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Introduction

During the last decades, there have been some devastating fire incidents in pedestrian,
vehicular and train tunnels, e.g. in 1999 in the Mont Blanc road tunnel, in 2000 in the
tunnel of the Kaprun Gletscherbahn 2 or in 2003 in a subway station in Daegu in South
Korea [18], to mention just a few.

These fire disasters show the necessity to find a way to minimize security risks if not to
prevent these events altogether. Further research on these situations is highly demanded.

One possibility to find out more about security risks is to use a mathematical model
in order to predict the propagation of fires in a tunnel. Based on this model, one could
build up better safety arrangements like an additional ventilation, a sprinkler system or
an improved evacuation plan. This would permit an important improvement for new
tunnels as well as for existent ones [62].

A lot of different mathematical models are available to tackle this task. Essentially,
they can be classified in three categories, as stated in more detail in [53].

The first class contains empirical models based on algebraic relations to estimate the
critical velocity preventing smoke to move upstream against the hot air flow. But these
models are not able to determine the downstream movement of the smoke.

In contrast, the class of phenomenological models can describe up- and downstream
movements of the smoke. The idea of that class of models is to split the tunnel into
different zones and to describe the exchange of mass, momentum and energy at the zone
boundaries. This approach leads to a system of ordinary differential equations.

A third class of models uses time and space dependent fluid dynamical models, as e.g.
the Navier-Stokes equations, to describe the flow inside the tunnel. In recent years, this
approach has turned out to be the most sophisticated. In these models, the fire itself is
usually described as a prescribed heat source. The main drawback of the models of this
class is the high computational effort that is needed to compute a solution. Since the
time step in most explicit numerical schemes depends on the ratio of the velocity of the
flow and the speed of sound, called Mach number, it has to be chosen very small in this
particular application. A numerical method for these flows in the context of tunnel fires
was studied by Birken in his PhD thesis [6] in 2008 (see also [7]). Especially, the high
computational costs for low Mach number flows are discussed in his work.

In order to reduce the computational costs, Gasser and Struckmeier [49] proposed an
asymptotic approach based on the low Mach number of the involved flow in 2002. Their
ansatz simplifies the compressible Navier-Stokes equations by choosing an adequate time
and space scaling and performing a limit. This leads to a set of equations differing from
the incompressible Navier-Stokes equations due to the heat source. Another simplifi-
cation introduced by Gasser and Struckmeier concerns the geometry of the tunnels. A
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Introduction

one-dimensional model which reproduces the main features of the flow is obtained by an
integration over the cross-sectional area of the tunnel. Obviously, the shear flow orthog-
onal to the tunnel direction is neglected by this procedure. In [47], it was observed that
this model can be rewritten as an ODE coupled with the continuity equation for the
mass conservation. Based on this observation, the question of existence and uniqueness
of solutions of this model was investigated in 2006 by Gasser and Steinrück [48]. A
numerical study for this model was performed in [50].

An advantage of the one-dimensional model is that it can be expanded rather simply
to networks of tunnels as they occur very often in real applications. For example, most
subway networks consist of more than one tunnel and therefore, they have to be modelled
by several one-dimensional objects. The main goal of this work is to study this model
for the air flow in tunnels systems. Such a network can be described by an oriented
graph and the air flow on each edge of the graph can then be modelled by a system of
partial differential equations. These equations are coupled at the nodes of the graph
using physical principles in order to complete the model. The choice of the orientation
of the graph does not determine the direction of the flow. It merely represents the
positive direction of the flow. This expansion of the model to networks and a numerical
study can be found in the article [44] by Gasser and Kraft. Our work extends the
article by a derivation of the model from the three-dimensional Euler equations and by
a well-posedness analysis.

Moreover, our study is not restricted to the particular application of tunnel fires.
Indeed, we analyse the whole set of low Mach number models on networks which can be
written as

ρt + (uρ)x = 0

(ρu)t +
(
ρu2 + π

)
x

= −ζρα(u)u+ fρ

ux = q

(1)

on each edge of the graph. Here, ρ is the density, u is the velocity, π is the pressure, f is
an external force and ζ and α are friction parameters. A very important feature of this
model is that the space derivative of the velocity is given by the known energy source
q so that the unknown velocity reduces to a space-independent quantity. The coupling
at the nodes is formulated as algebraic constraints stating the conservation of the mass
and of the (internal) energy and as a heuristic principle describing the mixture of the
flow.

There are several other applications where models like (1) are used. For example,
similar models are proposed in [43] in the context of solar updraft towers and in [41]
to describe the flow in a chimney. Recently, an application of model (1) in the field of
nuclear reactors was presented by Penel et al. in [73]. For certain initial and boundary
conditions, they have proven the existence of solutions on a single edge for the case
without friction, i.e. for ζ = 0. Whereas the previous examples concern single gases,
there are also extensions of the low Mach number model (1) treating gas mixtures or gas
water mixtures. For example, this has been done in [45] by Gasser and Rybicki to model
an exhaust pipe. The same model was used in [46] to optimize the fuel combustion in
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order to heat up catalytic converters in exhaust systems of vehicles. Another example
modelling an energy tower was given by Bauer and Gasser [5]. Moreover, an overview of
the applications of the low Mach number model for vertical structures is given by Bauer
et al. [4].

As mentioned before, the extension of the equations to networks is a crucial point in
modelling low Mach number flows in tunnel systems. Since this approach provides a
rather simple and efficient method to study phenomena on complex geometries, such ex-
tensions of one-dimensional partial differential equations to graphs have been addressed
by many researchers during the last three decades. For example, this idea has been used
in the context of traffic flow [55, 42], gas flow in pipe lines [2] or river flow [29, 74].

In many cases these models consist of hyperbolic 2×2 systems. For these systems, the
question of the existence of solutions is partially answered since there are compatibility
conditions ensuring the local in time existence of solutions for initial conditions in a
neighbourhood of a subcritical steady state [21]. In that existence result, the restriction
to the subcritical case is essential since it prohibits the change of the direction of the
characteristics. A general review of the state of the art in theory and applications of
hyperbolic balance laws on networks is provided by Bressan et al. [17].

Another crucial point of the model (1) is the low Mach number itself. For non-network
models, the study of low Mach number flows started with the works of Ebin [38, 39] and
Klainerman and Majda [57, 58] and was continued by many others. The central point of
these works is the question whether one can well describe low Mach number flows with
incompressible equations. Those are the formal limit of the compressible equations.
For the isentropic equations without an energy source, this question is answered. In
1998, Lions and Nader [66] proved for periodic boundary conditions that solutions of the
compressible Navier-Stokes equations converge to solutions of the incompressible Navier-
Stokes equations as the density becomes constant and the Mach number converges to
zero. This result was extended to Dirichlet boundary conditions in 1999 by Desjardins
et al. [32]. A detailed introduction to low Mach number flows can be found in the mini
course [1] by Alazard.

While the isentropic case is well-understood, the non-isothermal and non-isentropic
case, that is needed in our application, is much more complex to handle. Due to the
presence of the energy source q in the low Mach number equations (1), the velocity u is
not divergence free and thus, the density ρ needs not to be constant. Therefore, even the
analysis of the existence of solutions of these formal limit equations is more complicated
since one has to take into account both, the continuity and the momentum equation.

In this thesis, we address that problem on a network. In particular, we will show
the local in time existence of solutions. Furthermore, for certain networks, including all
paths and all networks with at most one inner node, the global in time existence will be
proven.

An important step in the existence proofs consists of the analysis of the transport
equation

ρt + (Uρ)x + Cρ = f (2)

on (0, T ) × (0, 1) for a network with n edges. The coupling conditions of this equation
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can be expressed as a linear boundary operator mapping from the outflow part of the
boundary to the inflow part. We will prove the existence, uniqueness and stability of
solutions ρ ∈ C([0, T ], Lp((0, 1))n) for non-smooth velocities U = diag(u) with u ∈
L1((0, T ),W 1,1((0, 1))n) and ux ∈ L1((0, T ), L∞((0, 1))n) without any restrictions on
the sign of the velocity. Every change of the sign of the velocity implies a change of
the direction of a characteristic. This can lead to additional difficulties. Our results on
the transport equation are not only a step in the analysis of the model, in fact, they
are interesting themselves since such transport equations on networks occur in other
contexts as well. To the best of our knowledge, results like this have not been published
before.

Our proofs of the statements on the transport equation rely on the concept of the
renormalization property which was introduced in 1989 in a famous paper of Lions and
DiPerna [34] and which has gained a lot of attention over the last years. For an overview
on the property and some applications see e.g. [28]. In the original work, the velocity
field u was restricted to be tangential to the boundary of the domain. For non-tangential
velocity fields, the situation is more complex. One has to take into account boundary
conditions on the inflow part of the boundary. Boyer [13] has shown how to extend the
theory to this case in 2005. We will show that this approach is also well suited to study
the equations on a network.

Beside the analysis, the derivation of the low Mach number model is a main goal
of this thesis. To this aim, we present a non-standard but elegant motivation of the
one-dimensional Euler equations for non-straight tunnels with varying cross-sectional
areas based on a coordinate transform and on an asymptotic approach. A transform
of the three-dimensional Euler equations to the Frenet-Serret-frame, a local coordinate
frame attaching a tangential vector and two normal vectors of the tunnel to each point,
gives us the possibility to scale the tangential and normal components of the flow in
different ways. Neglecting lower order terms and averaging over the cross-sectional area
will complete the derivation of the section-averaged Euler equations.

This work is divided into five chapters. In the first chapter, we introduce some basic
concepts and notations from the graph theory, needed for the definition of the equations
on a network, and from the theory of functional analysis.

In Chapter 2, we present the low Mach number model on a network. First, we recall
the three-dimensional Navier-Stokes and Euler equations in order to use the above men-
tioned asymptotic approach to derive the one-dimensional Euler equations. Then, the
Euler equations are extended to networks, where the required coupling conditions are
again obtained by an asymptotic approach from the three-dimensional Euler equations.
Subsequently, the low Mach number limit is formally performed and the model is refor-
mulated as an ODE for the velocity, which is coupled with the continuity equation for
the density.

Chapter 3 deals with the study of the transport equation with coupled boundary con-
ditions. After a precise definition of the boundary operator, we recall the renormalization
property and prove the boundedness and uniqueness of the solutions before the contin-
uous dependence of the solution on the data is shown. At the end, the existence of a
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solution for general networks is constructively proven using the method of characteristics
and the continuous dependence on the data.

In the fourth chapter, we analyse the existence of solutions of general ODEs on a
network, which are coupled with a transport equation. To this aim, we first study the
local existence and uniqueness of solutions of ODEs on networks as a special class of
differential algebraic equations. Subsequently, the local in time existence of solutions of
the coupled equations is proven using the Schauder fixed point theorem. Furthermore,
the local solution is shown to be extendible to a global solution in case of the existence
of an energy functional. At the end of this chapter, such functionals are explicitly
constructed for certain networks including all networks with exactly one inner node and
all paths.

In the last chapter, the developed theory is applied to the low Mach number model,
introduced in Chapter 2. In particular, we show that the reformulation of the model as
a transport equation coupled with the ODE for the velocity is indeed equivalent to the
original asymptotic model and that there exists at least one solution of the model locally
in time. For the same networks as in the previous chapter, the solutions are proven to
exist globally in time.

A list of used symbols and a list of occurring linear spaces can be found at the end of
this work.
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1 Basics

1.1 Graph theory
We will start with a brief introduction to some basic graph theoretical concepts. More
detailed information can be found in fundamental books as e.g. [33] or [52]. We use the
same notation as in [33] to a large extend.

Definition 1.1. A graph is a pair G = (V, E) of sets such that E ⊂ V × V. The
elements of V are called vertices or nodes and the elements of E edges.

To avoid some notational problems, we will assume V∩E = ∅ during the whole thesis.
A vertex v ∈ V is called incident with an edge e ∈ E if v ∈ e. To simplify the notation,
we will shortly write vw = wv for an edge instead of {v,w}. Two vertices v,w ∈ V are
adjacent (or neighbours) if vw is an edge, i.e. vw ∈ E.

The vertex set of the graph G is denoted by V(G) and the edge set by E(G). Fur-
thermore, we write E(v) for the set of neighbours of a vertex v ∈ V. The number of
neighbours is called degree d(v) = |E(v)| of a vertex v ∈ V.

Definition 1.2. The pair G′ = (V′, E′) is a subgraph of the graph G = (V, E) if V′ ⊂ V
and E′ ⊂ E. We write G′ ⊂ G.

For a given graph G = (V, E) and any set of vertices U ⊂ V, we write G− U for the
subgraph with vertex set V \ U and all edges of G such that both ends are in V \ U.

For the study of differential equations on networks, we consider graphs with special
properties as e.g. connectivity which we will introduce on the following pages.

Definition 1.3. A non-empty graph P = (V, E) of the form

V = {x0, x1, . . . , xk}, E = {x0x1, x1x2, . . . , xk−2xk−1, xk−1xk}

with distinct vertices xi is called a path. We say the vertices x0 and xk are linked by P .

Definition 1.4. A non-empty graph G is connected if any two distinct vertices are
linked by a path in G.

Definition 1.5. A connected subgraph G′ of G is called maximal connected if there
exists no connected subgraph G′′ 6= G′ with G′ ⊂ G′′ ⊂ G.

Definition 1.6. A maximal connected subgraph of a graph G is called a component.

During the next chapters we assume graphs always to be connected. Additionally,
we need to fix the directions of the edges for our study. To this end, we introduce the
concepts of directed and oriented graphs.
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1 Basics

Definition 1.7. A directed graph is a pair (V, E) of disjoint sets together with two maps
init : E → V and ter : E → V which assigns to each edge e ∈ E an initial vertex (or tail)
init(e) and a terminal vertex (or head) ter(e).

This definition does not exclude loops or parallel edges since E is not necessarily a
subset of V×V. That is why we also need the notion of an orientation.

Definition 1.8. A directed graph D is called an orientation of an undirected graph G
if the vertex and the edge sets coincide, i.e. V(G) = V(D) and E(G) = E(D) and if
{init(e), ter(e)} = {x, y} for all edges e = xy ∈ E(D). Such graphs are called oriented
graphs.

Intuitively, each edge of an undirected graph is provided with a direction. In oriented
graphs, the set of neighbouring edges of a vertex v ∈ V can be divided into two parts,
the set of incoming edges E−(v) = {e| ter(e) = v} and the set of outgoing edges E+(v) =
{e| init(e) = v}.

Definition 1.9. An (oriented or unoriented) graph G = (V, E) together with a weight
function w : E → (0,∞) is called weighted (oriented or unoriented) graph.

In this thesis, we assume V = {v1, . . . , vm} to be a finite set and denote the elements
of E by e1, . . . , en. The structure of a graph can be represented by some matrices:

Definition 1.10.

• The incidence matrix B = (bij) ∈ {−1, 0, 1}m×n of an oriented graph is defined by

bij =


1 if init(ej) = vi

−1 if ter(ej) = vi

0 otherwise.

• The adjacency matrix A = (aij) ∈ {0, 1}m×m of a graph is defined by

aij =
{

1 if there exists an edge e = vivj ∈ E
0 otherwise.

• The weighted adjacency matrix Aw = (aij) ∈ [0,∞)m×m of a weighted oriented
graph is defined by

aij =
{
w(e) if there exists an edge e = vivj ∈ E
0 otherwise.

• The degree matrix D = (dij) ∈ Nm×m of a graph is defined by

dij =
{
d(vi) if i = j

0 otherwise.

2



1.1 Graph theory

• The weighted degree matrix Dw = (dij) ∈ [0,∞)m×m of a graph is defined by

dij =
{∑

e∈E(vi)w(e) if i = j

0 otherwise.

• The weight matrix W = (wij) ∈ [0,∞)n×n of a weighted graph is defined by

wij =
{
w(ei) if i = j

0 otherwise.

The (weighted) adjacency matrix is symmetric and the (weighted) degree matrix and
the weight matrix are in diagonal form.

Remark 1.11. The degree of a vertex vi can be determined from the rows of the incidence
matrix by d(vi) =

∑n
j=1 |bij |.

In our application, it is important to distinguish between nodes with degree one and
nodes with degree larger than one. For this reason, we introduce two submatrices of
the incidence matrix. The first one contains all rows of B corresponding to nodes with
degree greater than one. Therefore, let vi1 , . . . , vik be the nodes with degree d(vil) > 1
and define the matrix B>1 = (b>1

jl ) ∈ {−1, 0, 1}k×n by

b>1
jl =


1 if init(el) = vij
−1 if ter(el) = vij
0 otherwise.

(1.1)

In the same way, the second matrix corresponds to the nodes with degree one, i.e. for the
nodes vik+1 , . . . , vim with degree d(vil) = 1 the matrix B=1 = (b=1

jl ) ∈ {−1, 0, 1}(m−k)×n

is specified as

b=1
jl =


1 if init(el) = vij+k
−1 if ter(el) = vij+k
0 otherwise.

(1.2)

In the further course of this work, we use a special matrix, called Laplacian matrix,
which we will introduce in the next part where we also prove some of its properties.
Therefore, we need a fundamental characterization of the extremal eigenvalues of a
symmetric matrix using the Rayleigh quotient. The proof of the following theorem and
more details can be found e.g. in [56].

Theorem 1.12 (Rayleigh quotient). Let A ∈ Rm×m be a symmetric matrix. Define
the Rayleigh quotient for x 6= 0 as

R(x) = xTAx
xTx

3



1 Basics

and denote the minimal eigenvalue of A by λmin(A) and the maximal eigenvalue by
λmax(A). Then, it holds

λmin(A) = min
x∈Rn\{0}

R(x)

and
λmax(A) = max

x∈Rn\{0}
R(x).

Proof. See [56].

We will use this characterization to estimate the minimal and maximal eigenvalues of
some products of matrices:

Lemma 1.13. Le A ∈ Rk×n and B ∈ Rk×k be matrices where B is symmetric. Then,
for the minimal and maximal eigenvalues the inequalities

λmax(ATBA) ≤ λmax(ATA)λmax(B)
and

λmin(ATBA) ≥ λmin(ATA)λmin(B).

are valid.

Proof. Using twice the previous theorem, it holds for all x ∈ Rn \ {0}

xTATBAx ≤ λmax(B)xTATAx ≤ λmax(B)λmax(ATA)xTx

and hence

λmax(ATBA) = max
x∈Rn\{0}

xTATBAx
xTx

≤ λmax(B)λmax(ATA).

The inequality for the minimal eigenvalue follows by the same argument.

Definition 1.14. The Laplacian matrix L = (lij) ∈ Zm×m is defined by L = D − A
and the weighted Laplacian matrix Lw ∈ Rm×m by Lw = Dw −Aw.

Remark 1.15. To each unweighted graph G = (V, E), we can assign the trivial weight
function w : E → (0,∞) with w(e) = 1 such that the weighted and unweighted matrices
coincide. Thus, all proven statements for weighted graphs are also true for unweighted
graphs.

Lemma 1.16 (Laplacian matrix). Let Gw = (V, E, w) be a weighted graph and denote
by G = (V, E) the corresponding unweighted graph. Then, it holds:

1. The weighted Laplacian matrix can be decomposed into

Lw = BWBT

for any orientation of the graph.

4



1.1 Graph theory

2. The weighted Laplacian matrix is weakly diagonally dominant and positive semidef-
inite.

3. The dimension of the kernel of Lw is equal to the number of components.

4. If the graph is additionally connected, all principal submatrices of Lw are positive
definite, i.e. for each non-empty set of indices J ( {1, . . . ,m}, the submatrix LJw,
resulting from removing all columns and rows with indices in {1, . . . ,m} \ J of the
weighted Laplacian matrix Lw, is positive definite.

5. Let the graph again be connected and let wmin = mine∈E w(e) be the minimal weight
of an edge and J ( {1, . . . ,m} be a non-empty index set. The smallest eigenvalue
of the principal submatrix of the weighted Laplacian matrix can be bounded from
below by

λmin(LJw) ≥ wminλmin(LJ)

where LJ denotes the principal submatrix of the unweighted Laplacian matrix. Ad-
ditionally, the spectral norm of the inverse can be bounded from above by

∥∥∥∥(LJw)−1
∥∥∥∥

2
≤

∥∥∥∥(LJ)−1
∥∥∥∥

2
wmin

.

Proof. 1. Let the incidence matrix B describe any orientation of the graph Gw. Since in
each column of the incidence matrix B there is exactly one +1 and one −1, we conclude
for 1 ≤ i, j ≤ m

(
BWBT

)
ij

=
n∑
k=1

bikwkkbjk

=
{∑

e∈E(vi)w(e) if i = j

−w(e) if i 6= j and if there exists an edge e = vivj

= dij − aij
= (Lw)ij .

2. The weak diagonal dominance is clear since (Lw)ii = −
∑m
j=1
j 6=i

(Lw)ij , by definition.

The positive semidefiniteness follows directly from the decomposition Lw = BWBT

because W is positive definite.
3. For each component C ⊂ V define a vector xC ∈ Rm with

xCi =
{

1 if vi ∈ C
0 otherwise.

By construction, it holds BTxC = 0 and thus, it is also LwxC = BWBTxC = 0. Hence,
xC is an element of the kernel of the Laplacian and the dimension of the kernel is at

5
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least as large as the number of components. Let now be x ∈ ker Lw. Then, it follows

0 = xTLwx
= (BTx)TW(BTx)

and because of the positive definiteness of W it is BTx = 0. The only possibility for
this to be true is given by a vector x which is constant on the components of the graph.
This proves the statement.

4. Let PJ ∈ R|J |×m be the matrix resulting from the m×m identity matrix removing
all rows with indices not in J . Then, the principal submatrix can be written as

LJw = PJLw(PJ)T .

Left be x ∈ R|J |. Using the positive definiteness of W and the decomposition of state-
ment 1, we conclude

xTLJwx = xTPJLw(PJ)Tx
= xTPJBWBT (PJ)Tx

=
(
BT (PJ)Tx

)T
W
(
BT (PJ)Tx

)
≥ 0.

Now, let be xTLJwx = 0. We conclude BT (PJ)Tx = 0, i.e. (PJ)Tx ∈ ker BT from the
same computation as before

Since the graph is connected, the null space of the transposed incidence matrix is only
one-dimensional because it holds ker BT = span(1). Thus, there exists a constant c ∈ R
with

(PJ)Tx = c1.

By construction of the matrix PJ , there exists at least one row of (PJ)T which is zero.
Thus, it follows im((PJ)T ) ∩ span(1) = {0}, i.e. c = 0.

This yields x ∈ ker(PJ)T and, since the rank of (PJ)T is equal to |J |, it holds

ker(PJ)T = {0}.

Thus, we have proven the positive definiteness of the principal submatrix LJw.
5. To prove the last property, we use again the decomposition

LJw = PJLw
(
PJ
)T

= PJBWBT
(
PJ
)T

.

By Lemma 1.13 we conclude

λmin(LJw) = λmin

(
PJBWBT

(
PJ
)T)

≥ λmin(W)λmin

(
PJBBT

(
PJ
)T)

= wminλmin(LJ).
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1.2 Functional analysis

The statement for the spectral norm of the inverse follows directly since the norm of the
inverse of a symmetric positive definite matrix is given by the reciprocal of the smallest
eigenvalue, i.e. ∥∥∥(LJw)−1

∥∥∥
2

= 1
λmin(LJw) .

1.2 Functional analysis
In this second introductory section, we will provide some functional analytical concepts
and results, which will turn out to be useful in the course of this thesis. Most of the
results are stated without a proof but at least a reference is always named.

This section briefly deals with six different topics: We begin with the existence theory
of ordinary differential equations for discontinuous right-hand sides. Then, we recall
Grönwall’s inequality and the Schauder fixed point theorem. Afterwards, we shortly
discuss the continuity of matrix valued functions and their inverses. Thereafter, we
treat the concept of equi-integrability. The end of this section concerns a generalization
of the Radon-Riesz property to continuous functions with values in a uniformly convex
Banach space with a uniformly convex dual space. Since we did not find this useful
generalization in the literature, we will provide a proof of it.

As mentioned before, we want to consider ordinary differential equations

ẋ(t) = f(t, x(t)), x(t0) = x0 (1.3)

with a right-hand side f , which may be discontinuous in t. Therefore, we introduce the
concept of Carathéodory differential equations. Due to the discontinuity, the equations
(1.3) have to be formulated in an extended sense. We will recall a general and well-
known theorem on the existence and uniqueness of solutions of such equations. More
details can be found e.g. in [63] or [20]. In the following, we use the notation pri for the
projection on the i-th component.

Definition 1.17. Let D ⊂ R × Rn be an open set. A function f : D → Rn is called
Carathéodory-Lipschitz vector field if the following properties hold:

1. f is a Carathéodory mapping, i.e. f(t, x) is measurable in t for fixed x ∈ pr2D,
f(t, x) is continuous in x for almost all fixed t ∈ pr1D and f is locally integrable
bounded. This means that for any compact subset D0 ⊂ D there exist a function
m ∈ L1(pr1D0, [0,∞)) and a null subset I0 ⊂ pr1D0 such that

‖f(t, x)‖ ≤ m(t)

holds for all (t, x) ∈ D0 with t /∈ I0.

2. f is locally integrable Lipschitz with respect to the second variable. More precisely,
for each compact subset D0 ⊂ D there exist a function L ∈ L1(pr1D0, [0,∞)) and
a null subset I0 ⊂ pr1D0 with

‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖

7



1 Basics

for all (t, x), (t, y) ∈ D0 with t /∈ I0.

It is possible to prove the local existence and uniqueness of solutions of (1.3) for this
class of right-hand sides f :

Theorem 1.18 (Local existence for ODEs). Let D ⊂ R × Rn be an open set and
f : D → Rn a Carathéodory-Lipschitz vector field. Then, it holds:

1. For each (t0, x0) ∈ D, there exists a unique maximal (i.e. non-continuable) locally
absolutely continuous (i.e. absolutely continuous on each compact interval) solution
x(·; t0, x0) : I(t0, x0) ⊂ R→ Rn of the equation (1.3) in the sense

ẋ(t; t0, x0) = f(t, x(t; t0, x0))

for almost all t ∈ I(t0, x0) with

x(t0; t0, x0) = x0.

2. I(t0, x0) is an open interval containing t0, the domain Df = {(t, t0, x0)|(t0, x0) ∈
D, t ∈ I(t0, x0)} ⊂ R × D is an open subset and the mapping x : Df → Rn is
continuous.

3. The mapping x(t; t0, ·) is locally Lipschitz continuous and the mappings x(·; t0, x0)
and x(t; ·, x0) are locally absolutely continuous. Furthermore, they satisfy the in-
tegral equation

x(t; t0, x0) = x0 +
∫ t

t0
f(s, x(s; t0, x0))ds

for all (t, t0, x0) ∈ Df .

Proof. See e.g. [63].

The second topic in this section is Grönwall’s inequality. In the literature, there are
known various versions of this integral inequality. During this thesis, we will need a
quite general form allowing L1-functions on the right-hand side. For this reason, we will
provide a proof of it, although the inequality can be found in many textbooks (e.g. [15]
or [31]).

Lemma 1.19 (Gronwall’s inequality). Let y ∈ L∞((0, T )), g ∈ L1((0, T )) be non-
negative and h ∈ L1((0, T )) such that it is

y(t) ≤ h(t) +
∫ t

0
g(s)y(s)ds (1.4)

for almost all t ∈ (0, T ). Then, it holds

y(t) ≤ h(t) +
∫ t

0
h(s)g(s) exp

(∫ t

s
g(r)dr

)
ds

8



1.2 Functional analysis

for almost all t ∈ (0, T ).
If, in addition, the function h is non-decreasing, then it holds

y(t) ≤ h(t) exp
(∫ t

0
g(s)ds

)
.

Proof. This proof relies on the proof of a similar version of Grönwall’s inequality in [15].
We define the function

v(t) = exp
(
−
∫ t

0
g(s)ds

)∫ t

0
g(s)y(s)ds,

which belongs to W 1,1((0, T )). For almost all t ∈ (0, T ), it is

v′(t) = exp
(
−
∫ t

0
g(s)ds

)
g(t)

(
y(t)−

∫ t

0
g(s)y(s)ds

)
and thus, using the assumption g ≥ 0 and inequality (1.4) leads to

v′(t) ≤ exp
(
−
∫ t

0
g(s)ds

)
g(t)h(t).

With v(0) = 0 it follows

v(t) = v(0) +
∫ t

0
v′(s)ds

≤
∫ t

0
h(s)g(s) exp

(
−
∫ s

0
g(r)dr

)
ds

and hence, again with inequality (1.4), we end up with

y(t) ≤ h(t) +
∫ t

0
g(s)y(s)

= h(t) + v(t) exp
(∫ t

0
g(r)dr

)
≤ h(t) +

∫ t

0
h(s)g(s) exp

(
−
∫ s

0
g(r)dr

)
ds exp

(∫ t

0
g(r)dr

)
= h(t) +

∫ t

0
h(s)g(s) exp

(∫ t

s
g(r)dr

)
ds

for almost all t ∈ (0, T ).
If we do now additionally assume that h is non-decreasing, i.e. for almost all s < t it

holds h(s) ≤ h(t), then we conclude

y(t) ≤ h(t) +
∫ t

0
h(s)g(s) exp

(∫ t

s
g(r)dr

)
ds

≤ h(t) + h(t)
∫ t

0
g(s) exp

(∫ t

s
g(r)dr

)
ds

= h(t) + h(t)
[
− exp

(∫ t

s
g(r)dr

)]s=t
s=0

= h(t) exp
(∫ t

0
g(r)dr

)

9
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for almost all t ∈ (0, T ).

As a next topic, we introduce a very important tool for the proof of existence of
solutions of nonlinear partial differential equations: The Schauder fixed point theorem
ensures the existence of a fixed point of compact self-mappings on a Banach space. The
theorem was originally proven in 1930 by Schauder [76]. We need the notion of compact
mappings to formulate the result:

Definition 1.20. Let X and Y be normed vector spaces, let M be a subset of X and
let F : M → Y be a mapping. F is called a compact mapping if it is continuous and if
bounded subsets of M are mapped on relatively compact subsets of Y .

One can show the following result for these mappings.

Theorem 1.21 (Schauder fixed point theorem [76]). Let C 6= ∅ be a closed, convex
and bounded subset of a Banach space X and let F : C → C be a compact mapping.
Then, there exists at least one fixed point x ∈ C of F , i.e. there exists x ∈ C with
F (x) = x.

Proof. See e.g. [75].

The fourth part of this section deals with the regularity of matrix valued functions.
The precise statement, we will need later in this work, is that an invertible matrix A(v0)
is also invertible in a neighbourhood of v0 if the matrix-valued function A is continuous.
We will present a proof of this classical result.

Lemma 1.22 (Regularity and Continuity). Let U ⊂ Rn be an open subset and let
A ∈ C(U,Rn×n) be a matrix-valued function. Furthermore, let be v0 ∈ U such that
A(v0) is regular.

Then, the matrix A(v1) is also regular for all v1 ∈ U with ‖A−1(v0)‖‖A(v0)−A(v1)‖ <
1 and A−1 is continuous in v1.

Proof. We will use a Neumann series to construct the inverse. For details about this
kind of series see e.g. [82].

Let v, v0 ∈ U be given such that A(v0) is invertible and∥∥∥A−1(v0)
∥∥∥ ‖A(v0)−A(v)‖ < 1.

We write
A(v1) = A(v0)

(
Id−

(
Id−A(v0)−1A(v1)

))
.

The Neumann series
∑∞
k=0

(
Id−A(v0)−1A(v1)

)k converges since∥∥∥Id−A(v0)−1A(v1)
∥∥∥ ≤ ∥∥∥A(v0)−1

∥∥∥ ‖A(v0)−A(v1)‖ < 1

holds due to the assumption on v1. The limit of this series is equal to the inverse of the
matrix A(v0)−1A(v1) (see e.g. [82]), i.e. it holds

∞∑
k=0

(
Id−A(v0)−1A(v1)

)k
=
(
A(v0)−1A(v1)

)−1
,
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1.2 Functional analysis

which proves the invertibility of A(v1).
Furthermore, we observe that we find a neighbourhood V of v1, where the matrix

A(v) is regular. For v ∈ V , it holds∥∥∥A−1(v1)−A−1(v)
∥∥∥

=
∥∥∥A−1(v1) (A(v)−A(v1)) A−1(v)

∥∥∥
≤
∥∥∥A−1(v1)

∥∥∥ ‖A(v)−A(v1)‖
(∥∥∥A−1(v1)

∥∥∥+
∥∥∥A−1(v)−A−1(v1)

∥∥∥)

and hence, it follows

∥∥∥A−1(v1)−A−1(v)
∥∥∥ ≤ ‖A−1(v1)‖2‖A(v)−A(v1)‖

1− ‖A−1(v1)‖‖A(v1)−A(v)‖ (1.5)

for v ∈ U with ‖A−1(v1)‖‖A(v1) −A(v)‖ < 1. This estimate yields the continuity of
the inverse since A itself is continuous.

If the matrix-valued function is even Lipschitz continuous we can strengthen the result
to obtain also the Lipschitz continuity of the inverse matrix.

Corollary 1.23 (Lipschitz continuity). Additionally to the requirements of the pre-
vious lemma, let the matrix A(v) be locally Lipschitz continuous in v0 ∈ U . Then, the
inverse matrix is also locally Lipschitz continuous in v0.

Proof. The Lipschitz continuity can also be concluded from estimate (1.5).

As next step, we recall the concept of equi-integrability from the integration theory.
We refer to the textbook [3] of Bauer for a general introduction to the topic.

Definition 1.24. Let (Ω,A, µ) be a measure space. A set M of A-measurable functions
on Ω is called (µ-)equi-integrable if for every ε > 0 there exists a µ-integrable function
g = gε ≥ 0 on Ω such that every f ∈M satisfies∫

{|f |≥g}
|f |dµ ≤ ε.

A consequence of this definition is the following characterization of equi-integrable
sets, which will be important in our analysis during the following chapters. We will
often use the subsequent remark, in particular.

Theorem 1.25 (Equi-integrability [3]). Let (Ω,A, µ) be a σ-finite measure space
and let h ∈ L1(Ω) be a strictly positive function. Then, for any set M of A-measurable
functions on ω the following two statements are equivalent:

1. The set M is equi-integrable.

11
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2. The set M satisfies
sup
f∈M

∫
Ω
|f |dµ <∞

as well as the following: Given ε > 0 there exists δ > 0 such that it holds∫
A
hdµ ≤ δ ⇒

∫
A
|f |dµ ≤ ε (1.6)

for all A ∈ A and all f ∈M .

Proof. See e.g. [3].

Remark 1.26. For a finite measure, i.e. a measure with µ(Ω) <∞, one can choose h = 1
in the previous theorem. Then, the implication (1.6) simplifies to

µ(A) ≤ δ ⇒
∫
A
|f |dµ ≤ ε.

Important examples for equi-integrable sets are the convergent sequences in L1 as
stated in the next lemma.

Lemma 1.27. Every sequence (fk)k ⊂ L1(Ω) converging in the L1(Ω)-norm is equi-
integrable.

Proof. See e.g. [3].

To end this section, we present a result generalizing the Radon-Riesz property, which is
a useful tool in order to prove the strong convergence of a sequence. In certain Banach
spaces this property ensures the strong convergence of a weakly convergent sequence
xk ⇀ x, if the sequence of the norm ‖xk‖ is converging to ‖x‖. Details on this property
can be found e.g. in [67]. We generalize this concept to continuous functions with values
in a Banach space. To this end, we define the notion of uniform convexity first.

Definition 1.28. A normed vector space V is called uniformly convex if for all ε > 0
there exists δ > 0 such that for all x, y ∈ V with ‖x‖ = ‖y‖ ≤ 1 the following implication
is true:

‖x− y‖ ≥ ε⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

The proof of the desired generalization follows the same lines as the proof of the
original property. We begin with the following auxiliary lemma ensuring the existence
of a certain continuous function with values in the dual space.

Lemma 1.29. Let V be a Banach space with a uniformly convex dual space V ′ and let
be f ∈ C([0, T ], V ). Then, there exists for each ε > 0 a function ϕ ∈ C([0, T ], V ′) with
〈ϕ(t), f(t)〉 = ‖f(t)‖V and ‖ϕ(t)‖V ′ = 1 for all t with ‖f(t)‖V ≥ ε.

12
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Proof. Let be M = {t ∈ [0, T ]|‖f(t)‖V ≥ ε}. For each t ∈ M , we use the Hahn-
Banach theorem (see e.g. [82]) to find a vector ϕ(t) ∈ V ′ with 〈ϕ(t), f(t)〉 = ‖f(t)‖V
and ‖ϕ(t)‖V ′ = 1. We will show the continuity of ϕ on the closed set M . Afterwards,
Dugundji’s extension theorem [37] yields the existence of a continuous extension of ϕ on
[0, T ].

To show the continuity of ϕ on M with values in V ′, let be ε̃ > 0. We choose δ > 0
like in the Definition 1.28 of the uniform convexity of V ′. Because of the continuity of
f(t)
‖f(t)‖V with values in V , we find γ > 0 such that

∥∥∥∥ f(s)
‖f(s)‖V

− f(t)
‖f(t)‖V

∥∥∥∥
V

< 2δ

holds for all s, t ∈M with |s− t| < γ. Then, we compute∥∥∥∥ϕ(t) + ϕ(s)
2

∥∥∥∥
V ′

= 1
2 sup

v∈V
‖v‖≤1

|〈ϕ(t), v〉+ 〈ϕ(s), v〉|

≥ 1
2

∣∣∣∣〈ϕ(t), f(t)
2‖f(t)‖V

+ f(s)
2‖f(s)‖V

〉
+
〈
ϕ(s), f(t)

2‖f(t)‖V
+ f(s)

2‖f(s)‖V

〉∣∣∣∣
= 1

2

∣∣∣∣〈ϕ(t), f(t)〉
‖f(t)‖V

+ 〈ϕ(s), f(s)〉
‖f(s)‖V

+ 1
2

〈
ϕ(t), f(s)

‖f(s)‖V
− f(t)
‖f(t)‖V

〉
+1

2

〈
ϕ(s), f(t)

‖f(t)‖V
− f(s)
‖f(s)‖V

〉∣∣∣∣
≥ 1

2

(
2− 1

2

∣∣∣∣〈ϕ(t), f(s)
‖f(s)‖V

− f(t)
‖f(t)‖V

〉∣∣∣∣
−1

2

∣∣∣∣〈ϕ(s), f(t)
‖f(t)‖V

− f(s)
‖f(s)‖V

〉∣∣∣∣)
≥ 1− 1

2

∥∥∥∥ f(s)
‖f(s)‖V

− f(t)
‖f(t)‖V

∥∥∥∥
V

> 1− δ.

Using the uniform convexity of the dual space V ′ we conclude

‖ϕ(t)− ϕ(s)‖V ′ < ε̃,

which proves the desired continuity of ϕ.

With this preliminary result, we are able to prove the following generalization of the
Radon-Riesz property for uniformly convex Banach spaces with uniformly convex dual
spaces.

Lemma 1.30. Let V be a uniformly convex Banach space with a uniformly convex dual
space V ′. Let (fn)n ⊂ C([0, T ], V ) be a sequence and f ∈ C([0, T ], V ) a function. Let
the pair ((fn)n, f) fulfil the following two properties:

13
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1. ‖fn(t)‖V converges uniformly to ‖f(t)‖V and

2. 〈ϕ(t), fn(t)〉 converges uniformly to 〈ϕ(t), f(t)〉 for all ϕ ∈ C([0, T ], V ′).

Then, fn converges to f in the norm of C([0, T ], V ), i.e.

lim
n→∞

sup
t∈[0,T ]

‖fn(t)− f(t)‖V = 0.

