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"The sciences do not try to explain, they hardly even try to interpret,
they mainly make models. By a model is meant a mathematical

construct which, with the addition of certain verbal interpretations,
describes observed phenomena. The justification of such a

mathematical construct is solely and precisely that it is expected to
work - that is correctly to describe phenomena from a reasonably

wide area. Furthermore, it must satisfy certain aesthetic criteria - that
is, in relation to how much it describes, it must be rather simple."

— John von Neumann

"Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das
Besitzen sondern das Erwerben, nicht das Da-Seyn, sondern das

Hinkommen, was den grössten Genuss gewährt."

— Carl Friedrich Gauß

Dedicated to the memory of Ernstfried Thiel, who once planted the
seed of scientific curiosity into a boy’s mind.

1920 – 2004





A B S T R A C T

This work examines effects, which impact the transverse quality of
electron-beams in plasma-based accelerators, by means of theoretical
and numerical methods.

Plasma-based acceleration is a promising candidate for future par-
ticle accelerator technologies. In plasma-based acceleration, highly in-
tense laser beams or high-current relativistic particle beams are fo-
cused into a plasma to excite plasma-waves with extreme transverse
and longitudinal electric fields. The amplitude of these fields exceed
with 10− 100 GV/m the ones in today’s radio-frequency accelerators
by several orders of magnitude, hence, in principle allowing for ac-
cordingly shorter and cheaper accelerators based on plasma. Despite
the tremendous progress in the recent decade, beams from plasma
accelerators are not yet achieving the quality as demanded for piv-
otal applications of relativistic electron-beams, e.g. free-electron la-
sers (FELs).

Studies within this work examine how the quality can be opti-
mized in the production of the beams and preserved during the ac-
celeration and transport to the interaction region. Such studies can-
not be approached purely analytical but necessitate numerical meth-
ods, such as the Particle-In-Cell (PIC) method, which can model ki-
netic, electrodynamic and relativistic plasma phenomena. However,
this method is computationally too expensive for parameter-scans in
three-dimensional geometries. Hence, a quasi-static PIC code was de-
veloped in connection with this work, which is significantly more
effective than the full PIC method for a class of problems in plasma-
based acceleration.

The evolution of the emittance of beams which are injected into
plasma modules was studied in this work by means of theoretical and
the above numerical methods. It was shown that the beam parameters
need to be matched accurately into the focusing plasma-channel in or-
der to allow for beam-quality preservation. This suggested that new
extraction and injection-techniques are required in staged plasma-
acceleration concepts if the advantage of the short overall accelera-
tion distance is to be sustained. Such a novel extraction method with
tapered plasma-to-vacuum transitions was studied and found that
it does not only facilitate the extraction but also is indispensable if
beams need to be captured by beam-optics in order to be transported
e.g. to some interaction region.
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Z U S A M M E N FA S S U N G

In dieser Arbeit werden mit Hilfe von theoretischen und numerischen
Methoden Effekte untersucht, die in plasmabasierten Teilchenbeschleu-
nigern die transversale Elektronenstrahlqualität beeinflussen.

Die plasmabasierte Teilchenbeschleunigung ist ein vielversprechen-
der Kandidat für zukünftige Beschleunigertechologien. Dabei wer-
den entweder hochintensive Laserpulse oder relativistische Teilchen-
strahlen mit hohen Strömen auf Plasmen fokussiert, um Plasmawellen
mit extremen transversalen und longitudinalen Feldern zu treiben.
Diese Felder können mit 10− 100 GV/m um mehrere Größenordnun-
gen jene übersteigen, die in heutigen Radiofrequenzbeschleunigern
erzeugt werden, womit Plasmabeschleuniger prinzipiell entsprechend
kürzer und günstiger sein können. Obwohl im letzten Jahrzehnt be-
merkenswerte Fortschirtte in der Plasmabeschleunigung erzielt wur-
den, ist die Strahlqualität noch nicht ausreichend für zentale Anwen-
dungen von relativistischen Elektronenstrahlen, z.B. FELs.

Im Zusammenhang mit dieser Arbeit wurde deshalb untersucht
wie die Strahlqualität bei der Strahlerzeugung optimiert und während
der Beschleunigung und des Transports zum Interaktionsbereich er-
halten werden kann. Solche Studien können nicht rein analytisch
durchgeführt werden und benötigen numerische Ansätze wie die
PIC-Methode, die eine Beschreibung von kinetischen, elektrodynamis-
chen und relativistischen Plasmaphänomenen erlaubt. Allerdings sind
Simulationen mit dieser Methode zu rechenintensiv um z.B. Parame-
terstudien in dreidimensionalen Geometrien durchzuführen. Aus die-
sem Grund wurde in Verbindung mit dieser Arbeit ein quasi-statisches
PIC-Simulationsprogramm entwickelt, das eine Klasse von Problemen
der Plasmabeschleunigung deutlich effizienter modellieren kann.

In dieser Arbeit wird theoretisch und mit den o.g. numerischen
Methoden erforscht wie sich die Emittanz von Elektronenstrahlen
enwickelt, wenn diese extern in ein Plasmamodul eingekoppelt wer-
den. Dabei wurde gezeigt, dass die Strahlparameter akkurat auf den
fokussierenden Kanal im Plasmamodul angepasst sein müssen um
die Strahlqualität zu erhalten. Dies erlaubt den Rückschluss auf mod-
ular aufgebaute Beschleunigerkonzepte, dass neuartige Extraktions-
und Injektionsmethoden notwendig sind, wenn man den Vorteil der
kürzeren Beschleunigungsstrecke erhalten will. Solch eine neuartige
Extraktionsmethode mit speziell geformten Plasma-Vakuum-Übergän-
gen wurde untersucht, und gezeigt, dass diese nicht nur das Auskop-
peln erleichtert, sondern dass solche Methoden unerlässlich sind, wenn
Strahlen in Strahloptiken eingekoppelt werden z.B. um zum Anwen-
dungsbereich transportiert zu werden.
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I N T R O D U C T I O N

Advances in scientific understanding of nature rely on the construc-
tion of apparatuses which extend human perception in order to probe
physical processes on a wide range of time and length scales. In this
regard, synchrotron light sources are today’s scientific slow-motion
cameras and microscopes for the investigation of atomic and molecu-
lar processes in nature which occur on femtosecond time or nanome-
ter length scales. Processes on even shorter time and length scales are
analyzed by means of high-energy particle-colliders, which explore
subatomic structures and the attributes of fundamental interactions.

Synchrotron light sources and colliders are driven by relativistic
particle-beams which are provided by particle accelerators. Owing
to the reciprocal time-energy and space-momentum relations, a finer
resolution of features in time or space requires a higher energy or mo-
mentum of these particle beams, respectively. Modern conventional
accelerators achieve gradients of more than 35 MV/m (see e.g. [Lilje
et al., 2004]), but are ultimately limited by material breakdown to
gradients of about 100 MV/m. Hence, pushing the frontiers of fun-
damental research forward involves the development of ever larger
and more expensive accelerating machines when based on today’s
technology. The construction and funding of the latest generation of
such machines, e.g. the European X-Ray Free-Electron Laser (XFEL),
the Large Hadron Collider (LHC) or the International Linear Collider
(ILC), breached the limit of ventures which can be carried by individ-
ual national economies. It may be inferred that the funding and real-
ization of future endeavors in photon science and particle physics de-
pends on the development of novel cheaper acceleration techniques.

Particle accelerators are indispensable for a variety of applications
in modern medicine, industry and research. Low brilliance X-radiation
is widely used e.g. in X-ray crystallography, mammography, medical
computed tomography (CT) or airport security. High-brilliance X-ray
radiation, which offers important advantages over low-brilliance ra-
diation, is commonly produced in synchrotron light sources (such
as FELs). Moreover, proton and ion accelerators are used for cancer
treatments, accelerator driven subcritical reactors or nuclear transmu-
tation reactors and spallation sources for research purposes.

A promising concept for cheap and affordable future electron accel-
erators is provided by the plasma-based acceleration approach [Esarey
et al., 1996, 2009]. These methods exploit the extreme fields in plasma
waves, excited by highly intense laser pulses or high current charged
particle-beams, to transport and accelerate electron bunches to high
energies within short distances. The longitudinal electric fields in
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2 introduction

such plasma waves are on the order of 10-100 GV/m [Modena et al.,
1995], hence in principle allowing for accelerating devices which can
be by three orders of magnitude shorter than conventional acceler-
ators. Concepts using short laser pulses as drivers of the plasma
wave are called laser wakefield acceleration (LWFA) and methods em-
ploying short charged particle-beams as drivers are named plasma
wakefield acceleration (PWFA). The field of plasma-based accelerator
research has experienced a rapid development in the last decades,
culminating in the experimental production of ultra-relativistic elec-
tron beams with a narrow spectrum [Geddes et al., 2004; Mangles
et al., 2004; Faure et al., 2004] and of electron beams in the GeV
range within centimeter-scale distances [Leemans et al., 2006; Kim
et al., 2013; Wang et al., 2013] in LWFA. Energy gain of electrons by
more than 40 GeV within distances shorter than a meter in PWFA was
shown by Blumenfeld et al. [2007]. In addition, it was shown that
beams from plasma-based acceleration can produce bright radiation
during the acceleration process [Kneip et al., 2010] or can be used for
the generation of brilliant X-ray radiation in undulators [Fuchs et al.,
2009]. Not only will this development pave the way for the produc-
tion of brilliant X-ray generation in small-scale labs but also allow for
their application in hospitals, industry and university-scale photon
research.

Although plasma-based accelerators are on the verge of providing
beams suitable for some applications, electron beams, appropriate for
the generation of FEL-radiation or for the use in particle colliders, have
not been demonstrated yet. This is firstly owed to the high demands
of these applications in terms of beam stability and quality but also
due to the challenge to stage plasma acceleration modules, which
becomes necessary when energies beyond the ∼ 10 GeV scale need to
be obtained [Schroeder et al., 2010].

The beam-parameters primarily depend on the method of beam
generation and a large number of methods for plasma-based accel-
erators have been proposed, showing the capability to enhance the
stability and quality of the produced beams. A technique using the
plasma-wakefields for ionization of a dopand gas as well as for trap-
ping was proposed in correlation with the presented work [Martinez
de la Ossa et al., 2013]. The emittance of a beam is a pivotal figure of
merit for its quality. While the emittance is typically sufficiently small
for FEL operation during the production in plasma-based accelerators
with different injection techniques (see e.g. [Esarey et al., 2009]), the
emittance-preserving transport of the beams from the plasma cell to
the interaction point or to a subsequent plasma cell is highly challeng-
ing. Comprehensive theoretical, numerical and experimental studies
are necessary to understand and improve the beam transport meth-
ods in plasma-based acceleration.
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Progress in plasma accelerator research is vitally stimulated by the
use of numerical methods, which were, similarly as in other scientific
fields, established as a third pillar between theory and experiment.
Numerical studies on plasma accelerators are primarily conducted
using the Particle-In-Cell (PIC) technique, which enables a modeling
of the kinetic, relativistic and electromagnetic interactions of intense
laser beams or relativistic, high-current particle beams with plasmas.
Highly parallel PIC codes allow for the fully three-dimensional em-
ulation of plasma-based accelerators when running on modern su-
percomputers. However, the length-scales in such simulations show
a large disparity, with smallest resolved length-scales on the order
of micrometers and longest scales on the order of centimeters to me-
ters. This renders full PIC simulations computationally very expen-
sive and unsuitable for detailed studies or parameter scans in three-
dimensional geometries.

A significant mitigation of the computational costs is possible by
implementing a PIC scheme [Mora and Antonsen, 1996] based on the
quasi-static approximation [Sprangle et al., 1990b]. Such a scheme is
applicable, if the driver beam is evolving on much longer time-scales
than the plasma, and allows for an order-of-magnitude speedup for
a class of problems in PWFA, as demonstrated in the quasi-static PIC

code HiPACE [Mehrling et al., 2014]. While quasi-static PIC codes can-
not consistently simulate intrinsic injection methods in plasma-based
accelerators, they feature the exceptional capability of consistently im-
porting beams from full PIC codes during their propagation in plas-
mas.

Using the PIC method, the full variety of dynamics in plasma-based
accelerators can be modeled. Recently, the topic of the transport of
beam quality in plasma-based accelerators experienced an increasing
interest in such numerical, and in theoretical investigations. This led
to advances in the understanding and manipulation of the transport
of the transverse beam quality, e.g. in staged LWFA [Mehrling et al.,
2012], as discussed in the context of this dissertation. Such advances
are vital for the field of plasma-based acceleration in order to real-
ize the major leap forward into the domain of pivotal applications
e.g. FELs or particle colliders.

This work discusses progress on the numerical modeling of plasma-
based accelerators and reports on new insights into the transport and
preservation of the transverse beam quality in plasma-based acceler-
ators. It is structured as follows.

part i - theory
1 . theoretical basis

This chapter forms a comprehensive theoretical basis for the
discussions and studies in the following chapters.
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part ii - numerical methods
2 . particle-in-cell method

The principles of the particle-in-cell technique are outlined in
this chapter. This serves as a footing for the understanding of
the development of a derived code, described in the subsequent
chapter and for numerical studies performed in chapter 5.

3 . development of a quasi-static pic code
This chapter introduces a quasi-static PIC code for the efficient
modeling of plasma-wakefield accelerators. The physical basis,
numerical implementation, computational framework and par-
allel performance of this simulation code is discussed. It is of
particular interest for studies on the beam dynamics in PWFA,
such as performed in chapter 6.

affiliated publication : [Mehrling et al., 2014].

part iii - physical studies
4 . beam matching in plasma acceleration

This chapter introduces the general conditions for beam match-
ing in plasma-based accelerators in the linear regime and in the
blowout regime.

5 . emittance growth in staged lwfa
New insights into the transverse dynamics of electron beams
in staged LWFA are reported on in this chapter. It shows that
matching of beams into plasma-based acceleration stages is in-
dispensable for the preservation of the beam quality and pre-
dicts order-of-magnitude emittance growth in staged LWFA, if
the beams are not appropriately extracted, transported and in-
jected between the stages.

affiliated publication : [Mehrling et al., 2012].

6 . density-tapered beam extraction
The studies in this chapter address the effect of density tapered
plasma-to-vacuum transitions on the beam-quality transport dur-
ing the extraction. It demonstrates that adequate density taper-
ing facilitates the extraction of beams from a plasma stage. In
addition, investigations on the emittance evolution during the
extraction of realistic beams with significant energy spread from
PWFA are performed by means of PIC simulations. Results indi-
cate that an appropriate combination of plasma-to-vacuum tran-
sitions and a capturing optical lattice are crucial for the emit-
tance preservation during the beam extraction.

summary, conclusion and outlook
The physical studies are summarized and concluded, and an
outlook for anticipated progress on beam-quality preservation
in plasma-based acceleration is presented.



Part I

T H E O RY

1 . theoretical basis
Content: Basic definitions and equations of electrodynam-
ics. Properties of electromagnetic waves. Energy density
and intensity of electromagnetic waves. Dynamics of elec-
trically charged particles in electromagnetic fields. Defi-
nition and classification of plasma. Plasma model hierar-
chy - from microscopic to macroscopic picture. Plasma
waves excited by intense laser pulses and relativistic parti-
cle beams. Principles and attributes of plasma-based accel-
eration. Regimes of plasma-based acceleration. Relevant
phenomena in plasma-based acceleration. Figure of merits
for beam quality. Liouvilles theorem. Transverse dynamics
of beams in accelerators. Causes and mechanisms of emit-
tance change.





1
T H E O R E T I C A L B A S I S

1.1 basics of electrodynamics

Electrodynamics describes the interaction between electrically charged
particles and electromagnetic fields. From the viewpoint of modern
particle physics it constitutes the classical limit of quantum electro-
dynamics for low momentum- and energy-transfers and for a large
number of virtual and real photons [Jackson, 1998]. Amongst all fun-
damental interactions, it is the strongest infinite-ranged interaction,
which is the reason for the pervasiveness of electromagnetic phenom-
ena in nature. These span from electrostatic attraction and repulsion
of charged pieces of amber or the magnetostatic interaction between
lodestones to the electromagnetic induction in generators, the gener-
ation of electromagnetic waves in antennas and the transport of light
through different media. Observation of such phenomena eventually
led to the mathematical formulation in form of the Maxwell equa-
tions, which define the basis of electromagnetism and the Lorentz
force, which describes the dynamics of charged particles in the elec-
tromagnetic fields.

This work covers phenomena that are accurately described by, or
founded on classical electrodynamics (an exception is the quantum-
mechanical effect of ionization of atoms by virtue of external fields).

1.1.1 Basis of electromagnetism

1.1.1.1 Maxwell’s equations

The basis of the formulation of electromagnetism is the Maxwell’s equa-
tions, here in differential and microscopic formulation (see e. g. [Jack-
son, 1998]), The formulation of

electrodynamics
within this work is
done in the
Gaussian unit
system. However,
explicit values for
electromagnetic
quantities are given
in Si units.

∇ · E = 4πρ, (1.1a)

∇ · B = 0, (1.1b)

∇× E +
∂B
∂ct

= 0, (1.1c)

∇× B− ∂E
∂ct

=
4π J

c
, (1.1d)

where c is the speed of light, E and B are the electric and mag-
netic field, respectively, ρ represents the charge density and J the
current density. Maxwell’s equations are coupled, first-order partial
differential equations (PDEs). Equations (1.1a) and (1.1b) are time-
independent whereas Eqns. (1.1c) and (1.1d) are time-dependent. In

7
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general, equations (1.1a) and (1.1d) are inhomogeneous PDEs and
Eqns. (1.1b) and (1.1c) are homogeneous PDEs.

Equation (1.1a) results from the Gauss law and expresses, the fact
that electrical charge is a source of electrical field. The electrical fieldFor a more detailed

discussion of
Maxwell’s equations,

see e. g. Jackson
[1998] or Nolting

[2001].

is considered to be the source of the Coulomb force between stationary
charged particles. The fact that the magnetic field has no divergence
and the non-existence of magnetic monopoles (sources of magnetic
charge) is embodied in identity (1.1b). The third Maxwell’s equation
(1.1c) is a consequence of Faraday’s law of induction and Stokes’ the-
orem. Ampére’s law, together with Maxwell’s displacement current are
expressed in Eq. (1.1d). The magnetic field is considered to be the
source of Ampére’s force between electrical currents.

Combining the time derivative of equation (1.1a) with the diver-
gence of equation (1.1d) show, that the Maxwell’s equations entail
the charge continuity equation

∂ρ

∂t
+∇ · J = 0. (1.2)

The charge continuity equation states, that the change of the amount
of charge contained in a volume element must involve a correspond-
ing charge current through the surface of this volume element and
charge is therefore conserved in a closed system.

1.1.1.2 Electromagnetic potentials

Maxwell’s equations can also be expressed in terms of the scalar po-
tential Φ and the vector potential A. These potentials are constructed
to fulfil the homogeneous Maxwell’s equations, while the inhomoge-
neous Maxwell’s equations are transformed to second-order partial
differential equations (see e. g. [Nolting, 2001]). The potentials are re-
lated to the electric field E and magnetic field B according to

E = −∇Φ− ∂A
∂ct

, (1.3a)

and

B = ∇×A . (1.3b)

These identities contain degrees of freedom for the potentials, since
the fields E, B are invariant under the gauge transformation

A′ = A +∇χ , (1.4a)

Φ′ = Φ− ∂χ

∂ct
, (1.4b)

where χ is an arbitrary scalar field. The relation between fields and
potentials is confined by the choice of a gauge which removes these
redundancies.
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Popular gauge fixings are the Coulomb gauge and the Lorenz gauge.
The Coulomb gauge

∇ ·A = 0 , (1.5)

transforms (1.1a) to the electrostatic Poisson equation

∇2Φ = −4πρ . (1.6)

The Lorenz gauge, This gauge is named
after Ludvig Lorenz,
but is often called
Lorentz gauge due to
it’s nature of being
Lorentz invariant.

∂Φ
∂ct

+∇ ·A = 0 , (1.7)

has the properties, among others, of decoupling the partial differen-
tial equations of scalar and vector potential and of being Lorentz in-
variant (cf. e. g. [Nolting, 2001]). The Lorenz gauge is not "complete"
since it leaves a subset of gauge transformations which fulfill the three
equations (1.3a), (1.3b) and (1.7), as shown in the following.

1.1.2 Electromagnetic waves

1.1.2.1 Governing equations of electromagnetic waves in vacuum

In vacuum, i.e. if no charge or current densities are present on rele-
vant scales (ρ = 0, J = 0), all Maxwell’s equations are homogeneous. The explanations in

this section follow
Landau and Lifšic
[1976, ch. VI],
Nolting [2001] and
Fließbach [2005,
ch. V].

However, apart from the trivial solution E = B = 0 of the homoge-
neous Maxwell’s equations, non-zero solutions, called electromagnetic
waves, can be found. The attributes of such electromagnetic waves are
examined below.

After imposing the Lorenz gauge (1.7), the homogeneous Maxwell’s
equations become homogeneous wave equations

�Φ = 0 , (1.8a)

�A = 0 , (1.8b)

where the d’Alembert operator � = ∇2 − ∂2/∂ct2 was introduced. The
fact that the system has redundancies in addition to the gauge free-
dom is found by supposing the potentials A′ and Φ′ in Eqns. (1.4a)
and (1.4b) not to fulfill the Lorenz gauge condition, such that ∂Φ′/∂ct+
∇ ·A′ = f (r, t) 6= 0. This assumption yields with (1.7) the following
inhomogeneous wave equation for the gauge function

�χ = f (r, t) , (1.9)

The Lorenz gauge condition is hence fulfilled for any solution χ of
this equation. Furthermore, it is possible to add a solution Λ of the
homogeneous wave equation �Λ = 0 to a chosen gauge function
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χ which is a particular solution of the inhomogeneous wave equa-
tion, without violating the Lorenz gauge condition (1.7). Without dis-
rupting equations (1.3a), (1.3b) and (1.7) the potentials can thus be
changed according to the special subset of gauge transformations,

A′′ = A +∇Λ , (1.10a)

Φ′′ = Φ− ∂Λ
∂ct

, (1.10b)

where Λ must be a solution of the homogeneous wave equation. Thus,
to constrain these additional degrees of freedom, an additional gauge
condition can be chosen. In the case of the homogeneous Maxwell’s
equations (1.8a) and (1.8b), it is possible to choose ∂Λ/∂ct = −Φ′′,
since Φ′′ as well as ∂Λ/∂ct satisfy the homogeneous wave equation.
This results in the additional gauge condition Φ = 0; the equation,
governing electromagnetic waves in vacuum in the Lorenz gauge are,

�A = 0 , (1.11a)

∇ ·A = 0 , (1.11b)

Φ = 0 . (1.11c)

Equations (1.11a) and (1.11b) show, that two components of A are
independent with respect to each other, which is equivalent to two
independent forms of polarization of an electromagnetic wave.

1.1.2.2 Plane waves

The special case of electromagnetic waves which depend on one spa-
tial coordinate z only, called plane waves, is studied in the following.
The wave equation (1.11a) for the case of a plane wave then reduces
for any component g of A to

(
∂2

∂z2 −
∂2

∂ct2

)
g(z, t) = 0. (1.12)

The most general solution of this equation is given by [Landau and
Lifšic, 1976]

g(z, t) = g1(z− ct) + g2(z + ct), (1.13)

with g1 and g2 being arbitrary differentiable functions. The two func-
tions can be interpreted as waves, g1 propagating with velocity c in
the positive z-direction and g2 propagating in the negative z-direction.
For plane waves in vacuum, areas with ±z− ct = const have a con-
stant phase. From equation (1.11b), the component Az of a plane wave,
propagating in positive or negative z-direction is constant and can be
set to Az = 0, considering that constant potential values do not con-
tribute to the fields E and B. Such a wave with contributions of A
only in the plane transverse to the direction of propagation is called
a transverse wave.
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1.1.2.3 Plane monochromatic waves

A periodic electromagnetic wave with a single frequency ω is called a
monochromatic wave. For a monochromatic plane wave, equation (1.12)
reduces to

(
∂2

∂z2 +
ω2

c2

)
A(z, t) = 0, (1.14)

and solutions are given by (compare e. g. [Landau and Lifšic, 1976]) Solutions of
Eq. (1.14) are in
general
complex-valued.
However, since
observable quantities
are real-valued, it is
convenient to use
the real part of A
only.

A = Re
(

A0 ei(kz−ωt)
)

, (1.15)

where k = ω/c is the wave number in vacuum (the wave number in
a medium is given by k = ω/vph, where vph is the phase velocity).
The factor A0 is a constant complex vector with A0 ⊥ k and k = k êz.
The electric and magnetic field can be calculated by use of equations
(1.3a) and (1.3b)

E = Re
(

E0 ei(k·r−ωt)
)

, (1.16a)

B = Re
(

B0 ei(k·r−ωt)
)

, (1.16b)

with E0 = ikA0 and B0 = ik×A0. It can immediately be seen that the
electric field in such a wave is always perpendicular to the magnetic
field E ⊥ B and the electric and magnetic field are both perpendicular
to the propagation direction of the wave E ⊥ k, B ⊥ k, respectively.
Furthermore, the magnitudes of the electric and magnetic fields are
identical, such that

B =
k
k
× E. (1.17)

The separation between two consecutive points with the same phase
along a monochromatic wave in vacuum is given by the wavelength
λ = 2π/k = 2πc/ω.

1.1.2.4 Polarization

Electric and magnetic fields in plane waves are perpendicular to the
propagation direction. The form in which the transverse field compo- The discussion of

polarization here is
analogous to Landau
and Lifšic [1976].

nents oscillate is called polarization. The different types of polarization
are addressed in the following.

The vector A0 in equation (1.15) is, in general, complex and can
be written as A0 = d exp(−iα), where d = d1 + id2 is a complex
vector with real square d2 = |A0|2 = A0 · A0

∗, with A0
∗ connoting

the complex conjugate of the vector A0. The square of d is real and
the real and imaginary part of this vector must hence be orthogonal
d1 · d2 = 0. The real part can be chosen to lie in x-direction d1 = d1êx,
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while the imaginary part is chosen to be in positive or negative y-
direction d2 = ±d2êy. The components of the wave (1.15) are thus
rewritten as

Ax = Re
(

d1 ei(k·r−ωt−α)
)
= d1 cos(k · r−ωt− α), (1.18a)

Ay = Re
(

id2 ei(k·r−ωt−α)
)
= ∓d2 sin(k · r−ωt− α), (1.18b)

These equations specify possible field configurations in a plane elec-
tromagnetic wave, propagating in the positive z-direction and d1, d2

and α are arbitrary real constants, where d1 and d2 span the types of
polarization and α specifies the phase. The wave is polarized in the
x-direction for d1 = A0, d2 = 0, and in y-direction for d1 = 0, d2 = A0.
These cases are referred to as linear polarization (LP), and can be speci-
fied as A0 = A0êx, or A0 = A0êy. The transverse components Ax and
Ay are related with respect to each other through equations (1.18a)
and (1.18b) by

A2
x

d2
1
+

A2
y

d2
2
= 1. (1.19)

Hence, allowed field configurations lie on an ellipse. The wave has
an elliptic polarization for d1 6= d2 and d1 6= 0 6= d2 and a circular
polarization (CP) for d1 = d2 6= 0. Elliptic and circular polarization can
be regarded as a superposition of two linearly polarized waves, one
polarized in the x-direction and the other polarized in the y-direction.
A wave with circular polarization thus has an amplitude of A0 =

A0(êx ± iêy), where “+” stands for right- and “−” for left-circular
polarization [Meyer-ter Vehn et al., 2001].

1.1.2.5 Wave packets

The above discussion was treating monochromatic waves only. In re-
ality, electromagnetic waves always have a finite spectral width, and
can be viewed as a superposition of monochromatic waves. WavesThe discussion here

follows [Jackson,
1998, Ch. 7.8].

containing a bandwidth of frequency components can form a wave
packet of finite length. The length ∆z and bandwidth of wavenum-
ber components ∆k thereby comply with the restriction ∆z∆k ≤ 1/2
[Jackson, 1998, Ch. 7.8]. Hence, short wave packets contain a broad
distribution of wavenumbers and long, sine-like waves are almost
monochromatic.

The different frequency components of a wave packet travel at a
different phase velocities in dispersive media which has the following
implications for the wave packet. It propagates with the group velocity
[Jackson, 1998, Ch. 7.8]

vg =
dω

dk

∣∣∣∣
k0

, (1.20)
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where k0 is the central wavenumber. The group velocity determines
the speed at which the intensity envelope and the energy flux of the
wave travel.

The phase velocity of the wave is determined through

vph =
ω(k)

k
. (1.21)

It can exceed the speed of light in dispersive media. The dispersion
relation for electromagnetic waves in vacuum is given by

ω = ck . (1.22)

Hence, in vacuum, the speed of light is retrieved for both, the group
velocity and phase velocity of a light wave.

1.1.3 Field energy and intensity

The energy contained and transported by electromagnetic fields in The argumentation
in section 1.1.3
follows Nolting
[2001, chapter
4.1.4].

general and plane electromagnetic waves in particular is examined in
this section.

1.1.3.1 Poynting’s theorem

The energy conservation laws for electromagnetic fields are derived
from the analysis of the work performed by fields on electric charges.
The force from an electromagnetic field on a point particle with charge
q and velocity V is defined by the Lorentz force [Jackson, 1998]

F = q
(

E +
V
c
× B

)
. (1.23)

For a continuous charge density ρ(r, t) with velocity v(r, t), the Lorentz
force can be used to find the force density

f(r, t) = ρ(r, t)
[

E(r, t) +
v(r, t)

c
× B(r, t)

]
. (1.24)

When the field pushes the charge density by a distance dr it performs
the work f · dr. The mechanical power density is thus given by

f(r, t) · dr
dt

= ρ(r, t)E(r, t) · v(r, t) = J(r, t) · E(r, t). (1.25)

The magnetic field does not perform any work since it’s force is al-
ways directed perpendicular to the velocity v. The mechanical power
deposited by the electrical field in a volume V is thus given by

dW
dt

=
∫

V
dr J · E. (1.26)
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Replacing J according to the Maxwell’s equation (1.1d) and applying
the vector identity ∇ · (E×B) = B(∇× E)− E(∇×B) with equation
(1.1c) yieldsMaxwell’s equations

as well as derived
equations like the
Poynting theorem

here are all
expressed in terms of

the "microscopic"
field definitions.

dW
dt

= − c
4π

∫

V
dr
[

∂

∂ct

(
E2 + B2

2

)
+∇ · (E× B)

]
. (1.27)

This equation is a continuity equation for the energy in the electro-
magnetic field. This becomes more clear after identifying the energy
density of the electromagnetic field

w =
1

8π

(
E2 + B2) , (1.28)

and the Poyting-vector

S =
c

4π
E× B. (1.29)

Equation (1.27) can then be rewritten in the following differential
form, representing the Poynting’s theorem [Nolting, 2001]

∂w
∂t

+∇ · S = −J · E. (1.30)

Poynting’s theorem states that the local energy density of the elec-
tromagnetic field w changes with time according to the mechanical
power deposited into some charge density j · E and according to the
divergence of the energy flux density of electromagnetic field S.

1.1.3.2 Energy transport in plane monochromatic waves

When calculating the energy flux of a plane monochromatic wave,
only the time-averaged properties are relevant

C(t) =
1
T

∫ t+T

t
dt′C(t′), (1.31)

where T = 2π/ω is the time of one period. For the calculation ofFor a more detailed
discussion, see

Nolting [2001].
the energy density and the energy flux density, it can firstly be noted,
that equation (1.16a) implies

E2 = Re(E0)
2 cos2(ωt) + Im(E0)

2 sin2(ωt) =
1
2
|E0|2 , (1.32)

The time-averaged energy density of a plane monochromatic wave in
vacuum is thus with (1.28) and (1.17) given by

w =
1

8π

(
E2 + B2

)
=
|E0|2
8π

, (1.33)

and the time-averaged Poynting vector is obtained through (1.29)

S =
c

4π
E×

(
k
k
× E

)
=

c |E0|2
8π

k
k

. (1.34)
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The energy flux density of the electromagnetic wave is hence simply
given by the energy density propagating with velocity c in k-direction.
The magnitude of S is the intensity of the electromagnetic wave (con-
fer e. g. [Meyer-ter Vehn et al., 2001]),

I =
∣∣S
∣∣ = c |E0|2

8π
=

cπ

2
|A0|2

λ2 =
cπ

2
A2

0
λ2 ×





1 for LP,

2 for CP.
(1.35)

A circularly polarized wave (CP) with amplitude A0 has twice the This would be the
other way round if
LP was defined as a
superposition of two
CPs in 1.1.2.4.

intensity of a linearly polarized (LP) wave with amplitude A0. It is a
measure for the mechanical power per unit area which can be trans-
ferred by the electromagnetic wave to some medium.

Modern laser systems using the chirped pulse amplification (CPA)
technique [Strickland and Mourou, 1985] reach, by use of appropriate
focusing optics, intensities of far more than 1018 W cm−2 [Yanovsky
et al., 2008], which corresponds via equation (1.35) to electric field
amplitudes of more than 1010 V m−1 in SI units.

1.1.4 Particle dynamics in electromagnetic fields

The availability of lasers with ultra-high intensities and field ampli-
tudes raises the question if these fields can be harnessed for the ac-
celeration of electrons. The dynamics of electrons in highly-intense
electromagnetic waves is studied in this context. Moreover, this topic
is also crucial for a fundamental understanding of the dynamics of
plasma-electrons in highly intense laser fields.

1.1.4.1 General formalism of particle dynamics in electromagnetic fields

The Lagrangian function for a relativistic particle with charge q, mass
m, position r(t) and velocity v(t) = dr/dt = ṙ in externally prescribed
potentials Φ and A is given by [Jackson, 1998]

L(r, v, t) = −mc2

√
1− v(t)2

c2 +
q
c

v(t) ·A(r, t)− qΦ(r, t). (1.36)

Using the Euler-Lagrange equation [Arnold, 1989]

d
dt

∂L
∂v
− ∂L

∂r
= 0, (1.37)

together with the definition of the potentials (1.3a) and (1.3b), yields
the equation of motion

dp
dt

= q
(

E +
v
c
× B

)
, (1.38)

where p = γmv is the particle’s momentum, and γ = (1− v2/c2)−1/2

is the Lorentz factor. The canonical momentum is given by

Pcan =
∂L
∂v

= mv

√
1− v2

c2 +
q
c

A = p +
q
c

A. (1.39)
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The Hamiltonian H = v · Pcan − L is the Legendre transform of the
Lagrangian function [Arnold, 1989] and is constructed by expressing
the velocity through the canonical momentum in equation (1.39) to
find

H(r, Pcan, t) = c

√
m2c2 +

(
Pcan(t)−

q
c

A(r, t)
)2

+ qΦ(r, t) . (1.40)

The equations of motion are obtained from the Hamiltonian functionFor a more thorough
discussion, see
Arnold [1989].

by means of Hamilton’s equations

Ṗcan = −∂H
∂r

and ṙ =
∂H

∂Pcan
. (1.41)

Hamilton’s (1.41) equations and the Euler-Lagrange equations (1.37)
yield the same solutions for the particle’s phase-space trajectories and
are equivalent. The Euler-Lagrange equations are a set of n second-
order differential equations and Hamilton’s equations are a set of 2n
first-order differential equations, where n is the number of spatial
dimensions considered.

1.1.4.2 The relativistic threshold

The magnitudes of magnetic and electric field in an electromagneticThe argumentation
below follows

Meyer-ter Vehn
et al. [2001].

wave in vacuum are identical |E| = |B| and the dynamics of an elec-
tron with charge q = −e in such a wave is according to the Lorentz
force (1.38) dominated by the electric field as long as |v| � c and the
leading order dynamics in this case is defined by

dp
dt

= −eE. (1.42)

If the electron was at rest initially and the wave is either polarized
in the x-direction or circularly polarized, equations (1.3a) and (1.15)
yield for the electron momentum

u = a (1.43)

= a0 ×





cos(k · r−ωt− α)êx for LP ,

cos(k · r−ωt− α)êx ∓ sin(k · r−ωt− α)êy for CP .

where the normalized vector potential and normalized electron momentum

a =
eA

mec2 , a0 =
eA0

mec2 , (1.44)

u =
p

mec
= βγ , (1.45)

respectively, were introduced and β = v/c is the velocity normalized
to the speed of light. Equation (1.43) simply describes a harmonic
oscillation of the electron in the transverse plane, the quiver motion.
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The quiver momentum in a linearly polarized electric light field is
relativistic, when the amplitude of the light wave reaches a0 ∼ 1.

Intensity and normalized vector potential are through (1.35) related
by the equality

I0 =
cπ

2

(
a0mec2

eλ

)2

, (1.46)

such that the relativistic threshold a0 ' 1 is associated with an inten-
sity of I0 ' 1018 W cm−2 for λ ' 1µm [Meyer-ter Vehn et al., 2001]. As
mentioned before, intensities of today’s laser systems readily exceed
this value and can provide highly relativistic field amplitudes a0 � 1.
Of course, if a0 becomes comparable to 1, equation (1.42) does not
hold anymore and the effect of the magnetic field has to be taken into
account. This is done in the following.

1.1.4.3 Electron dynamics in plane electromagnetic waves

The relativistic dynamics of an electron acted upon by a plane elec-
tromagnetic wave can be derived analytically. It can first be noted, The derivation here

follows Meyer-ter
Vehn et al. [2001].

that the Lagrangian function for an electron acted upon by a plane
electromagnetic wave which travels in z-direction does not have any
dependence on transverse directions ∂L/∂r⊥ = 0. Hence, the Euler-
Lagrange equation (1.37) implies for the transverse canonical momen-
tum to be invariant The general

relationship between
such symmetries
and invariants is
addressed by the
Noether theorem
[Arnold, 1989].

d
dt

∂L
∂v⊥

=
dPcan,⊥

dt
=

d
dt

(
p⊥ −

e
c

A⊥
)
= 0 (1.47)

for this problem. Furthermore, the vector potential of a plane wave in
vacuum is invariant under a Gallilean transformation, i.e. A(z, t) =

A(z− ct). Hence, the following relation holds for the Lagrangian func-
tion,

−∂L
∂t

= c
∂L
∂z

= c
d
dt

∂L
∂vz

= c
dPcan,z

dt
= c

dpz

dt
, (1.48)

where the last equality is due to the fact that Az = 0 in a transverse
wave. With

∂L
∂t

= −∂H
∂t

= mec2 ∂γ

∂t
, (1.49)

the invariant quantity mec2γ − cpz = const is found. If the electron
was at rest initially, the above equations together imply

cpz = mec2(γ− 1), or equivalently uz = γ− 1 . (1.50)

Hence, with the equalities γ =
√

1 + u2
⊥ + u2

z , and a = a⊥ the equa-
tions of motion in normalized units give

u⊥ = γ
dr⊥
dct

= a, (1.51a)

uz = γ
dz
dct

=
a2

2
. (1.51b)
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For the solution of these equations of motion, it is convenient to intro-
duce the variable τ = t− z(t)/c, such that a(z− ct) = a(cτ) for the
plane wave. The derivatives in Eqns. (1.51a) and (1.51b) then trans-
form according to [Meyer-ter Vehn et al., 2001]

γ
d
dt

= γ
dτ

dt
d

dτ
= (γ− a2

2
)

d
dτ

=
d

dτ
, (1.52)

where γ = uz + 1 = a2/2 + 1 was used, and the equations of motion
reduce to

dr⊥
dτ

= ca, (1.53a)

dz
dτ

= c
a2

2
. (1.53b)

The light wave pulse is now assumed to be of linear polarization and
to have a box-shaped envelope

a =





a0 cos(ωτ)êx for 0 < τ < 2πN/ω ,

0 otherwise,
(1.54)

where N is the number of wave-cycles in the pulse. If the electron is
at position x(τ ≤ 0) = z(τ ≤ 0) = 0 initially, the trajectory is given
by [Meyer-ter Vehn et al., 2001]

x(τ) = ca0

∫ τ

0
cos(ωτ′)dτ′ =

ca0

ω
sin(ωτ), (1.55a)

z(τ) =
ca2

0
2

∫ τ

0
cos2(ωτ′)dτ′ =

ca2
0

8ω
(2ωτ + sin(2ωτ)) , (1.55b)

for 0 < τ < 2πN/ω, and x(τ) = 0 and z(τ) = ca2
0πN/2ω for τ ≥

2πN/ω. During the interaction, the electron experiences an average
drift with velocity

βz,d =
vz,d

c
=

dz
dct

=
1

cγ

dz
dτ

=
a2

2γ
, (1.56)

such that, in the specific case of a box-shaped laser envelope,

βz,d = 1− 1√
1 + a2

0/2
. (1.57)

After the passage of such a light pulse with a box-shaped temporal
envelope, the electron is at rest again, but shifted by a distance of
ca2

0πN/2ω in the propagation direction of the light pulse. The trajec-
tory of the electron is depicted in normalized units in Figure 1 for
this case.

