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Introduction

This is a PhD thesis in infinite combinatorics consisting of the results in
four papers [1], [2], [3] and [4]. In order to read it, familiarity with the
basics of finite graph theory, finite matroid theory and linear algebra can
be helpful.

Finite matroids were introduced in 1935 by Hassler Whitney [35] (also
independently by Takeo Nakasawa [29]). To abstract the notion of indepen-
dence that is common to both graph theory and linear algebra, Whitney
suggested a set of axioms, and defined any system of sets satisfying these
axioms to be matroids. So, many of the terms used in matroid theory are
similar to their counterparts in linear algebra or graph theory.

Central to the basic theory of finite matroids is the fact that they
can be axiomatised in many different ways. This includes axiomatisations
in terms of independent sets, bases, circuits, closure operators and rank
functions. However, when applied to infinite sets, the axiomatisations
involving cardinality of sets do not make much sense, a fact leading to
the question of whether there is a natural theory of infinite matroids.
One attempt to define infinite matroids is to restrict attention to finitary
matroids: those in which a set is independent if and only if all of its finite
subsets are, or equivalently in which all circuits are finite. Some of the basic
theory of finite matroids can be extended to this class via compactness
arguments. A serious problem with the class of finitary matroids is that
it is not closed under duality, namely a finitary matroid need not have a
finitary dual.

This led Rado to ask in 1966 whether there is a good theory of non-
finitary infinite matroids with duality [34]. A wide range of solutions were
proposed, based on different axiomatisations of finite matroids. One of
these, called the B-matroids which was proposed by Higgs 1969 [25], was
shown by Oxley to be the largest class closed under duality and taking
minors and whose finite elements are matroids [30]. However, B-matroids
remained difficult to handle until a discovery by Bruhn, Diestel, Kriesell,
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Pendavingh and Wollan [15]. Following the duality in infinite graphs, they
arrived at a notion of infinite matroids and a simple way to extend each of
the five axiomatisations of finite matroids to the infinite case. The models
of their axioms for infinite matroids turned out soon to coincide with that
of B-matroids but the simplicity of their axiomatisations rapidly led to
many theoretical progresses in infinite matroid theory.

The current work is part of the ongoing project, which tries to extend
different aspects of finite matroid theory to the infinite case. The thesis
consists of four chapters. After the introduction, we collect a couple of
definitions and lemmas about general matroid theory in Chapter 1. In
Chapter 2, the problem of representability of infinite matroids over a field
is addressed [1], and Chapter 3 is devoted to study a class of matroids,
called gammoids [[2],[3] [4]].

In the finite case, representable matroids form perhaps the most im-
portant subclass of matroids. A matroid is called representable over a field
k if the elements of the matroid can be labeled by a family of vectors of
a vector space over k such that a set is independent in the matroid if and
only if the family consisting of the corresponding labels is linearly indepen-
dent. An important property of representability in finite matroids is that
it is preserved under duality, namely the dual of a representable matroid
is always representable.

This notion of representability can easily be extended to finitary ma-
troids and some of the interesting properties of the finite case are preserved
under such an extension. However, the representability in finitary matroids
violates duality, as the dual of a finitary matroid need not be finitary. So
the main thema of Chapter 2 is a question akin to Rado’s question: Is
there a natural extension of the class of representable matroids which is
closed under duality? Note that any such extension must contain the dual
of ordinary representable matroids.

A putative answer to this question was suggested by Bruhn and Diestel
[14]. By extending the notion of linear combinations to allow for infinite
combinations in certain constrained circumstances, they arrived at a new
definition of representability, called thin sums representability. It is not
true that the objects given by this definition are always matroids but if
they are, they are called thin sums matroids.

In Chapter 2, we study different aspects of thin sums matroids. We give
a characterization of the duals of ordinary representable matroids among
thin sums matroids. A matroid with no infinite circuit-cocircuit intersec-
tion is called tame. We show that the class of tame thin sums matroids is
closed under duality and so taking minors. As we shall see, most of the
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matroids associated to graphs turn out to be tame and thin sums repre-
sentable. So we suggest the class of tame matroids, as a suitably large class
of matroids in which one can have a reasonable theory of representability
which is preserved under duality.

Next, we turn to another class of matroids, namely the class of gam-
moids. The concept of a gammoid was introduced and shown to be a
matroid by Perfect in 1968 [32], and was studied in more detail and given
its name by Mason in 1972 [27].

Gammoids can be viewed as a generalization of a well known class of
matroids, termed transversal matroids. Recall that a transversal matroid
can be defined by taking a fixed vertex class of a bipartite graph as the
ground set and the matchable subsets of that class as the independent sets.
Replacing bipartite graphs with digraphs, and matchings with linkages,
sets of disjoint (directed) paths, we arrive at the definition of a gammoid.
A strict gammoid is a matroid defined on the vertex set of (the digraph
of) a dimaze, that is a digraph equipped with a specific set of sinks named
the (set of) exits, where a set is independent if there is a linkage of that
set to the set of exits ([27]). Gammoids are defined as matroid restrictions
of strict gammoids.

The class of finite gammoids has many pleasant properties. For exam-
ple, Ingleton and Piff [26] proved constructively that finite strict gammoids
and finite transversal matroids are dual to each other, a key fact to the
result that the class of finite gammoids is minor-closed.

Contrary to the representable matroids, the definition of finite gam-
moids verbatim extends to (not necessarily finitary) infinite gammoids.
It turns out that the system of independent sets of an infinite dimaze
always satisfies the augmentation axiom, namely a non-maximal indepen-
dent set can be extended inside any maximal one to a larger independent
set. However, it need not satisfy the matroid axiom (IM), which demands
the existence of certain maximal independent sets. The duality of strict
gammoids and transversal matroids breaks down as well, so the classical
proof of the fact that the class of finite gammoids is minor-closed does
not extend to the infinite case. In fact, we do not know if this class is
minor-closed.

Regarding the problems discussed in the previous paragraph, an inter-
sting question is that if we can restrict our attention to reasonably large
subclasses of gammoids, in which different features of the class of finite
gammoids are preserved.

In Chapter 3, we begin to address this question. Our approach is, in a
sense, similar to identifying a desired class of graphs via forbidding graphs
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as topological minors. Roughly speaking, looking closely at a system of
linkable sets with an undesired behaviour, we try to find the substructure
(subdimaze) in its defining dimaze which causes this undesired behaviour,
and then study the class of gammoids definable by the dimazes that do
not contain this substructure.
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Chapter 1

Basics

In this chapter, we introduce basics of infinite matroid theory that we shall
use later. Almost all of the materials here can be found (or follow from)
the results in [15] or [31].

For any set E let P(E) = 2E be the power set of E and I ⊆ P(E).
Recall from [15], that the set system M = (E, I) is called a matroid if I
satisfies the following conditions:

(I1) ∅ ∈ I.

(I2) I is closed under taking subsets.

(I3) For all I, I ′ ∈ I with I ′ maximal in I but I not maximal in I, there
is an x ∈ I ′ \ I such that I + x ∈ I.

(IM) Whenever I ⊆ X ⊆ E and I ∈ I, the set {I ′ ∈ I|I ⊆ I ′ ⊆ X} has a
maximal element.

The axiom (I3) is called augmentation axiom. E is called the ground
set and elements of I the independent sets of M (M -independent sets).
We often identify a matroid with its set of independent sets. Subsets of
the ground set which are not independent are dependent, and minimal
dependent sets are called circuits of the matroid M (M -circuits). It can
be proved that any dependent set contains a minimal one. A Circuit of
size one is called a loop. Maximal independent sets are called bases.

Matroids can also be defined via base or circuit axioms. A collection of
subsets B of E is the set of bases of a matroid if and only if the following
three conditions hold:

(B1) B 6= ∅.
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(B2) Whenever B1, B2 ∈ B and x ∈ B1 \ B2, there is an element y of
B2 \B1 such that (B1 − x) + y ∈ B.

(BM) The set I of all subsets of elements in B satisfies (IM).

A set C ⊆ P(E) is the set of circuits of a matroid if and only if the
following conditions hold:

(C1) ∅ /∈ C.

(C2) No element of C is a subset of another.

(C3) Whenever X ⊆ C ∈ C and (Cx|x ∈ X) is a family of elements
of C such that x ∈ Cy ⇐⇒ x = y for all x, y ∈ X, then for
every z ∈ C \ (

⋃
x∈X Cx) there exists an element C ′ ∈ C such that

z ∈ C ′ ⊆ (C ∪⋃x∈X Cx) \X.

(CM) The set I of all the elements of P(E) that do not contain any element
of C satisfies (IM).

To see the equivalency of these axiomatisations and a couple of other
axiomatisations of infinite matroids see [15].
I(M), B(M) and C(M) denote sets of independent sets, bases and cir-

cuits of the matroid M , respectively. M∗ denotes the dual of M whose
bases are complements of the bases of M . Expressions like a coindepen-
dent set, a cocircuit and a codependent set of M refer, respectively, to an
independent set, a circuit and a dependent set of M∗. Closure operator is
a map cl : 2E → 2E defined as follows. For a set X ⊆ E,

cl(X) := X ∪ {x ∈ E|∃I ⊆ X : I ∈ I, I + x /∈ I}.

Closure operator has different properties including cl(cl(X)) = cl(X).
For any base B and any e ∈ E \ B, there is a unique circuit oe with

e ∈ oe ⊆ B + e, called the fundamental circuit of e with respect to B.
Dually, since E \ B is a base of M∗, for any f ∈ B there is a unique
cocircuit bf with f ∈ bf ⊆ E \ B + f , called the fundamental cocircuit of
f . We reprove the following from [15].

Lemma 1.0.1. There is no matroid M with a circuit o and a cocircuit b
such that |o ∩ b| = 1.

Proof. Suppose for a contradiction that there were such an M , o and b,
with o ∩ b = {e}. Let B be a base of M whose complement includes
the coindependent set b − e. Let I be a maximal independent set with
o− e ⊆ I ⊆ E \ b - this can’t be a base of M since its complement includes
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b, so by (I3), there is some f ∈ B \ I such that I + f is independent. Then
by maximality of I, f ∈ b, and so f = e, so o is independent. This is the
desired contradiction.

Lemma 1.0.2. Let M be a matroid and B be a base of M . Let oe and bf
a fundamental circuit and a fundamental cocircuit with respect to B, then

1. oe ∩ bf is empty or oe ∩ bf = {e, f} and

2. f ∈ oe if and only if e ∈ bf .

Proof. (1) is immediate from Lemma 1.0.1 and the fact that oe ∩ bf ⊆
{e, f}. (2) is a straightforward consequence of (1).

Lemma 1.0.3. For any circuit o, and any elements e, f of o there is a
cocircuit b such that o ∩ b = {e, f}.
Proof. Let B be a base extending the independent set o − e, so that o is
the fundamental circuit of e with respect to B. Then the fundamental
cocircuit of f has the desired property.

Given a matroid M = (E, I) and X ⊆ E, M restricted to X is the
matroid (X, I ∩2X), and is denoted by M � X or M \Xc. The contraction
ofM toX, M.X or equally the matroid obtained by contracting Xc, M/Xc

is defined to be (M∗ � X)∗. Let X and Y be two disjoint subsets of E.
Then M/X \ Y = M \ Y/X is a minor of M obtained by contracting X
and deleting Y .

Lemma 1.0.4. ([15]) The following statements are equivalent:

(i) I is a base of M.X.

(ii) There exists a base I ′ of M \X such that I ∪ I ′ is a base of M .

(iii) I ∪ I ′′ is a base of M for every base I ′′ of M \X.

Corollary 1.0.5. ([15]) I is independent in M.X if and only if I ∪ I ′ is
independent in M for every independent set I ′ of M \X.

Lemma 1.0.6. Let M be a matroid with ground set E = C∪̇X∪̇D and o′

be a circuit of M ′ = M/C\D. Then there is an M -circuit o with o′ ⊆ o ⊆
o′ ∪ C.

Proof. Let B be any base of M � C. Then B∪o′ is M -dependent since o′ is
M ′-dependent. On the other hand, B ∪ o′− e is M -independent whenever
e ∈ o′ since o′ − e is M ′-independent. Putting this together yields that
B ∪ o′ contains an M -circuit o, and this circuit must not avoid any e ∈ o′,
as desired.
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Corollary 1.0.7. Let M be a matroid with ground set E = C∪̇{x}∪̇D.
Then either there is a circuit o of M with x ∈ o ⊆ C + x or there is a
cocircuit b of M with x ∈ b ⊆ D + x, but not both.

Proof. Note that (M/C\D)∗ = M∗/D\C, and apply Lemmas 1.0.1 and
1.0.6.

Lemma 1.0.8. Let M be a matroid, C,D ⊆ E with C ∩ D = ∅ and let
M ′ := M/C \ D be a minor. Then there is an independent set S and a
coindependent set R such that M ′ = M/S \R.

Proof. Let S be the union of a base of M |C and a base of M.D and let
R := (C ∪D) \S. In particular S is independent by Corollary 1.0.5. Since
R is disjoint from some base extending S in E\(C∪D), it is coindependent.
In particular, any base of M/S \R spans M/S. For a set B ⊆ E \ (C ∪D)
we have:

B ∈ B(M \D/C)

⇔B ∪ (C ∩ S) ∈ B(M \D)

⇔B ∪ (C ∩ S) ∪ (D ∩ S) ∈ B(M)

⇔B ∪ S ∈ B(M)

⇔B ∈ B(M/S)

⇔B ∈ B(M/S \R).

Let M = (E, I) be a set system. The set Ifin consists of the sets which
have all their finite subsets in I. Mfin = (E, Ifin) is called finitarisation of
M . M is called finitary if M = Mfin. Applying Zorn’s Lemma one see that
finitary set systems always satisfy (IM). It is easy to see that a matroid is
finitary if and only if each of whose circuits is finite. A class of matroids
naturally related to finitary one is that of cofinitary matroids. A matroid
is called cofinitary if it is the dual of a finitary matroid. M is called nearly
finitary if for any maximal element B ∈ Ifin there is an I ∈ I such that
|B \ I| < ∞, or equivalently any base of M can be extended to a base
of the finitarisation adding only finitely many elements. Nearly finitary
matroids first appeared in [7] as a superclass of finitary matroids in which
one can have an infinite matroid union theorem.

Connectivity in finite matroids stems from graph connectivity and is
a well established part of the theory. In the infinite setting, Bruhn and
Wollan [17] gave the following definition of connectivity that is compatible
with the finite one. For an integer k ≥ 0, a k-separation of a matroid is a
partition of E into X and Y such that both |X|, |Y | ≥ k and for any bases
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BX , BY of M \ Y and M \X respectively, the number of elements to be
deleted from BX ∪BY to get a base of M is less than k. It can be proved
that this number does not depend on the choice of BX and BY [17]. A
matroid is k-connected if there are no l-separations for any l < k.

9
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Chapter 2

Thin sums matroids and
duality

2.1 Introduction

The question addressed by this chapter is that of how to extend the notion
of representability over a field from finitary to non-finitary matroids. The
results of the chapter are those of [1].

If we have a (possibly infinite) family of vectors in a vector space over
some field k, we get a matroid structure on that family whose independent
sets are given by the linearly independent subsets of the family. Matroids
arising in this way are called representable over k, and are always finitary.

Although many interesting finite matroids (eg. finite cycle matroids
whose circuits are finite cycles of a graph) are representable, many inter-
esting examples of infinite matroids cannot be of this type, because they
are not finitary. Another problem is that in restricting attention to fini-
tary matroids we would lose the power of duality: if a finite matroid is
representable over the field k then so is its dual, but the dual of an infinite
matroid representable over k need not be finitary. So it is natural to ask:

Question 2.1.1. Is there a good theory of representability over a field k
of infinite matroids which is preserved under duality?

Bruhn and Diestel explored one approach to this question in [14]. They
tried extending the notion of linear combinations to allow for infinite com-
binations in certain constrained circumstances.

The construction relies on taking the vector space to be of the form kA

for some set A. We allow linear combinations of infinitely many vectors.
However, we require these linear combinations to be well defined point-
wise. This means that for each a ∈ A there are only finitely many nonzero

11



coefficients at vectors with nonzero component at a (further details are
given in Section 2.2). It turns out that there are examples of systems of
independent sets definable in this way which are not matroids. Accord-
ingly, we refer to such systems in general as thin sums systems, and call
them thin sums matroids if they really are matroids. Thin sums matroids
need not be finitary.

Bruhn and Diestel proved families of vectors, in which for each a ∈ A
there are only finitely many vectors in the family whose component at a is
nonzero, always define matroids. Such families are called thin. We prove
that a matroid M is the dual of a matroid representable over a field k if
and only if M arises as a thin sums system over a thin family for the field
k. In particular, a thin family always defines a cofinitary matroid.

It follows that the union of the class of (finitary) representable ma-
troids with the class of thin sums matroids over thin families is closed
under duality and under taking minors, suggesting a new definition of rep-
resentability of (not necessarily finitary) infinite matroids. However, since
many of the motivating examples are not finitary and do not have finitary
duals, this union is not as comprehensive as one might hope. On the other
hand, allowing all thin sums systems is too broad, though, as the class
of thin sums matroids over Q is not closed under duality (this is shown
in [12]).

We show that Question 2.1.1 can be resolved by restricting to the class
of tame thin sums matroids. Most of the standard examples of infinite
matroids are tame, and the class of tame matroids is closed under duality
and under taking minors. In fact, the first wild matroids were constructed
in [12]. (As we shall see in the next chapter, the class of gammoids also is
a source for wild matroids.) In contrast to the bad behaviour of thin sums
matroids in general, we prove that the class of tame thin sums matroids
over any fixed field is closed under duality and under taking minors.

Any finite graphic matroid is representable over every field. The situ-
ation for infinite graphs is more complex, in that there is more than one
natural way to build a matroid from an infinite graph. In [14], six matroids
associated to a graph are defined in three dual pairs. We show that all six
of these matroids are thin sums matroids over any field (this was already
known for one of the six, and one of the others was already known to be
representable).

In Section 2.2, we will introduce basics of representability and thin
sums matroids. We will also introduce the six graphic matroids mentioned
above. Section 2.3 will be devoted to thin sums matroids on thin families,
and their duality with representable matroids. In Section 2.4, we will
prove that the class of tame thin sums matroids is closed under duality
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and taking minors. Our account of why the various matroids associated
to an infinite graph are thin sums matroids will be dispersed over all these
sections: we give a summary of this aspect of the theory in Section 2.5.

2.2 Preliminaries

In this section, basics of representability, thin sums matroids and some of
the matroids associated to infinite graphs are introduced.

We always use k to denote an arbitrary field. The capital letter V
always stands for a vector space over k. For any set A, we write kA to
denote the set of all functions from A to k. For any function E

c−→ k the
support supp(c) of c is the set of all elements e ∈ E such that c(e) 6= 0. A

linear dependence of E
φ−→ V is a map E

c−→ k of finite support such that∑
e∈E

c(e)φ(e) = 0 .

For a subset E′ of E, we say such a c is a linear dependence of E′ if it is
zero outside E′.

Let V be a vector space. Then for any function E
φ−→ V we get a

matroid M(φ) on the ground set E, where we take a subset E′ of E to
be independent if there is no nonzero linear dependence of E′. Such a
matroid is traditionally called a representable or vector matroid. Note that
this is essentially the same as taking a family of vectors as the ground set
and saying that a subfamily of this family is independent if it is linearly
independent.

