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Summary

This thesis in combinatorics consists of two parts: the first part is about
connected tree-width [23] and the second part investigates infinite gammoids
[2, 3]. In both parts a known result is transferred to a new area and the
differences are analyzed.

A tree-decomposition of a graph G is called connected if all its parts
induce connected subgraphs in G and the minimum width that a con-
nected tree-decomposition can have is the connected tree-width of G. Tree-
decompositions are a well established concept in graph theory and the stan-
dard minimum width tree-decomposition of many simple example graphs,
including the grid, complete graphs or trees, are connected. On the other
hand the connected tree-width of a cycle is about half of the length of that
cycle. Obviously, the connected tree-width is an upper bound for the tree-
width, and the cycles, having a tree-width of 2, show that the tree-width
and the connected tree-width of a graph can be arbitrary far away from each
other.

It was conjectured in [24] and is proved in [23] that for any graph, a large
geodesic cycle is the only reason for the connected tree-width to be much
larger than the tree-width. This is used to show that a qualitative version
of a “connected tree-width duality theorem” holds.

The second part concerns gammoids, a class of matroids investigated in
the late 1960’s [27]. Ingleton and Piff [20] gave a construction that trans-
forms a presentation of a finite strict gammoid to a transversal matroid
presentation of its dual, a bipartite graph. This is used in the proof that the
class of finite gammoids is closed under minors and under duality. In 2010
Bruhn et al [10] found a notion of infinite matroids that allows for duality.
This suggests the question of extending gammoids to infinite ground sets by
a verbatim transfer of linkability.

Contrary to the finite case, not every infinite dimaze, digraph together
with a specific set of sinks, defines a matroid. One obstruction is a dimaze
termed an alternating comb [2]. For such a strict gammoid the construction
of Ingleton and Piff (transferred to the infinite case) provides a presentation
of the dual and, if the dimaze does not contain an incoming ray, that dual
is transversal. The class of gammoids definable by a dimaze without any
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outgoing comb is minor closed and the class of gammoids definable by a
dimaze without any ray is, like that of finite gammoids, closed under minors
and under duality.
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Chapter 1

Connected tree-width

The results in this chapter come from [23, 24].

1.1 Introduction

Let us call a tree-decomposition (T, (Vt)t∈T ) of a graph G connected if its
parts Vt are connected in G. For example, the standard minimum width
tree-decomposition of a tree or a grid has connected parts. The connected
tree-width ctw(G) of G is the minimum width that a connected tree-decom-
position of G can have.

Obviously tw(G) ≤ ctw(G), because every connected tree-decomposition
is a tree-decomposition. So having large tree-width is a reason for a graph
to have large connected tree-width. But it is not the only possible reason.

It is not hard to show that a cycle of length n has connected tree-
width

⌈
n
2

⌉
(see Example 1.5.2). Indeed, any graph containing such a cycle

geodesically1 has connected tree-width
⌈
n
2

⌉
; this will follow from Lemma 1.5.3

below.

The following main theorem of this chapter shows that large tree-width
and large geodesic cycles are the only two reasons for a graph to have large
connected tree-width.

Theorem 1.1.1. The connected tree-width of a graph G is bounded above by
a function of its tree-width and the maximum length k of its geodesic cycles.
Specifically

ctw(G) ≤ tw(G) +

(
tw(G) + 1

2

)
· (k · tw(G)− 1).

(If G is a forest, we define k to be 1)

1A subgraph H of a given graph G is called geodesic if dH(x, y) = dG(x, y) ∀ x, y ∈
V (H), i.e. there is no shortcut in G between two vertices of H.

3



Theorem 1.1.1 is qualitatively best possible in that the two reasons are in-
dependent: a large cycle (as a graph) contains a large geodesic cycle but has
small tree-width, while a large grid has large tree-width but all its geodesic
cycles are small.

Among the many obstructions to small tree-width there is only one that
gives a tight duality theorem: the existence of a large-order bramble. A
bramble is a set of pairwise touching connected subsets of V (G), where two
such subsets touch if they have a vertex in common or G contains an edge
between them. A subset of V (G) covers (or is a cover of) a bramble B if
it meets every element of B. The order of a bramble is the least number of
vertices needed to cover it.

Tree-width duality theorem (Seymour and Thomas [30]). Let k ≥ 0 be
an integer. A graph has tree-width ≥ k if an only if it contains a bramble of
order > k.

Let the connected order of a bramble B be the least order of a connected
cover, a cover of B spanning a connected subgraph. Since every bramble
is covered by a part in any given tree-decomposition, graphs of connected
tree-width < k cannot have brambles of connected order > k. I conjecture
that the converse of this holds too:

Conjecture 1.1.2 (connected tree-width duality conjecture). Let k ≥ 0 be
an integer. A graph has connected tree-width ≥ k if and only if it contains
a bramble of connected order > k.

The second main result of this chapter is a qualitative version of the
above conjecture:

Theorem 1.1.3. Let k ≥ 0 be an integer. There is a function g : N → N
such that any graph with no bramble of connected order > k has connected
tree-width < g(k).

The proof of Theorem 1.1.1 goes roughly as follows. We start with a tree-
decomposition of minimum width and enlarge its parts by replacing them
with connected supersets. In order to retain a tree-decomposition, we shall
have to make sure that vertices which are used to make one part connected
also appear in certain other parts of the tree-decomposition (compare axiom
(T3) in the definition of a tree-decomposition, e.g. in [13]). Our task will be
to find extensions whose sizes are bounded by a function in the maximum
length of a geodesic cycle in the graph and its tree-width, regardless of its
number of vertices.

All the graphs we consider in this chapter will be finite and nonempty.
The notation and terminology we use are explained in [13], in particular
we shall assume familiarity with the basic theory of tree-decompositions as
described in [13, Ch.12.3.].
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The layout of this chapter is as follows. In Section 1.2 we introduce our
main technical tool for finding paths in a graph that can be used to make
disconnected parts of its tree-decompositions connected: a navigational path
system, or nav for short. In Section 1.3 we introduce tree-decompositions
whose parts cannot be split, we call such tree-decompositions atomic. For
such atomic tree-decompositions we then find cycles in the graph that are
separated by its adhesion sets. In Section 1.4 we use those cycles to get an
upper bound for the part sizes of our connected tree-decomposition which
completes the proof of Theorem 1.1.1. In Section 1.5, this result will be used
to prove Theorem 1.1.3.

1.2 Navs

How do we get an upper bound for the connected tree-width of a graph G?
The easiest algorithmic way is to start with a tree-decomposition of min-
imum width and enlarge a part (which does not yet induce a connected
subgraph) by adding a path of G (reducing the number of components).
This might result in a violation of (T3), which can be repaired by adding
the corresponding vertices also to other parts. Now we can go on and make
the next part (a little bit more) connected until we have a connected tree-
decomposition. If we don’t choose the connecting paths carefully, we might
add an unbounded number of vertices to one part while repairing (T3). Take
the graph and tree-decomposition indicated in Figure 1.1, for instance. If
we choose the path containing xi for making Vti connected (for every i),
we will have to add all the xi to Vt0 while repairing (T3), because Vt0 lies
between the part containing xi and Vti which contains xi as well (after we
added the connecting path).

Obviously we made a bad choice here. If we use the path containing x1

for every Vti we don’t need to enlarge Vt0 arbitrarily often. This is the idea of
the following definition: If we already know a path connecting two vertices
a and b, then we can reuse it whenever we have a path going through a and
b.

Definition 1.2.1 (navigational path-system (short: nav)). Let G be a con-
nected graph and K ⊆ [V (G)]≤2 a subset of the set of all at most 2-element
subsets of V (G). A system N := (Pxy){x,y}∈K of x–y paths is called sub-nav,
if for every path Pxy in N and for any two vertices a, b on that path {a, b}
is in K and Pab = aPxyb.

A nav is a sub-nav satisfying K = [V (G)]≤2.
If D := (T, (Vt)t∈T ) is a tree-decomposition of G, then a sub-nav satis-

fying [Vt]
≤2 ⊆ K ∀ t ∈ T is called a D-nav.

A sub-nav is called geodesic if for all x, y ∈ K the length of Pxy is dG(x, y).
The length of a longest path used in a sub-nav is called the length of the

sub-nav l(N ) := max{x,y}∈K ‖Pxy‖.
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Vt0

x1

x2

x3

Vt1

Vt2

. . .

...

Figure 1.1: Vt0 might grow arbitrarily.

A nav knows some connection between every two vertices. A sub-nav
might not know all connections, but the known ones are stored in K. If a
sub-nav knows a path connecting x and y, then it knows the connections of
all vertex-pairs on that path (they are induced by the original x–y path). A
D-nav knows the connection of two vertices if they are in a common part of
the tree-decomposition D. A geodesic nav does not only know some path
between the vertices but a shortest possible. Note that Pxy stands for P{x,y},
so Pxy is Pyx and in the case of x = y the path Pxy is trivial. Let us now
see how a nav helps making a tree-decomposition connected:

Theorem 1.2.2. Let G be a connected graph, D = (T, (Vt)t∈T ) a tree-
decomposition of G of width w and N = (Pxy){x,y}∈K a D-nav of G. Define
Wt :=

⋃
{x,y}∈[Vt]≤2 V (Pxy) for all t ∈ T . Then (T, (Wt)t∈T ) is a connected

tree-decomposition of G of width ≤ w +
(
w+1

2

)
· (l(N )− 1).

Proof. Since N is a D-nav, all Wt are defined. Vt is a subset of Wt for all
t ∈ T because Pxy contains x and y. So (T1) and (T2) are easy to see. For
(T3) let t1, t2 and t3 be distinct vertices of T with t2 ∈ t1Tt3 and let s be in
Wt1∩Wt3 . We need to show s ∈Wt2 : According to the definition of Wt there
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must be some x1 and y1 ∈ Vt1 and some x3 and y3 ∈ Vt3 such that s ∈ Px1y1
and s ∈ Px3y3 . The set Vt2 separates Vt1 from Vt3 , in particular, Vt2 is an
{x1, y1}–{x3, y3} separator. If s ∈ Vt2 , then s is in Wt2 too, as required.
So Vt2 now has to be a separator without using s. This is only possible if
s is separated by Vt2 from at least one of the sets {x1, y1} or {x3, y3} (say
{x1, y1}), since otherwise there would be an {x1, y1}–{x3, y3} path in the
union of the {x1, y1}–s path and the s–{x3, y3} path avoiding Vt2 . Hence
there have to be two vertices x2 and y2 in Vt2 such that x2 ∈ x1Px1y1s and
y2 ∈ sPx1y1y1. By definition of sub-nav Px2y2 = x2Px1y1y2 and therefore
s ∈ V (Px2y2) ⊆Wt2 .

All Wt are connected and their size is bounded by “size of Vt + all
vertices added”. Every Pxy has at most l(N ) − 1 vertices besides x and y
and at most

(
w+1

2

)
of those paths Pxy have been added.

In order to construct a connected tree-decomposition of small width we
need to search a D-nav of small length, which is achieved by a geodesic nav.
The existence of an arbitrary nav is easy to show, because a spanning tree
gives rise to a nav. A bit more surprising is that it is always possible to find
a geodesic nav.

Theorem 1.2.3. Every connected graph has a geodesic nav.

Proof. Let G = (V,E) be the connected graph with a fixed linear order of
the vertex set. The set of characteristic vectors of geodesic paths in G is by
lexicographical order again linearly ordered. Since there are no two different
geodesic paths on the same vertex set, there is a 1-1-correspondence between
the characteristic vectors of geodesic paths and the paths themselves. So
the set of geodesic paths is ordered lexicographically too. Note that there is
a geodesic path between any two vertices as G is connected. Hence for every
two vertices x and y in G there is exactly one minimal geodesic x–y path.
Declare this path to be Pxy. Then N := (Pxy){x,y}∈[V (G)]≤2 is a path-system
consisting of geodesic paths.

Assume that N is not a nav. Then there are two vertices x and y in V
and a, b ∈ Pxy such that Qab := aPxyb 6= Pab.

Observe that Qab is a geodesic a–b path and Qxy := xPxyaPabbPxyy is
a geodesic x–y path. So they were considered when declaring Pxy and Pab,
but were not chosen because Pab < Qab and Pxy < Qxy. Since Pxy −Qab =
Qxy − Pab, we can extend Qab to Pxy and Pab to Qxy using the same paths
(i.e. without changing the lexicographical ordering). This is a contradiction,
so N is in fact a geodesic nav of G.

Given a tree-decomposition D = (T, (Vt)t∈T ) and a geodesic nav N =
(Pxy){x,y}∈[V (G)]≤2 we can define a geodesic D-nav by collecting only the

needed paths: ND := (Pxy){x,y}∈KD with KD :=
⋃
t∈T
⋃
{x,y}∈Vt [Pxy]

≤2. The
length of this nav ND is bounded by the maximal distance of two vertices,
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which live inside a common part of D. The task has now changed into
finding a tree-decomposition of width tw(G) such that two vertices living
inside a common part have a distance bounded by the tree-width of G and
the length of a longest geodesic cycle.

1.3 Atomic tree-decompositions

In a contradiction proof it might be useful to not be able to refine a tree-
decomposition. Technically this can be achieved by considering the descend-
ing ordered sequences of part-sizes of the possible tree-decompositions of the
graph. A lexicographically minimal such sequence shall be called atomic.
An equivalent version of the same idea that shortens the argument can be
found in [14] (in the proof of Theorem 3 on page 3):

Definition 1.3.1 (atomic tree-decomposition as in [14]). Let G be a graph
and n := |G|. Let the fatness of a tree-decomposition of G be the n-tuple
(a0, . . . , an), where ah denotes the number of parts that have exactly n− h
vertices. A tree-decomposition of lexicographically minimal fatness is called
an atomic tree-decomposition.

Since there always exists a tree-decomposition that has no part of size
> tw(G) + 1 it is clear that an atomic tree-decomposition has width tw(G).

1.3.1 Rearranging tree-decompositions

Let us introduce some constructions that will reveal useful properties of
atomic tree-decompositions. One possible way of rearranging a tree-decom-
position is contracting an edge in its tree:

Lemma 1.3.2. Let G be a graph, D = (T, (Vt)t∈T ) a tree-decomposition of
G and e = rs an edge of T . Define T ′ := T/e, Wt := Vt ∀t ∈ T − {r, s} and
Wte := Vr ∪ Vs. Then D′ := (T ′, (Wt)t∈T ′) is a tree-decomposition of G.

Proof. (T1) and (T2): Every vertex and every edge of G was inside one Vt,
which now lives inside a Wt. (T3): Let t1, t2 and t3 be distinct vertices of
T ′ with t2 ∈ t1T ′t3. Consider the contracted vertex te: If te /∈ {t1, t2, t3},
then Wt1 ∩ Wt3 = Vt1 ∩ Vt3 ⊆ Vt2 = Wt2 . If te = t2, then either r or
s has to be on the path t1Tt3, say r. Since D is a tree-decomposition
Wt1 ∩Wt3 = Vt1 ∩ Vt3 ⊆ Vr ⊆ Wt2 follows. In the case te = t1 (and analog
te = t3) we know t2 ∈ rT t3 and t2 ∈ sT t3, which implies Vt2 ⊆ Vr ∩ Vt3
and Vt2 ⊆ Vs ∩ Vt3 . By taking the union on both sides we get (Wt2 =)Vt2 ⊆
(Vr ∩ Vt3) ∪ (Vs ∩ Vt3) = (Vr ∪ Vs) ∩ Vt3 = Wt1 ∩Wt3 , completing the proof
of (T3).

For atomic tree-decompositions this means, that parts are not contained
in each other:
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Corollary 1.3.3. Let G be a graph and D := (T, (Vt)t∈T ) an atomic tree-
decomposition of G, then Vr * Vs for all distinct r, s ∈ T .

Proof. Assume there are two distinct vertices r and s in T with Vr ⊆ Vs. By
(T3) every vertex from Vr ∩ Vs (which is Vr by assumption) is contained in
every part on the path rTs. Especially the neighbor t0 of r in rTs satisfies
Vr ⊆ Vt0 . Contract the edge e = rt0 in the tree-decomposition D using
Lemma 1.3.2 and note that the contracted part Wte equals Vr ∪ Vt0 = Vt0 .
This means that D′ has exactly one part of size |Vr| less than D (the other
sizes of parts are the same). So D′ has a smaller fatness than the atomic
tree-decomposition D, which cannot be.

Another tool is “separating the components of a subtree-decomposition”.
In order to formalize this we need some notation:

Definition 1.3.4. Let G be a connected graph, D = (T, (Vt)t∈T ) a tree-
decomposition of G and e = st0 ∈ E(T ). Let T0 be the component of T − e
containing t0 and Ts the other one (containing s). Define G0 := G[

⋃
t∈T0 Vt],

Gs := G[
⋃
t∈Ts Vt] and X := Vs ∩ Vt0 . Let C = {C1, . . . , Cn} be the set

of components of G0 − X (equivalently, of G − Gs) and N1, . . . , Nn their
neighborhoods (in X) i.e. N(Cj) = Nj , j = 1, . . . , n. Let T1, . . . , Tn be
disjoint copies of T0 and ϕi : T0 −→ Ti be the canonical map, mapping
every vertex t ∈ T0 to its copy in Ti.

Define Gi := V (Ci) ∪Ni and Wϕi(t) := Vt ∩Gi for t ∈ T0 and 1 ≤ i ≤ n.
Set Wt := Vt for t ∈ Ts and furthermore, T ′ := T − T0 + T1 + . . . + Tn +
sϕ1(t0) + . . .+ sϕn(t0).

Lemma 1.3.5. Let the situation of Definition 1.3.4 be given. Then D′ :=
(T ′, (Wt)t∈T ′) is a tree-decomposition of G.

Proof. (T2): Let e = xy ∈ E(G) be an edge of G, then one part Vt of D
contains both ends of e. If x and y are in Gs, then they are in one unchanged
Vt = Wt (for some t ∈ Ts). If they are not both in Gs, then one of them,
say x, is in one component Ci of G − Gs. Since all the neighbors of x,
in particular y, lie in Ci or in Ni, the ends of the edge e are contained in
Vt ∩Gi = Wϕi(t). This shows (T1) as well.

(T3): Let t′1, t′2 and t′3 ∈ T ′ be given with t′2 ∈ t′1T
′t′3 and let t1, t2

and t3 be their counterparts in T . If there is an index k ∈ {1, . . . , n} with
{t′1, t′2, t′3} ⊆ Ts ∪ Tk ⊆ T ′, then we can find the path t′1T

′t′3 in a canonical
way in T :

� If t′2 is in Ts, then so is at least one of t′1 and t′3, say t′1. (T3) for D
implies Wt′1

∩Wt′3
= Vt1 ∩Wt′3

⊆ Vt1 ∩ Vt3 ⊆ Vt2 = Wt′2
as desired.

� If, on the other side, t′2 ∈ Tk, then so is at least one of t′1 and t′3, say
t′3. This implies Wt′1

∩Wt′3
⊆ Vt1 ∩ (Vt3 ∩ Gk) = (Vt1 ∩ Vt3) ∩ Gk ⊆

Vt2 ∩Gk = Wt′2
as desired.
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In the other case there are distinct indices k, l ∈ {1, . . . , n} such that t′1 ∈ Tk
and t′3 ∈ Tl. Because the Ni are disjoint from the Ci we get the inclusion:

Wt′1
∩Wt′3

= (Vϕ−1
k (t1) ∩Gk) ∩ (Vϕ−1

l (t3) ∩Gl)
⊆ Gk ∩Gl
= (V (Ck) ∪Nk) ∩ (V (Cl) ∪Nl)

= (V (Ck) ∩ V (Cl)︸ ︷︷ ︸
=∅

) ∪ (V (Ck) ∩Nl︸ ︷︷ ︸
=∅

) ∪ (Nk ∩ V (Cl)︸ ︷︷ ︸
=∅

) ∪ (Nk ∩Nl︸ ︷︷ ︸
⊆X

)

⊆ X

� If t′2 ∈ Ts (which means t′2 = s), then Wt′1
∩Wt′3

⊆ X ⊆ Vs = Wt′2
.

� If t′2 /∈ Ts, then it is without loss of generality in sT ′t′1 (the case
t′2 ∈ sT ′t′3 is analog). Consider the vertices s, t′2 and t′1 and use the
fact, that they are all in Ts ∪ Tk. We therefore already know that
Ws ∩Wt′1

⊆Wt′2
implying Wt′1

∩Wt′3
⊆ X(∩Wt′1

) ⊆Ws ∩Wt′1
⊆Wt′2

This completes the proof of (T3). So D′ is a tree-decomposition of G.

