2pgt, 2q6h, 2vue, 2xvq, 2xvu, 3a73, 3b9l, 3csj, 3gss,
3gus, 3ie3, 3lu7, 3lu8, 3n9j, 3tdl, 4e99, 4pgt
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54 Imipramine (DB00458)
1gs4, 1i38, 1t65, 1xnn, 1xow, 1z95, 2ax6, 2ax8, 2ax9, 2hvc, 2ihq, 2nw4, 2oz7, 2pnu, 2q72,
2q7i, 2q7k, 2rh1, 3b5r, 3b65, 3b66, 3b67, 3b68, 3d4s, 3g0w, 3l3x, 3ny8, 3ny9, 3rlj, 3rll,
3uon

55 Desipramine (DB01151)
1gs4, 1i38, 1t65, 1xnn, 1xow, 1z95, 2ax6, 2ax8, 2ax9, 2hvc, 2ihq, 2nw4, 2oz7, 2pnu, 2q7i,
2q7k, 2qb4, 2rh1, 3b5r, 3b65, 3b66, 3b67, 3b68, 3d4s, 3g0w, 3l3x, 3ny8, 3ny9, 3rlj, 3rll,
3uon

56 Trimethoprim (DB00440)
1an5, 1axw, 1dr2, 1dr7, 1dyh, 1dyj, 1e26, 1f4e, 1f4f, 1f4g, 1hfr, 1jg0, 1jom, 1jtq, 1juj, 1jut,
1lce, 1ly3, 1ly4, 1mvt, 1ohk, 1s3v, 1s3w, 1s3y, 1syn, 1tsd, 1tsn, 1u70, 1u71, 1vzc, 2ano,
2bla, 2cd2, 2dhf, 2oip, 2qk8, 2tsr, 2vf0, 2w3a, 2w3b, 2w3m, 2w3v, 2w3w, 2w9g, 2w9s,
2zza, 3b5b, 3b9h, 3bgx, 3bhl, 3bnz, 3byx, 3c06, 3cd2, 3clb, 3cse, 3d80, 3d84, 3dau, 3dga,
3e0b, 3eej, 3eek, 3eel, 3eem, 3eig, 3f0b, 3f0q, 3f0s, 3f0u, 3f0v, 3f0x, 3fl8, 3fl9, 3fq0, 3fqc,
3fqf, 3fqo, 3fqv, 3fqz, 3fra, 3frb, 3frd, 3frf, 3fy8, 3fy9, 3fyv, 3fyw, 3ghv, 3ghw, 3gi2, 3hbb,
3i8a, 3ia4, 3ijz, 3ik0, 3ik1, 3inv, 3irm, 3iro, 3ix9, 3jsu, 3jvx, 3jwf, 3jwk, 3k2h, 3k45, 3k47,
3kfy, 3kjs, 3m09, 3nrr, 3ntz, 3nu0, 3nxo, 3nxt, 3nxv, 3nxx, 3oaf, 3ob7, 3qfx, 3qg2, 3qgt,
3qj7, 3ql0, 3ql3, 3qlx, 3qly, 3qlz, 3r33, 3rg9, 3ro9, 3roa, 3s3v, 3s7a, 3s9u, 3sa1, 3sa2, 3sai,
3sgy, 3sh2, 3sqy, 3sr5, 3srr, 3srs, 3sru, 3srw, 3td8, 3tq8, 3tq9, 3tqb, 3um5, 3um6, 3um8,
4dfr, 4dq1, 4e5o, 4eb4, 4f2v, 4gev

57 Trimetrexate (DB01157)
1dr2, 1dr7, 1dyh, 1dyj, 1e26, 1hfr, 1jom, 1ly3, 1ly4, 1mvt, 1ohk, 1s3v, 1s3w, 1s3y, 1u70,
1u71, 2ano, 2bla, 2cd2, 2dhf, 2oip, 2qk8, 2w3a, 2w3b, 2w3m, 2w3v, 2w3w, 2w9g, 2w9s,
2zza, 3cd2, 3clb, 3cse, 3d80, 3d84, 3dau, 3dga, 3e0b, 3eej, 3eek, 3eel, 3eem, 3eig, 3f0b,
3f0q, 3f0s, 3f0u, 3f0v, 3f0x, 3fl8, 3fl9, 3fq0, 3fqc, 3fqf, 3fqo, 3fqv, 3fqz, 3fra, 3frb, 3frd,
3frf, 3fy8, 3fy9, 3fyv, 3fyw, 3ghv, 3ghw, 3gi2, 3hbb, 3i8a, 3ia4, 3inv, 3irm, 3iro, 3ix9, 3jsu,
3jvx, 3jwf, 3jwk, 3k45, 3k47, 3kfy, 3kjs, 3m09, 3ntz, 3nu0, 3nxo, 3nxt, 3nxv, 3nxx, 3oaf,
3qfx, 3qg2, 3qgt, 3ql0, 3ql3, 3qlx, 3qly, 3qlz, 3r33, 3rg9, 3ro9, 3roa, 3s3v, 3s7a, 3s9u, 3sa1,
3sa2, 3sai, 3sgy, 3sh2, 3sqy, 3sr5, 3srr, 3srs, 3sru, 3srw, 3td8, 3tq8, 3tq9, 3tqb, 3um5,
3um6, 3um8, 4dfr