Proof. If f(t) = 0 for all t, the statement is clearly true due to the uniform convergence
of the norm. Thus, let be f 6= 0. We suppose that fn does not converge uniformly to
f in order to prove the lemma by contradiction. Then, there exists a subsequence, also
denoted by (fn)n, such that there is an ε > 0 with

‖fn − f‖C([0,T ],V ) ≥ ε (1.7)

for all n. We choose δ ∈ (0, 1] as in the Definition 1.28 of the uniform convex Banach
space V for ε̃ = ε

2‖f‖C([0,T ],V )
and N1 such that it holds

∣∣∣‖fn(t)‖V − ‖f(t)‖V
∣∣∣ < εδ

3
for all t and all n ≥ N1. Using Lemma 1.29, we find a function ϕ ∈ C([0, T ], V ′) with
‖ϕ(t)‖V ′ = 1 and 〈ϕ(t), f(t)〉 = ‖f(t)‖V for all t ∈ [0, T ] with ‖f(t)‖V ≥ ε

3 .
Because of the uniform convergence of 〈ϕ(t), fn(t)〉, there is also an integer N2 such

that it holds
sup
t∈[0,T ]

∣∣∣∣〈ϕ(t), fn(t)− f(t)〉
2

∣∣∣∣ < δ2ε

3
for all n ≥ N2.

Due to (1.7), we can choose t̄ with∥∥fN (t̄)− f(t̄)
∥∥
V ≥ ε

for N = max(N1, N2). Now, it follows ‖f(t̄)‖V > ε
3 , since if we suppose ‖f(t̄)‖V ≤ ε

3 ,
then we get the contradiction

‖fN (t̄)− f(t̄)‖V ≤ ‖fN (t̄)‖V + ‖f(t̄)‖V

≤
∣∣∣‖fN (t̄)‖V − ‖f(t̄)‖V

∣∣∣+ 2‖f(t̄)‖V

<
δε

3 + 2ε
3

≤ ε.

From ‖f(t̄)‖V > ε
3 we conclude

‖fN (t̄)‖V ≤
∣∣∣‖fN (t̄)‖V − ‖f(t̄)‖V

∣∣∣+ ‖f(t̄)‖V

≤ δε

3 + ‖f(t̄)‖V

< (1 + δ)‖f(t̄)‖V

14



1.2 Functional analysis

and furthermore, we compute∥∥∥∥∥ fN (t̄)
(1 + δ)‖f(t̄)‖

− f(t̄)
(1 + δ)‖f(t̄)‖

∥∥∥∥∥
V

≥ ε

(1 + δ)‖f(t̄)‖V
≥ ε

2‖f‖C([0,T ]),V )
.

Therefore, we can use the uniform convexity of V to conclude∣∣∣∣∣〈ϕ(t̄), fN (t̄) + f(t̄)〉
2

∣∣∣∣∣ ≤ ‖fN (t̄) + f(t̄)‖V
2

= (1 + δ)‖f(t̄)‖V

∥∥∥∥∥
fN (t̄)

(1+δ)‖f(t̄)‖ + f(t̄)
(1+δ)‖f(t̄)‖

2

∥∥∥∥∥
V

≤ ‖f(t̄)‖V (1 + δ)(1− δ)
= ‖f(t̄)‖V (1− δ2).

Altogether, this yields the contradiction

‖f(t̄)‖V = 〈ϕ(t̄), f(t̄)〉

≤
∣∣∣∣∣〈ϕ(t̄), fN (t̄) + f(t̄)〉

2 − 〈ϕ(t̄), f(t̄)〉
∣∣∣∣∣+

∣∣∣∣∣〈ϕ(t̄), fN (t̄) + f(t̄)〉
2

∣∣∣∣∣
<
δ2ε

3 + ‖f(t̄)‖V (1− δ2)

< ‖f(t̄)‖V δ2 + ‖f(t̄)‖V (1− δ2)
= ‖f(t̄)‖V .

Later, we want to apply this result to functions with values in some Lebesgue spaces.
Therefore, we recall that all Lp-spaces for p ∈ (1,∞) are uniformly convex.

Lemma 1.31. Let (Ω,A, µ) be a measure space and let be p ∈ (1,∞). Then, the Banach
space Lp(Ω) is uniformly convex.

Proof. See e.g. [67].

15
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In this chapter we will introduce the low Mach number model we want to study in this
thesis. Although there are a lot of textbooks dealing with the Navier-Stokes or Euler
equations, we will give an introduction to this topic. In the first section, we briefly recall
the derivation of the three-dimensional equations starting from the physical conservation
principles using Reynold’s transport theorem. The second section deals with the one-
dimensional case. Our procedure in this section differs from most textbooks since we
derive the one-dimensional equations from the three-dimensional equations using an
asymptotic approach. In Section 2.3 we introduce the concept of partial differential
equations on networks and we derive coupling conditions by another scaling of the three-
dimensional Euler equations. The fourth section describes the above-mentioned low
Mach number model and in the last section we reformulate the model formally such that
it becomes more convenient for the further analysis.

2.1 Fundamental fluid dynamics

In the beginning of this section, we want to shortly recapitulate the derivation of the
Euler and Navier-Stokes equations. More details on the derivation can be found e.g.
in the books of Lions [65], Chorin and Marsden [19] or Boyer and Fabrie [15]. In this
section we follow the latter to a large extend. We first introduce the notation of fluid
elements together with Reynolds’ transport theorem to formulate, in a second step, the
physical conservation laws for the mass, the momentum and the energy. For simplicity
we postpone the study of boundary conditions by initially considering the whole space
RN as domain.

We assume the fluid to be a continuous medium, i.e. we can describe all flow quan-
tities such as the density, momentum, energy, temperature and pressure by functions
depending on space and time without considering the single molecules. Let ω ⊂ RN be
the volume filled by the fluid at the initial time t0 = 0 and let the movement of the fluid
be described by a family of injective maps (ϕt)t : ω → RN such that for any set Ω0 ⊂ ω
the set ϕt(Ω0) contains at time t the same molecules as the set Ω0 at time t = 0. The
family ϕ = (ϕt)t is called flow.

Definition 2.1. We call a family of sets (Ωt)t with Ωt = ϕ(Ω0) fluid element. If Ω0
consists only of a single element x0 it is called fluid particle.

Definition 2.2. The mapping t 7→ X(t, t0, x0) = ϕt
(
ϕ−1
t0 ({x0})

)
, describing the move-

ment of a particle, which was at position x0 at time t0, is called trajectory.
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Theorem 2.3 (Reynolds’ transport theorem). Let ϕ be a flow such that for each t
the map ϕt is a smooth diffeomorphism and such that t 7→ ϕt is smooth. Then, for any
function f ∈ C1(R × RN ) and any t the change of f integrated over a fluid element is
given by

d
dt

∫
Ωt
f(t, x)dx =

∫
Ωt

(
∂f

∂t
+ div(fu)

)
dx

where u is the velocity field defined by

u(t, x) = ∂X(s, t, x)
∂s

∣∣∣∣
s=t

.

Proof. See e.g. [15].

With this theorem we can easily state the physical conservation laws for mass, mo-
mentum and energy:

Mass conservation: Because of the continuous medium assumption, there exists a den-
sity function ρ(t, x) such that for all sets Ω ⊂ RN the integral∫

Ω
ρ(t, x)dx

is equal to the mass contained in Ω at time t. Let (Ωt)t be an arbitrary fluid
element and assume there is no mass source or sink in the domain, then the mass
contained in the fluid element does not change in time, i.e.

d
dt

∫
Ωt
ρ(t, x)dx = 0.

Thus, with Reynolds’ transport theorem it holds∫
Ωt

(
∂ρ

∂t
+ div(ρu)

)
dx = 0

and, since the fluid element is arbitrary, we also have

ρt + div(ρu) = 0, (2.1)

where we used the short notation ρt = ∂ρ
∂t for the partial derivative. This equation

is called continuity equation.

Momentum balance: To derive the momentum equation we use Newton’s second law
of motion: The change of linear momentum is equal to the sum of all acting forces.
The total linear momentum in a fluid element (Ωt)t at time t is given by∫

Ωt
ρudx.
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2.1 Fundamental fluid dynamics

The acting forces on this fluid element consist of two parts: The volume forces∫
Ωt
ρfdx,

where f denotes the mass density of forces, and the surface forces∫
∂Ωt

τ .νdω,

acting on the boundary ∂Ωt of the fluid element. Here, ν denotes the outer unit
normal vector. The stress tensor τ also consists of two parts, one corresponding
to compression and the other to viscous effects. The first part is given by the
hydrostatic pressure −pId and in the case of Newtonian fluids the second part can
be expressed by

T = 2µD(u) + λdiv(u)Id,

where D(u) = 1
2(∇u+∇uT ) denotes the strain rate tensor. The coefficient µ > 0 is

called dynamic viscosity and defines together with λ the bulk viscosity 2
3µ+λ ≥ 0.

Now, Newton’s second law of motion implies together with Stokes’ formula

d
dt

∫
Ωt
ρudx =

∫
Ωt
ρfdx+

∫
∂Ωt

(−pId + T ) .νdω

=
∫

Ωt
ρfdx+

∫
Ωt
∇ (−p+ (λ+ µ) div(u)) + µ∆udx.

Thus, again using Reynold’s transport theorem, we end up with the vector-valued
momentum equation

(ρu)t + div(ρu⊗ u)− µ∆u +∇ (p− (λ+ µ) div(u)) = ρf . (2.2)

Energy balance: The first law of thermodynamics states that the total energy of an
isolated closed system is constant, i.e. the change of total energy in a fluid element
(Ωt)t at time t is equal to the sum of the work W done by the forces and the heat
exchange rate Q with the exterior. The total energy in Ωt can be expressed as the
sum of internal and kinetic energy∫

Ωt
ρ

(
e+ 1

2 |u|
2
)

dx.

Here, e denotes the specific internal energy. The work W consists of two parts

W =
∫

Ωt
ρfTudx+

∫
∂Ωt

uT (τ .ν)dω,

where the first part corresponds to the work done by the volume forces and the
second one to the work done by the surface forces. The heat exchange rate Q is
also built from two summands

Q =
∫

Ωt
qdx−

∫
∂Ωt

Φ(t, ω,ν)Tνdω.
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Here, the first summand describes the heat sources and sinks in the fluid element
and the second one describes the heat transfer through the boundary. The last
term can be modelled with Fourier’s law by

Φ = −k∇T,

which states that the heat transfer is proportional to the change of the temperature
with thermal conductivity k. Thus, the first law of thermodynamics and Reynolds’
transport theorem yield

d
dt

∫
Ωt
ρ

(
e+ 1

2 |u|
2
)

dx =
∫

Ωt

[
ρ

(
e+ 1

2 |u|
2
)]

t
+ div

(
ρ

(
e+ 1

2 |u|
2
)

u
)

dx

=
∫

Ωt
ρfTu + qdx+

∫
∂Ωt

u · (−pId + T )ν − ΦTνdω

=
∫

Ωt
ρfTu + q − div(pu) + div(T Tu) + div(k∇T )dx.

Since the fluid element was arbitrary we receive the energy equation[
ρ

(
e+ 1

2 |u|
2
)]

t
+ div

([
ρ

(
e+ 1

2 |u|
2
)

+ p

]
u
)
− div (T u)− div(k∇T )

= ρfTu + q.

(2.3)

The three equations (2.1), (2.2) and (2.3) contain five unknown variables. Therefore,
we need a closure relation. From the theory of thermodynamics it is known that a
thermodynamical state is fully determined by the equation of state if two out of the four
state variables density ρ, pressure p, internal energy e and temperature T are known.
As equation of state we will use the ideal gas law

p = RρT and e = cvT,

where R > 0 is the specific gas constant and cv > 0 is the specific heat capacity at
constant volume. The law can be deduced from the kinetic theory of gases and it is
a good approximation for the behaviour of many real gases. Moreover, we denote by
cp = R+ cv the specific heat capacity at constant pressure and by γ = cp

cv
the adiabatic

exponent of the gas. With the kinetic theory of gases one can develop a relation between
the degrees of freedom f of a gas and its adiabatic exponent

γ = 1 + 2
f
.

Thus, for a diatomic gas like oxygen it holds

γ = 7
5 ,

since it has three translational and two rotational degrees of freedom.
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2.2 Section-averaged Euler equations

To end this section we summarize the derived Navier-Stokes equations with heat source
q and volume force f :

ρt + div(ρu) = 0
(ρu)t + div(ρu⊗ u)− µ∆u +∇ (p− (λ+ µ) div(u)) = ρf[

ρ

(
e+ 1

2 |u|
2
)]

t
+ div

([
ρ

(
e+ 1

2 |u|
2
)

+ p

]
u
)
− div (T u)− div (k∇T ) = ρfTu + q

p = RρT

e = cvT.

If we plug in the equation of state in the third equation we find[
p

γ − 1 + 1
2ρ|u|

2
]
t

+ div
([1

2ρ|u|
2 + γ

γ − 1p
]

u
)
− div(T u)− div(k∇T ) = ρfTu + q.

Setting λ = µ = k = 0 leads to the interesting special case of the Euler equations:

ρt + div(ρu) = 0
(ρu)t + div(ρu⊗ u) +∇p = ρf[

p

γ − 1 + 1
2ρ|u|

2
]
t

+ div
([1

2ρ|u|
2 + γ

γ − 1p
]

u
)

= ρfTu + q.

(2.4)

Both models have to be completed by suitable initial and boundary conditions.

2.2 Section-averaged Euler equations
As in our application we study the flow along an object which is almost one-dimensional,
i.e. it is very long compared to its diameter. For example, we think of a tunnel. Therefore,
in this section we average the three-dimensional Euler equations (2.4) over the cross-
sectional area to receive a one-dimensional model which keeps the main characteristics
of the flow. This one-dimensional object can be described by a smooth curve, which is
defined as the geometric centers of the areas orthogonal to the curve. Of course, such a
curve needs not to be straight. Therefore, we will use a local coordinate system where one
coordinate is always in tangential direction to the curve. Namely, we will consider the
Frenet-Serret-frame and transform the Euler equations in this new coordinate system.
During this transform we scale the tangential and normal components differently since
the main velocity is in tangential direction. By neglecting small terms and averaging
over the cross-sectional area we end up with a set of one-dimensional equations. This
procedure is very common, e.g. in the context of the shallow water equations it is used
frequently [12, 30, 51]. The use of the Frenet-Serret-frame originates from the works of
Bourdarias et al. [12] about water pipes and of Bouchut et al. [10, 11] about avalanches.

The above described procedure is different from the usual motivation of the one-
dimensional Euler equations. Often the flow is assumed to be one-dimensional and the
equations are derived from the physical conservation principles. One advantage of our
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approach is that we do not have to assume the normal velocity to be zero. Instead we
assume the normal velocity to be of another order of magnitude than the tangential
velocity as it can be observed in many situations. Furthermore, we do not need to
restrict to straight objects. As we will see, the procedure works as long the curvature is
not too big.

2.2.1 The geometry of a tunnel

To begin with, we introduce the local coordinate frame and discuss some of its properties.
More details can be found in Spivak’s textbook [78]. Let c : [0, L] → R3 be a smooth
regular curve parametrized by its arc length. As usual, the unit tangent vector of the
curve at the point c(x) is given by

T(x) = d
dxc(x) = c′(x).

The curvature is defined as κ(x) = ‖c′′(x)‖ = ‖T′(x)‖ and describes the acceleration
which is needed to move a particle along the curve with unit speed. If the curvature
does not vanish, the direction of the acceleration is the normal vector

N(x) = 1
κ(x)T′(x) = T′(x)

‖T′(x)‖ .

Naturally, the binormal vector can be defined as

B(x) = T(x)×N(x).

The speed of the rotation of the binormal vector is measured by the torsion τ(x) =
−N(x)TB′(x). The vectors T, N and B provide an orthonormal coordinate frame at
each point.

Another way to obtain the same coordinate frame without the restriction of a non-
vanishing curvature is to use the Frenet-Serret formulas: Assume the starting point c0 ∈
R3, the continuous curvature κ : [0, L]→ [0,∞) and the continuous torsion τ : [0, L]→ R
are known. Choose an orthonormal, right-handed initial coordinate frame T0, N0 and
B0. Then, the Frenet-Serret frame is given as the solution of the ODE system

d
dxT = κN

d
dxN = −κT + τB

d
dxB = −τN

with initial conditions

T(0) = T0, N(0) = N0 and B(0) = B0.
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2.2 Section-averaged Euler equations

T(x)
N(x)

B(x)

Ãx

c(x)

Ω̃

Figure 2.1: The curve c specifies the domain Ω̃ and the local coordinate
frame (TNB).

Furthermore, the curve c is uniquely determined by

c(x) = c0 +
∫ x

0
T(s)ds.

In a more compact way the system can be written in a matrix formulation as

d
dx
(
T N B

)
=
(
T N B

)0 −κ 0
κ 0 −τ
0 τ 0

 =
(
T N B

)
K.

Both approaches can be shown to be equivalent for non-degenerated curves (see [78]).
As a next step, we need to specify the problem setting. With the help of the local

coordinate frame, we can define the computational domain (see Figure 2.1). Let L
be the length of the tunnel and c : [0, L] → R3 a smooth regular curve with attached
Frenet-Serret coordinate frame. For each x ∈ [0, L] let Ãx ⊂ R2 be a bounded convex
domain with geometric center (0, 0)T and with uniform bounded volume µ(Ãx) ≥ c > 0.
Furthermore, we assume the area to depend smoothly on x and

κ(x)y < L (2.5)

for all x ∈ [0, L] and (y, z)T ∈ Ãx and the slices

Sx =
{
c(x) + yN(x) + zB(x)

∣∣∣(y, z)T ∈ Ãx}
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to be pairwise disjoint, i.e. Sx1 ∩ Sx2 = ∅ for x1, x2 ∈ [0, L] with x1 6= x2. Then, we can
define the domain

Ω̃ =
{
c(x) + yN(x) + zB(x)

∣∣∣x ∈ (0, L) and (y, z)T ∈ Ãx
}
.

By construction Ãx specifies the cross-sectional area perpendicular to the curve c and
the geometric center of this area is precisely c(x). The boundary of Ω̃ is divided into
three parts, the tunnel surface

Γ̃s =
{
c(x) + yN(x) + zB(x)

∣∣∣x ∈ (0, L) and (y, z)T ∈ ∂Ãx
}
,

the tunnel entrance

Γ̃en = {c(0) + yN(0) + zB(0)|(y, z)T ∈ Ã0}

and the tunnel exit

Γ̃ex = {c(L) + yN(L) + zB(L)|(y, z)T ∈ ÃL}.

Let (ρ̃, ũ, p̃) be a strong solution of the non-scaled Euler equations (2.4), i.e.

ρ̃t̃ + d̃iv(ρ̃ũ) = 0
(ρ̃ũ)t̃ + d̃iv(ρ̃ũ⊗ ũ) + ∇̃p̃ = ρ̃f̃[

p̃

γ − 1 + 1
2 ρ̃|ũ|

2
]
t̃

+ d̃iv
([1

2 ρ̃|ũ|
2 + γ

γ − 1 p̃
]

ũ
)

= ρ̃f̃T ũ + q̃

on (0, T̃ )× Ω̃ with the three following boundary conditions:

Impermeable walls: There is no flow through the tunnel walls, i.e.

ũT ν̃ = 0 (2.6)

on Γ̃s with the outer normal vector ν̃.

Pressure: At the tunnel ends the pressure is set to

p̃ = p̃en on Γ̃en (2.7)
and

p̃ = p̃ex on Γ̃ex. (2.8)

Inflow: For the density we prescribe the inflow at the tunnel ends, i.e.

ρ̃(t,x) = ρ̃en(t,x) for x ∈ Γ̃en with ũ(t,x)T ν̃ < 0 (2.9)
and

ρ̃(t,x) = ρ̃ex(t,x) for x ∈ Γ̃ex with ũ(t,x)T ν̃ < 0. (2.10)
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x

y

z

1

1

1

Ax

Ω

Figure 2.2: The scaled domain Ω.

2.2.2 Scaling of the three-dimensional Euler equations
In the next step, we will introduce a coordinate transform to transform the equations
on a simpler domain. Therefore, let d be a reference value for the diameter of the cross-
sectional areas Ã and define the smallness parameter ε = d

L � 1. We introduce for
x ∈ [0, 1] the scaled cross-sectional area

Ax =
{

(y, z)T ∈ R2
∣∣∣(yd, zd)T ∈ ÃLx

}
and we set

Ω =
{

(x, y, z)T ∈ R3
∣∣∣x ∈ (0, 1) and (y, z)T ∈ Ax

}
(see Figure 2.2). The diameter of both sets is by assumptions of order O(1). With the
domain Ω we define the transform

T : Ω→ Ω̃
(x, y, z)T 7→ c(Lx) + ydN(Lx) + zdB(Lx),

which carries out the different treatment of the normal and tangential component and
which defines the non-scaled domain Ω̃ = T (Ω). The Jacobian of T is given by

DT (x) = L
(
T + εy (−κT + τB)− εzτN εN εB

)
= L

(
T N B

)1− εκy 0 0
0 ε 0
0 0 ε


 1 0 0
−τz 1 0
τy 0 1


= L

(
T N B

)
ED

(2.11)

with

E = E0 + εE1, E0 =

1 0 0
0 0 0
0 0 0

 , E1 =

−κy 0 0
0 1 0
0 0 1


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and

D =

 1 0 0
−τz 1 0
τy 0 1

 .
The Jacobian is invertible because of

det(DT ) = Lε2(1− εκy) = ε2(L− κyd),

which is always positive by assumption (2.5). Explicitly, the inverse is

DT (x)−1 = 1
L

D−1E−1

TT

NT

BT


=

 1 0 0
τz 1 0
−τy 0 1




1
1−εκy 0 0

0 1
ε 0

0 0 1
ε


TT

NT

BT

 .
Now, we are able to specify the scaled variables. Let tr be a reference time and U a

reference velocity in tangential direction and assume the normal velocities to be of order
εU . We set

u(t,x) = L

U
DT −1(x)ũ (trt, T (x))

= 1
U

D−1E−1

TT

NT

BT

 ũ (trt, T (x))

and denote the velocity vector u = (u, v, w)T . From the second equality, we see that
this realizes exactly the desired scaling of the tangential and normal components. The
density, the pressure, the external force and the heat source are scaled such that

ρ(t,x) = 1
ρr

(1− εκy)ρ̃ (trt, T (x)) ,

p(t,x) = 1
pr
p̃ (trt, T (x)) ,

f(t,x) = 1
fr

f̃ (trt, T (x))

and
q(t,x) = 1

qr
q̃ (trt, T (x)) .

Here, ρr, pr, fr and qr denote reference values for the density, the pressure, the forces
and the heat sources. For the following studies we require the scaled variables and all
needed derivatives to be of order 1 and introduce the dimensionless Mach number

M =
√
ρrU√
γpr
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2.2 Section-averaged Euler equations

and the parameters

f̂ = frtr
U

, q̂ = qrtr(γ − 1)
pr

and h = Utr
L
.

Remark 2.4. For the time scaling tr = L
U is frequently used. However, this might cause

different reference values for the time scale depending on the length of the edges of
the network. In order to scale the whole network with the same reference time, we
introduce the parameter h. This leads to a system of PDEs which is defined on the
domain (0, 1)× (0, T ). The only assumption we need is h to be of order O(ε0).

To transform the Euler equations to the domain Ω, we need the well-known chain rule
for the divergence and the gradient that we recall in the following lemma.

Lemma 2.5 (Chain rule). Let φ : Ω̃ → R3 and ψ : Ω̃ → R be continuously differen-
tiable. Then, it holds

div
[
detDT (x)DT (x)−1φ(T (x))

]
= detDT (x)d̃iv(φ(x̃))

∣∣∣
T (x)

and

∇(ψ(T (x))) = DT (x)T ∇̃(ψ(x̃))
∣∣∣
T (x)

.

Proof. See e.g. [10].

Using this lemma, we transform the equations starting with the continuity equation

ρt(t,x) = tr
ρr

(1− εκy)ρ̃t̃ (trt, T (x))

= − tr
ρr

(1− εκy)d̃iv(ρ̃ũ)
∣∣∣
T (x)

= − tr
ρr

div
[
(1− εκy)DT (x)−1ρ̃ (trt, T (x)) ũ (trt, T (x))

]
= −h div(ρu)

∣∣∣
(t,x)

.

In a similar way, we compute the scaled version of the momentum equation, omitting
the arguments,

DTE2D(ρu)t = tr
Uρr

(1− εκy)DTE

TT

NT

BT

 (ρ̃ũ)t̃

= − tr
ULρr

(1− εκy)DT T
[
d̃iv(ρ̃ũũT )

∣∣∣
T (x)

+ ∇̃p̃
∣∣∣
T (x)
− ρ̃f̃

]
= − tr

ULρr

[
DT Tdiv

(
(1− εκy)ρ̃(T (x))ũ(T (x))ũ(T (x))TDT −T

)
+ (1− εκy)∇p̃(T (x))− (1− εκy)ρ̃DT T f̃

] (2.12)
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= −hDTE

TT

NT

BT

div
(
ρ
(
T N B

)
EDuuT

)
− (1− εκy) h

γM2∇p

+ f̂ρDTE

TT

NT

BT

 f .

Since
(
T N B

)
depends only on x we compute for continuously differentiable ma-

trix valued functions WTT

NT

BT

 div(W) = div


TT

NT

BT

W

−
 ∂

∂x

TT

NT

BT


W

1
0
0


= div


TT

NT

BT

W

−KT

TT

NT

BT

W

1
0
0


= div


TT

NT

BT

W

+ K

TT

NT

BT

W

1
0
0

 .
Hence, the momentum equation (2.12) simplifies to

DTE2D(ρu)t + hDTE div
(
ρEDuuT

)
+ hDTEKEDuu+ (1− εκy) h

γM2∇p

= f̂ρDTE

TT

NT

BT

 f .

Lastly, we also have to transform the energy equation. Therefore, we compute in the
same manner[

1− εκy
γM2(γ − 1)p+ 1

2ρu
TDTE2Du

]
t

= tr
U2ρr

[
(1− εκy)

(
p̃

γ − 1 + 1
2 ρ̃ũ

T ũ
)]

t̃

= − tr
U2ρr

(1− εκy)
[
d̃iv

([1
2 ρ̃ũ

T ũ + γ

γ − 1 p̃
]

ũ
)
− ρ̃ũT f̃ − q̃

]
= −h div

([1
2ρu

TDTE2Du + 1− εκy)
(γ − 1)M2 p

]
u
)

+ f̂ρuTDTE

TT

NT

BT

 f + q̂(1− εκy)
(γ − 1)γM2 q.
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2.2 Section-averaged Euler equations

To transform the boundary conditions we need to determine the form of the three
boundary parts of Ω. They are now given by the tunnel surface

Γs = T −1(Γ̃s) =
{

(x, y, z) ∈ R3
∣∣∣x ∈ (0, 1) and (y, z) ∈ ∂Ax

}
,

the tunnel entrance

Γen = T −1(Γ̃en) =
{

(0, y, z) ∈ R3
∣∣∣(y, z) ∈ A0

}
and the tunnel exit

Γex = T −1(Γ̃ex) =
{

(1, y, z) ∈ R3
∣∣∣(y, z) ∈ AL} .

If ν̃ is an outer normal vector on Γ̃s at the point x̃ = T (x), then ν = DT (x)−T ν̃ is
an outer normal vector on Γs at the point x. Thus, the boundary conditions transform
into:

Impermeable walls

0 = U

L
ũT ν̃ = uTDT TDT −Tν = uTν on Γs (2.13)

Pressure

p(t,x) = pen(t,x) = 1
pr
p̃en (trt, T (x)) for x ∈ Γen

and
p(t,x) = pex(t,x) = 1

pr
p̃ex (trt, T (x)) for x ∈ Γex

Inflow

ρ(t,x) = ρen(t,x) = 1
ρr
ρ̃en (trt, T (x)) for x ∈ Γen with u(t,x)T ν < 0

and
ρ(t,x) = ρex(t,x) = 1

ρr
ρ̃ex (trt, T (x)) for x ∈ Γex with u(t,x)T ν < 0.

Due to the fact that the scaled variables are assumed to be of order one, considering
an approximation of order zero is reasonable, i.e we can neglect all terms of order O(ε).
To this aim, we will have a closer look on the matrix product ED arising in the Jacobian
(2.11). It holds

ED = (E0 + εE1) D

=

1 0 0
0 0 0
0 0 0


 1 0 0
−τz 1 0
τy 0 1

+O(ε)

= E0 +O(ε)
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and thus due to E0KE0 = 0 it follows

DTEKED = E0KE0 +O(ε) = O(ε).

Thus, the Euler equations simplify in the zeroth order to

ρt + hdiv(ρu) = 0

E0(ρu)t + hE0 div
(
ρE0uuT

)
+ h

γM2∇p = f̂ρ

TT f
0
0


[ 1
γM2(γ − 1)p+ 1

2ρu
2
]
t

+ h div
([1

2ρu
2 + 1

(γ − 1)M2 p

]
u
)

= f̂ρuTT f + q̂

(γ − 1)γM2 q

(2.14)

on (0, T )× Ω. Explicitly, the three components of the momentum equation are

(ρu)t + h div(ρuu) + h

γM2 px = f̂ρTT f

h

γM2 py = 0

h

γM2 pz = 0.

2.2.3 Averaging of the three-dimensional Euler equations
Since the set of equations (2.14) still depends on the normal components v and w of
the velocity, we will average the equations over the cross-sectional area in the next step.
But first of all, we need to specify the cross-sectional area Ax in more detail. Similar
as for the notion of fluid elements, we assume the existence of a family (ϕx)x of smooth
injective mappings

ϕx : A0 → R2

with
Ax = ϕx(A0)

and
∂Ax = ϕx(∂A0). (2.15)

We also demand the mapping x 7→ ϕx to be smooth. In this setting we can apply
Reynold’s transport theorem, which states for any function f ∈ C1

d
dx

∫
Ax
f(x, y, z)dydz =

∫
Ax

(
∂f

∂x
+ div(y,z)(fa)

)
dydz

with the vector field
a(x, y, z) = ∂ϕp

(
ϕ−1
x (y, z)

)
∂p

∣∣∣∣∣
p=x

.
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2.2 Section-averaged Euler equations

By means of this vector field, we can characterize the outer normal vector of the tunnel
surface Γs.

Lemma 2.6. Let x = (x, y, z)T ∈ Γs on the surface be given. Consider νAx ∈ R2, an
outer normal vector of the cross sectional area ∂Ax at the point (y, z). Then,

ν =
(
−a(x)TνAx(y, z)

νAx(y, z)

)
∈ R3 (2.16)

is an outer normal vector to the surface Γs at the point x.

Proof. Let x = (x, y, z) ∈ Γs be a point and let c(t) be a curve in ∂Ax ⊂ R2 with
c(0) = (y, z). Define the curve

t 7→ c1(t) =
(
x

c(t)

)

in Γs ⊂ R3. Hence, the vector

ċ1(0) =
(

0
ċ(0)

)
is tangential to the surface at the point x and any normal vector ν = (n1, n2, n3)T has
to be orthogonal to it, i.e.

0 = ċ1(0)Tν = ċ(0)T
(
n2
n3

)
.

Since ċ(0) is a tangential vector on ∂Ax, this implies

ν =
(

n1
dνAx

)

for some constant d. Now, let us have a look at the curve

t 7→ c2(t) =
(

t+ x
ϕt+x(ϕ−1

x (y, z))

)
.

Because of the condition (2.15) it is ϕt+x(ϕ−1
x (y, z)) ∈ ∂A(t + x) and consequently

c2(t) ∈ Γs with c2(0) = x. Using the definition of the vector field a we find the
tangential vector

ċ2(0) =
(

1
a(x)

)
,

which has to be orthogonal to ν, i.e.

0 = ċ2(0)Tν = n1 + da(x)TνAx .

Concluding n1 = −da(x)TνAx finishes the proof.
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We define the area

A(x) =
∫
Ax

dydz,

the (average) density

ρ̄(t, x) = 1
A(x)

∫
Ax
ρdydz,

the (average) volume flow

ρu(t, x) = 1
A(x)

∫
Ax
ρudydz,

the (average) kinetic energy
1
2ρu

2 = 1
2A(x)

∫
Ax
ρu2dydz,

the (average) kinetic energy flux

ρu3 = 1
A(x)

∫
Ax
ρu3dydz,

the (average) velocity

ū(t, x) = 1
A(x)

∫
Ax
udydz

and the (average) heat source

q̄(t, x) = 1
A(x)

∫
Ax
qdydz

With the previous lemma, Reynold’s transport theorem, the Gauss theorem (see e.g.
[60]) and the boundary condition (2.13) we observe for any scalar quantity f(t,x)∫

Ax
div(fu)dydz =

∫
Ax

(fu)x + div(y,z)

(
f

(
v
w

))
dydz

= d
dx

(∫
Ax
fudydz

)
−
∫
Ax

div(y,z)(fua))dydz

+
∫
Ax

div(y,z)

(
f

(
v
w

))
dydz

= d
dx

(∫
Ax
fudydz

)
−
∫
∂Ax

fuaTνAx − f
(
v
w

)T
νAx

 dω

= d
dx

(∫
Ax
fudydz

)
+
∫
∂Ax

fuTνdω

= d
dx

(∫
Ax
fudydz

)
.

(2.17)

Equipped with the preceding considerations we are able to average the equations (2.14)
over the cross-sectional area. Integrating the continuity equation leads to

(Aρ̄)t + h(Aρu)x = 0. (2.18)
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2.2 Section-averaged Euler equations

For the momentum equation, we observe∫
Ax
pxdydz = Ap̄x,

using the second and third component of the momentum equation. Assuming the force
f to be independent of y and z, the integration of the first component of the momentum
equation yields

(Aρu)t + h

(
Aρu2 + Ap̄

γM2

)
x

= h

γM2Axp̄+ f̂Aρ̄TT f . (2.19)

The average of the energy equation is given by[
Ap̄

γM2(γ − 1) + 1
2Aρu

2
]
t

+ h

(1
2Aρu

3 + Ap̄ū

(γ − 1)M2

)
x

= f̂AρuTT f + q̂Aq̄

(γ − 1)γM2 .

(2.20)
In order to get a closed system of differential equations, we need to approximate the

average kinetic energy ρu2, the average kinetic energy flux ρu3 and the average velocity
ū in terms of the density ρ̄ and of the momentum ρu. Therefore, we define the ratios

α1 = ρu

ρ̄ū
, α2 = ρu2

ρ̄ū2 and α3 = ρu3

ρ̄ū3 .

The equations (2.18) - (2.20) then read

(Aρ̄)t + h(α1Aρ̄ū)x = 0

(α1Aρ̄ū)t + h

(
α2Aρ̄ū

2 + Ap̄

γM2

)
x

= hAxp̄

γM2 + f̂Aρ̄TT f[
hAp̄

γM2(γ − 1) + 1
2α2Aρ̄ū

2
]
t

+ h

(1
2α3Aρ̄ū

3 + Ap̄ū

(γ − 1)M2

)
x

= α1f̂Aρ̄ūTT f + q̂Aq̄

(γ − 1)γM2 .

For practical purposes, we set the parameters αi equal to one. This can be justified
similar to the considerations in [30], where the shallow water equations are derived from
the Reynolds-averaged Navier-Stokes equations. There it is shown that the variation in
z of the tangential velocity is of order O(ε). Thus, one can approximate u = ū+O(ε).
In our case, including the viscous effects as well, leads to an additional term of order
O( 1

ε2 ) in equation (2.12) and thus to the condition

div(y,z)
(
(1− εκy)∇(y,z) [(1− εκy)u]

)
= 0

with boundary condition
(
∇(y,z)u

)
νAx = 0. The unique solution of this equation satis-

fying
ū = 1

A(x)

∫
Ax
udydz
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is given by
u = A(x)∫

Ax
1

1−εκydydz
ū

1− εκy .

Therefore, we get u = ū + O(ε) as in [30] and it is reasonable to set αi = 1 for an
approximation of order O(ε).

After averaging the equations, we also need to take into account the boundary condi-
tions on the tunnel entrance and exit. For the pressure, this leads to the conditions

p̄(t, 0) = 1
A(0)

∫
A0
pen(t, 0, y, z)dydz

and
p̄(t, 1) = 1

A(1)

∫
A1
pex(t, 1, y, z)dydz.

The inflow boundary conditions for the density are transformed into

ρ̄(t, 0) = 1
A(0)

∫
A0
ρen(t, 0, y, z)dydz if ū(t, 0) > 0

and
ρ̄(t, 1) = 1

A(1)

∫
A1
ρex(t, 1, y, z)dydz if ū(t, 1) < 0.

At this point, the formal derivation of the section-averaged Euler equations and the
corresponding boundary conditions is completed. Nevertheless, we should additionally
take into account the physical phenomena of friction and heat loss at the walls. Ne-
glecting the viscous effects does not permit to directly include the wall friction in the
model. This is the main drawback of using the Euler equations in the derivation. In [30],
Decoene et al. have shown for the shallow water equations how to asymptotically de-
rive the friction using the Reynold-averaged Navier-Stokes equations with the boundary
condition

µtT
(
∇u + (∇u)T

)
ν = −αξ(u)tTu

relating the rate of strain at the wall to the tangential velocity. Here, t denotes a
tangential vector. This kind of condition was originally proposed in a similar way by
Navier in 1823 [72].

Since we decided to start with the Euler equations, we can only include the effect of
wall friction heuristically a posteriori. Therefore, we will use an external force

f̃f = −ξ
d
α(ũ)ũT

acting in the opposite direction of the flow. Here, ξ is a positive friction parameter and
typically it is either α(ũ) = |ũ| or α̃(ũ) = 1. For more details see e.g. the textbook
[68]. There are also discussed different approximative formulas for the parameter ξ. As
a reference value for the force we choose fr = U2

d ξ. Thus, we have with ζ = frtr
U = ξ trUd

the scaled force
f̂TT ff = −ζα(u)u.
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2.3 Section-averaged Euler equations on networks

For some application, it is also interesting to take the heat loss at the walls into
account. Again, this cannot be derived from the Euler equations and has to be included
afterwards. Often, this effect is modelled by a heat source

q̃w = α(T̃ − T̃w),

where α denotes the heat loss coefficient and T̃w is the surface temperature (see e.g. [81]).
Using the ideal gas law and the reference value qr = αpr

Rρr
we find with η = qrtr(γ−1)

pr
and

Tw = Rρr
pr
T̃w the scaled source term

q̂q̄ = ηqw = η

(
p

ρ
− Tw

)
.

To conclude the section, we summarize once more the equations omitting the bars

(Aρ)t + h(Aρu)x = 0

(Aρu)t + h

(
Aρu2 + Ap

γM2

)
x

=

hAxp

γM2 − ζAρα(u)u+ f̂AρTT f[
Ap

γM2(γ − 1) + 1
2Aρu

2
]
t

+ h

(1
2Aρu

3 + Apu

(γ − 1)M2

)
x

=

f̂AρuTT f − ζAρα(u)u2 +
ηA

(
p
ρ − Tw

)
+ q̂Aq

(γ − 1)γM2

(2.21)

on (0, 1)× (0, T ). These are for h = 1 the usual one-dimensional section-averaged Euler
equations with source terms.

2.3 Section-averaged Euler equations on networks

In this section, we want to describe the flow in a tunnel network, i.e. a system of tunnels
that are connected at some nodes (see Figure 2.3). Since the edges of such a network
are almost one-dimensional, the idea is to use the section-averaged equations derived
in the previous section. At the nodes, the equations need to be coupled. Often, the
coupling conditions are derived heuristically from some physical principles. We will take
a different approach using a scaling of the three-dimensional Euler equations.