1.3.2 Properties of atomic tree-decompositions

Given the situation of Definition 1.3.4, we say that a part Vt with t ∈ T0 is
split, if |Vt ∩Gi| < |Vt| ∀i ∈ {1, . . . , n}. Note that there is a Gi containing
Vt if and only if Vt is not split: If there is a Gi containing Vt, then Vt ∩ Gi
is Vt, which means that |Vt ∩Gi| is not smaller than |Vt| for this special i,
so Vt is not split. If Vt is not split, then there is an i ∈ {1, . . . , n} such that
|Vt ∩Gi| = |Vt|. Since Vt ∩Gi is a subset of Vt, they can only have the same
size, if Gi contains Vt.

Lemma 1.3.6. Let the situation of Definition 1.3.4 be given. If a part
Vt with |Vt| > |X| is split, then the resulting tree-decomposition D′ has a
smaller fatness than D.

Proof. At first let Vr be a part, which is not split (note: r ∈ T0). As we
will see there is at most one k ∈ {1, . . . , n} such that

∣∣Wϕk(r)

∣∣ > |X|: In the
case |Vr| ≤ |X| we even know

∣∣Wϕi(r)

∣∣ ≤ |X| for all i ∈ {1, . . . , n}, since Vr
contains every Wϕi(r). In the other case there has to be at least one vertex
a of G which is in Vr but not in X. This vertex is contained in one of the
components of G0 −X and hence in one Gk. Since Vr is not split we know
that there is a k such that Gk contains Vr, hence the intersection of Vr and
a Gi with i 6= k is a subset of X and therefore

∣∣Wϕi(r)

∣∣ ≤ |X| for all i 6= k.
Let Vr now be a part of maximal size that is split (i.e. all the Wϕi(r)

are smaller than Vr). By prerequisites |Vr| > |X|, therefore every part of
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D, which has at least size |Vr| and is not split, induces only one part of
its original size and the other induced parts are smaller than X. For the
comparison of the fatnesses (a0, . . . , an) of D and (a′0, . . . , a

′
n) of D′ this

means, that the entries before2 an−|Vr| are equal and that a′n−|Vr| is by at

least one smaller than an−|Vr|. So D′ has a (lexicographically) smaller fatness
than D.

If a “big”3 part Vt is split, then the resulting tree-decomposition is
smaller than the original one, which therefore was not atomic. So in an
atomic tree-decomposition no “big” part is split. In particular the “first
part in G0” Vt0 is such a big part, because it contains Vt0 ∩ Vs = X and at
least one more vertex in G−Gs (since otherwise Vt0 would be a subset of Vs,
contradicting Corollary 1.3.3). For justification of the term “atomic” we will
show that even “small” parts are not split in an atomic tree-decomposition:

Lemma 1.3.7. Let the situation of Definition 1.3.4 be given, where D is an
atomic tree-decomposition. Then Vt is not split for all t ∈ T0.

Proof. Suppose t̃0 is a vertex in T0 corresponding to a split part. Let s̃ be
the neighbor of t̃0 on the path t̃0Ts and ẽ := s̃t̃0. Let T̃0 be the component
of T − ẽ containing t̃0 and T̃s the other one (containing s̃). Define G̃0 :=
G[
⋃
t∈T̃0 Vt] and G̃s := G[

⋃
t∈T̃s Vt] furthermore X̃ := Vs̃ ∩ Vt̃0 . Let us first

check that every component of G−G̃s is contained in a component of G−Gs:
By choice of s̃ there is an s̃–s path in T − ẽ. Combining this path with

another path connecting s with a vertex of Ts we get a path from every
vertex of Ts to s̃ in T − ẽ, since Ts does not contain t̃0 and therefore cannot
contain ẽ. This means that every vertex of Ts lives in the component of
T − ẽ which contains s̃. So we have Ts ⊆ T̃s which implies Gs ⊆ G̃s. Every
component of G − G̃s is disjoint from G̃s ⊇ Gs. These components are
connected and are therefore contained in a maximal connected subset of
G − Gs. So every component of G − G̃s is contained in a component of
G − Gs. Now we construct another situation as in Definition 1.3.4 at the
edge ẽ.

By Lemma 1.3.6 we now know that Vt̃0 , being the “big” part next to

Vs̃, is not split in this new situation. So there is a component C̃ of G− G̃s
such that V (C̃) ∪ Ñ contains Vt̃0 , where Ñ is the neighborhood of C̃. The

component C̃ is contained in a component C of G−Gs and therefore C ∪N
contains Ñ , where N is the neighborhood of C. There is an i ∈ {1, . . . ,m},
such that V (C)∪N = Gi. Now we know Vt̃0 ⊆ V (C̃)∪Ñ ⊆ V (C)∪N = Gi.
So Vt̃0 is not split even in the original situation.

After we have seen that there are no split parts in atomic tree-decom-
position, we shall now see why this is useful.

2where the parts of size larger than |Vr| are counted
3big means |Vt| > |X|
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Lemma 1.3.8. Let G be a connected graph, D = (T, (Vt)t∈T ) an atomic
tree-decomposition of G and e = st0 ∈ E(T ). Use the notation of Defini-
tion 1.3.4. Then the neighborhood of C0, the component of G0 −X meeting
Vt0, is all of X.

Proof. Since D is an atomic tree-decomposition, by Lemma 1.3.7, Vt0 is not
split. This means that there is a component Ci such that the corresponding
Gi (which is V (Ci)∪Ni) contains Vt0 and since X does not contain all of Vt0
we get an element a in Vt0 ∩ V (Ci). If there would be another component
meeting Vt0 (in b), then Vt0 would be split, because then every Gi misses at
least one of the vertices a or b and therefore every |Vt0 ∩Gi| is smaller than
|Vt0 |. Now we are allowed to speak of “the component C0 meeting Vt0”.

As we have seen Vt0 is a subset of V (C0) ∪ N0, where N0 is the neigh-
borhood of C0. Since Vt0 contains X we know X ⊆ Vt0 ⊆ V (C0)∪N0. This
implies X ⊆ N0 because X is disjoint from the component C0. So every
vertex of X is a neighbor of a vertex in C0.

Given two vertices u and v living inside one common part Vs. If there
is an edge st0 in T such that both vertices live in Vt0 too, then there is (by
Lemma 1.3.8) a u–v path P (going through the component C0), whose inner
vertices are all in G0 − X. Changing the roles of t0 and s we get another
u–v path Q, whose inner vertices are all in Gs−X. Combining those paths
we get a cycle C := P ∪Q containing u and v, which lies “nice” in G (with
respect to the tree-decomposition). An even nicer fact is, that the used
intersection X always exists, if needed.

Lemma 1.3.9. Let D = (T, (Vt)t∈T ) be an atomic tree-decomposition of a
connected graph G. If u and v are two vertices living inside a common part
Vs, then at least one of the following holds:

� uv is an edge of G.

� There is a neighbor t0 of s in T , such that {u, v} ⊆ Vs ∩ Vt0
Proof. Assume both statements are false, then there is a part Vs containing
two non-adjacent vertices u and v, such that for every neighbor t of s either
u or v (or both) is missing in Vs ∩ Vt.

Define a new tree-decomposition (T ′,W = (Wt)t∈T ′) by “de-contracting
Vs” as follows:

The new tree lives on V (T ′) := V (T )−s+tu+tv where tu and tv are two
new vertices. Let N be the neighborhood of s in T and U := {t ∈ N : v /∈ Vt}
the set of neighbors lacking v. Let e be the edge tutv then the edge set of
T ′ is E(T ′) := E(T − s) + {ttu : t ∈ U} + {ttv : t ∈ N − U} + e. Since
the old neighbors of s are distributed among tu and tv, we know that T ′

is a tree. Let Wt := Vt ∀ t ∈ T − s, Wtu := Vs − v, Wtv := Vs − u and
D′ := (T ′, (Wt)t∈T ′).

12



Let Tu be the component of T ′−e containing tu and analog Tv the other
one (containing tv), then every part corresponding to a vertex in Tu does not
contain v (and vice versa): The parts Wt with t ∈ U ∪ {tu} do not contain
v by definition. For the other parts Wt′ we consider the path P := sT t′ in
D and note that it contains a vertex u′ of U by construction. If v would
be in Wt′ = Vt′ , then it would be in Vs ∩ Vt′ but not in Vu′ , which is a
contradiction. The other statement u /∈ Wt ∀t ∈ Tv can be shown in an
analog way. Now we will see that D′ is a tree-decomposition of G.

(T1) holds, because Vs = Wtu∪Wtv . (T2) holds, because u and v are not
adjacent. For (T3) let t1, t2 and t3 be vertices of T ′ with t2 ∈ t1T ′t3 =: P ′.
By contraction of e we get a t1–t3 path P in T containing t2 (we identify tu
and tv in T ′ with s in T and everything else is unchanged): If t2 is none of
tu and tv, then we know Wt1 ∩Wt3 ⊆ Vt1 ∩ Vt3 ⊆ Vt2 = Wt2 . If t2 is tu, then
Wt1 ∩Wt3 ⊆ Vt1 ∩ Vt3 ⊆ Vt2 = Wtu ∪ {v}. This would only be a problem if
v ∈ Wt1 ∩Wt3 , but in this case both vertices t1 and t3 cannot be in Tu. So
they are in Tv, which means that t2 is not on P ′. This contradiction shows
Wt1 ∩Wt3 ⊆Wt2 . The last case t2 = tv is analog.

Hence D′ is a tree-decomposition which has exactly one part of size |Vs|
less than D and two smaller parts are added. So D′ has a (lexicographically)
smaller fatness than the atomic D. This contradiction shows that at least
one of the statements has to be true.

1.4 C-Closure

The results in this section come from [23].

Now that we have a suitable (atomic) tree-decomposition and know how
to turn it into a connected tree-decomposition (using a nav), we just have
to show that its width is bounded (by a number only depending on the tree-
width and the length of a longest geodesic cycle). The following definition
will be a useful tool, because it exhibits the subgraph that will contain the
desired path of bounded length:

Definition 1.4.1. Let G be a graph and C a set of cycles in G. Define the
C-Closure of a vertex-set X, to be the union of the cycles in C meeting X.
In signs: Cl(X) :=

⋃
C∈CX C with CX := {C ∈ C : C ∩X 6= ∅}.

If every x ∈ X is on a cycle in C then obviously X ⊆ Cl(X). If, on
the other hand, there is a vertex x in X which misses every cycle in C then
x /∈ Cl(X), consequently X * Cl(X). If X ⊆ Y then CX ⊆ CY and therefore
Cl(X) ⊆ Cl(Y ). Since the inclusion Cl(Cl(X)) ⊆ Cl(X) is false in general,
the C-Closure is not a closure-operator. The C-closure of a set helps us
finding an upper bound for the distance of the vertices in that set.
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Lemma 1.4.2. Let G be a graph and C a set of cycles in G whose length is
bounded by k. Let X ⊆ V (G) be a vertex-set with X ⊆ Cl(X). If Cl(X) is
connected then every two vertices in X have a distance ≤ k · (|X| − 1) in G.

Proof. Let us first show that for every bipartition {A,B} of X their C-
closures meet, i.e. Cl(A) ∩ Cl(B) 6= ∅. Since X ⊆ Cl(X) is equivalent to
every vertex in X (which is A∪B) being on a cycle in C, we know A ⊆ Cl(A)
and B ⊆ Cl(B). Every edge xy in Cl(X) lies on a cycle C of C meeting X
(in A or B (or both) since {A,B} is a partition of X). This shows that x
and y are in Cl(A) or Cl(B) (or both), so Cl(X) = Cl(A) ∪ Cl(B).

Choose two vertices a ∈ A and b ∈ B and an a–b path P ⊆ Cl(X) (there
is one, since {a, b} ⊆ A∪B = X ⊆ Cl(X) and Cl(X) is connected). Consider
the the first (i.e. closest to a) vertex y in P which is in Cl(B) (there is one,
since b is a candidate). In the case that y equals a we have found a vertex
in the intersection of Cl(A) and Cl(B). In the other case the predecessor x
of y on P has to be in Cl(A). If Cl(A) contains the edge xy, then y lies in
Cl(A) ∩ Cl(B), in the other case the intersection contains x.

Now construct an auxiliary tree T on X, such that the distance (in
G) of every pair of vertices that are adjacent in T is bounded by k. The
construction begins with an arbitrary vertex of X as a single vertex tree
T0. If the tree Ti is constructed, we can consider the partition {V (Ti), X −
V (Ti)}. Now we know that their C-closures meet, i.e. there are vertices
x ∈ V (Ti) and y ∈ X − V (Ti) and intersecting cycles Cx and Cy in C with
x ∈ Cx and y ∈ Cy. Applying the triangle inequality to x, y and a vertex z
in the intersection of the cycles Cx and Cy, we get an upper bound for the
distance between x and y:

dG(x, y) ≤ dCx(x, z) + dCy(z, y) ≤
⌊
k

2

⌋
+

⌊
k

2

⌋
= 2

⌊
k

2

⌋
≤ k

In order to get the tree Ti+1 we add y and the edge xy to Ti.
At the end of this iteration we get a tree T (living on all of X). For every

pair of vertices in X there is a path connecting them in T . This path has
at most |V (T )| − 1 edges and every pair of adjacent vertices has a distance
of at most k in G. Combining this we get dG(x, y) ≤ k · (|X| − 1) for every
two vertices x and y in X.

Now we want to combine the C-closure with the “nice” cycle that we
found in Section 1.3 (before Lemma 1.3.9). We will use the cycle space, so
notations like “generate” or “+” have to be read in the sense of the edge
space here (whereas “−” remains set-deletion).

Lemma 1.4.3. Let G be a graph and {Gs, G0} a separation of G and X :=
Gs ∩G0 the separator. Let C = P ∪Q be a cycle consisting of two x-y paths
P and Q such that P − {x, y} ⊆ G0 − X and Q ⊆ Gs. Let C be a set of
cycles such that C lies in the subspace they generate.
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Then there exists an x–y path in the C-closure Cl(X) of X.

Proof. Let us proof the following statement first:

Claim. Let G be a graph, P an x–y path in G and Z an element of the
cycle space of G. Then there is an x–y path in P + Z.

Let e := xy be the (theoretical) edge connecting x and y. In the case
e /∈ (P + e) + Z, we know e ∈ P + Z and hence e is the desired x–y path
in P + Z. In the other case e ∈ (P + e) + Z there are two possibilities: On
the one hand the path P might be just the edge e, then P + e is empty.
On the other hand the path P might be not that edge e, then P (being an
x–y path) does not even contain e so P + e = P ∪ e is a cycle. In both
cases (P + e) + Z is an element of the cycle space of G ∪ e and therefore a
disjoint union of cycles in G∪ e. One of these cycles C ′ has to contain e. So
P ′ := C ′ − e ⊆ ((P + e) + Z)− e ⊆ (G ∪ e)− e ⊆ G is the desired x–y path
in P + Z completing the proof of the claim.

Coming back to the proof of the lemma we write C as a sum of cycles
in C, i.e. C =

∑
i∈I Ci. Divide I into the cycles on the “left”, “right” and

“middle” of X by J0 := {j ∈ I : Cj ⊆ G0−X}, Js := {j ∈ I : Cj ⊆ Gs−X}
and J := {j ∈ I : Cj ∩X 6= ∅}. Since every cycle is connected and {Gs, G0}
is a separation of G, every cycle avoiding X lies either in G0−X or in Gs−X
(not in both). Therefore {Js, J, J0} is a partition of I.

By the claim there is an x–y path P ′ in P +
∑

j∈J0 Cj (whose inner
vertices have to lie in G0 −X). Since Q and the Js-cycles are separated by
X from P and the J0-cycles, adding them is taking the disjoint union. So
we have the following inclusion:

P ′ ⊆ P +Q +
∑

j∈J0∪Js Cj
= C +

∑
j∈J0∪Js Cj

=
∑

j∈J0∪J∪Js Cj +
∑

j∈J0∪Js Cj
=

∑
j∈J Cj +∅

⊆ Cl(X)

The last inclusion holds, because all cycles from J hit X and are therefore
contained in Cl(X). So P ′ is the desired path in the C-closure of X.

Now we have all the tools needed to prove the main theorem:

Theorem 1.1.1. The connected tree-width of a graph G is bounded above by
a function of its tree-width and the maximum length k of its geodesic cycles.
Specifically

ctw(G) ≤ tw(G) +

(
tw(G) + 1

2

)
· (k · tw(G)− 1).
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Proof. It is easy to see that the upper bound for the connected tree-width
holds if the graph is a forest and k is defined to be > 0 , so without loss of
generality k > 2 and tw(G) > 1.

It suffices to prove the theorem for 2-connected graphs:

Let G be a (possibly not 2-connected) graph and B be a (2-connected)
block of G. Then the tree-width and the maximum length l of geodesic
cycles of B are bounded above by tw(G) and k, respectively.

So the “2-connected version” of the theorem yields a connected tree-
decomposition of B (for bridges and isolated vertices take a one vertex tree-
decomposition) of width ≤ tw(B) +

(
tw(B)+1

2

)
· (l · tw(B) − 1) ≤ tw(G) +(

tw(G)+1
2

)
· (k · tw(G)−1). We can construct a connected tree-decomposition

of the whole graph, by adding edges (according to the block structure4) to
the disjoint union of the trees (of the connected tree-decompositions of the
blocks of the graph) until we get a tree.

So let G be a 2-connected graph (In particular every vertex and every
edge of G lies on a (geodesic) cycle). We know how to construct a connected
tree-decomposition of width ≤ tw(G)+

(
tw(G)+1

2

)
·(l(N )−1) using a nav and

an atomic tree-decomposition D (Theorem 1.2.2). Because of the existence
of a geodesic nav (Theorem 1.2.3), the length of the used D-nav is bounded
by the maximum distance of two vertices living in a common part of the
used tree-decomposition.

Let C be the set of all geodesic cycles of G and Vs be a part of D. If we
show that Cl(Vs) is connected, then we know (by Lemma 1.4.2), that every
two vertices in Vs have a distance of at most k · (|Vs| − 1) ≤ k · tw(G) in
G. So let u and v be two vertices in Vs. By Lemma 1.3.9 there is either the
edge uv (which is then contained in Cl(Vs)) or there is a neighbor t0 of s in
T , such that u and v are contained in the intersection X := Vs ∩Vt0 . In this
case a corollary of Lemma 1.3.8 is the existence of two u–v paths P and Q,
that form a cycle C = P ∪Q such that P −{x, y} ⊆ G0−X and Q ⊆ Gs (G0

and Gs are defined as in Definition 1.3.4 and form a separation of G). Since
C, being a cycle, lies in the cycle space which is generated by the geodesic
cycles of G (see exercise 32 of chapter 1 in [13]), we can apply Lemma 1.4.3
and get a u–v path in Cl(X) ⊆ Cl(Vs). So for every two vertices of Vs there
is a path in Cl(Vs) connecting them. Since the other vertices of Cl(Vs) lie on
cycles which hit Vs, the C-closure of Vs is connected, as required.

Combining all these pieces, we have shown that G has a connected tree-
width of at most tw(G) +

(
tw(G)+1

2

)
· (k · tw(G)− 1).

4For each cutvertex x of the graph we choose for every block Bi, that contains x, one
vertex ti in the tree (of the tree-decomposition of Bi), such that Vti contains x. Then we
add the edges of a (arbitrary) tree in order to connect all the chosen ti vertices. When
this is done, we do the same procedure for the empty cutset (i.e. we connect the tree-
decompositions of the components of the graph).
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1.5 Duality

1.5.1 Brambles

A useful tool for determining the tree-width of an unknown graph is a bram-
ble:

If we know a tree-decomposition of width k, then we know that the tree-
width of G is ≤ k, but we don’t know how much smaller the tree-width is. If
we additionally know a bramble of order k + 1, then (by tree-width duality
theorem) the tree-width has to be ≥ k, hence it equals k.

Definition 1.5.1. Two vertex sets are touching if they either intersect or
if there is an edge from one to the other. A bramble is a set of pairwise
touching connected vertex sets. A cover of the bramble is a vertex set
which intersects every set of the bramble. The order of the bramble is the
smallest size that a cover of the bramble may have.