In [14], there is an extension of these ideas to a slightly different context.

Suppose now that we have a function E
f−→ kA. A thin dependence of f

is a map E
d−→ k, not necessarily of finite support, but such that for each

a ∈ A, ∑
e∈E

d(e)f(e)(a) = 0.

(here, as in the rest of this chapter, we take this statement as including
the claim that the sum is well-defined, i.e. that only finitely many sum-
mands are nonzero). This is subtly different from the concept of a linear
dependence (in kA considered as a vector space over k), since it is possible
that the sum above might be well defined for each particular a in A, but
the sum ∑

e∈E
d(e)f(e)
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might still not be well defined. To put it another way, there might be
infinitely many e ∈ E such that there is some a ∈ A with d(e)f(e)(a) 6= 0,
even if there are only finitely many such e for each particular a ∈ A. We
may also say d is a thin dependence of a subset E′ of E if it is zero outside
of E′.

The word thin above originated in the notion of a thin family - this is an
f as above such that sums of the type given above are always defined; that
is, for each a in A, there are only finitely many e ∈ E so that f(e)(a) 6=
0. Notice that, for any E

f−→ kA, and any thin dependence c of f , the
restriction of f to the support of c is thin.

Now we may define thin sums systems.

Definition 2.2.1. Consider a family E
f−→ kA of functions and declare a

subset of E as independent if there is no nonzero thin dependence of that
subset. Let Mts(f) be the set system with ground set E and the set of all
independent sets given in this way. We call Mts(f) the thin sums system
corresponding to f . Whenever Mts(f) is a matroid it is called a thin sums
matroid.

Since a set is dependent in a representable matroid or thin sums system
if and only if it has a nonzero linear or thin dependence, we normally talk
about such dependences instead of dependent sets.

It follows from Proposition 2.2.2 and the paragraph above it that not
every thin sums system is a matroid but it is known that if f is thin then
Mts(f) always is a matroid. The existing proof for this is technical and we
shall not review it here [14]. However, this fact will follow from the results
in Section 2.3. Next we explore the connection between representable and
thin sums matroids. Recall that for any infinite matroid M , the finite
circuits of M give the circuits of a new matroid on the same ground set,
called the finitarisation of M [7].

Proposition 2.2.2. For any thin sums matroid Mts(f), the finitarisation
of Mts(f) is a representable matroid.

Proof. For any family E
f−→ kA of functions, a thin dependence of f with

finite support is also a linear dependence of f as a family of vectors, and
conversely any linear dependence of f as a family of vectors is a thin
dependence of f .

Now let’s try to answer to the question: Which matroids arising from
graphs are representable or thin sums matroids? It is easy to see that
any algebraic cycle matroid is a thin sums matroid (in fact, this was one

14



motivation for the definition of thin sums matroids). Recall that for any
graph G which does not contain a subdivision of the Bean graph,

· · · •oo • v′ v

···

• • • • // · · ·

the edge sets of cycles and double rays of G are circuits of a matroid [24]
MA(G) on the edge set of G, called the algebraic cycle matroid of G (we
call finite cycles and double rays algebraic cycles). In fact, even when G
does contain a subdivision of the Bean graph we shall still denote this set
system by MA(G), and call it the algebraic cycle system of G.

The algebraic cycle system of this graph doesn’t satisfy (I3) - the dashed
edges above form a maximal independent set, but there is no way to extend
the nonmaximal independent set consisting of the edges meeting v (except
vv′) and those to the left of v′ by an edge from this set.

Proposition 2.2.3. For any graph G the algebraic cycle system of G is a
thin sums system over every field.

Proof. First we give an arbitrary orientation to every edge of G, making

G a digraph. For any edge e of G define a function V (G)
f(e)−−→ k where for

any v ∈ V (G) f(e)(v) is 1 if e originates from v, −1 if it terminates in v,
and 0 if e and v are not incident. We show that D is dependent in MA(G)
if and only if it is dependent in Mts(f). If D is dependent in MA(G), then
it contains a cycle or a double ray. Let D′ ⊆ D be the edge set of this cycle
or double ray. Give a direction to D′. For any edge e ∈ D, define c(e) to
be 1 if e is an edge of D′ and they have the same directions, −1 if e is in
D′ and they have different directions, and 0 if e 6∈ D′. Now clearly we have∑

e∈D′ c(e)f(e)(v) = 0 for any vertex v of G, so c is a thin dependence of
D. Conversely if D is dependent in Mts(f), then whenever a vertex v is an
end of an edge in D, it has to be the end of at least two edges in D. Now
it is not difficult to see that D has to contain a cycle or a double ray.

Recall that the edge sets of finite cycles give the circuits of a matroid
MFC(G) on the edge set of G, the finite cycle matroid of G. An argu-
ment almost identical to the one above shows that this matroid is always
representable. Dually, the edge sets of finite bonds give the circuits of a
matroid MFB(G), the finite bond matroid of G. Similar ideas allow us to
show that for any graph G, MFB(G) is also representable.
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Proposition 2.2.4. For any graph G MFB(G) is representable over every
field k.

Proof. We start by giving fixed directions to every edge, cycle and finite
bond. Let O be the set of all cycles of G and for any edge e ∈ E(G) define

a function O
φ(e)−−→ k such that for any o ∈ O, φ(e)(o) is 1 if e ∈ o and they

have the same directions, −1 if e ∈ o and they have different directions,

and 0 if e isn’t an edge of o. This defines a map E(G)
φ−→ kO. We will

show M(φ) = MFB(G).

We need to show that D ⊆ E(G) is dependent in MFB(G) if and only
if it is dependent in M(φ). If D is dependent in MFB(G) then it contains
a finite bond D′. For any edge e ∈ D′ define c(e) to be 1 if D′ and e
have the same directions, and −1 if they have different directions, and 0
if e /∈ D′. Now consider a fixed cycle o which meets D′. Clearly D′ has
two sides and this cycle has to traverse D′ from the first side to the second
side as many times as it traverses D′ from the second side to the first. As
a result, for any o ∈ O we have

∑
e∈E c(e)φ(e)(o) = 0 and so c is a linear

dependence of D.

Conversely, suppose that D is dependent in M(φ), and let D′ be the
support of any thin dependence of D. Whenever the edge set of a cycle
meets D′, they have to meet in at least two edges, which means D′ (and
so also D) meets every spanning tree. Thus D includes a bond and so it
is a dependent set in MFB(G).

Recall that for any graph G the (possibly infinite) bonds of G are the
circuits of a matroid MB(G) on the edge set of G. In the above proof,
we could exchange the role of finite bonds and arbitrary bonds and see
that MB(G) is a thin sums matroid. We could also exchange the role of
finite cycles and arbitrary bonds, and finite bonds and finite cycles, to get
another proof of the fact that MFC(G) is representable. Recall that the
finite cycle matroid and the bond matroid of a graph G are dual to each
other [14].

As has been shown in [14], for any graph G the circuits of the dual
of the finite bond matroid of G are given by the topological circles in a
topological space associated to G. For this reason, M∗FB(G) is called the
topological cycle matroid of G, and denoted MC(G). In the next section,
we shall show that MC(G) is also a thin sums matroid.

We will only give a brief summary of the construction of the topological
space behind the topological cycle matroid. A ray is a one-way infinite
path. Two rays are edge-equivalent if for any finite set F of edges there is
a connected component of G \ F that contains subrays of both rays. The

16



equivalence classes of this relation are the edge-ends of G; we denote the
set of these edge-ends by E(G). Let us view the edges of G as disjoint
topological copies of [0,1], and let XG be the quotient space obtained by
identifying these copies at their common vertices. The set of inner points
of an edge e will be denoted by e

o
. We now define a topological space ||G||

on the point set of XG ∪ E(G) by taking as our open sets the union of
sets C̃, where C is a connected component of XG \ Z for some finite set
Z ⊂ XG of inner points of edges, and C̃ is obtained from C by adding
all the edge-ends represented by a ray in C. For any X ⊆ ||G|| we call
{e ∈ E(G)|eo ⊆ X} the edge set of X. A subspace C of ||G|| that is
homeomorphic to S1 is a topological circle in ||G||. In [14], it is shown that
the edge sets of these circles in ||G|| are the circuits of M∗FB(G).

2.3 Representable matroids and thin sums

In this section, we first show that any representable matroid is a thin
sums matroid. After that we will characterise the dual of an arbitrary
representable matroid and show that not only every representable matroid
is a thin sums matroid but every matroid whose dual is representable is
also a thin sums matroid. In fact, our last result is stronger; we show that
the duals of representable matroids are precisely the thin sums matroids for
thin families. Since the finite bond matroid of any graph is representable,
this implies in particular that its dual, the topological cycle matroid, is a
thin sums matroid.

As usual, let V ∗ be the dual of the vector space V (that is, the vector
space consisting of all linear maps from V to k).

Theorem 2.3.1. Consider a map E
φ−→ V and the representable matroid

M(φ). For any e ∈ E and α ∈ V ∗ define E
f−→ kV

∗
by f(e)(α) := α(φ(e)).

Then,

M(φ) = Mts(f).

In particular, M(φ) is a thin sums matroid.

Proof. We show that I is independent in Mts(f) if and only if I is inde-
pendent in M(φ). Suppose that I is independent in Mts(f). Suppose that
E

c−→ k is any linear dependence of φ that is 0 outside I. For any α ∈ V ∗
we have,

∑
e∈E

c(e)f(e)(α) =
∑
e∈E

c(e)α(φ(e)) = α

(∑
e∈E

c(e)φ(e)

)
= 0.
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Thus c is a thin dependence of f , and since I is independent in Mts(f) we
get that c must be the 0 map. So I is also independent in M(φ).

Conversely, suppose that I is independent in M(φ). Suppose E
c−→ k

is any thin dependence of f that is 0 outside I. Let I ′ = supp(c). Since
I ′ ⊆ I, I ′ is also independent in M(φ), so (by extending the image of I ′ by

φ to a basis of V ) we can define a linear map V
αI′−−→ k such that for any

i ∈ I ′, αI′(φ(i)) = 1. As the restriction of f to I ′ = supp(c) is thin and
for any i ∈ I ′ f(i)(αI′) = αI′(φ(i)) = 1, I ′ has to be finite. So for every
α ∈ V ∗,

α

(∑
e∈E

c(e)φ(e)

)
=
∑
e∈E

c(e)α(φ(e)) =
∑
e∈E

c(e)f(e)(α) = 0.

Since this is true for every α ∈ V ∗, we get that
∑

e∈I′ c(e)φ(e) = 0 which
means c must be a linear dependence and so must be 0. Therefore I is also
independent in Mts(f).

Now let’s see how we can move from a representable matroid to its

dual. Let’s start with a family E
φ−→ V . Let Cφ be the set of all linear

dependences of φ. We now define a map E
φ̂−→ kCφ by setting φ̂(e)(c) := c(e)

for any e ∈ E and c ∈ Cφ. Clearly φ̂ is a thin family of functions. On the
other hand, if we let Df be the set of thin dependences of a thin family

E
f−→ kA, we get a map E

f−→ kDf by setting f(e)(d) := d(e) for e ∈ E and
d ∈ Df . These processes are, in a sense, inverse to each other.

Lemma 2.3.2. For any thin family E
f−→ kA, a map E

d−→ k is a thin

dependence of f if and only if it is a thin dependence of f̂ .

Proof. First, suppose that d is a thin dependence of f . Then for any c ∈ Cf
we have ∑

e∈E
d(e)f̂(e)(c) =

∑
e∈E

d(e)c(e) =
∑
e∈E

c(e)f(e)(d) = 0,

so d is also a thin dependence of f̂ .

Now suppose that d is a thin dependence of f̂ . For any a ∈ A, let
E

ca−→ k be defined by the equation ca(e) := f(e)(a). Since f is thin, ca(e)
is nonzero for only finitely many values of e. Now for any thin dependence
d′ of f we have∑

e∈E
ca(e)f(e)(d′) =

∑
e∈E

ca(e)d
′(e) =

∑
e∈E

d′(e)f(e)(a) = 0,
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and so ca ∈ Cf . Now, since d is a thin dependence of f̂ , we have∑
e∈E

d(e)f(e)(a) =
∑
e∈E

d(e)ca(e) =
∑
e∈E

d(e)f̂(e)(ca) = 0.

Since a was arbitrary, this says exactly that d is a thin dependence of
f .

An analogous argument shows that for any map E
φ−→ V , the linear

dependences of φ̂ are exactly those of φ. We can also show that these
inverse processes correspond to duality of matroids.

Theorem 2.3.3. For any map E
φ−→ V we have,

M∗(φ) = Mts(φ̂).

Proof. Suppose we have a set E1 which is dependent in the dual of M(φ):
that is, it meets every base of M(φ). Let E2 = E\E1, so E2 doesn’t include
any base of E - that is, E2 doesn’t span this matroid. Thus we can pick
e1 ∈ E1 such that φ(e1) isn’t in the linear span of the family (φ(e)|e ∈ E2).
Consider a basis B2 for this linear span, and extend B2 +φ(e1) to a basis B

for V, and define a map B
h0−→ k such that h0(φ(e1)) := 1, and otherwise 0.

Finally, extend h0 to a linear map V
h−→ k. Now, for any linear dependence

c of φ we have

∑
e∈E

(h · φ)(e)φ̂(e)(c) = h

(∑
e∈E

c(e)φ(e)

)
= 0

So h · φ is a thin dependence of φ̂, and since it is 0 outside E1, E1 is
dependent with respect to φ̂.

Conversely, suppose that E1 is dependent in Mts(φ̂), so that there is a
nonzero thin dependence d of φ̂ which is 0 outside E1. We want to show
that E1 meets every base of M(φ), so suppose for a contradiction that
there is such a base B which it doesn’t meet. Pick e1 ∈ E1 so that d is
nonzero at e1. We can express φ(e1) as a linear combination of vectors
from the family (φ(e)|e ∈ B) - that is, there is a linear dependence c of φ
which is nonzero only on B and at e1, with c(e1) = 1. But then

d(e1) =
∑
e∈E

d(e)c(e) =
∑
e∈E

d(e)φ̂(e)(c) = 0,

which is the desired contradiction. Thus E1 does meet every basis of M(φ),
so it is dependent in the dual of M(φ).
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Corollary 2.3.4. For any thin family E
f−→ kA we have,

Mts(f) = M∗(f).

In particular Mts(f) is a cofinitary matroid.

Proof. This is immediate from Theorem 2.3.3, since by Lemma 2.3.2 we

have Mts(f) = Mts(f̂).

2.4 Finite circuit-cocircuit intersection and dual-
ity

A natural question about the class of thin sums matroids is whether or not
it is closed under matroid duality: the fact that the class of representable
matroids was not closed under duality was a key motivation for introducing
extensions of this class, such as the class of thin sums matroids. Sadly, the
class of thin sums matroids is not closed under duality: a counterexample
is given in [12]. However, that counterexample involves a matroid with a
very unusual property: it has a circuit and a cocircuit whose intersection
is infinite. Matroids with this property are called wild matroids, and those
in which every circuit-cocircuit intersection is finite are called tame.

Proposition 2.4.1. The class of tame matroids is closed under duality
and taking minors.

Proof. Closure under duality follows from the symmetry of the definition.
For closure under taking minors, let M be a tame matroid with ground
set E = C∪̇X∪̇D. We must show that M ′ = M/C\D is also tame. Let
o be any circuit and b any cocircuit of M ′. By Lemma 1.0.6 and its dual
we can find a circuit o′ of M with o′ ⊆ o ⊆ o′ ∪ C and a cocircuit b′ of M
with b′ ⊆ b ⊆ b′ ∪D. Thus o ∩ b = o′ ∩ b′ is finite.

The main result of this section will be that the class of tame thin sums
matroids is closed under duality. It will then quickly follow that it is also
closed under taking minors.

The class of tame thin sums matroids includes most of the interesting
examples arising from graphs: any finitary or cofinitary matroid must be
tame, and this includes the finite and topological cycle matroids as well
as the bond and finite bond matroids of a given graph. Recall that a non-
empty cut C is called skew if (at least) one of its sides does not contain any
ray (a one-way infinite path) and C is minimal with this property. In [14],
it was proved that given a graph G with no subdivision of the bean graph,
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the skew cuts of G form the circuits of a matroid called skew cut matroid
which is the dual of the algebraic cycle matroid of G. A straightforward
application of Star-Comb Lemma [19] shows that algebraic cycle matroids
and skew cut matroids also are tame,

A first attempt for showing that the dual of a thin sums matroid is
again a thin sums matroid is suggested by the results of Section 2.3. These

results suggest that in attempting to construct the representation E
f−→ kA

of M∗ts(f) we should take A to be the set of all thin dependencies of f , and
define f(e)(c) to be c(e). However, this natural attack fails to work, even
if Mts(f) is tame, as our next example shows.

Example 2.4.2. Let G be the graph

•

ww �� �� �� '' **

···

•OO // •

��

•OO // •
e

��

•OO // •

��

···

•

**

oo •
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•

��

oo •
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��

•

��

oo •

ww• .

We may represent the algebraic cycle matroid of G as Mts(f) as in the
proof of Proposition 2.2.3. Recall that for any edge e of G the function

V (G)
f(e)−−→ k is given by taking f(e)(v) to be 1 if e originates from v,

−1 if it terminates in v, and 0 if e and v are not incident. Thus the
function which takes the value 1 on the dotted edges and 0 elsewhere is
a thin dependence of f . So no function with support given by the skew
cut consisting of the vertical dotted edges can be a thin dependence of f
as given above. That is, for this matroid and this definition of f , we have
M∗ 6= Mts(f).

Despite the existence of this example, as we shall see, the restriction
of the f defined above to the set of thin dependences whose supports are
circuits does give a representation of the dual of Mts(f).

Definition 2.4.3. An affine equation over a set I with coefficients in k
consists of a family (λi ∈ k|i ∈ I) such that only finitely many of the λi
are nonzero and an element κ of k.

A family x = (xi|i ∈ I) is a solution of the equation (λ, κ) if
∑

i∈I λixi =
κ. Accordingly, we shall use the expression p

∑
i∈I λixi = κq to denote the
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equation (λ, κ). x is a solution of a set Q of equations if it is a solution of
every equation in Q.

The following lemma is based on ideas of Bruhn and Georgakopou-
los [16], though the proof we give is a little simpler.

Lemma 2.4.4. If every finite subset of a set Q of affine equations over I
with coefficients in k has a solution then so does Q.

Proof. The set V of affine equations over I can be given the structure
of a vector space over k, with µ((λi|i ∈ I), κ) = ((µλi|i ∈ I), µκ) and
((λi|i ∈ I), κ) + ((λ′i|i ∈ I), κ′) = ((λi + λ′i|i ∈ I), κ + κ′). Let W be the
subspace generated by the equations in Q, and let q0 be the affine equation
0 = 1 (that is, ((0|i ∈ I), 1)), which has no solutions. It is clear that if
(ai|i ∈ I) is a solution of all the equations in some finite set Q′ then it is
also a solution of everything in their linear span in V . So q0 can’t be in W .
By choosing a basis of W and extending it to a basis of V that contains q0,
we can construct a linear map V

α−→ k which is 0 on W but with α(q0) = 1.
For each i ∈ I let ai = −α(pxi = 0q). Then for each equation q ∈ Q, given
as p

∑
i∈I λixi = κq, we have

∑
i∈I λiai = α(κq0− q) = κ, so a is a solution

of every equation in Q.

