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Zusammenfassung

Viele Algorithmen des maschinellen Lernens verwenden Graphen, um die Beziehungen zwis-
chen den Datenpunkten zu modellieren. Einer der interessantesten Aspekte für solche Algo-
rithmen ist der des Abstands zwischen den Knoten. Es gibt verschiedene Abstandsfunktio-
nen auf der Menge der Knoten eines Graphen, die jeweils unterschiedliche Eigenschaften des
zugrunde liegenden Graphen reflektieren. Der erste Teil dieser Dissertation charakterisiert
Eigenschaften zweier solcher globalen Abstandsfunktionen in Graphen:

• Kürzeste Pfad-Distanz: Das Verhalten der kürzesten Pfad-Distanz hängt davon ab, wie wir
unseren Graphen aus den Datenpunkten konstruieren. Ich zeige, dass in ungewichteten k-
Nächster-Nachbar-Graphen die kürzeste Pfad-Distanz gegen eine “unangenehme” Abstands-
funktion konvergiert, deren Eigenschaften sich nachteilig auf einige Ziele des maschinellen
Lernens auswirken können.

• p-resistance-Distanz: Die p-resistance-Distanz ist eine Verallgemeinerung der resistance-
Distanz und enthält auch noch weitere Abstandsfunktionen als Sonderfälle. Ich behandle
die Konvergenz der p-resistance-Distanz in großen geometrischen Graphen und zeige, dass
ein interessanter Phasenübergang stattfindet: Es gibt zwei kritische Schwellenwerte p∗ und
p∗∗, sodass für p < p∗ die p-resistance von bedeutenden globalen Eigenschaften des Graphen
bestimmt wird, während sie für p > p∗∗ nur von trivialen lokalen Größen abhängt und
keinerlei nützliche Information enthält.

Der zweite Teil dieser Dissertation befasst sich mit lokalen Abständen in Graphen. Lokales
Clustering und Friend-Recommendation werden hier abgedeckt.

• Lokales Clustering ist die Aufgabe, einen “stark” verbundenen Cluster um einen Punkt ho-
hen Interesses zu finden. Ich schlage ein neues Random-Walk-Modell für lokales Clustering
vor, bestehend aus mehreren “Agenten”, welche durch Seile miteindander verbunden sind.
Alle Agenten können sich unabhängig voneinander bewegen, ihre Abstände zueinander wer-
den aber durch die Seile zwischen ihnen begrenzt. Die entscheidende Einsicht dabei ist, dass
es für mehrere Agenten schwieriger ist, gleichzeitig über den “Bottleneck” eines Graphen
zu wandern, als dies für nur einen Agenten der Fall ist.

• Lokale Abstände werden für das Empfehlen von neuen Freunden in sozialen Netzwerken
verwendet. Ich schlage dabei eine neue Distanzfunktion zwischen den Mitgliedern des Net-
zwerks vor, sodass zeitbezogene Daten des Netzwerks für die Empfehlung genützt werden.

Der dritte Teil meiner Dissertation ist dem Problem des “Downsamplings” großer Graphen
gewidmet. Ziel dabei ist es, eine kleinere “Version” eines Graphen zu erzeugen, die leichter
zu verarbeiten und zu visualisieren ist. Ich stelle in diesem Teil ein neues Verfahren und seine
gründliche statistische Analyse vor. Resultat dieses Verfahrens ist ein verkleinerter Graph,
der nachweislich viele Eigenschaften des ursprünglichen Graphen erbt.



Abstract

Many machine learning algorithms use graphs to model relations between data points. One
of the main objects of interest for such algorithms is the distance between vertices. There are
several distance functions defined between graph vertices, each reflecting different properties
of the underlying graph. The first part of this thesis characterizes properties of global distance
functions in graphs:

• Shortest path distance: The behavior of the shortest path distance depends on how we
construct our graph from the data points. I show that in unweighted k-nearest neighbor
graphs, the shortest path distance converges to an unpleasant distance function whose
properties are detrimental to some machine learning problems.

• p-resistance distance: The p-resistance distance is a generalization of the resistance distance
and contains several other distances as its special cases. I study the convergence of the p-
resistance distance in large geometric graphs and show that an interesting phase transition
takes place. There exist two critical thresholds p∗ and p∗∗ such that if p < p∗, then the
p-resistance depends on meaningful global properties of the graph, whereas if p > p∗∗, it
only depends on trivial local quantities and does not convey any useful information.

The second part of this thesis deals with local distances in graphs. Local clustering and friend
recommendation are the topics covered in this part.

• Local clustering is the task of finding a highly connected cluster around a vertex of interest.
I propose a new random walk model for local clustering, consisting of several “agents”
connected by ropes. All agents move independently but their distances are constrained
by the ropes between them. The main insight is that for several agents it is harder to
simultaneously travel over the bottleneck of a graph than for just one agent.

• Local distances are used for recommending new friends in social networks. Here, I propose
a new distance between members of the network that exploits the temporal data in the
friendship network to recommend new friends.

The third part of my thesis is devoted to the problem of downsampling massive graphs. The
goal of downsampling is to produce a smaller “version” of a given graph, which would be
easier to process and visualize. Here, a new method is proposed and followed by its thorough
statistical analysis. The output of this method is a downsampled graph that provably inherits
many properties of the original graph.
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Chapter 1

Introduction

A distance function describes the dissimilarity between two objects by a number. Devising a
good distance function is a core task in many machine learning problems. The main goal of
this thesis is to study distance functions in graphs, specifically the ones that often appear in
machine learning problems. My focus is on properties of distance functions in large graphs:

• The convergence of distance functions in graphs: I am interested in the behavior of a
distance function in very large graphs. Assume that our vertices are samples from a
domain X . Can we relate the graph distance between two vertices to a quantity in X ?

• Downsampling geometric graphs: Given a massive graph, a downsampling algorithm
produces a smaller graph which “looks like” the original one. The hope is that visualizing
or applying a machine learning algorithm on the smaller graph and on the original graph
would produce similar results.

• Local distances in graphs: A local distance is a distance defined between “nearby”
vertices. Local distance functions play an important role in applications such as local
clustering and link prediction. In these applications, the underlying graphs usually have
millions of nodes, and it is neither needed nor practical to compute all pairwise distances.

In the following, I briefly introduce the key concepts “graph” and “distance function in a
graph” in the context of machine learning. Then an overview of the contents and results
follows.

1.1 Graphs in machine learning

A graph represents a set of objects by vertices and the pairwise relations between these
objects by links. In weighted graphs, these links carry some information about the strength
of the relation. In machine learning problems, it is common to represent the sample points
by vertices and the “similarity” between samples by weighted edges between vertices. This
representation results in a graph built on the sample points. Techniques such as spectral
clustering, semi-supervised learning and non-linear dimensionality reduction deal with such
graphs.
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From a mathematical point of view, these graphs are usually modeled as random geometric
graphs: we assume that vertices are drawn i.i.d. from a density p on Rd and edges are between
vertices that are “close”. The closeness is usually measured by Euclidean distance (e.g., in
ε-graphs), or by being among nearest neighbors of each other (e.g., in kNN-graphs). As an
example, Figure 1.1b illustrates a kNN-graph (k = 7) built on 100 random sample points
drawn i.i.d. from a density p. The underlying density p is depicted in Figure 1.1a.

Graphs are also used to represent complex structures such as social networks. In this type
of graphs, both nodes and edges may carry some data. In social networks, nodes represent
members of the network and we can assign properties such as age, sex and job to each node.
Edges also carry some information such as the start time of the friendship, and the type of
the connection: if they are colleagues, schoolmates or friends. Even when we have no access
to such extra data, the graph structure itself carries valuable information about the network.

1.2 Distance functions in graphs

In machine learning, edges of a graph usually represent local information, e.g., distances
between very “close” vertices. In problems such as classification and clustering, we are often
interested in comparing objects that are “far” from each other. This comparison uses a
distance function defined between vertices of the graph. A graph distance function represents
the farness between two vertices by a real number. Imagine the graph vertices as cities and
edges as roads between them. We expect a large distance between two cities (vertices) when
it takes long to “travel” between them. Traveling along the shortest path between two cities
leads to the shortest path distance. The resistance distance can be interpreted as traveling
along random roads.

If we have a distance function that could assign the edge weights in building the graph, then
why do we need the graph? Why not to use the same function for finding distances between
far objects?

From local dissimilarities to global distances: Sometimes, it is only easy to assess
distances between very similar objects. As an example, consider a set of hand-written digits,
where digits are 16 × 16 grayscale images represented by vectors in R256. Samples such as

and 1 are very similar and their distances can be measured by the Euclidean distance

between them. However, samples such as have a very large Euclidean distance to and
the Euclidean distance is not able to capture the similarity between these hand-written digits.
Therefore, we build a graph on these samples. Figure 1.1c depicts an example graph built
on samples of digits 1 and 7. After building the graph, we use a graph distance function for
finding global distances between samples.

Chapters 2 and 3 explicitly deal with two global distance functions, namely the shortest path
distance and the family of p-resistance distances.

Large sample analysis of graph distances: It is natural to ask about the quality of a graph
distance function. Which distance function is “good” for our data? There is no single correct
answer for this question and the performance of distance functions in graphs are usually very
application dependent.

1Images are taken from MNIST dataset (LeCun et al., 1998)
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(a) A contour plot of the
underlying density p in
R2.

(b) A kNN graph built on 100 ran-
dom samples drawn i.i.d. from p.

(c) A neighborhood graph built on
samples from hand-written digits
1 and 7.

But what we can do before having access to our data is to broaden our knowledge about
properties of different distance functions. Examples of information that we can gather about
a distance function are: Is the distance a metric? If yes, is it an Euclidean metric? When
there are many paths between two vertices, do we get a shorter distance? Are the distances
between points in the same “cluster” larger than the distances between points in different
clusters?

Another important property of a graph distance is its applicability in large graphs: Can we
compute it efficiently? How does the distance behave if the underlying graph gets very large?
Does it converge to a “limit distance”?

For example, we know the answer for the shortest path distance in a specific family of graphs.
In a kNN or ε-graph where the vertices are sampled from a uniform density, the shortest path
distance converges to the underlying Euclidean distance (Tenenbaum et al., 2000).

To analyze the behavior of a distance function in large graphs, we need to fix a model for
the underlying graph. In this thesis, I mainly work with the random geometric graph model
which fits well to many machine learning scenarios. To make the chapters independent, the
formal setting of each chapter is given inside that chapter.

1.3 Overview of the results

Here, I outline the topics discussed in each chapter and the results obtained:

Part I: Statistical Analysis of Global Distances in Random
Geometric Graphs

In the first part, I study the convergence of the shortest path distance and the family of
p-resistance distances. The underlying graph model is the random geometric graph model.

Chapter 2 The graph shortest path distance is the most fundamental distance function
between vertices of a graph. The main goal of this chapter is to study the convergence of
the shortest path distance in random geometric graphs. There are two parameters involved
in determining the limit of the shortest path distance: the graph construction algorithm (e.g.
kNN or ε-graph) and the edge weights. If the underlying density is uniform and the edges are

3



unweighted or weighted by their Euclidean length, then the shortest path distance in both of
kNN and ε-graphs will converge to the geodesic distance (Tenenbaum et al., 2000).

The story is different when the underlying density is not uniform. I study this case, and
consider different weight functions. One of the results in this chapter is that the shortest path
distance in unweighted kNN-graphs converges to a limit distance that does not conform to the
natural intuition. More generally I study two questions:

1. Limit distance: We are given a function h that assigns weight h(‖Xi − Xj‖) to the
edge between Xi and Xj . How does the shortest path distance in this graph depend on
h as n→∞?

2. Weight assignment: Given a distance measure D, how can we assign edge weights
such that the shortest path distance in the graph converges to D?

For the first question, depending on properties of the function h(x), the shortest path distance
operates in two different regimes. The limit of the shortest path distance for one of these
regimes is presented in this chapter. I also provide an answer to the second question without
an explicit density estimation step. Some parts of this chapter have been published in Alamgir
and von Luxburg (2012).

Chapter 3 The shortest path distance only looks at a single shortest path between two
vertices and is not affected by the existence of several other paths between these vertices. The
resistance distance or commute time is an important graph distance function which takes all
the paths between two vertices into account. As a rule of thumb, more paths between u and
v lead to a smaller distance between them. This distance can be interpreted as the electrical
resistance between two vertices in an equivalent network, where each edge is replaced by a
resistor. The resistance distance between u and v is also related to the expected time a random
walk starting from u reaches v for the first time and returns.

The resistance distance is used in many machine learning applications, supposedly having the
following property: vertices in the same cluster have small distances, as there are many short
paths between them. Vertices in different clusters have a large resistance distance, as there
are fewer paths connecting them. von Luxburg et al. (2010) proved that as the number of
vertices increases, this property does not hold any more and the resistance distance converges
to a meaningless limit function.

The main object under study in Chapter 3 is the family of p-resistances, which is a generaliza-
tion of the standard resistance distance. First, I show that the family of p-resistances contains
several special cases such as the shortest path distance, the standard resistance distance and
the inverse min-cut. Second, I study the behavior of p-resistances in random geometric graphs
and show that there are two completely different regimes of behavior. There exist critical
thresholds p∗ and p∗∗ such that if p < p∗, the p-resistances convey useful information about
the global topology of the data, whereas for p > p∗∗ the p-resistance distances approximate
a limit that does not convey any useful information. The values of the critical thresholds are
explicitly computed. The main results of this chapter have been published in Alamgir and
von Luxburg (2011).

Chapter 3 ends with a short excursion to random walks, hitting times, the resistance distance
and related concepts like Poisson kernels and Green functions. The resistance distance is
discussed from a more general point of view: as a solution of a differential equation. This dif-
ferential equation has two interpretations: an electrical network interpretation and a random
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walk interpretation. The p-resistance also fits into a similar framework: as a solution of a
non-linear differential equation. Related concepts like p-harmonic functions are also discussed
in this excursion.

Part II: Local Distances in Graphs

In massive graphs with millions of nodes, we cannot afford to compute global distances.
However, some applications only need distance measures between nearby vertices. The next
two chapters propose local similarity measures for two such applications: local clustering and
friend recommendation.

Chapter 4 Graph clustering is the task of finding “clusters” or communities in the graph
such that the vertices in the same cluster are highly connected to each other, and sparsely
connected to vertices in other clusters. In real world applications with massive graphs, it is
infeasible to apply usual clustering approaches on the whole graph.

A promising alternative is represented by the class of local clustering algorithms. Here, the
goal is not to find a global clustering of the whole graph, but to find “the community” of
a particular vertex of interest. For example, in social network analysis one might want to
investigate the community a particular person belongs to.

In Chapter 4, a multi-agent random walk (MARW) is proposed for local clustering. Consider
a “agents”, each agent moving like an individual random walk on the graph. Any two agents
are tied together by a “rope” of length l. The agents are constrained such that the distance
between each agent to others is smaller than l. A vertex v belongs to a local cluster around
u if it can be reached from u by MARW in few steps with high probability. I study the effect
of the parameters a, l on the behavior of MARW and provide a bound on the mixing time of
MARW. I present several theoretical approaches that show that in a MARW with a agents and
a small rope length l, the probability of transitioning between different clusters decreases with
the power of a. All results in this chapter have been published in Alamgir and von Luxburg
(2010).

Chapter 5 Online Social Networks (OSN) aim at facilitating social relationships and friend-
ships among users. Accurately recommending new friends to users is a vital task for the growth
of the network. The friend recommendation task can be cast as a link prediction problem on
the social graph. In Chapter 5, I propose a novel local similarity function for computing the
social similarity between users. The similarity function takes the temporal information of
the edge creation process into account. The proposed similarity measure can be interpreted
as a local approximation of the diffusion distance kernel. The similarity function can be as
easily computed as standard local measures such as the number of common neighbors, and
is significantly more efficient in predicting future friendships. Experiments on industry scale
data from a real world OSN with 12 million users show that this method significantly out-
performs alternative link prediction methods. Some parts of this chapter have been written
during my internship at Telefonica Research (Barcelona) under the supervision of Alexandros
Karatzoglou.
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Part III: Downsampling Random Geometric Graphs

Given a large neighborhood graph G, we would like to downsample it to some smaller graph
G′ with much fewer vertices. The ultimate goal in downsampling is to find a procedure that
reduces the size of the graph, but at the same time keeps invariant those properties that are
essential for our application. For example, in visualization the downsampled graph should
“look like” the original one. In community detection, two vertices in the downsampled graph
should belong to the same “community” whenever they are in the same community in G.
Having a smaller version of a graph makes it possible to apply expensive visualization or
clustering algorithms on it.

Chapter 6 We expect a downsampled graph to be “similar” to the original graph. In this
chapter, a notion of similarity is defined between a neighborhood graph and its downsampled
version, which is called geometry-preserving downsampling. A geometry-preserving down-
sampled graph keeps many basic properties of the original graph such as the shortest path
distances between vertices intact.

The second step is to propose a geometry-preserving downsampling procedure. Graph down-
sampling consists of two steps: vertex selection and edge construction. I study a downsampling
procedure that is based on a uniform subsample of vertices, and edges are connected based
on shortest path distances in the original graph. I prove that this procedure is geometry-
preserving when it is applied to random geometric graphs. I also show that some other
popular downsampling algorithms are not geometry-preserving. The results in this chapter
have not been published yet.

Chapter 7 This chapter provides an alternative method of selecting vertices for graph
downsampling. Intuitively, it tries to select the vertices such that they approximately form a
grid. The advantage of such a sample set is that it leads to a very sparse downsampled graph.
This method is interesting on its own, and can be used for vector quantization.

The method is conceptually simple: construct an unweighted k-nearest neighbor graph on the
sample points and use the k-mediod algorithm with respect to the shortest path distance on
this graph for selecting the samples. Quite surprisingly, we do not even need to have access to
the coordinates of the vertices or to their Euclidean distances. The algorithm works as soon
as we know who are the k-nearest neighbors of each vertex for a proper k. The major part of
this chapter is devoted to a thorough statistical analysis of the proposed algorithm.
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Chapter 2

Shortest path distance in
random geometric graphs

2.1 Introduction

The shortest path distance is the most fundamental distance function between vertices in
a graph, and it is widely used in computer science and machine learning. In this chapter
we study the convergence of the shortest path distance and the geometry induced by it in
randomly generated geometric graphs such as k-nearest neighbor graphs.

Consider a neighborhood graph G built from an i.i.d. sample X1, ..., Xn drawn according to
some density p on X ⊂ Rd (for exact definitions see Section 2.2). Assume that the sample
size n goes to infinity. Two questions arise about the behavior of the shortest path distance
between fixed points in this graph:

1. Weight assignment: Given a distance measure D on X , how can we assign edge
weights such that the shortest path distance in the graph converges to D?

2. Limit distance: Given a function h that assigns weights of the form h(‖Xi −Xj‖) to
edges in G, what is the limit of the shortest path distance in this weighted graph as
n→∞?

The first question has already been studied in some special cases. Tenenbaum et al. (2000)
discuss the case of ε- and kNN graphs when p is uniform and D is the Euclidean distance. It
is enough to set the weight of the edge between Xi and Xj to ‖Xi −Xj‖. Then the shortest
path distances between vertices converges to the Euclidean distance between them (see Figure
2.1 for an illustration). Sajama and Orlitsky (2005) extend these results to ε-graphs from
a general density p by introducing edge weights that depend on an explicit estimate of the
underlying density. Hwang et al. (2012) consider completely connected graphs whose vertices
come from a general density p and whose edge weights are powers of distances.

There is little work regarding the second question. Tenenbaum et al. (2000) answer the
question for a very special case with h(x) = x and uniform p. Hwang et al. (2012) study the
case h(x) = xa, a > 1 for arbitrary density p.
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Figure 2.1: The shortest path based on an unweighted (red) and Euclidean weighted (black)
kNN graph. For the sake of clarity, the graph edges are not plotted in the figure.

We have a more general point of view. In Section 2.4 we show that depending on properties
of the function h(x), the shortest path distance operates in different regimes, and we find the
limit of the shortest path distance for particular function classes of h(x). Our method also
reveals a direct way to answer the first question without doing an explicit density estimation.
An interesting special case is the unweighted kNN graph, which corresponds to the constant
weight function h(x) = 1. We show that the shortest path distance on unweighted kNN-graphs
converges to a limit distance on X that does not conform to the natural intuition and induces
a geometry on X that can be detrimental for machine learning applications.

Our results have implications for many machine learning algorithms, see Section 2.5 for more
discussion. (1) The shortest paths based on unweighted kNN graphs prefer to go through
low density regions, and they even accept large detours if this avoids passing through high
density regions (see Figure 2.1 for an illustration). This is exactly the opposite of what we
would like to achieve in most applications. (2) For manifold learning algorithms like Isomap,
unweighted kNN graphs introduce a fundamental bias that leads to huge distortions in the
estimated manifold structure (see Figure 2.3 for an illustration).

(3) In the area of semi-supervised learning, a standard approach is to construct a graph on
the sample points, then compute a distance between vertices of the graph, and finally use a
standard distance-based classifier to label the unlabeled points (e.g., Sajama and Orlitsky,
2005 and Bijral et al., 2011). The crucial property exploited in this approach is that distances
between points should be small if they are in the same high-density region. Shortest path
distances in unweighted kNN graphs and their limit distances do exactly the opposite, so they
can be misleading for this approach.
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2.2 Basic definitions

Consider a closed, connected subset X ⊆ Rd that is endowed with a density function p with
respect to the Lebesgue measure. For the ease of presentation we assume for the rest of this
chapter that the density p is Lipschitz continuous with Lipschitz constant L and bounded
away from 0 and infinity

0 < pmin ≤ p(x) ≤ pmax <∞.

We will consider different metrics on X . A ball with respect to a particular metric D in X
will be written as B(x, r,D) := {y ∈ X | D(x, y) ≤ r}. We denote the Euclidean volume of
the unit ball in Rd by ηd.

Assume the finite dataset X1, ..., Xn has been drawn i.i.d according to p. We build a geometric
graph G = (V,E) that has the data points as vertices and connects vertices that are close.
Specifically, for the kNN graph we connect Xi with Xj if Xi is among the k nearest neighbors
of Xj or vice versa. For the ε-graph, we connect Xi and Xj whenever their Euclidean distance
satisfies ‖Xi − Xj‖ ≤ ε. In this chapter, all graphs are undirected, but might carry edge
weights wij ≥ 0. In unweighted graphs, we define the length of a path by its number of edges,
in weighted graphs we define the length of a path by the sum of the edge weights along the
path. In both cases, the shortest path (shortest path) distance Dsp(x, y) between two vertices
x, y ∈ V is the length of the shortest path connecting them.

Let f be a positive continuous scalar function defined on X . For a given path γ in X that
connects x with y and is parameterized by t, we define the f -length of the path as

Df,γ =

∫
γ

f(γ(t))|γ′(t)|dt.

This expression is also known as the line integral along γ with respect to f . The f -geodesic
path between x and y is the path with minimum f -length.

The f -length of the geodesic path is called the f -distance between x and y. We denote it by
Df (x, y). If f(x) is a function of the density p at x, then the f -distance is sometimes called
a density based distance (Sajama and Orlitsky, 2005). The f -distance on X is a metric, and
in particular it satisfies the triangle inequality. Another useful property is that for a point u
on the f -geodesic path between x and y we have

Df (x, y) = Df (x, u) +Df (u, y).

We introduce a shorthand notation for the f -distance with f(x) = p(x)1/d and call it pd-
distance, denoted by Dpd. The function f determines the behavior of the f -distance. When
f(x) is a monotonically decreasing function of density p(x), passing through a high density
region will cost less than passing through a low density region. It works the other way round
when f is a monotonically increasing function of density. A constant function does not impose
any preference between low and high density regions, so the Riemannian geodesic path would
be the preferred one.

The main purpose of this chapter is to study the relationship between the shortest path
distance in various geometric graphs and particular f -distances on X . For example, in Section
2.3 we show that the shortest path distance in unweighted kNN graphs converges to the pd-
distance. In the rest of the chapter, all statements refer to points x and y in the interior of X
such that their f -geodesic path is bounded away from the boundary of X .
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2.3 Shortest paths in unweighted graphs

In this section we study the behavior of the shortest path distance in the family of unweighted
kNN graphs. We show that the rescaled graph shortest path distance converges to the pd-
distance in the original space X .

Theorem 2.1 (Shortest path distance limit in unweighted kNN graphs) Consider the
unweighted kNN graph Gn based on the i.i.d. sample X1, ..., Xn ∈ X from the density p.
Choose λ < 0.2 such that

λ ≥ 21/dL

η
1/d
d p

1+1/d
min

(k
n

)1/d

.

Fix two points x = Xi and y = Xj. Let k′ < k/8d+1 be a positive real. Then with probability
at least

1− 2ne−λ
2k/6 − 2d+1ne−k

′/6/k′

we have

c1Dpd(x, y) ≤
( k

ηdn

)1/d
Dsp(x, y) ≤ c2Dpd(x, y) +

( k

ηdn

)1/d
,

where

c1 =
(1− λ)2/d

(1 + λ)1/d
, c2 =

1
(1−λ)1/d

(1+λ)2/d − 4(2k′/k)1/d
.

Moreover, if n → ∞, k/n → 0, k/ log(n) → ∞ and k ≤
√
n, we can set k′ and λ such that

the probability converges to 1 and (k/(ηdn))1/dDsp(x, y) converges to Dpd(x, y) almost surely.

The convergence conditions on n and k are the ones to be expected for random geometric
graphs. The condition k/ log(n)→∞ is slightly stronger than the usual k > c log(n) condition.
For k smaller than log(n), the graphs are not connected anyway (see e.g. Penrose, 1999) and
are unsuitable for machine learning applications. The upper bound condition k ≤

√
n holds

in many machine learning applications, as we usually choose k ∼ log(n). However, we can
relax this condition to k ≤ n/ log(n) by adding a slightly stronger lower-bound assumption
k ≥ log(n)1+α for a fixed α > 0.

Before proving Theorem 2.1, we need to state a couple of propositions and lemmas. We start
by introducing some ad-hoc notation:

Definition 2.2 (Connectivity parameters) Consider a geometric graph based on a fixed
set of points X1, ..., Xn ∈ Rd. Let rlow be a real number such that Df (Xi, Xj) ≤ rlow implies
that Xi is connected to Xj in the graph. Analogously, consider rup to be a real number such
that Df (Xi, Xj) ≥ rup implies that Xi is not connected to Xj in the graph.

In random geometric graphs, it is desired that every vertex is connected to all “nearby” vertices
and not connected to any vertex which is “far”. “Near” and “far” are measured with respect
to a distance function Df . In an ε-graph, distances are the Euclidean distance and the lower
and the upper bounds on the connectivity parameter are equal rlow = rup = ε. In unweighted
kNN-graphs, Proposition 2.6 shows that rlow converges with high probability to rup when the
underlying distance is the pd-distance.

Definition 2.3 (Dense sampling assumption) Consider a graph G with connectivity pa-
rameters rlow and rup. We say that it satisfies the dense sampling assumption if there exists
an ς < rlow/4 such that for all x ∈ X there exists a vertex y in the graph with Df (x, y) ≤ ς.
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Figure 2.2: Path constructions in the proofs of Proposition 2.4 (left) and Theorem 2.13 (right).

The next proposition bounds the shortest path distance by the f -distance in random geometric
graphs with connectivity parameters rlow and rup.

Proposition 2.4 (Bounding Dsp by Df) Consider any unweighted geometric graph based
on a fixed set X1, ..., Xn ∈ X ⊂ Rd that satisfies the dense sampling assumption (with respect
to the f -distance with general f). Fix two vertices x and y of the graph and set

e1 = (rlow − 2ς)/rup , e2 = rlow − 2ς.

Then the following statement holds:

e1Df (x, y) ≤ e2Dsp(x, y) ≤ Df (x, y) + e2.

Proof. Right hand side. Consider the f -geodesic path γ∗x,y connecting x to y. Divide γ∗x,y to
segments by u0 = x, u1, ..., ut, ut+1 = y such that Df (ui, ui+1) = rlow − 2ς for i = 0, ..., t − 1
and Df (ut, ut+1) ≤ rlow − 2ς (see Figure 2.2). Because of the dense sampling assumption, for
all i = 1, ..., t there exists a vertex vi in the ball B(ui, ς,Df ) and we have

Df (vi, ui) ≤ ς

Df (ui, ui+1) ≤ rlow − 2ς

Df (ui+1, vi+1) ≤ ς.

Applying the triangle inequality gives Df (vi, vi+1) ≤ rlow, which shows that vi and vi+1 are
connected. By summing up along the path we get

(rlow − 2ς)(Dsp(x, y)− 1) ≤ (rlow − 2ς)t

=

t−1∑
i=0

Df (ui, ui+1)
(a)

≤ Df (x, y).

In step (a) we use the simple fact that if u is on the f -geodesic path from x to y, then

Df (x, y) = Df (x, u) +Df (u, y).

Left hand side. Assume that the graph shortest path between x and y consists of vertices
z0 = x, z1, ..., zs = y. By Df (zi, zi+1) ≤ rup we can write

(rlow − 2ς)Dsp(x, y) ≥ rlow − 2ς

rup

s−1∑
i=0

Df (zi, zi+1)

≥ rlow − 2ς

rup
Df (x, y).

2

The next lemma uses the Lipschitz continuity and boundedness of p to show that p(x)1/d‖x−y‖
is a good approximation of Dpd(x, y) in small intervals.
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Lemma 2.5 (Approximating Dpd by Euclidean distance) For two arbitrary points x, y ∈
X , the pd-distance between them can be bounded by

1. p
1/d
min‖x− y‖ ≤ Dpd(x, y) ≤ p1/d

max‖x− y‖.

Consider a fix λ < 0.2 and assume that ‖x − y‖ ≤ pminλ/L. Then we can approximate the
density at y by the density at x:

2. p(y)(1− λ) ≤ p(x) ≤ p(y)(1 + λ).

We can also approximate Dpd(x, y) by p(x)1/d‖x− y‖:

3. (1− λ)1/dp(x)1/d‖x− y‖ ≤ Dpd(x, y) ≤ (1 + λ)1/dp(x)1/d‖x− y‖.

Proof. Part (1). The statement is a direct result from the boundedness of the density
pmin ≤ p(x) ≤ pmax.

Part (2). If ‖x− y‖ ≤ δ, by the Lipschitz continuity of the density p we have

|p(x)− p(y)| ≤ L‖x− y‖ ≤ Lδ.

Setting δ = λpmin/L leads to the result.

Part (3). The previous part can be written as

(1− λ)1/dp(x)1/d ≤ p(y)1/d ≤ (1 + λ)1/dp(x)1/d.

Denote the pd-geodesic path between x and y by γ∗ and the line segment connecting x to y
by l. Using the definition of a geodesic path, we can write∫

γ∗
p(γ∗(t))1/d|γ∗(t)′|dt ≤

∫
l

p(l(t))1/d|l(t)′|dt ≤

(1 + λ)1/d

∫
l

p(x)1/d|l(t)′|dt = (1 + λ)1/dp(x)1/d‖x− y‖.

For the left hand side, let γ̄∗ be the restriction of γ∗ to an Euclidean ball with radius ‖x− y‖
around x. Then ∫

γ∗
p(γ∗(t))1/d|γ∗(t)′|dt ≥

∫
γ̄∗
p(γ∗(t))1/d|γ∗(t)′|dt

≥ (1− λ)1/d

∫
γ̄∗
p(x)1/d|γ∗(t)′|dt

≥ (1− λ)1/dp(x)1/d‖x− y‖.

2

Now we are going to show how the quantities rlow and rup introduced in Definition 2.2 can
be bounded in random unweighted kNN graphs and how they are related to the metric Dpd.
Define the kNN radii at vertex x as Rk(x) = Dpd(x, y) and the approximated kNN radii at
vertex x as R̂k(x) = p(x)1/d‖x − y‖, where y is the k-nearest neighbor of x. The minimum
and maximum values of kNN radii are defined as

Rmink = min
u
Rk(u) , Rmaxk = max

u
Rk(u).

Accordingly we define R̂mink and R̂maxk for the approximate radii.
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Proposition 2.6 (Bounding Rmink and Rmaxk ) Given λ < 0.2, define rlow and rup as

rlow :=
( 1− λ

(1 + λ)2

)1/d( k

nηd

)1/d

and rup :=
( 1 + λ

(1− λ)2

)1/d( k

nηd

)1/d

.

Assume that for large enough n, rup ≤ λp1+1/d
min /L. Then

P
(
Rmink ≤ rlow

)
≤ n exp(−λ2k/6) ,

P
(
Rmaxk ≥ rup

)
≤ n exp(−λ2k/6).