In recent years, the research on differential equations on networks has gained a lot
of interest. A general review for hyperbolic balance laws on networks has been written
by Bressan et al. [17]. For general 2 × 2 hyperbolic systems a well-posedness result
is presented by Colombo et al. in [21]. Colombo and Mauri [24] and Colombo and
Marcellini [23] treated the full 3× 3 Euler equations. A numerical study of this problem
is provided by Herty in [54].

35



2 Model

Ω̃

Figure 2.3: A typical domain Ω̃ which can be
simplified by the network approach.

2.3.1 Geometry of a network

The first step in the derivation of the Euler equations on a network is the precise speci-
fication of the geometry. This is quite technical, but the idea is rather simple. We will
define sets of inner and outer nodes and afterwards connect the nodes by edges, which
are constructed as in the previous section. Here, inner node refers to a node with more
than one adjacent edge and outer node to one with exact one adjacent edge.

Let Ṽin = {Ṽ1, . . . , Ṽk} be a set of convex open subsets Ṽj of R3 with pairwise disjoint
closure, i.e. Ṽj1 ∩ Ṽj2 = ∅ for j1 6= j2. We call these subsets inner nodes and assume
their diameter to be of order O(d). Furthermore, let Ṽout = {ṽk+1, . . . , ṽm} ⊂ R3 be
the set of outer nodes such that Ṽout ∩ Ṽj = ∅. Note that the outer nodes are points
whereas the inner nodes are sets.

The edges are defined by n smooth regular curves ci : [0, Li] → R3 and their cross-
sectional-areas Ãix ⊂ R2. For the curve ci we denote the curvature by κi, the torsion by
τi and the corresponding Frenet-Serret frame by

(
Ti Ni Bi

)
. For technical reasons,

the edges are supposed to be straight at the ends, i.e. it is supp(κi) ⊂ (0, Li) and
supp(τi) ⊂ (0, Li). As in Section 2.2 we make five assumptions on the area Ãix: 1. Ãix
depends smoothly on x. 2. The geometrical center is (0, 0)T . 3. The volume is uniformly
bounded, i.e. µ(Ãix) ≥ c > 0. 4. The curvature is bounded in order to avoid intersections
of neighbouring cross-sectional areas, i.e. κi(x)y < Li for all x ∈ [0, Li] and (y, z)T ∈ Ãix.
5. The slices

Six =
{
ci(x) + yNi(x) + zBi(x)

∣∣∣(y, z)T ∈ Ãix}
are pairwise disjoint, i.e. Six1 ∩ S

i
x2 = ∅ for x1, x2 ∈ [0, Li] with x1 6= x2. The fifth

assumption guarantees that the tunnel is not intersecting itself.
Then, the i-th edge or tunnel is given by the set

Ω̃i =
{
ci(x) + yNi(x) + zBi(x)

∣∣∣x ∈ (0, Li) and (y, z)T ∈ Ãix
}
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2.3 Section-averaged Euler equations on networks

with its tunnel entrance

Γ̃ien =
{
ci(0) + yNi(0) + zBi(0)

∣∣∣(y, z)T ∈ Ãi0}
and its tunnel exit

Γ̃iex =
{
ci(Li) + yNi(Li) + zBi(Li)

∣∣∣(y, z)T ∈ ÃiLi} .
Now, that we have defined sets of nodes and edges, we need to couple them. Thus, we

assume for each edge Ω̃i that the ends are either equal to an outer node, i.e. ci(0) ∈ Ṽout
or ci(Li) ∈ Ṽout, respectively, or the tunnel ends lie on the boundary ∂Ṽj of an inner
node, i.e. Γien ⊂ ∂Ṽj or Γiex ⊂ ∂Ṽj , respectively. Additionally, we require that each
outer node ṽj is the end of exact one edge and for each inner node Ṽj there are at least
two adjacent edges.

Of course, the only intersections of the edges should be at the nodes. Hence, it is
necessary to assume the edges to be pairwise disjoint, i.e. Ω̃i1 ∩ Ω̃i2 = ∅ for i1 6= i2, and
to assume the edges and nodes to be also disjoint, i.e. Ω̃i ∩ Ṽj = ∅. Last but not least,
we exclude that a slice corresponding to an outer node intersects the closure of an inner
node, i.e. for all ṽj and the corresponding curve ci with ci(0) = ṽj or ci(Li) = ṽj holds
Γien ∩ Ṽl = ∅ or Γiex ∩ Ṽl = ∅, respectively for all Ṽl ∈ Ṽin.

Now, the whole network can be defined as

Ω̃ = Int

 n⋃
i=1

Ω̃i ∪
k⋃
j=1

Ṽj

 .
This construction using the closure and the interior is necessary in order to include the
connection between the edges and the inner nodes in the domain Ω̃. The boundary of
Ω̃ is naturally divided into two parts. The first one consists of the outer nodes and the
corresponding tunnel ends

Γ̃out =


m⋃

j=k+1
∃i:ci(0)=ṽj

Γ̃ien

 ∪


m⋃
j=k+1

∃i:ci(Li)=ṽj

Γ̃iex


and the second one consists of the tunnel surface

Γ̃s = ∂Ω̃ \ Γ̃out.

2.3.2 Scaling and coupling conditions
After setting up the geometry we can start studying the three-dimensional Euler equa-
tions (2.4) on the whole domain (0, T̃ )× Ω̃ with the boundary conditions (compare (2.6)
- (2.10))

ũT ν̃ = 0 on Γ̃s (2.22)
p̃ = p̃out on Γ̃out (2.23)
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and
ρ̃(t,x) = ρ̃out(t,x) for x ∈ Γ̃out with ũ(t,x)T ν̃ < 0. (2.24)

For each edge Ω̃i we can use the scaling and construction of the transform Ti of Section 2.2
to conclude the one-dimensional equations on the edges

(Aiρi)t + hi(Aiρiui)x = 0

(Aiρiui)t + hi

(
Aiρiu

2
i + Aipi

γM2

)
x

=

hi(Ai)xpi
γM2 − ζiAiρiα(ui)ui + f̂Aiρifi(

Aipi
(γ − 1)γM2 + 1

2Aiρiu
2
i

)
t

+ hi

(1
2Aiρiu

3
i + Aipiui

(γ − 1)M2

)
x

=

f̂Aiρiuifi − ζiAiρiα(ui)u2
i +

ηiAi
(
pi
ρi
− T iw

)
+ q̂Aiqi

(γ − 1)γM2

(2.25)

on (0, T )× (0, 1). Here, Ai, ρi, ui, pi, qi and fi = TT
i f denote the section averaged quan-

tities as defined in the previous section. At this stage, the advantage of the introduction
of the parameter hi = Utr

Li
in the last section becomes evident. Using hi, we are able to

scale all edges to the domain (0, T )× (0, 1) using the same reference time and reference
velocity although the lengths of the edges are not the same.

The main part of this section is devoted to the study of the boundary conditions for the
one-dimensional equations. An elegant way to formulate these conditions uses notations
of the graph theory (see Section 1.1) and a graph, which reflects the geometry of Ω̃.
Therefore, we build a weighted oriented graph G = (V, E, w, init, ter) in the following
way (compare Figure 2.4): Let V = {v1, . . . , vm} be the vertex set with m elements.
The first k elements represent the inner nodes and the other the outer nodes. The edge
set E = {e1, . . . , en} and the orientation reflect the adjacency relations of the edges Ω̃i

and the nodes. To be precise, it is ei = vj1vj2 , init(ei) = vj1 and ter(ei) = vj2 with

j1 =

j if ci(0) = ṽj

j if ci(0) ∈ Ṽj

and

j2 =

j if ci(Li) = ṽj

j if ci(Li) ∈ Ṽj .

Clearly, either ci(0) = ṽj or ci(0) ∈ Ṽj is true for some j and the values of j1 and j2
are well-defined. The weights of the graph describe the lengths of the edges, this means
w(ei) = Li.

38



2.3 Section-averaged Euler equations on networks

Figure 2.4: Graph describing the same
geometry as Ω̃ in Figure 2.3.

Now, it is rather simple to transform the boundary conditions at the outer nodes.
Therefore, let vj be an outer node with adjacent edge ei ∈ E(vj). If vj is the initial
vertex of the edge ei, i.e. ei ∈ E+(vj), we find by averaging the following boundary
conditions

pi(t, 0) = p̄jout(t) = 1
prAi(0)

∫
Ai0

p̃out(trt, Ti(0, y, z))dydz (2.26)

and

ρi(t, 0) = ρjout(t) = 1
ρrAi(0)

∫
Ai0

ρ̃out(trt, Ti(0, y, z))dydz (2.27)

if ui(t, 0) > 0. In the other case, vj is the terminal vertex and the boundary conditions
are given by

pi(t, 1) = p̄jout(t) = 1
prAi(1)

∫
Ai1

p̃out(trt, Ti(1, y, z))dydz (2.28)

and

ρi(t, 1) = ρjout(t) = 1
ρrAi(1)

∫
Ai1

ρ̃out(trt, Ti(1, y, z))dydz (2.29)

for t with u(t, 1) < 0.
For the boundary conditions at the inner nodes we will have a closer look at a node Ṽj

with center x̃j (see Figure 2.5). The typical diameter of the node is very small compared
to the size of the network. Thus, it seems reasonable to introduce the scaling

u(t,x) = 1
U

ũ(trt, x̃j + dx),

ρ(t,x) = 1
ρr
ρ̃(trt, x̃j + dx),

p(t,x) = 1
pr
p̃(trt, x̃j + dx),

f(t,x) = 1
fr

f̃(trt, x̃j + dx)
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T2(L2)

Ω̃2
T3(0)

Ω̃3

Ṽ1

T1(0)
Ω̃1

x̃1

Figure 2.5: The inner node Ṽ1 with center x̃1 and three ad-
jacent edges Ω̃i and their tangential vectors Ti.

and
q(t,x) = 1

qr
q̃(trt, x̃j + dx)

with the same reference values as before. In contrast to the scaling for the edges, this
scaling treats all coordinate directions in the same manner.

Using theses scaled quantities the equations (2.4) are transformed into

ερt + h div(ρu) = 0

ε(ρu)t + hdiv(ρuuT ) + h
∇p
γM2 = εf̂ρf

ε

(1
2ρ|u|

2 + p

(γ − 1)γM2

)
t

+ hdiv
(1

2ρ|u|
2u + pu

(γ − 1)M2

)
=

ε

(
f̂ρfTu + q̂

(γ − 1)γM2 q

)

in the domain (0, T )×Vj with scaled inner nodes Vj =
{
x ∈ R3

∣∣∣x̃j + dx ∈ Ṽj

}
. Hence,

neglecting all terms of order O(ε), we see that a solution fulfils the steady Euler equations
without source terms at each inner node Vj , i.e.

div(ρu) = 0 (2.30)

div(ρuuT ) + ∇p
γM2 = 0 (2.31)

div
(1

2ρ|u|
2u + pu

(γ − 1)M2

)
= 0. (2.32)
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In the next step, we want to use these relations to obtain boundary conditions at the
inner nodes, so-called coupling conditions. We observe that the outer normal vectors
on the parts of the boundary belonging to the i-th edge is given by Ti(0) or −Ti(Li),
respectively. To simplify the notation, we will often omit the argument of Ti if it is
clear from the context. Since the edges are straight in a neighbourhood of the nodes,
the scaling on the edges for ρi, pi and ui coincides at the transition boundary Γien or Γiex
with the scaling on the node for ρ, p and the normal velocity uTTi.

Thus, an integration of the steady continuity equation (2.30) over the node Vj leads
together with the divergence theorem and the boundary condition (2.22) of the three-
dimensional equations to

0 =
∫
Vj

div(ρu)dx

=
∫
∂Vj

ρuTνdω

=
∑

i:ei∈E+(vj)

∫
Ai0

ρiuidydz −
∑

i:ei∈E−(vj)

∫
Ai1

ρiuidydz

=
∑

i:ei∈E+(vj)
Ai(0)ρiui(0)−

∑
i:ei∈E−(vj)

Ai(1)ρiui(1).

This condition states the conservation of mass at the node vj , this means the mass which
flows into the node at time t has to flow out at the same time. Assuming ρiui = ρ̄iūi as
in the previous section we end up with∑

i:ei∈E+(vj)
Ai(0)ρ̄i(0)ūi(0) =

∑
i:ei∈E−(vj)

Ai(1)ρ̄i(1)ūi(1). (2.33)

Similarly, we get a kind of energy conservation law. We integrate the steady energy
equation (2.32) to obtain

0 =
∫
Vj

div
([1

2ρ|u|
2 + p

(γ − 1)M2

]
u
)

dx

=
∫
∂Vj

[1
2ρ|u|

2 + p

(γ − 1)M2

]
uTνdω

=
∑

i:ei∈E+(vj)
Ai(0)

[1
2 ρ̄i(0)ūi(0)3 + pi(0)ūi(0)

(γ − 1)M2

]

−
∑

i:ei∈E−(vj)
Ai(1)

[1
2 ρ̄i(1)ūi(1)3 + pi(1)ūi(1)

(γ − 1)M2

]
+O(ε2).

(2.34)

In the last step, we neglected the components uTNi and uTBi of the velocity which are
transversal to the tunnel since they were assumed to be of order O(ε).

For the momentum equation, the situation is more complicated. Intuitively, it is clear
that the momentum will not be conserved at a node. Let d = dim

(
spani:ei∈E(vj) Ti

)
∈
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{1, 2, 3} be the dimension of the subspace spanned by the tangential vectors Ti and let
Tkl , 1 ≤ l ≤ d be a base of this subspace. Multiplication of the momentum equation
(2.31) by the constant vectors Tkl leads to

div
(
ρuuTTkl + pTkl

γM2

)
= 0

and after integration it holds

0 =
∫
Vj

div
(
ρuuTTkl + pTkl

γM2

)
dx

=
∫
∂Vj

ρuTTklu
Tν + p

γM2 TT
kl

νdω.
(2.35)

This integral can not be evaluated by using just the density, the pressure and the tangen-
tial velocity at the transition boundary, as we did for the continuity and energy equation.
For this reason, we need to use two approximations: The first one concerns the velocity.
We have to compute uTTkl on all parts of the boundary, even on those not belonging to
the edge Ωkl . Let ep ∈ E+(vj) be an arbitrary outgoing edge. Since

(
Tp Np Bp

)
is

an orthonormal base, the assumption, that the normal velocity is of order O(ε), yields

Tkl = TT
kl

TpTp + TT
kl

NpNp + TT
kl

BpBp

and thus

uTTkl = uT
(
TT
kl

TpTp + TT
kl

NpNp + TT
kl

BpBp

)
= TT

kl
Tp(0)up(0) +O(ε)

on the part of the boundary belonging to ep. Similarly, for an incoming edge ep ∈ E−(vj)
we find

uTTkl = TT
kl

Tp(Lp)up(1) +O(ε)

and thus, it holds in order O(ε0)∫
∂Vj

ρuTTklu
Tνdω

=
∑

i:ei∈E+(vj)
Ai(0)TT

kl
Tiρ̄i(0)ūi(0)2 −

∑
i:ei∈E−(vj)

Ai(1)TT
kl

Tiρ̄i(1)ūi(1)2

The second approximation concerns the pressure and is necessary to compute the integral∫
∂Vj

pTT
kl

νdω. Denote by ∂Vs
j the part of the boundary of the node which belongs to

no edge. Then, it holds∫
∂Vj

p

γM2 TT
kl

νdω =

∑
i:ei∈E+(vj)

Ai(0)pi(0)
γM2 TT

kl
Ti −

∑
i:ei∈E−(vj)

Ai(1)pi(1)
γM2 TT

kl
Ti +

∫
∂Vsj

p

γM2 TT
kl

νdω.
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2.3 Section-averaged Euler equations on networks

In general, it is not possible to compute the last integral P̂ klj =
∫
∂Vsj

pTT
kl

νdω without
solving the steady Euler equations (2.30) - (2.32), since there is no boundary condition for
the pressure p on ∂Vs

j prescribed. For this reason, we will present two different heuristic
approaches to handle the d linear independent equations (2.35) for the dynamic pressure
Pi = ρ̄iū

2
i + pi

γM2

∑
i:ei∈E+(vj)

Ai(0)TT
kl

TiPi(0)−
∑

i:ei∈E−(vj)
Ai(1)TT

kl
TiPi(1) = −

p̂klj
γM2 . (2.36)

Case I: d(vj) = d + 1. Let the degree of the vertex d(vj) be equal to d + 1 and let the
pressure loss p̂klj be a known quantity, which is modelled by some heuristics. In
this case, we have d linear independent equations (2.36) for the d + 1 unknowns
Pi. Hence, the solution lies in a one-dimensional affine subspace of Rd+1. This
subspace is defined by a particular solution P pj and a homogeneous solution P hj ,
where P pj depends on p̂j and P hj only on the geometry. Then, the solution of the
linear equations (2.36) is given by

Pi(0) =

(
P pj

)
i

γM2 + P ∗j (P hj )i for ei ∈ E+(vj)

and

Pi(1) =

(
P pj

)
i

γM2 + P ∗j (P hj )i for ei ∈ E−(vj)

for some P ∗j ∈ R.
As a special case, we want to mention a sudden contraction or expansion of the
cross-sectional area (see Figure 2.6). In the engineering literature, minor loss
factors are often used to describe the pressure drop at nodes with two adjacent
edges pointing in opposite directions, i.e. T1 = −T2, (see e.g. [25] or [70]). More
precisely, let e1 be the edge with the smaller cross-sectional A1 < A2 and define
the ratio of the diameters β =

√
A1
A2

. The pressure drop is estimated empirical as

P2 = P1 +K
ρ̄1ū

2
1

2 , (2.37)

where K denotes the so-called K-factor. Typically, this factor is determined by

K =
(
1− β2

)2
for a sudden expansion, i.e. for ū1 > 0

and
K = −1

2
(
1− β2

)
for a sudden contraction, i.e. for ū1 < 0.

We see that the pressure relation (2.37) is exactly of the same form as the solution
of (2.36) in the case where d(vj) = d + 1. Explicitly, if we set

p̂1
1 = A2

(
1− β2

)
P1 −A2K

ρ̄1ū
2
1

2 ,
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T1 T2
d1

d2

Figure 2.6: A sudden expansion or contraction of
the cross-sectional areas with diame-
ter d1 and d2.

all solutions of (2.36) are given by (2.37) for some P1 = P ∗1 .

Case II: d(vj) > d + 1. Let the number of adjacent edges be larger than d + 1 and let
the node Vj be symmetric in the sense∑

i:ei∈E+(vj)
Ai(1)Ti(Li) =

∑
i:ei∈E−(vj)

Ai(0)Ti(0),

i.e. for incoming and outgoing edges the sums of the products of area and tunnel
direction are balanced. This definition extends the usual concept of symmetry to
nodes with different cross-sectional areas. In this case, the linear equations (2.36)
for the dynamic pressures Pi are in general under-determined, but the symmetry
allows finding one specific solution for the case p̂j = 0, namely the solution of
constant dynamical pressure

Pi(0) = P ∗j if ei ∈ E+(vj)
and

Pi(1) = P ∗j if ei ∈ E−(vj)

for an arbitrary P ∗j ∈ R. Of course, the assumption p̂j = 0 is a real drawback in
this approach.

Remark 2.7. Instead of choosing the dynamic pressure Pi to be the same for all i with
ei ∈ E(vj), the equality of the pressure pi at a node vj is often postulated. See e.g. [22]
for a comparison of the different approaches.

All approaches have in common that we can express the pressures pi as

pi(0) =
(
P pj

)
i
+ γM2P ∗j (P hj )i − bγM2ρ̄i(0)ū2

i (0) for ei ∈ E+(vj) (2.38)
and

pi(1) =
(
P pj

)
i
+ γM2P ∗j (P hj )i − bγM2ρ̄i(1)ū2

i (1) for ei ∈ E−(vj)
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2.3 Section-averaged Euler equations on networks

depending on a single pressure variable P ∗j ∈ R and the product ρiu2
i . Here, P pj and

P hj are some known vectors. The introduction of the parameter b ∈ {0, 1} yields the
possibility to include the equality of the pressure in our framework (see Remark 2.7).

In the case of a node with only one outflow edge, i.e. there is exactly one i with
ui(0) > 0 if ei ∈ E+(vj) or ui(1) < 0 if ei ∈ E−(vj), the coupling conditions (2.33),
(2.34) and (2.38) are sufficient for the well-posedness study of the Euler equations as
shown in [24]. But since we do not want to restrict ourselves to this kind of nodes, we
need an additional constraint controlling the distribution of the density to the different
outflow edges. We will assume a good mixing of the gas flowing in the edges, which
means the density should be the same in all outflow edges at the transition boundary.
More precisely, there exists ρj(t) with

ρi(t, 0) = ρj(t) if ei ∈ E+(vj) and ui(t, 0) > 0 (2.39)

and

ρi(t, 1) = ρj(t) if ei ∈ E−(vj) and ui(t, 1) < 0.

Remark 2.8. Restricting to the subsonic case, the number of required boundary con-
ditions is well-known from the theory of hyperbolic systems. For a node v with d(v)
adjacent edges one needs d(v) + r independent conditions where r is the number of out-
flow edges, this means the number of edges with velocity ui pointing from the node to
the edge. Thus, it is easy to check that the number of defined boundary conditions fits
to the Euler equations.

2.3.3 Matrix formulation

Up to now, we have formulated equations for each edge ei and coupling conditions for
each node vj of the system. To simplify these notations, we want to introduce a matrix
formulation of the equations and the coupling conditions. At this point, we change the
notation, vectors are not any longer denoted by bold letters, whereas for a vector valued
quantity w = (w1, . . . , wn), we denote the diagonal matrix with the same entries by the
capital bold letter W, i.e.

W = diag(w) =


w1 0 · · · 0
0 w2 0
... . . . ...
0 · · · wn

 .

For Greek letters, we simply use the small bold letter to avoid ambiguities.
Then, the section-averaged Euler equations (2.25) read for the vector-valued unknowns
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ρ, u and p

(Aρ)t + H(AUρ)x = 0

(AUρ)t + H
(

AU2ρ+ 1
γM2 Ap

)
x

=

1
γM2 HAxp− ζAα(U)Uρ+ f̂AFρ( Ap

(γ − 1)γM2 + 1
2AU2ρ

)
t

+ H
(1

2AU3ρ+ AUp
(γ − 1)M2

)
x

=

f̂AUFρ− ζAα(U)U2ρ+ ηA
(
ρ−1p− Tw

)
+ q̂Aq

(γ − 1)γM2

(2.40)

on (0, T ) × (0, 1). Here, A is the matrix of the areas, ζ the matrix of the friction
parameters and F of the forces, to mention just a few.

To specify the boundary conditions, we will use the incidence matrix B and its sub-
matrices B>1 and B=1, which were defined in Section 1.1. Denoting by x+ = 1

2(x+ |x|)
the positive part of x and by x− = (−x)+ the negative part, we can write the inflow
boundary conditions (2.27) and (2.29) at the outer nodes and the good mixing (2.39)
at the inner nodes in a simple way: There exists a time-dependent vector ρV (t) ∈ Rk
describing the densities at the inner nodes such that

U(t, 0)+ρ(t, 0) = U(t, 0)+
(
B+
>1

)T
ρV (t) + U(t, 0)+

(
B+

=1

)T
ρout (2.41)

and
U(t, 1)−ρ(t, 1) = U(t, 1)−

(
B−>1

)T
ρV (t) + U(t, 1)−

(
B−=1

)T
ρout. (2.42)

If the velocity points outwards of the domain, this relation is obviously fulfilled because
we multiply by U(t, 0)+ or U(t, 1)−, respectively. If the velocity is directed into the
domain, this formulation is equivalent to the original good mixing of the density and
the original inflow boundary conditions. The mass conservation (2.33) and the energy
conservation (2.34) can be transformed directly into

B+
>1A(0)U(t, 0)ρ(t, 0) = B−>1A(1)U(t, 1)ρ(t, 1) (2.43)

and

B+
>1A(0)U(t, 0)

(1
2U(t, 0)2ρ(t, 0) + p(t, 0)

(γ − 1)M2

)
= B−>1A(1)U(t, 1)

(1
2U(t, 1)2ρ(t, 1) + p(t, 1)

(γ − 1)M2

)
.

(2.44)

For the pressure condition, the situation is slightly more complicated due to the differ-
ence between the pressure and the dynamic pressure. We prescribed the pressure at the
outer nodes by the equations (2.26) and (2.28) and we have a coupling condition (2.38)
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2.3 Section-averaged Euler equations on networks

for the dynamic pressure at the inner nodes. To fit these two conditions into one closed
form, we assume the vector P hj > 0 to be positive and denote by B>1,h = (b>1,h

il ) ∈ Rk×n
the weighted submatrix of the incidence matrix belonging to the inner nodes. The j-row
of B>1 is weighted by the homogeneous solution P hj of (2.36), i.e.

b>1,h
jl = b>1

jl (P hj )l. (2.45)

We combine the vector p̄out from the pressure boundary condition with the vector P pj
coming from the coupling condition (2.38) to the new vectors p0 and p1 ∈ Rn with

(
p0
)
i

=

(p̄out)j if init(ei) = vj and d(vj) = 1(
P pj

)
i

if init(ei) = vj and d(vj) > 1

and (
p1
)
i

=

(p̄out)j if ter(ei) = vj and d(vj) = 1(
P pj

)
i

if ter(ei) = vj and d(vj) > 1.

This is a reordering of the vectors p̄out ∈ Rm−k and P pj ∈ Rk to construct an n-
dimensional vector. Then, the conditions (2.26), (2.28) and (2.38) are equivalent to
the existence of a time-dependent vector PV (t) ∈ Rk with

p(t, 0) = p0(t) + γM2
(
B+
>1,h

)T
PV (t)− bγM2K0U(t, 0)2ρ(t, 0) (2.46)

and
p(t, 1) = p1(t) + γM2

(
B−>1,h

)T
PV (t)− bγM2K1U(t, 1)2ρ(t, 1). (2.47)

Here, the two matrices Kq = (kqij) ∈ {0, 1}n×n denote the diagonal matrices, which are
zero if the end q ∈ {0, 1} of the edge is at a node with degree 1 and which are 1 otherwise.
In formula, it is

k0
ij = δij min (d(init(ei))− 1, 1)

and
k1
ij = δij min (d(ter(ei))− 1, 1) .

The main message of these lines is that we are able to write the pressure conditions in
the form

p(t, 0) = g
(
t, 0,−γM2U(t, 0)2ρ(t, 0)

)
+ γM2

(
B+
>1,h

)T
PV (t) (2.48)

and
p(t, 1) = g

(
t, 1, γM2U(t, 1)2ρ(t, 1)

)
+ γM2

(
B−>1,h

)T
PV (t), (2.49)

such that the pressure p depends linearly on the node pressure PV . Here, g denotes a
function.
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2.4 Low Mach number asymptotic
In this section we want to do a further step to simplify the in the previous section derived
section-averaged Euler equations (2.40). Therefore, we consider an asymptotic expansion
of the equations and its limit, called the low Mach number limit. In several physical
relevant applications, the Mach number M , describing the ratio between velocity and
speed of sound, is very small. As an example you can think of the air flow in a vehicle
tunnel in the emergency case of a fire [49, 44], the flow in an exhaust pipe [45] or in a
nuclear reactor [73], to mention just a few applications. The advantage of considering
the low Mach number limit is that one does not have to use small time steps in numerical
computations of the solution. In contrast, these small time steps are necessary solving
the Euler equations with small Mach number by explicit numerical schemes.

We introduce the small parameter ε = γM2 � 1 and we consider the following
expansion of the physical quantities and source terms

p(t, x) = p0(t, x) + επ(t, x) +O(ε2),
ρ(t, x) = ρ0(t, x) +O(ε),
u(t, x) = u0(t, x) +O(ε),
f(t, x) = f0(t, x) +O(ε),
α(u) = α0(u0) +O(ε),
q(t, x) = q0(t, x) +O(ε),

Tw(t, x) = Tw,0(t, x) +O(ε)
and

g(t, x, εU2ρ) = g0(t, x) + εg1(t, x,U2
0ρ0) +O(ε).

If we plug this ansatz into the system (2.40) and if we neglect all terms of order O(ε),
we formally find

(Aρ0)t + H (AU0ρ0)x = O(ε)

(AU0ρ0)t + H
(

A
[
U2

0ρ0 + 1
ε
p0 + π

])
x

=

HAx

[1
ε
p0 + π

]
− ζAα0(U0)U0ρ0 + f̂AF0ρ0 +O(ε)

(Ap0)t + Hγ (AU0p0)x = ηA
(
ρ0
−1p0 − Tw,0

)
+ q̂Aq0 +O(ε).

(2.50)

The analysis of the low Mach number expansion is done in four steps. First, we derive
a differential equation for the zeroth order pressure p0. Then, we expand the coupling
condition for the pressure and solve the equation for p0. In a third step, we extract equa-
tions for the first order pressure and zeroth order density and velocity. The derivation
is completed with the expansion of the remaining coupling and boundary conditions.

Comparing the terms of orders O
(
ε−1), we extract

(Ap0)x = (A)x p0
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2.4 Low Mach number asymptotic

from the second equation of (2.50). This equation implies that the zeroth order pressure
p0(t, x) = p0(t) is constant in space. The coupling conditions for the pressure (2.48) and
(2.49) read

p0(t) + επ(t, 0) = g0 (t, 0) + εg1
(
t, 0,−U2

0(t, 0)ρ(t, 0)
)

+ ε
(
B+
>1,h

)T
PV (t)

and
p0(t) + επ(t, 1) = g0 (t, 1) + εg1

(
t, 1,U2

0(t, 1)ρ(t, 1)
)

+ ε
(
B−>1,h

)T
PV (t)

up to terms of order O(ε). To fulfil this condition in the zeroth order we require the
compatibility condition

g0(t, 0) = g0(t, 1).

Then, it is
p0(t) = g0(t, 0) = g0(t, 1)

and the remaining parts of the coupling conditions are

π(t, 0) = g1
(
t, 0,−U2

0(t, 0)ρ(t, 0)
)

+
(
B+
>1,h

)T
PV (t) (2.51)

and

π(t, 1) = g1
(
t, 1,U2

0(t, 1)ρ(t, 1)
)

+
(
B−>1,h

)T
PV (t). (2.52)

Remark 2.9. For the coupling condition stating the equality of the (dynamic) pressure at
the nodes (compare Remark 2.7), the compatibility condition simplifies to the equality
of the pressure p̄out at the outer nodes.

The comparison of the terms of order O(ε0) in (2.50) leads to the low Mach number
equations

(Aρ0)t + H (AU0ρ0)x = 0

(AU0ρ0)t + H
(
A
[
U2

0ρ0 + π
])
x

= HAxπ − ζAα0(U0)U0ρ0 + f̂AF0ρ0

Hγ (AU0)x p0 = ηA
(
ρ0
−1p0 − Tw,0

)
+ q̂Aq0 −A (p0)t .

(2.53)

The energy conservation (2.44) at the nodes leads to the relation

B+
>1A(0)U0(t, 0)p0(t) = B−>1A(1)U(t, 1)p0(t)

up to order O(ε). Assuming that the ground pressure never vanishes, i.e. p0(t) 6= 0 in
all components, the previous equation implies the simpler condition

B+
>1A(0)u0(t, 0) = B−>1A(1)u0(t, 1), (2.54)

which states that the sum of the products of velocity and area should vanish at each
node.
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Remark 2.10. Using the conservation of internal energy at a node as it was done by
Gasser and Kraft [44] instead of using the conservation of the total energy (2.44) yields
exactly the same coupling condition.

The mass conservation (2.43) and the boundary conditions (2.41) and (2.42) just
remain the same. In the following chapters, we will omit the subindex 0 and write again
ρ, u, p , f , α, q and Tw and g1 = g instead.

2.5 Formal computations
In the previous section, we have derived the low Mach number equations (2.53). While
there are boundary conditions for the pressure π, there is no differential equation for
it. Therefore, we want to perform some formal computations on the low Mach number
system (2.53) and the boundary conditions in order to eliminate the quantity π. This
will be done without taking care of the regularity of the involved functions, but later in
Chapter 5, we will justify why we are allowed to do this.

We start from the momentum equation to derive a velocity equation. Using the
product rule and the fact that all matrices have diagonal form, the second equation of
(2.53) yields

U (Aρ)t + HU (AUρ)x + AUtρ+ HAUxUρ+ H (Axπ + Aπx)
= HAxπ − ζAα(U)Uρ+ f̂AFρ.

Plugging in the first equation of (2.53) and multiplying by A−1 we find the velocity
equation

Utρ+ HUUxρ+ Hπx = −ζα(U)Uρ+ f̂Fρ. (2.55)

As a second step, we want to use the third equation of (2.53) to obtain a new unknown
v(t) ∈ Rn, which depends only on the time. Therefore, we multiply the energy equation
by 1

γP−1H−1 to conclude

(Au)x = 1
γ

P−1H−1A (−ηTw + q̂q − pt) + 1
γ

H−1ρ−1η.

Then, an integration from x0 to x leads to

A(x)u(t, x)

= A(x0)v(t) + 1
γ

P−1(t)H−1
∫ x

x0
A (−ηTw + q̂q − pt) dy + 1

γ
H−1

∫ x

x0
ρ−1ηdy

= A(x0)v(t) + A(x)Q(t, x) + 1
γ

H−1
∫ x

x0
ρ−1ηdy.

(2.56)

Here, P−1AUp = Au holds due to the structure of the involved matrices. In the expres-
sion (2.56) the value x0 ∈ [0, 1] is arbitrary and the vector-valued function Q(t, x) ∈ Rn
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is a known quantity, which can be computed directly from the heat source, the cross-
sectional area, the ground pressure and the wall temperature by

Q(t, x) = 1
γ

A−1(x)P−1(t)H−1
∫ x

x0
A (−ηTw + q̂q − pt) dy.

The function v describes the velocity at point x0, i.e.

v(t) = u(t, x0).

In principle, it is also possible to choose a different position x0 for each edge.
We concentrate on the special case without heat loss at the wall, i.e. η = 0, and

we plug (2.56) into equation (2.55). To simplify the notation, we define the vector
Ā(x) = A−1(x)A(x0). Then, an integration from 0 to 1 yields∫ 1

0
f̂Fρ− ζα

(
ĀV + Q

) (
ĀV + Q

)
ρdx

=
∫ 1

0

(
ĀVt + Qt

)
ρ+ H

(
ĀV + Q

) (
ĀV + Q

)
x
ρ+ Hπxdx

= Vt

∫ 1

0
Āρdx+

∫ 1

0
Qtρdx−V2H

∫ 1

0
ĀĀxρdx

+ VH
∫ 1

0

(
QĀ

)
x
ρdx+ H

∫ 1

0
QQxρdx+ H∆p.

(2.57)

In the last term ∆p denotes the pressure difference

∆p(t) = π(t, 1)− π(t, 0).

With the coupling condition (2.51) and (2.52) this difference can be expressed as

∆p(t) = −BT
>1,hPV (t) + g

(
t, 1,U2(t, 1)ρ(t, 1)

)
− g

(
t, 0,−U2(t, 0)ρ(t, 0)

)
= −BT

>1,hPV (t) + g

(
t, 1,

(
Ā(1)V(t) + Q(t, 1)

)2
ρ(t, 1)

)
− g

(
t, 0,−

(
Ā(0)V(t) + Q(t, 0)

)2
ρ(t, 0)

)
.

(2.58)

With this expression we are able to determine the pressure difference without the pressure
π. Now, we introduce the abbreviation for the mass

R(t) =
∫ 1

0
ρ(t, y)dy

and for the weighted mass

Rf (t) =
∫ 1

0
F(t, y)ρ(t, y)dy
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2 Model

for any vector-valued function f . Then, the equation (2.57) can be written as

RĀvt −RHĀĀx
Vv + RH(QĀ)

x

v +RQt+HQQx −HBT
>1,hPV + H∆g

= Rf̂f−ζα(ĀV+Q)(Āv+Q).

(2.59)

We already see that this is for a given density ρ an ordinary differential equation for the
velocity v. The advantage of this formulation is that only the pressure difference ∆p but
not the pressure π itself is involved.

To end this section, we want to analyse the coupling conditions for the density (2.41),
(2.42) and (2.43). We plug the first two equations into the third. This yields

0 = B−>1A(1)U(t, 1)ρ(t, 1)−B+
>1A(0)U(t, 0)ρ(t, 0)

= B−>1A(1)
(

U(t, 1)+ρ(t, 1)−U(t, 1)−
((

B−>1

)T
ρV (t) +

(
B−=1

)T
ρin(t)

))
−B+

>1A(0)
(
−U(t, 0)−ρ(t, 0) + U(t, 0)+

((
B+
>1

)T
ρV (t) +

(
B+

=1

)T
ρin(t)

))
= −

(
B−>1A(1)U(t, 1)−

(
B−>1

)T
+ B+

>1A(0)U(t, 0)+
(
B+
>1

)T)
ρV

+ B−>1A(1)U(t, 1)+ρ(t, 1) + B+
>1A(0)U(t, 0)−ρ(t, 0).

(2.60)

Here, we used the fact that it holds B±>1W
(
B±=1

)T
= 0 for arbitrary diagonal weight

matrices W = (wij)ij , which can be easily derived from the definition of B>1 and B=1:(
B±>1W

(
B±=1

)T)
ij

=
n∑
l=1

(
b>1
il

)±
wll
(
b=1
jl

)±
= 0. (2.61)

In a similar way, we see that the matrix

M(t) = (mij(t))ij = B−>1A(1)U(t, 1)−
(
B−>1

)T
+ B+

>1A(0)U(t, 0)+
(
B+
>1

)T
has diagonal form:

mij(t) =
n∑
l=1

(
b>1
il

)−
Al(1)ul(t, 1)−

(
b>1
jl

)−
+
(
b>1
il

)+
Al(0)ul(t, 0)+

(
b>1
jl

)+

= δij

(
n∑
l=1

(
b>1
il

)−
Al(1)ul(t, 1)− +

(
b>1
il

)+
Al(0)ul(t, 0)+

)
= δij

(
B−>1A(1)u(t, 1)− + B+

>1A(0)u(t, 0)+
)
i
.

Using the coupling condition for the energy conservation (2.54) we conclude

mij(t) = δij
(
B−>1A(1)u(t, 1)+ + B+

>1A(0)u(t, 0)−
)
i
.
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2.5 Formal computations

From these two representations of M(t) we see that mjj(t) is zero if and only if in all
adjacent edges E(vj) the velocity is zero, more precisely if

ui(0, t) = 0 for all ei ∈ E+(vj)
and

ui(1, t) = 0 for all ei ∈ E−(vj)

holds. For this reason, we can use the Moore-Penrose pseudoinverse M(t)−1 (for details
see e.g. [79]) in (2.60) to write the inflow boundary conditions (2.41) and (2.42) as

U(t, 0)+ρ(t, 0) = U(t, 0)+
(
B+
>1

)T
M(t)−1

(
B−>1A(1)U(t, 1)+ρ(t, 1)

+B+
>1A(0)U(t, 0)−ρ(t, 0)

)
+ U(t, 0)+

(
B+

=1

)T
ρout(t)

(2.62)

and
U(t, 1)−ρ(t, 1) = U(t, 1)−

(
B−>1

)T
M(t)−1

(
B−>1A(1)U(t, 1)+ρ(t, 1)

+B+
>1A(0)U(t, 0)−ρ(t, 0)

)
+ U(t, 1)−

(
B−=1

)T
ρout(t).

