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Abstract

Starting from the nodal Discontinuous Galerkin (DG) model presented in Giraldo et al.
(2002), we developed and validated a quasi-nodal high-order and well-balanced DG
model on an adaptive mesh to solve the two-dimensional one-layer, non-linear shallow
water equations for the simulation of quasi-realistic inundation events.

The important scales of inundation problems range between several orders of magni-
tude. However, fine-scale features often occur heavily localized, so that the simulations
usually do not need to be finely resolved everywhere in the spatial domain. There-
fore, we introduce a dynamically adaptive triangular mesh (see Behrens et al. (2005)),
that allows for temporal varying spatial resolution, which reduces the computational
complexity. Idealized numerical tests of flooding and drying show a reduction of com-
putational complexity compared to simulations on a uniformly fine mesh.

Spurious oscillations destabilize the DG model and affect the accuracy of the numer-
ical solution. To reduce them, slope limiters are employed in an explicit time-stepping
scheme. Moreover, the use of the strong form of the equations leads to a well-balanced
model with a computational efficient modification that we suggest. A theoretical study
on limiters reveals desirable properties and a comparison highlights the strengths and
weaknesses of commonly used limiters. Numerical tests are performed to show the
accuracy of the DG method in combination with different limiters.

In order to improve local convergence rates and conservation properties, we study
the viability of higher than second order basis functions in the DG model. The usage of
higher-order functions is especially desirable because the majority of problems of interest
is smooth almost everywhere. The nodal Lagrange basis of the model, however, leads
to stability problems. Therefore, we introduce higher-order Bernstein basis functions
and show an improvement with idealized numerical tests.

A suitable model for wind stress is essential for storm surge modeling, because the
wind is the major driving force in storm surge events. We show a discretization that
was first introduced by Holland (1980) and allows to predict wind drag from a given
cyclone track using information on the radius of maximum winds as well as the central
pressure of the storm. We study idealized storm scenarios in order to detect suitable
refinement indicators for the use of the adaptive mesh. First simulation results suggest
the practicability of inundation simulations with wind forcings.





Kurzfassung

Ausgehend von dem in Giraldo et al. (2002) vorgestellten nodalen unstetigen Galerkin
(DG) Modell entwickelten und validierten wir ein quasi-nodales wohlbalanciertes DG
Modell höherer Ordnung auf einem adaptiven Gitter zur Lösung der zwei-dimensionalen
einschichtigen, nichtlinearen Flachwassergleichungen zur Simulation von Überflutungs-
ereignissen.

Die wichtigsten Skalen von Überflutungsproblemen erstrecken sich über mehrere
Größenordnungen. Jedoch treten feinskalige Merkmale häufig stark lokalisiert auf, so
dass die Simulation nicht überall fein aufgelöst sein muss. Daher führen wir ein dy-
namisch adaptives Dreiecksgitter (siehe Behrens et al. (2005)) ein, das eine zeitliche
Variation der räumlichen Auflösung ermöglicht, die die Berechnungskomplexität re-
duziert. Idealisierte numerische Tests von Überflutungen zeigen eine deutliche Reduk-
tion des Rechenaufwands im Vergleich zu Simulationen auf einem uniformen feinen
Gitter.

Numerische Oszillationen destabilisieren das Modell und beeinflussen die Genauigkeit.
Um sie zu reduzieren, werden Slope Limiter in einem expliziten Zeitschrittverfahren
verwendet. Die Verwendung der starken Form der Gleichungen in Kombination mit
einer Modifikation, die wir präsentieren, stellt zudem sicher, dass das Modell wohlbal-
anciert ist. Eine theoretische Studie von Slope Limiter verdeutlicht wünschenswerte
Eigenschaften und ein Vergleich zeigt die Stärken und Schwächen der am häufigsten
verwendeten Limiter auf. Wir testen numerisch die Genauigkeit des DG Verfahrens in
Kombination mit verschiedenen Limitern.

Um lokale Konvergenzraten und Erhaltungseigenschaften zu verbessern, untersuchen
wir die Funktionsfähigkeit von Basisfunktionen höherer als zweiter Ordnung in dem
DG Modell. Die Nutzung von Funktion höherer Ordnung ist besonders wünschenswert,
weil, die Mehrzahl der Anwendungsprobleme fast überall glatt ist. Der nodale Lagrange
Ansatz des Modells führt jedoch zu Stabilitätsproblemen. Daher schlagen wir Bernstein
Polynome als Basisfunktionen vor und zeigen mit idealisierten numerischen Tests von
Überflutungen eine Verbesserung der Simulation.

Ein geeignetes Modell für den Windschub als Hauptantriebskraft ist essentiell für die
Sturmflut-Modellierung. Wir zeigen eine Diskretisierung, die zuerst in Holland (1980)
eingeführt wurde und studieren idealisierte Sturmszenarien, um geeignete Indikatoren
für die Verfeinerung der adaptiven Gitter zu bestimmen. Erste Simulationsergebnisse
deuten darauf hin, dass das Modell für die Anwendung von Sturmflut Simulationen
praktikabel ist.
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Notation and Abbreviations

αik Runge-Kutta coefficients
α multiindex for derivatives on the triangle
βik Runge-Kutta coefficients
b bathymetry in [m]
Bn
λ λth Bernstein polynomial of degree n

c wave speed
D
D· ,

∂
∂· material, partial derivative

ηΩe error estimator for element Ωe

e index for triangle numbering
E index set for element numbers
E2, E∞ error measures for non-analytic functions
E2
rel, E

2
abs, E

∞
rel, E

∞
abs error measures for analytic functions

F,F∗ flux tensor, its numerical approximation
f x-split flux vector
Fcn vector of conservative forces
fc, f Coriolis forcing, scale of Coriolis forcing
Fr Froude number
∇ gradient operator
γτ wind friction
g gravitational acceleration of the earth (≈ 9.81ms−2)
h water height in [m]
H = h+ b total height
H right-hand side of ordinary differential equation

H̃ limiter
I2 identity matrix in R2×2

J ,Je arbitrary index set, arbitrary index set for element Ωe

∆ Laplace operator
λ multiindex
λ eigenvalues of shallow water equations
L∞(Ω) space of bounded functions over domain Ω
µ modal basis function
µ also multiindex for Bernstein derivatives
M number of triangles in domain decomposition
m number of degrees of freedom per triangle m = (n+ 1)(n+ 2)/2
ms order of Runge Kutta scheme
n order of polynomial
nM Manning’s n (dimensionless parameter)
n,nk normal vector, normal vector w.r.t kth edge
N number of degrees of freedom
ν physical viscosity coefficient
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p pressure
φ = gh, L geopotential height and its length scale
Φ vector of non-conservative forces
Pn polynomial space of degree n
R,R2,R3 space of real numbers in 1, 2 and 3 dimensions
r1, r2, r3 shallow water eigenvectors
∆re radius of largest inscribed circle of element Ωe

ρ, ρ0 density function, constant density
Re Reynolds number
Ro Rossby number
σ barycentric coordinates
s number of stages in Runge-Kutta scheme
S source term
SL, SR, S∗ speeds of characteristics
⊗ tensor product
τ two-dimensional wind vector field
τ b bottom friction forcing
τ s wind forcing
t, t0 time variable, fixed point of time
T = [0, t0] time interval
∆t time step
θcrs, θref parameters for adaptive mesh refinement
u = (u, v)>, U two-dimensional velocity vector and its scale
U = (φ, φu)> balanced quantities
Uh numerical solution for balanced quantities

U
(k)
h intermediate Runge-Kutta numerical solution at stage k

UL,UR,UL∗,UR∗ state values
ψk kth nodal basis functions
ψL latitude in degree
x = (x, y)> spatial two-dimensional coordinates
∆xmin,∆xmax shortest and longest edge of adaptive mesh
xi Lagrange interpolation points
ξk Gauss quadrature points
χ indicator function
V Vandermonde matrix
Ω domain
∂Ω boundary of domain Ω
Ωe element (triangle) number e
Ωrot rotation rate of the earth
z vertical coordinate





1. Introduction

1.1. Motivation and Background

With the recent advances in computer technology and the development of mathematical
algorithms, it is possible to compute reasonable solutions to evermore complex prob-
lems within acceptable time. Of special interest are geophysical problems, as computer
simulations can contribute to improve our understanding of earth system processes,
which are, for example, an important part of the simulation of natural hazards. One of
them, and the focus of this thesis, are storm surges.

In Holthuijsen (2007) storm surges are defined as a large-scale elevation in a severe
storm generated by a (low) atmospheric pressure and high wind speeds with temporal
and spatial scales equal to the ones of the generating storm. These strong winds advect
water from the ocean towards the coast and flood coastal areas as is depicted in sketch
1.1. In that case, the role of other geophysical forces, such as Coriolis force and bottom
friction, strongly depend on local conditions such as the linearity of the waves or the
consistency of the bottom topography. Usually it is not the wind, but the water that
causes the main damage, which can be devastating to the population and local infras-
tructure in coastal regions. Not uncommonly, there are up to hundreds of casualties
and loss of property to the amount of several hundreds of thousands of euros recorded
that are caused by severe storms.

Regularly, reports on current storms and floods can be found in the media, constantly
reminding us of the vulnerability of coastal region to be damaged by major floods. An
example for a severe storm surge is the surge caused by Hurricane Ike–a Category 4
storm (on the Saffir-Simpson hurricane scale, see appendix chapter A), that traveled
from the west coast of Africa on August 28, 2008 over the Atlantic Ocean, hit the
Caribbean and Cuba, and finally made landfall as a Category 2 storm at Galveston
Bay, Texas on September 12, 2008 (see Berg (2010)). It caused 103 direct deaths and
further 94 deaths can be attributed to it, most of them at the U.S. Golf Coast. The
total damage amounted to 27.2 billion euros which made it the third costliest hurricane
in the United States.

Flood watches and warnings, and the implementation of measures to mitigate ef-
fects of major storm surges are therefore essential for the protection of the population.
Mostly, they are the responsibility of national governments. For example in Germany,
according to the law (Seeaufgabengesetz, or short, SeeAufG) it is the responsibility of
the federal government to reside the nautical and hydrographic services which includes
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Figure 1.1.: Sketch of a storm surge, taken from NOAA (2013).

the prediction of water level, tides and storm surges. For the performance, a network of
local hydrographic service centers is appointed, that employ numerical models for sim-
ulations and have a responsibility to take local measurements to improve the forecast if
necessary. In the USA the respective hydrographic service is the National Oceanic and
Atmospheric Administration (NOAA) in Washington, DC. They also have a range of
numerical models, both deterministic and stochastic, for long- and short-term predic-
tions of the water level. Hence, the ability to predict the run-up of a surge is crucial
information for a large number of institutions, because it is needed for hazard prediction
tools which are fundamental for decision making. These decisions concern emergency
warning and evacuation of the local population as well as modification of means of
mitigation such as dike or levee systems.

The computer models, that are employed for the simulation and prediction, are re-
quired to be robust, efficient and accurate. For operational purpose, usually a combi-
nation of deterministic and stochastic models is used.

The latter take storm-specific uncertainties into account and are mostly computa-
tionally inexpensive relative to deterministic models. However, they strongly depend
on the availability and quality of measurement data, which is often hard to acquire.
Examples for stochastic models are the model developed in Wahl et al. (2012a,b) for
the German Bight or NOAA’s P-Surge (Tropical Cyclone Storm Surge Probabilities).
P-Surge computes cyclone tracks by statistically evaluating ensemble runs of an analyt-
ical model called SLOSH (Sea, Lake, and Overland Surges from Hurricanes) and takes
historical errors for track and intensity into account. Mostly, operational stochastic
models are employed in a time window that is close (between 24 to 48 hours) to the
landfall of the storm.

For longer-term prediction, usually deterministic models are employed. They are ad-
vanced models that compute inundation scenarios from initial measurement data using
mathematical equations that are suitable to describe the present physical processes.
Examples are NOAA’s MOM (Maximum of the Maximum) and MEOW (Maximum
Envelop of Water Height), that compute worst case scenarios for the water height un-



1.2. Objective 3

der perfect storm conditions as well as the finite element model developed in Westerink
et al. (2008) which has most prominently been applied to the Louisiana coast.

During the past decades of model development huge progress has been made with re-
spect to practical applicability. But even with the resources that are availably nowadays,
the results are still improvable. For example, there are a lot of multi-scale processes
that are not taken into account in the equations that are solved, the models are not
fast enough to provide sufficient resolution on small scales within acceptable time, and
numerical models need further development to be able to yield robust results with a
reduced application of numerical stabilization techniques.

The overall goal of our study is to develop a numerical method to accurately and
efficiently simulate inundation events in order to gain knowledge for future improvement
of storm surge simulations and predictions.

1.2. Objective

The main goal of this thesis is the methodological improvement of discontinuous Galerkin
(DG) methods for the simulation of storm surges. This comprises aspects of computa-
tional complexity as well as numerical accuracy. We are concerned with reducing the
computational cost of the simulations without significantly affecting the overall accu-
racy. The latter is strongly linked to the application of slope limiters, which are used
to reduce numerical oscillations in order to stabilize the model and obtain physically
meaningful solutions. In all, our goals can be formulated as three mostly independent
research questions:

• To which extent does varying spatial resolution in a DG model reduce the com-
putational complexity and, in turn, how does it affect the overall accuracy and
robustness of the method, especially for flooding and drying scenarios?

• Does a theoretical formulation of general slope limiters for the reduction of numer-
ical oscillations exist; how does it help to determine their strengths and weaknesses
in handling flooding and drying and can the results be confirmed numerically?

• Are third-order basis functions viable for the simulation of wetting and drying?

The objective is accomplished by the development of a two-dimensional single-layer
and high-order adaptive nodal DG shallow water model. A three-dimensional or multi-
layer model could achieve a higher accuracy. However, these approaches are known to
be computationally expensive compared to a two-dimensional model and due to a strong
limitation of computational resources, we do not pursue them. We implemented the
model within the existing software framework amatos (see Behrens et al. (2005)), that
provides routines for the use of adaptive meshes. Following the framework’s naming
conventions, it is named StormFlash2d. It has been tested with a set of idealized test
cases, most of them which admit an analytical solution for comparison, to demonstrate
the major functionalities: accurate modeling of flooding and drying, robustness on a
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dynamically adaptive mesh, preservation of steady states, and correct representation of
wind forcing.

1.3. Overview

This thesis is organized as follows. Chapter 2 provides a mathematical derivation of the
shallow water equations, which we will use throughout this monograph. We review the
general characteristics of the system and a set of dimensionless numbers, that classify
the strength of certain effects. In the end, we discuss the physics of storm surges, how
they relate to the equations and which effects are not taken into account in our model.

In chapter 3 we introduce our nodal discontinuous Galerkin model with its basic
functionalities: an adaptive triangular mesh and slope limiters to simulate wetting and
drying. Numerical testcases demonstrate the ability to model flooding and drying and
to preserve steady state solutions with linear basis functions. An investigation of com-
putational complexity for the combination of our nodal DG model with an adaptive
triangular mesh reveals a considerable decrease of computing time without any signifi-
cant loss of accuracy for all testcases.

An accuracy analysis is performed in chapter 4, i.e. we investigate the impact of
different numerical approximations of our model on the accuracy. This comprises the
theoretical and numerical comparison of different limiting strategies that are employed
for the stable computation of wetting and drying, the investigation of the influence of
Riemann solvers that are used to compute fluxes over cell boundaries as well as our
method to preserve steady state solutions.

Furthermore, in chapter 5, we explore strategies for the usage of higher than second
order basis functions which requires a modification of the used basis functions and leads
at least locally to an improvement of convergence.

Chapter 6 presents simulation results for storm-based inundation. This comprises
the discretization of source terms in our model and the study of suitable refinement
indicators for the adaptive mesh. On idealized storm surge testcases we show the
validity of our storm implementation and the capability of our model to adaptively
simulate storm surge events.

Finally, in the last part of this thesis, chapter 7, we summarize our findings and
discuss to which extent higher than second order modeling of inundation scenarios is
advantageous and the performance of our model applied to storm surges. The chapter
closes with a list of open research questions in this context, that are left for future
investigation.



2. Mathematical Description of Storm
Surges

The deterministic computational modeling of storm surges requires a precise mathe-
matical description of the involved geophysical processes. But this description can only
be accurate to a certain degree, as we have to make assumptions to derive general laws
of physical mechanisms. These assumptions are then present in the underlying mathe-
matical equations. They will lead to drawbacks of the model that we will develop and
validate for their solution in chapters 3–6. In the following, we will mainly focus on two
aspects: a description of the one-layer two-dimensional shallow water equations, that
we will use throughout this monograph, and their deficiencies with respect to the mod-
eling of flooding and drying, as well as the inherent wave patterns of the corresponding
homogeneous equations.

2.1. Shallow Water Physics

Starting point of our derivation are the Navier Stokes equations as in McWilliams
(2006), which are a set of partial differential equations, defined on a domain Ω ⊂ R3,
that are used to describe the general motion of a fluid by considering the temporal

change of its density ρ[kg/m3] ∈ L∞(Ω) and velocity u[m/s] = (u, v, w)> ∈
(
L∞(Ω)

)3
.

The expressions in square brackets indicate the corresponding units for each component.
The approach in McWilliams (2006) is of Eulerian kind, i.e. we fix one specific point
x and observe the general motion of the fluid in contrast to a Lagrangian perspective,
where individual fluid parcels are taken into account. We will refer to both space-
and time-dependent quantities, ρ = ρ(x, t) and u = u(x, t), as balanced quantities,
where x = (x, y, z)> are the spatial variables and t is the time variable. The equations
themselves are balance equations of the form

Dρ

Dt
= 0 (2.1a)

Du

Dt
= −1

ρ
∇p+∇ ·Φ + Fcn (2.1b)

where D
Dt

is the material derivative defined as the sum of the partial temporal derivative
and the inner product of velocity times spatial gradient with respect to x, which can
be written as ∂

∂t
+ u · ∇. The other effects, that are taken into account, are due to

pressure p[Pa], a vector Fcn[m2s−1] that includes for example the conservative Coriolis
forcing, which will be described later, and a term Φ[Xm2s−2] that comprises all non-
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x0

z
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hH

Figure 2.1.: Shallow Water Equations. Sketch of bathymetry b, total height H and fluid
height h.

conservative forces such as viscosity, wind stress and bottom friction. Equation (2.1a)
is known as continuity equation and the second to fourth equations in (2.1b) are the
momentum balances.

For computational purposes, the equations (2.1) are too complex and, as we will see
later, a reduced set of equations, the shallow water equations, will also lead to satisfying
results. In the following, we will list the shallow water assumptions and approximations
and refer to the appendix, section B.1, for a detailed derivation. Furthermore, we
introduce the notations h for the fluid height, b for the bathymetry and H = h+ b for
the total height, which are also illustrated in figure 2.1:

• We assume that the vertical extent of the waves of the system is small compared
to the depth of the water, so that the vertical velocities w are assumed to be
negligible, which leads to a hydrostatic pressure p which only depends linearly on
the vertical position z.

• With a slight abuse of notation, we denote the now two-dimensional domain of
interest with Ω ⊂ R2 × [0, t] with t ∈ R, the spatial variable with x = (x, y)> and
the now only two-dimensional horizontal velocity with u[m/s] = (u, v)>.

• The density of the fluid is assumed to be constant, ρ(x, t) ≡ ρ0 ∈ R. A depth
integration yields the fluid height h, over which the horizontal velocities u, v are
then depth-averaged.

• We assume no-slip boundary conditions, i.e. u = v = 0, at the lower verti-
cal boundary with z = b and no-normal-flow conditions at the free surface, i.e.
D
Dt

= 0, at z = H.

• The source terms are

Fcn = fc

∇ ·Φ = −τ s + τ b − ν∆u

where ∆ is a Laplace operator with respect to x, ν is a physical viscosity param-
eter, fc the Coriolis forcing, τ s a wind stress and τ b bottom friction forcing.
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With all these assumptions, we obtain equations for the new balanced quantities
U := (φ, φu)>, where now u is a two-dimensional depth-averaged velocity and φ = gh
is the geopotential fluid height with g ≈ 9.81[ms−1] the gravitational constant.

∂φ

∂t
+
∂φu

∂x
+
∂φv

∂y
= 0 (2.2a)

∂φu

∂t
+ ν∆u +∇ · ((φu)⊗ u) + φ∇(φ+ b) + fc − τ s + τ b = 0 (2.2b)

where ∆ is a Laplace operator and ∇ is the gradient with respect to x, ⊗ is a tensor
product on R2×R2. All vector-valued quantities are indicated with a bold print. With
the choice of appropriate boundary conditions, this is a well-posed problem, i.e. a unique
solution exists that depends continuously on the initial data. A detailed description of
the discretization of the terms from (2.2) can be found in chapters 3 and 6.

In summary, we consider the major effects, that are important for the simulation
of storm surges: viscosity, advection, pressure gradients, Coriolis forcing, wind, and
bottom friction. The effect of the different components depends on external factors,
such as the spatial location and the presence of winds. Some insight can be obtained
by introducing dimensionless numbers in the following subsection.

Characterization by Dimensionless Numbers

The characterization of oceanic flow and the severity of external effects can partly be
estimated with dimensionless numbers. Important for their assessment are typical scales
of the inhered quantities. We will denote the characteristic length scale of the system
with L and the characteristic flow velocity with U . The quantity ν will be the physical
viscosity parameter as described above, f represents the Coriolis forcing and c the wave
speed of the system. For shallow water equations, this is equivalent to the speed of the
gravity waves. A detailed description of phase speeds and their derivation will be given
in the next subsection 2.1.1.

The numbers, that we are interested in, are defined as

Re ≡ U L

ν
, Fr ≡ U

c
, Ro ≡ U

L f
. (2.3)

We will call Re Reynolds number, Fr Froud number and Ro Rossby number.

The Reynolds number Re is defined as the quotient of momentum divided by viscosity
and characterizes the impact of viscosity on momentum. For advection dominated flows
this number is usually large, i.e. of the order 106 (see McWilliams (2006)).

The Froude number Fr gives an estimate for the relation between the characteristic
speed of gravity waves c and the flow velocity U . It allows to characterize the flow as
critical (Fr ≈ 1), subcritical (Fr < 1), or supercritical (Fr > 1), which means, that the
propagation of perturbations remains stationary, is directed in the opposite direction
of the flow velocity, or the same direction of the flow velocity respectively.
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Finally, the Rossby number Ro states the relation between the influence of Coriolis
forcing and characteristic velocities. Especially for quasi-realistic applications it can be
seen as a good indicator of whether Coriolis forcing has to be taken into account.

All these dimensionless numbers are of help when it comes to estimating the effect
of the different terms in our equations (2.2) onto the numerical solution in different
regimes. More detail on their values for a specific case can be found in chapter 6.

2.1.1. Characteristics of the Homogeneous System

If we neglect the source terms, we get the so called homogeneous shallow water equa-
tions. The study of a simplified homogeneous system is essential for understanding the
physics of the full system. We are interested in analyzing an x-split system of equations
of the form

∂U

∂t
+
∂f(U)

∂x
= 0, (2.4)

where U = (φ, φu)> is the three-dimensional vector of conserved quantities, and f(U) =
(φu, φu2 +0.5φ2, φuv)> is the flux. The system (2.4) can be characterized as hyperbolic,
which by definition means, that the waves of the system travel with the speed of real
and distinct eigenvalues and are separable.

For our investigations, we will consider a simple initial value problem, that is closely
related to the modeling of fluxes over element boundaries in DG methods, which we
will describe later in this section. We assume constant initial values at each side
of the boundary, which is known as Riemann problem (see the right display of fig-
ure 2.2). We will denote the side-wise constant values with UL = (φL, φLuL)> and
UR = (φR, φRuR)> for the left element and the right respectively and study the general
characteristics and the evolving waves.