Proof. Define radius r̂low and r̂up as

r̂low =
rlow

(1− λ)1/d
, r̂up =

rup
(1 + λ)1/d

.

Bound on Rmink : Consider an Euclidean ballBx := B(x, r̂low/p(x)1/d) with radius r̂low/p(x)1/d

around a vertex x. Note that

r̂low
p(x)1/d

≤ rlow

p
1/d
min(1− λ)1/d

≤ rup

p
1/d
min

≤ pminλ/L,

so we can bound the density of points in Bx by (1 + λ)p(x) using Lemma 2.5. Denote the
probability mass of the ball by µ(Bx), which is bounded by

µ(Bx) =

∫
Bx

p(s)ds ≤ (1 + λ)p(x)

∫
Bx

ds

= (1 + λ)r̂dlowηd =: µmax.

Observe that R̂k(x) ≤ r̂low if and only if there are at least k data points in Bx. Let Q ∼
Binomial(n, µ(Bx)) and S ∼ Binomial(n, µmax). By the choice of r̂low, we have E(S) =
k/(1 + λ) and

P
(
R̂k(x) ≤ r̂low

)
= P

(
Q ≥ k

)
≤ P

(
S ≥ k

)
= P

(
S ≥ (1 + λ)E(S)

)
.

Apply a concentration inequality for binomial random variables (see Prop. 28 in von Luxburg
et al., 2010) to get

P
(
R̂k(x) ≤ r̂low

)
≤ exp

( −λ2k

3(1 + λ)

)
≤ exp(−λ2k/6).
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Now, we prove that P (Rk(x) ≤ rlow) ≤ P (R̂k(x) ≤ r̂low). This can be done by showing that
Rk(x) ≤ rlow always implies R̂k(x) ≤ r̂low. Let y denote the k-nearest neighbor of x. From
Part 1 of Lemma 2.5,

p
1/d
min‖x− y‖ ≤ Rk(x) ≤ rlow,

which shows that

‖x− y‖ ≤ rlow

p
1/d
min

<
rup

p
1/d
min

≤ λpmin

L
.

By Part 3 of Lemma 2.5,

(1− λ)1/dp(x)1/d‖x− y‖ ≤ Rk(x) ≤ rlow.

Use the definition of R̂k(x) to get

R̂k(x) = p(x)1/d‖x− y‖ ≤ rlow
(1− λ)1/d

= r̂low.

At the end, applying a union bound leads us to the result

P
(
Rmink ≤ rlow

)
≤ P

(
∃i : Rk(Xi) ≤ rlow

)
≤ n exp(−λ2k/6).

Bound on Rmaxk : The proof is similar to the argument for bounding Rmink . Again, consider
a ball Bx with radius r̂up/p(x)1/d around a vertex x and note that r̂up/p(x)1/d ≤ λpmin/L, so

µ(Bx) =

∫
Bx
p(s)ds ≥ (1− λ)p(x)

∫
Bx

ds

= (1− λ)r̂dupηd =: µmin.

Observe that R̂k(x) ≥ r̂up if and only if there are at most k data points in Bx. Let Q ∼
Binomial(n, µ(Bx)) and S ∼ Binomial(n, µmin). By the choice of r̂up we have E(S) =
k/(1− λ). It follows that

P
(
R̂k(x) ≥ r̂up

)
= P

(
Q ≤ k

)
≤ P

(
S ≤ k

)
= P

(
S ≤ (1− λ)E(S)

)
.

Now we apply a concentration inequality for binomial random variables to get

P
(
R̂k(x) ≥ r̂up

)
≤ exp

( −λ2k

3(1− λ)

)
≤ exp(−λ2k/6).
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We show that P (Rk(x) ≥ rup) ≤ P (R̂k(x) ≥ r̂up), which implies

P
(
Rk(x) ≥ rup

)
≤ exp(−λ2k/6).

We prove this by showing that Rk(x) ≥ rup results in R̂k(x) ≥ r̂up. The proof is by contra-

diction: assume that R̂k(x) < r̂up. Replacing the definitions of R̂k(x) and r̂up gives

R̂k(x) = p(x)1/d‖x− y‖ < r̂up =
rup

(1 + λ)1/d
≤ λp

1+1/d
min

L
,

where y is the k-nearest neighbor of x. Therefor, ‖x− y‖ ≤ λpmin/L and by Part 3 of Lemma
2.5,

Rk(x) = Dpd(x, y) ≤ (1 + λ)1/dp(x)1/d‖x− y‖ < rup,

which contradicts with the assumption Rk(x) ≥ rup. At the end, we use a union bound to get

P
(
Rmaxk ≥ rup

)
≤ P

(
∃i : Rk(Xi) ≥ rup

)
≤ n exp(−λ2k/6).

2

The following proposition shows how the sampling parameter ς can be chosen to satisfy the
dense sampling assumption.

Lemma 2.7 (Sampling lemma) Assume X1, ..., Xn ∈ X are sampled i.i.d. from a proba-
bility distribution p. Let k′ > 0 be a real number such that

k′ <
0.2dηdp

d+1
min

Ld
n.

Then with probability at least 1−2d+1n exp(−k′/6)/k′, for every x ∈ X exists a v ∈ X1, ..., Xn

such that

Dpd(x, v) ≤ 2
( 2k′

ηdn

)1/d

.

Proof. To prove the lemma, we show that the following statement holds with probability

at least 1 − 2d+1n exp(−k′/6)/k′: There exist a
(

2k′

ηdn

)1/d
-covering of X with respect to the

pd-distance, such that each ball contains at least one sample point.

Choose λ < 0.2 such that

λ ≥
( 1

ηdp
d+1
min

)1/d

L
(k′
n

)1/d

.

Set ς0 =
(
k′

ηdn

)1/d
. We prove that for every x ∈ X , there exist a vertex v such that p(x)1/d‖x−

v‖ ≤ ς0. Then, ς0/p(x)1/d ≤ λpmin/L and by Part 3 of Lemma 2.5

Dpd(x, v) ≤ (1 + λ)1/dp(x)1/d‖x− v‖ ≤
( 2k′

ηdn

)1/d

,

which is our desired result.

The proof is based on the standard argument for bounding the covering number. We first
construct a covering of X that consists of balls with approximately the same probability
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mass. The centers of the balls are chosen by an iterative procedure that ensures that no
center is contained in any of the balls we have so far. We choose the radius ς0/p(x)1/d for the
ball at point x and call it Bp(x, ς0). The probability mass of this ball can be bounded by

V(Bp(x, ς0)) ≥ (1− λ)ςd0ηd.

The smaller balls Bp(x, (1− λ)1/dς0/2) are all disjoint. If not, consider two intersecting balls
Bp(x, (1− λ)1/dς0/2) and Bp(y, (1− λ)1/dς0/2). Observe that

(1− λ)1/dς0
2p(x)1/d

+
(1− λ)1/dς0

2p(y)1/d
≤ ς0
p(x)1/d

,

which contradicts with how we chose the centers of balls. We can bound the total number of
balls by

S ≤ 1

V(Bp(x, (1− λ)1/dς0/2))
≤ 2d

ηd(1− λ)2ςd0
≤ 2d+1

ηdςd0
.

Now we sample points from the underlying space and apply the same concentration inequality
as above. We bound the probability that a ball Bp(u, ς0) does not contain any sample point
(“is empty”) by

Pr(Ball i is empty) ≤ exp(−nςd0ηd/6).

Rewriting and Substituting the value of ς0 gives

Pr(no ball is empty) ≥ 1−
∑
i

Pr(Ball i is empty) ≥ 1− S · e−nς
d
0 ηd/6

≥ 1− 2d+1ne−k
′/6

k′
.

2

Proof of Theorem 2.1. Set rlow and rup as in Proposition 2.6. The assumption on λ

ensures that r̂up ≤ λp
1+1/d
min /L. It follows from Proposition 2.6 that the statements about

rlow and rup in Definition 2.2 both hold for Gn with probability at least 1− 2n exp(−λ2k/6).

Set ς = 2
(

2k′

ηdn

)1/d
as in Lemma 6.5. By the choice of k′, we have rlow > 4ς. Lemma 2.7

shows that the sampling assumption holds in Gn for the selected ς with probability at least
1− 2d+1n exp(−k′/6)/k′. Using Proposition 2.4 completes the first part of the theorem.

For the convergence, set k′ = 18 log(n) and λ = (log(n)/k)1/d. If n is large enough and
k <
√
n, λ will satisfy the lower bound condition

λ =
( log(n)

k

)1/d ≥ 21/dL

η
1/d
d p

1+1/d
min

(k
n

)1/d

.

As k
log(n) goes to infinity, λ converges to 0 and k′/k → 0. Therefor c1 and c2 also converge to

1. For the selection of k′, λ and large enough n, λ2k is larger than 18 log(n) and

1− 2n exp(−λ2k/6)− 2d+1

k′
n exp(−k′/6) > 1− 2d+2

n2
.
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Applying the Borel-Cantelli lemma results in the almost sure convergence of ( k
ηdn

)1/dDsp(x, y)

to Dpd(x, y). 2

2.4 Shortest paths in weighted graphs

In this section we discuss both questions raised in Section 2.1.

1. Weight assignment: Given a distance measure D on X , how can we assign edge
weights such that the shortest path distance in the graph converges to D?

2. Limit distance: Given a function h that assigns weights of the form h(‖Xi −Xj‖) to
edges in G, what is the limit of the shortest path distance in this weighted graph as
n→∞?

We extend our results from the previous section to weighted kNN graphs and ε-graphs.

2.4.1 Weight assignment problem

Consider a graph based on the i.i.d. sample X1, ..., Xn ∈ X from the density p. We are given
a positive scalar function f which is only a function of the density: f(x) = f̃(p(x)). We want
to assign edge weights such that the graph shortest path distance converges to the f -distance
in X .

It is well known that the f -length of a curve γ : [a, b]→ X can be approximated by a Riemann
sum over a partition of [a, b] to subintervals [xi, xi+1]:

D̂f,γ =
∑
i

f
(γ(xi) + γ(xi+1)

2

)
‖γ(xi)− γ(xi+1)‖.

As the partition gets finer, the approximation D̂f,γ converges to Df,γ (cf. Chapter 3 of
Gamelin, 2007). This suggests using weight

wij = f̃
(
p(
Xi +Xj

2
)
)
‖Xi −Xj‖

for the edge between Xi and Xj . However the underlying density p(x) is not known in many
machine learning applications. Sajama and Orlitsky (2005) already proved that the plug-in
approach using a kernel density estimator p̂(x) for p(x) will lead to the convergence of the
shortest path distance to f -distance in ε-graphs. Our next result shows how to choose edge
weights in kNN graphs without estimating the density. It is a corollary from a theorem that
will be presented in Section 2.4.2.

We use a notational convention to simplify our arguments and hide approximation factors
that will eventually go to 1 as the sample size goes to infinity. We say that f is approximately
larger than g (f <λ g) if there exists a function e(λ) such that f ≥ e(λ)g and e(λ) → 1 as
n→∞ and λ→ 0. The symbol 4λ is defined similarly. We use the notation f ≈λ g if f 4λ g
and f <λ g.
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Corollary 2.8 (Weight assignment) Consider the kNN graph based on the i.i.d. sample
X1, ..., Xn ∈ X from the density p. Let f be of the form f(x) = f̃(p(x)) with f̃ increasing. We
assume that f̃ is Lipschitz continuous and f is bounded away from 0. Define r = (k/(nηd))

1/d

and set the edge weights

wij = ‖Xi −Xj‖f̃
( rd

‖Xi −Xj‖d
)
. (2.1)

Fix two points x = Xi and y = Xj. Assume that k ≤
√
n. Then as n → ∞, k/n → 0 and

k/ log(n)→∞, we have Dsp(x, y) ≈λ Df (x, y) almost surely.

2.4.2 Limit distance problem

Consider a weighted graph based on the i.i.d. sample X1, ..., Xn ∈ X from the density p. We
are given a increasing edge weight function h : R+ → R+ which assigns weight h(‖x − y‖)
to the edge (x, y). We are interested in finding the limit of the graph shortest path distance
with respect to edge weight function h as the sample size goes to infinity. In particular we
are looking for a distance function f such that the shortest path distance converges to the
f -distance.

Assume we knew the solution f∗ = f̃∗(p(x)) of this problem. To guarantee the convergence
of the distances, f∗ should assign weights of the form of

wij ≈ f̃∗(p(Xi))‖Xi −Xj‖.

This would mean

f̃∗(p(Xi)) ≈
h(‖Xi −Xj‖)
‖Xi −Xj‖

,

which shows that determining f̃∗ is closely related to finding a density based estimation for
‖Xi −Xj‖.

Depending on h, we distinguish two regimes for this problem. In the first regime, the function
h is such that shortest path distance would prefer using long edges rather than short edges.
It is the other way around in the second regime.

Fix a subset of real numbers A ⊂ R. A function h : R+ → R+ is called A-subhomogeneous
(Burai and Száz, 2005) if

∀a ∈ A : h(ax) ≤ ah(x).

A A-superhomogeneous function is defined analogously.

Lemma 2.9 The following statements are equivalent for a function h : R→ R.

• h is (0, 1]-superhomogeneous

• h is [1,∞)-subhomogeneous

• −h is (0, 1]-subhomogeneous

The shortest path in kNN-graphs with [1,∞)-subhomogeneous weights would prefer to jump
through longer edges (see Lemma 2.10). It is the other way around with (0, 1]-subhomogeneous
weights. Therefor, we use the names long-jump and short-jump for [1,∞)-subhomogeneous
and (0, 1]-subhomogeneous functions respectively.
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Long-jump weights

From Lemma 2.9, a function h(x) is long-jump if

∀a ∈ (0, 1] : h(ax) ≥ ah(x).

Common examples of long-jump functions are f(x) = xt, t < 1 and f(x) = xe−x. The next
lemma shows that for a long-jump function h, the triangle inequality holds.

Lemma 2.10 (Long-jump and triangle inequality) Every long-jump function h satisfies
the triangle inequality.

Proof. From the definition of long-jump function,

h(x) + h(y) = h
( x

x+ y
(x+ y)

)
+ h
( y

x+ y
(x+ y)

)
≥ x

x+ y
h(x+ y) +

y

x+ y
h(x+ y) = h(x+ y).

2

In fact, long-jump weight functions satisfy even an stronger property that we call it the
long-jump property : the shortest path distance with long-jump weights will prefer jumping
along distant vertices. This property is formalized in the next lemma.

Lemma 2.11 (Long-jump property for long-jump functions)
Consider a long-jump function h and two sets of positive numbers {x1, · · · , xs} and {y1, · · · , yt}
such that ∀i, j : xi ≤ yj and

s∑
i=1

xi =

t∑
j=1

yj .

Then
s∑
i=1

h(xi) ≥
t∑

j=1

h(yj).

Proof. Set S =
∑s
i=1 xi and without loss of generality, assume that y1 ≤ y2 ≤ · · · ≤ yt.

Observe that

s∑
i=1

h(xi) =

s∑
i=1

h
(xi
y1
y1

)
≥

s∑
i=1

xi
y1
h(y1)

=
S

y1
h(y1) =

t∑
j=1

yj
y1
h
(y1

yj
yj
)
≥

t∑
j=1

h(yj),

which finishes the proof. 2

The long-jump functions are the only continuous functions that satisfy the long-jump property.
This is proved in the next lemma.

Lemma 2.12 If a continuous function h satisfies the property:

s∑
i=1

h(xi) ≥
t∑

j=1

h(yj),
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for all sets of positive numbers {x1, · · · , xs} and {y1, · · · , yt} such that ∀i, j : xi ≤ yj and∑s
i=1 xi =

∑t
j=1 yj , then h is a long-jump function.

Proof. Choose xi = x and yj = s
tx for arbitrary integers s ≥ t. Then we have

s

t
h(x) ≥ h

(s
t
x
)
,

which shows that h is [1,∞) ∩Q-subhomogeneous. Now using the continuity of h shows that
it is [1,∞)-subhomogeneous or long-jump . 2

Based on this intuition, we come up with the following guess for vertices along the shortest path:
For ε-graphs we have the approximation ‖Xi −Xj‖ ≈ ε and f(x) = h(ε)/ε. For kNN-graphs
we have ‖Xi −Xj‖ ≈ r/p(Xi)

1/d with r = (k/(nηd))
1/d and

f(x) = h
( r

p(x)1/d

)p(x)1/d

r
, f̃(x) = h

( r

x1/d

)x1/d

r
.

We formally prove this statement for kNN graphs in the next theorem. In contrast to Theorem
2.1, the scaling factor is moved into f . The proof for ε-graphs is much simpler and can be
adapted by setting r = ε, p(x)1/d = 1, and rlow = rup = ε.

Theorem 2.13 (Limit of shortest path in weighted graphs) Consider the kNN graph
based on the i.i.d. sample X1, ..., Xn ∈ X from the density p. Let h be an increasing, Lipschitz
continuous and long-jump function, and define the edge weights wij = h(‖Xi−Xj‖). Fix two
points x = Xi and y = Xj. Define r = (k/(nηd))

1/d and set

f(x) = h
( r

p(x)1/d

)p(x)1/d

r
.

Assume that k ≤
√
n. Then as n → ∞, k/n → 0 and k/ log(n) → ∞ we have Dsp(x, y) ≈λ

Df (x, y) almost surely.

Proof. The essence of the proof is similar to the one in Theorem 2.1, we present a sketch only.
The main step is to adapt Proposition 2.4 to weighted graphs with weight function h. Adapting
Lemma 2.5 for general f is straightforward. The lemma states that Df (x, y) ≈λ f(x)‖x− y‖
for nearby points. We set rlow and ς as in the sampling lemma and Proposition 2.6 (these are
properties of kNN graphs and hold for any f). Proposition 2.6 says that in kNN graphs, x
is connected to y with high probability iff ‖x− y‖ 4λ r/p(x)1/d. The probabilistic argument
and the criteria on choosing λ are similar to Theorem 2.1.

First we show that Dsp(x, y) 4λ Df (x, y). Consider the f -geodesic path γ∗x,y connecting x to
y. Divide γ∗x,y into segments

u0 = x, u1, ..., ut, ut+1 = y

such that Dpd(ui, ui+1) = rlow−2ς for i = 0, ..., t−1 and Dpd(ut, ut+1) ≤ rlow−2ς (see Figure
2.2). There exists a vertex vi near to ui, and vi+1 near to ui+1i such that vi and vi+1 are
connected. We show that the length of the path x, v1, ..., vt, y is approximately smaller than
Df (x, y). From the path construction we have

‖vi − vi+1‖ ≈λ ‖ui − ui+1‖ ≈λ
r

p(ui)1/d
.
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By summing up along the path we get

Dsp(x, y) ≤
∑
i

h(‖vi − vi+1‖)

≈λ
∑
i

h(‖ui − ui+1‖) ≈λ
∑
i

h(
r

p(ui)1/d
)

=
∑
i

f(ui)
r

p(ui)1/d
≈λ
∑
i

f(ui)‖ui − ui+1‖.

From the adaptation of Lemma 2.5 we have Df (ui, ui+1) ≈λ f(ui)‖ui − ui+1‖, which gives∑
i

f(ui)‖ui − ui+1‖ ≈λ
∑
i

Df (ui, ui+1) = Df (x, y).

This shows that Dsp(x, y) 4λ Df (x, y).

For the other way round, we use a technique different from Proposition 2.4. Denote the
graph shortest path between x and y by π : z0 = x, z1, ..., zs, zs+1 = y. Consider π′ as a
continuous path in X corresponding to π. As in the previous part, divide π′ into segments
u0 = x, u1, ..., ut, ut+1 = y (see Figure 2.2). From Dpd(zi, zi+1) 4λ r and Dpd(ui, ui+1) ≈λ r
we have s <λ t. Using this and Lemma 2.11 we get

Dsp(x, y) =
∑
i

h(‖zi − zi+1‖) <λ
∑
i

h(‖ui − ui+1‖).

To prove Dsp(x, y) <λ Df (x, y), we can write∑
i

h(‖ui − ui+1‖) ≈λ
∑
i

h(
r

q(ui)
) =

∑
i

f(ui)r

q(ui)

≈λ
∑
i

f(ui)‖ui − ui+1‖

≈λ
∑
i

Df (ui, ui+1) <λ Df (x, y).

2

The proof of Corollary 2.8 is a direct consequence of this theorem. It follows by choosing
h(t) = tf̃(rd/td) (which is long-jump if f̃ is increasing) and setting wij = h(‖Xi −Xj‖).

Short-jump weights

From Lemma 2.9, a function h(x) is short-jump if

∀a ∈ (0, 1] : h(ax) ≤ ah(x).

Examples are f(x) = xa; a > 1 and f(x) = xex. To get an intuition on the behavior of
the shortest path for a short-jump h, take an example of three vertices x, y, z which are all
connected in the graph and sit on a straight line such that ‖x − y‖ + ‖y − z‖ = ‖x − z‖.
By the short-jump property, the shortest path between x and z will prefer going through y
rather than directly jumping to z. More generally, the graph shortest path will prefer taking
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many “small” edges rather than fewer “long” edges. For this reason, we do not expect a big
difference between short-jump weighted kNN graphs and ε-graphs: the long edges in the kNN
graph will not be used anyway. However, due to technical problems we did not manage to
prove a formal theorem to this effect.

The special case of the short-jump family h(x) = xa, a > 1 is treated in Hwang et al. (2012)
by completely different methods. Although their results are presented for complete graphs,
we believe that it can be extended to ε and kNN graphs. We are not aware of any other result
for the limit of shortest path distance for short-jump weight functions.

2.5 Consequences in applications

In this section we study the consequences of our results in two applications: manifold embed-
ding using Isomap and on a particular semi-supervised learning method.

There are two cases where we do not expect a drastic difference between the shortest path in
weighted and unweighted kNN graph: (1) If the underlying density p is close to uniform. (2) If
the intrinsic dimensionality of our data d is high. The latter is because in the pd-distance, the
underlying density arises in the form of p(x)1/d, where the exponent flattens the distribution
for large d.

2.5.1 Isomap

Isomap is a widely used method for low dimensional manifold embedding (Tenenbaum et al.,
2000). The main idea is to use metric multidimensional scaling on the matrix of pairwise
geodesic distances. Using the Euclidean length of edges as their weights will lead to the
convergence of the shortest path distance to the geodesic distance. But what would be the
effect of applying Isomap to unweighted graphs?

Our results of the last section already hint that there is no big difference between unweighted
and weighted ε-graphs for Isomap. However, the case of kNN graphs is different because
weighted and unweighted shortest paths measure different quantities. The effect of applying
Isomap to unweighted kNN graphs can easily be demonstrated by the following simulation.
We sample 2000 points in R2 from a distribution that has two uniform high-density squares,
surrounded by a uniform low density region. An unweighted kNN graph is constructed with
k = 10, and we apply Isomap with target dimension 2. The result is depicted in Figure 2.3.
We can see that the Isomap embedding heavily distorts the original data: it stretches high
density regions and compacts low density regions to make the vertex distribution close to
uniform.

2.5.2 Semi-supervised learning

Our work has close relationship to some of the literature on semi-supervised learning (SSL).
In regularization based approaches, the underlying density is either exploited implicitly as
attempted in Laplacian regularization (Zhu et al., 2003 but see Nadler et al., 2009, Alamgir
and von Luxburg, 2011 and Zhou and Belkin, 2011), or more explicitly as in measure based
regularization (Bousquet et al., 2004). Alternatively, one defines new distance functions on
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Figure 2.3: Original data (left) and its Isomap reconstruction based on an unweighted kNN
graph (right).

the data that take the density of the unlabeled points into account. Here, the papers by
Sajama and Orlitsky (2005) and Bijral et al. (2011) are most related to our work. Both
papers suggest different ways to approximate the density based distance from the data. In
Sajama and Orlitsky (2005) it is achieved by estimating the underlying density while in Bijral
et al. (2011), the authors omit the density estimation and use an approximation.

Our work shows a simpler way to converge to a similar distance function for a specific family
of f -distances, namely constructing a kNN graph and assigning edge weights as in Equation
2.1.

2.6 Conclusions and outlook

We have seen in this chapter that the shortest path distance on unweighted kNN graphs has
a very funny limit behavior: it prefers to go through regions of low density and even takes
large detours in order to avoid the high density regions.

In some sense, unweighted ε-graphs and unweighted kNN graphs behave as “duals” of each
other: while degrees in ε-graphs reflect the underlying density, they are independent of the
density in kNN graphs. While the shortest path in ε-graphs is independent of the underlying
density and converges to the Euclidean distance, the shortest paths in kNN graphs take the
density into account. Current practice is to use ε and kNN graphs more or less interchangeably
in many applications, and the decision for one or the other graph is largely driven by robustness
or convenience considerations. However, as our results show it is important to be aware of
the implicit consequences of this choice. Each graph carries different information about the
underlying density, and depending on how a particular machine learning algorithm makes use
of the graph structure, it might either miss out or benefit from this information.

Last but not least, the behavior of the shortest path distance in unweighted kNN graphs is
not always undesired. The fact that it depends on the density may exploited in different
applications. An example is density-preserving quantization which is discussed in Chapter 7.
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Chapter 3

Phase transition in the family of
p-resistances

3.1 Introduction

The graph Laplacian is a popular tool for unsupervised and semi-supervised learning problems
in graphs. It is used in the context of spectral clustering, as a regularizer for semi-supervised
learning, or to compute the resistance distance in graphs. However, it has been observed that
under certain circumstances, standard Laplacian-based methods show undesired artifacts.
In the semi-supervised learning setting Nadler et al. (2009) showed that as the number of
unlabeled points increases, the solution obtained by Laplacian regularization degenerates to
a non-informative function. von Luxburg et al. (2010) proved that as the number of points
increases, the resistance distance converges to a meaningless limit function. Independently
of these observations, a number of authors suggested to generalize Laplacian methods. The
observation was that the “standard” Laplacian methods correspond to a vector space setting
with L2-norms, and that it might be beneficial to work in a more general Lp setting for p 6= 2
instead. See Bühler and Hein (2009) for an application to clustering and Herbster and Lever
(2009) for an application to label propagation. In this chapter we take up several of these
loose ends and connect them.

The main object under study in this chapter is the family of p-resistances, which is a gener-
alization of the standard resistance distance. Our first major result proves that the family of
p-resistances is very rich and contains several special cases. The general picture is that the
smaller p is, the more the resistance is concentrated on “short paths”. In particular, the case
p = 1 corresponds to the shortest path distance in the graph, the case p = 2 to the standard
resistance distance, and the case p→∞ to the inverse s-t-mincut.

Second, we study the behavior of p-resistances in the setting of random geometric graphs like
lattice graphs, ε-graphs or k-nearest neighbor graphs in a d-dimensional space. We prove that
as the sample size n increases, there are two completely different regimes of behavior. Namely,
there exist two critical thresholds p∗ and p∗∗ such that if p < p∗, the p-resistances convey useful
information about the global topology of the data (such as its cluster properties), whereas
for p > p∗∗ the resistance distances approximate a limit that does not convey any useful
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information. We can explicitly compute the value of the critical thresholds p∗ := 1 + 1/(d−1)
and p∗∗ := 1 + 1/(d − 2). This result even holds independently of the exact construction of
the geometric graph.

Third, as we will see in Section 3.5, our results also shed light on the Laplacian regularization
and semi-supervised learning setting. As there is a tight relationship between p-resistances and
graph Laplacians, we can reformulate the artifacts described in Nadler et al. (2009) in terms
of p-resistances. Taken together, our results suggest that standard Laplacian regularization
should be replaced by q-Laplacian regularization (where q is such that 1/p∗ + 1/q = 1).

3.2 Intuition and main results

Consider an undirected, weighted graph G = (V,E) with n vertices. As is standard in machine
learning, the edge weights are supposed to indicate similarity of the adjacent points (not
distances). Denote the weight of edge e by we ≥ 0 and the degree of vertex u by du. The
length of a path γ in the weighted graph is defined as

∑
e∈γ 1/we. In the electrical network

interpretation, a graph is considered as a network where each edge e ∈ E has resistance
re = 1/we. The effective resistance (or resistance distance) R(s, t) between two vertices s and
t in the network is defined as the overall resistance one obtains when connecting a unit volt
battery to s and t (see also Section 3.9). It can be computed in many ways, but the one most
useful for our purpose is the following representation in terms of flows (cf. Section IX.1 of
Bollobas, 1998):

R(s, t) = min
{∑

e∈E rei
2
e

∣∣∣ i = (ie)e∈E unit flow from s to t
}
. (3.1)

In von Luxburg et al. (2010) it has been proved that in many random graph models, the re-
sistance distance R(s, t) between two vertices s and t converges to the trivial limit expression
1/ds + 1/dt as the size of the graph increases. We now want to present some intuition as to
how this problem can be resolved in a natural way. For a subset M ⊂ E of edges we define
the contribution of M to the resistance R(s, t) as the part of the sum in (3.1) that runs over
the edges in M . Let i∗ be a flow minimizing (3.1). To explain our intuition we separate this
flow into two parts: R(s, t) = R(s, t)local + R(s, t)global. The part R(s, t)local stands for the
contribution of i∗ that stems from the edges in small neighborhoods around s and t, whereas
R(s, t)global is the contribution of the remaining edges (exact definition given below). A useful
distance function is supposed to encode the global geometry of the graph, for example its
cluster properties. Hence, R(s, t)global should be the most important part in this decomposi-
tion. However, in case of the standard resistance distance the contribution of the global part
becomes negligible as n → ∞ (for many different models of graph construction). This effect
happens because as the graph increases, there are so many different paths between s and t
that once the flow has left the neighborhood of s, electricity can flow “without considerable
resistance”. The “bottleneck” for the flow is the part that comes from the edges in the local
neighborhoods of s and t, because here the flow has to concentrate on relatively few edges.
So the dominating part is R(s, t)local.

In order to define a useful distance function, we have to ensure that the global part has a
significant contribution to the overall resistance. To this end, we have to avoid that the flow is
distributed over “too many paths”. In machine learning terms, we would like to achieve a flow
that is “sparser” in the number of paths it uses. From this point of view, a natural attempt is
to replace the 2-norm-optimization problem (3.1) by a p-norm optimization problem for some
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Figure 3.1: The s-t-flows minimizing (∗) in a two-dimensional grid for different values of p.
The smaller p, the more the flow concentrates along the shortest path.

p < 2. Based on this intuition, our idea is to replace the squares in the flow problem (3.1) by
a general exponent p ≥ 1 and define the following distance function on the graph.

Definition 3.1 (p-resistance) On any weighted graph G, for any p ≥ 1 we define

Rp(s, t) := min
{∑

e∈E re|ie|p
∣∣∣ i = (ie)e∈E unit flow from s to t

}
. (∗)

As it turns out, our defined distance function Rp is closely related but not completely identical
to the p-resistance RHp defined by Herbster and Lever (2009). A discussion of this issue can
be found in Section 3.6.1.

In toy simulations we can observe that the desired effect of concentrating the flow on fewer
paths takes place indeed. In Figure 3.1 we show how the optimal flow between two points s
and t gets propagated through the network. We can see that the smaller p is, the more the
flow is concentrated along the shortest path between s and t.

We are now going to formally investigate the influence of the parameter p. Our first question
is how the family Rp(s, t) behaves as a function of p (that is, on a fixed graph and for fixed
s, t). The answer is given in the following theorem.

Theorem 3.2 (Family of p-resistances) For any weighted graph G the following state-
ments are true:

1. For p = 1, the p-resistance coincides with the shortest path distance on the graph.

2. For p = 2, the p-resistance reduces to the standard resistance distance.

3. For p→∞, Rp(s, t)
q−1 converges to 1/m where m is the unweighted s-t-mincut.

This theorem shows that our intuition as outlined above was exactly the right one. The
smaller p is, the more flow is concentrated along straight paths. The extreme case is p = 1,
which yields the shortest path distance. In the other direction, the larger p is, the more
widely distributed the flow is. Moreover, the theorem above suggests that for p close to 1,
Rp encodes global information about the part of the graph that is concentrated around the
shortest path. As p increases, global information is still present, but now describes a larger
portion of the graph, say, its cluster structure. This is the regime that is most interesting for
machine learning. The larger p becomes, the less global information is present in Rp (because
flows even use extremely long paths that take long detours), and in the extreme case p→∞
we are left with nothing but the information about the minimal s-t-cut. In many large graphs,
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(d) p = 2

Figure 3.2: Heat plots of the Rp distance matrices for a mixture of two Gaussians in R10. We
can see that the larger p is, the less pronounced the “global information” about the cluster
structure is.

the latter just contains local information about one of the points s or t (see the discussion at
the end of this section). An illustration of the different behaviors can be found in Figure 3.2.