(2.63)

The advantage of this formula is that the inflow density of an edge is expressed as
a linear combination of the outflow densities of the adjacent edges, i.e. no term on the
right hand side involves the density of parts of the network where the velocity points from
an edge to a node. This can be seen more clearly if we write the formula componentwise.
Therefore, let vl be an inner node with degree d(vl) > 1. Then, it holds for all adjacent
edges ei ∈ E−(vl) with ui(t, 1) < 0

ρi(t, 1) =
∑
j:ej∈E−(vl)Aj(1)uj(t, 1)+ρj(t, 1) +

∑
j:ej∈E+(vl)Aj(0)uj(0, t)−ρj(t, 0)∑

j:ej∈E−(vl)Aj(1)uj(t, 1)+ +
∑
j:ej∈E+(vl)Aj(0)uj(t, 0)− .

Obviously the same is also true for ei ∈ E+(vl) with ui(t, 0) > 0

ρi(t, 0) =
∑
j:ej∈E−(vl)Aj(1)uj(t, 1)+ρj(t, 1) +

∑
j:ej∈E+(vl)Aj(0)uj(0, t)−ρj(t, 0)∑

j:ej∈E−(vl)Aj(1)uj(t, 1)+ +
∑
j:ej∈E+(vl)Aj(0)uj(t, 0)− .

This will be a crucial point in the next chapters.
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3 Transport equation
In this chapter, we consider transport equations on a network for a given velocity, since
the continuity equation fits in this class of equations. The theory of this chapter will be
used in Chapter 4 and 5 to solve the low Mach number equations of Chapter 2. One of
the main difficulties concerning transport equations on networks is a possible change of
the sign of the velocity in the evolution of time which has two effects:

First, even if the data is smooth, there does not have to be a classical smooth solution
as the domain is bounded. For example, by the method of characteristics the solution of

ρt + ((2t− 1)ρ)x = 0

on (0, T )× (0, 1) is given by

ρ(t, x) =


ρ0 (x− t(t− 1)) if t < 1

2 or x ≥
(
t− 1

2

)2

ρin

(
1
2 +

√(
t− 1

2

)2
− x

)
otherwise,

which has possibly a discontinuity if no further conditions are imposed. The only way
to get smooth solutions is to require additional conditions on the initial and boundary
data, which depend on the characteristics and thus on the velocity. In our application
however, the velocity is not known a priori.

The second issue concerns the network. In this case, we can compute the characteris-
tics, but due to the coupling conditions, we are not able to use them directly to find a
solution if the velocity has an infinite number of changes of the sign in a finite time. This
can lead to a characteristic of the form of an infinite tree. Each time the characteristic
intersects an inner node it divides itself into multiple parts.

For these reasons we will use a different and very general approach looking for weak
solutions. This approach is based on the concept of the renormalization property, which
was introduced in 1989 by Lions and DiPerna [34] for tangential velocity fields. This
concept was extended to bounded domains in RN with inflow boundary conditions and
velocity fields with a kind of Sobolev regularity by Boyer [13] in 2005 and Boyer and
Fabrie [15]. Recently, these results were generalized to velocity fields with BV regularity
by Crippa et al. [26, 27]. For constant velocity fields, the transport equation on a network
was studied by Sikolya in her dissertation [77] in 2004. In 2008, this was expanded to
infinite networks by Dorn [35, 36]. Especially, the long time behaviour was analysed by
a semigroup approach.

In the following, we generalize the results of Boyer and Fabrie to the network case. In
particular, we will study a vector valued transport equation with affine linear coupled
boundary conditions and a time and space dependent velocity field. This means we
consider even more general coupling conditions than described in the previous chapter.
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3 Transport equation

3.1 Assumptions and requirements
In the beginning, we have to introduce the precise setting. For simplicity, we will only
consider the one-dimensional domain Ω = (0, 1) and denote the boundary Γ = ∂Ω =
{0, 1} and ΓT = [0, T ] × Γ. Since we consider one-dimensional edges of a graph this is
no restriction for our application. The outer normal vector on Γ is called ν and is given
by

ν = −(−1)ω

for ω ∈ Γ. The aim of this chapter is to find and characterize a solution ρ(t, x) ∈ Rn of
the problem

ρt + (Uρ)x + Cρ = f in (0, T )× Ω
ρ(0, ·) = ρ0 in Ω (3.1)

(νU)−ρ = (νU)−H(ρ|Γ+
T

) on ΓT

with initial conditions ρ0 ∈ L∞(Ω)n with ρ0 ≥ 0 almost everywhere and with an affine
linear boundary operator H. For this chapter we assume

u ∈ L1((0, T ),W 1,1(Ω)n),
c ∈ L1((0, T )× Ω)n,

(ux + c)− ∈ L1((0, T ), L∞(Ω)n), (3.2)
(ux)+ ∈ L1((0, T ), L∞(Ω)n)

and
f ∈ L1((0, T ), L∞(Ω)n)

and denote by U and C again diagonal matrix with the diagonal entries uj and cj ,
respectively. On ΓT we define component-by-component the measure

dµu = (νu)dωdt (3.3)

and introduce its positive part dµ+
u = (νu)+dωdt, its negative part dµ−u = (νu)−dωdt

and its absolute value |dµu| = dµ+
u + dµ−u . These measures divide the boundary ΓT into

two parts, the inflow part Γ−T with νu < 0 and the outflow part Γ+
T with νu > 0. For

p ∈ [1,∞) the space Lp(ΓT ,dµ±u ) = Lp(ΓT ,Rn,dµ±u ) is provided with the norm

‖g‖p,w,± =
(∫ T

0

∫
Γ
β(|g|)TW(νu)±dωdt

) 1
p

with the function β(x) =
(
xp1 · · · xpn

)T
and with a positive definite diagonal weight

matrix W ∈ Rn×n. Here, the absolute value has to be understood component-by-
component. We do also consider the space L∞(ΓT ,dµ±u ) = L∞(ΓT ,Rn, dµ±u ) equipped
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3.1 Assumptions and requirements

with the maximum norm of the componentwise L∞-norm, i.e.

‖g‖∞,± = max
j

ess sup
(ω,t)∈ΓT
uj(t,ω)± 6=0

|gj |

 .
The boundary operator H has to assign a boundary value to the inflow part of the

boundary Γ−T , i.e. H is a mapping

H : L∞(ΓT , dµ+
u )→ L∞(ΓT , dµ−u ).

We assume the mapping to be affine linear, i.e. it is given as H(ρ) = ρin + G(ρ) where
it is ρin ∈ L∞(ΓT ,dµ−u ) with ρin(t, x) ≥ 0 for dµ−u -almost all (t, ω). Here, G is a linear
operator fulfilling the following conditions:

• The operator G : L∞(ΓT , dµ+
u ) → L∞(ΓT , dµ−u ) is weakly-? continuous, i.e. for all

ρn ∈ L∞(ΓT , dµ+
u ) with ρn

?−⇀ ρ in L∞(ΓT ,dµ+
u ) it holds

G(ρn) ?−⇀ G(ρ)

in L∞(ΓT ,dµ−u ).

• There is a positive definite diagonal weight matrix W ∈ Rn×n such that the L1-
operator norm of G is less or equal one, i.e. for all ρ ∈ L∞(ΓT , dµ+

u ) it holds

‖G(ρ)‖1,w,− ≤ ‖ρ‖1,w,+.

• The image of G does not depend on the future time, i.e. for all ρ ∈ L∞(ΓT , dµ+
u )

and almost all t ∈ [0, T ] it holds

G(χ[0,t]ρ) = χ[0,t]G(ρ). (3.4)

• The operator G is dµ+
u -almost everywhere positive, i.e. dµ−u -almost everywhere it

holds G(ρ) ≥ 0 for all ρ ∈ L∞(ΓT , dµ+
u ) with ρ ≥ 0 dµ+

u -almost everywhere.

• There exists a constant vector ρmax ∈ Rn such that component-by-component the
inequalities

ρin exp
(
−
∫ t

0
α(s)ds

)
− F+ + G(F+) + G(ρmax) ≤ ρmax (3.5)

for dµ−u -almost all (t, ω) ∈ ΓT and

ρ0 ≤ ρmax

for almost all x ∈ Ω are valid. Here, it is α(s) = ‖(ux(s, ·) + c(s, ·))−‖L∞(Ω)n and

F+(t) =
∫ t

0
exp

(
−
∫ s

0
α(r)dr

)‖(f1(s, ·))+‖L∞
...

‖(fn(s, ·))+‖L∞

ds.
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3 Transport equation

This construction of H is motivated by the expressions (2.62) and (2.63) for the coupling
conditions for the density. These formulas fit perfectly into the affine linear framework.

To conclude this section, we observe three properties of the operator G. First, for all
ρ ∈ L∞(ΓT , dµ+

u ) and all t ∈ [0, T ] the inequality

∫ t

0

∫
Γ
|G(ρ)|TW(νu)−dωdt =

∫ T

0

∫
Γ
χ[0,t]|G(ρ)|TW(νu)−dωdt

=
∫ T

0

∫
Γ
|G(χ[0,t]ρ)|TW(νu)−dωdt

= ‖G(χ[0,t]ρ)‖1,w,−
≤ ‖χ[0,t]ρ‖1,w,+

=
∫ T

0
|χ[0,t]ρ|TW(νu)+dωdt

=
∫ t

0

∫
Γ
|ρ|TW(νu)+dωdt

(3.6)

is true. Second, the equation (3.4) holds in fact for all essential bounded functions
g ∈ L∞([0, T ]): Let ρ ∈ L∞(ΓT , dµ+

u ), ρ 6= 0 and ε > 0 be given. Since the step
functions are dense in L∞([0, T ]) we can choose a step function gn =

∑n
k=1 akχ[tk,tk+1]

with
‖g − gn‖L∞([0,T ]) <

ε

2‖ρ‖1,w,+
.

Then, because of G(fnρ) = fnG(ρ) it follows

‖G(gρ)− gG(ρ)‖1,w,− ≤ ‖G((g − gn)ρ)‖1,w,− + ‖(g − gn)G(ρ)‖1,w,−
≤ ‖(g − gn)ρ‖1,w,+ + ‖g − gn‖L∞([0,T ])‖G(ρ)‖1,w,−
≤ ‖g − gn‖L∞([0,T ])‖ρ‖1,w,+ + ‖g − gn‖L∞([0,T ])‖ρ‖1,w,+
< ε

and thus
G(gρ) = gG(ρ) (3.7)

holds dµ−u -almost everywhere.
The third observation concerns the positivity of the operator. Using the positivity of
G and the triangle inequality, we estimate for ρ ∈ L∞(ΓT , dµ+

u )

(G(ρ))+ = 1
2 (G(ρ) + |G(ρ)|)

= 1
2
(
G(ρ+)− G(ρ−) +

∣∣∣G(ρ+)− G(ρ−)
∣∣∣)

≤ 1
2
(
G(ρ+)− G(ρ−) +

∣∣∣G(ρ+)
∣∣∣+ ∣∣G(ρ−)

∣∣)
= G(ρ+)

(3.8)
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3.2 Existence, uniqueness and stability

almost everywhere in ΓT . In the same way, we can prove that

(G(ρ))− ≤ G(ρ−) (3.9)

holds. In the following, we often extend functions in Lp(ΓT ,dµ±u ) by zero to construct
functions in Lp(ΓT , |dµu|) or Lp(ΓT )n. Especially, we extend, if necessary, the operator
G to an operator mapping from L∞(ΓT , |dµu|)→ L∞(ΓT , |dµu|).

3.2 Existence, uniqueness and stability
In this section, we will prove the uniqueness, stability and existence of solutions of the
initial-boundary-value problem (3.1). This is an extension of the current state of research
since it generalizes the existence theory to networks. To this end, we first introduce the
concept of weak solutions before we discuss regularity and the renormalization property
of the solutions. Equipped with this, we are able to prove uniqueness and boundedness.
For the latter, we will give explicit lower and upper bounds. We continue with one of
the main results of this thesis concerning the stability of the solution operator. Finally,
to end the chapter, we prove the existence of solutions.

To find a definition for a weak solution, let ρ ∈ C1([0, T ]×Ω,Rn) be a strong solution
of (3.1) and let ϕ ∈ C0,1

c ([0, T )×Ω,Rn) be a Lipschitz continuous compactly supported
test function. By partial integration we conclude

−
∫ T

0

∫
Ω
ϕT fdxdt = −

∫ T

0

∫
Ω
ϕT (ρt + (Uρ)x + Cρ) dxdt

=
∫ T

0

∫
Ω

(
ϕTt + ϕTxU− ϕTC

)
ρdxdt

+
∫

Ω
ϕ(0, ·)Tρ0dx−

∫ T

0

∫
Γ
ϕT (νU) ρdωdt

=
∫ T

0

∫
Ω

(
ϕTt + ϕTxU− ϕTC

)
ρdxdt+

∫
Ω
ϕ(0, ·)Tρ0dx

−
∫ T

0

∫
Γ
ϕT (νU)+ ρdωdt+

∫ T

0

∫
Γ
ϕT (νU)−H(ρ|ΓT )dωdt.

Remark 3.1. We use the integral notation
∫

Γ although the boundary consists only of two
single points, i.e. dω is the counting measure. An advantage of this notation is the easy
generalization to higher dimensions.

Definition 3.2. We call a function

ρ ∈ L∞([0, T ]× Ω)n

a weak solution of the transport equation ρt + (Uρ)x + Cρ = 0 if it holds

0 =
∫ T

0

∫
Ω
ρT (ϕt + Uϕx −Cϕ) + fTϕdxdt

for all ϕ ∈ C0,1([0, T ]× Ω,Rn) with ϕ(0, ·) = ϕ(T, ·) = 0 and ϕ = 0 on ΓT .
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3 Transport equation

A priori, it is not clear how to define boundary conditions for this class of weak
solutions since ρ is not a Sobolev function and thus, the usual trace theory (see e.g. [40])
is not applicable.

In [15], Boyer has proven some properties of such weak solutions for scalar equations,
especially the existence of a trace and the renormalization property of the solution (see
the following theorem).

Theorem 3.3 (Trace theorem, Boyer [15]). Let Ω ⊂ Rd be a d-dimensional bounded
Lipschitz domain and let be u ∈ L1((0, T ),W 1,1(Ω)d) and c, f ∈ L1((0, T ) × Ω) with
(c + ux)− ∈ L1((0, T ), L∞(Ω)) and (ux)+ ∈ L1((0, T ), L∞(Ω)). Then, for each weak
solution ρ ∈ L∞((0, T )× Ω) of the scalar transport equation

ρt + div(uρ) + cρ = f

the following properties hold:

Time continuity: The function ρ lies in C([0, T ], Lp(Ω)) for all p ∈ [1,∞).

Existence and uniqueness of a trace: There exists a unique essentially bounded func-
tion γρ ∈ L∞(ΓT , |dµu|), called trace, such that for any [t0, t1] ⊂ [0, T ] and for all
test functions ϕ ∈ C0,1([0, T ]× Ω)

0 =
∫ t1

t0

∫
Ω
ρ(ϕt + uT∇ϕ− cϕ) + fϕdxdt−

∫ t1

t0

∫
Γ
γρϕ(uT ν)dωdt

+
∫

Ω
ρ(t0)ϕ(t0)dx−

∫
Ω
ρ(t1)ϕ(t1)dx

(3.10)

holds.

Renormalization property: For any continuous and piecewise C1 function β the renor-
malization property holds, i.e. ρ satisfies for any [t0, t1] ⊂ [0, T ] and for all test
functions ϕ ∈ C0,1([0, T ]× Ω)

0 =
∫ t1

t0

∫
Ω
β(ρ)(ϕt + uT∇ϕ)dxdt−

∫ t1

t0

∫
Ω
β′(ρ) (ρc− f)ϕdxdt

−
∫ t1

t0

∫
Ω
ϕux(β′(ρ)ρ− β(ρ))dxdt−

∫ t1

t0

∫
Γ
β(γρ)(uT ν)ϕdωdt

+
∫

Ω
β(ρ(t0))ϕ(t0)dx−

∫
Ω
β(ρ(t1))ϕ(t1)dx.

(3.11)

Remark 3.4. The renormalization property implies equation (3.10) for β(s) = s.

Sketch of the proof. The proof is based on a space-dependent mollifying procedure and
carefully done technical estimates. Here, we only present the main ideas. For a detailed
version of the proof we refer to [15].

60



3.2 Existence, uniqueness and stability

The first step is to construct a space-dependent mollifying operator Sε for ε > 0 such
that for any p ∈ [1,∞] and f ∈ Lp(Ω) it holds

fε = Sεf ∈ C∞c (Ω), ‖Sεf‖Lp(Ω) ≤ ‖f‖Lp(Ω) and ‖∇(Sεf)‖Lp(Ω) ≤
C

ε
‖f‖Lp(Ω)

and for ε → 0 we have the convergence Sεf → f in Lp(Ω). Applying this operator to
the transport equation yields

∂ρε
∂t

+ div(uρε) + cρε − fε = Rε

in the distributional sense with ‖Rε‖L1((0,T )×Ω) → 0 for ε → 0. From this equation,
one can deduce ∂ρε

∂t ∈ L1((0, T ) × Ω) and thus we observe the higher regularity ρε ∈
W 1,1((0, T )× Ω) ∩ C0([0, T ], Lp(Ω)).

The next aim is to prove that ρε is a Cauchy sequence in C0([0, T ], Lp(Ω)). Therefore,
let be ε1, ε2 > 0. Then, it holds

∂

∂t
(ρε1 − ρε2) + div (u (ρε1 − ρε2)) + c (ρε1 − ρε2)− (fε1 − fε2) = Rε1 −Rε2 .

Let β : R → R be a smooth function with bounded derivative. Since we gained the
regularity ρε ∈W 1,1((0, T )×Ω), we can multiply the equation by β′(ρε1−ρε2) to obtain

∂

∂t
(β (ρε1 − ρε2)) + div (uβ (ρε1 − ρε2)) + c (ρε1 − ρε2)β′ (ρε1 − ρε2)

− (fε1 − fε2)β′ (ρε1 − ρε2) + div(u)
(
(ρε1 − ρε2)β′ (ρε1 − ρε2)− β (ρε1 − ρε2)

)
= β′ (ρε1 − ρε2) (Rε1 −Rε2) .

We choose a time-independent test function ϕh ∈ C0,1(Ω) with 0 ≤ ϕ ≤ 1 and ϕ = 0
on Γ such that ϕ → 1 for h → 0 holds. Furthermore, we consider β = βδ such that βδ
approximates the absolute value. After some computations, this allows with the help of
Gronwall’s inequality to find the estimate

sup
[0,T ]
‖ρε1 − ρε2‖L1(Ω) ≤ C

(
h+ ‖ρε1(0)− ρε2(0)‖L1(Ω) + ‖fε1 − fε2‖L1((0,T )×Ω)

+ ‖Rε1 −Rε2‖L1((0,T )×Ω) + 1
h
‖v − w‖L1((0,T )×Ω)

+ ‖w‖L∞((0,T )×Ω)‖ρε1 − ρε2‖L1((0,T )×Ω)

)

for any smooth function w. Choosing h and w carefully, one can conclude that ρε is
indeed a Cauchy sequence and thus ρ ∈ C([0, T ], L1(Ω)) holds. This proves the regularity
of the solution.

The existence of the trace is proven similarly. Using β(s) = s2 and another test
function, one shows that the restriction of ρε to ΓT is a Cauchy sequence in L2(ΓT , |dµu|).
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3 Transport equation

The limit of this sequence naturally fulfils equation (3.11) and hence, the renormalization
property is also proven for smooth functions β. The generalization to piecewise C1

functions is done by an approximation argument.
To complete the proof, one assumes the existence of two trace functions γ1ρ, γ2ρ ∈

L∞(ΓT , |dµu|) satisfying (3.10). Then, for the difference, it holds∫ T

0

∫
Γ

(γ1ρ− γ2ρ)ϕ(uT ν)dωdt = 0

for any ϕ ∈ C0,1([0, T ] × Ω). By a density argument one finds a sequence of Lipschitz
continuous functions ϕn with

sup
n
‖ϕn‖L∞(ΓT ) ≤ ∞

and
ϕn → (γ1ρ− γ2ρ) sgn(uT ν)

almost everywhere in ΓT . Using these test functions ϕn, it follows∫ T

0

∫
Γ
|γ1ρ− γ2ρ|2|uT ν|dωdt = 0

with the dominated convergence theorem, which proves the uniqueness of the trace.

Remark 3.5. A component-by-component consideration shows the validity of Theo-
rem 3.3 for vector-valued equations with n > 1. The renormalization property then
reads:

There exists a trace γρ ∈ L∞(ΓT , |dµu|) such that for any continuous and piecewise
C1 function β : Rn → Rn with Dβ diagonal, for any [t0, t1] ⊂ [0, T ] and for any test
function ϕ ∈ C0,1([0, T ]× Ω,Rn) it holds

0 =
∫ t1

t0

∫
Ω
β(ρ)T (ϕt + Uϕx)dxdt−

∫ t1

t0
ϕT (CDβ(ρ)ρ−Dβ(ρ)f) dxdt

−
∫ t1

t0

∫
Ω
ϕTUx(Dβ(ρ)ρ− β(ρ))dxdt−

∫ t1

t0

∫
Γ
β(γρ)T (νU)ϕdωdt

+
∫

Ω
β(ρ(t0))Tϕ(t0)dx−

∫
Ω
β(ρ(t1))Tϕ(t1)dx.

This theorem is no existence result, it only classifies solutions. But due to the conti-
nuity of ρ with values in Lp(Ω) and the existence of the trace we can define a solution
of the initial-boundary-value problem as following:

Definition 3.6. The function

ρ ∈ L∞((0, T )× Ω)n

is called a solution of the initial-boundary-value problem (3.1) if and only if
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3.2 Existence, uniqueness and stability

• ρ is a weak solution of the transport equation,

• the initial conditions are fulfilled, i.e. ρ(0) = ρ0 and

• the trace γρ satisfies the boundary conditions, i.e. H(γρ|Γ+
T

) = γρ|Γ−T .

As a consequence of the renormalization property we can prove the uniqueness of the
above defined solution.

Theorem 3.7 (Uniqueness). Under the assumptions from Section 3.1, there is at most
one solution of the initial-boundary-value problem (3.1).

Proof. Let ρ1 and ρ2 be two solutions of (3.1) with its traces γρ1 and γρ2 and define
ρ = ρ1−ρ2. Then, ρ is a weak solution of the homogeneous transport equation. Because
of the uniqueness of the trace γρ = γρ1−γρ2 is the trace of ρ. We see that ρ is a solution
of the following homogeneous initial-boundary-value problem

ρt + (Uρ)x + Cρ = 0 in (0, T )× Ω
ρ(0, ·) = 0 in Ω

(νU)−ρ = (νU)−G(ρ|ΓT ) on ΓT .

Using the renormalization property for β(s) = |s| and ϕ = W1 with 1 =
(
1 · · · 1

)T
we conclude for all t ∈ [0, T ]

0 = −
∫

Ω
1TWβ(ρ(t))dx−

∫ t

0

∫
Ω

1TWCβ(ρ)dxdt

−
∫ t

0

∫
Γ

1TW(νU)β(γρ)dωdt

= −‖Wρ(t)‖L1(Ω)n −
∫ t

0

∫
Ω

1TWC|ρ|dxdt

−
∫ t

0

∫
Γ
|γρ|TW(νu)+ − |G(γρ|ΓT )|TW(νu)−dωdt.

With inequality (3.6) we get

‖Wρ(t)‖L1(Ω)n ≤ −
∫ t

0

∫
Ω

1TWC|ρ|dxdt

and thus

‖Wρ(t)‖L1(Ω)n ≤
∫ t

0
‖c−‖L∞(Ω)n‖Wρ‖L1(Ω)ndt

≤
∫ t

0

(
‖(ux + c)−‖L∞(Ω)n + ‖(ux)+‖L∞(Ω)n

)
‖Wρ‖L1(Ω)ndt.

By Gronwall’s inequality (Lemma 1.19) we conclude ‖Wρ(t)‖L1(Ω)n = 0 for all t and
thus ρ = 0 almost everywhere since W is positive definite.
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3 Transport equation

Remark 3.8. We can slightly weaken the assumptions on the source term f . In fact, for
the existence of the trace, the renormalization property and the uniqueness it is sufficient
to require f ∈ L1((0, T )× Ω)n (see [15]).

Now, we are able to prove an upper and lower bound of the defined solution.

Lemma 3.9 (Upper bound). Let the assumptions from Section 3.1 be valid. Then, a
solution ρ of the initial-boundary-value problem (3.1) and its trace γρ are componentwise
bounded, i.e. it holds for all t ∈ [0, T ]

− (F−(t) + F−(T )) exp
(∫ t

0
α(s)ds

)
≤ ρ(t, ·) ≤ (ρmax + F+(t)) exp

(∫ t

0
α(s)ds

)
(3.12)

almost everywhere in Ω and

− (F−(t) + F−(T )) exp
(∫ t

0
α(s)ds

)
≤ γρ(t, ω) ≤ (ρmax + F+(t)) exp

(∫ t

0
α(s)ds

)
(3.13)

for |dµu|-almost all (t, ω) ∈ ΓT . Here, it is α(t) =
∥∥∥(ux(t, ·) + c(t, ·))−

∥∥∥
L∞(Ω)n

and

F±(t) =
∫ t

0
exp

(
−
∫ s

0
α(r)dr

) ‖(f1(s, ·)±‖L∞
...

‖(fn(s, ·))±‖L∞

 ds.

Proof. Let ϕ ∈ C0,1([0, T ] × Ω,Rn) be an arbitrary test function with ϕ(T ) = 0. In
order to prove that rρ with r(t) = exp

(
−
∫ t

0 α(s)ds
)

solves also a transport equation,
we would like to use ϕr as a test function. Since r is only absolutely continuous, but
not necessarily Lipschitz continuous, we need to approximate r by smoother functions.
Therefore, let αk ∈ C1([0, T ]) be a sequence converging to α in L1((0, T )). We define

rk(t) = exp
(
−
∫ t

0
αk(s)ds

)
.

The mean value theorem (see e.g. [59]) states for all a ≤ b ∈ R the existence of ζ ∈ [a, b]
with

exp(b)− exp(a) = exp(ζ)(b− a).

Thus, we find for each t ∈ [0, T ] a constant ζ(t) with

|ζ(t)| ≤ Ck := max
(
‖αk‖L1((0,T )), ‖α‖L1((0,T ))

)
such that it holds

|rk(t)− r(t)| = exp(ζ(t))
∣∣∣∣∫ t

0
αk(s)− α(s)ds

∣∣∣∣
≤ exp(Ck)‖αk − α‖L1((0,T )).
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3.2 Existence, uniqueness and stability

The sequence Ck is bounded as ‖αk‖L1((0,T )) is convergent, thus rk → r in L∞((0, T )).
Especially, it also holds αkrk → αr in L1((0, T )). Now, we will use ϕrk as test functions
in the weak formulation of the transport equation and take the limit for k →∞. Because
of (rk)t = −αkrk this yields

0 =
∫ T

0

∫
Ω
rkρ

T (ϕt + Uϕx − (C− αkId)ϕ) + rkf
Tϕdxdt

−
∫ T

0

∫
Γ
rkγρ

T (νU)ϕdωdt+
∫

Ω
ρT0 ϕ(0)dx

→
∫ T

0

∫
Ω
rρT (ϕt + Uϕx − (C− αId)ϕ) + rfTϕdxdt

−
∫ T

0

∫
Γ
rγρT (νU)ϕdωdt+

∫
Ω
ρT0 ϕ(0)dx

=
∫ T

0

∫
Ω

(rρ− F+)T (ϕt + Uϕx − (C− αId)ϕ) dxdt

+
∫ T

0

∫
Ω

(rf − (F+)t)T ϕ− F T+ (Ux + C− αId)ϕdxdt

−
∫ T

0

∫
Γ

(rγρ− F+)T (νU)ϕdωdt+
∫

Ω
ρT0 ϕ(0)dx.

Keeping in mind Remark 3.8, this shows that ρ̄(t, x) = r(t)ρ(t, x)− F+(t) with its trace
γρ̄(t, ω) = r(t)γρ(t, ω) − F+(t) is the unique solution of the following initial-boundary-
value problem:

ρ̄t + (Uρ̄)x + C̄ρ̄ = f̄ in (0, T )× Ω
ρ̄(0, x) = ρ0(x) in Ω

(νU)−ρ̄ = (νU)−H̄(ρ̄|Γ+
T

) dµ−u on ΓT

with reaction term c̄ = c+α1, boundary operator H̄(ρ) = rρin−F+ +G(F+) +G(ρ) and
source term f̄i = rfi−‖(rfi)+‖L∞(Ω)− ((ui)x + c̄i) (F+)i. For the boundary operator H̄
this conclusion needs further explanations. Since ρ is a solution of (3.1) we find

γρ̄|Γ−T = rγρ|Γ−T − F+

= rH(γρ|Γ+
T

)− F+

= rρin + G(rγρ|Γ+
T

)− F+

= rρin − F+ + G(F+) + G(γρ̄|Γ+
T

)

= H̄(γρ̄|Γ+
T

).

The advantage of introducing ρ̄ is that proving the upper bound (3.12) reduces to proving
ρ̄ ≤ ρmax, where ρmax is known from the assumptions in Section 3.1. To this end, we
define β : Rn → Rn as

β(s) = (s− ρmax)+
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3 Transport equation

and we will show β(ρ̄) = 0 almost everywhere.
For the test function ϕ = W1 and all t0 ∈ [0, T ], the renormalization property yields

−
∫ t0

0

∫
Ω

1TW
(
C̄Dβ(ρ̄)ρ̄−Dβ(ρ̄)f̄

)
dxdt−

∫ t0

0

∫
Ω

1TWUx(Dβ(ρ̄)ρ̄− β(ρ̄))dxdt

−
∫ t0

0

∫
Γ
β(γρ̄)TW(νu)dωdt−

∫
Ω

1TWβ(ρ̄(t0))dx = 0

(3.14)

because of β(ρ0) = 0. The boundary term of this equation is non-negative. This can
be shown using the componentwise monotonicity of β, the assumption (3.5) and the
inequalities (3.6) and (3.8):∫ t0

0

∫
Γ
β(H̄(γρ̄))TW(νu)−dωdt

=
∫ t0

0

∫
Γ
β (rρin − F+ + G(F+) + G(γρ̄))T W(νu)−dωdt

=
∫ t0

0

∫
Γ
β (rρin + G(ρmax) + G(γρ̄− ρmax))T W(νu)−dωdt

≤
∫ t0

0

∫
Γ
β (ρmax + G(γρ̄− ρmax))T W(νu)−dωdt

=
∫ t0

0

∫
Γ

(
(G(γρ̄− ρmax))+

)T
W(νu)−dωdt

≤
∫ t0

0

∫
Γ
G
(
(γρ̄− ρmax)+

)T
W(νu)−dωdt

≤
∫ t0

0

∫
Γ

(
(γρ̄− ρmax)+

)T
W(νu)+dωdt

=
∫ t0

0

∫
Γ
β(γρ̄)TW(νu)+dωdt.

Because of β(s) ≥ 0, Dβ(s)s ≥ 0, c̄ + ux = c + ux + ‖(c + ux)−‖L∞(Ω)n1 ≥ 0 and
(D(β)f̄)i = D(β)ii

(
rfi − ‖(rfi)+‖L∞(Ω) − ((ui)x + c̄i)Fi

)
≤ 0 we conclude from equa-

tion (3.14) that it holds∫
Ω

1TWβ(ρ̄(t0))dx = −
∫ t0

0

∫
Ω

1TW
(
C̄ + Ux

)
Dβ(ρ̄)ρ̄dxdt

+
∫ t0

0

∫
Ω

1TWDβ(ρ̄)f̄dxdt+
∫ t0

0

∫
Ω

1TWUxβ(ρ̄)dxdt

−
∫ t0

0

∫
Γ
β(γρ̄)TW(νu)+dωdt+

∫ t0

0

∫
Γ
β(H̄(γρ̄))TW(νu)−dωdt

≤
∫ t0

0
‖(ux)+‖L∞(Ω)n

∫
Ω

1TWβ(ρ̄)dxdt.

(3.15)

With Gronwall’s inequality (Lemma 1.19) this leads to
∫

Ω 1TWβ(ρ̄(t0))dx = 0 and thus
β(ρ̄(t0)) = 0 and ρ̄(t0) ≤ ρmax almost everywhere. Using the renormalization property
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3.2 Existence, uniqueness and stability

and the uniqueness of the trace of β(ρ̄) = 0, we also conclude

0 = γβ(ρ̄) = β(γρ̄)

and thus γρ̄(t, ω) ≤ ρmax holds for |dµu|-almost all (t, ω). Addition of F and multiplica-
tion by exp

(∫ t
0 α(s)ds

)
shows the desired upper bound for ρ and γρ.

In order to prove the lower bound, we use the same procedure for ρ̄ = rρ + F− and
β(s) = (s+ F−(T ))−. In this case, it is f̄i = rfi + ‖(rfi)−‖L∞(Ω) + ((ui)x + c)(F−)i and
H̄(ρ) = rρin + F− − G(F−) + G(ρ). The only step we have to take again into account
is the transition from equation (3.14) to inequality (3.15). With the monotonicity of β
and F , the positivity of ρin and F− and the inequalities (3.6) and (3.9), it follows∫ t0

0

∫
Γ
β(H̄(γρ̄))TW(νu)−dωdt

=
∫ t0

0

∫
Γ
β (rρin + F− + G(γρ̄)− G(F−))T W(νu)−dωdt

=
∫ t0

0

(
(rρin + F− + F−(T ) + G(γρ̄− F−))−

)T
W(νu)−dωdt

≤
∫ t0

0

∫
Γ

(
(G(γρ̄− F−))−

)T W(νu)−dωdt

≤
∫ t0

0

∫
Γ
G
(
(γρ̄− F−)−

)T W(νu)−dωdt

≤
∫ t0

0

∫
Γ

(
(γρ̄− F−)−

)T
W(νu)+dωdt

≤
∫ t0

0

∫
Γ

(
(γρ̄− F−(T ))−

)T
W(νu)+dωdt

=
∫ t0

0

∫
Γ
β(γρ̄)TW(νu)+dωdt.

Therefore, we can conclude as before ρ̄(t0) ≥ −F−(T ) almost everywhere in Ω and
γρ̄(t, ω) ≥ −F−(T ) for |dµu|-almost all (t, ω) ∈ ΓT . This completes the proof.

Beside the upper bound we just proved a lower bound. This lower bound can be
sharpened if we ask for an additional assumption on G. For simplicity, we will formulate
this result only for a vanishing source term f = 0, since in this case the left-hand side
of the inequalities (3.12) and (3.13) is zero and thus ρ ≥ 0 almost everywhere.

Lemma 3.10 (Lower bound). In addition to the requirements from Section 3.1, we
assume (c + ux) ∈ L1((0, T ), L∞(Ω)n) and f = 0. Furthermore, let ρmin ∈ Rn>0 be a
vector such that component-by component it holds

ρin exp
(∫ t

0
ζ(s)ds

)
+ G(ρmin) ≥ ρmin (3.16)

for dµ−u -almost all (t, ω) ∈ ΓT and

ρ0(x) ≥ ρmin
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3 Transport equation

for almost all x ∈ Ω with ζ(s) = ‖(ux(s, ·) + c(s, ·))+‖L∞(Ω)n. Then, a solution of the
initial-boundary-value problem (3.1) is bounded from below. More precisely, it is for all
t ∈ [0, T ]

ρ(t, ·) ≥ ρmin exp
(
−
∫ t

0
ζ(s)ds

)
> 0

almost everywhere in Ω and

γρ(t, ω) ≥ ρmin exp
(
−
∫ t

0
ζ(s)ds

)
> 0

for |dµu|-almost all (t, ω) ∈ ΓT .

Proof. Keeping in mind the non-negativity of ρ, this lemma can be proven in exactly
the same manner as Lemma 3.9.

The previous statements, especially the renormalization property of Theorem 3.3,
provide us with the necessary tools to prove a central result of this chapter: a kind of
sequential continuity of the solution operator. We formulate this statement as a theorem
with two parts. In the first part the weak-? convergence of a sequence of solutions to a
solution of the limit problem is obtained for very weak assumptions. This result will play
a crucial role in the proof of existence of solutions of the transport equation, whereas
the second part, proving the convergence in C([0, T ], Lp(Ω)n) under more restrictive
assumptions, will be used in Chapter 5 for the existence result of solutions of the low
Mach number equations.

Theorem 3.11 (Stability). 1. For all k ∈ N let uk, ck, fk, ρ0,k, ρin,k and Gk be defined
as in Section 3.1. Assume there exists for each k a solution

ρk ∈ L∞((0, T )× Ω)n

of the initial-boundary-value problem

(ρk)t + (Ukρk)x + Ckρk = fk in (0, T )× Ω
ρk(0) = ρ0,k in Ω

(νUk)−ρk = (νUk)−Hk(ρk|Γ+
T

) on ΓT

with trace γρk ∈ L∞(ΓT , |dµuk |).
Moreover, we assume:

uniform boundedness: The sequence (ρmax,k)k ⊂ Rn≥0 from assumption (3.5) is bounded,
i.e. there is ρmax ∈ Rn≥0 with ρmax,k ≤ ρmax.

convergence of the reaction term: (ck)k converges strongly to c ∈ L1((0, T ) × Ω)n in
L1((0, T )× Ω)n.

convergence of the velocity: The sequence (uk)k converges strongly in L1((0, T )×Ω)n
to u ∈ L1((0, T ),W 1,1(Ω)n) with (ux + c)− ∈ L1((0, T ), L∞(Ω)n) and (ux)+ ∈
L1((0, T ), L∞(Ω)n).
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3.2 Existence, uniqueness and stability

convergence of the velocity at the boundary: The sequence (νuk)k converges strongly
to νu in L1(ΓT )n.

boundedness of reaction term and velocity derivative: The sequence ((ck + (uk)x)−)k
is bounded in L1((0, T ), L∞(Ω)).

weak convergence and boundedness of the source term: The sequence (fk)k conver-
ges weakly to f ∈ L1((0, T ), L∞(Ω)n) in L1((0, T ) × Ω)n and it is bounded in
L1((0, T ), L∞(Ω)n).

weak-? convergence of the initial conditions: The sequence (ρ0,k)k converges weakly-?
to ρ0 ∈ L∞(Ω)n in L∞(Ω)n.

weak-? convergence of the inflow density: The sequence (ρin,k)k converges weakly-? to
ρin ∈ L∞(ΓT ,dµ−u ) in L∞(ΓT ,dµ−u ).

weak-? convergence/continuity of the boundary operator: There is an operator G ful-
filling the assumptions of Section 3.1 such that for each weak-? convergent sequence
qk ∈ L∞(ΓT )n with limit q it holds

(νUk)−Gk(qk)(νuk)− ⇀ (νU)−G(q)

in L1(ΓT )n.

Then, there exists a solution ρ ∈ C([0, T ], Lp(Ω)n) with trace γρ ∈ L∞(ΓT , |dµu|) of the
transport equation

ρt + (U)ρx + Cρ = f in (0, T )× Ω
ρ(0) = ρ0 in Ω (3.17)

(νU)−ρ = (νU)−H(ρ|Γ+
T

) on ΓT .