An eigen-structure analysis using the Jacobian matrix defined as Df
DU

:=
(
∂fi
∂Uj

)
1≤i,j≤3

reveals, that the three eigenvalues λk and eigenvectors rk, k = 1, 2, 3 have the following
structure (as can be found for example in LeVeque (2002)):

λk = u+ ik
√
φ, with i = (−1, 0, 1)> and k ∈ {1, 2, 3},

r1 = (1, u−
√
φ, v)>,

r2 = (0, 0, 1)>,

r3 = (1, u+
√
φ, v)>,

(2.5)

Studying the elementary wave solution of the problem, we find a wave corresponding
to every λk characteristic field. The wave pattern of shallow water waves can mainly
be characterized as in figure 2.2. The solid lines refer to non-linear waves (shocks
or rarefaction waves) that correspond to the λ1− and λ3−fields and the dotted line
indicates a contact discontinuity corresponding to the λ2−field, i.e. a wave that only
allows a discontinuity in the zonal velocity v. We will denote the speed of the waves
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x[m]

t[s]

x[m]

φ[m]

φL

φR

UL

UL∗ UR∗

UR

SL S∗ SR

Figure 2.2.: Riemann problem for shallow water equations. Depicted are the elementary
wave solution over time (left) and the initial condition of the geopotential
height φ (right).

with SL, S∗ and SR. They partition the domain into four regions in which the prognostic
variables can be characterized as UL,UL∗,UR∗ and UR.

As was shown for example in Toro (2001), the presence of a wet/dry interface, i.e.
UR = 0 and UL 6= 0, prohibits the development of shock waves, so that all non-linear
waves will be smooth rarefactions. Another scenario, which prevents the forming of
shock waves, is a linearization of the underlying equations.

The reason why the study of Riemann solvers, i.e. approximate or exact solutions
for the Riemann problem, of the x-split system is meaningful for our development of
a two-dimensional DG model is the following. One part of DG models is the com-
putation of fluxes over element boundaries. This comprises the pointwise solution of
one-dimensional Riemann problems, because only the normal component with respect
to the corresponding edge of vector-valued quantities is of interest. Therefore, the
question of finding a representation of the edge fluxes reduces to finding an appropri-
ate solver for the Riemann problem. In section 4.4 (or Toro (2001) for more detail)
we find solvers for the one-dimensional case. We can easily apply these solvers to the
two-dimensional case, because only the normal-direction of vector-valued quantities is
of interest and the shallow water equations are rotation-invariant. This means that
any one-dimensional solver can be used if we rotate the system of eigenvalues into the
normal direction, apply the solver and then rotate the result back.

2.1.2. Drawbacks of the Shallow Water Approximation

As we have seen, shallow water equations provide a reasonable model for the major
processes, that are important for inundation scenarios, although certain limitations
have to be recognized.

The shallow water assumption is violated for waves approaching the coast, because
the horizontal extent of the waves is then large compared to the depth of the water.
Furthermore, assuming a two-dimensional model for the ocean will only give good
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results in regimes where the vertical velocity of the fluid is negligible. A hydrostatic
correction, as has been developed for example in Fuchs (2013) for a continuous Galerkin
model, can improve the results in that case at the cost of solving a huge linear system.

Some further effects such as turbulence are completely neglected and are in general
a delicate task that would have to take into account scales that are much smaller than
the ones we are studying in our current work.

Further limitations are given by assumptions on the fluid itself such as wave breaking
not being modeled. There are approaches though, that solve larger and therewith more
expensive systems with shallow water equations using multiple phases that allow for
wave breaking as is shown for example in Dumbser (2011) for a finite volume model. The
assumption of constant density implies that, non-Newtonian fluids are not respected in
the model. This limitation plays an essential role for flooding scenarios where severe
water masses run on shore and transport infrastructure into land, which causes severe
damages.

Finally, we assume that the bathymetry is constant over time and no sedimentation
is taking place. In the case of storm surges, though, this will prevent levees and dikes
from being damaged by water soaking in, so that events, that worsen through dike and
levee breaking, are not considered. An approximation on whether levees and dikes will
remain steady is, however, in principle possible with a post-processing estimate.



3. Development of an Adaptive
Discontinuous Galerkin Inundation
Model

3.1. Abstract

A nodal Discontinuous Galerkin (DG) model in combination with a conforming and
adaptive triangular mesh solves the two-dimensional non-linear shallow water equa-
tions. A dynamically adapted mesh reduces the computational complexity – a major
drawback of DG methods compared to commonly used methods such as finite vol-
ume and continuous finite elements – and shows the potential to correctly represent
complex domain geometries. Numerical tests are performed to show the accuracy and
efficiency of the method. With a limiter that is total-variation-bounding and positivity-
preserving, the model handles wetting and drying.

3.2. Introduction

The main purpose of this chapter is to show that dynamically adaptive triangular
meshes in combination with a well-balanced Discontinuous Galerkin (DG) method,
applied to two-dimensional shallow water equations (SWE), lead to a robust and com-
putationally efficient scheme for the simulation of simplified inundation scenarios.

Besides DG methods, other advanced numerical methods for partial differential equa-
tions can be found in current literature. Continuous Galerkin (CG) methods have been
developed in Westerink et al. (2008), Kärnä et al. (2011), Heniche et al. (2000) and
Kerr et al. (2013). They assume an at least globally continuous approximation of the
prognostic variables. Reasons for their success are the (high-order) accuracy and the
geometric flexibility of the finite elements. Another common approach is the applica-
tion of finite volume (FV) schemes. These take advantage of the inherent conservation
properties of the shallow water equations. Examples can be found in Chen et al. (2008);
Zhang et al. (2004). For operational purposes, the aforementioned models are usually
run with local approximation order of less than two. However, it is shown in Hesthaven
and Warburton (2008) that low-order basis functions theoretically lead to low-order
numerical errors. Consequently, a high-order model would reduce numerical errors as
recent developments in Zhang and Baptista (2008) and Giraldo and Restelli (2009)
show for FV and DG methods respectively.

We will concentrate on DG methods in this monograph since the physics-based way of
computing fluxes between elements leads to local conservation of mass and momentum
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as shown in Hesthaven and Warburton (2008) –usually a typical feature of FV methods.
Moreover, they allow for a high-order representation, thus taking advantage of the above
mentioned error minimization. Dealing with the computational expense caused by the
relatively large number of degrees of freedom compared to other numerical methods
will thus be one main aspect of this chapter.

In the following we will use dynamically adaptive grids, i.e. grids with a temporal
locally varying spatial resolution, that is high in regions of interest and relatively low
beyond. This modification increases the efficiency, does not significantly affect the
accuracy and leads to a robust scheme in combination with our DG method. The
grid itself consists of conforming triangles which are suitable for representing coastlines
accurately up to polygonal representation. Its adaptation will be determined via a pre-
defined refinement indicator that takes for example geometrical features of the domain
or physically relevant quantities into account. For inundation problems, the representa-
tion of a large variety of different scales—ranging from hundreds and tens of kilometers
in the open sea to just a few meters or smaller at the inundated boundary—is a further
asset.

One challenge of inundation modeling is to accurately compute interfaces between wet
and dry cells, because non-linear numerical models tend to produce oscillations in the
vicinity of steep gradients and discontinuities, which can result in unphysical negative
fluid heights, which are usually avoided. Though, a scheme, that is able to deal with
negative water heights is shown in Heniche et al. (2000). In this respect, the concept of
total variation bounded (TVB) methods that minimize unphysical oscillations and en-
sure boundedness of a measure for the oscillatory behavior over time, is of interest. The
development of wetting and drying schemes is an active field of research. Particularly
in operational models, estimators for the inundation run-up are used (see for example
the one-dimensional Boussinesq model in Kennedy et al. (2012) for the model presented
in Westerink et al. (2008)). Computing a boundary of zero water height separating wet
from dry areas in every time step—also known as moving boundaries—is another ap-
proach presented in Leclerc et al. (1990). Yet another possibility is the use of limiters to
ensure positivity of the fluid height as well as the TVB property. This has been carried
out for example in Kuzmin (2010) for a vertex-based limiter which is based on an idea
first presented in Bell et al. (1988) and will be discussed in section 4.3.1 in more detail.
The main principle behind this limiting is a local Taylor expansion including element
mean values and scaling factors in case of oscillations. An alternative is performed for
the models in Chen et al. (2008) and Gopalakrishnan and Giraldo (2014): Artificially
wetting of physically dry domains in order to overcome stability problems with non-
positive fluid heights. In addition thereto in the model presented in Gopalakrishnan
and Giraldo (2014) a minmod-based limiter is applied to remove oscillations. However,
the artificial wetting lead to a different representation of the waves of the system.

Moreover, an approach has been developed in Kärnä et al. (2011) that includes a
transformation of the bathymetry such that with the modified bathymetry, the whole
domain is wet and no special treatment has to be developed for dry cells. For our
studies, we will not pursuit this approach. We employ limiters to our model that are
strong enough to suppress most of the artificial oscillations while neither effecting the
accuracy nor the non-negativity of the water height.
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Now, building in parts on the model of Giraldo et al. (2002) we basically introduce
three extensions:

• Spurious oscillations that violate the physics of the problem (positivity of the fluid
height) are reduced with slope limiters,

• A flux correction of the strong form of the equations is introduced in order to
correctly approximate steady state solutions and

• The underlying triangular mesh is dynamically adapted by bisection according to
heuristic refinement indicators.

We show numerically, that the above mentioned extensions lead to a scheme that is both,
positivity preserving and wellbalanced. The numerical test cases also demonstrate, that
the model handles wetting and drying accurately and that the adaptive mesh reduces
computing time essentially compared to a uniform simulation on a fine grid.

3.3. Numerical Method

We employ the two-dimensional shallow water equations, that were derived in section
2.1, for modeling inundation. The hyperbolic part of the equations is known to be
able to develop shocks in finite time even for smooth initial data. These phenomena
are captured with a method that solves the equations in a distributional sense and is
capable of representing discontinuities in the numerical solution.

Building in parts on the well-established nodal DG model presented in Giraldo et al.
(2002), we introduce a dynamically adaptive triangular mesh that is generated using
the library amatos which is introduced in Behrens et al. (2005). The explicit time
integration of the resulting semi-discrete equations will be complemented with limiting
techniques to model wetting and drying.

3.3.1. Discontinuous Galerkin Method

Our numerical model is based on the generic balance equations in flux form

∂U

∂t
+∇ · F(U) = S(U) in Ω× T (3.1)

where U = (φ, φu)> are the balanced quantities, T ⊂ R is a compact subset of the real
numbers and Ω ⊂ R2 is a two-dimensional spatial model domain. The flux function F
and the source term S are given by

F(U) =

(
φu

φu⊗ u + 1
2
φ2I2

)
, S(U) = −

(
0

fc + φ∇b− τ s + τ b

)
, (3.2)

and are known as the one-layer two-dimensional shallow water equations.
If not indicated otherwise, we will always assume that the spatial coordinates are

x = (x, y)>. We further use the following notation: φ = gh is the geopotential height,
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u = (u, v)> the velocity, g the gravity constant, h the fluid height and I2 indicates the
2×2 identity matrix. The source term consists of bottom forcings including a temporal
constant bathymetry b = b(x), bottom friction forcing τ b, Coriolis forcing fc and wind
stress τ s. Throughout this thesis vector-valued quantities in R2 will be indicated with
bold print, other quantities are assumed to be scalar.

The system of equations only has a well-defined solution in combination with com-
patible boundary conditions. They are problem-dependent and can be specified as e.g.
reflecting or transmissive boundaries. Imposing additional forcings such as tidal forcing
is also done for some simulations. If not stated differently, we will work with reflecting
boundary conditions defined as

u · n = 0 on ∂Ω,

where n is the outward pointing normal with respect to the domain boundary ∂Ω.

We obtain a set of semi-discrete equations by rewriting the system of equations (3.1)
as

∂U

∂t
+∇ · F(U)− S(U) = 0 in Ω× T.

The standard Galerkin assumption implies that the residual is orthogonal to the space
of test functions. The latter is spanned by the element-wise nodal Lagrange polynomial

basis of degree n, Pn = span
{⋃

j∈J ψj

}
, to be further specified later on. For the

moment, we assume that J is an arbitrary index set. Employing the standard L2(Ω)
inner product for Ω ⊂ R2 leads to∫

Ω

(
∂U

∂t
+∇ · F(U)− S(U)

)
ψj(x)dx = 0

for all t ∈ T and all indices j ∈ J . A division into local problems can be obtained by
domain decomposition. Here we decompose Ω into M non-overlapping and conforming
triangles of the form

Ω =
M⋃
e=1

Ωe, (3.3)

which will allow us to perform all the subsequent operations on a reference element
as long as metric terms are respected in the computations. Note that the domain
decomposition also led to a decomposition of the index set J =

⋃
e Je with Je denoting

the indices of the local Lagrange polynomial basis on the triangle Ωe.

Integration by parts of the flux tensor and replacing the edge boundary flux with
F∗—a numerical approximation of it—leads to the weak form of the equations:∫

Ωe

(
∂U

∂t
− S(U)

)
ψj(x) dx−

∫
Ωe

F(U) · ∇ψj(x)dx = −
∫
∂Ωe

F∗ ψj(x) · n dS.
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for all t ∈ T , and indices j ∈ Je. Repeating this procedure leads to the strong form as
in Hesthaven and Warburton (2008) that we will exclusively use throughout this paper
for well-balancing reasons, that we will describe in detail in section 4.5:∫

Ωe

(
∂U

∂t
+∇ · F(U)− S(U)

)
ψj(x) dx = −

∫
∂Ωe

(
F∗ − F(U)

)
ψj(x) · n dS. (3.4)

for all t ∈ T , and j ∈ Je. Rearranging the equations leads to

∫
Ωe

∂U

∂t
ψj(x) dx =

∫
Ωe

(−∇ · F(U) + S(U)) ψj(x) dx

−
∫
∂Ωe

(
F∗ − F(U)

)
ψj(x) · n dS.

(3.5)

for all indices j ∈ Je with F∗ the numerical flux obtained from solving the Riemann
problem (see section 2.1.1) with any standard Riemann solver at cell interfaces ∂Ωe ∩
∂Ωf 6= ∅ for e 6= f . A detailed presentation and a numerical comparison of Riemann
solvers is given in section 4.4. The discretization leads to a time step restriction of the
form

∆t ≤ max
Ωe

∆re

max∂Ωe,k〈u,nk〉+
√
φ

(3.6)

with ∆re being the radius of the inscribed circle of Ωe and ∂Ωe =
∑

k Ωe,k, is the
boundary of Ωe, where Ωe,k is the edge of index k, k ∈ N, of element Ωe, nk the
corresponding outward pointing normal, and 〈·, ·〉 the Euclidean inner product.

Assuming that the numerical approximations Uh ≈ U,F(Uh) ≈ F(U) and S(Uh) ≈
S(U) are elements of Pn with time-dependent coefficients of the form

Uh(x, t) =
∑
k∈Je

Uk(t)ψk(x),

one of the remaining tasks now is to find an appropriate quadrature formula to solve
the integrals in (3.5). Therefore, we follow the implementations from Hesthaven (1998);
Hesthaven and Warburton (2008) to construct an interpolatory Gauss Lobatto quadra-
ture (see Blyth and Pozrikidis (2006)) for the inner element quadrature, that is known
to minimize the Lebesgue constant of the underlying interpolation problem. The bound-
ary integrals are approximated with a Legendre-Gauss quadrature. For polynomials of
order n ∈ N the resulting quadrature is of order 2n, i.e. they give the exact result for
polynomials of at most order 2n.

Bringing all terms that do not contain a temporal derivative to the right-hand side
and inverting the so-called mass matrix M with entries Mkj :=

∫
Ωe
ψkψjdx, (3.5) can

be written as a semi-discrete system of (ordinary differential) equations (ODEs) of the
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form

∂Uh

∂t
= H(Uh), (3.7)

where a detailed presentation of the now discrete operator H, which contains the flux
and source terms multiplied by M−1, can be found in section 4.5. The system (3.7) can
in principle be solved using any time-integrator known for ODEs.

For reasons of computational efficiency, we will solve (3.7) explicitly with an s-stage
strong stability preserving Runge Kutta scheme of order ms (RKmss). Denoting the
numerical solution with Uh the scheme for computing an update of step Un+1

h from
known values Un

h takes the form:

U
(0)
h = Un

h

U
(i)
h =

i−1∑
l=0

H̃
(
αilU

(l)
h + βil∆tH

(
U

(l)
h

))
for i = 1, . . . s

Un+1
h = U

(s)
h

(3.8)

with αil and βil the corresponding Runge Kutta coefficients, where the resulting time
step restriction can be measured with an effective cfl number as defined in Gottlieb
(2005):

cfleff = min
i,l

αil
|βil| · s

.

In (3.8), H̃ is the slope-limiter of the prognostic variables, that is used to eliminate
unphysical oscillations in the numerical solution while not affecting the accuracy. We
will shortly comment on the choice of slope limiters in section 3.3.3. In sections 4.3.1
and 4.3.3 we carried out an extensive study on general characterizations of limiters and
a numerical convergence study.

3.3.2. Adaptive Triangular Mesh

The localized multi-scale nature of the underlying problem is taken into account through
the use of a dynamically adaptive mesh, i.e. the mesh, that we introduced in the last
paragraph, will allow temporal changing spatial resolution in the computational domain.
Hence, our model will be able to perform more accurate computations in domains where
fine-scale features are present while it computes relatively coarse numerical solutions
outside of these regions.

The meshes we use will solely consist of triangles in order to obtain a better repre-
sentation of bathymetric data. Finer triangles are obtained through bisecting a coarse
triangle as is suggested in Bänsch (1991). For convenience, the mesh will be kept con-
forming, or free of hanging nodes, by the use of patch-wise refinement and coarsening
during the computations. We stress that this is not a requirement of the method itself.
Hanging nodes would lead to necessary modification of the boundary integral since they



3.3. Numerical Method 17

impose the need to combine two or more Riemann solutions over one (coarse) edge as
is for example recently done in Kopera and Giraldo (2013) and Hermann et al. (2011).

The dynamic adaptation of the mesh involves problem-dependent refinement indica-
tors ηΩe ∈ R for each element Ωe as in Behrens (2006), that control the refinement and
coarsening as well as user-defined tolerances 0 ≤ θcrs < θref ≤ 1. One heuristic example
that will also be used for the later computations is the divergence of the geopotential
height

ηΩe = max
x∈Ωe
∇ · φ(x, t).

The refinement will then depend on the tolerances as well as on the maximum value of
the refinement indicator ηmax = maxΩe⊂Ω ηΩe in the following way

if ηΩe ≤ θcrsηmax → coarsen element Ωe

if ηΩe ≥ θrefηmax → refine element Ωe
(3.9)

The values of the modified nodes are then interpolated or restricted after refinement
or coarsening using the known Lagrange basis functions for each element. The practical
implementation of mesh creation and manipulation is done with the library amatos as
introduced in Behrens et al. (2005). It has the advantage that it uses an efficient space-
filling curve-ordering of elements (see Behrens and Bader (2009)), which allows fast
access of neighboring elements and thus reduction of cache misses.

3.3.3. Wetting and Drying

The modeling of wetting and drying with a nodal Lagrange model requires imposing
additional conditions on the numerical solution such as minimizing artificial oscillations
in order to retain non-negativity of the fluid height as well as preservation of steady
states.

The cells communicate through boundary integrals as in (3.4). The numerical flux,
F∗, will be computed using a consistent, monotone, Lipschitz-continuous and conserva-
tive Riemann solver such as the ones described in Toro (2001). Our observation is that
both, the approximate and exact solvers for shallow water equations lead to comparable
results (see also section 4.4.

In general, oscillations can be minimized through the use of filters, slope limiters
or artificial viscosity. Numerous limiting techniques are available in present literature.
Examples are the edge-based limiter developed in Cockburn and Shu (1998), Xing
et al. (2010) and Xing and Zhang (2013) that mainly relies on linear scaling around cell
averages and can be shown to formally preserve both, accuracy and positivity of the fluid
height. Another vertex-based limiter has been established in Kuzmin (2010, 2013b).
The latter depends on inner-element Taylor expansions and in Aizinger (2011) it could
be shown that the limited solution is minimizing a local optimization problem, which,
in an L2-sense makes the modification optimal. The choice of a limiter is critical and
in combination with our model the vertex-based limiter showed the best performance
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among the stated ones (for detail, please consult sections 4.3.1 and 4.3.3) with respect
to robustness and accuracy. We will use this limiter throughout the chapter.

Preservation of steady states, or well-balancing, is another important and non-trivial
aspect of a nodal DG model. Our approach uses the strong form (3.4), which, on a dis-
crete level, is balanced and takes into account that on dry cells with absent momentum
the balance of pressure gradients has automatically to be fulfilled. So, we only compute
the gradients for the wet part of the element and for the interpolation, we assume that
in case of small velocities, there is a perfect horizontal water surface approaching the
coast. A detailed presentation of this approach is given in section 4.5.

Finally, we shortly comment on the source term from (3.2). In our one-layer model,
the wind stress will be modeled as a movement of water columns and for bottom friction
a Manning-type law is assumed. So, the source term entries look as follows.

τ s =
γττ

φρ
, τ b = g n2

M φu

√
‖u‖2

φ4/3
, fc = 2Ωrot sin(ψL)

(
φv
−φu

)
(3.10)

with τ a prescribed wind vector field, ρ the density of the fluid, γτ ∈ R the wind
friction coefficient, nM a dimensionless number (Manning’s n), Ωrot the rotation rate of
the earth and ψL the latitude. Details on the discretization of the source terms and an
extension for the computation of τ s from a given storm can be found in section 6.3.

3.4. Numerical Tests

In this section we show results of test cases that demonstrate major functionalities of
our model: handling wetting and drying, wind stress and wellbalancing. The test suite
comprises both, tests with and without analytical solutions. We use the test cases intro-
duced in Balzano (1998) and Thacker (1981) to demonstrate the capability of modeling
wetting and drying accurately. The wellbalancing test is a classical partially dry lake
at rest and the implementation of the wind stress will be tested with a circulating wind
set up. Throughout this section, we employ second order, i.e. linear, basis functions
for the simulation as higher than second order basis functions are not straightforwardly
usable. We developed techniques, however, that enable the use of higher order basis
function which can be found in section 5.2.

The tests are performed using different refinement criteria which will be stated in each
case. The results of the tests are supposed to show how dynamic adaptivity performs for
cases in which wetting and drying and wind stress is present. If no analytical solution
is available, we will compare the results of adaptive simulations with uniform numerical
approximations on a very fine mesh. Therefore, we define the error measures

E2(fh) =
‖ffine − fcrs‖2

‖ffine‖2

, E∞(fh) =
‖ffine − fcrs‖∞
‖ffine‖∞

for fh ∈ Pn (3.11)

to assess the loss of accuracy that occurs due to the usage of the adaptive mesh. With
‖ · ‖2 we denote the standard L2-Norm and with ‖ · ‖∞ = maxΩ | · |. Here, ffine is to be
understood as the discrete numerical solution fh, that was computed on a fine uniform
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mesh and fcrs is the coarser numerical solution from a non-uniform, adaptive test run
that has been interpolated onto the uniform points of the fine mesh using the local basis
functions.

For the testcases with analytical solutions, we use

E∞abs(fh) = ‖fh − f‖∞, E2
abs(fh) = ‖fh − f‖2,

E∞rel(fh) =
‖fh − f‖∞
‖f‖∞

, E2
rel(fh) =

‖fh − f‖2

‖f‖2

(3.12)

where f is the analytical and fh the numerical solution.

The adaptive simulations will involve different spatial resolutions. With ∆xmin we
will denote the shortest and with ∆xmax the longest edge within the domain. Through
the tolerances θref and θcrs we control the amount of cells to be refined and/or coarsened
in each timestep as proposed in (3.9). The larger θref , the relatively fewer cells will
be refined and the larger θcrs, the more cells will be coarsened and vice versa. For
comparison of how much computational time is saved, we state a CPU time normalized
to the CPU time of the uniformly fine run. We remark that all the non-normalized
quantities are dimensioned and, if not stated otherwise, we assume SI units.

One of the major aspects of this paper is the reduction of computational complexity,
which we understand as the amount of computing resources that are needed to perform
a particular task. Our particular task here is the computation of a numerical solution of
a certain precision and the computing resources are measured with CPU time. This is
significantly different from stating that reducing the number of degrees of freedom leads
to an equal reduction in computing time, because the term computational complexity
also depends on a fixed goal that is identified with a fixed accuracy of the numerical
solution in our case.

3.4.1. Testcases with Analytical Solutions

Testcase 1. Partially dry lake at rest
We assume a square domain Ω = [0, L]2 for L = 30, α = 0.25, β = 0.5, bathymetry

b(x) = max
(

0, α− 5
(
(x− β)2 + (y − β)2

))
and initial conditions:

h(x, t) = max
(

0, 0.2−max
(
0, α− 5 ((x− β)2 + (y − β)2)

))
u(x, t) = 0 for all t ∈ [0, T ].