58 Dexamethasome (DB01234)
1m2z, 1nhz, 3bqd, 3cld, 3e7c, 3gn8, 3k22, 3k23, 3mnp, 3mzs, 3n9y, 3na0, 3na1
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E.2 True positive structures for the 72 ligands

59 Hydrocortisone (DB00741)
1m2z, 1nhz, 2vdy, 3bqd, 3cld, 3e7c, 3k22, 3k23

60 Fludrocortisone (DB00687)
1gs4, 1i38, 1m2z, 1nhz, 1t65, 1xnn, 1xow, 1y9r, 1z95, 2a3i, 2aa6, 2aax, 2ab2, 2ax6, 2ax8,
2ax9, 2hvc, 2ihq, 2nw4, 2oz7, 2pnu, 2q7i, 2q7k, 3b5r, 3b65, 3b66, 3b67, 3b68, 3bqd, 3cld,
3e7c, 3g0w, 3k22, 3k23, 3l3x, 3rlj, 3rll, 3vhv

61 Chlorpromazine (DB00477)
2rh1, 3apx, 3d4s, 3ny8, 3ny9, 4b0o

62 Trifluoperazine (DB00831)
1ctr, 1gs4, 1i38, 1lin, 1t65, 1wrk, 1xnn, 1xow, 1z95, 2ax6, 2ax8, 2ax9, 2e1q, 2e3t, 2hvc,
2ihq, 2nw4, 2oz7, 2pnu, 2q7i, 2q7k, 2rh1, 2vn9, 2wel, 3ax9, 3b5r, 3b65, 3b66, 3b67, 3b68,
3bdj, 3cv3, 3d4s, 3g0w, 3ko0, 3l3x, 3nvw, 3ny8, 3ny9, 3rlj, 3rll, 3rv5

63 Alogliptin (DB06203)
1rwq, 1wcy, 1x70, 2aj8, 2bgr, 2bub, 2buc, 2hha, 2i3z, 2i78, 2iit, 2iiv, 2jid, 2oae, 2oag, 2ogz,
2ole, 2onc, 2oph, 2oqi, 2qjr, 2qoe, 2qt9, 2qtb, 2rgu, 2rip, 3ccc, 3d4l, 3eio, 3f8s, 3g0b,
3g0c, 3g0d, 3g0g, 3h0c, 3hab, 3hac, 3kwf, 3kwj, 3o95, 3o9v, 3oc0, 3opm, 3qbj, 3sww,
3sx4, 3vjm, 4a5s

64 Linagliptin (DB08882)
1rwq, 1wcy, 1x70, 2aj8, 2bgr, 2bub, 2buc, 2hha, 2i3z, 2i78, 2iit, 2iiv, 2jid, 2oae, 2oag, 2ogz,
2ole, 2onc, 2oph, 2oqi, 2qjr, 2qoe, 2qt9, 2qtb, 2rgu, 2rip, 3ccc, 3d4l, 3eio, 3f8s, 3g0b,
3g0c, 3g0d, 3g0g, 3h0c, 3hab, 3hac, 3kwf, 3kwj, 3o95, 3o9v, 3oc0, 3opm, 3qbj, 3sww,
3sx4, 3vjm, 4a5s

65 Naproxene (DB00788)
1ht5, 1pxx, 2oye, 2oyu, 3cv3, 3kk6, 3ln0, 3ln1, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3nt1, 3ntb,
3ntg, 3q7d, 3qmo, 3r58, 3rr3, 3ufy, 4cox, 4fjp, 4fm5, 6cox

