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Abstract

In this work, the quantum dissipative dynamics of electrons in tailored molecular

systems and of excitons in biomolecular light-harvesting complexes is determined by

using the numerically exact quasi-adiabatic propagator path integral scheme.

In the first part of the thesis, molecular double quantum dots are designed by

using π-conjugated multi-block copolymers of poly-diacetylene (PDA) and ladder-

type poly-(p-phenylene) (l -PPP). A charge qubit results when doping the molecule

single negatively forming a polymeric radical anion. By systematically modifying

the length of the oligomers, it is possible to restrict the number of confined elec-

tronic states to only two. They are described in terms of the spin-boson model, in

which the molecular vibrations are formalized as the bosonic bath. The parame-

ters characterizing the system and the vibrational bath are extracted from electronic

structure calculations. At room temperature, coherent oscillations in the population

difference are found, with values for the coherence times spreading over about two

orders of magnitude. Non-Markovian effects contribute to sustain coherences. Con-

trolled transitions between the basis states of the charge qubit, analogous to single

qubit gates, are achieved by means of an external field. These systems constitute

then a novel implementation for quantum computation hardware able, in principle,

to operate at room temperature.

In the second part, the excitation energy transfer dynamics of the chlorophyll-

containing Fenna-Matthews-Olson (FMO) complex in the green sulfur bacteria Chlo-

robium tepidum is evaluated. The aim is to elucidate the origin of the sustained

excitonic coherence found experimentally and its significance in the speed and ef-

ficiency of the energy transfer dynamics. In this case, the bath is given by the vi-
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brational pigment-protein-solvent environment, which contains localized vibrational

modes. The results indicate that the experimental findings cannot be explained by

only considering environmental equilibrium fluctuations, but by explicitly consider-

ing the nonequilibrium dynamics of the localized vibrational modes. No evidence of

non-Markovian effects is found in the exciton dynamics of the FMO complex. Simul-

taneous sustained coherence and faster energy transfer is found depending on which

molecular site the vibrational modes couples to. However, sustained coherence is

not functionally necessary for the speed-up of the energy transfer, and consequently,

for the increased transfer efficiency, which constitutes a very general mechanism

elucidated in this work.

An overdamped excitonic dynamics, that exhibits a Markovian behavior, is found

in the third part of this work for the bilin-containing phycoerythrin 545 (PE545)

complex of the cryptophyte algae Rhodomonas CS24.



Kurzfassung

In dieser Arbeit wird die dissipative Quantendynamik von Elektronen in maßgesch-

neiderten molekularen Systemen und von Exzitonen in biomolekularen Lichtsammel-

komplexen mit Hilfe der numerisch exakten quasi-adiabatischen Pfadintegral-Pro-

pagatorfunktion bestimmt.

Im ersten Teil der Arbeit werden molekulare Doppel-Quantenpunkte aus Poly-

diacetylen (PDA) und Leiterpolymere vom Poly(para-phenylen)-Typ (l -PPP) π-

konjugierten Multi-Block-Kopolymeren betrachtet. Eine n-Dotierung des Moleküls

mit einem Einzelelektron bildet ein polymeres Radikal-Anion, welches ein Ladungs-

qubit darstellt. Durch systematische Modifizierung der Länge der Oligomere ist

es möglich, die Anzahl der lokalisierten elektronischen Zustände auf nur zwei zu

beschränken. Sie werden durch das Spin-Boson-Modell beschrieben, in dem die

Molekülschwingungen formal als bosonisches Bad auftreten. Die Parameter des

Systems und des Schwingungsbads werden aus Berechnungen der elektronischen

Struktur entnommen. Bei Raumtemperatur werden kohärente Oszillationen in der

Populationsdifferenz gefunden, bei denen sich die Werte für die Kohärenzzeiten über

etwa zwei Größenordnungen ausbreiten. Nicht-Markovsche-Effekte tragen dazu bei,

die kohärenten Oszillationen zu erhalten. Kontrollierte Übergänge zwischen den

Grundzuständen des Ladungsqubits werden durch ein externes Feld erreicht, die

ähnlich zu denen eines einzelnen Qubit-Gatters sind. Diese Systeme bilden dann

eine neue Implementierung für Quantencomputer-Hardware, welche im Prinzip in

der Lage ist, bei Raumtemperatur arbeiten.

Im zweiten Teil, wird die Exzitonenenergietransfer-Dynamik des chlorophyllhalti-

gen Fenna-Matthews-Olson-Komplex (FMO) der Grünen Schwefelbakterien Chloro-
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bium tepidum ausgewertet. Ziel ist es, den Ursprung der experimentell gefunde-

nen anhaltenden exzitonischen Kohärenz und sein Einfluss auf die Geschwindigkeit

und die Effizienz der Energieübertragungsdynamik aufzuklären. In diesem Fall

wird das Bad durch die Schwingungen der Pigment-Protein-Lösungsmittelumgebung

gegeben, welches lokalisierte Schwingungsmoden enthält. Die Ergebnisse zeigen,

dass die experimentellen Befunde nicht durch die Berücksichtigung der Gleichge-

wichtsfluktuationen der Umgebung erklärt werden, sondern durch die explizite Be-

rücksichtigung der Nichtgleichgewichtsdynamik der lokalisierten Schwingungsmoden.

Es wurde kein Nachweis von Nicht-Markovschen-Effekten in der Exzitonen-Dynamik

des FMO-Komplex gefunden. Abhängig davon welches Chromophor an die Schwin-

gungsmoden koppelt, werden gleichzeitig anhaltende Kohärenz und schnellerer En-

ergietransfer gesehen. Trotzdem zeigen die Ergebnisse, dass die anhaltende Kohärenz

für die Beschleunigung der Energieübertragung und somit für die erhöhte Übertra-

gungsleistung funktionell nicht notwendig ist. Dies folgt einem sehr allgemeinen

Mechanismus, der in dieser Arbeit erläutert wird.

Im dritten Teil dieser Arbeit wird eine übergedämpfte exzitonische Dynamik für

den Bilin-haltige Phycoerythrin-545-Komplex (PE545) der Cryptophyceen Algen

Rhodomonas CS24 gefunden, der ein Markov-Verhalten zeigt.
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CHAPTER 1

Introduction

Quantum systems are not isolated but interact with their surroundings. The former

are usually described by a few relevant dynamical variables, but the latter is, in

general, difficult to characterize microscopically due to the large number of degrees

of freedom involved. This results in the “macroscopic bath” exerting a fluctuating

force on the system causing fluctuations of its degrees of freedom. The interaction

between the system and the environmental leads to entanglement between their de-

grees of freedom. The result is an irreversible energy transfer from the system to the

environment until equilibrium is established, i.e., dissipation and decoherence. By

this, coherent superpositions of quantum states are destroyed. Thus, the environ-

ment acts as a continuous measuring apparatus leading to an incessant destruction

of the phase correlations due to the collapse of the wavefunction [1].

The destructive environmental influence on the coherent superpositions is of

prime importance for quantum computation, which demands a high degree of con-

trol over the quantum states. The main challenge in actually building a quantum

computer is to maintain the simultaneous abilities to control quantum systems, to

measure them, and to preserve their isolation from uncontrolled parts of their en-

vironment [2]. This requires that the basic units of quantum information, i.e., the

qubits, have some robust physical representation, in which they retain their quan-

tum properties, but also that they can be made to evolve as desired [3]. Quantum

computation is based on transformation of quantum states. Their evolution pro-

ceeds via the Schrödinger equation, where time-dependent terms mediate physical

1



2 Introduction

interactions that depend on the materials used to represent the qubits [4]. In spite

of the different sources of decoherence in the different qubit representations (e.g., in

terms of spins, charge, or photons), their performance can be compared in terms of

the quotient between the time for which the system remains quantum-mechanically

coherent and the time it takes to perform elementary unitary transformations involv-

ing at least two qubits, since they are both determined by the strength of coupling

of the system to the environment [3]. For solid-state implementations, this quotient

can be increased by rigorous control over material properties. For example, both

SiGe and AlGaAs exhibit a high sensitivity to charge fluctuation noise, some of

which can be minimized by proper device layer engineering [4].

On the other hand, excitation energy transfer between chromophores in pho-

tosynthetic biomolecules is limited by the environmental fluctuations generated by

vibrational modes of the molecular pigments, the surrounding protein, and the polar

solvent. In general, these systems exhibit high transfer efficiencies, even at room

temperature, in spite of the noisy environment. Optimal photosynthetic capabilities

are determined by the specific chromophore type, as well as their numbers and their

arrangement.

Throughout this work, it is assumed that the properties of the microscopic system

of interest can be probed experimentally (e.g., via spectroscopic techniques), while

the environment is of interest only to the extent that it affects the dynamics of the

system [5]. The system-bath model provides a realistic description of the effects of

condensed-phase environments of the observable dynamics of the system, where the

environment is modelled by a large number of harmonic degrees of freedom (e.g.,

phonons). A typical example is an impurity in a crystalline solid, where a harmonic

bath emerges naturally from the small-amplitude lattice vibrations [6]. On the other

hand, if the medium is characterized by a large-amplitude floppy motion, as in the

case of the electron transfer in solution or in a (bio-)molecular host, the donor and

acceptor potential surfaces are expected to be very anharmonic functions of the

atomic displacements. However, the process of electron transfer is governed by the

collective motion of the large number of environmental coordinates. In these cases,

within the regime of validity of the linear response theory, effective modes with a

Gaussian response can be obtained, such that the dynamics induced by the actual

multidimensional anharmonic medium is equivalent to that of an effective harmonic

bath with an appropriate spectral density [5, 6].

In a system-bath approach, the environmental influence on the system dynamics

is given by the spectral density function, which is the coupling-weighted density of

states of the phonon bath [1]. It determines the temporal correlation properties

of the fluctuations via the bath autocorrelation function. Finite-size environments
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(e.g., isolated small organic molecules) are characterized by a highly structured spec-

tral density, which is mainly composed of δ-peaks at particular frequencies associated

with specific molecular vibrations. On the other hand, broad unstructured spectral

densities are characteristic of macroscopic host media like solids, liquids, or large bi-

ological molecules. In order for system relaxation transitions to occur via first-order

processes, the spectral function must have a significant weight at the characteristic

frequencies of the quantum system, otherwise, transitions can take place only via

multiphonon processes, which are, in general, somewhat weaker [5, 7].

In this work, the dissipative quantum dynamics of three molecular systems is

evaluated. All of them are described by a system-bath model. In Part I, it is pro-

posed the use of molecular heterostructures based on organic π-conjugated block

copolymers to implement charge qubits. A bottom-up approach is followed. This

allows one to chemically engineer the electronic and vibrational structure of the

designed molecules, which depend not only on the type but also on the number

of oligomers employed. By this, it is possible to restrict the set of accessible elec-

tronic states to only two, as required for a qubit. Most importantly, these molecular

systems allow one to tailor the environmental degrees of freedom influencing the

dynamics of the charge qubit, as compared, for example, to other condensed matter

implementations. Because of the molecular nature of these systems, discrete peaks

in the spectral density result. The influence of these peaks on the qubit coherence

times can be then quantitatively evaluated by treating the molecules in terms of an

electronic system and a vibrational bath. The vibrational and electronic structures

are determined by using quantum chemistry calculations, as indicated in Appen-

dices B and C, respectively. The two-dimensional electronic Hilbert space can be

represented as a “particle” of spin 1/2 in contact with a bosonic environment, known

as the spin-boson model [1, 8]. This generic model has been used to describe, for

example, the motion of defects in crystalline solids, the tunneling of light particles

in metals, and some chemical reactions involving electron or proton transfer pro-

cesses [1, 8]. The two-level system is the simplest system showing constructive and

destructive quantum interference effects [1, 8, 9, 10], and several other non-trivial

effects like coherent destruction of tunneling [11] or quantum phase transitions [12].

Results in Part I present the design of a molecular two-level system exhibiting co-

herent dynamics determined by a tailored environment. Thus, the resulting systems

constitute a novel implementation of quantum hardware, where the charge degree of

freedom in molecular architectures is exploited. Other approaches using molecules

to implement qubits have been proposed. These include, apart from nuclear spins

[13], soliton states in the middle of the gap of polyacetylene single chains [14], elec-

tronic spins in coordination magnetic molecules [15, 16, 17], vibrational states in
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polyatomic molecules [18, 19], and rovibronic states in diatomic molecules [20]. One

intrinsic advantage of molecular systems is their scalability since it is possible to

build macroscopic arrays of identical molecules.

In contrast to the molecular systems presented in Part I, which are designed

“from scratch” to exhibit sustained coherent dynamics, Parts II and III evaluate

the excitation energy transfer dynamics of biomolecular light-harvesting complexes.

Transfer in these biomolecular systems occurs at room temperature, in which rather

short-lived quantum effects, if any, are expected due to the noisy and hot environ-

ment. Remarkably, signatures of nontrivial quantum effects, in the form of excitonic

coherences lasting several hundreds of fs, at cryogenic and even at room temperature

have been experimentally found in different complexes [21]. These results have led

to the hypothesis that the transfer of energy occurs by a coherent superposition of

excited electronic states, which leads to a transfer efficiency higher than would be

possible by diffusive, incoherent excitation energy transfer. In order to elucidate the

role played by quantum coherence in the speed and efficiency of the energy transfer

dynamics of these systems, it is assumed that the system consists of the electronic

degrees of freedom within the single excitation subspace of the pigments involved in

the energy transfer. Thermal fluctuations on the excitation transfer dynamics are

induced by the vibrational pigment-protein-solvent environment. The correspond-

ing fluctuational spectrum can be determined from experimental results or from

molecular dynamics simulations. In any case, it exhibits discrete peaks. Their influ-

ence is determined by evaluating whether a breakdown of the Franck-Condon (or,

equivalently, the Born-Oppenheimer) approximation occurs, i.e., by evaluating the

exciton dynamics in presence of equilibrium and nonequilibrium vibrational modes.

A mechanism explaining the transfer efficiency is identified for the system evaluated

in Part II. It relies in underdamped vibrational modes and depends only weakly on

the life time of the coherent oscillations in the overall dynamics. This mechanism is,

however, of general character and can be used, for example, for optimizing artificial

light-harvesting systems as well.

Each part of this work is composed of the following chapters: an initial intro-

ductory chapter presenting the physical system, the next chapter is devoted to the

theoretical modeling of the corresponding system, in which the system and bath

parameters are extracted either from electronic structure calculations (as in Part I)

or from experimental results (as in Parts II and III), and used to determine the ex-

plicit quantum dissipative dynamics in the subsequent chapter(s). The main results

obtained in this work are summarized in chapter 13.



CHAPTER 2

Dynamics of open quantum systems

This chapter describes the numerical method used to calculate the quantum dynam-

ics of the different systems evaluated in this work. The path integral formalism is

introduced in Sec. 2.1, which is used to derive the propagator for an isolated system.

When this system is in contact with a harmonic bath, as in Sec. 2.2, the full system-

bath propagator can be partitioned by using an adiabatic reference, which, within

the path integral formulation, allows one to integrate out the harmonic degrees of

freedom of the bath, leaving the propagator for the system coordinate as the only

one that requires to be numerically generated [22, 23]. The result is a modified path

integral expression involving one-dimensional propagators that describe the exact

dynamics of the system along the adiabatic path, as well as a (nonlocal-in-time) in-

fluence functional that incorporates multidimensional nonadiabatic corrections [22].

The nonlocal interactions in the influence functional are of finite range in time if

the bath is characterized by a broad spectrum. This can be explored in an “un-

folding” procedure which yields an iterative scheme, known as the tensor multipli-

cation scheme, for evaluating the path integral for arbitrary time intervals [22]. The

derivation does not involve any kind of approximations related with the strength

of the system-bath coupling as in Förster or in Redfield theories, and therefore, all

non-Markovian effects are included exactly. A recently proposed non-Markovianity

measure based on the physical features of the system-bath interaction is presented

in Sec. 2.3.

5



6 Dynamics of open quantum systems

2.1 Path integral propagator

The postulates of quantum mechanics [24] establish that all the information about

a particular quantum system is contained in its wave function |ψ(t)〉, and its time

evolution is detemined by the Schrödinger equation ∂t|ψ(t)〉 = −(i/~)H|ψ(t)〉, with
H being the full system Hamiltonian. An analytical solution, however, can be

obtained for a few systems only, and a numerical solution should be found instead.

Because of the delocalized nature of quantum mechanics, the storing effort necessary

for a wavefunction represented on a basis set grows exponentially with the number

of interacting degrees of freedom, which limits the size of the systems possible to

treat. Formally, the state of the system at any time t can be written as |ψ(t)〉 =

U(t, 0)|ψ(0)〉, with U(t, 0) being the propagator between the initial time t = 0 and

the final time t. For a time-dependent Hamiltonian H(t), the propagator is given

by U(t, 0) = T exp
{

−(i/~)
∫ t

0
dt′H(t′)

}

, with T being the time ordering operator.

In the case of the Hamiltonian being time-independent, the propagator simplifies to

U(t, 0) = exp(−iHt/~).
Alternatively, one can use Feynman’s path integral formulation of time-dependent

quantum mechanics, which is based on the Lagrange formalism of classical mechan-

ics with the action as the central concept [25, 26]. In this approach, instead of

finding the eigenfunctions of the Hamiltonian, one now has to evaluate a functional

integral which directly yields the propagator required to determine the dynamics of

the quantum system [25]. More precisely, in position representation, the amplitude

to get from a point x0 to the point xf in time t is expressed in the path integral

formulation as a sum of contributions from all conceivable paths that connect these

points [26]. The contribution of each path x(t) is proportional to a phase given by

the action functional S[x(t)] along that path as [6]

〈xf |e−iHt/~|x0〉 =
∫

Dxte−iS[x(t)]/~, (2.1.1)

where the integration in carried out for all paths x(t) that satisfy the boundary

conditions x(0) = x0 and x(t) = xf , and the action is defined as S[x(t)] =
∫ t

0
dt′L(t′),

with L = T − V being the Lagrangian function. The time-dependent Schrödinger

equation can be recovered by using Eq. (2.1.1) and the superposition principle for

the evolution of a wavefunction, which probes the equivalence of both formulations

[26, 27].

For a particle of mass m with kinetic energy operator T = p2/2m and potential

energy V (x), the resulting action is

S[x] =

∫ t

0

dt′
(m

2
ẋ2 − V (x)

)

. (2.1.2)



2.1. Path integral propagator 7

The discretized path integral representation of the propagator in Eq. (2.1.1) is

obtained by dividing the total time t into N time slices of length δt as t = Nδt =

N(tk − tk−1), such that e−iHt/~ =
∏N

k=1 e
−iH(tk−tk−1)/~, and using the completeness

of the position eigenstates
∫

dxk|xk〉〈xk| = 1. The resulting discretized propagator

is

〈xf |e−iHt/~|x0〉 =
N
∏

k=1

∫

dxk〈xk|e−iH(tk−tk−1)/~|xk−1〉, (2.1.3)

which is exact for any value of N with xN = xf . Because each xk is associated with

a particular time tk, the set {xk} defines a specific path composed of straight line

segments [22]. By partitioning the Hamiltonian into kinetic and potential energy

terms, a symmetric splitting of the short-time propagator in Eq. (2.1.3) is obtained

as

e−iHδt/~ ≈ e−iV δt/2~e−iT δt/~e−iV δt/2~, (2.1.4)

which is exact in the limit δt→ 0, but introduces an error of the order [V, [T, V ]]δt3

[22, 28]. Since the potential is diagonal in the position representation, the resulting

short-time propagator is

〈xk|e−iH(tk−tk−1)/~|xk−1〉 ≈ 〈xk|e−iT (tk−tk−1)/~|xk−1〉 (2.1.5)

× exp

{−i(tk − tk−1)

2~
[V (xk) + V (xk−1)]

}

.

The eigenfunctions of the kinetic energy operator T = p2/2m correspond to those

of a free particle, i.e., plane waves of the form ψp(x) = (2π~)−1/2 eipx/~. By using

the identity
∫∞

−∞
dxe−(ax2+2bx) = (π/a)1/2 eb

2/a in Eq. (2.1.5), the kinetic term can

be evaluated exactly, giving

〈xk|e−iT δt/~|xk−1〉 =
( m

2πi~δt

)1/2

exp

{

i

~

m

2δt
(xk − xk−1)

2

}

. (2.1.6)

An explicit form of the discretized propagator in Eq. (2.1.3) is then obtained as

〈xf |e−iHt/~|x0〉 ≈
N
∏

k=1

∫

dxk

(

m

2πi~(tk − tk−1)

)1/2

(2.1.7)

× exp

{

i

~

N
∑

k=1

(tk − tk−1)

[

m

2

(

xk − xk−1

tk − tk−1

)2

− 1

2
[V (xk) + V (xk−1)]

]}

,

with the equality being valid in the limit tk − tk−1 → 0, and therefore, numerical

evaluation requires a large number of integration variables for time lengths of in-

terest. The exponent of the propagator in Eq. (2.1.7) contains the trapezoid rule

discretization of the action in Eq. (2.1.2), which requires minimal storage. However,
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the entire volume of integration must be evaluated because all paths {xk} enter with

the same weight. This fact, together with the rapidly oscillating integrand, which

leads to an enormous phase cancellation, results in the failure of sampling Monte

Carlo schemes. Furthermore, observe that in the propagator of Eq. (2.1.7) the

potential value is adjusted at each discrete time as [V (xk) + V (xk−1)] /2, which re-

quires many time steps δt in order to reproduce the actual potential. This indicates

the necessity of using a physically motivated reference in the discretization of the

path integral instead of the simple factorization of the time-evolution operator into

potential and kinetic energy parts used in Eq. (2.1.4) [5, 6, 22, 23].

2.2 The method of the quasi-adiabatic propaga-

tor path integral

The propagator in Eq. (2.1.7) is valid for an isolated system, however, real quantum

systems interact with their environment. In particular, processes occurring in the

condensed phase are modulated by the interaction of the quantum system of interest

with the collective vibrations of its surrounding host [5]. This situation can be

described by a generic system-bath Hamiltonian in the form

H =
p2x
2m

+ V (x) +
∑

j

[

p2j
2mj

+
mjω

2
j

2

(

qj −
cjx

mjω2
j

)2
]

, (2.2.1)

which represents a “reaction coordinate” x describing the system of interest coupled

to a large number of harmonic “bath” degrees of freedom that mimic the effects

of the environment [22]. It is assumed a bilinear coupling with coupling constants

cj between the system of mass m and the bath described by harmonic oscillators

of masses mj with coordinate and momentum operators qj and pj and oscillator

frequencies ωj. Equation (2.2.1) includes quadratic counterterms in x in order to

renormalize the potential such that important potential features, like the barrier

height, do not depend on the system-bath coupling strength [5, 6, 22, 23]. This is

clear when considering the minimum of the Hamiltonian in Eq. (2.2.1) with respect

to the coordinates of the system and environment [25]. From the requirement

∂H

∂qj
= mjω

2
j qj − cjx = 0, (2.2.2)

it is obtained that

qj =
cj

mjω2
j

x. (2.2.3)
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This is used to determine the minimum of the Hamiltonian with respect to the

system coordinate, which results in

∂H

∂x
=
∂V

∂x
− cjqj +

cj
mjω2

j

x2 =
∂V

∂x
, (2.2.4)

i.e., the counterterms in Eq. (2.2.1) ensure that the minimum is determined by the

bare potential V (x).

From the Hamiltonian in Eq. (2.2.1), it is possible to derive an effective descrip-

tion of the system alone by eliminating the environmental degrees of freedom. Two

approaches can be followed. In the first one, a generalized quantum master equation

for the reduced density matrix of the system of interest can be obtained by working

in the Schrödinger picture. Alternativaly, one can use the Heisenberg picture to

obtain a generalized Langevin equation for the relevant set of operators of the small

system [1]. The resulting quantum Langevin equation has the form [1, 25, 28]

mẍ(t) +m

∫

dt′χ(t− t′)ẋ(t′) + ∂xV = ξ(t)−mχ(t)x(0), (2.2.5)

which is an equation of motion for the position operator of the system x(t) with

memory-friction χ(t) and random force ξ(t), with the last term in the right-hand-

side arising from the counterterms in Eq. (2.2.1). The explicit form of the damping

kernel χ(t) is given by

χ(t) =
1

m

∑

j

c2j
mjω2

j

cos(ωjt), (2.2.6)

while the time-dependent operator-valued fluctuating force has the form

ξ(t) =
∑

j

cj

[

qj(0) cos(ωjt) +
pj(0)

mjωj

sin(ωjt)

]

. (2.2.7)

The mean value of the stochastic force with respect to the harmonic bath HB =
∑

j

[

p2j/2mj +mjω
2
j q

2
j/2

]

vanishes, i.e., 〈ξ(t)〉B = 0, meanwhile the temporal corre-

lation properties of the fluctuations are given by the bath autocorrelation function

〈ξ(t)ξ(0)〉B =
∑

j

~c2j
2mjωj

[

coth

(

~ω

2kBT

)

cos(ωjt)− i sin(ωjt)

]

. (2.2.8)

Within a reduced description for the system alone, all quantities characterizing

the environment may be expressed in terms of the bath spectral density [1, 25]

J(ω) =
π

2

∑

j

c2j
mjωj

δ(ω − ωj), (2.2.9)
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i.e., instead of specifying all parameters cj, mj, and ωj, it is enough to define the

spectral density J(ω). It is a coupling constant weighted density of states that can

be treated as a continuous function for macroscopic environments such that the sum

over the discrete bath modes is replaced by a frequency integral. Using this allows

one to express the damping kernel as

χ(t) =
2

m

∫ ∞

0

J(ω)

πω
cos(ωt)dω, (2.2.10)

and the autocorrelation function as

〈ξ(t)ξ(0)〉B =
~

π

∫ ∞

0

dωJ(ω)

[

coth

(

~ω

2kBT

)

cos(ωt)− i sin(ωt)

]

= L(t). (2.2.11)

Hence, the fluctuations are composed of harmonic modes with frequency ω at tem-

perature T , and each mode contributes with a spectral weight given by J(ω), thus

determining the relaxation and decoherence features of the quantum system of in-

terest. In this picture, friction arises from the transfer of energy from the system

to the large environment. This energy, once transferred, dissipates into the environ-

ment and is not given back within any physically relevant period of time, called the

Poincaré recurrence time. For an environment composed of a huge number of bath

oscillators, it is practically infinity [1].

In the Born-Markov approximation assumed in Redfield-type theories [29], the

real part of L(t) is replaced by a δ-function and the imaginary part is neglected, such

that the fluctuations at a certain instant of time do not depend on their previous

history and thus are uncorrelated over time. Then, the resulting time evolution

becomes local in time, rendering the solution of the underlying equations of motion

rather simple.

In the classical limit, T → ∞ and ~ → 0, the real part of the autocorrelation

function in Eq. (2.2.11) reduces to LR(t) = mkBTχ(t), while the imaginary part

reduces to LI(t) = m~χ̇(t)/2 [25]. A purely Ohmic spectral density function of

the form J(ω) = αmω, results in the damping kernel χ(t) = 2αδ(t), which renders

Eq. (2.2.5) memory-free, i.e., a Markovian equation. This indicates that the Born-

Markov approximation can be adequately applied in this specific situation. For

many condensed matter systems, the typical situation [1] corresponds to a bath

with a smooth structureless Ohmic spectral density J(ω) = αωe−ω/ωc with a cutoff

frequency ωc, which is chosen to be the largest frequency scale in the problem. In

the high temperature limit T → ∞, LR(t) becomes a Lorentzian peak centered at

t = 0 with height and width proportional to ωc and ω−1
c , respectively, and thus

reducing to δ(t) in the limit ωc → ∞ [23]. This implies that the environmental

fluctuations evolve on the shortest time scale characterized by ω−1
c , describing a fast
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bath, where the memory effects are rather instantaneously lost or simply do not

exist [30]. For any other finite temperature, L(t) is comprised of multiple terms.

They have the form of powers of Lorentzians resulting from a Taylor expansion of

the coth(~ω/2kBT ), with their sum being a sharp peak around t = 0, but broader

than the one in the T → ∞ case [23]. This indicates that the bath correlations have

a finite range if the environment has a smooth continuous spectrum, which results

from phase cancellation among the infinite number of different frequency modes

[5, 22, 23].

In contrast to the structureless Ohmic environments typical from extended bulk

condensed matter systems, non-Ohmic and highly structured environmental spectral

densities arise in finite size systems, such as, for instance, molecular systems. The

peaks in J(ω) characterize distinct molecular vibrational modes at particular fre-

quencies. One can include such sharp molecular modes in the environmental spectral

density via δ-peaks at the mode frequencies. The consequence for the correlation

properties is immediately clear by considering a single vibrational mode at frequency

Ω > 0 such that JΩ(ω) ∝ δ(ω − Ω). For temperatures kBT � ~Ω, pertinent oscil-

latory correlations are generated according to L(t) ∝ e−iΩt, which follows from Eq.

(2.2.11). If a finite linewidth γ is associated to this vibrational mode, the oscillatory

correlations decay exponentially with time according to L(t) ∝ e−iΩt−γt [31]. When

these vibrational lifetimes are of the order of the system time scale, all bath-induced

memory effects live on a comparable time scale and a Markovian approximation

no longer can be made a priori for such a highly structured environmental spec-

trum [31]. The fluctuational spectrum of actual molecules is highly structured with

many prominent vibrational peaks which induce a complicated pattern of several

vibrational oscillatory correlations with long lifetime, and therefore, the Markovian

approximation is even more questionable.

The description of a system given by the quantum Langevin equation [Eq.

(2.2.5)] is exact for harmonic systems, but deteriorates for nearly harmonic ones,

being unreliable when the anharmonicity of the potential is of crucial importance

like, for instance, in quantum tunneling [1]. A more general description is given by

the path integral formulation, where all relevant environmental effects are contained

in an influence functional that depends on the bath spectral properties and on the

temperature.

2.2.1 Path integral formulation

An alternative way to specify the state of a system is in terms of the density matrix

ρ̂(t) = |ψ(t)〉〈ψ(t)| = U(t, 0)|ψ(0)〉〈ψ(0)|U †(t, 0) = U(t, 0)ρ̂(0)U †(t, 0).
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The dynamics of the quantum system of interest within the bipartite system-bath

is described in terms of the time evolution of the reduced density matrix ρ(t) which

is obtained after tracing out the bath degrees of freedom. In position representation,

ρ(t) is then given by

ρ(t) = trB〈x|e−iHt/~ρ̂(0)eiHt/~|x′〉, (2.2.12)

where H is the full system-plus-bath Hamiltonian in Eq. (2.2.1) and ρ̂(0) is the

density operator of the entire system-plus-bath at initial time t = 0. In order to

specify ρ̂(0), the system and bath are assumed to be initially decoupled and initial

correlations between them are neglected. Alternatively, it can be thought as if the

interaction between the system and bath is switched on at t = 0. This results in a

factorized initial state of the form ρ̂(0) = ρ(0)⊗ρB, where ρ(0) is the density operator
of the system at initial time t = 0, and ρB = Z−1

B exp(−HB/kBT ) is the canonical

equilibrium distribution of the bath at temperature T , with ZB = tr exp(−HB/kBT )

being the partition function of the bath.

A physically motivated reference to discretize the time-evolution operator in Eq.

(2.2.12) is obtained by partitioning the full system-plus-bath Hamiltonian in Eq.

(2.2.1) into an adiabatic reference given by

H0 =
p2x
2m

+ V (x), (2.2.13)

and a bath of harmonic oscillators given by

Henv = H −H0 =
∑

j

[

p2j
2mj

+
mjω

2
j

2

(

qj −
cjx

mjω2
j

)2
]

=
∑

j

Hj. (2.2.14)

The adiabatic reference H0 includes the potential along the adiabatic path given by

qj = cjx/mjω
2
j [Eq. (2.2.3)], which is the one-dimensional path that minimizes the

total potential energy at each fixed value of the system coordinate as shown in Eq.

(2.2.4). Meanwhile, the harmonic potential of each bath oscillator in Eq. (2.2.14) is

centered at the point of minimum energy for each value of the system coordinate, i.e.,

their equilibrium positions are adiabatically displaced along the system coordinate

[22, 23].

The total propagation time t is divided into N time slices of length δt such

that tk = kδt. It is assumed a symmetric splitting of the time evolution opera-

tor based on the adiabatic partitioning of the system-bath Hamiltonian, such that

e−iHδt/~ ≈ e−iHenvδt/2~e−iH0δt/~e−iHenvδt/2~. This splitting introduces an error of the

order [Henv, [H0, Henv]]δt
3 that vanishes if δt → 0. The resulting short-time quasi-
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adiabatic propagator in position representation is given by

〈xkqk|e−iHδt/~|xk−1qk−1〉 ≈ 〈xk|e−iH0δt/~|xk−1〉 (2.2.15)

×
N
∏

j=1

〈qj,k|e−iHj(xk)δt/2~e−iHj(xk−1)δt/2~|qj,k−1〉.