It can be noted, that the average motion is directed along the z-axis
and scales with a2

0. The transverse motion in the x-direction scales
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Figure 1: Trajectory of an electron interacting with a plane light-pulse of
finite duration with N = 4 in normalized amplitudes.

with a0. Hence, for a0 � 1 the transverse motion dominates over the
longitudinal motion and vice versa for a0 � 1. This can be seen more
clearly for a light pulse with a Gaussian envelope

a = a0 exp

(
−τ2

τ2
d

)
cos (ωτ) êx, (1.58)

which traverses an electron at rest. Here, τd is the pulse duration.
Figure 2 shows the numerical solution of Eqns. (1.53a) and (1.53b)
for such a scenario. It can be seen that the electron predominantly
oscillates in the transverse plane for small field amplitudes, whereas
it is pushed in the propagation direction of the pulse as the amplitude
increases. However, there is no net energy gain of the electron by
virtue of this process and it is at rest after the pulse has passed.
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Figure 2: Trajectory of an electron interacting with a Gaussian light pulse
for ωτd = 20 in normalized amplitudes .

Plane electromagnetic waves cannot directly be used for the effi-
cient acceleration of electrons. This fact is expressed in the Lawson-
Woodward theorem [Lawson, 1979] [Palmer, 1982] which states, that
electrons do not receive a net energy gain in plane electromagnetic
waves under the following assumptions. (a) The interaction region
is infinite, (b) the interaction occurs in vacuum with no boundaries
present, (c) the electron is highly relativistic in the propagation di-
rection of the light wave (vz ' c), (d) no external fields are present,
(e) nonlinear effects can be neglected. Hence, at least one of these as-
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sumptions must be violated to allow for efficient acceleration (see the
discussion by Esarey et al. [2009, part I.B.]).

Instead of using the ultra-high electric fields in a highly intense
laser-pulse to accelerate electrons directly, a more promising approach,
as explicated within the scope of this work, focuses a highly intense
laser-pulse into a plasma and excites large amplitude plasma waves.
Electrons potentially get trapped in the plasma wave and gain high
energies. This approach violates the assumptions (a), (b) and (e) in
the Lawson-Woodward theorem and hence allows for efficient elec-
tron acceleration. The key idea is to first transfer the energy contained
in the laser-pulse to the plasma wave, which in turn transfers the en-
ergy by means of the fields carried by the wave to a set of charged
particles, which are placed in it.

1.2 properties of plasmas

Phenomena in plasma-based acceleration fundamentally depend on
the unperturbed state of the plasma as well as on the characteristic
length and time-scales and the type of the involved effects. Hence, a
basic understanding of the attributes of plasmas is vital when study-
ing plasma-based acceleration.

1.2.1 Plasma definition

The term plasma encompasses ionized matter with a wide range
of temperatures and densities and associated physical effects. How-
ever, ionized matter is not automatically a plasma and an appropriate
definition for a majority of the diverse manifestations of plasmas is
given by the following criteria. A plasma is a quasineutral accumula-
tion of charged (and neutral) particles which exhibits collective effects
(cf. [Chen, 2010]). The interpretation of the properties of quasineutral-
ity and exhibition of collective effects is given below.

1.2.1.1 Debye shielding and collective effects

An important feature of a plasma is its ability to shield out the po-Considerations here
follow Spatschek

[1990]. This
reference is also

recommended for
further reading.

tential Φ of a test particle with charge q which is inserted into the
plasma. Pictorially, this is caused by the oppositely charged plasma
particles which accumulate around the test charge. Instead of the
Coulomb-type dependency of the electrostatic potential in vacuum
Φ ∼ q/r, the potential in plasma decays asymptotically according to
Φ ∼ q/r exp(−r/λD). The characteristic decay length λD is called De-
bye length and is defined by the following equations [Spatschek, 1990]

1
λ2

D
=

1
λ2

D,e
+

1
λ2

D,i
, (1.59)
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where λD,e is the Debye length from the shielding by the plasma elec-
trons and λD,i from the ions. These contributions to the Debye length
for electrons (e) or single-charged ions (i) are given by

λ2
D,e,i =

kBTe,i

4πne,ie2 , (1.60)

where n is the particle density, T the temperature, and kB the Boltz-
mann constant. The temperature plays a role in the shielding proper-
ties of the plasma, since a strong thermal motion qualitatively allows
shielding particles to escape from the potential well, hence disrupting
the shielding. A larger plasma density implies a shorter Debye length,
since more plasma particles participate in the collective screening pro-
cess. A plasma with spatial dimensions much larger than the Debye
length L � λD is electrically neutral to an observer outside of the
plasma. Moreover, internally the plasma is considered quasineutral
on length-scales much larger than the Debye length.

Obviously, collective shielding can occur only, if the mean distance
between plasma particles ∼ n−1/3 is much smaller than the Debye
length. This argument yields the condition [Spatschek, 1990]

kBTe,i

n1/3e2 � 1 , (1.61)

for Debye shielding to take place. In other words, a Debye sphere
λ3

D4π/3 must contain a large number of charged particles to enable
quasineutrality and to allow for collective effects to occur. Plasmas ful-
filling this condition are called ideal plasmas, analogous to an ideal gas
in which interactions between particles can be neglected compared to
the thermal motion of the gas. The above requirement can also be
expressed by means of the plasma parameter

Λ =
4π

3
nλ3

D , (1.62)

with the constraint Λ � 1. Furthermore, this condition can also be
interpreted as the mean kinetic energy ∼ kBT dominating over the
mean potential energy∼ n1/3e2, permitting collective effects [Spatschek,
1990]. The criterion of quasineutrality (L� λD) is strongly related to
the existence of collective effects (Λ � 1). The characterization of a
plasma is completed in the following by a condition which addresses
the domination of collective over individual processes.

1.2.1.2 Time-scales of collective and individual processes

The considerations below aim at finding an estimation for the col-
lision frequency of the plasma constituents and comparison of this
frequency to characteristic frequencies in collective processes.
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The characteristic collective response time of the plasma to a pertur-
bation can be estimated in the following way (see [Spatschek, 1990]).
The mean kinetic velocity of a plasma particle is given by

vt =

√
kBT
m

, (1.63)

and the time-scale for the passage of a distance equal to the De-
bye length is τ = ω−1 = λD/vt. Characteristic response frequenciesFor a more detailed

derivation of the
plasma frequency
confer e. g. [Chen,

2010].

for the plasma electrons and single-charged plasma ions are hence
(cf. [Tonks and Langmuir, 1929])

ωpe =

√
4πnee2

me
and ωpi =

√
4πnie2

mi
, (1.64)

respectively. Ions have a much greater mass than electrons, with a ra-
tio of me/mi ≈ 5.49× 10−4 for a hydrogen plasma and less for ions
with larger nucleon number. Plasma frequencies of ions and electrons
therefore differ by at least two orders of magnitude. Hence, the total
plasma wavelength ω2

p = ω2
pe + ω2

pi (see [Spatschek, 1990]) is gener-
ally dominated by the quicker plasma electron response time, such
thatThis approximation

holds for all plasma
phenomena regarded

in this work. ωp ' ωpe =

√
4πn0e2

me
(1.65)

where n0 here and henceforth denotes the ambient plasma electron
density. This frequency defines the characteristic collective response-
time of a plasma when perturbed out of the equilibrium state. Plasma
electrons excited by an external force overshoot their initial position
and collectively oscillate around it at the plasma frequency as de-
scribed in 1.4.4.1.

Binary collisions between plasma constituents are typical examples
of individual phenomena. In order to assess the dominance of col-
lective over individual processes, the time-scales of the two need to
be compared. For this reason, a collision frequency is derived. It first
needs to be noted that elastic collisions between identical particles do
not significantly contribute to relevant individual-event-driven effects
like particle diffusion. This is due to the fact that identical particles
only exchange trajectories during the collision process, so that the fi-
nal state of the indistinguishable particles, long after the collision oc-
curred, is identical to the final state without the collision taking place.
However, the elastic collision of unlike particles with a large mass
disparity causes diffusion, because the momentum transfer between
the different particle species results in a blowup of the phase-space
volume of the individual plasma constituents [Robson, 2006; Chen,
2010].

The following examines the Coulomb collisions between electrons
with charge −e and single-charged ions with charge e, which, due
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to their low temperature and large inertia, are assumed to be at rest.
The differential scattering cross section of this process is given by the
Rutherford formula [Povh et al., 2008]

dσ

dΩ
=

(
e2

4Ekin sin2 θ
2

)2

, (1.66)

where Ekin is the kinetic energy of the incident electron (Ekin ≈ v2me/2
for nonrelativistic velocities) and θ is the deflection angle. The aver-
age cross section for momentum transfer by virtue of this process,
which is the relevant measure for diffusion effects, is given by [Rob-
son, 2006]

σm =
∫
(1− cos θ)dσ

=
∫ ( dσ

dΩ

)
(1− cos θ)dΩ

= 2π
∫ π

0

(
dσ

dΩ

)
(1− cos θ) sin θdθ .

(1.67)

From equations (1.66) and (1.67) it can be seen that the momentum
transfer cross section is dominated by small-angle (θ � 1) contri-
butions. Although individual large-angle deflections result in greater
momentum transfers, deflections by small angles are much more prob- This is the primal

argumentation for
the Fokker-Planck
approach.

able and therefore dominate the average momentum transfer. Expand-
ing (1.67) in the small angle limit yields

σm ' π

(
2e2

v2me

)2 ∫ θmax

0
θ−1dθ . (1.68)

The Rutherford scattering cross section used for the derivation for this
formula assumes a Coulomb potential of the target ion. However, as
discussed previously, the Coulomb potential in a plasma is shielded
off exponentially at distances larger than the Debye length. Larger
distances of the electron to the ion during the scattering process, or
more accurately a larger impact parameter, implies smaller deflection
angles. Hence, to account for Debye shielding, a lower cutoff for the
deflection angles θmin can be introduced, such that

σm ' π

(
2e2

v2me

)2

log
(

θmax

θmin

)
. (1.69)

The last term in the above equation is called the Coulomb logarithm and
is commonly approximated by log(θmax/θmin) ≈ log(Λ) [Spatschek,
1990; Chen, 2010]. It expresses the domination of more probable events
with small deflection angles over the rare large deflection angle events
for the average momentum transfer.

The collision frequency for momentum transfer is given by the
cross section multiplied by the target density and the average elec-
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tron velocity νm = σmniv. Plugging the approximation (1.69) into this
relation and given that ni = n0 for single charged ions yields

νm ≈
4πn0e4

v3m2
e

log (Λ) . (1.70)

This collision frequency finally allows a comparison of frequencies of
collective and individual processes [Spatschek, 1990]

ωp

νm
≈ Λ

log(Λ)
≈ Λ� 1 . (1.71)

The condition for a dominance of collective effects over individual
(collisional) effects is thus also related to the plasma parameter being
large compared to unity.

1.2.2 Plasma classification

1.2.2.1 Ideal and non-ideal plasmas

Important plasma parameters, as the above introduced, depend on
the temperature and density of the plasma. The plasma frequency
scales according to ωp ∼ n1/2

0 , the Debye length has the proportion-
ality λD ∼ (Te/n0)1/2 and the plasma parameter has the dependen-
cies Λ ∼ n0(Te/n0)3/2. Hence, the large variety of plasmas can be
characterized by their densities and temperatures. Such a classifica-
tion is depicted in Figure 3. The line, separating ideal and non-ideal
plasma refers to the threshold when the left term in equation 1.61
is equal to one. The density of plasma used for the acceleration of
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solar centerelectron-gas in metal

gas discharges
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Figure 3: Plasma classification (compare [Gibbon, 2005]). The red line refers
to the threshold when the left term in equation 1.61 is equal to
one.
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electrons ranges from 1015 to 1020cm−3. The gas is photo-ionized by
laser-pulses, which heat the plasma-electrons during and after the
ionization process to temperatures of 10 to 1000 eV [Durfee et al.,
1995]. Such photo-ionized laser-plasma is, as seen in Figure 3, an ideal
plasma with a plasma parameter Λ spanning values from 103 − 109.
Collisions between the plasma species and related effects are negligi-
ble for plasmas regarded in this work and do not affect the collective
phenomena e. g. the excitation of plasma waves.

1.2.2.2 Electromagnetic waves in plasmas - underdense and overdense plas-
mas

Electromagnetic waves propagating in a plasma follow the dispersion The following
considerations are in
line with Chen
[2010, Chapter
4.12].

relation [Chen, 2010]

ω2 = ω2
p + c2k2 , (1.72)

where ω is the wavelength and k the wave number of the light pulse.
The phase velocity, equation (1.21), of such a light wave in a plasma
is greater than the speed of light in vacuum

v2
ph =

ω2

k2 = c2 +
ω2

p

k2 > c2 . (1.73)

The group velocity of the pulse in a plasma, defined by equation
(1.20), is smaller than the speed of light, with

vg =
dω

dk
=

c2
√

ω2
p/k2 + c2

=
c2

vph
, (1.74)

since the phase velocity is greater than c.
The dispersion relation (1.72) has several implications for the prop-

agation of a light wave with frequency ω in a plasma. Firstly, for a
decreasing plasma density n0 with ωp ∼ n1/2

0 , the expected disper-
sion relation of a light wave in vacuum is asymptotically recovered.
However, when increasing the plasma frequency ωp towards ω, the
dispersion starts to differ from a vacuum-like dispersion. This can be
seen when rearranging the dispersion relation, so that

k =

√
ω2 −ω2

p

c2 . (1.75)

The wave number k decreases for increasing n0 and finally is zero for
ωp = ω at a critical plasma density of

nc =
ω2me

4πe2 . (1.76)

For even greater plasma densities, equation (1.72) cannot be fulfilled
for a real value of k. Electromagnetic waves can therefore not propa-
gate in a plasma with such densities. Plasma with densities above the
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critical density are called over-dense plasma and plasma with densities
well below nc are called under-dense plasma. Light waves with frequen-
cies of ω ' 2× 1015 Hz (e. g. as produced in Ti-sapphire lasers) are
associated to critical densities of nc ' 2× 1021 cm−3. This work ad-
dresses only the physics of under-dense plasmas.

The group velocity of a light packet in an underdense plasma (ω �For a detailed
discussion see

[Decker and Mori,
1994].

ωp), from equations (1.73), (1.74) and (1.75), is

vg = c

√
1−

(ωp

ω

)2
. (1.77)

As ωp increases, the group velocity of a light packet decreases. When
the plasma density approaches zero, the group velocity approaches
the speed of light, as expected.

For over-dense plasma, equation (1.75) can be written as k = i|ω2
p−

ω2|1/2/c. The spatial dependence of the light wave is given by exp(ikz)
(see 1.15) and the imaginary wave number hence implies an exponen-
tial decay of the wave amplitude with the characteristic decay length,
the skin depth, |k−1| = c/(ω2

p − ω2)1/2. Although only having phys-
ical meaning as a characteristic attenuation length in an over-dense
plasma, the term "skin-depth" will be used in the present work to de-
fine a characteristic length-scale in acceleration of electrons in under-
dense plasma with the asymptotic definition k−1

p := c/ωp.

1.3 mathematical description of plasmas

1.3.1 Model hierarchy

After the discussion of the definition and general properties of a
plasma, the focus now lies on the mathematical description of plasma.
A plasma consists of a large number of charged particles and the el-
ementary approach considers the motion of each single particle in
the fields of all other particles. While being rigorous, this microscopic
picture is in most cases of no practical interest although it serves as a
starting point for the kinetic picture. As mentioned before, the plasma
is dominated by collective effects and it is sufficient to regard the
statistical averages of the ensemble of plasma particles. Furthermore,
a large spectrum of plasma phenomena can be accurately described
by the more simplified macroscopic picture which follows from the ki-
netic picture when only the (momentum) moments are relevant. The
hierarchy of these models can be seen in Figure 4.

This work will make use of the kinetic and the fluid picture of plas-
mas. In order to understand which approximations these pictures in-
volve and to make sure the model used is appropriate for the descrip-
tion of a given phenomenon, a short derivation from the microscopic
to the kinetic picture and from the kinetic to the macroscopic picture
will be presented in the following.
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Microscopic picture:!
Klimontovich equation

Kinetic picture:!
Boltzmann equation

Macroscopic picture:!
Fluid equations

statistical average

velocity moments

Figure 4: Plasma model hierarchy from microscopic to macroscopic picture
(confer [Gibbon, 2005]).

1.3.2 Microscopic description

In 1.1.4, the dynamics of single particles in externally prescribed fields This derivation
follows Nicholson
[1983, ch. 3].

was addressed. This can be used as a footing for the description of
the large number of charged point-like particles in a plasma. How-
ever, the place of external fields is now taken by self-consistent fields,
whose sources are the charges and currents of the particles itself (and
external fields).

The charge and current density of the plasma-electrons and all ion
species in this microscopic picture is given by

ρm(r, t) = ∑
s

qs

∫
dp f m

s (r, p, t) , (1.78a)

Jm(r, t) = ∑
s

qs

∫
dp v f m

s (r, p, t) , (1.78b)

v =
p

ms
√

1 + (p/msc)2
, (1.78c)

where the subscript s denotes the species, and qs and ms are the
charge and mass of the particle species, respectively. The quantity f m

s
here stands for the microscopic time-dependent density distribution
in six-dimensional phase space of a given species with Ns particles

f m
s (r, p, t) =

Ns

∑
i=1

δ(r− Ri(t)) δ(p− Pi(t)) , (1.79)

with δ denoting the Dirac delta function and Ri and Pi refer in this The differentiation
between Lagrangian
and Eulerian
quantities also plays
an integral role in
the numerical PIC
method.

context to the single particle position and momentum. Within this
derivation, the capitalised position and momentum are Lagrangian
quantities which move with the particles, whereas r and p refer to
the coordinates in 6D phase space. Fields, current or charge densities
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are on the other hand of Eulerian type. The microscopic field configu-
rations Em(r, t) and Bm(r, t) are then obtained by means of equations
(1.1a)-(1.1d) and the equations of motion for the single particles read

dRi

dt
= Vi(t) , (1.80a)

dPi

dt
= qsE(Ri(t), t) +

qs

c
Vi(t)× B(Ri(t), t) , (1.80b)

where

Vi =
Pi

ms
√

1 + (Pi/msc)2
, (1.81)

and the term on the right-hand side of equation (1.80b) expresses the
Lorentz force (1.38), imposed on the particle.

1.3.2.1 Klimontovich equation

Equations (1.78a) to (1.80b) serve as a basis for the formulation of
the exact evolution of the plasma. The time derivative of the particle
density gives [Nicholson, 1983]

∂ f m
s (r, p, t)

∂t
=−

Ns

∑
i=1

∂Ri

∂t
∂

∂r
δ(r− Ri(t)) δ(p− Pi(t))

−
Ns

∑
i=1

∂Pi

∂t
∂

∂p
δ(r− Ri(t)) δ(p− Pi(t)) .

(1.82)

Partial and total temporal derivative of Ri(t) or Pi(t) are identical and
equations (1.80a) and (1.80b) can be plugged into (1.82) to give

∂ f m
s (r, p, t)

∂t
= −v · ∂

∂r

Ns

∑
i=1

δ(r− Ri(t)) δ(p− Pi(t)) (1.83)

− qs

[
Em(r, t) +

v
c
× Bm(r, t)

]
· ∂

∂p

Ns

∑
i=1

δ(r− Ri(t)) δ(p− Pi(t)) .

The sums over the delta functions on the right hand side of (1.83) are
identical to the particle density (1.79) and incorporation this finding
yields the Klimontovich equation [Nicholson, 1983]

∂ f m
s (r, p, t)

∂t
+ v · ∂ f m

s (r, p, t)
∂r

+ qs

(
Em(r, t) +

v
c
× Bm(r, t)

)
· ∂ f m

s (r, p, t)
∂p

= 0 .
(1.84)

This formula includes the equations of motion of all Ns particles
and evolves the particle distribution along the single particle trajec-
tories, which are the mathematical characteristics of the partial dif-
ferential equation (1.84) [Callen, 2006]. The Klimontovich equation
provides in combination with the Maxwell equation an exact classical
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description of the evolution of the various plasma species (neglecting
quantum-mechanical effects). From a known initial state f m(r, p, t =
0) = ∑s f m

s (r, p, t = 0), the system evolves completely determinis-
tic according to (1.84). Discrete particle effects like classical radiation The radiation

emitted by
relativistic electrons
in plasma-based
acceleration is of
interest.

and elastic scattering are reproduced accurately by the Klimontovich-
Maxwell system.

However, such an approach is usually impracticable and the indi-
vidual particle information is often not of interest. A plasma is dom-
inated by collective effects and a useful approach for a mathematical
description of a plasma should reflect this by regarding only the av-
erage properties of the plasma. Consideration of only average prop-
erties of the plasma constitutes the transition from the microscopic to
the kinetic picture, which is outlined in the following.

1.3.3 Kinetic description

1.3.3.1 Statistical averaging

Instead of retaining the individual discrete particle information by
use of the Klimontovich equation, a widely used and more practi-
cable approach addresses the evolution of the statistical averages of
the particle ensemble only. Although resulting from averaging of the
microscopic particle description, it still features information and phe-
nomena related to the motion of charged particles, and is hence also
considered a kinetic description of the plasma. In the following, a A rigorous

formulation of
ensemble averaging
is found e. g. in
Spatschek [1990].

heuristic interpretation of statistical averaging is illustrated (inspired
by [Nicholson, 1983; Spatschek, 1990; Callen, 2006]).

When reviewing the latter considerations, it is noted that the Klimon-
tovich equation (1.84) governs the evolution of the discrete particle
distribution (1.79), which tells whether or not a particle populates a
given position in phase-space at a given time. To obtain a smooth dis-
tribution function, the microscopic particle distribution is averaged
over a small volume ∆V = ∆x ∆y ∆z ∆px ∆py ∆pz in six-dimensional
phase space. The edge lengths should thereby be much larger than
the average particle spacing in phase-space, i.e. ∆x � n−1/3 in config-
uration space and ∆px � msvt n−1/3 λ−1

D in momentum space [Callen,
2006]. This is in order to guarantee averaging over a large number of
particles and a low fluctuation of average particle number in the vol-
ume. Moreover, the spatial edge length should be shorter than the
Debye length ∆x � λD to allow a description in terms of collective
effects on or below the Debye scale. These constraints can always be
fulfilled, since an edge length with n−1/3 � ∆x � λD is easily found
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in a plasma. The statistical average of the distribution function can
now be defined by [Callen, 2006]

〈 f m
s (r, p, t)〉 := lim

n−1/3�∆x�λD

1
∆V

∫

∆V
drdp f m

s (r, p, t)

= lim
n−1/3�∆x�λD

∫
∆V drdp f m

s (r, p, t)∫
∆V drdp

.
(1.85)

The averaged particle distribution so obtained has units of particles
per phase-space volume and characterizes the smoothed attributes
of the plasma species s. The error associated with performing this
averaging is represented by δ f m

s = f m
s − 〈 f m

s 〉 with vanishing average
〈δ f m

s 〉 = 0. In contrast to 〈 f m
s 〉, the quantity δ f m

s incorporates the
discrete particle nature of the plasma.

Not only the microscopic distribution function features the discrete
particle nature but also the fields, and charge and current densities,
respectively. For a consistent averaged description of the plasma these
quantities also require averaging

Em = 〈Em〉+ δEm , Bm = 〈Bm〉+ δBm ,

Jm = 〈Jm〉+ δJm , ρm = 〈ρm〉+ δρm ,
(1.86)

with all averages of the errors also vanishing 〈δEm〉 = 〈δBm〉 =

〈δjm〉 = 〈δρm〉 = 0. Plugging the above expressions (1.86) into the
Klimontovich equation (1.84) and averaging of the complete equation
yields [Callen, 2006]

∂ 〈 f m
s 〉

∂t
+ v · ∂ 〈 f m

s 〉
∂r

+ qs

(
〈Em〉+ v

c
× 〈Bm〉

)
· ∂ 〈 f m

s 〉
∂p

= −qs

〈(
δEm +

v
c
× δBm

)
· ∂δ f m

s
∂p

〉
.

(1.87)

The term on the right hand side persists, because the average of the
product of the error quantities is in general not zero. It expresses
effects caused by the graininess of the particle distributions and mi-
croscopic fields, such as elastic Coulomb collisions. The other terms
represent the collective plasma behavior which will be studied in the
following.

1.3.3.2 Vlasov equation

By identifying the fundamental particle distribution function with the
average of the microscopic distribution function in (1.87), fs(r, p, t) =Equation (1.88) is

not the Boltzmann
equation since the

right hand side is the
Coulomb collision

operator and not the
Boltzmann collision

operator (c.f. [Callen,
2006]).

〈 f m
s (r, p, t)〉, and by identifying E = 〈Em〉 and B = 〈Bm〉 as the

smoothed fields, the plasma kinetic equation,

∂ fs

∂t
+ v · ∂ fs

∂r
+ qs

(
E +

v
c
× B

)
· ∂ fs

∂p
= C( fs) , (1.88)

is obtained from equation (1.87). The term C( fs) represents the Coulomb
collision term on the right side of (1.87).
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Large plasma parameters Λ � 1 imply a domination of collective For more thorough
discussion see
[Nicholson, 1983;
Spatschek, 1990;
Callen, 2006].

effects over collisional effects, as shown in 1.2.1.2. The left side of
equation (1.88), accounting for collective plasma effects, can thus as-
sumed to be Λ times greater than C( fs), representing discrete particle
effects. Moreover, plasma phenomena regarded in this work occur on
time-scales much quicker than the mean time between collisions, and
the assumption of a collisionless plasma C( fs) ' 0 is thus a good
approximation. The collisionless plasma kinetic equation is called the
Vlasov equation

∂ fs

∂t
+ v · ∂ fs

∂r
+ qs

(
E +

v
c
× B

)
· ∂ fs

∂p
= 0 , (1.89)

or equivalently, since ∇p · E = ∇p · (v× B) = 0 See A.1.1.

∂ fs

∂t
+∇r · (v fs) +∇p ·

[
qs

(
E +

v
c
× B

)
fs

]
= 0 , (1.90)

and is of fundamental importance in plasma physics and for the ba-
sis of this work. The Vlasov equation is also named the collision-
less Boltzmann equation. It is connected with the Maxwell equations
(1.1a)-(1.1d) through the charge and current density,

ρ(r, t) = ∑
s

qs

∫
dp fs(r, p, t) , (1.91a)

J(r, t) = ∑
s

qs

∫
dp v fs(r, p, t) . (1.91b)

The Maxwell-Vlasov system forms a closed set of equations. It should
be noted that the Vlasov equation not only neglects the discrete par-
ticle effect of collisions, but also the classical discrete particle radia-
tion, since (1.91b) constitutes only a smoothed current density. Due
to the neglect of collisions, the Vlasov equation is time-reversible and
its solutions follow the collisionless particle trajectories (characteris-
tics) in phase-space. The time-reversibility of solutions of the Vlasov
equation implies conservation of entropy and incompressibility of the
phase space volume occupied by the particle distribution function
[Callen, 2006].

1.3.4 Macroscopic or fluid description

Many phenomena in plasmas can be analyzed by regarding the plasma For a more detailed
discussion see
[Nicholson, 1983;
Callen, 2006].

as a fluid e.g. a composition of electron and ion fluid (two-fluid
model). This assumption is particularly valid, if plasma particles in a
given spatial region have only a small thermal velocity spread around
a macroscopic velocity. Governing quantities in such a fluid picture
are functions of three-dimensional configuration space and time only,
and are obtained by forming momentum moments of the particle dis-
tribution function. This approach has the advantage of being more
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simple than the Vlasov method but neglects momentum-dependent
effects.

The most important momentum moments are the spatial particle-
density, fluid-momentum and fluid-velocity distributions

ns(r, t) =
∫

dp fs(r, p, t) , (1.92a)

ps(r, t) =
1
ns

∫
dp p fs(r, p, t) , (1.92b)

vs(r, t) =
1
ns

∫
dp v fs(r, p, t) . (1.92c)

In contrast to the Lagrangian particle velocity or momentum, the
above velocity and momentum are Eulerian fluid quantities. When us-
ing these definitions and integrating the Vlasov equation (1.89) over
all momentum space, the density continuity equation,

∂

∂t
ns +∇r · (nsvs) = 0 , (1.93)

is obtained. Here, fs was assumed to decay to zero outside the re-
gion of interest. This is the first fundamental fluid equation and ex-
presses the temporal change of ns, assuming that nsvs is known. A
second fundamental fluid equation is found when multiplying the
Vlasov equation with p from the left and integrating (by parts) over
all momentum space, yielding the fluid force equation for species sSee detailed

calculation in A.1. [Nicholson, 1983],

∂

∂t
(nsps) +

[
∇r ·

(∫
dp (vpᵀ fs)

)]ᵀ
= ns qs

(
E +

vs

c
× B

)
, (1.94)

where abᵀ is the outer product (in contrast to the inner product aᵀb ≡
a · b) of the vectors a and b and the result is a 3× 3 matrix. It can
be seen that the time-derivative of nsps depends on a higher-order
moment.

When assuming the plasma to be cold, with fs(r, p, t) = ns(r, t) δ(p−
ps), equation (1.94) can be rewritten as follows

∂

∂t
(nsps) + [∇r · (nsvsp

ᵀ
s )]
ᵀ
= ns qs

(
E +

vs

c
× B

)
. (1.95)

Application of the product rule for the first term on the left hand side
and exploiting the identity (∇ · (abᵀ))ᵀ = b(∇ · a) + (a · ∇)b yields

ns
∂ps

∂t
+ ps

∂ns

∂t
+ ps (∇r · (nsvs)) + (nsvs · ∇r) ps

= ns qs

(
E +

vs

c
× B

)
.

(1.96)

Plugging the density continuity equation (1.93) times ps into equation
(1.96) finally yields the fluid momentum equation

∂ps

∂t
+ (vs · ∇r) ps = qs

(
E +

vs

c
× B

)
, (1.97)
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where the particle density ns cancels out. The left hand side of equa-
tion (1.97) can also interpreted from the viewpoint that the temporal
change of the momentum of a fluid element dps/dt is composed of
the change of the fluid momentum at a fixed point in space ∂ps/∂t
and the change of the fluid momentum along the flux direction (vs ·
∇)ps. Equations (1.93) and (1.97) will be used to study the behavior of
plasma electrons when traversed by intense laser beams or relativistic
charged particle beams.

The above method of deriving mean properties of the particle sets
and their temporal evolution will be described in a more general con-
text in the following.

1.3.5 Plasma kinetic theory

1.3.5.1 Moment approach

Explicit solutions of the Vlasov equation (1.89) for non-trivial prob-
lems are in general difficult to find. However, often, e.g. in the above
fluid description, the knowledge of a number of moments of the parti-
cle distribution function is sufficient. A method to obtain the time-
dependence of such moments, called the moment approach, was al-
ready implicitly used in the derivation of the fluid equations. The
following outlines the moment approach in a more general context.

If one is interested, for example, in the moment

〈Φ(r, p)〉 = 1
N

∫
drdp Φ(r, p) f (r, p, t), (1.98)

with

N =
∫

drdp f (r, p, t), (1.99)

and its temporal evolution, the following procedure is performed.
First, the Vlasov equation is multiplied with the quantity Φ(r, p) to
obtain

Φ(r, p)
∂ f
∂t

+Φ(r, p)
(

v · ∂ f
∂r

)
+Φ(r, p)

[
q
(

E +
v
c
× B

)
· ∂ f

∂p

]
= 0 .

(1.100)

Integration of the first term and integration of the other terms, under
the assumption of f (r, v, t) being an integrable function, yields the
moment equation

d 〈Φ〉
dt

=

〈
v · ∂Φ(r, p)

∂r

〉
+ q

〈(
E +

v
c
× B

)
· ∂Φ(r, p)

∂p

〉
. (1.101)

It can be seen that the left hand side of (1.101) depends on other
moments. Repetition of this procedure for the moments on the right
hand side, yields, in general, an infinite chain of moment equations.
This chain can only be truncated and closed by use of an appropriate
Ansatz.
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1.4 beam-driven plasma waves

In what follows, physical phenomena are investigated, which occur
when a highly-intense laser pulse or relativistic charged particle beam
is focused onto a plasma.

1.4.1 Cold electron-fluid picture

1.4.1.1 Motivation

The mathematical formulation used here for the description of laser-
or particle-beam driven plasma waves is based on a number of as-
sumptions. (a) The gas target is ionized either by the front of the
driver beam or by some pre-ionization technique. The main part of
the laser- or particle beam hence encounters a fully ionized plasma.
(b) The frequency of plasma electron-ion collisions is much smaller
than the electron plasma frequency and can therefore be neglected. (c)
Moreover, as explicated in 1.2.1.2, the characteristic time-scale of the
collective electron response is much smaller than the one of the ions.
Relevant phenomena in the interaction of laser- or particle-beams
with underdense plasma are occurring on time-scales much shorter
than the ion plasma frequency and are accurately described by as-
suming a static ion background. (d) Regions in velocity space where
plasma electrons behave differently than thermal plasma electrons are
not populated. (e) Furthermore, the thermal velocity spread is negli-
gible compared to the mean velocity at a given spatial region and
thermal effects are considered a small perturbation to the leading or-
der fluid motion.

Analogous to the assumptions being made in 1.3.1 for the deriva-
tion of the fluid equations, the above points (a) and (b) justify the em-
ployment of the Vlasov equation and point (c) allows for the neglect
of the ion dynamics and the introduction of a static ion background.
Point (d) enables the employment of fluid moment equations with the
assumption of a cold plasma (e) allowing for the truncation after the
fluid momentum equation (1.97). The below discussion thus regards
the plasma as a cold electron fluid.

1.4.1.2 Fluid equations

The governing equations of the cold electron fluid are the density
continuity equation (1.93), the fluid momentum equation (1.97), and
the Maxwell equations (1.1a)-(1.1d). The Maxwell equations are cou-
pled to the fluid density and the fluid velocity via ρ = e(n0 − ne) and
J = −eneve. The continuity equation of the electron fluid is with (1.93)
given by

∂ne

∂t
+∇ · (neve) = 0 . (1.102)
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Henceforth, the local electron density will simply be denoted by n ≡
ne, the ambient, unperturbed electron density by n0 and the normal-
ized electron fluid velocity will within the fluid picture be denoted
by β = ve/c, such that the density continuity equation reads

∂n
∂ct

+∇ · (nβ) = 0 . (1.103)

The fluid momentum equation (1.97) can with (1.3a) and (1.3b) be
written in terms of the potentials

∂pe

∂t
+ (ve · ∇) pe = −e

(
−∇Φ− ∂A

∂t
+

ve

c
× (∇×A)

)
. (1.104)

where qe = −e was used. Introducing the normalized scalar potential
φ = eΦ/mec2 and normalized vector potential a = eA/mec2, and
the normalized electron fluid momentum u ≡ pe/mec, this equation
reads

∂u
∂ct

+

(
u
γ
· ∇
)

u = ∇φ +
∂a
∂ct
− u

γ
× (∇× a) . (1.105)

Here, the second term on the left side can be rewritten by means of
the vector identity (u · ∇)u = ∇u2/2 − u × (∇ × u) to obtain the
following equation (compare [Meyer-ter Vehn et al., 2001])

∂

∂ct
(u− a) = ∇(φ− γ) +

u
γ
× (∇× (u− a)) . (1.106)

The curl of this equation,

∂

∂ct
(∇× (u− a)) = ∇×

(
u
γ
× (∇× (u− a))

)
, (1.107)

shows that if ∇× (u− a) is zero initially, it is zero for all times (see
[Chen and Sudan, 1993]). For an unperturbed and cold plasma in the
absence of a laser field u = a = 0 holds initially. Hence the vorticity
is zero for all times and Eq. (1.106) can be written (see [Esarey et al.,
1993])

∂

∂ct
(u− a) = ∇(φ− γ) . (1.108)

This fluid momentum equation describes the response of the electron
fluid momentum to the potentials φ and a and is exact to the point,
that the above vorticity was zero initially (compare [Esarey et al.,
2009]).

As shown in 1.1.4.3 the interaction of plane light waves with elec-
trons cannot not serve as effective acceleration mechanism under cer-
tain constraints, stated by the Lawson-Woodward theorem [Lawson,
1979]. Among others stipulated was the interaction to occur in vac-
uum with no external fields applied and the neglect of nonlinear ef-
fects, in order for the Lawson-Woodward theorem to hold. Similar
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restrictions are also embodied in equation (1.108). In vacuum, and
if external fields are absent, ∇φ = 0 holds, if nonlinear effects are
neglected, ∇γ ≈ 0 is true, such that the momentum of the electron
fluid u follows exactly the vector-potential of the incoming light wave
packet. After the light packet has passed, the fluid has zero momen-
tum again.

However, if nonlinear effects are occurring and if the place of elec-
trons in vacuum is now taken by a plasma, the co-action of the excita-
tion of the plasma electrons via ∇γ and the electrostatic fields carried
by the generated plasma perturbations ∇φ, allows for the excitation
of plasma waves and hence for an effective mechanism for the accel-
eration of charged particles in the waves, as shown in the following.

1.4.2 Ponderomotive force

The nonlinear force term ∇γ in equation (1.108) is called general non-
linear ponderomotive force [Esarey et al., 2009]

Fp,n = −mec2∇γ. (1.109)

To gain a better understanding of the ponderomotive action, equa-
tion (1.108) is regarded in the limit of a non-relativistic laser-field
(|a| � 1) with no electrostatic force present (∇φ = 0). The leading
order plasma fluid motion in this case is the quiver momentum u = a
(compare [Esarey et al., 2009]). When assuming a small perturbation
δu with respect to the quiver momentum u = a + δu, one finds with
γ '
√

1 + a2,

∂δu
∂ct

=
∇a2

2γ
. (1.110)

The ponderomotive force in the limit a2 � 1 is hence given by [Esarey
et al., 2009]For a more detailed

discussion, see
Kruer [1988, ch. 6].

Fp = −mec2∇a2

2γ
, (1.111)

and can be understood as a radiation pressure, pushing the electron
fluid out of regions with high field magnitude, or through equation
(1.46) out of high intensity regions.

For a plane electromagnetic wave, the ponderomotive force results
in a fluid velocity, which is equivalent to the cycle-averaged single-
electron drift velocity, calculated in equation (1.56). The fluid-electrons
in such a plane wave are therefore displaced in longitudinal direction
by a certain distance as described in 1.1.4.3, and create a fluid density
accumulation near the rising edge of a finite duration plane wave and
a density rarefaction near the falling edge.
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However, for "slowly evolving" light pulses, which are, in addition,
wide compared to the amplitude of the transverse electron quiver mo-
tion, neither (a) the leading order quiver motion nor (b) the pondero-
motive force alone can effectively deposit energy into a set of elec-
trons. Point (a) is due to the vanishing z- or time-integral over any fi-
nite duration, slowly evolving light pulse a(r, t). Point (b) comes from
the fact that for a slowly evolving light pulse, the z- or time-integral Even for quickly

varying light pulses,
(1.111) shows that
the force is
suppressed by γ.

and the partial z-derivative of a2(r, t) only imply an evaluation of the
value of a2 for times and positions ahead and behind of the pulse,
which, for a finite duration light pulse, vanish. Only the electrostatic
force ∇φ, which is generated through the excitation of the plasma via
the ponderomotive force allows for a non-zero fluid momentum after
the passage of the light pulse.