The next question, inspired by the results of von Luxburg et al. (2010), is what happens to
Rp(s, t) if we fix p but consider a family (Gn)n∈N of graphs such that the number n of vertices
in Gn tends to ∞. Let us consider geometric graphs such as k-nearest neighbor graphs or ε-
graphs. We now give exact definitions of the local and global contributions to the p-resistance.
Let r and R be real numbers that depend on n (they will be specified in Section 3.4) and
C ≥ R/r a constant. We define the local neighborhood N (s) of vertex s as the ball with radius
C · r around s. We will see later that the condition C ≥ R/r ensures that N (s) contains at
least all vertices adjacent to s. By abuse of notation we also write e ∈ N (s) if both endpoints
of edge e are contained in N (s). Let i∗ be the optimal flow in Problem (∗). We define

Rlocalp (s) :=
∑
e∈N (s) re|i∗e|p,

Rlocalp (s, t) := Rlocalp (s) +Rlocalp (t), and Rglobalp (s, t) := Rp(s, t)−Rlocalp (s, t). Our next result
conveys that the behavior of the family of p-resistances shows an interesting phase transition.
The statements involve a term τn that should be interpreted as the average degree in the
graph Gn (exact definition see later).

Theorem 3.3 (Phase transition for p-resistances in geometric graphs) Consider a fam-
ily (Gn)n∈N of unweighted geometric graphs on Rd, d > 2 that satisfies some general assump-
tions (see Section 3.4 for definitions and details). Fix two vertices s and t. Define the two
critical values p∗ := 1 + 1/(d − 1) and p∗∗ := 1 + 1/(d − 2). Then, as n → ∞, the following
statements hold:

1. If p < p∗ and τn is sub-polynomial in n, then Rglobalp (s, t)/Rlocalp (s, t) → ∞, that is the
global contribution dominates the local one.

2. If p > p∗∗ and τn →∞, then Rlocalp (s, t)/Rglobalp (s, t)→∞ and

Rp(s, t)→
1

dp−1
s

+
1

dp−1
t

,

that is all global information vanishes.

This result is interesting. It shows that there exists a non-trivial point of phase transition in
the behavior of p-resistances: if p < p∗, then p-resistances are informative about the global
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topology of the graph, whereas if p > p∗∗ the p-resistances converge to trivial distance functions
that do not depend on any global properties of the graph. In fact, we believe that p∗∗ should
be 1− 1/(d− 1) as well, but our current proof leaves the tiny gap between p∗ = 1− 1/(d− 1)
and p∗∗ = 1− 1/(d− 2).

Theorem 3.3 is a substantial extension of the work of von Luxburg et al. (2010), in several
respects. First, and most importantly, it shows the complete picture of the full range of p ≥ 1,
and not just the single snapshot at p = 2. We can see that there is a range of values for p
for which p-resistance distances convey very important information about the global topology
of the graph, even in extremely large graphs. Also note how nicely Theorems 3.2 and 3.3
fit together. It is well-known that as n → ∞, the shortest path distance corresponding to
p = 1 converges to the (geodesic) distance of s and t in the underlying space (Tenenbaum
et al., 2000), which of course conveys global information. von Luxburg et al. (2010) proved
that the standard resistance distance (p = 2) converges to the trivial local limit. Theorem 3.3
now identifies the point of phase transition p∗ between the boundary cases p = 1 and p = 2.
Finally, for p→∞, we know by Theorem 3.2 that the p-resistance converges to the inverse of
the s-t-min-cut. It is widely believed that the minimal s-t cut in geometric graphs converges
to the minimum of the degrees of s and t as n → ∞ (even though a formal proof has yet to
be presented and we cannot point to any reference). This is in alignment with the result of
Theorem 3.3 that the p-resistance converges to 1/dp−1

s + 1/dp−1
t . As p→∞, only the smaller

of the two degrees contributes to the local part, which agrees with the limit for the s-t-mincut.

3.3 Equivalent optimization problems

In this section we will consider different optimization problems that are inherently related to
p-resistances. In Section 3.9, we discuss the electrical network interpretation of p-resistances.
There, the relation between these optimization problems becomes evident, as they both min-
imize the energy consumption in the network. We postpone this discussions to that section
and here use only the definition of the p-resistance to prove this equivalence. All graphs in
this section are considered to be weighted.

Consider the following two optimization problems for p > 1:

Flow-problem: (∗)

Rp(s, t) := min
{∑

e∈E re|ie|p
∣∣ i = (ie)e∈E unit flow from s to t

}
(3.2)

Potential problem: (∗∗)

Cp(s, t) = min
{ ∑
e=(u,v)

|ϕ(u)− ϕ(v)|1+ 1
p−1

r
1
p−1
e

∣∣ ϕ(s)− ϕ(t) = 1
}

(3.3)

It is well known that these two problems are equivalent for p = 2 (see Section 1.3 of Doyle
and Snell, 1984). We will now extend this result to general p > 1.

Proposition 3.4 (Equivalent optimization problems) For p > 1, the following state-
ments are true:

1. The flow problem (∗) has a unique solution.
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2. The solutions of (∗) and (∗∗) satisfy Rp(s, t) = Cp(s, t)
−(p−1).

To prove this proposition, we derive the Lagrange dual of problem (∗) and use the homogeneity
of the variables to convert it to the form of problem (∗∗). Details can be found in Section
3.8.1.

3.4 Local and global contributions of flows

In this section we consider the class of random geometric graphs. The vertices of such graphs
consist of points X1, .., Xn ∈ Rd, and vertices are connected by edges if the corresponding
points are “close” (for example, they are k-nearest neighbors of each other). In most cases,
we consider the set of points as drawn i.i.d from some density on Rd. Consider the following
general assumptions.

General Assumptions: A family (Gn)n∈N of unweighted geometric graphs is given, where
Gn is based on X1, ..., Xn ∈ M ⊂ Rd, d > 2. We assume that there exist 0 < r ≤ R
(depending on n and d) such that the following statements about Gn holds simultaneously for
all x ∈ {X1, ..., Xn}:

1. Distribution of points: For ρ ∈ {r,R} the number of sample points in B(x, ρ) is of the
order Θ(n · ρd).

2. Graph connectivity: x is connected to all sample points inside B(x, r) and x is not
connected to any sample point outside B(x,R).

3. Geometry of M : M is a compact, connected set such that M \∂M is still connected. The
boundary ∂M is regular in the sense that there exist positive constants α > 0 and ε0 > 0
such that if ε < ε0, then for all points x ∈ ∂M we have vol(Bε(x) ∩M) ≥ α vol(Bε(x))
(where vol denotes the Lebesgue volume). Essentially this condition just excludes the
situation where the boundary has arbitrarily thin spikes.

It is a straightforward consequence of these assumptions that there exists some function
τ(n) =: τn such that r and R are both of the order Θ((τn/n)1/d) and all degrees in the
graph are of order Θ(τn).

To prove Theorem 3.3 we need to study the balance between Rlocalp and Rglobalp . We introduce
the shorthand notation

T1 = Θ
( 1

np(1−1/d)−1τ
p(1+1/d)−1
n

)
, T2 = Θ

( 1

τ
2(p−1)
n

1/r∑
k=1

1

k(d−2)(p−1)

)
.

Theorem 3.5 (General bounds on Rlocalp and Rglobalp ) Consider a family (Gn)n∈N of un-
weighted geometric graphs that satisfies the general assumptions. The constant C is chosen
such that C ≥ R/r. Then the following statements are true for any fixed pair s, t of vertices
in Gn:

4C > Rlocalp (s, t) ≥ 1

dp−1
s

+
1

dp−1
t

and T1 + T2 ≥ Rglobalp (s, t) ≥ T1.

Note that by taking the sum of the two inequalities this theorem also leads to upper and
lower bounds for Rp(s, t) itself. The proof of Theorem 3.5 consists of several parts. To derive
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lower bounds on Rp(s, t) we construct a second graph G′n which is a contracted version of
Gn. Lower bounds can then be obtained by Rayleigh’s monotonicity principle. To get upper
bounds on Rp(s, t) we exploit the fact that the p-resistance in an unweighted graph can be
upper bounded by

∑
e∈E i

p
e, where i is any unit flow from s to t. We construct a particular

flow that leads to a good upper bound. Finally, investigating the properties of lower and
upper bounds we can derive the individual bounds on Rlocalp and Rglobalp . Details can be found
in Section 3.8.4.

3.4.1 Applications

Our general results can directly be applied to many standard geometric graph models.

The ε-graph. We assume that X1, ..., Xn have been drawn i.i.d from some underlying density
f on Rd, where M := supp(f) satisfies Part (3) of the general assumptions. Points are
connected by unweighted edges in the graph if their Euclidean distances are smaller than ε.
Exploiting standard results on ε-graphs (cf. the appendix in von Luxburg et al., 2010), it is
easy to see that the general assumptions (1) and (2) are satisfied with probability at least
1− c1n exp(−c2nεd) (where c1, c2 are constants independent of n and d) with r = R = ε and
τn = Θ(nεd). The probability converges to 1 if n→∞, ε→ 0 and nεd/ log(n)→∞.

k-nearest neighbor graphs. We assume that X1, ..., Xn have been drawn i.i.d from
some underlying density f on Rd, where M := supp(f) satisfies Part (3) of the general
assumptions. We connect each point to its k nearest neighbors by an undirected, unweighted
edge. Exploiting standard results on kNN-graphs (cf. Proposition 2.6 and Lemma 2.7), it is
easy to see that the general assumptions (1) and (2) are satisfied with probability at least
1 − c1k exp(−c2k) with r = Θ

(
(k/n)1/d

)
, R = Θ

(
(k/n)1/d

)
, and τn = k. The probability

converges to 1 if n→∞, k →∞, and k/ log(n)→∞.

Lattice graphs. Consider uniform lattices such as the square lattice or triangular lattice
in Rd. These lattices have constant degrees, which means that τn = Θ(1). If we denote the
edge length of grid by ε, the total number of nodes in the support will be in the order of
n = Θ(1/εd). This means that the general assumptions hold for r = R = ε = Θ( 1

n1/d ) and
τn = Θ(1). Note that while the lower bounds of Theorem 3.3 can be applied to the lattice
case, our current upper bounds do not hold because they require that τn →∞.

3.5 Regularization by p-Laplacians

One of the most popular methods for semi-supervised learning in graphs is based on Laplacian
regularization. In Zhu et al. (2003) the label assignment problem is formulated as

ϕ∗ = argminϕ C(ϕ) subject to ϕ(xi) = yi , i = 1, . . . , l (3.4)

where yi ∈ {±1}, C(ϕ) := ϕTLϕ is the energy function involving the standard (p = 2)
graph Laplacian L. This formulation is appealing and works well for small sample problems.
However, Nadler et al. (2009) showed that the method is not well posed when the number of
unlabeled data points is very large. In this setting, the solution of the optimization problem
converges to a constant function with “spikes” at the labeled points. We now present a simple
theorem that connects these findings to those concerning the resistance distance.
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Theorem 3.6 (Laplacian regularization in terms of resistance distance) Consider a
semi-supervised classification problem with one labeled point per class: ϕ(s) = 1, ϕ(t) = −1.
Denote the solution of (3.4) by ϕ∗, and let v be an unlabeled data point. Then

ϕ∗(v)− ϕ∗(t) > ϕ∗(s)− ϕ∗(v) ⇐⇒ R2(v, t) > R2(v, s).

Proof. First we show that the optimal solution is in the form

ϕ∗ = c1L
†(es − et) + c2,

where L† is the pseudo-inverse of the Laplacian matrix L. Decompose L using its eigenvectors
and eigenvalues L =

∑
λiviv

T
i and express ϕ in the base of these eigenvectors ϕ =

∑
aivi.

Now our optimization problem turns into

minimize
a

∑
a2
iλi

subject to
∑

aivi(s) = 1 ,
∑

aivi(t) = −1.

Using the Lagrange multiplier technique, the end solution is ϕ∗ = c1L
†(es − et) + c2 where

c1 =
2

R2(s, t)
; c2 = −e

T
t L
†(es − et)
R2(s, t)

=
L†(t, t)− L†(s, t)

R2(s, t)
.

It is easy to verify that

R2(s, t) =
1

2
(es − et)TL†(es − et).

Note that the extra factor 1/2 appear because of setting voltages to +1 and −1. In the
standard case, they are set to +1 and 0, so the factor 1/2 does not appear there.

Finally we have

ϕ∗(v)− ϕ∗(t) > ϕ∗(s)− ϕ∗(v)

⇐⇒ (ev − et)TL†(es − et) > (es − ev)TL†(es − et)
(a)⇐⇒ (ev − et)TL†(ev − et) > (ev − es)TL†(ev − es)

⇐⇒ R2(v, t) > R2(v, s).

Here in step (a) we use the symmetry of L† to state that eTv L
†es = eTs L

†ev. 2

What does this theorem mean? We have seen above that in case p = 2, if n→∞,

R2(v, t) ≈ 1

dv
+

1

dt
and R2(v, s) ≈ 1

dv
+

1

ds
.

Hence, the theorem states that if we threshold the function ϕ∗ at 0 to separate the two classes,
then all the points will be assigned to the labeled vertex with the larger degree.

Our conjecture is that an analogue to Theorem 3.6 also holds for the right p in random
geometric graphs. For a precise formulation, define the matrix ∇ as

∇i,j =

{
ϕ(i)− ϕ(j) i ∼ j
0 otherwise
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and introduce the matrix norm ‖A‖m,n =
(∑

i((
∑
j a

m
ij )

1/m)n
)1/n

. Consider q such that
1/p + 1/q = 1. We conjecture that if we used ‖∇‖q,q as a regularizer for semi-supervised
learning, then the corresponding solution ϕ∗ would satisfy

ϕ∗(v)− ϕ∗(t) > ϕ∗(s)− ϕ∗(v) ⇐⇒ Rp(v, t) > Rp(v, s).

That is, the solution of the q-regularized problem would assign labels according to the Rp-
distances. In particular, using q-regularization for the value q with 1/q + 1/p∗ = 1 would
resolve the artifacts of Laplacian regularization described in Nadler et al. (2009).

It is worth mentioning that this regularization is different from others in the literature. The
usual Laplacian regularization term as in Zhu et al. (2003) coincides with ‖∇‖2,2, Zhou and
Schölkopf (2005) use the ‖∇‖2,p norm, and our conjecture is that the ‖∇‖q,q norm would be a
good candidate. Proving whether this conjecture is right or wrong is a subject of future work.

3.6 Related families of distance functions

In this section we sketch some relations between p-resistances and other families of distances.

3.6.1 Herbster’s definition of p-resistances

For p ≤ 2, Herbster and Lever (2009) introduced the following definition of p-resistances:

RHp′ (s, t) :=
1

CHp′ (s, t)

with

CHp′ (s, t) := min
{ ∑
e=(u,v)

|ϕ(u)− ϕ(v)|p′

re

∣∣ ϕ(s)− ϕ(t) = 1
}
.

In Section 3.3 we have seen that the potential and flow optimization problems are duals of
each other. Based on this derivation we believe that the natural way of relating RH and CH

would be to replace the p′ in Herbster’s potential formulation by q′ such that 1/p′+ 1/q′ = 1.

That is, one would have to consider CHq′ and then define R̂Hp′ := 1/CHq′ . In particular, reducing

Herbster’s p′ towards 1 has the same influence as increasing our p to infinity and makes RHp′
converge to the minimal s-t-cut.

To ease further comparison, let us assume for now that we use “our” p in the definition of
Herbster’s resistances. Then one can see by similar arguments as in Section 3.3 that RHp can
be rewritten as

RHp (s, t) := min
{∑
e∈E

rp−1
e |ie|p

∣∣∣ i = (ie)e∈E unit flow from s to t
}
. (H)

Now it is easy to see that the main difference between Herbster’s definition (H) and our
definition (∗) is that (H) takes the power p − 1 of the resistances re, while we keep the
resistances with power 1. In many respects, Rp and RHp have properties that are similar
to each other: they satisfy slightly different versions (with different powers or weights) of
the triangle inequality, Rayleigh’s monotonicity principle, laws for resistances in series and in
parallel, and so on.
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3.6.2 Other families of distances

There also exist other families of distances in graphs that share some of the properties of p-
resistances. We will only discuss the ones that are most related to our work, for more references
see von Luxburg et al., 2010, Bavaud and Guex, 2012 and Kivimäki et al. (2014). The first
such family was introduced by Yen et al. (2008), where the authors use a statistical physics
approach to reduce the influence of long paths to the distance. This family is parameterized
by a parameter θ, contains the shortest path distance at one end (θ →∞) and the standard
resistance distance at the other end (θ → 0). However, the construction is somewhat ad
hoc, the resulting distances cannot be computed in closed form and do not even satisfy the
triangle inequality. A second family is the one of “logarithmic forest distances” by Chebotarev
(2011). Even though its derivation is complicated, it has a closed form solution and can be
interpreted intuitively: The contribution of a path to the overall distance is “discounted” by
a factor (1/α)l where l is the length of the path. For α → 0, the logarithmic forest distance
distance converges to the shortest path distance, for α → ∞, it converges to the resistance
distance.

At the time of writing this thesis, the major disadvantage of both the families introduced by
Yen et al. (2008) and Chebotarev (2011) is that it is unknown how their distances behave as the
size of the graph increases. It is clear that on the one end (shortest path), they convey global
information, whereas on the other end (resistance distance) they depend on local quantities
only when n → ∞. But what happens to all intermediate parameter values? Do all of them
lead to meaningless distances as n → ∞, or is there some interesting phase transition as
well? As long as this question has not been answered, one should be careful when using these
distances. In particular, it is unclear how the parameters (θ and α, respectively) should be
chosen, and it is hard to get an intuition about this.

3.7 Conclusions

We proved that the family of p-resistances has a wide range of behaviors. In particular, for
p = 1 it coincides with the shortest path distance, for p = 2 with the standard resistance
distance and for p → ∞ it is related to the minimal s-t-cut. Moreover, an interesting phase
transition takes place: in large geometric graphs such as k-nearest neighbor graphs, the p-
resistance is governed by meaningful global properties as long as p < p∗ := 1 + 1/(d − 1),
whereas it converges to the trivial local quantity 1/dp−1

s + 1/dp−1
t if p > p∗∗ := 1 + 1/(d− 2).

Our suggestion for practice is to use p-resistances with p ≈ p∗. For this value of p, the p-
resistances encode those global properties of the graph that are most important for machine
learning, namely the cluster structure of the graph.

Our findings are interesting on their own, but also help in explaining several artifacts discussed
in the literature. They go much beyond the work of von Luxburg et al. (2010) (which only
studied the case p = 2) and lead to an intuitive explanation of the artifacts of Laplacian
regularization discovered in Nadler et al. (2009). An interesting line of future research will
be to connect our results to the ones about p-eigenvectors of p-Laplacians (Bühler and Hein,
2009). For p = 2, the resistance distance can be expressed in terms of the eigenvalues and
eigenvectors of the Laplacian. We are curious to see whether a refined theory on p-eigenvalues
can lead to similarly tight relationships for general values of p.
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3.8 Proofs

3.8.1 Proof of Proposition 3.4

Proof of Part (1). It is easy to see that the set of all unit s-t-flows is a compact convex
set and the p-norm function on this set is strictly convex for p > 1, thus the minimum exists.
From strict convexity, this minimum is unique for p > 1. 2

Proof of Part (2). We are going to rewrite the problems (∗) and (∗∗) as convex optimization
problems and show that they are equivalent to the Lagrange duals of each other. We denote
the n×m vertex-edge incidence matrix of a graph by Q. For any edge ek between vertices i
and j, there exist two entries in this matrix: qik = +1 and qjk = −1 (flipping these signs does
not make any difference in the following). Denoting the vector of edge currents by I, we can
rewrite problem (∗) as

Rp(s, t)
1/p = min ‖I‖p,r subject to QI = es − et (3.5)

where ‖ · ‖p,r is the r-weighted p-norm with ri = 1/wi and ej is the j-th unit vector. On the
other hand, problem (∗∗) can be rewritten as

Cp(s, t)
1/q = min ‖QTu‖q,r subject to us − ut = 1 (3.6)

where 1
p + 1

q = 1 and ‖ · ‖q,r is the weighted q-norm with weights ri = wq−1
i . The conjugate

of the norm function f = ‖ · ‖ is

f∗(y) =

{
0 ‖y‖∗ ≤ 1

∞ otherwise

where ‖ · ‖∗ is the dual norm of ‖ · ‖. Using the fact that the dual norm of ‖ · ‖p,r is ‖ · ‖q,r
with ri = 1/rq−1, we can write the Lagrange dual problem of (3.5) in the minimization form
as

R∗(v) = min(vs − vt) subject to ‖QT v‖q,r ≤ 1. (3.7)

The objective function is convex and Slater’s condition holds, so we have strong duality and
zero duality gap. This problem is homogeneous and the objective is linear in v, hence achieves
its minimum in ‖QT v‖q,r = 1. We can rewrite it as

Rdual(v) = min(vs − vt) subject to ‖QT v‖q,r = 1. (3.8)

If we exchange the objective function and the equality constraint in a homogeneous problem,
the optimum value of the resulting problem will be the inverse of the optimum in the original
problem. This means that if we form the problem

R′dual(v) = min ‖QT v‖q,r subject to (vs − vt) = 1 (3.9)

and denote the solution of (3.8) by v∗ and of (3.9) by v′∗, we will have

Rdual(v
∗) =

1

R′dual(v
′∗)
. (3.10)

As Problems (3.6) and (3.9) are identical, we can conclude

Rp(s, t)
1/p =

1

Cp(s, t)1/q
or Rp(s, t) =

1

Cp(s, t)p/q
=

1

Cp(s, t)p−1
.

2
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v0=s v1 v2 vS-1 vS vS+1=t
} {
ds edges dt edges

}
E1 edges 

Figure 3.3: Construction of the contracted graph G′ in the proof of the lower bound.

3.8.2 Proof of Theorem 3.2

Part (1). If we set p = 1, Problem (∗) coincides with the well-known linear programming
formulation of the shortest path problem, see Chapter 12 of Bazaraa et al. (2010).
Part (2). For p = 2, we get the well-known formula for the effective resistance.
Part (3). For p→∞, the objective function in the dual problem (∗∗) converges to

C∞(s, t) := min
{∑

e=(u,v) |ϕ(u)− ϕ(v)|
∣∣ ϕ(s)− ϕ(t) = 1

}
.

This coincides with the linear programming formulation of the min-cut problem in unweighted
graphs. Using Proposition 3.4 we finally obtain

lim
p→∞

Rp(s, t)
q−1 = lim

p→∞

1

Cp(s, t)
=

1

C∞(s, t)
=

1

s-t-mincut
.

3.8.3 Upper and lower bounds on p-resistances

Before proving Theorem 3.5, we need to state two key propositions. In the following, recall
the notation T1 and T2 from Section 3.4.

Proposition 3.7 (Lower bound on Rp) Consider a family (Gn)n∈N of unweighted geomet-
ric graphs that satisfies the general assumptions. Then for any fixed pair s, t of vertices in Gn
we have

Rp(s, t) ≥
1

dp−1
s

+
1

dp−1
t

+ T1.

Proof. Fix n. Given Gn =: G, we are going to construct a second graph in which the
resistance between s and t is at most as large as in the original graph. We are going to exploit
that Rayleigh’s monotonicity principle also holds for p-resistances (proof omitted, it is an easy
adaptation of the corresponding proof in Herbster and Lever, 2009). To this end, we divide the
space between s and t into “slices” of width R that are perpendicular to the line connecting
s and t. To build the new graph, we first add edges of resistance 0 between all neighbors of
s and merge these vertices to one new “super-vertex” v1. We also take all remaining sample
points in the slice of s, except s itself, and merge them to v1 (first adding edges of resistance 0
between all these points and then contracting them to one vertex). For all intermediate slices
(the ones not containing s or t) we add edges of resistance 0 to all points in the slice and
contract them to one vertex, leading to vertex vk in slice k. In the slice containing t, we apply
the analogue construction. See Figure 3.3 for an illustration. We denote the total number of
slices by S, the resulting graph by G′ = (V ′, E′) and the number of edges between vj and vj+1

by Ej . We also set v0 := s and vS+1 := t. Note that by Rayleigh’s monotonicity principle,
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s

{r/2

t

{r/2

Figure 3.4: Slices and rings between s and t

the p-resistances in G and G′ satisfy RGp (s, t) ≥ RG
′

p (s, t). Consider a unit flow i = (ie)e∈E′

from s to t. Denote the k-th edge between vj and vj+1 by ik,j , (j = 0, ..., S). By the flow
definition of the p-resistance distance we know that

RG
′

p (s, t) =
∑
e∈E′
|ie|p =

S∑
j=0

Ej∑
k=1

|ik,j |p
(a)

≥
S∑
j=0

1

Ep−1
j

( Ej∑
k=1

|ik,j |
)p (b)

=

S∑
j=0

1

Ep−1
j

.

Here, inequality (a) is a consequence of the generalized mean inequality (applied to the two
powers p and 1). Equality (b) is a consequence of the definition of a unit flow because the sum
of the flow over all edges of an s− t cut is 1, and all flows from vj to vj+1 are non-negative. By
definition we know that E0 = ds and ES = dt. Denoting by Emax := max{Ek

∣∣ k = 1, ..., S}
the maximal number of edges between the intermediate vertices, we obtain

RG
′

p (s, t) =
1

dp−1
s

+
1

dp−1
t

+

S−1∑
j=1

1

Ep−1
j

≥ 1

dp−1
s

+
1

dp−1
t

+
S − 1

Ep−1
max

To bound Emax, observe that the number of edges between vj and vj+1 in G′ corresponds to
the number of edges of G between points in slice j and j + 1. This number can be upper
bounded by the number of edges that are attached to vertices in the smaller of the two slices.
This is upper bounded by the number N of points in the slice times the maximal degree in
the graph.

Under the general assumptions we have N = Θ(nR) = Θ(n1−1/dτ
1/d
n ) and dmax = Θ(τn). This

gives Emax = Θ(n1−1/dτ
1+1/d
n ). The number S of slices is of the order 1/R = Θ((n/τn)1/d).

Together we get

RGp (s, t) ≥ 1

dp−1
s

+
1

dp−1
t

+ Θ
( 1(
τn/n

)1/d(
n1−1/dτ

1+1/d
n

)p−1

)
=

1

dp−1
s

+
1

dp−1
t

+ Θ
( 1

np(1−1/d)−1τ
p(1+1/d)−1
n

)
.

2

Proposition 3.8 (Upper bound on Rp) Consider a family (Gn)n∈N of unweighted geo-
metric graphs that satisfies the general assumptions. Then for any fixed pair s, t of vertices in
Gn we have

Rp(s, t) ≤
1

dp−1
s

+
1

dp−1
t

+ T1 + T2.
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Figure 3.5: Cubes between s and u

Proof. We know from (∗) that the p-resistance in an unweighted graph can be upper bounded
by
∑
e∈E i

p
e, where i is any unit flow from s to t. We are now going to construct a particular

flow that leads to a good upper bound. We construct our flow as follows. Starting in s, we
first distribute the flow to all the neighbors of s, and from there to all points in a big ring
around s (see Figure 3.4). After that, every vertex in the ring sends the same amount of flow
directed to the destination t. We collect all the flow at the ring around t, and in an inverse
procedure to the one in the beginning we direct all flow to t itself.

In detail, consider a set of concentric rings around s, each with distance r/2 to the next one
and width r/2 (see Figure 3.4). We are going to consider θ(1/r) such rings. We now distribute
the unit flow starting from s uniformly through the rings: starting at s we distribute the flow
to all its neighbors (leading to a contribution of 1/dp−1

s ). Then we propagate the flow from
the neighbors of s to all points in the inner-most circle, and then from there layer by layer to
the outside.

Denote by Nk the number of sample points in ring k. As a consequence of the general
assumptions, Nk is proportional to n times the volume of ring k. This volume is of the order

Vk = r ·
(

Θ
(
(k + 1)d−1rd−1

)
−Θ

(
kd−1rd−1

))
= Θ

(
kd−2rd

)
which implies

Nk = nVk = n Θ(kd−2rd) = Θ(τnk
d−2).

By a similar argument, the total number of points in all rings isN total
s = Θ(nr) = Θ(n1−1/dτ

1/d
n ).

By the definition of r (see general assumptions) we know that each point in ring k has on the
order of Θ(τn) neighbors in ring k + 1. Every vertex in ring k sends Θ(1/Nk) flow to all its
neighbors in ring k + 1, using Θ(τn) edges. The contribution of the flow between ring k and

k+ 1 to the resistance is thus of the order 1/τ
2(p−1)
n k(d−2)(p−1), hence the overall contribution

of the “ring part” Rrings is bounded by

Rrings ≤ Θ
( 1

τ
2(p−1)
n

1/r∑
k=1

1

k(d−2)(p−1)

)
.

The analogous bound holds for the ring around t.

Now consider the contribution of the traverse flow that goes from the ring around s to the
ring around t. Every vertex in the ring around s sends the same amount of flow (1/N total

s ) to
its neighbors in the next slice directed to t. It follows from the definition of r that each point
in slice k has on the order of Θ(τn) neighbors in the slice k+1, so it will send Θ( 1

τnNtotals
) flow

to each of its neighbors in the next slice. Every vertex in the next slice has Θ(τn) neighbors
in the current slice, so it will receive Θ( τn

τnNtotals
) = Θ( 1

Ntotals
) flow. Denoting the number of
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edges between slice j and j + 1 by Ej and using a similar argument to determining Emax in

the proof of Part 1, we get Ej = Θ(n1−1/dτ
1+1/d
n ). So we have

Rtraverse(s, t) ≤
S∑
j=1

Ej∑
k=1

|ik,j |p =

S∑
j=1

Θ
( Ej(
τnN total

s

)p)

=

S∑
j=1

Θ
( n1−1/dτ

1+1/d
n(

n1−1/dτ
1+1/d
n

)p) =

S∑
j=1

Θ
( 1(
n1−1/dτ

1+1/d
n

)p−1

)
= Θ

( S(
n1−1/dτ

1+1/d
n

)p−1

)
.

Setting S = Θ(1/r) = Θ
(
n/τn

)1/d
results in

Rtraverse(s, t) ≤ Θ
( 1

np(1−1/d)−1τ
p(1+1/d)−1
n

)
.

All in all, the flow sums to the following contributions

Rp(s, t) ≤
1

dp−1
s

+
1

dp−1
t

+Rrings +Rringt +Rtraverse

≤ 1

dp−1
s

+
1

dp−1
t

+ Θ
( 1

τ
2(p−1)
n

1/r∑
k=1

1

k(d−2)(p−1)

)
+ Θ

( 1

np(1−1/d)−1τ
p(1+1/d)−1
n

)
.

2

Before finally moving on to the proof of Theorem 3.5, we state a helpful little proposition that
will be needed later on.

Proposition 3.9 Consider the local neighborhood N (s) of vertex s and a vertex u ∈ N (s).
The length of the shortest path between s and u is smaller than 2C.

Proof : Consider hypercubes with side length r/2 between s and u (see Figure 3.5). The
distance between s and u is at most C · r, so there are at most 2C of these hypercubes.
Following the general assumptions, each vertex inside a hypercube is connected to at least one
vertex in neighboring hypercubes. This means that the length of the shortest path between s
and u is smaller than 2C. 2

3.8.4 Proof of Theorem 3.5

We are now going to use the bounds of Propositions 3.7 and 3.8 to prove Theorem 3.5.

Proof of the lower bound on Rlocalp . Denote the optimal flow in the p-resistance problem
by i∗. We obtain

Rlocalp (s) ≥
∑
u∼s
|i∗(s,u)|

p ≥ 1

dp−1
s

(∑
|i∗(s,u)|

)p
=

1

dp−1
s

.
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The first inequality is true because by choice of the constant C, all points adjacent to
s are contained in N (s). The second inequality uses the the generalized mean inequal-
ity (applied to the two powers p and 1). The desired bound now follows directly from
Rlocalp (s, t) = Rlocalp (s) +Rlocalp (t). 2

Proof of the upper bound on Rlocalp . It is enough to show that Rlocalp (s) < 2C.

Let i∗ denote the optimal flow in Problem (∗). Due to its optimality, any other unit flow i
satisfies

Rlocalp (s) =
∑

edge e∈N (s)

|i∗e|p ≤
∑

edge e∈N (s)

|ie|p.