The propagator of the adiabatic reference is calculated by solving the Schrödinger

equation numerically using, for example, the Runge-Kutta scheme with adaptive

step-size control [32]. By using the factorized initial state of ρ̂(0), Eq. (2.2.12) can

be explicitly written as the quasi-adiabatic propagator path integral (QUAPI)

ρ(x, x′; t) =

∫

dx+0

∫

dx+1 · · ·
∫

dx+N−1

∫

dx−0

∫

dx−1 · · ·
∫

dx−N−1

× 〈x+N |e−iH0δt/~|x+N−1〉 · · · 〈x+1 |e−iH0δt/~|x+0 〉
× 〈x+0 |ρ(0)|x−0 〉
× 〈x−0 |eiH0δt/~|x−1 〉 · · · 〈x−N−1|eiH0δt/~|x−N〉
× I

({

x+k , x
−
k

}

; δt
)

. (2.2.16)

I is the discretized influence functional

I
({

x+k , x
−
k

}

; δt
)

= exp

{

−1

~

N
∑

k=0

k
∑

k′=0

[

x+k − x−k
] [

ηkk′ x
+
k′ − η∗kk′ x

−
k′

]

}

, (2.2.17)

where
{

x+0 , x
+
1 , · · · , x+N = x

}

and
{

x−0 , x
−
1 , · · · , x−N = x′

}

denote discretizations of

the forward and backward paths. These consist of constant segments x±(t) = x±k
within the time interval tk − δt/2 < t < tk + δt/2. The superscript ∗ denotes the

complex conjugate. The coefficients ηkk′ depend only on the difference ∆k = k − k′

if k, k′ 6= 0, N , i.e., on the time difference tk − tk′ . Their explicit form can be found

in Refs. [22, 23, 28]. The role of the influence functional I(x+k , x−k ) in the quasi-

adiabatic propagator path integral [Eq. (2.2.16)] is to include multidimensional

nonadiabatic corrections to the exact dynamics along the adiabatic paths x±k , which

results in a non-Markovian dynamics [22].

The influence functional in Eq. (2.2.17) is the discretized form of the general

expression [33]

I(x+k , x−k ) =

exp

{

−1

~

∫ t

0

dt′
∫ t′

0

dt′′
[

x+(t′)− x−(t′)
] [

L(t′ − t′′)x+(t′′)− L∗(t′ − t′′)x−(t′′)
]

}

× exp

{

− i

2~

∫ t

0

dt′
∑

j

cj
mjω2

j

[

x+(t′)2 − x−(t′)2
]

}

. (2.2.18)
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It results from using the general path-integral expression in Eq. (2.1.1) to calculate

ρ(t) in Eq. (2.2.12) by partitioning the full system-plus-bath Hamiltonian in Eq.

(2.2.1) into H0 and Henv and performing the path-integral over the bath coordinates.

I(x+k , x−k ) in Eq. (2.2.18) is a functional of the system coordinates x+ and x− only,

with L(t) being the bath autocorrelation funtion in Eq. (2.2.11). The sum in the

last term of Eq. (2.2.18) can be transformed into a continuous integral, which allows

one to define an integral kernel in the continuous limit as [34, 35]

η(t) = L(t) + iδ(t)
2

π

∫ ∞

0

J(ω)

ω
dω. (2.2.19)

The influence funtional can then be written as

I(x+k , x−k ) = (2.2.20)

exp

{

−1

~

∫ t

0

dt′
∫ t′

0

dt′′
[

x+(t′)− x−(t′)
] [

η(t′ − t′′)x+(t′′)− η∗(t′ − t′′)x−(t′′)
]

}

,

which is directly comparable with the discretized form in Eq. (2.2.17).

The structure of I(x+k , x−k ) indicates interactions between path integral variables

that may be separated by many time steps [6]. This non-local character of the

temporal interactions arises from the η coefficients, which are essentially discretized

versions of the bath autocorrelation funtion L(t) as seen from Eq. (2.2.19). However,

since the bath correlations have a finite range if the environment is described by

a smooth continuous spectrum at finite temperature [see discussion following Eq.

(2.2.11)], the nonlocality of the influence functional spans only finite intervals and the

resulting dynamics is non-Markovian though of finite memory, i.e., the magnitude of

the coefficients ηkk′ decreases as |k−k′| increases. This feature arises from destructive

phase interference due to the large number of environmental degrees of freedom,

resulting in disruption of quantum phase coherence and in loss of memory of initial

conditions after sufficiently long time. The path integral in Eq. (2.2.16) can then be

broken into multiple integrals of finite dimension [22, 23]. This is done by neglecting

in Eq. (2.2.17) those ηkk′ for which |k − k′| is greater than a certain value K,

which defines the memory time τ = Kδt as the time range over which the bath

autocorrelation function given in Eq. (2.2.11) is significantly different from zero,

and therefore, L(t) is approximated as zero for t > τ . The approximated influence

functional then reads [28]

I
({

x+k , x
−
k

}

; δt
)

≈
N
∏

k=0

min{N,K}
∏

k′=0

exp

{

−1

~

[

x+k − x−k
] [

ηkk′ x
+
k′ − η∗kk′ x

−
k′

]

}

. (2.2.21)

By inserting this truncated influence functional in Eq. (2.2.16) and reordering

the integrals, the so-called tensor multiplication scheme is obtained, which involves
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products of multi-dimensional arrays in analogy with matrix-vector multiplication

schemes. It reads

ρ(x, x′; t) = AN

({

x±k
}

; t
)

exp

{

−1

~

[

x+N − x−N
] [

ηNN x
+
N − η∗NN x

−
N

]

}

, (2.2.22)

where the reduced density tensor Ak is calculated iteratively as

Ak+1(x
±
k+1, · · · , x±k+K ; (k + 1)δt) =

∫

dx±k Λk(x
±
k , · · · , x±k+K)

× Ak(x
±
k , · · · , x±k+K−1; kδt), (2.2.23)

by propagating through a time increment δt with the propagator tensor Λk

Λk(x
±
k , · · · , x±k+K) = 〈x+k+1|e−iH0δt/~|x+k 〉〈x−k |eiH0δt/~|x−k+1〉 (2.2.24)

×
K
∏

k′=0

exp

{

−1

~

[

x+k − x−k
] [

ηkk′ x
+
k′ − η∗kk′ x

−
k′

]

}

,

and with the initial condition

A0(x
±
0 , · · · , x±K−1; 0) = 〈x+0 |ρ(0)|x−0 〉. (2.2.25)

Observe that the rank of the tensors Ak and Λk is primarily related to the number

of time stepsK necessary to span the memory of the influence functional. The tensor

multiplication scheme consists then in the multiplication of an augmented rank-K

reduced density tensor Ak by a rank-2K propagator tensor Λk.

In order to implement this scheme, storage requirements should be considered,

which depend on the rank and on the dimension of the involved tensors, in particu-

lar, the propagator tensor. Its dimension is determined by the number of quadrature

points required for each integration in the path integral in Eq. (2.2.24) and there-

fore, an efficient system-specific integration grid is required. Such a quadrature, is

constructed from the eigenstates |φ〉 of the adiabatically renormalized system Hamil-

tonian H0 in Eq. (2.2.13). Because systems at finite temperatures are considered,

it is enough to consider the M lowest energy eigenstates, such that the system dy-

namics occurs within this M -dimensional Hilbert sub-space. The basis set for the

integration grid is obtained by performing a unitary transformation on the basis

{φi} of the M lowest energy eigenstates of H0 as

|ui〉 =
M
∑

i′=1

Rii′ |φi′〉, (2.2.26)

where Rii′ is the orthogonal transformation matrix and by requiring that the system

position operator x be diagonal such that

〈ui|x|ui′〉 = siδii′ . (2.2.27)
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The states {ui} form the so-called discrete variable representation (DVR) and the

eigenvalues {si, · · · , sM} form the DVR integration grid. These DVR-states are

localized in position space at the eigenvalues si of the position operator. Using the

DVR-basis the completeness relation for the system coordinate now reads [23]

∫ ∞

−∞

dx±k |x±k 〉〈x±k | →
M
∑

i±
k
=1

|ui±
k
〉〈ui±

k
|. (2.2.28)

This allows one to express the tensor multiplication scheme in the DVR-basis as

ρ(s, s′; t) = ADVR
N

({

si±
k

}

; t
)

exp

{

−1

~

[

si+
N
− si−

N

] [

ηNN si+
N
− η∗NN si−

N

]

}

.

(2.2.29)

The reduced density tensor is

ADVR
k+1 (si±

k+1

, · · · , si±
k+K

; (k + 1)δt) =
M
∑

i±
k
=1

ΛDVR
k (si±

k
, · · · , si±

k+K
)

× ADVR
k (si±

k
, · · · , si±

k+K−1

; kδt), (2.2.30)

the propagator tensor is given by

ΛDVR
k (si±

k
, · · · , si±

k+K
) = 〈ui+

k+1

|e−iH0δt/~|ui+
k
〉〈ui−

k
|eiH0δt/~|ui−

k+1

〉 (2.2.31)

×
K
∏

k′=0

exp

{

−1

~

[

si+
k
− si−

k

] [

ηkk′ si+
k′
− η∗kk′ si−

k′

]

}

,

and the initial condition is

ADVR
0 (i±0 , · · · , i±K−1; 0) = 〈ui+

0
|ρ(0)|ui−

0
〉. (2.2.32)

Within the discrete variable representation, the tensor multiplication scheme can be

interpreted as the multiplication of the vector Ak of dimension M2K by the matrix

Λk of dimension M2K+2.

The implementation of the iterative scheme in Eqs. (2.2.29)-(2.2.32) requires to

consider three parameters: (i) the finite step δt in the symmetric Trotter splitting of

the short-time propagator [Eq. (2.2.15)]. It should be as small as possible in order

to reduce the introduced Trotter error that is of the order of δt3. (ii) Moreover,

the number of time steps K required to span the width of the bath autocorrelation

function L(t) in Eq. (2.2.11) should be as large as possible in order to make the

memory time τ large and therefore include all non-local correlations in Eq. (2.2.21).

In spite the opposite requirements for both parameters, it is normally possible to
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find an optimal parameter combination where the quantities of interest are least

sensitive to the variation of δt, know as the principle of minimal sensitivity [36].

The Trotter error and the error due to the finite memory are extrapolated to zero

in a systematic way [35]. (iii) Finally, the M -dimensional Hilbert sub-space where

the system dynamics takes place together with K determines the size of the reduced

density and propagator tensors. In the low temperature limit, only a few energy

eigenstates are populated and therefore M is small. However, the non-local corre-

lations of the bath are longer-lived and K should be large. In the opposite high

temperature limit, more eigenstates are populated, requiring largerM , but the bath

correlations decay faster and therefore K can be smaller. This dependence is partic-

ularly important in spatially continuous systems. It has been shown that they can

be described reasonably well by taking only a few basis states and a finite memory

length into account [35]. For the finite-size systems evaluated in this work, a fixed

parameter of M = 2, 7, and 8 is used in Parts I, II, and III, respectively. Results in

Chap. 9 require the use of larger M values.

2.2.2 Extended QUAPI scheme

The influence functional in Eq. (2.2.17) contains the entire influence of a single

bath coupled via the operator x to the quantum system of interest [Eq. (2.2.1)].

Certain physical systems however, like biological molecules, contain chromophores

separated by several Å, embedded in different local environments and therefore under

the influence of different baths. In such a case an extended QUAPI scheme has been

developed to include multiple baths [37].

The effect caused by the environmental fluctuations will depend on whether they

act locally or in a correlated manner. If multiple independent baths, Hα
B, couple to

system operators xα, they will simply result in a product of influence functionals,

since each bath acts separately. Thus, the total influence functional assumes the

form

I
({

x+k,α, x
−
k,α

}

; δt
)

= (2.2.33)

exp

{

−1

~

∑

α

N
∑

k=0

k
∑

k′=0

[

x+k,α − x−k,α
]

[

η
(αα)
kk′ x+k′,α − η

∗(αα)
kk′ x−k′,α

]

}

,

where the additional superscripts in the coefficients η
(αα)
kk′ indicate that the autocorre-

lation funtion of the particular baths will, in general, differ from each other. On the

other hand, if the fluctuations caused by several different baths are no longer inde-

pendent, spatial correlations can be taken into account by generalizing Eq. (2.2.33)
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as

I
({

x+k,α, x
−
k,β

}

; δt
)

= (2.2.34)

exp

{

−1

~

∑

α,β

N
∑

k=0

k
∑

k′=0

[

x+k,α − x−k,α
]

[

η
(αβ)
kk′ x+k′,β − η

∗(αβ)
kk′ x−k′,β

]

}

,

where η
(αβ)
kk′ indicates correlations of the fluctuations acting at operators xα and xβ.

The tensor multiplication scheme can still be obtained for the multiple baths

situation though the explicit expressions are more involved.

In summary, the iterative QUAPI scheme is a deterministic summation of the

path integral that provides numerically exact results for the long time dynamics

of quantum systems in dissipative environments. It rests on the intrinsic proper-

ties of the dissipative influence functional without making any ad hoc assumptions,

and therefore including all non-Markovian (non-local) effects exactly, allowing one

to treat nearly arbitrary spectral functions at finite temperatures. The quantum

dynamics of many diverse open quantum systems has been obtained by using this

scheme in its original version [30, 31, 34, 35, 38, 39, 40, 41, 42] and in its extended

version [37, 43, 44, 45].

2.3 Quantification of non-Markovian effects

The iterative QUAPI scheme, presented in the last section, is numerically exact

in the sense that all non-Markovian effects (within the time span τ) are included,

but for the same reason, the practical implementation demands large computational

resources in order to deal with the M2K+2-dimensional arrays. It is then useful

to quantify the importance of such non-Markovian effects in the system dynamics.

If they are important, numerically exact methods are absolutely necessary. The

reason being that even at very weak coupling, multiphonon processes dominate the

decoherence dynamics in the presence of non-Markovian effects. This is not captured

by lowest-order perturbative treatments, such as Redfield or Lindblad approaches [7].

However, if non-Markovian effects are not relevant, the Markovian approximation

can be applied in order to obtain a Markovian quantum master equation to describe

the system dynamics, which is much cheaper to implement computationally. In this

section, a non-Markovianity measure based on the physical features of the interaction

between the system and its environment is presented.

In an open quantum system, the evolution of any two initial states ρ1,2(0) is

given by a family of trace-preserving and completely positive quantum dynamical

maps Φ(t, 0) such that ρ1,2(t) = Φ(t, 0)ρ1,2(0). These two quantum states can be
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distinguished in terms of the trace distance, which provides a metric in the space

of physical states [46]. The dynamical change of the distinguishability of the states

of an open quantum system can be interpreted in terms of information exchange

between the system and its environment [46]. In a Markovian process, there is

an infinitesimally small correlation time between the system and environment dy-

namics, which leads to a monotonic flow of information from the system to the

environment. However, in a non-Markovian process the long lived correlations may

generate a backflow of information from the environment to the system and memory

effects can then occur. In order to quantify the degree of non-Markovianity during

the quantum evolution, several non-Markovianity measurements have been recently

proposed [47, 48, 49] based on different mathematical and physical concepts. For

example, the non-Markovianity measure in Ref. [47] is rooted in the mathemat-

ical property of the dynamical map that generates the quantum time evolution,

i.e., the deviation from divisibility of the trace-preserving completely positive map

characteristic of a Markovian process. Similarly, the non-Markovianity measure in

Ref. [48] is based on time snapshots of the dynamical map. On the other hand,

the non-Markovianity measure in Ref. [49] is based on the physical features of the

system-bath interaction in terms of information backflow from the environment to

the system, which has been experimentally measured [50, 51]. This last measure is

therefore used to quantify non-Markovian effects during the dynamics of the different

systems studied in this work.

More precisely, the measure in Ref. [47] quantifies the dynamics of entanglement

of a maximally entangled state between the open system (in contact with the envi-

ronment) and an isomorphic auxiliary system (shielded from the environment). If

there is no knowledge of the dynamics, the non-Markovianity can be measured as a

departure of the entanglement (between the open and the auxiliary systems by using

any entanglement quantifier, see Ref. [52] for a review) from a monotonically decay-

ing behavior expected due to the decrease of quantum correlations in a Markovian

process. On the other hand, if there is a complete knowledge about the dynamics,

the non-Markovianity is given by the departure of the trace-presenving map from

the divisibility property for a Markovian evolution given by Φ(t, 0) = Φ(t, t′)Φ(t′, 0)

for all t ≥ t′ ≥ 0. In contrast, the non-Markovianity measure in Ref. [49] quantifies

the reversed flow of information from the environment back to the system. In gen-

eral, these measures yield different results [53, 54, 55, 56, 57]. However, any process

that is non-Markovian according to Ref. [49], is also non-Markovian according to

Ref. [47], while the converse is not always true. The reason for this is that the

conditions for information backflow are much more rigorous than those for indivisi-

bility. Consequently, information backflow causes the indivisibility of the dynamics,
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but the reverse is not always true [55, 56, 57].

The information exchange between the system and its environment can be quan-

tified through the dynamics of the trace distance between a pair of quantum states

ρ1 and ρ2 of the open system. This is defined as [3]

D (ρ1, ρ2) =
1

2
tr |ρ1 − ρ2| , (2.3.1)

where |O| =
√
O†O. The trace distance can be interpreted as a measure of the

distinguishability of states ρ1 and ρ2, satisfying 0 ≤ D ≤ 1 [49]. For open quantum

systems, the trace distance of the states ρ1,2(t) [evolving under the dynamical map

Φ(t)] is a monotonically decreasing function of time, i.e., D (Φρ1,Φρ2) ≤ D (ρ1, ρ2).

This means that the distinguishability of any two states always decreases. In gen-

eral, under a Markovian evolution, any two initial states become less and less dis-

tinguishable as time increases. This can be interpreted as an unidirectional flow of

information from the system to the environment, which continuously reduces the

possibility of distinguishing the given states [49].

If the rate of change of the trace distance is defined as

σ(t, ρ1,2(0)) =
d

dt
D (ρ1(t), ρ2(t)) , (2.3.2)

which depends on the specific initial states ρ1,2(0), a Markovian evolution implies

that σ ≤ 0 for all quantum processes. Conversely, a process is said to be non-

Markovian if it satisfies σ > 0. In the latter case, the distinguishability of the pair

of states increases at certain times by a backflow of information from the environ-

ment to the system. The non-Markovianity measure [of the quantum process Φ(t)]

quantifies the total increase of the distinguishability over the whole time evolution,

i.e., the total amount of information that flows from the environment back to the

system as

N (Φ) = max
ρ1,2(0)

∫

σ>0

σ(t, ρ1,2(0)) dt. (2.3.3)

Here, the time integration extends over all time intervals (ai, bi) in which σ > 0,

and the maximum is taken over all pairs of initial states [49, 58]. Therefore, N (Φ)

represents a functional of the family of dynamical maps Φ(t) describing the physical

process [59].

The non-Markovianity measure N (Φ) has been used to quantify non-Markovian

effects during the quantum evolution of driven systems [53], the spin-boson model

[59], biomolecular dimers [60], molecular charge qubits [42], the full Fenna-Matthews-

Olson complex [45], initially correlated system-bath models [61, 62], and others

[63, 64, 65, 66, 67]. Very recently, N (Φ) has been measured experimentally for the
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polarization states of photons acting as system states, coupled to the photon fre-

quency modes acting as environmental states. In this setup, the polarization and

frequency degrees of freedom are coupled in a quartz plate in which different evo-

lution times are realized by varying the thickness of the plate [50]. Non-Markovian

dynamics has been induced by controlling the initial state of the environment [50] or

by modifying the interaction between the system and the environment [51]. These

results demonstrate that this particular measure provides an experimentally acces-

sible observable which quantifies memory effects [46].

This measure requires only local control and measurements of the open quan-

tum system, therefore, in order to quantify the non-Markovianity of the quantum

evolution via Eq. (2.3.3), the explicit system dynamics is needed. This is given by

the time evolution of the reduced density matrix ρ(t) obtained after tracing out the

bath degrees of freedom as indicated in Eq. (2.2.12), and, in this work, is calculated

by using the iterative QUAPI scheme presented in the last section.

Using the non-Markovianity quantifier, Eq. (2.3.3), one can evaluate the exis-

tence of non-Markovian effects during the system evolution and also the degree of

non-Markovianity, i.e., how strongly its dynamics deviates from a Markovian one.

The maximization procedure over all pairs of initial states in Eq. (2.3.3) is impor-

tant in order to quantify the degree of non-Markovianity. In this work, the existence

of non-Markovian effects is evaluated, therefore, the maximization procedure is not

carried out. Besides, it has been shown [54, 57] that often this maximization can

be removed without influencing the sensibility of the measure in finite-dimensional

physical systems, which usually can only be prepared in specific initial states. For

example, localized states in a double quantum dot or particular chromophores of

photosynthetic complexes. By using this argument and Eq. (2.3.2), it is possible to

write the non-Markovianity measurement in the form

N =
∑

i

[D (ρ1(bi), ρ2(bi))−D (ρ1(ai), ρ2(ai))] , (2.3.4)

with the sum running over all time intervals (ai, bi) during which the trace distance

increases, thus integrating over all time spans of growing distinguishability. Follow-

ing Ref. [54], these time intervals on which the trace distance increases can be called

‘non-Markovian intervals’.
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Part I

Tailored molecular systems:

π-conjugated copolymers
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CHAPTER 3

Organic π-conjugated block copolymers

Information is recognized as a physical quantity, with its representation and pro-

cessing being governed by the laws of quantum mechanics [3, 68]. In order for

information to be processed, it must be represented as a certain physical entity,

which allows it to be transmitted from one place to another, to interact with other

pieces of information and to be subjected to controlled operations. In a quantum

computer, information is represented using the quantum states of a general entity

called qubit [3], which is a quantum two level system (TLS) represented by a pair

of orthonormal quantum states. Many microscopic systems can be used as qubits

[2, 3, 4, 69], however, a successful realization of a quantum computing architecture

requires that fundamental criteria, like scalability and long coherence time, be ful-

filled [70]. Solid-state based nanostructures are highly promising candidates for the

realization of quantum information processing devices, exhibiting a particularly high

degree of scalability. Semiconductor systems, in particular, offer the possibility of

integration with current technologies. Several degrees of freedom can be exploited

in semiconductor nanostructures. Exciton-based qubits [71] allow optical control

but are intrinsically limited by the lifetime of the exciton. Spin qubits [72, 73, 74]

have long coherence times [75, 76], but information access is often difficult. Charge

qubits [77, 78] allow easier coupling to electric fields but, for the same reason, suffer

from rapid decoherence.

When growing semiconductor heterostructures, the properties of the charge car-

riers are controlled via band engineering [79, 80]. The design principles can be trans-

25
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ferred to molecular systems to design molecular heterostructures with π-conjugated

oligomers [81]. The discovery of metallic conduction in organic π-conjugated poly-

mers under doping conditions [82, 83, 84, 85, 86], opened the way for the design

and synthesis of organic systems with tailored electronic properties. In their un-

doped form, conjugated polymers are intrinsically semiconductors [87, 88, 89, 90]

which uniquely combine the electronic properties of semiconductors with the typical

properties of plastics as low cost, versatility of chemical synthesis, ease of process-

ing and flexibility, allowing them to replace their inorganic counterparts in many

applications [91, 92].

In conjugated polymers, π molecular orbitals (MOs) are formed from the over-

lap of pure p atomic orbital (AOs) perpendicular to the molecular plane belonging

to adjacent carbon atoms (see Fig. 3.1). Hence, these MOs are delocalized along

the molecular chain, and therefore the charge carriers exhibit great mobility and

polarizability. In the limit of an infinite polymeric chain, the energies of the π-MOs

cluster together in π-bands, which are responsible for the electronic and optical

properties for these materials [90]. The band gap is calculated as the energy differ-
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Figure 3.1: Schematic view of the formation of a π-MO in trans-polyacetylene.

ence between the top of the valence band and the bottom of the conduction band,

which, in polymeric systems, are given by the energies of the highest occupied and

lowest unoccupied MOs, respectively, i.e., the frontier MOs HOMO and LUMO,

such that Egap = ELUMO − EHOMO. In Fig. 3.2 are shown the frontier MOs and

the molecular structure of the unit cell of different semiconducting π-conjugated

polymers, where PA, PDA, PPP, l -PPP, p-saturated acene, Th, Py, and furan refer

to trans-polyacetylene, poly-diacetylene, poly-(p-phenylene), ladder-type poly-(p-

phenylene), poly-acene saturated in the para-positions, poly-thiophene, poly-pyrrol,

and poly-furan, respectively. Observe that one-dimensional systems like PA or PDA

have the smallest band gap. Meanwhile quasi-one-dimensional or ladder-type sys-

tems like PPP or l -PPP present a larger band gap due to the spreading of π-electron

density in the perpendicular direction. On the other hand, heterocyclic systems (Th,

Py, and furan) have larger band gaps due to the localization of π-electron density

induced by the more electronegative heteroatom (S, N, and O, respectively). Insula-

tor behavior is obtained when the π-electrons are localized by saturation, as it is the

case in p-saturated acene. The Egap value depends not only on the specific chemical
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Figure 3.2: Alignment of the frontier MOs and molecular structure of the unit cell for

different π-conjugated polymers. Solid lines: HOMOs, dashed lines: LUMOs. Gray,

white, yellow, blue, and red spheres represent carbon, hydrogen, sulfur, nitrogen,

and oxygen atoms, respectively. See text for details. MOs energies calculated with

the extended Hückel method as specified in Appendix C.

structure of the system, but also on chemical substitution [93]. In fact, l -PPP can be

thought as a chemically modified PPP with molecular cross-tie linkers in the form

of methylene bridges between the ortho positions of adjacent phenyl rings, which

does not modify substantially its electronic structure but avoids the twisting of the

phenyl rings, leading to a stiff system [94].

The alignment of the frontier MOs in π-conjugated polymers shown in Fig. 3.2

suggests that it is possible to combine different oligomers to construct molecular

heterostructures, in which, as in the case of inorganic superlattices, the charge car-

riers are confined in the growth direction of the heterostructure in a quantum well

profile. The amount of quantized energy levels and their corresponding energy spac-

ing depends on the length of the “well” and “barrier” regions [95]. An advantage

of building heterostructures with π-conjugated oligomers is that the molecular en-

ergy scales involved are much larger than in their inorganic counterparts. Hence,

temperature effects are negligible even at room temperature. In contrast, inorganic

heterostructures require cryogenic temperatures due to the mesoscopic size.
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Organic heterostructures do not suffer from interfacial stress since the hetero-

junction is a chemical carbon-carbon bond. They can be synthesized, for example,

by “wet chemistry” methods [96, 97, 98], or using more refined strategies, like elec-

trochemical polymerization [99, 100] or STM polymerization [101, 102]. This last

technique gives long, highly regular, and well-separated polymer chains with a spatial

precision on the order of 1 nm. Isolated micrometric PDA chains exhibit quantum

spatial coherence limited only by the chain length [103]. Long coherence times (on

the order of 250 fs) have been observed in poly[2-methoxy-5-(2’-ethyl-hexoxy)-1,4-

phenylenevinylene] (MEH-PPV) chains in solution at room temperature [104, 105].

Here, electron-vibration coupling might play a role in preserving quantum coher-

ences [106]. Moreover, individual ladder-type π-conjugated polymers [107] can be

addressed spectroscopically and exhibit narrow spectral emission lines, weak inter-

action with the environment, and rather weak coupling to vibrational modes [108].

A molecular resonant-tunneling diode on the basis of a PDA/ZnPc/PDA molecular

nanostructure (with ZnPc being a zinc phthalocyanine) has been suggested [109]

which could operate in air at room temperature and carry negative charges. Fur-

thermore, the spectral and electronic properties of π-conjugated copolymers have

been shown to be remarkably resilient under structural variations [110]. They can

carry Coulombically bound polaron pair spins which show surprisingly long phase

coherence times up to several hundreds of nanoseconds at room temperature [111].

Moreover, they can be controlled by electrically detected spin echoes. Clear singlet-

triplet spin Rabi oscillations have been reported as well [112].

In this part, molecular charge qubits from π-conjugated block copolymers are

designed. In Chap. 4, the electronic energies are obtained from quantum chemi-

cal calculations and molecular double quantum dots (DQD) with energy splittings

~∆ > kBT at room temperature are designed (Sec. 4.1). Furthermore, in Sec. 4.2

the vibrational spectrum is determined, i.e., the infrared (IR) active modes, which

are believed to provide the dominant dephasing channel of the charge qubit. A

tractable dynamical model is extracted in Sec. 4.3, where the fluctuational spec-

tra and the coupling strength between the charge qubit and the IR fluctuations

are determined. Varying the length of the oligomers allows one not only to engi-

neer the electronic energies but also the fluctuation spectrum with the possibility

to minimize dephasing. The dissipative dynamics in the presence of strongly non-

Markovian IR fluctuations is calculated in Chap. 5 by means of the iterative QUAPI

scheme presented in Sec. 2.2.1. A wide range of coherence times and quality fac-

tors at room temperature are found (Sec. 5.1). These molecular systems exhibit

a strongly non-Markovian electronic dynamics as shown in Sec. 5.1.1 by using the

non-Markovianity quantifier in Eq. (2.3.4). The population dynamics of the ex-



29

ternally driven systems presented in Sec. 5.2 can exhibit square-wave oscillations

depending on the specific field parameters, allowing controlled transitions between

the basis states of the charge qubit, analogous to single qubit gates.
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CHAPTER 4

Design of organic π-conjugated molecular

charge qubits

4.1 Electronic structure

Type-I heterostructures [95, 113] of the form A/B/A generate a quantum well profile

in the direction of growth, which in turn leads to a confinement of charge carriers in

the B “well” region. In the case of molecular heterostructures, the carriers are con-

fined in the three spatial directions, and therefore refered as quantum dots (QDs).

Electrons within the conduction band or holes within the valence band can be con-

fined by using several combinations of the π-conjugated polymers shown in Fig.

3.2. A charge qubit exploits the two possible locations of a single excess charge

carrier (typically an electron, but a hole can be also used) in a DQD profile of the

form A/B/A/B/A. The electron spin does not plays a role. The two states are

the lowest energy levels on each side of the DQD, with oscillations between the

states caused by introducing a tunnel coupling ~∆ between the two states [114].

The same principle can be used to design organic molecular heterostructures from

π-conjugated block copolymers such that two electronic states are spatially localized

in separated regions of the molecule. Due to the relatively large offset of 1.45 eV in

the conduction band, which offers an exceptional design versatility, the combination

of l -PPP and PDA is chosen. A single unoccupied confined electronic state within

the conduction band results from a molecular structure of l -PPP/PDA/l -PPP, thus
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forming a QD. Two such QDs with a short barrier oligomer of l -PPP form the de-

sired DQD. A charge qubit, with an excess electron localized in the left or right dot,

is achieved by doping the molecule single negatively forming a polymeric radical an-

ion. The resulting double well profile of the conduction band for a DQD structure

l -PPP/PDA/l -PPP/PDA/l -PPP depicted in Fig. 4.1.
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Figure 4.1: Molecular structure and potential energy profile for electrons within

the conduction band for the symmetric DQD l -PPP8/PDA3/l -PPP6/PDA3/l -PPP8.

The two energy levels of the confined electronic states are indicated by the horizontal

red lines. The wave functions are indicated schematically by the shaded red areas.

Gray lines indicate delocalized states.

The electronic properties are determined by using a combination of the unre-

stricted1 Austin model 1 (AM1) [115], as implemented in Ref. [116], for geometry

optimizations (see Appendix B for details) with the extended Hückel method [117],

as implemented in Ref. [118], for single-point electronic-structure calculations. The

prefactor K̄ = 2.43 for the off-diagonal elements is used in extended Hückel calcu-

lations [81, 119] (see Appendix C for details).

A specific heterostructure is characterized by its energy splitting ~∆, which is

the difference between the LUMO and LUMO+1 energy levels. These have been

calculated after relaxation of the single negatively doped molecular structure. The

energy splitting is controlled by the length of the PDA “well” oligomer and the center

“barrier” oligomer l -PPP. Figure 4.2 shows ~∆ as a function of the well and barrier

widths. The width of the lateral barriers is kept large enough to avoid edge effects in

the confined energy levels due to the finite size of the molecule. As expected, a wider

central l -PPP “barrier” reduces ~∆. Energy splittings on the order of hundreds of

meV and thus from ~∆ ∼ kBT to ~∆ � kBT at room temperature are found, which

1The single excess electron in the doped molecule gives rise to an open shell system. See

Appendix A for details.
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reflects the design versatility for this particular combination of parent polymers.
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Figure 4.2: Splitting energy ~∆ = ELUMO+1−ELUMO as a function of the barrier X

and well Y widths for the symmetric DQD l -PPP8/PDAY /l -PPPX/PDAY /l -PPP8.