The above considerations show that the introduction co-moving
variables and the discussion of the meaning of "slowly evolving" light
pulses is needed.

1.4.3 Quasi-static approximation

1.4.3.1 Co-moving frame

The formulation of physics of plasma waves or plasma-based acceler-
ators is often conducted in the co-moving frame

ζ = z− vt , (1.112a)

τ = t . (1.112b)

where v is usually chosen to be the velocity of the driver, propagat-
ing in positive z-direction. For the longitudinal and temporal partial
derivatives of a dependent quantity Q = Q(ζ, τ) this Gallilean coor-
dinate transformation implies

∂

∂z
Q(ζ, τ) =

∂τ

∂z
∂Q
∂τ

+
∂ζ

∂z
∂Q
∂ζ

=
∂Q
∂ζ

, (1.113a)

∂

∂t
Q(ζ, τ) =

∂τ

∂t
∂Q
∂τ

+
∂ζ

∂t
∂Q
∂ζ

=
∂Q
∂τ
− v

∂Q
∂ζ

. (1.113b)

The speed-of-light frame in this work denotes the case when v ≡ c.
The above transformation does not only provide the convenience of
replacing dependencies on z− vt by dependencies on ζ, but also per-
mits a formulation in which a driver beam can be assumed rigid, or
quasi-static in the co-moving frame, as described in the following.

1.4.3.2 Quasi-static approximation

Dynamics in plasma-based accelerators span a large range of time-
scales, and the characteristic time-scales for the driver and plasma
evolution can differ by several orders of magnitude. The characteristic
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time over which the plasma reacts to a perturbation is given by the
inverse plasma frequency, τp ∼ ω−1

p .
A particle-beam in a plasma, on the contrary, evolves on time-scales

on the order of the inverse betatron frequency τb ∼ ω−1
β ' √2γ ω−1

p
(see e.g. [Esarey et al., 2001]), where γ is the Lorentz-factor of the
beam. These time-scales differ by orders of magnitude τb � τp for
highly relativistic (γ� 1) particle-beams.

The evolution of the envelope of a laser-driver occurs transversely
on the order of the pulse vacuum diffraction time τl,1 ∼ zR/c, where
zR ' πr2

0/λ is the Rayleigh-length for Gaussian beams [Saleh and Te-
ich, 2007], r0 is the spot size of the beam and λ denotes the central
wavelength. The laser spot size denotes the exp(−2) decay radius ofRayleigh length: see

explanation in
1.5.1.2.

the intensity. The longitudinal evolution of the laser-beam is given by
the pulse dispersion time τl,2 ∼ ω/ω2

p (cf. [Sprangle et al., 1990a,b]).
Laser beams with focal spot sizes which are much greater than their
wavelengths r0 � λ and on the order of the skin-depth r0 ∼ k−1

p are
modulated transversely on time-scales much longer than the plasma
τl,1 � τp. Additionally, the laser-frequency for laser-driven plasma
acceleration is generally much greater than the plasma wavelength
ω � ωp, such that τl,2 � τp.

This finding is used to formulate the quasi-static approximation
(QSA) [Sprangle et al., 1990a,b; Ting et al., 1990]. Regarding a driverThe QSA is used to

derive the formulae
describing the

structure of the
wakefields, but it is

also the basis of
quasi-static PIC

codes (see chapter 3).

beam, traveling at velocity c, the temporal derivative of Eulerian quan-
tities Q, such as fluid quantities, charge and current densities, or
electromagnetic fields, respectively, transform according to equation
(1.113b) as ∂tQ = ∂τQ − c∂ζQ. It can then be noted, that |∂τQ| ∼
τ−1

d |Q| and c
∣∣∂ζQ

∣∣ ∼ τ−1
p |Q| (compare [Esarey et al., 1993]), where

τd stands for a characteristic time of the driver evolution (τb, τl,1 or
τl,2).

For driver beams with τd � τp, the time-variation of Q is domi-
nated by the dependency on the ζ-variable. Fields and currents can
then assumed to be frozen, or quasi-static, during plasma evolution in
the speed-of-light frame

∂Q
∂t
' −c

∂Q
∂ζ

. (1.114)

The disparity of time-scales descriptively implies that the envelope of
a laser-driver or the charge-distribution of a particle-beam does not
change significantly during the characteristic time of the oscillatory
plasma response to the excitation caused by the driver.

1.4.4 Longitudinal plasma waves

1.4.4.1 Longitudinal plasma waves in the linear and nonlinear regime

In the following, plane, longitudinal (k ‖ E) plasma waves, excited
by infinitely broad (i. e. no transverse dependency) laser- or charged
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particle-beams, are examined. This is done by means of the cold elec-
tron fluid theory in one spatial dimension with a three-component
fluid momentum. The laser with polarization predominantly in the
transverse plane a = a⊥ and the spatial distribution of the particle-
beam nb is assumed to be static during the plasma oscillation and
hence are only functions of the co-moving variable ζ. The drive-beam
has a highly relativistic velocity βb,z → 1, such that field and fluid
quantities are expressed in the speed-of-light frame, and are assumed
quasi-static. The relativistic beam-particles have a negligible trans-
verse momentum ub,⊥ ' 0 and conservation of canonical momentum,
cf. Eq. (1.47), therefore implies [Esarey et al., 2009]

u⊥ = a⊥ = a. (1.115)

Here u⊥ is the normalized plasma-electron fluid momentum. The
charge density is a compound of the charge densities of plasma-
electrons −e n, immobile plasma-ions e n0 and a rigid beam-electrons
−e nb or -positrons e nb, resulting in ρ = −e(n− n0 ± nb). Hence, the
electrostatic Maxwell equation (1.1a) is by means of equation (1.3a)
and the QSA expressed as follows This derivation of

fluid properties in
1D linear and
nonlinear plasma
waves is inspired by
Refs. [Sprangle et al.,
1990a], [Esarey
et al., 1993] and
[Esarey et al., 2009].

∂2ψ

∂ζ2 = − e 4π

mec2 ρ = k2
p

(
n
n0
− 1± nb

n0

)
, (1.116)

since transverse derivatives vanish identically. Here, n denotes the
plasma electron density, and n0 is the ambient plasma electron den-
sity (or the ion density for a hydrogen plasma) and the beam-particle-
density nb contributes with a plus sign if the beam-particles are elec-
trons and with a minus sign if the particles are positrons or protons.
Applying the QSA to the continuity equation (1.103) yields

(1− βz)n = n0 , (1.117)

where the fact was used that the electron density n before the interac-
tion is identical to n0. Hence for an initially unperturbed plasma the
following equation is obtained

n
n0

=
1

1− βz
. (1.118)

The z-component of the fluid momentum equation (1.108) in the QSA

entails the invariant quantity ∂ζ(uz + ψ− γ) = 0, where the wakefield
potential

ψ = φ− az (1.119)

was introduced. For an initially cold and unperturbed plasma, this
yields

uz + ψ− γ = −1. (1.120)
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The latter equality is used to rewrite equation (1.118) as follows

n
n0

=
γ

1 + ψ
. (1.121)

According to Eq. (1.115), the relativistic factor of the electron fluid
can be expressed by γ =

√
1 + u2

z + a2, such that ue,z =
√

γ2 − 1− a2.
Plugging the latter identity into Eq. (1.120) yields after some algebra

γ =
1 + a2 + (1 + ψ)2

2(1 + ψ)
. (1.122)

Equations (1.116), (1.121) and (1.122) are combined to finally find the
second-order ordinary differential equation

k−2
p

∂2ψ(ζ)

∂ζ2 =
1 + a2(ζ)

2(1 + ψ)2 ±
nb(ζ)

n0
− 1

2
, (1.123)

describing the structure of the wakefield potential. The fluid quan-
tities γ, uz and n/n0 are through ψ(ζ) defined by Eq. (1.122) and
through

n
n0

=
1 + a2 + (1 + ψ)2

2(1 + ψ)2 , (1.124)

uz =
1 + a2 − (1 + ψ)2

2(1 + ψ)
. (1.125)

Equations (1.122) - (1.125) describe linear (a2 � 1 or nb/n0 � 1) and
nonlinear (a2 ∼ 1 or nb/n0 ∼ 1) longitudinal plasma waves in the cold
fluid picture.

1.4.4.2 Longitudinal plasma waves in the linear regime

Linear plasma waves (for a2 � 1 or nb/n0 � 1) and their attributes
can be examined by expanding equation (1.123) for ψ � 1 which
implies (1 + ψ)−2 ' 1− 2ψ and hence

(
∂2

∂ζ2 + k2
p

)
ψ = k2

p

(
a2

2
± nb

n0

)
, (1.126)

where a2 ψ ' 0 was used. This is the differential equation of a forced
harmonic oscillator with the Green’s function G(ζ) = Θ(ζ)k−1

p sin(kpζ),
where Θ is the Heaviside step function. The solution for the wakefield
potential in the linear limit is hence given by

ψ(ζ) = kp

∫ ζ

∞
sin(kp(ζ − ζ ′))

(
a2(ζ ′)

2
± nb(ζ

′)
n0

)
dζ ′. (1.127)

For finite-duration particle- or laser-beams the wakefield has a sinu-
soidal structure with wavelength λp = 2πk−1

p after passage of the
beams. Exploit of equation (1.116) and application of convolution dif-
ferentiation algebra to Eq. (1.127) yields the density perturbation of
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the plasma-electron density (compare [Gorbunov and Kirsanov, 1987]
and [Esarey et al., 2009]) in the linear regime

n(ζ)− n0

n0
= k−1

p

∫ ζ

∞
sin(kp(ζ − ζ ′))

∂2

∂ζ ′2

(
a2(ζ ′)

2
± nb(ζ

′)
n0

)
dζ ′

∓ nb(ζ)

n0
.

These longitudinal electron-density modulations impose the wake-
field oscillations in ψ which are co-propagating with the driving beam.

1.4.4.3 Length scales of laser or particle-beam driven plasma waves

The characteristic frequency for the collective response of a plasma to
a small density perturbation is given by the plasma frequency

ωp =

√
4πn0e2

me
. (1.128)

When a plasma slab is traversed by a laser- or charged particle-beam
at velocity vb, it locally oscillates at the plasma frequency. The phase
of the local oscillation is given by the time elapsed since the passage
of the driver beam and the plasma frequency. The phase velocity of
the so created plasma wave is therefore (in a first order approxima- For a more detailed

discussion, see
[Esarey et al., 2009,
II. F.].

tion) given by vph = vb, so that a wave number can be assigned to the
plasma wave

k∗p =
ωp

vb
. (1.129)

And the corresponding wavelength in the linear regime is given by

λ∗p =
2π

k∗p
=

2πvb

ωp
. (1.130)

In this definition, the plasma frequency and the beam velocity deter-
mine the plasma wavelength. Since driver beams usually travel close
to the speed of light, the following definitions for the plasma wave
number and plasma wavelength

kp '
ωp

c
, (1.131a)

λp '
2πc
ωp

, (1.131b)

are often used. The characteristic length scale of the skin depth k−1
p is

used in the present work e. g. for the normalization of length quanti-
ties.
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1.4.4.4 Longitudinal plasma waves - Conclusion

The electrical field, carried by the above described longitudinal plasma
waves is found by means of Eq. (1.3a), which implies with the QSA

Ez = −E0k−1
p

∂ψ

∂ζ
, (1.132)

where E0 = ωpmec/e is the cold non-relativistic wave-breaking field [Daw-
son, 1959].

If laser-beams with a0 � 1 or charged particle-beams with nb/n0 �
1 and a longitudinal box profile with length L = λp/2 of the enve-
lope or charge distribution excite plasma waves, the resulting elec-
trical fields can straightforwardly be calculated. Using Eq. (1.132)
and Eq. (1.127) yields a peak longitudinal field of Ez,max = E0 (a2

0 +

2nb,0/n0), where a circularly polarized laser was assumed. Using for
instance a0 = 0.1 or nb/n0 = 0.005 in a plasma density of n0 =

1024 m−3, the longitudinal field is on the order of Ez,max ∼ 1 GV/m.
Today’s Laser facilities readily attain intensities on target of far

more than 1018 W cm−2 (see e. g. [Yanovsky et al., 2008; Leemans et al.,
2010] and references therein). These intensities correspond through
equation (1.35) for central wavelengths of ∼ 1µm to normalized vec-
tor potentials of a0 & 1. Particle accelerators can provide peak beam
densities of nb ∼ 1024m−3 [Hogan et al., 2010]. When focussed into
appropriate plasma targets, these laser- or particle-beams can create
highly nonlinear plasma waves with fields of Ez,max & E0. Gradients
of this magnitude are clearly beyond those provided by conventional
accelerators (∼ 100 MV/m [Linssen et al., 2012]). If harnessed for the
acceleration of charged particles, such plasma waves offer the realiza-
tion of highly compact acceleration devices.

1.5 plasma-based acceleration

Accelerating gradients in conventional radio-frequency cavities are
limited by material breakdown to accelerating gradients of ∼ 100
MV/m. Plasma-based accelerators are, due to their significantly en-An overview over

plasma-based
acceleration

concepts,
e.g. utilization of

periodic drivers
(e. g. plasma beat

wave acceleration or
self-modulated

plasma-wakefield
acceleration) is

given in Esarey et al.
[1996, 2009].

hanced gradients, considered one of the most promising technology
candidates for future accelerators.

When analyzing Eq. (1.127) it can be seen that a light wave or
particle distribution with only a small variation over a characteris-
tic length λp does not efficiently excite a plasma wave. Efficient wave
excitation either necessitates a driver with the same periodicity as the
plasma wave or a short driver with a characteristic length L ∼ λp/2.
This work examines plasma-based acceleration with driver with a
significant variation over short (L . λp) distances. Plasma-based ac-
celeration with short laser beams as drivers is called laser-wakefield
acceleration (LWFA) whereas plasma-based acceleration using a short
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particle-beams is called plasma-wakefield acceleration (PWFA). The basis
of these techniques is described in the following.

1.5.1 Methods of plasma acceleration

1.5.1.1 Plasma-wakefield acceleration

Plasma-wakefield acceleration was proposed by Veksler [1956] and
relies on the principle that relativistic charged particle beams expel
plasma electrons by means of their space charge fields when propa-
gating in a plasma target. If the beam is sufficiently short and has a
significant amount of charge, this excitation leads to the generation
of large amplitude plasma waves, co-propagating in the "wake" of the
driver beam as described in 1.4.4.1. The fields carried by this plasma
wave are called wakefields. The phase velocity of the plasma wave is
approximately equal to the mean beam velocity, and for highly rela-
tivistic drive-beams close to the speed of light. Relativistic particles
placed in a focusing and accelerating region of the plasma wave hence
experience synchronous acceleration with no significant phase slip-
page. After firstly mentioned by Veksler, particle-beam driven plasma
acceleration was reinvented by Chen et al. [1985] and analytically in-
vestigated e. g. by Keinigs and Jones [1987].

Modern accelerator facilities provide highly relativistic electron-
beams with currents of more than 1 kA and longitudinal and trans-
verse dimensions of . 100µm. Such beams are suitable to resonantly
excite plasma waves at plasma densities of ∼ 1017 cm−3 in the nonlin-
ear or blow-out regime. Plasma targets used or proposed to be used
in PWFA are either alkali metal vapor ovens [Muggli et al., 1999] or
steady-state-flow gas targets, (e. g. as used by Osterhoff et al. [2008]).
The plasma is created by means of a pre-ionization laser [Muggli et al.,
1999] or directly by the ionizing space-charge fields of the beam itself
[Oz et al., 2007; Hogan et al., 2010].

The capability of such a technique to accelerate electrons to high
energies in short distances was demonstrated by Blumenfeld et al.
[2007], who focused a 42 GeV electron-beam with correlated energy
spread of 1.5 GeV at the Stanford Linear Accelerator Center (SLAC)
into a 85 cm long plasma target. Downstream of the plasma target,
the beam showed a modulated energy spectrum with a small fraction
of the electron distribution extending to energies of more than 80
GeV. Some electrons were thus accelerated by average gradients of up
to ∼ 50 GV/m. The injection and acceleration of spectrally distinct
beams with significant charges and high quality is topic of current
theoretical (e. g. [Oz et al., 2007; Hogan et al., 2010; Vieira et al., 2011;
Hidding et al., 2012; Li et al., 2013] [Martinez de la Ossa et al., 2013,
2014]) and experimental (e. g. at FACET and FLASHForward) studies.

The ultimate limit for the possible energy gain of a single electron
in the accelerating wakefields in PWFA is given by the transformer
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ratio [Bane et al., 1985; Chen et al., 1986]. However, especially for
large emittance drive beams, the effect of the head-erosion can be theThe emittance is

explained in detail
in 1.6

limiting factor for the energy gain of the accelerated beam [Krall et al.,
1989; Barov and Rosenzweig, 1994].

1.5.1.2 Laser-wakefield acceleration

In contrast to PWFA, laser-wakefield acceleration (LWFA) [Esarey
et al., 2009; Hooker, 2013] uses laser pulses to drive plasma waves and
to accelerate electron beams. This method was proposed by Tajima
and Dawson [1979] as an effective converter of the field energy in
laser-pulses to kinetic energy of electron beams. Short (. 100 fs) laser
pulses with sufficient intensities (& 1018 Wcm−2) ionize the gas-target
at the front of the pulse at intensities starting from ∼ 1014 Wcm−2,
such that the main pulse interacts with a fully ionized plasma and
excites large amplitude plasma waves via the ponderomotive force
(see 1.4.2). Charged particles, placed in the appropriate regions of this
plasma wave are accelerated and transported via the longitudinal and
transverse wakefields, respectively.

Above mentioned laser parameters are readily attained by mod-
ern laser systems. This is mostly contributed to the development of
the chirped pulse amplification (CPA) technique, which stretches laser
pulses temporally before amplifying them and compresses the ampli-
fied pulses again before using them for applications. The intensities
are hence low enough to avoid nonlinear effects in the gain medium
and air. Stretching and compression of the laser pulses is possible by
the use of pairs of optical gratings. The frequency of the laser pulses
has a time-dependence (chrip), and since the different frequency com-
ponents have different path lengths between the grating pairs, the
pulses are being compressed and stretched in an appropriate setup.
If the bandwidth of the laser is sufficiently wide, a compression down
to a few fs is possible using this technique. The advent of LWFA ex-
periments is strongly related to the invention of CPA and the progress
in laser technology still advances the frontiers of LWFA.

Laser pulses, in this work are assumed to be of fundamental Gaus-
sian transverse mode with Gaussian temporal envelope. Moreover,
the laser beams considered are paraxial wave packets and the slowly
varying envelope approximation is assumed to hold [Saleh and Teich,
2007]. A radially symmetric Gaussian laser pulse is characterized by
its energy content W, root mean square (RMS) pulse duration σt and
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spot size at focus r0. These attributes are related to the peak power P0

and the peak intensity I0 through the equation

W =I0

∫ ∞

0
dr
∫ 2π

0
dϕ r exp

(
−2r2

r2
0

) ∫ ∞

−∞
dt exp

(
− t2

2σ2
t

)

=
πr2

0 I0

2

∫ ∞

−∞
dt exp

(
− t2

2σ2
t

)

=P0 σt
√

2π .

(1.133)

With P0 = πr2
0 I0/2 and the RMS pulse duration is related to the

intensity-FWHM duration trough T = σt(2
√

2 log(2)). Such a trans-
verse Gaussian mode laser beam diffracts in vacuum and the intensity
depends on the position along the optical path according to [Saleh
and Teich, 2007]

I(r, z) = I0

(
r0

rs(z)

)2

exp
(
− 2r2

rs(z)2

)
. (1.134)

Here, rs(z) denotes the spot size of the beam which is twice the radial
intensity-RMS width rs = 2σr,

rs(z) = r0

√
1 +

(
z

zR

)2

, (1.135)

and zR is the Rayleigh length

zR =
r2

0π

λ
. (1.136)

The Rayleigh-length denotes the characteristic length of vacuum diffrac-
tion of such a laser pulse. The intensity decays according to I ∝ z−2

for z � zR and is comparable to I0 only in distances within the
Rayleigh-length to the position of the focal plane. Lasers in LWFA
experiments need to be guided in order to extend the interaction re-
gion to lengths greater than zR [Esarey et al., 2009].

Lasers propagate in a under-dense plasma with group velocity
smaller than the speed of light (see 1.2.2.2). The plasma phase velocity
is approximately equal to the group velocity of the laser (see 1.4.4.3),
hence causing laser-wakefield accelerated electrons approaching the
speed of light to outrun the plasma wave.

1.5.1.3 Physical formulation of plasma-based acceleration

The theoretical formulation in the following will make use of the QSA

to describe the wakefield properties in different regimes of plasma
waves.

Charges, moving at velocities close to the speed of light c in pos-
itive z-direction in a cylindrically symmetric field configuration, are
subject to the fields Ez and Er − Bθ in terms of their longitudinal and
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transverse dynamics, respectively (see A.2). A general relationship
between the wakefield potential ψ and these fields in the quasi-static
approximation is given by

Ez

E0
=− k−1

p
∂ψ

∂ζ
(1.137a)

Er − Bθ

E0
=− k−1

p
∂ψ

∂r
. (1.137b)

These identities are found by means of equation (1.119) and the cylin-
drical representation of equations (1.3a) and (1.3b) and hold in gen-
eral, if the drive-beam is radially symmetric, and if the QSA applies.
A position in a plasma wakefield is accelerating for a particle propa-
gating relativistically in the positive z-direction and with charge q, if
qEz > 0 and focusing if q∂r(Er − Bθ) < 0 at the given position (see
A.2).

In plasma-based acceleration one usually distinguishes between the
following different regimes. (a) The linear regime (ψ � 1) which is
accurately described by a 1D fluid theory extended to three dimen-
sions. (b) The nonlinear regime with ψ ∼ 1 which generally requires a
3D fluid theory. (c) The blowout or cavitated regime (ψ � 1) which re-
quires a 3D kinetic description. These regimes are addressed in more
detail within this section.

1.5.2 Linear regime

The linear regime in plasma-based acceleration refers to the case
when a0 � 1 or nb/n0 � 1 i.e. ψ � 1. The formulation of linear,
longitudinal plasma waves in 1.4.4.2 can be extended to a 2D or 3D
description of linear plasma waves [Esarey et al., 2009] as follows.
Driver beams, particularly in LWFA, often have a radial extent which
is greater than the longitudinal extent (σr � σζ). The longitudinal
component of the ponderomotive force (1.111) hence dominates the
plasma dynamics (Fp,r � Fp,ζ). Exploiting this fact, it is straightfor-
ward to extend equation (1.127), which describes the wakefield, ex-
cited by a laser pulse or charged particle beam in one dimension, to
three dimensions. Taking the radial dependence of the drive-beam
distribution f into account, one finds (compare [Gorbunov and Kir-
sanov, 1987])

ψ(ζ, r) = kp

∫ ζ

∞
sin(kp(ζ − ζ ′)) f (ζ ′, r)dζ ′. (1.138)

The radial structure of the driver f (ζ, r) now determines the radial
wakefield amplitude and trough (1.137a) and (1.137b) also the radial
dependence of the wakefields. The driver amplitude refers in the case
of a laser pulse to

f (ζ, r) =
a2(ζ, r)

2
. (1.139)
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Or, for a single charged particle beam driver,

f (ζ, r) = ±nb(ζ, r)
n0

, (1.140)

where the plus sign refers to electrons and minus sign to positrons or
protons.

1.5.2.1 Gaussian drivers

Assuming temporal Gaussian drivers with radial Gaussian distribu-
tions of the form

f (ζ, r) = f0 exp

(
− (ζ − ζc)2

2σ2
ζ

)
exp

(
− r2

2σ2
r

)
, (1.141)

the wakefield potential can with (1.127) be analytically calculated (see
A.3). Using equation (A.31), the wakefield potential for positions far
behind the driver (ζc − ζ)/σζ � 1 is obtained

ψ(ζ, r) =− f0
√

2π kpσζ exp

(
− (kpσζ)

2

2

)
sin(kp(ζ − ζc))

× exp
(
− r2

2σ2
r

)
.

(1.142)

The wakefield potential hence has a sinusoidal ζ-dependency and a
Gaussian radial dependency. The sinusoidal dependency of the wake-
field for r = 0 is shown for an example in Figure 5 with a comparison
with the numerical solution of equation (1.126). It can be seen that the
above equation (1.142) coincides well with the solution of (1.126) for
positions behind the driver.

−20 −15 −10 −5 0 5
−0.02

−0.01

0

0.01
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k pζ

Figure 5: Driver beam profile and wakefield potential of a linear plasma
wave with f0 = 0.01 and kpσζ = 1. Wakefield potential ψ accord-
ing to (1.142) for r = 0 in light gray (—), numerical solution of
equation (1.126) in dashed gray (- -) and the Gaussian driver pro-
file f (ζ, r = 0) in red (—).
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When using equations (1.137a) and (1.137b), the field configuration
in the case of a Gaussian driver results in (compare [Gorbunov and
Kirsanov, 1987])

Ez

E0
= f0
√

2π kpσζ exp

(
− (kpσζ)

2

2

)
cos(kp(ζ − ζc))

× exp
(
− r2

2σ2
r

)
, (1.143a)

Er − Bθ

E0
=− f0

√
2π kpσζ exp

(
− (kpσζ)

2

2

)
sin(kp(ζ − ζc))

× kpr
(kpσr)2 exp

(
− r2

2σ2
r

)
. (1.143b)

Given f0 is fixed, it can be seen, that the field amplitudes are maxi-
mum if kpσζ = 1. In this case, the equations for the longitudinal and
transverse field reduce to

Ez

E0
= f0

√
2π

exp(1)
cos(kp(ζ − ζc)) exp

(
− r2

2σ2
r

)
, (1.144a)

Er − Bθ

E0
=− f0

√
2π

exp(1)
sin(kp(ζ − ζc))

kpr
(kpσr)2 exp

(
− r2

2σ2
r

)
.

(1.144b)

These are the wakefields of a plasma wave, resonantly driven by a
Gaussian driver. Nonetheless, it should be noted, that the resonance
condition kpσζ = 1 only provides the most enhanced wakefields, if f0

is independent of σζ . In general, the invariant quantity is either the
driver bunch charge for a particle beam driver or the pulse energy
for a laser pulse. Hence, the current or intensity (∼ f0) is inversely
proportional to the beam length f0 ∝ σ−1

ζ . For such driver beams,
shortest beam duration gives most enhanced wakefields.

1.5.3 Mildly nonlinear regime

Mildly nonlinear plasma waves are excited, if a laser pulse with a0 ∼The nonlinear
regime in LWFA is

reviewed in more
detail by Esarey

et al. [2009].

1 or a particle beam with nb/n0 ∼ 1 is propagating through a plasma.
The response of the plasma then starts to significantly deviate from
the above described linear behavior in terms of the plasma frequency,
wavelength and shape of the wakefield potential. If electrons are
gaining relativistic velocities, they are gaining relativistic mass. The
plasma frequency, being inversely proportional to the electrons mass
therefore decreases owing to this relativistic effect while the wave-
length of driver beam induced oscillations increases. Such relativis-
tic and nonlinear effects have several implications for the wakefield
properties.
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1.5.3.1 Transition from linear to nonlinear regime

In order to understand the transition from linear to nonlinear plasma
waves, the example of a circular polarized Gaussian laser pulse with a
pulse duration of kpσζ = 1 is studied for different amplitudes a0. The
spot size of the laser pulse is presumed much greater than the plasma
skin depth and the pulse duration kprs � 1 ∼ σζ , which justifies the
employment of the 1D longitudinal plasma wave picture 1.4.4.1 for
the modeling of the plasma wave properties.

Starting point of the mathematical description for pure longitudi-
nal nonlinear plasma wave picture is equation (1.123). This ordinary
differential equation (ODE) can be solved analytically only for square
pulse (see [Bulanov et al., 1989; Berezhiani and Murusidze, 1990, 1992])
and is here solved numerically for a Gaussian pulse. Numerical solu-
tions for ψ are used for the calculation of derived quantities. The lon-
gitudinal field and plasma electron density are calculated by means
of equations (1.137a) and (1.124). Figure 6 shows the laser intensity
for the cases a0 = 0.2, a0 = 1.0 and a0 = 4.0 (top to bottom), and the
resulting wakefield properties. It can be seen that the wakefield prop-

−0.1

0

0.1

0.2

−0.5

0

0.5

1

−20 −15 −10 −5 0 5
−2

0

2

4

6

k pζ

Figure 6: Transition from linear to nonlinear plasma waves for driver am-
plitudes of a0 = 0.2, a0 = 1.0 and a0 = 4.0 (top to bottom). The
individual graphs show the normalized laser intensity of the circu-
lar polarized pulse a2 (—), wakefield potential ψ (- -), longitudinal
electric field Ez/E0 (- -), and plasma electron density perturbation
n/n0 − 1 (—).

erties in the case a0 = 0.2 are still close to the linear scenario with
a sinusoidal-like dependency of ψ on the co-moving variable. Such
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wakefields are often called quasilinear. However, when the laser ampli-
tude is increased to a0 = 1.0, several new features are observed. The
plasma electron fluid density modulation becomes more peaked and
the peaks are shifted to positions with larger distance with respect
to the driver beam. This increase of the plasma wavelength for rela-
tivistic plasma waves was described e.g. by Bulanov et al. [1989] and
Berezhiani and Murusidze [1990] (also confer [Esarey et al., 2009]).
While the wakefield potential starts to deviate from a sinusoidal de-
pendency and transits to a parabolic shape, the electric field becomes
asymmetric. When finally going to a laser amplitude of a0 = 4.0, the
plasma electron density is highly peaked with a long trough in be-
tween the peaks. The wakefield potential has a parabolic shape and
the electric field develops a sawtooth-like profile.

1.5.3.2 Transverse properties of mildly nonlinear plasma waves

Mildly nonlinear plasma waves, excited by broad drivers can be de-
scribed by an extension of the 1D nonlinear longitudinal plasma wave
description 1.4.4.1, analogous to the extension used for the 2D or 3D
linear picture 1.5.2. When doing so, one finds that the dependency
of the nonlinear plasma wavelength on the driver amplitude has the
following transverse effect for drivers with a transverse amplitude
gradient. The radial amplitude dependency of the driver results in a
radial dependency of the nonlinear plasma wavelength, causing the
plasma wave-fronts to be more and more curved with increasing wave
period.

The validity of the assumption of pure longitudinal plasma waves
for broad driver beams can be understood by the following consider-
ations. An infinitely broad driver beam with transverse polarization
a = a⊥ is assumed to interact with a plasma. Conservation of trans-
verse canonical momentum, a⊥ = u⊥, then implies for a plasma elec-
tron to finally being positioned at the transverse position at which it
was located prior to the interaction. Only the longitudinal position,
and, through the generated space charge fields, also the longitudinal
component of the momentum have changed after the interaction.

However, for transversely limited drivers, the transverse canonical
momentum is not conserved and electrons experience a transverse
momentum carry. For LWFA, this fact is incorporated in the expres-
sions for the ponderomotive force (1.111) or (1.109). If the transverse
gradient of the fluid quiver-energy is non-negligible, a transverse
force acts on the electron fluid. In the case of PWFA, the transverse mo-
mentum carry comes from the electrostatic field of the space-charge
of a transversely limited beam, as seen from equations (1.108) or
(1.116).

Hence, a rigorous study of nonlinear plasma waves with radially
bounded drivers requires a 2D or 3D nonlinear plasma fluid model
which needs to be solved numerically. Moreover, while the transverse
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wakefield dependence in the linear regime is determined by the ra-
dial properties of the driver beam, the transverse dependency of the
wakefields in the nonlinear regime does not necessarily follow the
driver beam profile.

Drive-beams with large amplitudes a0 � 1 or nb/n0 � 1 and large
transverse gradients of the amplitudes create plasma waves which
necessitate a 3D kinetic description. This regime is discussed below.

1.5.4 Highly nonlinear or blow-out regime

The plasma excitation by short (L < λp) and highly intense (a2
0 � 1 or

nb/n0 � 1) beams with a transverse size on the order of the plasma
wavelength leads to a scenario when practically all plasma electrons
are radially expelled from the region near to the propagation axis
of the driver beam. This stands in contrast to the linear regime, in
which the excitation is purely longitudinal. In the highly nonlinear
or blow-out regime, the electron-cavitation or bubble, formed by the
radial expulsion of plasma electrons, co-propagates behind the driver
beam. Plasma-based acceleration in this regime cannot be described
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Figure 7: Simulation result obtained with HiPACE. Depicted is the plasma
electron density, normalized to the ambient plasma density. The
relevant siulation parameters are given in Table 2.

by means of a fluid theory. A fluid description demands that regions Confer 1.3.4 or point
(d) in 1.4.1.1.in momentum space where plasma electrons behave differently than

thermal plasma electrons are not populated. This is not ensured in the
blowout regime, since plasma-electrons populate spatial regions in
the plasma wake behind the driver in which they feature non-thermal
momentum spreads. The dynamics of individual electrons strongly
depends on the populated momentum region especially in the crest
region of the plasma wave at which it breaks, thus leading to highly
kinetic effects, e.g. of electron self-trapping in the electron cavity.
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An accurate description must hence account for kinetic effects and
in general should be three-dimensional. The Maxwell-Vlasov system
is therefore the appropriate physical basis for the description of plasma
acceleration in the blowout regime. However, when regarding highly
nonlinear plasma waves, the Maxwell-Vlasov equations cannot be
solved analytically and numerical methods must be employed (see 2
or [Pukhov and Meyer-ter Vehn, 2002] and [Rosenzweig et al., 1991]).
A popular numerical tool to study plasma-based acceleration in the
blow-out regime is the Particle-In-Cell (PIC) technique which is illus-
trated in chapter 2. Figures 7, 8 and 9, depict some properties of an
electron-beam driven plasma wave in the blowout regime as simu-
lated by a 3D PIC code. The electron density in a central slice of theThe corresponding

simulation
parameters are given

in Table 2.

simulation is shown in Figure 7. Plasma electrons are expelled by
virtue of the space charge fields of the driver beam (the driver beam
is not depicted) and form a sheath around an electron-cavity before
crossing at the back of the cavity. The thereby generated field config-
uration is presented in Figures 8 and 9. The longitudinal field has a
linear dependence on the co-moving variable ζ and no dependence
on the transverse coordinate inside the cavity in regions with zero
beam charge density. The transverse fields Ey + Bx, on the contrary,
have a linear dependence on y and no dependence on the co-moving
variable.
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Figure 8: Result from a simulation with HiPACE. Depicted is the normal-
ized longitudinal field Ez/E0. The relevant siulation parameters
are given in Table 2.

A number of phenomenological approaches for the description the
blow-out regime have been proposed. The blow-out regime in PWFA
has been investigated e. g. by Lu et al. [2006] and Lotov [2004], while
the blow-out regime in LWFA has among others been addressed by
Kostyukov et al. [2004], and Esarey et al. [2009]. For the deduction
of the fields inside a cavity, it’s shape can in first approximation be
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Figure 9: Result from a simulation with HiPACE. Depicted is the normalized
transverse fields (Ey + Bx)/E0. The relevant siulation parameters
are given in Table 2.

assumed spherical with radius R and centered at ζ = 0 and r =

0, where r is the radius in a cylindrical geometry (compare [Esarey
et al., 2009]). The cavity moves with the speed of light in positive
z-direction.

Assuming the QSA holds, the wakefield potential inside such a cav-
ity is given by (compare [Kostyukov et al., 2004; Lu et al., 2006])

ψ(ζ, r) =
(kpR)2

4
−

k2
p(ζ

2 + r2)

4
− 1 . (1.145)

The field configuration follows with equations (1.137a) and (1.137b)

Ez

E0
=

kpζ

2
, (1.146a)

Er − Bθ

E0
=

kpr
2

. (1.146b)

The longitudinal force on an electron hence has a linear dependence
on the co-moving variable and the transverse force has a linear de-
pendence on the radius. While a spherical cavity was assumed for The linear

dependence of the
transverse force on
the radius has a
beneficial aspect for
the beam transport,
as discussed in 1.6
and 4.2.3.

the derivation of the wakefield potential above, the fields inside the
electron-cavity, in equations (1.146a) and (1.146b), hold for any shape
of the electron-cavity, as long as a volume with complete electron
blow-out exists. The shape of the plasma blow-out is, in general, not
spherical and depends on the charge density or intensity profile of
the driver beam [Lotov, 2004; Lu et al., 2006].

Albeit a phenomenological approach is accurately reproducing the
fields inside the cavity, the dynamics of plasma electrons forming a
sheath around the cavity and crossing at the back of the cavity is not
sufficiently described by such an approach. The periodic structure as
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it exists for plasma waves in the linear regime or on-axis in the non-
linear regime, is completely disrupted by the breaking of the waves in
the blow-out regime due to the nonlinear transverse dynamics near
to the crest of the wave. The occurrence of blow-out goes together
with the phenomenon of wave-breaking.

1.5.5 Wave-breaking

Plasma waves, as created by laser- or particle-beam drivers, can sup-
port only limited electric field amplitudes. An estimation of this limit
can be obtained when assuming a cold plasma, such that all electronsThe considerations

here follow [Esarey
et al., 2009].

oscillate with the same wave number kp = ωp/c. In the linear (or
nonrelativistic) cold fluid case, the electric plasma wakefield behind
the driver beam then follows Ez = Emax cos(kpζ) (compare e.g. equa-
tion (1.143a)). Using the Maxwell equation ∇ · E = 4πρ (1.1a) with
the charge density ρ = e(n0− n), yields for pure longitudinal plasma
waves the identity 4πe(n0 − n) = −Emax kp sin(kpζ) . The electron
plasma density n oscillates in this estimation harmonically around
the ambient plasma density n0, with minimum possible amplitude of
nmin = 0 and maximum possible amplitude nmax = 2n0. The maxi-
mum amplitude refers to the value −Emax kp on the right hand side
of the above equation. The so obtained maximum field amplitude
is Emax = E0, where E0 the cold nonrelativistic wave-breaking field (see
[Dawson, 1959])

E0 =
cωpme

e
. (1.147)

The field amplitude in nonlinear plasma waves can easily surpass
this limit. An expression for the cold relativistic wave-breaking field can
be derived by means of cold nonlinear fluid equations [Esarey and
Pilloff, 1995; Esarey et al., 2009]

EWB =
√

2(γph − 1)E0 , (1.148)

where γph is the gamma factor associated with the phase velocity of
the plasma wave. If the phase velocity, which is approximately equal
to the velocity of the driver, approaches the speed of light, the max-
imum plasma density and electric field amplitude become singular,
indicating the breakdown of the cold fluid description [Esarey et al.,
2009]. When assuming a thermalized electron plasma fluid with a
nonrelativistic thermal energy kbTe � mec2, the plasma density and
the electric field amplitude remain finite for any plasma phase veloc-
ity [Schroeder et al., 2005].

All above considerations were assuming pure longitudinal plasma
waves and were employing a 1D fluid picture. The wave-breaking
field and the maximum plasma density in a three dimensional plasma
wave can differ from the above expressions. Moreover, the transverse
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structure of the plasma wave with increasing driver amplitude be-
comes more and more curved which eventually leads to transverse
wave-breaking [Bulanov et al., 1997, 1998b, 2012a,b], when the curva-
ture radius becomes on the order of the electron fluid displacement
[Esarey et al., 2009]. Transverse wave-breaking disrupts the regular
structure of the plasma wave and leads, due to the self-intersection
of the electron trajectories to the injection of plasma electrons into
the accelerating region of the plasma wave for phase velocities of the
plasma wave significantly smaller than the speed of light [Bulanov
et al., 1997].

Wave-breaking can also occur in the one-dimensional case [Bulanov
et al., 1998b,a]. This longitudinal wave-breaking occurs especially, if
the plasma has a inhomogeneous longitudinal density profile or if the
driver amplitude fluctuates during the propagation in the plasma.

The injection of electrons into the plasma wave trough transverse
wave-breaking is a highly nonlinear process and is not easily con-
trollable. However, tailored plasma density gradients allow for the
controlled injection of electrons through longitudinal wave-breaking.