Lemma 2.4.5. Let d be a thin dependence of f . Then supp(d) is a union
of minimal dependent sets of Mts(f).

Proof. Let I = supp(d). It suffices to show that for any e0 ∈ I there is a
minimal dependent set which contains e0 and is a subset of I. We begin
by fixing such an e0.

For any a ∈ A there are only finitely many e ∈ I with f(e)(a) 6= 0, so
for any a ∈ A we get an affine equation p

∑
e∈I f(e)(a)xe = 0q over I. Let

Q be the set of all affine equations arising in this way. Let E be the set
of all subsets I ′ of I such that every finite subset of Q ∪ {pxe = 0q|e ∈
I ′} ∪ {pxe0 = 1q} has a solution. Since d � I is a solution of all equations
in Q, (d � I)/d(e0) is a solution of all equations in Q ∪ {pxe0 = 1q}, so
∅ ∈ Q. E is also closed under unions of chains, so by Zorn’s lemma it has
a maximal element Em. Now by Lemma 2.4.4 there is some solution d′ of
all the equations in Q∪ {pxe = 0q|e ∈ Em} ∪ {pxe0 = 1q}. Since d′ solves
all the equations in Q, its extension to E taking the value 0 outside I is a
thin dependence of f .

We shall show that D := supp(d′) = E \ Em is the desired minimal
dependent set. If it were not, there would have to be a nonzero thin
dependence d′′ with supp(d′′) ⊆ supp(d′) − e0. But then for any e1 ∈
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supp(d′′), we have that d′ − d′(e1)
d′′(e1)d

′′ � I is a solution of pxe1 = 0q in

addition to the equations solved by d′, which contradicts the maximality
of Em.

Corollary 2.4.6. If Mts(f) is a matroid, and E′ ⊆ E, then e 6∈ E′ is in
the closure of E′ if and only if there is a thin dependence d with supp(d) ⊆
E′ ∪ {e} and d(e) = 1.

Proof. If there is such a d, by Lemma 2.4.5 we can find a minimal de-
pendent set D with e ∈ D ⊆ supp(d). As D \ {e} ⊆ E′ is indepen-
dent, e ∈ cl(E′). If e ∈ cl(E′) then there is a dependent set D with
e ∈ D ⊆ E′∪{e} and so there is thin dependence d with supp(d) ⊆ E′∪{e}
and d(e) = 1.

Corollary 2.4.7. Let Mts(f) be a matroid. Then a subset I is independent
in M∗ts(f) if and only if for every i ∈ I there is a thin dependence di of f
such that di(i) = 1 and di is 0 on the rest of I.

Proof. We recall that I is independent in M∗ts(f) if and only if cl(Ic) = E.
Now apply Corollary 2.4.6.

Lemma 2.4.8. Let Mts(f) be a matroid, I coindependent and i0 6∈ I. If
there is a thin dependence d which is nonzero at i0 and 0 on I, then I∪{i0}
is coindependent.

Proof. By Corollary 2.4.7, suppose (di|i ∈ I) witnesses the coindependence
of I. Let d′i0 = d/d(i0), and for i ∈ I, d′i = di − di(i0)d′i0 . Then (d′i|i ∈
I ∪ {i0}) witnesses the coindependence of I ∪ {i0}.

We can now achieve the goal of this section.

Theorem 2.4.9. Suppose that Mts(f) is a tame matroid, and let D be the
set of thin dependences of f whose supports are circuits of Mts(f). We get

a map E
g−→ kD where for e ∈ E and d ∈ D, g(e)(d) := d(e). Then,

M∗ts(f) = Mts(g).

Proof. Suppose that I is independent in M∗ts(f) with (di|i ∈ I) given as
in Corollary 2.4.7. Without loss of generality, by Lemma 2.4.5, we can
suppose that di are in D. Suppose that d is a thin dependence of g which
is 0 outside I. For any i0 ∈ I we have,

d(i0) =
∑
e∈E

d(e)di0(e) =
∑
e∈E

d(e)g(e)(di0) = 0,
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and so d is 0 which means I is independent in Mts(g).

Conversely, suppose that I is dependent in M∗ts(f). Let C ⊆ I be a
circuit of M∗ts(f), and i0 ∈ C. C − i0 is independent in M∗ts(f) and so
,there is a family (d′i|i ∈ C − i0) as defined in Corollary 2.4.7. Now, define

the map E
d′−→ k to be 1 at i0, −d′i(i0) for i ∈ C − i0 and 0 on the rest of

E. We claim that d′ is a thin dependence of g, and as it is 0 outside I, I
is dependent in Mts(g).

First, note that the map E
d′′−→ k given by d′′(e) := d(e)−∑i∈C−i0 d

′
i(e)d(i)

is a linear combination of thin dependences of f and so is a thin depen-
dence. Clearly for any i ∈ C − i0 we have d′′(i) = 0, and as C − io is
coindependent, if d′′ takes a nonzero value at i0, applying Lemma 2.4.8, C
must be independent in M∗ts(f) which is a contradiction. Therefore, d′′(i0)
has to be 0, and so∑

i∈E
d′(i)g(i)(d) =

∑
i∈C

d′(i)d(i) = d(i0)−
∑

i∈C−i0

d′i(i0)d(i) = d′′(i0) = 0

which means d′ is a thin dependence of g, and so I is dependent in Mts(g).

Corollary 2.4.10. The class of tame thin sums matroids is closed under
duality, restriction, and so taking minors.

Proof. Clear by Theorem 2.4.9 and the fact that thin sums matroids are
closed under matroid restrictions.

2.5 Overview of the connections to graphic ma-
troids

Our results on graphic matroids have been scattered through the paper.
We can now make use of Proposition 2.2.2 and Theorem 2.4.10, and go on
a short tour of the standard matroids arising from an infinite graph G. We
shall recall why all of them are tame thin sums matroids over any field,
and a couple of them are representable over any field. Since we want our
results to apply to any field, we continue to work over an arbitrary fixed
field k.

Our starting point is the most algebraic of examples, the algebraic cycle
matroid, for which we gave a thin sums representation in Proposition 2.2.3.
Applying Theorem 2.4.10, we deduce that the dual M∗A(G), the skew cuts
matroid of G, is also a thin sums matroid. We can also apply Proposition
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2.2.2 to deduce that the finitarisation of MA(G), that is, the finite cycle
matroid MFC(G), whose circuits are the cycles of G, is representable.

Applying Theorem 2.4.10, its dual, the bond matroid MB(G), whose
circuits are (possibly infinite) bonds, is a thin sums matroid. So by Propo-
sition 2.2.2, the finite bond matroid MFB(G) is representable. Applying
Theorem 2.4.10 one more time, we recover the fact that the topological
cycle matroid MC(G) is a thin sums matroid.

We could, of course, continue this process further, but it quickly be-
comes periodic, as sketched out in the following diagram:

Algebraic cycles
dual //

fin

��

Skew cuts

Finite cycles
(representable)

dual //Bonds

fin

��

Topological cycles

fin

��

Finite bonds
(representable)dual

oo

Finite cycles
of FSep(G)

(representable)
dual

//
Bonds

of FSep(G)

fin

OO

Here FSep(G) is the finitely separable quotient of G, obtained from
G by identifying any two vertices which cannot be separated by removing
only finitely many edges from G.
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Chapter 3

Infinite gammoids

3.1 Introduction

This chapter mainly studies the system of linkable sets in a dimaze and
consists of the results in [2], [3] and [4].

A dimaze is a digraph equipped with a fixed set of sinks which are
called the exits (of the dimaze). A dimaze contains another dimaze, if, in
addition to digraph containment, the exits of the former include those of
the latter. In the context of digraphs, any path or ray (a one-way infinite
path) is forward oriented.

A strict gammoid is a matroid isomorphic to the one defined on the
vertex set of (the digraph of) a dimaze, whose independent sets are those
subsets that are linkable to the exits by a set of disjoint paths ([27]). A
gammoid is a matroid restriction of a strict gammoid. Any dimaze defining
a given gammoid is a presentation of that gammoid.

Mason [27] proved that every finite dimaze defines a strict gammoid.
When a dimaze is infinite, Perfect [32] gave sufficient conditions for when
some subset of system of linkable sets gives rise to a finitary matroid.
Since finitary matroids were the only ones known at that time, infinite
dimazes which define non-finitary gammoids were not considered to define
matroids.

With infinite matroids canonically axiomatized in a way that allows
for non-finitary ones, a natural question is whether the set of linkable sets
in a dimaze satisfies matroid axioms (Section 3.3). Clearly, the system
of linkable sets of any dimaze satisfies (I1) and (I2). We use a result of
Grünwald [22] to prove that it also satisfies (I3). However, the matroid
axiom (IM) may fail. An alternating comb is a dimaze obtained by taking
the union of a ray (with directed edges) whose first vertex has indegree
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one and which has infinitely many vertices of indegree two, and a set
of disjoint paths from these vertices meeting the ray precisely at their
initial vertices and declaring the sinks of the resulting digraph as the set
of exits. We invoke a result of Pym [33] to prove that the system of
linkable sets of any dimaze not containing alternating comb satisfies (IM).
Section 3.4 is devoted to construct examples of gammoids with certain
properties including a strict gammoid with every presentation containing
an alternating comb.

Recall that, by definition, the class of gammoids is closed under matroid
deletion. A pleasant property of the class of finite gammoids is that it is
also closed under matroid contraction, and hence, under taking minor. In
contrast, whether the class of possibly infinite gammoids is minor-closed
is an open question. In Section 3.5, we begin to address this and related
questions.

A standard proof of the fact that the finite gammoids are minor-closed
proceeds via duality. The proof of this fact can be extended to infinite
dimazes whose underlying (undirected) graph does not contain any ray
(Section 3.6.3), but it breaks down when rays are allowed. An outgoing
comb is a dimaze obtained from a ray, called the spine, by adding infinitely
many non-trivial disjoint paths, that meet the ray precisely at their initial
vertices, and declaring the sinks of the resulting digraph to be the exits.
By developing an infinite version of a construction in [9], we prove that the
class of gammoids that admit a presentation not containing any outgoing
comb is minor-closed.

Topological gammoids were introduced by Carmesin in [18], where, de-
veloping a new notion of linkability, he proved that any dimaze gives rise to
a finitary matroid on the vertex set of the dimaze, called a topological gam-
moid (see Section 3.2.1 for the definition). Applying the tools developed
in Section 3.5.1, it is proved in Section 3.5.2 that the class of topological
gammoids coincides with the class of finitary gammoids, which yields the
fact that the class of topological gammoids is minor-closed.

In Section 3.6, we turn to duality. Recall that a transversal matroid is
a matroid isomorphic to a matroid defined by taking a fixed vertex class
of a bipartite graph as the ground set and its matchable subsets as the
independent sets. A result due to Ingleton and Piff [26] states that finite
strict gammoids and finite transversal matroids are dual to each other,
a key fact to the result that the class of finite gammoids is closed under
duality. In contrast, an infinite strict gammoid need not be dual to any
transversal matroid, and vice versa (Examples 3.6.11 and 3.6.18). Despite
these examples, it might still be possible that the class of infinite gammoids

28



is closed under duality. However, we will see in Section 3.6.3 that there is
a gammoid, which is not dual to any gammoid.

In Section 3.6.1, we aim to describe the dual of the strict gammoids
introduced in Section 3.3; the strict gammoids which admit a presentation
not containing any alternating comb. It turns out that there exists a
strict gammoid in this class that is not dual to any transversal matroid.
For this reason, we first extend the class of transversal matroids to that
of path-transversal matroids. Then we prove that a strict gammoid that
admits a presentation not containing any alternating comb is dual to a
path-transversal matroid (Theorem 3.6.9).

In Section 3.7, we restrict our attention to several subclasses of the
class of gammoids and transversal matroids. We first use the tools mainly
extended in Section 3.6.1 to give characterizations of cofinitary strict gam-
moids and cofinitary transversal matroids. Then we investigate the class
of nearly finitary gammoids and nearly finitary transversal matroids which
are two superclasses of the finitary ones.

3.2 Preliminaries

We collect definitions, basic results and examples. Many of the definitions
and the notations come from [19].

3.2.1 Linkability system

From now on, digraphs do not have any loop or parallel adges. Given a
digraph D, let V := V (D) and B0 ⊆ V be a set of sinks. Call the pair
(D,B0) a dimaze1 and B0 the (set of) exits. Given a (directed) path or
ray P , Ini(P ) and Ter(P ) denote the initial and the terminal vertex (if
exists) of P , respectively. For a set P of paths and rays, then Ini(P) =
{Ini(P ) : P ∈ P} and Ter(P) = {Ter(P ) : P ∈ P}. A linkage P is a set
of (vertex disjoint) paths ending in B0. A set A ⊆ V is linkable if there is
a linkage P from A to B, i.e. Ini(P) = A and Ter(P) ⊆ B; P is onto B
if Ter(P) = B.

Note that, by adding trivial paths if required:

Any linkable set in (D,B0) can be extended to one linkable onto B0. (3.1)

Definition 3.2.1. Let (D,B0) be a dimaze. The pair of V (D) and the set
of linkable subsets is called the linkability system of (D,B0) and denoted by
ML(D,B0). When ML(D,B0) is a matroid, it is called a strict gammoid. A

1Dimaze is short for directed maze.
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Figure 3.1: A locally finite dimaze which does not define a matroid

gammoid is a (matroid) restriction of a strict gammoid. Given a gammoid
M , (D,B0) is a presentation of M if M = ML(D,B0) � X for some
X ⊆ V (D).

If D′ is a subdigraph of D and B′0 ⊆ B0, then (D,B0) contains (D′, B′0)
as a subdimaze. A dimaze (D′, B′0) is a subdivision of (D,B0) if it can be
obtained from (D,B0) as follows. We first add an extra vertex b0 and the
edges {(b, b0) : b ∈ B0} to D. Then the edges of this resulting digraph are
subdivided to define a digraph D′′. Set B′0 as the in-neighbourhood of b0
in D′′ and D′ as D′′ − b0. Note that this defaults to the usual notion of
subdivision if B0 = ∅.

Mason [27] (see also [32]) showed that ML(D,B0) is a matroid for any
finite dimaze (D,B0). However, this is not the case for infinite dimazes.
For example, let D be a complete bipartite graph between an uncountable
set X and a countably infinite set B0 with all the edges directed towards
B0. Then I ⊆ X is independent if and only if I is countable. So there is
no maximal independent set in X, hence ML(D,B0) does not satisfy the
axiom (IM).

Example 3.2.2. Here is a counterexample whose digraph is locally finite.
Let D be the digraph obtained by directing upwards or leftwards the edges
of the subgraph of the grid Z×Z induced by {(x, y) : y > 0 and y ≥ x ≥ 0}
and let B0 := {(0, y) : y > 0}, see Figure 3.1. Then I := {(x, x) : x > 0} is
linkable onto a set J ⊆ B0 if and only if J is infinite. Therefore, I ∪ (B0J)
is independent if and only if J is infinite. Hence, I does not extend to a
maximal independent set in X := I ∪B0.

The following dimazes play an important role in our investigation (see
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Figure 3.6). An undirected ray is a graph with an infinite vertex set {xi :
i ≥ 1} and the edge set {xixi+1 : i ≥ 1}. We orient the edges of a ray in
different ways to construct three dimazes:

1. RA by orienting (xi+1, xi) and (xi+1, xi+2) for each odd i ≥ 1 and
the set of exits is empty;

2. RI by orienting (xi+1, xi) for each i ≥ 1 and x1 is the only exit;

3. RO by orienting (xi, xi+1) for each i ≥ 1 and the set of exits is empty.

Any subdivision of RA, RI and RO is called an alternating ray, an
incoming ray, and a ray, respectively.

Let Y = {yi : i ≥ 1} be a set disjoint from X. We extend the above
rays to combs by adding edges (and their terminal vertices) and declaring
the resulting sinks to be the exits:

1. CA by adding no edges to RA;

2. CI by adding the edges (xi, yi) to RI for each i ≥ 2;

3. CO by adding the edges (xi, yi) to RO for each i ≥ 2.

Furthermore, we define the dimaze F∞ by declaring the sinks of the
digraph ({v, vi : i ∈ N}, {(v, vi) : i ∈ N}) to be the exits.

Any subdivision of CA, CI , CO and F∞ is called an alternating comb,
an incoming comb, a comb and a linking fan, respectively. The subdivided
ray in any comb is called the spine and the paths to the exits are the
spikes.

A dimaze (D,B0) is called H-free for a set H of dimazes if it does
not have a subdimaze isomorphic to a subdivision of an element in H. A
(strict) gammoid is called H-free if it admits an H-free presentation.

In general, a H-free gammoid may admit a presentation which contains
a subdivision of an element of H (see Figure 3.6 for H = CA). This class
is also a fruitful source for wild matroids ([12]).

Let (D,B0) be a dimaze and Q a set of disjoint paths or rays (usually a
linkage). A Q-alternating walk is a sequence W = w0e0w1e1 . . . of vertices
wi and distinct edges ei of D not ending with an edge, such that every
ei ∈W is incident with wi and wi+1, and the following properties hold for
each i ≥ 0 (and i < n in case W is finite, where wn is the last vertex):

(W1) ei = (wi+1, wi) if and only if ei ∈ E(Q);

(W2) if wi = wj for any j 6= i, then wi ∈ V (Q);
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(W3) if wi ∈ V (Q), then {ei−1, ei} ∩ E(Q) 6= ∅ (with e−1 := e0).

Let P be another set of disjoint paths or outgoing rays. A P-Q-
alternating walk is a Q-alternating walk whose edges are in E(P)∆E(Q),
and such that any interior vertex wi satisfies

(W4) if wi ∈ V (P), then {ei−1, ei} ∩ E(P) 6= ∅.

Two Q-alternating walks W1 and W2 are disjoint if they are edge dis-
joint, V (W1) ∩ V (W2) ⊆ V (Q) and Ter(W1) 6= Ter(W2).

Suppose that a dimaze (D,B0), a set X ⊆ V and a linkage P from a
subset of X to B0 are given. An X–B0 (vertex) separator S is a set of
vertices such that every path from X to B0 intersects S, and S is on P if
it consists of exactly one vertex from each path in P.

We recall two classical results. The first one is due to Grünwald [22],
and can be formulated as follows (see also [19, Lemmas 3.3.2 and 3.3.3])2.

Lemma 3.2.3. Let (D,B0) be a dimaze, Q a linkage, and Ini(Q) ⊆ X ⊆
V .

(i) If there is a Q-alternating walk from X \Ini(Q) to B0\Ter(Q), then
there is a linkage Q′ with Ini(Q) ( Ini(Q′) ⊆ X onto Ter(Q) (
Ter(Q′) ⊆ B0.

(ii) If there is not any Q-alternating walk from X\Ini(Q) to B0\Ter(Q),
then there is a X–B0 separator on Q.

The second one is the linkage theorem of Pym [33], which a sketch of
whose proof is given.