4.2 Vibrational states

Quantum information processing relies on long coherence times of the qubits. The

charge qubit in the proposed setup will couple directly to electromagnetic fluctua-

tions and thus also to the active IR vibrational excitations of the molecular structure.

An example of the IR spectrum for the case (X, Y ) = (3, 2) calculated by the AM1

method2 after including the molecular relaxation due to the single additional elec-

tron is shown in Fig. 4.3. All calculated frequencies have been multiplied by the

scaling factor of 0.954 obtained from Ref. [120] (see Appendix B). The other cases

yield similar spectra (see Appendix E). The modes in the IR spectrum can, roughly,

be grouped according to their frequencis as: modes below and around 1000 cm−1

correspond to vibrations and rotations with twisting and wagging modes outside

and scissoring and rocking modes inside the molecular plane. Meanwhile, stretching

modes for aromatic and aliphatic carbon-carbon double bonds are observed around

1500 and 2200 cm−1, respectively.

From the results in Fig. 4.3, it is evident that the splitting energy ~∆ covers

the same range of energies as the IR modes. Engineering the molecular structure

allows one to choose ∆ in relation to the IR spectrum and thus to trim not only

the electronic energy splitting of the charge qubit but also its damping behavior.

2The calculation of the vibrational frequencies must use the same method used to calculate the

optimized geometry. See Appendix B for details.
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Figure 4.3: IR stick spectrum, shown as vertical red lines, of the molecular het-

erostructure l -PPP8/PDA2/l -PPP3/PDA2/l -PPP8. The inset, in gray color, shows

the results in Fig. 4.2.

Five molecular heterostructures are discussed, which have N = 0, 1, 2, 3, and 4 main

IR modes at energies below ~∆N . These systems are marked in Figs. 4.2 and 4.3

by black symbols and their splitting energies are summarized in Table 4.1. The

electronic transition energy of the chosen systems is always out of resonance with a

vibrational transition and therefore, no pseudo-Jahn-Teller effect is expected [121].

~∆N

N (X, Y ) [meV] [cm−1] [fs] Size [Å]

0 (8, 4) 98.8 797.0 6.66 137.6

1 (6, 3) 125.7 1014.1 5.24 119.5

2 (7, 2) 147.4 1188.8 4.47 113.7

3 (3, 2) 253.3 2043.1 2.60 97.2

4 (2, 2) 382.7 3086.9 1.72 93.0

Table 4.1: Splitting energy ~∆ of the molecular heterostructure l -PPP8/PDAY /l -

PPPX/PDAY /l -PPP8 whose electronic dynamics is determined by ~∆N and influ-

enced by N main vibrational bands. The size of the molecular systems refers to the

total length of the molecule.

The first MOs within the conduction band of the ∆N systems in Table 4.1 are

shown in Appendix D. Figures D1-D5 show that only the energetic levels LUMO

and LUMO+1 are localized, as indicated by the higher electron density in the PDA
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“well” oligomer, meanwhile the levels LUMO+2 and LUMO+3 are mainly delocal-

ized on the l -PPP “barrier” oligomer.

4.3 Modeling of molecular charge qubits

In order to calculate the dynamics of the charge qubit, its coupling to the IR active

modes is treated within an open quantum system approach [1]. This results in the

total Hamiltonian

H = HS +HB +HSB, (4.3.1)

where HS is the system Hamiltonian, HB is the bath Hamiltonian and HSB is the

system-bath coupling.

The electronic degrees of freedom are restricted to the two states {|L〉, |R〉}
forming the charge qubit, i.e., the localized states LUMO and LUMO+1 (spin effects

are neglected). These two states are described by the quantum two-level Hamiltonian

[8]

HS =
~

2
(ε(t)σz −∆σx) . (4.3.2)

The term ε(t) = ε0 + ε(t) accounts for possible asymmetries. External electric

fields couple to the charge position σz causing a time-dependent asymmetry ε(t).

Small static biases ε0 may also arise due to the lacking point symmetry of the

molecular structure. This results from electrostatic repulsion between hydrogen

atoms across the heterojunction formed by the vinyl end of the PDA unit cell and

the aromatic ring of the l -PPP unit cell, which breaks the planarity of the whole

molecular heterostructure. This is evidenced in Figs. D1-D5 of Appendix D, where

ε0 increases with decreasing N in the ∆N systems, then localizing the LUMO and

LUMO+1 levels. In the following, this possibility is neglected for simplicity by

setting ε0 = 0, since only small quantitative changes in the dynamical properties are

expected.

In small molecules, like Betaine dye molecules, the intramolecular vibrational

motions can have much greater effects on the total electronic coherence loss than

environmental solvent molecules [122]. This is expected to be even more valid in

large molecules, like the heterostructures in Table 4.1. Here, the vibrational modes

of the whole polymeric molecule are formalized as the bosonic bath. Thus, the main

source of decoherence would come from electron–vibration coupling effects. Within

the harmonic approximation [29, 123], the vibrational modes are written as a bath

of independent harmonic oscillators bilinearly coupled to the charge of the qubit,
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resulting in

HB +HSB =
∑

i

~ωia
†
iai +

~

2
σz

∑

i

gi(ai + a†i ), (4.3.3)

with bosonic creation and annihilation operators a†i and ai, oscillator frequency ωi,

and coupling constants gi. The bath degrees of freedom are finally integrated out

and the influence on the qubit dynamics is fully characterized by the spectral density

J(ω) = (π/2)
∑

i g
2
i δ(ω − ωi).

4.3.1 Fluctuational spectrum of molecular charge qubits

Using the AM1 method, a structured IR spectrum κ(ω) =
∑

i Iiδ(ω − ωi) with

frequencies ωi and intensities Ii is obtained (see Fig. 4.3). IR modes couple to the

charge of the qubit in the same way as to external electric fields (∝ σz) and it is

accordingly assumed that J(ω) = κ(ω) and therefore, Ii ≡ (π/2)g2i .

Each peak in the IR spectrum is modeled by a Lorentzian [124] with width γi
of the form Li(ω) = γi/[(ω − ωi)

2 + γ2i ]. Lorentzian profiles are typical for homo-

geneously broadened bands [125], and have been found in the structurally related

poly-(p-phenylene-vinylene) polymer [126]. The widths are generated by the cou-

pling of the IR modes to environmental charge fluctuations (from a solvent or sub-

strate) which also generate an Ohmic background spectrum; thus, J(ω) ∝ ω for

small frequencies.

In order to maintain the structure of κ(ω) but allow an Ohmic background,

Ii/ωi = ηiγi is set. It is also assumed an equal width for all peaks, i.e., γi = γ.

Thus, the parameter γ determines also the overall coupling strength between the

qubit and the IR modes through γi = (π/2)(g2i /ωiηi). Normalizing the spectrum

with respect to the most intense mode imax gives ηi = (Ii/Iimax
)(ωimax

/ωi), with the

corresponding ηimax
= 1. This leads to the spectral function

J(ω) = ω
∑

i

ηiγ
2

(ω − ωi)
2 + γ2

= γω
∑

i

ηiLi(ω). (4.3.4)

In order to get a tractable analytical expression for the spectral density, only IR

modes with an intensity Ii ≥ 0.01Iimax
are included. Modes with lower intensities are

not resolved within the Ohmic background. The final extracted spectral densities

for all ∆N systems in Table 4.1 are given in Appendix E. There, the resulting

autocorrelation function in Eq. (2.2.11) is also shown for all systems. The case

N = 3 is shown in Fig. 4.4. When plotting the spectral density as a function

of the scaled frequency ω/∆N as in Appendix E, it is clear that the ∆N systems

have N = 0, 1, 2, 3, and 4 main IR modes at energies below ~∆N . As expected, the
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Figure 4.4: Spectral density in Eq. (4.3.4) for the system ∆3. The IR spectrum in

Fig. 4.3 (shown as vertical red lines) is included for comparison. The solid black,

blue, and green lines correspond to the widths γ = 5, 25, and 75 cm−1, respectively.

resulting correlations are longer-lived for a larger number of peaks at frequencies

ωi < ∆N as shown in Appendix E.

4.3.2 Electron–vibration coupling strength

As mentioned before, the overall coupling strength between the qubit and the vibra-

tional modes is determined by γ via γi = (π/2)(g2i /ωiηi). Here, this is calculated by

redetermining the energy splittings while the nuclear coordinates are displaced ac-

cording to the mode with maximal intensity in the IR spectrum, for which ηimax
= 1

(see Appendix E). It is assumed that this mode has a maximal electronic coupling

strength. Consequently, a maximal shift of the energy splitting is expected when

the nuclear coordinates are displaced. For a vibrational mode with frequency (i.e.,

eigenvalue) ωi, the displacement coordinates are given by the eigenvectors associated

to that mode. They are obtained by using the AM1 method (see Appendix B).

A molecular system with an energy splitting ∆N (~ ≡ 1) has an IR mode with

maximal intensity at frequency ωimax
, i.e., the mode with ηimax

= 1 in Appendix

E. This mode has a force constant k as follows from the curvature at the potential

minimum. The calculated nuclear displacement coordinates, rj, indicate that each

atom is displaced in its normal mode direction by one unit of the oscillator length
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(see Sec. B2). By summing over all atoms i, a potential energy Epot = (1/2)k
∑

i r
2
i

due to the nuclear displacement is introduced. This displaced nuclear configuration

is then used to recalculate the electronic states, yielding an energy splitting E(dis).

Typically, displacements generate an energy difference ε0 for the electron in one of

the two wells (i.e., a static bias) rather than modifying the tunnel coupling between

the two wells. The energy splitting for an according two-level system is then E(dis) =
√

∆2
N + ε20, whereas in equilibrium E(equil) = ∆N . The difference between the two

is then δE = E(dis) − E(equil).

The displacements introduced correspond to the Epot/ωimax
= υ-th excited state

of the considered mode leading to ε0 '
√

(δE)2 +∆2
N − ∆N . In turn, a single

excitation of this mode corresponds to displacements smaller by a factor
√
υ. It

is assumed that the electronic qubit states couple bilinearly to vibrations, i.e., ∝
(1/2)σzgj(aj + a†j) in Eq. (4.3.3). Hence, all nuclei are maximally displaced relative

to a single excitation in the mode ωimax
. This results in an energy difference ε0/

√
υ

which is identified with the coupling constant gimax
.

This result can be directly replaced in γi = (π/2)(g2i /ωiηi), for which ηimax
= 1

due to the fact that only the IR mode with maximal intensity is considered. Thus,

γimax
=
π

2

g2imax

ωimax

. (4.3.5)

This indicates that the electron–vibration coupling constants gi determine also the

damping strength of the vibrational bath. This is given by the decay of the bath

autocorrelation in Eq. (2.2.11), as shown in Appendix E.

Results for the systems with N = 0, 1, and 2, obtained using the described

methodology, are shown in Table 4.2. It is worth to note, however, that the coupling

k υ-th excited E(dis) ε0 gimax
γimax

System [eV/Å2] state [cm−1] [cm−1] [cm−1] [cm−1]

∆0 193.34 33rd 2325.27 926.61 161.30 20.14

∆1 204.81 34th 3196.35 1392.27 238.77 43.18

∆2 219.64 35th 5868.50 3639.54 615.19 278.28

Table 4.2: Electron–vibration coupling strength for the ∆N systems with N = 0, 1,

and 2.

strength obtained for the system ∆2 is quite large. This might be a consequence

of the several modes at energies around ~∆2 (see Table E3 and Fig. E5), which

already results in a system with strong coupling to vibrational modes and will then

exhibit strong damping (see results in Sec. 5.1). Due to their smaller molecular
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size, displacing the atoms from their equilibrium position according to the most

intense mode, as before, in the systems with N = 3 and 4 induces a very strong

electronic rearrangement, which gives E(dis) < E(equil), resulting in very small γ

values. This is physically meaningless due to the fact that a smaller molecule will

have a stronger electron–vibration coupling, which is consistent with the results

in Table 4.2 for the largest systems. It is important to note that more elaborate

ways to calculate the electronic level widths for different environments are available

[127, 128]. The structural deformation due to the pseudo-Jahn-Teller effect [121] is

negligible since γimax
� ∆N for all calculated systems, in contrast to the cases where

a strong coherent electron–vibrational coupling leads to qualitative modifications of

the electron dynamics [129, 130].
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CHAPTER 5

Dynamics of π-conjugated molecular

charge qubits

In this chapter, the real-time dynamics of the different molecular charge qubits in

Table 4.1 is investigated in terms of the time-dependent population difference

P (t) = 〈σz〉t = tr [ρ(t)σz] (5.0.1)

of the left and right wells. The reduced density matrix ρ(t) is calculated by means

of the interative QUAPI scheme presented in Sec. 2.2.1. An initial preparation

ρ(0) = |L〉〈L| in the left well is assumed. For all cases, ~∆N > kBT at room

temperature and thermal effects are negligible for the following considerations. All

results reported below are for T = 300 K.

The long-lived oscillatory correlations of the ∆4 system resulting from the large

number of peaks at frequencies ωi < ∆4 lead to very long memory times τ = Kδt

in the autocorrelation function (see Fig. E10 in Appendix E). This makes difficult

to find an optimal parameter combination of K and δt, and therefore, no results are

shown for the ∆4 system in this chapter. However, results obtained by choosing a

compromise between a large enough memory time (given by a large K) and a small

enough Trotter error (given by a small δt step) are presented in Appendix F for

comparison purposes.

41
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5.1 Dynamics of undriven molecular charge qubits

Here, it is assumed that ε(t) = 0 in Eq. (4.3.2). The resulting dynamics is shown in

Fig. 5.1 for all cases with N = 0-3. Because, in general, the strength of the electron–

vibration coupling increases by decreasing the size of a molecule, coupling strengths
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Figure 5.1: Time-dependent population difference P (t) as a function of the damping

strength γ for the heterostructures ∆N with N = 0-3 (a)-(d).
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up to 300 cm−1 have been investigated. Coherent oscillations of the population

difference are found. Figure 5.2 compares the dynamics of all systems when the

electron–vibration coupling is fixed at γ = 250 cm−1. The corresponding dynamics

of the ∆4 system is shown in Fig. F1.
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Figure 5.2: Time-dependent population difference P (t) for a fixed value γ = 250

cm−1 of the electron–vibration coupling for the heterostructures ∆N with N = 0-3.

By a fit of the population difference to the expression P (t) = e−Γt cos (ωt), it

is possible to extract the coherence time T1,N = Γ−1 and the quality factor QN =

ω/Γ = T1,N/∆N . The latter gives the number of operations that can be implemented

in a physical qubit within the decoherence time [131]. The resulting values for T1,N
and for QN as a function of the damping strength γ for all molecular systems ∆N are

shown in Fig. 5.3. Coherence times and quality factors for particular γ values are

given in Table 5.1. It is found that the coherence times and, consequently, the quality

factors decrease with increasing coupling. This can be understood when considering

the autocorrelation function in Eq. (2.2.11) of the vibrational bath (see Appendix

E): in the limit of small γ values, the autocorrelation function is slowly damped,

and a long-lasting coherent decay of P (t) is observed. In the opposite limit of large γ

values, the bath-induced memory effects are quickly lost and therefore, P (t) decays

faster. Within the investigated γ values, it always hold that ∆N � γ, which explains

the absence of a completely incoherent decay of P (t) in Fig. 5.1. It is important

to note that ~∆N is not in resonance with any vibrational mode in any of the five

cases, which (together with the lacking point symmetry) excludes possible strong

pseudo-Jahn-Teller effects [121]. Put differently, no significant polaron formation

occurs. In such a case, a breakdown of the Franck-Condon (or, equivalently, the

Born-Oppenheimer) approximation is expected. Due to the large number of peaks
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Figure 5.3: Coherence times T1,N (top) and quality factorsQN (bottom) as a function

of the damping strength γ for the heterostructures ∆N with N = 0-3.

around 1500 cm−1, a significant spectral overlap occurs in all heterostructures (see

Appendix E). This leads to an effective broad single mode with a large spectral

weight. This is the reason for the system ∆2, in particular, to exhibit the smallest

quality factors. On the contrary, this effective mode has a negligible influence on

the dynamics of the ∆4 system resulting in quality factors an order of magnitude
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γ

System 5 cm−1 20 cm−1 45 cm−1 100 cm−1 250 cm−1

∆0 535.394 222.275 201.258 159.552 53.986

(79) (31) (27) (20) (6)

∆1 528.736 147.498 72.650 42.911 31.258

(101) (28) (14) (7) (5)

∆2 503.075 124.848 55.739 30.982 17.641

(111) (27) (11) (6) (3)

∆3 345.562 94.453 42.308 24.068 17.846

(133) (36) (16) (10) (8)

Table 5.1: Coherence times T1,N (in ns) and quality factors QN (in parentheses) for

all heterostructures with N = 0-3 for specific γ values as indicated.

larger (see Appendix F).

Notice that for small γ values, the quality factors increase for larger N , i.e.,

when the dynamics is influenced by N main vibrational bands below ~∆N . The

situation, however, is more complicated when increasing the damping strength γ.

In the intermediate regime of γ values, the system ∆0 exhibits the largest quality

factors, with a maximum around 100 cm−1. For this particular system, the energy

difference between the electronic transition (given by ∆0) and the first vibrational

peak (see Table E1) is 98 cm−1. A width γ of the vibrational transition close to

this value will bring the electronic and vibrational transitions into resonance and

therefore, sustained coherence is expected. This results in large coherence times and

quality factors as observed in Fig. 5.3. A similar argument is valid for the systems

∆1 and ∆3. In these cases, the corresponding energy differences are 89 cm−1 for

∆1 (taken with respect to the first vibrational peak at lower energy as compared to

~∆1, see Table E2), and 96 cm−1 for ∆3 (taken with respect to the next vibrational

peak at higher energy, see Table E4). For these two cases, however, no maximum

in the quality factors is observed. The reason for this is the large spectral weight at

the electronic transition, J(∆N), resulting from the overlap of the vibrational peaks

around ~∆N (at larger energies for both cases, see Figs. E3 and E7).

Thus, it is possible to conclude that the design of the molecular heterostructures

allows to chemically engineer the coherence times over very broad time scales for such

molecular quantum devices. Similar chemical engineering was shown for molecular

spin systems [132], where the electron spin phase memory time was extended by

changing the substituent chemical groups in the molecular structure.
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5.1.1 Non-Markovian effects in molecular charge qubits

With increasing ∆N , the relevant vibrational IR bands shift from ωj > ∆0 to ωj < ∆4

(see Figs. E1, E3, E5, E7, and E9 in Appendix E). The peaks at frequencies ωj <

∆N with width γ induce strong non-Markovian behavior [31] by introducing several

oscillatory correlations of the form e−iωjt−γt in the bath autocorrelation function [see

discussion following Eq. (2.2.11) and Figs. E2, E4, E6, E8, and E10 in Appendix

E]. In order to quantify the non-Markovian effects in the dynamics of molecular

charge qubits, the non-Markovianity quantifier in Eq. (2.3.4) is used. Here, the

initial states ρ1/2(0) correspond to the additional charge being predominantly in the

left or right dot.

Figure 5.4 shows the evolution of the trace distance D (ρ1, ρ2) in Eq. (2.3.1)

for increasing γ in all molecular charge qubits in Table 4.1 with N = 0-3. As was

discussed in Sec. 2.3, in open quantum systems, the evolution due to the dynamical

map Φ(t) leads to a decay of the trace distance with time. This is observed in Fig.

5.4. A comparison of all cases is shown in Fig. 5.5 when γ = 250 cm−1. It can

be compared with the evolution of P (t) presented in Fig. 5.2. It is found that the

∆0 system exhibits the largest number of non-Markovian intervals, i.e., the time

intervals on which the trace distance increases. They are smeared out for larger N .

The corresponding results for the ∆4 system are shown in Fig. F3.

Any growth of the trace distance is a signature for non-Markovian behavior and

leads to a lower bound for the non-Markovianity measure N [58]. As mentioned,

the latter is obtained by integrating over all time spans on which the trace distance

increases [see Eq. (2.3.4)]. Figure 5.6 shows the resulting N as a function of γ. It is

found that all systems exhibit non-Markovian effects. In these molecular systems,

vibrational peaks at energies lower than ~∆N help to sustain coherent oscillations

of the population difference by a non-Markovian flow of information from the vi-

brational degrees of freedom back to the electronic degrees of freedom, eventually

leading to a prolongated quantum coherent dynamics. The decay of N at large γ

values occurs in the regime where the bath autocorrelation function decays faster.

Then, the bath looses its memory more quickly and therefore, non-Markovian ef-

fects are less relevant. Notice that a maximum in N exist around 100 cm−1 for the

systems ∆0, ∆1, and ∆3. This can be attributed to near resonant electronic and

vibrational transitions as discussed before. The large N for the system ∆0 explains

the large coherence times obtained for this system.

These results show that non-Markovian behavior can be exploited as a resource

of quantum coherence. Coherent dynamics is sustained longer by a coherent ex-

change of energy between the electronic and vibrational degrees of freedom leading
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Figure 5.4: Time-dependent trace distance D (ρ1, ρ2) in Eq. (2.3.1) as a function of

the damping strength γ for the heterostructures ∆N with N = 0-3 (a)-(d).

to a dynamical storage of coherence in vibrations. They typically have much longer

coherence times as compared to electronic degrees of freedom. Memory effects can

also arise from the rearrangement of the nuclear positions induced by the oscillating

electronic charge. It changes the electronic distribution in the molecule, in analogy
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Figure 5.5: Time-dependent trace distance D (ρ1, ρ2) at fixed γ = 250 cm−1 for the

heterostructures ∆N with N = 0-3.

0

0.5

1

1.5

0

0.2

0 100 200 300

γ [cm-1]

n
o
n
-M

a
rk

o
v
ia

n
it
y

100

∆
0

∆
1

∆
2

∆
3

Figure 5.6: Non-Markovianity N [see Eq. (2.3.4)] as a function of the damping

strength γ for the heterostructures ∆N with N = 0-3. Inset: zoom to the small γ
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with the Stokes shift. Although this effect is expected in all systems due to the lack

of point symmetry, it is more pronounced in the system ∆0, since it is the largest

molecule (see Table 4.1).

It is then possible to conclude that the chemically engineered coherence times

are the result of engineering the non-Markovian vibrational environment. This in-
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fluences the electronic dynamics and constitutes a chemical approach to reservoir

engineering techniques [133].

5.2 Dynamics of driven molecular charge qubits

The dynamics of the undriven charge qubits presented in the last section gives the

intrinsic coherence times and elucidates the role played by non-Markovian effects.

However, from the point of view of quantum processing of information, it is desirable

to control the dynamics of the oscillating electronic charge, for example, to prepare

an initial state or to implement specific quantum gates. This control can be achieved

by the use of electric fields, similar to the methodology used in inorganic systems.

In molecules, however, electric fields generate a sizeable Stark shift of the electronic

levels, which, depending of the strength of the field, can couple the MO levels to

the continuum. This may cause ionization or can even destroy the molecule. An

alternative is the use of electromagnetic radiation. Laser pulses can be used to

control the electronic dynamics of molecular systems [134, 135, 136]. These pulses

demand a high degree of control both in amplitude and phase [137]. Nevertheless,

they can be designed [138] and implemented experimentally [139].

The LUMO–LUMO+1 transition of the systems in Table 4.1 fall within the IR-

active region, and therefore, it is easily addressable with THz lasers [140]. Arbitrary

pulse shaping has been demonstrated in this spectral region [141, 142], which opens

the possibility to implement control schemes [143]. Therefore, it is worth to inves-

tigate the conditions under which the dynamics of the molecular charge qubits can

be controlled.

Here, it is assumed that the system is driven by a time-dependent external field

of the form ε(t) = A cos(Ωt) in Eq. (4.3.2). This models a continuous wave laser

with driving strength A and driving frequency Ω, which can be considered as the

simplest control scheme possible. Particularly interesting is how the field parameters

A and Ω influence the quantum coherent dynamics of the systems.

In the limit of a weak laser field, an initial decay of the population difference is

observed, after which only stationary oscillations due to the external driving field

survive as shown in Fig. 5.7 for the ∆1 system. Similar behavior is observed in

all other systems. Stronger electron–vibration coupling leads to a faster decay of

P (t) and the stationary state is reached more quickly, as found also in the undriven

situation (compare with Fig. 5.1). Note that due to the small laser amplitude, the

behavior of the trace distance does not differ considerably from the undriven case

(compare with Fig. 5.4). The resulting dynamics of all systems under the same

weak field parameters is shown in Fig. 5.8 when the electron–vibration coupling
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Figure 5.7: Time-dependent population difference P (t) (top) and trace distance

D (ρ1, ρ2) (bottom) as a function of the damping strength γ for the ∆1 system with

field parameters A = 0.1∆1 and Ω = 0.1∆1.

is fixed at γ = 200 cm−1. Figure F5 shows the corresponding results for the ∆4

system. In all systems, initial superimposed oscillations due to coherent tunneling

are observed before the system reaches its stationary state.

An increase in the driving strength A changes the form of the forced oscilla-

tions in the stationary limit as shown in Fig. 5.9 for the ∆2 system. The observed

stationary state plateaus in P (t) appear as a result of population trapping due to

the large quasistatic bias of the system dynamics generated by the large driving

amplitude, as depicted in Fig. 5.10. Square-wave oscillations in P (t) due to pop-

ulation trapping can be attained for all ∆N systems by the combination of large

amplitude with slow driving frequency, as illustrated in Fig. 5.11. Results are pre-

sented in Fig. F6 for the ∆4 system in the regime where square-wave oscillations

in P (t) are obtained. Following Ref. [144], the results in Fig. 5.11 are given for a

driving strength µA/~∆N = 10, where µ is the dipole moment generated by mov-

ing the excess electron between the left and right dots. Considering the size of

the particular ∆N molecule, these values correspond to an electric field strength of

18.7× 107, 31.8× 107, 38.0× 107, and 114.1× 107 V/m, and a driving frequency of

2.4, 3.0, 3.6, and 6.1 THz for the systems N = 0, 1, 2, and 3, respectively. All of
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Figure 5.8: Time-dependent population difference P (t) at fixed γ = 200 cm−1 for the

heterostructures ∆N with N = 0-3 and field parameters A = 0.1∆N and Ω = 0.1∆N .

these values are achievable, for example, with quantum cascade lasers, which are

continuous-wave THz sources [140]. The corresponding field intensity I = cε0|A|2 is
9.3, 26.8, 38.3, and 346 GW/cm2 for N = 0 → 3, respectively. Competing processes

such as bond breaking or ionization occur above a certain intensity threshold, which

is typically between 1 and 10 TW/cm2 for molecules [145]. The calculated values

are below the intensity threshold.

Population trapping, under a slow driving frequency, has been shown theoreti-

cally in the case of two-level systems [30, 146], three-level ladder systems [147], and,

experimentally, in frequency-modulated excitations of two isolated Rydberg Stark

states of a potassium atom [148]. In general, population trapping requires, besides a

slow driving frequency, a strong driving field and also strong coupling. A strong but

slow field leads to maximum bias of the system at the extrema of the driving field,

with self-trapping resulting from the much faster dynamics of the undriven system,

and therefore, a square-wave profile of P (t) results. The population jumps occur

when the field sweeps the system through the resonance (see Fig. 5.10). Increas-

ing the driving frequency leads to shorter-lived population trapping, and therefore,

P (t) does not exhibit square-wave oscillations in the stationary limit anymore, as
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ε(t)

t

Figure 5.10: Schematic view of the laser-induced bias in a DQD: red diagrams

indicate the maximally biased system at the extremes of the laser field, meanwhile

the blue diagram indicates the system being swept through the resonance.

illustrated in Fig. 5.12 for the ∆2 system.

In all molecular systems, the observed square-wave oscillations of P (t) survive

for several ps, which implies that it is possible to control externally the population
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Figure 5.11: Evolution of P (t) (left) and D (ρ1, ρ2) (right) for the heterostructures

∆N with N = 0-3 for a fixed value γ = 100 cm−1 of the electron–vibration coupling

and with field parameters A = 10∆N and Ω = 0.1∆N .

of the left/right dot in the DQD, allowing controlled transitions between the basis

states of the charge qubit. Thus, single qubit gates become possible.

It is interesting to note that the field parameters leading to population trapping,

also generate a slower decay in the trace distance as compared to the case of weak

driving (see Fig. 5.9 bottom). As a consequence of the population trapping, the

decay of the trace distance occurs in a step-like way, with the decrease of a single step

when the system is swept through the resonance. The steps are more clearly defined

at larger electron–vibration coupling as shown in Fig. 5.13 for the ∆1 systems. Here,

the decay of the trace distance at γ = 100 cm−1 (thin black line) is compared with

the decay for γ = 300 cm−1 (thick black line). Even under strong driving conditions,

increasing the driving frequency, however, removes the step-like decay of the trace

distance (see Fig. 5.12 bottom).

The resulting non-Markovianity measure N is shown in Fig. 5.14 as a function

of γ for increasing driving strength A. It is found that N behaves in a similar way
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Figure 5.13: Time-dependent trace distance D (ρ1, ρ2) as a function of the damping

strength γ for the system ∆1 with field parameters A = 10∆1 and Ω = 0.1∆1.

as in the undriven case for both values of Ω (compare with Fig. 5.6). Notice that

for the combination of driving parameters that maximize square-wave oscillations of

P (t) in the stationary limit, the non-Markovianity measure increases for larger N .
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5.3 Concluding remarks

Quantum computation requires a robust representation of quantum information,

the ability to perform a universal family of unitary transformations, the ability to

prepare a specific initial state, and the ability to reliably measure the output result

[3, 70].

The designed molecular charge qubits based on ladder-type poly-(p-phenylene)

and polydiacetylene π-conjugated heterostructures can serve as the basic elements

of a quantum information processor. It can, in principle, operate at room tempera-

ture. This design can be realized by single π-conjugated molecular heterostructures

spanned between a substrate and the tip of an atomic force microscope. This also

allows one to address the qubit with minimal environmental influence. The scalabil-

ity that these molecular systems offer allows the design of complex heterostructures

for the implementation of control schemes for quantum computation [149].

By tuning the length of the l -PPP and PDA oligomers, the tunneling coupling as

well as the dephasing properties can be chemically engineered (see Fig. 4.3). Long
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coherence times can be obtained resulting in quality factors up to 102 (see Fig. 5.3

and Table 5.1). The highest quality factors are obtained in the limit of weak envi-

ronmental damping. Localized molecular vibrational modes at energies below ~∆N

induce strong non-Markovian effects which contribute to sustain quantum coher-

ence by non-Markovian flow of information from the vibrational degrees of freedom

back to the electronic degrees of freedom (see Figs. 5.4 and 5.6). Then, tuning the

length of the l -PPP and PDA oligomers determines the non-Markovian vibrational

environment that influences the electronic dynamics. This constitutes a chemical

approach to reservoir engineering techniques [133] and shows that non-Markovian

behavior can be exploited as a resource of quantum coherence.

By means of an external laser field, it is possible to control the transitions be-

tween the left/right states of the charge qubit (see Fig. 5.11). Optimal field con-

ditions involve the combination of a strong driving amplitude A and a slow driving

frequency Ω. This leads to population trapping with square-wave oscillations of the

population difference in the stationary limit. These controlled transitions between

the basis states of the charge qubit are essentially single qubit gates. The read-out of

the charge qubit state can be done by using spectroscopic techniques, for example,

transient absorption of a negatively charged exciton, known as a trion [150].

The quantum circuit model of quantum computation requires two-qubit gates,

like the controlled-NOT gate, which together with single-qubit gates form a universal

set of quantum logic gates. It means that any unitary operation on n qubits may

be implemented exactly by composing single-qubit and controlled-NOT gates [3].

Two-qubit gates can be implemented in the macrocyclic system depicted in Fig.

5.15. In this case, two ∆4 molecular charge qubits are held together by means of

Figure 5.15: Molecular architecture where two ∆4 systems are connected through a

short oligomer of p-saturated acene.

a short oligomer of poly-acene saturated in the para-positions (see Fig. 3.2), which

makes the whole system stiff. Similar architectures have been synthesized with

PPP oligomers as molecular clamps [110, 151]. The length of the p-saturated acene
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clamp controls the strength of the Coulomb interaction between the electrons in the

different qubits. Single-qubit addressing in this macrocycle is possible because the

separation between the qubits, is in general larger than 1 nm.

A more efficient control of the dynamics of the oscillating electronic charge can

be achieved by means of quantum optimal control theory [138]. This requires to

find the shape of a laser pulse that, for example, minimizes the time required to

carry out a specific transition between the basis states of the charge qubit. Usually,

this optimization is subject to physical constrains specific to the particular system,

like for example, requiring that the fluence of the laser field be as small as possible

in order to avoid competing processes [145]. This strategy has been applied to the

implementation of quantum gates in molecules with vibrational qubits [18, 19].