We now want to construct a particular flow i that coincides with i∗ “on the boundary of
N (s)”, but which we can control inside N (s). To make this precise, we call a vertex u ∈ N (s)
a boundary vertex if it is adjacent to some v 6∈ N (s). Denote the set of boundary vertices in
N (s) by ∂N (s). For every u ∈ ∂N (s) and every unit flow i, we denote by outi(u) the sum of
the flow on all edges (u, v) with v 6∈ N (s). Because i is a unit flow, it is easy to check that∑

u∈∂N (s)

outi(u) = 1.

We now want to construct a nice flow i that satisfies ∀u ∈ ∂N (s) : outi(u) = outi∗(u). To this
end, for any vertex u ∈ ∂N (s) we consider a shortest path πs,u from s to u that completely
stays inside N (s). Now we construct a flow ĩ as follows. We first send flow with amount
out(u) from s to u along πs,u. For all boundary edges and edges outside of N (s) we define
ĩe = i∗e. It is easy to check that ĩ is a valid unit flow from s to t.

Now we want to bound the resistance for this particular flow. We denote the j-th edge on the
path πs,u by πjs,u and define the set Sj as

Sj =
{
πjs,u

∣∣ u ∈ ∂N (s)
}
.

The set Sj contains all j-th edges on shortest paths from s to the vertices in ∂N (s), so we get∑
e∈Sj

ĩe ≤ 1.

Now we can see that

Rlocalp (s) ≤
∑

edge e∈N (s)

|̃ie|p
(a)
=

2C−1∑
j=1

∑
e∈Sj

|̃ie|p
(b)

≤
2C−1∑
j=1

∑
e∈Sj

|̃ie| < 2C.

Here, equality (a) is a consequence of the definition of ĩ and Proposition 3.9 and inequality
(b) follows from |̃ie|p ≤ |̃ie|. 2

Proof of the lower bound on Rglobalp . Fix the contributions of the optimal flow i∗ on the
edges in N (s) and N (t) and consider the following problem:

R̃Gp (s, t) := min
{∑
e∈E
|ie|p

∣∣ i = (ie)e∈E unit s-t flow ;∀e ∈ N (s) ∪N (t) : ie = i∗e

}
.
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Obviously, the solution of this problem equals RGp (s, t). Now we shrink the graph G except
the vertices in N (s) and N (t) to a new graph G′ as we did in the proof of Proposition 3.7
and consider the optimization problem

R̃G
′

p (s, t) := min
{ ∑
e∈E′
|ie|p

∣∣ i = (ie)e∈E′ unit s-t flow ;∀e ∈ N (s) ∪N (t) : ie = i∗e

}
.

That is, we consider the shrunken graph, but keep the contributions of the edges in the local
neighborhood of s and t fixed. By Rayleigh’s monotonicity principle we get that R̃G

′

p (s, t) ≤
R̃Gp (s, t) = RGp (s, t). By the same argument as in the proof of Proposition 3.7 we get

Rglobalp (s, t) ≥ S − 4CK

Ep−1
max

where K = R/r is a constant. Following similar computations we obtain

Rglobalp (s, t) ≥ Θ
( 1

np(1−1/d)−1τ
p(1+1/d)−1
n

)
.

2

Proof of the upper bound on Rglobalp .

From Proposition 3.8 and the lower bound on Rlocalp we have

Rlocalp (s, t) +Rglobalp (s, t) = Rp(s, t) ≤
1

dp−1
s

+
1

dp−1
t

+ T1 + T2

and

Rlocalp (s, t) ≥ 1

dp−1
s

+
1

dp−1
t

.

Combining these two bounds gives

Rglobalp (s, t) ≤ T1 + T2.

2

3.8.5 Proof of Theorem 3.3

Now we can finally proceed to the proof of our main theorem.

Part (1). As a result of Theorem 3.5 we get

Rlocalp (s, t)

Rglobalp (s, t)
<

4C

T1
.

Having p < 1 + 1/(d− 1) allows us to set c2 := 1− p(1− 1/d) > 0. Also it is easy to see that

p(1 +
1

d
)− 1 <

2

d− 1
.
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So we can conclude that

Rlocalp (s, t)

Rglobalp (s, t)
<

4C

T1
<

4C · τ2/(d−1)
n

nc2
.

This expression converges to 0 if τn is sub-polynomial in n (if τn/n
c → 0 for every fixed c > 0).

Part (2). From Theorem 3.5 we get

Rlocalp (s, t)

Rglobalp (s, t)
≥

1

dp−1
s

+ 1

dp−1
t

T1 + T2
.

To examine the limit behavior, recall the expression for T2. It is easy to see that for p >
1 + 1/(d− 2), the harmonic sum in T2 will converge to a constant Z and

T2 ≤ Θ
( Z

τ
2(p−1)
n

)
.

Again we can bound T1 by

T1 ≤ Θ
( 1

n1/d(d−2)τ
(p−1)+p/d
n

)
.

Together we get

Rglobalp (s, t)

Rlocalp (s, t)
≤ Θ

( 1

n1/d(d−2)τ
(d−1)/d(d−2)
n

)
+ Θ

( 1

τ
1/(d−2)
n

)
.

For n→∞ and τn →∞, the right hand side goes to zero and

Rlocalp (s, t)

Rglobalp (s, t)
→∞.

Finally, to see the limit expression we rewrite Propositions 3.7 and 3.8 as

1 +
T1 + T2
1

dp−1
s

+ 1

dp−1
t

≥ Rp(s, t)
1

dp−1
s

+ 1

dp−1
t

≥ 1 +
T1

1

dp−1
s

+ 1

dp−1
t

.

Observing that

T1 + T2
1

dp−1
s

+ 1

dp−1
t

→ 0 and
T1

1

dp−1
s

+ 1

dp−1
t

→ 0

as n→∞ and τn →∞ leads to the limit statement

Rp(s, t)→
1

dp−1
s

+
1

dp−1
t

.

2
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Let us make some final remarks:

It is worth to note that our results not only hold for a fixed constant C, but even if we consider
a larger neighborhood around s by setting C to a sub-polynomial function of n.

In the regime p < p∗ we require that the degrees τn grow sub-polynomially in n. This condition
is needed to make sure that the set N (s) is indeed “local” and does not cover too large a part
of the graph. To get some intuition on this, just consider the case where the degrees are in
the order of n, that is each vertex is connected with most other vertices in the graph. Then
even single edges in the graph behave “global” as they might connect very far away parts in
the graph. In this case the distinction between local and global contributions breaks down.
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3.9 Excursion

This section contains a review on random walks and related concept like harmonic functions
on graphs and can be skipped for a first reading. Random walks, harmonic functions on graph
and potential theory are in a close relationship with the resistance distance. Here, we review
these relations and then extend these concepts to p-harmonic functions and the p-resistance
distance.

3.9.1 Notation

Consider an undirected weighted graph G = {V,E} with vertex set V = {vi}ni=1. For the sake
of simplicity, we assume that G is connected. The weighted adjacency matrix is denoted by
W where w(x, y) indicates the similarity between vertices x and y. Let dx denotes the degree
of the vertex x, defined as

dx =
∑
u:u∼x

w(x, u),

and vol(G) the volume of the graph, defined as vol(G) =
∑
x∈V dx.

Let M be a n×n matrix indexed by vertices in V , and A,B ⊂ V two subsets of vertices. The
matrix MA,B is defined as the submatrix of M with rows corresponding to vertices in A and
columns corresponding to vertices in B. The element (i, j) of the matrix M is referred to as
M(i, j) and the j-th unit vector is denoted by ej .

Define the degree matrix D as the diagonal matrix with entries dx on the diagonal, and show
the identity matrix by I. There are different Laplacian matrices defined in the literature,
namely unnormalized Laplacian L, random walk Laplacian L and sysmmetric normalized
Laplacian Lsym (von Luxburg, 2007):

L = D −W
L = D−1L = I −D−1W

Lsym = D−1/2LD−1/2 = D−1/2LD1/2 = I −D1/2WD−1/2.

The pseudo-inverses (also called Moore-Penrose inverse) of a real matrix L is defined as
L† = (LTL)−1LT . The next proposition shows the element-wise relation between the pseudo-
inverses of different Laplacian matrices.

Proposition 3.10 The pseudoinverse of the Laplacian matrices are related element-wise as

L†(i, j) =
1

dj
L†(i, j) =

1√
didj

L†sym(i, j). (3.11)

Proof. Using definitions of Laplacian matrices, we have

L† = L†D−1 = D−1/2L†symD
−1/2.

Writing down the elements leads us to the result.

2
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3.9.2 Random walk

Given a graph G and a starting vertex S0 = s, a random walk starts at s and at each step
jumps to one of the neighbor vertices at random. The jumping probability is usually related
to the weight of the connected edges:

Px,y := P(Si+1 = y|Si = x) =
w(x, y)

dx
.

Let us denote the transition matrix by P , where Pi,j is the probability of jumping from vertex
i to j. It is easy to verify that

P = D−1W.

The matrix P can be seen as an operator on functions defined on the graph’s vertices:

Pf(x) =
∑
v∼x

Px,vf(v).

We are interested in finding P(Sn = t|S0 = s), which is the probability of reaching t from s
in n steps. It is easy to show that the probability of reaching t in l steps is the corresponding
element of P l

P(Sn = t|S0 = s) = [P l](s, t) = eTs P
let.

For a random walk starting from s, denote the total number of visits to t by N(s, t). The
expected number of visits can be written as

E[N(s, t)] =

∞∑
i=0

P(Si = t|S0 = s) = eTs

∞∑
i=0

P ies.

In finite undirected graphs, the total number of visits is unbounded and diverges as time goes
to infinity. This can also verified by observing the spectrum of P , that has an eigenvalue 1.
However, in infinite graphs like the d-dimensional lattice (d > 2), the expected total number
of visits is bounded (see also the discussion in Section 3.9.3).

3.9.3 Recurrency and hitting time

The probability of eventual return is defined as the probability that a random walk
starting from s eventually returns to s. A random walk is called recurrent if the probability of
its eventual return to the origin is 1. A random walk that is not recurrent is called transient.

The recurrence of a random walk is in a close relation to its expected number of returns to
the origin. By means of the Borel-Cantelli lemma, a random walk is recurrent if and only if
its expected number of returns is infinite. However there exists another simple proof.

Theorem 3.11 A random walk starting from vertex s is recurrent if and only if its expected
number of returns to s is infinity.

Proof. We denote the probability of eventual return to the origin by p and the number
of returns by Ns. Then the probability that the random walk returns back only k times is
P(Ns = k) = pk−1(1− p) and

E[Ns] =

∞∑
k=1

kP(Ns = k) =

∞∑
k=1

kpk−1(1− p) =
1

1− p
.
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It is clear that p = 1 if and only if E[Ns] =∞.

2

In finite undirected connected graphs, the probability of eventual return to each vertex is 1
and the random walk is recurrent. The recurrence in infinite graphs is a challenging problem.
Polya studied this problem for d-dimensional lattices and showed that a simple random walk
is recurrent for d = 1, 2 and transient for d ≥ 3.

Hitting time: The hitting time H(s, t) is defined as the expected number of steps needed
for a random walk starting from s to reach t for the first time. One can show that

1

vol(G)
H(s, t) = eTt L

†(et − es) =
eTt√
dt
L†sym(

et√
dt
− es√

ds
) =

(et − es)T

dt
L†et.

The commute time between s and t is defined as C(s, t) = H(s, t) + H(t, s) and can be
computed as

1

vol(G)
C(s, t) = (es − et)TL†(es − et)

= (
es√
ds
− et√

dt
)TL†sym(

es√
ds
− et√

dt
)

= (es − et)TL†(
es
ds
− et
dt

).

3.9.4 Harmonic functions on graphs

A function f : V → R defined on vertices of a graph G = {V,E} is called harmonic on A ⊂ V ,
if for every x ∈ A, the value of f(x) equals the average of its neighbors, weighted by edge
weights:

f(x) =
∑
v:v∼x

Px,vf(v),

or equivalently ∑
v:v∼x

Px,v
(
f(x)− f(v)

)
= 0.

The Laplace operator (matrix) on G is defined as

∆f(x) =
∑
v:v∼x

Pv,x
(
f(x)− f(v)

)
.

It is easy to verify that ∆ = L = I − P . The notation L is often used for denoting the
Laplace operator on graphs, while ∆ is common in continuous domains. We use ∆ for graphs
in equations that have a well-known continuous counterpart.

A function is harmonic on A ⊂ V if ∀x ∈ A; ∆f(x) = 0. The boundary nodes are the set of
nodes that f is not harmonic on them ∂A = V \ A. We always assume that each boundary
vertex v ∈ ∂A has a neighbor in A, and the induced sub-graph A is connected.
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Harmonic extension: Consider a function f̄ defined on an nonempty boundary set ∂A ⊂ V .
A harmonic function on A is called the harmonic extension of f̄ on G. We can reformulate
the harmonic extension problem as finding f such that{

∆f(x) = 0 x ∈ A
f(x) = f̄(x) x ∈ ∂A.

(3.12)

The Equation 3.12 is called Laplace equation. This equation has a unique solution, which
is proved in Proposition 3.14. First we show that the minimum and the maximum of non-
constant harmonic functions are at their boundary nodes.

Proposition 3.12 (Maximum principle) In finite graphs, every non-constant harmonic
function achieves its minimum and maximum at the boundary nodes.

Proof. The maximum of a function can not be attained at a node on which it is harmonic,
unless it gets the same value at its neighbors. The same holds for the minimum. 2

Energy minimization: The harmonic extension problem 3.12 can also be written in an
equivalent energy minimization form

minimize E(f) =
∑

x,y:x∼y
Px,y

(
f(x)− f(y)

)2
subject to f(x) = f̄(x), x ∈ ∂A.

The objective function is sometimes referred as the discrete Dirichlet energy of function f .
The equivalence can be proved by taking the derivatives of the objective function with respect
to the value of f at each vertex and setting them to zero.

Proposition 3.13 The discrete Dirichlet energy functional E(f) can be written as 〈f,∆f〉,
where ∆ is the Laplace operator (matrix). In another word,

〈f,∆f〉 =
1

2

∑
x,y:x∼y

Px,y(f(x)− f(y))2.

Discrete Dirichlet problem: The harmonic extension problem is a special case of the
discrete Dirichlet problem. Given a function g defined on A and the boundary value function
f̄ defined on ∂A, the discrete Dirichlet problem is to find a function f on the graph nodes
such that {

∆f(x) = g(x) x ∈ A
f(x) = f̄(x) x ∈ ∂A.

(3.13)

We would discuss two different views on the discrete Dirichlet problem. Below is the relation
to random walks. In Section 3.9.7 it would also appear in the context of electrical networks.

Random walk interpretation: Consider an agent that starts a random walk from a vertex
x ∈ V and stops as soon as it reaches a boundary vertex. The agent pays g(u) whenever
it passes through an internal node u ∈ A and pays f̄(v) when it stops at a boundary node
v ∈ ∂A. The expected amount of the money payed by the agent before it stops is a solution of
the Equation 3.13 at x. The Dirichlet problem has always a unique solution if the boundary
is not empty.
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Proposition 3.14 (Dirichlet problem has a unique solution) Consider a finite graph
G = {V,E}, a nonempty boundary set ∂A ⊂ V and a function g defined on A. Then there
exist a unique solution to the Dirichlet problem with boundary value f̄ .

Proof. The existence of a solution is a result of the random walk interpretation, as the
expected value always exists. For the proof of uniqueness, consider two different solutions f1

and f2. Then f0 = f1 − f2 is a solution to the problem{
∆f0(x) = 0 x ∈ A
f0(x) = 0 x ∈ ∂A.

Following Proposition 3.12, the solution f0 achieves its maximum and minimum at ∂A. How-
ever, f̄0(x) = 0 for all x ∈ ∂A. This shows that f0 is the constant 0 function and f1 = f2.
2

3.9.5 Laplace equation and the Poisson kernel

Fix a non-empty boundary set ∂A and assume that it has c nodes. For each function f̄ on ∂A
(a vector in Rc), there exists a unique function f (a vector in Rn−c) which is the harmonic
extension f̄ on G . The next proposition states that this function (the solution of the Lapalce
equation 3.12) is a linear function of the boundary value function f̄ .

Proposition 3.15 (The linearity of the Laplace problem) Fix a boundary set ∂A. Con-
sider two functions f̄1 and f̄2 defined on ∂A and let f1 and f2 be the solutions to the cor-
responding Laplace equations. Then for every α, β ∈ R, the Laplace problem on ∂A with
boundary value f̄ = αf̄1 + βf̄2 has the solution f = αf1 + βf2.

Proposition 3.15 is called the superposition principle in the electrical network theory. The
proof is a straightforward result of the linearity of the equations.

Any linear transformation from Rc to Rn−c can be expressed as an (n − c) × c matrix. This
means that we can write the solution of the Laplace problem as

f = Zf̄.

The matrix Z depends on the underlying graph and the boundary set ∂A, but not on the
boundary value function f̄ . This matrix (operator) is often called the Poisson kernel. If we
set the boundary values to one, then the harmonic extension would be the constant one vector.
So we infer that

Z1c = 1n−c.

This means that
∑c
j=1 Z(i, j) = 1. This property can also be justified from a probabilistic

interpretation of the Poisson kernel.

Proposition 3.16 (Probabilistic interpretation of the Poisson kernel) The element
Z(i, j) of the Poisson kernel Z can be interpreted as the probability that a random walk starting
from i hits the boundary for the first time at j.

Proof. Consider the boundary value function f̄ = ej which takes the value 1 at node j and
0 at other boundary nodes. The harmonic extension of u to G would correspond to the j-th
column of the Poisson kernel Z, so f(i) = Z(i, j). Using the proof of Proposition 3.14, f(i) is
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the expected value of the function f̄ observed by a random walk agent starting from node i,
at the first time it hits the boundary.

By the construction of f̄ , it has value 0 at all boundary nodes except j. This means that
Z(i, j) is the probability that a random walk starting from i hits the boundary for the first
time at j. 2

Computing the Poisson kernel: The Poisson kernel can be computed by solving a system
of linear equations. Without loss of generality, assume that vertices vn−c+1, .., vn are boundary
vertices. Then the Equation 3.12 can be written as

LA,V



f(v1)
...

f(vn−c)
f̄(vn−c+1)

...
f̄(vn)


= 0 (3.14)

or equivalently

LA,Af = −LA,∂Af̄ . (3.15)

One can show that the submatrix of the random walk Laplacian LA,A is always invertible
(when ∂A is not empty), so the Poisson kernel is

Z = L−1
A,ALA,∂A.

3.9.6 Dirichlet equation and the Green’s function

Before discussing the solution of discrete Dirichlet problem, we consider a special case where
the boundary value function is 0 everywhere:{

∆f̄(x) = g(x) x ∈ A
f̄(x) = 0 x ∈ ∂A.

(3.16)

This problem has an interesting probabilistic interpretation which is discussed below. Similar
to Propositions 3.14 and 3.15, we can show the uniqueness and the linearity of the solution.
Following the same line as in Section 3.9.5, the solution, which is a vector in Rn−c, can be
obtained from a linear transformation of the input, which is again a vector in Rn−c. Every
such linear transformation can be written as a matrix, so

f = Gg. (3.17)

The transformation matrix (operator) G is the Green’s function of graph G with boundary
nodes ∂A. The Green’s function only depends on the graph structure and the set of boundary
nodes. The element G(i, j) of the Green’s function has an interesting random walk interpre-
tation:
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Proposition 3.17 (Random walk interpretation of the Green’s function) Consider a
random walk starting from vertex i. The element G(i, j) of the Green’s function can be inter-
preted as the expected number of visits to j before hitting the boundary ∂A.

Proof. Set g = ei, where it takes 1 on the vertex i and 0 everywhere else. Then the solution of
the Dirichlet problem 3.16 is f(j) = G(i, j). Following the random walk interpretation of the
Dirichlet problem (see Section 3.9.4), the random walk starting from i will only pay whenever
it passes from j, and stop as soon as it hits the boundary. This means that f(j) = G(i, j) is
the expected number of visits to j before hitting the boundary. 2

Computing the Green’s function: The Green’s function can be computed by solving a
system of linear equations similar to Equation 3.14

LA,V



f(v1)
...

f(vn−c)
0
...
0


=

 g(v1)
...

g(vn−c)

 (3.18)

or

LA,Af = g. (3.19)

As the submatrix of Laplacian LA,A is always invertible, the Green’s function can be computed
by G = L−1

A,A.

Solving the general Dirichlet problem: We have the solution to the Laplace Equation
and the Green’s function. By the linearity of the Dirichlet problem, combining the solutions
of Equations 3.14 and 3.18 solves the general Dirichlet problem. The final solution is

f = −L−1
A,ALA,∂Af̄ + L−1

A,Ag = L−1
A,A(g − LA,∂Af̄) (3.20)

Dirichlet problems with empty boundary set

In general, a Dirichlet problem with empty boundary set does not have any solution. This
problem has only a solution for a specific family of functions g on A. The solution is not
unique anymore, but all solutions only differ by a constant vector.

Proposition 3.18 (Dirichlet problem with empty boundary) Denote the degrees of ver-
tices in A by the vector d. A Dirichlet problem with empty boundary set has a solution if and
only if 〈g,d〉 = 0. Then, the Dirichlet problem has a set of solutions

{f |f = L†g + a1n; a ∈ R}.

Proof. Assume that f is a solution to the Dirichlet problem, Lf = g. For a connected
subgraph A, the degree vector d is the only left eigenvector of L with eigenvalue 0. This
means that dT g = dTLf = 0. Also for a vector g orthogonal to the nullspace of L, the
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equation Lf = g has at least one solution. The constant vector 1n is the right eigenvector
of L with eigenvalue 0 and multiplicity one. This shows that f∗ = L†g is one solution of the
equation, and the set {f |f = f∗ + a1n; a ∈ R} indicates the set of all solutions. 2

3.9.7 Electrical networks

In this section we review the basic concepts in electrical networks and the connection of these
concepts to random walks on graphs. It turns out that many different problems related to
random walks are in analogy to problems in electrical networks. These analogy problems are
sometimes more intuitive and easier to understand. The Dirichlet problem has an interesting
analogy in electrical networks, which is discussed in Section 3.9.7.

Flow on a graph

A flow on a graph is a function i = (iuv) defined on the graph edges such that iuv = −ivu.

The net in-flow of a vertex v is defined as
−→
iv =

∑
u∼v ivu. The net out-flow of a vertex is

defined accordingly
←−
iv =

∑
u∼v iuv = −−→iv . It is easy to verify that the total net in(out)-flow

of a graph G is 0,
∑
v∈V
−→
iv = 0. A vertex s is called a source if

−→
is > 0, and a vertex t is called

a sink if
←−
it > 0. We call the remaining nodes with in(out)-flow zero as internal nodes.

An interesting set of flow functions are the ones that run from a single source vertex s to
a single sink vertex t. Every other node v in the graph has the flow conservation property:∑
u∼v ivu = 0. We call such a flow as a s-t flow. The total in-flow of a network is zero, which

shows that
−→
it = −−→is . When

−→
is = 1, the flow is called a unit s-t flow. If we denote the

vertex-edge incidence matrix of the graph by Q, every unit s-t flow satisfies Qi = (es − et).

Electrical flow in a network

From a graph G, build an electrical network where each edge e has resistance re = 1/we.
Connect the node s to a 1-Amper current source and the sink node t to the ground (set its
voltage to 0). Then we will have a unit s-t flow in the network, and the out-flow of vertex t
is 1. The unit s-t electrical flow i∗ has a unique property that distinguishes it from the set
of all unit s-t flows: We can assign a voltage(potential) function v : V → R such that Ohm’s
law holds for every edge:

v(a)− v(b) = iabrab.

Proposition 3.19 Assume i is a s-t flow and a voltage(potential) function v on nodes satisfies
the Ohm’s law on every edge. Then v is harmonic on V \ {s, t}.

Remark 3.20 If v is harmonic on vertex x, it satisfies both ∆v(x) = 0 and Lv(x) = 0. This
is because ∆ = D−1L. Note that the condition ∆v(x) = g(x) is equivalent to Lv(x) = dxg(x).

Another characteristic of an electrical flow is that it minimizes the power dissipated in the
network

Pow(i) :=
∑

e=(a,b)∈E

(
v(a)− v(b)

)
iab, (3.21)
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or equivalently

Pow(i) =
∑

e=(a,b)∈E

rabi
2
ab =

∑
e=(a,b)∈E

(
v(a)− v(b)

)2
rab

. (3.22)

It is easy to show that these two characteristics are equivalent: if a unit s-t flow i minimizes
the power, then we can assign a voltage function v such that the Ohm’s law holds. If for a
unit s-t flow i, we could find a corresponding voltage function v, then the flow i minimizes
the power dissipated in the network.

Effective resistance: The effective resistance (or resistance distance) R(s, t) between two
vertices s and t in the network is the resistance measured between s and t. We can replace the
network between s and t by a single resistor with resistance R(s, t). The resistance distance
can be computed by minimizing the energy dissipated in the network (Equation 3.21) from a
unit flow:

R(s, t) = min
{∑
e∈E

rei
2
e

∣∣∣ i = (ie)e∈E unit flow from s to t
}
. (3.23)

We can intuitively check the correctness of this formula. A unit electrical flow from s to t is
the unit s-t flow that minimizes the power dissipation Pow(i). Now replace the network with
an equivalent resistor between s and t with resistance R(s, t). Then we have

Pow(i) = R(s, t)
−→
is

2 = R(s, t).

The resistance distance can also derived from the energy dissipation function in Equation 3.22:

C(s, t) = min
{ ∑
e=(u,v)

(v(a)− v(b))2

re

∣∣ v(s)− v(t) = 1
}

(3.24)

Then R(s, t) = 1/C(s, t). Again we can intuitively check the correctness of this formula.
Replace the network with an equivalent resistor between s and t with resistance R(s, t). As
we have a unit voltage drop,

C(s, t) = Pow(i) = (v(s)− v(t))2/R(s, t) = 1/R(s, t).

An alternative method for finding the effective resistance R(s, t) is the following: Assume
that the current 1 is injected into the vertex s and consequently goes out from vertex t. The
voltage vector v satisfies

Lv = es − et. (3.25)

This equation has many solutions, but they all differ by a constant vector. This can also
verified using the fact that L has eigenvalue 0 with multiplicity 1 and constant eigenvector
(see also Section 3.9.6). If v∗ satisfies Equation 3.25, then R(s, t) = v∗(s) − v∗(t). One such
solution is v∗ = L†(es − et), so

R(s, t) = (es − et)TL†(es − et). (3.26)

Another way to find the solution of Equation 3.25 is by setting the voltage at node t to 0. If
we set A = V \ {t}, then the solution to Equation 3.25 also satisfies LA,AvA = (es)A. As the
matrix LA,A is non-singular, the last equation has a unique solution v∗A = L−1

A,A(es)A and

R(s, t) = v∗s − v∗t = v∗s = L−1
A,A(s, s). (3.27)
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Dirichlet problem and electrical networks

The Dirichlet problem has an interesting interpretation in the context of electrical networks.
Using the notation from Equation 3.13, the boundary function f̄ can be interpreted as con-
necting each boundary vertex v ∈ ∂A to a voltage source f̄(v). Also the function g can be seen
as connecting each internal node v ∈ A to a current source with in-flow g(v). The problem is
then to find the induced voltages on nodes in A.

Proposition 3.21 We are given a resistive network G = {V,E}. The graph vertices are
divided into two sets V = A∪∂A, where every vertex in ∂A is connected to at least one vertex
in A. Each vertex v ∈ ∂A is connected to a voltage source f̄(v) and each vertex v ∈ A is
connected to a current source with in-flow g(v). Then the voltages of nodes in A are determined
by solving {

Lf(x) = g(x) x ∈ A
f(x) = f̄(x) x ∈ ∂A.

(3.28)

This problem is equivalent to the Dirichlet problem{
∆f(x) = ḡ(x) x ∈ A
f(x) = f̄(x) x ∈ ∂A

(3.29)

with ḡ = D−1
A,Ag.

Proof. It simply follows from the Ohm’s law. 2

Resistance and commute time

The following theorem states the relation between the resistance distance and the commute
time, first proved by Chandra et al. (1989).

Theorem 3.22 For any two vertex s and t, the commute time equals to

C(s, t) = 2 vol(G)R(s, t).

The next proposition relates the resistance distance and the frequency of return to the source
before hitting the sink vertex:

Proposition 3.23 Denote the number of times a random walk starting from s returns to s
before visiting t by ns,t. Then

• ns,t = R(s, t)× ds.

• ns,t × dt = nt,s × ds
Proof. Part a) By the mean of Proposition 3.21, the resistance distance can be written as
R(s, t) = f(s)− f(t) where f is an arbitrary solution of the Dirichlet problem with an empty
boundary: 

Lf(s) = 1

Lf(t) = −1

Lf(x) = 0 x ∈ V \ {s, t}
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This equation has many solutions, all differ by a constant vector. We can fix to one of them
by setting f(t) = 0. If we set t as a single boundary node, then the condition Lf(t) = −1
will hold automatically. The reason can be seen from electrical network interpretation: the
total in-flow of the network is zero and Lf(s) = 1. The vertex t is the only vertex that has a
non-zero out-flow, so Lf(t) = −1 . This means that the resistance distance can be written as
R(s, t) = f(s) where f is the solution of following Dirichlet problem

{
Lf(x) = es(x) x ∈ V \ {t}
f(t) = 0

or equivalently

{
∆f(x) = d−1

s es(x) ∈ V \ {t}
f(t) = 0

Now using Proposition 3.17 shows that R(s, t) = ns,t/ds.

Part b) If we repeat the procedure in Part a by setting f(s) = 0, we get R(s, t) = nt,s/dt.
Putting together, we have ns,t × dt = nt,s × ds which finishes the proof. 2

This proposition helps us in analyzing the recurrence of a random walk. Consider a random
walk on an infinite graph that starts from vertex s. Connect all vertices outside a “ring” with
(shortest path) distance r from s together and call it t. As r goes to infinity, ns,t will converge
to the expected number of returns to the origin. This means that the effective resistance
between s and infinity Reff(s) equals to the expected number of returns to the origin divided
by ds. On the other hand, Theorem 3.11 shows that a random walk is recurrent if and only if
the expected number of returns to the origin is infinite. So we proved the following theorem:

Theorem 3.24 A random walk is recurrent if and only if the resistance between a vertex and
infinity is infinite.

3.9.8 p-harmonic functions

A function f : V → R defined on vertices of a graph G = {V,E} is called p-harmonic (p > 1)
on A ⊂ V if for every x ∈ A,∑

v:v∼x
Px,v|f(x)− f(v)|p−2

(
f(x)− f(v)

)
= 0,

or equivalently ∑
v:v∼x

Px,v|f(x)− f(v)|p−1 sgn
(
f(x)− f(v)

)
= 0.

In the first definition, we make a convention that |f(x)− f(v)|p−2
(
f(x)− f(v)

)
= 0 for f(x) =

f(v).

Accordingly, the p-Laplace operator on G is defined as

∆pf(x) =
∑
v:v∼x

Px,v|f(x)− f(v)|p−2
(
f(x)− f(v)

)
.
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Discrete p-Dirichlet problem: Given a function g defined on A and the boundary value
function f̄ defined on ∂A, the discrete p-Dirichlet problem is to find a function f on graph
nodes such that {

∆pf(x) = g(x) x ∈ A
f(x) = f̄(x) x ∈ ∂A.

(3.30)

Similar to the case p = 2, the p-harmonic extension problem is defined accordingly:{
∆pf(x) = 0 x ∈ A
f(x) = f̄(x) x ∈ ∂A.

(3.31)

The p-harmonic extension problem for p 6= 2 is a non-linear system of equations and we can
not use the standard algorithms such as Gaussian elimination to solve this set of nonlinear
equations. Alternatively, we can solve an equivalent optimization problem which minimizes
the p-Dirichlet energy function

minimize Ep(f) =
∑
x∼y

Px,y|f(x)− f(y)|p

subject to f(x) = f̄(x), x ∈ ∂A.

This optimization can solved “efficiently” for p ∈ {1, 2,∞}. For other values of p, we need
to use conventional convex optimization methods such as gradient descent or quasi-Newton
methods.

The Maximum principle (see Proposition 3.12) also holds for the p-harmonic extension prob-
lem:

Proposition 3.25 In finite graphs, every non-constant p-harmonic function (p > 1) achieves
its minimum and maximum at the boundary nodes.