66 Nabumetone (DB00461)
1ht5, 1pxx, 2oye, 2oyu, 3kk6, 3ln0, 3ln1, 3mqe, 3n8w, 3n8x, 3n8y, 3n8z, 3nt1, 3ntb, 3ntg,
3ogw, 3q7d, 3ql6, 3qmo, 3rr3, 3taj, 4cox, 4fm5, 6cox
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E. Drugs/sc-PDB data set

67 Hydrochlorothiazide (DB00999)
1a42, 1bn1, 1bn3, 1bn4, 1bnn, 1bnq, 1bnt, 1bnu, 1bnv, 1bnw, 1cil, 1cim, 1cin, 1cnw, 1cnx,
1eou, 1g45, 1g48, 1g4o, 1g52, 1i8z, 1i90, 1i91, 1i9l, 1i9m, 1i9n, 1i9o, 1i9p, 1i9q, 1if7,
1if8, 1if9, 1kwq, 1okl, 1okm, 1okn, 1oq5, 1ttm, 1xpz, 1xq0, 1ze8, 2h15, 2hd6, 2hkk, 2hoc,
2nn7, 2nnv, 2pou, 2pow, 2q1q, 2qo8, 2wd2, 2weh, 2wej, 2x7s, 2x7t, 2x7u, 3b4f, 3bet, 3bl1,
3c7p, 3d8w, 3d9z, 3da2, 3dbu, 3dcc, 3dd8, 3eft, 3f4x, 3f7b, 3f8e, 3hku, 3hlj, 3hs4, 3iai,
3ibl, 3ibn, 3igp, 3ik6, 3k2f, 3k34, 3kig, 3kne, 3l14, 3lxe, 3m04, 3m14, 3m2n, 3m2x, 3m3x,
3m40, 3m5e, 3m67, 3m96, 3m98, 3mdz, 3mhc, 3mhi, 3mhl, 3mhm, 3mho, 3ml5, 3myq,
3nb5, 3ni5, 3oik, 3oil, 3oim, 3oku, 3okv, 3oy0, 3oyq, 3oys, 3p25, 3p29, 3p4v, 3p58, 3p5a,
3p5l, 3po6, 3qyk, 3r16, 3r17, 3ryj, 3ryv, 3ryx, 3ryy, 3ryz, 3rz0, 3rz1, 3rz5, 3rz7, 3rz8, 3s71,
3s72, 3s73, 3s74, 3s8x, 3s9t, 3sap, 3sax, 3sbh, 3sbi, 3t5z, 3t82, 3t84, 3t85, 3ucj, 3v5g,
3v7x, 3vbd, 4e3d, 4e3f

68 Hydroflumethiazide (DB00774)
1a42, 1bn1, 1bn3, 1bn4, 1bnn, 1bnq, 1bnt, 1bnu, 1bnv, 1bnw, 1cil, 1cim, 1cin, 1cnw, 1cnx,
1eou, 1g45, 1g48, 1g4o, 1g52, 1i8z, 1i90, 1i91, 1i9l, 1i9m, 1i9n, 1i9o, 1i9p, 1i9q, 1if7,
1if8, 1if9, 1kwq, 1okl, 1okm, 1okn, 1oq5, 1ttm, 1xpz, 1xq0, 1ze8, 2h15, 2hd6, 2hkk, 2hoc,
2nn7, 2nnv, 2pou, 2pow, 2q1q, 2qo8, 2wd2, 2weh, 2wej, 2x7s, 2x7t, 2x7u, 3b4f, 3bet, 3bl1,
3c7p, 3d8w, 3d9z, 3da2, 3dbu, 3dcc, 3dd8, 3eft, 3f4x, 3f7b, 3f8e, 3hku, 3hlj, 3hs4, 3iai,
3ibl, 3ibn, 3igp, 3ik6, 3k2f, 3k34, 3kig, 3kne, 3l14, 3lxe, 3m04, 3m14, 3m2n, 3m2x, 3m3x,
3m40, 3m5e, 3m67, 3m96, 3m98, 3mdz, 3mhc, 3mhi, 3mhl, 3mhm, 3mho, 3ml5, 3myq,
3nb5, 3ni5, 3oik, 3oil, 3oim, 3oku, 3okv, 3oy0, 3oyq, 3oys, 3p25, 3p29, 3p4v, 3p58, 3p5a,
3p5l, 3po6, 3qyk, 3r16, 3r17, 3ryj, 3ryv, 3ryx, 3ryy, 3ryz, 3rz0, 3rz1, 3rz5, 3rz7, 3rz8, 3s71,
3s72, 3s73, 3s74, 3s8x, 3s9t, 3sap, 3sax, 3sbh, 3sbi, 3t5z, 3t82, 3t84, 3t85, 3ucj, 3v5g,
3v7x, 3vbd, 4e3d, 4e3f