This test-case is chosen in order to test the conservation of mass and momentum
in a steady state. Here, we are mainly concerned to check the compatibility of the
discretization of the flux tensor and source term. We ran all the tests with a Ru-
sanov Riemann solver and the explicit Runge Kutta scheme RK22 with a time-step of
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E2
rel E∞rel E2

abs E∞abs CPU
∆xmin ∆xmax # elmt φ φu time
1.326 1.326 1024 5.7477E-13 3.2250E-12 3.2164E-15 1.3055E-14 1.0000
1.326 1.875 528 5.8306E-13 1.0336E-12 1.2348E-14 4.2208E-14 0.5034
1.326 2.652 296 5.4989E-13 9.6542E-13 1.1106E-14 3.6360E-14 0.2722
1.326 7.500 152 5.3813E-13 9.3359E-13 1.1932E-14 2.7532E-14 0.1873

Table 3.1.: Partially dry lake at rest. Errors at t=40s (RK22, ∆t = 0.001) - with
adaptation parameters θcrs = 0.1, θref = 0.9 for different resolutions.

∆t ∈ {0.001, 0.002} depending on the spatial resolution. For limiting purposes, we used
the nodal limiter. We observed that neither a higher order Runge Kutta scheme nor a
more sophisticated Riemann solver led to significant improvement of the errors for this
problem which might be due to the small overall magnitude of the errors for this test in
general. The results are depicted in table 3.1 and show the relative errors for the fluid
height and the absolute errors for the momentum that were defined in (3.12) at time
t = 40s. The reason why we use two different error measures is, that the analytical
solution for the velocity is zero. In all, the deviations from the steady state solution are
nearly within the range of machine precision. As a refinement criterion for the adaptive
test runs, we used the divergence of the fluid height: ηΩe = ∇ · φ and observe that,
while the error measures are not affected by the use of an adaptive mesh, the compu-
tational costs were significantly reduced. Moreover, the modification of the flux tensor
that we introduced for wet/dry interfaces does not affect the accuracy or robustness of
the computations. However, probably due to damping effects and numerical diffusion,
there seems to be a slight improvement in the errors for some of the adaptive test runs
which contradicts our convergence study that is presented in chapter 4 for partially dry
problems.

Testcase 2. Paraboloid 2D basin
We consider a domain: Ω = [−L,L]2 with parameters: D0 = 50, L = 430620, η0 = 2,
reflecting boundaries, Coriolis forcing and

A =
(D0 + η0)2 −D2

0

(D0 + η0)2 +D2
0

, D(x) = D0

(
1− x2 + y2

L2

)
η(x) = D0

(√
1− A

1− A
− 1− x2 + y2

L2

(
1− A2

(1− A)2
− 1

))
h(x, 0) =

{
D(x) + η(x) if D(x) + η(x) ≥ 0

0 otherwise.

u(x, 0) = 0

b(x) = D0
x2 + y2

L2



3.4. Numerical Tests 21

The analytical solution for this problem can be found in Thacker (1981).

∆xmin ∆xmax θref θcrs # elmt E2
rel(φ) E∞rel(φ) CPU time

35988.95 50896.06 0.0 0.0 2048 4.0348E-11 0.0312E+00 1.0000
71977.90 101792.13 0.0 0.0 512 1.1656E-10 0.0559E+00 0.0525
35988.95 143955,81 0.9 0.1 936 8.5180E-11 0.0435E+00 0.4846
50896.06 50896.06 0.0 0.0 1024 5.8590E-11 0.0396E+00 0.1994
35988.95 101792.13 0.9 0.1 1040 5.0650E-11 0.0375E+00 0.5458

Table 3.2.: Paraboloid 2D basin. Relative errors at t = 30 000s (RK35, ∆t ∈
[0.01, 0.05]) for different resolutions.

Figure 3.1.: Paraboloid 2D basin. Plot of linear cross section x = y after t = 0s (left)
and t = 30 000s (right). Depicted are the numerical (solid line) and the
analytical solution (dotted line).

Figure 3.1 shows the analytical solution and our numerical results on a uniform mesh
for a linear cross-section of the domain with x = y at time t = 0s and t = 30 000s.
With the employed limiter from Kuzmin (2010) the deviations are small. This test has
been carried out using a third-order Runge-Kutta scheme (RK35) and a time-step of
∆t ∈ [0.01, 0.05] depending on the spatial resolution. The nodal limiter led to satisfying
results at the wet/dry interface; even after 3 million time-steps no significant effect of
diffusion was to be seen as is shown in figure 3.1. The apparent error in the center of
the domain is due to the slope limiter. As we used linear basis functions local extrema
are not approximated well, so that in the center the maximum of the fluid height is cut
off. As a refinement indicator we used

ηΩe =

{
1

φe,h
for φe,h ≥ 10−8

0 otherwise,
, (3.13)
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Figure 3.2.: Paraboloid 2D basin. Example of an adaptive mesh.

where φe,h is the numerical solution of the fluid height in element Ωe and the over-lined
quantity the element mean value. The indicator leads to a refinement in areas that are
close to dry or wet. A picture of an adaptively refined mesh can be found in figure
3.2. The regularity of the mesh originates from the user-defined initial triangulation.
As an initial triangulation we chose a quadrilateral consisting of two right triangles.
The errors obtained from the uniform and adaptive runs can be acquired from table
3.2. The last two lines show that on the one hand, a uniformly refined coarser mesh
leads to a reduction of computational time since a larger time-step can be chosen. But
on the other hand if you take the approximately same number of elements that are
non-uniformly refined, the relative errors can be reduced.

3.4.2. Testcases without Analytical Solutions

The tests presented in this subsection do not permit an analytical solution. For com-
parisons, we always used a numerical solution on a uniform fine mesh and the error
measures defined in (3.11).

Testcase 3. Tidal beach
The model domain Ω = [0, L] × [0,W ] is of length L = 13800 and width W = 3450,
Manning’s nM = 0.02, fc = τ s = 0 and we have parameters α = 5

13800
, c1 = 60

23
, c2 = 100

23
,
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Figure 3.3.: Tidal beach. Uniform simulation: Uniformly sloping bathymetry b1.
Bathymetry (crossed line) and total water height (solid lines) every 2500s
over the linear crosssection with y = 1725. The larger the number of time-
steps, the darker and thinner the line and the higher the roman numbering

and initial conditions

h(x, 0) = 5− αx
u(x, 0) = 0

b1(x) = αx

b2(x) =


αx for x ≤ 3600 or x ≥ 6000

−αx+ c1 for 3600 ≤ x ≤ 4800
x

920
− c2 for 4800 ≤ x ≤ 6000

The boundary conditions are reflecting on the two opposite walls at the top and bottom
of the domain as well as on the right wall. On the remaining left wall we prescribe
periodic tidal boundary conditions of the kind

h(x̃, t) = hbou(t) := 5− 2 sin

(
2πt

43200

)2

with x̃ ∈ {x : x = 0 ∧ y ∈ [0,W ]} a point on the tidal boundary.

Figures 3.3 and 3.4 show our results on a uniform mesh for the linear cross-section of the
domain with y = 1725 over time for both bathymetries b1 and b2. Depicted are the point-
values every 2500s. To improve the readability of the plots, the lines are numerated
using roman numbers (k) to refer to the corresponding simulation time t = (k−1)·2500s,
i.e. the line indicated with (i) is the initial condition. We observe that the tidal forcing
leads to retreating water on the right of the domain and formerly wet areas run dry
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Figure 3.4.: Tidal beach. Uniform simulation: Sloping beach with reservoir and
bathymetry b2. Bathymetry (crossed line) and total water height (solid
lines) every 2500s over the linear crosssection with y = 1725. The larger
the number of time-steps, the darker and thinner the line and the higher
the roman numbering.

Figure 3.5.: Tidal beach. Meshes corresponding to the right figure 3.4 for the uniform
simulation (top) and an adaptive simulation (bottom) at time t = 30 000s.
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∆xmin ∆xmax θref θcrs #elmt E2(φ) E∞(φ) CPU time
26.517 53.033 0.9 0.1 60288 0.1550E-02 0.7397E-01 0.8150
53.033 150.000 0.9 0.1 12576 0.3153E-02 0.9194E-01 0.2202
75.000 106.066 0.0 0.0 10240 0.3660E-01 0.5284E-01 0.1196
53.033 212.132 0.8 0.4 2656 0.1398E-01 0.8968E-01 0.0495

Table 3.3.: Tidal beach. Relative errors at t = 30 000s (RK22, ∆t = 0.25s) for different
resolutions. As a uniform fine grid we took one with ∆xmin = 26.52 for
comparison.

∆xmin ∆xmax θref θcrs #elmt E2(φ) E∞(φ) CPU time
26.517 53.033 0.9 0.1 44344 0.1091E-01 0.2606E-00 0.3887
37.500 75.000 0.9 0.1 25204 0.1114E-01 0.2978E-00 0.2028
53.033 150.000 0.9 0.1 5296 0.3669E-01 0.2061E-00 0.0526

Table 3.4.: Tidal beach with Reservoir. Relative errors at t = 50 000s (RK22, ∆t =
0.25s) for different resolutions. As a uniform fine grid we took one with
∆xmin = 26.52 for comparison

without introducing significant numerical oscillations. For the computations, we used
an explicit Runge-Kutta scheme of second order (RK22) with a timestep of ∆t = 0.5 in
order to fulfill the CFL restrictions from (3.6) and the limiter from Kuzmin (2010). The
numerical flux had been computed with the rather diffusive Rusanov Riemann solver
and we did not take into account any additional numerical viscosity. For the adaptive
simulations we chose the refinement indicator from (3.13), that leads to refinement
in nearly dry areas, since the observed flow is almost laminar in most areas and we
therefore assumed that the errors are more likely to occur in regions where a state
change from wet to dry is going to take place. An adaptive grid for the tidal beach with
bathymetry b2 is given in figure 3.5 (right). Comparisons between several dynamically
adaptive simulations with a uniformly fine one are given in tables 3.3 - 3.4. In both
cases we observe that the use of an adaptive mesh leads to a significant reduction
of computational costs, but in return does not significantly affect the accuracy. The
observed relative L2 errors are still within a range of O(10−2) and O(10−1) for the
uniformly sloping bathymetry and for the test case with the reservoir respectively.

To further test the robustness of the implementation, we simulated a so called cold
start of the two test cases, i.e. with an initial water height of h(x, 0) = 0 and a modified
ingoing tide of the form

h(x̃, t) = hbou(t) := hR(x̃, t) + 2 sin

(
2πt

43200

)2

with x̃ ∈ {x : x = 0 ∧ y ∈ [0,W ]} a point on the tidal boundary and hR(x̃, t) its
neighbor over the boundary edge corresponding to the element that fully belongs to the
domain.
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Figure 3.6.: Tidal beach with ingoing tide. Uniform simulation: Uniformly sloping
bathymetry b1. Bathymetry (crossed line) and total water height (solid
lines) every 2500s over the linear crosssection with y = 1725. The larger
the number of time-steps, the darker and thinner the line and the higher
the roman numbering

Figure 3.7.: Tidal beach with ingoing tide. Uniform simulation: Sloping beach with
reservoir and bathymetry b2. Bathymetry (crossed line) and total water
height (solid lines) every 2500s over the linear crosssection with y = 1725.
The larger the number of time-steps, the darker and thinner the line and
the higher the roman numbering.
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The results are depicted in figures 3.6 and 3.7. Again, the roman numbering indicates
the simulation time and we observe, that only slight wiggles are introduced on the
surface of the fluid for the case with the uniform sloping bathymetry b1. The plot
corresponding to bathymetry b2 develops oscillations after 10000s which seems to be
due to the reflection of the ingoing wave from the reservoir. This reflection produces a
wave in the contrary direction to the tide which then produces oscillations.

Testcase 4. Circulating wind
We consider the shallow water equations in a square domain Ω = [0, 30]2 with linear
bathymetry b(x) = 60− (x+ y), reflecting boundaries and initial conditions

h(x, 0) = x+ y + 80
u(x, 0) = 0
τ (x, t) = (−10, 10)> for all t ∈ [0, T ]

and wind blowing constantly diagonal to the bathymetry with parameters n = 2/g,
where g = 9.81 is the gravitational constant and γτ = 10.

Figure 3.8.: Circulating wind. Velocities u every 20s from upper left to bottom right.
Intensity of vectors indicates magnitude of u.

In figure 6.1 we plot the computed velocity vectors every 4000 time-steps (= 20s). The
length and intensity of the vectors correspond to the magnitude of the velocity. The
longer the simulation runs, the more pronounced the circular movement of the water
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Figure 3.9.: Circulating wind. Kinetic energy over time for the uniform simulation (solid
line) and several adaptive (dashed lines). The minimal uniform resolution
is ∆xmin = 1.326. The adaptive solutions show a converging behavior with
∆xmin = 1.326 for all testruns and ∆xmax ∈ {3.75, 5.303, 10.607}

is. The motion does not start right from the beginning though. It takes approximately
2000 time-steps for the system to develop the circular motion. The computations were
performed using a Runge Kutta scheme of order two (RK22) with a time-step ∆t =
0.0025 in combination with the Rusanov Riemann solver. For the uniform simulation,
the spatial resolution was ∆x = 1.875 and the total amount of elements was 512.
Throughout the computations, the bathymetry as well as the fluid height are linear
(for t = 0) and remain mostly homogeneous. Therefore, we identified the vorticity,
ηΩe = ξe := ( ∂v

∂x
− ∂u

∂y
) as a suitable refinement criterion. For comparison of adaptive

and the uniform simulation, we computed the kinetic energy over time which is defined

as
∫

Ω

(
u(x)2 + v(x)2

)
dx. Figure 3.9 shows that the kinetic energy from the adaptive

simulations does not significantly deviate from the one of the uniform simulation.

3.5. Concluding Remarks

In this chapter we have presented a two-dimensional DG shallow water model in combi-
nation with a dynamically adaptive triangular mesh aiming for twofold: good agreement
with wet/dry interfaces as well as the reduction of computational costs. The mesh had
been locally adapted according to heuristic user-defined refinement indicators and tol-
erances as shown in (3.9). Slope limiters are employed for modeling wetting and drying
with the purpose of reducing spurious oscillations and maintaining positivity of the
fluid height. Moreover, in case of a resting water body, a correction of the pressure
gradients in the right-hand side had been carried out for partially dry cells in order to
preserve still water states exactly.

We have confirmed that the presented nodal DG method yields robust results when
being applied to dynamically adaptive meshes. With the discussed modification of the
pressure gradients in the strong flux form in (3.4), we were able to preserve steady
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states and obtain errors that were in the range of machine precision. For the nodal
approach that we had chosen in this paper, the limiter presented in Kuzmin (2010),
which works with local Taylor expansions, yielded the best results in terms of positivity
preservation, accuracy and robustness. The computational overhead that emerged from
the use of the limiter was of quadratic order in the degrees of freedom. For the test
cases, that we have shown, the use of adaptivity can reduce the computational costs
while not affecting the accuracy significantly. For example, in the test cases that were
taken from Balzano (1998), we could reduce the computational costs by up to 80% if we
accepted a loss of precision of the order of 1%. Here, we have to stress though, that the
high-number for the cost reduction also comes from the fact that these tests are quasi
one-dimensional. In the steady state preserving case, we even achieved higher accuracy
with the introduction of an adaptive mesh. However, this is probably a consequence of
a damping of artificial waves that travel from the finer part of the mesh to the coarser.

In the present chapter, the implementation of the wind stress was done using a
prescribed wind vector field. For a wider class of applications, it seems sensible to
work with the storm model presented in Holland (1980). The latter as well as the
performance of the model when being applied to real data will be discussed in detail in
chapter 6.





4. Approximations in a Discontinuous
Galerkin Inundation Model

4.1. Abstract

Discontinuous Galerkin (DG) models for inundation simulations comprise several nu-
merical approximations. Examples are the Riemann solvers, that are used to compute
fluxes over element boundaries, and slope limiters that reduce numerical oscillations.
These on the one hand introduce limitations but on the other hand ensure that sta-
ble and accurate solutions are obtained. We study their effects on the accuracy and
computational efficiency of the numerical solution and, in this respect, propose a com-
putationally inexpensive technique for well-balancedness.

4.2. Introduction

The numerical solution of a set of partial differential equations with a DG method
requires numerical approximations in several parts of the model. These serve multiple
purposes: Stabilization of the numerics, balancing of the discretization and reduction
of numerical errors. However, it is important that these modifications do not violate
desirable properties of the computed solution such as boundedness of the total variation,
at least in the mean, in order to theoretically obtain convergence and satisfy entropy
conditions.

The occurrence of spurious oscillations is one challenge of shallow water modeling.
From Godunov (1959) we know that higher order numerical methods for non-linear
problems tend to produce oscillations especially in the vicinity of steep gradients. These
can lead to negative water heights which then influence the stability of the model for two
reasons. Computations of the largest possible timestep ∆t require the computation of
the maximal eigenvalue λmax = 〈u,n〉+

√
φ which is only well defined for non-negative

water heights. Moreover, the determination of the velocity from momentum, u = φu
φ

,
is bad conditioned for small φ and a division by zero has, in any case, to be avoided.

Dry states also lead to two collapsing eigenvalues, as we can see from (2.5), so that
the system is not longer hyperbolic as in section 2.1. The loss of hyperbolicity is known
to lead to instabilities of the simulation and a loss of wellposedness (see e.g. Xing and
Zhang (2013)).

Possibilities to reduce oscillations can be found in Hesthaven and Warburton (2008).
Low-pass filters are one option because they remove high-frequency parts of the numeri-
cal solution which stabilizes the computation and smooths the result in a post-processing
routine. The same effect can be achieved by adding artificial viscosity to the equations.
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This requires the computation of a discrete Laplace operator ∆, which on unstructured
grids with piecewise linear basis functions is a non-trivial task. Yet another method
is slope limiting. Slope limiters are sophisticated post-processing filters that are only
active in dynamically determined rough parts of the solution. In this work, we will
exclusively focus on them, because they only affect the solution in critical regions and
often take into account physics-based criteria.

The communication between the cells, or the fluxes over the edges, contains a further
approximation, that takes into account the dynamics of the system. This edge problem
is given by a Riemann problem as in section 2.1, which can be solved with any exact
or approximate Riemann solver.

The balance between the pressure gradients, i.e. the gradients of the surface height h
and the bathymetry b, on a discrete level is also of importance as it severely influences
the creation of artificial waves at bathymetry gradients when the system is at rest and
therefore has influence on the preservation of steady states.

All these approximations and their effect on the accuracy of the method are discussed
in this chapter. In 4.3.1 we introduce a general characterization of a large class of slope
limiters and show how commonly used ones fit into this context. Special emphasis will
be put on a theoretical and numerical comparison. Finally, we study Riemann solvers
and their influence on flooding and drying in section 4.4 and show how we achieve
preservation of states at rest using the strong form of the integral equations in 4.5.

4.3. Slope Limiters

One of the main challenges of inundation modeling is to accurately compute interfaces
between wet and dry cells. As we have seen in section 4.2, flooding and drying simula-
tions with shallow water equations can develop spurious oscillations. To reduce them
we employ slope limiters. We remark though that limiters are needed because of the hy-
perbolic nature of the problem. Problems that involve diffusive fluxes or other viscosity
terms do not require any limiting according to Cockburn et al. (1999).

In current literature, we find different approaches for the reduction of numerical
oscillations. Most of them are concerned with the development of slope limiters. In
general, we distinguish between methods employing a moving and a static boundary.
The moving boundary requires the definition of boundary conditions as was done in
Lynch and Gray (1978) and in Leclerc et al. (1990) for flooding and drying scenarios with
a finite element model. On the one hand moving boundaries restrict the computations
to the wet domain, on the other hand they require a computation the boundary of zero
water height dynamically in every timestep.

Static boundaries in turn require to perform the computations in the whole domain
and to decide on which element is wet or dry with the help of element deactivation. For
the dry domain one can then apply a thin layer approach, i.e. the actual dry regions are
artificially wetted with a small amount of water, so that no special care has to be taken
about wet/dry interfaces. Most of the existing models employ this approach, though it
is possible to allow for negative water heights as presented in Heniche et al. (2000).



4.3. Slope Limiters 33

The limiter presented in Bunya et al. (2009) is a combination of a positive-depth
operator, therefore belonging to the class of thin layer approaches, and a conventional
limiter as in Cockburn and Shu (1998). However, the modification of the water height to
ensure positive depth at any time lead to a scheme whichs wellbalancedness depends on
a free parameter H0, because for mean water depths below this threshold H0, the nodal
values of the limited solution are set to the mean water depth without modifying the
bathymetry. A similar approach is performed for the models in Chen et al. (2008) and
Gopalakrishnan and Giraldo (2014). In addition thereto in the model of Gopalakrishnan
and Giraldo (2014) a simple minmod limiter as presented in LeVeque (2002) is employed
to control the oscillations.

The total variation of the numerical solution gives information about the existence
and severity of oscillations. If the total variation is bounded, we call the method
total-variation-bounded, or TVB. The boundedness is essential for the minimization of
unphysical oscillations and the proof of convergence in the mean depends on the bound-
edness of the total variation in the mean. The limiter presented in Xing et al. (2010) for
a well-balanced scheme, that has been presented in a computationally improved way in
Zhang and Shu (2011), has this property. The main principle behind it is that in case
of oscillations a linear scaling around the cell-average is applied. This does not only
lead to a reduction of oscillations but also ensures positivity of the sea surface height
and maintains the wellbalancedness of the scheme.

Yet another approach had been developed in Kärnä et al. (2011) that includes a
transformation of the bathymetry such that with the modified bathymetry, the whole
domain is wet and no special treatment has to be developed for dry cells.

Finally, especially in the case of operational models that are in use, estimators for the
inundation run-up are used as is done for example with a one-dimensional Boussinesq
model in Kennedy et al. (2012) for the model developed in Westerink et al. (2008).

In our model, we will focus on a special class of limiters that work on partially dry
domains. Their performance will be the subject of the next section.

4.3.1. General Characterization

Slope limiting routines can be considered as advanced post-processing filters. In our
explicit s-stage strong stability preserving Runge Kutta time-stepping scheme, the lim-
iter will take effect during every intermediate step of the evolution process in order to
suppress oscillations and negative fluid heights in every partial step by modifying the
right-hand side H(U) of the ordinary differential equation (3.7) in the following way:

U
(0)
h = Un

h

U
(i)
h = H̃

(
i−1∑
l=0

(
αilU

(l)
h + βil∆tH

(
U

(l)
h

)))
for i = 1 . . . s

Un+1
h = U

(s)
h
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where αil, βil are the SSP Runge Kutta coefficients and H̃ is the slope limiter. In
principle, limiters can also be employed in other types of time-stepping schemes. In
the recent paper by Kuzmin (2013a), slope limiting techniques are applied to a semi-
implicit scheme. We will, however, only focus on explicit schemes for two reasons. First,
explicit time-stepping schemes are easier to implement and parallelize. Second, with
the application we have in mind, we do want to simulate the fast gravity waves which
a (semi-)implicit scheme would possibly damp in order to achieve a larger possible
timestep.

All the slope limiters that we consider in this work are post-processing filters of the
general form

H̃(fh) =
∑
e∈E

χH̃
e

(
f e,h +

me∑
k=2

`kLk(fe,h)
)

+
(
1− χH̃

e

)
fe,h (4.1)

with a switch

χH̃
e =

{
1 fh on Ωe has to be limited,

0 otherwise.
,

f e,h is the cell average of the discrete numerical solution fh restricted to the element
Ωe, me ∈ R, `k ∈ R, k = 2, . . . ,me are parameters that are limiter-specific and Lk :
Pn(Ωe)→ Pn(Ωe) are also limiter-specific operators that modify the numerical solution
within the local space of ansatz functions which in our case is a polynomial space of
order n.

Numerically, we compute the cell averages using an interpolatory Gauss Lobatto
quadrature of the form

f e,h =
1

vol(Ωe)

∫
Ωe

fh(x)dx ≈ 1

vol(Ωe)

m′∑
i=1

ωifh(ξi), (4.2)

with Gauss quadrature points ξi, weights ωi and vol(Ωe) the volume of the triangle Ωe.
The m′-point Gauss Lobatto rule on Ωe is exact up to degree 2m′ − 3.