Proof. The maximum of a function can not be attained at a node on which it is p-harmonic,
unless it gets the same value at its neighbors. The same holds for the minimum. 2

3.9.9 p-resistance: an electrical network interpretation

The p-resistance can be interpreted as a nonlinear resistance in an electrical network. Consider
the p-resistor as a type of resistor that for voltage difference v(a)−v(b) lets through the current
iab with

v(a)− v(b) = rab|iab|p−1 sgn(iab). (3.32)

Consider a network of p-resistors with unit current from source s to sink t. Similar to the
linear resistor networks, one can determine the voltages in this network by writing the flow
conservation properties for each node, and reformulating it based on voltages

iab =
1

rab
|v(a)− v(b)|1/p−1 sgn

(
v(a)− v(b)

)
.

Then we end up with the following equations
∆qv(x) = 0 v ∈ V \ {s, t}
∆qv(s) = 1

∆qv(t) = −1,

(3.33)
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with q = 1 + 1/(p − 1). This is the q-Dirichlet problem (q is the dual of p, 1/p + 1/q = 1)
with empty boundary set. If v∗ is a solution of this problem, then the p-resistance between
s and t is equal to Rp(s, t) = v∗(s) − v∗(t). The solution v∗ is unique up to addition with a
constant vector (see Proposition 3.4).

An alternative method for computing the p-resistance is to minimize the power dissipation
function, written as a function of currents

Powp(i) :=
∑

e=(a,b)∈E

(
v(a)− v(b)

)
iab =

∑
e∈E

re|ie|p

over all unit flows from s to t. Then replace the whole network with an equivalent resistor
Rp(s, t) to get Powp(i) = Rp(s, t)|is,t|p = Rp(s, t). In another word, we can find the p-
resistance between s and t by solving

Rp(s, t) = min
{∑

e∈E re|ie|p
∣∣ i = (ie)e∈E unit flow from s to t

}
, (3.34)

which was used as the definition of the p-resistance distance in Section 3.2.

Another alternative for finding the p-resistance is to minimize the power dissipation function,
written as a function of voltages

Rp(s, t) = Powp(i) :=
∑

(a,b)∈E

(
v(a)− v(b)

)
iab =

∑
(a,b)∈E

|v(a)− v(b)|1+ 1
p−1

r
1
p−1

ab

,

over all unit flows from s to t. This formulation is related to the Lagrange dual of Equation
3.34 and can be written in an optimization form

min
{ ∑
e=(a,b)

|v(a)− v(b)|1+ 1
p−1

r
1
p−1

ab

∣∣ v(s)− v(t) = 1
}
.

For more details on deriving the Lagrange dual of Equation 3.34, see also Proposition 3.4.
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Part II

Local Distances in Graphs
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Chapter 4

Local clustering in graphs

4.1 Introduction

Graph clustering is an omnipresent problem in machine learning. Given a particular graph,
the goal is to find “clusters” or communities in the graph such that the vertices in the same
community are highly connected to each other and only sparsely connected to vertices outside
of their community. A big problem in practice is that graphs often have an enormous size,
which makes the application of standard graph clustering algorithms such as spectral clustering
infeasible.

A promising alternative is represented by the class of local clustering algorithms. Here the goal
is not to find a global clustering of the whole graph, but to find “the cluster” of a particular
vertex of interest. For example, in social network analysis one might want to investigate the
community a particular person belongs to. The advantage of a local clustering algorithm is
that we never consider the graph as a whole. All computations are local in the sense that
we only need to have access to and operate on a small “local” part of the adjacency matrix,
which leads to efficiency in space and time complexity of the algorithm. The price we pay is
that we cannot guarantee that the cluster found by the algorithm is a true, global cluster of
the graph; we can only say that it looks like a good cluster based on the local information we
have seen.

Recently there has been a lot of interest in local algorithms in the data mining and machine
learning community. One of the most popular local clustering algorithms is the Nibble algo-
rithm described in Spielman and Teng (2008). Given the vertex v of interest, one considers a
random walk (RW) on the graph that starts at vertex v. This random walk is biased in the
sense that it only jumps along “important” edges, unimportant edges (with low weight) are
ignored. The random walk runs until a certain stopping criterion is met, for example when the
conductance of the set of visited vertices gets large enough. The set of visited vertices is then
considered as a local cluster around v. For further developments based on the nibble algorithm
see Andersen et al. (2006) and Andersen and Peres (2009). Random walk based clustering
algorithms are used in applications like image segmentation (Grady, 2006, Pan et al., 2004).

The reason why the random walks is a well-suited tool for local clustering is obvious: they
locally explore the neighborhood of a vertex and with reasonably high probability stay inside
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a cluster rather than transitioning to a different cluster. Moreover, they can be implemented
with low space complexity.

We suggest to use a novel kind of random walk for local exploration, called multi-agent random
walk (MARW). Consider a “agents”, each agent moving like an individual random walk on the
graph. The agents are tied together by a “rope” of length l. As long as the distance between
all agents is smaller than l, all of them can move independently from each other. However,
they are constrained such that the distance between any two agents is never larger than l.

The reason why the MARW is advantageous for local clustering is that the probability of
transitioning between two different clusters is significantly reduced in the MARW compared
to the standard RW. Consequently, the MARW discovers tighter clusters than the standard
RW.

To the best of our knowledge, the idea of studying a MARW is completely new. Only after
we had started working on this question, a group of mathematicians submitted two papers
on arxiv that study a similar object called “spider walk”, but from a completely different
perspective (Gallesco et al., 2009, 2010). Another related paper is the one by Alon et al. (2008),
which has an opposite intention: they want to construct an alternative to the standard random
walk that travels faster between different clusters. To this end, the authors run several random
walks independent from each other. In this way one can speed up the global exploration of
large graphs. This setting can also be covered in our model, namely as the extreme case of
having rope of length infinity. See below for further discussion.

The goal of this chapter is to introduce the multi-agent random walk and study some of its
basic properties. We present several theoretical approaches that show that if we consider a
MARW with a agents coupled by a small rope length l, then the probability of transitioning
between different clusters decreases with the power of a: if this probability is p for the standard
RW, it is about pa for the MARW. We show in experiments on toy data and on real world
data that MARWs are well-suited for local clustering indeed. In particular, they outperform
the state-of-the-art algorithms by Spielman and Teng (2008) and Andersen et al. (2006). In
general, we believe that the technique of multi-agent random walk can be very fruitful in
several domains of data mining and machine learning.

4.2 The multi-agent random walk

Let G = (V,E) be a weighted graph with weighted adjacency matrix W = (wij)ij . The graph
can be directed or undirected. Denote the degree of vertex vi by di =

∑
j wij . Let the degree

matrix D be the diagonal matrix with entries di. The simple RW on G is defined as the
random walk with transition probabilities P = D−1W .

To introduce the MARW we need to define a distance function dist : V × V → R on the
original set of vertices. When working on geometric graphs, that is, the vertices have an
interpretation as points in some metric space, we use the distance in the underlying space as
distance between vertices. Otherwise we use the shortest path distance.

Formally, a MARW with a agents and rope length l on graph G can be defined as a simple
random walk on the state space S consisting of all unordered valid a-tuples of the n original
vertices (possibly with repeated entries). We call an a-tuple valid if the distance between
any two vertices is not greater than l. The probability of transitioning between valid a-tuples
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s = (s1, ..., sa) ∈ S and t = (t1, ..., ta) ∈ S is defined as

M(s, t) :=
∑
σ∈Sa

a∏
i=1

P (sσ(i), tj)1(dist(sσ(i), tj) > l).

Here, σ runs over the set Sa of all permutations of a elements. Note that the definition is fine
for the purpose of defining the MARW, but the matrix M is impractical to work with: in the
worst case it has O(n2a) elements. Moreover, the permutations are hard to track.

To implement the MARW in practice there are several natural variants: the agents can walk
one after the other or all at the same time, and they can be allowed to sit on the same vertex
or not. Intuitively, in natural graphs these variants will behave similarly, even though they
might behave slightly different in certain pathological examples. However, they have different
complexities.

In this chapter we focus on the most natural construction: agents move at the same time and
are allowed to sit on the same vertex. Assume we start with a agents in locations v1, ..., va. A
step of MARW consist of a independent simple random walks, one for each agent. Then we
check if the new vertices still satisfy the condition on the rope length. If yes, we accept the
step, otherwise we discard it. If the out-degree of each vertex is rather small, we would not
discard too many steps in practice.

In applications with large degree vertices, we suggest to use the MARW variant where agents
do not move together, but one after the other. Here we randomly select one agent at a time,
suggest a new position for this agent by a standard random step and accept it if the rope
length condition is satisfied. Note that much less positions are rejected in this version than
in the version where all agents move at the same time. It can be seen that both variants of
the MARW have similar properties, but the one where we move all agents at the same time
is easier to analyze theoretically. This is the case we consider in the rest of this chapter.

If the vertices are not embedded in an ambient space, the shortest path distance is the natural
distance that can be used for dist. Checking the condition of the rope length is tractable
as we usually work with small rope lengths l and only need to compute the shortest paths
between vertices in small neighborhoods.

The MARW has two parameters: the number a of agents and the rope length l. Much of the
following analysis is devoted to understanding the influence and the interplay of these two
parameters. We are going to characterize the behavior of the MARW by studying how easily
it travels between different clusters. We provide several arguments that, for reasonably small
a and l, the MARW behaves like a “power” of the original RW.

For example, we will see that given a neighborhood graph on a sample from some underlying
density g, the MARW with a agents and reasonably small rope length l behaves like a random
walk on a sample drawn according to ga. As the peaks of the density g are amplified in ga

and the valleys get even deeper, the likelihood of transitioning between different clusters of
the distribution becomes smaller for the MARW than for the original RW. This means that
clusters are “more expressed” in the MARW than in RW.

Let us introduce one concept that will be used many times in the rest of the chapter: the
MARW-graph. We have seen above that a MARW on a graph G can be described as a Markov
chain on the product space of the vertices of G. To compare the properties of the standard
random walk RW and the MARW, it is often convenient to consider the MARW as a simple
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Figure 4.1: (a) A simple directed graph. (b) Corresponding MARW graph for two agent
random walk with l = 0. (c) Corresponding MARW graph for two agent random walk with
l = 1. Initially the two agents are placed in two neighbor nodes. Unnamed nodes correspond
to center of masses and the self loops are omitted to keep the figures simple.

random walk on some graph G′. For example, it is easy to see that for rope length l = 0 and
a agents the MARW on G coincides with a simple random walk on the graph G′ that has the
same vertices as G, but the edge weights wij are replaced by waij (see Section 4.3.1). More
intricate constructions can be made for the case l > 0. In the rest of the chapter, whenever
we are able to construct a graph G′ such that the simple random walk on G′ coincides with
the MARW on G, we will call G′ the MARW-graph.

4.3 How the number of agents affects the mixing time

In this section we investigate how the MARW’s likelihood to jump outside a cluster behaves
in dependency of the number of agents.

4.3.1 Intuitive example: a chain graph

We would like to start this section by considering an intuitive example of MARW on a directed
and weighted chain graph as in Figure 4.1a. We choose p < 0.5. The graph consists of two
clusters on the right and the left side of the chain, and a boundary vertex B in the middle.
Inside each region, the transition probabilities are the same.

For simplicity let us start with case l = 0. Here we have a agents that need to move simul-
taneously. The states of the MARW-graph G′ coincide with the vertices of G. Assume all
agents sit on vertex i. If P (i, j) denotes the probability that one individual random walker
goes along edge (i, j), the probability that a agents do it simultaneously is P (i, j)a. Moreover,
there is a considerable probability that the a agents do not agree in which direction they want
to walk, namely 1−

∑
j P (i, j)a. If we ignore these self-loops, then the loop-free MARW with

rope-length 0 can be interpreted as a simple random walk on the graph G with transition
probabilities P (i, j)a. In particular, the MARW-graph is just the original graph, but with
edge weights taken to the power of a (see Figure 4.1-b). Thus, whenever there is a choice of
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going in the direction of high or low edge weights, the MARW will choose the high weight
edge even more often than the standard RW.

We now want to argue that in the case of small but positive l, the MARW behaves similar
to the case l = 0. To see this, consider how the center of mass of the agents moves. If all
agents move in the same direction, the center of mass does the same. Intuitively, when l > 0
we allow the agents to explore the vertices around the mass center. By increasing l, a bigger
region will be allowed to get explored. We will now show that if the center of mass is not too
close to the boundary (compared to l) and there is a “drift” away from the cluster boundary,
then the MARW tends to follow this drift. Consequently, it tends to move away from the
boundary towards the center of a cluster.

Consider the same graph as above with l=1 and a=2. Assume that both agents are in the
right cluster. Each agent jumps with probability p to the left and probability 1 − p to the
right. Consider the center of mass of the two agents. Depending on the movement of agents
it will stay, go to the right or go to the left. If both of agents go to the right, which happens
with probability (1− p)2, the center of mass will also move to the right. Similarly it moves to
the left with probability p2. It stays on the same vertex when the two agents want to move in
different directions. They either change their place (with probability p(1−p)) or do not move
because of violating the condition on l (with probability (1− p)p). Thus, the probability that
the mass center stays at the same place is 2p(1− p). This implies that the center of mass of
the two agents moves like a simple random walk on another graph G′, namely the graph whose
vertices correspond to the “mid point” between two consecutive vertices (Figure 4.1-c). In G′

we have squared transition probabilities, except for the vertices near to the cluster boundary.

This example shows that, compared to the original random walk, the probability that a MARW
walks in a region of low density is the square of the probability of the original random walk.
Increasing l will increase the size of the boundary, but otherwise the argument will work
as well. If we consider a > 2 agents, one can show in the same example that the ratio of
the transition probabilities away from / towards the cluster boundary change from 1−p

p to

( 1−p
p )O(a).

4.3.2 More rigorous: bounding the spectral gap

The main reason that we introduced the MARW is because we want to increase the probability
of staying within a community. One way to treat this formally is to analyze the spectral gap
of the graph, in particular the second eigenvalue λ2 of the transition matrix. This eigenvalue
is both a measure for how clustered the graph is (for example, it can be used to bound the
Cheeger cut) and can also be used to bound the mixing time of the random walk. The smaller
λ2, the more clustered the graph is, and the larger the mixing time is. Thus, if λ2 of the
MARW decreases compared to the standard random walk, then we can conclude that the
MARW takes longer to travel between different clusters.

In this section we treat the special case where l = 0. Our analysis will be mainly useful
in weighted graphs. As we have already seen above, for l = 0 the MARW-graph G′ has the
same vertices as G but with edge weights raised to the power of a. We now want to compare
the spectral gaps of G and G′. For a fair comparison we need to ensure that we consider
the MARW without self-loops (otherwise the mixing time of the MARW increases trivially as
the random walk often stays at a vertex without moving). As it is hard to argue about the
spectral gap itself, we will compare lower bounds on the spectral gap.
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These lower bounds will be provided by means of the Poincaré inequality (see Diaconis and
Stroock (1991) for a general introduction to this technique). The outline of this technique is
as follows: for each pair of vertices (X,Y ) in the graph we need to select a “canonical path”
γXY in the graph that connects these two vertices. Then we need to consider all edges in
the graph and investigate how many of the paths γXY traverse this edge. We need to control
the maximum of this “load” over all edges. Intuitively, a high load means that many paths
need to traverse the same edges, that the graph has a bottleneck. Formally, the spectral gap
β is related to the maximum average load b as follows (cf. Corollary 1 and 2 in Diaconis and
Stroock (1991); we adapted their statements to the case of weighted graphs):

β ≥ vol(G)wmin
d2

max|γmax|b
, (4.1)

where di =
∑
j wij is the weighted degree, vol(G) =

∑
i di denotes the volume of the graph,

wmin the minimal edge weight, dmax the maximal degree and b is the maximal load defined
by

b := max
{e∈E}

|{γXY
∣∣ e ∈ γXY }|.

Here |γmax| is the maximal number of edges on the canonical paths. We will now compare the
Poincaré bounds on the spectral gaps of G and G′.

Theorem 4.1 (Spectral gap of the MARW; l = 0) Consider the lower bound on the spec-
tral gap provided by the Poincaré technique. If this bound is u for the standard RW, then it is
uCa−1 for the MARW with a agents and rope length l = 0. In general, C is a constant with
C ≤ 1 and for weighted graphs with non-uniform weights, it always satisfies C < 1.

Proof. As explained above, the standard random walk and the MARW can both be seen as
random walks on the same graph, just the edge weights are different. For this reason, we can
use the same set of canonical paths in both graphs (and we do not need to specify it explicitly
in our proof). In particular, the maximal load b and the maximal path length |γmax| coincide
in both graphs. What is different for both random walks are the minimal and maximal weights
and degrees. Denoting the various quantities for G by normal letters and the corresponding
ones of the MARW with a tilde on top, we obtain the following relations:

w̃min = wamin. (4.2)

d̃max ≤ damax. (4.3)

vol(G̃) =
∑
e∈E

w̃e =
∑
e∈E

wae

≥
(
∑
e∈E we)

a

|E|a−1
=
vol(G)a

|E|a−1
. (4.4)

β̃ ≥ vol(G̃)w̃min

d̃2
max|γmax|b

≥ vol(G)awamin
|E|a−1d2a

max|γmax|b

= β(
vol(G)wmin
|E|d2

max

)a−1. (4.5)

64



If we show that

C :=
vol(G)wmin
|E|d2

max

!
≤ 1, (4.6)

then the bound for spectral gap of MARW will exponentially decrease with a. Indeed,

vol(G)wmin = wmin
∑
e

de ≤ wmin|E|wmax ≤ |E|d2
max.

2

This proposition shows that for a MARW with a agents on a weighted graph, a lower bound
on the spectral gap will decrease with “the a-th power” of defined C. In particular, as the
gap of the standard random walk is always smaller than 1, this means that the bound on the
spectral gap of the MARW is a power of a smaller than the gap in the original graph. Even
though this does not prove that the spectral gap itself has the same behavior, it is a strong
indication that this might be the case. In this case, we can conclude that the “bottlenecks”
in the MARW are much harder to overcome than the ones in the original random walk.

Note that if we consider unweighted graphs (that is wij ∈ {0, 1})), then the special case of
the loop-free MARW with l = 0 corresponds to the standard random walk. This just shows
that in this case, the technique of bounding the spectral gap the way we do it is suboptimal
and leads to the trivial result that both gaps are bounded by the same quantity.

In case where l > 0 but l is still small we expect a similar behavior as for the case l = 0:
the mixing time will be much smaller than the one for the original random walk. Only when
l becomes bigger, this behavior starts to change. On the other end, when l tends to ∞, the
effect is turned around: the random walk mixes much faster than the original random walk,
see Alon et al. (2008) and the next section.

4.4 Analyzing MARWs on ε-graphs

In this section we analyze the case of random geometric graphs, in particular ε-graphs. These
graphs are widely used in data mining and machine learning, and the effect of replacing the
RW by the MARW can be visualized in a very intuitive manner. Assume we are given a
sample of points drawn i.i.d. from some underlying probability distribution with density f on
Rd. The ε-graph takes these points as vertices and connects two points by an unweighted edge
if the points have distance at most ε from each other. Intuitively, the ε-graph is supposed
to show the structure of the underlying probability density f . As an example consider the
density in Figure 4.2d. It consists of two clearly separated high density regions corresponding
to two clusters. A sample of points from this density can be seen in Figure 4.2a and expresses
the cluster structure as well. If we now build an ε-graph on this sample (with a reasonable
choice of ε, say ε = 1), then this graph consists of two distinct clusters as well: each cluster
has many connections inside the cluster and only few connections to the other cluster.

As we are going to explain now, the advantage of the geometric setting is that replacing
a standard RW by a MARW can be interpreted as changing the cluster structure of the
underlying density. We will see that for reasonably small l, replacing the standard RW by the
MARW has a similar effect as replacing a random walk on n points drawn from the original
density g by a random walk of O(ñ) points drawn from density ga. Depending on the structure
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Figure 4.2: Density function and samples from a mixture of gaussians and the corresponding
MARW’s.

of graph, ñ can vary from n to na. In particular, the peaks of ga will be much sharper than
the ones of g, leading to a much lower probability of transitioning between different modes of
the underlying distribution.

For the ease of presentation we start with the case a = 2 and l = ε. Here we define the
distance between two vertices in the metric of the underlying space (this corresponds to l = 1
if the distance between two vertices in the graph is measured by the shortest path distance).
The general case will be treated later.

Let us describe the MARW-graph G′ for the special case. G′ will contain two types of vertices:
vertices corresponding to the situation that the two agents sit on the same vertex of G, and
vertices corresponding to the situation that the two agents sit at the two ends of an edge of
G. We denote the set of first type vertices by U1 = {ux,x | x ∈ V } and the second type of
vertices by U2 = {ux,y | ex,y ∈ E}. Two vertices ux1,y1 and ux2,y2 are connected by a directed
edge in G′ whenever it is possible to move the two agents from {x1, y1} to {x2, y2} in one
step in the graph G. The weight of an edge in G′ will be defined as the probability that the
MARW performs the corresponding step on G. Note that we define G′ without self-loops. As
the original graph G is unweighted, it is easy to see that the weights of all outgoing edges of a
vertex ux,y are identical. We can represent G′ as a geometric graph by identifying each vertex
ux,y in G′ with a point in Rd, namely with the center of mass of x and y. For an example
consider Figure 4.2. We sampled 110 random points from a mixture of two Gaussians with
different covariances in 2 dimensions and built an unweighted kNN-graph with k = 15 on
this sample. The sample itself is shown in Figure 4.2a. Now consider a MARW with a = 3
and l = 1 on G (and shortest path as distance function). We plotted the vertices of the
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corresponding MARW-graph G′ in Figure 4.2b (the vertex ux,y,z is represented by the center
of mass of x, y, z).

We now compare the geometric properties of the two graphs G and G′. Consider the ball B
of radius ε/2 centered at a particular point x ∈ G. Denote the number of sample points in B
by k. By definition, all sample points in B have distance at most ε to each other and thus
are connected in G. The graph G′ will have k type-1 vertices corresponding to the points in
B, and k(k − 1)/2 type-2 vertices corresponding to pairs of points in B. This shows that the
number of vertices in B increases from O(k) in G to O(k2) in G′.

Now recall that our sample points have been sampled from an underlying density f . Assume
that ε is small enough such that the density on an ε-ball can be considered approximately
constant. Consider two ε-balls B1 and B2 centered x1, x2. By the definition of a density, the
numbers of sample points in B1 and B2 are roughly related by

# vertices of G in B1

# vertices of G in B2
≈ f(x1)

f(x2)
.

What would be a density f ′ corresponding to the vertices in G′? As we have seen above, when
k is the number of vertices of G inside B, then the number of vertices of G′ inside B is of the
order k2. Hence we deduce

f ′(x1)

f ′(x2)
≈ # vertices of G′ in B1

# vertices of G′ in B2
≈ f(x1)2

f(x2)2
.

Consequently, G′ can be interpreted as a geometric graph based on the underlying density
f ′ = f2. Squaring a density leads to much sharper peaks in the modes of the distribution
and deeper valleys between the modes, that is the cluster structure is much better expressed.
For an illustration, compare the densities in Figures 4.2d (original density) and 4.2e (density
corresponding to a MARW with small rope length). It is clear that a random walk on a sample
of f ′ (corresponding to the MARW on G) has a much harder time than the original RW on
a sample of f (corresponding to the RW on G) to travel from one cluster to the other one.
Additionally, the number of vertices in G′ corresponds to |V |+ |E|, that is, it is of the order
O(|E|) rather than of the order O(|V |) as in the original graph G. This effect can be seen in
Figures 4.2a (vertices of G) and 4.2b (vertices of G′).

In case of general a > 1 and rope length l = ε a similar argument shows that the
distribution of vertices in G′ is raised to the power of a: denoting the number of cliques of size
t by Vt, the number of vertices in G′ is

∑a
i=1

(
a−1
i−1

)
|Vi|. To see this, note that the number of

placements for a agents on i vertices with at least one agent at each vertex is
(
a−1
i−1

)
. Depending

on the exact numbers |Vi|, the number of vertices in G′ can vary between O(n) to O(na).

The above argument still holds if the rope length l is larger than ε. In this case, however,
we can no longer argue about the densities f and f ′ themselves, but rather about their
smoothed counterparts obtained by convoluting f and f ′ with the function that is constant
on an l-ball. Denote the characteristic function of a ball with radius l and centered at x0 by
χB(x0,l):

χB(x0,l)(x) =

{
0 if d(x, x0) > l

1 otherwise.
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Then the density of G′ satisfies

f ′(x1)

f ′(x2)
≈

(
∫
f(t)χB(x1−t,l)dt)

a

(
∫
f(t)χB(x2−t,l)dt)

a
.

That means G′ can be interpreted as a geometric graph based on the underlying distribution

f ′(x) ∝ (f(x) ∗ χB(x,l))
a, (4.7)

where ∗ is the convolution operator. For small l these convolutions will be reasonably close
to the original density functions, and lead to the same intuition as above. However, as soon
as l gets very large (for example, l is as large as the distance between different modes of the
underlying distribution), then the interpretation changes completely. In this case, the density
f ′ is smoothed so heavily that the different modes are not visible any more and the distribution
becomes unimodal in the extreme case. Then, the random walk on G′ mixes very fast as there
are no bottlenecks any more, and transitions easily between points corresponding to different
clusters of the original density f . In this case, we completely changed the behavior of the
MARW: instead of mixing slower than the original RW it now mixes much faster (and this is
the case considered in Alon et al. (2008)).

This effect is demonstrated in Figure 4.2. Plot 4.2f shows the smoothed density f ′. As we
can see, the clusters have vanished completely and are replaced by a unimodal distribution.
The same effect can be seen for the points of the MARW-graph G′ in Figure 4.2c.

These insights can be used to understand the choice of l. There is a trade-off between two
goals. The rope length has to be considerably smaller than the diameter of the cluster and
the distance between different clusters we want to find (otherwise the smoothed distributions
loose their cluster properties as in Figure 4.2f). On the other hand, it should be as large as
possible in order to allow G′ to have many vertices (otherwise G′ will look almost as G, and
the effect of sharpening the peaks by squaring the distribution will not occur).

While the above argument was for ε-graphs, one can observe similar effect on other types
of random geometric graphs such as kNN graphs or Gaussian neighborhood graphs. By a
similar analysis one can also discuss the behavior of a MARW on a general, unweighted
non-metric graph. Even though we do not have a geometric interpretation in terms of an
underlying distribution, the effect of the rope length and the trade-off between the different
aims when choosing a good rope length is the same as described above.

4.5 Experiments

Here we demonstrate different aspects of the MARW in simulations and experiments and
compare it to other algorithms from the literature. By using expensive partitioning algorithms,
the authors of Leskovec et al. (2008) found that even in massive graphs the typical clusters
have a relatively small size. This shows that in real world datasets one should look for clusters
in the range of hundreds to thousands of nodes. To validate local clustering algorithms it is
thus enough to study graphs up to a couple of thousand vertices, which is what we do in our
experiments.

Whenever we know the true cluster labels in a data set, we measure the performance of a local
clustering algorithm by the following procedure. We call the starting vertex xs, the true label

68



2 4 6 8 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

l (Rope length)

ρ

 

 
a =2

a = 3

a=4

(a) Effect of rope length l on the performance
measure ρ

2 4 6 8 10

0.7

0.75

0.8

0.85

0.9

0.95

1

a (Number of agents)

ρ

 

 

l=4

l=5

l=6

l=7

(b) Effect of number of agents a on the
performance ρ

2 4 6 8 10
100

200

300

400

500

600

l (rope length)

N
u
m

b
e
r 

o
f 
s
te

p
s

 

 

a=2

a=3

a=4

(c) Influence of rope length on the speed of
MARW

Figure 4.3: Influence of rope length l and number a of agents on the MARW

of vertex x by y(x) and the set of visited vertices by S. Then we define r as the ratio

r =
|{x | y(x) = y(xs)}|

|S|
,

which is the fraction of the visited points belonging to the same cluster as xs.

4.5.1 Effect of rope length and number of agents

We sample 200 points from a mixture of Gaussians (similar to Figure 4.2a) in R2 and build the
kNN graph for k = 10. We run the MARW with a = [2, 3, 4] for rope lengths in the interval
[1, 10]. We allow the MARW to take 200 steps and record the set of visited points.

In our first experiment we fix the number of agents and investigate the effect of the rope
length. We say that a MARW is accepted if r ≥ 0.9 . We repeat this procedure 100 times
with random starting vertices. The performance measure ρ is defined by:

ρ =
Number of accepted MARW’s

Number of MARW’s
.

The results are shown in the Figure 4.3a. We can observe very good performance of MARW
for l ≈ [1, 4]. In this regime, nearly all MARWs get accepted. The performance drops by
increasing l. Note that in this data set, the width of the bottleneck region is about 3 (cf.
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Table 4.1: Percentage of correctly visited vertices for different real world datasets. N is the
number of vertices, E is the number of edges, D is the dimensionality of data and K is the
number of clusters. The number in parentheses shows the cluster size we used as stopping
criterion

Dataset N E D K Nibble Apr.PR
MARW
(a = 3)

MARW
(a = 4)

Wine (40) 178 1268 13 2 82.31 86.8 88.02 91.76
B.Cancer(160) 683 10022 9 2 93.26 94.66 94.37 96.02
USPS (50) 7291 106722 256 10 88.5 92.78 93.37 97.43
USPS (100) 7291 106722 256 10 81.48 88.15 90.85 92.21

Figure 4.2a). This corroborates our rules of thumb stated in Section 4.4: as soon as l gets
considerably wider than the bottleneck, the random walk mixes too fast, hence many MARWs
get rejected in our experiment.

As a baseline we also used a simple RW on the same data. It leads to performance ρ = 55%.,
which is way worse than the MARW results. Additionally we observed that the variance of the
value ρ (measured over different starting points) is much higher for RW than for the MARW.
This shows that MARWs not only give better performance, but also lead to a more stable
behavior.

Next we investigate the effect of the number of agents on the same graph by running the
MARW for a ∈ [2, 10] and l ∈ {4, 5, 6, 7}. The results are shown in Figure 4.3b. When l
is still small, by increasing a we observe an increase of the performance ρ. That is, in this
regime more agents lead to more accepted MARWs. As soon as the rope length gets too long
(l = 7) the performance decreases with the number of agents. This is the regime where the
MARW mixes faster than the orignial RW. All in all, this experiment shows that the rope
length l governs whether the cluster structure of the MARW is more or less expressed than in
the original density. The number of agents acts as an amplifier.

Note that while increasing the number of agents amplifies the performance of the MARW, it
also has a negative side effect. The larger a, the slower the MARW moves. This has two effects.
First, when we implement the MARW, much more proposal steps get rejected for violating
the rope length condition (leading to an increase in running time). Second, the tendency of
staying in a high density region might be so pronounced in a MARW with large a that it
barely moves around but often visits vertices it has already seen. This effect is demonstrated
in Figure 4.3c. We run MARW with different number of agents and rope lengths until they
visit 80 different nodes. The number of steps during the visit shows that by increasing the
number of agents, they tend to stay in local neighborhoods. This effect vanishes when we
increase the rope length. When the rope length gets long enough (in this experiment, around
6), agents move with more freedom and less tendency to stay in the same place.

4.5.2 Real world examples

We now compare performance of various algorithms on real world datasets: our MARW, the
Nibble algorithm from Spielman and Teng (2008) and approximate PageRank (Apr.PR) from
Andersen et al. (2006). Note that all algorithms have different stopping criteria. In order to
make them comparable, we simply run all algorithms from the same starting point until they
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Table 4.2: We fixed the number of different vertices we wanted to visit (reported in parenthe-
ses). The numbers in the table show how many steps the MARW needed to make in order
to visit this number of different vertices, on average over different starting points. The rope
length l was fixed to l = 1.

# of agents Wine (40) Breast Cancer (100) USPS (50) USPS (100)

a = 3 487 2417 156 361
a = 4 1142 19798 281 752

discovered a given number of vertices. Then we analyze the quality of the clusters that are
discovered by the algorithms. We set the parameters in the algorithms as follows. In Nibble
we optimize the threshold parameter by approximately finding smallest threshold that allows
us to discover the mentioned number of vertices. For approximate PageRank, using the value
of α suggested by the authors led to poor results. So instead of using their values we report
the best result obtained for a range of α.

We use the Wine and Breast Cancer datasets from UCI repository, the USPS handwritten
digit recognition dataset (Hull, 1994) and a collaboration network of arxiv papers (Leskovec
et al., 2007).