69 Sildenafil (DB00203)
1t9s, 1tbf, 1uho, 1xoz, 1xp0, 2h42, 2h44, 3bjc, 3dba, 3dy8, 3dyl, 3hqw, 3hqy, 3hqz, 3hr1,
3jsi, 3jsw, 3jwr, 3k3e, 3k3h, 3lxg, 3qi4, 3qpn, 3qpo, 3qpp, 3shy, 3shz, 3sie, 3sn7, 3sni, 3snl,
3tge, 3tgg, 3ui7, 3uuo, 4ael, 4ddl, 4dff

70 Vardenafil (DB00862)
1t9s, 1tbf, 1uho, 1xot, 1xoz, 1xp0, 2h42, 2h44, 3bjc, 3dba, 3dy8, 3dyl, 3hqw, 3hqy, 3hqz,
3hr1, 3jsi, 3jsw, 3jwr, 3k3e, 3k3h, 3lxg, 3qi4, 3qpn, 3qpo, 3qpp, 3shy, 3shz, 3sie, 3sn7, 3sni,
3snl, 3tge, 3tgg, 3ui7, 3uuo, 4ael, 4ddl, 4dff
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E.2 True positive structures for the 72 ligands

71 Ursodeoxycholic acid (DB01586)
1ihi, 1j96, 1lwi, 1s1p, 1s2c, 2hdj, 2ipj, 3h7r, 3h7u, 3o02, 3r43, 3r58, 3r6i, 3r7m, 3r8g, 3r8h,
3r94, 3ufy, 3ugr, 3uwe, 4dbs, 4dbu

72 Chenodeoxycholic acid (DB06777)
1ihi, 3bej, 3dct, 3dcu, 3fxv, 3hc5, 3l1b, 3o02, 3okh, 3oki, 3olf, 3omk, 3omm, 3oof, 3ook,
3p88, 3p89, 3rut, 3ruu
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F
Unwanted HET codes

The following HET codes are not used as reference ligands if the active site is determined
automatically by iRAISE. These molecules are cofactors or solution, buffer or crystallization
agents. Further, ion HET codes and HET codes of molecules which cannot be initialized
by NAOMI (due to covalently bound metals or elements not supported by NAOMI) are
contained in the ’unwanted HET codes’ set.

Ligand HET codes: 0HH, 10A, 12H, 12P, 13S, 140, 144, 15P, 16A, 16D, 192, 1AB,
1AC, 1AN, 1BO, 1BP, 1CB, 1CM, 1GN, 1LU, 1MA, 1MC, 1MR, 1MZ, 1PE, 1PG, 202,
20S, 217, 233, 24T, 25T, 26D, 2AC, 2AF, 2AP, 2BM, 2BR, 2CH, 2CM, 2EZ, 2FU, 2HA,
2HP, 2IB, 2IM, 2KT, 2ME, 2MG, 2MP, 2MZ, 2NO, 2OS, 2PA, 2PC, 2PE, 2PN, 2PO, 34A,
3AP, 3BB, 3BR, 3CH, 3CL, 3CN, 3EP, 3FA, 3GR, 3HL, 3MC, 3MF, 3MO, 3MP, 3MT,
3NP, 3OH, 3OL, 3PH, 3PO, 3PP, 3PY, 3TR, 4AP, 4AX, 4CB, 4HA, 4IP, 4MV, 4MZ, 4PA,
5AN, 5BR, 5IP, 5MC, 5MP, 5MU, 6NA, 6PC, 749, 7MG, 9CS, A2G, A3B, A48, A5P, A6P,
AAB, AAC, AAE, ABA, ABH, ABN, ABU, AC0, AC5, ACA, ACD, ACE, ACM, ACN, ACR,
ACT, ACY, ADA, ADE, ADM, ADP, AE3, AEM, AFB, AG2, AGA, AGU, AHG, AHI, AHR,
AI2, AIB, AIO, AJ3, AKB, AKR, ALA, ALG, ALQ, AMB, AMC, AML, AMT, AMV, ANL,
AOA, APB, ARE, ARF, ARS, ART, AS, AS2, ASN, ASP, AST, ATJ, ATO, ATQ, AZI, B2A,
B2F, B2I, B2V, BAL, BAM, BBU, BCD, BCT, BDB, BDD, BDP, BEM, BEN, BEO, BEQ,
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F. Unwanted HET codes