Following Cockburn (1998), we impose four requirements on slope limiters:

• Preservation of (high-order) accuracy away from critical points,

• Decrease of the gradient of the limited solution compared to the solution without
limiting, i.e. |∇Uh| ≥ |∇H̃(Uh)| pointwise in Ω,

• Boundedness of the limited solution , i.e. the existence of Uh-dependent constants
c, C ∈ R with c ≤ C, so that c ≤ H̃(Uh)(x) ≤ C for all x ∈ Ω, and

• Local conservation of mass and momentum i.e.
∫

Ωe
H̃
(
Uh

)
dx =

∫
Ωe

Uhdx for all

Ωe. A sufficient condition therefore is
∫

Ωe
Lk(Uh)dx = 0 for all k = 2, . . . ,me.

The requirements ensure, that H̃ does not affect the convergence of the numerical
solution, which is strongly linked to the study of its total variation.
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Total Variation

The main purpose of slope limiters is the reduction of numerical oscillations to compute
meaningful solutions. Therefore, we introduce the total variation as a measure for the
strength of oscillatory behavior. For a multivariate function f ∈ L1(Ω) it is defined as:

TV (f)(t) := sup

{∫
Ω

f(x, t)divϕ(x)dx : ϕ ∈ C1
c (Ω,Rn), ‖ϕ‖∞ ≤ 1

}
,

where ϕ ∈ C1
c is a compactly supported and differentiable test function that is bounded

in the L∞-norm by 1. We remark, that this definition takes account of changes that
occur inside the element as well as the potentially modified jumps over element bound-
aries. Ideally, we would wish for our limited numerical solution to fulfill a maximum
principle of the form

Uh(x, t = 0) ∈ [m,M ]⇒ Uh(x, t) ∈ [m− δMh2,M + δMh
2] for all t > 0, (4.3)

with m,M ∈ R and non-negative numbers δM and h. In Zhang and Shu (2011),
high-order accuracy of the method is proven under the assumption (4.3). In order
to not degrade the accuracy at local extrema, we can only achieve a total variation
boundedness in the mean (TVBM):

Uh(x, t = 0) ∈ [m,M ]⇒ Uh(x, t) ∈ [m− δMh2,M + δMh
2] for all t > 0.

A proof in Cockburn (1998) shows, that under the assumption that the Runge Kutta
(RK) coefficients αil sum up to one, which is ensured for strong stability preserving
RK methods, there will be at least a subsequence of the sequence of mean values that
converges to a weak solution of the problem. For the rest of this section, we will focus
on concrete examples for TVBM limiters.

The Simple Modal L2 Limiter (L2)

The main principle is to redistribute the first mode (the mean value) of the numerical
solution onto the degrees of freedom, which is computationally inexpensive as only
precomputed matrices are involved. To illustrate the concept, we consider the global
numerical nodal solution Uh at time t = tn:

Uh(x, tn) =
∑
e∈E

( me∑
k=1

Uk
e,h(tn)ψk(x)

)
,

where Uk
e,h(tn) is the kth nodal coefficient of the element Ωe at time t = tn and ψk the

nodal Lagrange basis functions. This solution is now projected into the elementwise
modal space Pn = span {

⋃
j∈JE µj} that is spanned by orthogonal Jacobi polynomials.

For simplicity we assume that Je = {1, . . . ,me} . Utilizing the elementwise Vander-
monde matrix V := µj(xi)1≤i,j≤m, which contains the evaluation of the modal basis
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functions at the Lagrange interpolation points, we obtain the equivalent representation

Uh(x, tn) =
∑
e∈E

( me∑
k=1

Ũk
e,h(tn)µk(x)

)
.

Here, the tilded coefficients are the modal values for each element. Redistributing the

first mode Ũ1
e,h onto the nodal values of the respective element Ωe gives the limited

solution

H̃(Uh)(x, tn) =
∑
e∈E

χH̃
e

(
Ũ1
e,h(tn) · χe(x)

)
+
(
1− χH̃

e

)
Ue,h(tn),

with the indicator function χe for element Ωe, i.e. χe(x) = {1 for x ∈ Ωe; 0 for x /∈ Ωe,
that has the property that its integral over Ωe equals the volume of the element and
the general coefficients `k = 0 for k = 2, . . .me in (4.1).

This modification fulfills the requirements on limiters as stated in the previous section.
The limiter preserves first order accuracy in the limited areas because it ignores higher-
order information. It is mass and momentum conserving in the limited elements as we
can see from∫

Ω

H̃(Uh)(x, tn)dx =
∑
e∈E

(∫
Ωe

Ũ1
e,h(tn) · χe(x)

)
dx =

∫
Ω

Uh(x, tn)dx.

where we assumed χH̃
e = 1, because if an element is not limited, the mass is not changed.

Furthermore, it leads to at most first order accuracy in regions where the limiting
takes place, with the advantage, that mass is conserved and oscillations are completely
suppressed. Thus, we obtain element- and componentwise |∇(H̃(Uh))| = 0 ≤ |∇Uh|
because it yields a bounded solution as long as Uh ∈ C∞ is bounded. Also, we can
maintain that 0 ≤ c because the mean value of the solution is always non-negative, at
least for at most second order Lagrange functions. For higher-order Lagrange functions
this is not always true. We will discuss this aspect in detail in section 5.3 and show in
section 5.4 how an approach using Bernstein polynomials can prevent this issue.

The Edge-based Limiter (EB)

The work presented first in Cockburn and Shu (1998), discusses a limiter that linearly
relates function values detected at edge midpoints xkm of all three edges k = 1, 2, 3 to
element mean values of edge neighbors in order to detect extrema inside the element.
It assumes that oscillations in the numerical solution are present, iff they are present
in the P1- part of the solution— an assumption that could not be proven up to date
and has been critically reflected upon in for example Kuzmin (2013b). To be precise,
of interest is dm, the distance from the mean value to the edge midpoints

dm(φe,h,x
k
m) := φe,h(x

k
m)− φe,h, k = 1, 2, 3.



4.3. Slope Limiters 37

with φe,h the mean value of φh, which for linear functions can be attributed to the
center point xce, in Ωe that will be computed using (4.2) and

∆φe,h(x
k
m) := α1(φe1,h − φe,h) + α2(φe2,h − φe,h)

for some parameters α1, α2 ∈ R. We remark, that in this case, ∆ is not the Laplace
operator. The indices e1 and e2 are chosen in a way that the distance from xkm to the
midpoint of the element Ωe can be represented as a linear combination of the distances
between the mean values of φ in Ωe and Ωe1 , and Ωe and Ωe2 as depicted in figure
4.1. In principle, this construction can be used on triangular and quadrilateral meshes.
For triangular meshes and using the general notation introduced in (4.1), the limiter is
defined as

`k = m̃
(
dm(φe,h,x

k
m), νlim∆φe,h(x

k
m)
)

Lk(φe,h)(x) = ψNCk (x).

The free parameter νlim ∈ R is user-defined, ψNCk the k-th linear non-conforming basis
function with respect to the edge k and ψNCk (xlm) = δkl and m̃ a TVB corrected minmod
function with another free parameter Mlim ∈ R, which is defined as

m̃(a1, a2) =

{
a1, for |a1| ≤Mlim(∆re)

2,

m(a1, a2) otherwise,

where ∆re the radius of the largest inscribed circle of the respective element Ωe and m
the classical minmod function defined as

m(a1, a2) =


a1, if |a1| ≤ |a2| and a1a2 > 0,

a2 if |a2| ≤ |a1| and a1a2 > 0,

0 otherwise,

for arbitrary real numbers a1, a2 ∈ R. For linear approximations the equality

dm(φe,h,x
k
m) = ∆φe,h(x

k
m), for k = 1, 2, 3,

obviously always holds. The limiter is then defined for two different cases. For the case
where

∑
k `k = 0 it is

H̃(φh)(x) =
∑
e∈E

χH̃
e

(
φe,h +

3∑
k=1

`kψ
NC
k (x)

)
+
(
1− χH̃

e

)
φe,h. (4.4)
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xce

xk1
m

xk2
m

xk3
m

xce1

xce2
xce3

Figure 4.1.: Schematic of edge-based limiter. Cell mid point xc· are marked as open
circles, edge midpoints xm· are full circles.

Otherwise we compute a modification of the scaling factors as follows:

pos =
∑
k

(0, `k), neg =
∑
k

(0,−`k)

θ+ = min

{
1,

neg

pos

}
, θ− = min

{
1,

pos

neg

}
.

In this case the limiter takes the form

H̃(φh)(x) =
∑
e∈E

χH̃
e

(
φe,h +

3∑
k=1

ˆ̀
kψ

NC
k (x)

)
+
(
1− χH̃

e

)
φe,h, (4.5)

with ˆ̀
k := θ+ maxi(0, `i) + θ−maxi(0,−`i). As this limiter is only defined for linear

functions the general application to higher-order polynomials takes the following form:

• Compute L2 projection onto the space of linear polynomials for each element.

• Compute limited version of linear approximation as in (4.4) or (4.5).

• If on the interpolation points the computed limited solution and the linear ap-
proximation coincide, no limiting needs to be done, if not the limited solution is
the computed quantity.

The limiter fulfills four requirements. It conserves mass and momentum because the
integrals of Lk over all Ωe vanish:∫

Ωe

Lk(Uh)dx =

∫
Ωe

ψNCk dx = 0, ∀k.

As shown in Cockburn et al. (1999), the limiter fulfills a maximum principle which is
equivalent to preservation of high-order accuracy (see previous section on total varia-
tion). Boundedness of the limited solution then follows automatically from the maxi-
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mum principle as well. The reduction of total variation follows from the restriction to
first order polynomials at critical points and the limiting of the first order derivatives.

An addition to the edge-based limiter is presented in Xing et al. (2010) and we
will denote it with H+. It is applied right after the edge-based limiter in the fashion
H̃+H̃(Uh) and we will denote the product of both limiters with (EB+). The advantage
is that it preserves positivity–a desirable property for inundation simulations. The
proof of positivity preservation for this limiter itself relies on the underlying numerical
quadrature and for the computation of the limiter, the set of Gauss quadrature points
on the triangle Ξ := {ξk ∈ R2, k ∈ K} with the corresponding index set K is important.
The positivity preserving limiter is then defined as

H̃+(Uh)(x, tn) =
∑
e∈E

(
θe

(
Ue,h(x, tn)−Ue,h(tn)

)
+ Ue,h(tn)

)
,

with θe = min

(
1,

φe,h

φe,h −me,h

)
,

where me,h = minx∈Ξ φe,h(x) is the minimum of the free surface height on the Gauss
quadrature points. It can basically be seen as a linear scaling around cell averages.
From Xing et al. (2010), we can also see that the limiter is only active on dry or near
dry elements.

The application of the limiter does not affect the conservation property or the bound-
edness of the solution as can be seen in Xing et al. (2010). Later, in section 4.3.2, we
will confirm that the extension does improve the result of the limiter with respect to
positivity preservation and well-balancing. High-order accuracy is preserved under the
CFL condition

λmax
∆t

vol(Ωe)
vol1(Ωe) ≤ 1, (4.6)

with λmax the maximum eigenvalue, vol(Ωe) the volume of Ωe and vol1(Ωe) the perimeter
of Ωe as can be seen from Zhang and Shu (2011).

The Vertex-based Limiter (VB)

The vertex-based limiter presented in Kuzmin (2010, 2013b) is a modification of the
limiter presented in Barth and Jespersen (1989). It is a nodal modification using a
Taylor-series-based approach which was first presented in Bell et al. (1988). The limiter
takes into account values from patches P (xi) surrounding a node xi, i.e. P (xi) := {Ωe ⊂
Ω|xi ∈ Ωe}. A schematic of a node patches can be found in figure 4.2. The limited
Taylor-expansion-based approach is then performed using scaling factors γe,|α| ∈ R :

H̃(φh)(x) =
∑
e∈E

φe,h +
n∑
|α|=1

γe,|α|
(x− xce)

α

α!
(Dαφe,h)(x

c
e)

 , (4.7)
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with multiindices α ∈ N2, φe,h the numerical solution for φ in element Ωe ⊂ Ω and the
point xce the center point of element Ωe. Using the general notation from (4.1), we have

χH̃
e = 1 ∀e ∈ E
`k = γe,k

Lk =
∑
|α|=k

(x− xce)
α

α!
Dα

∣∣∣∣
x=xce

.

The parameters γe,k ∈ R with k ∈ N are in this case determined using the formula

γe,k = min
|α|=k−1

min
i


min

{
1, (Dαφe)max(xi)−Dαφe

(Dαφe)(xi)−Dαφe

}
, if (Dαφe)(xi)−Dαφe > 0

1, if (Dαφe)(xi)−Dαφe = 0

min
{

1, (Dαφe)min(xi)−Dαφe
(Dαφe)(xi)−Dαφe

}
, if (Dαφe)(xi)−Dαφe < 0,

where (fi)
max = maxΩe∈P (i) f(xce) and (fi)

min = minΩe∈P (i) f(xce) are the patch-minima
and maxima of the centroid at the ith degree of freedom. The factors γe,k are scaling
parameters for the kth derivative in the Taylor expansion of (4.7) and contain informa-
tion of nodal and mean values of the (k − 1)st derivative of the function. The switch

χH̃
e ≡ 1 will be used here, since the scaling parameter determine whether or not limiting

is required. So that no further criterion is needed.
For higher order approximations the parameters γe,k are determined in a hierarchical

approach starting with the highest order derivative and then set

γe,k := max
k≤l

γe,l for k ≥ 1,

until we determine a γe,k̃ to be 1, then all the γe,k = 1 for k ≤ k̃. We remark that
this approach is contrary to the assumption that oscillation are only present if they are
present in the P1-part of the function.

The choice of scaling parameters γe,k lead to a geometric constraint of the form:

(φi)
min ≤ φ(xi) ≤ (φi)

max. (4.8)

A truncation error analysis can show, that the limiter retains the desired accuracy
even for higher order functions. A detailed discussion on this issue will be presented in
chapter 5. In Aizinger (2011) it has also been shown that the solution computed with
this limiter solves a local elementwise minimization problem of the form

min
(φ̃e,1,...,φ̃e,m)>∈Rm

me∑
k=1

(
φ̃e,k − φe,k

)2
,

subject to

0 ≤
me∑
k=1

φ̃e,kψk ≤ max
xi∈Ωe

(φi)
max,
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Figure 4.2.: Schematic of patches and neighborhoods. Depicted are a nodepatch
(light gray) for the black node, the edge-neighborhood (gray) and patch-
neighborhood (dark gray) for the black triangle.

i.e. the limiter provides the modified coefficients φ̃e,k that deviate least from the actual
computed ones and that satisfy pointwise a boundedness condition as in (4.8). In
that sense, the limiter leads to optimal results with respect to the coefficients of the
approximation. However, the lower zero bound for the limited solution for the nodal
limiter, that is needed to fully ensure that no negative fluid heights are being computed,
needs to be imposed explicitly. In that sense, the limiter is not fully parameter-free.
Also, it conserves mass and momentum since the integrals over the operators Lk vanish
and a simple Taylor expansion shows that the gradient of the limited solution is lessened
by the limiting procedure.

4.3.2. Theoretical Comparison

In section 4.3.1 we introduced limiters that are conceptually different, yet all fulfill
typical requirements that are posed on limiters following Cockburn and Shu (1998). We
theoretically study these limiters with respect to further criteria such as computational
cost, wellbalancedness, positivity preservation and dependence on free parameters. Our
findings are summarized in table 4.1 and elaborated in the following.

Computational cost

Relative to numerical methods such as FEM or FV the number of degrees of freedom
for DG methods is large. Therefore, and because the limiting takes place in every
intermediate time step of the Runge Kutta scheme, the additional costs, that originate
from limiting have to be preferably low. In order to gain insight into the computational
costs of limiters, we count the respective floating point operations and remark, that
with this approach the cell and grid communication as well as IF loops are not taken
into account, despite their importance.

The costs of every limiter from 4.3.1 is composed of the cost of the limiter per
element times the number of elements that have to be limited. The latter depends

on the definition of χH̃
e , which usually detects the rough regions, that need limiting.

We assume that the index set corresponding to the number of degrees of freedom per
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element is of cardinality m, i.e. |Je| = m. To improve the readability, we kept the
following computations as brief as possible.

For the vertex-based limiter (VB), χH̃
e ≡ 1 holds, so that it is applied to all elements

and the limiting is solely controlled by the computation of the scaling parameters γe,k.

In contrary thereto, the other limiters require the elementwise computation of χH̃
e .

The (VB) limiter is an extension of the L2 limiter (L2). If we set all γe,k in (4.7)
equal to zero, we obtain (L2). The latter only involves the computation of cell averages,
which using the numerical quadrature from (4.2) costs 2(m2 +m) flops.

The remaining flops of the (VB) limiter depend on how many higher-order terms are
taken into account. We will denote this order with n for the moment and introduce a
running index k = 1, . . . , n. The first order term (k = 1) requires the computation of the
mean values of the two derivatives in x- and y-direction at a total cost of 2(2m+ 2m2)
and further 3m+1 and 2(3+3) operations for the computation of `1 and L1 respectively.

For the higher-order terms additional mean values of the (k − 1)st order derivatives
are needed to evaluate γe,k. This amounts for the general kth order term with k > 1 to:

2k
{

(2m+ 2m2) + (3 + 3k)
}

+ 2k−1
[
(2m+ 2m2) + (1 + 3m)

]
,

where the terms in the curly bracket contain computation costs of the kth order deriva-
tive at the element centroid and the operator Lk and the square bracket contains the
additional computation costs of the (k−1)st derivatives and the parameters `k. Finally,
the overall summation costs 2n − 1 operations per element. Putting all this together,
for n ≥ 2, this all sums up to

|E|
(

[(2m+ 2m2)] + [13 + 7m+ 4m2] + (2n− 1)

+
n∑
k=2

2k(2m2 + 2m+ 3 + 3k) + 2k−1(2m2 + 5m+ 1)
)
.

The first line of the display shows the number of flops for the zeroth and first order term
in square brackets while the second line lists all the higher order terms. Of interest is
the coefficient of m2. Multiplying the sum out reveals that the leading coefficient is 2
for the (L2) limiter, 6 for the first order (VB) and (4 + 3 · 2n−2) for higher order n.

The edge-based limiter (EB) requires a projection onto P1 and back, which, computa-
tionally, is realized using the precomputed Vandermonde matrix V. Using Weierstrass’
Theorem the projection onto the space of linear polynomials costs 3 · 2m flops per ele-
ment for computing the first three modes, while the back projection costs 2m2 flops, due
to the matrix vector multiplication with a dense inverse Vandermonde matrix. Then,
for all three edges we compute dm at a cost of 3 operations times (m2 + 2m), and ∆
at a cost of 4 flops for solving a 2 × 2 linear system. The `k cost 1 multiplication and
the minmod function 3 operations. Then, the sum criterion is evaluated in 3 additions,
the computation of pos and neg in 2 times 3 additions and multiplications for -`k. The
parameters θ cost 2 divisions and the computation of ˆ̀

k, if needed, cost 3 times 1
addition and 2 multiplications. Finally the summation for H̃ costs 4 additions and 3
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Figure 4.3.: Simple L2 limiter. 1D schematic of violation of well-balancedness

multiplications. Summing up we have

6m+ 2m2 + 3
(
3 +m2 + 2m+ 4 + 4

)
+ 3 + 6 + 3 + 2 + 9 + 7 = 5m2 + 9m+ 63.

The computation of (EB+) involves 5 additional operations, because it is a processing
of already computed quantities, which has no effect on the leading order of m2.

Wellbalancing

Preservation of steady states is an important aspect in order to prevent artificial veloci-
ties from developing. In section 4.5 we describe the wellbalancing scheme in our model.
An important aspect thereby is that dry nodes are not artificially wetted by the limiter
in order for the algorithm to detect partially wet areas correctly.

It is shown in Xing and Zhang (2013); Xing et al. (2010) that the limiter (EB+) does
not destroy the well-balanced property.

We observe, that the (L2) limiter is not well-balanced as a modification of the sea
surface height will not automatically result in a modification of the bathymetry and
thus change the derivative of the water height which will introduce artificial waves into
the simulation if not a separate modification of bathymetric data is taken into account.
Figure 4.3.2 illustrates this issue.

The wellbalancedness of (VB) strongly depends on the order of approximation. For
n = 0 it coincides with the L2 limiter and is therefore not wellbalanced. But for n equal
to the order of polynomials used, we achieve wellbalancing, because dry nodes will not
be wetted during the limiting procedure due to the choice of γe,k. For partially dry cells
the γe,k will be 1 and therewith not affect the nodal values of the transition cells.

Non-negativity preservation

Preservation of non-negativity is equivalent to requiring the lower bound c as described
in section 4.3.1 to be bounded below by 0. For (L2) this the non-negativity of mean
values over the element ensures the bound. For the (VB) to be non-negativity preserv-
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(L2) (EB) (VB) (EB+)
Accuracy 1 p p p
Computational Cost
(leading coefficient) 2 5 min (6, 4 + 3 · 2n−2) 5
Positivity Preservation yes no yes yes
Free Parameter no yes (Mlim, νlim) yes yes(Mlim, νlim)
Wellbalancing no no yes yes

Table 4.1.: Comparison of different slope limiters for DG methods.

ing, we have to numerically force the patch minima to stay non-negative by introducing
a lower bound:

(fi)
min = max

(
min

Ωe∈P (xi)
f(xce), 0

)
The (EB) itself is not non-negativity preserving, because shape preserving requirements
as in Cockburn (1998) can be violated at local extrema, which, in the case of wetting
and drying problems, can lead to undershoots at wet/dry interfaces and therewith
to negative water heights. However with the extension, (EB+) does preserve non-
negativity under the CFL condition (4.6) as can be seen from Xing et al. (2010).

We remark that the preservation of positivity for discontinuous bathymetry is achieved
by reconstructing the sea surface height at every time-step t in the following way:

φh(x, t) = max (0, φh(x, t) + bh(x)−max(bh(x), bh(x′)))
φh(x′, t) = max (0, φh(x′, t) + bh(x′)−max(bh(x), bh(x′)))

with x,x′ neighbors over an element edge.

Parameters

Most of the mentioned limiters include tuning parameters that are of essential impor-
tance in obtaining good results. In turn, they make the limiters less user-friendly and
an adjustment necessary for every testcase anew. The limiter (VB) requires to impose
a lower boundary of zero for patch minima in order to preserve non-negativity of the
fluid height. The limiters (EB) and (EB+) contain parameters for the modified minmod
function (Mlim) as well as for the limiter coefficients (νlim).

The findings of our analysis are summarized in table 4.1. They reveal the different
strengths of the limiters. For example, the weak (L2) limiter is the most inexpensive
and, since it maintains non-negativity, it can be used for trial runs of wetting and
drying scenarios, that do not require high-order accuracy. A further advantage of the
low order accuracy will also be that one can work with rather large timesteps because
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in the rough regions the polynomial order is drastically reduced. The limiter (VB)
seems to be preferable because of the wellbalancedness and non-negativity preservation.
However, our computations revealed it, in terms of flops, to be the most expensive one.
We remark, however, that this is only due to the order of approximation and that we
can also obtain reasonable results with n = 1. The limiter (EB) does not seem to be
a good choice for wetting and drying problems, while however (EB+) is. The choice of
parameters make them the hardest to tune though.

4.3.3. Numerical Comparison

We study numerical convergence and conservation properties of our model in combi-
nation with the limiters from section 4.3.2 with two partially dry test problems with
known analytical solutions and different uniform spatial resolutions.

Testcase 5. Homogenous Wet/Dry Shocktube
We consider a channel of length [0, 2] × [0, 10] with reflecting boundaries and initial
conditions

h(x, 0) =

{
0.25 0 ≤ x ≤ 5

0.0 otherwise.

u(x, 0) = 0.

Testcase 6. Paraboloid 2D Basin
We consider a domain: Ω = [−L,L]2 with parameters: D0 = 50, L = 430620, η0 = 2,
reflecting boundaries, Coriolis forcing and

A =
(D0 + η0)2 −D2

0

(D0 + η0)2 +D2
0

, D(x) = D0

(
1− x2 + y2

L2

)
η(x) = D0

(√
1− A

1− A
− 1− x2 + y2

L2

(
1− A2

(1− A)2
− 1

))
h(x, 0) =

{
D(x) + η(x) if D(x) + η(x) ≥ 0

0 otherwise.

u(x, 0) = 0

b(x) = D0
x2 + y2

L2
.