The connected order of the bramble is the smallest possible size of a
connected vertex set covering it.

The tree-width duality theorem says that the only reason for large tree-
width is a bramble of large order: It is a reason, because if the graph contains
a bramble of large order (> k), then it has large tree-width (≥ k). And it is
the only one, since if it is gone (no bramble of order > k), then the tree-width
is small (< k), so there can be no other reason which rises the tree-width.

1.5.2 Making it connected

The obvious thing to try is finding a “connected tree-width duality theorem”,
i.e. write a “connected” in front of “tree-width” and see what fits on the
bramble side. The natural guess is the connected order:

Conjecture 1.1.2. Let k ≥ 0 be an integer. A graph has connected tree-
width ≥ k if and only if it contains a bramble of connected order > k.

The backward-direction is an easy corollary of the (easy part of the)
proof of the tree-width duality theorem, because this direction is shown by
the following claim:

Claim (from the proof of theorem 12.3.9. in [13]). Given a bramble B and
a tree-decomposition D, then there is a part of D which covers B.

This direction can be used to determine the connected tree-width of a
cycle (for example):

Example 1.5.2. For a cycle of length n let B := [V (Cn)]
bn2 c
c be the set of all

connected subsets of size
⌊
n
2

⌋
. Let us show that B is a bramble of connected

order
⌈
n
2

⌉
+ 1. After deletion of X ∈ B and its neighborhood, there are
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at most (exactly)
⌈
n
2

⌉
− 2 vertices left. Because those are less than

⌊
n
2

⌋
vertices, there is no element of B inside this rest (i.e. X touches every other
element of B, which is therefore a bramble). After deletion of a connected
set of size ≤

⌈
n
2

⌉
, there are at least

⌊
n
2

⌋
connected vertices left (containing

a non-covered set of B). One more vertex is sufficient to cover B. So B is
a bramble of connected order

⌈
n
2

⌉
+ 1 (i.e. the connected tree-width of a

cycle of length n is at least
⌈
n
2

⌉
). On the other hand there is a connected

tree-decomposition of that cycle consisting of two connected parts of size
≤
⌈
n
2

⌉
+ 1 which cover it (see Figure 1.2 for an example). So the connected

tree-width of a cycle of length n is
⌈
n
2

⌉
.

t1 t2

T

Vt1

Vt2

Figure 1.2: A connected minimum width tree-decomposition of a cycle.

The difficult direction is not that easy to change into the connected
version.

By Theorem 1.1.1 the only two reasons for large connected tree-width
are large tree-width and a long geodesic cycle. If we can show that the
absence of a bramble of large connected order prevents both these reasons,
then we know that the connected tree-width is small (which is the difficult
direction of Conjecture 1.1.2, at least qualitatively). So the next thing to
proof is, that a graph with a long geodesic cycle contains a bramble of large
connected order (i.e. that a long geodesic cycle really is a reason for large
connected tree-width):

Lemma 1.5.3. If a graph G contains a geodesic cycle C of length n, then

G has a bramble of connected order ≥
⌈
n
2

⌉
+ 1, namely: B := [V (C)]

bn2 c
c ,

the set of all connected subsets of C which have size exactly
⌊
n
2

⌋
.
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Proof. Let X be a connected vertex set in G covering B. We want to show
|X| >

⌈
n
2

⌉
:

1. Case: |X ∩ C| = 2. Then n has to be even and the two vertices x0 and
x1 in this intersection |X ∩ C| have a distance of n

2 in C, because otherwise
there would be a bramble set not covered by X. Since C is geodesic, the
distance of x0 and x1 in G is (at least) n

2 . Because X is connected, there is
an x0–x1 path inside X, which has at least n

2 + 1 vertices, so |X| >
⌈
n
2

⌉
.

2. Case: |X ∩ C| > 2. Then there are three vertices x0, x1 and x2 in
X ∩ C. Let Pi be the xi−1–xi+1 path in C not containing the vertex xi,
i ∈ {0, 1, 2} (indices modulo 3). By minimization of the maximal length
of these paths we can achieve that Pi is the shorter xi−1–xi+1 path in C:
Choose the three vertices in X∩C such that the maximal size m of the three
corresponding paths Pi is minimal. Suppose |P1| = m ≥

⌊
n
2

⌋
+ 2, then there

is enough space for a bramble set on P1 between x0 and x2. This set is not
covered by x0, x1 and x2, so there has to be another vertex in X which takes
care of it. Replacing x1 by this vertex we get three new paths Q0, Q1 and
Q2 which have all less than m vertices. Q0 and Q2 are proper subpaths of
P1 and therefore have less than m vertices. Q1 flipped from P1 to the other
side of the cycle, so there are only n− (

⌊
n
2

⌋
+ 2) + 2 =

⌈
n
2

⌉
<
⌊
n
2

⌋
+ 2 ≤ m

vertices left for it. This contradiction to the minimality of m shows that
|P1| ≤

⌊
n
2

⌋
+1 which means that Pi is the shorter of the two xi−1–xi+1 paths

in C.
Since X is connected there is an x1–x2 path P ⊆ X and an x0–P path

X0 ⊆ X. Let z := P ∩ X0, X1 := x1Pz and X2 := x2Pz. So Xi is
a path inside X starting at xi and ending in z (for every i ∈ {0, 1, 2}).
Since Pi is geodesic and Xi−1 ∪ Xi+1 is another xi−1–xi+1 path, we know
|Xi−1| + |Xi+1| − 1 ≥ |Pi|. Since all the Pi together form the cycle C, we
know |P0|+ |P1|+ |P2| − 3 = n. Combining this, we get:

2(|X0|+ |X1|+ |X2|)− 3

=(|X1|+ |X2| − 1) + (|X0|+ |X2| − 1) + (|X0|+ |X1| − 1)

≥ |P0|+ |P1|+ |P2|
=n+ 3

Rearranging this, we get:

(|X0|+ |X1|+ |X2|) ≥
n

2
+ 3

We can use this to estimate the size of X, because all Xi are contained in
X and have only z in common:

|X| ≥ (|X0|+ |X1|+ |X2|)− 2 ≥ n

2
+ 1 >

⌈n
2

⌉
This shows, that whenever X is a connected set in G which covers B, its
size has to be larger than

⌈
n
2

⌉
. So B is indeed a bramble of connected order

≥
⌈
n
2

⌉
+ 1.
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Note that Lemma 1.5.3 does not naively extend to arbitrary geodesic
subgraphs: Let G be the graph indicated in Figure 1.3 and H = G − x
the considered geodesic subgraph. Then there is a bramble of maximal
connected order 5 in H, namely all 9-element connected subsets of the outer
18-cycle C, which has connected order 4 in G.

x

C

Figure 1.3: A drawing of the example graph G.

It is unknown if there is a graph and a geodesic subgraph such that every
maximal connected order bramble of the subgraph has a smaller connected
order in the whole graph. In the above example, a bramble of maximal
connected order in H whose connected order does not go down in G is the
set of all connected 4-element subsets of an 8-cycle in H.

Now we can show the qualitative version of the difficult direction of
Conjecture 1.1.2:

Theorem 1.1.3. Let k ≥ 0 be an integer. There is a function g : N → N,
such that any graph with no bramble of connected order > k has connected
tree-width < g(k).

Proof. Let G be a graph which has no bramble of connected order > k.
Since k ≤ 2 implies that G is a forest, we can assume k > 2.

If the graph has a geodesic cycle of length ≥ 2k, then, by Lemma 1.5.3,
it has a bramble of connected order ≥

⌈
2k
2

⌉
+1 = k+1 (which is a contradic-

tion). So there is no geodesic cycle of length > 2k− 1 in G. The tree-width
of G is bounded too, because:

G has no bramble of connected order > k

⇒ G has no bramble of order > k

⇒ tw(G) < k

The last implication follows from the tree-width duality theorem.
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By Theorem 1.1.1 the connected tree-width of G is bounded by tw(G) +(
tw(G)+1

2

)
· ((2k− 1) · tw(G)− 1) which is smaller than k+

(
k+1

2

)
· ((2k− 1) ·

k− 1) =: g(k), a function only depending on k (note that this function even
works for the cases k ≤ 2).
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Chapter 2

Infinite gammoids

The results in this chapter come from [2, 3].

2.1 Introduction

Infinite matroid theory has seen vigorous development since Bruhn et al [10]
in 2010 gave five equivalent sets of axioms for infinite matroids in response
to a problem proposed by Rado [29] (see also Higgs [18] and Oxley [25]).
In this chapter, we continue this ongoing project by focusing on the class
of gammoids, which originated from the transversal matroids introduced by
Edmonds and Fulkerson [16]. A transversal matroid can be defined by taking
as its independent sets the subsets of a fixed vertex class of a bipartite graph
matchable to the other vertex class. Perfect [27] generalized transversal ma-
troids to gammoids by replacing matchings in bipartite graphs with disjoint
directed paths in digraphs. Later, Mason [21] started the investigation of a
subclass of gammoids known as strict gammoids.

To be precise, let a dimaze (short for directed maze) be a digraph with
a fixed subset of the vertices of out-degree 0, called the exits. A dimaze
contains another dimaze, if, in addition to digraph containment, the exits
of the former include those of the latter. In the context of digraphs, any
path or ray (i.e. infinite path) is forward oriented. A set of vertices of (the
digraph of) the dimaze is called independent if it is linkable to the exits by
a linkage, i.e. a collection of disjoint paths. The set of all linkable sets is the
linkability system of the dimaze. A strict gammoid is a matroid isomorphic
to one defined on the vertex set of a dimaze, whose set of independent sets
is the linkability system. Any dimaze defining a given strict gammoid is a
presentation of that strict gammoid. A gammoid is a matroid restriction of
a strict gammoid.

Mason proved that every finite dimaze defines a matroid. When a di-
maze is infinite, Perfect gave sufficient conditions for when some subset of
the linkability system gives rise to a matroid. Any such matroid is fini-
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tary, in the sense that a set is independent as soon as all its finite subsets
are. Since finitary matroids were the only ones known at that time, infinite
dimazes whose linkability systems are non-finitary were not considered to
define matroids.

With infinite matroids canonically axiomatized in a way that allows for
non-finitary matroids (see the definition in Section 2.2), a natural question
is whether every infinite dimaze now defines a matroid. In general, the an-
swer to this question is still negative, as the linkability system may fail to
satisfy one of the infinite matroid axioms (IM), which asks for the existence
of certain maximal independent sets. However, in Section 2.3 we show that
the other matroid axioms hold in any linkability system (where (I1) and
(I2) are trivial). Furthermore, investigating a proof of Pym’s linkage theo-
rem [28], we prove that for a dimaze, containing an alternating comb (see
Section 2.2 for the definition) is the unique obstruction to a characterization
of maximally linkable (vertex) sets as being linkable onto the exits. This is
used to show that any dimaze that does not contain an alternating comb
defines a matroid.

In other words, a dimaze whose linkability system fails to define a ma-
troid contains an alternating comb. Conversely, a dimaze containing an
alternating comb may still define a matroid. An alternating comb itself
does, in fact that matroid has another presentation which does not contain
an alternating comb. This does not hold in general, since in Section 2.4.2
we construct a strict gammoid such that any dimaze defining this matroid
contains an alternating comb.

Recall that by definition, the class of gammoids is closed under matroid
deletion. A pleasant property of the class of finite gammoids is that it is
also closed under matroid contractions, and hence, under taking minors. In
contrast, whether the class of all gammoids, possibly infinite, is minor-closed
is an open question investigated in Section 2.5.

A standard proof of the fact that finite gammoids are minor-closed as
a class of matroids proceeds via duality [20]. The proof of this fact can be
extended to infinite dimazes whose underlying (undirected) graph does not
contain any ray, but it breaks down when rays are allowed. However, by
developing the concept of Q-shifting we are able to prove that the class of
gammoids that admit a presentation not containing any outgoing comb is
minor-closed. If we do allow outgoing combs, combining Q-shifting with a
proof of Pym’s linkage theorem [28], we can still show that any finite-rank
minor of an infinite gammoid is a gammoid.

In [12], Carmesin used a topological approach to extending finite gam-
moids, in order to allow infinite paths in a linkage. It turned out that these
(strict) topological gammoids are finitary, which leads to a characterization
of finitary strict gammoids in terms of the defining dimaze. In Section 2.5.2,
we use Q-shifting to show that every topological gammoid is a gammoid.
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This implies that the class of topological gammoids coincides with that of
finitary gammoids and is used to show that the class of topological gammoids
is minor-closed.

In Section 2.6, we turn to duality. Recall that a transversal matroid is a
matroid isomorphic to one defined by taking a fixed vertex class of a bipartite
graph as the ground set and its matchable subsets as the independent sets.
Ingleton and Piff [20] proved constructively that finite strict gammoids and
finite transversal matroids are dual to each other, a key fact to the result
that the class of finite gammoids is closed under duality. In contrast, an
infinite strict gammoid need not be dual to a transversal matroid, and vice
versa (Examples 2.6.12 and 2.6.19). Despite these examples, it might still be
possible that the class of infinite gammoids is closed under duality. However,
we will see in Section 2.6.3 that there is a gammoid, which is not dual to
any gammoid.

In Section 2.6.1, we aim to describe the duals of the strict gammoids
that admit a presentation not containing any alternating comb. It turns
out that there exists a strict gammoid in this class that is not dual to any
transversal matroid. For this reason, we first extend transversal matroids
to a larger class termed path-transversal matroids. Then we prove that a
strict gammoid that admits a presentation not containing any alternating
comb is dual to a path-transversal matroid. We remark that the theorem
is used in [1] to characterize cofinitary transversal matroids and cofinitary
strict gammoids.

2.2 Preliminaries

In this section, we present relevant definitions. For notions not found here,
we refer to [10] and [26] for matroid theory, and [13] for graph theory.

2.2.1 Infinite matroids

Given a set E and a family of subsets I ⊆ 2E , let Imax denote the maximal
elements of I with respect to set inclusion. For a set I ⊆ E and x ∈ E, we
also write I + x, I − x for I ∪ {x} and I \ {x} respectively.
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Definition 2.2.1. [10] A matroid M is a pair (E, I) where E is a set and
I ⊆ 2E which satisfies the following:

(I1) ∅ ∈ I.

(I2) If I ⊆ I ′ and I ′ ∈ I, then I ∈ I.

(I3) For all I ∈ I \ Imax and I ′ ∈ Imax, there is an x ∈ I ′ \ I such that
I + x ∈ I.

(IM) Whenever I ∈ I and I ⊆ X ⊆ E, the set {I ′ ∈ I : I ⊆ I ′ ⊆ X} has a
maximal element.

For M = (E, I) a matroid, E is the ground set, a subset of which is
independent if it is in I; otherwise dependent. A base of M is a maximal
independent subset of E, while a circuit is a minimal dependent subset. Let
C(M) be the set of circuits of M . A circuit of size one is called a loop. We
usually identify a matroid with its set of independent sets, and so write an
independent set I is in M .

Equivalently, matroids can be defined with base axioms. A collection B
of subsets of E is the set of bases of a matroid if and only if the following
three axioms hold:

(B1) B 6= ∅.

(B2) Whenever B1, B2 ∈ B and x ∈ B1 \B2, there is an element y of B2 \B1

such that (B1 − x) + y ∈ B.

(BM) The set I of all subsets of elements in B satisfies (IM).

The dual matroid M∗ of M has as bases precisely the complements of
bases of M . Given X ⊆ E, M restricted to X is the matroid (X, I∩2X), and
is denoted by M�X or M \Xc. The contraction of M to X, M.X or equally
the matroid obtained by contracting Xc, M/Xc is defined to be (M∗�X)∗.
Let X and Y be two disjoint subsets of E. Then M/X \ Y = M \ Y/X
is a minor of M obtained by contracting X and deleting Y . The following
standard fact simplifies investigations of minors.

Lemma 2.2.2. Let M be a matroid, C,D ⊆ E with C ∩ D = ∅ and let
M ′ := M/C \ D be a minor. Then there is an independent set S and a
coindependent set R such that M ′ = M/S \R.

Proof. Let S be the union of a base of M�C and a base of M.D and let R :=
(C ∪D)\S. In particular S is independent (by [10, Corollary 3.6]). Since R
is disjoint from some base extending S in E \ (C ∪D), it is coindependent.

26



In particular, any base of M/S \R spans M/S. For a set B ⊆ E \ (C ∪D)
we have:

B ∈ B(M \D/C)

⇔B ∪ (C ∩ S) ∈ B(M \D)

⇔B ∪ (C ∩ S) ∪ (D ∩ S) ∈ B(M)

⇔B ∪ S ∈ B(M)

⇔B ∈ B(M/S)

⇔B ∈ B(M/S \R).

Let M = (E, I) be a set system. The set Ifin consists of the sets which
have all their finite subsets in I. Mfin = (E, Ifin) is called finitarisation of
M . M is called finitary if M = Mfin; or equivalently if all circuits of M
are finite. Applying Zorn’s Lemma one see that finitary set systems always
satisfy (IM). M is called nearly finitary if for any maximal element B ∈ Ifin

there is an I ∈ I such that |B \ I| < ∞, or equivalently any base of M
can be extended to a base of the finitarisation adding only finitely many
elements. Nearly finitary matroids first appeared in [5] as a superclass of
finitary matroids in which one can have an infinite matroid union theorem.

2.2.2 Linkability system

All the digraphs considered in this chapter do not have any loops or parallel
edges. Given a digraph D, let V := V (D) and B0 ⊆ V be a set of sinks.
Call the pair (D,B0) a dimaze1 and B0 the (set of) exits. Given a (directed)
path or ray P , Ini(P ) and Ter(P ) denote the initial and the terminal vertex
(if exists) of P , respectively. Let P be a set of paths and rays, then Ini(P) =
{Ini(P ) : P ∈ P} and Ter(P) = {Ter(P ) : P ∈ P}. A linkage P is a set
of (vertex disjoint) paths ending in B0. A set A ⊆ V is linkable if there is
a linkage P from A to B, i.e. Ini(P) = A and Ter(P) ⊆ B; P is onto B if
Ter(P) = B.

Note that, by adding trivial paths if needed:

Any linkable set in (D,B0) can be extended to one linkable onto B0.
(2.1)

Definition 2.2.3. Let (D,B0) be a dimaze. The pair of V (D) and the set
of linkable subsets is denoted by ML(D,B0). A strict gammoid is a matroid
isomorphic to ML(D,B0) for some (D,B0). A gammoid is a restriction of
a strict gammoid. Given a gammoid M , (D,B0) is called a presentation of
M if M = ML(D,B0)�X for some X ⊆ V (D).

1Dimaze is short for directed maze.

27



If D′ is a subdigraph of D and B′0 ⊆ B0, then (D,B0) contains (D′, B′0)
as a subdimaze. A dimaze (D′, B′0) is a subdivision of (D,B0) if it can be
obtained from (D,B0) as follows. We first add an extra vertex b0 and the
edges {(b, b0) : b ∈ B0} to D. Then the edges of this resulting digraph are
subdivided to define a digraph D′′. Set B′0 as the in-neighbourhood of b0
in D′′ and D′ as D′′ − b0. Note that this defaults to the usual notion of
subdivision if B0 = ∅.

The following dimazes play an important role in our investigation. An
undirected ray is a graph with an infinite vertex set {xi : i ≥ 1} and the edge
set {xixi+1 : i ≥ 1}. We orient the edges of an undirected ray in different
ways to construct three dimazes:

1. RA by orienting (xi+1, xi) and (xi+1, xi+2) for each odd i ≥ 1 and the
set of exits is empty;

2. RI by orienting (xi+1, xi) for each i ≥ 1 and x1 is the only exit;

3. RO by orienting (xi, xi+1) for each i ≥ 1 and the set of exits is empty.

A subdivision of RA, RI and RO is called alternating ray, incoming ray
and (outgoing) ray, respectively.

Let Y = {yi : i ≥ 1} be a set disjoint from X. We extend the above
types of rays to combs by adding edges (and their terminal vertices) and
declaring the resulting sinks to be the exits:

1. CA by adding no edges to RA;

2. CI by adding the edges (xi, yi) to RI for each i ≥ 2;

3. CO by adding the edges (xi, yi) to RO for each i ≥ 2.

Furthermore we define the dimaze F∞ by declaring the sinks of the
digraph ({v, vi : i ∈ N}, {(v, vi) : i ∈ N}) to be the exits.