Linkage Theorem. Let D be a digraph and two linkages be given: the
“red” one, P = {Px : x ∈ XP}, from XP onto YP and the “blue” one,
Q = {Qy : y ∈ YQ}, from XQ onto YQ. Then there is a set X∞ satisfying
XP ⊆ X∞ ⊆ XP ∪ XQ which is linkable onto a set Y∞ satisfying YQ ⊆
Y∞ ⊆ YQ ∪ YP .

Proof outline. We construct a sequence of linkages converging to a linkage
with the desired properties. For each integer i ≥ 0, we will specify a vertex
on each path in P. For each x ∈ XP , let f0

x := x. Let Q0 := Q. For each
i > 0 and each x ∈ XP , let f ix be the last vertex v on f i−1

x Px such that

2With alternating walks defined as here, the proofs given in [19] work almost verbatim
for general dimazes.
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(f i−1
x Pxv̊) ∩ V (Qi−1) = ∅. For y ∈ YQ, let tiy be the first vertex v ∈ Qy

such that the terminal segment v̊Qy does not contain any f ix. Let

Ai := {Qy ∈ Q : tiy 6= f ix ∀x ∈ XP},
Bi := {Pxf ixQy : x ∈ XP , y ∈ YQ and f ix = tiy},
Ci := {Px ∈ P : f ix ∈ YP and f ix 6= tiy ∀y ∈ YQ},

and Qi := Ai∪Bi∪Ci. It can be shown that Qi is a linkage. Moreover, for
any x ∈ XP , {f ix}i≥0 eventually settles at a vertex f∞x as i→∞; similarly
for any y ∈ YQ, {tiy}i≥1 settles at some t∞y . Then Q∞, defined as the union
of the following three sets,

A∞ := {Qy ∈ Q : t∞y 6= f∞x ∀x ∈ XP},
B∞ := {Pxf∞x Qy : x ∈ XP , y ∈ YQ and f∞x = t∞y },
C∞ := {Px ∈ P : f∞x ∈ YP and f∞x 6= t∞y ∀y ∈ YQ},

is a linkage satisfying the requirements.

A set X ⊆ V in (D,B0) is topologically linkable ifX admits a topological
linkage, which means that from each vertex x ∈ X, there is a topological
path Px, i.e. Px is the spine of a comb, a path ending in the centre of a
linking fan, or a path ending in B0, such that Px is disjoint from Py for
any y 6= x. Clearly, a finite topologically linkable set is linkable. Denote by
MTL(D,B0) the pair of V and the set of the topologically linkable subsets.
Carmesin gave the following connection between dimazes (not necessarily
defining a matroid) and topological linkages.

Corollary 3.2.4. [18, Corollary 5.7] Given a dimaze (D,B0), MTL(D,B0) =
ML(D,B0)fin. In particular, MTL(D,B0) is always a finitary matroid.

A strict topological gammoid is a matroid of the form MTL(D,B0), and
a restriction of which is called a topological gammoid.

3.2.2 Transversal system

Let G = (V,W ) be a bipartite graph and call V and W , respectively,
the left and the right vertex class of G. A subset I of V is matchable
onto W ′ ⊆ W if there is a matching m of I such that m ∩ V = I and
m∩W = W ′; where we are identifying a set of edges (and sometimes more
generally a subgraph) with its vertex set.
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Definition 3.2.5. Let G = (V,W ) be a bipartite graph. The pair of V
and the set of all its matchable subsets is called the transversal system
of G and denoted by MT (G). When MT (G) is a matroid, it is called a
transversal matroid. Given a transversal matroid M , G is a presentation
of M if M = MT (G).

In general, a transversal system may admit different presentations. The
following is a well-known fact (see [13]).

Lemma 3.2.6. Let G = (V,W ) be a bipartite graph. Suppose there is a
maximal element in MT (G), witnessed by a matching m0. Then MT (G) =
MT (G \ (W −m0)), and N(W −m0) is a subset of every maximal element
in MT (G).

In case MT (G) is a matroid, the second part states that N(W −m0)
is a set of coloops. From now on, wherever there is a maximal element
in MT (G), we assume that W is covered by a matching. The following is
easy.

Lemma 3.2.7. Given a bipartite graph G = (V,W ) and X ⊆ V , MT (G) �
X = MT (G′), where G′ is the induced bipartite graph on X ∪N(X).

If G is finite, Edmonds and Fulkerson [21] showed that MT (G) satisfies
(I3), and so is a matroid. When G is infinite, MT (G) still satisfies (I3),
but need not be a matroid. Given a matching m, an edge in m is called
an m-edge, and an m-alternating walk is a walk such that the consecutive
edges alternate in and out of m in G. Given another matching m′, an m-
m′-alternating walk is a walk such that consecutive edges alternate between
the two matchings.

Lemma 3.2.8. For any bipartite graph G, MT (G) satisfies (I3).

Proof. Let I,B ∈ MT (G) such that B is maximal but I is not. As I is
not maximal, there is a matching m of I + x for some x ∈ V \ I. Let m′

be a matching of B to W . Consider a miximal m–m′-alternating walk P
starting from x. By maximality of B, this walk is not infinite and cannot
end in W \m′. So it has to end at some y ∈ B \ I. Then m∆E(P ) is a
matching of I + y, which completes the proof.

A standard compactness proof shows that a left locally finite bipartite
graph G = (V,W ), i.e. every vertex in V has finite degree, defines a finitary
transversal matroid.

Lemma 3.2.9 ([28]). Every left locally finite bipartite graph defines a fini-
tary transversal matroid.
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The following corollary is a tool to show that a matroid is not transver-
sal.

Lemma 3.2.10. Any infinite circuit of a transversal matroid contains an
element which does not lie in any finite circuit.

Proof. Let C be an infinite circuit of some MT (G). Applying Lemma 3.2.9
on the restriction of MT (G) to C, we see that there is a vertex in C
having infinite degree. However, such a vertex cannot not lie in any finite
circuit.

3.3 Dimazes and matroid axioms

The next two sections investigate basics of infinite gammoids and consist
of the results in [2].

This section aims to give a sufficient condition for a dimaze (D,B0)
to define a matroid. As (I1) and (I2) hold for ML(D,B0), we need only
consider (I3) and (IM).

We prove that (I3) holds in any ML(D,B0) using a result due to
Grünwald [22].

Proposition 3.3.1. Let (D,B0) be a dimaze. Then ML(D,B0) satisfies
(I3).

Proof. Let I,B ∈ ML(D,B0) such that B is maximal but I is not. Then
we have a linkage Q from B and another P from I. We may assume P
misses some v0 ∈ B0.

If there is an alternating walk with respect to P from (B ∪ I) \ V (P)
to B0 \ V (P), then by Lemma 3.2.3, we can extend I in B \ I.

On the other hand, if no such walk exists, we draw a contradiction to
the maximality of B. In this case, by Lemma 3.2.3, there is a (B ∪ I)–B0

separator S on P. For every v ∈ B, let Qv be the path in Q starting from
v. Let sv be the first vertex of S that Qv meets and Pv the path in P
containing sv. Let us prove that Q′ := {QvsvPv : v ∈ B} is a linkage.

Suppose v and v′ are distinct vertices in B such that QvsvPv and
Qv′sv′Pv′ meet each other. As P and Q are linkages, without loss of
generality, we may assume Qvsv meets sv′Pv′ at some s /∈ S. Then QvsPv′

is a path from B to B0 avoiding the separator. This contradiction shows
that Q′ is indeed a linkage from B to B0. As Q′ does not cover v0, B + v0

is independent which contradicts to the maximality of B.
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If D is finite, then the following holds:

A set is maximally independent if and only if it is linkable onto the exits.
(†)

When D is infinite, (†) need not hold; for instance, the dimaze in Exam-
ple 3.2.2, which does not even define a matroid. Before giving a sufficient
condition on a dimaze so that the linkability system satisfies (IM), using
the Aharoni-Berger-Menger’s theorem [6] and the linkage theorem [33] (see
also [20]), we prove that when (†) holds, ML(D,B0) is a matroid.

Proposition 3.3.2. Given a dimaze (D,B0), suppose that every inde-
pendent set linkable onto the exits is maximal, then the dimaze defines a
matroid.

Proof. Proposition 3.3.2 Since (I1) and (I2) are obviously true forML(D,B0),
and that (I3) holds by Proposition 3.3.1, to prove the theorem, it remains
to check that (IM) holds.

Let I be independent and a set X ⊆ V such that I ⊆ X be given.
Suppose there is a “red” linkage from I to B0. Apply the Aharoni-Berger-
Menger’s theorem on X and B0 to get a “blue” linkage Q from B ⊆ X to
B0 and an X–B0 separator S on the blue linkage. Let H be the digraph
obtained from the subgraph of D induced by those vertices separated from
B0 by S via deleting the edges with initial vertex in S. Since every linkage
from H to B0 goes through S, a subset of V (H) is linkable in (D,B0)
if and only if it is linkable in (H,S). Use the linkage theorem to find a
linkage Q∞ from X∞ with I ⊆ X∞ ⊆ I ∪B ⊆ X onto S.

Let Y ⊇ X∞ be any independent set in ML(H,S). By applying the
linkage theorem on a linkage from Y to S and Q∞ in (H,S), we may
assume that Y is linkable onto S by a linkage Q′. Concatenating Q′ with
segments of paths in Q starting from S and adding trivial paths from
B0 \ V (Q) gives us a linkage from Y ∪ (B0 \ V (Q)) onto B0. By the
hypothesis, Y ∪ (B0 \ V (Q)) is a maximal independent set in ML(D,B0).

Applying the above statement on X∞ shows that X∞ ∪ (B0 \V (Q)) is
also maximal in ML(D,B0). It follows that Y cannot be a proper superset
ofX∞. Hence, X∞ is maximal inML(H,S), and so also inML(D,B0)∩2X .
This completes the proof that ML(D,B0) is a matroid.

Now the natural question is: in which dimazes is every set, that is
linkable onto the exits, a maximal independent set? Consider the al-
ternating comb given in Figure 3.6a. Using the notation there, the set
X := {xi : i ≥ 1} can be linked onto B0 by the linkage {(xi, yi−1) : i ≥ 1}
or to B0 − x0 by the linkage {(xi, yi) : i ≥ 1}. Hence, X is a non-maximal
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independent set that is linkable onto B0. More generally, if a dimaze
(D,B0) contains an alternating comb C, then the vertices of out-degree 2
on C together with B0 − C is a non-maximal set linkable onto B0. So an
answer to the above question must exclude dimazes containing an alter-
nating comb. Invoking a proof of the linkage theorem of Pym [33], we will
prove that dimazes not containing any alternating comb are precisely the
answer. We use the notations in the proof of the linkage theorem sketched
in Section 3.2.

Lemma 3.3.3. Let (D,B0) be a CA-free dimaze. Then a set B ⊆ V is
maximal in ML(D,B0) if and only if it is linkable onto B0.

Proof. The forward direction follows trivially from (3.1).
For the backward direction, let I be a non-maximal subset that is

linkable onto B0, by a “blue” linkage Q. Since I is not maximal, there is
x0 /∈ I such that I + x0 is linkable to B0 as well, by a “red” linkage P.
Construct an alternating comb inductively as follows:

Use (the proof of) the linkage theorem to get a linkage Q∞ from I+x0

onto B0. Since YP ⊆ YQ and XQ ⊆ XP , A∞ = C∞ = ∅. So each path in
Q∞ consists of a red initial and a blue terminal segment.

Start the construction with x0. For k ≥ 1, if xk−1 is defined, let Qk
be the blue path containing pk−1 := f∞xk−1

. We will prove that pk−1 /∈ I
so that we can define qk to be the last vertex on Qkp̊k−1 that is on a path
in Q∞. Since the blue segments of Q∞ are disjoint, qk lies on a red path
Pxk . We continue the construction with xk.

Claim 3.3.4. pk−1 /∈ I and hence, the blue segment qkQkpk−1 is non-
trivial. The red segment qkPxkpk is also non-trivial.

Proof. We prove by induction. Clearly, p0 /∈ I, so the claim holds for k = 1.
For k ≥ 2, assume that pk−2 /∈ I. We argue that qk−1 6= pk−1. Suppose
they are equal for a contradiction. Then the path Pxk−1

qk−1Qk−1 is in B∞.
Since qk−1Qk−1pk−2 is non-trivial, pk−2 and pk−1 are distinct vertices of
the form f∞x on Pxk−1

qk−1Qk−1. This contradicts that Pxk−1
qk−1Qk−1 is

in B∞. Hence, we have pk−1 6= qk−1. This shows that the red segment
qk−1Pxk−1

pk−1 is non-trivial, and so pk−1 /∈ I.

We now show that p1Q1 ∪
⋃∞
k=2 qjQjpj−1 ∪ qkPxkpkQk+1 is an AC.

Claim 3.3.5. xj 6= xk for any distinct j and k.

Proof. For l ≥ 0, let il be the least integer such that f ilxl = f∞xl . We
show that ik−1 < ik. By the definition of qk and ik−1, qkQk is a segment
of a path in Qi for any i < ik−1, so f ixk is on the segment Pxkqk, and
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Pxkf
ik−1
xk ⊆ Pxkqk. Since qkPxkpk is non-trivial, Pxkqk ( Pxkf

∞
xk

. We

conclude that f
ik−1
xk 6= f∞xk . By the definition of ik, we have ik > ik−1.

Hence, xj 6= xk for any j 6= k.

Since qkPxkpkQk+1 is a segment of the path on xk in the linkage Q∞, it
is disjoint from q̊jQj p̊j−1 by the definition of qj . Moreover, by Claim 3.3.5,
all the segments of the form qkPxkpkQk+1 are disjoint, and so are those of
the form qjQjpj−1. Hence, we have an alternating comb. This contradic-
tion shows that I is maximal.

We have all the ingredients to prove the following.

Theorem 3.3.6. Given a CA-free dimaze (D,B0), ML(D,B0) is a ma-
troid.

Proof. The proof follows from Proposition 3.3.2 and Lemma 3.3.3.

3.4 Examples

We have seen in Section 3.3 that forbidding alternating comb in a dimaze
guarantees that it defines a strict gammoid. However, the alternating
comb in Figure 3.6 defines a matroid. On the other hand, this strict
gammoid is isomorphic to the one defined by the incoming comb via the
isomorphism given in the figure. So one might hope that every strict
gammoid is isomorphic to a CA-free strict gammoid. However, as we shall
see in Corollary 3.4.7, this is not true in general. Examples 3.4.9 and 3.4.12
show that after forbidding even undirected rays in the underlying graph
of (the digraph of) a dimaze, the dimaze might define an interesting strict
gammoid (e.g. a highly connected, non-nearly finitary and non-nearly
cofinitary matroid or a wild matroid).

3.4.1 Finite circuits, cocircuits and alternating combs

We first give a necessary condition of any strict gammoid which is not
CA-free.

Lemma 3.4.1. If a dimaze (D,B0) is CA-free, then ML(D,B0) contains
a finite circuit or a finite cocircuit.

Proof. Suppose the lemma does not hold. Then every finite subset of V
is independent and coindependent, and B0 is infinite. We construct a
sequence (Rk : k ≥ 1) of subdigraphs of D that gives rise to a subdivision
of CA for a contradiction.
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Figure 3.2: An alternating comb and an incoming comb defining isomor-
phic strict gammoids

Let v1 /∈ B0 and R1 := v1. For k ≥ 1, we claim that there is a
path Pk from vk to B0 such that Pk ∩ V (Rk) = {vk}, a vertex wk on
v̊kPk, and a vertex vk+1 /∈ V (Rk) ∪ Pk with (vk+1, wk) ∈ E(D). Let
Rk+1 := Rk ∪ Pk ∪ (vk+1, wk).

Indeed, since any finite set containing vk is independent, there is a path
from vk avoiding any given finite set disjoint from vk. Hence, there is a set
F of |V (Rk)|+ 1 disjoint paths (except at vk) from vk to B0 avoiding the
finite set V (Rk)− vk. Since V (F) ∪ Rk is coindependent, its complement
contains a base B, witnessed by a linkage P. Since |V (F)∩B0| > |V (Rk)|
and Ter(P) = B0, there is a path P ∈ P that is disjoint from Rk and ends
in V (F) ∩ B0. Then the last vertex vk+1 of P before hitting V (F), the
next vertex wk, and the segment Pk := wkP satisfy the requirements of
the claim. By induction, the claim holds for all k ≥ 1.

Let R :=
⋃
k≥1Rk. Then (R, V (R) ∩ B0) is an alternating comb in

(D,B0). This contradiction completes the proof.

A matroid is infinitely connected if it does not have any k-separation
for any integer k. The only infinitely connected finite matroids are uniform
matroids of rank about half of the size of the ground set (see [31, Chapter
8]) and they are strict gammoids. It seems natural to look for an infinitely
connected infinite matroid among strict gammoids, but the previous lemma
gives us a partial negative result because the bipartition of any finite circuit
of size k against the rest is a k-separation. It remains open whether there
is an infinitely connected infinite gammoids.

Corollary 3.4.2. If an infinite dimaze (D,B0) is CA-free, then ML(D,B0)
is not infinitely connected.
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3.4.2 Trees and transversal matroids

To give a strict gammoid that is not CA-free, we need only construct
a strict gammoid without any finite circuit or cocircuit. An example is
furnished by turning a transversal matroid defined on a tree to a strict
gammoid. We prove a more general result that any tree gives rise to a
transversal matroid.

Suppose now G is a tree rooted at a vertex in W . By upwards (down-
wards), we mean towards (away from) the root. For any vertex set Y , let
N↑(Y ) be the upward neighbourhood of Y , and N↓(Y ) the set of down-
ward neighbours. An edge is called upward if it has the form {v,N↑(v)}
where v ∈ V , otherwise it is downward.

We will prove that MT (G) is a matroid. For a witness of (IM), we
inductively construct a sequence of matchings (mα : α ≥ 0), indexed by
ordinals.

Given mβ−1, to define mβ, we consider the vertices not matched by
mβ−1 that do not have unmatched children for the first time at step β−1.
We ensure that any such vertex v that is also in I is matched in step β,
by exchanging v with a currently matched vertex rv that is not in I.

When every vertex that has not been considered has an unmatched
child, we stop the algorithm. We then prove that the union of the matched
vertices and those unconsidered vertices is a maximal independent superset
of I.

Theorem 3.4.3. For any tree G with an ordered bipartition (V,W ), MT (G)
is a transversal matroid.

Proof. To prove that MT (G) is a matroid, by Lemma 3.2.8, it suffices to
prove that (IM) holds. Let an independent set I ⊆ X ⊆ V be given.
Without loss of generality, by Lemma 3.2.7, we may assume that X = V .

We start by introducing some notations. Root G at some vertex in
W . Given an ordinal α and a matching mα, let Iα := V (mα) ∩ V and
Wα := V (mα) ∩W . Given a sequence of matchings (mα′ : α′ ≤ α), let

Cα := {v ∈ V \ Iα : N↓(v) ⊆Wα but N↓(v) 6⊆Wα′ ∀α′ < α}.

Note that Cα ∩ Cα′ = ∅ for α′ 6= α. For each w ∈ W \Wα, choose one
vertex vw in N↓(w) ∩ Cα if it is not empty. Let

Sα := {vw : w ∈W \Wα and N↓(w) ∩ Cα 6= ∅}.

Denote the following statement by A(α):

40



There is a pairwise disjoint collection Pα := {Pv : v ∈ I ∩Cα \
Sα} of mα–alternating paths such that each Pv starts from
v ∈ I ∩ Cα \ Sα with a downward edge and ends at the first
vertex rv in Iα \ I.