The analytical solutions for these problems can be found in Toro (2001) and Thacker
(1981) respectively. The expected convergence rate of the model is n+ 1 for a smooth
problem and basis functions of degree n ∈ N (see Hesthaven and Warburton (2008)).
Our test problems are continuous. Shocks can not occur at the wet/dry front as can
be seen from Toro (2001) where we find a proof that wet and dry states are always
connected by a contact discontinuity. However, at the wet/dry interface the analytical
solutions are not differentiable any longer which will effect the convergence rates.
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Ωε
1(t0) Ωε

2(t0) Ωε
3(t0) Ωε

1(t0)

Ωε
2(t0)

Figure 4.4.: Schematic of partial areas for wet/dry shocktube (left) and paraboloid basin
(right) at time t = t0. The dashed regions show the ε neighborhoods that
are taken out of computing error norms.

Error measures for split domains

Due to the missing global differentiability of the test problems, we will not be able to
obtain the theoretical convergence rates. To get more insight into the behavior, we
propose to compute global errors as introduced in (3.11) as well as separate errors for
only the smooth parts of the domain.

As is outlined in figure 4.4, we will neglect the irregular parts of the domain and only
compute errors for the remaining connected regions. The error norms are then defined
as:

Eε
p(fh) =

∑
k

‖fh − f‖p,Ωεk , with p ∈ {1, 2,∞}, (4.9)

with fh the numerical and f the analytical solution. The parameter ε ∈ R determines
the width of the irregular regions that are not considered for the computation of the
error and p indicates which norm we are using. The areas Ωε

k with k = k(t) are defined
for every test separately and vary over time.

For the wet/dry shocktube we have k = 3 since the critical points of the solution are
the head and the tail of the rarefaction wave. The speed of them can be determined
analytically, so that the domains take on the form Ωε

1(t) := {x ∈ Ω|x ≤ t(5−
√
φ(x, 0)−

ε}, Ωε
2(t) := {x ∈ Ω|x ∈ [t(5 −

√
φ(x, 0) + ε, t(5 + 2

√
φ(x, 0)) − ε} and Ωε

3(t) := {x ∈
Ω|x ≥ t(5 + 2

√
φ(x, 0)) + ε}.

In the paraboloid 2D basin test, we know that the wet/dry boundary is the only
irregular region, so that the domains are then defined as Ωε

1(t) := {x ∈ Ω|φ(x, t) > ε}
and Ωε

2(t) := {x ∈ Ω|φ(x, t) = 0}.

Throughout this section we work with linear basis functions, i.e. n = 1, because the
use of higher order Lagrange polynomials is not readily possible. A discussion on the
occurring difficulties with higher-order functions and approaches to overcome them, can
be found in section 5.2. Examples of simulation results are depicted in figure 4.5 for the
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Figure 4.5.: Wet/dry shocktube after 0.75s(left) and 1.5s(right) with the simple L2

limiter (top row), the vertex-based limiter (middle row), and the edge-
based limiter (bottom row). Depicted are the analytical (dashed line) and
the numerical solution.

Figure 4.6.: Paraboloid Basin. Simulation with 512 elements. Plot over line x = y for
the simple limiter (top row) and the nodal limiter (bottom row). Depicted
are the results after t = 190s(left) and t = 380s(right). The plot shows the
analytical (dashed line) and the numerical solution (solid line).
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Figure 4.7.: Wet/dry Shocktube. Plots of mass in L1 norm for 0−1s for simulations with
the L2-limiter (top left), vertex-based limiter (top right), Taylor-expansion-
based limiter (bottom left), and edge-based limiter (bottom right).

wet/dry shocktube and in figure 4.6 for the paraboloid basin. The simple (L2) limiter
gave the weakest results in terms of pointwise accuracy. In figure 4.5, we see, that its
redistribution of the first mode onto the nodes influenced the wet/dry interface with
the result that the arrival time of the wave is underestimated. In both simulations we
observed that the largest possible timestep was dependent on the accuracy of the limiter.
The less accurate the limiter, the larger the timestep. For example for the paraboloid
basin test, we chose a timestep of ∆t = 5.0 for the simulation in combination with
the (L2) limiter and a timestep of ∆t = 2.5 for the one in combination with the (VB)
limiter for a spatial resolution of ∆xmin = 17994.48. Maximal timesteps are not of
only interest in our numerical study. In the following, we test our implementation with
respect to conservation and convergence properties.

Conservation Properties

Maintaining a constant mass, provided sensible boundary conditions, is a desirable
property of wet/dry simulations. Figure 4.7 shows the mass measured in the discrete
L1 norm for the first second of simulation time. The different pictures correspond to
simulations with the different limiters as introduced in section 4.3.1. The coloring and
strength of the lines refer to the level of refinement in the following way: The lighter
and thicker the line, the coarser the simulations. We started with a shortest edge of
∆xmin = 0.5 and then reduced it by bisection to the finest mesh with the shortest
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Figure 4.8.: Paraboloid Basin. Plots of mass L1 norm for 0 − 25 000s for simula-
tions with the L2-limiter (top left) and the vertex-based limiter (top right),
Taylor-expansion-based limiter (bottom left), and edge-based limiter (bot-
tom right).
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Figure 4.9.: Wet/dry shocktube. Double logarithmic plot of global convergence study
in L2-norm with different limiters: with different limiters: nodal(red),
shu(green), l2 (blue) and xing (yellow). The grey lines indicate linear func-
tion with slopes 0.5 and 1 for comparison.

(L2) (VB) (EB) (EB+)
Testcase L2 L1 L2 L1 L2 L1 L2 L1

Wet/Dry Shocktube 0.00 0.00 0.50 0.99 0.52 0.94 0.67 1.18
Paraboloid 2D Basin 0.42 0.49 0.94 0.94 1.24 1.29 1.35 1.38

Table 4.2.: Global convergence orders for linear Lagrange ansatz in combination with
different limiters

edge being ∆xmin = 0.0442. The results obtained with (L2) and (VB) are satisfactory.
The computed mass for the (EB)-and (EB+)-limited solutions show some irregularities
and mass lost for the first 0.2s which might be due to the initial discontinuity. For all
simulations, a converging behavior is observed. We remark that the observation, that
the discrete mass is changing with resolution depends on the change of accuracy of the
numerical integration with increasing resolution The more quadrature points are used
the lesser the interpolation error. Analogously, figure 4.8 shows the normalized mass
for the first 25 000 s for simulations with the four limiters. We observe a converging
behavior with increasing resolution and a mass lost of approximately 3% (L2) and 1.5%
(VB, EB, EB+) for the finest mesh with ∆xmin = 50896.06. The reason, that perfect
mass conservation is not achieved is due to filters in our model that, for example, prevent
the division of two very small quantities when computing velocity from momentum and
the long simulation time.

Accuracy

To study the convergence properties of our model, we decreased the spatial resolution
of our model by repeated bisection of triangles from ∆xmin = 0.2231 to ∆xmin =
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Figure 4.10.: Wet/dry shocktube. Double logarithmic plot of global convergence study
in L1-norm with different limiters: with different limiters: nodal(red),
shu(green), l2 (blue) and xing (yellow). The grey lines indicate linear
function with slopes 0.5 and 1 for comparison.

(L2) (VB) (EB) (EB+)
Testcase L2 L1 L2 L1 L2 L1 L2 L1

Wet/Dry Shocktube (Ωε
1) 6.69 7.22 5.75 5.77 9.64 10.08 5.92 5.74

Wet/Dry Shocktube (Ωε
2) 0.0 0.0 0.84 0.86 0.0 0.0 1.19 1.22

Wet/Dry Shocktube (Ωε
3) 0.71 0.71 4.05 3.98 0.71 0.71 4.15 4.09

Paraboloid 2D Basin (Ωε
1) 0.42 0.49 0.83 0.57 1.25 1.24 1.25 1.01

Paraboloid 2D Basin(Ωε
2) 0.0 0.0 0.82 1.20 1.09 1.62 1.14 1.67

Table 4.3.: Local convergence orders for linear Lagrange ansatz in combination with
different limiters
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Figure 4.11.: Wet/dry shocktube. Local L2 error in areas Ωε
1 (top), Ωε

2 (middle), and
Ωε

3 (bottom). Double logarithmic plot of convergence study with different
limiters: nodal (red), shu (green), l2 (blue) and xing (yellow). The grey
line indicate linear functions with slope 1, 2 and 3.
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Figure 4.12.: Wet/dry shocktube. Local L∞ error in areas Ωε
1 (top), Ωε

2 (middle), and
Ωε

3 (bottom). Double logarithmic plot of convergence study with different
limiters: nodal (red), shu (green), l2 (blue) and xing (yellow). The grey
line indicate linear functions with slope 1, 2 and 3.
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Figure 4.13.: Wet/dry shocktube. Local L1 error in areas Ωε
1 (top), Ωε

2 (middle), and
Ωε

3 (bottom). Double logarithmic plot of convergence study with different
limiters: nodal (red), shu (green), l2 (blue) and xing (yellow). The gray
line indicate linear functions with slope 1, 2 and 3.
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Figure 4.14.: Paraboloid Basin. Double logarithmic plot of global L2 convergence study
with different limiters: global. The gray line indicates a linear function
with slopes 1, 2 and 3. Depicted are results for the modal (blue) and nodal
(yellow) limiter.

Figure 4.15.: Paraboloid Basin. Double logarithmic plot of global L∞ convergence study
with different limiters. The gray line indicates a linear function with slopes
1, 2 and 3.
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Figure 4.16.: Paraboloid Basin. Double logarithmic plot of global L1 convergence study
with different limiters. The gray line indicates a linear function with slopes
1, 2 and 3.

Figure 4.17.: Paraboloid Basin. Double logarithmic plot of L2 convergence study with
different limiters: global. The gray line indicates a linear function with
slopes 1, 2 and 3. Depicted are results for the modal (blue) and nodal
(yellow) limiter. Ω1 (top), Ω2 (bottom).
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Figure 4.18.: Paraboloid Basin. Double logarithmic plot of L∞ convergence study
with different limiters: global. The gray line indicates a linear function
with slopes 1, 2 and 3. Depicted are results for the modal (blue) and
nodal(yellow) limiter. Ω1 (top), Ω2 (bottom).
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Figure 4.19.: Paraboloid Basin. Double logarithmic plot of L1 convergence study
with different limiters: global. The gray line indicates a linear function
with slopes 1, 2 and 3. Depicted are results for the modal (blue) and
nodal(yellow) limiter. Ω1 (top), Ω2 (bottom).
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0.0302 for the wet/dry shocktube and from ∆xmin = 287911.62 to ∆xmin = 50896.06
for the paraboloid 2D basin and measured the maximal error over simulation time.
The convergence plots are employing a double-logarithmic scale for reasons of better
comparisons.

A plot of global convergence orders can be found in figure 4.9 for the wet/dry shock-
tube. We observe that all higher than first order limiters yield equal results and that a
global order of convergence of 1 could not be exceeded. This might be due to twofold:
the jump in the velocity profile and the two not differentiable points at the head and
tail of rarefaction. The resulting convergence rates, computed with linear least squares
approximations, can be found in table 4.2. The (L2) limiter did not yield converging
results. We suggest that the reason therefore is, that the head and tail of the rarefaction
are not captured as depicted in figure 4.6, which leads to a non-decreasing error at these
local points.

Global convergence rates for the paraboloid 2D basin in the L2-, L1- and L∞-norms
are depicted in figures 4.14, 4.16 and 4.15. The different colors refer to different limiters
and the gray lines are drawn for comparison. The plots reveal that in the L2-norm we
barely achieve convergence of order 1. For the other norms, the results look a little bit
better, but even there the expected order of 2 can not be obtained.

For the partial norms, however, we observe a better behavior. Figures 4.11, 4.12, and
4.13 shows that most of the limiters lead to a better convergence rate locally. Again,
the exact numerical convergence rates are shown in table 4.3.

The same seems to be true for the paraboloid basin test. We refer the reader to table
4.3 and figures 4.17, 4.18, and 4.19 for the corresponding plots.

4.4. Riemann Problem

The communication between two neighboring cells in our DG model requires the compu-
tation of fluxes across element boundaries (edges). As the derivation of the underlying
equations in chapter 3 demonstrated, the fluxes are formally taken into account through
the right-hand term of equation (3.4), where F∗ is a numerical approximation. In gen-
eral, F∗ is a solution to the Riemann problem that was described in chapter 2 (see
figure 2.2), which mostly comprises to computation of the wave speeds SL, SR, and
S∗ as well as approximations for the values of the prognostic variables inside the star
region: UL∗,UR∗. Though our model is two-dimensional, the fluxes over edges are
assumed to be one-dimensional, into the direction normal to the edge.

A concise overview over commonly used established Riemann solvers can be found
in Toro (2001). They mainly differ in estimates for the computational velocities and
the assumed underlying wave patterns. Roughly, they can be differentiated into exact
and approximate Riemann solvers. For shallow water equations, there exists an exact
Riemann solver whose main drawback is the relatively high computational cost. In
addition to the computation of F∗, it can also be used to determine analytical solu-
tions for quasi one-dimensional initial value problems such as the wet/dry shocktube.
Approximate Riemann solvers save computational costs by making use of simplifying
assumption e.g. on the underlying wave pattern. From our experience, in combination



60 4.4. Riemann Problem

with a DG model, the quality of the approximate solvers usually suffices and the relative
influence of the edge flux even declines with increasing order of approximation.

Probably one of the simplest Riemann solvers is the Rusanov solver defined as

F∗ =
1

2
(F(UL) + F(UR)− |λmax|(UR −UL)) . (4.10)

Here, we denote with UL = (φL, φLuL)>,UR = (φR, φRuR)> the vector of balanced
quantities on the left and right of the edge and λmax an estimate for the maximal wave
speed. For shallow water equations λmax = 〈u,n〉 +

√
φ. The Rusanov solver is com-

putationally inexpensive and contains a relatively high amount of numerical diffusion
(see e.g. LeVeque (2002)). On the one hand this stabilizes the numerics, on the other
hand it might lead to a smearing of shocks or an error in the detection of contact dis-
continuities. Another advantage is that it only comprises evaluations of already known
quantities, so that additional approximations for the star region are not needed, which
is in contrast to the approximate solvers, that we will present in the following. They
require the computation of normal and tangential velocities, so that from now on and
until the end of this section, we will denote the normal velocity with u = 〈u,n〉 and the
tangential velocity with v = 〈u, t〉, where n and t are the normal and the tangential
vector with respect to the current edge respectively and 〈·, ·〉 is the standard L2 inner
product.

The solver, that was developed by Roe solves a linearized system of equations and
uses averages for the characteristic speed a, as well as the fluid height and the velocities
of the form

φroe =
√
φLφR, aroe =

√
0.5(φL + φR)

uroe =
uL
√
φL + uR

√
φR√

φL +
√
φR

, vroe =
vL
√
φL + vR

√
φR√

φL +
√
φR

.

With these definitions, averaged eigenvalues λk and eigenvectors rk are determined as

r1 = (1,λ1, vroe)
>, λ = (uroe − aroe, uroe, uroe + aroe)

>

r2 = (0, 0, 1)>

r3 = (1,λ3, vroe)
>

in order to obtain a decomposition of the flux into different waves with wave strengths

α =

(
1

2

λ3δ1 − δ2

aroe
,−vroeδ1 + δ3,

1

2

δ2 − λ1δ1

aroe

)>
,

where δ = UR −UL is the jump of the state variables. The corresponding flux is then

F∗ = F(UL) +
∑
λi≤0

αi λi ri
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This solver, however, requires an entropy fix in order to yield a correct representation
of sonic rarefaction waves. For the star region, we therefore define values

UL∗ = UL +α1r1, UR∗ = UR −α3r3,

and compare the speeds in the star region from the left and right on both sides of the
non-linear waves

λ1,L = uL −
√
φL, λ1,R = uL∗ −

√
φL∗,

λ3,L = uR +
√
φR, λ3,R = uR∗ +

√
φR∗

In the presence of a transsonic rarefaction as an either left or right non-linear wave,
the jump is split into two smaller jumps of the form

If λ1,L < 0 and λ1,R > 0 ⇒ λ = λ1
λ1,R − λ1

λ1,R − λ1,L

F∗ = F(UL) + λα1r1

If λ3,L < 0 and λ3,R > 0 ⇒ λ = λ3
λ3,R − λ3

λ3,R − λ3,L

F∗ = F(UR)− λα3r3

Other solvers are the HLL and HLLC solvers which assume a two-wave and a three-
wave solution pattern respectively. Both require a solution for the star region as was
introduced in subsection 2.1.1 in order to determine F∗. The HLL solver is defined as

F∗ =


F(UL) if SL ≥ 0
SRF(UL)−SLF(UR)+SRSL(UR−UL)

SR−SL
if SL ≤ 0 ≤ SR

F(UR) if SR ≤ 0

where SR = uR +
√
φR, SL = uL −

√
φL are the left and right wave speeds in fully wet

domains. The computation of these speeds for partially dry problems is different and
will be discussed in the next subsection. In contrast, the HLLC solver is defined as

F∗ =


F(UL) if SL ≥ 0

F(UL) + SL(UL∗ −UL) if SL ≥ S∗

F(UR) + SR(UR∗ −UR) if S∗ ≥ SR

F(UR) if SR ≤ 0

with S∗ the speed of the contact, and U∗L,U∗R the left and right values of the conserved
quantities in the star region (separated by the contact). Common approximation for
the values in the star regions and further details can be found in Toro (2001). Problems,
however, can arise, when partially wet or dry states occur on the interfaces.

Inundation Modeling with Riemann Solvers

The two major problems that might occur in case of partially dry simulations are
addressed in Toro (2001): Artificial bed wetting and conservation errors.
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Test hL[m] uL[m/s] hR[m] uR[m/s] x0[m] tout[s]
1 1.0 2.5 0.1 0.0 10.0 7.0
2 1.0 -5.0 1.0 5.0 25.0 2.5
3 1.0 0.0 0.0 0.0 20.0 4.0
4 0.0 0.0 1.0 0.0 30.0 4.0
5 0.1 -3.0 0.1 3.0 25.0 5.0

Table 4.4.: Initial Data for test problems with exact solution

There are estimates to determine the wave speeds for wet/dry problems. The resulting
waves, however, are very fast. Artificial bed wetting is used to slow down the fastest
wave of the system and relax the resulting CFL condition. Formally the dry areas are
wetted with a small amount αwet ∈ R of water, h = max(h, αwet), which changes the
physics of the problem. An artificial shock front will develop that travels with a speed
smaller than the actual wet/dry front. The more the actually dry bed is wetted, the
larger is the underestimation of the wave speed.

Conservation errors are caused by the computation of the speed u = φu
φ

within the
model. This is a division of two possibly very small quantities, which is a great source
of numerical errors, because the problem is bad conditioned. We remark, that during
the computation a division by zero has in any case to be avoided.

For more realistic problems, more physics such as viscosities or frictions are involved,
which make it impossible to determine the errors as possibly no analytical solution
would be present.

4.4.1. Testcases with Analytical Solutions

To study the effects of the Riemann solver on the accuracy and computational cost of
the solution, we simulated the test suite of quasi one-dimensional wet/dry problems with
analytical solutions, that was introduced in Toro (2001). For all solvers, we employed
a bed wetting as described in the previous section with a bed wetting coefficient of
αwet = 10−7.

The test problems that we will consider can be described as the following

Testcase 7. Toro’s Wet/Dry Shocktubes
We consider the homogeneous shallow water equations in a channel Ω = [0, 50]× [0, 10]
with discontinuous initial conditions of the form

h(x, 0) =

{
hL for x ≤ x0

hR otherwise.
, u(x, 0) =

{
uL for x ≤ x0

uR otherwise.

v(x, 0) = 0

for times t ∈ [0, tout]. The values for hL, hR, uL, uR, x0, and tout are specified in table
4.4.
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Figure 4.20.: Toro’s Wet/Dry Shocktubes. Depicted are the numerical solution with
Rusanov (blue), Roe (yellow), HLL (green) and HLLC (red) Riemann
solvers and the analytical solution (black) at t = 0 and t = tout. The kth
row corresponds to the kth test.
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Test RUSANOV ROE HLL HLLC
1 0.2562E+3 0.2600E+3 0.2572E+3 0.2535E+3
2 0.4750E+2 0.4700E+2 0.4725E+2 0.4675E+2
3 0.7375E+2 0.7375E+2 – 0.7000E+2
4 0.7500E+2 0.7450E+2 – 0.7225E+2
5 0.9375E+2 0.9500E+2 0.9250E+2 0.9050E+2

Table 4.5.: Runtime of Toro’s Wet/Dry Shocktubes with different Riemann solvers.

The results obtained with our DG model after tout s are depicted in figure 4.20
(right column). We observe that for all five tests we obtain similar results with all
Riemann solvers and remark, however, that we were not able to obtain robust results
with the HLL solver for the test cases 3 and 4. As is shown in table 4.5 although the
computational costs of all solvers are different the overall cost of the model run is not
significantly affected. In conclusion, we have demonstrated, that as long as care is taken
of bed wetting and avoidance of division by zero, any approximate Riemann solver can
be used in combination with our DG model to simulate wetting and drying problems.

4.5. Wellbalanced Schemes

The preservation of steady states, or wellbalancing, is one crucial aspect of the modeling
of flooding and drying. If a model is not wellbalanced, then in quasi steady regimes,
small perturbations can be amplified and a pure numerical storm can develop. The
main difficulty is to balance pressure gradients, i.e. the terms ∇b in the source term
and ∇φ in the flux term of (3.2), on a discrete level in order to not introduce artificial
waves. Limiters are therefore also required to not modify this balance. A simplified set
of associated partially and fully wet test problems is given by

Testcase 8. General Lake at rest
We assume a bounded domain Ω with a polynomial bathymetry b(x) = p(x) ∈ Ps,
s ∈ N, a parameter H ∈ R, and initial conditions:

h(x, t) = max
(

0, H − b(x)
)

u(x, t) = 0 for all t ∈ [0, T ].

In the current literature, wellbalancing has mainly been studied in the context of finite
volume methods. For a DG framework, a technique is proposed in Bastian et al. (2012);
Dedner et al. (2011) which comprises to rewrite the source term for the bathymetry and
treat the latter as an additional unknown. We will introduce a simpler and computa-
tionally less expensive scheme. For the fully wet cases, it will only depend on the use of
the strong form of the equations and the succession of discretization and differentiation
of the flux tensor. This idea is motivated by the observation that, on a discrete level,
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there is a difference between the two discretizations

divF(U)(x, t) = div
(∑

k

(
F(Uk(t))

)
ψk(x)

)
(4.11a)

divF(U)(x, t) =
∑
k

Fdiv(Uk(t))ψk(x). (4.11b)

where Fdiv(Uk) and
(
F(Uk)

)
are the nodal coefficients of the divergence of the flux

and the flux respectively. From now on, we will drop the time variable to improve the
readability. The difference is that in (4.11a) we first discretize and then differentiate
and in (4.11b) we do it the other way around.