Any subdivision of CA, CI , CO and F∞ is called alternating comb,
incoming comb, outgoing comb and linking fan, respectively. The subdivided
ray in any comb is called the spine and the paths to the exits are the spikes.

A dimaze (D,B0) is called H-free for a set H of dimazes if it does not
have a subdimaze isomorphic to a subdivision of an element in H. A (strict)
gammoid is called H-free if it admits an H-free presentation. In general, an
H-free gammoid may admit a presentation that is not H-free (see Figure 2.5
for H = {CA}).

Given a path P and a vertex w on P , Pw denotes the segment from the
initial vertex up to w and Pẘ the same segment with w excluded. We use
PwQ for the concatenation of Pw and wQ where Q is a path containing w;
and other similar notations. We also identify P with its vertex set.

Let (D,B0) be a dimaze and Q a set of disjoint paths or rays (usually a
linkage). A Q-alternating walk is a sequence W = w0e0w1e1 . . . of vertices
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wi and distinct edges ei of D not ending with an edge, such that every
ei ∈ W is incident with wi and wi+1, and the following properties hold for
each i ≥ 0 (and i < n in case W is finite, where wn is the last vertex):

(W1) ei = (wi+1, wi) if and only if ei ∈ E(Q);

(W2) if wi = wj for any j 6= i, then wi ∈ V (Q);

(W3) if wi ∈ V (Q), then {ei−1, ei} ∩ E(Q) 6= ∅ (with e−1 := e0).

Let P be another set of disjoint paths or rays. A P-Q-alternating walk
is a Q-alternating walk whose edges are in E(P)∆E(Q), and such that any
interior vertex wi satisfies

(W4) if wi ∈ V (P), then {ei−1, ei} ∩ E(P) 6= ∅.
TwoQ-alternating walksW1 andW2 are disjoint if they are edge disjoint,

V (W1) ∩ V (W2) ⊆ V (Q) and Ter(W1) 6= Ter(W2).
Suppose that a digraph D, a set A ⊆ V (D) and a linkage P from a

subset of A to some B ⊆ V are given. An A–B (vertex) separator S is a set
of vertices such that every path from A to B intersects S, and S is on P if
it consists of exactly one vertex from each path in P. Given A,B ⊆ V , the
Aharoni-Berger-Menger’s theorem [4] states that there exists a linkage from
a subset of A to B and an A–B separator on this linkage.

We recall a classical result due to Grünwald [17], which can be formulated
as follows (see also [13, Lemmas 3.3.2 and 3.3.3]).

Lemma 2.2.4. Let (D,B0) be a dimaze, Q a linkage, and Ini(Q) ⊆ X ⊆ V .

(i) If there is a Q-alternating walk from X \ Ini(Q) to B0 \ Ter(Q), then
there is a linkage Q′ with Ini(Q) ( Ini(Q′) ⊆ X onto Ter(Q) (
Ter(Q′) ⊆ B0.

(ii) If there is not any Q-alternating walk from X \ Ini(Q) to B0 \Ter(Q),
then there is a X–B0 separator on Q.

A set X ⊆ V in (D,B0) is topologically linkable if X admits a topological
linkage, which means that from each vertex x ∈ X, there is a topological path
Px, i.e. Px is the spine of an outgoing comb, a path ending in the centre of
a linking fan, or a path ending in B0, such that Px is disjoint from Py for
any y 6= x. Clearly, a finite topologically linkable set is linkable. Denote by
MTL(D,B0) the pair of V and the set of the topologically linkable subsets.
Carmesin gave the following connection between dimazes (not necessarily
defining a matroid) and topological linkages.

Corollary 2.2.5. [12, Corollary 5.7] Given a dimaze (D,B0), MTL(D,B0) =
ML(D,B0)fin. In particular, MTL(D,B0) is always a finitary matroid.

A strict topological gammoid is a matroid of the form MTL(D,B0), and
a restriction of which is called a topological gammoid.
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2.2.3 Transversal system

Let G = (V,W ) be a bipartite graph and call V and W , respectively, the left
and the right vertex class of G. A subset I of V is matchable onto W ′ ⊆W
if there is a matching m of I such that m∩ V = I and m∩W = W ′; where
we are identifying a set of edges (and sometimes more generally a subgraph)
with its vertex set. Given a set X ⊆ V or X ⊆ W , write m(X) for the set
of vertices matched to X by m and m�X for the subset of m incident with
vertices in X.

Definition 2.2.6. Given a bipartite graph G = (V,W ), the pair of V and
all its matchable subsets is denoted by MT (G). A transversal matroid is a
matroid isomorphic to MT (G) for some G. Given a transversal matroid M ,
G is a presentation of M if M = MT (G).

In general, a transversal matroid may have different presentations. The
following is a well-known fact (see [9]).

Lemma 2.2.7. Let G = (V,W ) be a bipartite graph. Suppose there is a
maximal element in MT (G), witnessed by a matching m0. Then MT (G) =
MT (G \ (W −m0)), and N(W −m0) is a subset of every maximal element
in MT (G).

In case MT (G) is a matroid, the second part states that N(W − m0)
is a set of coloops. From now on, wherever there is a maximal element in
MT (G), we assume that W is covered by a matching.

Given a matching m, an m-alternating walk is a walk such that the
consecutive edges alternate in and out of m in G. Given another matching
m′, an m-m′-alternating walk is a walk such that consecutive edges alternate
between the two matchings.

A standard compactness proof shows that a left locally finite bipartite
graph G = (V,W ), i.e. every vertex in V has finite degree, defines a finitary
transversal matroid.

Lemma 2.2.8 ([22]). Every left locally finite bipartite graph defines a fini-
tary transversal matroid.

The following corollary is a tool to show that a matroid is not transversal.

Lemma 2.2.9. Any infinite circuit of a transversal matroid contains an
element which does not lie in any finite circuit.

Proof. Let C be an infinite circuit of some MT (G). Applying Lemma 2.2.8
on the restriction of MT (G) to C, we see that there is a vertex in C having
infinite degree. However, such a vertex does not lie in any finite circuit.
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B0

I

... . .
....

Figure 2.1: A locally finite dimaze which does not define a matroid

2.3 Dimazes and matroid axioms

The results in the following two sections come from [2].

Mason [21] (see also [27]) showed that given a finite digraph D, for any
B0 ⊆ V , ML(D,B0) is a matroid. However, this is not the case for infinite
digraphs. For example, let D be a complete bipartite graph between an
uncountable set X and a countably infinite set B0 with all the edges directed
towards B0. Then I ⊆ X is independent if and only if I is countable, so
there is not any maximal independent set in X. Hence, ML(D,B0) does not
satisfy the axiom (IM).

Example 2.3.1. A counterexample with a locally finite digraph is the half-
grid. Define a digraph D by directing upwards or leftwards the edges of the
subgraph of the grid Z≥0 × Z≥0 induced by {(x, y) : y > 0 and y ≥ x ≥ 0}.
The half-grid is the dimaze (D,B0) where B0 := {(0, y) : y > 0}; see
Figure 2.1. Then I := {(x, x) : x > 0} is linkable onto a set J ⊆ B0 if
and only if J is infinite. Therefore, I ∪ (B0 \ J) is independent if and only
if J is infinite. Hence, I does not extend to a maximal independent set in
X := I ∪B0.

The aim of this section is to give a sufficient condition for a dimaze
(D,B0) to define a matroid. As (I1) and (I2) hold for ML(D,B0), we need
only consider (I3) and (IM).

2.3.1 Linkability system and proof of (I3)

We prove that (I3) holds in any ML(D,B0) using a result due to Grünwald
[17].

Lemma 2.3.2. Let (D,B0) be a dimaze. Then ML(D,B0) satisfies (I3).
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Proof. Let I,B ∈ML(D,B0) such that B is maximal but I is not. Then we
have a linkage Q from B and another P from I. We may assume P misses
some v0 ∈ B0.

If there is an alternating walk with respect to P from (B ∪ I) \ V (P) to
B0 \ V (P), then by Lemma 2.2.4(i), we can extend I in B \ I.

On the other hand, if no such walk exists, we draw a contradiction to
the maximality of B. In this case, by Lemma 2.2.4(ii), there is a (B∪ I)–B0

separator S on P. For every v ∈ B, let Qv be the path in Q starting from v.
Let sv be the first vertex of S that Qv meets and Pv the path in P containing
sv. Let us prove that the set Q′ = {QvsvPv : v ∈ B} is a linkage.

Suppose v and v′ are distinct vertices inB such thatQvsvPv andQv′sv′Pv′

meet each other. As P and Q are linkages, without loss of generality, we
may assume Qvsv meets sv′Pv′ at some s /∈ S. Then QvsPv′ is a path from
B to B0 avoiding the separator. This contradiction shows that Q′ is indeed
a linkage from B to B0. As Q′ does not cover v0, B + v0 is independent
which contradicts to the maximality of B.

2.3.2 Linkage theorem and (IM)

Since (I3) holds for any ML(D,B0), it remains to investigate (IM). Recall
that for any finite digraph D and B0 ⊆ V , the following holds for (D,B0):

A set is maximally independent if and only if it is linkable onto the exits.
(†)

When D is infinite, (†) need not hold; for instance, the half grid in Exam-
ple 2.3.1, which does not even define a matroid. It turns out that there
are always non-maximal independent sets linkable onto the exits in a di-
maze that does not define a matroid. To prove this, we will use the linkage
theorem [28] (see also [15]) and the infinite Menger’s theorem [4].

Now the natural question is: in which dimazes is every set, that is linkable
onto the exits, a maximal independent set? Consider the alternating comb
given in Figure 2.5a. Using the notation there, the set A = {ai : i ≥ 1}
can be linked onto B0 by the linkage {(ai, bi−1) : i ≥ 1} or to B0 − b0 by
the linkage {(ai, bi) : i ≥ 1}. Hence, A is a non-maximal independent set
that is linkable onto B0. More generally, if a dimaze (D,B0) contains an
alternating comb C, then the vertices of out-degree 2 on C together with
B0 − C is a non-maximal set linkable onto B0. So an answer to the above
question must exclude dimazes containing an alternating comb. We will
prove that dimazes without any alternating comb are precisely the answer.

One might think that the following proof strategy should work: If the
characterization of maximal independent sets does not hold, then there are
two linkages, a blue one from a set and a red one from a proper superset,
both covering the exits. To construct an alternating comb, one starts with
finding an alternating ray. For that, a first attempt is to “alternate” between
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the red and blue linkages, i.e. to repeat the following: go forward along the
red linkage, change to the blue one at some common vertex, and then go
backwards on the blue linkage, and change again to the red one. It is not the
case that this construction always gives rise to an alternating ray (because
vertices might be visited twice). But supposing that we do get an alternating
ray, a natural way to extend it to an alternating comb is to use the terminal
segments of one fixed linkage. However, this alternating ray can have two
distinct vertices of in-degree 2 which lie on the same path of the fixed linkage.

Appropriate choices to alternate between the linkages will be provided
by the proof of the linkage theorem of Pym [28]. So we give a sketch of the
proof, rephrased for our purpose.

Linkage Theorem. Let D be a digraph and two linkages be given: the
“red” one, P = {Px : x ∈ XP}, from XP onto YP and the “blue” one,
Q = {Qy : y ∈ YQ}, from XQ onto YQ. Then there is a set X∞ satisfying
XP ⊆ X∞ ⊆ XP ∪ XQ which is linkable onto a set Y∞ satisfying YQ ⊆
Y∞ ⊆ YQ ∪ YP .

Sketch of proof. 2 We construct a sequence of linkages converging to a link-
age with the desired properties. For each integer i ≥ 0, we will specify a
vertex on each path in P. For each x ∈ XP , let f0

x := x. Let Q0 := Q. For
each i > 0 and each x ∈ XP , let f ix be the last vertex v on f i−1

x Px such that

2 We find that the following story makes the proof more intuitive. Imagine that a
directed path in a linkage corresponds to a pipeline which transports water backwards
from a pumping station located at the terminal vertex of this path to its initial vertex.
At the initial vertex of every red pipeline, there is a farm whose farmer is happy if and
only if his farm is supplied with water. The water from every blue pipeline flows into the
desert at the initial vertex, even if there is a farm.

The story starts on day 0 when suddenly all the red pumping stations are broken. At
the beginning of each day, every farmer follows the rule:

“If you are unhappy, then move onward along your red pipeline until you
can potentially get some water.”

So the unhappy farmers take their toolboxes and move along their pipelines. Every farmer
stops as soon as he comes across a pipeline/pumping station which still transports water
and manipulates it in such a way that all the water flows into his red pipeline and then
to his farm. If a pipeline has been manipulated by more than one farmer, then the one
who is the closest to the pumping station gets the water, “stealing” it from the others.
When a farmer arrives at his pumping station, he repairs it, but only if he cannot steal.
We assume that every farmer needs a full day for the whole attempt to get water; so he
realizes that someone else has stolen his water only at the end of the day. The story ends
when every farmer is happy.

A proof of the linkage theorem can be derived by examining the flow of water and the
movement of the farmers. In particular, each pumping station supplies its final farm and
each farmer reaches his final position (where he stays happily) after only finitely many
days. It turns out that the water flow at the end is a linkage covering the red initial and
the blue terminal vertices, as required by the theorem.
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(f i−1
x Pxv̊) ∩ V (Qi−1) = ∅.3 For y ∈ YQ, let tiy be the first vertex v ∈ Qy

such that the terminal segment v̊Qy does not contain any f ix.4 Let

Ai := {Qy ∈ Q : tiy 6= f ix ∀x ∈ XP},
Bi := {Pxf ixQy : x ∈ XP , y ∈ YQ and f ix = tiy},
Ci := {Px ∈ P : f ix ∈ YP and f ix 6= tiy ∀y ∈ YQ},

and Qi := Ai ∪ Bi ∪ Ci.
Inductively, one can show that Qi is a linkage which covers YQ. Since

for any x and j ≥ i, Pxf ix ⊇ Pxf jx, it can be shown that tiyQy ⊆ tjyQy for any
y. As all the paths Px and Qy are finite, there exist integers ix, iy ≥ 0 such

that f ixx = fkx , t
iy
y = tly for all integers k ≥ ix and l ≥ iy. Thus, we define

f∞x := f ixx , t
∞
y := t

iy
y and

A∞ := {Qy ∈ Q : t∞y 6= f∞x ∀x ∈ XP},
B∞ := {Pxf∞x Qy : x ∈ XP , y ∈ YQ and f∞x = t∞y },
C∞ := {Px ∈ P : f∞x ∈ YP and f∞x 6= t∞y ∀y ∈ YQ}.

Then Q∞ := A∞ ∪B∞ ∪C∞ covers YQ. Moreover, Q∞ is a linkage. Indeed,
as t∞y Qy ⊆ tiyQy for any i, the intersection of Pxf

∞
x and t∞y Qy is either empty

or the singleton of f∞x = t∞y . It remains to argue that XP ⊆ Ini(Q∞). Let
x ∈ XP . If f∞x = t∞y for some y, then x ∈ Ini(B∞). Otherwise, there exists

an integer j such that f∞x = f jx and f∞x 6= tjy for any y. Since f j+1
x = f jx, it

follows that f jx is on a path in Cj , so f∞x ∈ YP . Hence, x ∈ Ini(C∞).

We can now prove the following.

Theorem 2.3.3. Given a dimaze (D,B0), suppose that every independent
set linkable onto the exits is maximal, then the dimaze defines a matroid.

Proof. Since (I1) and (I2) are obviously true for ML(D,B0), and that (I3)
holds by Lemma 2.3.2, to prove the theorem, it remains to check that (IM)
holds.

Let I be independent and a set X ⊆ V such that I ⊆ X be given.
Suppose there is a “red” linkage from I to B0. Apply the Aharoni-Berger-
Menger’s theorem on X and B0 to get a “blue” linkage Q from B ⊆ X to
B0 and an X–B0 separator S on the blue linkage. Let H be the subgraph
induced by those vertices separated from B0 by S with the edges going out
of S deleted. Since every linkage from H to B0 goes through S, a subset of
V (H) is linkable in (D,B0) if and only if it is linkable in (H,S). Use the

3The farmer at f i−1
x moves onward to the closest vertex where there was still water at

the beginning of day i− 1 or, if no such vertex exists, to the pumping station of Px.
4If f ix = tiy, the farmer at f ix is the closest to the pumping station at y and steals the

water from any other farmer on Qy.
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linkage theorem to find a linkage Q∞ from X∞ with I ⊆ X∞ ⊆ I ∪B ⊆ X
onto S.

Let Y ⊇ X∞ be any independent set in ML(H,S). By applying the
linkage theorem on a linkage from Y to S and Q∞ in (H,S), we may assume
that Y is linkable onto S by a linkageQ′. Concatenating Q′ with segments of
paths in Q starting from S and adding trivial paths from B0 \V (Q) gives us
a linkage from Y ∪ (B0 \V (Q)) onto B0. By the hypothesis, Y ∪ (B0 \V (Q))
is a maximal independent set in ML(D,B0).

Applying the above statement on X∞ shows that X∞ ∪ (B0 \ V (Q))
is also maximal in ML(D,B0). It follows that Y = X∞. Hence, X∞ is
maximal in ML(H,S), and so also in ML(D,B0) ∩ 2X . This completes the
proof that ML(D,B0) is a matroid.

Next we show that containing an alternating comb is the only reason
that the criterion (†) fails.

Lemma 2.3.4. Let (D,B0) be a dimaze without any alternating comb. Then
a set B ⊆ V is maximal in ML(D,B0) if and only if it is linkable onto B0.

Proof. The forward direction follows trivially from (2.1).

For the backward direction, let I be a non-maximal subset that is linkable
onto B0, by a “blue” linkage Q. Since I is not maximal, there is x0 /∈ I such
that I + x0 is linkable to B0 as well, by a “red” linkage P. Construct an
alternating comb inductively as follows:

Use (the proof of) the linkage theorem to get a linkage Q∞ from I + x0

onto B0. Since YP ⊆ YQ and XQ ⊆ XP , A∞ = C∞ = ∅. So each path in
Q∞ consists of a red initial and a blue terminal segment.

Start the construction with x0. For k ≥ 1, if xk−1 is defined, let Qk be
the blue path containing pk−1 := f∞xk−1

. We will prove that pk−1 /∈ I so that
we can choose a last vertex qk on Qkp̊k−1 that is on a path in Q∞. Since the
blue segments of Q∞ are disjoint, qk lies on a red path Pxk . We continue
the construction with xk.

Claim 2.3.5. For each k ≥ 1, pk−1 /∈ I and hence, the blue segment
qkQkpk−1 is non-trivial. The red segment qkPxkpk is also non-trivial.

Proof. We prove by induction that pk−1 /∈ I. This will guarantee that
qkQkpk−1 is non-trivial since Qk ∩ I ∈ V (Q∞). Clearly, p0 /∈ I. Given
k ≥ 1, assume that pk−1 /∈ I. We argue that qk 6= pk. Suppose not for a
contradiction. Then the path PxkqkQk is in B∞. Since qkQkpk−1 is non-
trivial, pk−1 and pk are distinct vertices of the form f∞x on PxkqkQk. This
contradicts that PxkqkQk is in B∞. Hence, we have pk 6= qk,

5 and so pk /∈ I.
This also shows that the red segment qkPxkpk is non-trivial.

5On day ik−1, the farmer at pk−1 prevents the water supplied by Qk from flowing to
qk. Hence, the farmer on Pxk must go further to get water, so pk 6= qk.
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Claim 2.3.6. For any j < k, xj 6= xk. Therefore, qkQkpk−1 is disjoint from
qjQjpj−1, and so is qkPxkpk from qjPxjpj.

Proof. For k ≥ 0, let ik is the least integer such that f ikxk = f∞xk . We now
show that ik−1 < ik for any given k ≥ 1. By the choice of qk, for any i ≤ ik−1,
f ixk is on the segment Pxkqk. Since Pxkqk is a red segment of Q∞, pk is in the

segment qkPxk . Since pk 6= qk, it follows that Pxkf
ik−1
xk ⊆ Pxkqk ( Pxkf

∞
xk

.

This implies that f
ik−1
xk 6= f∞xk , so that by definition of ik, we have ik > ik−1.6

Hence, xk 6= xj for any j 6= k.