BET, BEZ, BGC, BGL, BGX, BH1, BHH, BHL, BIB, BJH, BJI, BJP, BLA, BLE, BLV, BLY,
BMA, BME, BME, BML, BMM, BMT, BNG, BNO, BNS, BNZ, BO3, BO4, BOC, BOG,
BOM, BOR, BPH, BR5, BRB, BRC, BRJ, BRP, BTB, BTL, BTN, BU1, BU2, BU3, BUA,
BUB, BUQ, BVC, BVF, BVG, BZB, BZF, BZI, BZP, C21, C2A, C2B, C2N, C8E, CA1,
CAB, CAC, CAD, CAM, CAN, CAP, CAQ, CAS, CAT, CCM, CCN, CCP, CDL, CE1, CE8,
CE9, CEF, CEJ, CEP, CEQ, CFA, CFQ, CFT, CGU, CH2, CHM, CHT, CHX, CIG, CIR, CIT,
CKP, CLB, CLD, CLL, CLX, CM6, CME, CMP, CMS, CMT, CNH, CNN, CO2, CO3, COI,
COM, CP, CP4, CPS, CRD, CRN, CRS, CRT, CSD, CSO, CSS, CSW, CTB, CTR, CTT,
CVB, CXB, CXE, CXF, CXL, CXM, CYC, CYH, CYI, CYS, CYT, D12, D1D, D2P, DA1,
DAL, DAO, DAS, DAV, DBP, DCE, DCY, DDQ, DEM, DEN, DEP, DER, DFP, DFX, DG6,
DGA, DGG, DGL, DGY, DHA, DHD, DHK, DHM, DHS, DIA, DIB, DIO, DLE, DM1, DMF,
DMG, DMN, DMR, DMS, DOD, DP3, DP4, DPE, DPF, DPJ, DPN, DPO, DPR, DRN,
DSG, DSN, DSS, DTD, DTH, DTI, DTL, DTO, DTT, DTU, DTV, DUC, DVA, DXE, DXX,
DZZ, EAP, EDO, EEE, EFS, EGC, EGD, ELA, EMM, ENC, EOH, EPE, EPO, ESA, ETA,
ETF, ETI, ETM, ETN, ETP, ETX, ETY, F09, F6P, FA1, FA6, FAC, FAG, FBA, FCA, FCB,
FCL, FCN, FFP, FLA, FLC, FLM, FMN, FMS, FMT, FNG, FOA, FOP, FOR, FPI, FPN,
FPO, FPR, FPY, FRU, FU2, FUC, FUM, FUX, FX3, G16, G1P, G3P, G4D, G4S, G6P, GAG,
GAI, GAL, GAQ, GAU, GB, GBD, GBL, GC4, GCO, GCU, GDM, GEG, GER, GG6, GLA,
GLC, GLL, GLN, GLO, GLR, GLS, GLU, GLV, GLY, GM1, GOA, GOL, GPM, GSC, GSH,
GUA, GVE, GVH, GYP, GZZ, H01, H02, H2O, H2S, H2U, H4B, HAE, HAI, HAV, HBA,
HBR, HBS, HCA, HCS, HDA, HDS, HE2, HE4, HED, HEQ, HEX, HEZ, HGU, HHO, HIO,
HIU, HLE, HLT, HMC, HMF, HMN, HOA, HOH, HOZ, HP6, HPA, HPH, HPN, HPY, HSE,
HSL, HSM, HSW, HT, HTO, HTS, HXA, HY1, HYA, HYF, HYP, I, I3P, I4P, IAP, IAS, IBO,
IBS, IBZ, ICN, ICP, ICT, IDH, IDM, IDR, IDS, IHG, IHP, ILE, IMD, IMR, IND, IOB, IOL,
IOM, IP5, IPA, IPH, IPM, IPU, ISP, ISU, ITU, IUR, IVA, IZC, JEF, KCX, KDF, KIV, KMT,
KOS, KPH, L1P, L2P, L3P, L4P, LAC, LAF, LAR, LAT, LBT, LCP, LDA, LDM, LDY, LEA,
LEN, LEU, LG3, LG4, LG5, LG6, LGV, LI1, LIO, LIS, LLP, LMT, LMU, LNK, LNL, LPC,
LPG, LTL, LVG, LXP, LYS, LYT, M1N, M1P, M2G, M2M, M6D, M6P, MAE, MAH, MAK,
MAL, MAN, MAS, MAV, MAW, MBD, MBN, MBR, MBT, MBV, MCR, MCT, MD2, MDD,
ME2, MEC, MED, MEE, MES, MET, MEV, MEZ, MFU, MG8, MGO, MGX, MHN, MHO,
MIC, MLA, MLE, MLI, MLM, MLP, MLR, MLT, MMA, MMP, MMQ, MMZ, MNA, MNC,
MOH, MOR, MPA, MPC, MPD, MPG, MPI, MPJ, MPO, MR3, MRC, MRD, MRY, MSE,
MSF, MSM, MTG, MTL, MUR, MVA, MVL, MXE, MYR, MYS, N2O, N2P, N8E, NAG,
NAK, NBE, NBF, NBN, NBT, NBU, NBZ, NCA, NCM, ND4, NDG, NEH, NEN, NEQ,
NET, NGA, NGS, NH2, NH3, NH4, NHE, NHV, NHY, NIO, NIS, NLE, NME, NMH, PGE,
, NO, NO2, NO3, NOE, NOY, NPB, NPN, NPY, NS1, NS5, NSM, NT, NTA, NTB, NTC,