1.5.6 Injection mechanisms

Beam stability, quality and tunability in plasma-based acceleration
strongly depends on the mechanism of the injection of electrons into
the accelerating phase of the wakefields. Such an injection mechanism
needs to occur localized in time and space in order to allow for the for-
mation of a beam with low energy spread short duration. Moreover,
the injected electrons must be well selected by their initial population
of phase space so as to render possible beams with a well defined
charge or finally occupied phase space region. The phase space distri-
bution of a particle beam whose evolution is governed by the Vlasov
equation cannot be compressed. This indicates that initial beam pa-
rameters are of fundamental importance for the best achievable final
beam parameters. The injection mechanism should not rely on effects
which translate fluctuations on initial conditions, such as variations
of the initial driver beam properties or the plasma target attributes,
in a nonlinear and enhanced fashion to the final beam parameters.
Some injection techniques and their attributes are outlined below.

1.5.6.1 Injection via wavebreaking

Wave-breaking was the dominating electron injection mechanism in
many of the early experimental productions of electron beams in laser
wakefield accelerators (see e.g. [Modena et al., 1995; Faure et al., 2004;
Mangles et al., 2004; Geddes et al., 2004; Hidding et al., 2006; Oster-
hoff et al., 2008]). While electron injection through wave-breaking is
inherent in many LWFA scenarios, experiments were showing that the
injection process is unstable in terms of the final charge, energy dis-
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tribution or pointing stability of the produced electron beams. This
is mostly owed to the lack of shot to shot stability of today’s laser
systems and the nonlinear dependence of the wave-breaking process
on laser parameters, such as the pointing, the transverse and longitu-
dinal intensity distribution or the angular chirp.

Self-injection by means of wave-breaking in PWFA is suppressed by
the highly relativistic phase velocity of the plasma wave. Electrons
need to reach a velocity equal or greater than the phase velocity of
the plasma phase in order to be trapped. This is elaborated in more
detail below.

1.5.6.2 Density gradient injection

A plasma density transition can trigger localized injection of plasmaThe explanations
here follows [Esarey
et al., 2009, IV.D.].

electrons into the accelerating phase of the plasma wave [Bulanov
et al., 1998b,a]. This injection technique can be regarded in the limit
of a short, step-like transition compared to the plasma wavelength
Ltr . λp or in the limit of a gradual negative density gradient with
Ltr � λp.

Regarding e.g. the wakefield potential of a linear plasma wave,
ψ = ψ0 cos(kpζ), it is noted that a certain phase position, located at
Nperλp,1 before a density transition is located at Nperλp,2 after the tran-
sition, where Nper is the number of the wave period considered and
λp,1 < λp,2 are the plasma wavelengths up- and downstream of the
density transition, respectively. The phase position of interest changes
by the distance ∆ζ = Nper(λp,1 − λp,2) during the density transition.
In a short transition Ltr . λp plasma electrons are during their oscil-
lation abruptly located in a different phase region and trapped, given
they gain a sufficient longitudinal velocity. This is equivalent to a
wave break of a wave at the sharp boundary between two media with
different dispersive properties.

A gradual density transition has the following effect on a plasma
wave. A phase position in a first order approximation is given by
φ(z) = kp(z)(z − ct), where a highly relativistic driver beam was
assumed. The effective plasma frequency is given by ωp,eff = −∂φ/∂t
and the wave number by kp,eff = ∂φ/∂z, so that the phase velocity of
the plasma wave yields [Esarey et al., 2009]

βph =
ωp,eff

c kp,eff
=

[
1 + k−1

p ζ
dkp(z)

dz

]−1

. (1.149)

Expanding this expression for small variations of the plasma wave
number and for short distances behind the driver beam k−1

p ζ dkp/dz�
1, gives

βph ' 1− k−1
p ζ

dkp

dz
= 1− ζ

2n
dn
dz

. (1.150)

This suggests that a negative density gradient dn/dz < 0 implies a
decrease of the phase velocity for co-moving positions behind the
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driver ζ < 0. The criteria for trapping of an electron is given by β =

βph, where β = v/c is the normalized electron velocity. The position
behind the driver at which this equality is fulfilled is with the above
equations given by [Esarey et al., 2009]

ζtr = 2(β−1
e − 1)n

(
dn
dz

)−1

. (1.151)

Theoretical and numerical investigation of gradual density gradient
injection in LWFA were performed by Bulanov et al. [1998a]; Tomassini
et al. [2003]; Kim et al. [2004]; Brantov et al. [2008].

Experimental realization of this technique is possible by tailoring of
the longitudinal gas profile such that injection occurs in a localized re-
gion in a transition from high to low gas density (n1 > n2) along the
plasma target. The density transition can be generated by means of
a laser prepulse, propagating perpendicular to the optical axis of the
main laser pulse, thereby generating a localized thermal-expansion
and hence a local plasma rarefaction [Chien et al., 2005]. An alter-
native method constitutes the insertion of a knife edge into a super-
sonic gas jet and the creation of a gas shock front [Schmid et al., 2010;
Buck et al., 2013]. A longer, gradual density slope can be produced
by means of a gas nozzle only. When a laser drive pulse is focused
to the downstream edge of the gas profile, increasing laser amplitude
and decreasing plasma density both induce a lowered plasma phase
velocity in the nonlinear regime and trigger injection [Geddes et al.,
2008]. Such a scheme can also be used to decouple injection and accel-
eration, if a gas flattop profile is employed after the gas jet, allowing
for enhanced tunability [Gonsalves et al., 2011].

Injection in step-like transitions was studied theoretically and nu-
merically for PWFA [Suk et al., 2001]. Density gradient injection in
PWFA with transition lengths on the order of the plasma wavelength
was studied by Grebenyuk et al. [2014].

1.5.6.3 Ionization injection

A widespread method for the injection and trapping of electrons ex-
ploits the localized field-ionization of a gas with high atomic number,
the bulk plasma (typically hydrogen) is doped. A higher ionization
potential of the bulk plasma or the dopand gas is chosen to be ionized
by means of a laser-field, by the space-charge field of a particle beam
or by the wakefield in the plasma. Important for these techniques is
that the ionization of the electron from the higher ionization poten-
tial takes place in a plasma wave phase which allows trapping of the
ionized electrons.

One method for the ionization and trapping in LWFA suggests the
ionization of the electron in the higher ionization potential by the
laser driver itself. Electrons are ionized from the dopand gas in this
method only near to the peak intensity region of the driving laser
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beam and hence follow different trajectories than plasma electrons
which were ionized in the very front of the laser pulse. These orbits
are trapped orbits for an appropriately chosen ionization potential
and well controlled laser peak intensity and ambient plasma den-
sity. This technique was successfully demonstrated in a number of
experiments [McGuffey et al., 2010; Pak et al., 2010; Clayton et al.,
2010] and theoretically described by e.g. Chen et al. [2012]. However,
the emittance values of beams generated by means of this technique
are usually expected to be significantly greater than those from other
techniques. This is a consequence of residual quiver motion and the
non-canceling of the integrated ponderomotive force of an electron
which is born inside of the laser pulse. This heats the generated elec-
tron bunch transversely.

The field ionization by lasers can also be used in PWFA to trigger
injection [Hidding et al., 2012]. This is achieved by temporally and
spatially aligning a laser beam with the particle beam driver, such
that it co-propagates shortly behind it on axis. If the laser is tightly
focused, it is capable of ionizing the dopand gas only during a short
time-interval. Given the wakefield potential, excited by the particle
beam, is capable of trapping the electrons from the phase-location
at which the laser field-ionized electrons emerge at rest, injection oc-
curs. The emittance of beams produced with this technique can be in
the nanometer range, provided the laser-beam alignment is perfect
[Hidding et al., 2012].

Similar techniques have been proposed for LWFA [Bourgeois et al.,
2013; Yu et al., 2014]. The place of the particle beam driver is in LWFA
taken by a laser beam which is followed by a second laser pulse. The
challenge in LWFA is to avoid ionization of the dopand gas by the
driver beam but to achieve ionization by the trailing beam without
distortion of the wakefields. This can be achieved if the ionization
laser is tightly focused such that it has a higher amplitude and short
Rayleigh length [Bourgeois et al., 2013] or if the ionization laser has
a significantly higher frequency, hence allowing for a lowered ioniza-
tion threshold for a given laser intensity [Yu et al., 2014].

Injection in plasma wakefield acceleration in a doped plasma can
also occur when the particle driver beam exhibits space charge fields
which are sufficient to ionize a populated dopand gas ionization
level [Oz et al., 2007]. Such an ionization mechanism depends on
the transverse dynamics of the beam. When a particle beam gener-
ates a plasma wave, it is itself modulated by the transverse wake-
fields and beam particles undergo betatron oscillations. If the beam
is not matched to the wakefields, these oscillations lead to the trans-
verse modulation of the beam size which entails a modulation of the
space charge fields. When these space charge fields reach the ioniza-
tion threshold, localized ionization of the higher ionization potential
takes place and the ionized electrons can be trapped. However, this
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technique is not easily controllable, since the transverse dynamics of
the beam are not easily steerable.

A novel method of ionization and trapping for the production of
high-quality beams in PWFA was suggested by Martinez de la Ossa
et al. [2013]. It exploits the high magnitude of the wakefields to ionize
the dopand gas. If the charge density of the driver beam is sufficiently
high, a small overlap between the phase capable of trapping and the
phase with field magnitudes high enough for ionization exists. Elec-
trons are hence ionized and trapped from a well defined phase region,
facilitating the generation of high quality beams while avoiding the
dependence on the slice-properties of the driver beam.

1.5.6.4 External injection

The injection of electrons provided by external sources constitutes an
important and versatile injection mechanism. In this mechanism, an
electron beam is propagating with a defined temporal and spatial
offset with respect to a driver-beam. When the driver interacts with
the plasma and creates a plasma wave, the trailing beam is positioned
in a defined region within the plasma wave.

It is versatile in the sense that the provided electron bunch may
have a tailored phase-space distribution as far as the source allows
and the plasma wave can be populated in a high degree of freedom
as far as the spatial and temporal offsets between driver and witness
beam can be controlled. Moreover, it is important in the regard that it
has to be mastered whenever plasma-based acceleration modules are
staged.

Beams in external injection can be placed in a desired region which
is focusing and accelerating. In addition, beams may be placed with
a defined transverse offset to the driver propagation axis for the tai-
lored generation of X-ray radiation. Moreover, low energy electron
beams can be injected in a longitudinal phase, such that they are
roated in phase space and longitudinally compressed [Grebenyuk
et al., 2012].

In external injection methods, the trailing beam has to be matched
to the focusing fields of the plasma wave in order to mitigate severe
emittance growth [Mehrling et al., 2012; Grebenyuk et al., 2012]. This
poses a challenge as elaborated in chapter 5.

1.5.7 Driver-energy depletion

The conservation of energy constitutes the ultimate limit for the en-
ergy gain of a witness beam in a single stage in plasma-based accel-
eration. Once the driver’s energy was fully deposited into the genera-
tion of plasma waves, no further acceleration is possible. The energy-
depletion mechanisms of laser- or particle-beam drivers are outlined
below.
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1.5.7.1 Laser-energy depletion in LWFA

A laser pulse deposits energy into the generated plasma wave and
hence looses energy at a certain rate. This laser pump depletion was
studied e.g. by Bulanov et al. [1992]. Different scalings for the laser en-
ergy depletion dominate for different pulse lengths and amplitudes.
A scaling for the laser pulse depletion length for the linear and non-
linear case is given by [Esarey et al., 2004]

Lpd '
λ3

p

λ2 ×





2/a2
0 for a2

0 � 1,
√

2 a0/π for a2
0 � 1.

(1.152)

This approximation is obtained when calculating the rate of energy
transfer from the laser to the plasma wave, but does not only de-
scribes the rate of pump depletion but also the rate at which the
pulse is redshifted and steepened [Esarey et al., 2009].

1.5.7.2 Beam-energy depletion in PWFA

A charged particle beam, driving a plasma wave is itself subject to
the wakefields it produces and loses energy since inevitably being
(partially) positioned in a decelerating phase of the plasma wave. The
rate of energy loss is given by the longitudinal field magnitude at
the driver beam position E−z . A simple approximation of the energy
depletion length of an electron beam with initial energy mec2γb isA heavier beam

species would enable
a higher energy gain
of a trailing electron

beam [Caldwell
et al., 2009].

thus

Led =
mec2γb

eE−z
. (1.153)

The maximum possible energy gain of an individual witness beam
particle for a given driver beam energy is determined by the ratio
of the magnitudes of the decelerating longitudinal field at the driver
beam position E−z to the accelerating longitudinal field at the witness
beam position E+

z . The number R = |E+
z /E−z | is called transformer

ratio. Witness beam particles gain a maximum energy of Rmec2γb.
It can be proven that the transformer ratio of a finite-length bunch

with symmetric longitudinal charge distribution in the linear regime
cannot exceed the value of two, i.e. R ≤ 2 [Bane et al., 1985; Chen
et al., 1986]. The transformer ratio can be optimized beyond this value
by the use of triangular shaped beams in the linear regime [Chen
et al., 1986; Katsouleas, 1986] and in the nonlinear regime [Lotov,
2005].

1.6 transverse dynamics of charged particle-beams

Typical applications of relativistic particle beams are experiments in
elementary particle physics, synchrotron radiation sources, nuclear
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physics research, medical diagnoses and treatments or fusion reac-
tor experiments [Edwards and Syphers, 2008]. Most of these applica-
tions require some sort of a high (6D) phase-space particle density at
some interaction region. This is achieved firstly, by minimization of
the phase-space volume while maximizing the total number of par-
ticles during the production, and secondly, through preservation of
these beam attributes during the acceleration and transport of the
beam to the interaction point. It will be shown (see 1.6.3) that the 6D
phase-space volume occupied by the particles is constant if individual
particle effects can be neglected.

A set of particles forms a beam, if the longitudinal momentum is
much larger than the transverse momentum 〈pz〉 �

〈
px,y
〉
. Due to

the alternating accelerating fields in particle accelerators, beams are
usually bunched, where a bunch denotes a beam or distinct part of a
beam with a longitudinal extent comparable to the transverse extent
(σz ∼ σx,y) [Reiser, 2008]. In order to measure the beam quality and to
analyze its evolution during the acceleration and transport processes,
some figure of merits for the beam quality are introduced and their
properties studied.

1.6.1 Emittance and Courant-Snyder parameters

1.6.1.1 Trace-space and trace-space emittance

In accelerator physics it is often convenient to use the concept of trace-
space with the variables x-x′, and y-y′, where x′ = dx/dz = ẋ/ż =

px/pz, and analogous for the y-direction, is the slope of a particle tra-
jectory. The transverse properties of a beam are defined by its distri-
bution in trace space, and the area occupied by the beam is closely re-
lated to the transverse trace-space emittance (see e. g. [Floettmann, 2003])

ε̂ =

√
〈x2

c 〉 〈x′2c 〉 − 〈xcx′c〉2 , (1.154)

where xc = x− 〈x〉, and x′c = x′ − 〈x′〉. Here, analogously to 1.3.5.1,

〈Φ(r, p)〉 = 1
N

∫
drdp Φ(r, p) f (r, p, t) (1.155)

is the moment of a function Φ(r, p) and f is the beam particle distri-
bution function. The term σ2

x =
〈

x2
c
〉

resembles the beam size,
〈

x′2c
〉

expresses the transverse momentum spread and 〈xcx′c〉 is the corre-
lation between the trace space variables and conveys if a beam is
converging or diverging. While the transverse beam properties are
completely defined by the phase-space particle distribution f , the rel-
evant or usable beam properties are given only by the moments

〈
x2

c
〉
,〈

x′2c
〉
, and 〈xcx′c〉 of the beam distribution f . Unless specified differ-

ently, the distribution is assumed centered around zero in transverse
trace-space within the following considerations, such that xc ≡ x and
x′c ≡ x′.
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1.6.1.2 Courant-Snyder parameters

A beam, whose transverse properties are completely characterized
by the above moments, takes the shape of an ellipse in trace-space
[Reiser, 2008; Turner, 1994]

γ̂ x2 + 2α̂ xx′ + β̂ x′2 = ε̂ . (1.156)

Here, the Courant-Snyder parameters [Courant and Snyder, 1958]

β̂ =

〈
x2〉

ε̂
, γ̂ =

〈
x′2
〉

ε̂
, α̂ = −〈xx′〉

ε̂
, (1.157)

were used. The parameters β̂, α̂, and γ̂ can be understood as nor-
malized moments and define the orientation and shape of the beam-
ellipse in trace-space while the emittance ε̂ determines the extent of
the ellipse. The characterization of the ellipse by the four parameters
is redundant and the combination of eqns. (1.154) and (1.157) yields
the relation β̂γ̂ = 1 + α̂2. Figure 10 depicts such an ellipse with spec-
ification of some relevant points on the circumference of the ellipse.
The ellipse has the area F = πε̂ and the extent in x-direction is given

by σx =
√

β̂ε̂, and in x′-direction equivalently, σx′ =
√

γ̂ε̂, as speci-
fied by equations (1.157). The parameter α̂ determines the inclination
of the ellipse.
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Figure 10: Trace-space ellipse, defined by equation (1.156) with relevant
points on the circumference (compare [Turner, 1994; Reiser,
2008]).

While the emittance is a preserved quantity in a ideal system, the
Courant-Snyder parameters generally depend on the position along
the beam-propagation axis. As discussed later (see 1.6.4) the Courant-
Snyder parameters may not only be seen as definitions of the beam
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ellipse, but may also be interpreted from the viewpoint of the beam-
line design, in which the beta-function or betatron-function β̂(z) is a
measure for the beam size and for the local betatron-oscillation length,
and the alpha-function α̂(z) is proportional to the local change of the
beta-function along the beam-path.

1.6.2 Luminosity and brightness

1.6.2.1 Luminosity

High-energy colliders in particle physics require a large number of
events to reach a signal-significance required to claim a discovery and
to distinguish between signal and noise. The event rate in colliders is
given by dNev/dt = L · σI , where L is the luminosity and σI is the in-
teraction cross section. While the interaction cross section is inherent
in the examined physical process, the luminosity is a figure of merit
for the collider and is proportional to the particle flux of two cross-
ing bunches and to the frequency of these crossings. Furthermore, it
depends on the transverse shape of the crossing bunches. The lumi-
nosity for colliding, identical Gaussian bunched beams is given by
(see e. g. [Edwards and Syphers, 2008])

L =
N2 fcoll

4πσxσy
(1.158)

where N is the number of particles in a bunch, fcoll is the bunch colli-
sion frequency and σx,y is the transverse RMS beam size. To optimize
the event yield, one can increase the bunch collision frequency, in-
crease the number of particles in a bunch, or decrease the beam sizes
at the interaction point. The beam size at the interaction point is with
the definition for the beta-function (1.157) determined by the beta-
function at the interaction point β̂∗ and the beam emittance σx,y =√

β̂∗x,y ε̂x,y. The beta-function is a property of the beam-optics in the
transport-beamline and the strength of the final focusing quadrupol-
magnets in a collider defines the minimum beta function achievable
at the interaction point. For a given β̂∗, the luminosity hence is in-
versely proportional to the square root of the transverse emittance
values of the beam,

L =
N2 f

4π
√

β̂∗x ε̂x β̂∗y ε̂y

. (1.159)

Preservation of the transverse emittance (or minimization through ra-
diative emittance damping) is therefore crucial for a high luminosity
and thus for a high event rate in a collider.
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1.6.2.2 Brightness

The figure of merit for the quality of a set of charged particles, used
for the generation of synchrotron radiation, is the brightness [Reiser,
2008]

B =
dI

dS dΩ
, (1.160)

where I is the current, and S and Ω the transverse area and the solid
angle occupied by the particle set in phase-space, respectively. The
brightness hence expresses the particle flux per unit area per unit
solid angle and is a pivotal parameter for the use of the beam in
an FEL. If the particle set is completely described by the second-order
moments in trace-space only, and if the coordinate system was chosen
such that correlations between the two directions vanish, it populates
the hyperellipsoid

K =

{
(x, y) ∈ S, (x′, y′) ∈ Ω

∣∣∣∣

γ̂x x2

ε̂x
+

2α̂x xx′

ε̂x
+

β̂x x′2

ε̂x
+

γ̂y y2

ε̂y
+

2α̂y yy′

ε̂y
+

β̂y y′2

ε̂y
≤ 1

}
.

(1.161)

The Courant-Snyder parameters and the transverse trace space emit-
tance in both transverse directions define the size and shape of the
hyperellipsoid. The volume V4, occupied by the particles is thus given
by

V4 =
∫

K
dS dΩ '

∫

K
dx dy dx′ dy′ =

π2

2
ε̂x ε̂y . (1.162)

If the particle set under consideration forms a bunch with a box-
shaped current profile with current I0, one can directly find an ex-
pression for the Brightness of this bunch (compare [Reiser, 2008])

B =
I0

V4
=

2I0

π2 ε̂x ε̂y
. (1.163)

Rigorously, the brightness is a property of a infinitely short-duration
slice of a beam, but one may assess the average brightness of a beam
with arbitrary current profile by integration of the occupied volume
of the beam slices, weighted by the slice current. The beam-brightness
only depends on the transverse trace-space emittance in the two trans-
verse directions and the current profile of the beam.

1.6.2.3 Longitudinal phase space

Additionally, a well defined beam-energy with low spread

∆γ =
〈
(γ− 〈γ〉)2〉 , (1.164)
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with γ =
√

1 + (p2
x + p2

y + p2
z)/(mec)2, is crucial for the appropriate

transport of the beams but also for their use in colliders or as syn-
chrotron sources. Electrons in undulators, for example, radiate at spe-
cific energies, defined by the undulator strength and geometry and
the energy of the electrons. A low energy spread together with a high
brightness are vital for the gain in an FEL process [Röhrs, 2008]. Low
energy spreads are also important for the analyses of data accumu-
lated in colliders in order to allow for a precisely defined initial state
of particles prior to the scattering processes which enables a deduc-
tion of the process from the particles in the final state.

Bunched beams also need to be short e.g. in order to allow for
the pulsed generation of short X-ray flashes for the investigation of
ultrafast processes in atomic or molecular science. The conservation
of the longitudinal phase-space volume couples the requirement of
short bunch duration and small energy spread.

In conclusion, a high phase-space density is indispensable for high-
energy colliders and synchrotron sources. As explicated in the follow-
ing, the phase space density of a beam is constant under if individual
particle effects can be neglected.

1.6.3 Liouville’s theorem

1.6.3.1 Liouville equation

The Klimontovich equation, introduced in 1.3.2, provides an exact
microscopic description of a set of individual particles and forms the
basis of the plasma kinetic equation. The Liouville equation, formu- The discussion here

follows [Nicholson,
1983].

lated in the following is also exact, but describes the behavior of a
system of particles instead of individual particles. If a system with
N0 particles is regarded, a density of this system in 6 N0-D can be
defined

N(r1, p1, r2, p2, ..., rN0 , pN0 , t) =
N0

∏
i=1

δ(ri−Ri(t)) δ(pi−Pi(t)) , (1.165)

where ri is the configuration space and pi is the momentum space for
particle i, respectively and Ri(t) is its position and Pi(t) the momen-
tum at time t, respectively. While N0 particles in the Klimontovich
description occupy N0 positions in 6D phase space, a configuration
of the system of N0 particles in the Liouville’s description occupies
one point in 6 N0-D phase space. The time derivative of this system
density is

∂N
∂t

=−
N0

∑
i=1

Vi(t) · ∇ri

N0

∏
j=1

δ(rj − Rj(t)) δ(pj − Pj(t))

−
N0

∑
i=1

Ṗi(t) · ∇pi

N0

∏
j=1

δ(rj − Rj(t)) δ(pj − Pj(t)) ,

(1.166)
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where V = P/m
√

1 + (P/mc)2, and m is the mass of the particle
species. Here similar relations as in 1.3.2.1 for the derivation of the
Klimontovich equation are used. From this equation one obtains the
Liouville equation after some rearrangement

∂N
∂t

+
N0

∑
i=1

vi(t) · ∇ri N +
N0

∑
i=1

Ṗi(t) · ∇pi N = 0 . (1.167)

The exact dynamical information of all N0 particles is contained in
this equation which describes the evolution of the complete system
of particles.

1.6.3.2 Liouville’s theorem

With the introduction of a convective time derivative in the 6N0-D
phase space,

D
Dt

=
∂

∂t
+

N0

∑
i=1

vi(t) · ∇ri +
N0

∑
i=1

Ṗi(t) · ∇pi , (1.168)

the Liouville equation can be written in the shape

D
Dt

N(r1, p1, r2, p2, ..., rN0 , pN0 , t) = 0 . (1.169)

This implies that the density of a system of particles in 6N0-D phase
space is incompressible along the systems trajectory in 6N0-D phase
space. When rewriting the Liouville equation by exploiting the inde-
pendence of xi and pi and the vanishing momentum-divergence of
the Lorentz force (see A.1.1), a continuity equation is obtainedFor a more detailed

discussion, confer
[Nicholson, 1983]. ∂N

∂t
+

N0

∑
i=1
∇ri · (vi(t)N) +

N0

∑
i=1
∇pi · (Ṗi(t)N) = 0 . (1.170)

This equation expresses the conservation of systems 6N0-D phase
space. The Liouville equation describes the propagation of the state
of the system along a trajectory in 6N0-D phase space.

One usually does not know the exact state of the system at a time
t. Hence, it is convenient to define a probability

fN0(r1, p1, r2, p2, ..., rN0 , pN0 , t)dr1dp1dr2dp2...drN0 dpN0 , (1.171)

to find the system at the point (r1, p1, r2, p2, ..., rN0 , pN0) in 6N0-D
phase space. The function fN0 then expresses the probability density
and integration over the whole phase space must yield unity. The
statements made above for N can now be made in a similar way for
the smooth function fN0 . One obtains the continuity equation for the
probability

∂ fN0

∂t
+

N0

∑
i=1
∇ri · (vi(t) fN0) +

N0

∑
i=1
∇pi · (Ṗi(t) fN0) = 0 , (1.172)
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and

D
Dt

fN0(r1, p1, r2, p2, ..., rN0 , pN0 , t) = 0 , (1.173)

which is the statement that the probability density is constant along
the motion of systems. Regarding fN0 as a fluid density in 6N0-D
phase space, this equation implies for the fluid density to be constant
along the fluid motion, and the fluid to be incompresible.

The Liouville equation can be transformed into a chain of equa-
tions, called the Bogoliubov, Born, Green, Kirkwood and Yvon (BBGKY)
chain (see [Nicholson, 1983]). When regarding a set of individually
non-interacting particles, the BBGKY hierarchy of equations can be
truncated after the first term, which yields the Vlasov equation (1.89),
which - given the force F is p-divergence free (see A.1.1) - may be writ-
ten in the shape of a continuity equation expressing the conservation
of particles in 6D phase space,

∂ f
∂t

+∇r · (v f ) +∇p · (F f ) = 0 , (1.174)

where f is the 6D phase space particle density. Moreover, the Vlasov
equation (1.89) can also be written as a convective time derivative
equation

D̃ f (r, p, t)
D̃t

= 0 , (1.175)

with the derivative

D̃
D̃t

=
∂

∂t
+∇r · v +∇p · F . (1.176)

The Vlasov equation is a special mathematical statement of Liouville’s
theorem and equation (1.175) expresses the invariance of the 6D phase-
space density along the characteristics of the Vlasov equation. When
regarding f as a fluid density in 6D phase space, equation (1.175)
states that this fluid is incompressible.

The number of particles moving along with the phase space fluid
must be conserved. Knowing this, and using the invariance of the
particle density, a second statement of the Liouville’s theorem can be
formulated. The following regards the number of particles δN con-
tained in a small 6D phase space volume The argumentation

is inspired by [Bradt,
2008].δV = δRx(t) δRy(t) δRz(t) δPx(t) δPy(t) δPz(t) . (1.177)

It is stipulated for the volume to move along the characteristics of the
Vlasov equation, in order to contain the constant number of particles,

δN = f (R(t), P(t), t) δV , (1.178)
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with

d δN
dt

=
d
dt

[ f (R(t), P(t), t) δV] = 0 . (1.179)

Hence, after applying the chain rule, one finds

δV
D̃ f (r, p, t)

D̃t

∣∣∣∣
r=R, p=P

+ f (R(t), P(t), t)
dδV
dt

= 0 . (1.180)

The first term is zero by virtue of the Vlasov equation (1.175) and the
particle density f in the second term is not zero for arbitrary R and
P. This leads to the identity

dδV
dt

= 0 . (1.181)

This equation expresses the conservation of the phase space volume
along the characteristics of the Vlasov equation. This is the second
statement of the Liouville’s theorem, expressing that the phase space
occupied by a set of particles may change its shape, but the volume
is invariant during the motion of the set of particles.

In conclusion, the Liouville equation implies that the density of sys-
tems and the volume occupied by systems in 6N0-D phase space are
constant along the trajectory of the systems. Moreover, for a particle
set for which individual particle interactions (e.g. collisions) can be
neglected, the Liouville’s theorem states that the 6D particle density
and the occupied volume is constant during the motion.

1.6.3.3 Emittance and phase-space

The beam-emittance fundamentally impacts pivotal parameters in an
accelerator such as the luminosity or the brightness. It is closely re-
lated to the beam phase-space volume. However, equation (1.162) isFor a more detailed

discussion, see
[Reiser, 2008,

Ch. 3].

only true in the special case of a beam whose particle distribution
has vanishing higher order correlations between x, x′, y and y′. This
is provided e.g. for a 4D Gaussian distribution, but is not generally
the case. The emittance is related to the phase-space volume and its
shape.

The 6D phase-space volume occupied by a beam is a conserved
quantity during the motion if mutual particle interactions or radia-
tion effects can be neglected. However, a conserved phase or trace
space volume does not imply a conservation of the emittance since
the shape of the populated phase space may change.

Beams, propagating in focusing fields with a linear transverse de-
pendence, do not experience emittance growth (see 1.6.4.1). Non-linear
transverse focusing fields, on the contrary, cause a beam filamentation
(see [Reiser, 2008]), which implies an increase of the emittance while
the phase or trace space volume is conserved. Furthermore, if linearly
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focusing fields vary along the beam axis, the beam emittance can in-
crease while the phase-space volume is constant. Such effects will be
elaborated in more detail within this work.

Another implication on the emittance of a beam is owed to its ac-
celeration. The ratio x′ of the transverse momentum px over the lon-
gitudinal momentum pz is damped adiabatically when particles gain
longitudinal momentum during the acceleration process. To compen-
sate for this effect, the normalized transverse trace-space emittance,

ε̂n =
〈pz〉
mec

ε̂ =
〈pz〉
mec

√
〈x2〉 〈x′2〉 − 〈xx′〉2 , (1.182)

is introduced for convenience, with 〈pz〉 being the average longitudi-
nal momentum.

An emittance definition which is frequently used and closely re-
lated to the above definition is the normalized transverse phase-space
emittance

εn =
1

mec

√
〈x2〉 〈p2

x〉 − 〈xpx〉2 , (1.183)

While the two emittance definitions (1.182) and (1.183) yield the iden-
tical result for beams which are at waist 〈xx′〉 = 0, there is a fun-
damental difference between the normalized trace-space and phase-
space emittance of beams with significant energy spread which are
highly divergent. The trace-space emittance is always constant during
free drifts when neglecting space charge forces. This is in contrast to
the transverse phase-space emittance, which can change during vac-
uum propagation when a correlation between the transverse position
and the longitudinal momentum emerges in the beam phase-space
distribution owed to a significant energy spread and a large diver-
gence [Floettmann, 2003]. Considering this circumstance, this work
will make use of both emittance definitions and present comparisons
between the two when a different behavior is expected.

1.6.4 Beam transport in ideal systems

1.6.4.1 General Courant-Snyder theory

The following discusses the beam equations of motion in an ideal This discussion
follows [Courant
and Snyder, 1958],
[Reiser, 2008, 3.8.2]
and [Edwards and
Syphers, 2008, 3.2].

system. A system is considered ideal in the sense, that space charge
effects do not play a role, the focusing forces are linear and depend
only on the position along the propagation axis, the beam has neg-
ligible energy spread and the approximation of paraxial motion (see
[Reiser, 2008, 3.3.2]) holds. The equation of motion for a single par-
ticle in a transverse direction (here x, analogously for y) in such an
ideal system is given by

x′′ + K(z)x = 0 , (1.184)
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where x is the displacement from the beam axis, x′′ = d2x/dz2 and
K = K(z) is a function on the axial coordinate only. Equation (1.184)
has solutions of the form [Reiser, 2008]

x(z) = A w(z) cos [ψ(z) + φ] , (1.185)

where the amplitude A and the phase φ are constants and are de-
termined by the initial conditions, ψ expresses the phase advance,
and w is the amplitude function, depending on the position along
the beam propagation axis. Equation (1.185) has an additional de-
gree of freedom and one can choose the relation ψ′ = w−2 to hold
(see [Reiser, 2008]). Exploiting this equality and plugging (1.185) into
(1.184) yields the differential equation for the amplitude function

w′′ + Kw− 1
w3 = 0 . (1.186)

This equation describes the evolution of the beam-particle oscillation
amplitudes.

The connection to the Courant-Snyder parameters (1.157) can be
found as follows. By differentiation of equation (1.185), x′ is obtained.
The equation,

x2

w2 + (wx′ − w′x)2 = A2 , (1.187)

can then be shown to hold for any position along the beam propaga-
tion axis. This equation describes the closed trajectories of particles
in trace-space. One can now make a specific choice for the amplitude,
e.g.

β̂ = w2 , (1.188a)

α̂ = −ww′ = − β̂′

2
, (1.188b)

γ̂ =
1

w2 + w′2 =
1 + α̂2

β̂
. (1.188c)

By doing so, one retrieves the known ellipse equation

γ̂(z)x2 + 2α̂(z)xx′ + β̂(z)x′2 = ε̂ , (1.189)

where, in addition, A2 is identified with ε̂. This derivation proves that
the emittance in ideal systems is conserved while the Courant-Snyder
parameters are functions of the beam propagation axis.

With the above information, a description of the evolution of the pa-
rameter β̂ is possible. Combining the differential equation of the am-
plitude function (1.186) and the definition of the beta-function (1.188a)
yields

β̂β̂′′ − β̂′2

2
+ 2Kβ̂2 − 2 = 0 . (1.190)
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The envelope equation can alternatively, with equations (1.188b) and
(1.188c), be expressed in terms of the Courant-Snyder parameters,

Kβ̂ = γ̂ + α̂′ . (1.191)

These differential equations express the evolution of the Courant-
Snyder parameters in ideal systems with arbitrary functions K(z).

1.6.4.2 Betatron oscillations and matching in constant focusing channels

Equation (1.190) has analytic solutions for specific functions K(z)
e.g. for K = const. In particular, during vacuum propagation (K = 0),
equations (1.190) or (1.191) feature the solution

α̂(z) =
z0 − z

β̂0
, β̂(z) = β̂0 +

(z− z0)2

β̂0
, γ̂(z) =

1
β̂0

, (1.192)

where z0 and β̂0 are the initial (or focal) position and value of the beta
function, respectively.

For positive, constant (or slowly varying) K > 0, equation (1.190)
has the solution [Reiser, 2008]

β̂(z) = β̂0 cos2
(√

Kz
)
+

1
β̂0K

sin2
(√

Kz
)

. (1.193)

Retrieval of the full set of Courant-Snyder parameters is possible by
means of the relations (1.188b) and (1.188c). The beta function of a
beam in a constant focusing channel oscillates between the two values
β̂0 and 1/(β̂0K), while the alpha function oscillates around zero.

In a constant focusing channel, the individual particles in a beam
oscillate according to equation (1.184) with constant K. In this case,
this equation simply describes a harmonic oscillator with the known
solutions. The particle orbits, in particular, are given by

x2 +
x′2

K
= const , (1.194)

and hence follow ellipses in trace-space. The oscillation of the Courant-
Snyder parameters implies a rotation of the beam trace-space ellipse,
defined by (1.189). This is illustrated in Figure 11, which shows the
example of a individual particle trajectory in trace-space (red) and a
beam envelope ellipse (black). The ellipse rotates according to equa-
tion (1.193), while retaining its area.

A beam in a uniform focusing channel is called matched, if the beam
envelop does not oscillate, i.e. if β̂′ = 0 = α̂. Equation (1.193) infers
this being the case if β̂0 = β̂m = K−1/2. The matched Courant-Snyder
parameters in a constant focusing channel in an ideal system are thus

α̂m = 0 , β̂m =
1√
K

, γ̂m =
√

K . (1.195)
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x0

x

Figure 11: Illustration of trace-space ellipse rotation from betatron oscilla-
tion. The red ellipse represents a single-particle trajectory in trace-
space defined by x2 + x′2/K = ε̂/

√
K. The black ellipse depicts

the trace-space ellipse of a beam and the black-dashed ellipse il-
lustrates the rotation from betatron oscillations.

The single particle orbits in trace-space (1.194) may be written in
terms of the matched beta function

x2/β̂m + β̂mx′2 = const . (1.196)

When a beam is matched to the focusing channel, the situation in
Figure 11 is as follows. The beam trace-space ellipse (black) has the
same shape as the individual electron trajectories (red). Hence, the
trace-space ellipse does not rotate and betatron oscillations do not
occur.

Changes of K on length-scales much longer than β̂ are imposing
an adiabatic change of the transverse beam parameters and equation
(1.193) locally holds for such changes.

1.6.5 Emittance growth

The beam-emittance is a pivotal parameter in accelerator physics.
While the normalized emittance is preserved in an ideal system, it
generally changes in realistic accelerator setups. This can be owing to
a large number of mechanisms, resulting in different types of emit-
tance change.

Some of the most relevant reasons of emittance growth in the con-
text of plasma-based acceleration are listed below (compare [Reiser,
2008, Ch. 6]):
(a) Off-axis injection of a beam into the accelerator, causing coherent

(if correlated energy spread is negligible) oscillations around the
optical axis.
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(b) Mismatch of beam parameters to the design transport parameters,
resulting in a decoherence of the beam particle betatron oscilla-
tions,

• if the beam has a significant correlated or uncorrelated en-
ergy spread or

• if the applied fields change along the longitudinal intra-bunch
position.

(c) Nonlinear transverse forces, leading to beam-filamentation.
(d) Nonlinear coupling between transverse and longitudinal motion.
(e) Intra-beam scattering or collisions between beam particles and

background gas or ions.
The transverse normalized emittance can also decrease within the ac-
celeration process. This can be owing to synchrotron radiation or ef-
fects which transforms transverse emittance to longitudinal emittance
(see [Reiser, 2008]). Moreover, differential phase space rotation from
point (b) can, in principle not only cause emittance growth but also
an emittance decrease if the phase-space was already rotated initially.
In a similar way, the application of appropriate nonlinear transverse
forces on the beam can also in special cases reduce its emittance.

The emittance of a beam is related to the shape and volume of
the phase space it populates. A change of the emittance must hence
not necessarily be a result of a change of the occupied phase space
volume but can be a cause of a change of the shape of the phase
space volume. Among the above points, (a)-(d) are not changing the
occupied 6D phase space volume, only point (e) can change the 6D
phase space volume.

The emittance growth from scattering effects, point (e), will be ne-
glected within this work for the following reasons. Firstly, the scat-
tering processes between particles within in a beam (intra-beam scat-
tering), which constitutes a coupling between longitudinal and trans-
verse motion occur on time-scales much longer than the acceleration
process for typical parameters used in plasma-based accelerators (see
e.g. [Reiser, 2008; Kubo et al., 2005]). Secondly, as indicated by equa-
tion (1.66), the cross section of electrons scattering with (resting) back-
ground ions decreases quadratically with the electron energy. It can
be estimated that an electron beam with an energy of∼ 1 GeV, travers-
ing a single-charged ion column with ∼ 0.1 m length and particle
density of ni ∼ 1023 m−3 does not gain any significant broadening of
the transverse momentum distribution.