For the first three data sets the true cluster labels are known. For these data sets we first
constructed an unweighted kNN graph (k = 10). We started the algorithm from a random
starting point. We ran each algorithm until visiting a given number of points: approximately
2
3 × size of smallest cluster vertices in Wine and Breast Cancer datasets, and 50 resp. 100
points in the USPS data set. Then we used r, the percentage of visited points from the correct
cluster, as our performance measure. We repeated the experiments for 100 random starting
points. For our algorithm we simply set the rope length to l = 1 (we did not optimize over l
or a in any way). For the other algorithms we chose the parameters as described above. The
results for a = 3, 4 are shown in Table 4.1. We can see that our algorithm achieves the best
results on all data sets.

It worth to note that even though using more agents improves the performance, it also increases
the running time of the algorithm. There is a trade off between performance versus running
time and visiting majority of points in the cluster. MARW with big a will move slower and
will mainly remain in the center of a cluster. This effect is demonstrated in Table 4.2. In this
table we fix the number of different vertices we want to visit. We then report how many steps
the random walk had to perform to achieve this (a step is simply one “hop” of the random
walk). For example, in the Wine data set we can see that in order to visit 40 different vertices,
the MARW with a = 3 had to take about 500 steps while the MARW with a = 4 already
needed about 1100 steps. This shows that for larger a, the random walk tends to visit the
same vertices more often and is more reluctant to move away from high-density regions.

The Collaboration Network dataset (Collab for short) consists of an undirected non-metric
graph with about 12000 vertices. As ground truth is not known on this data set, we use
the conductance of the set of visited vertices as a performance measure. The conductance of
a cluster is defined as the ratio of the number of its external connections to the number of
its total connections. Formally, the conductance of a subgraph S from graph G = {V,E} is
defined as:

Φ(S) =

∑
i∈S,j∈V−S wij

min(vol(S), vol(V − S))
,
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Table 4.3: Conductance of the set of visited points in the collaboration dataset. N is the
number of vertices and E is the number of edges.

Dataset N E Nibble Apr.PR MARW a = 3

Collab. (200), l = 1 12008 237010 0.5068 0.4916 0.4342
Collab. (500), l = 2 12008 237010 0.4703 0.4565 0.194

where vol(A) =
∑
i∈A,j∈V wij . The conductance is a popular quantity to measure the quality

of a cluster in a graph. The aim is to visit a set with small conductance.

We run two rounds of experiments, one aiming for 200 and one for 500 vertices. For the
MARW we use the shortest path distance as underlying distance function and rope lengths
l = 1 (for the 200 vertices) and l = 2 (for the 500 vertices). We set the number of agents
to 3. The results are shown in Table 4.3. In this example by visiting 500 vertices, MARW
works significantly better than other algorithms and the average conductance is less than half
of conductance reached in other algorithms.

4.6 Discussion

In this chapter we introduced the new concept of the multi-agent random walk. We provided
several ways to analyze the behavior of the MARW. The bottom line of these analyses is always
the same: using the MARW instead of the standard RW enhances the cluster properties of
the graph. Hence, the MARW is well-suited for local clustering. Our experiments show that
it outperforms the major other approaches from the literature.

The concept of a MARW is new, and we believe that it has many advantages and can be
applied to other data mining problems. For example, one might be able to derive a spectral
clustering algorithm based on the MARW-Laplacian instead of the standard random walk
Laplacian, and similar ideas might work for semi-supervised learning. Essentially, any algo-
rithm that works with random walks or related matrices might be adapted to the MARW. It
will be a matter of future work to fully explore the possibilities of multi-agent random walks
in data mining and machine learning.
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Chapter 5

Friend recommendation with
local distances

5.1 Introduction

Fundamental to all Online Social Networks (OSN’s) is the goal to effectively predict and
recommend friendships between users. OSN’s facilitate link formation and friendships among
users and thus increase the value of the site for it’s members. Users will subsequently spend
more time on the network and thus increase the site’s traffic and the potential for monetization.
Moreover more users will recognize the value of the network and will join the site. Typically
friend recommendation systems in OSN’s are responsible for a large fraction of the created
edges in the social graph.

One of the main ingredients of the success of OSN’s is the ease with which friendship groups
and communities arise. These groups often arise among like-minded users, i.e. users that
share the same interests. Taping into the principal of “homophily” (McPherson et al., 2001)
these networks provide a rich source of user behavior and preferences (Yang et al., 2011).
By exploiting this principal the network itself can be used as a recommendation engine by
essentially recommending items to users that their friends liked. These recommendations
further increase the value and popularity of the network to both user and vendors.

Related work Friend recommendation can be seen as a type of link prediction problem in
a network (Liben-Nowell and Kleinberg, 2003). Although a general link prediction algorithm
can be used as a friend recommender, we can implicitly model user behavior in order to build a
customized algorithm for the specific task of friend recommendation in social networks. Most
friend recommendation algorithms are based on evaluating a similarity score between vertices
in the social graph (Backstrom and Leskovec, 2011, Sarkar et al., 2012). To suggest a new
friend for user u, potential friends of u are ranked with respect to the similarity scores. Users
that end up at the top of the ranking list are suggested to the user.

The similarity scores can be categorized based on the amount of data around u that they use.
Lü and Zhou (2011) consider three classes of local, global and quasi-local scores.
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Figure 5.1: Temporal effects of link creation in a real OSN. Assuming a link is created between
user u and user v: (a) the distribution of time difference between this event and a subsequent
link creation betwen user u and one of users v friends. (b) the cumulative distribution. Figures
by Dionysios Logothetis.

Popular local methods include Common Neighbors (CN) where potential friends are ranked
in descending order of the number of common neighbors (Liben-Nowell and Kleinberg, 2003).
The Resource Allocation (RA) Index, score is based on common neighbors weighted by the
inverse of their degrees (Zhou et al., 2009). The Adamic-Adar (AA) Index is similar to RA,
but uses the logarithm of the degrees to decrease the effect of common friends with many
friendships:

SAA(u, v) =
∑
x∼u,v

1

log
(
dx
) ,

where dx denotes the degree of x (Adamic and Adar, 2003).

Quasi-local scores like the Local Path (LP) Index (Lü et al., 2009) use a wider area of the
graph than the second layer neighborhood. Methods modeling the temporal characteristics of
social neighborhoods (Sarkar et al., 2012) can also be seen as quasi-local.

The Katz (Katz, 1953) measure is a score that exploits the global structure of the graph.
Although the Katz index performs well in small-scale datasets (Lü and Zhou, 2011), there exist
theoretical doubts on its applicability on massive graphs (von Luxburg et al., 2010). Factor
models such as Backstrom and Leskovec (2011), Miller et al. (2010), Menon and Elkan (2011)
fall also into the global scores category and have been used on different types of networks.

However in real networks with tens of millions of nodes and billions of edges, global and even
quasi-local scores are infeasible to compute. Local scores are thus the only remaining category
that can be easily used in a real world use scenario.

Temporal dynamics in a real OSN To motivate the use of temporal dynamics in the
distance measure, we analyze the temporal characteristics of link additions on a graph from
a real OSN. The social graph used is from the Tuenti OSN Spain’s leading social network
described in more detail in Section 5.3. We show that once a new friendship is established, a
user is likely to connect with another user through this new friend within a short amount of
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time. More specifically, we collect all new link additions during an entire day which amount
to approximately 380K of new links. For every new link we discover all previous common
friends of the linked nodes. Among those, we calculate the time difference between the most
recent link addition and the new addition. Figure 5.1b shows the cumulative distribution
of the time difference across all new link additions. We observe that 50% of the new link
additions occur within less than 12 days from a previous link addition. In Figure 5.1a , we
show the normalized distribution of the time difference in link creation in days and notice that
the percentage drops exponentially.

The method proposed in this work is motivated by the above observations and also falls into
the category of local methods. In this work:

• We propose a novel local approximation of a diffusion kernel which takes the time and
the direction of link creation into account.

• We show in Section 5.3 that exploiting the temporal information in the link creation
process boosts performance in terms of IR metrics by a significant amount compared to
standard link prediction methods with only minimal computational overhead.

• The proposed method scales with ease to social networks with several millions of users.

5.1.1 Notation

We represent the social network by a graph G which consists of the vertex set V with |V | = n
and the set of directed edges E. The edge creation function is T : V × V → R+ where
T (u, v) represents the time u and v acquire their friendship in the network. If they never get
connected, we set T (u, v) = ∞. We define Nt(u), the first layer neighborhood of a vertex u
at time t as the set of vertices directly connected to u at time t, i.e. his friends. Similarly
NNt(u), the second layer neighborhood of u is defined as the set of vertices with distance two
from u, i.e. his friends of friends. We call each member of set NNt(u) a candidate friend.

The information of edge creation time up to time t is provided. The friend recommendation
task boils down to predicting the next vertex that is going to get connected to u. Standard
approaches dealing with friend recommendation are based on the assignment of similarity
scores s(x, y) between vertices x and y. This score is not necessarily a symmetric score.
Temporal information is usually ignored or not considered in these scores. Scores are typically
computed for the vertices in NN (x) and the nodes in the second layer neighborhood are ranked
based on their scores. Typically the top-N scored candidate friends (where N is usually between
3-10) are recommended. We evaluate the proposed algorithm on data from a real world social
network using ranking metrics routinely used in Information Retrieval.

5.2 Heat diffusion in a network

In this chapter, we propose to use a time kernel (a decreasing function of time) to model the
appearance of a link. The intuition behind this time kernel is the following: When a user u
acquires a friendship with user v at time t, their friendship gets hot. This means that it would
be more likely that u also acquires friendship with friends of v in the “near” future. As time
passes, the temperature of this friendship decreases and the friendship circle between u and v
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gets saturated. Then their friendship colds down and u receives fewer recommendations from
friends of v.

This procedure is modeled with a decreasing function of time called a time kernel. Here we
derive a function modeling the heat diffusion in the network.

Motivation The physical model of heat diffusion in an object has inspired a family of
algorithms in graph analysis and machine learning (Perona and Malik, 1990). In physics, the
diffusion of heat is described by a partial differential equation subject to initial and boundary
conditions (Lafferty and Lebanon, 2005). We sketch the concept with an example.

Consider a metal wire with length `, aligned along the x-axis. Assume that at time t = 0,
the wire at point x has the temperature u(x) (initial condition). The solution of the heat
equation ϕt(x) describes the temperature of point x at time t. As time passes and when there
are no heat sources and sinks (no boundary condition), the temperature stabilizes and we get
the same temperature everywhere as t→ ∞.

Related work The heat equation has been used in Perona and Malik (1990) for image anal-
ysis and denoising while Kondor and Lafferty (2002) presented diffusion kernels on graphs and
other discrete structures which can be seen as a discretization of the familiar Gaussian kernel.
Laplacian regularization for semi-supervised learning (Zhu et al., 2003) is also equivalent to
solving a heat equation subject to initial conditions imposed by labels. Moreover, recent works
has been devoted to the diffusion of information or disease in a network e.g. Gomez-Rodriguez
et al. (2011), although diffusion as defined there has different dynamics compared to the heat
diffusion. In this work we use the heat diffusion process to model the creation of the network
itself.

We first define the diffusion distance and run through existing results. Then we define the
random walk diffusion distance, which is a modified version of the heat kernel defined in Kon-
dor and Lafferty (2002). The natural involvement of time in this process is a motivation point
for us to study the model. Inspired by these results, we propose a local approximation of the
random walk diffusion distance with its application for friend recommendation in our mind.

5.2.1 Heat diffusion

The social graph G consists of the vertex set V and the set of directed edges E. We are given
a function T defined over edges where T (u, v) represents the time this edge appears in the
network. Denote the degree of vertex i by di. The (unnormalized) graph Laplacian matrix
Lu is defined as

Lu(i, j) =


−1 for i ∼ j
di for i = j

0 otherwise.

The matrix −Lu is a discrete counterpart of the weighted Laplace-Beltrami operator (Hein
et al., 2007).
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The diffusion of heat through a continuous material during the time is described by the heat
equation

∂

∂t
u(x, t) = k∆u(x, t), (5.1)

where k is the thermal diffusivity and ∆ is the Laplace-Beltrami operator

∆u(x, t) = ∇2u(x, t).

The initial state of the system at time t = 0 is specified by initial conditions in the form
u(x, 0) = f(x). A heat kernel or a fundamental solution is the solution of Equation 5.1 with
initial condition of a point heat source at point x0:{

∂
∂tu(x, t) = k∆u(x, t) 0 < t <∞
u(x, 0) = δ(x− x0) ,

(5.2)

where δ is the Dirac delta function.

Denote the fundamental solution by u∗x0
. With fixing a time t, we can define a distance

function between points using this fundamental solution Ut(x, y) = u∗y(x, t). This distance
can be interpreted as the temperature of point x at time t when we have a point source of
heat at y.

The heat equation can be translated to the discrete domain with the geometry induced by the
graph structure in the following form:

d

dt
K(x, ·) = −k∆K(x, ·). (5.3)

Assuming that the thermal diffusivity is one (k = 1) and the convergence of the discrete
unnormalized Laplacian to the continuous Laplacian LuK(x, ·) = ∆K(x, ·) ( see Hein et al.
(2007), Section 3.3 for conditions under which this assumption holds), Kondor and Lafferty
(2002) ended up with the graph diffusion kernel:

Kt = e−tLu . (5.4)

It is easy to check that this kernel is a solution of Equation 5.3. We can interpret Kt(u, v)
as the temperature of vertex v at time t when we initialize the networks temperature with 1
at vertex u and 0 elsewhere. The long term behavior of K can be seen by allowing t → ∞,
which gives K(u, v) → 1/n, where n is the number of nodes in our graph. This shows that
eventually the network will stabilize and attain the same temperature everywhere when there
is no energy loss.

5.2.2 Time-aware friend recommendation

The graph heat diffusion kernel Kt can be calculated by diagonalizing the generator matrix

Lu = SAST ,

where S is a unitary (rotation) matrix and A is a diagonal matrix with elements ai (eigenval-
ues) on its diagonal. Then we get

Kt = Se−tAST ,
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where e−tA is the diagonal matrix with elements e−tai on its diagonal. This computation is
expensive even for sparse graphs.

Although the utility of this kernel has been shown in many applications (Belkin et al., 2006,
Zhu, 2005), the computational complexity prevents us from applying the heat kernel on graphs
with more than thousands of nodes. Online social networks tend to have millions of nodes,
while the underlying social graph dynamically changes over the time. Moreover, in an online
recommendation system we need to query the distance between specific vertices in the current
graph several times in a second in order to provide recommendations to the users of the OSN.
Our goal is to find a fast approximation for this kernel.

The unnormalized graph Laplacian approximates the Laplace-Beltrami operator only for uni-
form measures. Hein et al. (2007) show that the random walk Laplacian L defined as

L(i, j) =


− 1
di

for i ∼ j
1 for i = j

0 otherwise,

converges to the Laplace-Beltrami operator, even when our underlying space is equipped with
a non-uniform probability measure. On the other hand, social networks are highly non-uniform
in degree distribution (Barabasi and Albert, 1999). This encourages us to use the random
walk graph Laplacian L instead of the unnormalized Laplacian Lu. We call the resulting
kernel Krw

t = exp(−tkL) a random walk diffusion kernel.

In this work we find a linear time local approximation of Krw
t (x, y) which makes possible to

apply it for friend recommendation in massive dynamic graphs. Fixing a vertex x, the local
approximation is defined for nodes in the first and the second layer neighborhood of x.

The diffusion distance is a global measure of distance in the sense that K(x, y) takes all
different paths between x and y into account, and weights them exponentially decreasing with
their length. To see this, we can write the tailor expansion of matrix exponentiation:

e−tL = I +

∞∑
i=1

(−tL)i

i!
,

and observe that (L)i is related to paths with length i.

This suggests that when x and y are spatially “near” to each other (e.g. they are neighbors),
long paths will not play a big rule in the actual diffusion distance between x and y. The
fundamental solution of Equation 5.2 can be written in a closed from. To find a plausible
approximation for the random walk diffusion kernel in local neighborhoods, we benefit from
this solution which is:

Φ(x, t) =
1√

4πkt
exp

(
− (x− x0)2

4kt

)
.

We can transfer this result to discrete domains by considering the fundamental solution of
Equation 5.3 on infinite grids:

ϕt(x, y) =
1√

4πkt
exp

(
− (x− y)T (x− y)

4kt

)
. (5.5)
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This motivate us to use the following approximate distance for two neighboring vertices x and
y:

ϕt(x, y) =
1√

4πk(t− T (x, y))
exp

(
− 1

4k(t− T (x, y)

)
. (5.6)

where T (x, y) is the time in which x and y become connected in the network (i.e. become
friends).

To approximate the temperature at vertex y in the second layer neighborhood of x, we use
a lazy random walk interpretation of diffusion (see also Section 3.3 in Kondor and Lafferty,
2002). A lazy random walk on graph G with parameter β will jump from vertex i to vertex
j with probability β/di and will stay in i with probability 1− β. It is easy to show that this
random walk is related to the random walk diffusion kernel Krw

t . This leads us to the following
approximation for any y ∈ NNt(x):

ϕt(x, y) =
∑

v∈N (x)∩N (y)

βϕt(x, v)

dv
. (5.7)

The parameter β appears in all distances between candidate friends, so we can ignore it in
computing scores.

Note that the contribution of old friends gets toward zero in Equation 5.7, which is an unde-
sirable property. This is caused by the assumption that the underlying graph is an infinite
grid. In infinite grids, the temperature will go towards zero when there is no permanent heat
source.

We remedy this effect by adding an extra assumption that all vertices are connected to a heat
source with temperature 1. Using the notation ∆x,yt = t−T (ex,y), our random walk diffusion
score between x and y takes the form:

St(x, y; k) =
∑

v∈N (x)∩N (y)

1 + e
− 1
k∆x,vt /

√
k∆x,vt

dv
. (5.8)

5.2.3 Learning the thermal diffusivity

The diffusivity parameter k balances the preference between candidate friends with few com-
mon recent friends and ones with many common old friends. Here, we describe a simple but
effective procedure to learn the thermal diffusivity parameter k in an online-learning scenario.

Friend recommendation can be formulated as the following online learning problem: We start
with a graph G0, and assume that at time ti node xi acquires a new friendship. We predict
(recommend) new friendships using a ranking function rxi which produces a score for each
candidate friend xi according to which the candidate friends are ranked. We then observe yi
and the algorithm incurs the reciprocal rank loss:

l(yi, rxi) = 1− 1

rxi [yi]
.

where rxi [yi] is the position of the observed friendship yi given the ranking induced by the
scores rxi . Then we update our graph G0 and add this new edge. Note that the ranking
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induced by the function rxi would depend on time ti, but we drop the time index when it is
clear from the context.

Lets first consider the separable case where we can choose the parameter k such that the
reciprocal rank loss is zero for all i. Define Vxi,ti := V −{Nti(xi)∪ yi}, the set of all potential
friends of xi at time ti. The zero loss implies

∀i : Sti(xi, yi; k) > max
y∈Vxi,ti

Sti(xi, y; k).

We set the parameter k to maximize the minimal difference between the score of the next
friend yi and the closest runner up. This is in analogy to the max margin principle in Vapnik
(1998).

For soft margin maximization in the batch case, we allow constraints to be violated by mini-
mizing:

J =

n∑
i=1

(
Sti(xi, yi; k)− max

y∈Vxi,ti
Sti(xi, y; k)

)2

. (5.9)

In the online-learning scenario, we can replace k with kti . To be able to write the solution in
a closed form, we do another step of approximation for neighboring vertices:

ϕ̂t(x, y) =
1√

kt∆x,yt
exp

(
− 1

kt−1∆x,yt

)
.

In another word, we fix the k in the exponent to its previous value to get a quadratic mini-
mization problem. Also for the sake of notation simplicity, we denote the closest runner up by
y̌i. After taking derivatives and setting them to zero, we end up with the following update:

ktn =

 ∑n
i=1

(
ayixi(tn)− ay̌ixi(tn)

)2∑n
i=1

(
ayixi(tn)− ay̌ixi(tn)

)(
byixi(tn)− by̌ixi(tn)

)
2

(5.10)

where

ayixi(t) =
∑

v∈Nt(xi)∩Nt(yi)

exp(− 1
kt−1∆xi,v

t )

dv
√

∆xi,vt

byixi(t) =
∑

v∈Nt(xi)∩Nt(yi)

1

dv
.

ay̌ixi and by̌ixi are also defined in the same way with respect to y̌i. The online learning procedure
is summarized in Algorithm 1.

The condition in line 7 is checked to prevent unnecessary updates in places where we would
not be able to push the rank of yi to the top for whatever value of k we choose.

5.2.4 Complexity analysis

The complexity of our algorithm is the same as the complexity of other local scores like CN,
RA and AA. In contrast to to RA, every edge connected to x contributes 1 + ϕ̂t(x, y) instead
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Algorithm 1 Online learning of the parameter

1: Input: graph G, data xi
2: Initialize p = q = 0.1
3: for i = 1, ... do
4: Receive xi at time ti
5: Calculate rank rxi
6: Suffer loss l(yi, rxi)
7: if

(
ayixi(tn)− ay̌ixi(tn)

) (
byixi(tn)− by̌ixi(tn)

)
< 0 then

8: p = p+
(
ayixi(tn)− ay̌ixi(tn)

)2
9: q = q −

(
ayixi(tn)− ay̌ixi(tn)

) (
byixi(tn)− by̌ixi(tn)

)
10: kti = (p/q)2

11: end if
12: end for

of 1. The updates in Algorithm 1 are done in O(1) when we store ay̌ixi and by̌ixi during the
rank computation. The complexity of all the aforementioned local scores are the same and
will depend on local degrees. For a typical vertex x with max degree d between him and his
neighbors, we would need O(d2) operations. This algorithm is trivial to parallelize in most
distributed computing architectures e.g. shared memory, map-reduce etc.

5.3 Experiments

First we describe the dataset and the evaluation metric used for experiments. For the evalu-
ation we use the friendship graph of the Tuenti Social Network.

Data Tuenti is Spain’s leading online Social Network in terms of traffic. Over 80% of
Spaniards aged 14-27 actively use the service and today (2013) it counts more than 14M users
and over a billion daily page views. Tuenti allows users to chat with friends, post photos,
share videos and play games. The network was launched in April 2006. Up until the summer
of 2013 Tuenti was an invitation only network. We use a snapshot of the network from April
2012 which includes the timestamps of the friendship creation. The network attracted more
than 12 million users in this period, and formed around 760 million friendships(edges). We
will compare our algorithm to the baseline algorithms CN, AA and RA.

We tried hard to find relevant public datasets, but unfortunately none of them was suited
for our application. There are few small to medium sized publicly available social network
datasets containing the formation time of friendships, but come from a crawling process. As
a side-effect, these graphs are incomplete, not fully connected and missing a big fraction of
nodes.

Procedure and Metrics In the experiments we use Reciprocal Rank (RR) as an evaluation
metric. Since we have access to the exact appearance time of each edge in the Tuenti graph,
we can use a more precise evaluation procedure than the ones typically used in the literature.
Assume that at time t, user u acquires friendship with user v. We evaluate each algorithm by
assigning a score to each candidate friend of u and ranking them by this score. In this on-line
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Table 5.1: Reciprocal Rank results on 200,000 new edges at given periods of time

CN AA RA TR TR Log
Dec 2011 3.61 3.85 4.08 4.43 4.60

March 2012 3.68 3.94 4.19 4.67 4.85

evaluation scenario each algorithm gains the reciprocal rank 1/r[v] where r[v] is the ranking,
induced by the scores of the actual user v that became friend with u at time t.

In this scenario, other evaluation metrics like precision will not be meaningful. Given the
ranking of candidate friends, precision is defined as the ratio of real-world friends to the
number of friends suggested (Lü and Zhou, 2011). Essentially the measure captures the
fraction of relevant users v (friends) in a ranked list L. In our on-line evaluation scenario,
it is very likely that user u acquired friendships to users in the list L at different times.
For example u can meet a person from L and acquire friendship a year after this suggestion
happens. So this make the metric problematic. One possible solution is to only consider the
first k future friends of u and find its intersection with L. This correction is also disputable.
For a non-active user, the acquirement of k friends will take a long time. However an active
one can acquire all k friends in a day.

AUC is another metric used in the literature (Lü and Zhou, 2011). It can be interpreted as
the probability that a randomly chosen edge gets higher score than a ground truth edge. For
large sparse networks, the AUC measure is not a suitable measure. In our data set more
than 0.99999 percent of users look irrelevant for prediction, and the AUC metric will not be
interpretable.

Results We evaluate all algorithms for predicting new friendship at two different times:
December 2011 and March 2012. At each period we test over 200,000 recent edges from the
social graph. We run experiment with two versions of our score function. In the first version
called TR, we use the score function from Equation 5.8. In the second version, inspired from
AA scores, we replace the weight factor dv by factor log(dv) and call it TR Log. We report
the normalized cumulative reciprocal rank over all users in the test set T in a scale of 0-100
i.e.:

RR =
∑
v∈T

100

r[v]|T |
.

Results in Table 5.1 show the significant improvement of performance that our method achieves
over the baseline methods.

It is worth mentioning that although the baseline methods seem simple, they are very hard to
beat, particularly in the context of social networks. We observe that in Sarkar et al. (2012),
for non-seasonal networks, these baselines perform similar to their proposed algorithm in a
range of different datasets.

In evaluating two algorithms A and B using reciprocal rank, the following issue can occur:
Although B has a larger reciprocal rank than A, they do perform similarly in real world
applications: the superiority of B in recommending friends to user u is only when its subse-
quent friend v is at the bottom of the ranking list (which is never used for recommendation
in practice). To demonstrate the superiority of our approach in recommending new friends
at the top of the list, we show the distribution of predicted friends at the top-5 position of
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Figure 5.2: Frequency of hitting top 5 ranks

the recommendation list as generated by each method. Figure 5.2, shows that our method
outperforms the alternative methods in recommending new friends at the top of the list. We
plot the frequency with which new friends v appear in the positions 1 to 5 of the lists gener-
ated using the corresponding methods. We observe that our algorithm hits the top-5 rankings
more often than others.

Local scores are only defined for users in the second layer neighborhood. We perform an
experiment to check the soundness of this assumption. We count how often a friendship
happens between a person u and a user from NN (u). At the first part of experiment in
December 2011, we observed that 89% of friendships appeared between users and their friend
of friends. In March 2012 this ratio was 90%, which confirms the use of local scores.

Overall we observe that our method outperforms the next best method (RA) by 13-16% in
terms of reciprocal rank while also providing better performance at the top-5 positions of
the list. This validates our approach for taking the temporal information of the link creation
into account in the diffusion distance. Note that this performance improvements are delivered
without any significant additional computational costs compared to the methods in test (CN,
AA, RA).

5.4 Conclusions

We proposed a novel diffusion distance that takes into account temporal information in the
edge creation process. We derive a local approximation of the diffusion distance and an algo-
rithm for computing the diffusivity parameter. The kernel can be computed very efficiently.
We conducted experiments on the Tuenti social graph which clearly demonstrate that using
the diffusion kernel as a distance measure improves upon other local measures such as CN,
AA and RA.

83



Part III

Downsampling Random
Geometric Graphs
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Chapter 6

Downsampling a neighborhood
graph

6.1 Introduction

Large graphs are hard to process, analyze and visualize. To overcome this problem, many
attempts have been made to reduce the size of the graph. Examples are found in many areas,
including machine learning (Liu et al., 2010,de Silva and Tenenbaum, 2002), social network
analysis (Leskovec and Faloutsos, 2006, Krishnamurthy et al., 2005) and visualization (Rafiei
and Curial, 2005). See also Section 6.5 for many more references and related work. Typically,
the size of the graph is reduced by removing edges or vertices, collapsing edges or vertices or
alternatively building another graph that reflects some aspects of the original graph.

We say a graph G′ is downsampled from G whenever G′ has fewer vertices and for every vertex
v′ ∈ G′ exists at least one corresponding vertex v ∈ G. The ultimate goal in downsampling is
to find a procedure that reduces the size of the graph, but at the same time keeps invariant
those properties that are essential for our application. For example, in visualization the
downsampled graph should “look like” the original one. In community detection, two vertices
in the downsampled graph should belong to the same “community” whenever they are in the
same community in G.

It is rather obvious that there cannot exist a single downsampling procedure that is “best”
for all applications. However, it would be tedious to find a procedure for every single purpose.
There are a couple of basic graph properties that are commonly used in many algorithms:
degrees, distances between vertices, properties of random walks on the graph, spectral prop-
erties, and so on. Is it possible to construct a downsampling procedure that keeps many of
these properties intact simultaneously? If we do not make any assumptions on the graph at
hand, the answer will be no. However, in this chapter we show that we can achieve this goal
if we have extra knowledge about the graph at hand, namely if it comes from a certain class
of graphs.

In this chapter we focus on the class of graphs that is most important for machine learning,
namely neighborhood graphs like k-nearest neighbor graphs or ε-graphs. Mathematically,
such graphs can be modeled by the family of random geometric graphs (RGGs). We define
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a strong notion of similarity between a neighborhood graph G and its downsampled version
G′ called geometry-preserving downsampling. We prove that it simultaneously keeps many
basic properties of the original graph intact. We give a simple downsampling procedure for
neighborhood graphs that can be proved to be geometry-preserving.

Finally, we investigate what happens if we apply other common graph sampling procedures
to neighborhood graphs, such as the downsampling procedures that are often used for power-
law graphs. We show that any such procedure that keeps the degree distribution invariant
necessarily has to destroy the geometric information in the neighborhood graph.

6.2 Problem setting and basic definitions

Let X ⊆ Rd be a closed connected set endowed with a density function p with respect to the
Lebesgue measure, X1, ..., Xn an i.i.d. sample from X , and D : X ×X → R a metric on X . We
say the set V := {X1, ..., Xn} satisfies the dense sampling assumption with neighborhood
size ς, if for all x ∈ X there exists a y ∈ V with D(x, y) ≤ ς.

Consider the random geometric graph Gp,n,D,r := (Vp,n, EV,D,r) that has the vertex set Vp,n =
{X1, ..., Xn} and edge set

EV,D,r := {{Xi, Xj}
∣∣ D(Xi, Xj) ≤ r}

for some parameter r > 0. This family of graphs not only contains the well-known ε-graphs,
but also by an appropriate choice of D we can model k-nearest neighbor graphs. In this
chapter, all graphs are undirected and unweighted. All results can directly be carried over to
the case of graphs whose edges are weighed by the distance D(Xi, Xj) of the adjacent points,
but in order to keep notation simple we stick to unweighted graphs in this chapter. We define
the shortest path distance DG

sp(x, y) between two vertices in graph G as the sum of the number
of edges in the shortest path. For an edge set E and a vertex v we denote by E(v) the set of
edges that are adjacent to v.

Now assume that we are given the adjacency matrix of the graph Gp,n,D,r but we do not know
the point locations Xi ∈ Rd, nor do we know the underlying distances D(Xi, Xj). Our goal
is to construct a downsampled graph G′ with n′ < n vertices that “looks like” a graph of
the form Gp,n′,D,τr. In other words, given a large graph G from some unknown latent space
model, find a downsampled small graph G′ that behaves as if it were constructed from the
same latent space model directly.

Definition 6.1 (Geometry-preserving downsample of G) Consider a random geomet-
ric graph Gp,n,D,r. We say that a graph G′ = (V ′, E′) is a δ-geometry preserving downsample
(“δ-GPD”) of G if the following conditions are satisfied:

1. The new vertex set is a subsample of the old one: V ′ ⊂ V .

2. The vertices in V ′ are distributed according to the original density p:
For all Borel-sets A ⊆ X and all v ∈ V ′ we have

P (v ∈ A) =

∫
A

p(x)dx.

3. The neighborhoods in E′ approximate the ones of a neighborhood graph that is built on V ′

directly: There exists some r̃ > 0 such that the graph G̃ = (V ′, Ẽ) with Ẽ := EV ′,D,r̃ satisfies
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that for all vertices v ∈ V ′

1− δ ≤ |E
′(v) ∩ Ẽ(v)|

|E′(v) ∪ Ẽ(v)|
.

In Section 6.4 we show that the notion of geometry-preserving downsampling is very strong.
It implies that both local and global properties of the graph are kept invariant. In Section
6.3 we show that one can construct geometry-preserving downsamples by drawing a uniform
subsample of V and connecting the new vertices whenever their shortest path distance in the
original graph is smaller than some parameter τ > 0. This result applies to ε-graphs (rather
obvious) and to k-nearest neighbor graphs (surprising).