Start the inductive construction with m0, which is the set of upward
edges that is contained in every matching of I. It is not hard to see that
C0 ∩ I = ∅, so that A(0) holds trivially.

Let β > 0. Given the constructed sequence of matchings (mα : α < β),
suppose that A(α) holds for each α < β. Construct a matching mβ as
follows.

If β is a successor ordinal, let

mβ := E(Sβ−1, N↑(Sβ−1)) ∪ (mβ−1∆E(Pβ−1)).

By A(β−1), the paths in Pβ−1 are disjoint. So mβ−1∆E(Pβ−1) is a match-
ing. Using the definition of Sβ−1, we see that mβ is indeed a matching.
Observe also that

Iβ−1 ∩ I ⊆ Iβ ∩ I; (3.2)

W β−1 ⊆ W β−1 ∪N↑(Sβ−1) = W β. (3.3)

If β is a limit ordinal, define mβ by

e ∈ mβ ⇐⇒ ∃β′ < β such that e ∈ mα ∀α with β′ ≤ α < β. (3.4)

As mα is a matching for every ordinal α < β, we see that mβ is a matching
in this case, too.

Suppose that a vertex u ∈ (V ∩ I)∪W is matched to different vertices
by mα and mα′ for some α, α′ ≤ β. Then there exists some ordinal α′′ + 1
between α and α′ such that u is matched by an upward mα′′–edge and
by a downward mα′′+1–edge. Hence, the change of the matching edges is
unique. This implies that for any α, α′ with α ≤ α′ ≤ β, by (3.2) and
(3.3), we have

Iα ∩ I ⊆ Iα
′ ∩ I; (3.5)

Wα ⊆ Wα′ . (3.6)

Moreover, for an upward mβ–edge vw with v ∈ V , we have

v ∈ I0 or ∃α < β such that v ∈ Cα and w /∈Wα. (3.7)
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We now prove that A(β) holds. Given v0 = v ∈ I ∩ Cβ \ Sβ, we
construct a decreasing sequence of ordinals starting from β0 := β. For an
integer k ≥ 0, suppose that vk ∈ I ∩ Cβk with βk ≤ β is given. By (3.5),
I0 ⊆ Iβk , so vk /∈ I0 and hence there exists wk ∈ N↓(vk) \W 0.3 Since
N↓(vk) ⊆ W βk ⊆ W β, wk is matched by mβ to some vertex vk+1. In
fact, as wk /∈ W 0, vk+1 /∈ I0. Let βk+1 be the ordinal with vk+1 ∈ Cβk+1 .
Since vk+1wk is an upward edge and N↓(vk) ⊆W βk , we have by (3.7) that
wk ∈W βk \W βk+1 . By (3.6), βk > βk+1.

As there is no infinite decreasing sequence of ordinals, we have an mβ–
alternating path Pv = v0w0v1w1 · · · that stops at the first vertex rv ∈ V \I.

The disjointness of the Pv’s follows from that every vertex has a unique
upward neighbour and, as we just saw, that v̊Pv cannot contain any vertex
v′ ∈ Cβ. So A(β) holds.

We can now go on with the construction.

Let γ ≤ |V |4 be the least ordinal such that Cγ = ∅. Let C :=
⋃
α<γ C

β

and U := V \ (I0 ∪ C); so V is partitioned into I0, C and U . As Cγ = ∅,
every vertex in U can be matched downwards to a vertex that is not in
W γ . These edges together with mγ form a matching mB of B := U ∪ Iγ ,
which we claim to be a witness for (IM). By (3.5), I0∪(C∩I) ⊆ Iγ , hence,
I ⊆ B.

Suppose B is not maximally independent for a contradiction. Then
there is an mB–alternating path P = v0w0v1w1 · · · such that v0 ∈ V \ B
that is either infinite or ends with some wn ∈ W \ V (mB). We show that
neither occurs.

Claim 3.4.4. P is finite.

Proof. Suppose P is infinite. Since v0 /∈ B, P has a subray R = wiP such
that wivi+1 is an upward mB–edge. So wjvj+1 ∈ mB for any j ≥ i. As
vertices in U are matched downwards, R ∩ U = ∅. As mB∆E(R) is a
matching of B ⊇ I in which every vertex in R∩ V is matched downwards,
R ∩ I0 = ∅ too. So for any j ≥ i, there exists a unique βj such that
vj ∈ Cβj .

Choose k ≥ i such that βk is minimal. But with a similar argument
used to prove A(β), we have βk > βk+1. Hence P cannot be infinite.

Claim 3.4.5. P does not end in W \ V (mB).

3For a vertex v /∈ I, N↓(v) \W 0 may be empty.
4For example, fix a well ordering of V and map each β to the least element in Cβ .
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Proof. Suppose that P ends with wn ∈ W \ V (mB). Certainly, vn can be
matched downwards (either to wn−1 or wn) in a matching of B ⊇ I. Hence,
vn /∈ I0. It is easy to check that for v ∈ Cα, N(v) ⊆ Wα+1. Hence, as
wn ∈ W \W γ , vn /∈ C. Hence, vn ∈ U . It follows that for each 0 < i ≤ n,
vi is matched downwards and so does not lie in I0. As v0 /∈ B, v0 ∈ C. It
follows that w0 ∈ W γ and v1 ∈ C. Repeating the argument, we see that
vn ∈ C, which is a contradiction.

We conclude thatB is maximal. So (IM) holds andMT (G) is a matroid.

Corollary 3.4.6. Let (D,B0) be a dimaze such that the underlying graph
of D is a tree and B0 is a vertex class of a bipartition of D with edges
directed towards B0. Then ML(D,B0) is a matroid.

Proof. By the theorem, we need only present ML(D,B0) as a transversal
matroid defined on a tree. Define a tree G with bipartition ((V \ B0) ∪
B′0, B0), where B′0 is a copy of B0, from D by ignoring the directions and
joining each vertex in B0 to its copy with an edge. Then ML(D,B0) ∼=
MT (G).

Consider the infinitely branching rooted tree, i.e. a rooted tree such that
each vertex has infinitely many children. Let B0 consist of the vertices on
alternate levels, starting from the root. Define T by directing all edges
towards B0. Corollary 3.4.6 shows that ML(T , B0) is a matroid. Clearly,
this matroid does not contain any finite circuit. Moreover, as any finite set
C∗ misses a base obtained by adding finitely many vertices to B0 \C∗, any
cocircuit must be infinite. With Lemma 3.4.1, we conclude the following.

Corollary 3.4.7. Every dimaze that defines a strict gammoid isomorphic
to ML(T , B0) contains an alternating comb.

We remark that although forbidding alternating comb in a dimaze en-
sures that we get a strict gammoid, as we just saw, not every strict gam-
moid arises this way. So it is natural to look for other conditions so that
the linkability system is a matroid. In [2] it was proved that when a di-
maze gives rise to a nearly finitary linkability system, the dimaze defines
a matroid. On the other hand, it follows from Carmesin’s result (Corol-
lary 3.2.4) that if a dimaze contains only finitely many linking fans with
distinct centers and finitely many spine-disjoint combs, then the linkability
system is nearly finitary and hence is a matroid. The following two exam-
ples show that this result and Theorem 3.3.6 do not imply each other.
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. . . B0

Figure 3.3: A dimaze that defines a nearly finitary linkability system

The first example is the dimaze depicted in Figure 3.3 which contains
only finitely many linking fans and combs but it contains an alternating
comb. To give the second example, we need an easy lemma.

Lemma 3.4.8. Given a matroid M and a base B, if E \ B contains in-
finitely many elements which are not in any finite circuit, then M is not
nearly finitary.

Proof. Extend B to a base Bfin of Mfin. As |Bfin \B| =∞, so is |Bfin \B′|
for any other base B′ of M inside Bfin. So M is not nearly finitary.

Example 3.4.9. For any integer k ≥ 2, there is a k-connected strict
gammoid M = ML(D,B0) such that the underlying graph of D is rayless,
and neither M nor its dual is nearly finitary.

Consider a rooted tree T of depth 3 where each internal vertex has
infinitely many children, and each edge is directed towards L0 ∪ L2 where
Li is the set of vertices at distance i from the root for 0 ≤ i ≤ 3. Let D
be a digraph with V = V (T ) ∪X ∪ Y , where each of X and Y is an extra
set of k vertices; and E(D) = E(T ) ∪ {(x, b), (v, y) : x ∈ X, b ∈ B0, v ∈
V \ B0, y ∈ Y }, where B0 = L0 ∪ L2 ∪ Y . Since (D,B0) does not contain
any alternating comb, by Theorem 3.3.6, M = ML(D,B0) is a matroid.

As no vertex in L1 lies in a finite circuit, applying Lemma 3.4.8 with
the base B0 shows that M is not nearly finitary. Similarly, as no vertex in
L2 lies in a finite cocircuit, the same lemma with V \B0 shows that M∗ is
not nearly finitary.

For any l < k, it is not difficult to see that in any bipartition of V
into sets P,Q of size at least l, there is a linkage from P1 ⊆ P \ B0 to
Q ∩B0 and from Q1 ⊆ Q \B0 to P ∩B0 of size at least l. It follows that
P1 ∪ (P ∩ B0) ∪ Q1 ∪ (Q ∩ B0) contains at least l vertices more than B0.
Hence, (P,Q) is not an l-separation. So M is k-connected.

So far we know that if a dimaze (D,B0) does not contain any alternat-
ing comb or that it contains only finitely many linking fans with distinct
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centers and and finitely many spine-disjoint combs, then ML(D,B0) is a
matroid. However, there are examples of strict gammoids that lie in nei-
ther of the two classes. All our examples of dimazes that do not define
a matroid share a common feature, namely there is an independent set
I that cannot be extended to a maximal in I ∪ B0. In view of this, we
propose the following.

Conjecture 3.4.10. Suppose that for all I ∈ ML(D,B0) and B ⊆ B0,
there is a maximal independent set in I ∪B extending I. Then (IM) holds
for ML(D,B0).

We remark that even after forbidding alternating comb (or any ray at
all), there are dimazes defining interesting strict gammoids. The existence
of wild matroids, was first demonstrated in [12]. It turns out that strict
gammoids are a rich source of wild matroids.

Lemma 3.4.11. Suppose that ML(D,B0) is a strict gammoid such that
there is a circuit containing infinitely many vertices linkable to a fixed exit
b in B0. Then ML(D,B0) is a wild matroid.

Proof. The fundamental cocircuit of b with respect to B0, consisting of
all the vertices linkable to b, intersects the given circuit at infinitely many
vertices.

Example 3.4.12. A concrete example is that V (D) = {vi, bi : i ≥ 1}
with B0 = {bi : i ≥ 1} and E(D) = {(vi, bi), (v1, bi), (vi, b1) : i ≥ 1}.
Then (D,B0) is a CA-free dimaze, and {vi, b1 : i ≥ 1} is an infinite circuit
satisfying the lemma.

3.5 Minor

The next two sections investigate minor and duality in the class of gam-
moids and consist of the materials in [3].

The class of gammoids is closed under deletion by definition. In fact,
finite gammoids are minor-closed. To see this, note that matroid deletion
and contraction commute, so it suffices to show that a contraction minor
M/X of a strict gammoid M is also a gammoid. Indeed, in [26] it was
shown that finite strict gammoids are precisely the dual of finite transversal
matroid. Moreover, they provided a construction to turn a dimaze to a
bimaze presentation of the dual, and vice versa (essentially Definitions
3.6.1 and 3.6.2). Thus, we apply the construction to a presentation of M
and get one of M∗. By deleting X, we get a presentation of the transversal
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matroid M∗\X. Reversing the construction with any base of M∗\X gives
us a dimaze presentation of (M∗ \X)∗ = M/X.

In case of general gammoids, we can no longer appeal to duality, since,
as we shall see, strict gammoids need not be cotransversal (Example 3.6.11)
and the dual of transversal matroids need not be strict gammoids (Ex-
ample 3.6.18). We will instead investigate the effect of the construction
sketched above on a dimaze directly. We are then able to show that the
class of CO-free gammoids, i.e. gammoids that admit a CO-free presen-
tation, is minor-closed. In combination with the linkage theorem, we can
also prove that finite rank minors of gammoids are gammoids.

It remains open whether the class of gammoids is minor-closed.

Topological gammoids are introduced in [18] and are always finitary.
The independent set systems are always finitary and define matroids. It
turns out that such matroids are precisely the finitary gammoids. By inves-
tigating the structure of dimaze presentations of such gammoids, we then
show that finitary strict gammoids, or equivalently, topological gammoids,
are closed under taking minors.

3.5.1 Matroid contraction and shifting along a linkage

Our aim is to show that a contraction minor M/S of a strict gammoid M is
a strict gammoid. By Lemma 1.0.8, we may assume that S is independent.
The first case is that S is a subset of the exits.

Lemma 3.5.1. Let M = ML(D,B0) be a strict gammoid and S ⊆ B0.
Then a dimaze presentation of M/S is given by ML(D − S,B0 \ S).

Proof. Since S ⊆ B0 is independent, I ∈ I(M/S) ⇐⇒ I ∪ S ∈ I(M).
Moreover,

I ∈ I(M/S) ⇐⇒ I ∪ S admits a linkage in (D,B0)

⇐⇒ I admits a linkage Q with Ter(Q) ∩ S = ∅ in (D,B0)

⇐⇒ I ∈ I(ML(D − S,B0 \ S).

Thus, it suffices to give a dimaze presentation of M such that S is a
subset of the exits. For this purpose we consider the process of “shifting
along a linkage”, which replaces the previously discussed detour via duality.

Throughout the section, (D,B0) denotes a dimaze, Q a set of disjoint
paths or rays, where by rays we mean outgoing rays, S := Ini(Q) and
T := Ter(Q). Next, we define various maps which are dependent on Q.
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Figure 3.4: A Q-shifted dimaze: D1 = ~Q(D), B1 = (B0 \ T ) ∪ S, where
Q consists of the vertical downward paths. Outlined circles
and diamonds are respectively initial and terminal vertices of
Q-alternating walks (left) and their ~Q-images (right).

Define a bijection between V \ T and V \ S as follows: ~Q(v) := v if
v /∈ V (Q); otherwise ~Q(v) := u where u is the unique vertex such that
(v, u) ∈ E(Q). The inverse is denoted by ~Q.

Construct the digraph ~Q(D) from D by replacing each edge (v, u) ∈
E(D) \ E(Q) with ( ~Q(v), u) and each edge (v, u) ∈ Q with (u, v). Set for
the rest of this section

D1 := ~Q(D) and B1 := (B0 \ T ) ∪ S
and call (D1, B1) the Q-shifted dimaze.

Given a Q-alternating walk W = w0e0w1e1w2 . . . in D, let ~Q(W ) be
obtained from W by deleting all ei and each wi ∈W such that wi ∈ V (Q)
but ei /∈ E(Q).

For a path or ray P = v0v1v2 . . . in D1, let ~Q(P ) be obtained from P
by inserting after each vi ∈ P \ Ter(P ) the following:

(vi, vi+1) if vi /∈ V (Q);

(vi+1, vi) if vi ∈ V (Q) and (vi+1, vi) ∈ E(Q);

(w, vi)w(w, vi+1) with w := ~Q(vi) if vi ∈ V (Q) but (vi+1, vi) /∈ E(Q).

We examine the relation between alternating walks inD and paths/rays
in ~Q(D).

Lemma 3.5.2. (i) A Q-alternating walk in D that is infinite or ends
in t ∈ B1 is respectively mapped by ~Q to a ray or a path ending in t
in D1. Disjoint such walks are mapped to disjoint paths/rays.
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(ii) A ray or a path ending in t ∈ B1 in D1 is respectively mapped by
~Q to an infinite Q-alternating walk or a finite Q-alternating walk

ending in t in D. Disjoint such paths/rays are mapped to disjoint
Q-alternating walks.

Proof. We prove (i) since a proof of (ii) can be obtained by reversing the
construction.

Let W = w0e0w1e1w2 . . . be a Q-alternating walk in D. If a vertex
v in W is repeated, then v occurs twice and there is i such that v = wi
with ei−1 = (wi, wi−1) ∈ E(Q) and ei /∈ E(Q). Hence, wi is deleted in
P := ~Q(W ) and so v does not occur more than once in P , that is, P
consists of distinct vertices.

By construction, the last vertex of a finite W is not deleted, hence P
ends in t. In case W is infinite, by (W3), no tail of W is deleted so that P
remains infinite.

Next, we show that (vi, vi+1) is an edge in D1. Let wj = vi be the non-
deleted instance of vi. If wj+1 has been deleted, then the edge (wj+1, wj+2)
(which exists since the last vertex cannot be deleted) in D has been re-
placed by the edge ( ~Q(wj+1), wj+2) = (vi, vi+1) in D1. If both wj and
vi+1 = wj+1 are in V (Q) then the edge (wj+1, wj) ∈ E(Q) has been re-
placed by (vi, vi+1) in D1. In the other cases (wj , wj+1) = (vi, vi+1) is an
edge of D and remains one in D1.

Let W1,W2 be disjoint Q-alternating walks. By construction, ~Q(W1)∩
~Q(W2) ⊆ W1 ∩W2 ⊆ V (Q). By disjointness, at any intersecting vertex,
one of W1 and W2 leaves with an edge not in E(Q). Thus, such a vertex
is deleted upon application of ~Q. Hence, ~Q(W1) and ~Q(W2) are disjoint
paths/rays.

Note that for a path P in D1 and a Q-alternating walk W in D, we
have

~Q( ~Q(P )) = P ; ~Q( ~Q(W )) = W.

This correspondence of sets of disjoint Q-alternating walks in (D,B0)
and sets of disjoint paths or rays in the Q-shifted dimaze will be used in
various situations in order to show that the independent sets associated
with (D,B0) and the Q-shifted dimaze are the same.

Given a set W of Q-alternating walks, define the graph Q∆W :=
(V (Q) ∪ V (W), E(Q)∆E(W)).

Lemma 3.5.3. Let J ⊆ V \ S and W a set of disjoint Q-alternating
walks, each of which starts from J and does not end outside of B1. Then
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there is a set of disjoint rays or paths from X := J ∪ (S \ Ter(W)) to
Y := T ∪ (Ter(W) ∩B0) in Q∆W.

Proof. Every vertex in Q∆W \ (X ∪Y ) has in-degree and out-degree both
1 or both 0. Moreover, every vertex in X has in-degree 0 and out-degree
1 (or 0, if it is also in Y ) and every vertex in Y has out-degree 0 and
in-degree 1 (or 0, if it is also in X). Therefore every (weakly) connected
component of Q∆W meeting X is either a path ending in Y or a ray.

The following will be used to complete a ray to an outgoing comb in
various situations.

Lemma 3.5.4. Suppose Q is a topological linkage. Any ray R that hits
infinitely many vertices of V (Q) is the spine of an outgoing comb.