Moreover, some types of emittance growth are reversible while oth-
ers are irreversible [Reiser, 2008; O’Shea, 1998]. It is often convenient
to differentiate between two types of transverse emittance growth.
One in which the emittance of a infinitely short slice of the beam is
constant and one for which the emittance changes within one slice
[O’Shea, 1998]. The emittance within a slice is constant for the above
cases (a) and (b) under the assumption that the uncorrelated or slice
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energy spread is negligible. The emittance change by virtue of (b)
beam mismatch and betatron phase decoherence is discussed in chap-
ter 4.
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2
PA RT I C L E - I N - C E L L M E T H O D

2.1 introduction

Already with the first proposal of laser-driven plasma accelerators
by Tajima and Dawson in 1979 [Tajima and Dawson, 1979], compu-
tational studies played an integral role for the comprehension of the
physical basis of plasma-based accelerators [Esarey et al., 2009]. To-
day, numerical methods are a well established, and moreover, indis-
pensable pillar in plasma-based accelerator research, not only inter-
connecting theory and experiment, but substantially driving inno-
vations in this field. Experimental production of GeV-scale electron
beams within few centimetre long plasma targets [Leemans et al.,
2006; Wang et al., 2013; Kim et al., 2013], energy doubling of 40 GeV
electrons within a distance of less than a meter [Blumenfeld et al.,
2007] and advances such as demonstration of stable [Osterhoff et al.,
2008] and tunable [Gonsalves et al., 2011] electron beams promoted
plasma-based acceleration to a prime candidate for future acceler-
ators. Along with the experimental progress, numerical techniques
were becoming more versatile and efficient.

The most prevalent numerical method in plasma-based accelera-
tor research is the Particle-In-Cell (PIC) technique [Hockney and East-
wood, 1981; Dawson, 1983; Birdsall and Langdon, 1985], which en-
ables a modeling of complex kinetic and relativistic plasma phenom-
ena. Extensive advances in computer technology during the past de-
cades have laid the groundwork for scientific high-performance com-
puting, with today’s machines providing peak performances beyond
1016 floating point operations per second [Meuer et al., 2014]. When
executed on such machines, massively parallelised PIC codes allow for
fully three-dimensional (3D) modeling of relativistic laser or charged
particle-beam interactions with plasma by resolving small time- and
length-scales. The basis of the PIC method is outlined below.

2.2 physical basis of the pic method

The physical foundation of the PIC technique used in collisionless
plasma physics is the Maxwell-Vlasov system (see 1.3.3.2). The PIC

method is of Eulerian-Lagrangian type. More precisely, it processes
the Eulerian information, namely the electric field E(r, t), the mag-
netic field B(r, t), and the charge- and current-density ρ(r, t) and
J(r, t), respectively, on a spatial grid. The Lagrangian component of
the PIC method comes from the introduction of macro-particles (also

77
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called numerical particles or quasi-particles). These constitute the nu-
merical discretization of the particle distribution function of a species
s, associated with the Vlasov equation (1.89), via

fs(r, p, t) ≈
Ms

∑
α=1

ñs,α(r− Rs,α(t)) δ(p− Ps,α(t)) (2.1)

where ñs,α is the spatial particle density shape function of individual
macro-particles with positions Rs,α and momenta Ps,α. This particle
density shape function is generally bounded, i.e. zero outside of some
region. The number of the macro-particles used for the reproduction
of the phase-space distribution of a plasma species s is here denoted
by Ms. When rendering the particle distribution function in this way,
an equation similar to the Klimontovich equation (confer 1.3.2.1) is
obtained, which evolves the numerical particles along the character-
istics of the Vlasov equation. These characteristics are the discrete
particle trajectories, defined by (compare 1.3.2)

dRs,α

dt
= Vs,α , (2.2a)

dPs,α

dt
= Qs,α

(
E +

Vs,α

c
× B

)
, (2.2b)

where Vs,α is the macro-particle velocity and Qs,α is the integrated
charge of a macro-particle. The partial differential Vlasov-equation is
hence replaced with the ordinary differential Newton’s equation of
motion and the ordinary differential Lorentz-equation.

Charge and current densities in the Maxwell-Vlasov theory are
computed by means of equations (1.91a) and (1.91b). These equations,
together with the discretization (2.1) yield

ρ(r, t) ≈∑
s

qs

Ms

∑
α=1

ñs,α(r− Rs,α(t)) , (2.3a)

J(r, t) ≈∑
s

qs

Ms

∑
α=1

Vs,α ñs,α(r− Rs,α(t)) , (2.3b)

where qs denotes the charge of an elementary charge of the species.
The system of equations is closed by virtue of the Maxwell equations
(1.1a)-(1.1d). Such an approach allows for an efficient numerical inves-
tigation of kinetic and relativistic plasma phenomena while a full and
direct Vlasov approach is impracticable for most problems in plasma-
based acceleration. The numerical implementation of this approach is
outlined below.

2.3 numerical implementation and properties

The numerical implementation of the PIC technique is as follows. At
the initialization of a PIC simulation, the charge-density and current-
density on the grid are zero in order to fulfill the time-independent
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Maxwell equations (1.1a) and (1.1b). These time-independent Maxwell
equations are from that point on not anymore explicitly respected but
are implicitly fulfilled, if the time-dependent Maxwell equations (1.1c)
and (1.1d) and the charge continuity equation (1.2) are fulfilled.
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Computed quantities:
n

Rn+1
a , Rn+3/2

a , Vn+1
a , En+1/2, Bn, Bn+1/2

o
(2.17)

Time-update:

{n, t} ! {n + 1, t + Dt} (2.18)

t ! t + Dt (2.19)

2.3.5 Features of PIC simulations

Full 3D Particle-in-cell code code [Fonseca et al., 2002, 2008, 2013]
(OSIRIS) [Fonseca et al., 2002, 2008, 2013]

VORPAL [Nieter and Cary, 2004]

2.3.5.1 Numerical noise

Numerical noise ... [Cormier-Michel et al., 2008] Injection in PIC in
bubble regime [Benedetti et al., 2013] Numerical chrencov radiation
[Godfrey, 1974; Greenwood et al., 2004; Lehe et al., 2013]

2.3.5.2 Numerical dispersion relation

Numerical dispersion ... [Godfrey, 1974; Greenwood et al., 2004; Lehe
et al., 2013]

2.3.6 Kinetic description

Spatial resolution compared to Debye length?
Collisionless: Vlasov equation ...
Collisional: Fokker-Planck
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Field solving

Current deposition

Field interpolation and 
particle-pushing

74 particle-in-cell method

Computed quantities:
n

Rn+1
a , Rn+3/2

a , Vn+1
a , En+1/2, Bn, Bn+1/2

o
(2.17)

Time-update:

{n, t} ! {n + 1, t + D} (2.18)

n ! n + 1 (2.19)

2.3.5 Features of PIC simulations

Full 3D Particle-in-cell code code [Fonseca et al., 2002, 2008, 2013]
(OSIRIS) [Fonseca et al., 2002, 2008, 2013]

VORPAL [Nieter and Cary, 2004]

2.3.5.1 Numerical noise

Numerical noise ... [Cormier-Michel et al., 2008] Injection in PIC in
bubble regime [Benedetti et al., 2013] Numerical chrencov radiation
[Godfrey, 1974; Greenwood et al., 2004; Lehe et al., 2013]

2.3.5.2 Numerical dispersion relation

Numerical dispersion ... [Godfrey, 1974; Greenwood et al., 2004; Lehe
et al., 2013]

2.3.6 Kinetic description

Spatial resolution compared to Debye length?
Collisionless: Vlasov equation ...
Collisional: Fokker-Planck

[ May 2, 2014 at 13:22 – Draft for Timons Dissertation Version 1.0 ]

Figure 12: Main numerical time-integration cycle in PIC codes

The main time-integration cycle in a PIC simulation is then iterated
until the maximum simulation run time is reached. It contains the
substantial instances of current-density deposition, field solving, field
interpolation and particle-pushing and is depicted in Figure 12. Here,
n specifies the index of the time-step, ∆t represents the time-step size
which is usually constant in full PIC codes. The simulation time is
then given by t = t0 + n∆t.

2.3.1 Current-density deposition

The current-density in the PIC method is given by equation (2.3b). The
function ñ(r−R) in that equation specifies the particle density shape
function of a numerical particle. These chunks of spatial particle den-
sity should be small enough to reproduce the expected spatial fea-
tures of the particle density function f (r, p, t). Moreover, since macro-
particles have a point like shape in momentum space, a sufficient
number of particles should be used to populate the momentum space
to resolve the momentum distribution of f (r, p, t) appropriately.

The particle density shape function of macro-particle α is for conve-
nience decomposed into an individual magnitude Ñα and a general
normalized shape-function S, A reason, why

non-point-like
shapes in coordinate
space are used is
motivated in 2.4.

ñα(r− Rα) = Ñα S(x− Xα, y−Yα, z− Zα) . (2.4)

with
∫

dx dy dz S(x− Xα, y−Yα, z− Zα) = 1 . (2.5)

On a numerical lattice, the current-density is defined at the coordi-
nates xi, yj, zk, where i, j, k are the grid-point indices (see Yee mesh
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2.3.2). A macro-particle, situated in this lattice deposits its current-
density in the following charge conserving way.

In the example of a one-dimensional (1D) second-order polynomial
shape-function, the fractions of the macro-particle current-density, de-
posited onto the nearest three grid-points, is given by (confer [Esirke-
pov, 2001])

S1D
i (Xα) =

3
4
−
(

xi − Xα

∆x

)2

, |xi − Xα| ≤
∆x
2

, (2.6a)

S1D
i±1(Xα) =

1
2

[
1
2
∓
(

xi − Xα

∆x

)]2

, (2.6b)

where ∆x is the cell size. The density distribution of the macro-particles
is a quadratic spline and bell-shaped with this definition. The three-
dimensional (3D) shape-function is then given by

S3D
i,j,k(Xα, Yα, Zα) = S1D

i (Xα) S1D
j (Yα) S1D

k (Zα) , (2.7)

and accordingly for the other eight grid-points in the quadratic spline
range. The current-density deposited by a macro-particle onto theThe charge

conservation for
deposition schemes

with arbitrary form
factor is studied by

Esirkepov [2001].

nearest grid point is then given by

Ji,j,k = Qα Vα S3D
i,j,k(Xα, Yα, Zα) , (2.8)

with Qα = q Ñα, and accordingly for the other eight grid-points in the
quadratic spline range. The current-density deposited onto the grid
by the individual macro-particles is added up.

2.3.2 Field solving

Particle-in-cell codes update the field values on the grid after macro-
particle current-density deposition via the time-dependent Maxwell
equations, namely

∂B
∂t

= −c∇× E , (2.9a)

∂E
∂t

= c∇× B− 4π J . (2.9b)

These partial differential equations are discretized to enable a compu-
tation of the fields on the grid. To allow for a small error associated
with the finite difference approximation of the time-derivative and
the curls, the following time-centered and space-centered finite dif-
ference approach, called the Yee finite-difference time-domain (FDTD)
method, was proposed [Yee, 1966]. It employs a spatially staggered
mesh, depicted in Figure 13, to allow for a spatially centered finite
difference with error O(∆x2). The magnetic field values are thereby
defined at the center of the faces of the cells whereas the electric field
values are defined at the middle of the edges of the cells. The curls
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x
y

z

(i, j, k)

Ex, jx

Ey, jy

Ez, jz

Bx

By

Bz

Figure 13: Spatially staggered Yee mesh. The electic field and current com-
ponents are defined at the middle of the edges of the cells, re-
specively. The magnetic field components are defined at the mid-
dle of the faces of the cells.

can then be written in a space-centered finite difference scheme [Yee,
1966; Greenwood et al., 2004].

Moreover, the Yee FDTD scheme is also centered in time. The electric
field values are computed at half-integer time steps whereas the mag-
netic field is computed at integer time steps (compare e.g. [Pritchett,
2003]),

En+1/2 = En−1/2 + ∆t (c∇× Bn − 4π Jn) , (2.10a)

Bn+1 = Bn − c∆t∇× En+1/2 , (2.10b)

so that the error associated with the discrete time evaluation scales
as O(∆t2). Here, in addition, the quantity Bn+1/2 = (Bn + Bn+1)/2 is
computed and stored for the use of particle pushing.

This is an explicit scheme for the numerical solution of partial dif-
ferential equations. Explicit partial differential equation solvers are
considered robust and stable. However, in order to guarantee for com-
putational stability the following requirement must be fulfilled. The
time step size must be limited by the Courant-Friedrichs-Lewy (CFL)
condition [Courant et al., 1928; Yee, 1966],

∆t = CCFL

√
∆x2 + ∆y2 + ∆z2

c
, (2.11)

where CCFL is the CFL number with the necessary requirement CCFL <

1 for stability of the numerical PDE solver. Moreover, to assure for
light-like numerical dispersion along the diagonal of the cells, the
CFL number must be close to one [Greenwood et al., 2004]. These con-
ditions fundamentally couples the spatial and temporal resolutions in
fully explicit PIC codes. PIC codes using a FDTD method with explicit
PDE solvers are called "fully explicit PIC codes" within this work.
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2.3.3 Field interpolation and particle pushing

Equations (2.2b) and (2.2a) define the macro-particle advance. A time-
centered discretization of these equations is given by (compare [Vay,
2008])

γn+1
α Vn+1

α − γn
αVn

α

∆t
=

q
m

(
En+1/2

α +
Vn+1/2

α

c
× Bn+1/2

α

)
. (2.12a)

Rn+3/2
α − Rn+1/2

α

∆t
= Vn+1

α , (2.12b)

Here, the indices of the particle species are dropped and Eα and Bα

specify the field values at the position of macro-particle α, and q/m
denotes the charge mass ratio of the regarded species. These field
values are obtained by means of an interpolation scheme, analogous
to the current-density deposition scheme.

In the example of a quadratic spline interpolation scheme, the field
values at the macro-particles position are obtained via

Eα = ∑
λ,µ,ν={−1,0,1}

Ei+λ, j+µ, k+ν S1D
i+λ(Xα) S1D

j+µ(Yα) S1D
k+ν(Zα) ,

(2.13a)

Bα = ∑
λ,µ,ν={−1,0,1}

Bi+λ, j+µ, k+ν S1D
i+λ(Xα) S1D

j+µ(Yα) S1D
k+ν(Zα) ,

(2.13b)

where the 1D shape functions (2.6a) and (2.6b) are used, bearing in
mind that the various field components are defined at different loca-
tions within the cell.

Equation (2.12a) contains the macro-particle velocity at half-integer
time step on the right hand side. This information is not explicitlyImproved schemes

are presented in
[Vay, 2008].

known, but a method to compute it was proposed by Boris [1970]. The
velocity at half-integer time step can firstly be written as (compare
[Vay, 2008])

Vn+1/2
α =

γn
αVn

α + γn+1
α Vn+1

α

2 γn+1/2
α

. (2.14)

Now, the advance by the electric field can be decoupled from the
magnetic contribution by use of a relativistic factor of (see [Vay, 2008])

γn+1/2
α =

√
1 +

(
γn

αVn
α +

q∆t
2m

En+1/2
α

)
. (2.15)

This is possible since the magnetic field does not change the kinetic
energy of a particle. The resulting system is closed with the compo-
nents of γn+1

α Vn+1
α being the three unknowns and the components

of (2.12a) being the determining equations. The macro-particle po-
sitions at integer time-steps are computed via Rn+1

α = (Rn+1/2
α +

Rn+3/2
α )/2 = Rn+3/2

α − ∆t Vn+1
α /2 during the next current deposition.
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2.3.4 Numerical sequence of a typical PIC cycle

A typical numerical sequence in the example of a fully time-centered
PIC cycle is illustrated below. The initially known quantities at time
step n are:

{
Rn+1/2

α , Vn
α , En−1/2, Bn−1/2, Bn

}
(2.16)

The first step is the current density deposition:
{

Rn+1/2
α , Vn

α

}
⇒ Rn

α , (2.17a)

{Rn
α , Vn

α} ⇒ Jn . (2.17b)

After current density deposition, the electric field and magnetic field
can be computed:

{
En−1/2, Bn, Jn

}
⇒ En+1/2 , (2.18a)

{
Bn, En+1/2

}
⇒
{

Bn+1, Bn+1/2
}

. (2.18b)

The field information is subsequently interpolated to the positions of
the macro-particles:

{
Rn+1/2

α , En+1/2, Bn+1/2
}
⇒
{

En+1/2
α , Bn+1/2

α

}
. (2.19)

The field interpolation is followed by the macro-particle advance:
{

Vn
α , En+1/2

α , Bn+1/2
α

}
⇒ Vn+1

α , (2.20a)
{

Rn+1/2
α , Vn+1

α

}
⇒ Rn+3/2

α . (2.20b)

The quantities obtained at the end of the PIC cycle are:
{

Rn+3/2
α , Vn+1

α , En+1/2, Bn+1/2, Bn+1
}

. (2.21)

The computed information is now complete to start a new cycle with
incremented time step.

2.4 relevant features of pic simulations

The following will summarize some features of PIC simulations which
are relevant for the present work. A PIC code used in this work is
OSIRIS [Fonseca et al., 2002, 2008, 2013]. It is a fully explicit electrody-
namic and relativistic PIC code, which is massively parallelized and
developed at the University of California Los Angeles (UCLA) and
Instituto Superior Técnico Lisboa (IST).
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2.4.1 Numerical emittance growth from unphysical Cerenkov radiation

The standard Yee FDTD method, which is commonly used in PIC codes,
has the following implications for the numerical dispersion. Electro-
magnetic waves at frequencies near to the cutoff frequency, which
is the highest resolved mode on the grid ωc ∼ π/∆t, travel slower
than the speed of light along the axes [Godfrey, 1974; Greenwood
et al., 2004]. This can effect high energy particles to emit numerical
Cerenkov radiation and can lead to unphysical results when the ra-
diation interacts with particles [Greenwood et al., 2004; Lehe et al.,
2013]. In particular, such effects can cause unphysical numercial emit-
tance growth of electron beams from numerical Cerenkov radiation
[Lehe et al., 2013].

2.4.2 Numerical scattering and heating

Simulations with the Particle-in-cell method can involve numerical
scattering [Hockney, 1971] or heating [Lindman, 1970; Langdon, 1970]
effects.

Despite being based on the collisionless kinetic Vlasov equation,
PIC codes entail numerical particle collisions due to the use of dis-
crete macro-particles instead of a smooth particle distribution func-
tion. Relative fluctuations of the macro-particle number in a cell dur-
ing a simulation may therefore cause a change of the field values at
the cell which causes macro-particles to experience an instantaneous
force. Integrated over a long time period, these effects can add up and
heat the particle ensemble. The effect of numerical scattering can be
suppressed by increase of the number of macro-particles per cell or
by use of higher-order particle shapes [Cormier-Michel et al., 2008].

Numerical heating occurs especially when the Debye length is not
sufficiently resolved by the grid spacing. The dispersion relation of a
warm plasma is then altered and aliasing of high-frequency modes
results in unphysical heating [Langdon, 1970; Okuda, 1972; Birdsall
and Maron, 1980]. Moreover, in problems of plasma-based accelera-
tion, numerical heating can also be observed, if a cold plasma was
initialized [Cormier-Michel et al., 2008]. Numerical heating can gen-
erally be suppressed by an increase of the spatial grid resolution or by
higher-order particle shapes and field interpolation schemes [Birdsall
and Maron, 1980; Cormier-Michel et al., 2008].
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D E V E L O P M E N T O F A Q U A S I - S TAT I C P I C C O D E

3.1 introduction

3.1.1 Motivation

The fully explicit particle-in-cell (PIC) method, outlined in the pre-
vious chapter, is the appropriate tool to study the relativistic inter-
actions of highly-intense lasers or high-current particle-beams with
plasmas. However, full, three-dimensional (3D) PIC simulations are
possible only by means of substantial computational resources on
modern supercomputers. A typical 3D simulation of a beam-driven
plasma accelerator with centimetre-scale plasma target at a density of
∼ 1017cm−3, and with an energy gain in the GeV regime, for instance,
requires at least 104 − 105 core hours when simulated by means of a
fully explicit PIC code, but can require substantially more resources,
depending on the features to be resolved.

These extensive computational costs can be contributed to the dis-
parity of smallest and greatest length and time scales which need to
be resolved in simulations of plasma-based acceleration. The wave-
length of lasers is on the order of sub-micrometers, particle beams
have dimensions on the order of micrometers and plasma wavelengths
are on the order of tens to hundreds of micrometers. Common plasma
targets on the other hand are centimeters to meters long, resulting in
a difference by five to seven orders of magnitude between a numer-
ical cell size, which needs to resolve the small aforementioned fea-
tures, and the total simulation distance. The CFL-stability condition
for the PDE field solvers in fully explicit PIC codes limits the time-step
by the cell size and hence fundamentally determines the minimum
number of time-steps needed for a given cell size and propagation
distance in a fully explicit PIC simulation. These restrictions constrain
the usability of such codes for parameter scans, modeling of meter-
scale propagation or comprehensive analyses of typical problems in
plasma-based acceleration.

PIC codes can be written in an implicit scheme to avoid the time-
step constraints of an explicit Particle-In-Cell code [Petrov and Davis,
2011]. Moreover, the computational costs of simulations of laser-driven
plasma accelerators, in particular, can be reduced by utilization of a
ponderomotive or laser envelope model, such that the laser wave-
length (usually the shortest feature in the simulation) does not need
to be resolved [Cowan et al., 2011; Benedetti et al., 2010, 2012a]. An-
other possibility to mitigate the affordable computational resources

85
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for the simulation of typical LWFA scenarios is to Lorentz-transform
the simulated problem into a boosted frame [Vay, 2007]. The disparity
between laser- and plasma wavelength is reduced in this frame due
to Lorentz-contraction which allows for a coarser grid spacing and
reduces the number of time-steps required.

3.1.2 The quasi-static approach

A different method to render possible efficient PIC simulations of
plasma accelerators was proposed by Mora and Antonsen [Mora and
Antonsen, 1996] and Whittum [Whittum, 1997]. If the envelope of a
laser pulse or the charge distribution of a particle-beam is not signif-
icantly evolving during the traversal of a plasma particle, the quasi-
static approximation (QSA) [Sprangle et al., 1990a] is applicable. The
QSA allows for a treatment of the plasma and particle- or laser-beams
with decoupled time-advance. Such a decoupling in the the quasi-
static PIC scheme enables a time-step size which can be orders of
magnitude greater than those in full PIC codes. This was successfully
demonstrated in the relativistic and electrodynamic quasi-static PIC

codes WAKE [Mora and Antonsen, 1996, 1997; Morshed et al., 2010],
LCODE [Lotov, 2003, 2004] and QuickPIC [Huang et al., 2006; Feng
et al., 2009; An et al., 2013]. WAKE is a 2D Cartesian or cylindrical
quasi-static PIC code, emulating intense laser-propagation in plasmas
and additionally capable of simulating particle-beam interaction with
plasmas [Morshed et al., 2010]. The quasi-static PIC code LCODE is
modelling highly relativistic particle beam interactions with plasmas
in 2D Cartesian or cylindrical geometry. QuickPIC is a 3D PIC code us-
ing the QSA to efficiently simulate laser- or particle-beam interaction
with plasmas [Huang et al., 2006]. It uses a pipelining algorithm to
achieve high scalability [Feng et al., 2009] and since recently employs
an advanced field solving routine to provide faster convergence of its
predictor-corrector loop [An et al., 2013]. While being specialized on
common plasma acceleration scenarios, quasi-static PIC codes provide
considerably enhanced efficiency for these scenarios compared to full
PIC codes.

3.1.3 The quasi-static PIC code HiPACE

This chapter discusses the electromagnetic, relativistic, three dimen-
sional, and parallel quasi-static PIC code HiPACE. While retaining phys-This code was

developed at DESY
in collaboration with

the Lawrence
Berkeley National

Laboratory (LBNL).

ical fidelity, the code shows orders of magnitude speedup compared
to full 3D PIC codes for a variety of beam-driven plasma accelera-
tion problems, enabling affordable meter-scale 3D plasma accelera-
tion simulations. This is realised by the use of the above mentioned
QSA, and by a computational efficiency and high degree of paralleli-
sation.
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HiPACE is parallelised in all three dimensions and scales well for
more than 64 processors. While fully explicit PIC codes use an FDTD

method to update the field information in each time step, HiPACE re-
computes the full self-consistent field information in each time step
by means of fast Poisson-solvers. This feature allows for consistent ini-
tialisation of particle-beams within the plasma such that beams from
full PIC codes can be imported into HiPACE during their propagation
in a plasma target. Such a hybrid approach using a full PIC code and
HiPACE enables the investigation of electron-injection techniques (self-
injection is otherwise absent in codes using the QSA) and parameter
scans in 3D geometry with centimetre to metre long propagation dis-
tances. In addition, beams with arbitrary phase-space distributions
can be generated within HiPACE or can be imported from particle
tracking codes, e.g. ASTRA or ELEGANT.

The development of a simulation program can be described in
the following steps [Hockney and Eastwood, 1981]. (a) For a given
physical phenomenon, (b) a mathematical model, describing this phe-
nomenon is found. (c) The mathematical model is then to be dis-
cretized and (d) incorporated in numerical algorithms, which are fi-
nally (e) embedded in an appropriate simulation program.

The development of the quasi-static PIC code HiPACE is presented
analogously. The physical scope of plasma-based acceleration, point
(a), is reviewed in chapter 1. The physical basis and the mathematical
model for the description of the relevant phenomena in plasma-based
acceleration, posing point (b), are discussed in the present chapter
in section 3.2. The discretizations, (c), and numerical algorithms, (d),
are outlined in section 3.3. This is followed by a comparison between
HiPACE and the full 3D particle-in-cell code (OSIRIS) in 3.4. The full
exhibition of point (e) is beyond the scope of this work, but some con-
ceptual approaches of the parallelization of the simulation program
are discussed in section 3.5 and in Appendix C. The discussions and
concluding remarks in 3.6 complete this chapter.

3.2 physical basis and mathematical model

3.2.1 Physical basis and quasi-static approach

Equivalently as full PIC codes, the present quasi-static PIC code is
based on the Vlasov-Maxwell system. The Maxwell equations (1.1a)-
(1.1d) are for convenience rewritten in terms of the normalized elec-
tric and magnetic field, E = E/E0 and B = B/E0, respectively, where
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E0 = ωpmc/e is the cold-nonrelativistic wavebreaking field [Dawson,
1959],

∇̃ · E = $, (3.1a)

∇̃ ·B = 0, (3.1b)

∇̃ × E +
∂B
∂t̃

= 0, (3.1c)

∇̃ ×B− ∂E
∂t̃

= J . (3.1d)

Here, in addition, the normalized charge density $ = ρ/en0 and cur-
rent density J = J/ecn0 are introduced, where n0 is the reference
plasma density. Independent time and length variables are normal-
ized to the inverse plasma frequency, t̃ = ωpt, and to the skin-depth,
x̃ = kpx, where kp = ωp/c and ωp =

√
4πn0e2/me.

The particle phase-space distributions of beam-species and plasma-
electrons are discretized by means of the macro-particle concept (see
2.2). These numerical particles are advanced along the characteristics
of the Vlasov equation, given by the Newtonian equation of motion
and the Lorentz force,

dX
dt̃

= β , (3.2a)

dU
dt̃

= η (E + β×B) , (3.2b)

where, within this chapter, X = kpR is the normalized macro-particle
position, U = P/Mc is the normalized macro-particle momentum,
β = V/c = U/γ is the macro-particle velocity, normalized to the
speed of light and η = Qme/eM represents the charge-mass-ratio of
a macro-particle relative to the positron charge mass ratio (i.e. η = −1
for macro-particles representing an electron species).

The characteristic time scales for the beam and plasma evolution
exhibit a significant disparity for highly relativistic beams. This is
used to formulate the QSA, which is the basis of HiPACE. The QSA

states (see 1.4.3.2) that Eulerian quantities evolve according to

∂Q
∂t̃
' −∂Q

∂ζ̃
, (3.3)

in the speed of light frame ζ̃ = z̃ − t̃ = kpz − ωpt, τ̃ = t̃. Plasma
macro-particle quantities χp, which have a particle (Lagrangian) na-
ture in the transverse direction and a fluid (Eulerian) nature in the
co-moving direction, can be assumed quasi-static, such that the coor-
dinate transformation yields

dχp

dt̃
=
(

βp,z − 1
) ∂χp

∂ζ̃
+

∂χp

∂τ̃
'
(

βp,z − 1
) ∂χp

∂ζ̃
, (3.4)

where βp,z = Vp,z/c denotes the normalized particle velocity in z-
direction. The beam, on the contrary, is considered to be highly rel-
ativistic βb,z ' 1, such that the QSA does not apply for its dynamics,
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and its properties are evolving in time t̃. This gives rise to the sep-
arated treatment of beam and plasma macro-particles (cf. [Morshed
et al., 2010] and [Huang et al., 2006]). The basic scheme employed in
HiPACE is therefore as follows. Particles of all beam species are static
after their current was deposited, while plasma macro-particles are
pushed and fields are computed. Plasma macro-particles and fields
are advanced from the initial and unperturbed state, which exists
prior to beam interaction. This implies, plasma and field integration
must start from co-moving positions ahead of the beam and evolve in
negative ζ̃-direction. In a second step, the fields and the plasma are
static while the beam is evolved in t̃. This time-staggered scheme is
depicted in Figure 14.

Fields are frozen while the 
beam is advanced

Beam is frozen while plasma is 
evolved over the beam and 
fields are being computed

⇣ ��⇣ t + �t

Figure 14: Basic staggered numerical scheme in HiPACE with separated treat-
ment of beam and plasma macro-particles.

3.2.2 Plasma formulation

The quasi-static approximation induces a dynamical invariant of plasma
motion, as will be shown in the following. The normalized Hamilto-
nian for a plasma electron in the normalized vector potential a =

eA/mec2 and the normalized scalar potential φ = eΦ/mec2 is given
by

H =

√
1 + |Ucan + a|2 − φ = γ− φ, (3.5)

with the normalized canonical momentum Ucan = U− a. Using the
QSA (∂H/∂t̃ ' −∂H/∂ζ̃), one finds the following identity [Mora and
Antonsen, 1996]

dH
dt̃

=
∂H
∂t̃
' −∂H

∂ζ̃
= −∂H

∂z̃
=

dUcan,z

dt̃
, (3.6)

such that d/dt(γ − φ) = d/dt(Uz − az). This suggests the quantity
γ − ψ −Uz to be invariant during the advance of a plasma particle,
with the wakefield-potential ψ = φ − az. For an initially cold and
unperturbed plasma, this entails the equality

γ− ψ−Uz = 1, (3.7)
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to be true for all times. It follows from Jean’s theorem that the dy-
namical invariants are constant along the characteristics of the Vlasov
equation. In the following, ψp = ψ will thus be interpreted as a
Lagrangian quantity of the plasma macro-particles. Combination of
equations (3.4) and (3.7) yield the change which plasma macro-particle
quantities experience during integration in the co-moving variable

∂χp

∂ζ̃
= − γp

1 + ψp

dχp

dt̃
. (3.8)

The factor −γp/(1+ ψp) can be interpreted as the weight with which
the local temporal change contributes to the change along the co-
moving variable. This results in the following equation of motion for
the transverse plasma macro-particle position

∂Xp,⊥
∂ζ̃

= FX,⊥ = − Up,⊥
1 + ψp

. (3.9)

Equation (3.2b), together with the QSA, yields the evolution of the
plasma macro-particle transverse momentum,

∂Up,⊥
∂ζ̃

= FU,⊥ =
γp

1 + ψp

(
Ex −By

Ey + Bx

)
+

(
By

−Bx

)
. (3.10)

Here and henceforth within this chapter the axial magnetic field Bz is
assumed to be negligible for the dynamics and field evolution. This
is justified, firstly, by the typically nonrelativistic transverse velocities
of the beam βb,⊥ � 1 which suppress the impact of the axial mag-
netic field to the beam evolution. Secondly, and most importantly,
azimuthal currents, which may generate a field in axial direction, are
generally by orders of magnitude less enhanced than axial and radial
currents in problems of beam-driven plasma acceleration.

The wakefield potential is one initially (ψp(ζ → ∞) = 1) for an cold
plasma, and evolves according to

∂ψp

∂ζ̃
= Fψ =

Up,⊥
1 + ψp

·
(
Ex −By

Ey + Bx

)
− Ez. (3.11)

Regarding γp =
√

1 + U2
p,⊥ + U2

p,z together with equation (3.7), yields
a definition for the Lorentz-factor,

γp =
1 + U2

p,⊥ + (1 + ψp)2

2(1 + ψp)
. (3.12)

which is independent of the longitudinal momentum. Equations (3.9),
(3.10), (3.11) and (3.12) define the physical basis of the plasma macro-
particle pusher whose numerical implementation will be explained
in the subsequent section.
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3.2.3 Beam equations

Beam macro-particles are highly relativistic βb,z ' 1. The dynamics
of beam macro-particles are thus with eqn. (3.2a) and (3.2b) given by
the following set of equations

dXb,⊥
dt̃

=
Ub,⊥
γb

, (3.13a)

dUb,⊥
dt̃

= η

(
Ex −By

Ey + Bx

)
, (3.13b)

dUb,z

dt̃
= η

(
Ez +

Ub,xBy −Ub,yBx

γb

)
, (3.13c)

γb =
√

1 + U2
b,⊥ + U2

b,z. (3.13d)

The numerical scheme used for time integration of this set of equa-
tions will be illustrated in the following section.

3.2.4 Field equations

For a complete self-consistent description of beam and plasma, the
field configuration as resulting from the current density needs to be
calculated. This is done by use of the time-dependent Maxwell equa-
tions (3.1c) and (3.1d). Given the charge continuity equation is ful-
filled, the time-independent Maxwell equations (3.1a) and (3.1b) are
satisfied for all ζ̃ if they are satisfied at some initial co-moving posi-
tion. Applying the QSA, to the transverse plane of eqn. (3.1d) yields
the equality

∂

∂ζ̃

(
Ex −By

Ey + Bx

)
=

(
Jx

Jy

)
. (3.14)

The derivative of the transverse fields (Ex−By) and (Ey +Bx) with re-
spect to the co-moving position is thus given by the transverse current
density. This finding, together with the transverse plane of equation
(3.1c) yields the equation

∇̃2
⊥Ez = ∇̃⊥ ·J⊥. (3.15)

The field components left for the closure of the governing equations
are the transverse components of the magnetic field, which are de-
rived by use of the longitudinal component of equation (3.1d) and
the identity ∇̃⊥ ·B⊥ = −∂Bz/∂ζ̃ = 0, resulting in

∇̃2
⊥Bx = − ∂

∂ỹ

(
Jz −

∂Ez

∂ζ̃

)
, (3.16a)

∇̃2
⊥By =

∂

∂x̃

(
Jz −

∂Ez

∂ζ̃

)
. (3.16b)



92 development of a quasi-static pic code

Equations (3.15), (3.16a) and (3.16b) are transverse Poisson equations,
with the source terms being functions of the transverse coordinates
only. The quasi-static approximation hence leads to transversely two-
dimensional problems which can be solved by means of fast Poisson
solvers as described in the next section. One notable aspect of the two
latter equations is the dependency on the change of the longitudinal
field ∂Ez/∂ζ̃. Since plasma and fields are advanced in negative ζ̃ di-
rection, equations (3.16a) and (3.16b) include the numerical challenge
to know the longitudinal field Ez, and hence the transverse currents
J⊥, in the next ζ̃-position in integration direction when using a cen-
tral difference scheme (backward difference schemes are not stable in
this context). This problem can only be solved by means of an itera-
tive scheme which will be described below.

3.3 numerical implementation

The HiPACE main loop consists of the following three steps (see Figure
15). In the first instance, beam currents are deposited onto the grid.
The second step constitutes the advance of the plasma and fields in
negative ζ̃-direction. Field values are then interpolated to the beam
macro-particles positions which are being pushed in the third step of
the main loop. This section will outline the numerical implementation
of HiPACE in the order of the numerical sequence.
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Figure 15: Schematic numerical flow in HiPACE.

3.3.1 Beam current-density deposition

Deposition of beam current-densities onto the numerical lattice is
conducted in the same fashion as in full PIC codes (see 2.3.1). The
three-dimensional particle shape function is by default composed of
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second-order transverse shape functions and a first-order longitudi-
nal shape function,

S3D(ζ̃, x̃, ỹ) = S1D
1 (ζ̃) S1D

2 (x̃) S1D
2 (ỹ) , (3.17)

where the subscript here denotes the order of the particle shape. The
limitation of the longitudinal particle shape to a first order scheme is
important for the parallel performance (more information in section
3.5). The current-density is then computed as usual (see 2.3.1).

3.3.2 Plasma and field routine

When compared to the typical main loop in full PIC codes (confer
2.3), the major distinction in the numerical implementation of HiPACE

is the plasma and field solving subroutine which will be explained in
the following.

3.3.2.1 Plasma particle advance

The considered simulation domain contains a number of Nζ grid-
points in longitudinal direction. The position of the grid-point with
index i is given by ζ̃ i = ζ̃min + i× ∆ζ̃, where ζ̃min denotes the lower
longitudinal simulation domain boundary. The unperturbed fields
and plasma macro-particles are initialised within a transverse 2D sub-
lattice at the upper longitudinal simulation box boundary, at position
ζ̃Nζ−1 = ζ̃max. The plasma routine decrements the index i and pro-
cesses 2D sub-lattices starting from the upper longitudinal boundary
to the lower boundary. In each 2D sub-lattice, the routine starts by
pushing the plasma macro-particles according to eqns. (3.9), (3.10)
and (3.11). This is done by means of a linear multistep method, as-
suming the right-hand sides FX,⊥, FU,⊥, Fψ of equations (3.9), (3.10)
and (3.11) to be known from the previously computed slices. The evo-
lution of a plasma macro-particle quantity χ is then given by

χi = χi+1−∆ζ̃
(

b1Fi+1
χ + b2Fi+2

χ + b3Fi+3
χ + b4Fi+4

χ + b5Fi+5
χ

)
, (3.18)

where b1,...,5 denote the coefficients for the fifth-order Adams-Bashforth
method [Butcher, 2008]. It should be noted that co-moving positions
of plasma macro-particles are advanced by −∆ζ̃, independent of their
longitudinal velocity, which enables the usage of the multistep method
and assures that plasma macro-particles are always defined within
the processed 2D slice.
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3.3.2.2 Plasma current deposition

After particle pushing, the deposition of plasma currents onto the 2D
slice is conducted. The plasma electron charge and current-densities
are given by

$ = ∑
α

wα S2D(r̃⊥ − Xα,⊥(ζ̃)), (3.19a)

J = ∑
α

βα wα S2D(r̃⊥ − Xα,⊥(ζ̃)) (3.19b)

where α is the macro-particle index, wα is a to be determined macro-
particle charge-weight and S2D is the transverse shape function of the
macro-particles with the normalization

∫
S2D(r̃⊥ − Xα,⊥(ζ̃))dr̃⊥ = 1. (3.20)

When applying the QSA to the charge continuity equation (1.2),

∂

∂t̃
$ + ∇̃ ·J = 0 , (3.21)

one finds (cf. [Huang et al., 2006])

− ∂

∂ζ̃
∑
α

wα S2D(r̃⊥ − Xα,⊥) + ∇̃ ·∑
α

βαwα S2D(r̃⊥ − Xα,⊥) = 0 .

(3.22)

Restructuring this equation yields

∂

∂ζ̃
∑
α

(1− βα,z)wα S2D(r̃⊥ − Xα,⊥) ,

= ∇̃⊥ ·∑
α

βα,⊥wα S2D(r̃⊥ − Xα,⊥) ,

= ∑
α

wαβα,⊥ · ∇̃⊥ S2D(r̃⊥ − Xα,⊥) ,

(3.23)

and thus, after integration over the transverse plane

d
dζ̃

∑
α

(1− βα,z)wα = 0. (3.24)

The equation of continuity hence demands the quantity (1− βα,z)wα =

Qα/e to be conserved for each numerical particle. The deposited
weight for the charge-density and current-density deposition wα is
therefore related to the conserved charge of a plasma macro-particle
Qα through

wα =
Qα

e
γp,α

1 + ψp,α
. (3.25)

Descriptively, this factor accounts for the neglect of the role of lon-
gitudinal velocity to the time period during which a macro-particle
contributes to the local charge and current densities. The current of
the plasma macro-particles is deposited in the usual PIC-scheme (see
2.3.1) with a zeroth order deposition in longitudinal direction and
higher order in transverse direction.
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3.3.2.3 Field solving and iteration loop

After plasma current deposition, the fields (Ex −By)i, (Ey + Bx)i and
E i

z in the currently processed slice are calculated. Equation (3.14) is
discretised to compute the transverse fields by using a third-order
linear multistep scheme

(
Ex −By

Ey + Bx

)i

=

(
Ex −By

Ey + Bx

)i+1

− ∆ζ̃

12

(
23J i+1

⊥ − 16J i+2
⊥ + 5J i+3

⊥
)

.