We now show that
⋃∞
k=1 qkQk ∪ qkPxkpk is an alternating comb. Indeed,

by the claims, it remains to check that qkPxkpk does not meet any qjQj
for any j < k. But if there is such an intersection, it can neither lie in
q̊jQj p̊j−1 by the choice of qj ; nor in pj−1Qj since xk 6= xj−1 (Claim 2.3.6)
and Q∞ is a linkage. Hence, we have constructed an alternating comb. This
contradiction shows that I is maximal.

We have all the ingredients to prove the main result.

Theorem 2.3.7. Given a dimaze, the vertex sets linkable onto the exits
form the bases of a matroid if and only if the dimaze contains no alternating
comb. The independent sets of this matroid are precisely the linkable sets of
vertices.

Proof. The backward direction of the first statement follows from Theo-
rem 2.3.3 and Lemma 2.3.4. To see the forward direction, suppose there is
an alternating comb C. Let B1 be the union of the vertices of out-degree 2
on C with B0 − C. Then B1 is linkable onto B0, and so is B1 + v for any
v ∈ B0 ∩ C. But B1 and B1 + v violate the base axiom (B2). The second
statement follows from the first and (2.1).

Corollary 2.3.8. Any dimaze which does not define a matroid contains an
alternating comb.

2.3.3 Nearly finitary linkability system

Although forbidding alternating combs ensures that we get a strict gammoid,
not every strict gammoid arises this way. It turns out that when a dimaze
gives rise to a nearly finitary ([5]) linkability system, the dimaze defines a
matroid regardless of whether it contains an alternating comb or not. In
order to show this we prove the following.

Lemma 2.3.9. Let (D,B0) be a dimaze. Then ML(D,B0) satisfies the
following:

6Before day ik−1, the water supplied by Qk ensures that the farmer on Pxk need not
go beyond qk. But eventually he moves past qk and arrives at pk on day ik; so ik > ik−1.
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(∗) For all independent sets I and J with J \ I 6= ∅, for every v ∈ I \ J
there exists u ∈ J \ I such that J + v − u is independent.

Proof. We may assume that I \ J = {v}. Let Q = (Qy)y∈YQ be a “blue”
linkage from J onto some YQ ⊆ B0 and P a “red” one from I. The linkage
theorem yields a linkageQ∞, which we will show to witness the independence
of a desired set. We use the notations introduced in its proof. For each
y ∈ YQ, let t0y be the initial vertex of Qy.

For i > 0 it is not hard to derive the following facts from the definitions
of Qi, f ix and tiy:

x ∈ I ∩ Ini(Qi−1) =⇒ f ix = f i−1
x ; (2.2)

t0y ∈ Ini(Ai) ⇐⇒ ∀x ∈ I, f ix /∈ Qy; (2.3)

x ∈ I \ Ini(Qi) ⇐⇒ ∃y ∈ YQ, x′ ∈ I s.t. f ix ∈ Qyf̊ ix′ . (2.4)

Claim. For i ≥ 0, either Qi = Q∞ or there is some xi such that:7

Ui: (J + v) \ Ini(Qi) = {xi} and I − xi ⊆ Ini(Bi);

Di: ∀y ∈ YQ, if t0y ∈ I then ∃!x ∈ I−xi s.t. f ix ∈ Qy; no such x otherwise.

Proof. With x0 := v, the claim clearly holds for i = 0. Given i > 0, to prove
the claim, we may assume that Qi−1 6= Q∞ and Ui−1 and Di−1 hold.

By definition of f i
xi−1 , either

f ixi−1 ∈ ti−1
yi
Qyi for some unique yi ∈ YQ or f ixi−1 ∈ YP \ YQ.

Note that by (2.2) only xi−1 can be a vertex such that f i
xi−1 6= f i−1

xi−1 . Hence,
tiy = ti−1

y for all y ∈ YQ except possibly yi which satisfies ti
yi

= f i
xi−1 . So by

(2.4), we have xi−1 ∈ Ini(Qi).8

Case (i): Suppose that there exists x ∈ I − xi−1 such that f i
xi−1 and f ix

are on the same path Qyi . By Di−1, t0
yi
∈ I and x is unique. Then Di holds

for xi := x. In particular, by (2.3), J \ I ⊆ Ini(Ai).9
We now prove Ui. As xi ∈ Ini(Bi−1), ti−1

yi
= f i−1

xi
, so f i

xi−1 ∈ f̊ i
xi
Qyi ,

which implies that xi /∈ Ini(Qi) by (2.4).10 Given x ∈ I − {xi−1, xi}, then
x ∈ Ini(Bi−1) by Ui−1. So there exists y 6= yi, such that f ix = f i−1

x =
ti−1
y = tiy. It follows that x ∈ Ini(Bi), and I − xi ⊆ Ini(Bi). Therefore,

(J + v) \ Ini(Qi) = {xi}.
7There is a unique unhappy farmer and the others are distributed such that there is

exactly one happy farmer on each blue pipeline leading to a farm.
8The unhappy farmer becomes happy, either by repairing or because he is the only one

who moves to steal water.
9The whole scene only changes at Qyi , so there is still exactly one unhappy farmer and

the pipelines not leading to a farm are untouched.
10The farmer at f ixi becomes unhappy as his water has been stolen by the farmer at

f ixi−1 .
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Case (ii): Suppose that there does not exist any x ∈ I − xi−1 such that
f ix is on the path Qyi containing f i

xi−1 , if such a path exists. In this case,
t0
yi
∈ J \ I. By Di−1, (2.2) and (2.4), we have I − xi−1 ⊆ Ini(Bi). Hence,

I ⊆ Ini(Qi), and Q∞ = Qi.

If for some integer i > 0, case (ii) holds, then by (2.3), only u := t0
yi
∈ J\I

can fail to be in Ini(A∞). Otherwise, case (i) holds for each integer i ≥ 0,
so that J \ I is a subset of Ini(Ai) and hence a subset of Ini(Q∞). In either
situation, since I = XP ⊆ Ini(Q∞), we conclude that there is some u ∈ J \I
such that J + v − u is independent.

Now we can use a result in [5] to find a sufficient condition for a linkability
system to define a matroid.

Theorem 2.3.10. Let (D,B0) be a dimaze. If ML(D,B0) is nearly finitary,
then it is a matroid.

Proof. Since ML(D,B0) satisfies (I1), (I2) and (∗), by [5, Lemma 4.15], it
also satisfies (IM). Hence, by Lemma 2.3.2, it is a matroid.

The theorem shows that dimazes which contain an alternating comb may
also define matroids.

Example 2.3.11. We construct a dimaze (D,B0) which defines a nearly
finitary linkability system, by identifying the corresponding exits of n > 1
copies of CO (see Figure 2.2). Note that (D,B0) contains an alternating
comb; and ML(D,B0) is not finitary (a vertex not in B0 together with all
reachable vertices in B0 form an infinite circuit).

We check that ML(D,B0) is nearly finitary. Let B be a maximal element

in ML(D,B0)fin. Let I be the set obtained from B by deleting the last
vertex, if exists, of B on each ray in D −B0. Fix an enumeration i1, i2, . . .
for I such that D contains a ray starting in ik+1 that avoids Ik := {i1, . . . , ik}
for each k ≥ 0. For any integer k ≥ 1, let Tk consist of exactly one vertex on
each ray in D−B0 (that hits Ik): the first one in B after the last vertex of Ik.
Note that there are only finitely many linkages from Ik to B0 disjoint from
Tk. In fact, there is at least one: the restriction to Ik of a linkage of the finite
subset Ik ∪ Tk of B. Applying the infinity lemma ([13, Proposition 8.2.1]),
with the kth set consisting of the finite non-empty collection of linkages
from Ik to B0 disjoint from Tk, we obtain a linkage from I to B0. Hence,
I ∈ML(D,B0). As B is arbitrary and |T | ≤ n, we conclude that ML(D,B0)
is nearly finitary.

On the other hand, Theorem 2.3.10 does not imply Theorem 2.3.7.

Example 2.3.12. Let (for this example) a comb be the digraph obtained by
identifying the edge (x1, x2) of a CO with the edge (x2, x1) of a disjoint CI
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. . . B0

Figure 2.2: A dimaze that defines a nearly finitary linkability system

(a comb on a directed double ray). Take infinitely many disjoint copies of a
comb. Add two extra vertices, and an edge from every vertex on the double
ray of each comb to those two vertices. Take all the vertices of out-degree
0 as the exits. Then this dimaze defines a matroid that is 3–connected, not
nearly finitary and whose dual is not nearly finitary.

So far we have seen that if a dimaze (D,B0) does not contain any al-
ternating comb or that ML(D,B0) is nearly finitary, then ML(D,B0) is a
matroid. However, there are examples of strict gammoids that lie in neither
of the two classes. All our examples of dimazes that do not define a matroid
share another feature other than possessing an alternating comb: there is
an independent set I that cannot be extended to a maximal in I ∪ B0. In
view of this, we propose the following.

Conjecture 2.3.13. Suppose that for all I ∈ ML(D,B0) and B ⊆ B0,
there is a maximal independent set in I ∪ B extending I. Then (IM) holds
for ML(D,B0).

2.4 Dimazes with alternating combs

We have seen in Section 2.3 that forbidding CA in a dimaze guarantees that
it defines a strict gammoid. However, the alternating comb in Figure 2.5
defines a finitary strict gammoid. On the other hand, this strict gammoid
is isomorphic to the one defined by an incoming comb via the isomorphism
given in the figure. So one might think that every strict gammoid has a
defining dimaze which does not contain CA. We will prove that this is not
the case with two intermediate steps. In Section 2.4.1, we derive a property
satisfied by any strict gammoid defined by a dimaze without any alternating
comb. In Section 2.4.2, we show that any tree defines a transversal matroid.
We then construct a strict gammoid which cannot be defined by a dimaze
without any alternating comb.
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2.4.1 Connectivity

Connectivity in finite matroids stems from graph connectivity and is a well
established part of the theory. In the infinite setting, Bruhn and Wollan
[11] gave the following rank-free definition of connectivity that is compatible
with the finite case. For an integer k ≥ 0, a k–separation of a matroid is a
partition of E into X and Y such that both |X|, |Y | ≥ k and for any pair of
bases BX , BY of M�X and M�Y respectively, the number of elements to be
deleted from BX ∪BY to get a base of M is less than k. It was shown there
that this number does not depend on the choice of BX or BY or the deleted
set. A matroid is k–connected if there are no l–separations for any l < k.
If a matroid does not have any k–separations for any integer k, then it is
infinitely connected. Recall that the only infinitely connected finite matroids
are uniform matroids of rank about half of the size of the ground set (see
[26, Chapter 8]) and they are strict gammoids. It seems natural to look for
an infinitely connected infinite matroid among strict gammoids, but here we
give a partial negative result. It remains open whether there is an infinitely
connected infinite gammoids.

Lemma 2.4.1. If a dimaze (D,B0) does not contain any alternating comb,
then ML(D,B0) contains a finite circuit or cocircuit.

Proof. Suppose the lemma does not hold. Then every finite subset of V is
independent and coindependent, and B0 is infinite. We construct a sequence
(Rk : k ≥ 1) of subdigraphs of D that gives rise to an alternating comb for
a contradiction.

Let v1 /∈ B0 and R1 := v1. For k ≥ 1, we claim that there is a path Pk
from vk to B0 such that Pk∩V (Rk) = {vk}, a vertex wk on v̊kPk, and a vertex
vk+1 /∈ V (Rk)∪Pk with (vk+1, wk) ∈ E(D). Let Rk+1 := Rk∪Pk∪(vk+1, wk).

Indeed, since any finite set containing vk is independent, there is a path
from vk avoiding any given finite set disjoint from vk. Hence, there is a set
F of |V (Rk)| + 1 disjoint paths (except at vk) from vk to B0 avoiding the
finite set V (Rk) − vk. Since V (F) ∪ Rk is coindependent, its complement
contains a base B, witnessed by a linkage P. Since |V (F) ∩ B0| > |V (Rk)|
and Ter(P) = B0, there is a path P ∈ P that is disjoint from Rk and ends
in V (F)∩B0. Then the last vertex vk+1 of P before hitting V (F), the next
vertex wk, and the segment Pk := wkP satisfy the requirements of the claim.
By induction, the claim holds for all k ≥ 1.

Let R :=
⋃
k≥1Rk. Then (R, V (R) ∩ B0) is an alternating comb in

(D,B0). This contradiction completes the proof.

In an infinite matroid that is infinitely connected, the bipartition of the
ground set into any finite circuit of size k against the rest is a k–separation.
Hence, such a matroid must not have finite circuits or cocircuits.
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Corollary 2.4.2. If an infinite dimaze (D,B0) does not contain any alter-
nating comb, then ML(D,B0) is not infinitely connected.

2.4.2 Trees and transversal matroids

In this section, the aim is to prove that a tree defines a transversal matroid.
We then construct a strict gammoid which cannot be defined by a dimaze
without any alternating comb.

Given a bipartite graph G, fix an ordered bipartition (V,W ) of V (G);
this induces an ordered bipartition of any subgraph of G. A subset of V is
independent if it is matchable to W . Let MT (G) be the pair of V and the
collection of independent sets. It is clear that (I1), (I2) hold for MT (G).
When G is finite, (I3) also holds [16]. The proof of this fact which uses
alternating paths can be extended to show that (I3) also holds when G is
infinite.

Let m be a matching. An edge in m is called an m–edge. An m–
alternating path is a path or a ray that starts from a vertex in V such that
the edges alternate between the m–edges and the non-m–edges. An m–m′

alternating path is defined analogously with m′, also a matching, replacing
the role of the non-m–edges.

Lemma 2.4.3. For any bipartite graph G, MT (G) satisfies (I3).

Proof. Let I,B ∈ MT (G) such that B is maximal but I is not. As I is
not maximal, there is a matching m of I + x for some x ∈ V \ I. Let
m′ be a matching of B to W . Start an m–m′ alternating path P from x.
By maximality of B, the alternating path is not infinite and cannot end in
W \ V (m′). So we can always extend it until it ends at some y ∈ B \ I.
Then m∆E(P ) is a matching of I + y, which completes the proof.

If MT (G) is a matroid, it is called a transversal matroid. For X ⊆ V , the
restriction of MT (G) to X is also a transversal matroid, and can be defined
by the independent sets of the subgraph of G induced by X ∪N(X).

Suppose now G is a tree rooted at a vertex in W . By upwards (down-
wards), we mean towards (away from) the root. For any vertex set Y , let
N↑(Y ) be the upward neighbourhood of Y , and N↓(Y ) the set of downward
neighbours. An edge is called upward if it has the form {v,N↑(v)} where
v ∈ V , otherwise it is downward.

We will prove that MT (G) is a matroid. For a witness of (IM), we
inductively construct a sequence of matchings (mα : α ≥ 0), indexed by
ordinals, of Iα := V (mα) ∩ V .

Given mβ−1, to define a matching for β, we consider the vertices in
V \ Iβ−1 that do not have unmatched children for the first time at step
β − 1. We ensure that any such vertex v that is also in I is matched in step
β, by exchanging v with a currently matched vertex rv that is not in I.
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When every vertex that has not been considered has an unmatched child,
we stop the algorithm, at some step γ. We then prove that the union of all
these unconsidered vertices and Iγ is a maximal independent superset of I.

Theorem 2.4.4. For any tree G with an ordered bipartition (V,W ), MT (G)
is a transversal matroid.

Proof. To prove that MT (G) is a matroid, it suffices to prove that (IM)
holds. Let an independent set I ⊆ X ⊆ V be given. Without loss of
generality, we may assume that X = V .

We start by introducing some notations. Root G at some vertex in
W . Given an ordinal α and a matching mα, let Iα := V (mα) ∩ V and
Wα := V (mα) ∩W . Given a sequence of matchings (mα′ : α′ ≤ α), let

Cα := {v ∈ V \ Iα : N↓(v) ⊆Wα but N↓(v) 6⊆Wα′ ∀α′ < α}.

Note that Cα ∩ Cα′ = ∅ for α′ 6= α. For each w ∈ W \Wα, choose one
vertex vw in N↓(w) ∩ Cα if it is not empty. Let

Sα := {vw : w ∈W \Wα and N↓(w) ∩ Cα 6= ∅}.

Denote the following statement by A(α):

There is a pairwise disjoint collection Pα := {Pv : v ∈ I∩Cα\Sα}
of mα–alternating paths such that each Pv starts from v ∈ I ∩
Cα \Sα with a downward edge and ends at the first vertex rv in
Iα \ I.

Start the inductive construction with m0, which is the set of upward
edges that is contained in every matching of I. It is not hard to see that
C0 ∩ I = ∅, so that A(0) holds trivially.

Let β > 0. Given the constructed sequence of matchings (mα : α < β),
suppose that A(α) holds for each α < β. Construct a matching mβ as
follows.

If β is a successor ordinal, let

mβ := E(Sβ−1, N↑(Sβ−1)) ∪ (mβ−1∆E(Pβ−1)).

By A(β−1), the paths in Pβ−1 are disjoint. So mβ−1∆E(Pβ−1) is a match-
ing. Using the definition of Sβ−1, we see that mβ is indeed a matching.
Observe also that

Iβ−1 ∩ I ⊆ Iβ ∩ I; (2.5)

W β−1 ⊆ W β−1 ∪N↑(Sβ−1) = W β. (2.6)

If β is a limit ordinal, define mβ by

e ∈ mβ ⇐⇒ ∃β′ < β such that e ∈ mα ∀α with β′ ≤ α < β. (2.7)
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As mα is a matching for every ordinal α < β, we see that mβ is a matching
in this case, too.

Suppose that a vertex u ∈ (V ∩ I) ∪W is matched to different vertices
by mα and mα′ for some α, α′ ≤ β. Then there exists some ordinal α′′ + 1
between α and α′ such that u is matched by an upward mα′′–edge and by a
downward mα′′+1–edge. Hence, the change of the matching edges is unique.
This implies that for any α, α′ with α ≤ α′ ≤ β, by (2.5) and (2.6), we have

Iα ∩ I ⊆ Iα
′ ∩ I; (2.8)

Wα ⊆ Wα′ . (2.9)

Moreover, for an upward mβ–edge vw with v ∈ V , we have

v ∈ I0 or ∃α < β such that v ∈ Cα and w /∈Wα. (2.10)

We now prove that A(β) holds. Given v0 = v ∈ I∩Cβ\Sβ, we construct a
decreasing sequence of ordinals starting from β0 := β. For an integer k ≥ 0,
suppose that vk ∈ I∩Cβk with βk ≤ β is given. By (2.8), I0 ⊆ Iβk , so vk /∈ I0

and hence there exists wk ∈ N↓(vk) \W 0.11 Since N↓(vk) ⊆ W βk ⊆ W β,
wk is matched by mβ to some vertex vk+1. In fact, as wk /∈ W 0, vk+1 /∈ I0.
Let βk+1 be the ordinal with vk+1 ∈ Cβk+1 . Since vk+1wk is an upward edge
and N↓(vk) ⊆ W βk , we have by (2.10) that wk ∈ W βk \W βk+1 . By (2.9),
βk > βk+1.

As there is no infinite decreasing sequence of ordinals, we have an mβ–
alternating path Pv = v0w0v1w1 · · · that stops at the first vertex rv ∈ V \ I.

The disjointness of the Pv’s follows from that every vertex has a unique
upward neighbour and, as we just saw, that v̊Pv cannot contain any vertex
v′ ∈ Cβ. So A(β) holds.

We can now go onwards with the construction.

Let γ ≤ |V |12 be the least ordinal such that Cγ = ∅. Let C :=
⋃
α<γ C

β

and U := V \ (I0 ∪ C); so V is partitioned into I0, C and U . As Cγ = ∅,
every vertex in U can be matched downwards to a vertex that is not in W γ .
These edges together with mγ form a matching mB of B := U ∪ Iγ , which
we claim to be a witness for (IM). By (2.8), I0∪ (C ∩ I) ⊆ Iγ , hence, I ⊆ B.

Suppose B is not maximally independent for a contradiction. Then there
is an mB–alternating path P = v0w0v1w1 · · · such that v0 ∈ V \ B that is
either infinite or ends with some wn ∈ W \ V (mB). We show that neither
occurs.

Claim 2.4.5. P is finite.

11For a vertex v /∈ I, N↓(v) \W 0 may be empty.
12For example, fix a well ordering of V and map each β to the least element in Cβ .