For demonstration purposes, we transform the integral equation (3.5):∫
Ωe

(
∂U

∂t
+∇ · F(U)− S(U)

)
ψj(x) dx = −

∫
∂Ωe

(
F∗ − F(U)

)
ψj(x) · n dS

into matrix vector representation. With the finite polynomial representation for the
prognostic variables U =

∑
k Ukψk and for the flux as described in (4.11), we obtain

for every element Ωe, time t ∈ R and j = 1, ..,m for the left side of (3.5):

m∑
i=1

∫
Ωe

ψi(x)ψj(x) dx

(
∂Ui

∂t
− S(Ui)

)
+

m∑
i=1

∫
Ωe

ψi(x) divF(Ui) ψj(x) dx (4.12a)

m∑
i=1

∫
Ωe

ψi(x)ψj(x) dx

(
∂Ui

∂t
+ Fdiv(Ui)− S(Ui)

)
. (4.12b)

Note, that (4.12a) corresponds to the discretization (4.11a) and (4.12b) to (4.11b). For
the edge-based terms on the right of (3.5) we have for both cases

m∑
i=1

∫
∂Ωe

ψi(x)ψj(x)dS
(
F∗ −

(
F(Ui)

))
· n. (4.13)

We solve the integrals numerically using an interpolatory Gauss quadrature with
corresponding Gauss Lobatto points ξi, i = 1, . . .m′ and weights ωi, i = 1, . . .m′. To
simplify the equations, we introduce the notations

M :=
(∫

Ωe

ψi(x)ψj(x)dx
)

1≤,i,j≤m
, ME :=

(∫
∂Ωe

ψi(x)ψj(x)dS
)

1≤,i,j≤m
, Ω := diag(ω)

Ψ :=
(
ψi(ξj)

)
1≤i≤m
1≤j≤m′

, Dx :=
( ∂
∂x
ψi(ξj)

)
1≤i≤m
1≤j≤m′

, Dy :=
( ∂
∂x
ψi(ξj)

)
1≤i≤m
1≤j≤m′

.

where we will call M the mass matrix, ME the mass matrix corresponding to the
edges, Ω is a diagonal matrix containing the Gauss quadrature weights, Ψ the in-
terpolation from Lagrange points xi to Gauss quadrature points ξi and the matrices
Dq, q ∈ {x, y} contain the derivatives of the basis functions in directions x and y eval-
uated at the interpolation points. We use the notation to combine (4.12a) and (4.12b)
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with (4.13). This yields

M
∂U

∂t
+ ΨΩ

(
Dx + Dy

)
ΨF(U)−MS(U) = ME

(
F(U)− F∗

)
· n (4.14a)

M
∂U

∂t
+ MFdiv(U)−MS(U) = ME

(
F(U)− F∗

)
· n (4.14b)

For the steady state problem we are interested in the left sides only; the right sides can
be neglected since their contribution is always zero. That means, that the balances we
want to maintain for every element Ωe and indices i = 1, . . .m are(

Dx + Dy
)
ΨF(Ui) = ΨS(Ui) (4.15a)

Fdiv(Ui) = S(Ui) (4.15b)

Now the difference between the two formulations is obvious. The equation (4.15b) is
fulfilled as long as the flux divergence and the source evaluated at the Lagrange points
are balanced. This will always be the case in a fully wet regime with zero initial velocity
since

Fdiv(Ui) = (0, φi ∇φi)> = (0,−φi ∇bi)> = S(Ui) ∀i = 1, . . .m

always holds true.

That the balance in (4.15a) is not always fulfilled, can be shown with a counter exam-
ple. Therefore, we consider the reference element with vertices (−1,−1), (1,−1), (−1, 1)
and linear Lagrange functions. In this case the matrices containing element derivatives
take the form

Dx =

−0.5 0.5 0.0
−0.5 0.5 0.0
−0.5 0.5 0.0

 , Dy =

−0.5 0.0 0.5
−0.5 0.0 0.5
−0.5 0.0 0.5


This leads to

(4.15a)⇔

0.5
(

0.5
(
φ(ξ2)2 − φ(ξ1)2

))
= 0.5φ(ξk)

(
b(ξ2)− b(ξ1)

)
0.5
(

0.5
(
φ(ξ3)2 − φ(ξ1)2

))
= 0.5φ(ξk)

(
b(ξ3)− b(ξ1)

)
∀k = 1, . . .m′

which is clearly only fulfilled for constant functions.

Wellbalancing for Partially Dry Cells

The presentation in this chapter has not yet taken into account that cells may be
partially dry. In this case, we propose a correction as is shown in figure 4.21. This
comprises to map physically dry but numerically wet cells to zero using the following
scheme for every element

• Detect if cell Ωe is partially dry, i.e. mini φe,h(xi) = 0 and maxi φe,h(xi) > 0,
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x[m]
Ω1 Ω2

h b

ξi

Figure 4.21.: Schematic of fix, 1D projection of cell to one edge, true wet/dry interface
(dotted line), water surface computed with nodal approach (dashed line)

• IF yes: Check if bathymetry b is non-constant on Ωe and momentum maxΩe(φu)
is sufficiently small,

• IF yes: Determine new values for φnew(ξi) = max(0, φmax − b(ξi)), with φmax
is the maximum fluid height in the wet part of the domain and correct the the
gradients ∇φnew = ∇b.

4.5.1. Numerical Tests of Robustness and Accuracy

We tested our proposed scheme with respect to the capability of handling wet and dry
states as well as robustness, which was tested by introducing a small perturbation.
Therefore, we computed the general lake at rest test with reflecting boundaries and the
following data

i. Ω = [0, 1]2, H = 0.2, and the bathymetry is defined as b(x) = max(0, 0.25−5((x−
0.5)2 + (y − 0.5)2)) for t ∈ [0, 10].

ii. Ω = [0, 30]2, H = 10, and the bathymetry is defined as b(x) = 8 · exp(−0.25((x−
15)2 + (y − 15)2)) for t ∈ [0, 1]. The perturbation has the form h(x, 0) = 10.1 for
x ∈ [10, 12].

iii. Ω = [0, 1]2, H = 0.2, and the bathymetry is defined as b(x) = max(0, 0.25−5((x−
0.5)2 + (y − 0.5)2)) for t ∈ [0, 0.75]. The perturbation has the form h(x, 0) =
0.2 + max(0, 0.05− 30((x− 0.2)2 + (y − 0.5)2))

For the partially dry case i. we have run a simulation with ∆xmin = 0.022, 4096
elements and a Runge Kutta RK22 scheme with a timestep of ∆t = 0.0005. We
employed the vertex-based limiter that does not destroy the well-balanced property.
The results can be seen from figure 4.22. Since the solution is symmetric, we show a
plot over the line y = 0.5. The left display shows the fluid height every 2.5s and the
right display the corresponding magnitude of velocities. Clearly the dry part of the
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Figure 4.22.: Wet/dry lake at rest (i). Plot over line with y=0.5. Depicted are the fluid
height (left) and the magnitude of velocity (right). The plots show the
results after 0s (dotted line), 2.5s (dashed line), 5s (dot dot dashed line),
7.5s(dot dashed line) and 10s (solid line).

domain has zero velocities and the artificial velocities stay within a range of machine
precision as intended.

The perturbation test ii. was run with ∆xmin = 0.022, 4096 elements and a Runge
Kutta RK22 scheme with a timestep of ∆t = 0.002 and, again, the well-balancing
preserving vertex-based limiter. The results are depicted in figure 4.23. We observe
that there are two waves traveling in opposite directions from which the right one is
affected by the bathymetry. It is steeper on that side and also the speed is decreased.

Finally, we ran the partially dry perturbation test iii. with 16384 elements and a
spatial resolution of ∆xmin = 0.011 and a Runge Kutta RK22 scheme with a timestep
of ∆t = 0.0005. We observe that the perturbation in combination with the wet/dry
front of the island do not affect the stability of the simulation. The simulation results
are depicted in figure 4.24. We see, that the initial bump travels around the island and
the corresponding waves meet after passing the island.

4.6. Concluding Remarks

In this chapter we studied the effects of different numerical approximations within the
DG model, namely slope limiters, Riemann solvers as well as a technique to achieve
wellbalancedness, on the overall accuracy of the simulation result.

In section 4.3 we presented a general characterization of slope limiters and showed
examples for an edge-based as well as for a vertex-based approach and how they fit
into this general theoretical framework. We imposed requirements on limiters following
Cockburn and Shu (1998) in order to study the influence on the overall accuracy. The
main result conveys that, in the mean, the order of accuracy is retained as long as
the total variation is bounded in the mean. Moreover, we compared the limiters with
respect to computational cost, preservation of non-negativity and well-balancedness
and were able to make a recommendation regarding limiters for flooding and drying
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Figure 4.23.: Lake at rest with a perturbation (ii). Plots of the fluid height every 0.04s
from top left to bottom right.
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Figure 4.24.: Wet/Dry lake at rest with a perturbation (iii). Plots of the fluid height
every 0.125s from top left to bottom right.
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problems. From a theoretical point of view, the extended edge-based limiter (EB+) as
well as the vertex-based limiter (VB) were preferable because of their high-order accu-
racy, wellbalancedness and non-negativity preservation, which is crucial for inundation
modeling. In terms of computational cost, however, the simple L2-limiter is the least
expensive, though it does not comprise all of the just mentioned desired properties.

Our numerical study with linear basis functions included two wet/dry test problems
with analytical solutions for comparison: A quasi one-dimensional wet/dry shocktube
and a paraboloid 2D basin as introduced in section 4.3.3. We tested a set of four different
limiters in combination with our model and observed that all of them yielded acceptable
results throughout this part of the study. With respect to conservation properties, we
obtained satisfactory results. A convergence study revealed, however, that globally
the theoretical convergence order 2 for linear basis functions could not be achieved.
To study the influence of the not regular enough points of the solution on the global
convergence order, we introduced error measures that only considered the smooth parts
of the solution. A corresponding convergence study showed an improvement of the order
of convergence towards the theoretically expected convergence rate. In all, the (VB)
limiter performed best in combination with our DG model, because of its robustness,
the easy way to tune the inherent parameter and the conservation properties. Despite
its theoretically higher computational cost, the (EB) and (EB+) limiters were slower
in terms of measured CPU run time. In all, we recommend to use the vertex-based
limiter for simulations of wetting and drying with our DG model.

A short introduction of Riemann solvers was given in section 4.4. We showed differ-
ent Riemann solvers and explained the different wave pattern and wave speeds, that
are assumed as well as their impact on the simulation results. We discussed known
problems with Riemann solvers for flooding and drying and stated techniques to over-
come them such as bed wetting. Finally, we tested a test suite of quasi one-dimensional
wet/dry problems with the implemented approximate Riemann solvers. As a result,
we confirmed that in terms of accuracy and computational cost, all of them lead to
comparable results.

In section 4.5 we presented a computationally inexpensive way to preserve steady
state solutions in completely wet domains with the strong form of the shallow water
equations. For partially dry domains, we introduced an algorithm to prevent artificial
waves at the wet/dry interface from forming. Numerical tests of different configurations
of the general wet/dry lake at rest, with and without perturbations, showed that the
implementation is robust and capable of ensuring the balance of the pressure gradients
up to machine precision.





5. High-Order Nodal Discontinuous
Galerkin Inundation Modeling

5.1. Abstract

A nodal discontinuous Galerkin (DG) model in combination with a vertex-based slope
limiter simulates flooding and drying scenarios. To increase the accuracy of the method,
we study the viability of higher than second order basis functions and identify stability
problems that occur using a nodal Lagrange basis. Therefore, we develop a new quasi-
nodal approach based on Bernstein polynomials to stabilize the computations. The
subsequent numerical study demonstrates an improvement of conservation properties
and local convergence rates with the new method.

5.2. Introduction

The overall accuracy of our DG model is determined by the degree n of the employed
polynomials. If we neglect the effects of the approximations, that are made and have
been the subject of the previous chapter 4, we can decrease the numerical error either by
grid refinement or by increasing the approximation order n as is depicted in sketch 5.1.
In general, a refinement of the mesh can be advantageous for representing discontinuities
in the numerical solution while higher order basis functions are favorable for representing
local extrema inside the elements and, primarily, yield a higher convergence rate.

To date, the known operational models for storm surges work with at most second
order accuracy in the partially dry regions if not throughout (see for example Westerink
et al. (2008)) although an at least local improvement of convergence could theoretically
be achieved with higher than second order basis functions.

The use of lower than second order basis functions has several advantages. It simplifies
the implementation, because first and second order nodal models solely require the
values at the vertices or the mean values. This prevents difficulties of numbering the
degrees of freedom and also permits the use of easy-to-compute criteria for deciding
if a cell is wet or dry, which is an essential aspect of some of the present inundation
models (e.g. Bunya et al. (2009)) as we have seen in chapter 4. To the authors’
knowledge a formulation of such criteria for polynomials of degree higher than n = 1 is
not known. Another reason for the little attention that has been paid to higher than
second order basis functions for inundation problems is the lack of global smoothness
of their solutions, e.g. at the interfaces between wet and dry states, the solution might
not be differentiable. Because of that, the global convergence rate of the model will
be limited by these critical, non-smooth, points. We remark, however, that for the
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Figure 5.1.: Schematic h- and p-refined solution of total fluid height with Bernstein
polynomials in a wet/dry cell. Projection onto one-dimensional domain.

problems of interest the non-smooth points are strongly localized and that the solution
is mainly smooth. Furthermore, depending on the slope limiting technique, the nodal
Lagrange basis, which is used because it simplifies the computations and has good
approximation properties, is not straightforwardly usable, because it develops stability
problems for wetting and drying simulations, that we will elaborate later.

By the above-mentioned reasons, an investigation of the viability of third-order basis
functions for simulating flooding and drying with a nodal DG model in combination with
the vertex-based limiter (VB) has not been performed yet. Albeit, higher-order basis
functions locally better approximate smooth extrema and theoretically give a better
order of convergence in smooth regions. They allow for a larger spatial resolution,
which, lessens the effect of heuristic refinement indicators for the adaptive mesh on
the numerical solution. Finally, the impact of Riemann solvers, and errors that are
accompanied by it, decrease as relatively fewer degrees of freedom are involved in the
edge quadrature.

In the following section we investigate the viability of higher-order basis functions in
a nodal DG model for the simulation of flooding and drying. We will demonstrate how
stability issues occur, when using third-order nodal Lagrange basis functions in section
5.3 and suggest a modification to stabilize the model. In section 5.4 we introduce a
novel approach using monotone Bernstein polynomials as basis functions which do not
suffer from stability problems. Finally, we show an improvement of local convergence
rates and conservation properties for simplified inundation problems with analytical
solutions in section 5.5.

5.3. Non-negativity Violation of the Lagrange Approach

The main reason for stability problems with higher than second order Lagrange basis
functions is their lack of monotonicity together with the (VB) limiter, that has so far
only been applied to polynomials of degree p = 2 for convection equations (see Kuzmin
(2013b)). In close to dry regions, negative values of the numerical approximation φe,h
on an element Ωe can not always be prevented, because the slope limiter takes into
account the values on interpolation points and mean values and modifies nodal values
only. This can lead to negative values off the set of interpolation points. We observe,
that the transformation from interpolation points xi for 1 ≤ i ≤ m to the Gauss Lobatto
quadrature points ξi for 1 ≤ i ≤ m′, where in general m′ 6= m, can lead to negative
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function values on the quadrature points in near dry areas and even negative values of
integrals such as the integral of the fluid height.

To illustrate the problem, we consider an arbitrary triangle Ωe ⊂ Ω with quadratic
Lagrange basis functions, i.e. p = 2. The number of degrees of freedom is m = 6.
For simplicity, we choose an equal number of quadrature points inside Ωe, i.e. m′ = 6.
We assume that on only one degree of freedom the fluid height is positive and zero
otherwise, which is equivalent to the existence of an index k with

φe,h(xk) > 0 and φe,h(xl) = 0 for l = 1, . . . ,m with l 6= k.

The transformation from interpolation onto quadrature points can be performed by
matrix vector multiplication. Therefore, we define Ψij = ψi(ξj), which is the Lagrange
basis evaluated at the quadrature points and has the structure

Ψ> =


0.5176 −0.0748 −0.0748 0.2992 0.2992 0.0335
−0.0748 0.5176 −0.0748 0.2992 0.0335 0.2992
−0.0748 −0.0748 0.5176 0.0335 0.2992 0.2992
−0.0847 −0.0482 −0.0482 0.1928 0.1928 0.7955
−0.0482 −0.0847 −0.0482 0.1928 0.7955 0.1928
−0.0482 −0.0482 −0.0847 0.7955 0.1928 0.1928


This matrix is constant and valid for all elements and can be precomputed for the
simulation. If we now assume that φe,h(x1) > 0 and the values on the remaining
interpolation points are zero, i.e. φe,h(xk) = 0 for k = 2, ..,m, we obtain a negative
value on quadrature points by using the transformation

Ψ · (φe,h(xl))1≤l≤m = (φe,h(ξl))1≤l≤m′

since for example φe,h(ξ2) < 0 follows after multiplication which contradicts our demand
on positivity of the water height throughout the domain.

To ensure non-negativity of the numerical solution on all interpolation and quadrature
points and hence stability of the computations we investigate two different strategies:

• One strategy consists of manually setting φe,h(ξk) = max(φe,h(ξk), 0) for all k =
1, ..,m′. This cut-off however will have an effect on the conservation properties,
whose severity is subject to the following investigation. It will also lead to errors
in the computation of fluxes and therewith have an effect on the wet/dry front as
can be seen in figure 5.5.

• The other strategy is to change the basis functions. We propose the use of Bern-
stein polynomials instead of Lagrange polynomials. Thus, we give up the car-
dinality of the basis in order to gain monotonicity preservation (see e.g. Farin
(1986)). Although the Bernstein polynomials are not cardinal, they allow for a
quasi-nodal approach which will be the subject of the next section.
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...

Figure 5.2.: Bernstein polynomials. Schematic of multi-indices that correspond to La-
grange points.

5.4. A Quasi-Nodal Bernstein Approach

Bernstein polynomials are commonly used functions in computer-aided design, because
they preserve a lot of shape properties. In the context of DG methods they have so
far only been explored to define additional diffusion terms in a Lagrangian DG model
(see Loubére et al. (2004)) and for mappings between linear and curved elements in
Hindenlang et al. (2010). They are constructed using Beziér patches as described in
Farin (1986). With these monotone functions as test and basis functions we reduce
numerical oscillations within the elements.

First of all, we introduce barycentric coordinates σ = σ(x) ∈ R3 of a point x ∈ Ω.
They can be easily obtained through the solution of a linear system when the vertices
of the triangle Ω are known. The coordinates are bounded by 0 ≤ σk ≤ 1 for k = 1, 2, 3
and |σ| =

∑
k σk = 1 . The Bernstein polynomial Bn

λ of degree n evaluated at a point
x is defined as

Bn
λ(σ(x)) =

n!

λ1!λ2!λ3!
σλ1

1 σ
λ2
2 σ

λ3
3

using a multi-index λ ∈ N3 that is determined through a linear mapping L that maps
the Lagrange interpolation points onto multi-indices, L : xi 7→ λ. Therefore, the
polynomials with maxk λk = n correspond to the nodes of the triangle while the rest
are obtained using linear interpolation as is outlined in figure 5.2.

With that definition we have a local Bernstein approximation of the balanced vari-
ables U = (φ, φu)> ∈ (L∞(Ω))3 on every element Ωe of the form:

U(x, t) ≈ Uh(x, t) =
∑
|λ|=n

UλB
n
λ(σ(x)) =

m∑
i=1

U(xi, t)B
n
L(xi)

(σ(x)).
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where the Bernstein coefficients Uλ are the function evaluations at the Lagrange in-
terpolation points. This also motivates to characterize this ansatz as quasi-nodal: the
functions themselves are not nodal, but the coefficients are nodal point evaluations of
the to be approximated function.

Another important aspect in our DG model is the computation of derivatives. For
Bernstein polynomials the derivatives of order r ∈ N in barycentric direction α are
given by

Dr
αB

n
λ(σ(x)) =

n!

(n− r)!
∑
µ=|r|

Br
µ(α)Bn−r

λ−µ(σ(x))

with µ ∈ N3 another multi-index. For our computations, we will only consider the
derivatives in the unit directions e1, e2 in two-dimensional space, α ∈ {σ(e1),σ(e2)},
since other directions such as the diagonal of the triangle will be done respecting the
metric terms which are independent of the employed polynomials.

For n = 1 the Bernstein polynomials on the triangle coincide with the Lagrange
polynomials, but for higher order they are different. For any order n, the corresponding
interpolation matrix Ψ =

(
BL(xi)(ξj)

)
1≤i,j≤m′, where the points ξk, k = 1, . . .m′ are

the Gauss interpolation points, has only positive entries due to the monotonicity of
the polynomials. One can also show that the corresponding Beziér curve, defined as
the linear net that interpolates the Lagrange points of the triangle (xi,U(xi)) (see
figure 5.4), is a boundary for the function. An example for second degree Bernstein
polynomials can be seen in figure 5.3. One can also show, that they form a partition
of unity on the triangle,

∑
k B

n
L(xk)(x) = 1 for x ∈ Ω, and, that the ith Bernstein

polynomial is monotone with a maximum at the Lagrange interpolation point xi, 1 ≤
i ≤ m.

For their general evaluation the de Casteljau algorithm leads to good results and
is based on a recursive evaluation based on Beziér curves. We remark, though, that
our model only handles precomputed information about basis functions, so that an
implementation of the de Casteljau algorithm was not necessary. The Bernstein ansatz
implies additional computational costs, because we in fact solve for the nodal values, but
for visualization purposes we need to compute the values of the Bernstein polynomial
expansion at the interpolation points. This adds costs of order m2 to every element Ωe.
Apart from that point, there are no extra costs to be considered in comparison with
the nodal Lagrange ansatz.

We stress, that slope limiters still need to be applied to model flooding and drying
correctly. The reason is, that even with monotone basis functions, the non-negativity
of the fluid height can be affected during the evolution, so that the contribution of the
numerical flux has to be limited using the previously discussed slope limiters.

5.5. Numerical Comparison

To test the two modifications to overcome stability problems in higher-order modeling
of flooding and drying problems as described in section 5.2, we will employ the wet/dry
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Figure 5.3.: Bernstein polynomials of degree 2. The color scale indicates the values of
the polynomial on the reference element with vertices (−1,−1), (−1, 1) and
(1,−1).

Figure 5.4.: Bernstein-Beziér patch of a triangle with points of order 2
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Figure 5.5.: Wet/dry shocktube. Simulation with modified quadratic Lagrange
(dashed) and Bernstein (dashed dotted) functions with a linear nodal lim-
iter. Depicted are the numerical and analytical solution (solid line) at times
t = 0.75s (left) and t = 1.5s (right).

Figure 5.6.: Paraboloid 2D basin. Simulation with modified quadratic Lagrange
(dashed dotted) and Bernstein (dashed) functions with a linear nodal lim-
iter. Depicted are the numerical and analytical solution (solid line) at times
t = 190s (left) and t = 380s (right).
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Figure 5.7.: Wet/dry shocktube. Plots of mass for times 0 − 1s for simulations with
quadratic functions and nodal limiter with linear corrections. Depicted are
the Lagrange ansatz (left) and the Bernstein ansatz (right).

Figure 5.8.: Paraboloid basin. Plots of normalized mass for times 0− 25 000s for simu-
lations with quadratic functions and nodal limiter with linear corrections.
Depicted are the Lagrange ansatz (left) and the Bernstein ansatz (right).

test problems defined in section 4.3.3. Again, the test results are evaluated with respect
to conservation properties and convergence behavior. For the remaining section, we
will restrict ourselves to the (VB) limiter, because in our numerical tests in chapter
4 it performed best in terms of robustness and accuracy and exclusively work with
polynomials of degree n = 2.

Conservation Properties

Conservation properties are of special interest for the treatment of wet/dry simulations.
Maintaining a constant mass, provided sensible boundary conditions, is a desirable
property.

Figure (5.7) shows the mass, defined as
∫

Ω
|φh(x, t)|dx, measured in the L1 norm

for the first second of simulation time for the wet/dry shocktube. The coloring and
strength of the lines refer to the level of refinement in the following way: The lighter
and thicker the line, the coarser the simulations. We started with a shortest edge of
∆xmin = 0.5 and then reduced it by bisection to the finest mesh with the shortest edge
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Figure 5.9.: Wet/dry shocktube. L2 Global convergence plot. Simulations with nodal
limiter with linear restriction. Depicted are the Bernstein (yellow) and
Lagrange (blue) results after 1s. The lines have slopes 1,2 and 3 for
comparison.

being ∆xmin = 0.0442. The left display shows the results for the quadratic Lagrange
polynomials and the right for the Bernstein polynomials. It shows that for this testcase
the results of the Bernstein approach shows a better behavior for the wet/dry shocktube.
This can be explained by that we do not have to reduce negative values to zero at some
of the quadrature points which clearly can lead to a mass loss. The irregularities within
the first 0.2s can, analogous to the linear case, be explained by the discontinuous initial
condition.

Analogously, figure 5.8 shows the normalized mass for the first 25 000s of the sim-
ulation of the paraboloid basin test. The normalization has been carried out with
the initial mass at time t = 0s and the resolution was decreased by bisection from
∆xmin = 143955.8075 to ∆xmin = 8997.2380. The results for this test do all show a
convergent behavior for both approaches. However, even on the finest mesh, that we
employed, the Lagrange approach still led to a mass lost of nearly 3% while the Bern-
stein approach only led to a loss of less than 0.1%. This can be partly attributed to
the very long simulation time, to the only linear correction of the slope limiter, which
affected the accuracy in the limited domains, as well as the relatively coarse mesh.
In sum, with respect to mass conservation, we can confirm, that the use of Bernstein
polynomials is advantageous as expected. The reason for the observed loss of mass of
all test cases can probably be attributed to the filters in our model, that cut off very
small water heights and set the corresponding momentum to zero in order to avoid the
division by very small numbers as discussed in section 4.4.