(3.26)

The longitudinal electric field is determined via the transverse Pois-
son equation (3.15). All fields are assumed to decay to zero at the
boundaries, implying perfectly conducting walls (Dirichlet boundary
conditions). An efficient method to solve elliptical partial differen-
tial equations similar to the Poisson equation, are fast Poisson solvers
(see C.1). This technique utilises fast fourier transforms to achieve
fast computation of the Poisson problem [Van Loan, 1992]. On a two- More detailed

information on fast
Poisson solvers can
be found in
Appendix C.

dimensional grid, equivalent to the discussed transverse slices, with
a number of Nx × Ny = N2 grid points, the fast Poisson solver re-
quires O(N2 log(N)) operations to find a numerical solution, which
is near to optimum speed (O(N2)). Most direct methods (e.g. succes-
sive over-relaxation) need a significantly larger number of operations
(≥ O(N3)). However, fast fourier transforms (FFTs) are not straightfor-
ward to parallelise. The FFTs are being computed by use of the library
FFTW3 [Frigo and Johnson, 2005] which provides MPI-routines, al-
lowing for the parallelisation in one spatial dimension.

The computation of the transverse magnetic fields Bi
x and Bi

y ac-
cording to equations (3.16a) and (3.16b) can in principal also be per-
formed by use of fast Poisson solvers. However, this presupposes the
knowledge of E i−1

z for the calculation of the longitudinal derivative
(∂Ez/∂ζ̃)i ' (E i+1

z − E i−1
z )/2∆ζ̃ in the source terms. This problem

can be solved by means of an iterative predictor-corrector method
(cf. [Mora and Antonsen, 1997]) which uses an initial guess for the
transverse fields to advance the plasma macro-particles to the next co-
moving position ζ̃ i−1. Then, plasma currents J i−1

⊥ can be deposited
and the field E i−1

z be computed. After deduction of (∂Ez/∂ζ̃)i by
means of a central difference, the transverse magnetic fields Bi

x and
Bi

y are updated to Bi
x,new and Bi

y,new by use of equations (3.16a) and
(3.16b). This sequence is iterated (see Figure 15) until the following
convergence criteria is met

sup
∣∣∣∣
Bi

new −Bi

sup |Bi
new|

∣∣∣∣ < TOL, (3.27)

where sup
∣∣Yi
∣∣ denotes the supremum of the absolute value of quan-

tity Y in the 2D slice i and TOL is a chosen tolerance. This method



96 development of a quasi-static pic code

terminates the predictor-corrector loop after a single iteration in re-
gions in which the fields show negligible ζ̃-dependence (e.g. ahead
of the driver) and in the same time guarantees for accuracy in longi-
tudinal regions with enhanced ζ̃-dependence (e.g. near to the density
spike in the blow out regime) by iterating several times. Fastest con-
vergence was generally achieved in slice i when a composition of
magnetic field configuration from slice i + 1 and from the previous
time step was used as an initial guess.

The above described scheme splits the 3D field and plasma prob-
lem into a set of 2D sub-problems and hence decreases the computing
as well as the memory load when advancing the plasma and fields.
Moreover, it should be noted that the plasma information and self-
consistent field configuration in quasi-static PIC codes is re-computed
in each time-step as described above, whereas fully explicit PIC codes
only update the fields by means of a FDTD method and advance
plasma information in each time-step.

3.3.3 Beam advance

After the fields in each two-dimensional sub-domain along ζ̃ were
computed in the plasma and field routine, HiPACE returns to the main
loop. The beam advance is performed in a second-order and symplec-
tic scheme. The beam-macro-particles are spatially updated by half a
time-step according to (3.13a),

Xn+1/2
b,⊥ = Xn

b,⊥ +
∆t̃
2

Un
b,⊥

γn
b

. (3.28)

Subsequently, the field values are interpolated to the positions of the
macro-particles in the usual way (see 2.3.3), with the longitudinal
interpolation scheme, for reasons related to parallel performance, be-
ing limited to first order (confer 3.5). The obtained field values at
the particles positions are used to update the momenta according to
equations (3.13b) and (3.29c),

Un+1
b,⊥ −Un

b,⊥
∆t̃

= η

(
Ex −By

Ey + Bx

)n+1/2

, (3.29a)

Un+1/2
b,⊥ =

Un+1
b,⊥ + Un

b,⊥
2

(3.29b)

Un+1
b,z −Un

b,z

∆t̃
= η

(
En+1/2

z

+
Un+1/2

b,x Bn+1/2
y −Un+1/2

b,y Bn+1/2
x

γn+1/2
b

)
. (3.29c)
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The half-integer relativistic factor does not change by virtue of the
magnetic field and is hence computed via

γn+1/2
b =

√

1 +
(

Un+1/2
b,⊥

)2
+

(
Un

b,z +
∆t̃
2

η En+1/2
z

)2

. (3.30)

After momentum update, the second half-step for the position ad-
vance can be performed

Xn+1
b,⊥ = Xn+1/2

b,⊥ +
∆t̃
2

Un+1/2
b,⊥

γn+1/2
b

. (3.31)

The size of the time-step ∆t̃ is determined by the smallest beam
energy which is to be resolved and the local plasma density. When
the beam energy or the local plasma density changes, HiPACE dynam-
ically adjusts ∆t̃ in order to guarantee optimum performance while
rendering the beam dynamics consistently. The time-step is hence
chosen according to ∆t̃ =

√
2γcn0/nloc/Λres, where Λres is the reso-

lution of the inverse betatron wave-number (usually 10 ≤ Λres ≤ 20),
n0/nloc is the ratio of reference over local plasma density and γc is
a chosen minimal resolved beam energy. HiPACE choses this mini-
mal resolved energy by γc = max(γmin, γ− 5σγ), where γmin is the
minimum macro-particle energy and 〈γ〉 and σγ are the mean and
RMS-spread of energies of the beam-species in the simulation domain,
respectively.

3.4 comparison with explicit pic simulations

In order to assess the capability of HiPACE to consistently simulate
common plasma acceleration problems, results from a HiPACE sim-
ulation and from a simulation with the full explicit PIC code OSIRIS

[Fonseca et al., 2002, 2008, 2013] will be presented in the following. Details on the
simulation setup can
also be found in B.2

The considered problem consists of a highly relativistic (〈γb〉 = 2000,
σγ/ 〈γb〉 = 10−3), Gaussian (σ̃x,y,z = 1.0) electron beam with peak
density nb/n0 = 1.0 and normalised transverse emittance ε̃n

x,y = 0.5,
propagating through a homogeneous plasma. The Gaussian beam dis-
tribution was truncated at a radius of 3× σ̃x,y,z (length-scales, includ-
ing the emittance, are normalized to k−1

p ). Physical and numerical sim-
ulation parameters were chosen identical for the HiPACE and OSIRIS

simulations. The box dimensions are L̃x × L̃y × L̃ζ = 15 × 15 × 15,
the cell volume ∆x̃× ∆ỹ× ∆ζ̃ = 0.0073× 0.0588× 0.0588, number of
beam macro-particles per cell Nb,ppc = 2× 2× 2 and plasma macro-
particles per cell Np,ppc = 2× 2× 1. The time-step in OSIRIS is con-
strained by the cell size and the CFL condition to ∆t̃ = 0.0072. The
time step in HiPACE resolves the betatron motion of the beam (see
explanation above) and is ∆t̃ = 4.21.
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(a) Comparison after distance of z̃ = 80.

(b) Comparison after distance of z̃ = 450.

Figure 16: Densities of plasma and beam in HiPACE (top) and OSIRIS (bottom)
simulations.

Figures 16, 17 and 18 show comparisons of simulation results from
HiPACE and OSIRIS. Figure 16 depicts a qualitative comparison of a cen-
tral slice of the plasma and beam densities after distances of z̃ = 80
and z̃ = 450 of beam propagation in the plasma. The beam den-
sity distributions and plasma wave structure are qualitatively close
in the HiPACE and OSIRIS results. Subtle differences in the beam or
plasma density distributions might originate from the fact that the
OSIRIS beam was initialised before the plasma and the HiPACE beam
in the plasma or from differences of the numerical approaches.

Figures 17 and 18 compare the field configurations, obtained from
the HiPACE and OSIRIS simulations, quantitatively. Figure 17a depicts
the longitudinal field values on the propagation axis. The curves are
close to each other and the only significant deviation occurs at the
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crest of the plasma wave, where a large amount of plasma macro-
particle trajectories cross and generate a spike in the longitudinal
field. This becomes more clear in Figure 17b which visualizes the
absolute difference between the Ez-curves in HiPACE and OSIRIS. The
magnitude of the difference is at a significant level in the vicinity
of the spikes of the longitudinal field curves. This can be attributed
to the difference of the plasma advance and plasma current depo-
sition scheme in OSIRIS and HiPACE. While plasma macro-particles
with highly relativistic longitudinal velocities accumulate at the crest
of the plasma wave in the full PIC code, the quasi-static PIC code
only emulates this behaviour through the weighting factor in equa-
tion (3.19b). The discrepancy can be mitigated by adjusting the lon-
gitudinal resolution of the quasi-static simulation (cf. [Lotov, 2003]).
Transverse beam dynamics crucially depend on the transverse fields
in the plasma waves. These fields, obtained from simulations in OSIRIS

and HiPACE are compared in Figure 18a at a co-moving position of
ζ̃ = 7.33. The near-axis linear dependencies of the curves are close
with respect to each other and differ on significant magnitude only at
the high-density plasma electron sheath, surrounding the ion cavity,
and in the details of the decay from plasma shielding as depicted in
Fig. 18b.

Most importantly to note is the significant difference of the simu-
lation runtimes. While OSIRIS needed 19968 core hrs to simulate this
problem up to a distance of z̃ = 450, HiPACE needed 474 core hrs only
for the same propagation distance. This is equivalent to a speedup
by a factor of 42. While the relevant measure for the propagation dis-
tance for OSIRIS is measured in units of k−1

p , the measure in HiPACE

is k−1
β . As motivated before, for highly relativistic beams these mea-

sures can differ on orders of magnitude according to the beam energy
k−1

β =
√

2γ k−1
p .

3.5 parallelisation and scalings

Simulations of plasma acceleration in a 3D geometry with explicit
PIC codes as well as with quasi-static PIC codes such as HiPACE are
feasible only if the problem is parallelised and if the computing load
is distributed amongst a number of processes. Thus, the degree of
parallelisation also determines the computational efficiency of a code.
This section describes the parallel implementation of the algorithms
and the assessment of the parallel performance of HiPACE.

The code is parallelized using the Message Passing Interface [Mes-
sage Passing Interface Forum, 2012] to run on distributed memory
systems. The parallelisation is achieved by means of a spatial decom-
position of the simulation domain in all three dimensions. However,
in a quasi-static PIC code, parallelisation in the longitudinal direc-
tion and in the transverse plane is fundamentally different. This is
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Figure 17: Comparison of results obtained from HiPACE and OSIRIS after dis-
tance of z̃ = 450. The on-axis longitudinal electric field Ez is
shown.

owed to the basic numerical scheme of quasi-static PIC codes which
reduces a 3D problem to a set of 2D transverse plane problems. The
transverse parallelisation is similar to the one in full explicit codes
with beam- and plasma macro-particle exchange between neighbour-
ing processors and exchange of values at the domain-boundaries by
use of halo- or ghost-cells (see e.g. [Wilkinson and Allen, 1999]). How-
ever, the field solver in HiPACE is not based on a finite-difference
time-domain (FDTD) method, but on fast Fourier transforms, which
are, owed to their collective nature, not trivially parallelisable. TheSupplementary info

on the fast Poisson
solver and the

parallelization, see
Appendix C

data, distributed amongst the memory of the processes within a trans-
verse slice needs to be transposed during the fast Fourier transform.
The library Fastest Fourier Transform in the West (FFTW) provides
Message Passing Interface (MPI) subroutines to pass information be-
tween processors during the transposing process. However, transpo-
sitions cause a massive overhead because they require an all-to-all
communication. In addition, the MPI FFTW libraries support only a
1D decomposition. The decomposition in the second transverse direc-
tion was hence implemented manually in HiPACE.
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Figure 18: Comparison of results obtained from HiPACE and OSIRIS after dis-
tance of z̃ = 450. The transverse fields Ey + Bx at co-moving posi-
tion ζ̃ = 7.33 is shown.

The parallelisation in the longitudinal direction essentially differs
from the one in the transverse plane. Plasma and field information
is advanced in the negative ζ̃-direction. This implies that processes,
responsible for a longitudinal domain k, are idle until processes, re-
sponsible for domain k + 1, pass the plasma macro-particle and field
information. This causes massive idle times in a method which uti-
lized synchronous advance in t̃ and would thus strongly decrease the
efficiency when running simulations with a large number of domains
in longitudinal direction. This crucial issue can be overcome by al-
lowing transverse process slabs k and k + 1 to run asynchronously
in such a way that process slab k + 1 finishes with the plasma rou-
tine just when the plasma routine is called in process slab k. Message
passing is then allowed only in the negative ζ̃-direction, implying,
that only zeroth order charge deposition and field interpolation along
the longitudinal direction is permitted. This inhibits significant idle
times. Load imbalances can still arise from a varying number of itera-
tions for the calculation of the transverse magnetic fields at different
longitudinal positions of the simulated problem. This load imbalance
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can be mitigated in HiPACE by choosing a non-uniform longitudinal
domain decomposition, such that domains, containing a field config-
uration with enhanced ζ̃-dependence, have a smaller number of local
grid-points.
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Figure 19: Parallel scalings of HiPACE.

To assess the parallel performance of HiPACE, the strong scaling and
the weak scaling are tested on a number of cores ranging from 1 to
1024. When performing a strong scaling benchmark the total prob-
lem size is constant, whereas for a weak scaling the problem size per
core is kept constant. The strong scaling is therefore measuring the
speedup of computing the same problem with an increasing number
of processes. At larger number of processes, the communication over-
head or the non-parallel part of the code generally starts to contribute
to, and at some instance, dominate the simulation run time, hence
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limiting the speedup. The weak scaling is not depending on the even-
tual memory boundedness of the problem. In addition, it reveals the
communication overhead per additional process more clearly.

The physical problem simulated for the performance tests is a ho-
mogeneous distribution of beam-electrons and beam-positrons prop-
agating through a plasma. The homogeneous distribution assures for
a balanced load on the various cores while the overall charge neu-
trality assures for fulfillment of the boundary conditions. It should
be noted, that this problem with plasma particles streaming through
the simulation domain is closer to common problems in plasma ac-
celeration than the case of a thermal plasma, which are usually used
for parallel benchmarks. Figure 19a shows the strong scalability of
the code, where speedup stands for the ratio of simulation run time
on one core over the simulation run time on the considered num-
ber of cores. The red curve resembles the optimum scalability and
blue boxes represent the measured scalability. As seen, the measured
scalability starts deviating significantly from the optimum line when
many more than 64 cores are used. The efficiency is at 15 % for 1024
cores.

The source of the overhead is investigated by use of a weak scal-
ing. Since parallelisation differs in longitudinal and transverse direc-
tions, the scaling is performed by increasing the number of process-
ing units in the longitudinal direction only (longitudinal scaling) or in
the transverse directions only (transverse scaling). Figure 19b shows
the result of this test. The data for the longitudinal scaling is near to
the optimum, constant scaling, whereas the simulation run-time in
the transverse scaling increases dramatically, especially when using
more than 16 cores. This may be contributed to the overhead gener-
ated during the computation of the FFTs. The hardware used in this
test had 16 cores in one CPU and 4 CPUs on one blade, such that the
inter-CPU-communication and inter-blade communication were pro-
ducing overhead when using more than 16 or 64 cores, respectively.
As a result, the simulations run at best performance as long as the
transverse plane in the 3D simulation geometry is decomposed in
less than 16 cores. This test also suggests the necessity of employing
FFT frameworks with better parallel performance (e.g., as described
in [Pippig, 2013]).

3.6 discussion and conclusion

The following discussion summarizes the major strengths and draw-
backs of HiPACE compared to full PIC codes. The most prominent fea-
ture of HiPACE is the enhanced efficiency when modelling interaction
of highly relativistic particle-beams with plasma compared to conven-
tional PIC codes. This is made possible by the separated treatment of
the plasma. This also allows for a significantly reduced memory us-
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age, since only plasma macro-particles within a transverse slice must
be stored in the memory for momentary processing. In a simulation
with a number of e.g. 1000 grid-points in longitudinal direction, the
memory usage for the plasma species, which usually the dominating
part, can be mitigated by this factor of 1000 (this memory needs to
be reserved for each process-slab, if the simulation domain is decom-
posed into a number of processes in the longitudinal direction). While
decoupling spatial and temporal resolutions, codes using the QSA are
not restricted by the CFL condition but by an appropriate choice of
the time-step, which must resolve the beam dynamics.

Quasi-static PIC codes are specialized on common plasma accel-
eration scenarios and hence, are not as versatile as full PIC codes.
Particles must either be highly-relativistic (beam) or non- to mildly-
relativistic (plasma) to satisfy the underlying approximations. This is
the most evident drawback of HiPACE which also prevents modelling
of self-injection processes. An approach of modelling the transit of
plasma macro-particles to beam macro-particles in a quasi-static PIC

code was presented by Morshed et al. [2010]. However, this approach
can only give a qualitative approximation of self-injection processes
since it either violates equation (3.4) or does not resolve the beam
evolution temporally during the process, yet both criteria are fun-
damental for a consistent quasi-static treatment. In simulations with
OSIRIS and HiPACE, a different method was used to circumvent this
drawback. As discussed above, the self-consistent field configuration
is computed at each time-step in HiPACE. This feature enables a consis-
tent import of beams from full PIC codes during their propagation in a
plasma. Simulations using this hybrid approach have been performed
by modeling the injection processes within the first few millimeters
to centimeters within a plasma target with OSIRIS and using HiPACE to
simulate the subsequent acceleration of imported driver- and witness-
beam over centimeter- to meter-scale distances. However, fast Poisson
solvers pose a challenge for the transverse parallelisation of HiPACE.

Near future plans for further developments on HiPACE are described
below. Improvements on the fast Poisson solver framework are fore-
seen to enhance the parallel efficiency. Also crucial for the efficiency
is the convergence rate during the magnetic field iterations, which is
planned to be increased. A method, to automatically adopt the local
∆ζ̃ grid size according to the local Ez field magnitude, as described in
Ref. [Lotov, 2003], is foreseen to be implemented in HiPACE to improve
accuracy as well as speed of the simulations. Beam particle slippage
in the speed-of-light frame might become relevant in long-distance or
moderate beam-energy simulations and the associated physics will
be incorporated into HiPACE. In order to address laser-driven plasma
acceleration, a laser-envelope model with time-averaged ponderomo-
tive force, to model the action on the plasma electrons, comparable
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to the ones used in refs. [Cowan et al., 2011; Benedetti et al., 2010,
2012a], needs to be implemented into the code.

The PIC code HiPACE exploits the quasi-static approximation to ap-
ply a numerical scheme which decouples beam and plasma evolution
in beam-driven plasma wakefield acceleration simulations. This en-
ables time steps which can be orders of magnitudes larger than the
ones in explicit PIC codes, making simulations of a variety of prob-
lems in beam-driven plasma acceleration highly efficient. Compar-
isons to results, obtained from the explicit PIC code OSIRIS, indicate
the capability of HiPACE to simulate a variety of plasma acceleration
problems with significantly lower computational costs while preserv-
ing the physical accuracy. This is achieved by an efficient quasi-static
numerical scheme, a parallelisation in all three dimensions, and the
use of fast Poisson solvers.
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4
B E A M M AT C H I N G I N P L A S M A A C C E L E R AT I O N

4.1 introduction and motivation

Plasma-based acceleration is a promising technology candidate for
future particle colliders and FELs. Collider concepts based on laser
wakefield acceleration (LWFA) [Leemans and Esarey, 2009; Schroeder
et al., 2010] and on plasma wakefield acceleration (PWFA) [Seryi et al.,
2009] have been proposed. The length of a plasma stage and hence
the energy gain in one unit in these designs is fundamentally limited
by energy depletion of the driving beam [Esarey et al., 2004; Lotov,
2005]. Laser-driven plasma acceleration of electron beams to energies
beyond the 10 GeV level seems possible only by use of multiple stages
in series, i.e. by staging (see 1.5.7 or confer [Schroeder et al., 2010]).
Moreover, and most importantly, beams generated in any plasma-
based accelerator scheme (single-stage or multi-stage) need to be ex-
tracted, transported and manipulated before being used for applica-
tions in photon science or particle physics.

As a consequence, pivotal beam parameters, such as the transverse
emittance, must be conserved during the injection and extraction pro-
cesses from conventional beam-optics to a plasma module and vice
versa. Similarly as in conventional beam transport and accelerator sys-
tems, conservation of the beam emittance is possible only if the beam
is matched into the transport structure of the accelerator. This means
the beam parameters, such as the beta-function must be matched to
the design beta-function of the accelerator.

This is highly challenging since beta-functions (see 1.6.4) in plas-
mas are typically by many orders of magnitude smaller than in con-
ventional beam-optics, as shown in this chapter. This is owed to the
high magnitude of the focusing force in a plasma wakefield, which
is comparable to the magnitude of the accelerating force. In addition,
beams produced in, or transported through a plasma accelerator of-
ten exhibit a significant energy spread on the percent level and chro-
matic effects can play a role in beam-quality degradation during the
injection, acceleration or extraction processes.

This chapter serves as a basis for the subsequent chapters. It derives
the matching conditions and the matched betatron-function in the lin-
ear and blowout regime in plasma-based acceleration and discusses
the results.
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4.2 matching of beams in plasma acceleration

4.2.1 General matching considerations

The conservation of the beam-emittance in ideal systems has been
shown in 1.6.4.1. However, in reality, often one or more of the as-
sumptions for an ideal system do not hold. In the following, systems
are regarded, which are ideal up to the point that the linear focusing
fields are not only functions of the position along the propagation
axis z, but also of time t. Moreover, the beam may now exhibit non-
negligible energy spread. These assumptions are owed to the nature
of the wakefields in plasma accelerators, which are generally func-
tions of the time-variable in the co-moving frame τ = t and the phase
ζ = z− ct behind the drive beam, where a highly relativistic driver ve-
locity is assumed. The focusing and accelerating fields imposed onto
an electron beam in a plasma wakefield are therefore depending on
the beam-propagation coordinate z and the time t. In addition, elec-
tron beams in plasma-based accelerators often show an energy spread
on the percent level, so that electrons with different Lorentz-factors
are transported differently in the plasma module and in conventional
beam optics used for the injection and extraction.

The equation of motion for an electron with energy γmec2, highly
relativistic velocity in z-direction βz → 1, and nonrelativistic velocity
in transverse direction βx � 1 in a setup with linear transverse force
Fx = −k̂x(ζ, τ) x readsCompare with the

derivation in A.2.

x′′ ' d2x
dct2 = − k̂x(ζ, τ)

γmec2 x , (4.1)

where (A.22) was used. The parameter K in equation (1.184) can hence
be identified with the term

K =
k̂x(ζ, τ)

γmec2 , (4.2)

where K here, unlike in the ideal case, is not only a function of the
beam propagation axis z but on ζ and τ and on the relativistic factor
of a particle γ.

If k̂x features a gradient with respect to the phase, ∂k̂x/∂ζ 6= 0, dif-
ferent slices of a finite length beam are associated to different values
of K. The trace-space ellipse of each slice thus oscillates according
to (1.193) at a different frequency. This causes a differential trace-
space rotation along the beam which eventually leads to the configu-
ration in which the slice ellipses are not overlapping but occupying
a larger projected transverse trace-space volume. Significant beam-
energy spread analogously results in betatron decoherence, where an
uncorrelated energy spread generates a decoherence within the beam
slices, i.e. an increase of the (non-projected) sliced trace space vol-
ume, and an energy spread which is correlated with the co-moving
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position results in a differential trace-space rotation. The increase of
projected or sliced trace space volume is equivalent to a growth of the
projected and sliced emittance, respectively.

As discussed in 1.6.4.2, the envelope of beams which are matched
into a focusing channel does not oscillate. Matching of a beam with
respect to the mean K parameter thus mitigates betatron oscillations
and associated emittance growth, whereas unmatched beams can ex-
perience severe emittance degradation. Projected emittance growth
by virtue of differential trace-space rotation is theoretically reversible
[O’Shea, 1998]. For beams with significant uncorrelated energy spread,
the betatron decoherence occurs within the slices and the resulting
emittance growth is irreversible

Emittance growth from betatron decoherence can only be efficiently
mitigated by matching of the beams into the accelerating structures.
In an accelerating structure with the radially symmetric, linear trans-
verse force Fr = −e(Er − Bθ), the matched Courant-Snyder parame-
ters can be calculated as follows. The individual transverse electron
trajectories in such a system are determined by the differential equa-
tion (see A.2)

d2r
dz2 '

d2r
dct2 =

Fr(ζ, τ)

γmec2

= − k̂r(ζ, τ)

γmec2 r

= −K r

(4.3)

In this context, the individual particle betatron frequency

ωβ = c
√

K , (4.4)

is introduced. In addition, a betatron wavenumber for highly rela-
tivistic particles kβ = ωβ/c =

√
K can be assigned to the transverse

particle oscillations.
The knowledge of the individual particle oscillations can be used

to calculate a beam phase-space averaged parameter K = 〈K〉 for a
given time τ. The matched Courant-Snyder parameters for a beam
with energy spread and finite duration are then with equation (4.5)
given by

α̂m = 0 , β̂m =
1√
K

= k
−1
β , γ̂m =

√
K = kβ , (4.5)

where kβ is the average betatron wavenumber. The term "matching"
in the following refers to the matching with respect to the mean pa-
rameter K, where the approximation K ≈ K(ζ, γ, τ) is used, in or-
der make the following argumentation approximately valid for arbi-
trary energy distributions or longitudinal charge distributions. The
overlined quantities denote the beam average quantities, so that the
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matching conditions are independent of the exact beam phase-space
distribution.

Matching of beams in plasma-based acceleration in the linear regime
differs from matching in the blowout regime owing to the different
wakefield configurations in the different regimes. The focusing fields
have a sinusoidal ζ-dependence in the linear regime and a radial de-
pendence which is imposed by the driver beam (compare 1.5.2). In
the blowout regime, the focusing fields have no ζ-dependence and al-
ways a linear radial dependence within the electron-cavity (see 1.5.4).

4.2.2 Matching in the linear regime

It was shown in 1.6.4.1 that the emittance in ideal systems is a con-
served quantity. If the beam transport is not ideal in the sense that the
transverse fields are a nonlinear function on the particle displacement
from the beam propagation axis, emittance growth generally occurs
as discussed in 1.6.5 and as shown in [Reiser, 2008]. Hence, the trans-
verse fields need to be linear in order not to deteriorate the emittance.
To comply with the constraint of a linear focusing force in the linear
plasma acceleration regime (a2

0 � 1 or nb/n0 � 1), the driver beam
distribution f (ζ, r) in equation (1.138) must have a parabola-type ra-
dial profile, f ∼ f0(1− r2).

Driver beams with a Gaussian radial intensity profile, as used in
1.5.2.1, excite plasma wakes with transverse fields of the following
radial dependence

Er − Bθ

E0
∝ − kpr

(kpσr)2 exp
(
− r2

2σ2
r

)
= − kpr

(kpσr)2

[
1−O

(
r2

σ2
r

)]
. (4.6)

For radial positions much smaller than the characteristic transverse
size of the driver r � σr, these transverse fields satisfy the condi-
tion of linear transverse fields and hence have the capability to trans-
port beams while conserving their emittance. The plasma wakefields,
driven by a Gaussian beam with resonant duration are given by equa-
tions (1.144a) and (1.144b). The near-axis (r � σr) expansion of these
fields yield

Ez

E0
= f0

√
2π

e
cos(kp(ζ − ζc)) , (4.7)

Er − Bθ

E0
=− f0

√
2π

e
kpr

(kpσr)2 sin(kp(ζ − ζc)) . (4.8)

The aim in plasma-based acceleration is to place and transport elec-
tron bunches with a length much shorter than the plasma wavelength
and a transverse extent much smaller than the transverse size of the
driver into a co-moving region which is both focusing and accelerat-
ing (compare 1.5.1.3). In the linear regime such a region exists at co-
moving positions (ζc − π) < ζ < (ζc − π/2). For simplicity kpζc = π
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will be used in the following, such that maximum accelerating field
and the zero-crossing of the focusing field are located at ζ = 0.

The relevant parameters in the transverse focusing fields in the lin-
ear regime (4.8) are with equations (4.3) and (4.4) given by

K =

√
2π

e
f0

γ σ2
r

sin(kpζ) , (4.9a)

ω2
β = ω2

p

√
2π

e
f0 sin(kpζ)

(kpσr)2 γ
. (4.9b)

These parameters are only defined within the focusing region of the
plasma wave, i.e. in regions with positive sin(kpζ). The matched beta-
function in the linear regime,

β̂m = K−1/2
= k

−1
β =

( e
2π

)1/4
√

σ2
r γ

f0 sin(kpζ)
, (4.10)

depends on the phase kpζ in which the beam is located within the
plasma wave, on the mean beam energy γ, on the amplitude of the
driver and the radial driver beam distribution.

4.2.3 Matching in the blowout regime

The argumentation of beam matching in the blowout regime is anal-
ogous to the matching in the linear regime, discussed before. The
transverse fields inside the ion cavity, given by (1.146a)

Er − Bθ

E0
=

kpr
2

, (4.11)

are independent of the co-moving variable ζ and are linearly depend-
ing on the radius r, independent of the driver beam distribution. The
force on an electron can is hence

Fr = −
mec2k2

p

2
r = −k̂r r , (4.12)

with k̂r = mec2k2
p/2 in the blowout regime. Hence, the equation of mo-

tion (4.3) of an electron in the fields (4.11) with utilization of equation
(4.4) results in the parameters

K =
k2

p

2γ
, (4.13a)

ω2
β =

ω2
p

2γ
. (4.13b)

In the blow-out regime, the betatron frequency ωβ (see also e. g. [Esarey
et al., 2001]) and the parameter K only depend on the particle energy
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and the ambient plasma density. The matched betatron function is
now calculated via (4.5),

β̂m = K−1/2
= k

−1
β = k−1

p
√

2γ . (4.14)

The matched beta-function in the blow-out regime is a function of the
mean beam energy γ and the ambient plasma density but is indepen-
dent of the phase ζ of the beam within the electron cavity.

4.3 discussion and conclusion

The matching conditions and the matched beta-function in linear
regime and blowout regime plasma-based accelerators have been de-
rived. While the matched betatron function in the linear regime de-
pends on the transverse driver profile and amplitude, and, in addi-
tion, on the phase in the plasma wave, the matched beta-function in
the blowout regime is independent of these properties.

When comparing the matched betatron function for the two regimes,
the following may be noted. The driver RMS radius for a transversely
Gaussian driver is typically on the order of the plasma skindepth
σr ∼ k−1

p , the driver amplitude is f0 . 1 and sin(kpζ) ≤ 1. Hence,
from equation (4.10) follows β̂lin

m < k−1
p
√

2γ = β̂bo
m , where β̂lin

m is the
matched beta function in the linear regime and β̂bo

m is the matched
beta function in the blowout regime.

However, the betatron functions in plasma-based accelerators are
generally very small compared to the betatron functions typically op-
erated with in conventional beam optics. Considering a plasma at
density of n0 ∼ 1017 cm−3 and a beam at ∼ 1 GeV, equation (4.14)
suggests a matched betatron function of β̂bo

m ∼ 1 mm in the blowout
regime. When assuming a driver beam with σr ∼ k−1

p , f0 ∼ 0.1, and
a witness beam, placed in a focusing and accelerating region with
ζ ∼ π/4, a beta-function of β̂lin

m ∼ 2.3 mm is obtained with equationIt is not preferable to
place the beam near

to ζ ∼ 0, for reasons
which are discussed

in chapter 5.

(4.10). The realization of the compatibility of beta-functions of this
magnitude with conventional beam optics, which typically operate at
betatron functions ∼ 0.01− 100 m is technically challenging.

The betatron function can be reduced by usage of a lower plasma
density in the linear and blowout regime. Moreover, in the linear
regime, employment of transversely non-Gaussian shaped driver beams
[Cormier-Michel et al., 2011] or near-hollow plasma channels [Schroeder
et al., 2013b,a] can reduce the focusing fields.



5
E M I T TA N C E G R O W T H I N S TA G E D LW FA

5.1 introduction

Current collider concepts, based on laser wakefield acceleration , stip-
ulate the use of multiple plasma stages which are arranged as close
with respect to each other as current laser focusing geometries allow
in order to achieve the shortest possible overall length of the collider
[Leemans and Esarey, 2009; Schroeder et al., 2010]. Electron beams in
these concepts are ejected from one plasma stage and injected into a
subsequent stage. However, as shown in this chapter, such schemes The here discussed

topics also appeared
in [Mehrling et al.,
2012]

can result in significant emittance growth during the injection process,
if beams are not matched into the plasma modules.

The catalyst for this beam emittance degradation is the decoher-
ence of betatron oscillations of mismatched particle beams [Marsh
et al., 2005; Khachatryan et al., 2007]. The betatron oscillations within
a mismatched beam decohere, if the focusing fields vary along the
beam or if the beam features a significant energy spread. It has been
shown in earlier studies that matching of the bunch size reduces emit-
tance growth from finite energy spread [Assmann and Yokoya, 1998;
Michel et al., 2006], and mitigates energy loss and correlated growth
of energy spread due to emission of synchrotron radiation [Michel
et al., 2006].

This chapter investigates emittance growth due to varying focusing
forces along a finite bunch length in the linear regime. Betatron-phase-
mixing from varying forces along the beam appears very rapidly in
plasma accelerators, which is related to the large magnitude of the fo-
cusing forces in a plasma accelerator and the small betatron function.
The length over which the full emittance growth develops is found to
be less than or comparable to the typical dimension of a single plasma
module in current multistage designs. Matching of beams mitigates
betatron-decoherence effects and can allow for beam-quality preser-
vation during the transport of beams through plasma stages. This
behavior is demonstrated by PIC simulations and supported by an
analytic theory, reproducing the simulation results. In addition, an
analytic theory enables the quantitative prediction of emittance degra-
dation in two consecutive plasma acceleration modules, coupled by
free-drift sections, excluding this scheme for the emittance preserving
transport, and thus suggesting the necessity of yet to be developed
electron-beam matching and extraction sections between acceleration
stages.
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5.2 analytical theory

In this section, a general analytic expression for the final asymptotic
emittance growth in LWFA, caused from betatron decoherence as ex-
pected by insufficient matching is derived.

In the following an electron-bunch, propagating collinear and with
a defined temporal offset with respect to a laser pulse on the laser
propagation axis is regarded. The laser pulse with normalized vec-
tor potential a0 is focused onto a gas target, ionizes the gas and si-
multaneously excites plasma waves that carry large amplitude wake-
fields. Experiments with externally injected electron bunches should
be designed such that the laser drives linear (a0 � 1) or quasi-linear
plasma waves (a0 . 1) to inhibit self-injection of plasma electrons
[Modena et al., 1995]. The formulation within the scope of this chap-
ter describes only this regime and is not valid for the nonlinear or
blow-out regime.

Since the parameter K in equation (4.9a) depends on ζ and on
γ, beam-slices at different ζ-positions and with different energies
oscillate at different frequencies. This leads to a differential phase
space rotation, and ultimately to complete decoherence during the
acceleration process. This effect is illustrated in Figure 20, where the
trace-space ellipses of longitudinal bunch slices from a PIC simulation
are shown for different ζ-positions. The interval [ζ − 3σζ,e , ζ + 3σζ,e],

where σζ,e =
√〈

(ζ − ζ)2
〉

is the RMS electron-bunch length, was di-
vided equidistantly into 10 slices and ellipse parameters for each slice
particle subsets were calculated with eqns. (1.154) and (1.157). Slice
ellipses develop a tilt with respect to each other which increases the
projected area and hence causes growth of the projected emittance
whereas the charge-weighted sum over the emittance of the slices,
the sliced emittance, does not increase owing to this effect.

Emittance growth due to slice-ellipse rotation is theoretically re-
versible [O’Shea, 1998]. However, recovering the emittance by fur-
ther rotation in a subsequent plasma stage requires a transformation
(x, x′) → (∓x,±x′) in between stages which is not symplectic and
hence not realizable by any combination of beam optics.

It should be noted, that the asymptotic emittance growth depends
on the degree of mismatch only and is identical for any amount of
finite energy spread or variance of the focusing forces along the beam.
Only the emittance growth-rate depends on the latter properties. Emit-
tance growth from uncorrelated energy spread emerges within the
slices whereas an energy-phase correlation or a change of the focus-
ing fields along the beam cause a differential phase-space rotation
and projected emittance growth.

Nonetheless, emittance growth from any betatron decoherence can
be suppressed by matching the transverse properties of the electron
beam to the intrinsic electron-betatron motion in the plasma wake.
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Figure 20: Ellipses representing bunch slices from the PIC simulation C2
(see below) at position z = −0.03 mm (left) and z = 1.06 mm
(right). The gray-scale of the ellipse was chosen according to the
ratio of the charge in a slice q and total bunch charge qb.

The matching conditions in terms of the Courant-Snyder parameters
in the relativistic limit are

β̂m = K−1/2 , γ̂m = K1/2 , α̂m = 0 , (5.1)

with (see 4.2.2)

K =

√
2π

e
f0

γ σ2
r

sin(kpζ) . (5.2)

Electron oscillations follow the ellipse defined by the Courant-Snyder
parameters of matched beams. Once a bunch is matched, adiabatic
changes of the betatron frequency, that is changes on time-scales T �
ω−1

β or equivalently on length-scales L� k−1
β , will not degenerate the

beam quality.
The trace-space coordinate system is transformed such that parti-

cles have a circular trajectory in order to enable an estimation of the
emittance growth caused by the decoherence of betatron oscillations

x∗ = x/
√

β̂m , x′∗ = x′
√

β̂m (5.3)

γ̂∗ = γ̂ β̂m , β̂∗ = β̂/β̂m, α̂∗ = α̂ . (5.4)

The emittance (eqn. 1.154) is invariant under this transformation. To-
tal phase decoherence implies that the characteristic ellipse of the
bunch evolves into a circle in transformed trace-space coordinates
with a radius given by the initial standard deviations along the semi-
major and semi-minor axes. The emittance after total phase mixing
can therefore be estimated by

ε̂fin =
〈

xrot
2〉 =

〈
xa

2 + xb
2

2

〉
=

a2

2
+

b2

2
. (5.5)
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Here a and b are the semi-major and the semi-minor axes of the bunch
ellipse in the transformed system prior to phase decoherence

a2 =
ε̂init

2

[
(γ̂∗ + β̂∗) +

√
(γ̂∗ + β̂∗)2 − 4

]
, (5.6)

b2 =
ε̂init

2

[
(γ̂∗ + β̂∗)−

√
(γ̂∗ + β̂∗)2 − 4

]
. (5.7)

This yields the final normalized emittance for complete decoherence

ε̂n,fin =
ε̂n,init

2

(
1 + α̂2

β̂∗
+ β̂∗

)
,

=
ε̂n,init

2

(
1 + α̂2

β̂0/β̂m
+

β̂0

β̂m

)
.

(5.8)

This equation expresses the asymptotic emittance growth, which is
expected if a beam with energy spread or with varying focusing fields
along the bunch axis is not matched α̂ 6= 0 or β̂0/β̂m 6= 1 into a plasma
wakefield.