214



NTJ, NTN, NVA, NVI, NXA, O, OAA, OC9, OCA, OCT, OCY, ODS, OMC, OMG, OPE,
ORN, OSM, OXD, OXE, OXL, OXM, OXN, OXP, OXQ, P1R, P2O, P33, P4C, P4G, P6G,
PAE, PAH, PAM, PBA, PBC, PBR, PCA, PCR, PCT, PCZ, PDO, PDT, PE3, PE4, PE5,
PE6, PE7, PE9, PEA, PED, PEG, PEL, PEO, PEU, PG0, PG3, PG4, PG5, PG6, PGA,
PGE, PGH, PGO, PGR, PH1, PHB, PHN, PHO, PHS, PHZ, PI, PID, PIH, PIM, PIN, PIP,
PIS, PLD, PLM, PLP, PMP, PNZ, PO2, PO4, POA, POL, PON, POP, PPB, PPF, PPI,
PPK, PPV, PRI, PRO, PS5, PSE, PSL, PSU, PTD, PTL, PTR, PUB, PUT, PXY, PY7,
PYC, PYD, PYE, PYF, PYG, PYL, PYM, PYQ, PYR, PYS, PYT, PYZ, PZO, QPS, QV4,
R5P, RAF, RCL, RCO, REA, RET, RGI, RIB, RIP, RNS, RNT, RPD, RPL, RUB, S0H, SAR,
SAT, SB1, SBD, SBE, SBL, SBO, SBT, SCC, SCH, SCN, SCS, SDS, SE, SE4, SEP, SER,
SES, SFO, SGL, SGM, SGN, SHF, SHO, SHV, SIA, SIF, SIN, SLE, SLF, SM2, SM3, SM4,
SMB, SMC, SO2, SO3, SO4, SO4, SOA, SOR, SPA, SPH, SPM, SPN, SPO, SQU, SRB,
SRD, SRT, SS1, SS2, STA, SUC, SUF, SUM, T1A, T42, TAM, TAR, TAS, TAU, TBU,
TC4, TCB, TCZ, TDA, TDR, TEO, TF4, TFA, TFB, THE, THJ, THP, THR, TLA, TMA,
TME, TMT, TMZ, TOU, TP5, TPO, TRA, TRC, TRD, TRE, TRI, TRS, TRT, TSM, TSZ,
TTN, TWT, TYI, TYS, TZC, TZE, TZL, TZZ, U10, UNA, UND, UNK, UPL, URA, URE,
URF, URP, UVW, V35, V36, VA1, VAL, VIG, VSO, VX, VXA, WBU, WZ1, WZ2, XAP,
XDL, XDN, XIF, XLS, XPE, XUL, XYD, XYH, XYL, XYP, XYS, YAN, YG, YRR, ASG,
DCL, DKA, MBG, MH6, PC1, PHQ, RAM, T32, 2LU, 3MG, 4SC, 6CT, 9MR, ACI, AGL,
B1F, B4G, BCG, BRM, BZO, CBI, CBM, CBX, CBZ, CEC, CH3, CM5, CMO, CRY, CYA,
DIS, DOM, DOX, DUM, EHN, EOX, ETD, ETO, FLO, FUB, FX1, G2I, GAC, GCM, GCS,
GLB, GLD, GS1, GTE, H1M, HP3, HPG, HS2, HYD, ILG, IOH, IPS, KDA, KDB, KDD,
KDE, KDR, KFG, KO2, KO4, MAB, MCB, MCE, MTO, MTT, NMO, NYT, OBD, OHE,
OMB, OME, OTE, OXA, OXO, OXY, OXZ, PAR, PER, PPM, PSS, PVL, QPU, SBU, SEO,
SFN, SGC, SOH, SOM, SUL, TMN, TPH, UNF, UNL, X4S, X5S, YT3.