Accuracy

To study the convergence properties of our model in the L2, L∞ and L1-norms, we
decreased the spatial resolution by repeated bisection of triangles from ∆xmin = 0.2231
to ∆xmin = 0.0302 for the wet/dry shocktube and from ∆xmin = 287911.62 to ∆xmin =
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Figure 5.10.: Wet/dry shocktube. Linf Global convergence plot. Simulations with nodal
limiter with linear restriction. Depicted are the Bernstein (yellow) and
Lagrange (blue) results after 1s. The lines have slopes 1,2 and 3 for
comparison.

Figure 5.11.: Wet/dry shocktube. L1 Global convergence plot. Simulations with nodal
limiter with linear restriction. Depicted are the Bernstein (yellow) and
Lagrange (blue) results after 1s. The lines have slopes 1,2 and 3 for
comparison.

Bernstein Lagrange
Testcase L2 L1 L2 L1

Wet/Dry Shocktube 0.5 0.88 0.5 0.75
Paraboloid 2D Basin 1.29 1.59 0.57 0.57

Table 5.1.: Global convergence orders for quadratic basis functions
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Figure 5.12.: Wet/dry shocktube. L2 Convergence plot. Simulations with nodal limiter
with linear restriction. Depicted are the Bernstein (yellow) and Lagrange
(blue) results after 1s for the partial regions Ω1 (top), Ω2 (middle) and Ω3

(bottom). The lines have slopes 1,2 and 3 for comparison.
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Figure 5.13.: Wet/dry shocktube. L∞ Convergence plot. Simulations with nodal limiter
with linear restriction. Depicted are the Bernstein (yellow) and Lagrange
(blue) results after 1s for the partial regions Ω1 (top), Ω2 (middle) and Ω3

(bottom). The lines have slopes 1,2 and 3 for comparison.
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Figure 5.14.: Wet/dry shocktube. L1 Convergence plot. Simulations with nodal limiter
with linear restriction. Depicted are the Bernstein (yellow) and Lagrange
(blue) results after 1s for the partial regions Ω1 (top), Ω2 (middle) and Ω3

(bottom). The lines have slopes 1,2 and 3 for comparison.
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Figure 5.15.: Paraboloid basin. L2 Global convergence plot. Simulations with nodal
limiter with linear restriction. Depicted are the Bernstein (yellow) and
Lagrange (blue) results after 30 000s. The lines have slopes 1, 2 and 3 for
comparison.

Figure 5.16.: Paraboloid basin. L∞ Global convergence plot. Simulations with nodal
limiter with linear restriction. Depicted are the Bernstein (yellow) and
Lagrange (blue) results after 30 000s. The lines have slopes 1, 2 and 3 for
comparison.
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Figure 5.17.: Paraboloid basin. L1 Global convergence plot. Simulations with nodal
limiter with linear restriction. Depicted are the Bernstein (yellow) and
Lagrange (blue) results after 30 000s. The lines have slopes 1, 2 and 3 for
comparison.

Bernstein Lagrange
Testcase L2 L1 L2 L1

Wet/Dry Shocktube (Ωε
1) 11.02 11.06 3.81 4.22

Wet/Dry Shocktube (Ωε
2) 0.97 0.97 0.73 0.77

Wet/Dry Shocktube (Ωε
3) 0.71 0.71 4.51 4.23

Paraboloid 2D Basin (Ωε
1) 1.77 1.76 0.55 0.46

Paraboloid 2D Basin(Ωε
2) 0.99 1.39 0.65 1.10

Table 5.2.: Local convergence orders for quadratic basis functions
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Figure 5.18.: Paraboloid Basin. Convergence plot in L2 (top), L∞ (middle), and L1

(bottom) norms. Simulations with nodal limiter with linear restriction.
Depicted are the Bernstein (yellow) and Lagrange (blue) results after
30.000s for the partial regions Ωε

1. The lines have slopes 1, 2 and 3 for
comparison.
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Figure 5.19.: Paraboloid Basin. Convergence plot in L2 (top), L∞ (middle), and L1

(bottom) norms. Simulations with nodal limiter with linear restriction.
Depicted are the Bernstein (yellow) and Lagrange (blue) results after
30.000s for the partial regions Ωε

2. The lines have slopes 1, 2 and 3 for
comparison.
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8997.2380 for the paraboloid 2D basin and measured the maximal error over simulation
time. The convergence plots are employing a double-logarithmic scale for reasons of
better comparisons. The different colors refer to the two different approaches–yellow
refers to the Bernstein polynomials and blue to the Lagrange polynomials– and the
straight gray lines are drawn for comparison.

Plots of global numerical errors corresponding to different spatial resolutions can be
found in figures 5.9, 5.10 and 5.11 for the wet/dry shocktube in the L2, L∞ and L1-
norms respectively. The exact values of the respective convergence rates are computed
using a linear least squares approach and are stated in table 5.1. We can see that we can
achieve a global order of accuracy of almost 1 in the L1 norm and 0.5 in the L2 norm
for the wet/dry shocktube. In the L∞-norm, we do not observe convergence, which is
due to distinct irregular points that do not converge.

For the paraboloid 2D basin the corresponding figures for global convergence rates
are 5.15, 5.16 and 5.17. In all norms, the global convergence rate for the Bernstein
approach is between 1 and 2, while the Lagrange approach does not even yield an order
of 1 as can be seen from table 5.1.

The convergence plots for the partial domains for the wet/dry shocktube are figures
5.12 for the L2 norm, figure 5.14 for the L1 norm and figure 5.13 for the L∞ norm.
Depicted are the convergence rates for the domains Ωε

k, that were defined in section
4.3.3 for k = 1, 2, 3 from top to bottom. The local convergence rates are depicted in
table 5.2. In the left partial domain, the Bernstein polynomials perform better than the
Lagrange polynomials, which achieve a convergence between 3 and 4. The unexpected
fast convergence of the Bernstein polynomials can be partly explained by the size of
the domain Ωε

1, which is shrinking over time and the constant value of the numerical
solution in this part of the domain, which can be better approximated with monotone
functions. We observe that in the middle domain a convergence order of higher than 1
can not be achieved. For this partial domain the Bernstein polynomials show a slightly
better performance than the Lagrange ansatz, especially in the L2-norm. Finally in
the right part of the domain Ωε

3, we observe that errors are only present for the coarser
simulations and are smaller for Bernstein polynomials. The mostly straight lines are to
be explained from a tolerance that is defined in our plotting routine and sets all values
that are zero to 10−7 to avoid definition problems of the logarithm. The relatively large
error of the Lagrange approach for the coarsest simulations, however, leads to a higher
convergence rate.

For the paraboloid basin test, we only studied the inner smooth region Ωε
1 as the other

region is completely dry. The results for all three norms are depicted in figure 5.18.
The improvement of convergence rate is about 0.5 compared to the global convergence
and we can see that nearly order 2 is achieved locally in the wet domain without the
irregular wet/dry boundary.

Apparently, both approaches yield acceptable results. The error for the Bernstein
approach is smaller in general and for the wet/dry shocktube in the third part Ωε

3 of
the split domain, we even achieve almost one order of convergence more than we can
achieve globally.
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5.6. Concluding Remarks

In this chapter, we have studied the viability of third-order basis functions for the
simulation of flooding and drying. In section 5.2 we have demonstrated how the lack
of monotonicity of nodal Lagrange polynomials lead to stability problems near wet/dry
interfaces for flooding and drying problems. To overcome them, we introduced two
approaches: a modification of function values on quadrature points with a lower bound
of 0 for Lagrange polynomials and Bernstein polynomials as new basis functions. The
latter have the advantage that they are monotone, so that the above-mentioned stability
problem does not occur. Again, we performed a numerical study following the one in
subsection 4.3.3 and measured mass conservation and convergence rates for both tests
and approaches.

We ran uniform simulations for the wet/dry shocktube and the paraboloid 2D basin
with different spatial resolutions and observed that with increasing resolution, both
approaches converge towards mass conservation. The speed of convergence is, however,
different. With the modified Lagrange approach we always observe a slight loss of mass
over time as expected. For the two-dimensional paraboloid basin test this was shown as
a mass lost of still 3% even for the finest spatial resolution of ∆xmin = 8997.2380. This
is in contrast to the Bernstein polynomials, which led only to a mass lost of 0.1% for
the same test after 25 000s. The same is true for the wet/dry shocktube. With a spatial
resolution of ∆xmin = 0.0442, we were able to achieve mass conservation with Bern-
stein polynomials while with the Lagrange ansatz we lost approximately 0.04% of mass
after the simulation time of 1s. So, in conclusion we confirmed superior conservation
properties of the Bernstein polynomials.

The theoretical global convergence order of 3 could here, too, not be achieved as
in the case of the linear polynomials in chapter 4. With Bernstein polynomials, we
achieved a global convergence order (in the L2- and L1-norm) of approximately 1.5 for
the paraboloid 2D basin and of approximately 0.6 for the wet/dry shocktube. Repeat-
edly, the investigation of convergence for the partially smooth domains showed that
for most partial regions a convergence improvement of up to 2 and even 3 for the dry
domain modeled with Bernstein polynomials could be achieved. We remark, that the
Bernstein approach that we presented also has the advantage that it is relatively easy
to upgrade a nodal model with these quasi-nodal ansatz functions, especially since for
DG the basis function-related terms are all precomputed, so that the change of basis
can be performed by re-computing the precomputed matrices and vectors.

To study the viability of higher than second order basis functions, we compare the
results of the Bernstein approach and the linear Lagrange approach, both obtained
in combination with the vertex-based limiter (VB) with linear corrections. Both ap-
proaches yielded mass conservation for the wet/dry shocktube that was run for a sim-
ulation time of 1s. The results for the paraboloid 2D basin, that were obtained after
25 000s differ. The third order Bernstein approach led to a mass loss of less than 0.1%,
and the linear Lagrange approach to a loss between 1−2% compared to the initial mass
at time t = 0 for a spatial resolution of ∆xmin = 8997.2380. If we compare the global
convergence rates, we see, that we achieved almost the same convergence rates for the
wet/dry shocktube with linear and quadratic polynomials and gained approximately
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0.5 of convergence order for the paraboloid 2D basin through the use of quadratic func-
tions. However, as we have seen, a global convergence test might not give the most
meaningful results since the solution is not differentiable on some distinct points of the
domain.

Studying the local convergence rates from tables 4.3 and 5.2, we see, that in general
the convergence rates for the quadratic Bernstein polynomials are higher. The only
exception is the solution to the wet/dry shocktube in the domain Ωε

3. An analysis of
the corresponding error plots reveals, however, that the unusual high convergence rate of
4.05 and 3.98 in combination with the (VB) limiter in the L2 and L1-norm respectively
might be due to the outlier at a resolution of log(∆xmin) = 1.75. We observe the largest
improvement in the paraboloid 2D basin test: The rate in the wet area Ωε

1 more than
doubled.



6. Idealized Adaptive Discontinuous
Galerkin Simulations of Surges

6.1. Abstract

The accurate modeling of the forcing terms is essential for storm surge simulations.
We show their discretization in our dynamically adaptive Discontinuous Galerkin (DG)
model and develop refinement indicators that are suitable for storm surge scenarios.
Numerical tests demonstrate the capability of our model to simulate idealized storm
surges, and the improvement of computational efficiency by the dynamically adaptive
mesh.

6.2. Introduction

As was mentioned in the introductory chapter 1, the national hydrographic agencies
employ operational deterministic storm surge models, that are well established and
efficient enough to be used for ensemble forecasts. Besides the current operational
models, further state-of-the-art numerical shallow water models are, for example, the
finite element model on a stationary unstructured triangular grid (ADCIRC) that has
been developed in Westerink et al. (2008) and has up to now been used for various
applications as well as the finite volume model geoclaw on a nested structured grid
which has already been used for the simulation of storm surge events in Mandli (2011).
A comparison of the two models has been performed in Mandli and Dawson (2014) with
simulations of hurricane Ike.

In contrary to the last two models, ADCIRC and geoclaw, our model StormFlash2d
employs a DG approach and a dynamically adaptive triangular mesh.

This chapter is mainly concerned with the simulation of simplified storm surges with
our model StormFlash2d that was introduced in the previous chapters. Our main goal
is to show the capability of the model to handle the respective source forces and show
how the adaptive mesh reduces computational costs and does not significantly affect
the quantities of interest.

Model-based adjustments are the focus of section 6.3: We show the discretization of
the major source terms in subsection 6.3.1 and discuss a suitable refinement criterion
for the dynamically adaptive mesh in subsection 6.3.2. The chapter closes with a set of
partially dry test cases, uniform and adaptive, with storm forcings in section 6.4.
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6.3. Storm-specific Model Parts

Idealized simulations of storm surge events require the handling of large sets of data as
well as an accurate representation of involved source forcings. In this section, we show
the discretization of the main source forces of storm surges and develop a composite
refinement indicator based on the observations from Mandli and Dawson (2014) for the
adaptive mesh described in 3.3.2.

6.3.1. Source Term Modeling

In the following, we elaborate on the discretizations of the source terms of equation
(3.2): Coriolis forcing, bottom friction and wind stress.

Coriolis Forcing

Coriolis forcing is a source forcing due to the rotation of the earth and has already been
described in (3.10) as

fc = 2Ωrot sin(ψL)

(
φv
−φu

)
.

The strength of its influence can be determined using the Rossby number as defined
in (2.3). From Holthuijsen (2007), we know that the characteristic length and velocity
scales of storm surges are L ∈ [5, 300] and U ∈ [1, 5]. For example, at the latitude
of Lübeck, Germany, ψL = 53◦, the Coriolis scale f = 2Ωrot sin(ψL) is 786.8 with an
assumed earth rotation of Ωrot = 463.89 [ms−1]. Using this value and the characteristic
scales L and U from above, we obtain a Rossby number between 0.0027 and 0.8110
which indicates that the Coriolis effect is important to consider. If, however, we make
the assumption that the regime and the waves are linear almost everywhere, we obtain
a wave frequency for the shallow water waves of c =

√
φ as an approximation for the

characteristic velocity per length unit: c ≈ U
L

. This leads to an estimate of the Rossby
number of Ro = c/f , which can also be found in Mandli (2011). The use of this
estimate, however, reveals for h ≈ 3000, a Rossby number of Ro = 139.1336, which
suggests a negligible influence of the Coriolis forcing. So, in almost linear regimes the
influence of Coriolis forcing is strongly dependent on the depths of the water in a way
that in deep water, the influence is negligible.

Bottom Friction

The model for the bottom friction is subject to a quadratic Manning law of the form:

τ b = g n2
M φu

√
‖u‖2

φ4/3
.

It is known that the bottom friction coefficient nM changes with water depth h and
depends on the constitution of the material at the bottom and its structures. Therefore,
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x[m]

h[m]
τ s τ s τ s τ s

Figure 6.1.: Schematic of wind forcing implementation. Movement of water columns in
a one-layer shallow water model.

the bottom friction is usually higher in areas of shallow water and rough bottom to-
pography. The bottom friction model that we use can vary over the domain depending
on the water height. Usually the assumptions for Manning’s nM will be nM ≈ 0.02 for
beaches or sandy ground and nM ≈ 0.25 for dry structures as can be found, for exam-
ple, in Chow (1959). The ansatz, that we chose in our model assumes a homogeneous
underground and interpolates linearly between a user-defined nmax and nmin depending
on a user-defined maximum fluid height hmax using the dynamic formula:

nM(x, t) =
h(x, t) · (nmin − nmax)

hmax
+ nmax.

Another possibility would be to specify polygonal regions of specific bottom friction
coefficients. For the idealized applications, that we show, however, the simple linear
interpolated bottom friction was sufficient.

An Idealized Storm Model

In our DG model, wind stresses are modeled using the formula:

τ s =
γττ

φρ
,

as was already shown in (3.10). The determination of the vector field τ depends on
the model scenario. As we have a one-layer model, the wind forcing will affect the
movement of the whole water columns as is outlined in figure 6.1. This simplification
is of limited correctness especially in deep water. More realistic would be to have a
two-layer model as was developed for example in Mandli (2011) for a finite volume
model, where the wind stress is only affecting the relatively small top layer of the fluid.

In general any two-dimensional vector field τ can be used to describe a wind. As
for storms, or hurricanes, we usually have information about the mean radius to maxi-
mum winds, central pressure, intensity and track of a storm, which are obtained from
measurements and satellite observations, we use these data to obtain a two-dimensional
vector field using a common approximation for the winds.

Holland’s storm model can be utilized for modeling hurricane profiles as is shown in
Holland (1980), where analytical models are especially needed because observations are
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too sparse. Using cyclostrophic balances, one obtains winds w via

C =
AB(pn − pc)

ρair
, 〈w,n〉 =

√
C ·

exp
(−A
rB

)
rB

+
r2 f 2

4
− r f

2
(6.1)

where pn is the ambient pressure, pc the central pressure, A and B are model-specific
shape parameters, r is the radius of the storm and f the Coriolis forcing. The vector
n is the outward pointing normal vector with respect to the isobars of the storm. The
air pressure ρair = 1.15 is assumed to be constant. If the Rossby number Ro indicates
that the Coriolis forcing is negligible, we will also neglect it in (6.1), which simplifies
the computations. Following Weisberg and Zheng (2006, formula (9)) the wind field τ s
is then given by

τ s = Cd ρairw|w|

A suitable computation of wind drag Cd is chosen as

1000.0 · Cd =


1.2 |τ s| ≤ 11

0.49 + 0.065 · |τ s| 11 ≤ |τ s| ≤ 25

0.49 + 0.065 · 25 otherwise.

Details can be found in Weisberg and Zheng (2006). An example of the wind model
result for hurricane Ike can be found in figure 6.2.

From the wind model we obtain a wind field at a certain time point. The track of the
cyclone is recorded at discrete time points tk with ∆teye,k = tk − tk−1 for k = 1, . . . n.
We denote the position of the cyclone at time t with poseye(t) and the position of the
storm for intermediate time points tk−1 ≤ tl ≤ tk will be linearly interpolated as follows:

poseye(tl) =
tl − tk−1

∆teye,k

(
poseye(tk)− poseye(tk−1)

)
+ poseye(tk−1).

The discrete samples also make it possible to compute the velocity vstorm of the storm
itself using the great circle distance. Let therefore ψL,k, θL,k be the latitude and longi-
tude of the kth sample and ∆ψL,k = ψL,k − ψL,k−1, ∆θL,k = θL,k − θL,k−1 their absolute
differences. Then, the great circle distance is defined as

ds = rearth · 2 arcsin

(√
sin2(0.5∆ψL,k) + cos(θL,k−1) cos(θL,k) sin2(0.5∆θL,k)

)
,

with rearth = 6371.0 [km] the radius of the earth. The velocity at time t with tk−1 ≤
t ≤ tk is then computed as

vstorm(t) =
ds

∆teye,k
sign

(
poseye(tk)− poseye(tk−1)

)
,

with sign the component-wise signum function which returns the sign of its arguments.
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Figure 6.2.: Wind and pressure profile. Numerical approximation for hurricane Ike with
parameters A = 37.5, B = 0.725, pn = 1013 [mbar], pc = 954 [mbar].

The model-specific parameters A and B can be computed using the maximum wind
speed wmax and the maximum wind radius rmax:

B = e ρair
w2
max

pn − pc
, A = rBmax.

6.3.2. Dynamic Mesh Adaptation for Storm Surges

With their large spatial extents and the local fine-scale responses to the storm forcing,
storm surge simulations demand for dynamically varying resolution in order to save
computing time and represent the main effects. The meshes, that we use are h-adaptive.
H-adaptivity comprises the insertion or deletion of (new) nodes and a corresponding
increase or decrease of the number of elements of the initial mesh This can be done for
individual nodes or in local areas, which is called nesting and means the local insertion
of finer meshes. An example for a mesh nesting can be found in geoclaw (see e.g.
Mandli (2011)). In this thesis, we will exclusively concentrate on h-adaptive meshes
that are not necessarily nested and which we create and manipulate with the help of
the library amatos.

Using this library, we create a dynamically adaptive and conforming triangular mesh.
As we have seen earlier in section 3.3.2 and will see in this chapter, the triangular mesh
shows potential to represent difficult coastlines up to polygonal precision and therewith
reduce artificial oscillations. An essential point for h-adaptive meshes is the choice of
the refinement strategy. According to Behrens (2006) it will not be possible to find a
strategy that will work well for all kinds of applications. They will all have advantages
and disadvantages. We employ a refinement by bisection with a resolved patch strategy
as introduced in Bänsch (1991). This resolved patch strategy ensures that the mesh is
kept conforming throughout the computation. Conformity, in this respect, means that
the intersection of two distinct triangles is either empty, a common node, or a common
edge and that the triangles cover the whole domain and their open interior is disjoint.
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Conforming meshes have the computational advantage that fluxes between elements are
easier to compute as hanging nodes are avoided. One particular advantage of meshes
that are generated with amatos is the inherent space-filling curve ordering of elements
as shown in Behrens and Bader (2009) that leads to a reduction of cache-misses and,
with that, an increase of the computational efficiency.

The quality of adaptive simulations is strongly dependent on the adaptive mesh
itself. This, in turn, is influenced by the interpolation routine, the tolerances θref , θcrs
for refinement and coarsening, the grid levels λref , λcrs, and the refinement indicators
ηΩe , that are needed to modify a user-defined initial triangulation. The grid represent
the maximum and minimum refinement of the initial mesh.

An interpolation routine is needed to determine nodal values of the modified degrees
of freedom after mesh adaptation. Within the mesh adaptation framework amatos, we
therefore developed and tested interpolation routines for a refined and coarsened mesh.
In case of refinement, the routine employs the local DG basis functions and evaluates
them at the new degrees of freedom, which is mass conserving. For the coarsened mesh,
we also employ the local basis functions. In order to conserve mass, we take the mean
of the shared node.

The refinement indicator is to be distinguished from the refinement strategy. The
strategy is bisection of the longest edge while the refinement indicator determines the
elements that are to be limited. The choice of a refinement indicator will be described
in the following subsection.

Criteria for Manipulation

As in 3.3.2, we determine suitable refinement indicators for storm surge simulations with
the grid generator amatos. For practical geophysical applications, the implementations
in Behrens (2006) suggest different kinds of indicators: error proxies (e.g. the gradient of
the geopotential height), physics-based criteria (e.g. the vorticity for cyclone tracking),
or mathematical error estimators (residuals of operators).

In our DG model, we have implemented error proxies in combination with physics-
based influences. The development of mathematical rigorous error estimators is an
interesting question. However, the expected high computational cost let us not pursue
this aspect any further.

The definition of refinement indicators for storm surge simulations has to ensure
that all meaningful effects are captured by the adaptive mesh. As recently shown in
Mandli and Dawson (2014) for hurricane Ike, it is essential that the mesh captures the
wind-induced displacement of the water columns as well as the storm and therefore a
composite indicator is recommended that takes care of both effects. The indicators,
that we worked with in section 6.4 are of the form

η1
Ωe(t) = ‖τ s(t)‖2,Ωe ,

η2
Ωe(t) =

{
1 for maxxi∈Ωe |hh(xi, t)− h(xi, 0)| ≥ TOL

0 otherwise,

(6.2)
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with a problem dependent tolerance TOL. They represent the L2-norm of the wind
vector field, that has been described in the previous section and the maximal deviation
of the numerical solution hh from the initial still water state at time t = 0. The
dependence on the time variable t is explicitly shown to indicate that the mesh is
modified in every timestep. The grid manipulation is then carried out as follows:

if η1
Ωe
≤ θcrsη

1
max and η2

Ωe
≤ θcrsη

2
max → coarsen element Ωe

if η1
Ωe
≥ θrefη

1
max or η2

Ωe
≥ θrefη

2
max → refine element Ωe,

(6.3)

with ηkmax = maxΩe⊂Ω η
k
Ωe
, k = 1, 2, the maximum of the element-wise refinement indi-

cators over all elements. An additional indicator is given by the CFL number, which is
preferably close to 1, in order to assure, that the maximal possible timestep has been
computed. A too short timestep can impose additional diffusion and computational
costs. To avoid waves traveling through more than one cell per timestep, we bound the
CFL number above by 1. This leads to an additional grid modification of the form:

if CFLe > 1 → coarsen element Ωe

if CFLe < 0.7 → refine element Ωe.
(6.4)

The quantity CFLe is the CFL number for element Ωe and the lower tolerance of 0.7
has been determined experimentally.