5.3 comparison to pic simulations

The above model is now compared to full 3D PIC simulations us-
ing the code OSIRIS [Fonseca et al., 2002]. Electron bunches with a
low relative energy spread of σγ/γ = 0.0065 and an initial normal-
ized emittance of ε̂n,init = 0.3 µm propagate at a defined temporal
offset collinear to a 5 J, 25 fs full width at half maximum (FWHM)
length, 800 nm central wavelength, a0 = 1.8 linearly polarized laser
pulse on the laser axis. The Rayleigh-length of the laser is long com-
pared to the betatron length and the FWHM intensity waist of the
pulse is 50 µm, where the transverse profile is a Gaussian and the
temporal profile is a symmetric polynomial. The dimensions of the
co-propagating simulation box in the longitudinal and transverse di-
rections are 118× 336× 336 µm3, 4620× 250× 250 cells with 1 particle
per cell for the plasma and a total number of ∼ 5 · 105 beam particles.
The charge was deposited using a quadratic interpolation scheme.
Electron beams have a charge of 1 pC, mean energy of 5 MeV, and
an RMS bunch length of σζ,e = 3 µm resembling realistic parameters
obtainable from conventional electron guns. The charge distribution
of the bunch in focus is a Gaussian in space and momentum space.
The charge is chosen sufficiently low to neglect space charge forces
as well as beam loading, the energy low enough to see the betatron-Beam loading, see

e.g. [Rechatin et al.,
2010].

phase mixing effect within the first few millimeters, and the bunch
length much shorter than the plasma wavelength. The bunches are
injected with a temporal offset of 120 fs with respect to the peak of
the laser pulse envelope to allow for optimum acceleration in the fo-
cusing phase of the plasma wave. The plasma target has a flat-top
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longitudinal profile with an electron density of n0 = 1017cm−3. The
rising edge at position z0 = 0 was chosen short compared to the
plasma wavelength to simplify the matching conditions. The falling
edge is at position 240 c/ωp ' 4.0 mm.

Particle-in-cell simulations with different sets of Courant-Snyder
parameters, resulting from different focusing geometries of the same
electron beam are compared with respect to each other.

• Matched case (CM): Beam with matched Courant-Snyder pa-
rameters, β̂CM(z0) = β̂m, α̂CM(z0) = α̂m = 0;

• Mismatched case (C1): Beam with matched beta function at fo-
cus β̂CM(z f ,C1) = β̂m but with mismatched focal position z f ,C1 6=
z0 → α̂C1(z0) 6= 0;

• Mismatched case (C2): Beam with mismatched beta function
β̂C2(z0) 6= β̂m but matched focal position z f ,C2 = z0 → α̂C2(z0) =

0.

For the matched case (CM), the focal position of the bunch z f ,CM,
must be positioned at z0 to satisfy α̂CM(z0) = 0 in the matching con-
ditions (5.1). The slope of the transverse force ∂Fx/∂x is analyzed at
the position where the bunch is supposed to be injected and used
eqns. (4.9b) and (4.10) to find the matching beta function β̂m = 0.126
mm. This corresponds to an RMS beam size of 1.97 µm for ε̂n,init =

0.3 µm.
In simulation (C1), the focus is at z f ,C1 = −20 c/ωp ' −0.33 mm.

During the initial vacuum propagation the Courant-Snyder parame-
ters evolve according to the formulae for their evolution in a free drift,
neglecting space charge forces, See derivation in

1.6.4.2 or confer
[Courant and
Snyder, 1958].α̂(z) =

z f − z

β̂ f
, β̂(z) = β̂ f +

(z− z f )
2

β̂ f
, γ̂(z) =

1
β̂ f

, (5.9)

where β̂ f is the beta function at focus z f . The beta and gamma func-
tions at z0 in the PIC simulation are β̂C1,0 = 1.026 mm and γ̂C1,0 =

7.937 mm−1. For case (C2) the beta and gamma function at z0 are
β̂C2,0 = 0.678 mm, γ̂C2,0 = 1.476 mm−1. Figure 21 depicts the evo-
lution of the Courant-Snyder parameters during acceleration for the
three mentioned cases. The evolution of the alpha parameter shows
that bunches in simulations (CM) and (C2) are focused to position
z0 whereas α̂C1 crosses zero before z0 and the bunch is defocused
at position z0. This is also indicated by the evolution of the beta pa-
rameter. Its parabola vertices (at focus) for cases (CM) and (C2) are
situated at z0 in contrast to case (C1), for which the vertex is in front
of the plasma rising edge. The gamma function of (C1) initially equals
γ̂CM(z0) whilst γ̂C2 is not matched. If matched, the bunch ellipse will
not oscillate after injection and α̂ will remain zero during the accel-
eration process as observed for simulation (CM), whereas the alpha
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Figure 21: Plasma density profile and evolution of the Courant-Snyder pa-
rameters for the three considered cases in PIC simulations.

parameters in the cases (C1) and (C2) oscillate around zero. Owing
to relativistic mass gain, the beta function increases adiabatically and
the gamma function decreases accordingly. The α̂, β̂, γ̂-curves of (C1)
and (C2) all approach the matched case (CM) by the cost of emittance
growth during betatron-phase mixing as can be seen by comparison
of Figures 21 and 22. It should be emphasized that the emittance in
the matched case (CM) did not grow significantly despite the fact that
the bunch slipped back substantially with respect to the plasma wave
and despite the acceleration of the beam. This is because the phase
slippage and energy gain occurs adiabatically and does not disrupt
the matching conditions.

The betatron-phase is completely mixed at z ≈ 2.5 mm and emit-
tance growth is saturated at that position in good agreement with
expectations (confer eqn. (5.10) below). The emittance in the matched
case (CM) grows marginally compared to the non-matched cases. Af-
ter exiting the plasma target and the beam being at a waist (α̂ = 0),
the Courant-Snyder parameters evolve again according to eqn. (5.9).

These numerical results on the emittance evolution are now com-
pared with the above derived analytic theory. The normalized emit-
tance at the plasma exit in the PIC simulation is ε̂n,C1 = 1.360 µm for
case (C1) and ε̂n,C2 = 0.830 µm for case (C2). Using formula (5.8) the
following asymptotic emittance values are found, ε̂n,fin,C1 = 1.371 µm
and ε̂n,fin,C2 = 0.835 µm. Thus, the theory yields close estimates ac-
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Figure 22: Evolution of the normalized emittance ε̂n in PIC simulations for
the three considered cases. Arrows show the analytic predictions
of the emittance growth. The betatron-decoherence length for the
injection phase in the simulations kpζ = 1.00 relative to position
z0 is indicated by the dash-dotted line.

curate to within one percent for emittance growth due to betatron-
decoherence.

Emittance generation in the PIC calculations by insufficient spa-
tial resolution or by numerical heating effects [Cormier-Michel et al.,
2008] was shown to be negligible by comparison of the presented
simulations to simulations with higher resolution and higher charge-
interpolation schemes. The transverse bunch extent was small com-
pared to the laser spot size such that the nonlinearity of the focusing
fields at radii on the order of the laser spot size did not cause emit-
tance growth. Comparison of transverse emittance in and perpendic-
ular to the polarization plane ruled out laser heating as an emittance
generator. Furthermore, bunch charge densities sufficiently low to ne-
glect space-charge and beam loading effects were used.

5.4 consequences for staged lwfa

The consequences of the presented calculations for staged accelera-
tion are discussed in the following. Firstly, the propagation distance
during which the betatron-phase of a bunch becomes mixed from
finite bunch length is derived. An electron bunch with RMS length
kpσζ,e � 1, negligible energy spread and a charge well below the
beam loading limit is considered in order to find an approximation
for this distance. Assuming the bunch is injected and fixed to a phase
ζ in a quasilinear plasma wave, an expression for the complete decoher-
ence length caused by variation of focusing fields along the beam is
found

Ldc,F '
2π

kβ(ζ) kpσζ,e
tan(kpζ) , (5.10)
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for 0 < ζ < λp/2. The decoherence length from finite energy spread
σγ is given by (c.f. [Michel et al., 2006])

Ldc,E '
2π γ

kβ(ζ) σγ

. (5.11)

Comparing this expression with eq. (5.10) suggests that finite bunch
length as a generator of betatron decoherence is dominant over finite
energy spread if kpσζ,e/ tan(kpζ) > σγ/γ holds and vice versa. To
ensure for efficient acceleration, the bunch must be injected (and at
best fixed e.g. as described in [Rittershofer et al., 2010]) close to the
maximum accelerating field, i.e. kpζ ≤ π/4, such that tan(kpζ) ≤ 1.
Thus, for energy spreads as demanded for typical applications [Lee-
mans and Esarey, 2009], the effect from finite length can generally be
assumed to be dominant over the effect by finite energy spread. Nev-
ertheless, energy spread and bunch length are strongly interrelated in
wakefield- and vacuum-propagation and both need to be minimized
to ensure for good beam quality.

The assumption kpζ < π/4 simplifies equation (5.10) to kpLdc,F ≤
4.28
√

γ kprs/(a0 kpσζ,e), where rs = 2σr is the laser spot size. The
maximum length of a plasma stage is given by the depletion length
[Shadwick et al., 2009] kpLpd ' 17.4 λ2

p/(λ2
l a2

0), where λl is the laser
wavelength The betatron-phase is thus completely mixed within the
length of a stage, as long as

kpσz λ2
p√

γ kprs a0 λ2
l
> 0.25 (5.12)

holds. Assuming kpσζ,e = 0.1, λp/λl = 100, a0 = 2 and rs = λp/2,
parameters which are close to those proposed for a future plasma-
based collider design [Schroeder et al., 2010], this is found to be the
case for beam energies of < 250 GeV. However, the effect of emittance
growth by mismatch of the beta function and partial phase mixing is
relevant as long as Ldc,F does not significantly exceed the length of an
accelerating stage.

The above derived model is now applied to staged plasma accel-
eration concepts in which no electron beam optics are used in be-
tween stages to minimize the coupling distance Lc, which contributes
critically to the total length of a multi-stage accelerator [Schroeder
et al., 2010]. In the following, plasma stages longer than the betatron-
decoherence length Ldc,F are regarded and beams thus having a matched
beta function β̂i

m = β̂i
f and being at waist when exiting stage i, and

subsequently performing a free drift with length Lc between stages i
and i + 1. Using an approximation for the betatron frequency ωβ '
a0 ωp/(kprs

√
γ) and assuming β̂i

f = β̂i+1
m together with eqns. (5.1),

(5.4), (5.8), and (5.9) yields

ε̂n,fin ' ε̂n,init

(
1 +

η2

2γ

)
(5.13)
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Figure 23: Relative per-stage emittance growth ∆ε̂n = ε̂n,fin/ε̂n,init − 1 ac-
cording to eq. (5.13) as a function of beam energy for different
values of η = a0 kpLc/(kprs).

after complete betatron-phase mixing with ε̂n,init and ε̂n,fin being the
emittance values before and after transmission through stage i + 1, re-
spectively and η = a0 kpLc/(kprs). When assuming the use of plasma-
based laser mirrors [Panasenko et al., 2010; Sokollik et al., 2010] to
minimize kpLc to values of ∼ 104, a per-stage emittance increase by
a factor ≥ 11 is found for electron beams with energies ≤ 500 GeV,
for a0 = 2 and rs = λp/2, resulting in η ' 6.4 · 103, rendering such
beams unusable for applications after multiple stages. The per-stage
emittance growth as a function of beam energy, depicted in Figure 23,
suggests that the emittance growth per stage becomes insignificant
for beam energies > 10 GeV only if η < 102. With plasma-based
and conventional laser-focusing technology this is attainable only if
a low laser amplitude a0 � 1, a large spot size kprs � 1, or a non-
fundamental transverse Gaussian mode with a low transverse inten-
sity gradient are utilized. Since the accelerating field in the wake (4.7)
is proportional to a2

0 and the required laser power increases with r2
s ,

maintaining a value of η < 102 would result in highly inefficient ac-
celeration for pure Gaussian laser modes.

The assumption β̂i
f = β̂i+1

m for the derivation of equation (5.13)
is contributed to the fact that sharp vacuum-plasma interfaces are
considered in this study. Another option constitutes the investigation
of tapered transitions, on the order of, or much longer than the lo-
cal betatron frequency in order to match the electron beam (adiabat-
ically) into the plasma wave by use of a tapered transition from the
vacuum to the plasma, as proposed in earlier works [Assmann and
Yokoya, 1998; Marsh et al., 2005]. This would imply the beta func-
tion of the bunch when emerging from stage i to be smaller than
the beta function in the subsequent stage i + 1 before being (adiabat-
ically) matched, β̂i

f < β̂i+1
m,adj, thus reducing emittance growth after

a free drift compared to the sharp interface case (cf. derivation of
eq. 5.13). In addition to matching beams with this method, it may be
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proposed to propose to expand beams transversely by employing ta-
pered plasma to vacuum transitions with length on the order of, or
much longer than the local betatron wavelength [Sears et al., 2010],
hence (adiabatically) increasing the beam spot size β̂i

m < β̂i
f ,adj im-

mediately downstream of stage i. It should be noted that eq. (5.8)
implies that density tapered matching or extraction without addi-
tional refocusing cannot inhibit emittance growth completely, since
the beam is out of waist (α̂ 6= 0) before entering the subsequent stage.
Bunches must thus be refocused to eliminate emittance growth, while
adiabatic matching or extraction eases the focusing requirements by
increasing the beta functions to which beams need to be matched. An-
other approach in this context can be the application of plasma lenses
upstream or downstream of the plasma targets. Further research is
necessary to prove the feasibility, stability and capability of emittance
suppression by the aforementioned density tapered (adiabatic) match-
ing or extraction techniques.

Moreover, the above considerations assumed a transversely homo-
geneous plasma profile. Schroeder et al. [2013b,a] proposed to use
near-hollow plasma channels to control and reduce the focusing force
on an electron beam independent from the longitudinal force. This
method can moderate the stringent matching conditions in plasma-
based acceleration and mitigate the emittance growth in staged LWFA.

5.5 summary and conclusion

The present study shows quantitatively that the emittance of an elec-
tron beam in an external-injection scheme, as necessary for staging,
grows even for ideal laser-bunch alignment (stochastic errors on the
alignment have been studied e.g. in [Cheshkov et al., 2000]), if the
beam parameters are not matched to the intrinsic betatron length in
the plasma wake. If matched, the emittance remains constant during
the acceleration process within one percent whereas the emittance of
non-matched beams may increase by orders of magnitude depending
on the degree of mismatch.

As demonstrated in the discussed PIC simulations, matched beams
stay matched if changes of the beam or wakefield properties occur
adiabatically. Since the betatron frequency decreases for higher beam
energies, changes of the wakefield amplitude e.g. laser spot size oscil-
lations [Benedetti et al., 2012b] might eventually occur on time-scales
on the order of the inverse betatron frequency, thus disrupting the
matching conditions. This, however, is subject to further studies.

The challenge of matching electron beams into plasma waves arises
from the fact that the generated focusing fields are comparable in
their order of magnitude to the accelerating fields, and the corre-
sponding matched beta function is therefore small. Assmann and
Yokoya thus suggested [Assmann and Yokoya, 1998] to decouple the
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amplitude of transverse and longitudinal fields by using transversely
tailored drivers to increase the matched beta function. For laser drivers
this can be achieved by combinations of higher order Laguerre-Gaussi-
an modes [Cormier-Michel et al., 2011] which provide a focusing field
with reduced linear radial dependence near axis and hence an in-
creased matched beta function of the injected beam. Application of
this technique is equivalent to utilization of an increased spot size rs

in eq. (5.13) and allows for a reduction, but not for a complete sup-
pression of the emittance growth of unmatched beams after free drifts.
In addition beating of the transverse modes needs to be mitigated to
enable a stable focusing channel [Cormier-Michel et al., 2011].

An earlier analysis [Andreev et al., 1997] showed that the focusing
phase of the wakefield in plasma channels shifts with respect to the
accelerating phase such that the phases may entirely overlap in later
wave periods and the maxima of transverse and longitudinal compo-
nent thus being located at the same co-moving position. Given a high
degree of control over absolute density and transverse density gradi-
ent in a plasma channel, this effect offers the possibility of reducing
emittance growth from finite bunch length if electron bunches are be-
ing placed and fixed in this co-moving region and the decoherence
length from finite bunch length eq. (5.10) hence tending to infinity. Al-
beit reducing emittance growth from finite bunch length, this method
cannot mitigate emittance degradation by finite energy spread of un-
matched electron bunches.

In conclusion, matching of electron beams is inevitable to efficiently
suppress beam-quality degeneration due to betatron-phase decohe-
rence. It may be inferred that this degeneration is relevant for elec-
tron energies up to the TeV-energy frontier. These findings can have
an essential impact on the design and total length of multi-stage laser-
wakefield accelerators since electron beam optics, significantly longer
than each plasma stage, if based on today’s technology, or yet to be de-
veloped plasma density tapered matching or extraction sections are
necessary in between two stages in order to avoid substantial emit-
tance aggregation.





6
D E N S I T Y- TA P E R E D B E A M E X T R A C T I O N

6.1 introduction

The above explanations show that staged plasma acceleration necessi-
tates a beam extraction technique with tapered plasma targets to miti-
gate severe quality degradation during the acceleration and transport
of beams. Furthermore, such a technique is of relevance whenever
beams need to be extracted from a plasma module and to be matched
into a conventional transport beamline.

The concept of plasma density tapered matching or extraction makes
use of the dependency of the transverse field amplitudes on the local
plasma density. This can be used to focus and match beams from con-
ventional beam optics into a plasma cell using an increasing plasma
density profile as proposed in earlier works [Chen et al., 1990a,b;
Assmann and Yokoya, 1998]. Equivalently, a decaying density profile
from the plasma to vacuum can be used to match beams emerging
from a plasma target into a capturing section with conventional beam
optics. Such a method can form a beam-quality preserving transition
from sub-millimeter to millimeter scale beta functions (∼beam size)
and accordingly large gamma functions (∼divergence) in the plasma
target to meter-scale beta functions and accordingly small gamma
functions as required for the beam transport in conventional beam op-
tics. Experimental measurements of the emittance and divergence of
electron beams produced in LWFA by means of a pepper-pot method
confirmed the reduction of beam divergence in long plasma vacuum
transitions [Sears et al., 2010].

Adiabatic matching of mono-energetic beams into and from plasma
cells was numerically studied in reference [Marsh et al., 2005]. A re-
cent study by Floettmann [2014] investigated the transport of mono-
energetic beams from the plasma to vacuum theoretically and opti-
mized a particular functional dependence of the focusing parameter
K on the beam propagation axis in order to mitigate emittance growth
within the beam-capturing section. Moreover, the latter study showed
in numerical examples that the transverse phase-space emittance of
beams with large energy spread increases dramatically during the
vacuum propagation (the trace-space emittance remains constant dur-
ing the free drift but increases to the value of the phase-space emit-
tance at the next focusing optic), if the beam is not adiabatically ex-
panded and matched to the first capturing focusing optic.

While reference [Floettmann, 2014] serves as a basis for the general
understanding of adiabatic beam matching and extraction, studies in-
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cluding the effects of realistic plasma density profiles and realistic
beam phase-space distributions on various aspects of the driver and
witness-beam dynamics in plasma-based accelerators are necessary
to draw conclusions which allow for the optimized design of exper-
iments. Such studies on beam extraction from plasma-based acceler-
ators by means of a density tapered extraction, with realistic density
profiles and including the dynamics of the driver and witness beam
in the plasma, are performed in the following.

Firstly, the density tapered beam-extraction of monoenergetic beams
in ideal systems is investigated by means of an ODE, describing the
transverse beam dynamics ins such setups. Secondly, a study on beam-
extraction is presented, which uses realistic setups with beams with
significant energy spread, which are propagating through various
plasma-vacuum transitions blow-out regime plasma-accelerators. This
scenario is explored by means of 3D PIC simulations using the code
HiPACE.

6.2 density tapered extraction in ideal systems

6.2.1 Numerical study

As a first approach to plasma density tapered beam-extraction, ideal
systems are regarded. This implies (compare 1.6.4.1) space charge ef-
fects can be neglected, the approximation of paraxial motion holds,For information

about the paraxial
approximation,

confer [Reiser, 2008,
3.3.2].

the focusing forces are linear and depend only on the position along
the propagation axis and the beam has negligible energy spread. These
are valid assumptions for a mono-energetic beam propagating in a
blowout regime plasma wave with density variations on length scales
longer than the plasma wavelength.

The single particle trajectories in such a system are governed by the
differential equation x′′+Kx = 0 and the betatron function is defined
by the ODE (1.190)

β̂β̂′′ − β̂′2

2
+ 2Kβ̂2 − 2 = 0 , (6.1)

where K = K(z) is a function of the beam propagation axis only.
The following study considers a mono-energetic beam which is

transported by a blowout regime wakefield from a plasma to the vac-
uum with tapered plasma transitions. The aim is to reduce the diver-Here and within this

chapter only one
transverse direction

is regarded.
Everything

discussed also
applies for the other
transverse direction.

gence
√

ε̂γ̂ in the plasma-vacuum transitions. The conservation of the
emittance in ideal systems implies that density tapered extraction con-
verts beam divergence into beam size. However, since the divergence
quickly starts to dominate the beam size evolution in the vacuum
propagation of highly divergent and small beams such as produced
in plasma-based acceleration, the ratio of the initial divergence over
the final divergence η = γ̂0/γ̂e is the relevant measure for the diver-
gence mitigation in the density tapered extraction mechanism. This
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ratio is thereby evaluated for a matched, i.e. non-oscillating, beam,
which serves as a betatron phase-independent measure.

The parameter K in the blowout regime is given by (4.13a)

K =
k2

p

2γ
=

2π n e2

γmec2 , (6.2)

with n = n(z) being a function of the position along the beam propa-
gation axis. Density transitions regarded here are of exponential type
with

n(z) =





n0 for z < 0 ,

n0 exp (−z/L) for 0 < z < ze ,

0 for z > ze ,

(6.3)

where the exit of the plasma target is defined by ze = 5× L. Trans-
verse beam parameters subsequently evolve according to the free-
drift equations (1.192).
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Figure 24: Exponential plasma-vacuum density transition according to
eq. (6.2) with L = 0.5 mm for three sets of initial conditions, C1,
C2 and CM. The values of the Courant-Snyder parameters of the
matched beam (CM) at the exit position ze = 2.5 mm are given
by β̂CM,e = 4.16 mm, α̂CM,e = −1.23 and γ̂CM,e = 0.601 mm−1.

This information is now used to solve the ODE (6.1) numerically for
some specific parameters. The plasma density chosen here is n0 =

1023 m−3 and the witness beam has an energy of γ = 4000, resulting
in a matched betatron function in the constant channel of of β̂m =√

2γk−1
p = 1.5 mm according to equation (4.14).
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Figure 25: Exponential plasma-vacuum density transition according to
eq. (6.2) with L = 2.0 mm for three sets of initial conditions, C1,
C2 and CM. The values of the Courant-Snyder parameters of the
matched beam (CM) at the exit position ze = 10.0 mm are given
by β̂CM,e = 15.0 mm, α̂CM,e = −1.21 and γ̂CM,e = 0.165 mm−1.

Three beams with different initial conditions at position z0 = −15.0
mm are studied. One beam (CM) is matched to the plasma plateau
with β̂CM,0 = β̂m = 1.5 mm and α̂CM,0 = 0 (γ̂CM,0 = 0.667 mm−1). A
second beam (C1) has a mismatched beta function β̂C1,0 = 2.0 mm
and α̂C1,0 = 0, and a third beam (C2) has matched beta function with
β̂C2,0 = β̂m = 1.5 mm but mismatched alpha function α̂C2,0 = −1.0.

Figures 24, 25, 26, and 28 depict the evolution of the Courant-
Snyder parameters of these beams in exponential plasma-vacuum
density transitions with varying characteristic decay lengths L. The
uppermost part of the graphs shows the plasma density profile with
the dash-dotted line indicating the exit position ze. Below, the evo-
lution of the Courant-Snyder beta, alpha and gamma functions are
shown. During propagation in the plateau region of the plasma, the
betatron functions of the cases C1 and C2 show the oscillations ex-
pected for unmatched beams in a constant focusing channel and de-
scribed by equation (1.193). The matched beam envelope (CM), on
the contrary, does not oscillate.

Figure 24 illustrates the evolution of the transverse beam parame-
ters in a transition with characteristic decay length L = 0.5 mm. This
transition length is shorter than the local betatron functions of the
three cases and acts on the beams as a sharp plasma-vacuum interface.
The beam-divergence in this transition is only slightly reduced in the
matched case with an initial gamma function of γ̂CM,0 = 0.667 mm−1
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and with γ̂CM,e = 0.601 mm−1 at the exit position at ze = 2.5 mm. This
results in a divergence mitigation by a factor of η = 1.11. The evolu-
tion of the alpha function also shows that the beam is not transported
at waist until the exit position. It can also be seen from the evolution A transport at waist

would imply a
constant α = 0.

of the mismatched cases C1 and C2, that the Courant-Snyder param-
eters at the exit position are highly dependent on the local phase of
the betatron oscillation at the onset of the plasma-vacuum transition.

When applying a density transition with length L = 2 mm, compa-
rable to the local betatron wavelength, a significant damping of the
divergence can be observed (see Figure 25). The gamma function at
the exit in the matched case is damped to a value γ̂CM,e = 0.154 mm−1,
which is significantly lower than the initial value γ̂CM,0 and implies a
divergence mitigation by a factor of η = 4.03. However, the beam ex-
pansion in this decay does not occur adiabatically, as indicated by the
significant deviation of the alpha function from zero in the matched
beam case.
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Figure 26: Exponential plasma-vacuum density transition according to
eq. (6.2) with L = 8.0 mm for three sets of initial conditions, C1,
C2 and CM. The values of the Courant-Snyder parameters of the
matched beam (CM) at the exit position ze = 40.0 mm are given
by β̂CM,e = 16.2 mm, α̂CM,e = −0.42 and γ̂CM,e = 0.072 mm−1.

A density decay length of L = 8.0 mm, depicted in Figure 26, ex-
hibits a significant reduction of the betatron frequency. The diver-
gence at the exit position, here ze = 40.0 mm, is reduced to a value
of γ̂CM,e = 0.072 mm−1 in the matched case, indicating a reduction
of the divergence by a factor of η = 9.26 to almost one order of mag-
nitude lower than the initial value. The alpha function at the exit is
α̂CM,e = −0.42. The beam is transported close to waist until the exit.
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Figure 27: Adiabaticity for exponential plasma-vacuum density transition
according to eq. (6.2) with L = 8.0 mm.

In order to quantify if the transition occurred adiabatically, the quan-
tity K′ β̂/K, expressing the adiabaticity is introduced and examined.
If the adiabaticity is much smaller than one, K′ β̂/K � 1 the transition
occurs fully adiabatic. On the contrary, if K′ β̂/K & 1, the transition
does not act adiabatically on the beam evolution. The adiabaticity for
the three cases C1, C2 and CM, for L = 8.0 mm is depicted in Figure
27. It can be seen that the transition initially is adiabatic but becomes
non-adiabatic towards the exit of the plasma cell.

The longest transition length regarded here is L = 32.0 mm in Fig-
ure 28. This transition transports the matched beam at waist almost
until the exit of the plasma target with α̂CM,e = −0.15 for the matched
case. The divergence is damped by more than one order of magni-
tude compared to the initial divergence with a gamma function at the
exit of γ̂CM,e = 0.057 mm−1 for the matched case. The divergence is
thus reduced by a factor of η = 11.70. Figure 29 shows the adiabatic-
ity for this transition. Although the transition is fully adiabatic for
all beams at the beginning of the decay, the adiabaticity approaches
unity towards the end of the density taper. However, the transition ex-
hibits an significant quasi-adiabatic reduction of the divergence. The
exit beam parameters are less sensitive on the local betatron phase
at the start of the density transition than for the shorter transitions,
but depend on the local phase at the exit. The curves of the Courant-
Snyder parameters for the matched case in Figure 28 indicate that
the beam stays matched and the final parameters at the exit only de-
pend on the plasma density value at the exit. This comes from the
quasi-adiabaticity of the transition.

Figure 30 shows the ratio of the initial divergence over final diver-
gence η = γ̂0/γ̂e of the matched case (CM) for different transition
lengths L. For a fully adiabatic transition, the beam stays at waist and
stays matched during the full transition. This means that the final di-
vergence is given only by the final plasma density. The ratio η for such
a fully adiabatic transition is indicated in Figure 30 by the dashed line.
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Figure 28: Exponential plasma-vacuum density transition according to
eq. (6.2) with L = 32.0 mm for three sets of initial conditions, C1,
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Figure 30: Ratio of initial divergence over final divergence η = γ̂0/γ̂e of
the matched case (CM) for different transition lengths L. The
dashed line indicates the divergence ratio for a beam which is
transported at waist until the exit.

It can be seen that the divergence ratio approaches the fully adiabatic
case for longer transition lengths and that the final gamma function
of an initially matched beam is given only by the density at the exit
position for fully adiabatic transitions.

6.2.2 Summary and conclusion

To conclude, the divergence and the betatron frequency of beams in
ideal systems are significantly damped by plasma density transitions
which are comparable to or longer than the local betatron oscillations.
For short density transitions L . β̂, the damping depends on the lo-
cal phase of the betatron oscillations of the beams at the transition. If
the betatron phase is well known and defined, this might be used to
reduce the divergence. Longer transitions transport matched beams
adiabatically near to or at waist and are less sensitive to the local
phase of the oscillation at the onset of the density taper. This implies
that the final beam parameters are expected to be less sensitive on
fluctuations of the betatron phase when long transitions are used. For
matched beams and fully adiabatic transitions, the final gamma func-
tion only depends on the plasma density at the exit (or on the density
at positions after which the density drops off on length scales quicker
than the local betatron function). The evolution of the adiabaticity in
long transitions indicates that density tapers with a more gently de-
caying functional dependence than an exponential dependence may
be more appropriate for fully adiabatic beam extraction.
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6.3 density tapered extraction in pwfa

6.3.1 Introduction

Despite tremendous improvements in the last decade, electron beams
produced in plasma-based accelerators still exhibit relative energy
spreads in the percent range [Faure et al., 2004; Geddes et al., 2004;
Mangles et al., 2004; Rechatin et al., 2009, 2010]. Conventional FELs

usually require relative energy spreads in the per mil range. For this
reason, concepts which allow for FEL-gain from beams generated in
plasma-based accelerators have been proposed [Huang et al., 2012;
Maier et al., 2012; Seggebrock et al., 2013].

Another challenging aspect of beams with significant energy spread
as produced in plasma-based accelerators is the quality preserving
transport from the plasma-target to the the interaction region (e.g. an
undulator). It has been pointed out by Floettmann [2003, 2014] that
highly divergent beams with significant energy spread experience
an increase of the emittance during the extraction and transport to
some interaction region. While the trace-space emittance of the beams
stays constant during the free drift downstream of the plasma tar-
get, the phase-space emittance increases in the drift. At the first di-
vergence compensating optic, e.g. the first quadropole magnet, the
trace-space emittance grows up to the value of the phase-space emit-
tance [Floettmann, 2003]. The mitigation of the divergence by use of a
slowly decaying K-parameter according to a particular functional de-
pendence has been studied analytically and the growth of the phase-
space emittance of beams with energy spread in the drifts down-
stream of such transitions has been studied numerically [Floettmann,
2014].

The following study investigates the extraction of beams in realistic
plasma density profiles with realistic beam phase space distributions.
Since the transport of beams with energy spread cannot be repre-
sented by an ideal system, the emittance may not be preserved and
equation (6.1) does not apply. The numerical method used here is
therefore the quasi-static PIC code HiPACE (see chapter 3) which takes
into account the full dynamics of the driver and witness beam during
their propagation in the plasma.

6.3.2 Physical scenario

The following physical scenario is considered for the present study.
A highly relativistic electron beam with an energy of 1 GeV, density
of ndb/n0 = 3.0 and transverse dimensions of kpσx = kpσy = 0.7,
kpσζ = 1.0 is focused into a plasma with density n0 = 1017 cm−3 and
drives a plasma wave in the blowout regime. A witness beam with
an energy of 1 GeV, initial relative energy spread of 0.5%, density of
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nwb/n0 = 15.0 and size kpσx = kpσy = 0.05, kpσζ = 0.2 propagates
with a well defined offset behind the driver in an accelerating phase
of the plasma wave (see B.4). It is accelerated in a flattop plasma target
over 34 mm.

Subsequently, the beams are propagated through exponential plasma
vacuum transitions with varying characteristic decay lengths L where
the plasma density is given by

n(z) =





n0 for z < 0 ,

n0 exp (−z/L) for 0 < z < ze ,

0 for z > ze .

(6.4)

The plasma wavelength increases in this transition and the transverse
field amplitudes decay. Beam particles with high transverse momen-
tum may escape the focusing channel if the transition occurs on time
scales shorter than the inverse particles betatron frequency. For the
driver beam, which typically develops a large energy spread on the
order of 10%, the individual electron betatron frequencies vary ac-
cordingly. This implies that a fraction of beam particles can escape
during short transitions, thus changing the total beam charge and
eventually the amplitude of the plasma wave. However, the focus of
this study lies on the dynamics of the witness beam in the plasma-
vacuum transition, which is expanded in the density transition while
the divergence is damped. The plasma wavelength increases in the
decaying density profile, and the witness beam is eventually located
in a deaccelerating phase of the plasma wave.

The plasma-vacuum transition ends at position ze, which consti-
tutes the exit position of the plasma target. The Courant-Snyder beam
parameters in the free drift evolve according to equation (1.192), where
the trace-space emittance stays constant. The normalized trace-space
emittance equals the normalized phase-space emittance, if the beam
is at waist. However, during the beam-expansion in the free drift, the
phase-space emittance is generally not constant, but evolves accord-
ing to [Floettmann, 2003]

ε2
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1
m2c2
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,

(6.5)

where 〈Φ〉e is the beam moment of the quantity Φ at the exit posi-
tion ze and where 〈x〉e = 〈px〉e = 〈x′〉e = 0 was assumed. Equation
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(6.5) implies that the phase-space emittance in the drift section is only
constant, if

〈
x′px

〉2
e =

〈
x′2
〉

e

〈
p2

x
〉

e (6.6)

and

〈xpx〉e
〈

x′px
〉

e =
〈

xx′
〉

e

〈
p2

x
〉

e . (6.7)

Both identities hold, if the beam is monoenergetic, or, to be more
precise, if all beam particles have the same longitudinal momentum.
However, if the beam has a significant energy spread, equations (6.6)
and (6.7) are not true and a correlation between energy and trans-
verse position is generated during the vacuum propagation accord-
ing to the motion of the individual particles x = xe + x′e · (z − ze)

[Floettmann, 2003].
The relative growth of the phase space emittance in the free drift δε

has the following asymptotic dependence

δε =
εn

εn,e
− 1 ' κe

εn,e
(z− ze) , (6.8)

where

κe =

√
〈x′2〉e 〈p2

x〉e − 〈x′px〉2e
mc

. (6.9)

A combination of a great divergence and large energy spread is re-
flected in the difference of the moments in this factor. When the beam
is captured and transported by focusing optics, the beam is at waist
again, which implies that the trace-space emittance grows up to the
value of the phase-space emittance [Floettmann, 2003]. Equation (6.5)
therefore allows for an estimation for the emittance growth for a given
beam phase-space distribution after a certain propagation distance to
the next divergence compensating element, e.g. the next quadrupole
magnet. This emittance growth is theoretically reversible since it does
not increase the volume of the occupied phase space, but only its
shape [O’Shea, 1998; Floettmann, 2003].

6.3.3 Numerical studies with PIC simulations

The above described scenario is now examined by means of 3D PIC

simulations with the code HiPACE. Driver and witness beam are propa- Detailed information
about the simulation
setup and more
results can be found
in B.4.

gated through the flattop plasma profile and the witness beam reaches
an energy of 2.5 GeV with an energy spread of 7.7% immediately up-
stream of plasma-vacuum transition. It increases from the uncorre-
lated 0.5% energy spread due to the dependence of the longitudinal
field on the co-moving position. The longitudinal phase-space distri-
bution of the driver and witness beam at the onset of the plasma-
vacuum transition, at z = 0.0 mm, is depicted in Figure 35. The trans-
verse phase space information prior to the density transition is shown
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Figure 31: Evolution of the transverse beam properties in an exponential
plasma-vacuum transition with length L = 4.0 mm as simulated
in a PIC simulation with HiPACE. The Courant-Snyder parameters
at the exit position ze = 20.0 mm are β̂e = 14.87 mm, α̂e = −0.948
and γ̂e = 0.128 mm−1.

in B.4. Exponential plasma-vacuum transitions with lengths L of 0.5
mm, 1 mm, 2 mm, 4 mm and 8 mm are regarded in the following.
The Courant-Snyder parameters immediately upstream of the den-
sity transitions are identical in all simulations with β̂0 = 1.64 mm,
α̂0 = −0.006 and γ̂0 = 0.609 mm−1.

Figure 31 depicts the example of a density transition with L = 4
mm and the evolution of some relevant beam parameters in this tran-
sition. Shown are the density profile along the beam propagation axis
from z = −1.5 mm to the vacuum, where position z0 = 0 defines
the start of the density transition an the dash-dotted line indicates
the end of the transition and the start of the vacuum drift. Below,
the normalized trace-space emittance (solid dark gray) and the nor-
malized phase-space emittance (dashed light gray) as retrieved from
the PIC simulations in one plane are shown. These curves are accom-
panied with the analytic prediction according to equation (6.5) for
the evolution of the phase-space emittance in the free drift, given
the phase space distribution in the simulation at the exit position
ze (dashed red). The three bottom plots show the evolution of the
Courant-Snyder beta-function, alpha-function and gamma-function
in one plane in the density transition as calculated in the PIC simula-
tions.

It can be seen from the γ̂-curve that the beam performs betatron
oscillations during the acceleration which are adiabatically damped
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Figure 32: Evolution of γ̂ of the witness beam during the acceleration, prop-
agation through the transitions with varying decay lengths L and
free drift in the vacuum, retrieved from PIC simulations.

due to the energy gain of the particles. The alpha function oscil-
lates around zero with small amplitude i.e. the beam is close to the
waist. The gamma-function in the plasma channel has a high value
compared to values used in conventional accelerators and the beta-
function is accordingly small. The curves of the normalized phase-
space and trace-space emittance are close with respect to each other
and approximately constant during the propagation in the plasma
target.

During the transition to vacuum, the gamma function is damped
to a lower value while the phase-space and trace-space emittance stay
approximately constant. The significant mitigation of the divergence
is owed to the transition length L = 4 mm in this case being longer
than the betatron function prior to the transition β̂0 = 1.64 mm. The
betatron function expands in the transition and subsequently follows
the known free drift dependence. The alpha function decreases in
the transition, indicating that the beam is not transported at waist
in the taper region, and subsequently decreases linearly. Important
to note are the emittance curves, depicted in the second plot from
the top. It can be seen that the trace-space emittance stays constant
in the vacuum drift while the analytical and numerical curves of
the phase-space emittance increase in the vacuum section during
the beam expansion. Moreover, the analytical curve, calculated from
equation (6.5), is close to the curve retrieved from the PIC simulation
and can hence serve as a basis for analytical predictions on the emit-
tance growth.

The energy spread is not significantly changed in the here con-
sidered density transitions. Thus, the emittance generating terms in
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equation (6.5) can only be reduced by a reduction of the divergence.
Figure 32 shows the evolution of γ̂ of the witness beam during the
acceleration, propagation through the transitions with varying decay
lengths L and free drift in the vacuum. The behavior is in qualitative
agreement with the findings in 6.2. Transitions shorter than the local
betatron wavelength reduce the divergence only slightly, depending
on the local betatron phase, whereas transitions longer than the be-
tatron wavelength significantly reduce the divergence. This is quan-
titatively shown in Table 1, where the values of γ̂e and κe at the exit
positions for the different decay lengths L are given. The emittance
generating term κe is reduced by more than one order of magnitude
in longer transitions.

Using equation (6.5), the performed simulations allow for a quan-
titative prediction of the emittance growth during the extraction, de-
pending on the distance to the first divergence compensating element
dquad = zquad − ze and depending on the decay length L. Such a quan-
titative prediction is depicted in Figure 33. It can be seen that the
emittance growth can be greater than one order of magnitude for a
transition length shorter than the betatron wavelength and for meter
scale distances to the first focusing optic. On the contrary, the emit-
tance growth is in the percent range only, if transition lengths much
longer than the betatron function and centimeter distances to the first
focusing element are used. This implies that longer taper lengths and
shorter distances to the first focusing element in combination are cru-
cial for a mitigation of the emittance growth during the beam extrac-
tion.