The designed molecular charge qubits assume an excess electron (within the

conduction band) localized in the left or right dot, which is achieved by doping the

molecule single negatively. Then, a polymeric radical anion is formed. However, any

charge carrier can be used, for example, a missing electron (within the valence band),

or equivalently, a hole localized in the left or right dot. This is achieved by doping

the molecule single positively such that a radical cation is formed. The combination

of Th and l -PPP oligomers results in a type II-staggered heterostructure as shown

in Fig. 5.16. Such a design offers an energy offset of 1.2 eV in the valence band, thus

allowing the design of molecular charge qubits with positive doping. These systems
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Figure 5.16: Molecular structure and potential energy profile for holes within the

valence band for the symmetric DQD l -PPP5/Th2/l -PPP3/Th2/l -PPP5. The two

energy levels of the confined hole states are indicated by the horizontal red lines.

can be modelled as in Sec. 4.3. However, a different dynamics is expected due to

the S atom in the Th oligomer, which results in a different profile of the IR spectra,

and therefore, a different damping behavior.

Only intramolecular vibrational degrees of freedom have been considered to pro-
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vide the dominant dephasing channel of the charge qubit. More elaborated models

can elucidate the role of a possible substrate or a solvent.

Instead of using the proposed systems as quantum hardware, one can also en-

visage their use as a very sensitive charge meter. This role is currently fulfilled

by single-electron transistors and by quantum point contacts. In the latter, the

conductance through the quantum point contact channel is very sensitive to the

electrostatic environment. This has been used to detect single-electron tunneling

between a quantum dot and a reservoir in real-time [152]. For the proposed molec-

ular systems, it is expected that their charge dynamics be also sensitive to nearby

individual charges.

The fabrication of the proposed systems requires a refined control during the

process of growing the molecular heterostructure. However, it seems feasible by

current technologies, in particular, by STM polymerization [102].
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Biomolecular systems: The FMO

complex
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CHAPTER 6

Light-harvesting systems and the FMO

complex

The directed transport of excitation energy is at the heart of photosynthesis which

is one of the most important biochemical processes on Earth. It is a typical nonequi-

librium transfer process that funnels the energy provided by the solar photons down

to usable chemical energy in photoactive living systems. Photosynthesis allows the

living organisms to harvest an enormous amount of energy. For instance, from the

100 PW of solar energy that Earth receives annually, the energy captured by pho-

tosynthesis is of the order of 100 TW. This should be compared to roughly 15 TW

of the worldwide human energy consumption per year [153, 154]. Along with the

harvest of energy goes the production of about 105 petagrams of biomass per year,

with about 46% of the photosynthesis happening in organisms in water, i.e., mainly

in the ocean, while the remaining 54% is performed by systems on the shore [155].

The elucidation of the molecular mechanism of light harvesting is of particular

importance not only to understand the basic principles behind the fine-tuned func-

tionalities of the light capture and energy transfer on the molecular level, but also

to engineering artificial light-harvesting systems. This requires to identify the key

features of minimal functional units, obscured by the accumulated complexity dur-

ing evolution [156]. For instance, green plants contain chloroplasts in their leaves

which contain a stack of membranes whose molecular structure is highly nontrivial.

On a length scale of nanometers, many different biomolecular clusters act in concert

61
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to harvest the energy of a solar photon and to convert it into chemical energy which

starts a complicated sequence of chemical reactions [157]. Of particular interest are

the early steps of the photosynthetic chain of reaction, especially, the ultrafast pro-

cesses when the excitation energy is intermittently stored in an exciton which forms

a quasiparticle of a strongly bound electron-hole pair [158]. These initial steps hap-

pen in particular parts of the biomolecular structure which are denoted as antenna

pigment-protein complexes. After the exciton is formed at a certain molecular site, it

transfers its energy by a radiationless Coulomb dipole coupling to neighboring sites

such that the energy eventually finds its way through a network of few molecular

sites. Finally, the energy ends up in the reaction center (RC), which is the energy

sink of the antenna complex and the place where an electron transfer is initiated

[159].

Figure 6.1 illustrates the molecular structure and the absorption spectra of some

light-harvesting antennae encountered in different photosynthetic organisms. The

wide variety of antenna structures in nature are the result of the different sur-

vival conditions that the different photosynthetic organisms have faced during evo-

lution. This results in different chromophore types (e.g., chlorophyll, bilins, and

carotenoids), as well as differences in the number and in the arrangement of such

chromophores, leading to optimal light-harvesting capabilities in particular regions

of the visible and near-infrared spectrum [156], as illustrated in Fig. 6.1. Neverthe-

less, all antennae complexes are able to convert the photogenerated excitations to

charge separation with very high efficiency [160].

A central role during the cascade of the excitation energy transfer is played by

the fluctuations provided by the environment in which the biomolecule is hosted.

The quantum dynamics of the exciton is subject to fluctuating electric fields at

the exciton position. These fluctuations are created by a continuous distribution

of fluctuating polarization modes generated by the surrounding protein and the

polar solvent. The fluctuations are reminiscent of phonons in a crystal and their

distribution is characterized by the spectral density introduced in Eq. (2.2.9). In

extended bulk condensed matter systems, Ohmic environments are ubiquitous, but

non-Ohmic and highly structured environmental spectral densities arise in finite size

systems, such as, the polymeric molecular architectures presented in Part I (see Ap-

pendix E) and biological molecules. For biomolecular systems, the spectral density

can be obtained from experimental data [161, 162], or from theoretical modeling

of the dielectric functions, for instance, in the Onsager continuum model of solva-

tion [163], or from numerical simulations, such as molecular dynamics calculations

[164, 165]. In contrast to small organic molecules, like those in Part I of this work,
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Figure 6.1: Molecular structures (with parent organisms in parentheses) and absorp-

tion spectra, shown from left to right in matching colours, of the light-harvesting

antennae peridininchlorophyll-protein (of Amphidinium carterae), phycoerythrin

545 (of Rhodomonas CS24 ), light harvesting complex LHCII (of Spinacia olearia),

chlorosome (of the green non-sulfur bacteria Chloroflexus aurantiacus), and light

harvesting complex LH2 (of Rhodopseudomonas acidophila). Reproduced from Ref.

[156] with permission from The Royal Society of Chemistry.

biological molecules typically weight several kDa1. Because of their complexity, the

determination of molecular properties by ab-initio or even semiempirical methods

(as in Sec. 4.2) is out of the question and therefore, one has to rely on molecu-

lar dynamics calculations. There, the relevant part of the molecular system (e.g.,

the chromophores) are described by quantum mechanics, whereas the influence of

the surrounding protein scaffold is normally well represented by classical molecular

mechanics. A common feature of the pigment-protein-solvent environmental fluctu-

ations of different light-harvesting systems is that the underlying spectral density

function is highly structured with many prominent peaks, attributed to localized

1The dalton (Da) or unified atomic mass unit (u) are alternative names (and symbols) for the

same unit, equal to 1/12 times the mass of a free carbon 12 atom, at rest and in its ground state.

In SI units it has a value of 1.66053886(28)× 10−27 kg [166].
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vibrational modes.

By nature, the transfer processes are quantum mechanical transfer processes.

However, two limits have been used to describe the excitation energy transfer.

(i) Förster theory, which applies to the regime where coupling between the chro-

mophores and the environment dominates, and (ii) Redfield theory which assumes

strong electronic coupling between the sites and allows for coherent oscillations of

the populations at individual chromophore sites [160]. The first case, valid under

strong environmental fluctuations, is a second-order perturbation theory with re-

spect to the electronic coupling. It is based on the assumptions that the excitons

are well localized quasiparticles and the transfer is a classical hopping-like dynamics

along the molecular sites. The exciton population of each site is described by a

classical probability (i.e., all coherences between sites are neglected) and quantum

mechanics in this description enters only when the transfer rates are determined

by Fermi’s Golden Rule [167, 168]. The opposite limit of weak environmental fluc-

tuations is described by Redfield theory, which is also a second-order perturbation

theory but with respect to the electron-bath interaction. It assumes that the en-

vironment equilibrates infinitely fast after an electronic transition from the ground

to the excited state (Markovian approximation). Hence, the transfer of excitation

happens from equilibrium phonon states. The imaginary part in the autocorre-

lation function is also neglected (secular approximation). The resulting excitonic

dynamics exhibits a coherent evolution of the exciton coherences oscillating with a

frequency proportional to their energy difference, accompanied by dephasing of the

coherences and relaxation of the excitons induced by the environment. Physically,

this translates into coherent oscillations of the populations of the molecular sites,

which is not captured by Förster-type mechanisms [160]. In many light-harvesting

systems, however, the coupling strength of the electronic transitions to the envi-

ronment is typically comparable in magnitude to the electronic coupling between

chromophores, which results in an ‘intermediate’ coupling regime where all energy

scales involved are similar. So, neither the electronic coupling (like in Förster the-

ory) nor the excitation-bath coupling (like in Redfield theory) can be treated as a

small perturbation. Furthermore, the typical time scale associated with equilibra-

tion of the pigment-protein-solvent environment in response to electronic excitation

is often comparable with the time scale of excitation dynamics [160, 169].

Recently, two-dimensional electronic spectroscopy [170, 171, 172, 173] has pro-

vided additional insights into the excitation energy transfer dynamics of biologi-

cally active molecules [21, 156, 160, 174, 175, 176, 177]. In this technique, signal

amplitudes are recorded as a two-dimensional map that correlates the energies of

states that are photoexcited with those involved in radiating the signal after a wait-
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ing time that is the same as the delay time variable in pump–probe experiments

[156]. Of particular interest is the dynamical behavior of the off-diagonal signals

(cross-peaks), which correspond to transitions with different excitation and emis-

sion frequencies. Cross-peaks at zero waiting time indicate an excitonic coupling

via a common ground state. In turn, a growth of their amplitude as a function of

the waiting time indicates energy transfer through a pathway revealed by their po-

sition in the spectrum [176]. Experimental results have shown long-lived oscillatory

components in the ultrafast light-induced dynamics of electronic excitations in nat-

urally occuring photosynthetic light-harvesting systems. They provide signatures

of nontrivial quantum effects at cryogenic [178, 179, 180] and, surprisingly, also at

room temperature [181, 182, 183, 184]. This has led to an increasing interest in

elucidating the role played by quantum coherence for the energy transfer dynamics

of these systems [7, 37, 40, 43, 185, 186, 187, 188, 189].

In order to explain these long-lasting coherences, several mechanisms have been

proposed, e.g., a nonadiabatic vibrational–electronic mixing [185], vibrational co-

herences [186, 187], and vibronic excitons [188, 189]. In all cases, it is assumed that

vibrational degrees of freedom are involved because they typically have much longer

coherence times as compared to electronic ones. Besides, electronic transitions in

molecular systems often couple strongly to vibrational modes whose frequencies

match those of electronic energy gaps. Therefore, a significant amount of mixing

between electronic and vibrational degrees of freedom can occur [160]. This is partic-

ularly relevant for the highly structured enviromental fluctuations of light-harvesting

systems [161, 162], where the many prominent vibrational peaks induce a compli-

cated pattern of several oscillatory correlations with long life times. This requires

then to consider the possible role played by the explicit nonequilibrium vibrational

dynamics in the excitation energy transfer. An unambiguous interpretation of the

spectral beatings observed in biological molecules is difficult due to their inherent

complexity. Therefore, small molecular dimers have been synthesized to distinguish

between electronic and vibronic coherences. The time traces of the off-diagonal

features in the two-dimensional electronic spectra of halofluorescein heterodimers

exhibit oscillatory behavior associated with coherent evolution at frequencies cor-

responding to the respective transition energy gaps. This is consistent with the

presence of persistent electronic coherences [190]. On the other hand, the vibronic

exciton model explains the underlying dynamical processes of bis-cyanine homod-

imers using the same experimental technique [191]. These results indicate then that

the vibrational contribution to the oscillatory components depends on the molecular

system in question.

One of the most extensively studied pigment-protein complexes is the Fenna-
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Matthews-Olson (FMO) complex [192, 193] in the green sulfur bacteria (Chlorobi-

aceae). They are strictly anaerobic and depend on light, carbon dioxide and reduced

inorganic sulfur compounds (mainly H2S) or molecular hydrogen as electron donor

for photosynthetic growth. Therefore, they occur where light reaches anoxic water

layers or sediments that contain reduced sulfur compounds [194]. Its photosynthetic

apparatus is illustrated in Fig. 6.2. The light-harvesting pigments in the green sulfur

bacteria are bacteriochlorophylls (BChl) c, d and e, and chlorobactene and isore-

nieratene as the major carotenoids. These pigments are found in the chlorosomes

that are the characteristic light-harvesting antenna complexes of green filamentous

bacteria and green sulfur bacteria [195]. Each chlorosome contains thousands of

BChl molecules and is energetically connected to 5-10 reaction centers. BChl a

molecules are present in the portion of the chlorosome envelope facing the cyto-

plasmatic membrane (the so-called baseplate protein) that is in contact with the

BChl a-containing FMO protein. It is a small water-soluble protein unique to the

green sulfur bacteria and is responsible for passing the excitation energy from the

chlorosome to the photosynthetic FeS-type RC, and thereby acting as a chemical

wire. The RC is embedded in the cytoplasmatic membrane and receives the exci-

tation energy via additional BChl a molecules (see Fig. 6.2) [194, 196]. Of the 15

known species of green sulfur bacteria, spectroscopic studies have focused mainly

on the FMO complex of Prosthecochloris aestuarii (P. aestuarii) and Chlorobium

tepidum (Chl. tepidum). The FMO proteins in these two species show a high degree

of similarity, with the amino acid sequences being identical to one another within

77%, and the relative positions of each of the BChl a molecules matching almost

perfectly [197]. For Chl. tepidum, in particular, its genome has been completely

sequenced [198]. This has allowed to evaluate the spectral robustness of its FMO

complex to genetically-induced structural modifications to the protein scaffold and

to the chromophores [199].

The FMO protein is composed of three subunits related by a C3 symmetry (see

Fig. 6.3). Each subunit (365/366 amino acids) contains 8 BChl a molecules wrapped

in a protein shell. It consists of 15 strands of a β-sheet folded in such a way that

the strands at the front and the back of the shell are roughly perpendicular to each

other with the shell opening oriented toward the center of the trimer (see Fig. 6.3

top), 6 short-length α-helices located at the open end of the shell connecting the

separated β-strands, and a few regions of irregular conformation [195, 197]. The

BChls are not covalently bound to the protein scaffold directly, but through the

five-coordinate magnesium ion in the center of their tetrapyrrole ring. The distance

between the pigments within a subunit range from 4 to 11 Å while the nearest

neighbor in a different subunit is over 20 Å away [197]. This close proximity of the
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Figure 6.2: Photosynthetic apparatus of the green sulfur bacteria. Chlorosomes are

visible as ovoid structures in transmission electron micrographs (bar scale 0.1 µm)

appressed to the inner side of the cytoplasmatic membrane (CM). They are con-

nected to the photosynthetic RC in the CM via the trimeric FMO proteins. Dashed

arrows at the left indicate the transfer of excitation from the antenna carotenoids and

BChls c/d/e in the chlorosomes toward P840 in the RC through BChl a molecules

in the FMO complex (blue box). Reproduced from Ref. [194] with permission of

John Wiley & Sons, Inc.

BChl a molecules leads to quite strong electronic coupling within a subunit. The

recently resolved eighth pigment is located in a cleft at the surface of the subunit

(see Fig. 6.3 right) and directed toward the chlorosome [193]. It acts as the linker
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Figure 6.3: Molecular structure of the FMO complex in Chl. tepidum. Clockwise

from top: trimer protein illustrating the C3 symmetry; a single monomer subunit

illustrating the location of the BChl 8 in a cleft at the surface of the protein shell;

and BChls striped out of the protein envelope and of the side groups bound to the

tetrapyrrole rings. Standard numeration is indicated by red numbers and the BChl

8 is shown without the central Mg ion. Images created with Jmol [200] from the

Protein Data Bank file 3ENI [193].

pigment between the FMO protein and the baseplate protein. It is weakly coupled

to the other BChls within the subunit [201] and thus irrelevant for the present

investigation. Results in the following chapters are then shown for the remaining

seven sites within a single subunit.

Two-dimensional optical spectra of the FMO complex in Chl. tepidum displayed

beating oscillations in the signals associated to excitonic coherences lasting longer

than 1 ps at 77 K [178, 179]. Even at room temperature, rather long-lasting os-
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cillations for a few hundreds of fs were described [181]. Similar features were also

found in a marine cryptophyte algae [182, 183] and in the light-harvesting complex

2 of the purple bacteria [184]. When electronic excitation of a molecule changes

its equilibrium structure, excitation with a femtosecond pulse can generate a vibra-

tional wavepacket that starts off at the equilibrium structure of the ground state and

oscillates back and forth around the equilibrium structure of the excited electronic

state [202]. However, electronic excitation of isolated chlorophylls does not change

its equilibrium structure enough to generate vibrational wavepackets with sufficient

vibrational amplitude to explain the observed oscillations due to the rigidity of the

tetrapyrrole ring [202]. Therefore, they were assigned to long-lived electronic quan-

tum coherence [179, 181]. This would imply that a coherent superposition of excited

electronic states samples the most efficient route toward the RC much faster than

would be possible by diffusive, incoherent excitation energy transfer [179, 191]. Al-

ternative models, however, have been proposed to explain the observed long-lasting

coherences [185, 187, 188, 189, 203]. These models take into account the presence

of molecular vibrational modes, 30 of which have been identified experimentally in

the FMO complex [162]. This implies that vibronic coupling acts as a significant

mechanism to preserve electronic coherence [191].

Currently, there is not an unambiguous explanation about the nature of the

long-lived oscillatory components observed in the two-dimensional optical spectra

of photosynthetic light-harvesting systems. It has not been uniquely settled whether

they are electronic coherences or vibrational coherences, or even a mixture of both.

Even less clear is the role played by these long-lasting coherences in the excitation

energy transfer dynamics, i.e., whether the energy transfer efficiency is increased by

a coherence-assisted transport.

In this Part II of this work, the excitation energy transfer dynamics of the FMO

complex is calculated by means of the iterative QUAPI scheme presented in Sec.

2.2.1. In Chap. 7, it is indicated how the FMO complex is modeled. Different en-

vironmental fluctuation spectral functions, extracted either from experimental data

or from molecular dynamics simulations, are explicitly shown. All these spectral

functions include localized vibrational modes. Two possibilities to capture these lo-

calized vibrations arise: (i) They can either be taken as part of the environment, or,

(ii) their quantum dynamics can explicitly be followed as part of the system Hamilto-

nian. The difference between both is that in (i), the fluctuations are always assumed

to be thermal, i.e., resulting from an equilibrated environment, while in (ii), the

fluctuations are effectively non-thermal during the overall relaxation process. Both

routes are followed below, with the resulting dynamics due to equilibrium vibrations

presented in Chap. 8, while the dynamics due to nonequilibrium vibrations is pre-
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sented in Chap. 9. It is shown that the observed long quantum coherence times of

the electronic states cannot be explained by equilibrium fluctuations comming from

a continuous frequency distribution of the fluctuating pigment-protein-solvent envi-

ronment. Instead, the explicit nonequilibrium dynamics of the discrete vibrational

modes of the molecular backbone may yield increased coherence times. Their effect,

however, depends on which molecular site the vibration couples to. In the same

way, it is shown that the presence of discrete vibrational states can also enhance

the efficiency of the exciton transfer through the FMO complex. Finally, the non-

Markovianity measure in Eq. (2.3.4) is used in Chap. 10 to quantify non-Markovian

effects during the excitation energy transfer dynamics of the FMO complex in the

presence of discrete vibrational modes. The results of this last chapter are useful to

clarify the validity of a Markovian quantum master equation to describe the dynam-

ics of the FMO complex which is commonly used in most theoretical works available

in the literature, e.g., those in Refs. [188, 204, 205].



CHAPTER 7

Modeling the FMO complex

7.1 FMO Model

Due to the strongly separated time scales of the exciton transfer (∼ ps) and the ex-

citon recombination (∼ ns), the system Hamiltonian for the seven BChl sites within

a single subunit of the FMO complex can be formulated within the single excitation

subspace as HFMO =
∑7

j=1Ej|j〉〈j|+
∑

j 6=i Vji (|j〉〈i|+ |i〉〈j|). This is also consistent
with the weak sunlight intensity under physiological conditions due to the fact that

under natural illumination conditions, antenna proteins are photoexcited at a rate

that is low enough to guarantee that, at most, only a single excitation exists in an

antenna at a given time [206]. The basis states |j〉 indicate that the j-th site is in

its excited state and all other sites are in their ground states. Ej denotes the energy

difference between the ground and first excited state of the j-th site and Vji denotes

the electronic coupling between sites j and i. Adolphs and Renger [207] have deter-

mined the relative shift in excitation energies of the seven sites from calculations of

electrochromic shifts due to the charged amino acids of the protein and the different

ligand types of the pigments and, independently, from a simultaneous fit of optical

spectra (linear dichroism, circular dichroism, absorption, and the derivative of the

absorption spectrum) with a genetic algorithm. The resulting Hamiltonian of the

71
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FMO complex of Chl. tepidum in the site representation is

HFMO =
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cm−1. (7.1.1)

BChl 3 is the site with the lowest energy as revealed by simulations [197, 207]. Ex-

perimental results combining chemical labeling and mass spectrometry-based foot-

printing [208] indicate that this site interacts with the cytoplasmatic membrane,

which embeds the reaction center. BChl 3 is then the exit site of the excitation en-

ergy in the FMO complex. Combined theoretial and experimental results [197, 208]

have also revealed that BChls 1 and 6 are oriented toward the baseplate protein.

Therefore, it is believed that these are the initially excited sites. Strictly speaking,

because of its closest distance to the baseplate protein [193], and of the fact that it is

most strongly coupled to BChls in the baseplate than to the other BChls within the

subunit [201], BChl 8 is the initially excited site. Because it is also the blue-most

site in the FMO complex (505 cm−1 above the energy of BChl 3 [201]), it transfers

its excitation energy to the other sites quickly, mainly to site 1 due to their mutual

strong coupling and to site 6 due to their close spatial proximity (see Fig. 6.3 left).

Consequently, the assumption that BChls 1 and 6 are the initially excited sites is

justified.

The thermal fluctuations induced by the vibrational pigment-protein-solvent en-

vironment on the excitation transfer dynamics are described by employing a system-

bath model [1, 29] in terms of the total HamiltonianH = HFMO+HSB. It is explicitly

written as

H = HFMO +
7

∑

j=1

|j〉〈j|
∑

k

κ
(j)
k qj,k +

7
∑

j=1

1

2

∑

k

(

p2j,k + ω2
j,kq

2
j,k

)

, (7.1.2)

with momenta pj,k, displacements qj,k, frequencies ωj,k, and couplings κ
(j)
k of the

environmental vibrations at site j. The fluctuations at different BChl sites are

assumed to be identical in their characteristics, but spatially uncorrelated [43].

The spectral density function J(ω) =
∑

j,k

(

|κ(j)k |2/2ωj,k

)

δ(ω − ωj,k) fully char-

acterizes the environmental influence on the system dynamics. It has a non-trivial

structure with peaks associated to distinct molecular vibrational modes, 30 of which

have been identified experimentally in the FMO complex by Wendling et al. [162]

using temperature-dependent fluorescence line-narrowing measurements.
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7.1.1 Experimental determination of the spectral density

function

Spectroscopic studies of systems in the condensed phase are hindered by the spec-

tral broadening introduced by the interaction of the electronic and nuclear degrees

of freedom of the chromophore with those same degrees of freedom in the surround-

ing medium [209]. In general, the spectral broadening may have both static and

dynamic contributions. In the Markovian picture, a single vibronic transition of a

chromophore will have a Lorentzian width resulting from fast (homogeneous) pure

dephasing and population decay, dressed with a Gaussian profile resulting from a

slowly varying distribution of energy gaps (inhomogeneous broadening) [209]. The

spectral density function J(ω), however, captures all the time scales and no distinc-

tions between fast and slow processes are required.

The electrostatic interaction between the polar solvent and the chromophore is

quantified in terms of the solvation energy. In general, the configuration of the

surrounding solvent changes in response to a sudden change in the local charge dis-

tribution of the chromophore, e.g., a change in its electronic charge density following

an optical transition, which results in relaxation of the solvation energy [210]. The

driving force for this environmental change is the lowering of overall free energy that

accompanies the buildup of solvent polarization [163]. The optical transition energy

Ei between ground and excited states of the chromophore i in dilute solution is as-

sumed to be composed of three contributions [211]: an average value for the whole

ensemble 〈E〉, a dynamical part arising from fluctuations in the environment and the

chromophore itself δVi, and an offset from the mean transition energy ∆Ei. Then,

Ei = 〈E〉 + δVi +∆Ei. Assuming that the fluctuations are similar for all members

of the ensemble, it is possible to define a nonequilibrium solvation function, Ssolv(t),

in terms of solvation energy differences as [163, 211]

Ssolv(t) ≡
Esolv(t)− Esolv(∞)

Esolv(0)− Esolv(∞)
. (7.1.3)

Within the linear response approximation this becomes [163]

Ssolv(t) =
〈δV (t)〉 − 〈δV (∞)〉
〈δV (0)〉 − 〈δV (∞)〉 =

〈δV (0)δV (t)〉
〈δV 2〉 = C(t), (7.1.4)

with C(t) being the correlation function, which is related to the real part of the

bath autocorrelation function in Eq. (2.2.11) as C(t) = ReL(t) [212]. Because the

solvation function Ssolv(t) is directly observable (e.g., by time-dependent fluorescence

Stokes shift measurements), the spectral density function can be obtained by Fourier

transform of the experimental data using Eq. (7.4.2).
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Another alternative to obtain J(ω) is to use the properties of the solvent directly.

These enter through the frequency and wave vector-dependent complex dielectric

constant, ε(k, ω) = ε′(k, ω) − iε′′(k, ω), with ε′(k, ω) and ε′′(k, ω) representing the

dispersive and dissipative couplings of the electric field to its electric displacement,

respectively. The inverse Laplace transform of the solvation function, defined as

L−1
p [Ssolv(t)] ≡

∫∞

0
dte−iωtSsolv(t), is a function of the susceptibility χ [ε(k, ω)], which

is a function of the complex dielectric response, according to [210, 211]

L−1
p [Ssolv(t)] =

∫ ∞

0

d3k
χ [ε(k, 0)]− χ [ε(k, ω)]

iω (χ [ε(k, 0)]− χ [ε(k,∞)])
. (7.1.5)

Thus, if ε(k, ω) is known through experiment (e.g., far-infrared absorption and mi-

crowave dielectric dispersion data) or theory (e.g., classical molecular dynamics sim-

ulations), the spectral density can be obtained directly. Explicit details are given

in Refs. [210, 211]. Using a macroscopic model of solvation where the solvent is

assumed to be a dielectric continuum, like in the simple dielectric continuum model,

only the ε(k = 0, ω) component is used, and therefore, the integration over phase

space in Eq. (7.1.5) is not necessary. Microscopic details can be incorporated by

treating the solvent as a hard sphere fluid, as in the dynamical mean spherical ap-

proximation [211]. Notice that the spectral density function defined in Eq. (2.2.9)

is intrinsically temperature independent, but the experimentally determined spec-

tral densities from solvation dynamics data are temperature-dependent because, for

example, the dielectric constant change with temperature.

The spectral density function can also be determined by using spectral infor-

mation as provided by temperature-dependent fluorescence line-narrowing (FLN)

measurements. The use of the fluorescence spectrum rather than the absorption one

is due to the fact that the static disorder in the absorption spectrum introduced

by the protein and solvent environment overwhelms other details of that spectrum

[216]. FLN measurements allow one to extract the one-phonon-vibration profile,

which can be treated as a distribution of modes, including phonons and vibrations

[213]. Specifically, it contains one-bulk-phonon (observed as the background) and

one-vibration (observed as spikes at specific vibrational frequencies) contributions

[162]. The extracted vibrational frequencies and their corresponding Franck-Condon

factors for the excited to ground state transitions of the FMO complex are listed

in Table 7.1. For one-vibration transitions, the Franck-Condon factor FCi is equal

to Si exp(−Si), with Si being the Huang-Rhys factor. Si characterizes the strength

of the exciton–vibration coupling and is related to the displacement between the

minimum energy positions of harmonic vibrational potentials associated with the

ground and excited electronic states [29]. If Si < 0.1, FCi can be well approximated

by Si [162].
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ω [cm−1] FC factor ω [cm−1] FC factor ω [cm−1] FC factor

36 0.01 365 0.002 747 0.002

70 0.01 381 0.002 759 0.002

117 0.0055 479 0.001 768 0.004

173 0.008 541 0.001 777 0.0015

185 0.008 565 0.002 819 0.002

195 0.011 580 0.001 859 0.0025

237 0.005 635 0.003 896 0.002

260 0.0025 714 0.002 1158 0.004

284 0.005 723 0.003 1176 0.003

327 0.0015 730 0.001 1216 0.002

Table 7.1: Vibrational frequencies and Franck-Condon factors of the FMO complex

determined from FLN measurements by Wendling et al. [162].

Different environmental spectral densities of the FMO complex result from dif-

ferent approaches. Aghtar et al. [165] (see Sec. 7.4) have obtained a spectral density

from molecular dynamics simulations of the FMO complex in specific solvent envi-

ronments. Adolphs and Renger [207] as well as Kreisbeck and Kramer [214, 215]

extract a spectral density from the experimental results of Wendling et al. [162], but

eventually obtain different functions. Adolphs and Renger (see Sec. 7.2) describe the

phonon background based on data available for the B777-complexes [216] and add a

single intramolecular vibrational mode in form of a δ-peak, which is believed to be

the most relevant mode. In contrast, Kreisbeck and Kramer (see Sec. 7.3) are forced

to parametrize the spectral density function as a sum of shifted Drude-Lorentz peaks,

corresponding to the vibrational contribution of the one-phonon-vibration profile,

due to the hierachy equation of motion approach used to determine the dynamics.

7.2 Spectral density of Adolphs and Renger

Adolphs and Renger [207] give a closed expression for the spectral density based

on two contributions: (i) a broad continuous low-frequency part S0g0(ω), which

originates in the phonon-like protein vibrations and contributes with the Huang-

Rhys factor S0, and (ii) a single effective vibrational mode SHδ(ω − ωH) of the

pigments with Huang-Rhys factor SH . The total spectral density is wrtten as

J(ω) = ω2S0g0(ω) + ω2SHδ(ω − ωH). (7.2.1)

If one assumes that the local modulation of pigment transition energies by the
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protein environment is a global quantity that does not differ much between the

specific environment of the pigments [207], the low-frequency function g0(ω) has

the same form as the spectral density that was originally extracted from 1.6 K

FLN spectra of B777-complexes measured at different excitation wavelengths [216].

These complexes consist of an α-helix and a BChl molecule, which makes them

model systems for all larger complexes containing BChls, like the FMO complex.

Roughly speaking, the FLN spectrum contains a resonant fluorescence band at the

excitation wavelength and a vibrational sideband. At low temperature, the shape of

the vibrational sideband is the same as the shape of the spectral density g0(ω) [216].

In the case of the B777-complex, the shape of the sideband in the FLN spectrum

excited in the low-energy wing of the absorption spectrum was used as a first guess

for the spectral density. It was parametrized by the empirical functional form [216]

g0(ω) =
∑

i=1,2 sikiω
qe−(ω/ωi)

p

, with normalization factors si, ωi, p, and q, ki, and

the overall Huang-Rhys factor given by S = s1 + s2. Excitation at higher energies

leads to a broadening of the sideband, which can be used to estimate S, since its

weight is determined by S [216]. The fit at the different excitation wavelengths gives

the explicit form

g0(ω) =
(

6.105× 10−5
) ω3

ω4
1

exp

[

−
√

ω

ω1

]

+
(

3.8156× 10−5
) ω3

ω4
2

exp

[

−
√

ω

ω2

]

,

with ω1 = 0.575 cm−1 and ω2 = 2 cm−1. The Huang-Rhys factor of the protein-

pigment coupling was estimated to be S0 ∼ 0.5 and yields a satisfactory agreement

with the experimental data.

In addition, Adolphs and Renger have included an effective single vibrational

mode of the pigments at frequency ωH = 180 cm−1 with the Huang-Rhys factor

SH = 0.22 [207]. Wendling et al. [162], however, have identified up to 30 vibrational

modes in their experimental data (see Table 7.1). Out of this, Adolphs and Renger

constructed the effective Huang-Rhys factor SH of a single vibrational mode at ωH

by including all high-frequency vibrational modes in the effective single mode. The

value of SH = 0.22 given by Adolphs and Renger appears to be somewhat large,

which is due to the effective description [207]. In more detail, the effective mode

at 180 cm−1 in fact consists of three strongly overlapping vibrational modes at 173,

185, and 195 cm−1 (bold numbers in Table 7.1). Following Wendling et al. [162], it

is possible to combine the weight of these three modes to an effective Huang-Rhys

factor of SH = 0.027. Likewise, in a related work on the vibronic fine structure of the

light-harvesting complex II of green plants [161], up to 48 vibrational modes were

found with considerably smaller Huang-Rhys factors. Hence, for the single effective

vibrational mode constructed by Adolphs and Renger [207], all spectral weight is
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concentrated at this mode while, in a more detailed picture, the spectral weight is

spread over many channels.