Proof. The first step is to inductively construct an infinite linkable subset
of V (R). Let Q0 := Q and A0 := ∅. For i ≥ 0, assume that Qi is a
topological linkage that intersects V (R) infinitely but avoids the finite set
of vertices Ai. Since it is not possible to separate a vertex on a topologi-
cal path from B0 by a finite set of vertices disjoint from that topological
path, there exists a path Pi from V (R) ∩ V (Qi) to B0 avoiding Ai. Let
Ai+1 := Ai ∪ V (Pi) and Qi+1 obtained from Qi by deleting from each of
its elements the minimal initial segment that intersects Ai+1. As Qi+1 re-
mains a topological linkage that intersects V (R) infinitely, we can continue
the procedure. By construction {Pi : i ∈ N} is an infinite set of disjoint
finite paths from a subset of V (R) to B0. Let pi ∈ Pi be the last vertex of

R on Pi, then R is the spine of the outgoing comb: R ∪
⋃
i∈N

piPi.

Corollary 3.5.5. Any ray provided by Lemma 3.5.3 is in fact the spine
of an outgoing comb if Q is a topological linkage, and the infinite forward
segments of the walks in W are the spines of outgoing combs.

Proof. Observe that a ray R constructed in Lemma 3.5.3 is obtained by
alternately following the forward segments of the walks in W and the
forward segments of elements in Q.

Either a tail of R coincides with a tail of a walk in W, and we are
done by assumption; or R hits infinitely many vertices of V (Q), and
Lemma 3.5.4 applies.

With Lemma 3.5.3 we can transform disjoint alternating walks into
disjoint paths or rays. A reverse transform is described as follows.
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Lemma 3.5.6. Let P and Q be two sets of disjoint paths or rays. and W
be a set of maximal P-Q-alternating walks starting in distinct vertices of
Ini(P). Then the walks in W are disjoint and can only end in (Ter(P) \
T ) ∪ S.

Proof. Let W = w0e0w1 . . . be a maximal P-Q-alternating walk. Then W
is a trivial walk if and only if w0 ∈ (Ter(P) \ T ) ∪ S. If W is nontrivial
then e0 ∈ E(Q) if and only if w0 ∈ V (Q).

Let W1 and W2 ∈ W. Note that for any interior vertex wi of a P-Q-
alternating walk, it follows from the definition that either edge in {ei−1, ei}
determines uniquely the other. So if W1 and W2 share an edge, then a
reduction to their common initial vertex shows that they are equal by
their maximality. Moreover if the two walks share a vertex v /∈ V (Q),
then they are equal since they share the edge of P whose terminal vertex
is v.

Therefore, if W1 6= W2 and they end at the same vertex v, then v ∈
V (P)∩V (Q). More precisely, we may assume that v is the initial vertex of
an edge in E(Q) ∩ E(W1) and the terminal vertex of an edge e ∈ E(P) ∩
E(W2) (both the last edges of their alternating walk). Since v is the initial
vertex of some edge, it cannot be in B0, so the path (or ray) in P containing
e does not end at v. Hence we can extend W1 contradicting its maximality.

Similarly we can extend a P-Q-alternating walk that ends in some
vertex v ∈ Ter(P)∩Ter(Q) by the edge in E(Q) that has v as its terminal
vertex, unless v ∈ Ini(Q). So W is a set of disjoint P-Q-alternating walks
that can only end in (Ter(P) \ T ) ∪ S.

Now we investigate when a dimaze and its Q-shifted dimaze present
the same strict gammoid.

Lemma 3.5.7. Suppose that Q is a linkage from S onto T and I a set
linkable in (D1, B1). Then I is linkable in (D,B0) if (i) I \ S is finite or
(ii) (D,B0) is CO-free.

Proof. There is a set of disjoint finite paths from I to B1 in (D1, B1),
which, by Lemma Lemma 3.5.2, gives rise to a set of disjoint finite Q-
alternating walks from I to B1 in (D,B0). Let W be the subset of those
walks starting in J := I \S. Then Lemma 3.5.3 provides a set P of disjoint
paths or rays from J ∪ (S \ Ter(W)) ⊇ I to Y ⊆ B0. It remains to argue
that P does not contain any ray. Indeed, any such ray meets infinitely
many paths in Q. But by Lemma 3.5.4, the ray is the spine of an outgoing
comb, which is a contradiction.

In fact the converse of (ii) holds.
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Lemma 3.5.8. Suppose that (D,B0) is CO-free, and Q is a linkage from
S onto T such that there exists no linkage from S to a proper subset of T .
Then a linkable set I in (D,B0) is also linkable in (D1, B1), and (D1, B1)
is CO-free.

Proof. For the linkability of I it suffices by Lemma 3.5.2 to construct a set
of disjoint finite Q-alternating walks from I to B1. Let P be a linkage of
I in (D,B0).

For each vertex v ∈ I let Wv be the maximal P-Q-alternating walk
starting in v. By Lemma 3.5.6, W := {Wv : v ∈ I} is a set of disjoint
Q-alternating walks that can only end in (Ter(P) \ T ) ∪ S ⊆ B1.

If there is an infinite alternating walkW = Wv0 inW, then Lemma 3.5.3
applied on just this walk gives us a set R of disjoint paths or rays from
S+ v0 to T . Since the forward segments of W are subsegments of paths in
P, by Corollary Corollary 3.5.5 any ray in R would extend to a forbidden
outgoing comb. Thus, R is a linkage of S + v0 to T . In particular, S is
linked to a proper subset of T contradicting the minimality of T . Hence
W consists of finite disjoint Q-alternating walks, as desired.

For the second statement suppose that (D1, B1) contains an outgoing
comb whose spine R starts at v0 /∈ S. Then W := ~Q(R) is a Q-alternating
walk in (D,B0) by Lemma 3.5.2. Any infinite forward segment R′ of W
contains an infinite subset linkable to B1 in (D1, B1). By Lemma 3.5.7(ii)
this subset is also linkable in (D,B0), so R′ is the spine of an outgoing
comb by Lemma 3.5.4, which is a contradiction.

On the other hand, suppose that W does not have an infinite forward
tail. By investigating W as we did with Wv0 above, we arrive at a contra-
diction. Hence, there does not exist any outgoing comb in (D1, B1).

For later applications, we note the following refinement.

Corollary 3.5.9. If (D,B0) is F∞-free as well, then so is (D1, B1).

Proof. Suppose that (D1, B1) contains a subdivision of F∞ with centre
v0. Then an infinite subset X of the out-neighbourhood of v0 in (D1, B1)
is linkable. By Lemma 3.5.7(ii), X is also linkable in (D,B0). As X is
a subset of the out-neighbourhood of ~Q(v0), a forbidden linking fan in
(D,B0) results.

Proposition 3.5.10. Suppose (D,B0) is CO-free and Q is a linkage from
S onto T such that S cannot be linked to a proper subset of T . Then
ML(D1, B1) = ML(D,B0).

Proof. By Lemma 3.5.7(ii) and Lemma 3.5.8, a set I ⊆ V is linkable in
(D,B0) if and only if it is linkable in (D1, B1).
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We remark that in order to show that ML(D,B0) = ML(D1, B1), the
assumption in Proposition 3.5.10 that (D,B0) is CO-free can be slightly
relaxed. Only outgoing combs constructed in the proofs of Lemma 3.5.7(ii)
and Lemma 3.5.8 which have the form that all the spikes are terminal
segments of paths in the linkage Q need to be forbidden.

Theorem 3.5.11. The class of CO-free gammoids is minor-closed.

Proof. Let N := ML(D,B0) be a strict gammoid. It suffices to show
that any minor of N is a gammoid. By Lemma 1.0.8, such has the form
M := N/S \R for some independent set S and coindependent set R. First
extend S in B0 to a base B1. This gives us a linkage Q from S onto
T := B0 \ B1 such that there exists no linkage from S to a proper subset
of T .

Assume that (D,B0) is CO-free. Then by Lemma 3.5.8, (D1, B1) is
CO-free, and by Proposition 3.5.10, ML(D,B0) = ML(D1, B1). Since
S ⊆ B1, M = ML(D1, B1)/S \ R = ML(D1 − S,B1 \ S) \ R is a CO-free
gammoid.

3.5.2 Topological gammoids

A topological notion of linkability is introduced in [18]. Roughly speaking,
a topological path from a vertex v does not need to reach the exits as long
as no finite vertex set avoiding that path can prevent an actual connection
of v to B0.

Here we show that in fact, topological gammoids (see Section 3.2) co-
incide with the finitary gammoids. As a corollary, we see that topological
gammoids are minor-closed.

The difference between a topological linkage and a linkage is that paths
ending in the centre of a linking fan and spines of outgoing combs are
allowed. Thus, to prove the following, it suffices to give a {CO, F∞}-free
dimaze presentation for the strict topological gammoid.

Lemma 3.5.12. Every strict topological gammoid is a strict gammoid.

Proof. Let (D′, B′0) be a dimaze and F be the set of all vertices that are
the centre of a subdivision of F∞. Let (D,B0) be obtained from (D′, B′0)
by deleting all edges whose initial vertex is in F from D′ and B0 := B′0∪F .

We claim that MTL(D,B0) = MTL(D′, B′0). Let P be a topological
linkage of I in (D′, B′0). Then the collection of the initial segments of
each element of P up to the first appearance of a vertex in F forms a
topological linkage of I in (D,B0). Conversely, let P be a topological
linkage of I in (D,B0). Note that any linkage in (D,B0) is a topological
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linkage in (D′, B′0). In particular the spikes of an outgoing comb whose
spine R is in P form a topological linkage. Hence, R is also the spine of an
outgoing comb in (D′, B′0) by Lemma 3.5.4. So I is topologically linkable
in (D,B0).

Let S ∪ B0 be a base of MTL(D,B0) and Q a set of disjoint spines of
outgoing combs starting from S. We show that a set I is topologically
linkable in (D,B0) if and only if it is linkable in the Q-shifted dimaze
(D1, B1).

Let P be a topological linkage of I in (D,B0). By Lemma 3.5.6, the
set W of maximal P-Q-alternating walks starting in I is a set of disjoint
Q-alternating walks possibly ending in Ter(P) ∪ S ⊆ B1. If there were
an infinite walk, then it would have to start outside S and give rise to a
topologically linkable superset of S∪B0, by Lemma 3.5.3 and Lemma 3.5.4.
So each walk in W is finite. By Lemma 3.5.2, I is linkable in (D1, B1).

Conversely let I be linkable in (D1, B1) and W a set of disjoint finite
Q-alternating walks in (D,B0) from I to B1 provided by Lemma 3.5.2. By
Lemma 3.5.3, Q∆W contains a set R of disjoint paths or rays in (D,B0)
from I to B0. By Corollary 3.5.5, any ray in R is in fact the spine of an
outgoing comb, so I is topologically linkable in (D,B0).

Now we can characterize strict topological gammoids among strict gam-
moids.

Theorem 3.5.13. The following are equivalent:

1. M is a strict topological gammoid;

2. M is a finitary strict gammoid;

3. M is a strict gammoid such that any presentation is {CO, F∞}-free;

4. M is a {CO, F∞}-free strict gammoid.

Proof. 1. ⇒ 2. : By Corollary 3.2.4, M is a finitary matroid and by
Lemma 3.5.12 it is a strict gammoid.

2. ⇒ 3. : Let ML(D,B0) be any presentation of M . Note that the
union of any vertex v ∈ V \ B0 and all the vertices in B0 to which v
is linkable forms a circuit in M (the fundamental circuit of v and B0).
Suppose (D,B0) is not {CO, F∞}-free, then there is a vertex linkable to
infinitely many vertices in B0. But then M contains an infinite circuit and
is not finitary.

3.⇒ 4. : Trivial.
4. ⇒ 1. : Take a {CO, F∞}-free presentation of M . Then topological

linkages coincide with linkages. Hence M is a topological gammoid.
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Next we also characterize topological gammoids among gammoids.

Corollary 3.5.14. The following are equivalent:

1. M is a topological gammoid;

2. M is a finitary gammoid;

3. M is a {CO, F∞}-free gammoid.

Proof. 1. ⇒ 3. : There exist a dimaze (D,B0) and X ⊆ V such that
M = MTL(D,B0) \ X. By Theorem 3.5.13, there is a {CO, F∞}-free
dimaze (D1, B1) such that ML(D1, B1) = MTL(D,B0). Hence, M is a
{CO, F∞}-free gammoid.

3.⇒ 2. : There exists a {CO, F∞}-free presentation of a strict gammoid
N of which M is a restriction. By Theorem 3.5.13, N is finitary, thus, so
is M .

2.⇒ 1. : There exist (D,B0) and X ⊆ V such that M = ML(D,B0) \
X. Since M \X is finitary, C(M \X) = C(Mfin\X). By Corollary 3.2.4, the
latter is equal to C(MTL(D,B0)\X). Hence, M is a topological gammoid.

Theorem 3.5.15. The class of finitary gammoids (or equivalently topo-
logical gammoids) is closed under taking minors.

Proof. LetM be a finitary gammoid. By Corollary 3.5.14, M is a {CO, F∞}-
free gammoid. Any minor of M is a CO-free gammoid by Theorem 3.5.11,
and also F∞-free by Corollary 3.5.9. So any minor of M is a finitary
gammoid by Corollary 3.5.14.

3.6 Duality

Finite strict gammoids and finite transversal matroids are dual to each
other [26]. However, this is not the case in the infinite setting (Examples
3.6.11 and 3.6.18). So to describe the dual of CA-free strict gammoids,
we first introduce a natural extension of the class of transversal matroids,
and then show that the dual of every CA-free strict gammoid is of this
type. Nevertheless this extension does not contain the dual of all strict
gammoids (Example 3.6.13).

A standard result [26] states that the dual of a finite gammoid is a
gammoid. This can be proved using duality between finite strict gammoids
and transversal matroids and the fact that the class of finite gammoids
is closed under contraction minors. In Section 3.6.3, we see that this
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proof remains valid for the class of those infinite gammoids that admit a
presentation (D,B0) with the underlying graph of D rayless. However, we
finally see that there is a strict gammoid which is not dual to any gammoid
(Example 3.6.24).

3.6.1 Strict gammoids and path-transversal matroid

The class of path-transversal matroids is introduced as a superclass of
transversal matroids, and proved to contain the dual matroids of any CA-
free strict gammoid. We shall see that an extra condition forces CA-
free strict gammoids to be dual to transversal matroids. On the other
hand, even though path-transversal matroids extend transversal matroids,
they do not capture the dual of all strict gammoids, as we shall see in
Example 3.6.13.

Let us introduce a dual object of a dimaze. Given a bipartite graph
G = (V,W ), we call a matching m0 onto W an identity matching, and
the pair (G,m0) a bimaze5. We adjust two constructions of [26] for our
purposes.

Definition 3.6.1. Given a dimaze (D,B0), define a bipartite graph D?
B0

,
with bipartition (V, (V \ B0)?), where (V \ B0)? := {v? : v ∈ V \ B0}
is disjoint from V ; and E(D?

B0
) := m0 ∪ {vu? : (u, v) ∈ E(D)}, where

m0 := {vv? : v ∈ V \ B0}. Call (D,B0)? := (D?
B0
,m0) the converted

bimaze of (D,B0).

Starting from a dimaze (D,B0), we write (V \B0)?, m0 and v? for the
corresponding objects in Definition 3.6.1.

Definition 3.6.2. Given a bimaze (G,m0), where G = (V,W ), define a
digraph G?m0

such that V (G?m0
) := V and E(G?m0

) := {(v, w) : wv? ∈
E(G) \m0}, where v? is the vertex in W that is matched by m0 to v ∈ V .
Let B0 := V \V (m0). Call (G,m0)? := (G?m0

, B0) the converted dimaze of
(G,m0).

Starting from a bimaze (G,m0), we write B0 and v? for the correspond-
ing objects in Definition 3.6.2 and (V \ B0)? for the right vertex class of
G.

Note that these constructions are inverse to each other (see Figure 3.5).
In particular, let (G,m0) be a bimaze, then

(G,m0)?? = (G,m0). (3.8)

5Short for bipartite maze.
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Figure 3.5: Converting a dimaze to a bimaze and vice versa

Given a bimaze (G,m0), note that for any matching m, each infinite
component of G[m0 ∪m] is either a ray or a double ray. We say m is an
m0-matching, if G[m0 ∪ m] has no infinite component. A set I ⊆ V is
m0-matchable, if there is an m0-matching of I.

Definition 3.6.3. Given a bimaze (G,m0), the pair of V and the set of
all m0-matchable subsets of V is denoted by MPT (G,m0). If MPT (G,m0)
is a matroid, it is called a path-transversal matroid.

The correspondence between finite paths and m0-matchings is depicted
in the following lemma.

Lemma 3.6.4. Let (D,B0) be a dimaze. Then B is linkable onto B0 in
(D,B0) iff V \B is m0-matchable onto (V \B0)? in (D,B0)?.

Proof. Suppose a linkage P from B onto B0 is given. Let

m := {vu? : (u, v) ∈ E(P)} ∪ {ww? : w /∈ V (P)}.

Note that m is a matching from V \ B onto (V \ B0)? in D?
B0

. Any
component induced bym0∪m is finite, since any component which contains
more than one edge corresponds to a path in P. So m is a required m0-
matching in (D,B0)?.

Conversely let m be an m0-matching from V \B onto (V \B0)?. Define a
linkage from B onto B0 as follows. From every vertex v ∈ B, start an m0-m
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alternating walk, which is finite because m is an m0-matching. Moreover,
the walk cannot end with an m0-edge because m covers (V \ B0)?. So
the walk is either trivial or ends with an m-edge in B0. As the m-edges
on each walk correspond to a path from B to B0, together they give us a
required linkage in (D,B0).

Proposition 3.6.5. Let MT (G) be a transversal matroid and m0 a match-
ing of a base B. Then MT (G) = MPT (G,m0).

Proof. Suppose I ⊆ V admits a matching m. By the maximality of B, any
infinite component of m∪m0 does intersect V \B. Replacing the m-edges
of all the infinite components by the m0-edges gives an m0-matching of
I.

In fact, the class of path-transversal matroids contains the class of
transversal matroids as a proper subclass; see Example 3.6.11 and Fig-
ure 3.6. Just as we can extend a linkage to cover the exits by trivial paths,
any m0-matching can be extended to cover W .

Lemma 3.6.6. Let (G,m0) be a bimaze. For any m0-matchable I, there
is an m0-matching from some B ⊇ I onto W .

Proof. Let m be an m0-matching of I. Take the union of all connected
components of m ∪m0 that meet W −m. The symmetric difference of m
and this union is a desired m0-matching of a superset of I.

We find it convenient to abstract two properties of a dimaze and a
bimaze. Given a dimaze (D,B0), let (†) be

I ∈ML(D,B0) is maximal ⇔ ∃ linkage from I onto B0. (†)

Analogously, given a bimaze (G,m0), let (‡) be

I ∈MPT (G,m0) is maximal ⇔ ∃ m0-matching from I onto (V \B0)?.
(‡)

In some sense (†) and (‡) are dual to each other.

Lemma 3.6.7. A dimaze (D,B0) satisfies (†) iff (D,B0)? satisfies (‡).

Proof. Assume (D,B0) satisfies (†). To prove the backward direction of
(‡), suppose there is an m0-matching from V \ B onto (V \ B0)?. By
Lemma 3.6.4, there is a linkage from B onto B0. Therefore, B is maximal
in ML(D,B0) by (†). By Lemma 3.6.6, any m0-matchable superset of V \B
may be extended to one, say V \ I, that is m0-matchable onto (V \ B0)?.
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As before, I ⊆ B is maximal in ML(D,B0), so I = B and hence, V \B is
a maximal m0-matchable set. To see the forward direction of (‡), suppose
V \ B is a maximal m0-matchable set witnessed by an m0-matching m,
that does not cover v? ∈ (V \ B0)?. As m is an m0-matching, a maximal
m0-m alternating walk starting from v? ends at some vertex in B. So the
symmetric difference of this walk and m is an m0-matching of a proper
superset of V \B which is a contradiction.