Ion HET codes: 3CO, 4MO, 6MO, AG, AL, AR, AU, AU3, BA, BR, BR, CA, CD, CE,
CL, CMO, CO, CR, CS, CU, CU1, CYN, EU, EU3, F, FE, FE2, GA, GD, GD3, HDZ, HG,
HO, HO3, IOD, IR3, K, KR, LA, LI, LU, MG, MN, NA, NI, OS4, OXY, PB, PD, PER, PO3,
PR, PT, RB, SM, SR, SX, TB, TL, U1, VO4, W, XE, YB, YT3, ZN.

Non-NAOMI-conform HET codes: 6HE, 6WO, 7HE, A71, A72, AAS, AF3, ALF,
AMS, APW, AUC, B12, B69, B70, BCL, BF2, BPT, C1O, C2O, CFM, CFN, CFO, CLF,
CLN, CLO, CLP, CN1, CNB, CNF, CON, CUA, CUB, CUM, CUN, CUO, CUZ, DAZ, DEF,
DHE, DOZ, DRU, DTZ, DW2, DWC, EMC, EMT, F3S, F3S, FCO, FEA, FEL, FEO, FES,
FNE, FS1, FS2, FSO, HC0, HC1, HDD, HE6, HEC, HEG, HEM, HEV, HF3, HF5, HG2,
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F. Unwanted HET codes

HGB, HGI, HNI, IME, ISP, IUM, JM1, KEG, KYS, LCO, LPT, MAC, MAP, MBO, MF4,
MGF, MH2, MM4, MMC, MN3, MNH, MNR, MO, MO7, MOO, MOS, MP1, MTD, NCO,
NCP, NFE, NFO, NFR, NFS, OEC, OFO, OMO, OS, PBM, PC4, PCL, PEJ, PHF, PHG,
PMB, POR, R4A, R6A, RBU, REO, REP, RHX, RTA, RTB, RTC, SB, SEK, SF3, SF4,
SF4, SMO, SRM, TCN, U10, UNX, WCC, WO4, WO5, XCC, Y1, YBT.
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G
ROC curves for Drugs/sc-PDB enrichment

experiment

ROC curves for all 72 ligands of the Drugs/sc-PDB data set. The plots are shown separately
for the categories ’excellent’, ’good’, ’medium’ and ’bad’ enrichment.
Subsequently, the ROC curves of the clustered drugs of the Drugs/sc-PDB data set are
shown. For these, two ROC curves are shown in one diagram for each drug: One curve if
only the targets annotated in the DrugBank are considered as true targets for a drug and
another curve representing the case if the targets of one cluster are combined and counted
for all members of one cluster as true targets.
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G. ROC curves for Drugs/sc-PDB enrichment experiment

Figure G.1: ROC plots for 20 ligands categorized as ’excellent’. Thick blue lines show
the true positives found, if not all true positives were identified, a thin line is drawn from
the last found positive on assuming random distribution from there on. TP=Number of
true positives.
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Figure G.2: ROC plots for 20 ligands categorized as ’good’. Thick blue lines show the
true positives found, if not all true positives were identified, a thin line is drawn from the
last found positive on assuming random distribution from there on. TP=Number of true
positives.
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G. ROC curves for Drugs/sc-PDB enrichment experiment

Figure G.3: ROC plots for 21 ligands categorized as ’medium’. Thick blue lines show the
true positives found, if not all true positives were identified, a thin line is drawn from the
last found positive on assuming random distribution from there on. TP=Number of true
positives.
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Figure G.4: ROC plots for 11 ligands categorized as ’bad’. Thick blue lines show the
true positives found, if not all true positives were identified, a thin line is drawn from the
last found positive on assuming random distribution from there on. TP=Number of true
positives.
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G. ROC curves for Drugs/sc-PDB enrichment experiment

Figure G.5: ROC plots for drug clusters with three or more members. The blue line
shows the ROC curve with individual target annotation, the red line shows the ROC curve
if all targets of one clusters are combined as true targets. If only a red line is shown, then
the individual and the combined true target annotaion was identical.
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Figure G.6: ROC plots for drug clusters with two members. The blue line shows the
ROC curve with individual target annotation, the red line shows the ROC curve if all
targets of one clusters are combined as true targets. If only a red line is shown, then the
individual and the combined true target annotaion was identical.
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H
sc-PDB Diverse Set Results

List of ranks of the first true positive (TP) target for predictions of iRAISE on the 117
ligands of the sc-PDB Diverse Set.