43



Proof. Suppose P is infinite. Since v0 /∈ B, P has a subray R = wiP
such that wivi+1 is an upward mB–edge. So wjvj+1 ∈ mB for any j ≥ i.
As vertices in U are matched downwards, R ∩ U = ∅. As mB∆E(R) is a
matching of B ⊇ I in which every vertex in R ∩ V is matched downwards,
R∩I0 = ∅ too. So for any j ≥ i, there exists a unique βj such that vj ∈ Cβj .

Choose k ≥ i such that βk is minimal. But with a similar argument used
to prove A(β), we have βk > βk+1. Hence P cannot be infinite.

Claim 2.4.6. P does not end in W \ V (mB).

Proof. Suppose that P ends with wn ∈ W \ V (mB). Certainly, vn can be
matched downwards (either to wn−1 or wn) in a matching of B ⊇ I. Hence,
vn /∈ I0. It is easy to check that for v ∈ Cα, N(v) ⊆ Wα+1. Hence, as
wn ∈ W \W γ , vn /∈ C. Hence, vn ∈ U . It follows that for each 0 < i ≤ n,
vi is matched downwards and so does not lie in I0. As v0 /∈ B, v0 ∈ C. It
follows that w0 ∈ W γ and v1 ∈ C. Repeating the argument, we see that
vn ∈ C, which is a contradiction.

We conclude that B is maximal. So (IM) holds and MT (G) is a matroid.

Corollary 2.4.7. Let (D,B0) be a dimaze such that the underlying graph of
D is a tree and B0 is a vertex class of a bipartition of D with edges directed
towards B0. Then ML(D,B0) is a matroid.

Proof. By the theorem, we need only present ML(D,B0) as a transversal
matroid defined on a tree. Define a treeG with bipartition ((V \B0)∪B′0, B0),
where B′0 is a copy of B0, from D by ignoring the directions and joining
each vertex in B0 to its copy with an edge. It can be easily checked that
ML(D,B0) ∼= MT (G).

Consider the countably infinite branching rooted tree, i.e. a rooted tree
such that each vertex has countably many children. Let B0 consist of the
root and vertices on every other level. Define T by directing all edges to-
wards B0. Corollary 2.4.7 shows that ML(T , B0) is a matroid. Clearly, this
matroid does not contain any finite circuit. Moreover, as any finite set C∗

misses a base obtained by adding finitely many vertices to B0 \ C∗, any
cocircuit must be infinite. With Lemma 2.4.1, we conclude the following.

Corollary 2.4.8. Every dimaze that defines a strict gammoid isomorphic
to ML(T , B0) contains an alternating comb.

44



2.5 Minor

The results in the following two sections come from [3].

The class of gammoids is closed under deletion by definition. In fact,
finite gammoids are minor-closed. To see this, note that matroid deletion
and contraction commute, so it suffices to show that a contraction minor
M/X of a strict gammoid M is also a gammoid. Indeed, in [20] it was
shown that finite strict gammoids are precisely the dual of finite transversal
matroid. Moreover, they provided a construction to turn a dimaze to a
bimaze presentation of the dual, and vice versa (essentially Definitions 2.6.1
and 2.6.2). Thus, we apply the construction to a presentation of M and get
one of M∗. By deleting X, we get a presentation of the transversal matroid
M∗ \ X. Reversing the construction with any base of M∗ \ X gives us a
dimaze presentation of (M∗ \X)∗ = M/X.

In case of general gammoids, we can no longer appeal to duality, since,
as we shall see, strict gammoids need not be cotransversal (Example 2.6.12)
and the dual of transversal matroids need not be strict gammoids (Exam-
ple 2.6.19). We will instead investigate the effect of the construction sketched
above on a dimaze directly, similar to what has been done in [6] for the fi-
nite case. We are then able to show that the class of CO-free gammoids,
i.e. gammoids that admit a CO-free presentation, is minor-closed. In combi-
nation with the linkage theorem, we can also prove that finite rank minors
of gammoids are gammoids.

It remains open whether the class of gammoids is closed under taking
minors.

Topological gammoids are introduced in [12] in response to a question
raised by Diestel. The independent set systems are always finitary and de-
fine matroids. It turns out that such matroids are precisely the finitary
gammoids. By investigating the structure of dimaze presentations of such
gammoids, we then show that finitary strict gammoids, or equivalently, topo-
logical gammoids, are also closed under taking minors.

2.5.1 Matroid contraction and shifting along a linkage

Our aim is to show that a contraction minor M/S of a strict gammoid M is
a strict gammoid. By Lemma 2.2.2, we may assume that S is independent.
The first case is that S is a subset of the exits.

Lemma 2.5.1. Let M = ML(D,B0) be a strict gammoid and S ⊆ B0.
Then a dimaze presentation of M/S is given by ML(D − S,B0 \ S).

Proof. Since S ⊆ B0 is independent, I ∈ I(M/S) ⇐⇒ I ∪ S ∈ I(M).
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Moreover,

I ∈ I(M/S) ⇐⇒ I ∪ S admits a linkage in (D,B0)

⇐⇒ I admits a linkage Q with Ter(Q) ∩ S = ∅ in (D,B0)

⇐⇒ I ∈ I(ML(D − S,B0 \ S).

Thus, it suffices to give a dimaze presentation of M such that S is a
subset of the exits. For this purpose we consider the process of “shifting
along a linkage”, which replaces the previously discussed detour via duality.

Throughout the section, (D,B0) denotes a dimaze, Q a set of disjoint
paths or rays, S := Ini(Q) and T := Ter(Q). Next, we define various maps
which are dependent on Q.

Define a bijection between V \ T and V \ S as follows: ~Q(v) := v if
v /∈ V (Q); otherwise ~Q(v) := u where u is the unique vertex such that
(v, u) ∈ E(Q). The inverse is denoted by ~Q.

Construct the digraph ~Q(D) from D by replacing each edge (v, u) ∈
E(D) \ E(Q) with ( ~Q(v), u) and each edge (v, u) ∈ Q with (u, v). Set for
the rest of this section

D1 := ~Q(D) and B1 := (B0 \ T ) ∪ S

and call (D1, B1) the Q-shifted dimaze.

Given a Q-alternating walk W = w0e0w1e1w2 . . . in D, let ~Q(W ) be
obtained from W by deleting all ei and each wi ∈ W such that wi ∈ V (Q)
but ei /∈ E(Q).

For a path or ray P = v0v1v2 . . . in D1, let ~Q(P ) be obtained from P by
inserting after each vi ∈ P \ Ter(P ) the following:

(vi, vi+1) if vi /∈ V (Q);

(vi+1, vi) if vi ∈ V (Q) and (vi+1, vi) ∈ E(Q);

(w, vi)w(w, vi+1) with w := ~Q(vi) if vi ∈ V (Q) but (vi+1, vi) /∈ E(Q).

We examine the relation between alternating walks in D and paths/rays
in ~Q(D).

Lemma 2.5.2. (i) A Q-alternating walk in D that is infinite or ends in
t ∈ B1 is respectively mapped by ~Q to a ray or a path ending in t in
D1. Disjoint such walks are mapped to disjoint paths/rays.

(ii) A ray or a path ending in t ∈ B1 in D1 is respectively mapped by ~Q to
an infinite Q-alternating walk or a finite Q-alternating walk ending in
t in D. Disjoint such paths/rays are mapped to disjoint Q-alternating
walks.
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Figure 2.3: A Q-shifted dimaze: D1 = ~Q(D), B1 = (B0 \ T ) ∪ S, where
Q consists of the vertical downward paths. Outlined circles
and diamonds are respectively initial and terminal vertices of
Q-alternating walks (left) and their ~Q-images (right).

Proof. We prove (i) since a proof of (ii) can be obtained by reversing the
construction.

Let W = w0e0w1e1w2 . . . be a Q-alternating walk in D. If a vertex v
in W is repeated, then v occurs twice and there is i such that v = wi with
ei−1 = (wi, wi−1) ∈ E(Q) and ei /∈ E(Q). Hence, wi is deleted in P := ~Q(W )
and so v does not occur more than once in P , that is, P consists of distinct
vertices.

By construction, the last vertex of a finite W is not deleted, hence P
ends in t. In case W is infinite, by (W3), no tail of W is deleted so that P
remains infinite.

Next, we show that (vi, vi+1) is an edge in D1. Let wj = vi be the non-
deleted instance of vi. If wj+1 has been deleted, then the edge (wj+1, wj+2)
(which exists since the last vertex cannot be deleted) in D has been replaced
by the edge ( ~Q(wj+1), wj+2) = (vi, vi+1) in D1. If both wj and vi+1 = wj+1

are in V (Q) then the edge (wj+1, wj) ∈ E(Q) has been replaced by (vi, vi+1)
in D1. In the other cases (wj , wj+1) = (vi, vi+1) is an edge of D and remains
one in D1.

Let W1,W2 be disjoint Q-alternating walks. By construction, ~Q(W1) ∩
~Q(W2) ⊆ W1 ∩ W2 ⊆ V (Q). By disjointness, at any intersecting vertex,
one of W1 and W2 leaves with an edge not in E(Q). Thus, such a vertex
is deleted upon application of ~Q. Hence, ~Q(W1) and ~Q(W2) are disjoint
paths/rays.

Note that for a path P in D1 and a Q-alternating walk W in D, we have

~Q( ~Q(P )) = P ; ~Q( ~Q(W )) = W.

This correspondence of sets of disjoint Q-alternating walks in (D,B0)
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and sets of disjoint paths or rays in the Q-shifted dimaze will be used in
various situations in order to show that the independent sets associated with
(D,B0) and the Q-shifted dimaze are the same.

Given a setW ofQ-alternating walks, define the graphQ∆W := (V (Q)∪
V (W), E(Q)∆E(W)).

Lemma 2.5.3. Let J ⊆ V \ S and W a set of disjoint Q-alternating walks,
each of which starts from J and does not end outside of B1. Then there
is a set of disjoint rays or paths from X := J ∪ (S \ Ter(W)) to Y :=
T ∪ (Ter(W) ∩B0) in Q∆W.

Proof. Every vertex in Q∆W \ (X ∪ Y ) has in-degree and out-degree both
1 or both 0. Moreover, every vertex in X has in-degree 0 and out-degree 1
(or 0, if it is also in Y ) and every vertex in Y has out-degree 0 and in-degree
1 (or 0, if it is also in X). Therefore every (weakly) connected component
of Q∆W meeting X is either a path ending in Y or a ray.

The following will be used to complete a ray to an outgoing comb in
various situations.

Lemma 2.5.4. Suppose Q is a topological linkage. Any ray R that hits
infinitely many vertices of V (Q) is the spine of an outgoing comb.

Proof. The first step is to inductively construct an infinite linkable subset of
V (R). Let Q0 := Q and A0 := ∅. For i ≥ 0, assume that Qi is a topological
linkage that intersects V (R) infinitely but avoids the finite set of vertices Ai.
Since it is not possible to separate a vertex on a topological path from B0 by
a finite set of vertices disjoint from that topological path, there exists a path
Pi from V (R)∩ V (Qi) to B0 avoiding Ai. Let Ai+1 := Ai ∪ V (Pi) and Qi+1

obtained from Qi by deleting from each of its elements the minimal initial
segment that intersects Ai+1. As Qi+1 remains a topological linkage that
intersects V (R) infinitely, we can continue the procedure. By construction
{Pi : i ∈ N} is an infinite set of disjoint finite paths from a subset of V (R)
to B0. Let pi ∈ Pi be the last vertex of R on Pi, then R is the spine of the

outgoing comb: R ∪
⋃
i∈N

piPi.

Corollary 2.5.5. Any ray provided by Lemma 2.5.3 is in fact the spine
of an outgoing comb if Q is a topological linkage, and the infinite forward
segments of the walks in W are the spines of outgoing combs.

Proof. Observe that a ray R constructed in Lemma 2.5.3 is obtained by
alternately following the forward segments of the walks inW and the forward
segments of elements in Q.

Either a tail of R coincides with a tail of a walk in W, and we are done
by assumption; or R hits infinitely many vertices of V (Q), and Lemma 2.5.4
applies.
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With Lemma 2.5.3 we can transform disjoint alternating walks into dis-
joint paths or rays. A reverse transform is described as follows.

Lemma 2.5.6. Let P and Q be two sets of disjoint paths or rays. LetW be a
set of maximal P-Q-alternating walks starting in distinct vertices of Ini(P).
Then the walks in W are disjoint and can only end in (Ter(P) \ T ) ∪ S.

Proof. Let W = w0e0w1 . . . be a maximal P-Q-alternating walk. Then W
is a trivial walk if and only if w0 ∈ (Ter(P) \T )∪S. If W is nontrivial then
e0 ∈ E(Q) if and only if w0 ∈ V (Q).

Let W1 and W2 ∈ W. Note that for any interior vertex wi of a P-Q-
alternating walk, it follows from the definition that either edge in {ei−1, ei}
determines uniquely the other. So if W1 and W2 share an edge, then a
reduction to their common initial vertex shows that they are equal by their
maximality. Moreover if the two walks share a vertex v /∈ V (Q), then they
are equal since they share the edge of P whose terminal vertex is v.

Therefore, if W1 6= W2 and they end at the same vertex v, then v ∈
V (P)∩V (Q). More precisely, we may assume that v is the initial vertex of an
edge in E(Q)∩E(W1) and the terminal vertex of an edge e ∈ E(P)∩E(W2)
(both the last edges of their alternating walk). Since v is the initial vertex
of some edge, it cannot be in B0, so the path (or ray) in P containing e does
not end at v. Hence we can extend W1 contradicting its maximality.

Similarly we can extend a P-Q-alternating walk that ends in some vertex
v ∈ Ter(P) ∩Ter(Q) by the edge in E(Q) that has v as its terminal vertex,
unless v ∈ Ini(Q). So W is a set of disjoint P-Q-alternating walks that can
only end in (Ter(P) \ T ) ∪ S.

Now we investigate when a dimaze and its Q-shifted dimaze present the
same strict gammoid.

Lemma 2.5.7. Suppose that Q is a linkage from S onto T and I a set
linkable in (D1, B1). Then I is linkable in (D,B0) if (i) I \ S is finite or
(ii) (D,B0) is CO-free.

Proof. There is a set of disjoint finite paths from I to B1 in (D1, B1), which,
by Lemma 2.5.2, gives rise to a set of disjoint finite Q-alternating walks
from I to B1 in (D,B0). Let W be the subset of those walks starting in
J := I \ S. Then Lemma 2.5.3 provides a set P of disjoint paths or rays
from J ∪ (S \ Ter(W)) ⊇ I to Y ⊆ B0. It remains to argue that P does
not contain any ray. Indeed, any such ray meets infinitely many paths in Q.
But by Lemma 2.5.4, the ray is the spine of an outgoing comb, which is a
contradiction.

In fact the converse of (ii) holds.
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Lemma 2.5.8. Suppose that (D,B0) is CO-free, and Q is a linkage from
S onto T such that there exists no linkage from S to a proper subset of T .
Then a linkable set I in (D,B0) is also linkable in (D1, B1), and (D1, B1)
is CO-free.

Proof. For the linkability of I it suffices by Lemma 2.5.2 to construct a set
of disjoint finite Q-alternating walks from I to B1. Let P be a linkage of I
in (D,B0).

For each vertex v ∈ I let Wv be the maximal P-Q-alternating walk
starting in v. By Lemma 2.5.6, W := {Wv : v ∈ I} is a set of disjoint
Q-alternating walks that can only end in (Ter(P) \ T ) ∪ S ⊆ B1.

If there is an infinite alternating walk W = Wv0 inW, then Lemma 2.5.3
applied on just this walk gives us a set R of disjoint paths or rays from S+v0

to T . Since the forward segments of W are subsegments of paths in P, by
Corollary 2.5.5 any ray in R would extend to a forbidden outgoing comb.
Thus, R is a linkage of S + v0 to T . In particular, S is linked to a proper
subset of T contradicting the minimality of T . Hence W consists of finite
disjoint Q-alternating walks, as desired.

For the second statement suppose that (D1, B1) contains an outgoing
comb whose spine R starts at v0 /∈ S. Then W := ~Q(R) is a Q-alternating
walk in (D,B0) by Lemma 2.5.2. Any infinite forward segment R′ of W
contains an infinite subset linkable to B1 in (D1, B1). By Lemma 2.5.7(ii)
this subset is also linkable in (D,B0), so R′ is the spine of an outgoing comb
by Lemma 2.5.4, which is a contradiction.

On the other hand, suppose thatW does not have an infinite forward tail.
By investigating W as we did with Wv0 above, we arrive at a contradiction.
Hence, there does not exist any outgoing comb in (D1, B1).

For later applications, we note the following refinement.

Corollary 2.5.9. If (D,B0) is F∞-free as well, then so is (D1, B1).

Proof. Suppose that (D1, B1) contains a subdivision of F∞ with centre v0.
Then an infinite subset X of the out-neighbourhood of v0 in (D1, B1) is
linkable. By Lemma 2.5.7(ii), X is also linkable in (D,B0). As X is a
subset of the out-neighbourhood of ~Q(v0), a forbidden linking fan in (D,B0)
results.

Proposition 2.5.10. Suppose (D,B0) is CO-free and Q is a linkage from
S onto T such that S cannot be linked to a proper subset of T . Then
ML(D1, B1) = ML(D,B0).

Proof. By Lemma 2.5.7(ii) and Lemma 2.5.8, a set I ⊆ V is linkable in
(D,B0) if and only if it is linkable in (D1, B1).
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We remark that in order to show that ML(D,B0) = ML(D1, B1), the
assumption in Proposition 2.5.10 that (D,B0) is CO-free can be slightly re-
laxed. Only outgoing combs constructed in the proofs of Lemma 2.5.7(ii)
and Lemma 2.5.8 which have the form that all the spikes are terminal seg-
ments of paths in the linkage Q need to be forbidden.

Theorem 2.5.11. The class of CO-free gammoids is minor-closed.

Proof. Let N := ML(D,B0) be a strict gammoid. It suffices to show that
any minor of N is a gammoid. By Lemma 2.2.2, such has the form M :=
N/S \R for some independent set S and coindependent set R. First extend
S in B0 to a base B1. This gives us a linkage Q from S onto T := B0 \ B1

such that there exists no linkage from S to a proper subset of T .

Assume that (D,B0) is CO-free. Then by Lemma 2.5.8, (D1, B1) is CO-
free, and by Proposition 2.5.10, ML(D,B0) = ML(D1, B1). Since S ⊆ B1,
M = ML(D1, B1)/S \R = ML(D1−S,B1\S)\R is a CO-free gammoid.

A partial converse of Lemma 2.5.7(i) can be proved by analyzing the
proof of the linkage theorem.

Lemma 2.5.12. Let M = ML(D,B0) be a strict gammoid, Q a linkage
from S onto T such that B1 is a base and I ⊆ V \ S such that S ∪ I is
linkable in (D,B0). If I is finite, then it is linkable in (D1 − S,B1 \ S).

Proof. By Lemma 2.5.2 it suffices to construct a set of disjoint finite Q-
alternating walks from I to B0 \ T .

Let P be a linkage of S ∪ I in (D,B0). We apply the linkage theorem
of Pym [28] to get a linkage Q∞ from S ∪ I onto some set Y∞ ⊇ T in the
following way:

For each x ∈ S∪I, let Px be the path in P containing x and f0
x := x. Let

Q0 := Q. For each i > 0 and each x ∈ S ∪ I, let f ix be the last vertex v on
f i−1
x Px such that (f i−1

x Pxv̊) ∩ V (Qi−1) = ∅. For y ∈ T , let Qy be the path
in Q containing y and tiy be the first vertex v ∈ Qy such that the terminal
segment v̊Qy does not contain any f ix. Define the linkage Qi := Bi ∪Ci with

Bi := {Pxf ixQy : x ∈ S ∪ I, y ∈ T and f ix = tiy},
Ci := {Px ∈ P : f ix ∈ B0 \ T}.

There exist integers ix, iy ≥ 0 such that f ixx = fkx , t
iy
y = tly for all integers

k ≥ ix and l ≥ iy. Define f∞x := f ixx , t
∞
y := t

iy
y and

B∞ := {Pxf∞x Qy : x ∈ S ∪ I, y ∈ T and f∞x = t∞y },
C∞ := {Px ∈ P : f∞x ∈ B0 \ T}.

Then Q∞ := B∞ ∪ C∞ is the linkage given by the linkage theorem.
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Let Y := Y∞ \ T and B2 an extension to a base of the independent set
(B0 \ Y∞) ∪ (S ∪ I) inside B1. Then B2 \B1 = I and B1 \B2 ⊆ Y and so,
by [10, Lemma 3.7], |I| = |B2 \B1| = |B1 \B2| ≤ |Y |.