The Huang-Rhys factor SH defines the coupling strength of a vibrational mode

at frequency ωH to the j-th excited site by κ(j) = ωH

√
SH . This is the coupling

parameter in the Hamiltonian Hexc-vib = κ(j)|j〉〈j|(a† + a) for the coupling of the

excited site j to the vibrational mode with bosonic creation and annihilation opera-

tors a† and a. The Huang-Rhys factors SH = 0.22 (from Adolphs and Renger [207])

and SH = 0.027 (from Wendling et al. [162], bold numbers in Table 7.1), result

in an exciton–vibrational mode coupling strengths of 84 and 30 cm−1, respectively.

Comparing these results to the site couplings of the FMO complex given in Eq.

(7.1.1), these two values can be considered as being in the strong and intermediate

coupling regime, respectively. Nevertheless, only small quantitative differences arise

in the resulting dynamics for these two regimes (see Sec. 8.1 and Chap. 9).

Under realistic physiological conditions, the δ-peak in Eq. (7.2.1) should be

broadened since the protein is embedded in water, which, as a polar solvent, gives

rise to an additional weak Ohmic damping of the protein vibrations [43]. It is

assumed that the broadening has a Lorentzian line shape with width γ in the form

ω2SHδ(ω − ωH) → SHω
2
Hγ

ω2

(ω2 − ω2
H)

2 + (γω)2
. (7.2.2)

This specific form of the peak ensures that the Huang-Rhys factor SH is kept con-

stant when varying the width γ. The resulting spectral density function of Eq.

(7.2.1) is shown in Fig. 7.1 for several widths γ.

The influence of vibrational modes on the system dynamics is relevant only when

their energies are comparable to the energy difference between the exciton states

[44]. The exciton states |Φr〉 of the FMO complex are obtained by diagonalizing Eq.

(7.1.1), such that |Φr〉 =
∑7

j=1 br,j|j〉. The squares of the eigenvector elements of the

seven exciton states |br,j|2 are tabulated in Table 7.2 and schematically shown in Fig.

7.2. These results indicate that the lowest-energy exciton 1 is almost completely

localized at BChl 3, which is in agreement with this site being the energy sink toward

the reaction center. The excitons 3 and 6 are mainly localized on BChls 1 and 2,

which are the most strongly coupled sites in the Adolphs-Renger FMO Hamiltonian

[Eq. (7.1.1)]. In contrast, the excitons 5 and 7 are mainly localized on BChls 5 and

6. This is the second most strongly coupled BChl pair. From the results in Table

7.2, the energy difference between excitons 3 and 6 and between excitons 5 and 7

is 190.8 and 211.0 cm−1, respectively. Due to the orientation of BChls 1 and 6, it

is expected that these specific excitons play a relevant role on the excitation energy

transfer dynamics, in particular, since their energy differences are close to that of

the localized vibrational mode at 180 cm−1.
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Figure 7.1: Spectral density function of Adolphs and Renger [Eq. (7.2.1)] for differ-

ent Lorentzian peak widths γ centered at ωH = 180 cm−1.

Exc. BChl 1 BChl 2 BChl 3 BChl 4 BChl 5 BChl 6 BChl 7 Energy

1 0.00 (-)0.01 0.83 0.15 0.01 0.00 0.00 0.0

2 0.01 0.00 (-)0.14 0.59 0.11 (-)0.01 0.14 123.7

3 0.69 0.27 0.01 0.00 (-)0.01 0.00 0.00 209.9

4 0.00 (-)0.01 0.00 (-)0.03 (-)0.26 0.00 0.70 286.1

5 0.00 0.01 0.01 (-)0.20 0.43 (-)0.22 0.12 301.6

6 0.29 (-)0.67 0.00 (-)0.01 0.02 0.00 0.00 400.7

7 0.01 (-)0.01 0.00 0.02 (-)0.16 (-)0.76 (-)0.03 512.6

Table 7.2: Square of the eigenvector elements |br,j|2 of the FMO Hamiltonian [Eq.

(7.1.1)] in the exciton representation with exciton numeration in ascending energy

order. Energy is given in units of cm−1. The negative sign (-) indicates that the

corresponding eigenvector element is negative and the bold numbers indicate the

dominant site contribution to the excitonic state.

If the ωH value of the Lorentzian peak in Eq. (7.2.2) is equal to the energy differ-

ence between an exciton pair, it corresponds to the effective single vibrational mode

being resonant with the transition energy between the involved excitons. When

ωH = 190.8 cm−1 or when ωH = 211.0 cm−1, the effective vibrational mode is in

resonance with the energy difference between excitons 3 and 6 and between excitons
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Figure 7.2: Structural arrangement of the seven BChl molecules (blue numbers) in

the FMO complex of Chl. tepidum [193] superposed with a schematic representation

of the delocalization patterns of the different excitons |Φr〉 (colored shading, italic

black numbers). The exciton numeration is in ascending energy order. The two

main excitation transfer routes are indicated by the green and black thin arrows.

Entrance and exit sites are indicated by blue and red thick arrows, respectively.

5 and 7, respectively. The resulting spectral density functions are shown in Fig.

7.3, together with the case where no localized vibration exist. The excitation energy

transfer dynamics of the FMO complex for all these cases is examined in Chap. 8.

7.3 Spectral density of Kreisbeck and Kramer

The vibronic component of the experimentally determined fluctuational spectrum of

the FMO complex [162] was parametrized by Kreisbeck and Kramer [214, 215] using

the Meier-Tannor decomposition [217]. The latter represents a general spectral den-

sity function as a sum of shifted Drude-Lorentz peaks. The resulting environmental
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Figure 7.3: Spectral density function of Adolphs and Renger [Eq. (7.2.1)] with no

localized vibrational mode (solid black line) and for ωH in resonance with excitonic

energy differences: ωH = 190.8 cm−1 (dashed red line) and ωH = 211.0 cm−1 (dash-

dotted blue line). γ = 1 cm−1 in both cases.

spectral density for the FMO complex has the form

Jn(ω) =
n

∑

k=1

[

νkλkω

ν2k + (ω + Ωk)
2 +

νkλkω

ν2k + (ω − Ωk)
2

]

. (7.3.1)

Figure 7.4 shows the spectral density function in Eq. (7.3.1) with the corresponding

parameters listed in Table 7.3. The experimental spectral density is well approx-

imated by the sum of 11 shifted Drude-Lorentz peaks [n = 11 in Eq. (7.3.1)],

reproducing the low-frequency portion and taking into account all the strongly cou-

pled vibronic modes. They are visible as peaks in the spectral density function.

An alternative parametrization with only three peaks [n = 3 in Eq. (7.3.1)] is also

given.

7.4 Spectral density of Aghtar et al.

The spectral density function for the FMO complex has been calculated from molec-

ular dynamics simulations by Aghtar et al. [165]. Their procedure [218], which has

been also used to calculate the spectral density function of the light-harvesting II
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Figure 7.4: Spectral density function of Kreisbeck and Kramer for the FMO complex

in form of a sum of shifted Drude-Lorentz peaks [Eq. (7.3.1)] with the parameters

listed in Table 7.3.

3-peaks Ωk 85 170 300

ν−1
k 250 120 65

λk 10 15 13

11-peaks Ωk 53 73 117 185 235 260 285 327 363 380 480

ν−1
k 1600 550 400 370 750 800 750 600 750 750 500

λk 1.2 6.4 7.4 15.6 3.4 1.8 4 2 1.8 1.9 2

Table 7.3: Parameters of the spectral density function [Eq. (7.3.1)] derived by

Kreisbeck and Kramer [214]. Ωk and λk are given in units of cm−1 and ν−1
k is given

in units of femtoseconds.

complex [164], consists in ground state energy minimizations at different temper-

atures and normal pressure, i.e., molecular dynamics simulations. The effects of

thermal fluctuations on the energy transfer dynamics and optical properties are ac-

counted for by quantum chemistry calculations of the excitation energies and the

electronic couplings along the molecular dynamics trajectories. For this, they use

Zerner’s intermediate neglect of differential overlap method with parameters for

spectroscopic properties together with the configuration interaction scheme using

single excitations only (ZINDO/S-CIS) [219]. Specifically, as the nuclear degrees
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of freedom of the bath [modeled as the classical coordinates qclk (t)] fluctuate about

their equilibrium configuration, the energy gap between the BChl i ground and first

excited state fluctuates about its average value (i.e., its site energy Ei) as the func-

tion Ei +
∑

k c
(i)
k q

cl
i,k(t), with c

(i)
k being the strength of the system-bath coupling in

Eq. (2.2.1). The correlation function Ci(t) of the BChl i energy gap fluctuations

about its equilibrium average at temperature T is then [5]

Ci(t) =
∑

k

|c(i)k |2〈qcli,k(t)qcli,k(0)〉kBT , (7.4.1)

which is related to the real part of the bath autocorrelation function in Eq. (2.2.11)

as Ci(t) = ReLi(t) [212]. This allows one to obtain the spectral density function

Ji(ω) of site i through

Ji(ω) =
2

π~
tanh

(

~ω

2kBT

)∫ ∞

0

dtCi(t) cos (ωt) . (7.4.2)

It describes the frequency-dependent coupling of BChl i to the thermal environ-

ment [165]. Molecular dynamics simulations allow one to include the microscopic

description of the solvent environment used in the experimental measurements of

the FMO complex [179, 181]. Here, two specific cases are considered: water as a

solvent at 300 K and a glycerol:water 65:35 mixture as a solvent at 310 K. The

resulting site-dependent spectral density functions Ji(ω) are shown in Fig. 7.5.

7.5 Discussion

In spite of the specific details of the different spectral densities in Eqs. (7.2.1),

(7.3.1), and (7.4.2), all of them include peaks associated with particular vibrational

modes of the pigment-protein-solvent environment. The spectral density functions

derived by Adolphs and Renger [207] (Sec. 7.2) and by Kreisbeck and Kramer

(Sec. 7.3) are based on experimental data and can be considered as more accurate.

However, they differ in how the vibrational modes are treated and therefore obtain

different functions. The most simplified fluctuational spectrum is that obtained

by Adolphs and Renger because they construct a single effective vibrational mode

carrying all spectral weight, as specified by the large Huang-Rhys factor associated

with the effective mode. In contrast, experimental results indicate that the spectral

weight is spread over many channels (see Table 7.1). Kreisbeck and Kramer on the

other hand, use the experimentally determined vibronic component but the resulting

spectral density function is parametrized as a sum of shifted Drude-Lorentz peaks.

Note that in both cases, the fluctuations at different BChl sites are assumed to be
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Figure 7.5: Site-dependent spectral density functions Ji(ω) of Aghtar et al. for the

FMO complex as determined from molecular dynamics simulations [165] with water

as a solvent at 300 K (solid black line) and with a glycerol:water 65:35 mixture as

a solvent at 310 K (dashed blue line). The low-frequency region is shown in the
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identical in their characteristics and specific details of the environment surrounding

a particular BChl site are neglected. These details, as well as those of the polar

solvent, are included in the fluctuational spectrum derived by Aghtar et al. (Sec.

7.4), which makes it more realistic. However, the amount of atoms involved requires

the use of ground-state molecular dynamics that includes approximations due to the

underlying force field [218].

In summary, the spectral density functions derived by Adolphs and Renger and

by Kreisbeck and Kramer allow one to evaluate the effect of a single and several

localized vibrational modes on the excitation energy transfer dynamics of the FMO

complex. The site-dependent spectral density functions derived by Aghtar et al.

allow one to evaluate the effect of the specific microscopic details of the polar en-

vironment. The resulting dynamics generated by all these models is presented in

Chap. 8. The fluctuational spectrum derived by Adolphs and Renger will be used
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in Chap. 9 to evaluate the influence of an underdamped vibrational mode on the

quantum coherent beatings and on the energy transfer speed through the FMO

complex.



CHAPTER 8

Dynamics in presence of equilibrium

vibrations

All spectral density functions of the FMO complex presented in Chap. 7 exhibit

a nontrivial structure with several peaks attributed to vibrational modes of the

pigment-protein complex. The fluctuational spectra derived by Adolphs and Renger

[207] [Eq. (7.2.1) and Figs. 7.1 and 7.3] and by Kreisbeck and Kramer [214] [Eq.

(7.3.1) and Fig. 7.4] include, respectively, a single and several localized vibrational

modes. On the other hand, the site-dependent fluctuational spectra derived by

Aghtar et al. [165] [Eq. (7.4.2) and Fig. 7.5] include the specific microscopic details

of the polar environment. All of them are compared in Fig. 8.1 for BChl 1. It is clear

that the fluctuational spectra derived by Aghtar et al. exhibit the largest spectral

weight at low frequencies, while the opposite applies for the fluctuational spectra

derived by Kreisbeck and Kramer. This indicates that the dynamics in the Aghtar

et al. model exhibits the shortest coherence times (Sec. 8.3), while the dynamics in

the Kreisbeck and Kramer model shows the longest coherence times (see Sec. 8.2).

The dynamics generated by the spectral density of Adolphs and Renger (see Sec.

8.1) exhibits coherence times that are in between these extreme cases.

In this chapter, the vibrational modes of the pigment-protein complex are ex-

plicitly included as part of the environment. It is important to note that, within

the open system approach used here, the environment is assumed to be in thermal

equilibrium, thus allowing to investigate the influence of quantum and thermal equi-

85
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Figure 8.1: Spectral density functions J1(ω) in Eqs. (7.2.1), (7.3.1), and (7.4.2) for

BChl 1. Ths inset shows the low-frequency region.

librium fluctuations on the system. By including specific vibrational modes with a

substantial coupling to the system into the environmental spectrum one assumes,

consequently, that the thermalization time scale of these modes is much shorter

than any system time scale. This does not exclude non-Markovian dynamics of the

system but only nonequilibrium fluctuations of the vibrational modes.

The real-time excitation energy transfer dynamics of the FMO complex for the

different models presented in Chap. 7 is examined by using the iterative QUAPI

scheme presented in Sec. 2.2.1. Here, the extended scheme [37], in which each BChl

site interacts with a separate environment, is used (see Sec. 2.2.2). Two typical ex-

perimental values for the temperature T are considered: cryogenic temperature (77

K) and physiological temperature (300 K). The two initial preparations ρ11(0) = 1

and ρ66(0) = 1, corresponding to the initially excited BChls 1 and 6, are evalu-

ated. Considering these initial conditions and the coupling among BChls given in

Eq. (7.1.1), as well as the delocalization of the exciton wavefunctions indicated

in Table 7.2, two main excitation energy transfer routes emerge [178], which in

site representation are 1→2→3 and 6→(5/7)→4→3. They are schematically indi-

cated in Fig. 7.2 by the green and black thin arrows, respectively. The resulting

dynamics is reported in terms of the time-dependent site occupation probabilities

ρjj(t) = 〈j|ρ(t)|j〉, where coherent oscillations in the population of the chromophores

are signatures of coherent energy transfer.



8.1. Population dynamics in the Adolphs-Renger model 87

8.1 Population dynamics in the Adolphs-Renger

model

Here, the exciton dynamics in the FMO complex for the spectral density function

derived by Adolphs and Renger [207] [Eq. (7.2.1)] is simulated. A Huang-Rhys

factor of SH = 0.22 is considered, i.e., results are presented for the strong exciton–

vibrational coupling regime. In this regime, coherence times are expected to be

shorter, and therefore represent a lower bound. The influence of the spectral position

ωH and width γ of the Lorentzian peak in Eq. (7.2.2) on the quantum coherent

dynamics is evaluated systematically.

The time-dependent pigment occupation probabilities ρjj(t) when the localized

vibrational mode is centered at ωH = 180 cm−1 with width γ = 1 cm−1 are shown

in Fig. 8.2. Identical results have been obtained for smaller (up to 0.01 cm−1)
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Figure 8.2: Time-dependent occupation probabilities of all seven FMO sites for

T = 300 (left) and 77 K (right) with ρ11(0) = 1 (top) and ρ66(0) = 1 (bottom)

for the spectral density function derived by Adolphs and Renger [Eq. (7.2.1)] with

ωH = 180 cm−1 and γ = 1 cm−1.

and for larger (up to 30 cm−1) peak widths, as exemplified in Fig. 8.3 for BChl 1,

which indicates almost no dependence on the width of the Lorentzian peak. This

can be explained by observing that in the present case, the continuous background

spectrum g0(ω) is rather large (see Figs. 7.1 and 7.3), which broadens the exciton
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transitions leading to a weak dependence on the width γ of the Lorentzian peak.
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Figure 8.3: Peak width dependence of the population of BChl 1 for ρ11(0) = 1 at 300

K (top) and at 77 K (bottom) for the spectral density function derived by Adolphs

and Renger [Eq. (7.2.1)] with ωH = 180 cm−1.

The results show that for ρ66(0) = 1, coherent oscillations are suppressed even

at cryogenic temperature, while for ρ11(0) = 1 they survive for up to 250 fs at room

temperature and for up to about 500 fs at cryogenic temperature. As expected,

coherent oscillations are supported longer for ρ11(0) = 1 due to the strong electronic

coupling between sites 1 and 2 as compared to that between sites 5 and 6 or 6 and

7 when ρ66(0) = 1. It is interesting to note in Fig. 8.2 that the population of BChl

3 grows faster for ρ66(0) = 1 than for ρ11(0) = 1. Because this site is connected

to the reaction center (RC), an increased population of this site means a higher

transfer efficiency toward the RC and therefore an overall enhanced efficiency in

the excitation energy transfer of the FMO complex. The results indicate that the

faster energy transfer route is 6→(5/7)→4→3. This route has been indentified by

Adolphs and Renger [207] as the fast subpicosecond transfer branch as compared

to the relatively slow picosecond transfer branch of excitons, which involves BChls

1 and 2. This faster energy transfer route however, does not necessarily lead to
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sustained coherent oscillations in the population dynamics.

Recently, it has been shown that the 180 cm−1 mode drives strong long-lasting

coherent oscillations in an effective (two sites) FMO model [187]. There, a multi-

frequency beating and a revival dynamics in the coherences ρij(t) have been observed

and interpreted as an indicator of mode-driven coherence. In Fig. 8.4 are shown

the time-dependent pigment coherences ρij(t) of the FMO complex with the local-

ized vibrational mode centered at ωH = 180 cm−1 with width γ = 1 cm−1. These

coherences are evaluated along the two main excitation energy transfer pathways

indicated in Fig. 7.2. Similar to the site populations, the coherences decay faster at

higher temperatures. Identical results for the coherences have been obtained for a

wide range of γ values (not shown). In any case, sustained coherent oscillations are

not observed in this full FMO model, neither in the real part nor in the imaginary

part of the coherences. Rather, their decay times are similar to those of the popula-

tions and therefore, the same observations made before about the coherence times

remain valid. These results indicate that the width of the localized vibrational mode

at 180 cm−1 at thermal equilibrium does not modify substantially the dynamics of

the FMO complex.

In order to evaluate the effect of the localized vibrational mode in resonance with

exciton energy differences, in Fig. 8.5 are shown the populations and coherences of

the FMO complex when ωH = 190.8 and γ = 0.01 cm−1 and when ωH = 211.0 cm−1

and γ = 29 cm−1. The width of 29 cm−1 has been found for the lowest energy peak

of protein vibrations in the the light-harvesting II complex [164]. The evaluated

ωH values correspond to the localized vibrational mode exactly in resonance with

the energy difference between excitons 3 and 6 (190.8 cm−1) and between excitons

5 and 7 (211.0 cm−1). It is observed that the behavior of the populations and the

coherences is similar for these two ωH values, and also similar to that obtained when

the vibrational mode is centered at ωH = 180 cm−1 (compare with Figs. 8.2 and 8.4).

Identical results are obtained for a wide range of γ values, as shown in Fig. 8.6 for

the population of BChl 1, with only minor changes in the transient behavior of the

populations (with respect to those in Fig. 8.3) and coherences due to the different

spectral weight of the Lorentzian peak for different peak widths (see Fig. 7.1). These

results confirm that the width of the vibrational mode at thermal equilibrium does

not have any noticeable influence on the populations or the coherences of the FMO

complex, even when it is in resonance with exciton transitions.

Results for the pigment occupation probabilities ρjj(t) and coherences ρij(t) in

the absence of any localized vibrational mode are shown in Figs. 8.7 and 8.8, respec-

tively. Here, qualitative and quantitative differences are observed. In particular, the

absence of the localized mode leads to a lower weight of the spectral density func-
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Figure 8.4: Coherences (real part in the left column and imaginary part in the right

column) between FMO sites at 300 K (top set) and at 77 K (bottom set) with

ρ11(0) = 1 (upper row) and ρ66(0) = 1 (lower row) for the spectral density function

derived by Adolphs and Renger [Eq. (7.2.1)] with ωH = 180 cm−1 and γ = 1 cm−1.

tion (black solid line in Fig. 7.3) and therefore sustained coherent oscillations result.

These survive for up to 400 fs at room temperature and for up to about 700 fs at

cryogenic temperature for ρ11(0) = 1. For the initial preparation ρ66(0) = 1, co-

herent oscillations survive for up to 500 fs at cryogenic temperature, but are still
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Figure 8.5: Time-dependent occupation probabilities (top sets) and coherences (bot-

tom sets) for the spectral density function derived by Adolphs and Renger [Eq.

(7.2.1)] with ωH = 190.8 cm−1 and γ = 0.01 cm−1 (left set) and with ωH = 211.0

cm−1 and γ = 29 cm−1 (right set). Coherences are shown at 300 K when ωH = 190.8

cm−1 (lower set left) and at 77 K when ωH = 211.0 cm−1 (lower set right).

suppressed at room temperature. The most important effect due to the lack of the

localized mode is the overall reduced efficiency in the excitation energy transfer of

the FMO complex, regardless of the sustained coherent oscillations in the popula-

tions. This can be understood by observing the smaller final population of BChl 3

in Fig. 8.7, as compared, for example, to Fig. 8.2. The reduced population of this

site means a lower transfer efficiency toward the reaction center.

The effect on the site populations of the smaller Huang-Rhys factor SH = 0.027,

corresponding to an intermediate exciton–vibrational coupling regime, is presented

in Fig. 8.9 for ωH = 180 cm−1 and γ = 1 cm−1. As expected, longer coherence

times are observed as compared to the results in Fig. 8.2, in particular for cryogenic

temperature. This sustained coherence results from the smaller exciton–vibrational

coupling, i.e., the weaker coupling with the environmental mode, which therefore,
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Figure 8.6: Time-dependent occupation probability of BChl 1 when ωH = 190.8

cm−1 at 300 K (top) and when ωH = 211.0 cm−1 at 77 K (bottom) for ρ11(0) = 1.

causes weaker dissipation. Again, longer coherence times do not necessarily lead to

higher transfer efficiency, as concluded from comparing the final population of BChl

3 in Figs. 8.2 and 8.9.

In order to evaluate the effect of the spectral weight of the continuous background

spectrum g0(ω) on the transfer dynamics, the localized vibrational mode in the

spectral density in Eq. (7.2.1) is neglected. The resulting spectral function is written

as J̃(ω) = ςω2S0g0(ω), with a prefactor ς in front of g0(ω). The resulting time-

dependent occupation probability of the BChl 1 molecular site is shown in Fig.

8.10. The sustained coherence at smaller ς values confirms that the large continuous

background spectrum g0(ω) is responsible for the negligible dependence on the width

γ of the Lorentzian peak observed in Figs. 8.3 and 8.6.

The importance of the results in this section relies on the fact that the character-

istics of a localized vibrational mode, i.e., its width and spectral position, does not

influence substantially the coherence times. However, its presence seems to enhance

the exciton transfer efficiency toward the RC. This effect is quantified in Chap. 9

when considering the explicit nonequilibrium dynamics of the localized modes.
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Figure 8.7: Same as Fig. 8.2 in the absence of any localized vibrational mode.
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Figure 8.8: Same as Fig. 8.4 in the absence of any localized vibrational mode. Data

for T = 300 K are shown in the left set and for T = 77 K in the right set.

8.2 Population dynamics in the Kreisbeck-Kramer

model

The site occupation probabilities ρjj(t) of the FMO complex are presented in Fig.

8.11 for the spectral density function derived by Kreisbeck and Kramer [214]. These

correspond to the two parametrizations including n = 3 and n = 11 shifted Drude-

Lorentz peaks in Eq. (7.3.1) (see Fig. 7.4). In this model, both parametrizations
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Figure 8.9: Same as Fig. 8.2 in the intermediate exciton–vibrational coupling regime

for which SH = 0.027.
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Figure 8.10: Population of the BChl 1 at T = 300 K in the absence of any localized

vibrational mode as a function of the prefactor ς in the continuous background

spectrum g0(ω) of the spectral density derived by Adolphs and Renger.

exhibit longer coherence times, as compared to those obtained using the Adolphs-

Renger model (Sec. 8.1), due to the lower spectral weight at low frequencies (see

Fig. 8.1). For n = 3 and for the initial preparation ρ11(0) = 1, sustained coherent

oscillations up to 300 fs at 300 K and up to 800 fs at 77 K are observed. Rather

shorter coherence times are obtained for ρ66(0) = 1. The even shorter coherence

times for n = 11 can be attributed to the faster increase of the spectral weight at
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Figure 8.11: Same as Fig. 8.2 for the spectral density function derived by Kreisbeck

and Kramer [Eq. (7.3.1)] with n = 3 (upper set) and with n = 11 (lower set).

low frequencies as compared with the case when n = 3 (see Fig. 7.4). For both

parametrizations, the coherences ρij(t) shown in Fig. 8.12 do not exhibit any long

time sustained oscillations.

The most important result is the enhanced exciton transfer efficiency toward the

RC due to the explicit inclusion of vibronic modes. This is evidenced by the larger

final population of BChl 3 when n = 11 (lower set in Fig. 8.11), as compared to
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Figure 8.12: Site coherences at 300 K (upper set) and at 77 K (lower set) for the

spectral density function derived by Kreisbeck and Kramer [Eq. (7.3.1)] with n = 3

(left set) and with n = 11 (right set).

that when n = 3 (upper set). By comparing these two parametrizations, one can

also observe that a higher transfer efficiency does not necessarily lead to sustained

coherent oscillations in the population dynamics, as found in the previous section.

These results allow one to conclude that the presence of localized vibrational modes

might have a relevant physiological role in maximizing the exciton transfer efficiency

toward the RC. Sustained coherent oscillations, however, seem to play no role at all.

8.3 Population dynamics in the Aghtar et al.

model

The site populations and coherences of the FMO complex are presented in Figs.

8.13 and 8.14. These correspond to the exciton dynamics resulting from the site-

dependent spectral density functions derived by Aghtar et al. [165] [Eq. (7.4.2)]
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Figure 8.13: Site populations (upper set) and coherences (lower set) for the spectral

density function derived by Aghtar et al. [Eq. (7.4.2)] with water as a solvent at

300 K.

considering water as a solvent at 300 K and a glycerol:water 65:35 mixture as a

solvent at 310 K, respectively.

The results exhibit a quite overdamped dynamics as compared with those ob-

tained using the previous models (Secs. 8.1 and 8.2). This is due to the larger

spectral weight at low frequencies (see Fig. 8.1), which leads to shorter coherence

times. These are on the order of 400 fs for both cases. In spite of the different mi-
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Figure 8.14: Same as Fig. 8.13 with a glycerol:water 65:35 mixture as a solvent at

310 K.

croscopic details of both solvents, they generate a polar environment that induces a

rather similar dynamical behavior of the FMO complex. This allows one to conclude

that the microscopic details of the polar environment do not have any appreciable

effect on the coherence times, neither on the exciton transfer efficiency toward the

reaction center.
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8.4 Concluding remarks

In this chapter, the excitation energy transfer dynamics of the FMO complex has

been investigated by using the numerically exact QUAPI scheme. The BChl system

is described according to experimental results and the fluctuating pigment-protein-

solvent environment is described by known spectral functions, which are obtained

either from experimental data or from molecular dynamics simulations (see Chap.

7). All spectral density functions exhibit a nontrivial structure with peaks attributed

to vibrational modes of the pigment-protein complex. They are explicitly included as

part of the environment and therefore, it is assumed that their thermalization time

scale is much shorter than any system time scale. The spectral density functions

derived by Adolphs and Renger [207], Eq. (7.2.1), and by Kreisbeck and Kramer

[214], Eq. (7.3.1), include, respectively, a single and several localized vibrational

modes. On the other hand, the site-dependent spectral density functions derived

by Aghtar et al. [165], Eq. (7.4.2), include the specific microscopic details of the

polar environment. The influence that these localized vibrational modes have on the

dynamics has been examined in detail. Results for possible non-Markovian effects

arising during the dynamical evolution generated by these models are presented in

Sec. 10.1.

The localized vibrational modes included in the spectral density functions de-

rived by Adolphs and Renger (Sec. 8.1) and by Kreisbeck and Kramer (Sec. 8.2)

generate qualitative and quantitative differences on the coherence times of the site

populations. More importantly, these two models indicate that the presence of

these vibrational modes enhance the final population of BChl 3, suggesting that

they might have a relevant physiological role in maximizing the exciton transfer

efficiency toward the reaction center. A higher transfer efficiency, however, does

not necessarily lead to sustained coherent oscillations in the population dynamics,

i.e., long-lasting coherences do not have a relevant physiological role. It was also

found that the faster energy transfer route is 6→(5/7)→4→3 as indicated by the

larger final population of BChl 3 when ρ66(0) = 1, as compared to the case when

ρ11(0) = 1. This route involves BChl 5, which is the best connected pigment as

evidenced by its significant contribution to four excitonic states (see bold numbers

in Table 7.2). These results are in agreement with those reported by Adolphs and

Renger [207], who have also identified this energy transfer route as the fast (sub-

picosecond) transfer branch. On the other hand, the specific microscopic details of

the polar environment, as specified in the site-dependent spectral density functions

derived by Aghtar et al. (Sec. 8.3), do not generate any appreciable effect on the

coherence times, neither on the exciton transfer efficiency.
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CHAPTER 9

Dynamics in presence of non-equilibrium

vibrations

The results in the previous chapter indicate that a higher transfer efficiency does

not necessarily lead to or has to rely on sustained coherent quantum oscillations

in the population dynamics. In all simulations there, the vibrational modes of the

pigment-protein complex were explicitly included as part of the environment. This

is assumed to be always in thermal equilibrium within the employed system-bath

approach. Thus, it is implicitly assumed that the time scale of thermalization of

the vibrational mode is much shorter than any system time scale. Alternatively, its

specific heat must be infinite, so that energy exchange with the system cannot drive

it out of equilibrium. Then, the discrete mode only provides thermal equilibrium

fluctuations around its thermal state. Those however, might be in general correlated

over time. Recent analyses [185, 187, 188, 189, 203] indicate that the observed long-

lasting coherent signals in the two-dimensional optical spectra of the FMO complex

[179, 181] result from a coupled exciton–vibrational mode system, with the modes

being underdamped, strongly coupled to the electronic transitions, and close to

resonance to energy differences between excitonic transitions. In this scenario, the

full nonadiabatic quantum dynamics of the vibrational mode has to be considered

and not only its thermal equilibrium fluctuations. Therefore, in this chapter the

vibrational modes are explicitly included as part of the system Hamiltonian and

thus their nonequilibrium quantum dynamics is described on an equal footing as

101
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the excitonic states. This allows one to address the fundamental questions of how

long the quantum coherent beatings survive and how they profit from an interaction

with underdamped vibrations in a realistic setting.

Because the vibrational modes are included as part of the system Hamiltonian,

only the spectral density function derived by Adolphs and Renger without any peak

is considered, i.e., only the first term in the right-hand-side of Eq. (7.2.1), plotted

as a black solid line in Fig. 7.3. Separating the mode from the environment to treat

it as part of the system results in a total Hamiltonian H = HFMO,vib +H ′
SB with

HFMO,vib = HFMO +
7

∑

j=1

[

|j〉〈j|κ(j)H qj,H +
1

2

(

p2j,H + ω2
j,Hq

2
j,H

)

]

, (9.0.1)

where H ′
SB is the system-bath part excluding the localized vibrational mode from

the environmental spectrum in Eq. (7.2.1). Notice that the summation in Eq.