Ligand HET code iRAISE-flex iRAISE-flex EC-TP iRAISE-crystal iRAISE-crystal EC-TP
61 79 8 6 6
115 287 287 1 1
215 80 33 2 2
356 299 299 1 1
501 111 111 1 1
669 258 258 1 1
760 76 76 75 75
783 2 2 1 1
792 7 7 1 1
839 2 2 1 1
905 6 6 1413 1413
961 4 2 1 1
984 55 55 2 2
20A 84 6 1 1
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H. sc-PDB Diverse Set Results

Ligand HET code iRAISE-flex iRAISE-flex EC-TP iRAISE-crystal iRAISE-crystal EC-TP
2IG 113 113 15 15
3B9 151 151 1 1
3CC 1 1 1 1
3LP 350 350 81 81
3QC 18 1 1 1
55V 2 2 1 1
5RM 4 4 12 4
6C3 25 25 10 8
87Y 2002 2002 1043 1043
A46 13 13 3 3
A80 2 1 1 1
AEE 218 1 2 2
AH1 1 1 1 1
AO5 108 108 1 1
AXX 39 4 1 1
AZZ 450 450 3 3
BAU 3 3 1 1
BFS 799 799 118 118
BHY 450 7 4 3
BIG 1090 19 1 1
BRZ 231 231 73 73
CBT 16 16 23 23
CEI 101 4 1 1
CEL 8 8 2 2
CIA 106 51 1 1
CMF 30 28 3 3
CRZ 5 5 6 2
CT5 9 4 57 4
D1L 130 130 1166 1166
DD2 2 2 1 1
DEO 1 1 1 1
DES 72 2 11 1
DEX 5 1 1 1
DZG 138 138 5 5
DZP 64 10 5 3
E4D 1 1 1 1
E89 1 1 1 1
EI1 32 6 11 2
EQI 34 34 27 27
ET 2 2 1 1
FR4 67 67 1 1
FSN 4 4 1 1
GB7 46 46 1 1
GNT 86 1 373 1
GRR 5 5 2 2
GVR 2 2 1 1
H11 8 8 64 64
H24 33 33 13 13
H7J 469 469 8 8
HA3 64 11 198 198
HEF 5 5 11 11
HM5 11 11 6 6
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Ligand HET code iRAISE flex iRAISE flex EC-TP iRAISE crystal iRAISE crystal EC-TP
I84 257 237 5 5
IAD 10 10 1 1
IC1 69 2 51 2
IMN 59 10 3 3
IMQ 6 6 1 1
IXM 2 2 2 2
LG7 46 5 14 2
LI9 4 4 1 1
LQQ 120 120 4 4
LS1 6 6 5 5
MC9 8 1 2 1
MD7 28 28 7 7
MTI 353 324 2 2
NDR 8 1 5 1
NGH 2848 2848 2844 2844
OA1 10 10 1 1
OEF 2 2 1 1
P1S 1448 1448 828 828
P1Z 83 83 1 1
P34 2 2 10 7
P4A 1048 8 129 3
PBF 725 652 32 32
PFP 9 8 5 3
PVB 51 3 3 1
R6C 5 5 33 33
R78 1 1 1 1
R88 53 53 1 1
ROF 13 13 2 2
RRC 2 2 5 1
RXC 869 869 1573 1573
S22 8 8 2 2
SAG 15 15 18 18
SB8 311 311 1 1
SCT 84 84 1 1
SHM 6 6 1 1
SLX 33 33 1 1
STC 140 140 102 102
T74 1123 4 1 1
TCD 352 1 2024 1
TDZ 99 1 6 6
TIM 78 11 1 1
TNK 2 2 1 1
TPR 130 130 39 39
TSX 3 3 1 1
VDN 39 39 1 1
VGA 210 210 1292 1292
VGB 394 11 1 1
VGG 1 1 1 1
VIB 18 18 326 326
XM5 7 7 10 10
ZMA 31 3 3 3
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