Let v ∈ V (D) be a vertex with the property that v = f j+1
xj+1 for some

integer j and a vertex xj+1 ∈ S ∪ I such that f jxj+1 6= f j+1
xj+1 . We backward

inductively construct a walkW (v) that starts from I and ends in v as follows:

Given xi+1 for a positive integer i ≤ j, let Qi be the path in Q containing
f ixi+1

(if there is no such path, then f ixi+1
∈ I and i = 0). Since f ixi+1

6= f i+1
xi+1

,

it follows that F i ∩ f̊ ixi+1
Qi 6= ∅, where F i := {f ix : x ∈ S ∪ I}. Let xi be

such that f ixi is the first vertex of F i on f̊ ixi+1
Qi. Moreover, since f ixi+1

∈ Qi,
F i−1 ∩ f̊ ixi+1

Qi = ∅, so f i−1
xi 6= f ixi . Hence we can complete the construction

down to i = 1 and define:

W (v) := f0
x1P1f

1
x1 ∪

⋃
0<i<j

f ixi+1
Qif

i
xi ∪ f ixi+1

Pi+1f
i+1
xi+1

. (2.11)

Note that f0
x1 6= f1

x1 and for any x ∈ S, the definition of f1
x implies

f0
x = f1

x . Hence, f0
x1 , the initial vertex of W (v), is in (S ∪ I) \ S = I. Now

we examine the interaction between two such walks:

Claim. Let x, x′ ∈ S ∪ I be given such that f j+1
x 6= f jx and f j

′+1
x′ 6= f j

′

x′ .

(i) If j = j′ and f j+1
x 6= f j

′+1
x′ , then Ini(W (f j+1

x )) 6= Ini(W (f j
′+1
x′ )).

(ii) If W (f j+1
x ) and W (f j

′+1
x′ ) start at the same vertex in I, then one is

a subwalk of the other.

Proof. For (i) we first note that f j+1
x and f j

′+1
x′ are on distinct paths in

P and apply induction on j. If j = j′ = 0, then Ini(W (f j+1
x )) = x 6=

x′ = Ini(W (f j
′+1
x′ )). For j > 0 the walk W (f j

′+1
x′ ) has the form W (f j

x′j
) ∪

f j
x′j+1

Q′jf
j
x′j
∪ f j

x′j+1
P ′j+1f

j+1
x′j+1

and analogue W (f j+1
x ). The vertices f j

x′j+1
and

f jxj+1 are on distinct paths in P and therefore distinct. Then it follows from

the definition that f jxj 6= f j
x′j

and we use the induction hypothesis to see

that Ini(W (f j
x′j

)) 6= Ini(W (f jxj )) and hence Ini(W (f j+1
x′j+1

)) 6= Ini(W (f j+1
xj+1)),

as desired.

For (ii) suppose that f j+1
x 6= f j

′+1
x′ , then (i) implies j 6= j′, say j < j′. If

f j+1
x′j+1
6= f j+1

xj+1 , then ,by (i), Ini(W (f j+1
x )) 6= Ini(W (f j+1

x′j+1
)) = Ini(W (f j

′+1
x′ )).

Hence W (f j+1
x ) is a subwalk of W (f j

′+1
x′ ).

Each vertex y ∈ Y \ I is on a non-trivial path in Q∞, so there exists a

least integer iy > 0 such that y = f
iy
xiy for some xiy ∈ S∪I. For y ∈ Y ∩I let

W (y) be the trivial walk at y, so that we can define W := {W (y) : y ∈ Y }.
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Suppose y and y′ are distinct vertices in Y \ I such that Ini(W (y)) =
Ini(W (y′)). Since there is no edge of Q ending in either of these vertices,
(ii) implies that W (y) = W (y′) and therefore y = y′. Since the initial vertex
of a non-trivial walk in W is not in B0, we have Ini(W (y)) 6= Ini(W (y′)) for
any two distinct vertices y, y′ in Y . That means Ini(W) = I, since |I| ≤ |Y |.

By Lemma 2.5.6, the maximal Q∞-Q-alternating walks starting in I are
disjoint. Thus, to complete the proof, it remains to check that each Q∞-
Q-alternating walk starting in I is finite. To that end, let e be an edge of
such a walk. As E(W) is finite, it suffices to show that e ∈ E(W ) for some
W ∈ W. By definition, e ∈ E(Q∞)∆E(Q). The following case analysis
completes the proof.

1. e ∈ E(Q∞) \E(Q): e is on some initial segment Pxf
∞
x of a path Px in

P. More precisely, there is an integer i, such that e ∈ f ixPxf i+1
x . By

construction e ∈ W (f i+1
x ) and Ini(W (f i+1

x )) ∈ I. Let W be the walk
in W whose initial vertex is Ini(W (f i+1

x )), then (ii) implies that e is
on W .

2. e ∈ E(Q) \ E(Q∞): e is on some initial segment Qf∞x of a path Q in
Q. More precisely, there is an integer i and x, x′ ∈ S ∪ I, such that
e ∈ f ixQf ix′ . Since f ix 6= f i+1

x , similar to the previous case, there is a
walk in W containing e.

An immediate corollary of the following is that any forbidden minor, of
which there are infinitely many ([19]), for the class of finite gammoids is also
a forbidden minor for infinite gammoids.

Theorem 2.5.13. Any finite-rank minor of a gammoid is also a gammoid.

Proof. The setting follows the first paragraph of the proof of Theorem 2.5.11.
Suppose that M has finite rank r. Since R is coindependent, V \ R is
spanning in N . Therefore, N/S also has rank r. Let I ∈ML(D1−S,B1\S),
then r = |B0 \ T | = |B1 \ S| ≥ |I| and, by Lemma 2.5.7(i), I is in I(N/S).
Conversely, if I ∈ I(N/S), then I is finite. By Lemma 2.5.12, I is linkable in
(D1−S,B1 \S). Hence ML(D1−S,B1 \S) is a strict gammoid presentation
of N/S and M = ML(D1 − S,B1 \ S) \R is a gammoid.

2.5.2 Topological gammoids

A topological notion of linkability is introduced in [12]. Roughly speaking,
a topological path from a vertex v does not need to reach the exits as long
as no finite vertex set avoiding that path can prevent an actual connection
of v to B0.

Here we show that in fact, topological gammoids coincide with the fini-
tary gammoids. As a corollary, we see that topological gammoids are minor-
closed.
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The difference between a topological linkage and a linkage is that paths
ending in the centre of a linking fan and spines of outgoing combs are allowed.
Thus, to prove the following, it suffices to give a {CO, F∞}-free dimaze
presentation for the strict topological gammoid.

Lemma 2.5.14. Every strict topological gammoid is a strict gammoid.

Proof. Let (D′, B′0) be a dimaze and F be the set of all vertices that are the
centre of a subdivision of F∞. Let (D,B0) be obtained from (D′, B′0) by
deleting all edges whose initial vertex is in F from D′ and B0 := B′0 ∪ F .

We claim that MTL(D,B0) = MTL(D′, B′0). Let P be a topological
linkage of I in (D′, B′0). Then the collection of the initial segments of each
element of P up to the first appearance of a vertex in F forms a topological
linkage of I in (D,B0). Conversely, let P be a topological linkage of I
in (D,B0). Note that any linkage in (D,B0) is a topological linkage in
(D′, B′0). In particular the spikes of an outgoing comb whose spine R is in P
form a topological linkage. Hence, R is also the spine of an outgoing comb
in (D′, B′0) by Lemma 2.5.4. So I is topologically linkable in (D,B0).

Let S∪B0 be a base of MTL(D,B0) and Q a set of disjoint spines of out-
going combs starting from S. We show that a set I is topologically linkable
in (D,B0) if and only if it is linkable in the Q-shifted dimaze (D1, B1).

Let P be a topological linkage of I in (D,B0). By Lemma 2.5.6, the
set W of maximal P-Q-alternating walks starting in I is a set of disjoint
Q-alternating walks possibly ending in Ter(P) ∪ S ⊆ B1. If there were
an infinite walk, then it would have to start outside S and give rise to a
topologically linkable superset of S∪B0, by Lemma 2.5.3 and Lemma 2.5.4.
So each walk in W is finite. By Lemma 2.5.2, I is linkable in (D1, B1).

Conversely let I be linkable in (D1, B1) and W a set of disjoint finite
Q-alternating walks in (D,B0) from I to B1 provided by Lemma 2.5.2. By
Lemma 2.5.3, Q∆W contains a set R of disjoint paths or rays in (D,B0)
from I to B0. By Corollary 2.5.5, any ray in R is in fact the spine of an
outgoing comb, so I is topologically linkable in (D,B0).

Now we can characterize strict topological gammoids among strict gam-
moids.

Theorem 2.5.15. The following are equivalent:

1. M is a strict topological gammoid;

2. M is a finitary strict gammoid;

3. M is a strict gammoid such that any presentation is {CO, F∞}-free;

4. M is a {CO, F∞}-free strict gammoid.
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Proof. 1.⇒ 2. : By Corollary 2.2.5, M is a finitary matroid and by Lemma 2.5.14
it is a strict gammoid.

2.⇒ 3. : Let ML(D,B0) be any presentation of M . Note that the union
of any vertex v ∈ V \B0 and all the vertices in B0 to which v is linkable forms
a circuit in M (the fundamental circuit of v and B0). Suppose (D,B0) is not
{CO, F∞}-free, then there is a vertex linkable to infinitely many vertices in
B0. But then M contains an infinite circuit and is not finitary.

3.⇒ 4. : Trivial.

4. ⇒ 1. : Take a {CO, F∞}-free presentation of M . Then topological
linkages coincide with linkages. Hence M is a topological gammoid.

Next we also characterize topological gammoids among gammoids.

Corollary 2.5.16. The following are equivalent:

1. M is a topological gammoid;

2. M is a finitary gammoid;

3. M is a {CO, F∞}-free gammoid.

Proof. 1. ⇒ 3. : There exist a dimaze (D,B0) and X ⊆ V such that M =
MTL(D,B0) \ X. By Theorem 2.5.15, there is a {CO, F∞}-free dimaze
(D1, B1) such that ML(D1, B1) = MTL(D,B0). Hence, M is a {CO, F∞}-
free gammoid.

3.⇒ 2. : There exists a {CO, F∞}-free presentation of a strict gammoid
N of which M is a restriction. By Theorem 2.5.15, N is finitary, thus, so
is M .

2.⇒ 1. : There exist (D,B0) and X ⊆ V such that M = ML(D,B0)\X.
SinceM\X is finitary, C(M\X) = C(Mfin\X). By Corollary 2.2.5, the latter
is equal to C(MTL(D,B0) \X). Hence, M is a topological gammoid.

Theorem 2.5.17. The class of finitary gammoids (or equivalently topolog-
ical gammoids) is closed under taking minors.

Proof. LetM be a finitary gammoid. By Corollary 2.5.16, M is a {CO, F∞}-
free gammoid. Any minor of M is a CO-free gammoid by Theorem 2.5.11,
and also F∞-free by Corollary 2.5.9. So any minor of M is a finitary gam-
moid by Corollary 2.5.16.

2.6 Duality

A standard result [20] states that the dual of a finite gammoid is a gammoid.
It can be proved by observing that the dual of any finite strict gammoid
is a transversal matroid and finite gammoids are closed under contraction
minors. The proof remains valid for the those infinite gammoids that admit
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a presentation (D,B0) with the underlying graph of D rayless. However, the
proof breaks down when rays are allowed. For example, we shall see that CI

defines a strict gammoid whose dual is not a transversal matroid, but the
dual is still a gammoid. The last assertion follows from the fact whose proof
is omitted that the dual of a RA-free strict gammoid is a RA-free gammoid.
However, a more badly behaved example exists: there is a strict gammoid
which is not dual to any gammoid.

We first describe the dual of CA-free strict gammoids. Counterexamples
to duality, Examples 2.6.14, 2.6.19 and 2.6.23, are proved in detail.

2.6.1 Strict gammoids and path-transversal matroids

The class of path-transversal matroids is introduced as a superclass of trans-
versal matroids, and proved to contain the dual matroids of of any CA-free
strict gammoid. We shall see that an extra condition forces CA-free strict
gammoids to be dual to transversal matroids. On the other hand, even
though path-transversal matroids extend transversal matroids, they do not
capture the dual of all strict gammoids, as we shall see in Example 2.6.14.

Let us introduce a dual object of a dimaze. Given a bipartite graph
G = (V,W ), we call a matching m0 onto W an identity matching, and
the pair (G,m0) a bimaze13. We adjust two constructions of [20] for our
purposes.

Definition 2.6.1. Given a dimaze (D,B0), define a bipartite graph D?
B0

,
with bipartition (V, (V \ B0)?), where (V \ B0)? := {v? : v ∈ V \ B0}
is disjoint from V ; and E(D?

B0
) := m0 ∪ {vu? : (u, v) ∈ E(D)}, where

m0 := {vv? : v ∈ V \B0}. Call (D,B0)? := (D?
B0
,m0) the converted bimaze

of (D,B0).

Starting from a dimaze (D,B0), we write (V \ B0)?, m0 and v? for the
corresponding objects in Definition 2.6.1.

Definition 2.6.2. Given a bimaze (G,m0), where G = (V,W ), define a
digraph G?m0

such that V (G?m0
) := V and E(G?m0

) := {(v, w) : wv? ∈
E(G) \m0}, where v? is the vertex in W that is matched by m0 to v ∈ V .
Let B0 := V \ V (m0). Call (G,m0)? := (G?m0

, B0) the converted dimaze of
(G,m0).

Starting from a bimaze (G,m0), we write B0 and v? for the corresponding
objects in Definition 2.6.2 and (V \B0)? for the right vertex class of G.

Note that these constructions are inverse to each other (see Figure 2.4).
In particular, let (G,m0) be a bimaze, then

(G,m0)?? = (G,m0). (2.12)

13Short for bipartite maze.
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its converted dimaze (G,m0)
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B0

D

G?
m0

V W

Figure 2.4: Converting a dimaze to a bimaze and vice versa

With the aim of describing the dual of CA-free strict gammoids, we
extend the class of transversal matroids as follows:

Given a bimaze (G,m0), note that for any matching m, each infinite
component of G[m0 ∪ m] is either a ray or a double ray. We say m is an
m0-matching, if G[m0 ∪ m] has no infinite component. A set I ⊆ V is
m0-matchable, if there is an m0-matching of I.

Definition 2.6.3. Given a bimaze (G,m0), the pair of V and the set of all
m0-matchable subsets of V is denoted by MPT (G,m0). If MPT (G,m0) is a
matroid, it is called a path-transversal matroid.

The correspondence between finite paths and m0-matchings is depicted
in the following lemma.

Lemma 2.6.4. Let (D,B0) be a dimaze. Then B is linkable onto B0 in
(D,B0) if and only if V \B is m0-matchable onto (V \B0)? in (D,B0)?.

Proof. Suppose a linkage P from B onto B0 is given. Let

m := {vu? : (u, v) ∈ E(P)} ∪ {ww? : w /∈ V (P)}.

Note that m is a matching from V \B onto (V \B0)? in D?
B0

. Any component
induced by m0 ∪m is finite, since any component which contains more than
one edge corresponds to a path in P. So m is a required m0-matching in
(D,B0)?.

Conversely let m be an m0-matching from V \B onto (V \B0)?. Define a
linkage from B onto B0 as follows. From every vertex v ∈ B, start an m0-m
alternating walk, which is finite because m is anm0-matching. Moreover,
the walk cannot end with an m0-edge because m covers (V \ B0)?. So the
walk is either trivial or ends with an m-edge in B0. As the m-edges on each
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walk correspond to a path from B to B0, together they give us a required
linkage in (D,B0).

Proposition 2.6.5. Let MT (G) be a transversal matroid and m0 a matching
of a base B. Then MT (G) = MPT (G,m0).

Proof. Suppose I ⊆ V admits a matching m. By the maximality of B, any
infinite component of m∪m0 does intersect V \B. Replacing the m-edges of
all the infinite components by the m0-edges gives an m0-matching of I.

In fact, we will see that the class of path-transversal matroids con-
tains the class of transversal matroids as a proper subclass; combine Ex-
ample 2.6.12 and Theorem 2.6.9. Just as we can extend a linkage to cover
the exits by trivial paths, any m0-matching can be extended to cover W .

Lemma 2.6.6. Let (G,m0) be a bimaze. For any m0-matchable I, there is
an m0-matching from some B ⊇ I onto W .

Proof. Let m be an m0-matching of I. Take the union of all connected
components of m ∪m0 that meet W −m. The symmetric difference of m
and this union is a desired m0-matching of a superset of I.

We find it convenient to abstract two properties of a dimaze and a bi-
maze. Recall that in Section 2.3.2 we defined for a dimaze (D,B0) the
property (†) to be the following:

I ∈ML(D,B0) is maximal ⇔ ∃ linkage from I onto B0. (†)

Analogously, given a bimaze (G,m0), let (‡) be

I ∈MPT (G,m0) is maximal ⇔ ∃ m0-matching from I onto (V \B0)?. (‡)

In some sense (†) and (‡) are dual to each other.

Lemma 2.6.7. A dimaze (D,B0) satisfies (†) if and only if (D,B0)? satis-
fies (‡).

Proof. Assume (D,B0) satisfies (†). To prove the backward direction of (‡),
suppose there is an m0-matching from V \B onto (V \B0)?. By Lemma 2.6.4,
there is a linkage from B onto B0. Therefore, B is maximal in ML(D,B0)
by (†). By Lemma 2.6.6, any m0-matchable superset of V \ B may be
extended to one, say V \ I, that is m0-matchable onto (V \B0)?. As before,
I ⊆ B is maximal in ML(D,B0), so I = B and hence, V \ B is a maximal
m0-matchable set. To see the forward direction of (‡), suppose V \ B is a
maximal m0-matchable set witnessed by an m0-matching m, that does not
cover v? ∈ (V \B0)?. As m is an m0-matching, a maximal m0-m alternating
walk starting from v? ends at some vertex in B. So the symmetric difference
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of this walk and m is an m0-matching of a proper superset of V \ B which
is a contradiction.

Assume (D,B0)? satisfies (‡). The forward direction of (†) is trivial. For
the backward direction, suppose there is a linkage from B onto B0. Then
there is an m0-matching from V \B onto (V \B0)? by Lemma 2.6.4. By (‡),
V \B is maximal in MPT (D,B0)?. With an argument similar to the above,
we can conclude that B is maximal in ML(D,B0).

Now let us see how (†) helps to identify the dual of a strict gammoid.

Lemma 2.6.8. If a dimaze (D,B0) satisfies (†), then the dual of ML(D,B0)
is MPT (D,B0)?.

Proof. By Lemma 2.6.7, (D,B0)? satisfies (‡). Let B be an independent set
in ML(D,B0). Then B is maximal if and only if there is a linkage from B
onto B0. By Lemma 2.6.4, this holds if and only if there is an m0-matching
from V \B onto (V \B0)?, which by (‡) is equivalent to V \B being maximal
in MPT (D,B0)?.

To complete the proof, it remains to see that every m0-matchable set
can be extended to a maximal one, which follows from Lemma 2.6.6 and
(‡).

Note that while we do not need it, the twin of Lemma 2.6.8 is true,
namely, if a bimaze (G,m0) satisfies (‡), then MPT (G,m0) is a matroid
dual to ML(G,m0)?.

To summarize, the dual of a CA-free strict gammoid is given as follows.

Theorem 2.6.9. (i) Given a CA-free dimaze (D,B0), ML(D,B0) is a ma-
troid dual to MPT (D,B0)?.

(ii) Given a bimaze (G,m0), if (G,m0)? is CA-free, then MPT (G,m0)
is a matroid dual to ML(G,m0)?.

Proof. (i) This is the direct consequence of Lemma 2.3.4 and Lemma 2.6.8.

(ii) Apply part (i) and (2.12).

One might hope that in the first part of the theorem the path-transversal
matroid MPT (D,B0)? is in fact the transversal matroid MT (D,B0)?. How-
ever, the dimaze RI defines a strict gammoid whose dual is not the transver-
sal matroid defined by the converted bimaze. It turns out that RI is the
only obstruction to this hope.

Theorem 2.6.10. (i) Given an {RI , CA}-free dimaze (D,B0), ML(D,B0)
is a matroid dual to MT (D?