Assume (D,B0)? satisfies (‡). The forward direction of (†) is trivial.
For the backward direction, suppose there is a linkage from B onto B0.
Then there is an m0-matching from V \B onto (V \B0)? by Lemma 3.6.4.
By (‡), V \ B is maximal in MPT (D,B0)?. With an argument similar to
the above, we can conclude that B is maximal in ML(D,B0).

Now let us see how (†) helps to identify the dual of a strict gammoid.

Lemma 3.6.8. If a dimaze (D,B0) satisfies (†), then the dual of ML(D,B0)
is MPT (D,B0)?.

Proof. By Lemma 3.6.7, (D,B0)? satisfies (‡). Let B be an independent
set in ML(D,B0). Then B is maximal if and only if there is a linkage
from B onto B0. By Lemma 3.6.4, this holds if and only if there is an
m0-matching from V \ B onto (V \ B0)?, which by (‡) is equivalent to
V \B being maximal in MPT (D,B0)?.

To complete the proof, it remains to see that every m0-matchable set
can be extended to a maximal one, which follows from Lemma 3.6.6 and
(‡).

Note that while we do not need it, the twin of Lemma 3.6.8 is true,
namely, if a bimaze (G,m0) satisfies (‡), then MPT (G,m0) is a matroid
dual to ML(G,m0)?.

To summarize, we have the following.

Theorem 3.6.9. (i) Given a CA-free dimaze (D,B0), ML(D,B0) is a
matroid dual to MPT (D,B0)?.

(ii) Given a bimaze (G,m0), if (G,m0)? is CA-free, then MPT (G,m0)
is a matroid dual to ML(G,m0)?.

Proof. (i) This is the direct consequence of Lemmas 3.3.3 and 3.6.8.
(ii) Apply part (i) and (3.8).

One might hope that in the first part of the theorem the path-transversal
matroid MPT (D,B0)? is in fact the transversal matroid MT (D,B0)?. How-
ever, the dimazeRI defines a strict gammoid whose dual is not the transver-
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sal matroid defined by the converted bimaze. It turns out that RI is the
only obstruction to this hope.

Theorem 3.6.10. (i) Given an {RI , CA}-free dimaze (D,B0), ML(D,B0)
is a matroid dual to MT (D?

B0
).

(ii) Given a bimaze (G,m0), if (G,m0)? is {RI , CA}-free, then MT (G)
is a matroid dual to ML(G,m0)?.

Proof. (i) This follows from Theorem 3.6.9(i) and the fact that for an RI -
free dimaze (D,B0), we have MT (D?

B0
) = MPT (D,B0)?. The proof of the

latter is similar to the one given to Proposition 3.6.5 and omitted.

(ii) Apply part (i) and (3.8).

It appears that CA is a natural constraint in the above theorem.

Example 3.6.11. The strict gammoid defined by the dimaze CA (Fig-
ure 3.6a) is not cotransversal.

Proof. Since V \B0+v is a base for every v ∈ B0, B0 is an infinite cocircuit.
On the other hand, every vertex v of B0 is contained in a finite cocircuit,
namely v and its in-neighbours. So by Lemma 3.2.10, the dual is not
transversal.

Here is a question which is in some sense converse to Theorem 3.6.10(i).

Question 3.6.12. Is every cotransversal strict gammoid {CA, RI}-free?

Although the class of path-transversal matroids contains that of transver-
sal matroids properly, not every strict gammoid has its dual of this type. To
show this, we first note that in a path-transversal matroid MPT (G,m0),
if C is the fundamental circuit of u, then N(C) = m0(C − u). Indeed,
N(u) ⊆ m0(C−u); and for any v ∈ C−u, since there is an m0-alternating
path from u ending in v, v cannot have any neighbour outside m0(C − u).

Example 3.6.13. Let T be a rooted tree such that each vertex has in-
finitely many children, with edges directed towards B0, which consists of
the root and vertices on alternating levels. Then ML(T,B0) is a strict
gammoid that is not dual to any path-transversal matroid.

Proof. In Corollary 3.4.6, it was proved that M := ML(T,B0) is a matroid.
Suppose that M∗ = MPT (G,m). Let Q a linkage of B := V −m to B0.
Since (T,B0) is CO-free, by Proposition 3.5.10, we have M = ML(D1, B1)
where (D1, B1) is the Q-shifted dimaze. By construction, the underlying
graph of D is also a tree.
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By Corollary 3.4.7, (D1, B1) contains a subdivision R of CA. Let {si :
i ≥ 1} := R ∩B1 and U := {ui : i ≥ 1} be the set of vertices of out-degree
2 on R such that ui is joined to si and si+1 in R. Let

Ui := {v ∈ T : v is separated from R ∩B1 by ui},

Si := {v ∈ T : v can be linked to si in D \ U}.
Since D is a tree, {Ui, Si : i ≥ 1} is a collection of pairwise disjoint sets.

Let C :=
⋃
i≥1 Si. Any linkable set in V \ C has a linkage that misses

an exit in R ∩ B1. Since D is a tree, (B1 − R) ∪ U + c for any c ∈ C is a
base of M . Hence, C is a circuit in M∗. For a contradiction, we construct
an m-matching of C in (G,m).

In M∗, the fundamental circuit of si with respect to B1 is Si∪Ui−1∪Ui
(with U0 = ∅). By the remark before the example, N(Si ∪ Ui−1 ∪ Ui) =
m(Si ∪ Ui−1 ∪ Ui − si) for i ≥ 1.

We claim that for i ≥ 1, in any m-matching m′ of
⋃
j≤i Sj , the maximal

m′-m alternating walk from sj ends in m(Uj) for j ≤ i. Note that such
a walk cannot end in m(Sj) as those vertices are incident with m′-edges.
Since N(S1) ⊆ m(S1 ∪ U1), the claim is true for i = 1. Assume that it
is true for i − 1. Consider an m-matching m1 of

⋃
j≤i Sj . Let Pj be the

maximal m1-m-alternating walk starting from sj . By assumption, Pj ends
in m(Uj) for each j < i. As Pi ends in m(Ui−1 ∪Ui), we are done unless it
ends in m(Ui−1). In that case, the union of an m-matching of C \⋃j≤i Sj
with

(m �
⋃
j≤i

Sj)∆
⋃
j≤i

E(Pj)

is an m-matching of C, a contradiction.
Therefore, there is a collection of pairwise disjoint m-alternating walks

{P ′i : i ≥ 1} where P ′i starts from si and ends inm(Ui). Thenm∆
⋃
i≥1E(P ′i )

is an m-matching of C, a contradiction which completes the proof.

Here is a question similar to Question 3.6.12 akin to Theorem 3.6.9.

Question 3.6.14. Is every strict gammoid which is dual to a path-transversal
matroid CA-free?

It may be interesting to investigate further path-transversal systems.
For example, while they need not satisfy (IM), it may be the case that (I3)
always holds.

Conjecture 3.6.15. Given a bimaze (G,m0), MPT (G,m0) satisfies (I3).
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Figure 3.6: An alternating ray and an isomorphic incoming comb

3.6.2 Finitary transversal matroids

Our aim in this section is to give a transversal matroid that is not dual
to any strict gammoid. To this end, we extend some results in [10] and
[11]. The following identifies edges that may be added to a presentation
of a finitary transversal matroid without changing the matroid.

Lemma 3.6.16. Suppose that MT (G) is finitary. Let K be a subset of
{vw /∈ E(G) : v ∈ V,w ∈W}. Then the following are equivalent:

1. MT (G) 6= MT (G+K);

2. there are vw ∈ K and a circuit C with v ∈ C and w /∈ N(C);

3. there is vw ∈ K such that v is not a coloop of MT (G) \N(w).

Proof. 1. holds if and only if there is a circuit C in MT (G) which is match-
able in G+K. This, since C is finite, in turn holds if and only if there is
v ∈ C that can be matched outside N(C) in G+K, i.e. 2. holds.

The equivalence between 2. and 3. is clear since a vertex is not a coloop
if and only if it lies in a circuit.

Given a bipartite graph G, recall that a presentation of a transversal
matroid M as MT (G) is maximal if MT (G+ vw) 6= MT (G) for any vw /∈
E(G) with v ∈ V,w ∈W . Thus, the previous lemma implies that if MT (G)
is finitary, then G is maximal if and only if M \N(w) is coloop-free for any
w ∈ W . Bondy [10] asserted that there is a unique maximal presentation
for any finite coloop-free transversal matroid; where two presentations of
a transversal matroid by bipartite graphs G and H are isomorphic if there
is a graph isomorphism from G to H fixing the left vertex class pointwise.
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Proposition 3.6.17. Every finitary transversal matroid M has a unique
maximal presentation.

Proof. Let M = MT (G). Adding all vw with the property that there is
not any circuit C with v ∈ C and w /∈ N(C) gives a maximal presentation
of M by Lemma 3.6.16. In particular, any coloop is always adjacent to
every vertex in W . So without loss of generality, we assume that M is
coloop-free.

Now let G and H be distinct maximal presentations of M .
Claim 1. For any finite subset F of V , the induced subgraphs G[F ∪

NG(F )] and H[F ∪NH(F )] are isomorphic.
For every v ∈ F pick a circuit Cv with v ∈ Cv. By Lemma 3.6.16,

for every vw ∈ {xy /∈ E(G) : x ∈ F, y ∈ NG(F )}, there is a circuit Cvw
with v ∈ C and w /∈ NG(C). Let FG be the union of all Cv’s and Cvw’s.
Analogously define FH and let F ′ = FG ∪ FH . Extend the presentations
G[F ′ ∪NG(F ′)] and H[F ′ ∪NH(F ′)] of M |F ′ to maximal ones G′ and H ′

respectively, between which there is a graph isomorphism fixing the left
vertex class pointwise by Bondy’s result. Restricting the isomorphism to
F ∪NG(F ) is an isomorphism of G[F ∪NG(F )] and H[F ∪NH(F )], as by
definition of F ′ and Lemma 3.6.16, no non-edge between F and NG(F ) is
an edge in G′ (analogously between F and NH(F ) in H ′).

Without loss of generality, there is an A ⊆ V such that g := |{w ∈
W (G) : NG(w) = A}| < |{w ∈ W (H) : NH(w) = A}| =: h. Note that as
H is a maximal presentation, by Lemma 3.6.16, M \A is coloop-free.

As M is coloop-free, so is M.A. Let B1 be a base of M.A and extend B1

to a base of M which admits a matching m; thus m contains a matching
of a base of M \ A. Since M \ A is coloop-free, by Lemma 3.2.6, the
neighbourhood of each vertex matched by m to a vertex in B1 is a subset
of A. Thus, M.A can be presented with the subgraphs induced by A∪{w ∈
W : N(w) ⊆ A} in both graphs; call these subgraphs G1 and H1. For any
w ∈ W (G1), since M \ NG1(w) is coloop-free, so is M.A \ NG1(w). By
Lemma 3.6.16, G1 (analogously H1) is a maximal presentation of M.A.

Claim 2. Given a family (Nj)j∈J of finite subsets of W , if the inter-
section of any finite subfamily has size at least k, then the intersection of
the family has size at least k.

Let N =
⋂
j∈J Nj . Suppose |N | < k. Fix some j0 ∈ J and for each

element y ∈ Nj0 \ N pick some Ny such that y /∈ Ny. Then |Nj0 ∩⋂
y∈Nj0\N

Ny| = |N | < k, which is a contradiction.

By Claim 2, there is a finite set F ⊆ A such that |⋂v∈F NG1(v)| = g.
But Claim 1 says that F has at least h > g common neighbours in H1;
this contradiction completes the proof.
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Figure 3.7: A transversal matroid which is not dual to a strict gammoid
and a gammoid presentation of its dual

To show that the following finitary transversal matroid is not dual to
a strict gammoid, it suffices to show that there is no bimaze presentation
whose converted dimaze is CA-free.

Example 3.6.18. Define a bipartite graph G as V (G) = {vi, Ai : i ≥ 1}
and E(G) = {v1A1, v2A1, v1A3, v2A3} ∪ {v2i−3Ai, v2i−2Ai, v2i−1Ai, v2iAi :
i ≥ 2}. Then M = MT (G) is not dual to a strict gammoid.

Proof. As G is left locally finite, M is a finitary matroid. Assume for a
contradiction that M∗ = ML(D,B0). By a characterization of cofinitary
strict gammoids in [3], we may assume that (D,B0) is {RI , CA}-free. Then
by Theorem 3.6.10, M = MT (D,B0)?.

Now it can be checked that allM\N(wi) are coloop-free. By Lemma 3.6.16,
G is the maximal presentation ofM . The same lemma also implies that any
minimal presentation G′ is obtained by deleting edges from {v1A3, v2A3}
and at most one from {v1A2, v2A2}. In particular, all presentations of M
differ from G only finitely. It is not difficult to check that with any match-
ing m0 of a base, (G,m0)? contains a subdivision of CA. Hence, there is
no bimaze presentation of M such that the converted dimaze is CA-free,
contradicting that (D,B0)? is such a presentation.

We remark that the above transversal matroid is dual to a gammoid,
see Figure 3.7. However, in the next section, we give a transversal matroid
that is not dual to any gammoid.

3.6.3 Duality in gammoids

Recall that finite strict gammoids and transversal matroids are dual to
each other. As a consequence one can see that the class of gammoids is
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closed under duality. In the infinite case, (as we have seen) there are exam-
ples of strict gammoids which are not cotransversal, as well as transversal
matroids which are not dual to strict gammoids. However, this is not the
case when the (undirected) underlying graphs do not contain any ray, and
so, as we shall see, the proof of finite gammoids being closed under duality
remains valid if we consider the class of gammoids which admit a presen-
tation whose (undirected) underlying graph does not contain any ray. We
finally conclude by giving an example of a gammoid which is not dual to
any gammoid.

An undirected graph is called rayless, if it does not contain any ray.
We call a gammoid rayless if it admits a presentation whose (undirected)
underlying graph is rayless. A rayless transversal matroid is defined anal-
ogously.

An infinite version of König duality theorem [5] states that given a
bipartite graph G, there is a matching m (König matching) and a cover C
such that each edge in m has precisely one vertex of C as an end-point.

Lemma 3.6.19. If G = (V,W ) is a rayless bipartite graph, then MT (G)
is a matroid.

Sketch of proof. It suffices to check (IM) with X = V . We show that any
König matching m0 (with vertex cover C) gives a maximal I0 ∈ MT (G),
and that any given I ∈MT (G) can be covered by a König matching.

Suppose there exists v /∈ I0 such that there is matching m of I0 + v.
The m–m0 alternating walk from v is a finite path ending in W . As m0

is a König matching, and v /∈ I0, the vertices in C on this path lie in W .
But then C does not cover the last edge.

Let m be a matching of I. Consider a component P induced by m0∪m
such that P has a starting vertex in I \I0. Let m1 be the set of all m–edges
in such components union with the m0–edges outside such components.
Then m1 is a matching covering I, indeed, a König matching with the
same cover C.

Given any rayless transversal matroid M with a presentation G =
(V,W ), give a direction to the edges from V to W and consider W as
the set of exits. This will give us a rayless strict gammoid and M is the
restriction of this rayless gammoid onto V .

Proposition 3.6.20. The class of rayless gammoids is closed under taking
minor and duality.

Proof. For the minor part, as restriction and contraction commute, it suf-
fices to prove that any contraction of any rayless strict gammoid M is a
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rayless gammoid. Let M = ML(D,B0) where the underlying graph of
D is rayless. As there is no CA or RI in (D,B0), by Theorem 3.6.10,
M∗L(D,B0) = MT (D?

B0
) which is a rayless transversal matroid. Any re-

striction of this transversal matroid is also a rayless transversal matroid,
say MT (G). Pick some identity matching m0. As the underlying graph of
(G,m0)? is rayless, by Theorem 3.6.10, M∗T (G) = ML(G,m0)? which is a
rayless gammoid.

To show that the class of rayless gammoids is closed under duality,
note that M∗ = M∗L(D,B0)/X = MT (D?

B0
)/X. But the last matroid is

a contraction of a rayless gammoid which was just shown to be a rayless
gammoid.

We remark that that Aharoni-Berger-Menger’s theorem [6] for digraphs
whose underlying graphs are rayless can be easily proved here as follows:
Let A,B ⊆ V (D) be given. We prove that ML(D,B) is a matroid with-
out implicitly using Menger’s theorem. First, any I ∈ ML(D,B) can be
extended to a maximal by adding vertices in B not covered by a linkage
from I to B by Lemma 3.3.3 . Next, by Lemmas 3.3.3, 3.6.4 and 3.6.7, a
set I is maximal in ML(D,B) iff V \ I is maximal in MPT (D,B)?. Hence,
M∗L(D,B) = MPT (D,B)?. As MPT (D,B)? = MT (D?

B) and D?
B is ray-

less, by Lemma 3.6.19, MT (D?
B) and so ML(D,B) is a matroid. Take a

maximal element in ML(D,B) � A witnessed by a linkage P and apply
Lemma 3.2.3 to find a required separator on P.

To show that there is a strict gammoid not dual to a gammoid, we prove
the following lemmas, whose common setting is that a given dimaze (D,B0)
defines a matroid ML(D,B0). For a linkage Q and any X ⊆ Ini(Q),
Q � X := {Q ∈ Q : Ini(Q) ∈ X}; when X = {x}, we write simply Qx.

Lemma 3.6.21. Let b be an element in an infinite circuit C, Q a link-
age from C − b. Then b can reach infinitely many vertices in C via Q-
alternating walks.

Proof. Given any x ∈ C−b, let P be a linkage of C−x. LetW be a maximal
P-Q-alternating walk starting from b. If W is infinite, then we are done.
Otherwise, W ends in either Ter(P) \ Ter(Q) or Ini(Q) \ Ini(P) = {x}.
The former case does not occur, since it gives rise to a linkage of C by
Lemma 3.2.3(i), contradicting C being a circuit. As x was arbitrary, the
proof is complete.

Lemma 3.6.22. For i = 1, 2, let Ci be a circuit of M , xi, bi distinct
elements in Ci \ C3−i. Suppose that (C1 ∪ C2) \ {b1, b2} admits a linkage
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Q. Then any two Q-alternating walks Wi from bi to xi, for i = 1, 2, are
disjoint.

Proof. Suppose that W1 = w1
0e

1
0w

1
1 . . . w

1
n and W2 = w2

0e
2
0w

2
1 . . . w

2
m are

not disjoint. Then there exists a first vertex v = w1
j on W1 such that

v = w2
k ∈ W2 and either v ∈ V (Q) and e1

j = e2
k ∈ E(Q) or v /∈ V (Q).

In both cases W3 := W1vW2 is a Q-alternating walk from b1 to x2. Let
v′ be the first vertex of W3 in V (Q � (C2 − b2) \ C1) and Q the path in
Q containing v′. Then W3v

′Q is a (Q � (C1 − b1))-alternating walk from
b1 to B0 \ Ter(Q � (C1 − b1)), which by Lemma 3.2.3(i) contradicts the
dependence of C1. Hence W1 and W2 are disjoint.