(9.0.1) implies that one vibrational mode at each chromophore is considered, and

therefore, a total of seven vibrational modes is assumed. In order to obtain a

numerically tractable model, the Hilbert space of the seven vibrational modes is

restricted to include only a finite number of vibrational excitations, i.e., an effective

system Hamiltonian

HFMO,vib = HFMO +
7

∑

j=1

υj,max
∑

υj=0

υj~ωH |υj〉〈υj|

+
7

∑

j=1

|j〉〈j|
υj,max
∑

υj=1

λυj (|υj − 1〉〈νj|+ |υj〉〈υj − 1|) , (9.0.2)

with λυj =
√
υj~ωHSH . The requeriment of a finite number of vibrational excita-

tions, specified by υj,max, is due to the exponential growth of needed computer power

for QUAPI with increasing system size (as discussed in Sec. 2.2.1). The enlarged

basis set of the effective system Hamiltonian in Eq. (9.0.2) resulting from the inclu-

sion of vibrational excited states is writen as |j, υj〉 = |j〉 ⊗ |υj〉. Here, the j-th site

is in its electronic excited state |j〉 (with all other sites in their electronic ground

states, see Sec. 7.1) and in the vibrational state |υj〉. This vibrational state can be

the ground state |υj〉 = |g〉, the first excited state |υj〉 = |e1〉, and so on. States

where the exciton is at a different site than the vibrational excitation are omited,

thus, only states |j, υj , υi6=j = 0〉 are taken into account. In order to still allow energy

transfer between the different chromophore sites, dipolar couplings V(j,υj),(i,υi) = Vj,i
are assumed. Qualitatively similar results are obtained for V(j,υj),(i,υi) = 0 but not

further discussed.

In this chapter, the influence of the nonequilibrium vibrational modes on the

speed and thus efficiency of excitation energy transfer (EET) through the FMO
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complex toward the reaction center (RC) is quantitatively investigated. The RC is

modeled as an energy sink which is connected solely to BChl 3. Thus, another state

|RC〉 is included into the description. The transfer toward the RC is then treated

as a population decay on a purely phenomenological level by a constant decay rate

ΓRC = 1 ps−1 since the explicit details of the dumping process are not of interest.

Backtransfer from the RC to the FMO complex is then excluded. In turn, the rise

time of the population growth of the RC is taken as a measure for the efficiency of

the energy transfer through the complex.

Explicitly, the dynamics is treated within an effective master equation for the

total statistical operator ρ̂ for the FMO complex and its environment and the occu-

pation of the reaction center ρRC = |RC〉〈RC| according to

∂tρ̂ = − i

~
[H, ρ̂]− ΓRC

∑

υ3

|3, υ3〉〈3, υ3| (9.0.3)

∂tρRC = ΓRC

∑

υ3

|3, υ3〉〈3, υ3|. (9.0.4)

As in the previous chapter, simulations are carried out using the iterative QUAPI

scheme (Sec. 2.2.1) in its extended version [37] in which each BChl site interacts

with a separate environment (Sec. 2.2.2). These are assumed to be identical in

their characteristics, but spatially uncorrelated [43], and therefore, using the influ-

ence functional in Eq. (2.2.33). Results are presented for cryogenic (77 K) and

physiological (300 K) temperatures, as well as for the initial preparations ρ11(0) = 1

and ρ66(0) = 1 with the corresponding vibrational mode in the ground state. The

resulting exciton transfer dynamics in absence of any vibrational mode is provided

in Fig. 9.1 as a reference. These results correspond to the site populations in their

respective vibrational ground states |j, g〉 labeled as ρjj. It is observed that apart

from few oscillations of selected site populations at very short times, no long-lasting

coherent oscillations in the populations are found. The population of the RC ρRC

increases in a monotonous manner.

9.1 Effect of intermediate-frequency vibrational

modes

The numerically exact results for the quantum dynamics of the FMO complex in

presence of equilibrium vibrational modes presented in Chap. 8 and in Ref. [43]

indicate that the coherence times are considerably shorter than the experimentally

observed ones. Very strong underdamped high-frequency (> 750 cm−1) vibrations
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Figure 9.1: Time evolution of the FMO site populations and RC in absence of any

vibrational mode at T = 300 K (left column) and T = 77 K (right column) for the

initial preparations ρ11(0) = 1 (upper row) and ρ66(0) = 1 (lower row).

can also be ruled out as a possible origin of the experimentally observed long-lived

coherent beatings [44]. Recently, by explicitely including the vibrational mode at 180

cm−1 into the system’s nonadiabatic quantum dynamics, Christensson et al. [188]

found coherence times in line with experimental findings employing a Redfield ap-

proach to treat the environmental fluctuations. Chin et al. [187] observed the same

results employing a numerically exact treatment of an effective FMO model with

only two pigments. In this section, the vibrational mode at 180 cm−1 is explicitly

included as part of the full (seven sites FMO) system Hamiltonian.

9.1.1 EET dynamics in the intermediate coupling regime

Taking the results in Fig. 9.1 as a reference, the exciton dynamics when every

individual FMO site is coupled to its own vibrational mode is considered next.

All of them are assumed to have equal characteristics and a Huang-Rhys factor

of SH = 0.027 is chosen in this section, i.e., an intermediate exciton–vibrational

mode coupling regime. Because of the computational limitations imposed by the

implementation of the QUAPI method, only vibrational states resulting in diagonal

entries inHFMO,vib up to 450 cm−1 above the energy of site 3 are included. This leaves

sites 2, 5 and 6 without any vibrational excited state due to their high frequency,
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but includes the ground and first (and second for site 3) vibrational excited states

for the other sites, resulting in M = 12. Explicitly, the included states |j, υj〉 are

{|1, 0〉, |2, 0〉, |3, 0〉, |4, 0〉, |5, 0〉, |6, 0〉, |7, 0〉, |1, 1〉, |3, 1〉, |3, 2〉, |4, 1〉, |7, 1〉}.
Because the relevant vibrational modes which influence the system dynamics are

those with energies comparable to the energy difference between the exciton states

[44], the relevant FMO excitonic energy ranges (see Table 7.2) are covered by the

included vibrational states and therefore, the technical restriction of truncated num-

ber vibrational excited states has no severe implications. The results are shown in

Fig. 9.2, where ρvibj (ρ2vibj) denote the population of the electronically excited site

j in its first |j, e1〉 (second |j, e2〉) vibrational excited state. When compared with
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Figure 9.2: Same as in Fig. 9.1 but in presence of a vibrational mode at each

individual molecular site. Vibrational excited states with energies up to 450 cm−1

above the energy of site 3 are included. Results at T = 300 K are shown in the

first and second columns while those at T = 77 K are shown in the third and fourth

columns. Upper and lower rows show results for the initial preparations ρ11(0) = 1

and ρ66(0) = 1, respectively.

those in Fig. 9.1, they exhibit both prolonged oscillatory population dynamics with

increased coherence times and an increased transfer efficiency, as indicated by the
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faster rise of the population of the RC. The sustained coherences arise from a popu-

lation exchange between the vibrational ground state at site j and its corresponding

vibrational excited state(s). The dynamics of ρRC at 300 K is compared in Fig. 9.3

(left column) for the cases when vibrational excited states with energies up to 450

cm−1 are included (red thick line) and when there is no vibrational mode present

(black thick line).
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Figure 9.3: RC population ρRC at 300 K for several number of vibrational excited

states. Left column: dynamics in the intermediate exciton–vibrational mode cou-

pling regime. Right column: dynamics in the strong coupling regime. See text for

details.

The increased transfer efficiency can be quantified in terms of the time which is

required for the transfer of excitation energy through the FMO complex. A measure

for this is the rise time of the exponential growth of the RC population, henceforth

refered as ‘transfer time’. Adjusting the population of the RC to the expression

ρRC(t) = 1 − exp (−t/τEET), allows one to extract the transfer time τEET. The

results are summarized in Table 9.1. It is found that, when vibrational modes are

coupled to all individual sites separately, the transfer times decreases by about 25%.

The EET speed-up is slightly larger when the initial excitation starts at site 1 as

compared to the case when it starts at site 6, because the former case, which induces

EET through the slower route (green thin arrows in Fig. 7.2), is prone to exhibit

dynamical effects more strongly.
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Localized vibrational Initial FMO Transfer time Change

mode coupled to excitation at site [ps] by

NO vibration 1 3.84 –

6 3.39 –

all sites 1 2.87 -25.3 %

(up to 450 cm−1) 6 2.80 -17.4 %

site 1 1 4.12 + 7.3 %

6 3.62 + 6.8 %

site 2 1 3.97 + 3.4 %

6 3.53 + 4.1 %

site 3 1 2.68 -30.2 %

6 2.60 -23.3 %

site 6 1 3.95 + 2.9 %

6 3.51 + 3.5 %

Table 9.1: Excitation energy transfer times at 300 K without and with coupled

nonequilibrium vibrational modes. A negative change in the transfer time indicates

a EET speed-up, while a positive sign indicates a slower transfer as compared to

the case without vibrational states. Results are given for the Huang-Rhys factor

SH = 0.027.

To further elucidate by which more detailed mechanism the vibrations enhance

the coherence times and the transfer efficiency, the excitonic dynamics is evaluated

next when a single localized vibrational mode (υj,max = 1) is included only at selected

sites separately. In particular, three cases are considered, (i) when the vibrational

mode is coupled to the entrance sites 1 or 6, (ii) when it is coupled to the intermediate

site 2, and (iii) when it is coupled to the exit site 3. The corresponding results are

presented in Figs. 9.4, 9.5, and 9.6, respectively. The population of the RC at 300 K

for all cases are compared in Fig. 9.3 (left column) and the resulting energy transfer

times are given in Table 9.1.

When coupling a single vibrational mode to the entrance site 1, an enlarged

time window with oscillatory dynamics of the populations is observed in Fig. 9.4

(upper set) for both values of the temperature, as compared to the results without

any vibrational mode in Fig. 9.1. At longer times, they continue by an incoherent

decay. This effect is more pronounced when the site 1 is initially excited (upper set

upper row) as compared to an initial preparation in site 6 (upper set lower row).

In particular, the energy coherently oscillates between the sites 1 and 2 over several
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Figure 9.4: Time evolution of the populations of the FMO sites, the RC, and the

single vibrational mode coupled solely to the entrance site 1 (upper set) or to the

entrance site 6 (lower set).

hundreds of femtoseconds. A closer inspection of the dynamics reveals that the

oscillations in the populations indeed go back to coherent transitions between the

vibrational ground state (ρ11) and the vibrational first excited state ρvib1 at site 1.

Coherence times of over 1000 fs for T = 77 K and of about 400 fs for T = 300 K are

extracted, which agree with those reported in the experiments [179, 181]. However,
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Figure 9.5: Same as in Fig. 9.4, but with the single vibrational mode coupled solely

to the intermediate site 2.
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Figure 9.6: Same as in Fig. 9.4, but with the single vibrational mode coupled solely

to the exit site 3.

it is important to note that the associated energy transfer times have increased in

comparison with the case when vibrational modes are excluded, which is reflected
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by the positive change in the transfer time shown in Table 9.1.

Analogous observations apply when the vibrational mode is coupled to the en-

trance site 6 (lower set in Fig. 9.4). In this case coherent oscillations are sustained

longer when the site 6 is initially excited. From these results coherence times of

1000 fs for T = 77 K and of about 700 fs for T = 300 K are extracted. However, de-

spite the enhanced coherence times, the transfer efficiency decreases as seen in Table

9.1. The increase in the transfer times when the vibrational mode is coupled to the

entrance site 6 is nevertheless, smaller than in the case when the mode is coupled

to the entrance site 1 (in particular when ρ11(0) = 1). This is due to the fact that

the initial conditions ρ11(0) = 1 and ρ66(0) = 1 induce exciton transfer dynamics

through the slow 1 → 2 → 3 and fast 6 → (5/7) → 4 → 3 routes [178, 207], respec-

tively. Therefore, the mode coupled to site 6 will have reduced impact in the transfer

dynamics through the already faster route. These results prove that the coupling

of a nonequilibrium vibrational mode to an entrance site enhances coherence times,

but decreases the overall transfer efficiency.

The same observations apply when the vibrational mode is coupled to the in-

termediate site 2 (see Fig. 9.5). In this case also, oscillations in the populations

between the vibrational ground state and the vibrational first excited state at site

2 are observed. By this, the population is intermittently trapped in this site, and

therefore, the overall transfer efficiency is reduced, as shown in Table 9.1.

On the other hand, when the vibrational mode is coupled to the exit site 3 (see

Fig. 9.6), the coherence times are not enhanced as compared to the case without

any vibrational mode (Fig. 9.1). Instead, the site populations decay quickly. How-

ever, the population of the RC grows faster in this situation and, consequently, the

transfer efficiency is increased, as evidenced by the shorter transfer times in Table

9.1. This speed-up of the transfer efficiency can be directly rationalized in terms of

an additional transfer channel which is provided by the excited vibrational state at

site 3. This excited vibrational state is nearly resonant with neighbouring electronic

transitions and thus decreases the energy gap with the entrance sites. By this, it

adds an additional efficient pathway in form of a vibrational decay channel into the

RC. Accordingly, more states connected to the RC are available to become popu-

lated during the exciton transfer in the complex and, consequently, more states can

dump their energy into the RC in parallel. The population of the RC can then grow

faster, resulting in an overall increased transfer efficiency.

Altogether, the underdamped mode at 180 cm−1 enhances the efficiency of the

quantum excitation energy transfer and at the same time sustains prolongued quan-

tum coherent oscillations. Both are a result of the modes being underdamped, such

that they cannot thermalize on faster time scales compared to the electronic energy
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transfer dynamics. Beyond that, the speed-up of the energy transfer is rather in-

sensitive to the actual coherence lifetimes. To illustrate this, the FMO dynamics

with twice the spectral weight in the continuous background spectrum g0(ω), such

that the spectral density is written as J̃(ω) = 2ω2S0g0(ω), is shown in Fig. 9.7 for

the cases when no vibrational mode is included and when all vibrational excited

states with energies up to 450 cm−1 above the energy of site 3 are included. In

both cases the coherence times are reduced, with the transfer times at T = 300 K

in absence of any vibrational mode being 3.89 and 3.46 ps for the initially excited

sites 1 and 6, respectively. The corresponding transfer times when all vibrational

excited states with energies up to 450 cm−1 are included are 2.96 and 2.85 ps for

the initial preparations ρ11(0) = 1 and ρ66(0) = 1, respectively. They correspond to

a change in the transfer time by -23.9 % and -17.6 %, respectively, which only differ

by a few percent from those reported in Table 9.1 for the same conditions. This

indicates the robustness of the EET mechanism to the actual coherence lifetime of

the populations.

9.1.2 EET dynamics in the strong coupling regime

Here, the transfer efficiency for the case of the larger Huang-Rhys factor SH = 0.22

is determined, i.e., for the case of a strong exciton–vibrational mode coupling. The

excitonic dynamics in absence of any vibrational mode shown in Fig. 9.1 is taken

as the reference. Results for five cases with a different number of vibrational modes

are shown. (i) Figure 9.8 illustrates the dynamics including all vibrational excited

states with energies up to 450 cm−1 above the energy of site 3. (ii-v) Figure 9.9

shows results when only a single vibrational mode (υj,max = 1) is included. This

mode is coupled to (ii) the entrance site 1, (iii) the intermediate site 2, (iv) the exit

site 3, and (v) to the entrance site 6. These results should be compared to those in

the intermediate coupling regime shown in Fig. 9.2 for the case (i), in Fig. 9.4 for

the cases (ii) and (v), in Fig. 9.5 for the case (iii), and in Fig. 9.6 for the case (iv).

The dynamics of the RC is compared in Fig. 9.3 (right column) for all cases at 300

K and the corresponding transfer times are given in Table 9.2.

The same physical picture given in the previous section for the intermediate

coupling regime applies for this strong coupling regime, but small quantitative dif-

ferences arise. In particular, the overall efficiency is reduced, i.e., the speed-up of

the energy transfer is smaller as in the case of intermediate coupling when including

all vibrational excited states with energies up to 450 cm−1 and when including a

single vibrational mode coupled to the exit site 3. The opposite line of reasoning

holds when a single vibrational mode is coupled to the entrance sites 1 or 6 or to the
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Figure 9.7: FMO dynamics when no vibrational mode is included (left set) and when

all vibrational excited states with energies up to 450 cm−1 above the energy of site

3 are included (right set). In both cases, a spectral density function with twice the

spectral weight in the continuous background spectrum g0(ω) is used.
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Figure 9.8: Same as in Fig. 9.2 but with the Huang-Rhys factor SH = 0.22.

intermediate site 2, i.e., the transfer times are increased. This is due to the fact that

a stronger exciton–mode coupling leads to stronger intrasite beatings in the popula-

tion, i.e., longer coherent oscillations between the vibrational ground state and the

vibrational excited state(s). This localizes the population on the site coupled to the

vibrational mode for longer times and therefore, the overall efficiency is reduced.

The change in the transfer times, however, is only a few percent when comparing

the results in Table 9.2 with those in Table 9.1, even when the Huang-Rhys factors

in both regimes differ by one order of magnitude.

The localization of the population can be illustrated by considering a single

vibrational mode coupled to the entrance site 1. This site is strongly coupled elec-

tronically to site 2 and the transient dynamics of the populations depends on the

exciton–mode coupling regime. In the intermediate regime, intersite (site 1 vs site 2)

coupling is stronger than the intrasite (ground vs first excited vibrational states at

site 1) coupling, and therefore the population ρ22(t) rises faster than the population

of ρvib1(t) (see upper set in Fig. 9.4). Conversely, in the strong coupling regime,

the increase in the population of ρvib1(t) is faster than ρ22(t) (see top row in Fig.

9.9). The same competing behavior is observed between ρ55(t) and ρvib6(t) when the
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Figure 9.9: Time evolution of the populations of the FMO sites, the RC, and the

single vibrational mode coupled to the entrance site 1 (first row), the intermediate

site 2 (second row), the exit site 3 (third row), and to the entrance site 6 (last row).

Results at T = 300 K are shown in left column and at T = 77 K in the right column.

vibrational mode is coupled to the entrance site 6.

These results validate the conclusions drawn in the last section: an additional

underdamped vibrational mode at the exit site increases the transfer efficiency since

it provides additional channels for the parallel decay of the energy into the RC. In

contrast, additional underdamped vibrational states at other sites tend to decrease

the transfer efficiency since they provide additional states in which the energy is

intermittently stored and eventually dissipated via the vibrational channel. Hence,

only an efficiently connected exit site helps to improve the global transfer, while

additional states at the intermediate sites only lead to an inefficient spreading-out

of the energy into too many channels.
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Localized vibrational Initial FMO Transfer time Change

mode coupled to excitation at site [ps] by

NO vibration 1 3.84 –

6 3.39 –

all sites 1 3.18 -17.2 %

(up to 450 cm−1) 6 2.98 -12.1 %

site 1 1 4.46 +16.1 %

6 3.64 + 7.4 %

site 2 1 4.28 +11.5 %

6 3.58 + 5.6 %

site 3 1 2.83 -26.3 %

6 2.73 -19.5 %

site 6 1 4.00 + 4.2 %

6 3.53 + 4.1 %

Table 9.2: Same as in Table 9.1 with the dynamics calculated in the strong exciton–

mode coupling regime (SH = 0.22). Transfer times in absence of any vibrational

mode are included for comparison purposes.

9.1.3 EET dynamics including an equilibrium vibrational

mode

In order to further illustrate the robustness of the EET mechanism, in this section,

the FMO dynamics is evaluated by keeping the Lorentzian peak in the environmental

spectral density, i.e., the full spectral density function given in Eq. (7.2.1) with

ωH = 180 cm−1 and γ = 29 cm−1 is used (blue dash-dotted line in Fig. 7.1). The

resulting population dynamics of the RC at T = 300 K is shown in Fig. 9.10 and

the corresponding energy transfer times are given in Table 9.3. Results for smaller

values of γ are similar (not shown).

In general, it is found that though the absolute transfer times are different, the

overall transfer efficiencies change only by a few percent when compared with the

results in Tables 9.1 and 9.2. This clearly corroborates that the position or width

of an equilibrium vibrational mode has a negligible effect on the exciton transfer

dynamics, which for the FMO complex is already dominated by the large continuous

background, as discussed in Sec. 8.1.
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Figure 9.10: Same as in Fig. 9.3 but considering the full spectral density function

in Eq. (7.2.1) with ωH = 180 cm−1 and γ = 29 cm−1.

9.2 Effect of low-frequency vibrational modes

The experimental vibrational frequencies determined by Wendling et al. [162] from

temperature-dependent fluorescence line-narrowing measurements indicate two do-

minant low frequency modes at 36 and 70 cm−1 with large Huang-Rhys factors (italic

numbers in Table 7.1). In this section, these two modes are explicitly included as

part of the system Hamiltonian. Special emphasis is put on the effect of the number

N of vibrational excited states on the EET dynamics. The spectral density function

derived by Adolphs and Renger without any peak is used, i.e., J(ω) = ω2S0g0(ω).

Results in Fig. 9.1 are taken as a reference.

9.2.1 Dynamics in presence of the 36 cm−1 vibrational mode

For the vibrational mode at 36 cm−1 with Huang-Rhys factor of 0.01 (see Table 7.1),

the resulting exciton–vibrational mode coupling strength is κ(j) = ωH

√
SH = 3.6

cm−1.

Considering first a single vibrational mode coupled to the entrance site 1, the ef-

fect of an increasing numberN (from 1 to 3) of vibrational excited states is illustrated

in Fig. 9.11. For simplicity, instead of showing the population of every vibrational
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intermediate coupling strong coupling

(SH = 0.027) (SH = 0.22)

Localized FMO site Transfer Change Transfer Change

mode coupled to initially excited time [ps] by time [ps] by

NO vibration 1 3.73 – 3.73 –

6 3.30 – 3.30 –

all sites 1 2.82 -24.4 % 3.11 -16.6 %

(up to 450 cm−1) 6 2.74 -17.0 % 2.90 -12.1 %

site 1 1 3.99 + 7.0 % 4.31 +15.5 %

6 3.51 + 6.4 % 3.53 + 7.0 %

site 2 1 3.85 + 3.2 % 4.15 +11.3 %

6 3.43 + 3.9 % 3.47 + 5.2 %

site 3 1 2.64 -29.2 % 2.79 -25.2 %

6 2.56 -22.4 % 2.68 -18.8 %

site 6 1 3.83 + 2.7 % 3.88 + 4.0 %

6 3.41 + 3.3 % 3.42 + 3.6 %

Table 9.3: Comparison of energy transfer times at 300 K with and without nonequi-

librium vibrational modes but including an additional equilibrium vibrational mode

with width γ = 29 cm−1. Results in the intermediate coupling regime are shown in

columns 3 and 4, while those in the strong coupling regime are shown in columns 5

and 6. A negative change in the transfer time indicates a speed-up, while a positive

sign indicates a slow-down.

excited state, the total population of the vibrational excited states at site 1 is shown

as a violet thin line, i.e., it corresponds to ρΣvib1(t) =
∑

υ1 6=g〈1, υ1|ρ(t)|1, υ1〉. The

total population at site 1 is also shown as a green thick line, i.e., it is the population

of site 1 after tracing out the vibrational states ρ̃11(t) =
∑

υ1
〈1, υ1|ρ(t)|1, υ1〉. The

results in Fig. 9.11 indicate that a larger number N of vibrational excited states

leads to long-lasting intrasite beatings in the population, i.e., longer coherent oscilla-

tions between the vibrational ground state and the vibrational excited states. This

results in a slower decay of the population of the site coupled to the vibrational

mode due to intrasite population trapping, which causes a slower increase of the

RC population and therefore a reduced EET efficiency. Similar results are obtained

when the vibrational mode is coupled to the entrance site 6 (not shown).

Results when the vibrational mode is coupled to the exit site 3 are presented in

Fig. 9.12. In this case, including a larger number N of vibrational excited states
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Figure 9.11: Time evolution of selected populations when a single vibrational mode

at 36 cm−1 is coupled to the entrance site 1 and one (υ1,max = 1, top row), two

(υ1,max = 2, middle row), or three (υ1,max = 3, bottom row) vibrational excited

states are included. ρΣvib1(t) (violet thin line) corresponds to the total population

of the vibrational excited states, meanwhile ρ̃11(t) (green thick line) corresponds to

the total population of site 1 regardless of its vibrational state. Results at T = 300

K are shown in the left column and at T = 77 K in the right column.

provides additional transfer channels, which are available to become populated and

can then dump their energy into the RC in parallel, improving the overall EET

efficiency. The population ρRC of the RC is compared for these two situations in

Fig. 9.13 and the energy transfer times at T = 300 K are given in Table 9.4 for

all cases. Observe that increasing the number N of vibrational excited states at

the exit site improves the transfer efficiency, while it is deteriorated if the mode is

coupled to entrance sites. This is evident, in particular, when the mode is coupled

to the entrace site 6 and the initial preparation is ρ66(0) = 1. The reason for this is

the intrasite population trapping along the already fast EET branch. The opposite

reasoning explains the largest improvement in transfer times along the slow EET

branch when the site 1 is initially excited and the vibration is coupled to the exit

site 3.

Figure 9.14 shows the results when all vibrational excited states with energies
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to the exit site 3.
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Localized Initial Number N of vibrational states

mode coupled to excitation at N = 1 N = 2 N = 3

site 1 site 1 4.69 (+22.1%) 5.22 (+35.9%) 5.64 (+46.9%)

site 6 3.73 (+10.0%) 4.03 (+18.9%) 4.29 (+26.5%)

site 3 site 1 2.58 (−32.8%) 2.11 (−45.1%) 1.88 (−51.0%)

site 6 2.43 (−28.3%) 2.05 (−39.5%) 1.86 (−45.1%)

site 6 site 1 3.96 (+ 3.1%) 4.06 (+ 5.7%) 4.16 (+ 8.3%)

site 6 4.27 (+26.0%) 4.88 (+44.0%) 5.49 (+61.9%)

Table 9.4: Energy transfer times (in [ps]) and relative change with respect to the

case without any vibrational mode (in parenthesis as %) at 300 K for an increasing

number N of vibrational excited states of the mode at 36 cm−1. A negative change

in the transfer time indicates a speed-up, while a positive sign indicates a slow-down.
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Figure 9.14: FMO populations including all vibrational excited states with energies

up to 200 cm−1 above the energy of site 3 of the vibrational mode at 36 cm−1.

up to 200 cm−1 above the energy of site 3 are included. The smaller cut-off energy

results from the low frequency of the considered vibrational mode. It includes,

however, five vibrationally excited states at site 3 and a single vibrationally excited

state at site 4, which results in a system Hilbert space dimension at the edge of the

capabilities for the QUAPI method (M ' 13). The dynamics of ρRC at T = 300
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K is shown in Fig. 9.13 as a red thick line. Transfer times of 1.96 and 1.93 ps

are found for the initially excited sites 1 and 6, respectively. They correspond to a

change in the transfer time by -49.0 % and -43.1 %, respectively. It is expected that

by including five vibrationally excited states at site 3, the transfer time would be

highly reduced, much more than when including three excited states. However, the

population trapping at site 4 resulting from the inclusion of a single excited state

reduces the overall efficiency, counteracting the effect of the large number of decay

channels available at site 3.

The results of this section indicate that an adequately connected vibrational

mode can improve the transfer efficiency considerably. The improvement depends

on how many additional transfer channels are available.

9.2.2 Dynamics in presence of the 70 cm−1 vibrational mode

An exciton–vibrational mode coupling strength of 7.0 cm−1 results for the vibrational

mode at 70 cm−1 with a Huang-Rhys factor of 0.01 (see Table 7.1).

The transfer times as a function of an increasing number N (from 1 to 3) of

vibrational excited states of a single vibrational mode coupled to the entrance sites

1 or 6 or to the exit site 3 are given in Table 9.5. The improved or decreased transfer

efficiency can be explained by the same underlying physics drawn in last section,

with intrasite population trapping deteriorating the efficiency and additional decay

channels at site 3 improving it.

Localized Initial Number N of vibrational states

mode coupled to excitation at N = 1 N = 2 N = 3

site 1 site 1 4.22 (+ 9.9%) 4.47 (+16.4%) 4.65 (+21.1%)

site 6 3.73 (+10.0%) 3.99 (+17.7%) 4.17 (+23.0%)

site 3 site 1 2.47 (−35.7%) 2.07 (−46.1%) 1.89 (−50.8%)

site 6 2.37 (−30.1%) 2.03 (−40.1%) 1.87 (−44.8%)

site 6 site 1 3.96 (+ 3.1%) 4.07 (+ 6.0%) 4.16 (+ 8.3%)

site 6 3.64 (+ 7.4%) 3.86 (+13.9%) 4.08 (+20.4%)

Table 9.5: Same as in Table 9.4 for the mode at 70 cm−1.

Results for different number of vibrationally excited states at sites 3 and 4 are

shown in Fig. 9.15. In this case, including all vibrational excited states with energies

up to 250 cm−1 (upper set) or up to 300 cm−1 (upper set) above the energy of site 3,

includes three and one (M = 11) or four and two (M = 13) excited states at sites 3

and 4, respectively. This compares then the effect of including an additional decay
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Figure 9.15: FMO populations in presence of a vibrational mode at 70 cm−1 inclu-

ding all vibrational excited states with energies up to 250 cm−1 (upper set) and up

to 300 cm−1 (lower set) above the energy of site 3.

channel to the site 3 and simultaneously an additional trapping state at site 4. The

energy transfer times at T = 300 K for these two cases are given in Table 9.6. The

dynamics of ρRC for all cases is shown in Fig. 9.16. Results in Table 9.6 clearly

illustrate that any additional state in a site not connected to the RC counteracts

any additional decay channel at the exit site, leading to population trapping and,
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Number of vibrational

excited states at Initial FMO Transfer time Change

site 3 site 4 excitation at site [ps] by

3 1 1 2.15 -44.0 %

(up to 250 cm−1) 6 2.12 -37.5 %

4 2 1 2.23 -41.9 %

(up to 300 cm−1) 6 2.20 -35.1 %

Table 9.6: Comparison of energy transfer times at 300 K including a different number

of vibrational excited states of the mode at 70 cm−1 coupled to sites 3 and 4. A

negative change in the transfer time indicates a speed-up, while a positive sign

indicates a slow-down.
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Figure 9.16: RC population ρRC at 300 K for a different number of vibrational

excited states of the 70 cm−1 mode. Results are given for the initial excitation at

site 1 (left) and 6 (right).

therefore, to an overall reduced efficiency. It is observed that the transfer efficiency

will be always reduced by adding a single trapping state, even if two additional

decay channels at the exit site are considered, as found in the previous section

when comparing the change in the transfer times by including three excited states

connected to site 3 (-51.0%) with the change by including excited states up to 200

cm−1 (-49.0 %).

The results of this section complement those presented in the previous section,
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and together indicate that the even when an adequately connected vibrational mode

exists, the transfer efficiency can be reduced if there is any trapping state available

at an intermediate site.

9.3 Concluding remarks

Numerically exact results for the real-time nonequilibrium quantum dynamics of the

excitation energy transfer through the FMO complex in presence of underdamped

localized vibrational modes have been presented. The mode frequency, its coupling

to different sites and the coupling strength, as well as the amount of vibrational

excited states included in the dynamics have been systematically investigated.

The results indicate that the coupling of the excitonic transitions to nearly reso-

nant vibrational modes causes strong vibrational quantum coherent beatings in the

intrasite populations of individual pigments. At the same time, the coupling causes

strong coherent excitonic beatings in the intersite population transfer between dif-

ferent pigments. However, prolonged coherent intersite beatings do not necessarily

lead to an enhanced transfer efficiency. In fact, only additional vibrational excited

states at the exit site 3 help to speed-up the global energy transfer by providing

additional transfer channels toward the RC, as illustrated in Fig. 9.17. In contrast,

1

2
3

4

5

6

7

Figure 9.17: Schematic illustration of an additional underdamped vibrational mode

at the exit site 3, which increases the transfer efficiency by providing additional

channels for the parallel decay of energy into the RC.
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additional underdamped vibrational states at any other sites tend to decrease the

transfer efficiency since they provide additional states in which the energy is inter-

mittently stored and eventually dissipated via the vibrational channel. Hence, only

an efficiently connected exit site helps to improve the global transfer, while addi-

tional states at the intermediate sites only lead to an inefficient spreading-out of the

energy into too many channels. The observed long-lasting coherence in the FMO

complex results from the coupling of the vibrational modes to particular entrance

and exit sites, but it is not functionally necessary for the speed-up of energy transfer

which thus is a rather robust mechanism.

The fact that the presented results for the exciton dynamics in presence of

nonequilibrium vibrational modes agree with the experimental ones indicate a break-

down of the Franck-Condon (or, equivalently, the Born-Oppenheimer) approxima-

tion. Put differently, strongly coupled vibrational modes evolve on a similar time

scale as the excitation transfer and therefore, they should be described on an equal

footing as the excitonic states. This coupled exciton–vibrational mode system is

particularly relevant when calculating the two-dimensional electronic spectrum of

the FMO complex.