B0
).

(ii) Given a bimaze (G,m0), if (G,m0)? is {RI , CA}-free, then MT (G)
is a matroid dual to ML(G,m0)?.
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Proof. (i) This follows from Theorem 2.6.9(i) and the fact that for an RI -
free dimaze (D,B0), we have MT (D?

B0
) = MPT (D,B0)?. The proof of the

latter is similar to the one given to Proposition 2.6.5 and omitted.

(ii) Apply part (i) and (2.12).

As a corollary we can show that the class of rayless gammoids has some
nice properties like that of finite gammoids. An undirected graph is called
rayless, if it does not contain any ray. We call a gammoid rayless if it admits
a presentation whose (undirected) underlying graph is rayless. A transversal
matroid is called rayless if there is a rayless bipartite graph defining it.

Proposition 2.6.11. The class of rayless gammoids is closed under taking
minor and duality.

Proof. For the minor part, as restriction and contraction commute, it suffices
to prove that any contraction of any rayless strict gammoid M is a rayless
gammoid. Let M = ML(D,B0) where the underlying graph of D is rayless.
As there is no CA or RI in (D,B0), by Theorem 2.6.10, M∗L(D,B0) =
MT (D?

B0
) which is a rayless transversal matroid. Any restriction of this

transversal matroid is also a rayless transversal matroid, say MT (G). Pick
some identity matching m0. As the underlying graph of (G,m0)? is rayless,
by Theorem 2.6.10, M∗T (G) = ML(G,m0)? which is a rayless gammoid.

To show that the class of rayless gammoids is closed under duality, note
that M∗ = M∗L(D,B0)/X = MT (D?

B0
)/X. But the last matroid is a con-

traction of a rayless gammoid which was just shown to be a rayless gam-
moid.

Given a rayless presentation G = (V,W ) of a transversal matroid M ,
we construct a rayless gammoid presentation of M by directing the edges
from V to W and defining W to be the set of exits. So the class of rayless
gammoids contains that of rayless transversal matroids.

It appears that CA is a natural constraint in Theorem 2.6.10.

Example 2.6.12. The strict gammoid defined by the dimaze CA (Fig-
ure 2.5a) is not cotransversal.

Proof. Since V \ B0 + v is a base for every v ∈ B0, B0 is an infinite co-
circuit. On the other hand, every vertex v of B0 is contained in a finite
cocircuit, namely v and its in-neighbours. So by Lemma 2.2.9, the dual is
not transversal.

Here is a question which is in some sense converse to Theorem 2.6.10(i).

Question 2.6.13. Is every cotransversal strict gammoid {CA, RI}-free?
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Figure 2.5: An alternating comb and an incoming comb defining isomorphic
strict gammoids.

Although the class of path-transversal matroids contains that of transver-
sal matroids properly, not every strict gammoid has its dual of this type.
To show this, we first note that in a path-transversal matroid MPT (G,m0),
if C is the fundamental circuit of u, then N(C) = m0(C − u). Indeed,
N(u) ⊆ m0(C − u); and for any v ∈ C − u, since there is an m0-alternating
path from u ending in v, v cannot have any neighbour outside m0(C − u).

Example 2.6.14. Let T be a rooted tree such that each vertex has infinitely
many children, with edges directed towards B0, which consists of the root
and vertices on alternating levels. Then ML(T,B0) is a strict gammoid that
is not dual to any path-transversal matroid.

Proof. By Theorem 2.4.4, M := ML(T,B0) is a matroid. Suppose that
M∗ = MPT (G,m). Let Q be a linkage of B := V −m to B0. Since (T,B0)
is CO-free, by Proposition 2.5.10, we have M = ML(D1, B1) where (D1, B1)
is the Q-shifted dimaze. By construction, the underlying graph of D is also
a tree.

By Corollary 2.4.8, (D1, B1) contains a subdivision R of CA. Let {si :
i ≥ 1} = R ∩ B1 and U = {ui : i ≥ 1} be the set of vertices of out-degree
2 on R. Let Ui be the set of vertices such that any path from which to
R ∩ B1 contains ui; and Si be the set of vertices such that there is a path
from which to si in D − U . Since D is a tree, {Ui, Si : i ≥ 1} is a collection
of pairwise disjoint sets.

Let C :=
⋃
i≥1 Si. Then any linkable set in V \ C has a linkage that

misses an exit in R∩B1. Since D is a tree, (B1−R)∪U + c for any c ∈ C is
a base of M . Hence, C is a circuit in M∗. For a contradiction, we construct
an m0-matching of C in (G,m).

In M∗, the fundamental circuit of si with respect to B1 is Si ∪Ui−1 ∪Ui
(with U0 = ∅). By the remark before the example, N(Si ∪ Ui−1 ∪ Ui) =
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m(Si ∪ Ui−1 ∪ Ui − si) for i ≥ 1.
We claim that for i ≥ 1, in any m-matching m′ of

⋃
j≤i Sj , the maximal

m′-m alternating walk from sj ends in m(Uj) for j ≤ i. Note that such a
walk cannot end in m(Sj) as those vertices are incident with m′-edges. Since
N(S1) ⊆ m(S1 ∪ U1), the claim is true for i = 1. Assume that it is true
for i − 1. Consider an m-matching m1 of

⋃
j≤i Sj . Let Pj be the maximal

m1-m-alternating walk starting from sj . By assumption, Pj ends in m(Uj)
for each j < i. As Pi ends in m(Ui−1 ∪ Ui), we are done unless it ends in
m(Ui−1). In that case, the union of an m-matching of C \⋃j≤i Sj with

(m�
⋃
j≤i

Sj)∆
⋃
j≤i

E(Pj)

is an m-matching of C, a contradiction.
Therefore, there is a collection of pairwise disjoint m-alternating walks

{P ′i : i ≥ 1} where P ′i starts from si and ends inm(Ui). Thenm∆
⋃
i≥1E(P ′i )

is an m-matching of C, a contradiction which completes the proof.

Here is a question similar to Question 2.6.13 akin to Theorem 2.6.9.

Question 2.6.15. Is every strict gammoid which is dual to a path-transversal
matroid CA-free?

It may be interesting to investigate further path-transversal systems.
For example, while they need not satisfy (IM), it may be the case that (I3)
always holds.

Conjecture 2.6.16. Given a bimaze (G,m0), MPT (G,m0) satisfies (I3).

2.6.2 Finitary transversal matroids

Our aim in this section is to give a transversal matroid that is not dual to
any strict gammoid. To this end, we extend some results in [7] and [8]. The
following identifies edges that may be added to a presentation of a finitary
transversal matroid without changing the matroid.

Lemma 2.6.17. Suppose that MT (G) is finitary. Let K be a subset of
{vw /∈ E(G) : v ∈ V,w ∈W}. Then the following are equivalent:

1. MT (G) 6= MT (G+K);

2. there are vw ∈ K and a circuit C with v ∈ C and w /∈ N(C);

3. there is vw ∈ K such that v is not a coloop of MT (G) \N(w).

Proof. 1. holds if and only if there is a circuit C inMT (G) which is matchable
in G+K. This, since C is finite, in turn holds if and only if there is v ∈ C
that can be matched outside N(C) in G+K, i.e. 2. holds.

The equivalence between 2. and 3. is clear since a vertex is not a coloop
if and only if it lies in a circuit.
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Given a bipartite graph G, recall that a presentation of a transversal
matroid M as MT (G) is maximal if MT (G + vw) 6= MT (G) for any vw /∈
E(G) with v ∈ V,w ∈W . Thus, the previous lemma implies that if MT (G)
is finitary, then G is maximal if and only if M \N(w) is coloop-free for any
w ∈ W . Bondy [7] asserted that there is a unique maximal presentation
for any finite coloop-free transversal matroid; where two presentations of a
transversal matroid by bipartite graphs G and H are isomorphic if there is
a graph isomorphism from G to H fixing the left vertex class pointwise.

Proposition 2.6.18. Every finitary transversal matroid M has a unique
maximal presentation.

Proof. Let M = MT (G). Adding all vw with the property that there is not
any circuit C with v ∈ C and w /∈ N(C) gives a maximal presentation of
M by Lemma 2.6.17. In particular, any coloop is always adjacent to every
vertex in W . So without loss of generality, we assume that M is coloop-free.

Now let G and H be distinct maximal presentations of M .

Claim 1. For any finite subset F of V , the induced subgraphs G[F ∪
NG(F )] and H[F ∪NH(F )] are isomorphic.

For every v ∈ F pick a circuit Cv with v ∈ Cv. By Lemma 2.6.17,
for every vw ∈ {xy /∈ E(G) : x ∈ F, y ∈ NG(F )}, there is a circuit Cvw
with v ∈ C and w /∈ NG(C). Let FG be the union of all Cv’s and Cvw’s.
Analogously define FH and let F ′ = FG ∪ FH . Extend the presentations
G[F ′ ∪ NG(F ′)] and H[F ′ ∪ NH(F ′)] of M�F ′ to maximal ones G′ and H ′

respectively, between which there is a graph isomorphism fixing the left
vertex class pointwise by Bondy’s result. Restricting the isomorphism to
F ∪NG(F ) is an isomorphism of G[F ∪NG(F )] and H[F ∪NH(F )], as by
definition of F ′ and Lemma 2.6.17, no non-edge between F and NG(F ) is
an edge in G′ (analogously between F and NH(F ) in H ′).

Without loss of generality, there is an A ⊆ V such that g := |{w ∈
W (G) : NG(w) = A}| < |{w ∈ W (H) : NH(w) = A}| =: h. Note that as H
is a maximal presentation, by Lemma 2.6.17, M \A is coloop-free.

As M is coloop-free, so is M.A. Let B1 be a base of M.A and extend B1

to a base of M which admits a matching m; thus m contains a matching of a
base ofM\A. SinceM\A is coloop-free, by Lemma 2.2.7, the neighbourhood
of each vertex matched by m to a vertex in B1 is a subset of A. Thus, M.A
can be presented with the subgraphs induced by A ∪ {w ∈ W : N(w) ⊆ A}
in both graphs; call these subgraphs G1 and H1. For any w ∈ W (G1),
since M \NG1(w) is coloop-free, so is M.A \NG1(w). By Lemma 2.6.17, G1

(analogously H1) is a maximal presentation of M.A.

Claim 2. Given a family (Nj)j∈J of finite subsets of W , if the intersec-
tion of any finite subfamily has size at least k, then the intersection of the
family has size at least k.
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Figure 2.6: A transversal matroid which is not dual to a strict gammoid
and a gammoid presentation of its dual

Let N =
⋂
j∈J Nj . Suppose |N | < k. Fix some j0 ∈ J and for

each element y ∈ Nj0 \ N pick some Ny such that y /∈ Ny. Then |Nj0 ∩⋂
y∈Nj0\N

Ny| = |N | < k, which is a contradiction.

By Claim 2, there is a finite set F ⊆ A such that |⋂v∈F NG1(v)| = g.
But Claim 1 says that F has at least h > g common neighbours in H1; this
contradiction completes the proof.

To show that the following finitary transversal matroid is not dual to
a strict gammoid, it suffices to show that there is no bimaze presentation
whose converted dimaze is CA-free.

Example 2.6.19. Define a bipartite graph G as V (G) = {vi, Ai : i ≥ 1} and
E(G) = {v1A1, v2A1, v1A3, v2A3} ∪ {v2i−3Ai, v2i−2Ai, v2i−1Ai, v2iAi : i ≥ 2}
(see Figure 2.6). Then M = MT (G) is not dual to a strict gammoid.

Proof. As G is left locally finite, M is a finitary matroid. Assume for a
contradiction that M∗ = ML(D,B0). By a characterization of cofinitary
strict gammoids in [1], we may assume that (D,B0) is {RI , CA}-free. Then
by Theorem 2.6.10, M = MT (D,B0)?.

Now it can be checked that allM\N(wi) are coloop-free. By Lemma 2.6.17,
G is the maximal presentation of M . The same lemma also implies that any
minimal presentation G′ is obtained by deleting edges from {v1A3, v2A3}
and at most one from {v1A2, v2A2}. In particular, all presentations of M
differ from G only finitely. It is not difficult to check that with any match-
ing m0 of a base, (G,m0)? contains a subdivision of CA. Hence, there is
no bimaze presentation of M such that the converted dimaze is CA-free,
contradicting that (D,B0)? is such a presentation.

We remark that the above transversal matroid is dual to a gammoid, see
Figure 2.6(b). However, in the next section, we give a transversal matroid
that is not dual to any gammoid.
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2.6.3 Infinite tree and gammoid duality

To show that there is a strict gammoid not dual to a gammoid, we prove
the following lemmas, whose common setting is that a given dimaze (D,B0)
defines a matroid ML(D,B0). For a linkage Q and any X ⊆ Ini(Q), Q �
X := {Q ∈ Q : Ini(Q) ∈ X}; when X = {x}, we write simply Qx.

Lemma 2.6.20. Let C be an infinite circuit containing b and Q a linkage
from C−b. Then b can reach infinitely many vertices in C via Q-alternating
walks.

Proof. Given any x ∈ C−b, let P be a linkage of C−x. Let W be a maximal
P-Q-alternating walk starting from b. If W is infinite, then we are done.
Otherwise, W ends in either Ter(P) \ Ter(Q) or Ini(Q) \ Ini(P) = {x}.
The former case does not occur, since it gives rise to a linkage of C by
Lemma 2.2.4(i), contradicting C being a circuit. As x was arbitrary, the
proof is complete.

Lemma 2.6.21. For i = 1, 2, let Ci be a circuit of M , and bi, xi ∈ Ci\C3−i,
Wi a Q-alternating walk from bi to xi, where Q is a linkage from (C1∪C2)\
{b1, b2}. Then W1 and W2 are disjoint.

Proof. Suppose that W1 = w1
0e

1
0w

1
1 . . . w

1
n and W2 = w2

0e
2
0w

2
1 . . . w

2
m are not

disjoint. Then there exists a first vertex v = w1
j on W1 such that v =

w2
k ∈ W2 and either v ∈ V (Q) and e1

j = e2
k ∈ E(Q) or v /∈ V (Q). In

both cases W3 := W1vW2 is a Q-alternating walk from b1 to x2. Let v′

be the first vertex of W3 in V (Q � (C2 − b2) \ C1) and Q the path in Q
containing v′. Then W3v

′Q is a (Q � (C1 − b1))-alternating walk from b1 to
B0\Ter(Q � (C1−b1)), which by Lemma 2.2.4(i) contradicts the dependence
of C1. Hence W1 and W2 are disjoint.

Lemma 2.6.22. Let {Ci : i ∈ N} be a collection of circuits of M ; xi, bi
distinct elements in Ci \

⋃
j 6=iCj. Suppose that

⋃
i∈I Ci \{bi : i ∈ N} admits

a linkage Q. Let Wi be a Q-alternating walk from bi to xi. If X ⊆ V is a
finite set containing Ci ∩ Cj for any distinct i, j, then only finitely many of
Wi meet Q � X.

Proof. By Lemma 2.6.21, the walks Wi are pairwise disjoint. Since Q � X
is finite, it can be met by only finitely many Wi’s.

We are now ready to give a counterexample to classical duality in gam-
moids.

Example 2.6.23. Let (T,B0) be the dimaze defined in Example 2.6.14.
The dual of the strict gammoid M = ML(T,B0) is not a gammoid.
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Proof. Suppose that M∗ = ML(D,B1) � V , where V := V (T ). Fix a linkage
Q of V \ B0 in (D,B1). For b ∈ B0, let Cb be the fundamental cocircuit
of M with respect to B0. Then for any (undirected) ray b0x0b1x1 · · · in T ,
C :=

⋃
k∈NCbk \ {xk : k ∈ N} is a cocircuit of M . We get a contradiction by

building a linkage for C in (D,B1) inductively using disjoint Q-alternating
walks.

Let b0 be the root of T . By Lemma 2.6.20, there is a Q-alternating walk
W0 from b0 to one of its children x0. At step k > 0, from each child b of
xk−1 in T , by Lemma 2.6.20, there is a Q-alternating walk Wb in (D,B1) to
a child x of b. Applying Lemma 2.6.22 on {Ci : i ∈ N−(xk−1)− bk−1} with
X = {xk−1}, we may choose bk := b, xk := x such that Wk := Wb avoids
Qxi−1 .

By Lemma 2.6.21, distinct Wk and Wk′ are disjoint. Moreover, as each
Wk avoids Qxk−1

, Lemma 2.2.4(i) implies that Wk can only meet Q at Qx
where x ∈ Cbk − xk−1. Then E(Q)4⋃k∈NE(Wk) contains a linkage of
C.

By adding a unique in-neighbour to every vertex in B0, we can present
ML(T,B0) as a transversal matroid (as in the proof of Corollary 2.4.7).
Thus, not every transversal matroid is dual to a gammoid. It might be the
case that the alternating comb is the obstacle to duality.

Conjecture 2.6.24. The class of CA-free gammoids is closed under duality.
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Summary

The connected tree-width is an upper bound for the tree-width of a graph,
and the cycles (as graphs), having a tree-width of 2, show that the tree-
width and the connected tree-width of a graph can be arbitrarily far away
from each other.

It is proved that for any graph, a large geodesic cycle is the only reason
for the connected tree-width to be much larger than the tree-width. This is
used to show that a qualitative version of a “connected tree-width duality
theorem” holds.

The second part concerns gammoids, a class of matroids investigated
in the late 1960’s. Ingleton and Piff gave a construction that transforms a
presentation of a finite strict gammoid, a dimaze, to a transversal matroid
presentation of its dual, a bipartite graph. This is used in the proof that the
class of finite gammoids is closed under minors and under duality. In 2010
Bruhn, Diestel, Kriesell, Pendavingh and Wollan found a notion of infinite
matroids that allows for duality. This suggests the question of extending
gammoids to infinite ground sets by a verbatim transfer of linkability.

Contrary to the finite case, not every infinite dimaze defines a matroid.
One obstruction is a dimaze termed an alternating comb. For such a strict
gammoid the construction of Ingleton and Piff (transferred to the infinite
case) provides a presentation of the dual and, if the dimaze does not contain
an incoming ray, that dual is transversal. The class of gammoids defin-
able by a dimaze without any outgoing comb is minor closed and the class
of gammoids definable by a dimaze without any ray is, like that of finite
gammoids, closed under minors and under duality.
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Zusammenfassung

Die zusammenhängende Baumweite eines Graphen ist eine obere Schranke
für seine Baumweite und bei einem Kreis können diese beiden Parameter
beliebig weit voneinander entfernt sein. Es wird bewiesen, dass einen langen
geodätischen Kreis zu enthalten der einzige Grund für einen großen Abstand
dieser Parameter ist. Dies wird benutzt um eine qualitative Version eines
“Dualitätssatzes der zusammenhängenden Baumweite” zu beweisen.

Im zweiten Teil beschäftigen wir uns mit den, in den 1960er Jahren en-
twickelten, Gammoiden. Eine Konstruktion von Ingleton und Piff überführt
eine Präsentation eines endlichen strikten Gammoids, ein Dimaze, in eine
transversal Matroid-Präsentation des Duals, einen bipartiten Graphen. Sie
wurde benutzt um zu beweisen, dass die endlichen Gammoide unter Mi-
norbildung und Dualität abgeschlossen sind. Im Jahr 2010 fanden Bruhn,
Diestel, Kriesell, Pendavingh und Wollan Axiome für unendliche Matroide,
die Dualität erlauben. Eine natürliche Frage ist, ob sich Gammoide, durch
wörtliche Übertragung von Verbindbarkeit, auf unendliche Grundmengen
erweitern lassen.

Im Gegensatz zum endlichen Fall definiert nicht jedes unenliche Dimaze
ein Matroid. Enthält es allerdings kein Dimaze namens alternating comb,
so wird ein Matroid definiert und die Konstuktion von Ingleton und Piff
(auf den unendlichen Fall übertragen) liefert eine Präsentation vom Dual
des definierten strikten Gammoids. Falls das Dimaze keinen incoming comb
enthielt, so ist dieses Dual ein transversal Matroid. Die Klasse der Gam-
moide, die eine Präsentation ohne outgoing comb haben, ist unter Minorbil-
dung abgeschlossen und die Klasse der Gammoide, die durch ein strahlen-
loses Dimaze definierbar sind, ist, wie die der endlichen Gammoide, unter
Minorbildung und Dualität abgeschlossen.
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