Furthermore, it holds

ρk
?−⇀ ρ in L∞((0, T )× Ω)n,

γρk
?−⇀ γρ in L∞(ΓT , |dµu|)

and
ρk(t) ⇀ ρ(t) in Lp(Ω)n

for all t ∈ [0, T ] and p ∈ [1,∞).
2. We assume additionally:

convergence of the velocity derivative: The sequence ((uk)x)k converges strongly to ux
in the L1((0, T )× Ω)n-norm.

convergence of reaction term and velocity derivative: The sequence (ᾱk)k with ᾱk =
‖(2ck + (uk)x)−‖L∞(Ω)n converges strongly to ᾱ = ‖(2c+ ux)−‖L∞(Ω)n in L1(0, T ).
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3 Transport equation

convergence of the source term: The sequence (fk)k converges to f in L1((0, T )×Ω)n.

convergence of the initial conditions: The sequence (ρ0,k)k converges strongly to ρ0 in
the L1(Ω)n-norm.

”weak lower semi-continuity” of the boundary operator: For each weak-? convergent
sequence ρk

?−⇀ ρ in L∞(ΓT )n it holds∫ T

0

∫
Γ
β(ρ)TW(νu)+ − β(H̄(ρ))TW(νu)−dωdt

≤ lim inf
k

∫ T

0

∫
Γ
β(ρk)TW(νuk)+ − β(H̄k(ρk))TW(νuk)−dωdt

(3.18)

with β : Rn → Rn defined by βj(s) = s2
j , H̄k(ρ) = rkρin,k + Gk(ρ) and H̄(ρ) =

rρin +G(ρ). Here, it is rk(t) = exp
(
−1

2
∫ t

0 ᾱk(s)ds
)

and r(t) = exp
(
−1

2
∫ t

0 ᾱ(s)ds
)

and W is the weight matrix introduced in Section 3.1.

Then, the convergence is even stronger:

ρk → ρ in C([0, T ], Lp(Ω)n)

and

γρk → γρ in Lp(ΓT , |dµu|)

for all p ∈ [1,∞).

Proof. For the proof we extend γρk, ρin,k, Gk(γρk) and H(γρk) by zero to functions in
L∞(ΓT )n.

1. First, we want to prove the existence of a solution of the limit problem and the
weak-? convergence. Because of Lemma 3.9 and the boundedness of ρmaxk ≤ ρmax,
‖(ck + (uk)x)−‖L1((0,T ),L∞(Ω)n) ≤ C1 and ‖fk‖L1((0,T ),L∞(Ω)n) ≤ C2 the sequences ρk and
γρk are bounded almost everywhere by

max(‖ρk‖L∞((0,T )×Ω)n , ‖γρk‖L∞(ΓT )n)

≤ max ((ρmax,k + Fk(t), Fk(T ) + Fk(t)) exp
(
‖(ck + (uk)x)−‖L1((0,T ),L∞(Ω)n)

)
≤ (max(ρmax, C2) + C2) exp(C1) (3.19)
= ρ̄max.

Here, it is

Fk(t) =
∫ t

0
exp

(
−
∫ s

0
‖(ck + (uk)x)−‖dr

)
‖((fk)1(s, ·))+‖L∞(Ω)

...
‖((fk)n(s, ·))+‖L∞(Ω).

 ds
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3.2 Existence, uniqueness and stability

Thus, we can extract weak-? convergent subsequences - also denoted by ρk and γρk -
with

ρk
?−⇀ ρ in L∞((0, T )× Ω)n

and
γρk

?−⇀ q in L∞(ΓT )n.

As a second step, we will show that ρ is a solution of the transport equation and that q
is its trace and fulfils the boundary conditions.

Because of the strong convergence of uk and ck in L1((0, T )×Ω)n, the sequences Ukρk
and Ckρk converge weakly in L1((0, T )× Ω)n, i.e.

Ukρk ⇀ Uρ
and

Ckρk ⇀ Cρ.

Similarly, (νUk)γρk converges weakly to (νU)ρ in L1(ΓT )n. Thus, for a test function
ϕ ∈ C0,1([0, T ]× Ω) with ϕ(T ) = 0 it holds

0 =
∫ T

0

∫
Ω
ρTk (ϕt + Ukϕx −Ckϕ) + fTk ϕdxdt

+
∫

Ω
ρT0,kϕ(0)dx−

∫ T

0

∫
Γ
γρTk (νUk)ϕdωdt

→
∫ T

0

∫
Ω
ρT (ϕt + Uϕx −Cϕ) + fTϕdxdt

+
∫

Ω
ρT0 ϕ(0)dx−

∫ T

0

∫
Γ
qT (νU)ϕdωdt.

In words, this means that ρ is a solution of the transport equation with its unique trace
γρ = q. Furthermore, because of Theorem 3.3 it is ρ ∈ C([0, T ], Lp(Ω)n) and ρ fulfils the
initial condition ρ(0) = ρ0. For the boundary term we have to consider the trace q in
more detail. The assumptions on Gk and ρin,k yield the weak convergence of (νUk)−ρin,k
and (νUk)−Gk(γρk). Thus,∫ T

0

∫
Γ
qT (νU)−ϕdωdt←

∫ T

0

∫
Γ
γρTk (νUk)−ϕdωdt

=
∫ T

0

∫
Γ
H(γρk)T (νUk)−ϕdωdt

=
∫ T

0

∫
Γ

(ρin,k + Gk(γρk))T (νUk)−ϕdωdt

→
∫ T

0

∫
Γ

(ρin + G(q))T (νU)−ϕdωdt

=
∫ T

0

∫
Γ
H(q)T (νU)−ϕdωdt
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is true and the trace q = γρ fulfils the boundary condition

(νU)−γq = (νU)−H(γq).

Hence, ρ is the unique solution of the limit problem (3.17). Since the weak-? limits ρ
and q are unique, in fact the whole sequences and not only subsequences converge.

As last step of the first statement, we have to show the weak convergence of ρk(t)
for each t ∈ [0, T ]. However, this is rather simple, as the sequence ρk(t) is bounded in
Lp(Ω)n because of the continuity of ρk with values in Lp(Ω)n and Lemma 3.9. Thus,
there exists a weak convergent subsequence in Lp(Ω)n with

ρk(t) ⇀ q.

For this subsequence and for all time-independent test functions ϕ ∈ C0,1(Ω,Rn) it holds
with Theorem 3.3 ∫

Ω
qTϕdx←

∫
Ω
ρk(t)Tϕdx

=
∫ t

0

∫
Ω
ρTk (Ukϕx −Ckϕ) + fTk ϕdxdt

+
∫

Ω
ρT0,kϕdx−

∫ t

0

∫
Γ
γρTk (νUk)ϕdωdt

→
∫ t

0

∫
Ω
ρT (Uϕx −Cϕ) + fTϕdxdt

+
∫

Ω
ρT0 ϕdx−

∫ t

0

∫
Γ
γρT (νU)ϕdωdt

=
∫

Ω
ρ(t)Tϕdx.

Thus, we conclude
q = ρ(t)

due to the density of C0,1(Ω,Rn) in Lp′(Ω)n. Again, by the uniqueness of the solution ρ
we see that the whole sequence converges weakly.

2. Now, we consider the stronger assumptions in order to prove both, the uniform
convergence of ρk with values in Lp(Ω)n and the strong convergence of the trace. As a
first step, we prove that the convergence of ρk(t) is actually strong in Lp(Ω)n for each
t ∈ [0, T ]. To this end, we use the Radon-Riesz property (see e.g. [67]) of the Lp-spaces
with p ∈ (1,∞), i.e. the fact

fk ⇀ f in Lp(Ω)n
‖fk‖Lp(Ω)n → ‖f‖Lp(Ω)n

}
⇒ fk → f in Lp(Ω)n. (3.20)

We define the auxiliary variable

ρ̄k(t, x) = ρk(t, x)rk(t)
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with rk(t) = exp
(
−1

2
∫ t

0 ᾱk(s)ds
)

and ᾱk(s) =
∥∥∥(2ck + (uk)x)−

∥∥∥
L∞(Ω)n

. By assumption,

it holds ᾱk → ᾱ =
∥∥∥(2c+ ux)−

∥∥∥
L∞(Ω)n

in L1((0, T )). Thus, we conclude

rk(t)→ r(t) = exp
(
−1

2

∫ t

0
α(s)ds

)
in C([0, T ]), as in the proof of Lemma 3.9. We also see, as in that proof, that ρ̄k solves
the equation

(ρ̄k)t + (Ukρ̄k)x + C̄kρ̄k = f̄k in (0, T )× Ω
ρ̄k(0) = ρ0,k in Ω

(νUk)−ρ̄k = (νUk)−H̄k(ρ̄k|ΓT ) on ΓT

with c̄k = ck+ 1
2 ᾱk1, f̄k = rkfk and H̄k(ρ̄) = rk(t)ρin,k+Gk(ρ̄). For ρ̄k and this problem,

all requirements of the first part of this theorem are fulfilled. Thus, we conclude

ρ̄k(t) ⇀ ρ̄(t)

in Lp(Ω)n, where ρ̄ is the solution of

(ρ̄)t + (Uρ̄)x + C̄ρ̄ = f̄ in (0, T )× Ω
ρ̄(0) = ρ0 in Ω

(νU)−ρ̄k = (νU)−H̄(ρ̄|ΓT ) on ΓT

with c̄ = c+ ᾱ1, f̄ = rf and H̄(ρ̄) = r(t)ρin + G(ρ̄).
The renormalization property for β : Rn → Rn defined by β(s)j = s2

j and ϕ = W1,
the weak lower semi-continuity of the L2-Norm, the strong convergence of ρ0,k and the
weak convergence of f̄Tk Wρ̄k yield∫

Ω
1TWβ(ρ0)dx−

∫ t

0

∫
Γ
β(γρ̄)TW(νu)dωdt

−
∫ t

0

∫
Ω

(2c̄+ ux)TWβ(ρ̄)dxdt− 2f̄TWρ̄dxdt

=
∫

Ω
1TWβ(ρ̄(t))dx

= ‖Wρ̄(t)‖2L2(Ω)n

≤ lim inf
k
‖Wρ̄k(t)‖2L2(Ω)n (3.21)

= lim inf
k

(∫
Ω

1TWβ(ρ0,k)dx−
∫ t

0

∫
Γ
β(γρ̄k)TW(ukν)dωdt

−
∫ t

0

∫
Ω

((2c̄k + uk)x)TWβ(ρ̄k)− 2f̄Tk Wρ̄kdxdt
)
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=
∫

Ω
1TWβ(ρ0)dx

+ lim inf
k

(∫ t

0

∫
Γ
β(H̄k(γρ̄k))TW(ukν)− − β(γρk)TW(ukν)+dωdt

−
∫ t

0

∫
Ω

(2c̄k + (uk)x)TWβ(ρ̄k)dxdt
)

+
∫ t

0

∫
Ω

2f̄TWρ̄dxdt

and thus

lim sup
k

(∫ t

0

∫
Γ
β(γρ̄k)TW(ukν)+ − β(H̄k(γρ̄k))TW(ukν)−dωdt

+
∫ t

0

∫
Ω

(2c̄k + (uk)x)TWβ(ρ̄k)dxdt
)

≤
∫ t

0

∫
Γ
β(γρ̄)TW(νu)+ − β(H̄(γρ̄))TW(νu)−dωdt

+
∫ t

0

∫
Ω

(2c̄+ ux)TWβ(ρ̄)dxdt.

(3.22)

Using the assumption (3.18) for the weak-? convergent sequence χ[0,t]γρ̄k, we conclude∫ t

0

∫
Γ
β(γρ̄)TW(νu)+ − β(H̄(γρ̄))TW(νu)−dωdt

≤ lim inf
k

∫ t

0

∫
Γ
β(γρ̄k)TW(νuk)+ − β(H̄k(γρ̄k))TW(νuk)−dωdt

(3.23)

for all t ∈ [0, T ]. Because of the strong convergence of ck and (uk)x in L1((0, T )× Ω)n,
we have for j = 1, . . . , n also the convergence∣∣∣2c̄jk + (ujk)x

∣∣∣ 12 → ∣∣∣2c̄j + (uj)x
∣∣∣ 12

in L2([0, T ]× Ω) and hence also the weak convergence∣∣∣2c̄jk + (ujk)x
∣∣∣ 12 ρ̄jk ⇀ ∣∣∣2c̄j + (uj)x

∣∣∣ 12 ρ̄j
in L2((0, T )×Ω). Here, the superscripts denote the components of the vectors. Since it
holds 2c̄k + (uk)x = 2ck + (uk)x + ‖(2ck + (uk)x)−‖L∞(Ω)n1 ≥ 0, we can again use the
weak lower semi-continuity of the norm to find∫ t

0

∫
Ω

(2c̄+ ux)TWβ(ρ̄)dxdt =
n∑
j=1
‖(2c̄j + (uj)x)

1
2 Wjj ρ̄

j‖2L2((0,t)×Ω)

≤ lim inf
k

n∑
j=1
‖(2c̄jk + (ujk)x)

1
2 Wjj ρ̄

j
k‖

2
L2((0,t)×Ω)

= lim inf
k

∫ t

0

∫
Ω

(2c̄k + (uk)x)T Wβ(ρ̄k)dxdt.
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This leads with equation (3.22) and inequality (3.23) to

lim sup
k

(∫ t

0

∫
Γ
β(γρ̄k)TW(ukν)+ − β(H̄k(γρ̄k))TW(ukν)−dωdt

+
∫ t

0

∫
Ω

(2c̄k + (uk)x)TWβ(ρ̄k)dxdt
)

≤
∫ t

0

∫
Γ
β(γρ̄)TW(νu)+ − β(H̄(γρ̄))TW(νu)−dωdt

+
∫ t

0

∫
Ω

(2c̄+ ux)TWβ(ρ̄)dxdt

≤ lim inf
k

(∫ t

0

∫
Γ
β(γρ̄k)TW(ukν)+ − β(H̄k(γρ̄k))TW(ukν)−dω

)
dt

+ lim inf
k

∫ t

0

∫
Ω

(2c̄k + (uk)x)TWβ(ρ̄k)dxdt

≤ lim inf
k

(∫ t

0

∫
Γ
β(γρ̄k)TW(ukν)+ − β(H̄k(γρ̄k))TW(ukν)−dωdt

+
∫ t

0

∫
Ω

(2c̄k + (uk)x)TWβ(ρ̄k)dxdt
)
.

Hence, the limit inferior and the limit superior coincide and consequently they are equal
to the limit. Altogether this yields

lim
k→∞

‖Wρ̄k(t)‖2L2(Ω)n

= lim
k→∞

(
−
∫ t

0

∫
Γ
β(γρ̄k)TW(ukν)+ − β(H̄k(γρ̄k))TW(ukν)−dωdt

+
∫

Ω
1TWβ(ρ0,k)dx−

∫ t

0

∫
Ω

(2c̄k + (uk)x)TWβ(ρ̄k)− 2f̄Tk Wρ̄kdxdt
)

= −
∫ t

0

∫
Γ
β(γρ̄)TW(νu)+ − β(H̄(γρ̄))TW(νu)−dωdt

+
∫

Ω
1TWβ(ρ0)dx−

∫ t

0

∫
Ω

(2c̄+ ux)TWβ(ρ̄)− 2f̄TWρ̄dxdt

= ‖Wρ̄(t)‖2L2(Ω)n .

Now, the strong convergence of ρ̄k(t) for all t ∈ [0, T ] follows by the Radon-Riesz property
(3.20) of L2(Ω)n and the equivalence of the weighted Euclidean norm ‖W · ‖2 and the
Euclidean norm ‖ · ‖2. Thus, by the convergence of r̄k

r̄k(t) = exp
(1

2

∫ t

0
ᾱk(s)ds

)
→ r̄(t) = exp

(1
2

∫ t

0
ᾱ(s)ds

)
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in C([0, T ]) (see proof of Lemma 3.9), the convergence

ρk(t) = ρ̄k(t)r̄k(t)→ ρ̄(t)r̄(t) = ρ(t)

in L2(Ω)n is also true. Because of the uniform boundedness of ρk(t) in L∞(Ω)n, we see
that ρk(t) converges in all Lp(Ω)n-spaces for p ∈ [1,∞).

Up to now, we have shown the pointwise in time convergence of ρk. In the next
step, we want to show that the convergence of ρk is uniform in [0, T ] with values in
Lp(Ω)n. This can be done by applying Lemma 1.30 to ρk, a Radon-Riesz like property
for uniform convergence. Therefore, we first prove that

∫
Ω ρk(t, x)Tϕ(t, x)dx converges

uniformly towards
∫

Ω ρ(t, x)Tϕ(t, x)dx for all fixed ϕ ∈ C1([0, T ] × Ω,Rn). Recall the
upper bound ρ̄max ∈ R>0 for ρk from the first part of the proof and let be ε > 0. We define
ε̃ = ε

5ρ̄max‖ϕ‖C1([0,T ]×Ω,Rn)
. Since uk, ck, fk and νuk are converging in L1, they are equi-

integrable (see Lemma 1.27) and we can use the characterization of equi-integrability of
Remark 1.26 to obtain the existence of δ > 0 such that S ⊂ [0, T ] with µ(S) < δ implies
the four inequalities:

∫
S ‖uk‖L1(Ω)ndt < ε̃,

∫
S ‖ck‖L1(Ω)ndt < ε̃,

∫
S ‖fk‖L1(Ω)ndt < ε̃ and∫

S ‖νuk‖L1(Γ)ndt < ε̃. Then, we compute for t1, t2 ∈ [0, T ] with |t2 − t1| < min(δ, ε̃)∣∣∣∣∫
Ω
ϕ(t2)Tρk(t2)dx−

∫
Ω
ϕ(t1)Tρk(t1)dx

∣∣∣∣
=
∣∣∣∣∫ t2

t1

∫
Ω

(
ϕTt + ϕTxUk − ϕTCk

)
ρk + fTk ϕdxdt−

∫ t2

t1

∫
Γ
ϕT (νUk)γρkdωdt

∣∣∣∣
≤ ‖ϕ‖C1 ρ̄max

∫ t2

t1

(
1 + ‖uk‖L1(Ω)n + ‖ck‖L1(Ω)n + ‖fk‖L1(Ω)n

)
dt

+ ‖ϕ‖∞ρ̄max

∫ t2

t1
‖νuk‖L1(Γ)ndt

≤ ρ̄max‖ϕ‖C1

∫ t2

t1

(
1 + ‖uk‖L1(Ω)n + ‖ck‖L1(Ω)n + ‖fk‖L1(Ω)n + ‖νuk‖L1(Γ)n

)
dt

< ε,

which proves the weak equicontinuity of ρk. Together with the weak convergence of
ρk(t) in Lp(Ω), we conclude the uniform in time convergence of

∫
Ω ρk(t)Tϕ(t)dx as each

equicontinuous pointwise convergent sequence is uniformly convergent. Due to the den-
sity of C1([0, T ]×Ω)n in C([0, T ], L2(Ω)n), this uniform convergence holds in fact for all
ϕ ∈ C([0, T ], L2(Ω)n).

To apply Lemma 1.30, we additionally need the uniform convergence of the norm
‖ρk(t)‖L2(Ω)n . Therefore, let again be ε > 0, define ε̃ = ε

3 max(ρ̄max,1)ρ̄max
and choose δ > 0

such that for all S ⊂ [0, T ] with µ(S) < δ the inequalities
∫
S ‖2ck + (uk)x‖L1(Ω)ndt < ε̃,∫

S ‖fk‖L1(Ω)ndt < ε̃ and
∫
S ‖νuk‖L1(Γ)ndt < ε̃ hold. Then, the renormalization property

leads to∣∣∣‖ρk(t2)‖2L2(Ω)n − ‖ρk(t1)‖2L2(Ω)n
∣∣∣

=
∣∣∣∣∫ t2

t1

∫
Γ
β(γρk)T (νuk)dωdt+

∫ t2

t1

∫
Ω

(2ck + (uk)x)T β(ρk)− 2fTk ρkdxdt
∣∣∣∣
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≤ max(ρ̄max, 1)ρ̄max

∫ t2

t1

(
‖νuk‖L1(Γ)n+‖2ck + (uk)x‖L1(Ω)n + ‖fk‖L1(Ω)n

)
dt

< ε

for t1, t2 ∈ [0, T ] with |t2− t1| < δ. Again, the shown equicontinuity yields together with
the pointwise convergence of ‖ρk(t)‖L2(Ω)n the uniform convergence. As a consequence,
we can apply Lemma 1.30 to deduce the convergence of ρk in C([0, T ], L2(Ω)n). As
before, the convergence holds in fact in all the spaces C([0, T ], Lp(Ω)n) for p ∈ [1,∞)
because of the uniform boundedness.

To finish the proof, it remains to show the strong convergence of the trace γρk.
Again, we consider the renormalization property for β as before with an arbitrary
ϕ ∈ C0,1([0, T ] × Ω,Rn). Since β(ρk) converges strongly to β(ρ) in Lp((0, T ) × Ω)n
and β(ρk(T )) to β(ρ(T )) in Lp(Ω)n we conclude∫ T

0

∫
Γ
β(γρk)T (νUk)ϕdωdt

=
∫ T

0

∫
Ω
β(ρk)T (ϕt + Ukϕx − (2Ck + (Uk)x)ϕ) + 2fTk ρkdxdt

+
∫

Ω
β(ρ0,k)Tϕ(0)dx−

∫
Ω
β(ρk(T ))Tϕ(T )dx

→
∫ T

0

∫
Ω
β(ρ)T (ϕt + Uϕx − (2C + Ux)ϕ) + 2fTρdxdt

+
∫

Ω
β(ρ0)Tϕ(0)dx−

∫
Ω
β(ρ(T ))Tϕ(T )dx

=
∫ T

0

∫
Γ
β(γρ)T (νU)ϕdωdt.

(3.24)

To use the Radon-Riesz-property again, we would like to choose sgn(νu) as a test
function in order to receive a norm of γρ. But since this function is not smooth
enough, we have to approximate it to ensure the C0,1-regularity. Therefore, let be
ϕj ∈ C0,1([0, T ]× Ω,Rn) such that

ϕj → sgn(νu)

holds almost everywhere in ΓT with |ϕ(t, x)| ≤ 1. The dominated convergence theorem
(see e.g. [60]) immediately yields

(νU)ϕj → |νu|

in L1(ΓT )n. Thus, we find for ε > 0 an index J ∈ N with

‖(νU)ϕJ − |νu|‖L1(ΓT )n <
ε

4ρ̄2
max

.

With the convergence in (3.24) we find for ϕJ an index K1 such that∣∣∣∣∣
∫ T

0

∫
Γ

(
β(γρk)T (νUk)− β(γρ)T (νU)

)
ϕJdωdt

∣∣∣∣∣ < ε

4
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for all k ≥ K1. Furthermore, because of the convergence of νuk in L1(ΓT )n there is also
K2 with

‖ν(uk − u)‖L1(ΓT )n <
ε

4ρ̄2
max

for k ≥ K2. Finally, for all k ≥ max(K1,K2) it holds∣∣∣‖γρk‖2L2(ΓT ,|dµu|) − ‖γρ‖
2
L2(ΓT ,|dµu|)

∣∣∣
≤
∣∣∣∣∣
∫ T

0

∫
Γ
β(γρk)T (νU) (sgn(νu)− ϕJ) dωdt

∣∣∣∣∣
+
∣∣∣∣∣
∫ T

0

∫
Γ
β(γρk)T (ν (U−Uk))ϕJdωdt

∣∣∣∣∣
+
∣∣∣∣∣
∫ T

0

∫
Γ

(
β(γρk)T (νUk)− β(γρ)T (νU)

)
ϕJdωdt

∣∣∣∣∣
+
∣∣∣∣∣
∫ T

0

∫
Γ
β(γρ)T (νU) (ϕJ − sgn(νu)) dωdt

∣∣∣∣∣
< 2ρ̄2

max‖|νu| − (νU)ϕJ‖L1(ΓT )n + ρ̄2
max‖ν(u− uk)‖L1(ΓT )n + ε

4
< ε

and we can use the Radon-Riesz-property and the boundedness of γρk to conclude the
strong convergence in Lp(ΓT , |dµu|) for all p ∈ [1,∞), which finishes the proof.

Remark 3.12. For the special case of non-coupled boundary conditions Boyer and Fabrie
obtained in [15] the same result. Their proof technique is completely different and uses
the same mollifier Sε as the proof of the trace theorem (Theorem 3.3) for the uniform
convergence. The additional regularity of Sερ allows them to find the estimate

‖Sερ− ρk‖2C([0,T ],L2(Ω) ≤M
(
‖Sερ0 − ρ0‖2L2 + ‖ρ0 − ρ0,k‖2L2 + ‖(νvk)− − (νv)−‖L1(ΓT )

+ ‖Rε,k‖L1 + ‖γ0(Sερ)− γρ‖2
L2(ΓT ,dµ−u ) + ‖γρ− ρin,k‖2L2(ΓT ,dµ−u )

)
,

which finally leads after some computations to

lim sup ‖ρ− ρk‖2C([0,T ],L2(Ω))

≤M
(
‖Sερ− ρ‖2C([0,T ],L2(Ω)) + ‖Sερ0 − ρ0‖2L2

+ lim sup ‖Rε,k‖L1 + ‖γ0(Sερ)− γρ‖2
L2(ΓT ,dµ−u )

)
.

The limit ε→ 0 yields the desired result

lim sup ‖ρ− ρk‖2C([0,T ],L2(Ω)) = 0.

The result we presented in Theorem 3.11 is a significant generalization.
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Now, we are finally able to prove the existence of solutions of the transport equation
(3.1). This will be done in two steps. In a first step, we will consider the equation
with non-coupled boundary conditions. In this case, the existence of a solution can be
proven in several ways. We will use the classical method of characteristics for smooth
data. Then, the first part of the previous theorem yields the existence for general data.
In [15], a proof of the existence using a parabolic approximation is presented. In a
second step, we will construct a solution for general boundary conditions by an iterative
method, where we will again use the first part of Theorem 3.11.

Lemma 3.13 (Existence). For G = 0 there exists a solution of the initial-boundary-
value problem (3.1) under the assumptions from Section 3.1.

Proof. It is sufficient to consider the scalar case n = 1, since the equations are inde-
pendent from each other. First, we will construct the solution for smooth data by the
method of characteristics. Therefore, let be u, c, f ∈ C1([0, T ] × Ω) and let ρ0 and ρin
be step functions defined on Ω̄ and ΓT , respectively.

Let η = η(t; t0, x0) be the unique solution of the ODE

d
dtη = u(t, η)

η(t0; t0, x0) = x0.

For each point (t, x) ∈ [0, T ]×Ω let (t̄, x̄) be the “first” intersection of the characteristic
through (t, x) with the boundary ({0} × Ω) ∪ ΓT , i.e.

(t̄, x̄) =
(
t̄, η(t̄; t, x)

)
with

t̄ = inf
s∈[0,t]

{s|η(r; t, x) ∈ Ω ∀r ∈ (s, t)} .

We define
F (t, x, r) = −

∫ t

r
(ux + c) (s, η(s; t, x))ds.

Then, the solution of the transport equation is given by

ρ(t, x) =

eF (t,x,t̄)
[
ρin(t̄, x̄) +

∫ t
t̄ f(s, η(s; t, x))e−F (s,x,t̄)ds

]
for t̄ 6= 0

eF (t,x,0)
[
ρ0(x̄) +

∫ t
0 f(s, η(s; t, x))e−F (s,x,0)ds

]
otherwise.

(3.25)

To check that this is indeed a solution, we use the substitutions y = η(0; t, x) = x̄ and
s = t̄(t, x), respectively, in the weak formulation of the transport equation. One has to
be careful with the second substitution, since s is not smooth on the whole domain. But
there are certain subdomains of (0, T ) × Ω, where t̄ depends smoothly on (t, x). To be
precise, let Γ−T = {(t, ω) ∈ ΓT |νu(t, ω) < 0} be the inflow part of the boundary and let
(t0, ω0) ∈ Γ−T be arbitrary. We denote by Γ0 the connected component of Γ−T containing
(t0, ω0). Then, we define

Ω̂0 = {(t, x) ∈ (0, T )× Ω|x = η(t; t1, ω1) for some (t1, ω1) ∈ Γ0},
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3 Transport equation

which is the domain of influence of Γ0. The implicit function theorem yields the smooth
dependence of s = t̄ on (t, x) in Ω̂0. Thus, it is easy but technical to verify that (3.25)
fulfils for any ϕ ∈ C0,1([0, T ]×Ω) the weak formulation. However, we omit this technical
computation since it gives no new insight. Instead, we refer to standard textbooks on
the method of characteristics (e.g. [16]).

Now, we will treat the general case for non-smooth data. Therefore, let be

u ∈ L1((0, T ),W 1,1(Ω)),
c ∈ L1((0, T )× Ω),
f ∈ L1((0, T ), L∞(Ω)),
ρ0 ∈ L∞(Ω)

and
ρin ∈ L∞(ΓT , dµ−u )

with (ux)+, (ux+c)− ∈ L1((0, T ), L∞(Ω)). Using a mollifier one can construct sequences
(uk)k and (ψk)k of smooth functions converging to u in L1((0, T ),W 1,1(Ω)) and to ψ =
c+ ux in L1((0, T )× Ω), respectively, such that

‖ψ−k ‖L1((0,T ),L∞(Ω)) ≤ C‖(c+ ux)−‖L1((0,T ),L∞(Ω)) (3.26)

holds (see Chapter III of [15]). Now, we set ck = ψk−(uk)x. Furthermore, we extend the
boundary value ρin by zero to a function in L∞(ΓT ) and denote by ρin,k and ρ0,k sequences
of step functions converging to ρin and ρ0 in L∞(ΓT ) and L∞(Ω), respectively. The source
term f is also approximated with a mollifier by smooth functions fk converging to f in
L1((0, T )×Ω) such that ‖fk‖L1((0,T ),L∞(Ω)) is bounded. From the first part of this proof
we know that there exists a solution ρk with trace γρk of the transport equation with
smooth data uk, fk, ck, i.e. of

(ρk)t + (Ukρk)x + Ckρ = fk in (0, T )× Ω
ρk(0) = ρ0,k in Ω

(νUk)−ρk = (νUk)−ρin,k on ΓT .

Due to (3.26) all requirements of Theorem 3.11 are fulfilled by construction. Thus, there
exists a solution ρ of the limit problem

ρt + (Uρ)x + Cρ = f in (0, T )× Ω
ρ(0) = ρ0 in Ω

(νU)−ρ = (νU)−ρin on ΓT .

Now that we have shown the existence of solutions in the case of non-coupled boundary
conditions, we will provide a small lemma concerning the monotonicity of the solution
operator in dependence on the inflow values. This lemma will turn out to be useful for
the construction of the solution in the general case with coupled boundary conditions.
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3.2 Existence, uniqueness and stability

Lemma 3.14. For G = 0 let the assumptions from Section 3.1 be true and let the
functions ρin,1, ρin,2 ∈ L∞(ΓT , dµ−u ) be two different inflow values with

ρin,2 ≥ ρin,1 ≥ 0

dµ−u -almost everywhere. Then, for the solutions ρi of the transport equation (3.1) with
inflow values (νU)−ρ = (νU)−ρin,i it holds

ρ2(t) ≥ ρ1(t)

almost everywhere in Ω. Moreover, for their traces γρi hold

γρ2 ≥ γρ1

|dµu|-almost everywhere in ΓT .

Proof. Let ρ1 and ρ2 be the solutions corresponding to the inflow values ρin,1 and ρin,2.
Recall that these solutions ρ1 and ρ2 exist due to Lemma 3.13. Then, the difference
ρ = ρ2 − ρ1 with trace γρ = γρ2 − γρ1 solves the homogeneous transport equation

ρt + (Uρ)x + Cρ = 0 in (0, T )× Ω
ρ(0, ·) = 0 in Ω

(νU)−ρ = (νU)− (ρin,2 − ρin,1) on ΓT .

Since the inflow value ρin,2− ρin,1 is non-negative dµ−u almost everywhere, we can apply
Lemma 3.9 to obtain the lower bound ρ(t) ≥ 0 almost everywhere in Ω and γρ(t, ω) ≥ 0
for |dµu|-almost all (t, ω) ∈ ΓT .

Equipped with this lemma, we can prove the existence of solutions for general bound-
ary operators H using an iterative construction in the next theorem.

Theorem 3.15 (Existence). Under the assumptions (3.2) on u, c and f and under
the assumptions of Section 3.1 on H, there exists a solution of the initial-boundary-value
problem (3.1).

Proof. First, due to the linearity of the transport equation, we observe that we can split
the problem in the two subproblems

ρ1
t + (Uρ1)x + Cρ1 = f+ in (0, T )× Ω

ρ1(0, ·) = ρ0 in Ω
(νU)−ρ1 = (νU)−H(ρ1|Γ+

T
) on ΓT

and
ρ2
t + (Uρ2)x + Cρ2 = f− in (0, T )× Ω

ρ2(0, ·) = 0 in Ω
(νU)−ρ2 = (νU)−G(ρ2|Γ+

T
) on ΓT .

81
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Then ρ = ρ1 − ρ2 is a solution of the original problem. Thus, it is sufficient to consider
only non-negative right-hand sides f ≥ 0. We will iteratively construct a sequence of
functions converging weakly-? to a solution ρ of the transport equation. The idea is to
use the outflow value of a solution to compute the inflow value for the problem of the
next iteration step. Due to the positivity of the operator G, the obtained sequence will
be monotonically increasing.

Therefore, we define the starting value of the sequence γρ0 = 0. From Lemma 3.13
we know that the problem

(ρk)t + (Uρk)x + Cρk = f in (0, T )× Ω
ρk(0) = ρ0 in Ω

(νU)−ρk = (νU)−H((γρk−1)|Γ+
T

) on ΓT

has a unique solution ρk with trace γρk. Once more, like in the proof of Lemma 3.13, we
want to use the stability theorem (Theorem 3.11), but this time with ρin,k = H(γρk−1|Γ+

T
)

and Gk = 0.
As a first step, we have to check the requirements for this theorem. Therefore, we

want to analyse the boundedness of the boundary value. From assumption (3.5) we
know that there is a constant ρmax ∈ Rn>0 with

ρin exp
(
−
∫ t

0
α(s)ds

)
− F + G(F ) + G(ρmax) ≤ ρmax

and
ρ0 ≤ ρmax

almost everywhere. We want to show by induction that an analogue bound for the
boundary value ρin,k = H(γρk−1|Γ+

T
) and Gk = 0 is valid for all k, i.e.

γρk exp
(∫ t

0
α(s)ds

)
− F ≤ ρmax.

The base case is clear since G and ρin are positive and it holds γρ0 = 0. Using the
positivity of G, the induction hypothesis and the assumption (3.5) on ρmax we calculate
for the inductive step

H(γρk−1|Γ+
T

) exp
(
−
∫ t

0
α(s)ds

)
= ρin exp

(
−
∫ t

0
α(s)ds

)
+ G(ρmax) + G(F )

− G
(
ρmax + F − γρk−1 exp

(
−
∫ t

0
α(s)ds

))
≤ ρin exp

(
−
∫ t

0
α(s)ds

)
+ G(ρmax) + G(F )

≤ ρmax + F.

82



3.2 Existence, uniqueness and stability

Thus, Lemma 3.9 yields the desired bound for γρk for all k.
The next aim is to show the convergence of the inflow values ρin,k. As we have just

seen, this sequence is bounded and it is monotonically increasing, i.e. it holds

ρin,k+1(t, ω) ≥ ρin,k(t, ω)

for dµ−u -almost all (t, ω) ∈ ΓT . We will also prove this by induction. Due to the non-
negativity of f and Lemma 3.9 it is γρ1(t, ω) ≥ 0 for |dµu|-almost all (t, ω) and thus,
because of the positivity of G and ρin

ρin,2 = H((γρ1)|Γ+
T

) ≥ ρin = H((γρ0)|+ΓT ) = ρin,1

holds dµ−u -almost everywhere. For the inductive step, we will use the previous lemma
about the monotonicity. Assume, it is ρin,k ≥ ρin,k−1. Then, Lemma 3.14 immediately
yields γρk ≥ γρk−1. Thus, the positivity of G leads to

ρin,k+1 − ρin,k = H((γρk)|Γ+
T

)−H((γρk−1)|Γ+
T

) = G((γρk − γρk−1)|Γ+
T

) ≥ 0.

Since (ρin,k)k is bounded and monotone, we can apply the monotone convergence
theorem (see e.g. [60]) to conclude that there exists a function q ∈ L∞(ΓT , dµ−u ) with

ρin,k → q

in Lp(ΓT , dµ−u ). Since the sequence is bounded in L∞(ΓT , dµ−u ), it is also weak-? con-
vergent in L∞(ΓT ,dµ−u ). Hence, Theorem 3.11 is applicable and it yields the existence
of a solution ρ with trace γρ of

ρt + (Uρ)x + Cρ = f in (0, T )× Ω
ρ(0) = ρ0 in Ω

(νU)−ρ = (νU)−q on ΓT .

Furthermore, it holds
γρk

?−⇀ γρ

in L∞(ΓT , |dµu|). The weak-? continuity of the operator G implies

H(γρk|Γ+
T

) ?−⇀ H(γρ|Γ+
T

)

in L∞(ΓT ,dµ−u ). Finally, we conclude

(νU)−γρ ↼ (νU)−γρk
= (νU)−H(γρk−1|Γ+

T
)

⇀ (νU)−H(γρ|Γ+
T

)

in L1(ΓT ). Because of the uniqueness of the weak limit the boundary condition

(νU)−γρ = (νU)−H(γρ|Γ+
T

)

is satisfied.
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To end this chapter, we will provide two small lemmas concerning the momentum Uρ.
Especially the second will be useful in Chapter 5.

Lemma 3.16. Let the assumptions of Section 3.1 be satisfied. Furthermore, let the
velocity be continuously differentiable, i.e. v ∈ C1((0, T ) × Ω,Rn). Denote the solution
of the initial-boundary-value problem (3.1) by ρ. Then, m = Vρ is a weak solution of
the transport equation

mt + (Um)x + Cm = (Vt + UVx) ρ (3.27)

with initial value m(0) = V(0)ρ0 and trace γm = Vγρ.

Proof. Let ϕ ∈ C0,1([0, T ] × Ω,Rn) be a test function. Then, we compute for any
[t0, t1] ⊂ [0, T ]

0 =
∫ t1

t0

∫
Ω
ρT ((Vϕ)t + U (Vϕ)x −C (Vϕ)) dxdt−

∫ t1

t0

∫
Γ
γρT (νU)Vϕdωdt

+
∫

Ω
ρ(t0)TV(t0)ϕ(t0)dx−

∫
Ω
ρ(t1)TV(t1)ϕ(t1)dx

=
∫ t1

t0

∫
Ω

(Vρ)T (ϕt + Uϕx −Cϕ) + ρT (Vt + UVx)ϕdxdt

−
∫ t1

t0

∫
Γ

(Vγρ)T (νU)ϕdωdt+
∫

Ω
(V(t0)ρ(t0))T ϕ(t0)dx

−
∫

Ω
(V(t1)ρ(t1))T ϕ(t1)dx.

Thus, m = Vρ solves the equation (3.27) with initial value m(0) = V(0)ρ0 and because
of the uniqueness of the trace it holds γm = Vγρ.

Lemma 3.17. Additionally to the assumptions from Section 3.1, let us assume u ∈
W 1,1((0, T ) × Ω)n ∩ C([0, T ] × Ω)n. Denote the solution of the initial-boundary-value
problem (3.1) by ρ. Then, the momentum m = Uρ is a solution of the transport equation

mt + (Um)x + Cm = (Ut + UUx) ρ (3.28)

with initial value m(0) = U(0)ρ0 and trace γm = Uγρ.