6.4. Simplified Storm Surge Scenarios

We test the implementation of Holland’s model and the capability of our DG model to
simulate simplified idealized storm surges using two partially dry test problems with
storm forcings.

Testcase 9. Storm in a paraboloid basin
We consider a domain: Ω = [−L,L]2 with parameters: D0 = 50, L = 430620, reflecting
boundaries, Coriolis forcing, a Manning friction with nM = 0.01 and initial conditions

D(x) = D0

(
1− x2 + y2

L2

)
h(x, 0) = max(D(x), 0)

u(x, 0) = 0

b(x) = D0
x2 + y2

L2

In the domain center, we introduce a constant storm with parameters: pn = 1005, pc =
950, B = 23, and A = 1.5 that is smoothly ramped up over the first 6 hours.

We ran the simulation with a timestep of ∆t = 0.5, a second order RK22 method and
a uniform spatial resolution of ∆xmin = 2378.86 in combination with the (VB) limiter.
The simulation time amounted to t = 50000s.
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Figure 6.3.: Storm in a paraboloid basin. Uniform simulation. The coloring of the
vectors correspond to the strength of the velocity after 282 500 s

Figure 6.4.: Storm in a paraboloid basin. Plots of total height (top row) and magnitude
of velocity (bottom row). Depicted are snapshots every 17500s.
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A B C D E F

velocity [m/s] 5.0 5.0 5.0 5.0 5.0 25.0
angle [deg] 0 45 -45 90 -90 0
poseye(t = 0) (0, 0) (200,−100) (200, 100) (400,−100) (400, 100) (0, 0)

Table 6.1.: Traveling Storm. Storm characteristics

A B C D E F

γτ 1.0 1.0 1.0 1.0 1.0 100.0
# elmt 3986 3512 3501 2274 2310 2178
CPU time 0.4075 0.3923 0.3979 0.2790 0.2747 0.2530

Table 6.2.: Traveling Storm. Numerical results: wind friction parameter, number of
elements of adaptive simulation and corresponding normalized CPU time.

Our observations are depicted in figures 6.3 and 6.4. We see that the velocities develop
into circular motion in the domain center as expected. After 17500s the fluid height
responds to the forcing and a small depression zone is forming in the eye of the storm.
Furthermore, we observe small velocities at the wet/dry boundary of the domain. This
is probably a results of the badly conditioned division of momentum by geopotential
height to obtain the velocities at these points, but it did not affect the robustness of
our results, nor did it accumulate over time.

Testcase 10. Traveling Storms
The model domain is Ω = [−200000, 500000]×[−300000, 300000] with a linear bathymetry
of the form

b(x) ≡ b(x) =

{
0 for x ≤ 350000

0.025 · (x− 350000) otherwise.

and initial conditions

h(x, 0) = max(0, 3000− b(x))

u(x, 0) = 0

Six different storms with constant storm parameters pn = 1005, pc = 950, B = 23, and
A = 1.5, are initialized at a start position poseye(t = 0) · 1000 and travel with different
angles and velocities as depicted in table 10. Wave measurements are taken from four
gauges at G1 = (425000, 200000)>,G2 = (425000, 100000)>,G3 = (425000,−100000)>

and G4 = (425000,−200000)> for comparison.

We ran the simulations with the vertex-based limiter, a second order Runge Kutta
scheme (RK22) with a timestep of ∆t = 5.0 in combination with a Rusanov Riemann
solver and the refinement indicator described in section 6.3.2 for 40h of simulation
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Figure 6.5.: Traveling Storm A: Uniform and adaptive simulation. Depicted are the
storm location (top row), magnitude of velocity (second row), water dis-
placement (third row), the adaptive mesh (fourth row), as well as the mag-
nitude of velocity (fifth row) and the water displacement (bottom row) on
the adaptive mesh, every 10 h.
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Figure 6.6.: Traveling Storm B: Uniform and adaptive simulation. Depicted are the
storm location (top row), magnitude of velocity (second row), water dis-
placement (third row), the adaptive mesh (fourth row), as well as the mag-
nitude of velocity (fifth row) and the water displacement (bottom row) on
the adaptive mesh, every 10 h.
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Figure 6.7.: Traveling Storm C: Uniform and adaptive simulation. Depicted are the
storm location (top row), magnitude of velocity (second row), water dis-
placement (third row), the adaptive mesh (fourth row), as well as the mag-
nitude of velocity (fifth row) and the water displacement (bottom row) on
the adaptive mesh, every 10 h.
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Figure 6.8.: Traveling Storm D: Uniform and adaptive simulation. Depicted are the
storm location (top row), magnitude of velocity (second row), water dis-
placement (third row), the adaptive mesh (fourth row), as well as the mag-
nitude of velocity (fifth row) and the water displacement (bottom row) on
the adaptive mesh, every 10 h.
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Figure 6.9.: Traveling Storm E: Uniform and adaptive simulation. Depicted are the
storm location (top row), magnitude of velocity (second row), water dis-
placement (third row), the adaptive mesh (fourth row), as well as the mag-
nitude of velocity (fifth row) and the water displacement (bottom row) on
the adaptive mesh, every 10 h.
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Figure 6.10.: Traveling Storm F: Uniform and adaptive simulation. Depicted are the
storm location (top row), magnitude of velocity (second row), water dis-
placement (third row), the adaptive mesh (fourth row), as well as the
magnitude of velocity (fifth row) and the water displacement (bottom
row) on the adaptive mesh, every 10 h.
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Figure 6.11.: Traveling Storms. Gauge Data recorded every hour for Storm A (violet),
B (blue), C (green), D (yellow), E (orange) and F (red). Depicted are the
water displacements at G1 (top left), G2 (top right), G3 (bottom left)
and G4 (bottom right).

Figure 6.12.: Traveling Storms. Gauge Data for Storm A. Depicted are the deviation
∂h of the uniform (solid) and adaptive (dashed) simulation at G1 (top
left), G2 (top right), G3 (bottom left) and G4 (bottom right).
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Figure 6.13.: Traveling Storms. Gauge Data for Storm B. Depicted are the deviation
∂h of the uniform (solid) and adaptive (dashed) simulation at G1 (top
left), G2 (top right), G3 (bottom left) and G4 (bottom right).

Figure 6.14.: Traveling Storms. Gauge Data for Storm C. Depicted are the deviation
∂h of the uniform (solid) and adaptive (dashed) simulation at G1 (top
left), G2 (top right), G3 (bottom left) and G4 (bottom right).
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Figure 6.15.: Traveling Storms. Gauge Data for Storm D. Depicted are the deviation
∂h of the uniform (solid) and adaptive (dashed) simulation at G1 (top
left), G2 (top right), G3 (bottom left) and G4 (bottom right).

Figure 6.16.: Traveling Storms. Gauge Data for Storm E. Depicted are the deviation
∂h of the uniform (solid) and adaptive (dashed) simulation at G1 (top
left), G2 (top right), G3 (bottom left) and G4 (bottom right).
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Figure 6.17.: Traveling Storms. Gauge Data for Storm F. Depicted are the deviation
∂h of the uniform (solid) and adaptive (dashed) simulation at G1 (top
left), G2 (top right), G3 (bottom left) and G4 (bottom right).

time. The spatial resolution of the uniform simulations was ∆xmin = 9375.0 and for
the adaptive simulations ∆xmin = 9375.0 and ∆xmax = 21875.0. The maximal number
of elements for the adaptive simulations are stated in table 6.4. The uniform simulation
contained 8192 elements.

We ramped up the wind forcing over a period of 8h in order to create a smooth velocity
field. The ramping, though, was also the cause for the slowly decreasing velocity imprint
at the start position poseye(t = 0), that we observe and which fades with time due to
bottom friction forcing. The test results of our model are illustrated in figures 6.5, 6.6,
6.7, 6.8, 6.9 and 6.10 for the six different storms. Depicted are the position of the storm,
the magnitude of the velocities and the water displacement for the adaptive and uniform
simulations as well as the corresponding adaptive mesh. The water displacement ∂h is
computed as the deviation from the still water state: ∂h(x, t) = h(x, t)−max(0, 3000−
b(x)). For the Storms A-E, the mesh is dynamically refined in a neighborhood of the
track of the storm, with a slightly larger extent perpendicular to the track, because this
is the main direction of the emitted waves. From table 6.4, we see, that the maximum
number of elements of the adaptive simulation did non exceed half the number of
elements of the uniform simulation resulting in normalized CPU times between 0.2530
and 0.4075 depending on the scenario.

To assess the quality of the adaptive solution, we compared the gauge data from the
adaptive with the uniform simulation. The corresponding figures are 6.12, 6.13, 6.14,
6.15, 6.16 and 6.17. We measured the deviation from the still water state every hour
over the first 40h of simulation time. We observe, that the arrival time of the waves
nearly match although the following waves do not always show a good agreement. In
general a better match within the first 20 hours is noticeable. For the storms D and E
traveling in y-direction, we notice, that the largest gap between adaptive and uniform
simulation results occurs after approximately 20 hours at the gauge that is opposite to
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the direction of the storm, which we attribute to the adaptive mesh, that follows the
direction of the storm.

Problems with the adaptive mesh are visible in figure 6.10 for the fast storm F. The
adaptive refinement is restricted to the initial state of the storm. This is due to the
high speed of the storm. The transfer of movement from the wind stress onto the water
column did not take place despite the large wind friction parameter γτ (see table 6.4).
We think, that this malfunction is due to the one-layer character of the model.

As mentioned in Mandli (2011), there were discussions after hurricane Ike in 2008,
about the strong link between surge pattern and the angle with which the storm ap-
proached the coast. Figure 6.11 shows the gauge measurements for all uniform simulated
storms. The different colors indicate the different storms. We observe, that they all
show different wave patterns and that, for example, the waves generated by the fast
storm F arrive at the gauges after around 3 hours, while the waves generated with the
other storms usually take between 4 and 8 hours to first arrive at the gauges.

6.5. Concluding Remarks

We have presented the discretization of the essential source terms of storm surges:
bottom friction, wind stress and Coriolis forcing. Furthermore, we defined a suitable
composite refinement indicator for the dynamically adaptive mesh, that takes into ac-
count the location of the storm as well as the originating waves and the CFL stability
condition. With two subsequent idealized storm tests, we validated the implementation
of the source forcings and confirmed the robustness of our scheme on adaptive grids as
well as the capability to handle quasi-realistic length scales. The observed storm surge
behavior at four distinct measuring points in an idealized test case with different storm
settings was plausible. We confirmed that the wave height depends on the angle with
which the storm approaches land. Finally, we showed adaptive simulations of the same
scenarios and were able to obtain almost the same arrival time of the first wave as well
as similar wave behavior.



7. Discussion and Conclusions

The goal of this thesis was the methodological improvement of Discontinuous Galerkin
(DG) methods for storm surge simulations with a focus on computational complexity
and numerical accuracy. Therefore, we developed and implemented a nodal DG model,
StormFlash2d, to solve the two-dimensional, one-layer and non-linear shallow water
equations into the software framework amatos, which is a Fortran 90 library, that
provides routines for grid creation and manipulation.

We performed idealized numerical experiments for flooding and drying scenarios to
assess the robustness of the model as well as the gain of computational efficiency due to
the usage of a dynamically adaptive mesh. To improve the accuracy of the simulations,
we formulated a theoretical characterization of slope limiters and determined strengths
and weaknesses of handling wetting and drying of the limiters, that we implemented
in our model. Furthermore, we analyzed the viability of third-order basis functions for
wetting and drying and developed different approaches, whose features we investigated
in a numerical study. Finally, we implemented discretizations of source terms, that are
relevant for storm surge modeling, such as the wind forcing. With an idealized set of
storm test cases we determined a sensible refinement indicator for the adaptive mesh
and showed the capability of our model to simulate storm surges.

In the following we sum up and discuss our major findings and their projections and
close this final chapter with proposed research questions for future investigation.

7.1. Improvement of Computational Complexity and
Numerical Accuracy

The main aim of methodological improvement of DG methods for storm surge simu-
lations, which led us to the development and validation of StormFlash2d, was mainly
guided by three independent research questions, that we formulated in section 1.2 and
that we repeat here for reasons of clarity:

• To which extent does varying spatial resolution in a DG model reduce the com-
putational complexity and, in turn, how does it affect the overall accuracy and
robustness of the method, especially for flooding and drying scenarios?

• Does a theoretical formulation of general slope limiters for the reduction of numer-
ical oscillations exist; how does it help to determine their strengths and weaknesses
in handling flooding and drying and can the results be confirmed numerically?

• Are third-order basis functions viable for the simulation of wetting and drying?
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In chapter 3, we combined the DG model with a triangular mesh, created with
amatos, that is dynamically refined by bisection according to a user-defined refinement
indicator. To study the effects on robustness, accuracy and computational complex-
ity, we performed a set of numerical tests for flooding and drying, that we showed in
section 3.4. The tests revealed that the method is robust on adaptive grids, which is
probably due to the only local communication of elements over edges. Furthermore,
we demonstrated that with the adaptive mesh the computational complexity could be
reduced to up to 80% for the tidal beach tests with a loss of accuracy of only 1% due to
the quasi one-dimensional nature of the problem. A truly two-dimensional paraboloid
basin testcase revealed, that a decrease in computing time of ≈ 45% lead to a loss of
accuracy of around 25%. In all, our tests confirmed that the model is well-balanced
and that the adaptive mesh led to an improvement of computational complexity.

Chapter 4 dealt with the numerical approximations in the DG model and their im-
pact on accuracy and computational efficiency. Our study of existing slope limiters
comprised a general theoretical characterization that showed the link between the dif-
ferent approaches and the determination of strengths and weaknesses of commonly used
edge-and vertex-based limiters. In a subsequent numerical study we tested our im-
plementation for robustness, convergence and conservation properties. The edge-based
limiters were computationally the most expensive as opposed to simple L2-limiter, which
showed the least accurate performance, so that we conclude that the vertex-based limiter
is preferable in combination with our DG model. Furthermore, we discussed Riemann
solvers to compute fluxes over the element boundaries. According to our numerical
study all the approximate Riemann solvers, that we tested, led to equivalent results.
Finally, we presented a computationally inexpensive technique, that mainly depends on
the use of the strong form of the underlying equations, to ensure well-balancedness of
the model. Numerical tests confirmed that the implementation is robust and able to
preserve partially dry steady states without introducing significant oscillations.

We investigated the viability of higher than second order basis functions in chap-
ter 5 and demonstrated that the nodal Lagrange approach destabilizes the model for
problems of flooding and drying. This led us to the development of a new strategy
using Bernstein polynomials as test- and ansatz-functions. The monotonicity of Bern-
stein functions helped to circumvent problems with negative water height that occur
for the Lagrange ansatz in the vicinity of wet/dry interfaces. The study of convergence
properties comprised two wet/dry test cases with analytical solutions. The errors were
measured in standard L2- and L1-norms both, for the global domain and for the partial
smooth domains. We could show, that the use of higher third-order basis functions
led to a global improvement of the convergence rate of 0.5 and a local improvement
of approximately 1. Throughout the numerical error resulting from the Bernstein ap-
proach was smaller than the error of the Lagrange approach. The Bernstein polynomials
showed better conservation properties than the modified and the second-order Lagrange
approach.

We have presented the discretizations of the major source forcings of storm surges in
chapter 6. Among others, this included an idealized storm model. Since the quality of
the dynamically adaptive simulation strongly depends on the quality of the underlying
mesh, we developed a composite refinement indicator, that takes the major aspects of
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Figure 7.1.: Wave spectrum according to Holland (1980)

storm surges into account. With two idealized storm tests, we validated our implemen-
tation and were able to obtain realistic numerical results. The adaptive mesh was able
to reduce the computational cost by a factor of ≈ 2 and the corresponding simulation
results still showed good agreement, especially for the arrival time of the first wave at
discrete points, with the uniform simulation.

7.2. Outlook and Future Work

The implementations and investigations of this thesis leave natural directions for future
research and further work to be done.

The natural continuation of this work is the application to real data and the com-
parison of the results to real measurements. The acquisition of measurement data can,
however, be difficult.

Also, an extension of the third-order Bernstein polynomials to higher order could be
interesting. So far, we were content with the third-order polynomials for two reasons.
As the code is not fully parallel, we will probably not be able to use the potential, that
higher order functions offer and our primary goal is to develop a model for realistic
applications, so that the extension to higher than third-oder basis functions was not
prioritized. Further research could be conducted on the potential of Bernstein polyno-
mials to suppress artificial oscillations in p-adaptive schemes. This was not possible to
explore as currently the model StormFlash2d does not offer p-adaptivity.

The testcases, that we presented in chapters 3—6 are a good basis for a comparison
with other existing models, that employ different numerical techniques or are imple-
mented in a different software framework. This would help to gain insight into how
for example continuous and discontinuous methods compare and identify further weak-
nesses of our model. One weakness that we already recognized is the run time of our
model. The numerical tests suggested that especially for high-resolution applications,
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we need to improve the run time of the code. A parallelization with openMP has al-
ready been initiated. However, more effort needs to be invested in order to obtain a
practically feasible numerical code.

A multilayer model would have several advantages. The wind stress would then only
affect the upper layer rather than the whole water column which would lead to more
realistic results. Moreover the assumption of a constant density of the fluid would
be relaxed in that case as at least for each layer one could easily assume different
densities. However, the coupling of the layers is an interesting problem. For shallow
water equations this has been done in Mandli (2011) for a finite volume scheme.

Furthermore, a non-hydrostatic correction would make it possible to relax the as-
sumption made on hydrostasy in chapter 2 at the expense of solving a quadratic linear
system of equations in every times step.

In our model we exclusively used an explicit time stepping. Reasons for their ap-
plication are the computational simplicity and that they do not modify the speed of
the gravity waves of the system which is important for computing the arrival times
of waves onto the coast. However, in some regimes the restriction of the time step is
rather severe. Therefore methods need to be explored that allow for a relaxation of
the restriction. There are works on semi-implicit methods such as Giraldo and Restelli
(2009) where a local linearization is performed to come up with a semi-implicit system.
This allows for a larger timestep when we approve of solving a linear system in every
time step with for example a GMRES method.

As depicted in figure (7.1) the waves of the system that we are solving can be roughly
clustered into two categories: long and short, wind-generated waves which are both
present in for example the modeling of hurricane storm surges. Since especially for
the waves approaching the coast, the shallow water equations are not valid any more,
it would make sense to work with a different Green-Naghdi equations based model to
model the physical processes there.
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A. Appendix: Hurricane Wind Scale

The Hurricane Scale according to Saffir Simpson is a classification for storms that exceed
wind speeds of 33ms−1 and was officially released by the National Hurricane Center,
NOAA in 1972. It is based on the sustained winds and helps to estimate the expected
damage. It is defined as follows.

Category Sustained winds Normal central pressure Example
[ms−1] [mbar]

1 33-42 980-994
2 43-49 965-979 Hurricane Frances

(2004)
3 50-58 945-964 Hurricane Ivan

(2004)
4 58-70 920-944 Hurricane Charley

(2004)
5 ≥70 < 920 Hurricane Andrew

(1992)

Hurricanes of category 3 and higher are considered as major hurricanes because they
are usually accompanied by major loss of life and property. The damages rise by
approximately a factor of 4 between the categories. The categories, however, do not
give any information about the to be expected storm surge. The latter is also strongly
influenced by the size of the hurricane, bathymetry and topography of the area, forward
speed of the hurricane and the angle with which the storm approaches the coast. A
detailed description of the scale and corresponding expected extent of damage can be
found in National Hurricane Center (2012)





B. Appendix: Implementation Issues

B.1. Derivation of Shallow Water Equations

We derive the shallow water equations from the Navier Stokes equations that are defined
in McWilliams (2006) and are used to model the general movement of fluids:

Dρ

Dt
=
∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (B.1a)

Du

Dt
= −1

ρ
∇p+∇ ·Φ + F (B.1b)

where ρ is the density of the fluid, u = (u, v, w)> is the three-dimensional velocity,
x = (x, y, z)> are the spatial coordinates, p is the pressure, ∇ is the gradient operator
with respect to x and D

Dt
is the total derivative defined as D

Dt
:= ∂

∂t
+∇ · u. The vector

F is a vector of conservative body forces and Φ contains all stress terms such as bottom
friction or wind stress.

If we assume constant density ρ = ρ0 ∈ R, the first equation simplifies to

∇ · u = 0 (B.2)

We integrate (B.2) over the fluid height h(x, t) = H(x, t) − b(x) as depicted in
the sketch B.1 and assume no slip boundary conditions at the bottom boundary, i.e.

x0

z

b

hH

Figure B.1.: Shallow Water Equations. Sketch of bathymetry b, total height H and
fluid height h.
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u = v = 0 for z = b. Neglecting the vertical velocities yields

0 =
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)
Introducing the depth-averaged velocities u and v:

u(x, t) =
1

h(x, t)

∫ H(x,t)

b(x)

u dz, v(x, t) =
1

h(x, t)

∫ H(x,t)
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and assuming no relative normal flow, i.e. Dh
Dt

= 0 at z = H, yields the depth-averaged
continuity equations
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= 0 (B.3)

Now, the components of the momentum balances are

∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
= −1

ρ

∂p

∂x
+
∂Φ

∂x
+ F1 (B.4a)
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where F contains the conservative body forces such as gravitational acceleration g and
Coriolis forcing fc, which has a zero third entry, and Φ contains all the stress terms.
If we assume small vertical velocities and the absence of stress terms in the vertical
component, (B.4c) is reduced to

∂p

∂z
= ρg ⇒ p = ρg(h+ b− z),

which simplifies the pressure terms in the other two equations (B.4a) and (B.4b) to

∂p

∂x
= ρg

∂(h+ b)

∂x
,

∂p

∂y
= ρg

∂(h+ b)

∂y

which is the hydrostatic pressure distribution, that we will assume throughout. We
integrate (B.4a) and (B.4b) over the fluid height, assume again that the vertical velocity
is negligible , and obtain the depth-averaged momentum equations. We demonstrate
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this exemplarily for (B.4a).∫ H(x,t)

b(x)

(
∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y

)
dz =

∫ H(x,t)

b(x)

(
−1

ρ

∂p

∂x
+
∂Φ

∂x
+ F1

)
dz

=

∫ H(x,t)

b(x)

(
−g∂(h+ b)

∂x
+
∂Φ

∂x
+ F1

)
dz

∂hu

∂t
+
∂(hu2)

∂x
+
∂(huv)

∂y
= −gh∂(h+ b)

∂x
+ h

∂Φ

∂x
+ hF1

where we have used the definition of the depth-integrated velocities. The corresponding
equation for the y-momentum then takes the form

∂hu

∂t
+
∂(huv)

∂x
+
∂(hv2)

∂y
= −gh∂(h+ b)

∂y
+ h

∂Φ

∂y
+ hF2

B.2. Convergence Study with Fully Wet Testcase

The convergence studies shown in this thesis solely comprised partially dry test prob-
lems for which the theoretical convergence order of n + 1 for polynomials of degree n
can not be achieved due to regularity problems. To complement the study, we tested
convergence for a smooth and fully wet problem.

Testcase 11. Linearized Sloshing Basin
We consider a domain Ω = [0, 1]2 with constant bathymetry, the linearized version of
the shallow water equations and reflecting boundary conditions. The initial conditions
are defined for t = 0 as follows:

h(x, t) = cos(πx) cos(πy) cos(
√

2πt)

u(x, t) =
1√
2

sin(πx) cos(πy) sin(
√

2πt)

v(x, t) =
1√
2

cos(πx) sin(πy) sin(
√

2πt)

An analytical solution can be found in Iskandarani et al. (2003). We ran the test with
a second order Runge Kutta scheme (RK22) and decreased the spatial resolution by
bisection from ∆xmin = 0.125 to ∆xmin = 0.03125. The results are depicted in figure
B.2, where we employ a double logarithmic scale to increase the readability, and show
the expected theoretical convergence rate.
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Figure B.2.: Convergence of DG Method
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