Let f : X → R+ be a Lipschitz continuous scalar function with Lipschitz constant L2. Consider
a path γ : [0, 1] → X parametrized by t that connects x to y. We define the f -length of this
path as

Df,γ =

∫ 1

0

f(γ(t))|γ′(t)|dt.

This is also called as the line integral along γ with respect to f (see Section 2.2).

To keep proofs simple, we make the following general assumptions in the rest of the chapter.
The density p is Lipschitz continuous with Lipschitz constant L1 and bounded away from 0 by
pmin. The density dependent function f that defines the distance Df is Lipschitz continuous

with Lipschitz constant L2 and f̃(pmin) > 0. The volume of the unit ball in Rd will be denoted
by ηd.

6.3 Constructing a geometry-preserving downsample

6.3.1 Vertex selection

In this section we study different approaches for the vertex selection step. The easiest one is
to select vertices uniformly random from the original graph. This procedure is super fast and
can applied on very large graphs. It obviously satisfies the first two conditions on geometry-
preserving downsampling, and this is also the one we are going to use later on.

Proposition 6.2 (Uniform vertex selection) Let V = {X1, ..., Xn} be an i.i.d. sample
from density p, and let V ′ = {Y1, ..., Yn′} be a subsample from V that has been drawn uniformly
at random without replacement. Then the vertices in V ′ are distributed as the ones in V , that
is Y1, ..., Yn′ is distributed as an i.i.d. n′-sample from p.

Proof. Let σ be a permutation of {1, ..., n} such that Yj = Xσ(j). Now consider any
measurable set A ⊆ X . We have

P (Yi ∈ A) = P (Xσ(i) ∈ A)
a
= P (Xi ∈ A),

where in a we use the assumption that Xi’s are i.i.d. samples. 2

There exist several approaches for the vertex selection in the literature, for example procedures
based on landmarks (Goldberg and Harrelson, 2005, Silva et al., 2005), graph coarsening
(Karypis and Kumar, 1999, Satuluri and Parthasarathy, 2009), based on clustering (Zhang
et al., 2009) or based on some random-walk based exploration of the graph (Leskovec and
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Faloutsos, 2006). In general, these procedures change the density of the selected vertices, so
Property 2 of geometry-preserving downsampling will not be satisfied.

In Chapter 7 we propose a new procedure for vertex selection that enjoys an interesting
property: Even if we choose the neighborhood size r′ “very small”, the resulting graph G′

would be connected. However in chapter, we stick with the simple random selection method.

6.3.2 Edge construction

Given a set V ′ ⊂ V of vertices, the question is how edges should be defined on V ′. We use
the following simple rule based on shortest paths: Fix an integer τ > 0. For any two points
vi, vj ∈ V ′ put an unweighted edge between them if and only if DG

sp(vi, vj) ≤ τ . We denote

the resulting edge set by ÊG(V ′, τ).

In the next theorem we prove that the graph constructed by selecting vertices uniformly at
random and connecting them by the shortest path rule is geometry-preserving.

Theorem 6.3 (Geometry-preserving downsampling) Consider a random geometric graph
G = (Vp,n, EV,D,r). Let V ′ ⊆ Vp,n be a sample from Vp,n that has been drawn uniformly at
random without replacement. Build a graph G′ = (V ′, E′) by the shortest path based graph
construction procedure E′ = ÊG(V ′, τ) and set

λ =
L1L2τr

fmin
, λ′ =

ςL1L2

f2
min

, c1 =
ϕ(1 + λ′)d2d

(1− λ′)2dηd
, c2 =

pminηd
3(1 + λ′)dfdmax

,

c3 =
fmin

pminL2
, c4 =

1

3
pmax(1− c3λ)

(
fmax(1− λ)(1− 2

ς

r
)
)d
ηd ,

δ =
2κ

1 + κ
+

2c3λ

1 + c3λ
+

2dλ

1 + λ
+

2dς

r
.

Then with probability at least

1− 2n′e−c4κ
2n′τdrd − c1ς−de−c2nς

d

,

the graph G′ is a δ-GPD of G.

Moreover as n, n′ → ∞ , r, τr → 0, rdn/ log(n) → ∞, τdrdn′/ log(n′) → ∞ and by selecting
ς = (log(n)/n)1/d, the probability converges to 1 and δ converges to 0.

Before proving the theorem we need to state a couple of lemmas and propositions. The next
lemma uses the Lipschitz continuity of p and f to show that Df (x, y) can be approximated
by f(x)‖x− y‖ in small intervals. Its proof is a direct generalization of Lemma 2.5.

Lemma 6.4 (Approximating Df in small balls) Consider any given λ < 1. If ‖x−y‖ ≤
fminλ
L1L2

then the following statements hold:

1. We can approximate f(y) by f(x):

f(x)(1− λ) ≤ f(y) ≤ f(x)(1 + λ).

2. We can approximate Df (x, y) by f(x)‖x− y‖:

(1− λ)f(x)‖x− y‖ ≤ Df (x, y) ≤ (1 + λ)f(x)‖x− y‖.
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Now we establish a relation between the parameter ς of dense sampling assumption and
the probability that this assumption holds. By carefully choosing ς, the dense sampling
assumption will hold with “high” probability.

Lemma 6.5 (Sampling lemma) Assume X1, ..., Xn are sampled i.i.d. from density p and
a constant ς < f2

min/(L1L2) is given. Set

λ =
ςL1L2

f2
min

, c1 =
ϕ(1 + λ)d2d

(1− λ)2dηd
, c2 =

pminηd
3(1 + λ)dfdmax

Then with probability at least 1− c1ς−de−c2nς
d

, for every x ∈ X exists a y ∈ X1, ..., Xn such
that Df (x, y) ≤ ς.

Proof. Define the f -mass of a setW as Vf (W) =
∫
W f(x)ddx and set ϕ = Vf (X ), the f -mass

of our underlying space X . Denote the probability mass of a volumeW by V(W). We are going
to prove that for every y ∈ X there exists a x ∈ X1, ..., Xn such that ‖x−y‖ ≤

(
ς/(1 + λ)f(x)

)
.

Applying Lemma 6.4 will then lead to the result. The proof is a generalization of the covering
argument in Section 2.7. We first cover X by balls with approximately equal f -masses. The
centers of balls are chosen iteratively such that every center is outside of the balls we have so
far. The ball Bf (x, ς) at point x has the radius ς

(1+λ)f(x) . The f -mass of this ball is bounded

by

Vf (Bf (x, ς)) ≥ (1− λ)d

(1 + λ)d
ςdηd.

Smaller balls Bf (x, (1− λ)ς/2) are all disjoint, so we can bound the total number of balls by

S ≤ ϕ

Vf (Bf (x, (1− λ)ς/2))
≤ ϕ(1 + λ)d2d

(1− λ)2dςdηd
= c1ς

−d.

Now sample from the underlying space X . The probability mass of ball Bf (x, ς) is bounded
by

V(Bf (x, ς)) ≥ pminς
dηd

(1 + λ)df(x)d
≥ pminς

dηd
(1 + λ)dfdmax

= 3c2ς
d.

By applying the concentration inequality for binomial variables (Prop. 28 in von Luxburg
et al., 2010), we bound the probability that a ball Bf (x, ς) does not contain any sample point
(“is empty”)

Pr(ball i is empty) ≤ e−c2nς
d

.

Finally using a union bound results in

Pr(no ball is empty) ≥ 1−
∑
i

Pr(ball i is empty) ≥ 1− c1ς−de−c2nς
d

.

2

The following proposition shows that Df (x, y) can be approximated by the rescaled graph
shortest path distance and is a straightforward adaptation of Proposition 2.4 (see also Tenen-
baum et al., 2000).
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Proposition 6.6 (Approximating Df by Dsp) Consider a random geometric graph Gp,n,Df ,r =
(Vp,n, EV,Df ,r) that satisfies the dense sampling assumption with neighborhood size ς. Fix two
vertices x and y of the graph. Then the following statement holds:

Df (x, y) ≤ rDG
sp(x, y) ≤ Df (x, y)

1− 2ς/r
.

Proof of Theorem 6.3 . The sampling lemma shows that the dense sampling assumption

with neighborhood size ς holds with probability at least 1− c1ς−de−c2nς
d

.

Let Ẽ := EV ′,D,τr. Fix a vertex x ∈ V ′. For any neighbor y ∈ E′(x) of x, it follows from
Proposition 6.6 and the construction rule of E′ that Df (x, y) ≤ rDG

sp(x, y) ≤ τr. This shows

that E′(x) ⊆ Ẽ(x) and E′(x) ∩ Ẽ(x) = E′(x) and E′(x) ∪ Ẽ(x) = Ẽ(x). To have a bound on
|Ẽ(x)|, note that all neighbors of x are in the set T = {u | Df (x, u) ≤ τr} with probability
mass

V(T ) ≤ p(x)(1 + c3λ)
(
f(x)(1 + λ)τr

)d
ηd.

Now consider a neighbor y ∈ Ẽ(x) of x which is not in E′(x) (DG
sp(x, y) > τ), then

Df (x, y) ≥ rDG
sp(x, y)(1− 2ς/r) > τr(1− 2ς/r).

This means that in E′, x is connected to all vertices in the set

Q = {u | Df (x, u) ≤ τr(1− 2ς/r)}.

The probability mass of Q is bounded by

V(Q) ≥ p(x)(1− c3λ)
(
f(x)(1− λ)τr(1− 2ς/r)

)d
ηd.

Let Q ≈ Binomial(n′,V(Q)) and T ≈ Binomial(n′,V(T )). Apply a concentration inequality
for binomial random variables (see Proposition 28 in von Luxburg et al., 2010) to get

P
(
Q ≤ (1− κ)E(Q)

)
≤ exp

(
− 1

3
κ2E(Q)

)
P
(
T ≥ (1 + κ)E(T )

)
≤ exp

(
− 1

3
κ2E(T )

)
,

where E(Q) = n′V(Q) and E(T ) = n′V(T ). This implies that with probability at least

1− exp
(
− 1

3
κ2E(Q)

)
− exp

(
− 1

3
κ2E(T )

)
≥ 1− 2 exp

(
− 1

3
κ2E(Q)

)
we have

|E′(x) ∩ Ẽ(x)|
|E′(x) ∪ Ẽ(x)|

=
|E′(x)|
|Ẽ(x)|

=
Q

T
≥ (1− κ)E(Q)

(1 + κ)E(T )
=

(1− κ)V(Q)

(1 + κ)V(T )

a
≥ 1− δ, (6.1)

where in a we use the Bernoulli inequality (1 − x)d ≥ 1 − dx. By applying a union bound
over n′ vertices in V ′, the Equation 6.1 will hold uniformly over all vertices in G′. For the
convergence condition, note that if we set ς = (log(n)/n)1/d, then ς/r → 0. The remaining
can easily checked by simply replacing values. 2
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6.4 Properties of geometry preserving downsampling

In the last section we have seen how to construct a GPD for a given random geometric graph.
Now we discuss the mathematical properties of a graph that has been constructed by a GPD
procedure. In this whole section, we use the following notation: G := Gp,n,D,r denotes the

large geometric graph, G′ = (V ′, E′) with E′ = ÊG(V ′, τ) denotes its downsampled graph,
and G̃ = (V ′, Ẽ) denotes the corresponding small geometric graph with Ẽ = EV ′,D,τr.

6.4.1 Positive results

The following corollary is a direct consequence of Theorem 6.3.

Corollary 6.7 (Invariants in geometry preserving downsampling)
Consider any three vertices v′1, v

′
2, v
′
3 ∈ V ′ in G′ and their corresponding vertices v1, v2, v3 ∈ V

in graph G. Also denote the steady state distribution of a random walk on G by π and on G′

by π′. If the convergence conditions in Theorem 6.3 hold, with probability converging to 1 we
have:

1. The relative degrees converge and stationary distributions converge to each other:∣∣∣deg(v′1)

deg(v′2)
− deg(v1)

deg(v2)

∣∣∣→ 0 and
∣∣∣π′(v′1)

π′(v′2)
− π(v1)

π(v2)

∣∣∣→ 0.

2. The relative shortest path distances converge to each other:∣∣∣DG′

sp (v′1, v
′
2)

DG′
sp (v′1, v

′
3)
−
DG
sp(v1, v2)

DG
sp(v1, v3)

∣∣∣→ 0.

Proof. Part 1 is a direct consequence of Theorem 6.3, the statement about the stationary
distribution comes from the fact that π(v) is proportional to deg(v). Finally, Part 2 can
proved by combining the result of Theorem 6.3 and the relation between the shortest path
distance and the f -distance in Proposition 6.6. 2

The first two statements in this corollary only concern local quantities and are not particularly
strong, it is relatively easy to come up with downsampling procedures that keep the relative
degrees intact. The third statement is pretty strong because it concerns the global geometry
of the graph. Intuitively, it says that the shortest path distances in the original graph and the
downsampled graph behave similar.

On top of that, we can get even stronger results on the global geometry of the graphs. To
this end, it is important to realize that Property 3 of the definition of geometry-preserving
downsampling is a very strong property. If two graphs share the same neighborhoods, the
overall geometric structure of the graphs is very similar. One way to prove this is to consider
the eigenvalue structure of the adjacency matrix or the graph Laplacian matrix. It is well
known that these spectra encode many of the geometric properties of a graph, for example
how clustered it is. The following proposition shows that the spectrum of the downsampled
graph G′ is similar to the small geometric graph G̃.

Proposition 6.8 (Invariances in the spectrum) Consider two graphs G′ = (V ′, E′) and
G̃ = (V ′, Ẽ) with |V | = n′ whose edges satisfy

1− δ ≤ |E′(v) ∩ Ẽ(v)|/|E′(v) ∪ Ẽ(v)|,
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and whose degrees are of the order Θ(log n′). Denote the adjacency matrix of G′ by A′, its
degree matrix with the degrees on the diagonal by D′, and its graph Laplacian by L′ = D′−A′.
Let σ′i be the i-th eigenvalue of the adjacency matrix and λ′i the one of the graph Laplacian.
Use the analogous notation for G̃. Then the average deviations between the spectra of G′ and
G̃ satisfy

1

n′

n′∑
i=1

(σ̃i − σ′i)2 = O(δ log n′) and
1

n′

n′∑
i=1

(λ̃i − λ′i)2 = O(δ log n′).

In our case, it can be seen that this proposition applies if we choose τd ≈ log n′/(n′rd), in
which case the quantity δ in Theorem 6.3 is of the order O(log n′/n′)1/d. This shows that both
average differences converge to 0 for large n′. Note that this is a non-trivial result, because
the eigenvalues of A′ and L′ scale with n′. In particular, the graph Laplacian matrix has only
a few eigenvalues close to 0, and most of them are much larger.

Proof. (Sketch) To prove this proposition we use the eigenvalue perturbation theorem by
Wielandt-Hoffman (e.g., Golub and Van Loan, 1996 Section 8.1.2.) which bounds the deviation
of eigenvalues in terms of the Frobenius norm of the perturbation. Precisely, for symmetric
matrices A′ and Ã it holds that∑

i(σ̃i − σ′i)2 ≤ ‖Ã−A′‖2F :=
∑
ij(ãij − a′ij)2.

In case of the adjacency matrix, the right hand side can now bounded by exploiting the result
of Theorem 6.3 on the intersection of edge sets in G and G′, which gives

‖Ã−A′‖2F ≤ δ‖Ã‖2F = O(δn′ log n′).

The same bound holds for ‖D̃−D′‖, which then leads to the result for the graph Laplacians.
2

6.4.2 Negative results

Another common family of random graphs are power-law graphs. Their main property is that
their degree distribution follows a power law, that is the number of vertices with degree t is
proportional to ta for some parameter a. When downsampling a power law graph, one would
like to keep this distribution invariant, that is we want a smaller graph whose degrees still
follow the same power law. Denote by n(t) the number of vertices in G that have degree t,
and analogously n′(t) in G′. Intuitively, the vertices in G′ still follow the same power law as
the ones in G if n(t)/n′(t) ≈ n/n′.

Several procedures to achieve such a relationship have been suggested in the literature, see
for example Leskovec and Faloutsos (2006). We now show that if we apply such a procedure
to a geometric graph, we loose information about its geometry.

Proposition 6.9 (Downsampling that is not a GPD) Consider an ε-graph G built on
the random sample V = {X1, ..., Xn} from some non-uniform density on Rd. Consider a
graph G′ that satisfies n(t)/n′(t) ≈ n/n′. Then G′ is not a GPD of G.

Proof. (Sketch) The expected degree of a vertex x ∈ G is the expected number of points in
an ε-ball around x. For ε small enough, it can be approximated by E(deg x) ≈ np(x)εdηd,
where ηd denotes the volume of the d-dimensional unit ball.
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Fix a natural number t and consider the set S ⊆ X that contains all points with expected
degree t. The expected number of vertices in G that have degree t is given by E(n(t)) = nV(S)
where V(S) is the probability mass of S.

Assume G′ is a geometry preserving downsample of G with n′ vertices and connectivity pa-
rameter ε′. Denote α := n′ε′d/(nεd). In G′, every vertex x ∈ S has the expected degree
E(deg x) = t · (n′ε′d)/(nεd) = tα. Similarly as above, E(n′(tα)) = n′V(S).

Together, this shows that for every t

E(n(t))/E(n′(tα)) ≈ n(t)/n′(t)

or E(n′(tα)) ≈ n′(t). This can only happen when the density is uniform. 2

6.4.3 Consequences for practice

Parameter choice. Let us address the issue of choosing the connectivity parameter in
the downsampling procedure. Assume we are given large graph G := Gp,n,D,r and want to
downsample it to n′ vertices. On an abstract level, Theorem 6.3 requests that τ satisfies
n′τdrd/ log n′ → ∞. Also by this condition, the sampled graph will stay connected. Hence,
choosing τ = (n log n′/n′ log n)1/d or any other value of the order larger than that will work.
In practice we can approximate it by choosing τ = (n/n′)1/d.

Special case ε-graph. Consider the case of an ε-graph with n vertices that has been built
by connecting all points that have Euclidean distance smaller than ε. Our results say that if
we subsample n′ vertices uniformly at random, and we connect them whenever their shortest
path distance DG

sp in the original graph was smaller than (n/n′)1/d , then we obtain a graph

G′ that is very similar to the ε′-graph on the subsampled vertices, with ε′ ≈ ε(n/n′)1/d.

Special case kNN graph. For an unweighted kNN graph the story is similar: Start with
a kNN graph with n vertices, where the nearest neighbors have been computed according to
the Euclidean distance in the underlying space. Now downsample to n′ vertices and connect
the new vertices whenever their shortest path distance in the original graph was smaller than
(n/n′)1/d. Then the resulting graph resembles the kNN-graph on V ′ with parameter k′ ≈ k.

Case of weighted graphs. All our results can also be extended to the case of graphs whose
edges are weighted by the D-distances of the adjacent points. In this case, to downsample such
a weighted graph connect two vertices in the new graph whenever the weighted shortest path
distance in the old graph is less than r(n log n′/n′ log n)1/d (r is the connectivity parameter
in the original graph).

Finally, consider the choice of n′. In principle, our theorems hold for any values of n and n′.
However, if n′ is too small compared to n, then two things will happen. First, the quantity
δ that controls the deviations in the δ −GPD will get very large, leading to large differences
between the original graph and the downsampled graph. Second, the probabilities that our
bounds hold gets smaller, meaning that there is a higher risk that the procedure fails.

6.5 Related work and discussion

Sampling from a graph refers to the following problem: we are interested in a certain
quantity of the graph, say the average vertex degree or the diameter of the graph. But
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because the graph is so big we cannot compute it exactly, but want to estimate it by a
sampling procedure. For example, we could sample a couple of vertices and compute the
empirical average degree or the diameter based on this sample. This problem is very different
from graph downsampling, see Chapter 5 of Kolaczyk (2009) for an overview and references.

Graph coarsening. There exists a huge variety of papers that first “coarsen” a graph
(reduce number of vertices and edges), then apply a particular algorithm to the graph, and
in the end extend the results to the large graph (“refinement”). In all of this work, the focus
is not so much on the properties of the downsampled graph, but on enabling a particular
algorithm of interest to achieve results on the small graph that “resemble” the results one
would obtain on the large graph. As examples consider the METIS algorithm (Karypis and
Kumar, 1999) or fast approximate spectral clustering (Yan et al., 2009).

Graph sparsification. Given a large graph, the goal is to construct a smaller graph such
that certain properties of interest stay invariant. Such properties could be the cut values of
particular partitions (Benczúr and Karger, 1996), the values of certain flows (Leighton and
Moitra, 2010), the spectrum of the graph (Spielman and Srivastava, 2008), or shortest path
distances in the graph (Kleinberg et al., 2004, Ruan and Jin, 2011). Most of the literature
is concerned with edge sparsification (keep all vertices, reduce the number of edges), but
there exist also papers on vertex sparsification (reduce the number of vertices and edges).
The literature on graph sparsification usually comes with strong theoretical guarantees, but
sometimes the suggested procedure is not practical.

Model-preserving graph downsampling is the line of work discussed in this chapter. Its
connotation is different from graph sparsification. We are given a large graph that comes from
some known family M(n) of random graphs, but with unknown parameters. The goal is to
downsample the graph such that the new graph resembles a small graph that comes from the
same family M(n′). The general intuition is that the downsampled graph should preserve as
many as possible of the characteristic properties of the graphs in the model classM, not just
a particular one. Such a procedure is preferable over graph sparsification algorithms when we
want to apply several different algorithms to the downsampled graph, at least if we want to
keep as much flexibility and loose as little information as possible. It is about the best we can
do if we want to reduce the size of the graph but want to keep its “geometry”.

Additional to our current work, there are some other relevant papers that fall into this frame-
work, mainly in the context of downsampling power-law graphs. See Krishnamurthy et al.
(2005), Leskovec and Faloutsos (2006) and references therein.

6.6 Conclusions

This chapter investigates the framework of geometry-preserving downsampling of random ge-
ometric graphs. Being geometry-preserving is a pretty strong property, because it implies that
both local and global geometric properties of the graphs stay intact after downsampling. Our
downsampling procedure is simple, yet implies strong theoretical guarantees. Our framework
can be applied to all kinds of neighborhood graphs, such as ε-graphs and kNN graphs.
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Chapter 7

Density-preserving quantization

7.1 Introduction

Vector quantization is the task of compressing a large set of data points into a small set of
representatives called centroids or centers. Its applications are abundant, just consider the
examples of visual word models in computer vision (Leung and Malik, 2001, Csurka et al.,
2004), color quantization in image processing (Heckbert, 1982), or selecting landmark points
(de Silva and Tenenbaum, 2004). For data points in Rd, the standard approach is to minimize
a quantization error measured in terms of the Euclidean distance. The most well-known
algorithm is the k-means algorithm (where k is large, as opposed to clustering problems,
where k is usually chosen much smaller). Because the selected centers are supposed to be a
“faithful representation” of the original data points, it is a highly desirable property that the
centroids have the same distribution as the original data points. However, it has been proved
that this is not the case if we minimize the quantization error with respect to the Euclidean
distance (Graf and Luschgy, 2000). The optimal centers that minimize the quantization error
with respect to the Euclidean distance are distributed as a power of the original density instead
of the density itself, unless the underlying density is uniform.

How can we find a set of centroids that matches the underlying density of our data? This
is the key problem we study in this chapter. In an early work, Delp and Mitchell (1991)
looked for a weaker property of centers, which is to match the moments of the underlying
density. Hegde et al. (2004) explicitly minimize the KL-divergence between a kernel density
estimation of the original data and the estimated density of the centroids by gradient descent.
Hulle (1999) and Meinicke and Ritter (2001) use a similar approach to build a compact density
estimator. Instead of relying on all samples to estimate the density, they select few points
that best describes the density. Recently, Li et al. (2011) considered using the Rosenblatt
transformation which transforms an arbitrary distribution to a uniform distribution. After
quantizing the transformed data, one can use the inverse transformation to get back to the
original density.

In this chapter, we introduce a completely new approach to the problem. The algorithm we
suggest is conceptually simple: we construct an unweighted k-nearest neighbor graph on the
sample points and use the k-mediod algorithm with respect to the shortest path distance on
this graph for constructing the representatives. Quite surprisingly, we do not even need to
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have access to the data points themselves or to their Euclidean distances, our algorithm works
as soon as we know who are the k-nearest neighbors of each data point. It also works for
manifolds, and we do not even need to know the intrinsic dimension of the data. In Section
7.5, we present an application of our proposed algorithm in downsampling random geometric
graphs.

The major part of this chapter is devoted to a thorough statistical analysis of our algorithm.
We first introduce a new distance function Dpd on Rd which depends on the data density p.
We then show that this distance function plays the role of a “uniformizing transformation” of
the space: Quantizing p-distributed data with respect to the distance function Dpd behaves
as quantizing uniform data with respect to the Euclidean norm. As a second step we then
exploit that the Dpd-distance on Rd can be approximated by the shortest path distance in
unweighted kNN graphs. Our main result is that if the original data points are distributed
according to the density p, then the representatives selected by our algorithm will follow the
same distribution (as the sample size and the number of centers converge to infinity).

7.2 Definitions and formal setup

Consider a connected and compact subset X ⊂ Rd endowed with a probability measure
P which has a Lipschitz continuous density p with Lipschitz constant L. Assume the set
Vn = {X1, ..., Xn} ⊂ X has been drawn i.i.d. according to p. Denote by Pn the empirical
measure of the sample. The unweighted, undirected k-nearest neighbor (kNN) graph Gn is
the graph with vertex set Vn where we connect Xj to Xi by an undirected edge if Xj is among
k nearest neighbor of Xi or vice versa (according to the Euclidean metric). In the following,
we use the letter k to denote the parameter of the kNN graph and the letter κ to denote the
number of representatives for κ-means and κ-medoids. For two vertices x, y ∈ Vn, the shortest
path distance DGn

sp (x, y) is the length of the shortest path connecting x to y in Gn. When the
underlying graph is clear from the context, we drop the index Gn and simply use the notation
Dsp(x, y).

Definition 7.1 (Following / resembling a density) Let (An)n∈N be a sequence of sets
with An ⊂ X , |An| = n. We say that An follows or resembles the density function p if for
any measurable set S ⊂ X , the fraction of points of An which lie inside S converges to the
probability mass of S: 1

n |S ∩An| →
∫
S
p(x)dx as n→∞ (Gruber, 2004).

Let f be a positive, continuous, real-valued function defined on X . We define the f -weighted
length or f -length of a curve γ : [0, 1]→ X as

Df (γ) =

∫ 1

0

f(γ(t))|γ′(t)|dt.

The f -distance between x and y is defined as Df (x, y) := infγ Df (γ) where the infimum is over
all rectifiable paths γ that connect x to y (see also Chapter 2). Following the notations used in
Chapter 2, we use the shorthand notation pd-distance for the f -distance with f(x) = p(x)1/d.
In Lemma 7.3 we show that the pd-distance induces a uniform structure on non-uniform
densities.
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7.3 Vector quantization

A vector quantizer maps vectors in Rd to a set A = {a1, · · · , aκ} ⊂ Rd. Each element ai is
called a centroid, a center or a representative. The set Vi ⊂ Rd of vectors that are assigned to
the centroid ai is called a (Voronoi) cell. A common assignment is based on Euclidean distance:
every point x is assigned to its nearest centroid with respect to the Euclidean distance. A
widely used example of Euclidean distance quantizers is the least square quantization, better
known as k-means (Lloyd, 1982). As we will work with other metrics as well, we formally
define the centroid assignment function CA : Rd → A which is the one that determines the cells
Vi = {x ∈ Rd| CA(x) = ai}. In particular, we consider the functions CA,‖·‖, CA,pd and CA,sp
which assign points to the closest center according to the Euclidean distance, the pd-distance
and the shortest path distance, respectively.

The representation error g(x, y) : X × X → R quantifies the error of representing y by x. In
κ-means we have g(x, y) = ‖x − y‖2. The quality Φ of a set of centroids is measured by the
expected representation error of the centroid mapping function

Φ(g, CA, P ) :=

∫
g(CA(x), x)P (dx).

The set of optimal centroids of size κ with respect to the error function Φ(g, CA, P ) is defined
as the set A that minimizes the expected error

A∗ = argmin
A,|A|=κ

Φ(g, CA, P ).

The set of empirical optimal centroids An is defined analogously with respect to Φ(g, CA, Pn).
Finding the set of empirical optimal centroids An is an NP-complete problem in general.
However, there exist EM type algorithms and several heuristics to find a good local optimum
of Φ(g, CA, Pn). In this work we will not discuss details of these algorithms.

The topology of optimal centroids and shape of their corresponding cells are studied in several
works, see Graf and Luschgy (2000) and Gruber (2004) for references. As a brief summary of
their results, the optimal centroids in the case g(x, y) = ‖x− y‖α are distributed with density
pd/(d+α) when the number of centroids κ is large enough. A conjecture of Gersho (1979) states
that for g(x, y) = ‖x − y‖2 and uniform p, there exists a convex polytope such that all cells
are congruent to it as κ → ∞. This conjecture is only proved for d = 2 where the convex
polytope is a regular hexagon (Fejes Tóth, 2001, Gruber, 2001).

7.4 Quantization with the pd-distance

In this section, we introduce a new technique to transform a space with a non-uniform density
to a space with uniform density. The pd-distance plays a key role in this construction. This
transformation is defined for all smooth compact Riemannian manifolds, but later we are
only going to use it for full-dimensional subsets of Rd. Then we use our new transformation
to construct a quantization procedure which keeps the distribution of centers correct. In
Section 7.4.3 we then show how to approximate the quantization procedure and why this
approximation works.
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7.4.1 Uniformizing metric

Imagine a uniform elastic rubber band with printed lines graduated in centimeters. Now
stretch the band in different places to get a non-uniform band. The printed lines will also
displace and their Euclidean distances will change. However, these displaced lines show a
uniformity property: The mass of the elastic band between successive lines is the same all
over the stretched band. We show that pd-distance corresponds to such a stretched distance
when the density function p corresponds to the density of the rubber at each point on the
band. If an ant walks on this band such that it passes a fixed number of lines in a second, it
would need to walk faster in low density regions and slower in high density regions.

Definition 7.2 (Uniformizing Metric) Let (M,h) be a smooth compact Riemannian man-
ifold with intrinsic dimension d, where h is the standard Riemannian metric. Let p(x) be a
continuous and smooth density defined on M . Consider the smooth Riemannian manifold
(M,hp) where

hpx(u, v) := hx(p(x)1/du, p(x)1/dv)

for tangent vectors u and v at x. We call the metric hp a metric uniformizing the density p.

Because the density is assumed to be strictly positive, the uniformizing transformation can
be interpreted as a conformal change of metric with hpx = p(x)2/dhx. Let % (resp. %p) and w
(resp. wp) denote the geodesic distance and the volume element on (M,h) (resp. on (M,hp)).
We denote the volume of a set A ⊂ X in (M,hp) as Volp(A).

Lemma 7.3 (Density gets uniform and pd-distance becomes Euclidean) Consider a
compact smooth Riemannian manifold (M,h) and its uniformizing transformation (M,hp).

• The length of a smooth curve γ : [0, 1]→M in (M,hp) is the pd-length of γ in (M,h).

• The geodesic distance between two points in (M,hp) corresponds to their pd-distance in
(M,h).

• The uniformizing transformation induces a uniform density on M : all sets A1,A2 ⊂ X
with p(A1) = p(A2) also have the same volume in (M,hp), that is Volp(A1) = Volp(A2).

Proof. Part 1. The length of a smooth curve γ in (M,hp) is defined as
∫ 1

0
‖γ′(t)‖hpdt where

‖ · ‖hp is the norm induced by the inner product on the tangent space T pM(γ(t)) at point
γ(t). Using ‖x‖hp = p(x)1/d‖x‖h and the definition of the pd-length leads to the result.

Part 2. The geodesic distance is the infimum over the lengths of paths connecting the two
points. Exploiting Part 1 will give the result. So %p(c, x) = Dpd(c, x).

Part 3. From properties of the conformal change of a metric (see Theorem 1.159 in Besse,
1987) we get dwp(x) = p(x)dw(x). Then

Volp(A1)

Volp(A2)
=

∫
A1
dwp(x)∫

A2
dwp(x)

=

∫
A1
p(x)dw(x)∫

A2
p(x)dw(x)

=
p(A1)

p(A2)
= 1.

2

7.4.2 Quantization with the exact pd-distance

From here on, we restrict ourselves to Euclidean spaces for the sake of simplicity. However,
all theorems can be generalized to smooth manifolds. We are now going to study the behavior
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of centroids with respect to the pd-distance, and later the behavior of the empirical centroids
with respect to the shortest path distance. In the following we always assume that the set
of optimal centers is unique. Our results can also be extended in a straightforward manner
to the non-unique case by studying the set of unique centers, but this introduces even more
heavy notation. So we decided to just state our results for the unique case.