Lemma 3.6.23. Let {Ci : i ∈ N} be a set of circuits of M ; xi, bi distinct
elements in Ci \

⋃
j 6=iCj. Suppose that

⋃
i∈N Ci \ {bi : i ∈ N} admits a

linkage Q. Let Wi be a Q-alternating walk from bi to xi. If X ⊆ V is a
finite set containing Ci ∩ Cj for any distinct i, j, then only finitely many
of Wi meet Q � X.

Proof. By Lemma 3.6.22, the walks Wi are pairwise disjoint. Since Q � X
is finite, it can be met by only finitely many Wi’s.

We are now ready to give a counterexample to classical duality in gam-
moids.

Example 3.6.24. Let (T,B0) be the dimaze defined in Example 3.6.13.
The dual of the strict gammoid M = ML(T,B0) is not a gammoid.

Proof. Suppose that M∗ = ML(D,B1) � V , where V := V (T ). Fix a link-
age Q of V \B0 in (D,B1). For b ∈ B0, let Cb be the fundamental cocircuit
of M with respect to B0. Then for any (undirected) ray b0x0b1x1 · · · in T ,
C :=

⋃
k∈NCbk \{xk : k ∈ N} is a cocircuit of M . We get a contradiction by

building a linkage for C in (D,B1) inductively using disjoint Q-alternating
walks.

Let b0 be the root of T . By Lemma 3.6.21, there is a Q-alternating
walk W0 from b0 to one of its children x0. At step k > 0, from each child b
of xk−1 in T , by Lemma 3.6.21, there is a Q-alternating walk Wb in (D,B1)
to a child x of b. Applying Lemma 3.6.23 on {Ci : i ∈ N−(xk−1) − bk−1}
with X = {xk−1}, we may choose bk := b, xk := x such that Wk := Wb

avoids Qxk−1
.

By Lemma 3.6.22, distinct Wk and Wk′ are disjoint. Moreover, as each
Wk avoids Qxk−1

, Lemma 3.2.3(i) implies that Wk can only meet Q at Qx
where x ∈ Cbk − xk−1. Then E(Q)4⋃k∈NE(Wk) contains a linkage of
C.
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Note that, by adding a unique in-neighbour to every vertex in B0, we
can also present ML(T,B0) as a transversal matroid (the same as the proof
of Corollary 3.4.6). Thus, not every transversal matroid is dual to even a
restriction of a strict gammoid.

It is possible to show (although we don’t prove it) that the dual of any
RA-free strict gammoid is a gammoid. In fact, we expect more.

Conjecture 3.6.25. The class of CA-free gammoids is closed under du-
ality.

3.7 More on gammoids and transversal matroids

We first give characterizations of cofinitary strict gammoids and cofinitary
transversal matroids and then investigate nearly finitary gammoids and
nearly finitary transversal matroids. The results here come from [4].

3.7.1 Cofinitary strict gammoids and transversal matroids

Recall that by Lemma 3.2.9, every left locally finite bipartite graph defines
a finitary transversal matroid. On the other hand, assume that a finitary
transversal matroid M and a presentation of that G = (V,W ) is given. For
every vertex v ∈ V of infinite degree, we can delete all the infinitely many
edges at v, add a new vertex to W and make it the private neighbour
of v. This gives us a left locally finite bipartite graph, say G′, and one
can check that G and G′ define the same transversal matroid. Therefore,
finitary transversal matroids are precisely those that admit a left locally
finite presentation.

It is also a straightforward consequence of Corollary 3.2.4, that a strict
gammoid is finitary if and only if it admits a {CO, F∞}-free presentation.
A characterization of cofinitary strict gammoids is given as follows.

Theorem 3.7.1. Any strict gammoid is cofinitary if and only if it admits
a {CA, RI}-free presentation with in-degree of each vertex finite.

Proof. Suppose the dimaze (D,B0) is {CA, RI}-free and the in-degree of
every vertex is finite. By Theorem 3.6.10, M∗L(D,B0) = MT (D?

B0
). As

the in-degree of D is finite, D?
B0

is left locally finite. So by Lemma 3.2.9,
MT (D?

B0
) is finitary and hence ML(D,B0) is a cofinitary matroid.

Conversely, suppose (D,B0) is a dimaze defining a cofinitary strict
gammoid M . Note that all the vertices which are linkable to a fixed vertex
in B0 form a cocircuit. Therefore, firstly it is RI -free, and secondly as any
vertex of infinite in-degree is a loop, deleting the edges at these vertices
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gives a new dimaze (D′, B0) defining the same matroid. Finally, for a
contradiction assume that R is a subdivision of a CA in (D′, B0). Let
I ′ be the set of those vertices of R with out-degree two and I := I ′ ∪
(B0 −R). Note that as I can be extended to a larger independent set, its
complement meets every base ofM . So the complement of I is codependent
and contains some cocircuit C.

If C meets R ∩ B0 at only finitely many vertices, then B0 \ C can be
extended by some |C ∩ B0| vertices of I ′ to a base disjoint from C which
contradicts codependence of C. So the intersection, and hence C is infinite
which is the desired contradiction.

By Theorem 3.7.1 and Theorem 3.6.10, we immediately have the fol-
lowing.

Corollary 3.7.2. Cofinitary strict gammoids are dual to transversal ma-
troids.

We combine Theorem 3.5.13 with duality to determine presentations
of cofinitary transversal matroids among all transversal matroids’ presen-
tations. Recall that given a matroid M , a base B and an independent set
I, if |B \ I| = |I \B| <∞, then we can apply base exchange axiom ((B2)
in Chapter 1) repeatedly to see that I has to be a base of M as well.

Theorem 3.7.3. Let G = (V,W ) be a bipartite graph defining a transver-
sal matroid and m0 a matching of a base. Then MT (G) is cofinitary if and
only if (G,m0)? is {CA, RI , CO, F∞}-free.

Proof. The backward direction follows from Theorem 3.6.10 (ii) and Corol-
lary 3.2.4.

For the forward direction, first note that by Proposition 3.6.5 M :=
MT (G) = MLT (G,m0). Clearly (G,m0)? is RI -free as that gives rise to
an m0-alternating walk in (G,m0) which contradicts the maximality of
m0 ∩ V =: V \B0 in M .

Let R be a subdivision of an CA in (G,m0)?. As a contradiction we find
an infinite cocircuit of M . Let I1 be the vertices of out-degree two on R,
I2 = B0−R, B1 = I1∪ I2, and v a vertex in B0∩R. As B1 and B1 + v are
both linkable onto B0 in (G,m0)?, by Lemma 3.6.4 and (3.8), V \B1 and
V \ (B1 + v) are both matchable in G which means B1 + v is codependent
and so contains a cocircuit C of M . Assume that C∩I1 =: C1 is finite and
P is a linkage from C1 to B0 \ (I2 + v) (which exists by definition of I1).
Let B2 := (B0 \ Ter(P)) ∪ Ini(P). As |(V \B0) \ (V \B2)| = |B2 \B0| =
|Ini(P)| = |Ter(P)| = |B0 \ B2| = |(V \ B2) \ (V \ B0)|, by the sentence
before the theorem, V \ B2 is a base of M . But C ∩ (V \ B2) = ∅ which
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contradicts C being a cocircuit of M . Hence C is infinite which contradicts
M being cofinitary.

As (G,m0)? is {CA, RI}-free, by Theorem 3.6.10 (ii), M? = ML(G,m0)?

and so (G,m0)? does not contain any subdivision of CO or F∞ either, as
any subdivision of CO or F∞ leads to an infinite circuit in M∗.

Applying Theorem 3.6.10 (ii) and Theorem 3.7.3 the following is im-
mediate.

Corollary 3.7.4. Let MT (G) be a cofinitary transversal matroid and m0

be a matching of a base. Then MT (G) is dual to ML(G,m0)?.

We remark that corollaries 3.7.2 and 3.7.4 can be used to show that the
classes of cofinitary strict gammoids and cofinitary transversal matroids are
representable over sufficiently large fields.

3.7.2 Nearly finitary gammoids

Recall that a nearly finitary matroid [7] is a matroid M such that every
base can be extended to a base of the finitarization Mfin, by adding finitely
many elements. If the number of additions is bounded by an integer k ≥ 0,
then M is called k-nearly finitary. The question whether a nearly finitary
matroid is k-nearly finitary for some k ≥ 0 is open [8].

We answer this question for strict gammoids, using Corollary 3.2.4 and
the following modified version of a result of Halin [23].

Lemma 3.7.5. If for any k ∈ N there is a set of spine-disjoint outgoing
combs of size k, then there is an infinite such set.

Proof. We mimic a proof given by Andreae (see [19, Theorem 8.2.5]), so
we need only highlight the differences. Instead of constructing inductively
an infinite set of disjoint rays, we construct an infinite set of spine-disjoint
outgoing combs. As an outgoing comb has infinitely many spikes, we ensure
that we extend at each step every initial segment of the outgoing combs by
at least, not only one vertex, but one spike. This can be done by following
the spine of an outgoing comb until we hit a spike disjoint from the already
chosen and finite set of spikes and initial segments of spines. Moreover,
at each step we choose a new initial segment of an outgoing comb disjoint
from the others.

Proposition 3.7.6. A nearly finitary strict gammoid is k-nearly finitary
for some k ≥ 0.

69



Proof. Let M = ML(D,B0) be a nearly finitary strict gammoid. By Corol-
lary 3.2.4, there cannot be infinitely many spine-disjoint outgoing combs,
otherwise the union of the infinitely many initial vertices of the combs with
B0 is independent in Mfin. It follows then, by Lemma 3.7.5, that the num-
ber of spine-disjoint outgoing combs is bounded. Similarly, there cannot
be infinitely many vertices which are the centre of an infinite star to B0,
otherwise, B0 together with the centres form an independent set in Mfin.
Let k be the sum of the maximum number of spine-disjoint outgoing combs
and the number of centres of infinite stars. Let B be an independent set
in Mfin. By deleting at most k vertices, we get a linkable subset of B.

Next, we consider the question for transversal matroids.

Lemma 3.7.7. Let M be a matroid such that no infinite circuit is con-
tained in a union of finite circuits. If M is nearly finitary, then M is
k-nearly finitary for some integer k ≥ 0.

Proof. Let L be the set of coloops of Mfin, it follows that each element in
M \ L is contained in a finite circuit. Hence, M \ L does not contain any
infinite circuit, for otherwise, such a circuit is contained in a union of finite
circuits.

Let B1 be a base of M.L and Bf a base of Mfin. Then Bf \L is a base
of the finitary matroid M \ L, since it does not contain any finite circuit
of M and addition of any element in M \Bf creates one.

Hence, B = B1 ∪ (Bf \ L) is a base of M . Since M is nearly finitary,
Bf \ B is finite. On the other hand, Bf \ B = L \ B1. It follows that
k := |Bf \B| = |L \B1|, which is the corank of M.L, is finite. Therefore,
any base Bf of Mfin contains a base of M which has at most k elements
fewer. Hence, M is k-nearly finitary.

Remark 3.7.8. In fact, if B is a base of M and Bf is a base of Mfin

containing B, then |Bf \ B| = k. Indeed, B ∩ L contains a base B1 of
M.L, and B \L can be extended in Bf \L to a base B2 in M \L. In fact,
B2 = Bf \ L, so |Bf \B| = |Bf \ (B1 ∪B2)| = k.

As a consequence of Lemma 3.2.10 we have the following.

Corollary 3.7.9. A nearly finitary transversal matroid is k-nearly fini-
tary, for some integer k ≥ 0.

Moreover, since the extension of a base of M to one of Mfin occurs in
L, which is the set of vertices of infinite degree in case M is a transversal
matroid, another corollary is the following.
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Figure 3.8: A 2-nearly finitary transversal matroid

Corollary 3.7.10. For any integer k ≥ 0 and any bipartite graph G =
(V,W ) such that there are at most k vertices of infinite degree in V , MT (G)
is a k-nearly finitary matroid.

The converse when k = 0 is true by the first paragraph of Section 3.7.2.
For k = 1, it turns out that the converse of Corollary 3.7.10 is also true.
As the proof involves long case analysis, we only sketch it here.

Proposition 3.7.11. A 1-nearly finitary transversal matroid M admits a
presentation G = (V,W ) with at most 1 vertex of infinite degree in V .

Proof sketch. Let L ⊆ V be the set of vertices of infinite degree. Let
B1 be a base of M.L. If L \ B1 = ∅ then M is a finitary matroid and,
as already described, we can find a presentation of M without any vertex
of infinite degree. On the other hand, as M is 1-nearly finitary, |L \ B1|
cannot be greater than one, so L \B1 = {x} for some x in L.

Build the graph G′ as follows. Extend B1 to a base B of M , and let
m be a matching of B. For every edge in vw ∈ E(G) \m with one end in
L \ {v} delete vw from G and add a new edge xw, and if xw is already an
edge we do not add any new edge.

It is then possible to inductively prove that MT (G) = MT (G′). �

On the other hand, a 2-nearly finitary transversal matroid may only
have presentations with infinitely many vertices of infinite degree.
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Example 3.7.12. The circuits of the transversal matroid defined by the
bipartite graph in Figure 3.8 are {V − x1, V − x2, V \ Vi : i ∈ N}, where
Vi = {vij : j ∈ N}. For any presentation G = (V,W ) of M , there are
infinitely many vertices of infinite degree in V .

Proof. It is straightforward to compute the set of circuits. Let X =
{x1, x2}. Fix a matching m of the base V \ X. Let (D,X) = (G,m)?.
It suffices to prove that in D, there is a vertex of infinite in-degree in each
Vi.

Note that an (infinite) m-alternating walk in G corresponds to an (in-
finite) directed path in D. As V − x1 and V − x2 are circuits, there is
no incoming ray to X. Since V \ Vi is a circuit, there are no two disjoint
m-alternating walks from X to Vi in G. Therefore, there are no two dis-
joint paths from Vi to X in D, by Menger’s theorem, Vi is separated from
X by a vertex vi. For any v ∈ Vi, v′ ∈ Vj where i 6= j, as V \ {v, v′} is
matchable, there is a pair of disjoint paths from {v, v′} to X. It follows
that vi ∈ Vi. For any v ∈ Vi − vi, if there is an edge (v, v′) with v′ ∈ Vj ,
then the edge can be extended to a path from v to X avoiding vi, using
a path in a linkage from {v′, vi} to X, which is a contradiction. Hence,
within Vi, there is a path from v to vi. As there is no incoming ray to X,
it follows that Vi contains a vertex of infinite in-degree.

So having at most k vertices of infinite degree is sufficient but not
necessary for a transversal matroid to be k-nearly finitary. However, in
general, there is a deletion minor of a k-nearly finitary transversal matroid
that is finitary.

Proposition 3.7.13. A transversal matroid M is k-nearly finitary if and
only if there is a set of vertices X ⊆ V of size at most k such that M \X
is finitary.

Proof. Let G be a presentation of M . Let L be the set of coloops of Mfin.
Let B1 be a base of M.L and B2 be a base of M \ L, which is a finitary
matroid.

Suppose that M is k-nearly finitary. We claim that X := L \B1 is the
required set. As B1∪B2∪X is a base of Mfin, |X| ≤ k. It remains to show
that M \X is finitary. Let C be a circuit of M \X. As C ⊆ B1∪C \L and
B1 is a base of M.L, C ∩ L = ∅. So C is a circuit of the finitary matroid
M \ L.

Suppose X is a minimal set of k vertices such that M \X is finitary.
By compactness, every vertex in X has infinite degree. Let Bfin be a base
of Mfin. Then Bfin \ X is a base of M \ X, as X ⊆ L. Let B ⊆ Bfin be
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a base of M . Extend Bfin \ X to a base B′ of M in B. As B \ B′ ⊆ X,
|B\B′| = |B′\B|. Hence, |Bfin\B| = |X\B|+|B′\B| = |X\B|+|B\B′| ≤
|X| = k.

Problem 3.7.14. Characterize k-nearly finitary transversal matroids in
graph theoretic terms.
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union, arXiv:1111.0602v2 (2011).

[8] E. Aigner-Horev, J. Carmesin and J.-O. Fröhlich, On the intersection
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Summary

This thesis is part of an ongoing project, which tries to extend different
aspects of finite matroid theory to the infinite case. The thesis consists of
two major parts.

In Chapter 2, the problem of representability of infinite matroids over
a field is addressed, where we study different aspects of thin sums ma-
troids. We give a characterization of the duals of ordinary representable
matroids among thin sums matroids. We show that the class of tame thin
sums matroids is closed under duality and so taking minors. As we shall
see, most of the matroids associated to graphs turn out to be tame and
thin sums representable. So we suggest the class of tame matroids, as a
suitably large class of matroids in which one can have a reasonable theory
of representability which is preserved under duality.

In Chapter 3, we look at another class of matroids namely the class
of gammoids. These matroids are usually given via their presentations
which are digraphs. As graph properties are usually easy to visualise, we
are interested in the interaction of properties of gammoids as matroids
and their presentations. To give a taste of what we do, our approach
is similar to identifying a desired class of graphs via forbidding graphs
as topological minors. Roughly speaking, looking closely at a system of
linkable sets with an undesired behaviour, we try to find the substructure
in its defining digraph which causes this undesired behaviour, and then
study the class of gammoids definable by the digraphs that do not contain
this substructure.
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Zusammenfassung

Diese Arbeit ist teil eines fortlaufenden Projektes, in dem versucht wird un-
terschiedliche Aspekte endlicher Matroidtheorie auf den unendlichen Fall
zu übertragen. Sie besteht aus zwei Teilen.

In Kapitel 2 wird die Darstellbarkeit unendlicher Matroide studiert, ins-
besondere werden sogenannte thin sums Matroide untersucht. Wir charak-
terisieren diejenigen Mantroide unter den thin sims Matroiden, die dual zu
einem darstellbaren Matroid sind. Wir zeigen, dass die Klasse der zah-
men thin sums Matroide unter Dualität abgeschlossen ist, und folglich
auch unter Minorbildung. Wie sich herausstellen wird, sind die meisten,
mit Hilfe von Graphen definierten, Matroide zahm und thin sums darstell-
bar. Also schlagen wir die zahmen Matroide vor, als hinreichend große
Klasse von Matroiden, die eine, unter Dualität abgeschlossene, Theorie
von Darstellbarkeit besitzt.

In Kapitel 3 untersuchen wir eine weitere Klasse von Matroiden, die
Gammoide. Diese Matroide werden gewöhnlich durch Digraphen präsentiert.
Da Eigenschaften von Graphen üblicherweise leicht zu visualisieren sind,
sind wir an deren Interaktion mit den Matroideigenschaften der, durch
die Graphen präsentierten, Gammoide interessiert. Unsere Methode ist
ähnlich dem Versuch eine Grapheneigenschaft durch verbotene topologis-
che Minoren zu charakterisieren. Hat ein gegebenes System verbindbarer
Mengen eine unerwünschte Eigenschaft, so versuchen wir in dem definieren-
den Digraphen eine Struktur zu finden, die für diese Eigenschaft verant-
wortlich ist. Anschließend untersuchen wir die Klasse der Gammoide, die
durch einen Digraphen definiert werden können, der diese Struktur nicht
enthält.
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