These results offer a benchmark principle that can be used, for example, for op-

timizing artificial light-harvesting systems. Their global quantum transfer efficiency

can be significantly increased by engineering the distribution of vibrational modes,

thereby maintaining the number of absorbing photoactive sites constant.
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CHAPTER 10

Quantification of non-Markovian effects in

the exciton dynamics

The many prominent vibrational peaks in the spectral density functions of the FMO

complex presented in Chap. 7 induce a complicated pattern of temporal bath cor-

relations with long life time [see discussion following Eq. (2.2.11)]. Then, it is a

priori not clear whether simple Redfield-like quantum master equations are an ap-

propriate tool to describe the transfer dynamics. This is because such an approach

is by construction based on a weak-coupling assumption which goes along with a

Markovian approximation [7]. Such an assumption is valid only for a pure and struc-

tureless Ohmic spectral distribution of the bath fluctuations. In order to describe

the dynamics of an open quantum system beyond the Markovian approximation,

few numerically exact approaches are available, with the drawback that these all

need substantial computer power [169].

Results presented in chapters 8 and 9 were calculated using the iterative QUAPI

scheme, which is a deterministic summation of the path integral and thus does not

suffer from any sign problem as being present in quantum Monte Carlo schemes.

Besides, it allows one to treat arbitrary spectral functions at finite temperatures

without invoking any approximation, and therefore the results are numerically exact.

Other studies on the FMO complex, however, have used Markovian master equations

(see, for example, Refs. [188, 204, 205]), although it has been shown that a weak-

coupling Markovian approach fails [7, 220, 221], the reason being that multiphonon

127
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processes are neglected [7]. In this chapter, the question of whether or not the

quantum dynamics of the FMO complex is Markovian is investigated. In the case

that the dynamics is Markovian, a weak-coupling lowest-order Born approximation

can still not be used to determine the Redfield rate tensor [7, 220, 221]. However,

importantly, a Markovian quantum master equation could still be used to discuss

the dynamics if the rate tensor is either treated as an effective fit parameter or

obtained from some more advanced theory.

Here, the non-Markovianity measure of Ref. [49] is used to quantify non-Marko-

vian effects during the excitation energy transfer dynamics of the FMO complex in

the presence of discrete vibrational modes. It is based on the physical features of

the system-bath interaction in terms of information backflow from the environment

to the system. The resulting non-Markovianity quantifier is given by Eq. (2.3.4). In

the case of the FMO complex, the two initial states ρ1(0) = ρ11 and ρ2(0) = ρ66 are

considered, which correspond to the initially excited BChls 1 and 6 sites, respectively.

Results in Sec. 10.1 correspond to the dynamics due to equilibrium vibrations as

presented in Chap. 8, meanwhile, those in Sec. 10.2 correspond to the dynamics

due to nonequilibrium vibrations as presented in Chap. 9.

10.1 Non-Markovian effects in presence of equi-

librium vibrations

Results in Chap. 8 include any vibrational mode as part of the environmental spec-

trum. It is then assumed that the thermalization time scale of the mode(s) is much

shorter than any system time scale. This does not exclude non-Markovian dynamics

of the system but only nonequilibrium fluctuations of the vibrational modes. In this

section, any possible non-Markovian effects are evaluated.

10.1.1 Non-Markovianity in the Adolphs-Renger model

The evolution of the trace distance [Eq. (2.3.1)] for the spectral density function

derived by Adolphs and Renger [Eq. (7.2.1)] as a function of the position ωH and

width γ of the Lorentzian peak is presented in Fig. 10.1. It is observed that the

trace distance decays faster at higher temperatures and this decay is monotonic,

indicating a unidirectional flow of information from the system to the environment,

rendering the dynamics Markovian. The same kind of dynamics is observed when

no localized vibrational mode is included in Eq. (7.2.1), as shown in Fig. 10.2.

Because there is no time interval over which the trace distance increases, N = 0
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Figure 10.1: Time evolution of the trace distance [Eq. (2.3.1)] for the spectral

density function derived by Adolphs and Renger [Eq. (7.2.1)] as a function of the

width γ of the Lorentzian peak centered at (a) 180, (b) 190.8, and (c) 211.0 cm−1.

Left and right columns correspond to temperatures of T = 300 and T = 77 K,

respectively.

results for all cases shown in Figs. 10.1 and 10.2. These results indicate that the

presence of a single localized vibrational mode in the bath spectral density does

not induce any non-Markovian effect in the exciton dynamics of the FMO complex,

even in the case when its frequency is exactly in resonance with exciton energy

differences. The broadening of this vibrational mode over a wide range of γ values

does not induce any non-Markovian effect either.

The negligible effect of the Lorentzian peak on the dynamics can be understood

by the rather large continuous background spectrum g0(ω) in Eq. (7.2.1), which

results in line widths for the exciton transitions already exceeding the width of the

Lorentzian peak. In such a case, the Lorentzian peak becomes effectively smeared

out and detailed results depend only weakly on its width γ and position ωH (see

also Figs. 8.3 and 8.6). This, in turn, would suppress any non-Markovian behavior
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Figure 10.2: Same as in Fig. 10.1 in the absence of any localized vibrational mode.

too, as observed in Fig. 10.1.

10.1.2 Non-Markovianity in the Kreisbeck-Kramer model

Figure 10.3 shows the time-dependent trace distance [Eq. (2.3.1)] for the spectral

density derived by Kreisbeck and Kramer [Eq. (7.3.1)] with n = 3 and n = 11. As

before, the monotonic decay of the trace distance at room temperature is faster as

compared to the decay at cryogenic temperature. This decay is faster for n = 11

than for n = 3 due to the faster increase of the spectral weight at low frequencies in

the former case (see Fig. 7.4). N = 0 is then obtained for all the examined cases.

These results allow one to conclude that in spite of the role played by localized

vibrational modes in the coherence times (see Sec. 8.2), they do not induce any

non-Markovian effects in the exciton dynamics of the FMO complex.

10.1.3 Non-Markovianity in the Aghtar et al. model

The trace distance evolution for the site-dependent spectral density function derived

by Aghtar et al. [165] [Eq. (7.4.2)] is shown in Fig. 10.4. In both cases, a similar

monotonic decay of the trace distance is observed, which again indicates a Markovian

dynamics (N = 0). The fact that the trace distance at 300 K decays faster than

the case at 310 K is because the spectral weight at low frequencies for water as

a solvent is larger than for the glycerol:water 65:35 mixture as a solvent (see Fig.
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Figure 10.3: Time-dependent trace distance [Eq. (2.3.1)] for the spectral density

derived by Kreisbeck and Kramer [Eq. (7.3.1)] with n = 3 (thin black lines) and

n = 11 (thick red lines) at 77 K (solid lines) and 300 K (dashed lines).
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Figure 10.4: Time evolution of the trace distance [Eq. (2.3.1)] for the spectral

density derived by Aghtar et al. [Eq. (7.4.2)] with water as a solvent at 300 K (solid

black line) and with a glycerol:water 65:35 mixture as a solvent at 310 K (dashed

blue line).
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7.5). This allows one to rule out the possibility of non-Markovian effects arising

from microscopic details of the polar environment.

10.2 Non-Markovian effects in presence of non-

equilibrium vibrations

The results shown in Chap. 9 include vibrational modes as part of the system

Hamiltonian and thus, their nonequilibrium quantum dynamics is described on an

equal footing as the excitonic states. The dynamics presented in Fig. 9.1, where

no vibrational mode is considered, is taken as a reference and the corresponding

evolution of the trace distance is shown in Fig. 10.5. Similar to the results in Fig.

0 750 1500

time [fs]

0

0.2

0.4

0.6

0.8

1

D
 (ρ

1
,ρ

2
)

T = 300 K

T = 77 K

Figure 10.5: Time evolution of the trace distance for the dynamics presented in Fig.

9.1 in the absence of any localized vibrational mode but including the RC into the

description.

10.2, there is a monotonic decay of the trace distance, which is faster at higher

temperatures. However, a faster decay is observed in this case due to the explicit

inclusion of the RC into the transfer dynamics. This monotonic decay indicates a

unidirectional flow of information from the system to the environment, rendering

the dynamics Markovian, i.e., N = 0.
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10.2.1 Non-Markovianity in presence of the 180 cm−1 mode

The evolution of the trace distance for all cases evaluated in Sec. 9.1 is presented

in Fig. 10.6. The dynamics corresponds (from top to bottom) to the cases when
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Figure 10.6: Time evolution of the trace distance in Eq. (2.3.1) considering the 180

cm−1 vibrational mode coupled to several BChl sites. Results at 77 K are shown as

solid red lines and at 300 K as dashed black lines.
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a vibrational mode at each individual molecular site is included, and when a single

vibrational mode is coupled to the entrance site 1, to the intermediate site 2, to

the exit site 3, and to the entrance site 6, respectively. In all cases, the resulting

dynamics in the intermediate and in the strong exciton–vibrational mode coupling

regimes is presented in the left and right columns, respectively. It is found that N =

0 for all evaluated cases. In general, the decay of the trace distance is slower in the

strong coupling regime. This is because the resulting intrasite population trapping,

that reduces the transfer efficiency, leads to a slower dissipation and therefore a

slower flow of information from the system to the environment. The dissipation,

and also the information flow, is faster when the vibrational mode is coupled to the

exit site 3. This is not surprising since site 3 is coupled to the RC acting as an

incoherent energy sink.

The results indicate that even when the full nonadiabatic quantum dynamics

of a single vibrational mode is considered, it does not induce any non-Markovian

effects in the exciton transfer dynamics of the FMO complex. The same results are

obtained when several vibrational modes are considered.

10.2.2 Non-Markovianity in presence of the 36 and 70 cm−1

modes

Figure 10.7 shows the time evolution of the trace distance when a different number N

of vibrational excited states of the low frequency modes in Sec. 9.2 are included. As

in the previous section, the decay of the trace distance is faster when the vibrational

mode is coupled to the exit site 3, with the decay being faster for larger N . Put

differently, the larger the number of states connected to the incoherent energy sink,

the faster is the flow of information from the system to the environment. Conversely,

when the vibrational mode is coupled to the entrance sites, the intrasite population

trapping is stronger and therefore the decay of the trace distance is slightly slower.

However, independently of which site the vibrational mode is coupled to and how

many vibrational excited states are considered, there is no time interval over which

the trace distance increases. The same results are obtained by including vibrational

modes coupled to different BChl sites, as shown Fig. 10.8. In this case, a different

number of vibrational excited states above the energy of site 3 are included: those

with energies up to 200 cm−1 of the 36 cm−1 mode (top), those with energies up

to 250 cm−1 (middle) and up to 300 cm−1 (bottom) of the 70 cm−1 mode. It is

obtained N = 0 for all cases.

The results indicate that the excitation energy transfer of the FMO complex

follows a Markovian dynamics.
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Figure 10.7: Time-dependent trace distance including a different number N of vi-

brational excited states of the mode at 36 cm−1 (left column) and of the mode at

70 cm−1 (right column). Results at 77 K are shown as solid thick lines and at 300

K as dashed thin lines.

10.3 Concluding remarks

In this chapter, non-Markovian effects during the excitation transfer dynamics in

the FMO complex are quantified by means of a non-Markovianity measure based

on the trace distance of two quantum states (Sec. 2.3). The time evolution of the

trace distance indicates that the presence of localized vibrational modes, either as

part of the environmental spectrum or as part of the system Hamiltonian, does not

induce any non-Markovian effects in the exciton dynamics of the FMO complex.

When considering equilibrium vibrational modes, neither the position of a single

mode nor its width induce any non-Markovian exciton dynamics (Sec. 10.1.1),

even in the case when its frequency is exactly in resonance with exciton energy

differences. These effects do not arise when several localized vibrational modes are

included (Sec. 10.1.2) nor from the microscopic details of the polar environment

(Sec. 10.1.3). When considering nonequilibrium vibrational modes (Sec. 10.2),

neither the frequency of the mode nor the number of vibrational excited states

considered induce any non-Markovian exciton dynamics. It is found, however, that

when the vibrational mode is coupled to the exit site 3, the decay of the trace
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Figure 10.8: Time-dependent trace distance including a different number of vibra-

tional excited states of the 36 cm−1 mode and of the 70 cm−1 mode.

distance is the fastest due to quickly unidirectional flow of information from the

system to the environment through the incoherent energy sink.

The results of this chapter show that the transfer of excitation energy in the

FMO complex follows a Markovian dynamics. Similarly, it has been shown that

the excitation energy transfer efficiency does not depend on the presence of non-

Markovian effects [222]. The discrete vibrational modes within the environmental

fluctuation spectra do not render the dynamics non-Markovian since the continuous

phonon contribution of the fluctuation spectra results already in large linewidths for

the exciton transitions. Hence, each exciton transition overlaps with the spectral

peak of the vibrational mode, thus suppressing non-Markovian effects.

The resulting Markovian dynamics is still not describable by weak system-bath

coupling approaches, the reason being that multiphonon processes are neglected [7].

However, these results show that Markovian quantum master equations could be

used to discuss the dynamics, or the transfer efficiency, if the rate tensor is either

treated as an effective fitting parameter or obtained from some more involved theory

approach. These results therefore will help to considerably simplify the numerical

effort in future investigations and, thus, larger light-harvesting complexes will be

treatable in an accurate and reliable manner.



Part III

Biomolecular systems: The PE545

complex
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CHAPTER 11

The PE545 complex

Photosynthesis occurs mainly in higher (green) plants, algae and certain bacteria,

like the green sulfur bacteria in Chap. 6. Algae are plants lacking roots, stems, and

leaves and are found mainly in aquatic environments [156]. Cryptophytes (genus

Cryptomonas) are single celled photosynthetic algae, 6-20 µm in size. They are

important primary producers in the food chain in both marine and freshwater envi-

ronments, where they live at the bottom of shallow water. They propel themselves

with two unequal flagella and can survive in low light conditions [223, 224, 225]. Its

photosynthetic apparatus is illustrated in Fig. 11.1.

There are approximately 200 known species of cryptophyte algae [156, 223]. They

have two different light-harvesting complexes, a chlorophyll a/c2 complex together

with the carotenoid alloxanthin on the outside of the thylakoid membranes and

a phycobiliprotein complex that, peculiarly, accumulates as dense material in the

thylakoid lumina [see Fig. 11.1(c)-(d)]. Each species has a single phycobiliprotein

antenna complex of two possible, phycoerythrin (three types, leading to red coloured

organisms) or phycocyanin (five types, leading to blue coloured organisms) [156, 223,

224]. All cryptophyte phycobiliproteins are structurally similar in that they are

based on an αα′β2 tetramer complex (arranged as a dimer of αβ monomers). They

contain eight bilin chromophores, which are characterized by a linear tetrapyrrole

structure and are covalently linked to the protein scaffold through a thioether linkage

with a cysteine [226].

One of the best characterized phycoerythrin proteins is the PE545 [see Fig.

139
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Figure 11.1: Antenna complex of a cryptophyte algae. (a) Scanning electron micro-

scope micrograph of the flagellated cryptophyte alga Proteomonas sulcata. (b)-(c)

Transmission electron micrographs, with the red rectangles in (b)-(d) representing

areas being zoomed-in in subsequent figure panels. The light-harvesting phyco-

biliproteins appear in (c) as the dark, electron-rich regions located in the intrathy-

lakoid space. They transfer the excitation to other membrane-bound antenna sys-

tems and to the photosystems I or II (d). Structural model of PE545 with bilin

chromophores shown in black (e), and in (f) without the enveloping apoprotein.

Arrows in (f) indicate the energy flow in PE545. Reproduced from Ref. [156] with

permission from The Royal Society of Chemistry.

11.1(e)], that is the principal light-harvesting antenna of the cryptomonad Rhodomo-

nas sp. strain CS24. Its crystal structure has been determined at 0.97 Å resolution

[227]. Phycoerythrin PE545 is the antenna pigment involved in the initial energy-

capture step, from which the excitation is funneled to membrane-bound antenna

systems and then to the core of photosystem I or II, as schematically shown in Fig.

11.1(d) [156].

In PE545 each α chain (A and B) contains a 15,16-dihydrobiliverdin (DBV),

whereas each β polypeptide chain (C or D) is linked to three phycoerythrobilins
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(PEB). The corresponding chromophores are labeled as DBV19A, DBV19B, PEB158C,

PEB158D, PEB50/61C, PEB50/61D, PEB82C, and PEB82D. The subscript denotes the

cysteine residue linked to the chromophore and the protein subunit, respectively.

The central PEB50/61 pigments, shown as yellow molecules in Fig. 11.1(f), are

linked to the protein by two cysteine residues. The overall PE545 structure (and

the chromophores) displays a pseudosymmetry about the 2-fold axis relating the

α1β and α2β monomers, as illustrated in Fig. 11.1(e)-(f) [226].

Chromophores in cryptophyte light-harvesting antenna proteins have large en-

ergy gaps and are separated by an average distance of 20 Å. This is about twice the

average pigment distance in the major light-harvesting proteins of plants [182, 228].

PE545 is unusual in that it contains a deep, water-filled slot between the monomers

[224, 229]. Because of the structural flexibility of the linear tetrapyrrole molecules,

energy tuning in PE545 is mostly achieved by constraining the conformational

space available to the bilin pigments in the protein scaffold, rather than by specific

pigment-protein interactions, as in chlorophyll-based photosynthetic complexes like

the FMO complex [230]. Additional tuning is achieved by assembling two different

bilin types (DBV and PEB) in the antenna [226].

The light-harvesting mechanism is based on a model where the four highest-

energy pigments (PEB82 and PEB158) direct their excitation energy first to the cen-

tral PEB50/61 pair, as shown in Fig. 11.1(f). Subsequent steps involve the transfer

of that excitation to the two lowest-energy pigments DBV19, from which excitation

energy is transferred to other proteins [156]. Interestingly, in PE545 only two bilin

types cover the same part of the spectrum, which in other organisms, like cyanobac-

teria and red algae, is covered by multiple proteins and bilins. The central dimer

in PE545 expands spectral coverage, ensures more efficient trapping of energy, and

mediates the ensuing transfer of this excitation to the red-shifted DBV bilins [224].

The low energy of the DBVs is a consequence of their more extended π-conjugated

system as compared to PEBs, thus making them the obvious candidates for the

energy trapping site in the complex [224, 226].

Experimental results using two-dimensional electronic spectroscopy in the phy-

coerythrin PE545 (from Rhodomonas CS24) and in the phycocyanin PC645 (from

Chroomonas CCMP270) proteins have also revealed long-lived oscillatory compo-

nents at ambient temperature [182, 183]. In particular, coherent oscillations lasting

longer than 200 fs are observed in the signal associated to the central PEB50/61

dimer in PE545. It is assumed that this long-lived coherence results from the co-

valent attachment of the chromophores to their protein environment. This may

support correlated motions between chromophores and protein and thus be an im-

portant factor in slowing down decoherence in cryptophyte antenna proteins, even
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at physiological temperature [182, 230].

In this part, the excitation energy transfer dynamics of the PE545 complex is

calculated by means of the iterative QUAPI scheme (Sec. 2.2.1) in its extended

version (Sec. 2.2.2). In Sec. 11.1, it is shown how the PE545 complex is modeled and

the environmental fluctuation spectral function, extracted from molecular dynamics

simulations, is explicitly shown. The resulting energy transfer dynamics is calculated

in Chap. 12, where non-Markovian effects are also quantified.

11.1 PE545 Model

As in the FMO complex (see Sec. 7.1), the system Hamiltonian for the eight bilins

is formulated within the single excitation subspace as HPE545 =
∑8

j=1Ej|j〉〈j| +
∑

j 6=i Vji (|j〉〈i|+ |i〉〈j|). Analogously, the basis states |j〉 indicate that the j-th site

is in its electronic excited state and all other sites are in their electronic ground

states. Ej denotes the energy of the j-th site and Vji denotes the electronic coupling

between sites j and i. Site energies and electronic couplings of all eight bilins in

PE545 have been determined by structure-based calculations relying on a mixed

quantum mechanics/molecular mechanics scheme [226]. The chromophores are de-

scribed at the quantum mechanical level whereas the protein-solvent environment

is described through a classical polarizable force field, combined with a quantitative

modeling of the spectra and the energy transfer dynamics. The resulting Hamil-

tonian in the site representation (corresponding to the bilins DBV19A, DBV19B,

PEB158C, PEB158D, PEB50/61C, PEB50/61D, PEB82C, and PEB82D) is [226]

HPE545 =





























0 −4.3 −27.3 3.5 2.2 −39.3 −11.4 34.3

0 −3.7 26.3 −42.6 1.4 −36.1 11.6

800 −6.1 −21.5 −15.2 7.3 6.4

650 24.5 19.1 6.8 8.2

1450 71.7 34.0 12.1

1050 −16.0 −35.6

550 4.0

50





























cm−1.

(11.1.1)

Due to the large bilin separations, the site energy differences |Ej−Ei| are very large

in comparison to inter-site electronic interaction Vji [228]. This also leads to a high

localization of the excitonic eigenstate |j〉 in the site j, as compared to the case of

the FMO complex.

The lowest energy chromphores are the pair of DBV19 bilins. The PEB50/61 dimer
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is positioned in the middle of the DBV dimer, while the PEB bilins are positioned

in an open arrangement on the outside of the protein [see Fig. 11.1(f)]. This

arrangement of chromophores funnels the energy out of the DBV traps [231]. For

the PE545 complex, it is assumed that the initially populated site is the PEB50/61C

or the PEB50/61D. This is concordant with a laser pulse shifted well into the blue end

of the spectrum, such that it only excites the highest excitonic eigenstate [228, 229].

The full pigment-protein-solvent system is modeled by employing an open sys-

tem approach [1, 29], as in the case of the FMO complex, in terms of the total

Hamiltonian

H = HPE545 +
8

∑

j=1

|j〉〈j|
∑

k

κ
(j)
k qj,k +

8
∑

j=1

1

2

∑

k

(

p2j,k + ω2
j,kq

2
j,k

)

, (11.1.2)

with pj,k, qj,k, ωj,k, and κ
(j)
k being the momenta, displacements, frequencies, and

couplings of the environmental vibrations at site j, respectively.

The environmental influence on the system dynamics is fully characterized by

the spectral density function J(ω) =
∑

j,k

(

|κ(j)k |2/2ωj,k

)

δ(ω − ωj,k). In the case

of the PE545 complex, J(ω) has been determined in Ref. [232], assuming water

as a solvent at 300 K, by means of molecular dynamics simulations using the same

procedure in Sec. 7.4. In this case, however, they use the high-temperature limit of

Eq. (7.4.2) such that the spectral density function Jj(ω) of site j is given by

Jj(ω) =
ω

πkBT

∫ ∞

0

dtCj(t) cos (ωt) . (11.1.3)

This change in the prefactor mainly influences the high-frequency regime of the

spectral density [232]. The resulting site-dependent fluctuational spectra Jj(ω) are

shown in Fig. 11.2. As compared with the results in Fig. 7.5 for the FMO complex,

a more pronounced vibrational structure is observed for the PE545 complex. This

is expected due to the more flexible linear tetrapyrrole structure of the bilins in the

PE545 complex as compared with the rigid tetrapyrrole ring of the BChls in the FMO

complex. In particular, the low frequency part of the spectral density of the PE545

complex is mainly given by internal modes of the flexible bilins, while for the FMO

complex it is entirely due to environmental fluctuations [232]. In Fig. 11.2, it is also

observed that the vibrational structure of the PEB and DBV chromophores is quite

different, in particular, in the low-to-medium frequency region, which is consistent

with the different chemical structure of both chromophores, leading to different

vibrational modes. In spite of the chemical structure of all PEB chromophores being

the same, the cental PEB50/61 dimer exhibits a quite different vibrational structure

at high frequencies as compared to the other PEBs. This can be attributed to the
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double linking to the protein scaffold, which also leads to the smallest fluctuations

[232].
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Figure 11.2: Site-dependent spectral density functions Jj(ω) for the PE545 complex

as determined from molecular dynamics simulations [232] with water as a solvent at

300 K.



CHAPTER 12

Dynamics of the PE545 complex

In this chapter, the real-time excitation energy transfer dynamics of the PE545

complex is examined by using the iterative QUAPI scheme in its extended version

[37]. Each bilin interacts with its own environment (see Sec. 2.2.2), defined by the

site-dependent spectral density functions in Fig. 11.2. It is then assumed that the

complex is embedded in water at 300 K.

The central PEB50/61 bilins are considered as the initially populated sites. This

leads to three initial preparations, ρ(0) = PEB50/61C, ρ(0) = PEB50/61D, and to

a linear combination of both, such that ρ(0) = αPEB50/61C + βPEB50/61D, with

α2 + β2 = 1.

The time-dependent occupation probabilities of the individual bilins and of all

bilins within a protein subunit are shown in Fig. 12.1. The dynamics in the lowest

row corresponds to the initial preparation ρ(0) = 1/
√
2(PEB50/61C + PEB50/61D).

Due to the large site energy differences, no coherent oscillations are observed in the

site populations of the PE545 complex, except for the PEB50/61 pair, which are the

most strongly coupled bilins in Eq. (11.1.1), in the superposed initial state. The

population of both DBV19 bilins increases monotonically in a similar fashion, which

is consistent with these sites being responsible for passing the excitation energy to

membrane-bound chlorophylls [224].

A similar overdamped dynamics has been obtained for the PE545 complex using a

spectral density based on experimental information [228]. As in Eq. (7.2.1), it also

contains a super-Ohmic continuous part and several Lorentzian peaks originated
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Figure 12.1: Time-dependent occupation probabilities of all bilins (left column)

and of every subunit (right column) of the PE545 complex for the different initial

preparations at T = 300 K.

from molecular vibrations. The results in Fig. 12.1 and those reported in Ref.

[228] indicate that equilibrium vibrational modes cannot explain the experimentally

observed long-lasting coherences in the PE545 complex in Refs. [182, 183]. It

may be speculated that only underdamped modes could explain the experimental

observations, as was found for the FMO complex in Chap. 9.

The time evolution of the trace distance in Eq. (2.3.1) is presented in Fig.

12.2 for the cases when the initial states are ρ1(0) = PEB50/61C and ρ2(0) =

αPEB50/61C + βPEB50/61D (left plot), and when they are ρ1(0) = PEB50/61D and

ρ2(0) = αPEB50/61C + βPEB50/61D (right plot). It is found that the trace distance

decays monotonically in both cases, indicating a unidirectional flow of information

from the system to the environment, rendering the dynamics Markovian. Observe

that increasing the contribution of the ρ1 state relative to the ρ2 state leads to a

reduction of the initial value of the trace distance from 1, because the distinguisha-

bility of both states decrease.
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12.1 Concluding remarks

The calculated real-time excitation energy transfer dynamics of the PE545 complex

resulting from the site-dependent spectral density functions in Fig. 11.2 exhibits

an overdamped dynamics. These findings are in contrast to the long-lasting coher-

ences in the PE545 observed experimentally [182, 183]. Similar results have been

reported in Ref. [228]. In both cases the vibrational peaks are explicitly included

as part of the environment, such that the thermalization time scale of these modes

is much shorter than any system time scale. It is concluded then, that the explicit

nonequilibrium vibrational dynamics has to be considered in order to possibly ex-

plain the experimental results, as was found for the FMO complex in Chap. 9. The

monotonic decay of the trace distance also indicates that the transfer of excitation

energy in the PE545 complex follows a Markovian dynamics.
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CHAPTER 13

Summary

In this work, the real-time quantum dissipative dynamics of electronic and excitonic

states in three different molecular systems has been determined by means of the

iterative QUAPI scheme. In the first part, molecular heterostructures in the form

of multi-block copolymers are designed by using the organic π-conjugated oligomers

PDA and l -PPP. Due to the alignment of their frontier MOs, a heterostructure in

the form A/B/A/B/A results in a molecular double quantum dot, with oligomers of

PDA defining the wells B and oligomers of l -PPP defining the barriers A for charge

carriers within the conduction band. By modifying the lengths of the oligomers, it

is possible to restrict the number of confined MOs within the conduction band to

only two, namely, the LUMO and LUMO+1. The energy difference between these

MOs defines the electronic energy splitting ~∆, which characterizes any particular

heterostructure. A polymeric radical anion is formed when the molecule is single

negatively doped. If only the two possible dominant locations of the single excess

charge carrier are considered and spin effects are neglected, a molecular charge qubit

results. Because the electronic degrees of freedom of these systems are restricted to

the two confined states defining the charge qubit, their description is given in terms

of the spin-boson model [1, 8], in which the molecular vibrations are formalized as

the bosonic bath. The parameters characterizing the system and the vibrational

bath are extracted from electronic structure calculations on the doped systems by

using semiempirical methods. The spectral density function is directly obtained

from the vibrational spectrum. It is given as a sum of Lorentzian peaks centered
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at the molecular vibrational frequencies, with heights related to the mode intensity

and widths related to the coupling strength between the qubit and the vibrational

modes. A characteristic value of ~∆, associated with a specific number of vibrational

modes at lower energies, is obtained by systematically modifying the length of the

oligomers, which allows one to chemically engineer not only the electronic energy

splitting of the charge qubit but also its damping behavior. The time-dependent

population difference of these systems exhibits coherent oscillations. The resulting

coherence times and quality factors spread over about two orders of magnitude,

with exact values that depend on the specific damping strength considered. By

evaluating the time-dependent trace distance, it is found that non-Markovian effects

are present. They contribute to sustain coherences by a non-Markovian flow of

information from the vibrational degrees of freedom back to the electronic degrees

of freedom. Transitions between the left/right states of the charge qubit, analogous

to single qubit gates, can be controlled by means of an external classical field. A more

efficient control of the dynamics of the oscillating electronic charge can be achieved

by using quantum optimal control theory [138, 143]. Spectroscopic techniques can

be implemented to read-out the charge qubit state as has been demonstrated for

single negatively charged self-assembled InAs quantum dots [150]. Scalability in the

designed molecular systems can be achieved, for example, by the use of molecular

clamps. This would allow one to hold two or more charge qubits together and

therefeore, to implement multiqubit control gates. The same physics should be

valid if a radical cation is used instead of a radical anion. This requires, however,

the use of a different combination of parent polymers. The systems presented in this

part, constitute then a novel implementation for quantum computation hardware

able, in principle, to operate at room temperature. Other uses, for example, as very

sensitive charge meters are also envisaged.

The second and third parts present the excitation energy transfer dynamics of

two biomolecular light-harvesting complexes, for which excitonic coherences last-

ing several hundreds of fs at ambient temperature have been found experimentally

[181, 182]. Then, instead of engineer these systems to exhibit even longer coherences

as in the first part, these parts elucidate the origin of such a sustained quantum

coherence and its significance in the speed and efficiency of the energy transfer dy-

namics. In both cases, the system is described by the electronic degrees of freedom

within the single excitation subspace of the pigments involved in the energy transfer,

while the vibrational pigment-protein-solvent environment induces thermal fluctua-

tions on the excitation transfer dynamics. In the second part, the BChl-containing

FMO complex is investigated. Its excitonic energies are obtained from calculations

of the electrochromic shifts and a simultaneous fit of optical spectra. On the other
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hand, several structured environmental spectral density functions, determined from

experimental results or from molecular dynamics simulations, are available. These

include a single or several localized vibrational modes, and the specific microscopic

details of the polar environment. The influence of these localized modes is deter-

mined by evaluating whether a breakdown of the Franck-Condon (or, equivalently,

the Born-Oppenheimer) approximation occurs. Put differently, the exciton dynam-

ics is determined for two cases: (i) considering that the modes are in equilibrium,

for which they are included as part of the fluctuational spectrum, and (ii) consid-

ering the nonequilibrium dynamics of the vibrations, for which, they are explicitly

included as part of the system Hamiltonian and described on an equal footing as

the excitonic states. These two cases imply, respectively, that the mentioned ap-

proximation does or does not hold during the energy transfer dynamics. It is found

that the long-lived oscillatory components observed in the two-dimensional optical

spectra cannot be explained by equilibrium fluctuations coming from a continuous

frequency distribution of the pigment-protein-solvent environment. Instead, the ex-

plicit nonequilibrium dynamics of the discrete vibrational modes of the molecular

backbone may yield increased coherence times depending on which molecular site

the vibration couples to, influencing also the energy transfer times. These results

demostrate that only an efficiently connected exit site helps to improve the transfer

efficiency since it provides additional channels for the parallel decay of the energy

into the reaction center. Additional states at the entrance or intermediate sites

only lead to an inefficient spreading-out of the energy into too many channels since

they provide additional states in which the energy is intermittently stored, with the

concomitant long-lasting coherences, and eventually dissipated via the vibrational

channel. Thus, this constitutes a very general mechanism in which sustained coher-

ence is not functionally necessary for the speed-up of energy transfer. This mech-

anism can be used to optimize the global quantum transfer efficiency in artificial

light-harvesting systems by engineering the distribution of vibrational modes while

maintaining the number of absorbing photoactive sites constant. The agreement be-

tween the coherence times in the presented results and the experimental ones indicate

a breakdown of the Franck-Condon approximation. This can be further tested by

comparing the experimental two-dimensional electronic spectrum of the FMO com-

plex with one calculated assuming nonequilibrium vibrational modes. The results

also indicate that the transfer of excitation energy in the FMO complex follows a

Markovian dynamics. When considering equilibrium vibrational modes, neither the

position of a single mode nor its width induce any non-Markovian exciton dynam-

ics, even in the case when its frequency is exactly in resonance with exciton energy

differences. These effects do not arise when several localized vibrational modes are



152 Summary

included nor from the microscopic details of the polar environment. When consid-

ering nonequilibrium vibrational modes, neither the frequency of the mode nor the

number of vibrational excited states considered induce any non-Markovian exciton

dynamics. The resulting Markovian dynamics, however, is still not describable by

weak system-bath coupling approaches since multiphonon processes are not taken

into account [7].