Proof. Since u ∈W 1,1((0, T )× Ω)n ∩ C((0, T )× Ω)n, we can find a sequence of smooth
functions vk ∈ C1((0, T ) × Ω)n such that vk → u in W 1,1((0, T ) × Ω)n and vk

?−⇀ u
in L∞((0, T ) × Ω)n (see Chapter III of [15]). Applying the trace operator for Sobolev
functions, it also holds vk|ΓT → u|ΓT in L1(ΓT )n and vk(0)→ u(0) in L1(Ω)n. According
to the previous lemma, mk = Vkρ solves the transport equation

(mk)t + (Umk)x + Cmk = ((Vk)t + U(Vk)x) ρ
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3.2 Existence, uniqueness and stability

with initial value mk(0) = Vk(0)ρ0 and trace γmk = Vkγρ. Therefore, for any test
function ϕ ∈ C0,1([0, T ]× Ω,Rn) with ϕ(T ) = 0 it holds

0 =
∫ T

0

∫
Ω
ρVT

k (ϕt + Uϕx −Cϕ) + ((Vk)t + U(Vk)x) ρdxdt

−
∫ T

0

∫
Γ
γρVT

k (νU)ϕdωdt+
∫

Ω
ρT0 Vk(0)ϕ(0)dx

→
∫ T

0

∫
Ω
ρUT (ϕt + Uϕx −Cϕ) + (Ut + UUx) ρdxdt

−
∫ T

0

∫
Γ
γρUT (νU)ϕdωdt+

∫
Ω
ρT0 U(0)ϕ(0)dx.

Thus, m = Uρ solves equation (3.28) with initial value m(0) = U(0)ρ0 and trace
γm = Uγρ.

Remark 3.18. All considerations in this chapter could also be done for the case of mul-
tidimensional domains Ω with Lipschitz boundary.
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4 Differential equations on a network
Up to now, we have derived a model for the low Mach number flow on a network
(Chapter 2), which consists of a transport equation, discussed in Chapter 3, and an
ordinary differential equation, coupled by algebraic relations. In this chapter, we want to
study a certain class of differential equations on a network, namely the class of transport
equations coupled with an ordinary differential equation. One particular example of this
class are the above-mentioned low Mach number equations, as we discussed in Section 2.5
heuristically and as we will analyse rigorously in Chapter 5.

The analysis of the coupled equations is divided into two steps. First, we consider only
ordinary differential equations on a network and in a second step we treat the coupling
with the transport equation. A general formulation of ordinary differential equations on
a network is given by:

vt = f̄(t, v)−R(t)∆p(t, v)
∆p(t, v) = −BT

>1PV (t) + g(t, v) (4.1)
F (t, v(t)) = 0

and
v(0) = v0.

This class of differential equations is characterized by the additional algebraic constraints
for the network structure. Prominent examples for this class of equations are electrical
networks. The electrical elements as e.g. capacitors or inductors are considered as the
edges and can be modelled with the help of ODEs. Kirchhoff’s laws couple these ODEs
at the intersections. Another example is the velocity equation (2.59) of the low Mach
number model.

The idea of the analysis of (4.1) is to reformulate the differential algebraic equation
as an ODE without algebraic constraints. In this way, we can guarantee the existence
and uniqueness of a solution local in time. A crucial point in this theory is the global
existence on [0, T ]. For this reason, we will introduce the concept of energy functionals
and we can conclude the global existence for certain classes of networks.

In the second step, we discuss the coupling with the transport equation. The right-
hand side of the ODE depends on the solution ρ of a transport equation, whereas ρ itself
depends on the solution of the ODE, i.e. we consider the equations

ρt + ((V + Q) ρ)x + Cρ = 0
vt = f̄(t, v, ρ)−R(t)∆p(t, v)

∆p(t, v) = −BT
>1PV (t) + g(t, v, ν(V + Q)|Γγρ)

F (t, v(t)) = 0

(4.2)
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together with suitable initial and boundary conditions. In this part, we will provide the
main result of this thesis: the existence of solutions of (4.2). The proof is based on the
Schauder fixed point theorem together with the theory of the previous chapter on the
transport equation and on the reformulation of the ODE. To ensure the global existence,
we will again use an energy functional

The first section of this chapter deals with ODEs on a network and in the second
section we treat the coupled equations. In the third section, we will construct energy
functionals for different graphs in order to show for which graphs the theory can be
applied.

4.1 Ordinary differential equations on a network
In this section, we will combine the concept of oriented graphs with the theory of ODEs.
The regarded equation is a special semi-explicit differential algebraic equation (DAE),
where the algebraic coupling conditions depend on the structure of the graph.

In recent years, there has been done a lot of research focussing on DAEs, e.g. in the
context of optimal control or model order reduction. The aim of this section is merely
to provide us with the necessary tools for the analysis of coupled equations. We do not
want to give a full review of this topic. For more information, we refer to the textbooks
[61] by Kunkel and Mehrmann and [64] by Lamour et al. as well as the references therein.

We have in mind to study the velocity equation (2.59). Therefore, we consider an
oriented weighted connected graph G = (V, E, w, init, ter) with its incidence matrix
B ∈ {−1, 0, 1}m×n, which has k < m inner nodes v ∈ V with d(v) > 1. We recall
the notation B>1 for the submatrix of the incidence matrix corresponding to the inner
nodes, which was introduced in equation (1.1).

The problem is to find v ∈ W 1,1((0, T ))n and PV ∈ L1((0, T ))k solving the equation
(4.1). Since the right-hand side is not necessarily continuous, the ordinary differential
equation has to be understood in the extended sense (see Theorem 1.18), i.e. a solution
v has to be locally absolute continuous and has to solve the ODE almost everywhere in
(0, T ). In this section we assume:

• The matrix R : [0, T ]→ Rn×n is continuous and R(t) is a diagonal matrix with

Rmin = min
t∈[0,T ],1≤i≤n

Rii(t) > 0

and
Rmax = max

t∈[0,T ],1≤i≤n
Rii(t).

• The function f : [0, T ] × Rn → Rn with f(t, v) = f̄(t, v) − R(t)g(t, v) is a Cara-
théodory-Lipschitz vector field (see Definition 1.17).

• The coupling condition F : [0, T ] × Rn → Rk is continuously differentiable. The
derivative DvF is locally Lipschitz continuous and there exist two positive definite
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diagonal matrices D1 ∈ C0,1([0, T ] × Rn,Rk×k) and D2 ∈ C0,1([0, T ] × Rn,Rn×n)
with

DvF (t, v) = D1(t, v)B>1D2(t, v) (4.3)

for all (t, v) ∈ [0, T ] × Rn. The eigenvalues of D2 are bounded from below, i.e.
there exists a constant c1 > 0 with

inf
(t,v)∈[0,T ]×Rn

1≤i≤n

(D2)ii ≥ c1.

• The initial condition v0 ∈ Rn is a solution of

F (0, v0) = 0.

Remark 4.1. If the underlying unoriented graph has no circles, the existence of D1 and
D2 with

DvF (t, v) = D1(t, v)B>1D2(t, v)

is equivalent to the equality

sgn(DvF (t, v)) = B>1.

Thus, the Jacobian has the same sign pattern as in the linear case

F (t, v) = B+
>1A(0) (v +Q(t, 0))−B−>1A(1) (v +Q(t, 1)) = 0,

which was derived in Section 2.4 from the energy conservation at the nodes.
The following theorem states the local in time existence and uniqueness, which is a

crucial step in the direction of the global existence.

Theorem 4.2 (Local existence). Under the above assumptions, there exists a unique
solution

(v, p) ∈W 1,1((0, T0))n × L1((0, T0))k

of (4.1) for T0 small enough.

Proof. The idea of the proof is to rewrite the DAE as an ODE for v. As often done
in the context of DAEs, we will differentiate the coupling condition, since this allows a
reformulation of the differential equation.

First, we will derive necessary conditions for the existence of a solution. Therefore,
let us assume the pair (v, PV ) with v ∈ W 1,1((0, T0))n and PV ∈ L1((0, T0))k to be a
solution. The total derivative of the coupling condition then yields

0 = d
dtF (t, v(t))

= Ft(t, v) +DvF (t, v)vt
= Ft(t, v) +DvF (t, v)

(
f(t, v) + RBT

>1,hPV
)
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for almost all t ∈ (0, T0). The matrix

DvFRBT
>1 = D1B>1D2RBT

>1 = D1L>1
D2R

is regular since we can write it as a product of D1 and a principal submatrix of the
weighted Laplacian matrix with weight matrix D2R (see Lemma 1.16). Thus, we can
express the pressure independently of the derivative of v as

PV = −
(
D1L>1

D2R

)−1
(D1B>1D2f(t, v) + Ft(t, v))

= −
(
L>1

D2R

)−1 (
B>1D2f(t, v) + D−1

1 Ft(t, v)
)
.

Plugging this expression into the ODE (4.1) leads to the necessary condition

vt =
(

Id−RBT
>1

(
L>1

D2R

)−1
B>1D2

)
f −RBT

>1

(
L>1

D2R

)−1
D−1

1 Ft. (4.4)

Instead of proving the existence of a solution of the original problem it is sufficient to
prove the existence of a solution of (4.4). Therefore, let D0 ⊂ [0, T ]× Rn be a compact
subset. Since f is a Carathéodory-Lipschitz vector field, it is locally integrable bounded,
i.e. there is mf ∈ L1(pr1D0, [0,∞)) and a null subset I0 ⊂ pr1D0 with

‖f(t, v)‖2 ≤ mf (t)

for all (t, v) ∈ D0 with t /∈ I0. Because of the continuity of the matrices D1 and D2 we
find two constants c2, c3 > 0 with

(D2)ii ≤ c2

and
(D1)jj ≥ c3

for all (t, v) ∈ D0, 1 ≤ i ≤ n and 1 ≤ j ≤ k.
The matrix T = Id −RBT

>1

(
L>1

D2R

)−1
B>1D2 is continuous in t and Lipschitz con-

tinuous in v (see Lemma 1.22 and Corollary 1.23). Furthermore, for each (t, v) this
matrix is a projector, since it holds T2 = T. Thus, for the spectral norm it holds
‖T‖2 = ‖Id − T‖2 (see e.g. [80]) and we can estimate with the Lemmas 1.13 and 1.16
for (t, v) ∈ D0

‖T(t, v)‖22 = λmax

((
RBT

>1

(
L>1

D2R

)−1
B>1D2

)T
RBT

>1

(
L>1

D2R

)−1
B>1D2

)

≤ λmax
(
D2

2

)
λmax

(
BT
>1B>1

)
λmax

((
L>1

D2R

)−2
)
λmax

(
B>1BT

>1

)
λmax

(
R2
)

≤ c2
2λmax

(
B>1BT

>1

)2
∥∥∥∥(L>1

D2R

)−1
∥∥∥∥2

2
R2

max

≤
(
c2Rmax
c1Rmin

∥∥∥L>1
∥∥∥

2

∥∥∥∥(L>1
)−1

∥∥∥∥
2

)2

= c2
4.
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Similarly, we find∥∥∥∥R(t)BT
>1

(
L>1

D2R

)−1
D−1

1

∥∥∥∥
2
≤ Rmax
Rminc1c3

√
‖L>1‖2

∥∥∥∥(L>1
)−1

∥∥∥∥
2

= c5.

Thus, the right-hand side of the ODE (4.4) is itself locally integrably bounded with∥∥∥∥(Id−RBT
>1

(
L>1

D2R

)−1
B>1D2

)
f −RBT

>1

(
L>1

D2R

)−1
D−1

1 Ft

∥∥∥∥
2

≤ c4mf (t) + c5 sup
(t,v)∈D0

‖Ft(t, v)‖2

and hence it is a Carathéodory-Lipschitz vector field. Consequently, the ODE locally
has a unique solution v̄ ∈W 1,1((0, T0))n (see Theorem 1.18).

Due to the construction, the pair(
v̄,−

(
L>1

D2R

)−1 (
B>1D2f(t, v̄) + D−1

1 Ft(t, v̄)
))

is the unique solution of the original problem. This completes the proof.

Remark 4.3. Using the implicit function theorem, it is also possible to prove a similar re-
sult for more general coupling conditions for the pressure. For example, one could require
G(t, v, p) = 0 together with some regularity constraints instead of ∆p = −BT

>1PV + g.
Beside the more complex notation, the main drawback of using the implicit function the-
orem is that one does not know the explicit reformulated ODE (4.4) a priori. Thus, we
could not define an energy functional as simple as for the coupling condition of equation
(4.1), as we will see in the course of this section.

In the next section, we will need a uniform lower bound of the length of the existence
interval to analyse the coupled equations. To this end, we will formulate a quite general
method to ensure the global existence of the solution on the time interval [0, T ] using an
energy principle. Later on in Section 4.3, we will illustrate this principle for three special
cases, namely arbitrary networks with linearly bounded right-hand sides, networks with
at most one inner node and networks with maximum node degree 2. For the analysis we
need the two matrices

T(t, v) = Id−RBT
>1

(
L>1

D2R

)−1
B>1D2 (4.5)

and
S(t, v) = RBT

>1

(
L>1

D2R

)−1
D−1

1 , (4.6)

introduced in the previous proof.
Furthermore, we need the notation of radially unboundedness in order to introduce

the energy functionals.

Definition 4.4. We call a function V : Rn → R radially unbounded if for all M > 0
there exists R ≥ 0 such that the implication

‖v‖ > R⇒ V (v) > M

is true for all v ∈ Rn.
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4 Differential equations on a network

To prove the global existence in time we are going to use the chain rule even for
Lipschitz continuous functions which are only piecewise C1. This is motivated by the
choice of the energy functionals, where we will see that the 1-norm is appropriate in
some cases. Therefore, we recall a definition and a result from Murat and Trombetti
[71].

Definition 4.5 ([71]). A Lipschitz continuous function V : Rn → R is called piecewise
C1-function if the space Rn is decomposed into a finite union of disjoint Borel sets Pα,
i.e.

Rn = ∪α∈IPα, I finite, Pα Borel subset of Rn, Pα ∩ P β for all α 6= β,

and if there exists for all α ∈ I a globally Lipschitz continuous function V α ∈ C1(Rm,R)
with

V (x) = V α(x)

for all x ∈ Pα.

Clearly, such a function can be written as

V (x) =
∑
α∈I

χPα(x)V α(x)

and from this form the following chain rule can be obtained:

Theorem 4.6 (Murat and Trombetti [71]). Let V : Rn → R be a Lipschitz con-
tinuous, piecewise C1-function and r ∈ [1,∞). Then, for any v ∈ W 1,r((0, T ),Rn) the
function V (v) belongs to W 1,r((0, T )) and one has for almost all t ∈ [0, T ]

d
dtV (v(t)) =

∑
α∈I

χPα(v(t))(∇V α)(v(t))v′(t).

Proof. See [71].

Now we are able to proceed the study of the DAE presenting the main result of this
section.

Theorem 4.7 (Global existence). Let V : Rn → R+ be a Lipschitz continuous, piece-
wise C1 and radially unbounded function. Denote V (x) =

∑
α∈I χPα(x)V α(x) with I, Pα

and V α as before. Furthermore, there exist two non-negative functions k1, k2 ∈ L1((0, T ))
and a null subset I0 ⊂ [0, T ] with

∇V α(v) (T(t, v)f(t, v)− S(t, v)Ft(t, v)) ≤ k1(t) + k2(t)V (v) (4.7)

for all (t, v) ∈ {[0, T ] × Pα|F (t, v) = 0 and t /∈ I0} and all α ∈ I. Then, the solution
(v, p) of the DAE (4.1) exists globally on [0, T ] and is bounded by

‖v(t)‖ ≤ R(t)

92



4.1 Ordinary differential equations on a network

and
V (v(t)) ≤M(t),

respectively, for all t ∈ [0, T ]. These bounds are explicitly given by

M(t) =
(
V (v0) +

∫ t

0
k1(s)ds

)
exp

(∫ t

0
k2(s)ds

)
and

R(t) = inf
{
c ∈ R+|V (v) > M(t) for all v with ‖v‖ > c

}
.

Proof. We have already proven the local existence of a solution of the DAE (4.1) in
Theorem 4.2. Let v : J → Rn be such a maximal solution. We will show that v is
bounded. To this aim, we use Theorem 4.6 to compute the derivative of V (v(t)) for
almost all t ∈ J

d
dtV (v(t)) =

∑
α∈Pα

χPα(v(t))(∇V α)(v(t))vt(t)

=
∑
α∈Pα

χPα(v(t))(∇V α)(v(t)) (T(t, v)f(t, v)− S(t, v)Ft(t, v))

≤ k1(t) + k2(t)V (v),

where the inequality holds since it is F (t, v(t)) = 0 by construction. Thus, we estimate
for all t ∈ J

V (v(t)) = V (v0) +
∫ t

0

d
dtV (v(s))ds

≤ V (v0) +
∫ t

0
k1(s)ds+

∫ t

0
k2(s)V (v(s))ds

and use Gronwall’s inequality (Lemma 1.19) to conclude

V (v(t)) ≤
(
V (v0) +

∫ t

0
k1(s)

)
exp

(∫ t

0
k2(s)ds

)
= M(t).

Because of the radial unboundedness of V we find for M(t) a value R(t) > 0 such that

V (v(t)) ≤M(t)

implies
‖v(t)‖ ≤ R(t).

Then, the formula for the value of R(t) is obvious. Since v is a maximal solution
J = [0, T ] must be true.

Remark 4.8. A closer view at the proof reveals that instead of the radially unboundedness
the following modified condition is also sufficient: For all M ∈ (0,M(T )] there is a
constant R ≥ 0 such that it holds

V (v) ≤M and v ∈ {v ∈ Rn|∃t with F (t, v) = 0} ⇒ ‖v‖ ≤ R.
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4 Differential equations on a network

The theorem inspires the following definition:

Definition 4.9. A function V : Rn → R+ satisfying the same assumptions as in Theo-
rem 4.7 is called an energy functional for the graph G, the function f and the matrix-
valued function R.

In general, it is a difficult task to find such energy functionals V . As mentioned earlier,
we will construct such functionals for certain types of networks in Section 4.3.

4.2 Coupled differential equations on a network
Now, we will use the theory about the transport equation (Chapter 3) together with the
knowledge about the ODEs (Section 4.1) to study the coupled system (4.2). For the
proof of existence of solutions we will consider a map which is defined by solving the
continuity equation and the ordinary differential equation successively. Combining the
results of Chapter 3 and Section 4.1, the so constructed map is shown to be a compact
self-mapping in order to apply the Schauder fixed point theorem (Theorem 1.21). This
proof strategy is often used to show the existence of solutions of non-linear differential
equations, for example in the context of the Navier-Stokes equations (see e.g. [65]). It is
applied for the non-homogeneous incompressible Navier-Stokes equations with boundary
conditions in [14] and [15].

Gasser and Steinrück considered the existence of solutions of the low Mach number
equations on a single edge in [48]. Their approach is based on the idea of solving the
equations alternately. For the conclusion of the proof, they used the Banach fixed-point
theorem.

In [8] and [9], Borsche et al. studied the well-posedness of hyperbolic balance laws
coupled with a system of ODEs. One main difference to our setting is that the ODE
only depends on the solution of the balance law at the boundary and not on the whole
solution.

As a first step, we precisely want to define the settings including all initial and bound-
ary values. We want to study the equations

ρt + (Uρ)x + Cρ = 0 in (0, T )× Ω

vt(t) = f
(
t, v(t), ρ(t), (νU(t)|Γ)γρ(t)

)
+ R−1(t)BT

>1PV (t) in (0, T )

u = v +Q

F (t, v(t)) = 0 (4.8)
(νU)−ρ = (νU)−Hu(ρ|ΓT ) on ΓT

v(0) = v0

ρ(0) = ρ0 in Ω

for a given oriented, connected graph G = (V, E, init, ter) with incidence matrix B.
Recall the notation R for the integral R(t) =

∫
Ω ρ(t)dx and the usage of capital bold
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4.2 Coupled differential equations on a network

letters for diagonal matrices. In contrast to the previous section, the right-hand side f
depends on the density ρ and its trace γρ. During this section we assume:

Q ∈ L1((0, T ),W 1,1(Ω)n),
c ∈ L1((0, T ), L∞(Ω)n,

Qx ∈ L1((0, T ), L∞(Ω)n,
ρ0 ∈ L∞(Ω)n

and
v0 ∈ Rn.

To give a meaning to the boundary condition for the transport equation, we need for each
u = w+Q for w ∈ C([0, T ],Rn) a boundary operator Hu : L∞(ΓT , dµ+

u )→ L∞(ΓT , dµ−u )
with Hu(ρ) = ρin + Gu(ρ) as defined in Section 3.1. Additionally, we need a kind of
continuous dependence of these operators on u. More precisely, for each convergent
sequence (wk)k ⊂ C([0, T ],Rn) with wk → w uniformly and each weak-? convergent
sequence (qk)k ⊂ L∞(ΓT )n with qk

?−⇀ q, we require that the operators G and H fulfil

(ν(Wk + Q))−Gwk+Q(qk) ⇀ (ν(W + Q))−Gw+Q(q) (4.9)

in L1(ΓT )n and∫ T

0

∫
Γ
β(q)TW(νu)+ − β(H̄w+Q(q))TW(νu)−dωdt

≤ lim inf
k

∫ T

0

∫
Γ
β(qk)TW(νuk)+ − β(H̄wk+Q(qk))TW(νuk)−dωdt

(4.10)

for β : Rn → Rn with βj(s) = s2
j and H̄(ρ) = exp

(∫ t
0 ‖2c(s) +Qx(s))−‖ds

)
ρin + G(ρ).

These are exactly the conditions which are needed to apply both parts of the stability
theorem (Theorem 3.11) to an arbitrary convergent sequence wk.

Furthermore, the solution of the transport equation should be bounded from above
and below. Thus, we assume that there exist ρmin ∈ Rn>0 and ρmax ∈ Rn>0 such that for
all w ∈ C([0, T ],Rn) it holds

ρin exp
(
−
∫ t

0
‖(Qx(s, ·) + c(s, ·))−‖L∞(Ω)nds

)
+ Gw+Q(ρmax) ≤ ρmax

and

ρin exp
(∫ t

0
‖(Qx(s, ·) + c(s, ·))+‖L∞(Ω)nds

)
+ Gw+Q(ρmin) ≥ ρmin

for dµ−w+Q-almost all (t, ω) ∈ ΓT and

ρmin ≤ ρ0 ≤ ρmax

almost everywhere in Ω. As we will see this holds for our application and thus this
assumption is justified.
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4 Differential equations on a network

Inspired by the upper and lower bounds of the transport equation, we define the sets

Vt =
{
ρ ∈ L1(Ω)n|ρ̄min(t) ≤ ρ ≤ ρ̄max(t) almost everywhere in Ω

}
and

Wt = {γρ ∈ L∞(Γ)n|ρ̄min(t) ≤ γρ ≤ ρ̄max(t)}

for

ρ̄max(t) = ρmax exp
(∫ t

0
‖(Qx(s, ·) + c(s, ·))−‖L∞(Ω)nds

)
and

ρ̄min(t) = ρmin exp
(
−
∫ t

0
‖(Qx(s, ·) + c(s, ·))+‖L∞(Ω)nds

)
.

It is sufficient to define the right-hand side f of the ODE in (4.8) for densities ρ in the
set VT . Moreover, the function f should be a kind of generalized Carathéodory-Lipschitz
vector field. To be precise, we assume f : [0, T ]×Rn×VT ×L1(Γ)n → Rn to be a function
such that the mapping

(t, v) 7→ f
(
t, v, ρ, ν(V + Q(t)|Γ)γρ

)
is a Carathéodory-Lipschitz vector field (see Definition 1.17) for each fixed pair (ρ, γρ) ∈
VT ×WT . Additionally, we assume f(t, ·, ·, ·) to be continuous in (v, ρ, q) ∈ Rn × VT ×
L1(Γ)n and to be locally integrable uniformly bounded for almost all t ∈ [0, T ]. By
the latter, we mean that for each compact set D0 ⊂ [0, T ] × Rn, there is an integrable
function m ∈ L1(pr1D0, [0,∞)) and a null set I0 ∈ [0, T ] such that it holds

‖f(t, v, ρ(t), ν(V + Q(t))γρ(t))‖2 ≤ m(t) (4.11)

for all (t, v, ρ, γρ) ∈ D0 × V ×W with t /∈ I0. Here, the sets V and W are given as

V =
{
ρ ∈ C([0, T ], L1(Ω)n)|ρ(t) ∈ Vt

}
and

W = {γρ ∈ L∞(ΓT )n|γρ(t) ∈ Wt almost everywhere} .

Last but not least, we assume the same conditions as in Section 4.1 for the coupling
conditions of the ODE F : [0, T ]× Rn → Rk and F (0, v0) = 0.

Combining the concepts of solutions for the transport equation of Chapter 3 and of
solutions for ODEs on networks of Section 4.1 we define a solution of the whole model.
Definition 4.10. A tuple (ρ, v, PV , γρ) with

ρ ∈ L∞((0, T )× Ω)n

v ∈W 1,1((0, T ))n

PV ∈ L1((0, T ))k

γρ ∈ L∞(ΓT , |dµv+Q|)

is called a solution of the coupled system (4.8) on the network G on (0, T ) × Ω if the
following conditions are satisfied:
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4.2 Coupled differential equations on a network

1. The density ρ solves the transport equation

ρt + (Uρ)x + Cρ = 0 in (0, T )× Ω
ρ(0, ·) = ρ0 in Ω (4.12)

(νU)−ρ = (νU)−Hu(ρ|Γ+
T

) on ΓT

and γρ is its trace. Here, Hu is the boundary operator belonging to u = v +Q.

2. The pair (v, PV ) solves the ODE on the network (in the extended sense)

vt(t) = f
(
t, v(t), ρ(t), ν(V(t) + Q(t)|Γ)γρ(t)

)
+ R−1(t)BT

>1PV (t)

F (t, v(t)) = 0
v(0) = v0

on (0, T ).

An immediate consequence of this definition concerns the regularity and the bound-
edness of the density, therefore we can directly apply the results of Chapter 3.

Lemma 4.11 (Boundedness). Let (ρ, v, PV , γρ) be a solution of the coupled system
(4.8). Then, the density ρ is continuous with values in Lp(Ω)n and for all t ∈ [0, T ] it is
bounded from above and below by

ρ̄min(t) ≤ ρ(t, ·) ≤ ρ̄max(t)

almost everywhere in Ω, i.e. ρ ∈ V. Furthermore, its trace γρ is also bounded by

ρ̄min(t) ≤ γρ ≤ ρ̄max(t)

|dµu|-almost everywhere in ΓT , i.e. γρ ∈ W.

Proof. This is a direct consequence of Theorem 3.3 and of the Lemmas 3.9 and 3.10.

Before we come to the next step, we will recall some notations from the previous
section. According to the equations (4.5) and (4.6) the matrices occurring in the refor-
mulation of the DAE as an ODE are

T(t, v, ρ) = Id−R−1BT
>1

(
B>1D2(t, v)R−1BT

>1

)−1
B>1D2 (4.13)

and
S(t, v, ρ) = R−1BT

>1

(
B>1D2(t, v)R−1BT

>1

)−1
D−1

1 (t, v). (4.14)

Now, we are finally able to prove the main result of this thesis, the local in time
existence of solutions of the coupled system. The proof is mainly based on the Schauder
fixed point theorem, on the sequential continuity of the solution operator of the transport
equation and on the reformulation of the DAE as an ODE. We will construct a compact
self-mapping on a subset of C([0, T0],Rn). This result especially shows the local existence
of solutions for the low Mach number model (2.53) without heat loss at the walls, as we
will see in the next chapter.
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4 Differential equations on a network

Theorem 4.12 (Local existence). Let all the assumptions mentioned in this section
be valid. Then, there exists at least one solution of the system (4.8) on the network G
on (0, T0)× Ω for T0 small enough.

Proof. The outline of the proof is as follows: We construct a compact-self mapping on
a certain Banach space in such a way that the desired solution is a fixed point of this
mapping.

First, we will choose an appropriate value for the existence time T0. Therefore, let
be r > 0 and denote by K = Br(v0) the closed ball around the initial velocity v0
with radius r. Since f is locally integrable uniformly bounded, there exists a function
m ∈ L1([0, T ], [0,∞)) and a null subset I0 ⊂ [0, T ] such that∥∥∥f(t, v, ρ(t), ν(V + Q(t))γρ(t)

)∥∥∥
2
≤ m(t)

is true for all (t, v, ρ, γρ) ∈ ([0, T ] \ I0) ×K × V ×W. As in the proof of Theorem 4.2
we find two constants c4 and c5 such that

‖T(t, v, ρ(t))‖2 ≤ c4

and
‖S(t, v, ρ(t))‖2 ≤ c5

for all (t, v, ρ) ∈ [0, T ]×K ×V. Due to the integrability of m, we can choose T0 ∈ (0, T ]
small enough in order to guarantee∫ T0

0
c4m(s)ds+ T0c5 sup

(t,v)∈[0,T ]×K
‖Ft(t, v)‖2 ≤ r

(see Remark 1.26).
Now, we will proceed with the construction of the above-mentioned mapping

F : C([0, T0],K))→ C([0, T0],K))

such that each fixed point of this mapping solves the coupled system (4.8). Therefore, let
w ∈ C([0, T0],K) be arbitrary. We denote the unique solution of the transport equation

ρt + ((W + Q) ρ)x + Cρ = 0 in (0, T0)× Ω
ρ(0, ·) = ρ0 in Ω

(ν(W + Q))−ρ = (ν(W + Q))−Hw+Q(ρ|ΓT0
) on ΓT0

by ρ ∈ L∞((0, T0) × Ω)n and its trace by γρ ∈ L∞(ΓT0 , |dµw+Q|). This solution exists
due to Theorem 3.15 and it is continuous with values in L1(Ω)n due to Theorem 3.3.
Furthermore, using the Lemmas 3.9 and 3.10 ρ and γρ are bounded from above and
below by

ρ̄min(t) ≤ ρ(t) ≤ ρ̄max(t)
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4.2 Coupled differential equations on a network

almost everywhere in Ω and

ρ̄min(t) ≤ γρ(t, ω) ≤ ρ̄max(t)

almost everywhere in ΓT0 . At this stage, we cannot directly apply the results of Sec-
tion 4.1 for the ODE since we have no estimate for the length of the existence interval
from the previous section. In particular, we do not know if the solution of the ODE
exists on the whole time interval (0, T0). For this reason, we define

v(t) = v0 +
∫ t

0
T(s, w(s), ρ(s))f

(
s, w(s), ρ(s), ν(W(s) + Q(s)|Γ)γρ(s)

)
− S(s, w(s), ρ(s))Ft(s, w(s))ds,

where we used the reformulation of the DAE with the matrices T and S. The advantage
of this integral formulation is that it is independent on the length of the existence interval
of the solution of the ODE. The mapping F is then defined by F(w) = v. Clearly, v is
continuous and due to the choice of T0 it is

‖v(t)− v0‖2 ≤
∫ T0

0
c4m(s) + c5 sup

(t,w)∈[0,T0]×K
‖Ft(t, w)‖2ds ≤ r.

Thus, it is v(t) ∈ K and the mapping is well-defined.
To apply the Schauder fixed point theorem, we will prove that F is a compact self-

mapping on a certain convex, non-empty, closed and bounded subset of C([0, T0],K).
We compute

‖v(t)− v(s)‖

=
∥∥∥∫ t

s
T(r, w(r), ρ(r))f

(
r, w(r), ρ(r), ν(W(r) +Q(r)|Γ)γρ(r)

)
− S(r, w(r), ρ(r))Ft(r, w(r))dr

∥∥∥
2

≤ c4

∫ t

s
m(r)dr + c5 sup

(t,v)∈[0,T0]×K
‖Ft(t, v)‖2|t− s|

for any s, t ∈ [0, T ]. Since m is integrable, we can find a value δ > 0 for each ε > 0 such
that for any subset S ⊂ [0, T ] with µ(S) < δ it holds∫

S
m(t)dt < ε

2c4

(see Remark 1.26). Thus, for all t, s ∈ [0, T ] with |t−s| < min
(
δ, ε

2c5 sup(t,v)∈[0,T ]×K ‖Ft‖2

)
it follows

‖v(t)− v(s)‖ < ε.
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4 Differential equations on a network

This shows the equicontinuity of the image of F and allows the application of the Arzelà-
Ascoli theorem (see e.g. [82]). Thus, the image F(C([0, T0],K)) ⊂ C([0, T ],Rn) is rela-
tively compact. Furthermore, the derivative of v is bounded by

‖vt(t)‖2 =
∥∥∥T(t, w(t), ρ(t))f

(
t, w(t), ρ(t), ν(W(t) + Q(t)|Γ)γρ(t)

)
− S(t, w(t), ρ(t))Ft(t, w(t))

∥∥∥
2

≤ c4m(t) + c5 sup
(t,v)∈[0,T0]×K

‖Ft(t, v)‖2

= k(t)

almost everywhere. Thus, we define the non-empty convex subset

C =
{
v ∈W 1,1([0, T ],Rn)

∣∣∣‖v(t)− v0‖2 ≤ r and ‖vt(t)‖2 ≤ k(t) a.e.
}
⊂ C([0, T ],K),

such that for the image of F it holds F(C([0, T ],K)) ⊂ C.
Up to now, we have constructed a bounded non-empty convex set and we have shown

that the image of F is relatively compact. The only requirement of the Schauder fixed
point theorem (Theorem 1.21) which remains to be proven is the compactness of the
mapping F : C → C. Due to the relative compactness of im(F) it is sufficient to show
the continuity of F . Therefore, let wj ∈ C be a convergent sequence with wj → w
in C([0, T0],Rn). We have to show that vj = F(wj) → v = F(w) holds uniformly.
To this end, we will apply the stability theorem (Theorem 3.11) to the sequence ρj
occurring in the definition of F(wj). The requirements of this theorem are fulfilled by
construction: The only non-trivial requirement, we have to check, concerns the boundary
operator H. However, for this operator the requirements of the theorem are valid for all
possible uniform convergent sequences due to our assumptions (4.9) and (4.10). Thus,
the sequences ρj and γρj are convergent. To be more precise, it holds

ρj → ρ

in C([0, T0], L1(Ω)n) and
γρj → γρ

in L1(ΓT0 , |dµw+Q|), where ρ is the solution of the limit problem

ρt + ((W + Q) ρ)x + Cρ = 0 in (0, T0)× Ω
ρ(0, ·) = ρ0 in Ω

(ν(W + Q))−ρ = (ν(W + Q))−Hw+Q(ρ|ΓT0
) on ΓT

and where γρ is its trace. Since the sequence γρj is bounded in L∞(ΓT0)n we also find

ν(Wj + Q|Γ)γρj → ν(W + Q|Γ)γρ

in L1(ΓT0)n and thus there exists a subsequence ν(Wjl + Q|Γ)γρjl that converges to
ν(W + Q|Γ)γρ almost everywhere in ΓT0 . Due to the continuity of f(t, ·, ·, ·) for almost
all t ∈ [0, T ], we conclude for this subsequence

f
(
t, wjl(t), ρjl(t), ν(Wjl(t) + Q(t)|Γ)γρjl(t)

)
→ f

(
t, w(t), ρ(t), ν(W(t) + Q(t)|Γ)γρ(t)

)
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for almost all t ∈ [0, T0]. Thus, using the estimate∥∥∥T(t, wjl(t), ρjl(t))f
(
t, wjl(t), ρjl(t), ν(Wjl(t) + Q(t)|Γ)γρjl(t)

)
− S(t, wjl(t), ρjl(t))Ft(t, wj(t))

∥∥∥
2

≤ c4m(t) + c5 sup
(t,v)∈[0,T0]×K

‖Ft(t, v)‖2

we can apply the dominated convergence theorem to obtain

F(wjl)(t) = v0 +
∫ t

0
T(s, wjl(s), ρjl(s))f

(
s, wjl(s), ρjl(s), ν(Wjl(s) + Q(s)|Γ)γρjl(s)

)
− S(s, wjl(s), ρj(s))Ft(s, wjl(s))ds

→ v0 +
∫ t

0
T(s, w(s), ρ(s))f

(
s, w(s), ρ(s), ν(W(s) + Q(s)|Γ)γρ(s)

)
− S(s, w(s), ρ(s))Ft(s, w(s))ds

= F(w)(t)

for all t ∈ [0, T ]. In fact, due to the uniqueness of the limit, the whole sequence is
converging and not only a subsequence and due to the equicontinuity the convergence is
uniform in t. Hence, the mapping F is continuous and an application of the Schauder
fixed point theorem yields the existence of a fixed point v of it. The construction of the
corresponding density ρ, the trace γρ and the pressure PV is straightforward: ρ is the
corresponding solution of the transport equation with its trace γρ and PV is given by

PV = −
(
B>1D2(t, v(t))R−1(t)BT

>1

)−1

(
B>1D2(t, v(t))f

(
t, v(t), ρ(t), ν(V(t) + Q(t)|Γ)γρ(t)

)
+ D1(t, v)−1Ft(t, v(t))

)
,

(4.15)

as we know from the proof of Theorem 4.2 concerning the local existence of solutions
for the ODE on the network.

In Section 4.1, we have discussed the difficulty that solutions of an ODE on a network
need not to exist globally in time. To deal with this, we introduced an energy functional
V to ensure the global existence. For the coupled system, we proceed in the same manner.
In this case, we need an even more restrictive form of such a functional V : Rn → R,
since the density ρ, and thus the right-hand side of the ODE is not known a priori.
Therefore, we extend the notion of Definition 4.9:

Definition 4.13. Let V : Rn → R be a radially unbounded, Lipschitz continuous, piece-
wise C1-function written as V (x) =

∑
α∈I χPα(x)V α(x) with I, Pα and V α as in defini-

tion 4.5. Then, V is called a uniform energy functional for the function f and the graph
G, if the following is satisfied: There exist two non-negative functions k1, k2 ∈ L1((0, T ))
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4 Differential equations on a network

such that for all (ρ, γρ) ∈ V ×W, there exists a null subset I0 ⊂ [0, T ] with

∇V α(v)
(

T(t, v, ρ(t))f
(
t, v, ρ(t), ν(V + Q(t)|Γ)γρ(t)

)
− S(t, v, ρ(t))Ft(t, v)

)
≤ k1(t) + k2(t)V (v)

for all (t, v) ∈ {[0, T ]× Pα|F (t, v) = 0 and t /∈ I0}.

Corollary 4.14 (Global existence). Additionally to the assumptions of this section,
let V : Rn → Rn be a uniform energy functional for f and G.

Then, any maximal solution of system (4.8) is defined on the whole domain (0, T )×Ω
and it is bounded by

‖v(t)‖ ≤ R(t)
and

V (v(t)) ≤M(t),

respectively, for all t ∈ [0, T ]. As before, the bounds are given by

M(t) =
(
V (v0) +

∫ t

0
k1(s)ds

)
exp

(∫ t

0
k2(s)ds

)
and

R(t) = inf
{
c ∈ R+|V (v) > M(t) for all v with ‖v‖ > c

}
.

Proof. Let the tuple (ρ, v, PV , γρ) be a maximal solution of (4.8). Then, (v, PV ) is a
solution of an ODE on the network. Since V is an energy functional for this ODE,
we can apply Theorem 4.7 to ensure the stated boundedness. Thus, (ρ, v, PV , γρ) is a
maximal bounded solution and it must be defined on the whole domain (0, T )×Ω, since
otherwise we could extend it to a larger domain.

Remark 4.15. The approach using the Schauder fixed point theorem does not yield a
uniqueness result. A main problem of proving the uniqueness is the missing Lipschitz
continuous dependence of the solution of the transport equation on the velocity. If
the density is continuously differentiable it is possible to prove the uniqueness with
some further assumptions on f. Usually such a kind of result is called a “weak=strong”
uniqueness result, since the existence of a strong solution implies the uniqueness of the
weak solutions. For the Navier-Stokes equations such a result can be found e.g. in [65].