The next theorem is a variation of Theorem 1 in Gruber (2004) and specifies the distribution
of the centroids with respect to the pd-distance. The intuition behind the theorem is that the
density of κ-means centroids matches the data points density when the latter is uniform. So
we use a distance measure that induces a uniform density on the underlying space.

Theorem 7.4 (Quantization with exact pd-distance) Let X be a connected and com-
pact subset of Rd endowed with a Lipschitz continuous density p. Assume that for all x ∈ X
we have 0 < pmin ≤ p(x) ≤ pmax < ∞. Let A∗κ be an optimal κ-means centroid with respect
to the pd-distance, that attains the minimum

A∗κ = argmin
A,|A|=κ

{∫
X
{min
c∈A

Dpd(c, x)2}p(x)dx

}
. (7.1)

Then A∗κ is distributed with density p in X as κ→∞.

Proof. Using Lemma 7.3∫
{min
c∈A

%p(c, x)2}dwp(x) =

∫
{min
c∈A

Dpd(c, x)2}p(x)dw(x),

where w(x) is the Lebesgue measure on X . Now Part 2 from Theorem 1 in Gruber (2004)
shows that the centers minimizing∫

{min
c∈A

%p(c, x)2}dwp(x)

have uniform density with respect to the area measure wp(x) as n→∞. This means they are
distributed with density p(x) with respect to the Lebesgue measure. 2

Theorem 7.4 shows that the optimal κ-means centers with respect to the pd-distance follow
the underlying density of our data. However, it is neither easy to compute the pd-distance
from p, nor from a set of i.i.d. sample points from p.

7.4.3 Quantization with approximate pd-distance

We now provide a simple and effective approach to approximate κ-means centers with respect
to the pd-distance. The procedure is the following: First build an unweighted kNN graph
Gn based on samples x1, ..., xn ∈ X from the density p with a proper k. Then quantize
with respect to the graph shortest path distance in Gn. In Theorem 7.5 we show that the
centers constructed by this procedure converge to optimal κ-means centers with respect to
the pd-distance.

Define the representation error functions

gpd(x, y) = Dpd(x, y)2 , gsp(x, y) = Dsp(x, y)2. (7.2)
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Although all results in this chapter hold for gf (x, y) = Df (x, y)t with arbitrary t ≥ 1, we
restrict ourselves to the more common case t = 2.

Set the constant β = ηdp
d+1
min /(4L)d where ηd is the volume of a Euclidean unit ball in Rd and

L is the Lipschitz constant of the density p.

Theorem 7.5 (Convergence of κ-medoids center to κ-means centers) Consider the un-
weighted kNN graph Gn based on the i.i.d. sample x1, ..., xn ∈ X from the density p. We choose
k such that for a fixed 0 < α� 1,

24 log(n)1+α < k < β
n

(log n)α
.

Fix κ. Let An denote the optimal empirical κ-medoids in graph Gn with respect to the shortest
path distance. We assume that the optimal κ-means centers for X with respect to the pd-
distance is unique and denote it by A∗ . As n tends to infinity, the empirical κ-medoids
centers An converge almost surely to A∗ with respect to the Hausdorff distance.

To prove this theorem, we need the Theorem 2.1 for the convergence of the shortest path
distance to pd-distance in probability. In Lemma 7.6 we present a simplified version of that
theorem. Then in Lemma 7.7 we use the Borel-Cantelli lemma to show the almost sure
convergence of Φ(gsp, CA, Pn), the normalized quantization error with respect to the shortest
path distance, to Φ(gpd, CA, Pn), the quantization error with respect to the pd-distance. The
price we pay to reach almost sure convergence instead of convergence in probability is to have
a slightly stronger condition on k, the connectivity parameter of the kNN graph. To keep our
proofs readable, we ignore boundary effects. One can show that the boundary effects are tiny
and converge toward zero in the limit.

Lemma 7.6 (Convergence of Dsp to Dpd) Consider a sequence of i.i.d. samples Vn =
{x1, ..., xn} ⊂ X from the density p. For any n we build an unweighted kNN graph Gn based
on x1, ..., xn and denote the shortest path distance on this graph by Dn

sp. Set cn = ( k
nηd

)1/d.

Assume for a small fixed α, 24 log(n)1+α < k < β n
(logn)α . Set λ = (log n)−

α
4d and let n >

3 · 2d+1.

Then with probability at least 1− 1
n2 , for all pairs x, y ∈ Vn

1

(1− λ)1/d
Dpd(x, y) ≤ cnDn

sp(x, y) ≤ 1
1

(1+λ)1/d − 2 (1+λ)1/d

kα2

Dpd(x, y).

Proof. In Theorem 2.1, set k′ = k1−α2

. Then with probability at least 1− 1
n2 , for all pairs

x, y ∈ Vn:

1

(1− λ)1/d
Dpd(x, y) ≤ cnDn

sp(x, y) ≤ 1
1

(1+λ)1/d − 2 (1+λ)1/d

kα2

Dpd(x, y).

2

Lemma 7.7 (Convergence of quantization errors) Consider the setting in Lemma 7.6.
Let n → ∞ and fix κ. Then for every subset A ⊂ X with |A| = κ, and any CA with support
in X ,

|c2nΦ(gsp, CA, Pn)− Φ(gpd, CA, Pn)| → 0 a.s.
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Proof. By the definition of Φ(gsp, CA, Pn) and Lemma 7.6, the following inequalities hold
with probability at least 1− n−2:

c2nΦ(gsp, CA, Pn) =
c2n
n

∑
v∈Vn

Dsp(CA(v), v)2 ≥ 1

n(1− λ)2/d

∑
v∈Vn

Dpd(CA(v), v)2

=
1

(1− λ)2/d
Φ(gpd, CA, Pn).

For the upper bound, set e = 1/( 1
(1+λ)1/d − 2 (1+λ)1/d

kα2 ). Then we have

c2nΦ(gsp, CA, Pn) ≤ e2Φ(gpd, CA, Pn) + c2n + 2cneΦ(Dpd, CA, Pn). (7.3)

Note that in Lemma 7.6, the property holds for all pairs of vertices simultaneously. It is easy
to show that for a fixed κ, Φ(gpd, CA, P ) and consequently Φ(gpd, CA, Pn) and Φ(Dpd, CA, Pn)
are bounded. Using these inequalities, the boundedness of Φ(gpd, CA, Pn) and Φ(Dpd, CA, Pn),
the Borel-Cantelli lemma and the convergence of hyperharmonic series

∑
i−2 leads to the

almost sure convergence of |c2nΦ(gsp, CA, Pn)− Φ(gpd, CA, Pn)| to zero. 2

Proof. [Theorem 7.5] Overview: The standard technique is to bound the difference between
representation errors with An and A∗ and show that it converges almost surely to 0. This
is done by using the triangle inequality to bring the empirical representation errors into the
play. Then the uniform strong law of large numbers shows the convergence of empirical
representation errors (see, e.g., Pollard, 1981). In the proof of this theorem, we deal with
extra intermediate terms that need be bounded using properties of the shortest path distance
(see below).

Define Eκ = {A ⊂ X | |A| = κ}, the set of all possible sets of κ-centers. The set Eκ is
compact under the topology induced by the Hausdorff metric. When we work with Euclidean
distance, the map A→ Φ(g‖.‖, CA,‖.‖, P ) is continuous on Eκ (Pollard, 1981). This result can
be extended to the continuity of A → Φ(gpd, CA,pd, P ) when we use the pd-distance as our
metric. We assumed that A∗ is unique. So the almost sure convergence of Φ(gpd, CAn,pd, P )
to Φ(gpd, CA∗,pd, P ) will confirm the almost sure convergence of An to the optimal κ-means
centers A∗ (with respect to the Hausdorff distance).

This means we only need to show that Φ(gpd, CAn,pd, P ) converges to Φ(gpd, CA∗,pd, P ) almost
surely. We prove this by using several intermediate steps. In these steps we alternate between
P and Pn, between gpd and gsp, and between CA,pd and CA,sp. Also we need to reach A∗ from
An. This is done using an intermediate step that goes from vertices An to a set of vertices
near to A∗. To this end we define Ã∗ as the nearest subset of samples to A∗:

Ã∗ = {ṽj |ṽj = arg min
v∈Vn

‖ v −A∗(j) ‖; j = 1, ..., κ}.

For vj ∈ A∗, we also use the notation ṽj = Ã∗(vj) to denote the corresponding vertex from
Vn. Set cn = (k/ηdn)1/d as before. We bound ∆Φ = Φ(gpd, CAn,pd, P ) − Φ(gpd, CA∗,pd, P ) as
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follows:

∆Φ ≤ |Φ(gpd, CAn,pd, P )− Φ(gpd, CAn,pd, Pn)| (7.4a)

+ Φ(gpd, CAn,pd, Pn)− Φ(gpd, CAn,sp, Pn) (7.4b)

+ |Φ(gpd, CAn,sp, Pn)− c2nΦ(gsp, CAn,sp, Pn)| (7.4c)

+ c2n
(
Φ(gsp, CAn,sp, Pn)− Φ(gsp, CÃ∗,sp, Pn)

)
(7.4d)

+ c2n
(
Φ(gsp, CÃ∗,sp, Pn)− Φ(gsp, CÃ∗,pd, Pn)

)
(7.4e)

+ |c2nΦ(gsp, CÃ∗,pd, Pn)− Φ(gpd, CÃ∗,pd, Pn)| (7.4f)

+ |Φ(gpd, CÃ∗,pd, Pn)− Φ(gpd, CA∗,pd, Pn)| (7.4g)

+ |Φ(gpd, CA∗,pd, Pn)− Φ(gpd, CA∗,pd, P )|. (7.4h)

Now we show that every term on the right hand side is either non-positive or almost surely
converges to zero.
(7.4a) The proof of the uniform strong law of large numbers (SLLN) for Φ(g‖.‖, C·,‖.‖, P )
(see, e.g., Pollard 1981) holds for all metric spaces with compact closed balls. This results
in the uniform SLLN for Φ(gpd, C·,pd, P ) (uniform over all set of κ-centers) and almost sure
convergence of Φ(gpd, CAn,pd, Pn) to Φ(gpd, CAn,pd, P ). So

|Φ(gpd, CAn,pd, P )− Φ(gpd, CAn,pd, Pn)| a.s.−→ 0.

(7.4b) From the definition, CA,pd(x) is the centroid with shortest pd-distance to x, so

Φ(gpd, CAn,pd, Pn) ≤ Φ(gpd, CAn,sp, Pn).

(7.4c) From Lemma 7.7,

sup
An

|Φ(gpd, CAn,sp, Pn)− c2nΦ(gsp, CAn,sp, Pn)| a.s.−→ 0.

(7.4d) The centers An are optimal κ-medoids centers with respect to the shortest path distance,
so

Φ(gsp, CAn,sp, Pn)− Φ(gsp, CÃ∗,sp, Pn) ≤ 0.

(7.4e) CA,sp(x) is defined as the centroid with graph shortest path distance to x, so

Φ(gsp, CÃ∗,sp, Pn) ≤ Φ(gsp, CÃ∗,pd, Pn).

(7.4f) From Lemma 7.7,

sup
Ã∗
|c2nΦ(gsp, CÃ∗,pd, Pn)− Φ(gpd, CÃ∗,pd, Pn)| a.s.−→ 0.

(7.4g) By the construction of Ã∗, the distance between Ã∗ and A∗ decreases as the sample
size n increases. Define δ = maxv∈A∗ Dpd(Ã∗(v), v). It is easy to check that δ almost surely
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converges to zero as n→∞. Now we can use the squared triangle inequality to get

Φ(gpd, CÃ∗,pd, Pn) =
1

n

∑
Dpd(CÃ∗,pd(Xi), Xi)

2

≤ 1

n

∑
Dpd(Ã∗(CA∗,pd(Xi)), Xi)

2

≤ 1

n

∑
Dpd(CA∗,pd(Xi), Xi)

2

+
1

n

∑
Dpd(CA∗,pd(Xi), Ã∗(CA∗,pd(Xi)))

2

+
2

n

∑
Dpd(CA∗,pd(Xi), Xi)Dpd(CA∗,pd(Xi), Ã∗(CA∗,pd(Xi)))

≤ Φ(gpd, CA∗,pd, Pn) + δ2 + 2δΦ(Dpd, CA∗,pd, Pn).

Similarly, we get

Φ(gpd, CA∗,pd, Pn) ≤ Φ(gpd, CÃ∗,pd, Pn) + δ2 + 2δΦ(Dpd, CÃ∗,pd, Pn).

Note that Φ(Dpd, CA∗,pd, Pn) and Φ(Dpd, CÃ∗,pd, Pn) almost surely converge to Φ(Dpd, CA∗,pd, P )
and Φ(Dpd, CÃ∗,pd, P ), which are bounded. Here,

|Φ(gf , CÃ∗,f , Pn)− Φ(gf , CA∗,f , Pn)| a.s.−→ 0.

(7.4h) By the strong law of large number for Φ(gpd, C·,pd, P ) we have

|Φ(gpd, CA∗,pd, Pn)− Φ(gpd, CA∗,pd, P )| a.s.−→ 0.

So all in all we get |Φ(gpd, CAn,pd, P )− Φ(gpd, CA∗,pd, P )| a.s.−→ 0 which finishes the proof. 2

Convergence for κ→∞

So far we only proved the convergence results for fixed κ. However,Theorem 7.4 holds for
κ → ∞. As we work with empirical centers, it is necessary that κ, k and n go to infinity
together. The next theorem specifies the interplay between these parameters. It shows that
if all parameters go to infinity at appropriate speed, the empirical κ-medoids centers will
converge to optimal κ centers and will resemble the original density.

Theorem 7.8 (κ-medoids centers resemble the original density)
Consider the unweighted kNN graph Gn based on the i.i.d. sample X1, ..., Xn ∈ X drawn from
the density p. Assume that for all x ∈ X the density at x is bounded

0 < pmin ≤ p(x) ≤ pmax <∞,

and let α > 0 be a constant. We choose κ, k and n such that k ≥ log(n)1+α, k log(n)/n → 0
and κk/n → 0. Let An denote the optimal empirical κ-medoids in graph Gn with respect to
the shortest path distance. Assume that the set of optimal κ-means centers with respect to the
pd-distance is unique. Then as κ, k and n tend to infinity, the empirical κ-medoids centers
An follow the density p.

The conditions on k and κ have intuitive interpretations. The condition on k is a bit stronger
than the usual condition k/ log(n) → ∞ that guarantees connectivity in random geometric
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graphs. The condition on κ also has an intuitive meaning. If we choose a large κ, say
κ ≈ n/ log(n), each center would only have around log(n) points in its own cell. Thus each
center is connected to almost all points inside the cell with a path of length 1. Therefore the
shortest paths inside the cells are not good approximations for pd-distances. The condition
κk/n → 0 ensures that for each center, many of the points inside the cell has shortest path
distance ω(1). As a rule of thumb, we can set k ≈ log(n) and choose κ smaller than n/ log(n)2.

The proof of this theorem needs a more careful investigation of Equation (7.4). We have to
show that each term on the right-hand side converges to zero if κ, k and n go to infinity at
the specified speed. For terms (7.4a) and (7.4h), this can be done using standard results from
the literature (Pollard, 1982, Bartlett et al., 1998). However, the terms (7.4c) and (7.4f) only
appear in our algorithm and need a separate analysis. Details can be found in Section 7.7.1.

7.5 Downsampling geometric graphs

In this section, we use the proposed algorithm to downsample random geometric graphs.
Assume that we are given a massive unweighted kNN graph G with n vertices. The vertices
of the graph are sampled from a probability density p, but we neither have access to the point
locations of vertices, nor to the underlying density. Our task is to “downsample” G to a much
smaller graph G′ with n′ � n vertices. The downsampled graph G′ should “look like” a kNN
graph built on n′ samples from the density p.

A simple idea is to randomly select n′ vertices. Then connect each vertex to its k′ nearest
neighbors, where distances are measured by the shortest path distances in the original graph
G. If we choose k′ in the right range (k′ ≥ c log(n′) for a sufficiently large c), we end up with
a connected kNN graph. Can we benefit from the large geometric graph G to find a “better”
solution?

We motivate our “better” solution by an example. Let u denote the uniform density on the
unit square. We want to represent u by a subset of m2 points from [0, 1]2. Consider two
solutions for this problem: select m2 random samples from the density u or select m2 points
on a grid of width Θ(1/m). One can show that the grid solution is a better representation
of the density u in the following sense: For the first solution, there exist a circle inside [0, 1]2

with radius Θ(log(m)/m) such that it does not contain any sample point with high probability.
For the grid solution, the largest radius of such a circle is Θ(1/m). Moreover, if we build a
neighborhood graph on our grid points, the graph will be connected as soon as we connect
every point to its 4 nearest neighbors. However in the random sample, the graph would be
connected only if we connect every point to at least log(m) of its nearest neighbors.

We claim that our density-preserving downsampling algorithm results in samples that are
more evenly spaced than a random sample. More specifically, if we connect each center to
a constant number of its nearest neighbors, the graph would be connected. This constant
depends on the geometry and the dimension of our underlying space, but not on the number
of centers. The next theorem states this for optimal κ-means centers in the continuous case.

Theorem 7.9 (Sparse neighborhood graphs on optimal centers) Let X be a connected
and compact subset of Rd endowed with a Lipschitz continuous density p. Assume that for
all x ∈ X we have 0 < pmin ≤ p(x) ≤ pmax < ∞. Let A∗κ be the set of optimal κ-means
centroids with respect to the pd-distance that attains the minimum of Φ(gpd, CA,pd, P ). Then
there exists a constant c such that the c nearest neighbor graph built on centroids is connected.
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Figure 7.1: a) Original data (green) and centroids based on the shortest path distance (red)
and the Euclidean distance (black).
b) The marginal distribution of samples and quantization centroids in the direction of x-axis.

The constant c is related to the doubling constant of the underlying space X , which depends
on d but not on κ.

This theorem is in sharp contrast with the fact that for connectivity of a kNN graph, it is
necessary that k ≥ C log(n) (see, e.g., Penrose, 1999). The proof uses a geometric argument
based on the Delone property of Voronoi cells corresponding to optimal κ-means centers. It
also shows how we can find the constant c: Look at the Voronoi diagram of the optimal centers
and set c as the maximum number of facets of a Voronoi cell in that diagram. Details of the
proof are discussed in Section 7.7.2.

Now we can put Theorems 7.8 and 7.9 together to get our desired result. Namely, if we apply
the density-preserving downsampling on unweighted kNN-graphs, the centers will follow the
underlying density of the original graph. Moreover, we can build a sparse neighbourhood
graph on these κ downsampled vertices. The total number of edges in this graph will depend
linearly on κ. The original graph G can also be a ε-graph or a weighted kNN graph. The
same downsampling algorithm is applicable on ε-graphs by finding a kNN subgraph of G.

7.6 Implementation and simulation

We now suggest a heuristic to simplify the implementation of the quantization procedure when
our points are embedded in an Euclidean space. Then we discuss the case where we do not
have access to the embedding of our sample points, but only to the adjacency matrix of the
kNN graph. Finally, we illustrate an example of density preserving quantization with shortest
path distances on a synthetic dataset as a proof of concept.

The classical implementation of κ-means is an EM type algorithm by Lloyd (1982). After
initializing the centers, it iterates over two steps:

1. The assignment step: It is referred also as the expectation step. In this step, data points
are assigned to centers.
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2. The update or maximization step: Recalculate the centers using the result from Step 1.

It is easy to adapt the assignment step when we use the shortest path distance. The centers are
not necessarily vertices from our graph, so we connect each center to its nearest sample point.
Every point will be assigned to the center with smallest shortest path distance. For the update
step, instead of finding the exact center of each Voronoi cell with respect to the shortest path
distance, we use a simple heuristic. We assume that the density inside each cell is constant, in
which case the update would be the same as for the standard Euclidean κ-means. If there are
ci points in the Voronoi cell i, this reduces the computational complexity of finding the center
from O(c2i ) to O(ci). This heuristic is useful when ci is relatively large (e.g. ci = O(

√
n)) and

applicable when the density of points inside each cell is close to uniform.

As a proof of concept, we apply this algorithm on a synthetic dataset. We draw 12,000 points
from an unbalanced mixture of two Gaussian distributions in R2 and build an unweighted kNN
graph with k = 15. Then we quantize to κ = 100 centers using the shortest path distance and
Euclidean distance. The results are depicted in Figure 7.1a. One can see that the Euclidean
distance based quantization tends to have more centers in low density regions compared to
the shortest path distances based centers. In the former, centers resemble the density p(x)1/2

(Graf and Luschgy, 2000), hence low density regions are amplified. To compare the density of
the centers of standard k-means and our algorithm, we plot their estimated marginal density
in the direction of x-axis in Figure 7.1b. The density bias of quantization centers with respect
to the Euclidean distance is again apparent in this figure.

Computing κ-medoids or κ-means with respect to the shortest path distance is used in the
literature for clustering (Kim et al., 2007, Feil and Janos, 2007). Asgharbeygi and Maleki
(2008) propose a relatively simple algorithm for finding centers when there is no access to
the embedding of the data. They first show that for proper distance matrices, one can apply
multidimensional scaling (MDS) to find a distance preserving embedding of the points in a
higher dimensional Euclidean space and use the Lloyd algorithm in the embedded space. At
the end, they show how to do all the computations in the original space without paying the
cost of the embedding step.

7.7 Proofs

7.7.1 Proof of Theorem 7.8

The first step of the proof is similar to the proof of Theorem 7.5, up to Equation (7.4). We
show that each term on the right-hand side of that equation converges to zero if k, κ and n
go to infinity at specified rates.

(7.4a) Let F denote the class of functions

Fκ = {fA(x)|fA(x) = Dpd(x, CA(x))2, A ⊂ X , |A| = κ},

and N (t,Fκ) the covering number of Fκ with respect to the supremum norm. To cover X
with pd-balls of radius t, we need Θ(t−d) of such balls (see Lemma 2.7 in Chapter 2). This
means that N (t,Fκ) = Θ(t−κd). We also have

P (sup
A

∣∣Φ(gpd, CA,pd, P )− Φ(gpd, CA,pd, Pn)
∣∣ > t) ≤ N (t,Fκ)e−nt

2/B ,
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where B is a constant depending on the diameter of X . This shows that the difference
converges to zero with high probability (probability converging to 1) if κ log(n)/n→ 0.

(7.4c) We revisit Lemma 7.7 for κ→∞. We rewrite the proof of the lemma for a general CA:

1

(1− λ)2/d
Φ(gpd, CA, Pn) ≤ c2nΦ(gsp, CA, Pn)

≤ e2Φ(gpd, CA, Pn) + c2n + 2cneΦ(Dpd, CA, Pn).

Set CA = CA,sp. We need to show that as κ, k and n go to infinity,

Φ(gpd, CA,sp, Pn)

c2n
→∞ and

Φ(gpd, CA,sp, Pn)

cneΦ(Dpd, CA,sp, Pn)
→∞.

From Theorem 1 in Gruber (2004), we know that

Φ(gpd, CA,sp, Pn) = Θ(
1

κ2/d
) and Φ(Dpd, CA,sp, Pn) = Θ(frac1κ1/d).

Recalling cn = ( k
nηd

)1/d, we get

Φ(gpd, CA,sp, Pn)

c2n
== Θ

(
(
ηdn

κk
)2/d

)
and

Φ(gpd, CA,sp, Pn)

cneΦ(Dpd, CA,sp, Pn)
= Θ

(
(
ηdn

κk
)1/d

)
.

This shows that |c2nΦ(gsp, CA, Pn)−Φ(gpd, CA, Pn)| almost surely converges to zero if κk/n→ 0.

(7.4f) Similar to Part (7.4c).

(7.4g) Consider the proof of the corresponding part in Theorem 7.5. We need to show that

Φ(gpd, CA∗,pd, Pn)

δ2
→∞ and

Φ(gpd, CA∗,pd, Pn)

δΦ(Dpd, CÃ∗,pd, Pn)
→∞.

Instead of bounding δ, it is easier to bound δ′ = supx∈X ,v∈Vn ‖x − v‖. Using a standard

sphere packing lemma, we know that δ′ ≤ (k/n)1/d with probability converging to 1. For
large enough n, we have

δ = max
v∈A∗

Dpd(Ã∗(v), v) ≤ 2p1/d
max max

v∈A∗
‖Ã∗(v)− v‖ ≤ 2p1/d

maxδ
′.

This means that, with high probability, δ ≤ 2p
1/d
max(k/n)1/d. Similar to Part (7.4c), we have

Φ(gpd, CA∗,pd, Pn)

δ2
= Θ

(
(
n

kκ
)2/d

)
and

Φ(gpd, CA∗,pd, Pn)

δΦ(Dpd, CÃ∗,pd, Pn)
= Θ

(
(
n

kκ
)1/d

)
.

This shows that |Φ(gpd, CÃ∗,pd, Pn) − Φ(gpd, CA∗,pd, Pn)| almost surely converges to zero if
κk/n→ 0.

(7.4h) Similar to Equation (7.4a), this term converges to zero if κ log(n)/n→ 0. 2

7.7.2 Proof of Theorem 7.9

Consider the Voronoi diagram induced by the optimal centers. Connect each center to centers
of all neighbor cells to attain a connected graph. Let c be the maximum degree in this graph.
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We extend this graph into a nearest neighbor graph with neighborhood size c. Consider a
vertex vi with degree di. Extend the neighborhood of vi by connecting it to its next c − di-
nearest neighbors (with respect to the pd-distance). We show that c is a constant independent
of κ, which proves the theorem.

The Voronoi cells corresponding to optimal centers A∗κ cannot be very thin or very long
(Gruber, 2001). This property and a sphere packing lemma are used to bound the number of
neighbors of each Voronoi cell. We first mention the proposition from Gruber (2004) on the
shape of optimal Voronoi cells.

Proposition 7.10 (Optimal Voronoi cells are delone) Let X be a compact and smooth
Riemannian d-manifold. Let A∗κ be the optimal quantization centroids with respect to the
Riemannian metric %, that attains the minimum of Φ(gσ, CA, P ). Then there exist constants
a, b > 0 such that A∗κ is (aκ1/d, bκ1/d)-Delone. This means that

• Every two distinct centers of A∗κ have distance at least aκ1/d.

• For each point of X , there exists a center in A∗κ at distance at most bκ1/d.

Constants a and b depend on d and the geometry of X , but not on κ.

Note that this proposition is not asymptotic and holds for every n. Let B%(x, r) denote the
closed %-ball with radius r and center x

B%(x, r) = {y|%(x, y) ≤ r}.

Also denote the Voronoi cell of an optimal center ai ∈ A∗κ by Di. The next lemma provides
the necessary tools for our proof.

Lemma 7.11 Consider the setting in Proposition 7.10 and let Di and Dj be two neighboring
Voronoi cells.

• The neighbor centers are not far from each other: %(ai, aj) ≤ 2bκ1/d.

• The cell Dj is inside the %-ball around ai with radius 3bκ1/d: Dj ⊂ B%(aj , 3bκ1/d).

• Voronoi cells are fat: The %-ball with radius 0.5aκ1/d around ai is completely inside Di:

B%(ai, 0.5aκ
1/d) ⊂ Di.

Proof. Part 1. Consider the geodesic path between ai and aj . Let m be the mid point of
this path: %(ai,m) = %(ai, aj)/2. Point m is on the boundary of Di and Dj , so m ∈ Di. We
show that %(ai,m) ≤ bκ1/d. If not, from Part 2 of Proposition 7.10, there exist a center ak
such that %(ak,m) ≤ bκ1/d. This means that %(ak,m) < %(ai,m), which contradicts the fact
that m is in Di.

Part 2. Consider a point x ∈ Dj . Similar to Part 1, we can show that %(aj , x) ≤ bκ1/d. Using
the triangle inequality, we have

%(ai, x) ≤ %(ai, aj) + %(aj , x) ≤ 3bκ1/d.

Part 3. If not, there exists a point x such that %(ai, x) ≤ 0.5aκ1/d but x /∈ Di. Therefore, the
point x is inside a cell Dl with center al such that %(al, x) < %(ai, x). This means that

%(ai, al) ≤ %(ai, x) + %(x, al) < aκ1/d,
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which is in contradiction with Part 1 of Proposition 7.10. 2

Consider an optimal center ai and denote the set of centers of all neighboring cells by Ai.
The pd-balls with radius 0.5aκ1/d around centers in Ai are all disjoint. These balls are also
completely inside Bpd(ai, 3bκ

1/d), thus

p
(
Bpd(ai, 3bκ

1/d)
)
≥
∑
v∈Ai

p
(
Bpd(v, 0.5aκ1/d)

)
≥ |Ai|pmine1κ,

where e1 is a constant (depending on d). Also

p
(
Bpd(ai, 3bκ

1/d)
)
≤ e2pmaxκ,

for a constant e2. All in all, we have |Ai| ≤ pmaxe2
pmine1

which is a constant independent of κ. 2

109



Bibliography

L. A. Adamic and E. Adar. Friends and Neighbors on the Web. Social Networks, 25:211–230,
2003.

M. Alamgir and U. von Luxburg. Multi-agent random walks for local clustering. In Interna-
tional Conference on Data Minig (ICDM), 2010.

M. Alamgir and U. von Luxburg. Phase transition in the familiy of p-resistances. In Neural
Information Processing Systems (NIPS), 2011.

M. Alamgir and U. von Luxburg. Shortest path distance in random k-nearest neighbor graphs.
In International Conference on Machine Learning (ICML), 2012.

N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker, and M. R. Tuttle. Many random walks
are faster than one. In Symposium on Parallelism in Algorithms and Architectures, pages
119–128, 2008.

R. Andersen and Y. Peres. Finding sparse cuts locally using evolving sets. In ACM Symposium
on Theory of Computing (STOC), pages 235–244, 2009.

R. Andersen, F. R. K. Chung, and Kevin J. L. Local graph partitioning using pagerank
vectors. In Foundations of Computer Science (FOCS), pages 475–486, 2006.

N. Asgharbeygi and A. Maleki. Geodesic k-means clustering. In International Conference on
Pattern Recognition (ICPR), 2008.

L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending links
in social networks. In International Conference on Web Search and Data Mining (WSDM),
2011.

A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, pages
509–512, 1999.

P.L. Bartlett, T. Linder, and G. Lugosi. The minimax distortion redundancy in empirical
quantizer design. IEEE Transactions on Information Theory, 44(5), 1998.

F. Bavaud and G. Guex. Interpolating between random walks and shortest paths: A path func-
tional approach. In Proceedings of the 4th International Conference on Social Informatics,
pages 68–81, 2012.

M. Bazaraa, J. Jarvis, and H. Sherali. Linear Programming and Network Flows. Wiley-
Interscience, 2010.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold Regularization: A Geometric Framework

110



for Learning from Labeled and Unlabeled Examples. Journal of Machine Learning Research
(JMLR), 7:2399–2434, 2006.
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erties. Publikacija Elektrotehničkog Fakulteta - Serija: Matematika, (16):77 – 87, 2005.

A. Chandra, P. Raghavan, W. Ruzzo, R. Smolensky, and P. Tiwari. The Electrical Resistance
of a Graph Captures its Commute and Cover Times. In Symposium on Theory of Computing
(STOC), pages 574–586, 1989.

P. Chebotarev. A class of graph-geodetic distances generalizing the shortets path and the
resistance distances. Discrete Applied Mathematics, 159(295–302), 2011.

G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of keypoints.
Workshop on Statistical Learning in Computer Vision, ECCV, pages 1–22, 2004.

V. de Silva and J. B. Tenenbaum. Global Versus Local Methods in Nonlinear Dimensionality
Reduction. In Neural Information Processing Systems (NIPS), 2002.

V. de Silva and J.B. Tenenbaum. Sparse multidimensional scaling using landmark points.
Technical report, Stanford University, 2004.

E.J. Delp and O.R. Mitchell. Moment preserving quantization. IEEE Transactions on Com-
munications, 39(11):1549–1558, 1991.

P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains. The Annals
of Applied Probability, pages 36–61, 1991.

P. G. Doyle and J. L. Snell. Random walks and electric networks, 1984.

B. Feil and A. Janos. Geodesic distance based fuzzy clustering. Lecture Notes in Computer
Science, Soft Computing in Industrial Applications, pages 50–59, 2007.
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L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A: Statistical
Mechanics and its Applications, 390(6):1150–1170, 2011.
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