The third part investigates the biomolecular light-harvesting PE545 complex. Its

excitonic energies are determined by structure-based calculations employing a mixed

quantum mechanics/molecular mechanics scheme, while only the site-dependent

spectral density functions extracted from molecular dynamics simulations are consid-

ered. An overdamped dynamics is found, in contrast to the long-lasting coherences

in the PE545 claimed experimentally [182, 183]. The monotonic decay of the trace

distance also indicates that the transfer of excitation energy in the PE545 complex

follows a Markovian dynamics. Results are obtained for the vibrational modes as-

sumed to be in equilibrium. As for the FMO complex, probably, only by considering

the explicit nonequilibrium vibrational dynamics would be possible to explain the

experimental results.
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Appendix

Here, the quantum chemistry methods used to calculate the electronic properties of

the molecular systems in Chap. 4 are presented. Appendix A illustrates how the

electronic spin is treated in these methods. The concept of potential energy surface

resulting from the Born-Oppenheimer approximation is introduced in Appendix B.

There, it is also shown how these methods look for stationary points on the potential

energy surface and how the vibrational modes are determined once a stationary point

is found. The extended Hückel method, used for single-point electronic-structure

calculations, is presented in Appendix C. The explicit form of the first molecular

orbitals within the conduction band of the ∆N systems in Table 4.1 are shown

in Appendix D. The parameters determining the spectral density function in Eq.

(4.3.4) for all ∆N systems are given in Appendix E. There, it is also shown the

resulting bath autocorrelation function in Eq. (2.2.11). Finally, Appendix F presents

the real-time dynamics of the ∆4 system determined using the QUAPI scheme.

A Spin in electronic structure methods

The full wave function of an electron in a molecule is given by the product of a spin

wave function and a spatial wave function, i.e., Ψ̃(r, σ) = S(σ) ⊗ Ψ(r). The spin

wave function is either α or β, which corresponds to electronic spin “up” or “down”,

respectively.

In closed shell systems, i.e., with an even number of electrons, they are divided

into pairs of opposite spin that are forced to occupy the same spatial orbital. In

other words, it is assumed that both α- and β-electrons are described by the same

spatial wave function, and therefore, it is calculated only once. On the other hand,

open shell systems have an odd number of electrons. Therefore, the spatial wave

function should be calculated separately for α- and β-electrons. Molecules with

an odd number of electrons, excited states, and processes involving bond breaking

and/or formation should be described as open shell systems [233].

All electronic structure calculations in Chap. 4 are carried out by considering

the doped molecular heterostructures as open shell systems.
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B About geometry optimizations and vibrational

analysis

The full wave function of a molecular system Ψ(R, r) depends on the nuclear coor-

dinates R and on the electronic coordinates r. However, due to the different masses

of nuclei and electrons, the nuclei may be assumed as stationary from the electronic

point of view, and the Born-Oppenheimer approximation can be applied. It neglects

the coupling between the nuclear and electronic dynamics, giving effectively a sepa-

rate motion of the electrons from the motion of the nuclei. This allows one to write

the full wave function as

Ψ(R, r) = Φ(R)ψ(r|R),

where the electronic wave function ψ(R|r) depends parametrically on the nuclear

coordinates, since it only depends on the position R of the nuclei, not on their

momentum [234]. ψ(r|R) is obtained by solving the electronic structure problem for

a set of fixed nuclear positions. Because this can be repeated for any set of nuclear

positions, a potential energy surface (PES) results. A PES describes how the energy

of the molecule in a particular (electronic) state varies as a function of the structure

of the molecule [235]. A molecule with M atoms requires 3M nuclear coordinates

that define the geometry, and therefore the PES is 3M -dimensional. However, only

3M − 6 independent coordinates are required to describe the internal movement of

the nuclei (3M − 5 in the case of linear molecules), i.e., the three translations and

three (two) rotations of the center of mass are excluded.

B1 Geometry optimizations

In a geometry optimization, the geometry of the molecule will be adjusted until a

stationary point on the PES is found [236]. This stationary point may correspond

to a local or global minimun on the PES, i.e., the equilibrium geometry, or to a

transition structure [233]. The default algorithm used in [116] for both minimiza-

tions (optimizations to a local minimum) and optimizations to transition states and

higher-order saddle points is the Berny algorithm using GEDIIS (geometry optimiza-

tion method using an energy-represented direct inversion in the iterative subspace

algorithm) [237] in redundant internal coordinates [236].

Geometry optimization methods can be roughly divided into first-order methods,

that use only analytic first derivatives to search for stationary points, and second-

order methods, that use analytic first and second derivatives [237]. The first set of

methods include the steepest descent and the conjugate gradient methods. They
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exploit the fact that the gradient vector points in the direction where the energy

increases most. Then, the energy value can always be lowered by stepping in the

opposite direction [234]. However, due to its nature, they are only able to locate

minima, but are very cheap computationally, requiring storage of one or two gradient

vectors. Second-order methods assume a quadratic model for the PES and a Newton-

Raphson step for the search of the minima.

A local quadratic approximation to the PES is given by a second-order Taylor

expansion of the energy around the current point R0

E(R) = E(R0) + gT
0 ∆R+

1

2
∆RTH0∆R, (B1)

where g0 is the gradient (dE/dR) at R0, H0 is the Hessian or matrix of second

derivatives of the energy (d2E/dR2) atR0 (also known as the force constant matrix),

and ∆R = R − R0. The gradient g0 and the Hessian H0 are used to confirm the

character of the stationary point. The gradient at any stationary point is zero.

There, the forces are also zero, because the negative of the gradient is the vector

of forces on the atoms in the molecule. All of the eigenvalues of the Hessian in a

stationary point corresponding to a minimum must be positive (by definition). On

the other hand, in a stationary point corresponding to a transition structure, the

Hessian has one (and only one) negative eigenvalue, as expected from a first-order

saddle point [235].

Requiring the gradient of the second-order approximation in Eq. (B1) to be zero,

g(R) = g0 + H0∆R = 0, the displacement to the minimum or Newton-Raphson

step is obtained by

∆R = −H−1
0 g0. (B2)

Observe that the step direction is opposite to the gradient direction (like in first-

order methods), as it should be. Sufficiently close to the stationary point, the

gradient is reduced quadratically [234], which reduces the number of steps required

to reach convergence in second-order optimization schemes as compared to first-

order methods. However, these approaches can quickly become very expensive with

increasing system size because the explicit computation of the Hessian scales as

O(M4)−O(M5) [237]. For each step in the Newton method, the Hessian in Eq. (B2)

is calculated at the current point. For quasi-Newton methods, an initial estimate of

the Hessian is obtained by some inexpensive method, and subsequently, the Hessian

in Eq. (B2) is updated at each step of the optimization using the first derivatives

and displacements [235]. This makes quasi-Newton methods intermediate between

pure first- and second-order approaches, with a computational cost comparable to

first-order methods and convergence speed comparable to second-order methods

[237].
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A drawback is that the Newton-Raphson step in Eq. (B2) can give excessively

large step sizes in the wrong direction if the PES is far away from a quadratic

region. Therefore, step control techniques are required. These guarantee that the

step direction is correct and control the total length of the step, such that it does

not exceed the region in which the second-order Taylor expansion [Eq. (B1)] is valid

[234]. This is specified by a trust radius τr. Among step control techniques, two are

widely used. In the trust radius model, the energy is minimized under the constraint

that the step is not larger than τr. On the other hand, in the rational function

optimization, the quadratic approximation of the energy in Eq. (B1) is replaced by

a rational function approximation, in which the energy is minimized with respect

to the step ∆R. This step will always be shorter than the pure Newton-Raphson

step in Eq. (B2), but, because there is no guarantee that it will be within the trust

radius, it may be scaled down by a multiplicative factor [234, 235, 237].

To reduce the number of iterations required to reach convergence, the direct

inversion in the iterative subspace (DIIS) scheme is used. The goal is to construct a

new geometry R∗ as a linear combination of previous geometries, i.e., R∗ =
∑

i kiRi

with
∑

i ki = 1. In GEDIIS, Ri are geometries and ki minimizes an energy function.

Therefore, the resulting geometry R∗ is associated with the optimal energy within

the search space. Additional details can be found in [237]. In the final stages of

a minimization, GEDIIS sometimes converges faster than quasi-Newton methods,

and therefore, a hybrid of quasi-Newton and GEDIIS methods is used [235].

In principle, a geometry optimization can be done in any coordinate system, e.g.,

Cartesian coordinates. However, they are not well suited for geometry optimization

because they do not reflect the “chemical structure” and bonding of a molecule.

On the other hand, internal coordinates, like Z-matrices, are more descriptive of

the molecular structure and are more useful for geometry optimizations [235]. The

reason is that they require to define M − 1 distances, M − 2 angles, and M − 3

torsional (dihedral) angles, i.e., only 3M − 6 coordinates. This means that the

six translational and rotational modes are automatically removed. In contrast, the

Hessian matrix in Cartesian coordinates have six eigenvalues, corresponding to the

six translational and rotational modes, identical to zero, which should be projected

out prior to formation of the optimization step in Eq. (B2) [234].

In order to avoid a premature identification of a minimum, four convergence cri-

teria are used in Ref. [116]. These require that the forces and the root-mean-square

of the forces be smaller than 10−4 atomic units, while the calculated displacement

∆R for the next step and its root-mean-square should be smaller than 10−3 atomic

units [233].
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B2 Vibrational analysis

The eigenvectors of the Hessian in mass-weighted coordinates correspond to the

vibrational normal modes (plus five or six modes for translation and rotation of the

center of mass). The vibrational frequencies are proportional to the square root of

the eigenvalues of the mass-weighted Hessian [235]. In the equilibrium geometry, i.e.,

at the minimun on the PES, all of the eigenvalues of the Hessian are positive, then,

all vibrational frequencies are real. The single negative eigenvalue of the Hessian in a

transition structure gives an imaginary vibrational frequency. The vibrational mode

corresponding to this imaginary frequency is also known as the transition vector,

which is tangent to the reaction path in mass-weighted coordinates [235].

In order to calculate the vibrational normal modes and frequencies, the Hessian is

transformed from Cartesian nuclear coordinates to mass-weighted coordinates. This

transformation is only valid at a stationary point [238]. Then, frequency calculations

must be performed on optimized structures, and the calculation of the frequencies

must use the same theoretical model (and basis set, if any) used to calculate the

optimized geometry. Frequencies computed with a different theoretical model or

basis set have no validity [233].

The vibrational analysis in Ref. [116] works as follows [239]: first, the Hessian

matrix is converted to mass-weighted cartesian coordinates HMWC. The next step

is to translate the center of mass to the origin, and to determine the moments and

products of inertia, with the goal of finding the matrix that diagonalizes the moment

of inertia tensor. With this matrix, it is possible to find the vectors corresponding

to the rotations and translations. Once these vectors are known, the rest of the

normal modes are internal vibrations. Schmidt orthogonalization is used to gener-

ate the 3M − 6 (or 3M − 5) remaining vectors, which are orthogonal to the five or

six rotational and translational vectors. The result is a transformation matrix D

which transforms from mass-weighted cartesian coordinates qMWC to internal coor-

dinates SINT = DqMWC. Here, rotations and translations have been separated out,

i.e., coordinates in the rotating and translating frame. The Hessian is also trans-

formed into these new coordinates through HINT = D†HMWCD, and diagonalized

to L†HINTL = Λ, with Λ being a diagonal matrix that contains the frequencies and

the column vectors of L contain the normal modes. These are printed in the output

given by Ref. [116] as Cartesian displacement vectors normalized to unit distance

[239], which, in order to obtain the real Cartesian coordinates, requires the multi-

plication of the resulting values by the inverse square root of the pertinent reduced

mass. This is particularly important when displacing each atom in its normal mode

direction, as in Sec. 4.3.2, because heavy nuclei tend to move shorter distances than
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light nuclei. Additional details can be found in Ref. [239].

In general, the calculated vibrational frequencies must be multiplied by a scale

factor (in the range of 0.8 to 1.0) to better match experimental vibrational frequen-

cies [240]. This scaling compensates approximations made when considering the

PES as harmonic (in order to locate the minimum) and in the electronic structure

calculation. Therefore, they are specific to the used theoretical model (and basis

set, if any). The scaling factor χ is obtained from the experimentally observed νi
and the calculated ωi vibrational frequencies as [240]

χ =
∑

i

νiωi

ω2
i

. (B3)

In the case of AM1 calculations the scaling factor is 0.954 [120].
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C The extended Hückel method

The extended Hückel method (EHM) [117] is an improvement over the original

Hückel method [241] and is analogous to the tight-binding method widely used in

solid state physics [242]. It is based on a σ–π energy separation of the full electronic

system [243]. This separation works very well in conjugated (particularly planar)

systems due to the fact that the inner electrons are localized into the σ chemical

bonds forming the molecular backbone, while the valence electrons are delocalized in

π orbitals above and below the molecular plane (see Fig. 3.1). The total electronic

Hamiltonian is written as

He = Hcore +Hvalence, (C1)

with the valence Hamiltonian being written as a sum of monoelectronic effective

Hamiltonians, which do not need to be explicitly specified, in the form

Hvalence =
∑

i

Heff(i). (C2)

The molecular orbitals (MOs) are written as a linear combination of valence atomic

orbitals (AOs)

|ψi〉 =
∑

r

c(i)r |φr〉, (C3)

with |c(i)r |2 being the contribution of the r-th AO to the i-th MO. In the original

Hückel method, a single AO (the 2pπ) is considered for each carbon atom and the

contribution of the hydrogen AO is neglected, whereas in the EHM four carbon AOs

(one 2s and three 2p) and the 1s hydrogen AO are considered. Slater-type AOs are

used [244].

For the Hamiltonian in Eq. (C2), the problem is reduced to a set of monoelec-

tronic Schrödinger equations

Heff(i)|ψi〉 = Ei|ψi〉. (C4)

When the variational theorem is applied on Eq. (C4), it yields the secular equation

4n+m
∑

r,s

[(

Heff
rs − EiSrs

)

cis
]

= 0, (C5)

where n is the number of carbon atoms and m is the number of hydrogen atoms.

Equation (C5) has a non-trivial solution only if

det
(

Heff
rs − EiSrs

)

= 0. (C6)



162 Appendix

This equation is similar to that obtained in the original Hückel method [241]. How-

ever, it approximates the overlap integrals Srs = 〈φr|φs〉 as Kronecker’s deltas δrs,

as well as the resonance integrals Heff
rs = 〈φr|Heff|φs〉. In the EHM all the overlap

integrals Srs are explicitly evaluated using the chosen forms for the AOs and the

internuclear distances. The diagonal elements Heff
rr (the Coulomb or site integrals)

in Eq. (C6) are set equal to the valence orbital ionization potentials taken from

experimental data.

The non-diagonal terms Heff
rs (the resonance or hopping integrals) are parame-

terized by the Wolfsberg-Helmholz formula [245]

Heff
rs =

1

2
K̄

(

Heff
rr +Heff

ss

)

Srs, (C7)

where K̄ is an empirical parameter that can be constant [245], weighted [246] or be

given by a distance-dependent formula [247]. Other parametrizations of Heff
rs are in

terms of the geometric mean of Heff
rr and Heff

ss [248]. Hoffmann [117] used Eq. (C7)

with K̄ = 1.75, which was chosen such that the calculated rotational barrier from

ethane matches the experimental value. However, it has been suggested that this

parameter can take a value between 1.0 and 3.0 [244].

In this work, Eq. (C7) with K̄ = 2.43 is used. This value has been shown to

reproduce the experimental optical gap in several one- and quasi-one-dimensional

π-conjugated polymers [81, 249]. This larger K̄ value is reasonable when consid-

ering that the electronic delocalization along conjugated molecules implies a larger

contribution from the resonance and overlap integrals to the total energy.
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D MOs of the ∆N molecular heterostructures

Here, the first MOs within the conduction band of the ∆N systems in Table 4.1 are

shown. In all cases, only MOs corresponding to α-electrons are depicted. It has been

verified, however, that the resulting spatial wave function for α- and β-electrons is

the same.

It is also shown the spin density, which indicates the total electron density dif-

ference between α- and β-electrons, i.e., the spatial distribution of the unpaired

electron or excess spin. The negative doping of the molecular heterostructures leads

to a singly occupied LUMO1. Because this orbital “carries” the excess electron, the

spatial distribution of the LUMO should be exactly the same as that of the spin

density (see below).

In all cases, the depicted MO and spin density isosurfaces correspond to an

electron density of 2× 10−2 and 4× 10−4 e/Å3, respectively.

Alternatively, the information about the shape of a MO along the longitudinal

direction of the molecule is described in terms of the localization parameter on the

j-th atom defined as [250]

L
(i)
j =

∑

r

|c(i)rj |2, (D1)

where r labels the AOs centered on the j-th atom contributing to the i-th Hückel MO

as defined in Eq. (C3). The contributions of the 1s AOs centered at the hydrogen

nuclei are not taken into account. The set j of atomic indexes can be interpreted

as a discretization of the position coordinate along the chain and therefore, the

parameter L
(i)
j provides a measure of the probability density associated with the

i-th MO at the j-th site of the molecule. Additional details can be found in Refs.

[81, 149, 249].

1Typically, a singly occupied MO is called SOMO, however, by the use of “singly occupied

LUMO” it is specified that the additional electron occupies the first (otherwise empty) state within

the conduction band.
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Figure D1: Localization parameter L
(i)
j in Eq. (D1) (lower plot) and MO isosurface

(upper plot) of LUMO, LUMO+1, LUMO+2, and LUMO+3 MOs (from bottom

to top) for the ∆0 system. Top most plot: spin density isosurface. Thin blue lines

indicate the heterojuntions.
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Figure D2: Same as in Fig. D1 for the ∆1 system.
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Figure D3: Same as in Fig. D1 for the ∆2 system.
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Figure D4: Same as in Fig. D1 for the ∆3 system.
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Figure D5: Same as in Fig. D1 for the ∆4 system.
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E J(ω) and L(t) of the ∆N molecular heterostruc-

tures

The spectral density function for the ∆N systems in Table 4.1 is given by

J(ω) = ω
∑

i

ηiγ
2

(ω − ωi)
2 + γ2

.

The parameters ωi and ηi are given in Tables E1-E5 for N = 0-4, respectively. The

effect of increasing the width γ of the Lorentzian peaks in J(ω) is shown in Figs.

E1, E3, E5, E7, and E9, respectively. It is observed that due to the large number of

peaks around 1500 cm−1, a significant spectral overlap occurs in all cases, resulting

in an effective broad single mode with a large spectral weight.

The temporal correlation properties of the fluctuations are given by the bath

autocorrelation function

L(t) =
~

π

∫ ∞

0

dωJ(ω)

[

coth

(

~ω

2kBT

)

cos(ωt)− i sin(ωt)

]

= Lr(t) + Li(t).

Thus, the fluctuations are composed of harmonic modes with frequency ω at tem-

perature T , and each mode contributes with a spectral weight given by J(ω). The

resulting autocorrelation functions for different values of γ are shown in Figs. E2,

E4, E6, E8, and E10 for N = 0-4, respectively. A vibrational mode centered at

frequency ωi with finite linewidth γ leads to oscillatory correlations that decay ex-

ponentially with time according to L(t) ∝ e−iωit−γt [31]. Then, larger linewidths

result in faster decaying correlations as observed in the corresponding figures. The

large number of peaks at frequencies ωi < ∆4 generates very long-lived correlations

for the ∆4 system as compared with the other systems.
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Figure E1: Spectral density in Eq. (4.3.4) for the system ∆0 with the parameters

listed in Table E1. Top: comparison with the IR spectrum (shown as vertical red

lines). Bottom: the frequency ω has been scaled with respect to ∆0.
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Figure E2: Bath autocorrelation function in Eq. (2.2.11) for the system ∆0. The

real part Lr(t) is shown in the left column, while the imaginary part Li(t) is shown

in the right column.

ωi [cm
−1] ηi ωi [cm

−1] ηi ωi [cm
−1] ηi

894.721 0.40451 1387.116 0.08016 1647.429 0.02628

896.317 0.02330 1394.587 0.05200 1668.743 0.06586

896.992 0.56346 1399.680 0.01713 1742.873 0.01341

1196.354 0.03760 1401.092 0.01471 2029.095 1.00000

1224.083 0.03945 1417.037 0.15143 2120.524 0.01754

1224.913 0.02623 1440.097 0.13262 2209.949 0.11188

1371.448 0.01900 1476.080 0.01747 2247.822 0.03100

1378.602 0.04964 1526.981 0.02176

1380.610 0.04205 1640.040 0.01261

Table E1: Parameters ωi and ηi for the spectral density of the ∆0 system.
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Figure E3: Same as in Fig. E1 for the ∆1 system with the parameters listed in

Table E2.
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Figure E4: Same as in Fig. E2 for the ∆1 system.

ωi [cm
−1] ηi ωi [cm

−1] ηi ωi [cm
−1] ηi

924.621 0.75596 1434.032 0.25790 1631.351 0.02117

1097.607 0.08313 1444.806 0.18627 1641.230 0.01388

1198.301 0.06255 1450.638 0.03122 1677.504 0.01853

1283.421 0.02644 1475.318 0.02263 1685.615 0.01787

1377.072 0.02419 1476.021 0.02643 1729.551 0.07833

1381.279 0.02177 1479.673 0.02088 2074.106 1.00000

1386.237 0.03389 1479.980 0.01659 2284.401 0.02923

1395.702 0.04914 1509.545 0.08482 2994.687 0.00757

1401.446 0.01836 1512.527 0.04614

1417.221 0.02052 1624.030 0.03944

Table E2: Parameters ωi and ηi for the spectral density of the ∆1 system.
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Figure E5: Same as in Fig. E1 for the ∆2 system with the parameters listed in

Table E3.
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Figure E6: Same as in Fig. E2 for the ∆2 system.

ωi [cm
−1] ηi ωi [cm

−1] ηi ωi [cm
−1] ηi

953.148 0.45713 1365.141 0.02864 1477.189 0.07808

970.135 0.03208 1367.923 0.07584 1489.465 0.02090

1091.566 0.39745 1374.991 0.03784 1495.682 0.09020

1137.814 0.02413 1379.740 0.06068 1500.379 0.09176

1175.606 0.03867 1385.386 0.06757 1506.312 0.01842

1207.210 0.12678 1395.776 0.08758 1570.352 0.10501

1245.988 0.01780 1403.406 0.06543 1621.516 0.06173

1257.454 0.04460 1405.144 0.01674 1628.919 0.01411

1259.287 0.01942 1426.216 0.32719 1652.808 0.01301

1281.463 0.14037 1444.037 0.31282 1738.695 0.03018

1291.292 0.05185 1448.900 0.06284 2136.274 1.00000

1353.280 0.02612 1458.629 0.02131 2271.540 0.03444

1357.218 0.02420 1465.305 0.18154 2994.326 0.00859

1358.446 0.03741 1475.112 0.02150

Table E3: Parameters ωi and ηi for the spectral density of the ∆2 system.
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Figure E7: Same as in Fig. E1 for the ∆3 system with the parameters listed in

Table E4.
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Figure E8: Same as in Fig. E2 for the ∆3 system.

ωi [cm
−1] ηi ωi [cm

−1] ηi ωi [cm
−1] ηi

766.757 0.03358 1364.413 0.08089 1476.013 0.14449

848.597 0.05537 1366.994 0.08336 1486.124 0.01678

951.549 0.47964 1372.342 0.02991 1489.103 0.01759

1091.798 0.31361 1375.277 0.05300 1498.098 0.14660

1137.896 0.02044 1389.740 0.02626 1510.608 0.01670

1175.820 0.03120 1396.322 0.05578 1566.185 0.09121

1205.089 0.02028 1403.172 0.08758 1622.186 0.08802

1207.375 0.10488 1404.892 0.01817 1644.891 0.02184

1258.557 0.07299 1425.199 0.34798 1740.846 0.02218

1280.627 0.02052 1436.555 0.03286 2139.289 1.00000

1282.197 0.11293 1439.528 0.27928 2263.826 0.03584

1291.219 0.05732 1458.436 0.02276

1360.758 0.06634 1466.608 0.17776

Table E4: Parameters ωi and ηi for the spectral density of the ∆3 system.
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Figure E9: Same as in Fig. E1 for the ∆4 system with the parameters listed in

Table E5.



E. J(ω) and L(t) of the ∆N molecular heterostructures 179

-0.002

0

0.002

-0.002

0

0.002

0

0.04

-0.03

0

0

0.1

-0.1

0

0 50 100 0 50 100

L
r(

t)

γ = 200 cm-1

L
r(

t)
L

r(
t)

L
i(

t)
L

i(
t)

L
i(

t)

γ = 75 cm-1

γ = 5 cm-1

γ = 200 cm-1

γ = 75 cm-1

γ = 5 cm-1

t ∆4 t ∆4

150 150

Figure E10: Same as in Fig. E2 for the ∆4 system.

ωi [cm
−1] ηi ωi [cm

−1] ηi ωi [cm
−1] ηi

748.447 0.03826 1365.514 0.03368 1481.888 0.02142

847.369 0.11420 1374.033 0.05589 1483.887 0.08621

948.017 0.57614 1383.189 0.02133 1489.917 0.05559

1092.285 0.34105 1389.275 0.03650 1503.522 0.08403

1137.995 0.01948 1396.270 0.05532 1506.586 0.05574

1175.884 0.02815 1400.786 0.08908 1561.183 0.06573

1205.199 0.05222 1403.331 0.02398 1621.124 0.02861

1207.556 0.07702 1416.374 0.04338 1623.920 0.11413

1246.264 0.02895 1424.550 0.21579 1689.129 0.01762

1251.469 0.02423 1430.046 0.53203 2143.687 1.00000

1263.489 0.02157 1436.681 0.03141 2159.138 0.01508

1270.574 0.07160 1454.442 0.02755 2252.472 0.02775

1304.371 0.17739 1456.946 0.03904

1348.344 0.04144 1460.572 0.03515

Table E5: Parameters ωi and ηi for the spectral density of the ∆4 system.
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F Dissipative dynamics of the ∆4 system

This appendix presents the real-time dynamics of the ∆4 system, given in terms of

the population difference P (t), determined using the QUAPI scheme. Results are

determined by choosing a compromise between a large enough memory time (given

by a large K) and a small enough Trotter error (given by a small δt step). For

this particular system, an optimal parameter combination is difficult to find due to

the long-lived oscillatory correlations resulting from the large number of peaks at

frequencies ωi < ∆4. The results in this appendix illustrate the effect of N = 4 main

IR modes at energies below ~∆N and should be compared with those in Chap. 5

for N = 0, 1, 2, and 3.

The population difference P (t) is shown in Fig. F1 as a function of the damping

strength γ and for a fixed value γ = 250 cm−1. These results should be compared

with those in Figs. 5.1 and 5.2, respectively. In this case, sustained coherent oscil-

lations of the population difference result from the vibrational modes below ~∆N .

The resulting values for T1,4 and for Q4 as a function of the damping strength γ
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Figure F1: Time-dependent population difference P (t) for the ∆4 system as a func-

tion of the damping strength γ (top) and for a fixed value γ = 250 cm−1 of the

electron–vibration coupling (bottom).
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are shown in Fig. F2. Complementing the results in Table 5.1, it is obtained that

T1,4 = 4321, 1201, 575, 226, and 114 ns and Q4 = 2510, 696, 332, 118, and 63 for

γ = 5, 20, 45, 100, and 250 cm−1, respectively. These values indicate the coher-

ence times decrease with increasing coupling but for a fixed γ, the coherence times

increase with ∆N .
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Figure F2: Coherence times T1,4 (left) and quality factors Q4 (right) as a function

of the damping strength γ.

The evolution of the trace distance D (ρ1, ρ2) is shown in Fig. F1 as a function

of the damping strength γ and for specific values of γ. These results should be

compared with those in Figs. 5.4 and 5.5, respectively. In spite no oscillations are

seen in the trace distance for large γ values, its decay is the slowest due to the slow

dynamics of the vibrational bath resulting from the modes at frequencies ωj < ∆4.

The resulting non-Markovianity measure N is shown in Fig. F4 as a function of γ.

The population difference P (t) under the same weak field parameters as in Fig.

5.8 for N = 0-3, is shown in Fig. F5 for N = 4 and a fixed value γ = 200

cm−1 of the electron–vibration coupling. Square-wave oscillations in P (t) due to

population trapping are attained by the combination of large amplitude with slow

driving frequency, as illustrated in Fig. F6. The driving strength of µA = 10~∆4,

results in an electric field of 212.1×107 V/m, and a driving frequency of 9.3 THz. The

corresponding field intensity is 1194 GW/cm2. These values of the laser field, though

larger than those requierd for the other systems, are still achievable with quantum

cascade lasers. However, competing processes such as bond breaking or ionization

may occur at the required field for this system. The resulting non-Markovianity

measure N is shown in Fig. F7 as a function of γ for increasing driving strength A.



F. Dissipative dynamics of the ∆4 system 183

0

0.5

1

0

1

0
100

200

400
200

300

D
(ρ

1
,ρ

2
)

t ∆4 γ [cm-1]

0 200 400
t ∆4

0.0

0.2

0.4

0.8

1.0

D
(ρ

1
,ρ

2
)

0.6
γ = 150 cm-1

γ = 50 cm-1

γ = 250 cm-1
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of the damping strength γ (top) and for specific values of the electron–vibration

coupling as indicated (bottom).
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Figure F5: Time-dependent population difference P (t) at fixed γ = 200 cm−1 for

the ∆4 system with field parameters A = 0.1∆4 and Ω = 0.1∆4.
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Figure F6: Evolution of P (t) and D (ρ1, ρ2) for the ∆4 system at fixed γ = 5 cm−1

and field parameters A = 10∆4 and Ω = 0.1∆4.
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[180] S. Westenhoff, D. Paleček, P. Edlund, P. Smith, and D. Zigmantas, Coherent

picosecond exciton dynamics in a photosynthetic reaction center. J. Am. Chem.

Soc. 134, 16484 (2012).

[181] G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J.

Wen, R. E. Blankenship, and G. S. Engel, Long-lived quantum coherence in

photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci.

USA 107, 12766 (2010).

[182] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D.

Scholes, Coherently wired light-harvesting in photosynthetic marine algae at

ambient temperature. Nature (London) 463, 644 (2010).

[183] C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G.

Curmi, R. J. Silbey, and G. D. Scholes, Electronic coherence lineshapes reveal

hidden excitonic correlations in photosynthetic light harvesting. Nat. Chem. 4,

396 (2012).

[184] E. Harel and G. S. Engel, Quantum coherence spectroscopy reveals complex

dynamics in bacterial light-harvesting complex 2 (LH2). Proc. Natl. Acad. Sci.

USA 109, 706 (2012).

[185] V. Tiwari, W. K. Peters, and D. M. Jonas, Electronic resonance with anti-

correlated pigment vibrations drives photosynthetic energy transfer outside the

adiabatic framework. Proc. Natl. Acad. Sci. USA 110, 1203 (2013).

[186] N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and

H. F. Kauffmann, High frequency vibrational modulations in two-dimensional

electronic spectra and their resemblance to electronic coherence signatures. J.

Phys. Chem. B 115, 5383 (2011).

[187] A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga, and

M. B. Plenio, The role of non-equilibrium vibrational structures in electronic

coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113

(2013).

[188] N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, Origin of
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simulation of the environmental effects on FMO electronic transitions. J. Phys.

Chem. Lett. 2, 1771 (2011).

[219] J. Ridley and M. Zerner, An intermediate neglect of differential overlap tech-

nique for spectroscopy: Pyrrole and the azines. Theor. Chim. Acta 32, 111

(1973).

[220] A. Ishizaki and G. R. Fleming, On the adequacy of the Redfield equation and

related approaches to the study of quantum dynamics in electronic energy trans-

fer. J. Chem. Phys. 130, 234110 (2009).

[221] A. Ishizaki and G. R. Fleming, Unified treatment of quantum coherent and

incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy

equation approach. J. Chem. Phys. 130, 234111 (2009).
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