Moreover, the emittance growth predicted by equations (6.5) and
(6.8) is investigated and compared in Figure 34. The solid curves
show the emittance growth δε according to the analytical prediction
(6.5) and the dashed lines show the expected asymptotic linear behav-
ior according to (6.8). The Figure suggests that the asymptotic linear
behavior with slope κe is dominating the emittance growth. The re-
duction of the parameter κe in long density decays (see Table 1) is
therefore one vital aspect of the emittance preservation in plasma-to-
vacuum transitions. In addition, the dependence of the phase space
emittance on the distance from the exit is asymptotically linear. This
indicates the importance of placing the capturing lattice as near as

Table 1: Values of γ̂e and κe at the exit for different decay lengths L.

L (mm) 0.5 1.0 2.0 4.0 8.0

γ̂e (1/mm) 0.546 0.457 0.194 0.135 0.057

κe × 106 47.3 40.6 12.7 11.2 3.83
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Figure 33: Analytical prediction for the emittance evolution according to
equation (6.5), based on data from PIC simulations at various
quadrupole positions for different transition lengths. Shown are
the absolute values of the normalized phase-space emittance
εn,quad at the position of the focusing optic dquad for different L.

possible to the exit of the plasma target. in order to preserve the emit-
tance during the extraction process.

6.3.4 Conclusion

Particle-in-cell simulations for the investigation of the dynamics of
plasma accelerated beams in plasma-vacuum transitions of various
lengths, have been performed in a 3D geometry, and were analyzed.

The results show a more significant divergence reduction for longer Divergence
reduction is also
vital to alleviate
beam lengthening
during the
extraction
[Khachatryan et al.,
2007, IV].

decay lengths and a betatron phase dependence of the divergence re-
duction for decay length shorter than or comparable to the betatron
length. This is in qualitative in agreement with the study of the dy-
namics of mono-energetic beams in plasma-to-vacuum transitions in
ideal systems in 6.2. Hence, the length of transitions plays a major
role for the beam expansion and divergence mitigation.

Moreover, quantitative investigations on the emittance growth of
plasma accelerated beams with significant energy spread during the
extraction have been presented. These predictions are possible through
a modeling of realistic beam dynamics in a plasma-based accelerators,
hence reproducing characteristic transverse phase space distributions
of plasma-accelerated beams and their evolution in various plasma-
to-vacuum transitions.

The present analysis shows an order of magnitude emittance growth
for typical beams from plasma accelerators if the plasma-to-vacuum
interface is shorter than the betatron function and if the first focus-
ing optic is far compared to εn,e/κe from the plasma cell. However,
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Figure 34: Analytical prediction for the emittance growth δε according to
equation (6.5) (solid curves), and equation (6.8) (dashed lines) for
the various taper lengths L. The emittance growth δε is plotted
against the distance to the quadrupole, normalized to the phase
space emittance dquad/(εn,e × 106).

it is also indicated that the combination of plasma-to-vacuum tran-
sitions longer than the betatron wavelength and the placement of
the divergence compensating quadrupole near to the plasma cell al-
low for an emittance preservation up to a percent level. It should be
noted that this requires permanent quadrupole magnets which typ-
ically have small diameters but can achieve comparably large mag-
netic field gradients (K ∼ 100 T/m, see e.g. [Mihara et al., 2006]). The
minimum possible distance from the exit of the plasma target to theCompare equation

(1.184) or (1.186). quadrupole dquad is thereby limited by the technically achievable mag-
netic field gradient, in combination with the transverse beam size at
the quadrupole.

In conclusion, while most numerical studies on plasma-based ac-
celerators so far analyzed the beam properties within the plasma and
neglected the effects of plasma-vacuum transition and beam trans-
port to the interaction region, this study sheds light on the impor-
tance of such considerations. The design of density tapered plasma-
to-vacuum transitions, longer than the betatron wavelength in com-
bination with the placement of permanent quadrupoles near to the
plasma exit, can prove to be an indispensable method for the emit-
tance preserving extraction of beams with energy spread from plasma-
based accelerators.
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The following summarizes and concludes the physical studies and
presents an outlook for anticipated progress on beam-quality preser-
vation in plasma-based accelerators.

summary
In chapter 4, the general conditions for matching, that is the condi-
tions for a non-oscillating beam envelope, are derived for plasma-
based acceleration in the linear regime and in the blowout regime.
Matching requires a beam at waist (α̂ = 0) and a betatron function
of the beam at a specific value (β̂ = β̂m). The matched betatron
function in the linear regime is a function of the beam energy, the
phase-position in the plasma wave, the driver amplitude and trans-
verse driver distribution. In the blowout regime, the matched betatron
function is defined only by the beam energy and the ambient plasma
density. The betatron function in the blowout regime is smaller than
the betatron function in the linear regime and constitutes the lowest
bound for a given beam energy. Values of the betatron function for
plasma densities of n0 ∼ 1023 m−3 and ∼ 1 GeV - scale beams are
on the order β̂m ∼ 1 mm. Such small magnitudes of the betatron
function pose a technical challenge, if attempted to be coupled with
conventional beam optics.

Chapter 5 explores the emittance evolution of electron-beams which
are accelerated in staged LWFA schemes in the linear regime in ac-
cordance with current plasma-based collider concepts (as proposed
e.g. by Schroeder et al. [2010]). In order to achieve the minimum
overall accelerator length, the drift sections between the stages are
designed as short as possible and are given by the minimum laser
coupling distance. The study presented in chapter 5 shows by means
of an analytic theory and PIC simulations that the projected transverse
emittance grows significantly in a single stage owed to differential
phase space rotation and decoherence of the betatron oscillations, if
the electron beam is not matched into the wakefields. The analytic the-
ory is used to investigate what impact this effect has on beams which
are ejected from one plasma module and injected into a subsequent
module in staged LWFA with no electron beam optics in between the
modules. The result shows order-of-magnitude per-stage emittance
growth for currently proposed setups and parameters in staged LWFA.
This finding indicates the necessity for the design of novel techniques
for the external beam injection into plasma modules, for the transport
in plasma accelerators and for the extraction from the modules.

143
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Such a novel extraction method for PWFA is investigated in chap-
ter 6. It is firstly shown that the density tapered plasma-to-vacuum
extraction has the capability of reducing the beam divergence signif-
icantly if the transition length is longer than the local betatron wave-
length. If the transition is shorter than the betatron wavelength, the
divergence reduction is less substantial and sensitive on the local be-
tatron phase. A large divergence and a significant energy spread at
the plasma exit in combination can lead to a great phase-space emit-
tance growth in the subsequent free drift, and the trace-space emit-
tance matches up with the phase-space emittance in the transport
lattice [Floettmann, 2003]. The mitigation of this effect by use of den-
sity tapered plasma roll-offs was studied by means of PIC simulations
with the code HiPACE. The results suggest that an emittance preserv-
ing transport from the plasma cell is possible, if suitable (long) den-
sity tapered plasma-to-vacuum transitions are used in combination
with a transport lattice starting with (permanent) quadrupole mag-
nets which are placed near to the exit of the plasma target.

conclusion
Studies in this work revealed challenges for the design and realiza-
tion of staged plasma-based accelerators. Beams must be matched
into the plasma-stages in order to prevent severe emittance deterio-
ration. When based on today’s technology, such matching sections
would be significantly longer than the plasma modules and would
therefore impede the realization of compact future accelerators based
on plasma. Hence, novel methods for the compact matched injection
and extraction of electron-beams into and from plasma modules have
to be developed and mastered before staged plasma acceleration with
a short overall acceleration distance can be achieved.

A novel method, investigated in this work, uses tapered plasma-to-
vacuum transitions to facilitate the compact and quality preserving
extraction of beams from plasma accelerators. It may be inferred that
such methods are indispensable whenever beams are to be captured
from a plasma cell and transported in a conventional optical lattice.
The reason for this is the limited magnetic field gradient of the first
first quadrupole magnets, which gives a lower bound for the distance
at which it can be placed downstream to the plasma exit. Only the
combination of a divergence mitigation in the plasma, e.g. by means
of density tapering and a focusing optic near to the exit of the plasma
cell can guarantee for an emittance preserving extraction of beams.
This is of fundamental importance to the field of plasma-based accel-
eration since such an extraction must be harnessed whenever plasma
cells are staged or when beams are to be transported to some inter-
action region e.g. for the application of the produced beams (e.g. in
colliders or FELs).
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outlook
The progress in the field of plasma-based acceleration in the past
decades was occurring on a stunning speed. Since the first experimen-
tal demonstrations of LWFA in the mid 1990’s [Modena et al., 1995]
(about 16 years after the proposal by Tajima and Dawson [1979]),
many experimental milestones followed, such as the generation of
electron-beams with a narrow spectrum [Faure et al., 2004; Geddes
et al., 2004; Mangles et al., 2004], improved stability [Osterhoff et al.,
2008; Vargas et al., 2014], increased energy [Leemans et al., 2006; Kim
et al., 2013; Wang et al., 2013], or enhanced tunability [Faure et al.,
2006; Gonsalves et al., 2011]. Electrons in PWFA were accelerated by
40 GeV in a distance shorter than a meter [Blumenfeld et al., 2007].

This accelerated experimental development was rendered possible
by an improved theoretical understanding of the relevant processes
in the plasma. Current theoretical and numerical studies reveal the
future experimental challenges but also offer solutions. The findings
of studies, such as performed in this work, allow for an outlook into
future development in experimental plasma accelerator research. If
today’s theoretical investigations find ways to master the quality pre-
serving compact beam transport, there can be increasing confidence
that tomorrow’s experiments will do as well.

Taking the rapid experimental and technical development in the
recent decade and the current theoretical progress as a basis and re-
garding the ever growing interest in the exciting field of plasma-based
accelerators, it may be anticipated that a combined scientific effort
will push the quality, stability, tunability and energy of beams from
plasma-accelerators further in the next decades to eventually achieve
stable and high-quality > 10 GeV - scale beams which are suitable for
the application in FELs or even in particle colliders.
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A
C A L C U L AT I O N S A N D D E R I VAT I O N S

a.1 derivation of fluid momentum equation

a.1.1 Momentum-divergence of Lorentz force

This paragraph proves the identity of F · ∇p f = ∇p · (F f ), where F is
the Lorentz force

F = q
(

E(r, t) +
p

γmc
× B(r, t)

)
. (A.1)

It can be quickly seen that

∇p · (F f ) = F · ∇p f + f∇p · F . (A.2)

The following shows that the Lorentz force is momentum-divergence
free.

∇p · F = q∇p ·
(

p
γmc

× B
)

,

=
q

mc

(
(p× B) · ∇pγ−1

)
,

=
q

(γmc)3 ((p× B) · p) ,

= 0 .

(A.3)

Hence, the identity

∇p · (F f ) = F · ∇p f , (A.4)

is obtained.

a.1.2 Derivation of fluid momentum equation

The following outlines the derivation of the fluid momentum equa-
tion starting from the Vlasov equation (1.89),

∂ fs

∂t
+ vᵀ∇r fs + Fᵀ∇p fs = 0 , (A.5)

where F represents the Lorentz force term and aᵀb ≡ a · b is the inner
product of two vectors a and b. Multiplication with p from the left
yields

p
∂ fs

∂t︸ ︷︷ ︸
T1

+ p vᵀ∇r fs︸ ︷︷ ︸
T2

+ p Fᵀ∇p fs︸ ︷︷ ︸
T3

= 0 , (A.6)
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The integration of the three terms over momentum space can now be
evaluated individually. Integration of term T1 simply yields

∫
dpT1 =

∂

∂t
(nsps) . (A.7)

Before integration, the term T2 is transposed twice to obtain

T2 = [(p vᵀ∇r fs)
ᵀ]
ᵀ ,

= [(p vᵀ∇r)
ᵀ fs]

ᵀ ,

= [∇ᵀr v pᵀ fs]
ᵀ .

(A.8)

This is possible, since ∇r does not operate on v or p. Integration over
momentum space yields

∫
dpT2 =

[
∇r ·

(∫
dp (vpᵀ fs)

)]ᵀ
. (A.9)

The term vpᵀ is an outer product and the result is a 3× 3 matrix. Be-
fore performing the integration of T3, it can be noted from equation
(A.3) that Fᵀ∇p fs = ∇ᵀp(F fs). The integration of T3 over all momen-
tum space therefor yields

∫
dpT3 =

∫
dp p Fᵀ∇p fs ,

=
∫

dp p∇ᵀp(F fs) ,

= [ pᵀ(F fs)]∂V −
∫

dp F fs ,

= −Fsns .

(A.10)

Here, partial integration was was used and assumed that fs decays to
zero towards the boundary ∂V of the regarded volume. Combining
the three terms finally gives

∂

∂t
(nsps) +

[
∇r ·

(∫
dp (vpᵀ fs)

)]ᵀ
= ns qs

(
E +

vs

c
× B

)
. (A.11)

a.2 relativistic particles in electromagnetic fields

This section discusses the forces imposed on a relativistic charged
particle by external fields.

a.2.1 Direction of particle acceleration

Consider a particle with charge q, normalized velocity β = v/c andThis section follows
Reiser [2008, ch. 2] relativistic Lorentz factor

γ =
1√

1− v2/c2
. (A.12)
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The Lorentz force on the particle is given by

dp
dt

= F = q (E + β× B) , (A.13)

where the particles momentum is defined by p = mγv. Solving the
Lorentz force for the acceleration v̇ yields (cf. [Reiser, 2008, ch. 2])

dv
dt

=
F− (F · β)β

mγ
. (A.14)

This equation expresses that the acceleration in the non-relativistic
case |β| � 1 is directed along the force F, whereas in the relativistic
case |β| → 1, this is in general not true. If β ⊥ F, it can be seen that

dv⊥
dt

=
F⊥
mγ

, (A.15)

and if β ‖ F, it is found that

dv‖
dt

=
F‖

mγ3 . (A.16)

The direction of the acceleration of a relativistic charged particle hence
depends on the direction of the force and the direction of the momen-
tary motion.

a.2.2 Azimuthally symmetric case

In the following the equations of motion will be calculated from the
Lorentz force A.13 in cylindrical coordinates with r = r êr + z êz,
where

êr =




cos θ

sin θ

0


 , êθ =



− sin θ

cos θ

0


 , êz =




0

0

1


 . (A.17a)

The velocity is then given by v = ṙ = ṙ êr + rθ̇ êθ + ż êz. The equations
of motion in cylindrical coordinates yield (compare [Reiser, 2008])

d
dt
(γmṙ)− γmrθ̇2 =q(Er + rθ̇Bz/c− żBθ/c), (A.18a)

1
r

d
dt
(γmr2θ̇) =q(Eθ + żBr/c− ṙBz/c), (A.18b)

d
dt
(γmż) =q(Ez + ṙBθ/c− rθ̇Br/c). (A.18c)

Problems under consideration in this work are often azimuthally sym-
metric, and in the following, θ̇ = 0, Br = Eθ = Bz = 0 is assumed,
such that the equations of motion can be written in the form

d
dt
(γmṙ) =q(Er − βzBθ), (A.19a)

d
dt
(γmż) =q(Ez + βrBθ). (A.19b)
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If the particle furthermore has a highly relativistic velocity in z-direction
and a non-relativistic velocity in radial direction, βr � βz → 1, the
equations of motion reduce to

d
dt
(γmṙ) =

dpr

dt
= q(Er − Bθ) , (A.20a)

d
dt
(γmż) =

dpz

dt
= qEz . (A.20b)

These are the relevant equations of motion for a relativistic charged
particle in externally prescribed, azimuthally symmetric fields.

a.2.3 Betatron equation of motion

For problems of interest, the radial force is often on the same order
of magnitude as the longitudinal force Fr ∼ Fz. Hence, with β ' βzêz

neither (A.15) nor (A.16) applies. Nevertheless, the first order radial
motion can be found by examining the radial component of equation
(A.14)

d2r
dt2 =

Fr − Fzβzβr − Frβ2
r

mγ
. (A.21)

When exploiting βr � 1, it can quickly be seen that

d2r
dt2 =

Fr

mγ
+O(βr) ,

'q(Er − Bθ)

mγ

(A.22)

This equality is used in this work for considerations on the betatron
motion of relativistic charged particles in externally prescribed fields.

a.3 linear wakefields - gaussian drivers

This section evaluates the solution of the integral

I(x) = A
∫ x

∞
dx′ sin(x− x′) exp

(
− (x′ − xc)2

2σ2

)
(A.23)

Expanding the sinus yields

I(x) =A
∫ x

∞
dx′

exp [i(x− x′)]
2i

exp
(
− (x′ − xc)2

2σ2

)

+ c.c. (A.24)

The exponentials can be rewritten, such that

I(x) =
A exp

[
i(x− xc)− σ2/2

]

2i

∫ x

∞
dx′ exp

[
−
(

x′ − xc√
2σ

+
iσ√

2

)2
]

+ c.c. (A.25)
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Now a integration by substitution can be performed, with

t = ϕ(x′) =
x′ − xc√

2σ
+

iσ√
2

and dx′ =
√

2σ dt (A.26)

The integral can then be written in the form

I(x) =
A L exp

[
i(x− xc)− σ2/2

]

2i

∫ ϕ(x)

ϕ(∞)
dt exp(−t2) + c.c. (A.27)

This can be written in terms of error functions

I(x) =
A
√

2π σ exp
[
i(x− xc)− σ2/2

]

4i
[Erf(ϕ(x))− Erf(ϕ(∞))]+ c.c.

(A.28)

Using ϕ(x) = (x− xc)/(
√

2σ)− iσ/
√

2 yields

I(x) =
A
√

2π σ exp
[
i(x− xc)− σ2/2

]

4i

[
Erf
(

x− xc√
2σ

+
iσ√

2

)
− 1
]

+ c.c. (A.29)

Using the definition of the sine function gives

I(x) =− A
√

2π σ

2
exp

(
−σ2

2

)
sin(x− xc)

+
A
√

2π σ

2
Im
[

exp [i(x− xc)]Erf
(

x− xc√
2σ

+
iσ√

2

)]

(A.30)

For x → −∞ the integral has the asymptotic solution

I(x) ' −A
√

2π σ exp
(
−σ2

2

)
sin(x− xc). (A.31)

This limit is also a valid approximation for positions (xc− x)/σ2 � 1.





B
D E TA I L S O N P E R F O R M E D P I C S I M U L AT I O N S

This appendix contains details to performed simulations and supple-
mentary information.

b.1 simulation for display of blowout regime

The relevant numerical parameters of the HiPACE simulation presented
in 1.5.4 are listed below.

Table 2: Relevant parameters of blowout PIC simulation

Simulation setup

Grid
Cell size (k−1

p ) ∆x = ∆y = 0.020; ∆ζ = 0.0073

Box size (k−1
p ) Lx = Ly = 10; Lζ = 15

Beam

Peak density nb/n0 = 4.0

Beam centroid (k−1
p ) xb,0 = yb,0 = 0; ζb,0 = 10

Beam size (k−1
p ) σx = σy = 0.8; σζ = 0.5

Beam cutoff (k−1
p ) 3× σx; 3× σy; 3× σζ

Particles per cell Np,x × Np,y × Np,ζ = 2× 2× 2

Plasma
Plasma density 1× n0

Particles per cell Np,x × Np,y × Np,ζ = 2× 2× 1
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b.2 simulation for hipace and osiris comparison

Listed below are the parameters for the simulations for the compari-
son between HiPACE and OSIRIS in 3.4.

Table 3: Relevant parameters of simulation for the comparison between
HiPACE and OSIRIS

Simulation setup

Grid
Cell size (k−1

p ) ∆x = ∆y = 0.0588; ∆ζ = 0.0073

Box size (k−1
p ) Lx = Ly = 15; Lζ = 15

Beam

Peak density nb/n0 = 1.0

Beam centroid (k−1
p ) xb,0 = yb,0 = 0.0; ζb,0 = 10.0

Beam size (k−1
p ) σx = σy = σζ = 1.0

Beam cutoff (k−1
p ) 3× σx; 3× σy; 3× σζ

Particles per cell Np,x × Np,y × Np,ζ = 2× 2× 2

Plasma
Plasma density 1× n0

Particles per cell Np,x × Np,y × Np,ζ = 2× 2× 1
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b.3 simulations on emittance growth in staged lwfa

Displayed here are detailed parameters used for simulations for the
study on emittance growth in staged LWFA in 5.3.

Table 4: Parameters of PIC simulations on emittance growth in staged LWFA

Simulation setup

Grid
Cell size (k−1

p ) ∆x = ∆y = 0.08; ∆ζ = 0.0015

Box size (k−1
p ) Lx = Ly = 20.0; Lζ = 7.0

Laser-beam

Amplitude a0 = 1.8

Centroid (k−1
p ) xb,0 = yb,0 = 0.0; ζb,0 = 5.05

Size (k−1
p ) rs = 0.7; σζ = 1.0

Cutoff (k−1
p ) 3× σx; 3× σy; 3× σζ

Focal position (k−1
p ) z f = 127.0

Central frequency ω0/ωp = 132.0

Witness-beam

Peak density nb/n0 = 0.3427

Centroid (k−1
p ) xb,0 = yb,0 = 0; ζb,0 = 4.2

Size (k−1
p ) σx = σy = 0.05; σζ = 0.2

Cutoff (k−1
p ) 3× σx; 3× σy; 3× σζ

Emittance (k−1
p ) εx,n = εy,n = 0.0025

Energy/-spread γ = 2000; σγ/γ = 2× 10−2

Particles per cell Np,x × Np,y × Np,ζ = 2× 2× 2

Plasma
Plasma density





n0 if − 2000 < kpz ≤ 0

0 otherwise

Particles per cell Np,x × Np,y × Np,ζ = 2× 2× 1
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b.4 simulations on density tapered extraction

The relevant numerical parameters of the PIC simulation presented in
6.3 are listed below.

Table 5: Parameters of PIC simulations on density tapered matching

Simulation setup

Grid
Cell size (k−1

p ) ∆x = ∆y = 0.047; ∆ζ = 0.015

Box size (k−1
p ) Lx = Ly = 24; Lζ = 15

Driver-beam

Peak density nb/n0 = 3.0

Centroid (k−1
p ) xb,0 = yb,0 = 0.0; ζb,0 = 10.0

Size (k−1
p ) σx = σy = 0.7; σζ = 1.0

Cutoff (k−1
p ) 3× σx; 3× σy; 3× σζ

Emittance (k−1
p ) εx,n = εy,n = 0.35

Energy/-spread γ = 2000; σγ/γ = 10−3

Particles per cell Np,x × Np,y × Np,ζ = 2× 1× 1

Witness-beam

Peak density nb/n0 = 15.0

Centroid (k−1
p ) xb,0 = yb,0 = 0; ζb,0 = 4.2

Size (k−1
p ) σx = σy = 0.05; σζ = 0.2

Cutoff (k−1
p ) 3× σx; 3× σy; 3× σζ

Emittance (k−1
p ) εx,n = εy,n = 0.0025

Energy/-spread γ = 2000; σγ/γ = 5× 10−3

Number of particles Np,tot = 105

Plasma
Plasma density





n0 if − 2e3 < kpz ≤ 0

n0 exp(− z
L ) if 0 < kpz ≤ ze

0 otherwise

Particles per cell Np,x × Np,y × Np,ζ = 2× 2× 1

The following displays supplementary information on simulations
performed in 6.3. Shown is the longitudinal phase space of driver and
witness beam immediately upstream of the plasma-to-vacuum transi-
tions in Figure 35. The driver lost energy while the witness beam is
approximately energy-doubled. The witness beam has has a signifi-
cant energy spread, which comes from the slope of the longitudinal
field.

Figures 36, 37 and 38 depict the phase space information in one
transverse direction of the witness beam at position z0, prior to the
plasma-vacuum transitions. It can be seen that the x′ − px phase
space distribution is highly correlated, but has a certain finite width
especially for greater x′ or px. This width resembles the inequality
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Figure 35: Longitudinal phase space of driver and witness beam in the
study on density tapered extraction by means of a PIC simulation
at position z0.
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Figure 36: Transverse phase space x′ − px of witness beam in a PIC simula-
tion at position z0.

〈x′px〉20 6=
〈

x′2
〉

0

〈
p2

x
〉

0. The fork-structure comes from the tail of the
beam which experienced defocusing forces for a short time. This can
be also seen in Figures 37 and 38, where a subset of the beam can be
seen at large transverse momenta. Moreover, these Figures indicate
that the beam is near to waist prior to the density transition region.

Figures 39, 40 and 41 depict the phase space information in one
transverse direction of the witness beam at the exit position ze for a
transition length L = 0.5 mm. The x′ − px phase space distribution,
Figure 39, did not change significantly compared to the distribution
in Figure 36. However, Figures 40 and 41, suggest that beam is diverg-
ing and was not transported near to waist during the transition.

Figures 42, 43 and 44 depict the phase space information in one
transverse direction of the witness beam at the exit position ze for a
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Figure 37: Transverse phase space x − px of witness beam in a PIC simula-
tion at position z0.
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Figure 38: Transverse phase space x− x′ of witness beam in a PIC simulation
at position z0.

transition length L = 8.0 mm. The x′ − px phase space distribution
is significantly narrower in x′ and px for this case than before the
density transition and the divergence is accordingly reduced. Figures
43 and 44 show that the transverse phase space distribution was de-
formed such that the large beam divergence was transformed to a
larger beam size. Moreover, it may be noted that the beam is near to
waist.
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Figure 39: Transverse phase space x′ − px of witness beam in a PIC simula-
tion with transition length L = 0.5 mm at position ze.
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Figure 40: Transverse phase space x − px of witness beam in a PIC simula-
tion with transition length L = 0.5 mm at position ze.
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Figure 41: Transverse phase space x− x′ of witness beam in a PIC simulation
with transition length L = 0.5 mm at position ze.
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Figure 42: Transverse phase space x′ − px of witness beam in a PIC simula-
tion with transition length L = 8.0 mm at position ze.
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Figure 43: Transverse phase space x − px of witness beam in a PIC simula-
tion with transition length L = 8.0 mm at position ze.
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Figure 44: Transverse phase space x− x′ of witness beam in a PIC simulation
with transition length L = 8.0 mm at position ze.





C
H I PA C E - D E TA I L S A N D C O N S I D E R AT I O N S

c.1 basis of the fast poisson solver

c.1.1 Fast Poisson solver in one dimension

The basis of the fast Poisson solver will be explained here in the ex-
ample of the one-dimensional Poisson problem, The explanations

here follow
[Van Loan, 1992].∂2U

∂x2 = F(x), xmin < x < xmax . (C.1)

The boundary conditions considered here are Dirichlean at both bor-
ders, with U(xmin) = U(xmax) = 0.

The domain xmin < x < xmax is now discretized as follows, xk =

xmin + k · ∆x with k = 0, ..., n and ∆x = (xmax − xmin)/n. The aim
here is to approximate U on the interior grid points uk = U(xk) for
k = 1, ..., n − 1, given the information fk = F(xk). The values at the
boundaries, u0 and un, are zero by stupulation of the above Dirichlet
boundary conditions. The partial differential equation (C.1) can now
be discretized in a second-order difference scheme according to

uk+1 − 2uk + uk−1

∆x2 ' fk , k ∈ {1, ..., n− 1} . (C.2)

When imposing Dirichlet boundary conditions, this equation reads in
terms of a vector and matrix representation

∆x−2 T u ' f , (C.3)

where the (n− 1)× (n− 1) matrix T, defined by

T =




−2 1 0 · · · 0

1 −2
. . .

...

0
. . . . . . . . . 0

...
. . . . . . 1

0 · · · 0 1 −2




, (C.4)

acts as a central difference operator on u = (u1, ..., un−1) and has a
tridiagonal shape. The vector f = ( f1, ..., fn−1) represents the function
F on the discretized interior part domain.

Such a linear equation problem with a tridiagonal matrix is typ-
ically computationally efficiently solved by use of direct numerical
methods, e.g. the Cholesky-discretization or the QR-discretization or
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by iterative methods, e.g. the Krylov-subspace method [Meister, 2011].
However, it can be shown that this particular problem can be solved
by means of discrete sine-transforms, which are generally more effi-
cient. This is possible since the matrix T can be factorized according
to the following eigendecomposition (the proof is found in [Van Loan,
1992])

V−1TV = Λ = diag(λ1, ..., λn−1) , (C.5)

where the matrix V is the operator for a discrete sine transform

Vjk = sin
(

jkπ

n

)
j, k ∈ {1, ..., n− 1} , (C.6)

and the eigenvalues λj of T are given by

λj = −4 sin2
(

jπ
2n

)
j ∈ {1, ..., n− 1} . (C.7)

Hence, equation (C.3) can be transformed as follows,

∆x−2 T u = f , (C.8)

⇒ V−1TVV−1uV = ∆x2 V−1 f V , (C.9)

⇒ ΛV−1uV = ∆x2 V−1 f V , (C.10)

⇒ u = ∆x2 VΛ−1V−1 f . (C.11)

After noting that V−1 = 2V/n [Van Loan, 1992], this implies that u
can be obtained by the following sequence of operations.

1. The data-array f is sine-transformed.

2. The resulting array is multiplied by 2/n Λ−1.

3. The resulting array is sine-transformed.

Computation of the vector u therefore requires two discrete sine-
transforms and a multiplication by a matrix with the inverse of the
eigenvalues of T on the diagonals.

c.1.2 Fast Poisson solver in two dimensions

The Poisson problem for the computation of the fields in HiPACE is
two-dimensional,

∂2U
∂x2 +

∂2U
∂y2 = F(x, y) , xmin < x < xmax , ymin < y < ymax . (C.12)

The 2D-domain is discretized analogously to the above discussed 1D
case and the discretized 2D Poisson problem reads

uj+1,k − 2uj,k + uj−1,k

∆x2 +
uj,k+1 − 2uj,k + uj,k−1

∆y2 ' f j,k ,

j ∈ {1, ..., nx − 1} , k ∈ {1, ..., ny − 1} ,
(C.13)
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with the Dirichlet boundary condition u0,k = unx ,k = uj,0 = uj,ny = 0
∀k, j. Equation (C.13) in matrix representation reads

(
∆x−2 Iny−1Tnx−1 + ∆y−2Tny−1 Inx−1

)
u = f , (C.14)

where Im is the m×m identity matrix and Tm is the tridiagonal matrix
(C.4) with dimension m×m. Analogously as for the 1D Poisson prob-
lem, the numerical solution is thus given by (see [Van Loan, 1992])

u = (VBVA)
[
IβΛA/h2

A + ΛB Iα/h2
B
]−1

(V−1
B V−1

A ) f , (C.15)

where V−1
A AVA = Λα for A = Tα ∈ Rα×α and V−1

B BVB = Λβ for
B = Tβ ∈ Rβ×β, and hA = ∆x and hB = ∆y. This implies that u in
the 2D Dirichlet problem can be obtained by the following sequence
of operations.

1. The 2D-array f is 2D sine-transformed.

2. The resulting 2D-array is multiplied by the matrix

4/(nxny)
[

Iny−1Λnx−1/∆x2 + Λny−1 Inx−1/∆y2
]−1

.

3. The resulting 2D-array is 2D sine-transformed.

A method based on this scheme is used in the code HiPACE for the
computation of the fields during the plasma and field solving routine.

c.2 details on the parallelization in hipace

The Cartesian three-dimensional simulation domain in HiPACE is de-
composed in all three dimensions into subdomains which are com-
puted by individual processes. This Cartesian virtual topology allows
for an efficient distribution of the computational load on a large num-
ber of processes with the Message Passing Interface (MPI). The Eule-
rian information on the grid is exchanged in the transverse direction
by use of the halo cell method. The fast Poisson solver computes trans-
verse planes of Eulerian current information in the virtual topology
and returns transverse planes of field information in the virtual topol-
ogy, and hence, must be parallelized. The longitudinal parallelization
in HiPACE differs from the transverse parallelization and uses a differ-
ent scheme for the information exchange. Due to the virtual topology,
particles crossing the boundaries of the subdomains in the PIC code
need to be exchanged between the processes. All these methods and
schemes will be outlined in the following.

c.2.1 Halo cell method

Eulerian information in the simulation is stored on the grid. Each
process in the virtual topology contains and computes a subgrid of
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this information. Information exchange between the processes is nec-
essary whenever a process needs to access information from a neigh-
boring process or change information in the neighboring process. Ex-
amples for such actions in PIC codes are the field interpolation or the
current deposition. Owed to the quasi-static scheme, an efficient par-
allelization in HiPACE demands for the current deposition and field
interpolation to be performed with a first order scheme in the longi-
tudinal direction whereas in the transverse plane the current depo-
sition and field interpolation can be done with an arbitrary higher
order scheme.

rank 0 rank 1

rank 2 rank 3

Figure 45: Illustration of MPI communication method using halo cells. De-
tailed explanation, see C.2.1.

The following describes the halo cell method (also called ghost or
guard cell method) [Wilkinson and Allen, 1999] which is used for the
parallelization in the 2D transverse plane. The halo cell scheme is il-
lustrated in Figure 45 in the example of a 2D virtual topology with
four processes (or ranks), with a halo cell width of one cell and peri-
odic boundary conditions. The basic idea is that each process stores
copies of the information from the neighboring process in the halo
cells.

The red arrow in Figure 45 illustrates a communication from left
to right in which information from the halo of rank 0 is copied and
added to the inner area of rank 1. This is done e.g. after the current
deposition. If the current of macro-particles near to the right border
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in rank 0 is deposited in a higher order scheme, a fraction of the
current is deposited in the halo area (marked blue). After the current
deposition, this information is copied from the halo area of rank 0
and added to the inner area of rank 1.

The green arrow in Figure 45 depicts a diagonal communication
in which information from the inner area of rank 2 is copied and
written to the halo area of rank 1. This is done e.g. before the higher
order transverse field interpolation, such that the field information in
the vicinity of a macro-particle near to the border in rank 1 can be
interpolated to this particle.

This halo information exchange HiPACE is done in a non-blocking
way using MPI [Message Passing Interface Forum, 2012].

c.2.2 Parallelization of the fast Poisson solver

The transverse Poisson solver routine in HiPACE requires the global
transverse source (current) information for the computation of the
fields and returns the global information. It must hence operate on
the virtual topology in a parallel manner. The parallelization of the
Poisson solver in HiPACE is as follows. The library used for the fast
Fourier transforms, Fastest Fourier Transform in the West (FFTW), pro-
vides a 1D parallelization. For the parallel implementation in the sec-
ond transverse dimension, the source information is gathered in the
second direction in a 1D row of processes. The FFTs are performed in
this row of processes and the resulting (field) information is scattered
from the row of processes to the other processes.

c.2.3 Longitudinal parallelization

The communication in the longitudinal direction is occurring only
from the front to the back. This is to ensure a non-synchronous par-
allel computation of the information in the various transverse slabs
of processes and hence to mitigate significant idle times during the
plasma and field solving routine which computes information from
the front of the simulation domain to the back. Information is hence
only passed on from one slab of processes to the next slab of pro-
cesses, which inherit this information to be able to start their plasma
and field solving routine.

c.2.4 Macro-particle exchange

The exchange of macro-particle information between the processes is
done as follows. The macro-particle information of particles crossing
the subdomain boundaries is stored in a buffer during the particle
push and communicated to the appropriate neighboring process and
after the particle advance. Boundary conditions are thereby periodic
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for plasma macro-particles and optionally periodic, reflecting or open
for the beam macro-particles.
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A C R O N Y M S

ASTRA A Space Charge Tracking Algorithm
http://www.desy.de/~mpyflo/

BBGKY Bogoliubov, Born, Green, Kirkwood and Yvon

CFL Courant-Friedrichs-Lewy [Courant et al., 1928]

CPA chirped pulse amplification [Strickland and Mourou, 1985]

CT computed tomography

DESY Deutsches Elektronen-Synchrotron http://www.desy.de/

ELEGANT multi-purpose 3D particle tracking code URL

FACET Facilities for Accelerator science and Experimental Test
beams at SLAC [Hogan et al., 2010]

FDTD finite-difference time-domain [Yee, 1966]

FEL free-electron laser

FFT fast fourier transform

FFTW Fastest Fourier Transform in the West [Frigo and Johnson,
2005]; http://www.fftw.org/

FLASH Free-electron Laser in Hamburg http://flash.desy.de/

FLASHForward Future-oriented wakefield-accelerator research and
development at FLASH

FWHM full width at half maximum

HiPACE Highly efficient Plasma Accelerator Emulation
(see chapter 3) or [Mehrling et al., 2014]

HPC high-performance computing

ILC International Linear Collider
http://www.linearcollider.org/, [Behnke et al., 2013]

IST Instituto Superior Técnico Lisboa
http://tecnico.ulisboa.pt/

LAOLA Laboratory for laser- and beam-driven plasma acceleration
http://laola.desy.de/

LBNL Lawrence Berkeley National Laboratory
http://www.lbl.gov/
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LHC Large Hadron Collider http://www.lhc-facts.ch/

LWFA laser wakefield acceleration (see 1.5.1.2)

MPI Message Passing Interface http://www.mpi-forum.org/

ODE ordinary differential equation

OSIRIS full 3D particle-in-cell code
[Fonseca et al., 2002, 2008, 2013]

PDE partial differential equation

PWFA plasma wakefield acceleration (see 1.5.1.1)

PIC Particle-In-Cell (see chapter 2)

QSA quasi-static approximation (see 1.4.3.2)

RMS root mean square

SLAC Stanford Linear Accelerator Center
https://www6.slac.stanford.edu/

UCLA University of California Los Angeles
http://www.ucla.edu/

XFEL X-Ray Free-Electron Laser http://www.xfel.eu/
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L I S T O F F R E Q U E N T LY U S E D S Y M B O L S

A Vector potential

a Normalized vector potential a = eA/mec2

B Magnetic field

B Normalized magnetic field B = B/E0, where E0 is the
wave-breaking field

c Speed of light c = 299792458 m/s

E Electric field

E Normalized electric field E = E/E0, where E0 is the
wave-breaking field

e Absolute electron charge e = 1.602× 10−19 Coulomb

E0 Cold non-relativistic wave-breaking field
E0 = mecωp/e

I Intensity of a light wave or electric current

J Current density J = J(r, t)

kp Light-like plasma wave number or inverse skin depth
kp = ωp/c

m Particle rest mass

me Electron rest mass me = 9.109× 10−31 kg

n, ne, n0 Particle density, electron particle density, reference
particle density

P Particle momentum

p Momentum coordinate

Pcan Canonical momentum Pcan = p + eA

q Particle charge

R Particle position in configuration space

r Cartesian coordinate vector

r Radius in a cylindrical coordinate system

rs Laser spot size, rs = 2σr, where σr is the RMS-intensity
width
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U Normalized particle momentum U = P/mc = βγ

u Normalized momentum u = p/mc = βγ

V Particle velocity

v Velocity coordinate

x Cartesian coordinate (perpendicular to beam
propagation direction)

y Cartesian coordinate (perpendicular to beam
propagation direction)

z Axial coordinate (in beam propagation direction)

α̂, β̂, γ̂ Courant-Snyder (Twiss) parameters

β Velocity divided by the speed of light

γ Lorentz factor, γ = 1/
√

1− (v/c)2

ε Geometric phase-space emittance

ε =
√
〈x2〉 〈p2

x〉 − 〈xpx〉2/ 〈pz〉

εn Normalized phase-space emittance

εn =
√
〈x2〉 〈p2

x〉 − 〈xpx〉2/mec

ε̂ Trace-space-emittance ε̂ =
√
〈x2〉 〈x′2〉 − 〈xx′〉2

ε̂n Normalized trace-space emittance ε̂n = ε̂ 〈pz〉 /mec

λp Plasma wavelength

ζ Co-moving space variable ζ = z− ct

ρ Charge density ρ = ρ(r, t)

τ Co-moving time variable τ = t

Φ Scalar potential

φ Normalized scalar potential φ = eΦ/mec2

Ψ Wake potential Ψ = Φ− Az

ψ Normalized wake potential ψ = eΨ/mec2

ω Angular frequency/laser central frequency

ωp Plasma frequency ωp =
√

4πnee2/me
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