4.3 Some energy functionals
Until now, we have proven the local existence of solution for both, the ODE and the
coupled system on a network. To ensure the global existence in time, we have required
the existence of an energy functional V in both sections. These energy functionals highly
depend on the form of the network. In this section, we want to construct such functionals
for three special cases.
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4.3 Some energy functionals

We begin with linearly bounded ODEs on arbitrary networks. In this case, the con-
struction is rather simple, since the reformulated ODE is then linearly bounded itself.
The second case deals with networks that have at most one inner node. And in the
last case, we study arbitrary networks with maximum node degree 2. Although we will
discuss only the case of the coupled system (4.8), all results are also applicable to the
solitary ODEs (4.1) with some minor changes.

Before we consider these special cases, we discuss some general properties of the ma-
trices T and S used for the reformulation of the ODE. From the definition of the matrix
T in (4.13) we immediately see the idempotence

T
(
t, v, ρ(t)

)
= T

(
t, v, ρ(t)

)
T
(
t, v, ρ(t)

)
for each (t, v, ρ) ∈ [0, T ] × Rn × V. Thus, T is a (in general non-orthogonal) projector
with

ker T(t, v, ρ(t)) = im
(
R(t)BT

>1

)
and

im T(t, v, ρ(t)) = ker (B>1D2(t, v)) .

Let B̄ =
(
b1, . . . , bn−k

)
be a basis of ker B>1. Then, it holds

im T(t, v, ρ(t)) = im
(
D2(t, v)−1B̄

)
and

(ker T(t, v, ρ(t)))⊥ = im
(
TT (t, v)

)
= im

(
R(t)−1B̄

)
and we can write the projector T as

T(t, v, ρ(t)) = D2(t, v)−1B̄
(
B̄TR(t)−1D2(t, v)B̄

)−1
B̄TR(t)−1 (4.16)

(see e.g. [69]). On the next pages, we will switch between both formulations for T,
depending on the context.

In the following, we will assume the eigenvalues of D2 to be bounded from above
and the eigenvalues from D1 from below, i.e. there exist a positive integrable function
c2 ∈ L∞([0, T ], [0,∞)) and a constant c3 > 0 with

sup
v∈Rn
1≤i≤n

(D2(t, v))ii ≤ c2(t)

and
inf
v∈Rn
1≤i≤k

(D1(t, v))ii ≥ c3

for almost all t ∈ [0, T ]. Furthermore, we require Ft to be linearly integrable bounded.
More precisely, we require the existence of two positive functions r1 ∈ L2([0, T ], [0,∞))
and r2 ∈ L1([0, T ], [0,∞)) such that it holds

‖Ft(t, v)‖2 ≤ r1(t) + r2(t)‖v‖2
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4 Differential equations on a network

for almost all t ∈ [0, T ] and all v ∈ Rn with F (t, v) = 0. For the low Mach number system
we want to study in this work, all the assumptions on D1, D2 and Ft are fulfilled. We
recall the two estimates from the proof of Theorem 4.2

‖T(t, v, ρ(t))‖2 ≤
c2(t)ρ̄max(t)
c1ρ̄min(t)

∥∥∥L>1
∥∥∥

2

∥∥∥∥(L>1
)−1

∥∥∥∥
2

= c4(t)

and

‖S(t, v, ρ(t))‖2 ≤
ρ̄max(t)

c1c3ρ̄min(t)

√
‖L>1‖2

∥∥∥∥(L>1
)−1

∥∥∥∥
2

= c5(t),

which are now valid for all (t, v, ρ) ∈ [0, T ] × Rn × V. The defined functions c4 and c5
are essentially bounded, i.e. it holds c4, c5 ∈ L∞([0, T ], [0,∞)).

4.3.1 Arbitrary networks with linearly bounded equations

If the right-hand side f of the ODE in (4.8) is linearly bounded for any network, it is
simple to construct an energy functional, since the resulting ODE (4.4) is also linearly
bounded. As an example for this class, one can think of the velocity equation of the
low Mach number model (2.59) with 0 ≤ α(u) ≤ 1, i.e. with a linearly bounded friction
term.

In other words, we can prove the following corollary:

Corollary 4.16 (Global existence). Let G be a connected, oriented graph and let the
right-hand side f of the ODE of system (4.8) be linearly integrable uniformly bounded,
i.e. there exist two functions d1 ∈ L2([0, T ], [0,∞)) and d2 ∈ L1([0, T ], [0,∞)) such that∥∥∥f(t, v, ρ(t), ν(V(t) + Q(t)|Γ)γρ(t)

)∥∥∥
2
≤ d1(t) + d2(t)‖v‖2

holds for almost all t ∈ [0, T ] and all (v, ρ, γρ) ∈ Rn × V ×W with F (t, v) = 0.
Then, any solution (ρ, v, PV , γρ) of system (4.8) exists on the whole domain (0, T )×Ω

and its velocity v is bounded by

‖v(t)‖22 ≤
(
‖v0‖22 +

∫ t

0
(c4d1 + c5r1)2 ds

)
exp

(∫ t

0
(2c4d2 + 2c5r2 + 1) ds

)
.

Proof. We would like to apply Corollary 4.14 in combination with Remark 4.8. The
function V (v) = 1

2‖v‖
2
2 would be a convenient choice for a uniform energy functional

since the inequality in Definition 4.13 has been fulfilled by construction, but this function
is not globally Lipschitz continuous. In order to obtain a uniform energy functional we
will modify this function.

We define the integrable functions k1 = 1
2 (c4d1 + c5r1)2 and k2 = 2c4d2 + 2c5r2 + 1

with k1, k2 ∈ L1([0, T ], [0,∞)). Then, we choose an arbitrary value

C >

(1
2‖v0‖2 + ‖c1‖L1([0,T ])

)
exp

(
‖c2‖L1([0,T ])

)
.
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4.3 Some energy functionals

We introduce the globally Lipschitz C1-function

V 1(v) =
{1

2‖v‖
2
2 for v ∈ P 1

−1
2C

2 + C‖v‖2 otherwise,

where it is P 1 = {v ∈ Rn|‖v‖2 ≤ C}. To simplify the following estimation, we cut this
function at 1

2C
2 and define the Lipschitz continuous, piecewise C1-function

Ṽ (v) = χP 1(v)V 1(v) + χRn\P 1(v)C
2

2 .

This function satisfies the condition of Remark 4.8 for

M(T ) =
(1

2‖v0‖2 + ‖k1‖L1([0,T ])

)
exp

(
‖k2‖L1([0,T ])

)
and

R =
√

2M.

Finally, with the Cauchy-Schwarz inequality and Young’s inequality (see e.g. [40]) we
estimate for v ∈ P 1

∇V 1(v)
(

T(t, v, ρ)f
(
t, v, ρ(t), ν(V + Q(t)|Γ)γρ(t)

)
− S(t, v, ρ(t))Ft(t, v)

)
= vT

(
T(t, v, ρ)f

(
t, v, ρ(t), ν(V + Q(t)|Γ)γρ(t)

)
− S(t, v, ρ(t))Ft(t, v)

)
≤ ‖v‖2

(
c4(t)‖f

(
t, v, ρ(t), ν(V + Q|Γ)γρ(t)

)
‖2 + c5(t)‖Ft(t, v)‖2

)
≤ ‖v‖2

(
c4(t)d1(t) + c4(t)d2(t)‖v‖2 + c5(t)

(
r1(t) + r2(t)‖v‖2

))
≤
(
c4(t)d2(t) + c5(t)r2(t) + 1

2

)
‖v‖22 + 1

2
(
c4(t)d1(t) + c5(t)r1(t)

)2

=
(
2c4(t)d2(t) + 2c5(t)r2(t) + 1

)
Ṽ (v) + 1

2
(
c4(t)d1(t) + c5(t)r1(t)

)2

= k1(t) + k2(t)Ṽ (v)

and Corollary 4.14 yields the desired result

1
2‖v(t)‖22 ≤

(1
2‖v0‖22 + 1

2

∫ t

0
(c4d1 + c5r1)2 ds

)
exp

(∫ t

0
(2c4d2 + 2c5r2 + 1) ds

)
.

4.3.2 Networks with one inner node
The second case we want to consider deals with networks which have exactly one inner
node (see Figure 4.1). Since we have in mind to take into account non-linear friction
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4 Differential equations on a network

phenomena in the low Mach number model, we will allow a wider class of right-hand
sides f than in the last example. A typical friction force looks like −cu|u| and acts in the
opposite direction of the flow. For this reason, we relax the requirements on f by asking
for linear boundedness of f only where f and v have the same sign. Everywhere else f is
allowed to be arbitrary. In mathematical terms, there exist two non-negative integrable
functions d1, d2 ∈ L1([0, T ], [0,∞)) such that

sgn(vi)fi
(
t, v, ρ(t), ν(V + Q(t)|Γ)γρ(t)

)
≤ d1(t) + d2(t)‖v‖1 (4.17)

holds for almost all t ∈ [0, T ], all (v, ρ, γρ) ∈ Rn × V × W and all i ∈ {1, . . . , n}. For
technical reasons, we will enforce the matrix D2 to be constant in order to use it as part
of the energy functional.

Before we formulate the corollary for the global existence of solutions, we will study
the matrix T in the following lemma. In its proof, the restriction to networks with exact
one inner node is essential since it guarantees the one-dimensionality of the kernel of the
matrix T.

Figure 4.1: A network with
one inner node

Lemma 4.17. Let G be an oriented graph with exact one inner node. Then,

Tii =
n∑
j=1
j 6=i

∣∣∣∣(D2TD−1
2

)
ji

∣∣∣∣
holds for all (t, v, ρ) ∈ [0, T ] × Rn × V. Furthermore, for vi 6= 0 there exists a function
bi with bi(t, v, ρ(t)) ∈ [0, 2] and((

D2TD−1
2

)T
sgn v

)
i

= bi sgn vi.

For vi = 0 it is ∣∣∣∣((D2TD−1
2

)T
sgn(v)

)
i

∣∣∣∣ ≤ Tii ≤ 1.

Proof. Let v1 ∈ V be the inner node of G = (V, E). Since v1 is the only inner node of
G, the matrix B>1 consists only of one row and we compute
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D2TD−1
2 = Id− 1

B>1D2RBT
>1

D2RBT
>1B>1

and

n∑
j=1
j 6=i

∣∣∣∣(D2TD−1
2

)
ji

∣∣∣∣ =

∑
j:ej∈E(v1)

j 6=i
(D2)jjRjj∑

j:ej∈E(v1)(D2)jjRjj

= 1− (D2)iiRii∑
j:ej∈E(v1)(D2)jjRjj

= (D2TD−1
2 )ii

= Tii.

Using this fact we conclude for vi 6= 0

bi = sgn(vi)
((

D2TD−1
2

)T
sgn(v)

)
i

= Tii +
n∑
j=1
j 6=i

(
D2TD−1

2

)
ji

sgn(vj) sgn(vi)

≤ Tii +
n∑
j=1
j 6=i

∣∣∣∣(D2TD−1
2

)
ji

∣∣∣∣
= 2Tii

≤ 2
and

bi ≥ Tii −
n∑
j=1
j 6=i

∣∣∣∣(D2TD−1
2

)
ji

∣∣∣∣ = 0.

Finally, for vi = 0 we have∣∣∣∣((D2TD−1
2

)T
sgn(v)

)
i

∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

(
D2TD−1

2

)
ji

sgn(vj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
n∑
j=1
j 6=i

(
D2TD−1

2

)
ji

sgn(vj)

∣∣∣∣∣∣∣∣
≤

n∑
j=1
j 6=i

∣∣∣∣(D2TD−1
2

)
ji

∣∣∣∣
= Tii

≤ 1.
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With this information concerning the structure of the matrix T, we are able to define
an appropriate uniform energy functional V to apply the Corollary 4.14 to prove the
global existence of a solution.

Corollary 4.18 (Global existence). Let G be an oriented graph with exact one inner
node and let d1, d2 ∈ L1([0, T ], [0,∞)) be two functions such that (4.17) is satisfied.
Furthermore, let the matrix D2 be constant with maximal eigenvalue c2 = λmax(D2).

Then, any solution (ρ, v, PV , γρ) of system (4.8) exists on the whole domain (0, T )×Ω
and its velocity v is bounded.

Proof. The function V (v) = ‖D2v‖1 is globally Lipschitz continuous and piecewise C1.
We define for α ∈ I = {−1, 0, 1}n

Pα = {v ∈ Rn| sgn(vi) = αi}
and

V α(v) =
n∑
i=1

αi(D2)iivi.

Then, it holds
V (v) =

∑
α∈I

χPα(v)V α(v)

and
∇V α(v) = sgn(v̄)TD2

for an arbitrary v̄ ∈ Pα. Altogether, for almost all t ∈ [0, T ] and all (v, ρ, γρ) ∈ Pα ×
V ×W with F (t, v) = 0 we conclude with Lemma 4.17

∇V α(v)
(

T(t, v, ρ(t))f
(
t, v, ρ(t), ν(V + Q|Γ)γρ(t)

)
− S(t, v, ρ(t))Ft(t, v)

)
= sgn(v)TD2

(
Tf− SFt

)
≤ fTD2D−1

2 TTD2 sgn(v) + ‖ sgn(v)‖2‖D2‖2‖S‖2‖Ft‖2

≤
n∑
i=1

fi(D2)ii
((

D2TD−1
2

)T
sgn(v)

)
i
+
√
nc2c5‖Ft‖2

≤
n∑
i=1
vi 6=0

fi
(
t, v, ρ(t), ν(V + Q(t)|Γ)γρ(t)

)
(D2)iibi sgn(vi)

+
n∑
i=1
vi=0

(D2)ii
∣∣∣fi(t, v, ρ(t), ν(V + Q(t)|Γ)γρ(t)

)∣∣∣+√nc2c5 (r1 + r2‖v‖1)

≤
n∑
i=1
vi 6=0

(D2)iibi(d1 + d2‖v‖1) + c2
∥∥∥f(t, 0, ρ(t), νQ(t)|Γγρ(t)

)∥∥∥
1

+
√
nc2c5 (r1 + r2‖v‖1)

108



4.3 Some energy functionals

Figure 4.2: A network with maximum
node degree 2

≤ 2 tr(D2)d1 +
√
nc2c5r1 + c2

∥∥∥f(t, 0, ρ(t), νQ(t)|Γγρ(t)
)∥∥∥

1

+
(
2 tr(D2)d2 +

√
nc2c5r2

)
V (v).

In the above inequality, arguments of the functions were often omitted for the sake of
clarity.

Since f is locally integrable uniformly bounded, there exists an integrable function
m ∈ L1([0, T ], [0,∞)) for the compact set D0 = [0, T ]×{0} such that the relation (4.11)
is fulfilled. Thus, it is ∥∥∥f(t, 0, ρ(t), νQ(t)|Γγρ(t)

)∥∥∥
1
≤ m(t)

for almost all t ∈ [0, T ] and the Corollary 4.14 yields the global existence of the solution
on the domain (0, T )× Ω. Furthermore, the velocity is bounded by

‖v(t)‖1 ≤
(
‖v0‖1 +

∫ t

0
2 tr(D2)d1 +

√
nc2c5r1 + c2mds

)
exp

(∫ t

0
2 tr(D2)d2 +

√
nc2c5r2ds

)
.

4.3.3 Networks with maximum node degree 2
As last example, we consider graphs which consist of a single non-closed path (see Fig-
ure 4.2) and right-hand sides f as described in the previous example. In this case, exactly
two nodes have degree one (the ends of the path) and all other nodes have degree two
(the inner nodes). Whereas in the previous example, we had to require D2 from the
derivative of F to be constant, now we are able to handle the general case for a non-
linear coupling condition F as introduced in Section 4.1. Due to the special form of the
graph, the ODE system reduces essentially to a scalar equation and the projector T gets
a very simple structure, as can be seen from its second formulation (4.16).

Corollary 4.19 (Global existence). Let G be an oriented, connected graph with max-
imum degree 2 and let d1, d2 ∈ L1([0, T ], [0,∞)) be two non-negative functions such that
it holds

sgn(vi)fi
(
t, v, ρ(t), ν(V + Q(t)|Γ)γρ(t)

)
≤ d1(t) + d2(t)‖v‖1

for almost all t ∈ [0, T ], all (v, ρ, γρ) ∈ Rn×V×W with F (t, v) = 0 and all i ∈ {1, . . . , n}.
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Then, any solution (ρ, v, PV , γρ) of system (4.8) exists on the whole domain (0, T )×Ω
and its velocity v is bounded.

Proof. In this setting, the unoriented graph consists of a single path. To simplify the
notation, we choose a natural orientation and enumeration of the graph G in such a way
that

B>1 =


−1 1 0 · · · 0

0 −1 1 0
...

. . . . . . . . . . . .
0 · · · 0 −1 1


holds. This means that the vertices and edges are enumerated in the order of the
occurrence in the path. Clearly, a basis of the kernel of B>1 is given by

B̄ = 1.

The first step in the proof will be to express all vi only in terms of v1: Because of
DvF = D1B>1D2 we immediately see

∂Fj
∂vi

=


−(D1)jj(D2)ii if j = i

(D1)jj(D2)ii if j = i− 1
0 otherwise.

Thus, we conclude for each j ∈ {1, . . . , n− 1} that for fixed t and fixed vj the function

hj : vj+1 7→ Fj(t, v)

is strictly increasing with h′j(vj+1) = (D1)jj(D2)j+1j+1 ≥ c1c3 > 0. In particular, there
exists a unique zero v̄j+1 with hj(v̄j+1) = 0. The implicit function theorem yields the
continuously differentiable dependence of v̄j+1 on vj and t. In more detail, it is

∂

∂vj
v̄j+1 = −

(
∂Fj(t, v)
∂vj+1

)−1
∂Fj(t, v)
∂vj

= (D1)jj(D2)jj
(D1)jj(D2)j+1,j+1

≥ c1
c2
> 0

and thus, v̄j+1 is strictly increasing. Since this is true for all j ∈ {1, . . . , n− 1} and for
all t, these considerations iteratively lead to the existence of a unique componentwise
strictly increasing function wt : R→ Rn−1 with

F (t, v1, wt(v1)) = 0.

Explicitly, this function is given by

wt(v1) =


v̄2(v1)

v̄3(v̄2(v1))
...

v̄n(· · · (v̄2(v1)) · · · )

 .
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For the derivative of the j-th component it holds

∂

∂v1
(wt)j = (D2)11

(D2)jj
≤ c2(t)

c1
. (4.18)

In the second step of the proof, we will construct a uniform energy functional V .
Therefore, we want to study terms of the form sgn(v1)fj . If sgn(v1) = sgn(vj) it is clear
by assumption that

sgn(v1)fj = sgn(vj)fj ≤ d1 + d2‖v‖1
holds. Thus, let us consider the other case: First assume v1 ≥ 0 and vj ≤ 0. With the
monotonicity of wt, we find

0 ≥ vj = (wt(v1))j−1 ≥ (wt(0))j−1,

since v solves F (t, v) = 0. Similarly, for v1 ≤ 0 and vj ≥ 0 we have

0 ≤ vj = (wt(v1))j−1 ≤ (wt(0))j−1.

Hence, in both cases it is
|vj | ≤ |(wt(0))j−1|

and we can define the compact set

D0 =
{
v ∈ Rn

∣∣∣|vj | ≤ sup
t∈[0,T ]

|(wt(0))j−1|
}
.

As f is locally integrable uniformly bounded we find m ∈ L1([0, T ], [0,∞)) with∥∥∥f(t, v, ρ(t), ν(V + Q(t)|Γ)γρ(t)
)∥∥∥

1
≤ m(t)

for almost all t ∈ [0, T ] and all (v, ρ, γρ) ∈ D0×V×W. With formula (4.16), we observe

T(t, v, ρ(t)) = 1
1TR(t)−1D2(t, v)−11D2(t, v)−111TR(t)−1.

In particular, it is

Tij =
(D2)−1

ii (R)−1
jj∑n

l=1(D2)−1
ll (R)−1

ll

and thus, it holds
0 ≤ Tii ≤ 1

and

0 ≤ Tij ≤
c2(t)ρ̄max(t)
c1ρ̄min(t)n .

Now, we are able to define the energy functional V (v) = |v1|. Obviously, this function
is globally Lipschitz continuous and piecewise C1. Furthermore, it is radially unbounded
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4 Differential equations on a network

on the set A = {v ∈ Rn|∃t with F (t, v) = 0}: Let be v ∈ A and t ∈ [0, T ] such that
F (t, v) = 0 holds. As mentioned earlier, it must be v = (v1 wt(v1)T )T and thus, due to
the mean value theorem (see e.g. [59]) there exists a value ξ ∈ [0, v1] with

wt(v1) = wt(0) + ∂wt(ξ)
∂v1

v1.

Thus, the formula (4.18) for the derivative of wt yields the estimate

‖v‖1 = |v1|+ ‖wt(v1)‖1

≤ |v1|+ ‖wt(0)‖1 +
∥∥∥∥∂wt(ξ)∂v1

∥∥∥∥
1
|v1|

≤ |v1|
(

1 + c2(t)
c1

)
+ ‖wt(0)‖1

≤ sup
t∈[0,T ]

‖wt(0)‖1 + V (v)
(

1 +
‖c2‖L∞([0,T ])

c1

)
(4.19)

for almost all t ∈ [0, T ]. We define the two constants K1 = supt∈[0,T ] ‖wt(0)‖1 and
K2 =

(
1 + ‖c2‖L∞([0,T ])

c1

)
, where the first is well-defined since wt depends continuously on

t. In particular, this shows the radial unboundedness of V on the set A.
For the function V , we estimate

∇V
(

T(t, v, ρ(t))f
(
t, v, ρ(t), ν(V + Q(t)|Γ)γρ(t)

)
− S(t, v, ρ(t))Ft(t, v)

)
= sgn(v1)

(
Tf− SFt

)
1

=
n∑
j=1

sgn(vj)=sgn(v1)

sgn(vj)T1jfj + sgn(v1)
n∑
j=1

sgn(vj)6=sgn(v1)

T1jfj − sgn(v1) (SFt)1

≤
n∑
j=1

sgn(vj)=sgn(v1)

c2ρ̄max
c1ρ̄minn

(d1 + d2‖v‖1) +
n∑
j=1

sgn(vj)6=sgn(v1)

c2ρ̄max
c1ρ̄minn

|fj |+ ‖SFt‖2

≤ c2ρ̄max
c1ρ̄min

(
d1 + d2‖v‖1 +m

)
+ c5

(
r1 + r2‖v‖1

)
= k1(t) + k2(t)‖v‖1
≤ (k1(t) +K1k2(t)) +K2k2(t)V (v)

for almost all t ∈ [0, T ] and all (v, ρ, γρ) ∈ Rn×V ×W with F (t, v) = 0. In the last lines
we introduced the integrable functions k1 = c2ρ̄max

c1ρ̄min
(d1+m)+c5r1 and k2 = c2ρ̄max

c1ρ̄min
d2+c5r2.

Applying Corollary 4.14 provides us with the global existence of the solution on (0, T )×Ω
and the following bound for the velocity

|v1(t)| ≤
(
|(v0)1|+

∫ t

0
k1 +K1k2ds

)
exp

(∫ t

0
K2k2ds

)
.

The estimate (4.19) yields also a bound for ‖v(t)‖1.
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4.3 Some energy functionals

(a) Combination is working (b) Combination is not working

Figure 4.3: The combination of the second and third approach to construct a uniform
energy functional is working for the network on the left, but not for the
network on right side

Remark 4.20. In this example, the image of the projector T is one-dimensional whereas
in the previous example, dealing with networks with exactly one inner node, the kernel
of the matrix was one-dimensional. Thus, both examples have in common that a one-
dimensional structure simplifies the construction of the energy functional.

4.3.4 Further networks
Of course, the previous three examples are not the only ones for which it is possible
to construct an energy functional. Especially, one can combine the approach for the
networks with one inner node with the approach for the paths. With this technique, it is
feasible to find a uniform energy functional V e.g. for the graph in Figure 4.3a. We will
not perform the construction since it is even more technical and reveals no new insights.
In this case, one can express the right number of variables in dependence of the others
in order to use the structure of the matrix T to construct an energy functional.

Unfortunately, until now, we did not succeed in classifying all graphs where this pro-
cedure works. For instance, for the network in Figure 4.3b, the approach does not work,
since the number of variables which can be expressed in dependence of the others does
not fit to the matrix T.
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5 Low Mach number equations on a
network

To apply the developed theory, we return to the low Mach number equations (2.53) on
a network as derived in Chapter 2. With the preliminary work of the previous chapters,
we are able to analyse the question of existence of solutions of these equations. We
will show that the results of Chapter 4 are applicable to this problem. Especially, the
existence theorem (Theorem 4.12) will ensure the local in time existence of solutions.
For the networks described in Section 4.3, the global existence is proven as well. These
results generalize the existence results for the single edge proven by Gasser and Steinrück
[48] to the network case.

The chapter is divided into two sections. In the first one, we justify the computations
performed in Section 2.5 and answer the question concerning the regularity of the veloc-
ity. Furthermore, the boundary operator, which is involved in the continuity equation,
is shown to fit into the framework of the previous chapters. In the second section, the
existence of solutions is proven. Additionally, we characterize the dependence of the
solutions on the initial conditions.

5.1 Justification of the formal computations
In Section 2.5, we reformulated the momentum equation of the low Mach number equa-
tions (2.53) to obtain the ordinary differential equation for the velocity (2.59). At that
stage, we did not analyse if the regularity of the involved functions is sufficient for
the computations. Now, we will rigorously prove the equivalence of both formulations.
Therein, the simple form of the energy equation ux = q̄ will play an important role. For
the computations in this section, we will mainly use the results of Chapter 3 about the
transport equation.

During the whole chapter we assume

q̄ = 1
γ

P−1H−1 (q̂q − pt) ∈ C0,1([0, T ], L∞(Ω)n),

f ∈ L1((0, T )× Ω)n,
ζ ∈ L∞((0, T )× Ω,Rn≥0)
αi ∈ C1(R≥0)

(5.1)

and we concentrate on the case without heat loss at the walls, i.e. η = 0, and with
constant cross-sectional areas, i.e. A = const. We recall the notation Rf for the weighted
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5 Low Mach number equations on a network

mass
Rf =

∫
Ω

Fρdx

and Rf for the corresponding diagonal matrix, which was introduced in Section 2.5. In
this chapter, the capital bold Q = diag(Q) will denote the diagonal matrix corresponding
to Q although this is not in accordance to our convention.

For the moment, we do not take into account the initial and boundary values and
prove the equivalence of the weak form of both formulations of the low Mach number
equations:

Theorem 5.1 (Equivalence). Let be ρmin > 0 and ∆p ∈ L1((0, T ))n. Then, the
following two statements are true:

1. Let the triple (ρ, u, π) with

ρ ∈ L∞((0, T )× Ω)n

u ∈ L1((0, T ),W 1,1(Ω)n) ∩ L∞((0, T )× Ω)n

π ∈ L1((0, T ),W 1,1(Ω)n)

and ρ ≥ ρmin almost everywhere be a weak solution of

ρt + (HUρ)x = 0

(Uρ)t +
(
HU2ρ+ Hπ

)
x

= −ζα(U)Uρ+ f̂Fρ

ux = q̄

π(1)− π(0) = ∆p.

(5.2)

Then, the pair (ρ, v) ∈ L∞((0, T ) × Ω)n × W 1,1((0, T ))n with v = u − Q and
Q =

∫ x
0 q̄dx solves

ρt + (H (V + Q) ρ)x = 0
Rvt + RHq̄v +RQt+HQq̄ + H∆p = Rf̂f−ζα(V+Q)(v+Q)

(5.3)

weakly.

2. Let the pair (ρ, v) ∈ L∞((0, T )× Ω)n ×W 1,1((0, T ))n with ρ ≥ ρmin almost every-
where be a weak solution of (5.3). Then, the triple (ρ, u, π) with

u = v +Q

and
π = π̄ −H−1

∫ x

0

(
Ut + HUQx + ζα(U)U− f̂F

)
ρdx (5.4)

weakly solves (5.2) for an arbitrary π̄ ∈ L1((0, T )). From the definition, it follows

u ∈ L1((0, T ),W 1,1(Ω)n) ∩ L∞((0, T )× Ω)n

and
π ∈ L1((0, T ),W 1,1(Ω)n).
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Remark 5.2. If ρ ∈ L∞((0, T )×Ω) is a solution of the continuity equation, it is continuous
with values in Lp(Ω), i.e. ρ ∈ C([0, T ], Lp(Ω)) (see Theorem 3.3) such that all expressions
in the velocity equation (5.3) are well-defined.

Proof. 1. We assume (ρ, u, π) solves the equations (5.2) and want to show, that (ρ, v)
is a solution of (5.3). First, we will show that the regularity of u is indeed higher than
required, which allows us to use Lemma 3.17 to conclude that the pair (ρ, v) solves (5.3).

We define v = u−Q. For almost all t, it is vx = ux− q̄ = 0 almost everywhere because
of the energy equation. Thus, v(t) is constant in space and it holds v ∈ L1((0, T ))n.
In fact, v is even weakly differentiable. To show this, we observe that the momentum
m = Uρ solves the transport equation

mt + (HUm)x = −Hπx − ζα(U)Uρ+ f̂Fρ, (5.5)

where the right hand side is a L1((0, T ) × Ω)-function. From the trace theorem (The-
orem 3.3) and Remark 3.8, we know that there exists a trace γm ∈ L∞(ΓT , |dµHu|)
and that we are allowed to use also test functions ϕ with non-compact support in the
weak formulation of equation (5.5). In particular, for space-independent test-functions
ϕ ∈ C1

c ((0, T ),Rn) it is

0 =
∫ T

0

∫
Ω
mTϕt −

(
Hπx + ζα(U)Uρ− f̂Fρ

)T
ϕdxdt−

∫ T

0

∫
Γ
γmT (νU)ϕdωdt.

Thus, we conclude that the mapping

t 7→ RU (t) =
∫

Ω
ρTUdx

is weakly differentiable.
Due to the required regularity of q, it is Q ∈ C0,1([0, T ] × Ω) and we can apply the

trace theorem 3.3 to the continuity equation with test functions ϕ = 1 and ϕ = Q as
well. This yields∫

Ω
1Tρ(t)dx =

∫
Ω

1Tρ(0)dx−
∫ t

0

∫
Γ
γρT (νu)dωdt

and ∫
Ω
Q(t)Tρ(t)dx =

∫
Ω
Q(0)Tρ(0)dx+

∫ t

0

∫
Ω
ρT (Qt + UQx) dxdt

−
∫ t

0

∫
Γ
γρT (νU)Qdωdt,

which shows that the mappings t 7→ R(t) =
∫

Ω ρ(t)dx and t 7→ RQ(t) =
∫

Ω Q(t)ρ(t)dx
are weakly differentiable. Due to the lower bound ρ ≥ ρmin > 0, we can invert the matrix
R = diag(R1, . . . , Rn) and thus, we can express the velocity v as

v = R−1
∫

Ω
Vρdx = R−1 (RU −RQ) .
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5 Low Mach number equations on a network

Hence, it is v ∈W 1,1((0, T )) and thus, it holds also u ∈W 1,1((0, T )×Ω)n∩C([0, T ]×Ω).
Therefore, we can apply Lemma 3.17 to the momentum m = Uρ. Thus, it is

mt + (HUm)x = (Ut + HUUx) ρ (5.6)

and it holds γm = Uγρ for the trace. For any space-independent test function ϕ ∈
C1
c ([0, T ],Rn), we find

0 =
∫ T

0

∫
Ω
mTϕt −

(
Hπx + ζα(U)Uρ− f̂Fρ

)T
ϕdxdt−

∫ T

0

∫
Γ
γmT (νU)ϕdωdt

=
∫ T

0

∫
Ω

(−ρ)T (Ut + HUUx)ϕ−
(
Hπx + ζα(U)Uρ− f̂Fρ

)T
ϕdxdt

= −
∫ T

0
ϕT
(∫

Ω
Utρ+ HUUxρ+ ζα(U)Uρ− f̂Fρdx+ H∆p

)
dt,

where we used the two equations (5.5) and (5.6) for the momentum. Since ϕ is arbitrary,
the pair (ρ, v) solves (5.3).

2. Now, we assume (ρ, v) to be a solution of (5.3) and we have to show that (ρ, u, π),
as defined in the theorem, solves the equations (5.2).

By construction, the velocity u and the pressure π both lie in the claimed spaces, i.e.
u ∈ L1((0, T ),W 1,1(Ω)n) ∩ L∞((0, T ) × Ω)n and π ∈ L1((0, T ),W 1,1(Ω)n), respectively.
The pressure fulfils

πx = −H−1
(
Ut + HUUx − f̂F + ζα(U)U

)
ρ

by definition. To check that the moment equation is fulfilled, let ϕ ∈ C0,1([0, T ]×Ω,Rn)
be an arbitrary test function with ϕ(0, ·) = ϕ(T, ·) = 0 and ϕ = 0 on ΓT . We would like
to use ϕ̄ = Uϕ = (V + Q)ϕ as a test function for the continuity equation, but since v
is not necessarily smooth enough, we need to approximate it by a sequence of smooth
functions vk ∈ C1((0, T ),Rn) with vk → v in W 1,1((0, T ))n. Then, we define uk = vk+Q
and conclude with the definition of π∫ T

0

∫
Ω
mT (ϕt + HUϕx − ζα(U))−

(
πTxH− f̂ρTF

)
ϕdxdt

←
∫ T

0

∫
Ω
ρTUk (ϕt + HUϕx)−

(
ρT ζα(U)U + πTxH− f̂ρTF

)
ϕdxdt

=
∫ T

0

∫
Ω
ρT ((Ukϕ)t + HU (Ukϕ)x) dxdt

−
∫ T

0

∫
Ω
ρT
(
(Uk)t + HU (Uk)x + ζα(U)U− f̂F

)
ϕ+ πTxHϕdxdt

= −
∫ T

0

∫
Ω
ρT (Uk −U)t ϕdxdt

→ 0

since it is u, ρ ∈ L∞((0, T ) × Ω)n and since Ukϕ is a smooth test function for the
continuity equation. Thus, m = Uρ is a weak solution of the momentum equation and
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it remains to check the pressure boundary conditions. From the definition of π, using
the velocity equation (5.3), we conclude

H (π(1)− π(0)) = −
∫ 1

0

(
Ut + HUQx + ζα(U)U− f̂F

)
ρdx

= −Rvt −RHqv +RQt+HQq +Rf̂f−ζα(V+Q)(v+Q)

= H∆p

for almost all t ∈ [0, T ].

Until now, we have shown the validity of the reformulation of the low Mach number
equations as an ODE coupled with the continuity equation. Beside this, in Section 2.5
we analysed the coupling conditions to define inflow boundary values for the density.
The therfor necessary computations are now justified since the velocity u is continuous.
These computations define naturally a boundary operator Hu, which will be the object
of the rest of this section. More precisely, we want to check whether the coupling
conditions (2.62) and (2.63) define an affine linear boundary operatorHu as introduced in
Section 3.1 for a given velocity u in order to apply the theory of Chapter 4. Therefore, let
G = (V, E, w, init, ter) be an oriented, weighted and connected graph and let B denote
its incidence matrix with corresponding submatrices B>1 and B=1. Furthermore, let
u ∈ L1((0, T ),W 1,1(Ω)) with ux ∈ L1((0, T ), L∞(Ω)n) fulfil the coupling condition for
the energy conservation B+

>1Au(0) = B−>1Au(1). As in Section 2.5, we define the matrix
M ∈ L1((0, T ))k×k by

M(t) = B−>1AU(t, 1)−
(
B−>1

)T
+ B+

>1AU(t, 0)+
(
B+
>1

)T
=
∫

Γ
(νB>1)−A (νU)−

(
νBT

>1

)−
dω.

Then, for ρout ∈ L∞((0, T ))m−k with ρout ≥ ρmin > 0 almost everywhere, we define the
boundary operator

Hu : L∞(ΓT , dµ+
u )→ L∞(ΓT ,dµ−u )
ρ 7→ ρin + Gu(ρ).

Here, corresponding to the equations (2.62) and (2.63), it is

ρin(·, ω) =


(
B+

=1

)T
ρout for ω = 0(

B−=1

)T
ρout for ω = 1

and
Gu : L∞(ΓT ,dµ+

u )→ L∞(ΓT ,dµ−u )

with

Gu(ρ)(·, ω) =


(
B+
>1

)T
M−1

(
B−>1AU(·, 1)+ρ(·, 1) + B+

>1AU(·, 0)−ρ(·, 0)
)

for ω = 0(
B−>1

)T
M−1

(
B−>1AU(·, 1)+ρ(·, 1) + B+

>1AU(·, 0)−ρ(·, 0)
)

for ω = 1.
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5 Low Mach number equations on a network

In a closed form, we can also write

Gu(ρ) =
(
νBT

>1

)−
M−1

∫
Γ

(νB>1)−A (νU)+ ρdω.

Before we check that Hu fulfils the requirements of Section 3.1, we will show the well-
definedness of Gu and we will introduce another operator Ḡu, to which Gu is the adjoint
operator.

In Section 2.5, it was pointed out that M = (mij) is a diagonal matrix with

mij = δij

∫
Γ

(
(νB>1)−A(νu)+

)
i
dω.

Thus, for all ρ ∈ L∞(ΓT ,dµ+
u ) and for almost all t ∈ [0, T ] it is either mjj(t) = 0 or

mjj(t)−1
∫

Γ

(
(νB>1)−A (νU(t))+ ρ(t, )

)
j

dω ≤ max
j,ω

(ρj(t, ω)). (5.7)

In the case mjj(t) = 0, we also know from Section 2.5 that it holds ui(t, 0) = 0 for all
ei ∈ E+(vj) and ui(t, 1) = 0 for all ei ∈ E−(vj).

Altogether, this proves
|(Gu)i (ρ)| ≤ max

j,ω
(ρj(t, ω))

for almost all (t, ω) ∈ ΓT with νui(t, ω) < 0. Hence, it is Gu(ρ) ∈ L∞(ΓT , dµ−u ) and the
linear operator Gu is well-defined. Descriptively, this is not surprising since the coupling
condition chooses a weighted mean value of the inflow densities for each t. Of course,
the weighted mean value is smaller than the maximum.

As a next step, we define the operator Ḡu as

Ḡu : L1(ΓT ,dµ−u )→ L1(ΓT ,dµ+
u )

ρ̄ 7→ A
(
νBT

>1

)−
M−1

∫
Γ

(νB>1)− (νU)− ρ̄dω.

This operator is well-defined by the same argument since we can also write

mij = δij

∫
Γ

(
(νB>1)−A(νu)−

)
i
dω

due to the coupling condition for the energy. We observe that Gu is the adjoint operator
of Ḡu. To check this, let be ρ ∈ L∞(ΓT , dµ+

u ) and ρ̄ ∈ L1(ΓT ,dµ−u ). Then, we compute∫
ΓT
ρ̄T (νU)−Gu(ρ)dωdt =

∫ T

0

∫
Γ
ρ̄T (νU)−

(
νBT

>1

)−
dωM−1

∫
Γ

(νB>1)−A (νU)+ ρdω

=
∫

ΓT
Ḡu(ρ̄)T (νU)+ρdωdt.

Now, we will check all requirements for the boundary operator assumed in Section 3.1.
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5.1 Justification of the formal computations

Lemma 5.3 (Boundary operator). The operator Hu fulfils all requirements of Sec-
tion 3.1. In addition, for each ρ0 ∈ L∞(Ω)n with ρ0 ≥ ρmin > 0 almost everywhere,
there is a vector ρmin ∈ Rn>0 satisfying inequality (3.16), which guarantees the existence
of a lower bound of the solution.
Proof. We will verify each of the assumptions of Section 3.1. Therefore, let be ρ ∈
L∞(ΓT ,dµ+

u ).
Weak-? continuity: Since Gu is the adjoint of another operator, namely Ḡu, it is

weak-? continuous.
L1-operator norm: As weight matrix for the Lp(ΓT ,dµ±u ) norm we choose the matrix

containing the cross-sectional areas W = A. Then, using the definition of M, we
estimate

‖Gu(ρ)‖1,w,− =
∫

ΓT
|Gu(ρ)|TA(νu)−dωdt

=
∫ T

0

∣∣∣∣∫
Γ
ρT (νU)+A

(
νBT

>1

)−
dω
∣∣∣∣M−1

∫
Γ

(νB>1)−A(νu)−dωdt

=
∫ T

0

∣∣∣∣∫
Γ
ρT (νU)+A

(
νBT

>1

)−
dω
∣∣∣∣1dt

≤ ‖ρ‖1,w,+.

Thus, the L1-operator norm of Gu is less or equal one.
Independence on future times: Equation (3.4) is fulfilled for almost all t ∈ [0, T ]

since it holds

Gu(χ[0,t]ρ) =
(
νBT

>1

)−
M−1

∫
Γ

(νB>1)−A (νU)+ χ[0,t]ρdω = χ[0,t]Gu(ρ)

by definition of Gu.
Positivity: Let be ρ ≥ 0 almost everywhere. Then, Gu(ρ) is positive as sum of

products of positive factors.
Boundedness: For any ρ0 ∈ L∞(Ω)n define the scalar

ρmax = max
(
‖ρoutr‖L∞(ΓT ), ‖ρ0‖L∞(Ω)n

)
with r = exp(t)

(
−
∫ t

0 ‖(ux(s, ·))−‖L∞(Ω)nds
)
. Observe that the reaction term c and the

source term f are not present in the continuity equation. Due to the definition of the
matrix M, it is

Gu(ρmax1n) = ρmaxGu(1n) = ρmax
(
νBT

>1

)−
M−1M1k = ρmax

(
νBT

>1

)−
1k

and thus, it follows also

ρinr + Gu(ρmax1n) =
(
νBT

=1

)−
ρoutr + Gu(ρmax1n)

≤ ρmax
(
νBT

=1

)−
1m−k + ρmax

(
νBT

>1

)−
1k

= ρmax(νBT )−1m
= ρmax1n
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dµ−u -almost everywhere. Here, one has to be careful with the different dimensions of
the 1-vectors. In the last step, we used that (νB)− has in each column exactly one
non-vanishing entry.

Now, we additionally assume ρ0 ≥ ρmin > 0 almost everywhere and denote

r̄(t) = exp
(∫ t

0
‖(ux(s, ·))+‖ds

)
.

Then, we define

ρmin = min{ess inf
Ω
ρ0, ess inf

ΓT
(r̄ρout)} ≥ ρmin > 0

and thus, it holds

ρinr̄ + Gu(ρmin1n) =
(
νBT

=1

)−
ρoutr̄ + ρminGu(1n)

≥ ρmin
(
νBT

=1

)−
1m−k + ρmin

(
νBT

>1

)−
1k

= ρmin(νBT )−1m
= ρmin1n

dµ−u -almost everywhere. This completes the proof.

Now, to apply the existence theory of Chapter 4, we additionally have to check the
two requirements on the boundary operator, which were demanded in (4.9) and (4.10).
These conditions were necessary for the proof of local existence in Section 4.2.

Lemma 5.4 (Dependence of Gu on u). For each uniform convergent sequence (wj)j ⊂
C([0, T ],Rn) with wj → w and each weak-? convergent sequence (qj)j ⊂ L∞(ΓT )n with
qj

?−⇀ q, it holds

(ν(Wj + Q))−Gwj+Q(qj) ⇀ (ν(W + Q))−Gw+Q(q) (5.8)

in L1(ΓT )n and∫ T

0

∫
Γ
β(q)TA(νu)+ − β(H̄w+Q(q))TA(νu)−dωdt

≤ lim inf
j

∫ T

0

∫
Γ
β(qj)TA(νuj)+ − β(H̄wj+Q(qj))TA(νuj)−dωdt

(5.9)

for β : Rn → Rn with βj(s) = s2
j and H̄u(ρ) = exp

(∫ t
0 ‖(Qx(s))−‖L∞(Ω)ds

)
ρin + Gu(ρ).

Proof. We introduce the abbreviations u = w + Q, uj = wj + Q, Gj = Gwj+Q and
Ḡj = Ḡwj+Q. During this proof, we will use superscripts to denote the components of a
vector. We start with proving the weak convergence (5.8). To do so, we will first show
the strong convergence

(νUj)+Ḡj(ρ̄)→ (νU)+Ḡu(ρ̄) (5.10)
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in L1(ΓT )n for an arbitrary ρ̄ ∈ L∞(ΓT )n before we use the adjoint operator of Ḡu to
conclude the convergence (5.8). Recalling the definition of Ḡj , the convergence (5.10) is
equivalent to the convergence

(νUj)+A
(
νBT

>1

)−
M−1

j

∫
Γ

(νB>1)− (νUj)−ρ̄dω

→ (νU)+A
(
νBT

>1

)−
M−1

∫
Γ

(νB>1)− (νU)−ρ̄dω.
(5.11)

To show this convergence, we will use the dominated convergence theorem. Since wj is
uniformly convergent with limit w, it is∫

Γ
(νB>1)−(νUj)−ρ̄dω →

∫
Γ
(νB>1)−(νU)−ρ̄dω (5.12)

for almost all t ∈ [0, T ]. Furthermore, as mentioned earlier, for almost all t with mll(t) =
0 we have ui(t, 0) = 0 for all ei ∈ E+(vl) and ui(t, 1) = 0 for all ei ∈ E−(vl) and, in
particular, it is ∫

Γ

(
(νB>1)− (νU)−ρ̄

)
l
dω = 0.

Thus, due to the entrywise inequality(
M−1

j (νB>1)−A(νUj)+
)
i1i2
≤ 1, (5.13)

we conclude the pointwise convergence

(νUj)+Ḡj(ρ̄)i(t, ω)→ 0 = (νU)+Ḡu(ρ̄)i(t, ω)

for almost all t with mll(t) = 0 and all (i, ω) ∈ E+(vl) × {0} ∪ E−(vl) × {1}. If it is
mll(t) 6= 0, then it holds(

M−1
j (νB>1)−A(νUj)+

)
li
→
(
M−1(νB>1)−A(νU)+

)
li

for all i and almost all t since these are quotients with non-vanishing denominators.
Hence, together with the convergence (5.12), we have proven the pointwise convergence
(5.11) for almost all (t, ω) ∈ ΓT . The dominated convergence theorem yields the stated
convergence in L1(ΓT )n since the sequence (νUj)+Ḡj(ρ̄) is bounded. To see this, we use
the uniform convergence of wj to obtain a constant C with ‖wj‖C([0,T ]) ≤ C. Thus, with
the entrywise inequality (5.13), we find the integrable bound

‖(νUj)+Ḡj(ρ̄)‖1 ≤ n
∥∥∥∥∫

Γ
(νB>1)−(C + (νQ)−)ρ̄dω

∥∥∥∥
1

and the dominated convergence theorem is applicable. In particular, the convergence
(5.10) is true.
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5 Low Mach number equations on a network

Now we will turn to the weak convergence (5.8) which is stated in the lemma. There-
fore, let be ρ̄ ∈ L∞(ΓT )n. Then, with the previous considerations, we compute∫

ΓT
ρ̄T (νUj)−Gj(qj)dωdt =

∫
ΓT
Ḡj(ρ̄)T (νUj)+qjdωdt

→
∫

ΓT
Ḡ(ρ̄)T (νU)+qdωdt

=
∫

ΓT
ρ̄T (νU)−G(q)dωdt

since the product of a weak-? convergent and a strong convergent sequence is weak-?
convergent.

To prove the second statement of the lemma, namely the inequality (5.9), we will
use the weak lower semi-continuity of the L2-norm. More precisely, we will rearrange
the integrals in (5.9) in such a way that they are L2([0, T ])-norms of a sequence of
vector-valued functions. Since this sequence will converge weakly, the weak lower semi-
continuity will complete the proof.

We begin with the transform of the involved terms in the inequality (5.9) into a more
suitable form. We recall from equation (2.61) that it holds

(νB=1)−A(νU)−
(
νBT

>1

)−
= 0

and we define the function r(t) = exp
(
−1

2
∫ t
0 ‖Qx(s)‖L∞(Ω)ds

)
. Then, due to the defini-

tion of M and due to the property M−1MM−1 = M−1 of the Moore-Penrose pseudoin-
verse, it holds∫ T

0

∫
Γ
β(q)TA(νu)+ − β(H̄u)(q)TA(νu)−dωdt

=
∫ T

0

∫
Γ
qTA(νU)+q −

(
rρin + Gu(q)

)T
A(νU)−

(
rρin + Gu(q)

)
dωdt

=
∫ T

0

∫
Γ
qTA(νU)+q − r2ρTin

(
νB=1

)−
A(νU)−

(
νBT

=1

)−
ρin

−
∫

Γ
qT (ν1U)+A

(
ν1BT

>1

)−
dω1M−1

(
νB>1

)−
A(νU)−

(
νBT

>1

)−
M−1∫

Γ

(
ν2B>1

)−
A (ν2U)+ qdω2dωdt

=
∫ T

0

∫
Γ
qTA(νU)+qdω︸ ︷︷ ︸

S1

−
∫

Γ
r2ρTin

(
νB=1

)−
A(νU)−

(
νBT

=1

)−
ρindω︸ ︷︷ ︸

S2

−
∫

Γ
qT (ν1U)+A

(
ν1BT

>1
)−dω1M−1

∫
Γ

(
ν2B>1

)−
A(ν2U)+qdω2︸ ︷︷ ︸

S3

dt

=
∫ T

0
S1 − S2 − S3dt.
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5.1 Justification of the formal computations

Thus, the desired inequality (5.9) is equivalent to

∫ T

0
S1 − S2 − S3dt ≤ lim inf

j

∫ T

0
S1
j − S2

j − S3
j dt,

where Sij is defined analogously to Si. In the following computations, we will use a
componentwise notation in order to avoid confusing matrix products. For a node vl and
an edge ei ∈ E(vl), we denote

ωli =
{

0 if init(ei) = vl

1 if ter(ei) = vl

and
νli = (−1)ωli+1.

Taking a closer look at the integrals, we see that Γ is a finite set and thus the integrals
define a weighted sum over the edges summing up q, evaluated at the ends of the edges.
Now, we can change the order of summation which results in summing over the nodes and
their adjacent ends of the edges instead of summing over the edges. These considerations
lead to

S1 =
∫

Γ
qTA(νU)+qdω

=
∑
ei∈E

qi(0)2Ai(ui(0))− + qi(1)2Ai(ui(1))+

=
∑
vl∈V

∑
ei∈E(vl)

(
qi(ωli)

)2
Ai(νliui)+

=
∑
vl∈V
d(vl)=1

∑
ei∈E(vl)

(
qi(ωli)

)2
Ai(νliui)+

+
∑
vl∈V
d(vl)>1

m−1
ll

 ∑
es∈E(vl)

As(νlsus)+

 ∑
ei∈E(vl)

(
qi(ωli)

)2
Ai(νliui)+

 .
Here, the inverse of mll has again to be understood in the sense of the Moore-Penrose
pseudoinverse, i.e. it is either 0 or m−1

ll (t). Furthermore, using the definition of the
incidence matrix, we compute

S3 =
∫

Γ
qT (ν1U)+A

(
ν1BT

>1
)−dω1M−1

∫
Γ

(
ν2B>1

)−
A(ν2U)+qdω2

=
∑
vl∈V
d(vl)>1

m−1
ll

 ∑
ei∈E(vl)

qi(ωil)Ai(νilui)+

 ∑
es∈E(vl)

qs(ωsl)As(νslui)+

 .
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5 Low Mach number equations on a network

Thus, the difference of S1 and S3 is

S1 − S3 = 1
2
∑
vl∈V
d(vl)>1

∑
ei∈E(vl)

∑
es∈E(vl)

m−1
ll A

i(νliui)+As(νlsus)+
(
qi(ωil)− qs(ωsl)

)2

︸ ︷︷ ︸
≥0

+
∑
vl∈V
d(vl)=1

∑
ei∈E(vl)

qi(ωli)2Ai(νliui)+︸ ︷︷ ︸
≥0

≥ 0.

(5.14)

The non-negativity of all summands is an important step in the proof since it allows the
usage of the weak lower semi-continuity of the L2-norm. More precisely, the difference∫ T

0 S1−S3dt is the L2([0, T ],R2n)-norm of a vector-valued function z, where the different
components of the vector z(t) are exactly the square roots of the summands of (5.14).
With the uniform convergence of wj and the weak-? convergence of qj , we conclude the
weak convergence in L2([0, T ]), as in the first part of the proof:

zrj =
(
(mll)−1

j Ai(νliuij)+As(νlsusj)+
) 1

2
(
qij(ωil)− qsj (ωsl)

)
⇀
(
m−1
ll A

i(νliui)+As(νlsus)+
) 1

2
(
qi(ωil)− qs(ωsl)

)
= zr.

Thus, due to the non-negativity of the components of z and the weak lower semi-
continuity, we obtain ∫ T

0
S1 − S3dt = ‖z‖2L2([0,T ],R2n

≤ lim inf
j
‖zj‖2L2([0,T ],R2n

= lim inf
j

∫ T

0
S1
j − S3

j dt.

Now, the desired inequality is proven since it holds∫ T

0
S2dt = lim

j

∫ T

0
S2
j dt

because of the strong convergence of wj .

5.2 Existence and stability
To end this thesis, we want to complete the analysis of the existence of solutions of the
low Mach number equations (2.53) on a network. In the previous section, we have shown
the validity of the reformulation of the low Mach number equations as an ODE coupled
with a transport equation so that we can now apply the existence theorems, which
we derived in Section 4.2. This will yield the local existence of solutions for arbitrary
networks and the global existence at least for the networks described in Section 4.3.
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5.2 Existence and stability

Due to the complex technical work performed in the previous chapters, the proofs of
this section will become rather simple. It only remains to validate all the requirements
of the derived theorems.

After proving the existence of solutions, we will show a stability result, describing the
dependence of the solutions on the initial values. We are not able to show the continuous
dependence because of the missing uniqueness result. Nevertheless, for each convergent
sequence of initial conditions, we can prove that there exists at least a subsequence of
solutions converging to a solution of the limit problem.

To simplify the notation, we will assume the edges of the unscaled network to have
all the same length, i.e. we will restrict ourselves to the case H = Id. With slight
modifications of the results in Chapter 4, it is also possible to handle the general case.
Before stating the main result, the local in time existence of solutions of the low Mach
number system on a network, we will recall the low Mach number equations (2.53) with
all coupling conditions derived in Chapter 2:

ρt + (Uρ)x = 0

(Uρ)t +
(
U2ρ+ π

)
x

= −ζα(U)Uρ+ f̂Fρ (5.15)

ux = q̄

in (0, T )× Ω with coupling conditions
(νU)− ρ = (νU)−Hu(ρ|ΓT ) on ΓT (5.16)

π(t, ω) = g(t, ω, νU2(t, ω)ρ(t, ω)) +
(
νBT

>1

)−
PV (t) on ΓT (5.17)

B+
>1Au(t, 0) = B−>1Au(t, 1) in (0, T ) (5.18)

and initial conditions
ρ(0) = ρ0 in Ω (5.19)

u(0, x) = v0 +
∫ x

0
q̄(0, y)dy in Ω. (5.20)

Additionally to the assumptions (5.1) introduced at the beginning of Section 5.1, we
require g(·, ω, ·) to be a Carathéodory-Lipschitz vector field for each ω ∈ Γ. This is
reasonable since the commonly used g in the coupling condition (5.17) is such a vector
field. The initial conditions should satisfy

ρ0 ∈ L∞(Ω)n

and
v0 ∈ Rn

with
B>1Av0 = B>1AQ(0, 1).

As before, it is Q(t, x) =
∫ x
0 q̄(t, y)dy.
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5 Low Mach number equations on a network

Theorem 5.5 (Local existence). Let G be a connected, oriented graph and let the
above-mentioned assumptions be valid.

Then, there exists a value T0 > 0 such that there exists at least one solution

(ρ, u, π, PV , γρ)

of the low Mach number equations (5.15) in the domain (0, T0)×Ω satisfying the coupling
conditions (5.16) to (5.18) and the initial conditions (5.19) and (5.20).

Proof. The outline of the proof is as follows: First, we use Theorem 4.12 to obtain a
local solution of the alternative formulation (5.3) of the equations based on the velocity
equation. Afterwards, we show the existence of a solution of the equations (5.15) with
the help of Theorem 5.1 stating the equivalence of the two formulations.

To apply Theorem 4.12 to the equation (5.3) with the coupling conditions (5.16) to
(5.18) and the initial conditions (5.19) and (5.20), we need to check the requirements
demanded in Section 4.2. We define the function f : [0, T ]×Rn × VT × L1(Γ)n → Rn by

f(t, v, ρ, w) = −R−1
(
Rq̄v +RQt+Qq̄ −Rf̂f−ζα(V+Q)(V+Q) + ∆g(t, v, w)

)
(5.21)

with
∆g(t, v, w) = g

(
t, 1, (V + Q(t, 1))w(1)

)
− g

(
t, 0,−Vw(0)

)
.

For fixed (ρ, γρ) ∈ VT ×WT , the mapping

(t, v) 7→ f
(
t, v, ρ, ν(V + Q(t))|Γγρ

)
is a Carathéodory-Lipschitz vector field as a concatenation of Carathéodory-Lipschitz
vector fields. Furthermore, the function f(t, ·, ·, ·) is continuous in (v, ρ, w) ∈ Rn × VT ×
L1(Γ)n for almost all t ∈ [0, T ] since g(t, ω, ·) is continuous. Finally, the mapping f is
locally integrable uniformly bounded: Let D0 ⊂ [0, T ] × Rn be a compact set and let
be (t, v, ρ, γρ) ∈ D0 × V × W. Since W is bounded and since Q is continuous, there
exists a compact set D̄0 ⊂ [0, T ]× Rn with (t, ν(V + Q(t))|Γγρ(t)) ∈ D̄0. Thus, for the
Carathéodory-Lipschitz vector field g, there exists a bound m ∈ L1(pr1 D̄0, [0,∞)) and
a null subset I0 ⊂ [0, T ] with

‖g(t, ω, z)‖ ≤ m(t)

for all (t, z) ∈ D̄0 with t /∈ I0. Therefore, we estimate

‖f(t, v, ρ(t), ν(V + Q(t))γρ(t))‖

≤ 1
ρ̄min(T )

(
ρ̄max(T )

(
‖q‖L1([0,T ]×Ω) sup

v∈pr2D0

‖v‖∞ + ‖Qt + Qq̄ − f̂f‖L1((0,T )×Ω)

+‖ζ‖L∞((0,T )×Ω) sup
(t,v,x)∈D0×Ω

‖α(V + Q(t, x))(v +Q(t, x))‖1

+ 2m(t)

 .
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Hence, the mapping f fulfils all requirements of the local existence theorem (Theo-
rem 4.12) and it remains to check the requirements on the coupling condition

F (t, v) = B>1Av −B−>1AQ(t, 1) = 0.

Since it holds
DvF (t, v) = B>1A,

the assumptions for the matrices D1 = Id and D2 = A are clearly satisfied (see equation
(4.3)) as these matrices are constant and positive definite. Thus, applying Theorem 4.12
yields the existence of T0 > 0 and of at least one solution

(ρ, v, PV , γρ) ∈ L∞((0, T0)× Ω)n ×W 1,1(0, T0)× L1((0, T0))× L∞(ΓT0 , |dµv+Q|)

of

ρt + ((V + Q)ρ)x = 0

vt = f
(
t, v, ρ(t), ν(V + Q(t))|Γγρ(t)

)
+ R−1BT

>1PV
(5.22)

fulfilling the coupling and initial conditions.
Defining ∆p = ∆g(·, v(·), γρ(·)) ∈ L1((0, T0))n the pair (ρ, v) solves the equation (5.3).

Thus, due to Theorem 5.1 the triple (ρ, v +Q, π) with

π = π̄ −
∫ x

0

(
Vt + Qt + (V + Q)Qx + ζα(V + Q)(V + Q)− f̂F

)
ρdx (5.23)

is a weak solution of the equations (5.15) satisfying π(1)− π(0) = ∆p. Choosing

π̄(t) = g
(
t, 0, νV(t)2γρ(0, t)

)
the tuple (ρ, v + Q, π, PV , γρ) satisfies also all initial and coupling conditions (5.16) to
(5.20).

Now that we have shown the local existence, we will validate the requirements for the
global existence on the networks described in Section 4.3 in the following. To simplify
the notation, we assume ∆g(t, v, γρ(t)) to be linearly integrable uniformly bounded, i.e.
there are two functions dg,1 ∈ L2([0, T ], [0,∞)) and dg,2 ∈ L1([0, T ], [0,∞)) with

‖∆g(t, v, γρ(t))‖2 ≤ d1(t) + d2(t)‖v‖2

for almost all t ∈ [0, T ] and all γρ ∈ W. Then, we can prove the following lemma which
allows us to conclude the global existence for all graphs presented in Section 4.3.

Lemma 5.6 (Linearly boundedness). Let f be the function defined in (5.21).
1. Let be αi(ui) ≥ 0. Then, the function f is linearly integrable uniformly bounded as

long as f and v have the same sign, i.e. there exist two functions d1, d2 ∈ L1([0, T ], [0,∞))
with

sgn(vi)fi
(
t, v, ρ(t), ν(V(t) + Q(t))|Γ

)
≤ d1(t) + d2(t)‖v‖1 (5.24)
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for almost all t ∈ [0, T ] and all (ρ, γρ) ∈ V ×W.
2. If we additionally assume αi(ui) ≤ 1, then f is linearly integrable uniformly bounded,

i.e. there exist two functions d1 ∈ L2([0, T ], [0,∞)) and d2 ∈ L1([0, T ], [0,∞)) with∥∥∥f(t, v, ρ(t), ν(V(t) + Q(t))|Γ
)∥∥∥

2
≤ d1(t) + d2(t)‖v‖2

for almost all t ∈ [0, T ] and all (ρ, γρ) ∈ V ×W.

Proof. For f̄ = f + R−1Rζα(V+Q)(V+Q), we estimate∥∥∥̄f(t, v, ρ(t), ν(V + Q(t)|Γ)γρ(t)
)∥∥∥

2

=
∥∥∥−R−1

(
Rq̄v +RQt+Qq̄ −Rf̂f + ∆g(t, v, γρ(t))

)∥∥∥
2

≤ ρ̄max(t)
ρ̄min(t)

∥∥∥∥∥q̄(t)‖L∞(Ω)n‖v‖1 +
(
‖Qt‖L∞(Ω)n + ‖q̄(t)‖2L∞(Ω)n

)

+ f̂‖f‖L1(Ω)n + dg,1(t) + dg,2(t)‖v‖2

)

for almost all t ∈ [0, T ] and all (ρ, γρ) ∈ V ×W. Thus, f̄ is linearly integrable uniformly
bounded. The only remaining part to estimate is the term −R−1Rζα(V+Q)(V+Q). Here,
we distinguish the two cases 1 and 2.

1. Let be αi(ui) ≥ 0. For |vi| ≥ ‖Qi(t)‖L∞(Ω)n , it is sgn(vi) = sgn(vi + Qi) and thus,
because of the non-negativity of ζ, α and ρ it holds

− sgn(vi)R−1
i

(
Rζα(V+Q)(V+Q)

)
i

= − 1
Ri(t)

∫ 1

0
ζiαi(vi +Qi)(vi +Qi)ρi sgn(vi)dx

= − 1
Ri(t)

∫ 1

0
ζiαi(vi +Qi) |vi +Qi| ρidx

≤ 0.

Due to the continuity of α and Q, the function

K(t) = sup
|u|≤2‖Q(t)‖L∞(Ω)n

‖α(u)‖∞

is well-defined. Thus, for |vi| < ‖Qi(t)‖L∞(Ω)n we can estimate

− sgn(vi)R−1
i

(
Rζα(V+Q)(V+Q)

)
i

≤ ρ̄max(t)
ρ̄min(t) ‖ζ(t)‖L∞(Ω)nK(t)

(
‖v‖1 + ‖Q(t)‖L1(Ω)n

)
,

which proves the inequality (5.24) for almost all t ∈ [0, T ] and all (ρ, γρ) ∈ V ×W.
2. The case αi(ui) ≤ 1 is even simpler since it holds∥∥∥R−1Rζα(V+Q)(V+Q)

∥∥∥
2
≤ ρ̄max(t)
ρ̄min(t) ‖ζ(t)‖L∞(Ω)n

(
‖Q‖L2(Ω)n + ‖v‖2

)
.
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Remark 5.7. Clearly, for the second statement, it is sufficient to require ∆g to be linearly
integrable uniformly bounded if v and ∆g have the same sign.

In most of the common examples, ∆g depends only on t and thus, it is linearly
integrable uniformly bounded. An exception is formed by the minor loss factors, used to
model sudden contractions or expansions, which were introduced in (2.37). For networks
consisting of a path, these minor loss terms have the form

∆gi(t, v, ν(V + Q(t)|Γ)γρ(t)) = −K̃i

∣∣∣vi−1 +Qi−1(t, 1)
∣∣∣(vi−1 +Qi−1(t, 1)

)
γρi−1(t, 1)

2

for K̃i ≥ 0 (compare equation (2.37)). Using the function w introduced in the construc-
tion of the energy functional for paths (see proof of Corollary 4.19), it is easy to verify
that ∆g is linearly bounded if v and ∆g have the same sign. Therefore, the previous
lemma is also valid for paths with sudden contractions or expansions modelled with mi-
nor loss terms. Altogether, we have proven the global existence of solutions of (5.15) to
(5.20) for the networks described in Section 4.3 since all corollaries of that section can
be applied.

To end this section, we characterize the dependence of the solutions on the initial
conditions. As mentioned before, we are able to show that for each convergent sequence
of initial values, there exists a subsequence of corresponding solutions converging to a
solution satisfying the limit initial conditions.

Theorem 5.8 (Dependence on the initial values). Let G be a graph such that there
exists a uniform energy functional V for the low Mach number equations. Furthermore,
let (v0,j)j ⊂ Rn and (ρ0,j)j ⊂ L∞(Ω)n be convergent sequences with

v0,j → v0 in Rn

and
ρ0,j → ρ0 in L1(Ω)n

such that it is ρ0 ∈ L∞(Ω)n and such that ρ0,j is bounded from below and above by

0 < ρmin ≤ ρ0,j ≤ ρmax

almost everywhere. Denote by (ρj , vj + Q, πj , (PV )j , γρj) a solution of the equations
(5.15) satisfying the coupling conditions (5.16) to (5.18) and the initial values ρj(0) = ρ0,j
and vj(0) = v0,j.

Then, at least a subsequence (ρjl , vjl +Qjl , πjl , (PV )jl , γρjl) is convergent to a solution
(ρ, v +Q, π, PV , γρ) of the limit problem, i.e. it holds

ρjl → ρ in C([0, T ], Lp(Ω)n),
vjl → v in W 1,1([0, T ])n,
πjl → π in L1((0, T ),W 1,1(Ω)n),

(PV )jl → PV in L1((0, T ))n

131



5 Low Mach number equations on a network

and
γρjl → γρ in Lp(ΓT , |dµu|).

Proof. The proof relies on the theorem of Arzelà-Ascoli to extract a convergent subse-
quence and on the stability theorem (Theorem 3.11) of the transport equation to prove
that the limit is a solution of the equations.

Due to the regularity of q we can switch between both formulations of the equations
(see Theorem 5.1). We define vj = uj−Q and want to apply the theorem of Arzelà-Ascoli.
Since (ρj , vj) is a solution of the velocity equation (5.3) we can apply Lemma 4.11 to
conclude the boundedness of the density ρj independent on j, i.e. to conclude ρ̄min(t) ≤
ρj ≤ ρ̄max(t). Thus, the energy functional V is valid for all j and the velocity vj is
bounded independently on j, i.e. there exists R(t) with

‖vj(t)‖ ≤ R(t).

As in the proof of Theorem 4.12 of the local existence of solutions, the sequence vj can
be shown to be equicontinuous. Therefore, due to the theorem of Arzelà-Ascoli, there
exists a uniform convergent subsequence with vjl → v.

With the stability theorem 3.11, the sequence of the densities ρjl and the sequence of
their traces γρjl are convergent, i.e. it holds

ρjl → ρ in C([0, T ], Lp(Ω)n)
and

γρjl → γρ in Lp(ΓT , |dµv+Q|)

where the limit ρ is the solution of the transport equation with velocity v + Q and its
trace γρ. Using the dominated convergence theorem, the uniform convergence of vjl and
the continuity of f yields after passing to a subsequence the following (compare proof of
Theorem 4.12):

v(t)← vjl
= v0,j

+
∫ t

0
T(s, ρjl(s))f(s, vjl(s), ρjl(s), ν(Vjl(s) +Q(s)|Γ)γρjl(s))− S(s, ρjl(s))Ft(s)ds

→ v0 +
∫ t

0
T(s, ρ(s))f(s, v(s), ρ(s), ν(V(s) +Q(s)|Γ)γρ(s))− S(s, ρ(s))Ft(s)ds.

In particular, it holds also (vjl)t → vt in L1((0, T )). The stated convergence of (PV )jl
(see formula (4.15)) and the convergence of πjl (see formula (5.23)) is then clear.

Remark 5.9. The previous result does not state the continuous dependence of the solution
on the initial data since a uniqueness result is missing. Assuming the solution of the
limit problem to be unique, indeed the whole sequence and not only a subsequence is
converging.
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6 Summary and outlook
In this thesis, we studied a system of partial differential equations on a network. On
each edge of the network a transport equation is coupled with an ODE. The velocity
field of the transport equation is driven by the ODE whereas the right-hand side of the
ODE depends on the solution of the transport equation. To complete the model, the
equations are coupled by algebraic relations at the nodes of the network.

Such systems of partial differential equations are well-defined since the solution of the
transport equation is continuous with values in a Banach space and thus, the ODE gets
a meaning in the classical sense. A problem when studying such systems on networks is
that it is not possible to determine the direction of the flow a priori. In this case, the
method of characteristics may fail due to the changing flow directions. Nevertheless, we
were able to prove the existence of solutions of such equations locally in time. The proof
is mainly based on the continuous dependence of the solution of the transport equation
on the velocity field.

Since this dependence is not Lipschitz continuous, we were not able to prove a unique-
ness result. However, we could establish the global in time existence under additional
constraints on the network. The local solution can be expanded to the whole time in-
terval and hence a possible blow-up of the velocity can be excluded if there existed a
uniform energy functional for the network. We were able to provide such functionals
for different cases. Either, if we restrict the right-hand side of the ODE to be linearly
bounded and allow the network to be arbitrary, or if we allow more general right-hand
sides and restrict the form of the network, we provided constructions of energy func-
tionals ensuring the global existence. The main problem in order to show the global
existence is that the ODE has an infinite speed of propagation, i.e. a change of the ODE
on any edge leads to a change of the solution on all edges and all nodes.

Furthermore, we discussed the non-isothermal and non-isentropic low Mach number
equations with a heat source as an example, on which the developed theory can be
applied. These equations describe the hot air flow in a tunnel system in case of a fire.
We formally derived the low Mach number model from the three-dimensional Euler
equations. For the passage from the three-dimensional equations to the one-dimensional
section-averaged Euler equations, the use of the Frenet-Serret-frame has turned out to
be valuable in order to be able to consider curved edges as well. Moreover, the resulting
low Mach number model consisting of the continuity, momentum and energy equation
was shown to be equivalent to a system consisting of the continuity and the velocity
equation. Here, the velocity equation was an ODE such that this model fits into the
developed framework and the existence of solutions could be established.

Of course, there are lots of possibilities how to continue the research. To end this
thesis, we want to mention a few aspects:
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6 Summary and outlook

Construction of further energy functionals: From a physical point of view there seems
to be no reason why we have to restrict to special classes of networks in order to
prevent a blow-up of the velocity. Therefore, the construction of energy functionals
for arbitrary networks seems to be feasible. Or, if this is not possible, a classifi-
cation of networks into those, where such functionals exists and those where not,
would be a big progress in understanding the flow on networks.

Proof of uniqueness: The missing Lipschitz continuous dependence of the solution of
the transport equation on the velocity makes it difficult to prove the uniqueness
of solutions of the coupled partial differential equations. Moreover, it would be an
important step in the analysis of the equations to provide a proof of uniqueness or
a counterexample disproving it.

Justification of the formal asymptotic limits: In the derivation of the low Mach num-
ber model, we formally performed two asymptotic limits. The first concerns
the passage from the three-dimensional equations to the one-dimensional section-
averaged equations on a network and the second one the low Mach number limit
itself. Since both asymptotic limits are only formally taken, it is desirable to iden-
tify admissible flow situations for which the use of the model is justified such that
the solution of the low Mach number equations really approximates the solution
of the three-dimensional Euler or Navier-Stokes equations.

Consideration of higher order terms: In the formal limits in the derivation of the model
we have neglected all terms of higher order. Including these terms would possibly
lead to a more sophisticated one-dimensional model for the flow on a network
including correction terms for non-straight geometries.
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List of symbols

A cross-sectional area, 32
α function describing the friction

model, 34
B incidence matrix, 2
B=1 submatrix of the incidence ma-

trix B corresponding to the
outer nodes, 3

B>1 submatrix of the incidence ma-
trix B corresponding to the in-
ner nodes, 3

c reaction term, 56
D1, D2 matrices to factorize the Jaco-

bian DvF , 89
E Edge set, 1
e specific internal energy, 19
ei edge, 1
F coupling condition for the ve-

locity, 88
f right-hand side of the ODE, 94
G Graph, 1
G linear boundary operator, 57
g coupling condition for the pres-

sure, 47
Γ boundary of Ω, 56
γ adiabatic exponent, 20
γρ trace, 60
ΓT space-time boundary, 56
Γ±T inflow or outflow part of the

space-time boundary, 56
H diagonal matrix of dimension-

less parameters h, 46
h dimensionless parameter, 26
H affine linear boundary operator,

57
Lw (weighted) Laplacian matrix, 4
M Mach number, 26

Ω computational domain, 56
p pressure, 19
π first order pressure, 48
pri projection on the i-th compo-

nent, 7
PV pressure at the inner nodes, 47
Q known space-dependent part of

the velocity, 50
q heat source, 20
Rf diagonal matrix of weighted

masses Rf , 51
Rf weighted mass, 51
ρ density, 18
ρ0 initial density, 56
ρin inflow density, 57
ρmax maximal density, 57
ρmin minimal density, 67
S matrix, 91
T projector, 91
Tw surface temperature, 35
U diagonal matrix of velocities u,

45
u velocity, 18
V diagonal matrix of velocities v,

45
V (uniform) energy functional, 94
V admissible set for the density ρ,

96
V Vertex set, 1
v unknown space-independent

part of the velocity, 50
v node, 1
W weight matrix, 57
W admissible set for the trace γρ,

96
ζ friction coefficient, 34
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List of spaces

C([0, T ],M) continuous functions with values in the metric space M , 60
C0,1(Ω) real Lipschitz continuous functions, 59
C0,1(Ω,M) Lipschitz continuous functions with values in the metric space M , 59
C0,1
c (Ω) real compactly supported Lipschitz continuous functions, 59

Cp(Ω) p-times continuously differentiable functions, 59
Lp(Ω, dµ) (vector valued, component-wise) dµ-measurable functions with finite

p-norm, 56
Lp(Ω)n vector valued, component-wise Lebesgue measurable functions with fi-

nite p-norm, 56
Lp((0, T ), V ) Bochner space of p-integrable functions with values in the Banach space

V , 56
L∞(Ω)n vector valued, component-wise essentially bounded functions, 56
W p,k(Ω)n vector-valued, component-wise Sobolev functions, 56
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[32] Benôıt Desjardins, Emmanuel Grenier, Pierre-Louis Lions, and Nader Masmoudi.
Incompressible Limit for Solutions of the Isentropic Navier-Stokes Equations with
Dirichlet Boundary Conditions. Journal de Mathématiques Pures et Appliquées,
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Summary

Summary
In this thesis, we study analytically a low Mach number model on a network describing
the flow of fluids or gases driven by a strong heat source. This model can for example
be used to describe fires in tunnel systems or to describe exhaust systems of vehicles.

In the first part of the work, the model is formally derived from the three-dimensional
Euler equations. Using the Frenet-Serret-frame and asymptotic expansions, the Euler
equations are transferred to a non-hyperbolic system of one-dimensional partial differ-
ential equations on a graph.

On each edge of the graph, the flow is governed by

ρt + (uρ)x = 0

(ρu)t +
(
ρu2 + π

)
x

= −ζρα(u)u+ fρ

ux = q

where q describes a known heat source, ζα(u)u the wall friction and f an external force.
The other quantities are as usual the density ρ, the velocity u and the pressure π.
The equations are completed by reasonable coupling conditions at the nodes reflecting
physical principles like the conservation of mass and the conservation of internal energy.

These equations were shown to be solvable globally in time for single edges in [48].
In the second part of the thesis, we generalize this result to the case of networks. For
the analysis, we study the involved equations - a transport equation for the density and
a nonlinear ODE for the velocity - separately using a combination of graph theoretical
and functional analytical concepts.
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Zusammenfassung

Zusammenfassung
In dieser Arbeit untersuchen wir analytisch ein mathematisches Modell für Gas- oder
Fluidströmung mit kleiner Machzahl auf Netzwerken, die durch starke Hitzequellen an-
getrieben wird. Das Modell kann zum Beispiel verwendet werden, um Brände in Tun-
nelsystemen oder das Verhalten von Auspuffsystemen zu beschreiben.

Im ersten Teil der Dissertation wird das Modell formal aus den dreidimensionalen
Eulergleichungen hergeleitet. Mit Hilfe des Frenet-Serret-Koordinatensystems und asym-
ptotischen Entwicklungen werden die Eulergleichungen in ein nichthyperbolisches System
eindimensionaler partieller Differentialgleichungen auf einem Graphen überführt.

Auf jeder Kante des Graphen wird die Strömung durch die Gleichungen

ρt + (uρ)x = 0

(ρu)t +
(
ρu2 + π

)
x

= −ζρα(u)u+ fρ

ux = q

beschrieben, wobei q eine bekannte Hitzequelle, ζα(u)u die Reibung und f eine externe
Kraft bezeichnet. Die anderen Größen sind, wie üblich, die Dichte ρ, die Geschwindigkeit
u und der Druck π. Die Gleichungen werden an den Knoten durch Kopplungsbedingun-
gen, die durch die physikalischen Grundsätze wie z.B. Massen- oder Energieerhaltung
gegeben sind, abgeschlossen.

In [48] wurde gezeigt, dass die Gleichungen für einzelne Kanten immer eine Lösung be-
sitzen. Im zweiten Teil der Arbeit verallgemeinern wir dieses Resultat auf Netzwerke. Für
die Analysis untersuchen wir die beiden Gleichungen - eine Transportgleichung für die
Dichte und eine nichtlineare gewöhnliche Differentialgleichung für die Geschwindigkeit -
separat, wobei wir Konzepte der Graphentheorie mit Konzepten der Funktionalanalysis
kombinieren.
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